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Summary 

The neural crest is an epithelial domain within the neural and non-neural 

ectoderm. This domain is generated along the anterior-posterior axis-giving 

rise to many different cell types. The key difference between cranial and trunk 

neural crest is the ability of cranial neural crest to give rise to mesectoderm. 

However the origin of mesectoderm has not been unequivocally proven. 

Furthermore the issue of whether neural crest cells are pluripotent or fate 

restricted has also been controversial. In the current study we try to address 

the issue of whether cell fate and origin are linked in the neural crest and 

propose that there are two populations of delaminating cells with distinct cell 

fates. 

To determine the origin of neural crest cells, we looked at the expression of 

neural crest markers within the neural and non-neural ectoderm defined by 

Sox1/N-cadherin and E-cadherin/L-CAM respectively. Cell fate of the neural 

domain was determined by Sox1 Cre mediated activation of reporter in the 

mouse or by DiI labeling of the two domains in the chick. We show that in 

cranial regions, there are two populations of cells delaminating within the 

neural fold. The first cells to delaminate originate from the non-neural 

ectoderm expressing E-cadherin/L-CAM; the second wave of cells delaminate 

from the neural ectoderm expressing Sox1/N-cadherin and the origin 

coincides with the fate that cells adopt – i.e., mesectoderm and neural 

derivatives respectively. Here we provide evidence that fate restriction occurs 

prior to cell delamination and that cell fate is linked to the time and site from 
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which cells delaminate. These observations have implications for 

understanding how neural crest are formed and patterned.   
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Chapter 1: Introduction 

1.1 The neural crest as a model system 

This study tries to address the origin and fate of the neural crest, an 

embryonic cell population with exquisite migratory properties and great 

diversity of differentiation potential. This model is unique to vertebrates and 

mechanisms governing neural crest ontogeny have helped in the 

understanding of the processes involved in cranial-facial and heart syndromes 

as well as tumor invasion and metastasis. A review of the current literature of 

how neural crest is formed and lineage tracing experiments is detailed in the 

following sections to address these issues. 

The neural Crest is also a unique model to understand emergence of 

vertebrates, since it is considered to contribute significantly to craniofacial 

structures. Most studies however focused on molecular and cellular 

mechanisms for cell specification, cell migration and cell differentiation. In 

particular this model system has been used: 

1. To understand epithelial to mesenchymal transition (EMT). Neural 

crest cells are generated within the ectoderm and have to delaminate 

from the epithelia to form migratory mesenchymal cells. 

2. To understand cell migration. Neural crest cells generated at different 

times take distinct pathways of migration, and this is controlled in part 

by differential expression of ligand/receptor pair by the cellular 

environment and neural crest cells. For example they utilize Slit/Robo 
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and Semaphorin/Plexin ligand/receptor pairs to guide their migration. 

In particular neural crest cells that form the enteric nervous system 

migrate from the pharynx to colonize the entire colon. The cells are 

guided by a gradient of GDNF within the gut, which activates c-Ret 

expressed by enteric neural crest cells.  

3. To understand lineage restriction, neural crest can form a multitude of 

cell types: neurons, glia, melanocytes, smooth muscle cells, 

osteocytes, and chondrocytes. 

4. To understand neurocristopathies. Defects in neural crest 

formation/migration cause a multitude of congenital defects like cleft 

palate or Hirschsprung disease (failure of crest cells to colonize and 

differentiate in the colon) and neurofibromatosis type 1 where there is 

a gene defect in NF1 results in and causes aberrant proliferation of 

neural crest derived glial cells. 
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1.2 General properties of neural crest 

The term neural crest was first coined by Marshall to describe cells that 

delaminate from the neural ridge to form the cranial ganglia (Marshall, 1879). 

This group of cells is characterized by three properties: 

1. They originate from the border between neural and non-neural 

ectoderm.  

2. They undergo epithelial to mesenchymal transition. 

3. They migrate away from the site of formation to their final destination 

and give rise to a multitude of different cell types 

 

Neural crest cells are able to give rise to many different cell types; neurons, 

glia, endocrine cells, melanocytes, and connective tissue (Le Douarin and 

Kalcheim, 1999; Le Douarin et al., 2004). They are induced along the entire 

anterior posterior axis and can be subdivided into four regions (fig. 1.1): 

1. Cranial neural crest 

2. Cardiac and vagal neural crest 

3. Trunk neural crest 

4. Sacral neural crest 

Cranial neural crest can be defined as the neural crest that is derived from the 

posterior prosencephalon to rhombomere 8. Cardiac neural crest is derived 

from rhombomere 6 to 8. Vagal neural crest cells are derived from the neural 
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tube between somites 1 to 7. Sacral neural crest cells originate from levels 

after somite 28 whereas trunk neural crest originates from levels between the 

vagal and sacral neural crest cells.  

 
Fig. 1.1: Fate map of neural crest cells along the anterior posterior axis.  
Figure taken from a review by Le Douarin showing neural crest derivatives 

from different axial levels (Le Douarin et al., 2004).  

The neural crest is a transient territory situated at the junction between the 

neural and non-neural ectoderm. Neural crest cells undergo EMT from this 

region and subsequently forms different cell types. As mentioned before, 

neural crest cells can be broadly categorized into cranial and trunk neural 

crest. Both the cranial and trunk neural crest give rise to neurons, glia and 
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melanocytes. However cranial neural crest has the unique property to form 

mesectoderm that subsequently differentiates into bone, cartilage and other 

connective tissue (fig. 1.1). Although it has been shown in amphibian and 

zebrafish that the trunk neural crest can also form mesectoderm in the dorsal 

fin (Raven, 1931; 1936; Smith et al., 1994).  

At present it is unclear what accounts for this difference in the differentiation 

potential between cranial and trunk neural crest. It is also unclear when fate 

restriction occurs for all lineages; in particular it is still a matter of debate 

whether neural crest cells are pluripotent rather than being fate-restricted 

initially. Furthermore, some cells start to delaminate early from the lateral 

ectoderm and it has been speculated that these cells might give rise to 

mesectoderm, raising the issue that cell fate and origin may be linked.  
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1.3 Rationale for current study 

1.3.1 Definition of the neural crest and origin of cranial 
mesenchyme - History 

In the embryological literature of the 19th century, relationships among tissues 

were determined by morphology. For example, the fact that endodermal cells 

contain many yolk granules whereas ectodermal cells had fewer yolk granules 

allowed these two tissues to be distinguished early in development (Platt, 

1893).  

The first studies on the neural crest focused on the formation of the spinal 

ganglia (His, 1868; Balfour, 1876; Beard, 1888). Wilhelm His first identified the 

neural crest in 1868 as the source of spinal ganglia, however at that time he 

called these cells “Zwischenstrang”, the intermediate cord (His, 1868). In 

1879, the term neural crest was first used by Marshall to describe cells that 

gave rise to the spinal and crania ganglia. He defined the neural crest as “the 

longitudinal ridge of cells which grows out of the neural canal and from which 

nerves, whether cranial or spinal, arise” (Marshall, 1879). 

The origin of mesenchyme in the head was first briefly described by 

Kastschenko in 1888 (Kastschenko, 1888). Subsequently in 1893, Platt used 

the term mesectoderm to describe ectodermal cells that gave rise to 

mesodermal derivatives (visceral cartilage of the cranial skeleton of the mud 

puppy). She concluded that mesectoderm originated from the lateral non-

neural ectoderm and was separate from the neural crest which was found in 

the dorsal neural ectoderm (Platt, 1893). This was very controversial at the 
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time because the dominating line of thought was the germ layer theory, which 

stated that bone and cartilage were exclusively derived from mesoderm and 

cannot be derived from the ectoderm.  

However in 1921, Landacre disagreed with Platt’s conclusion that it was the 

lateral ectoderm that gave rise to mesectoderm instead he concluded that it 

was the neural crest that gives rise to mesectoderm (Landacre, 1921). In his 

paper he presents a number of studies by other authors on the possibility of 

the lateral ectoderm origin of mesectoderm (Goronowitsch, 1893; Kupffer, 

1895; Koltzoff, 1901) and discusses what are the possible reasons for the 

"erroneous" conclusions for the lateral ectoderm origin of mesectoderm. He 

also discusses the strong opposition from the dominant germ layer theory that 

bone and cartilage are derived from ectoderm (fig. 1.2).  

 
Fig. 1.2: Summary of studies detailed in Landacre FL 1921 on what is the 
origin of the cranial mesenchyme.  
(Goronowitsch, 1893; Platt, 1893; Rabl, 1894; Kupffer, 1895; Corning, 1899; 

Koltzoff, 1901; Minot, 1901; Buchs, 1902; Dohrn, 1902; Brauer, 1904; 

Landacre, 1921) 
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The idea that bone and cartilage in the head were derived from ectoderm was 

further confirmed by ablation and vital dye studies between 1920 and 1940. 

Stone, Raven, Hörstadius and Sellman were among the first who used 

ablation of the neural fold to demonstrate that the cranial bone and cartilage 

originated from the ectoderm (Stone, 1926; 1929; Raven, 1931; 1936; 

Hörstadius and Sellman, 1941; 1946). These authors were primarily 

concerned with proving that ectoderm can give rise to mesodermal derivatives 

and disproving the dominant germ layer theory rather than defining exactly 

where within the ectoderm cells originated.  

By the late 1940s, it was finally accepted that the bone and cartilage in the 

head originated from the ectoderm and that the germ layer theory was not 

applicable to this anlage (Hörstadius and Sellman, 1941; 1946; de Beer, 

1947; Hörstadius, 1950). In the paper by de Beer, there is mention of the 

studies by Platt on the lateral ectoderm origin of mesectoderm but it is 

dismissed as not being substantiated by others and he agrees fully with the 

conclusion by Landacre that the neural crest gives rise to mesectoderm. 

These early studies set the stage for the subsequent studies of neural crest 

and also accorded the neural crest as a source of remarkable pluripotent cells 

with very broad differentiation potential, Refer to fig. 1.3 for a summary of 

milestones in the field of neural crest studies. 
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Fig. 1.3: Milestones or landmarks in neural crest studies.  
Summary of the origin of neural crest (based on Hall BK and Landacre FL 

(Landacre, 1921; Hall, 2008)). With emphasis on the origin of the cranial 

mesenchyme as well as the initial debate on whether neural crest or lateral 

ectoderm gave rise to cranial mesenchyme (His, 1868; Marshall, 1879; 

Kastschenko, 1888; Platt, 1893; Landacre, 1921; Stone, 1926; 1929; Raven, 

1931; 1936; Hörstadius and Sellman, 1941; 1946; de Beer, 1947; Weston, 

1963; Johnston, 1966; Le Douarin and Teillet, 1974; Nichols, 1981; 1986; 

Weston et al., 2004; Breau et al., 2008).  

So what led Platt and Landacre to come to different conclusions on the origin 

of the mesectoderm? In these studies, cell lineage was determined based on 

similarities in morphological appearance. In reassessing both studies, a key 

disagreement between the authors was how the neural fold was organized. 

Platt interpreted the neural fold as made up of two separate layers and cells 

were delaminating from distinct layers whereas Landacre described the neural 

crest as a single mass of cells within the neural fold (this will be elaborated in 
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greater detail in the discussion). Perhaps it was due to the need to disprove 

the dominating germ layer theory that authors failed to address the actual 

ectodermal domain that mesectoderm originated from (whether it originated 

from the lateral non-neural ectoderm or the neural crest). 

 

1.3.2 Evidence for the lateral ectoderm origin of 
delaminating cells 

From histological analysis of mouse neural crest cell delamination (Nichols, 

1981; 1986), it was reported that in the cranial region of mouse, there is a 

temporal sequence of cell delamination from the neural fold epithelium. In the 

first study by Nichols, it was shown that the first cells delaminate from the 

non-neural ectoderm whilst later cells delaminate from the neural ectoderm. 

He also showed that the first cells to delaminate had higher levels of 

proteoglycans as shown by staining with toluidine blue. In the second study, 

Nichols went on to show that the cells that delaminate first end up dorsolateral 

to the pharynx whereas the cells that delaminate later form the cranial 

ganglia. These studies show that the neural fold region is heterogeneous and 

that there are two populations of neural crest cells in the head. 

More recent work by Weston et. al. and Breau et. al., have also revealed this 

heterogeneity of the neural fold (Weston et al., 2004; Breau et al., 2008). The 

authors were able to recapitulate the histological studies by Nichols using 

molecular markers. Weston et. al. looked at the expression of PDGFR-alpha 

(PDGFRα), which is expressed in mesodermal derivatives (Morrison-Graham 



 11 

et al., 1992; Orr-Urtreger et al., 1992), and in a subset of the delaminating 

cells within the neural fold. Incidentally in both studies, it was shown that 

these PDGFRα expressing cells also express E-cadherin and that these cells 

delaminate from the non-neural ectoderm. In the chicken cranial region, the 

neural fold also expresses PDGFRα (Endo et al., 2002). Based on these data, 

the authors propose that in the head there is a separate population of 

delaminating cells called “Metablast” that gives rise to the mesectoderm and 

that these cells are distinct from the neural crest which gives rise to neurons 

and pigment cells. Breau et. al. showed that cells initially delaminate from an 

E-cadherin positive domain in the neural fold.  Based on the above studies as 

well as the initial studies that describe the origin of the neural crest, the first 

question that we would like to address is: “What is the neural fold?” 

It is known that the first cells to delaminate from the cranial neural fold or 

dorsal neural tube gives rise to more ventral derivatives (Lumsden et al., 

1991; Krispin et al., 2010). From these studies one can infer that time of 

delamination is a good indicator of cell fate and further implies that neural 

crest cells are fate restricted. However from grafting experiments, it seems 

that neural crest cells from different regions (orthotropic) and cells generated 

at different times (heterochronic) can compensate for each other and 

therefore they should have the same differentiation potential. How can these 

facts be reconciled? 

Furthermore, it was known for a long time (DuShane, 1935; Erickson et al., 

1992) that neural crest cells that are the last to delaminate generate 

melanocytes. Subsequently, there have been studies reporting the expression 
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of molecules implicated in melanocyte development by these late 

delaminating neural crest cells (Hayashi, 1993; Wehrle-Haller and Weston, 

1995; Wilson et al., 2004). These reports of differential expression of markers 

further imply heterogeneity among neural crest cells. 

The question of whether neural crest cells are pluripotent or fate restricted has 

important fundamental implications for how we consider the induction of the 

neural crest cells; do we consider the cells as individuals or as groups of 

cells? Determining when fate restriction occurs has important implication for 

understanding the induction of these cells by signaling molecules as well as 

transcriptional regulators. A diagram on the possible scenarios that fate 

restriction could happen in the neural crest is shown in fig. 1.4. 

 
Fig. 1.4: Different scenarios of how fate restriction occurs in neural crest 
cells. 
Arrows indicate signaling molecules and asterisk indicate time of fate 

restriction. (A) and (B), show that cells are initially homogeneous whereas (C) 
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show that the cells are already heterogeneous (denoted by gradient) in the 

neural fold. 

Numerous experiments and observations have highlighted the difference 

between the cranial and trunk neural crest. These differences as well as the 

apparently unique ability of cranial neural crest to generate mesectoderm 

have raised the question of whether there is a link between origin and cell 

fate.  

In the current study, we seek to define more clearly the neural fold by 

investigating the generation of neural crest cells in relation to how the neural 

and non-neural ectoderm segregate and also to determine if there are distinct 

populations of delaminating cells within the neural fold. We want to determine 

whether there is any correlation between fate and origin, and whether neural 

crest cells are pluripotent or fate restricted prior to delamination. In the 

following sections, we summarize what is currently known about how neural 

crest are formed and whether these cells are pluripotent or fate restricted. An 

important point to note is that we do not distinguish cells coming from different 

regions of the neural fold and we adopt the definition that the neural crest is 

an epithelial region between the neural and non-neural ectoderm.   
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1.4 Formation of neural crest cells 

To investigate whether cell fate and origin are linked, there is a need to 

understand how the neural crest is specified. The neural crest is specified in 

the ectoderm and its formation can be considered in a stepwise manner: 

1. Neural induction (patterning of the primitive ectoderm) 

2. Induction of the neural crest 

3. Delamination from the ectoderm 

 

1.4.1 Neural induction 

An essential step in the induction of the neural crest cells is the demarcation 

of the neural crest domain within the primitive ectoderm. The neural crest 

arises from the border of the neural and non-neural ectoderm. Not only is the 

neural crest induced spatially near the neural ectoderm, its induction is also 

temporally linked to the formation of the neural ectoderm. And it is for this 

reason that the study of neural crest formation has been greatly influenced by 

how neural ectoderm is induced. 

Neural induction is the initial step in the formation of the central nervous 

system and it involves the induction of the naïve primitive ectoderm (ectoderm 

that does not go through gastrulation) to adopt a neural fate. This inductive 

process was elegantly demonstrated when Mangold transplanted the dorsal 

lip of the blastopore (Spemann’s organizer) into the ventral side of a recipient 

embryo and showed that there was an induction of a second central nervous 



 15 

system that was derived from the recipient embryo. This unequivocally 

showed that the organizer was able to induce a naïve primitive ectoderm to 

adopt a neural fate and the naïve ectoderm was responding to the signal 

coming from the organizer (Spemann and Mangold, 1924; 2001).  

Subsequently it was shown that the naïve primitive ectoderm was induced to 

form neural ectoderm when it was transiently dissociated (Grunz and Tacke, 

1989). This finding provided clues that neural induction was due to the 

inhibition of ubiquitous bone morphogenetic protein (BMP) signaling (Wilson 

and Edlund, 2001; Stern, 2005). This was the basis of the neural “default” 

model, because in the absence of BMP signaling primitive ectoderm adopted 

a neural ectoderm fate, suggesting that neural ectoderm was the default state.  

As with most biological processes, it was soon found afterwards that other 

growth factors like fibroblast growth factor (FGF) and wingless-related MMTV 

integration site (Wnt) family members were also involved (Wilson and Edlund, 

2001; Stern, 2005). Based on the expression pattern as well as loss of 

function assays, it was found that members of the SoxB1 family are 

expressed in the ectoderm and are important for the induction of the neural 

ectoderm (Uwanogho et al., 1995; Rex et al., 1997; Pevny et al., 1998; 

Uchikawa et al., 1999; Wood and Episkopou, 1999).  

Sox1, Sox2 and Sox3 belong to the SoxB1 family (Uchikawa et al., 1999). 

Members of this family of transcription factors contain the DNA binding HMG 

domain. It was found that Sox3 is expressed in a broad domain within the 

epiblast prior to gastrulation (HH1) and expression is maintained in the neural 
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ectoderm but is lost in regions that are destined to form the definitive 

ectoderm. In contrast Sox2 is only expressed in the neural ectoderm at HH4 

during early gastrulation when the neural ectoderm becomes thickened (Rex 

et al., 1997). In the chick, Sox1 is first expressed at HH7 in the neural 

ectoderm when the cells have committed to a neural fate (Uchikawa et al., 

1999). In the mouse, Sox1 is first expressed in the neural ectoderm at the late 

head fold stage (Pevny et al., 1998; Wood and Episkopou, 1999).  

It has been proposed based on the expression pattern of these factors as well 

as gain and loss of function experiments that the expression of the members 

of the SoxB1 family of genes reflects the state of neural induction. Prior to 

gastrulation, Sox3 is expressed in the entire epiblast and this reflects 

competence to form neural ectoderm. After gastrulation, expression of Sox3 in 

the neural ectoderm reflects the beginnings of neural induction whereas loss 

of Sox3 expression reflects a switch to a definitive ectodermal fate. The 

expression of Sox2 during early gastrulation reflects the very early signs of 

neural induction (thickening of the neural ectoderm) whereas Sox1 is 

expressed in the neural ectoderm when cells are committed to a neural fate 

(Scotting and Rex, 1996). 

During neural induction, the initial flat epiblast undergoes morphogenesis to 

form the head fold. Naïve primitive ectoderm cells in the epiblast are initially 

cuboidal and upon neural induction, the cells thicken and become spindle 

shaped. In the chicken, neural induction is also accompanied by apical 

constriction and this is important for the formation of the neural tube and 

subsequent neural tube closure. This involves changes in cadherin 
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expression, in the chick the epiblast initially expresses L-CAM (E-cadherin 

ortholog) and upon neural induction, the neural ectoderm expresses N-CAM 

and N-cadherin (Thiery et al., 1982; Edelman et al., 1983). These markers are 

expressed once the neural ectoderm becomes morphologically distinct and 

are one of the earliest markers of neural induction.  

Formation of the neural tube involves thickening of the neural ectoderm to 

form the neural plate, bending of the neural plate to form the neural fold, and 

subsequent fusion of the apposing neural fold. One of the consequences of 

neural tube closure is the separation of the neural and non-neural ectoderm. 

In mammals, cranial neural crest cells delaminate from the neural folds at a 

stage when the neural tube is not yet closed. This is a stage when the neural 

and non-neural ectoderm are continuous with each other and neural crest 

cells are formed at the border between the neural and non-neural ectoderm. 

This is in contrast to the situation in the trunk where neural crest cells 

delaminate from the dorsal region of the neural tube when the neural tube is 

already fully closed and physically separated from the non-neural ectoderm. 

 

1.4.2 Induction of the neural crest – Gene regulatory network 

Induction of the neural crest occurs in two steps. The first step is the formation 

of the border between the neural and non-neural ectoderm that is controlled 

by signaling molecules secreted by the paraxial mesoderm, neural and non-

neural ectoderm. The second step involves the expression of a gene 
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regulatory network by the neural crest cells that are at the border of the neural 

and non-neural ectoderm. 

The initial signaling events trigger the formation of the neural crest by turning 

on a gene regulatory network that consists of a number of transcription 

factors. These transcription factors can be grouped according to their spatial 

and temporal expression pattern as well as function. The first group that is 

expressed is the border specifier, these transcription factors are expressed at 

the border between the neural and non-neural ectoderm. Some of these 

transcription factors are direct targets of growth factors. This first group can 

be thought of as genes that are important for the segregation of the ectoderm 

into distinct regions and their expression is not restricted to the neural crest. 

The second group of transcription factors are those that are involved in 

specifying the neural crest cells (Betancur et al., 2010a). This second group is 

only expressed in the cells that are going to delaminate, and therefore 

expression is much more restricted. 

Some of the first transcription factors to be expressed in the border of the 

neural and non-neural ectoderm are genes that respond to the growth factors 

that induce the neural crest. For example Msx1 expression is a direct target of 

BMP signaling (Suzuki et al., 1997). There are a number of genes that are 

expressed at the border between the neural and non-neural ectoderm, Pax3, 

Pax7, Msx1, Msx2 and Tfap2a. The expression of these genes are not only 

restricted to the neural crest but also includes the dorsal part of the neural 

ectoderm, which specifies the sensory neurons of the spinal cord, as well as 

ectoderm, which gives rise to sensory placodes. The border of the neural 
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plate has been shown to be quite flexible in adopting other cell fates, being 

the only region that can be induced to form neural ectoderm, this is in contrast 

to cells that lie more laterally which are unable to be induced to form neural 

ectoderm (Streit and Stern, 1999).  

In the following section, a short summary of the known expression patterns of 

these transcription factors as well as phenotypes of mutants is provided to try 

to understand what is the role of these molecules in neural crest formation?  

Pax3 and Pax7 are both members of the paired box containing transcription 

factor family. There are a total of 9 family members and with the exception of 

two members they are all expressed in the central nervous system. In the 

mouse, Pax3 is expressed along the entire anterior posterior axis whereas 

Pax7 is expressed in the more anterior regions (Mansouri et al., 1996). In the 

chick, Pax3 is weakly expressed in the anterior regions until HH9, whereas in 

mouse Pax3 is expressed earlier when the head fold is formed. In chicken 

embryos, Pax7 is expressed at the border of the neural and non-neural 

ectoderm at HH5 (Otto et al., 2006). Pax3 and Pax7 are also expressed in the 

dorsal neural tube as well as in the presomitic mesoderm. Both Pax3 and 

Pax7 are expressed in the migratory neural crest cells as well. Pax3 has also 

been shown to be important for the formation of the trigeminal placode (Dude 

et al., 2009) and it is interesting to note that at HH8 in the chick, Pax3 is 

expressed in the ectoderm. Interestingly, it was shown that these Pax3 

positive cells at this stage do not give rise to cells of the trigeminal placode 

(Xu et al., 2008).  
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It has been reported that neural crest cells are derived from an early 

population of Pax7 positive cells at HH4+ (Basch et al., 2006). This is a stage 

when the embryo is still undergoing gastrulation and neural ectoderm is also 

just beginning to be formed. It was also shown that the formation of the neural 

crest is dependent on the expression of Pax7. This demonstrates an early 

requirement of Pax7 function, possibly in the induction of the neural crest or a 

requirement of Pax7 for the proper segregation of the neural crest domain. 

However knockouts of Pax7 in mice shows a relatively mild craniofacial defect 

(Mansouri et al., 1996). Interestingly, the mouse knockout of Pax7 does not 

have any obvious deflects in neuronal derivatives. 

The mutation of Pax3 in the mouse Splotch mutant leads to a severe 

reduction in neural crest derivatives like melanocytes, neurons and cardiac 

neural crest (Auerbach, 1954). The defects are more severe in posterior than 

anterior regions; this might be due to compensation by Pax7 expression in 

anterior region. The Pax3 and Pax7 double mutants was shown to have more 

severe defects than single mutants and Pax3 and Pax7 have redundant 

functions within the spinal cord (Mansouri and Gruss, 1998). It was further 

shown that when neural tube from Pax3 mutant mice was transplanted into 

chicken embryos, the Pax3 mutant neural tube was shown to give rise to 

neural crest derivatives like dorsal root ganglia or sympathetic ganglia 

(Serbedzija and McMahon, 1997). In this case, mutation of Pax3 seems to be 

affecting the migration of the cells but does not have an effect on their 

formation since neural tube explants from the Pax3 mutant can give rise to 

neural crest derivatives. Pax3 is expressed in the somite and was probably 
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affecting the ability of the neural crest to migrate in the somite (Serbedzija and 

McMahon, 1997).  

Msx1 and Msx2 are homeo domain containing transcription factors. Msx1 is 

expressed at very early stages in the border of the neural and non-neural 

ectoderm. In the chicken Msx1 is expressed in the posterior region of the 

embryo at HH4, at this early stage the expression seems to be very similar to 

Pax7 (Chen et al., 1995). In the mouse, prior to gastrulation Msx1 is 

expressed in the extra-embryonic tissue but after gastrulation (E8.0), Msx1 is 

expressed in the future dorsal ectoderm and the neural epithelia. Expression 

in the dorsal ectoderm is lost at E8.5 (Houzelstein et al., 1997).  

In chicken, apoptosis of neural crest in rhombomere three and five is 

mediated by Msx2 expression in this region. The authors show that 

misexpression of Msx2 in rhombomere two causes apoptosis of neural crest 

cells (Graham et al., 1994; Takahashi et al., 1998). Knockout of Msx1 leads to 

cranial facial defects like cleft palate. The cleft palate defect could be due to 

disruption of neural crest formation or due to a later requirement of Msx1 for 

cell differentiation because Msx1 is expressed in the branchial arch (BA) one 

(Houzelstein et al., 1997). 

In mouse, Tfap2a is expressed very early during embryogenesis. It is first 

expressed in the ectoderm and neural crest at E8.0. Prior to this, Tfap2a is 

expressed in the trophectoderm (Mitchell et al., 1991). The early expression of 

Tfap2a in the ectoderm and neural crest is also seen in the chicken (Shen et 

al., 1997). Mutation of this gene leads to severe cranial facial defects as well 
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as anencephaly (Schorle et al., 1996; Zhang et al., 1996). In these mutants 

the cranial ganglia are also hypoplastic. The important role for Tfap2a in 

neural crest seems to be conserved for most species analyzed. It was shown 

that mutations in Tfap2a in zebrafish also lead to cranial facial defects. In 

chicken, Tfap2a is expressed in the migrating neural crest cells and also in 

mesectoderm within the BA (Minarcik and Golden, 2003).  

It was postulated that Tfap2a might have an important role in the formation of 

the border between the neural and non-neural ectoderm and therefore very 

important for the formation of the neural crest (Meulemans and Bronner-

Fraser, 2002). Amphioxus, which belongs to cephalochordates, does not have 

neural crest cells whereas lampreys are jawless vertebrates that have neural 

crest cells. Although lampreys are jawless, they still have cranial neural crest, 

which give rise to cartilage in the skull (Langille and Hall, 1988; McCauley and 

Bronner-Fraser, 2003). Expression of Tfap2a in these two organisms is subtly 

different. While Tfap2a is expressed in the non-neural ectoderm in both 

organisms, only in lamprey is Tfap2a expressed in the dorsal neural tube - 

suggesting that Tfap2a might have been co-opted for the formation of the 

border/neural crest. 

The second group of genes that are involved in the specification of neural 

crest are Foxd3, Sox9, Sox10 and Snail. The expression pattern of these 

genes shows a more restricted pattern. They are only expressed in the cells 

that will delaminate and give rise to neural crest cells.  
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Foxd3, previously known as Hfh2, is a member of the winged helix/forkhead 

transcription factors. In the mouse, after gastrulation, Foxd3 is expressed in 

the neural crest prior to delamination as well as after delamination (Labosky 

and Kaestner, 1998). It is also expressed in the cranial ganglia but not in the 

mesectoderm (Mundell and Labosky, 2011). In the chicken, Foxd3 is also 

expressed in the neural crest relatively early at HH6 (Khudyakov and Bronner-

Fraser, 2009).  

In the mouse, conditional deletion of Foxd3 in the neural crest leads to neural 

crest defects (Hanna et al., 2002; Teng et al., 2008; Mundell and Labosky, 

2011). In these mutants, there is a drastic reduction of neural derivatives; 

cranial ganglia are severely reduced in size, the enteric nervous system is 

lost, and sympathetic and dorsal root ganglia are also reduced in size. 

Although there are cranial facial defects (BA one and two are reduced in size 

whereas BA three and four are most severely affected), the initial migration of 

the neural crest cells to the BA is not affected.  

Foxd3 expression is maintained or lost in neural crest cells that adopt neural 

and mesenchymal cell fate, respectively (Mundell and Labosky, 2011). In 

neural crest conditional knockouts of Foxd3, these authors found ectopic 

formation of neural crest derived vascular smooth muscle cells in the 

descending aorta, smaller cranial ganglia and dorsal root ganglia as well as 

accelerated development of bone and cartilage. Based on these observations 

the authors speculate that Foxd3 has a role in determining cell fate since 

deletion of Foxd3 caused a change from neuronal to mesenchymal cell fate.  
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Sox9 and Sox10 are also members of the Sry family of transcription factors 

and they belong to the SoxE subgroup. In chick, Sox9 is expressed relatively 

early in neural crest cells prior to delamination (HH7) whereas Sox10 is 

expressed just prior to the cell delaminating at HH9 (Sakai et al., 2006). The 

expression of Sox10 in neural crest is also relatively late (Anselme et al., 

2007) compared to Sox9 (Barrionuevo et al., 2008) in the mouse. Sox9 and 

Sox10 are expressed in both the premigratory and migratory neural crest in 

both mouse and chicken.  

Sox9 has been shown to play a very essential role during bone development 

and the disruption of this gene in neural crest leads to defects in cartilage and 

endochondral bone formation but does not affect intramembranous bone 

formation or neural crest formation (Mori-Akiyama et al., 2003). Sox9 is 

expressed in chondrocytes and has been shown to regulate the expression of 

type II collagen (Wright et al., 1995; Ng et al., 1997) as well as other factors 

important for chondrocyte development.  

Sox10 has been shown to be very important in glial cell formation as well as 

the formation of the enteric nervous system. It was found that loss of Sox10 

leads to the loss of all glial cells as well as the enteric nervous system 

(Southard-Smith et al., 1998; Britsch et al., 2001), however neural crest cells 

are still able to form cranial mesectoderm. Sox10 is expressed in glial cells at 

later stages of embryogenesis. Through in-vitro culture of neural crest cells, it 

was found that Sox10 was important for the maintenance of the 

multipotentiality of the neural crest (Paratore et al., 2001; Kim et al., 2003). 
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Snail transcription factors are amongst the earliest markers that are 

expressed in the neural crest. In the mouse there are 5 members of the 

Snail/Scratch zinc-finger transcription factor superfamily (Barrallo-Gimeno and 

Nieto, 2009). Only Snail1 and Snail2 are expressed in the neural crest and it 

should be noted that in the chicken, Snail2 has a similar time of expression 

and function to Snail1 in mouse and Xenopus (Nieto et al., 1994; Sefton et al., 

1998; Aybar et al., 2003). Snail1 was shown to be a transcriptional repressor 

of E-cadherin and therefore plays a major role in the execution of the EMT in 

the neural crest (Nieto et al., 1994; Cano et al., 2000).  

It must be noted that Snail2 is not a specific neural crest marker as it is also 

expressed in the cells at the primitive streak as well as in mesodermal cells. 

Snail2 is required in the neural crest to mediate EMT. In chicken Snail2 is 

expressed in the neural crest at HH7+ and in Xenopus at stage 11. It was 

shown that Snail transcription factors have different roles in the formation of 

the neural crest (LaBonne and Bronner-Fraser, 1998; Aybar et al., 2003). If 

Snail activity is blocked at early stages then neural crest formation is 

diminished whereas blocking Snail activity at later stages led to defects in 

migration. 

Other transcription factors like Id, Dlx, and Zic, have also been found to have 

a role in the specification of neural crest (Morales et al., 2005; Betancur et al., 

2010a). Based on loss of function of these transcription factors as well as data 

from regulatory interactions, the relationship between these transcription 

factors and signaling molecules, can best be described as a gene regulatory 

network (Betancur et al., 2010a). Studies using systems biology approach like 



 26 

microarray analysis have tried to address which set of genes is required for 

the formation of the neural crest (Gammill and Bronner-Fraser, 2002; 2003; 

Buchstaller et al., 2004).  

It is noteworthy that in the majority of cases where these transcription factors 

are inactivated, the mutant phenotype either affects neuronal derivatives or 

mesectodermal derivatives but there are no cases where both types of 

derivatives are affected. This is very intriguing as the majority of these 

transcription factors are expressed along the entire anterior posterior axis as 

well as supposedly in all the neural crest cells.  

 

1.4.3 Delamination from the ectoderm (Epithelial to 
mesenchymal transition) 

The neural crest cells have to undergo EMT to delaminate from the ectoderm 

before engaging into individual cell migration. This transition is important for 

the transformation of epithelia cells, characterized by apical basal polarity and 

junctional complexes, to a mesenchymal phenotype where the cells have 

transient intercellular contacts and front-rear polarity. Prior to emigration from 

the ectoderm, neural crest cells are not distinguishable from other ectodermal 

cells, thus hampering their localization in the ectoderm.  

EMT in neural crest cells involves the down-regulation of intercellular 

adhesion and extensive reorganization of the actin cytoskeleton to permit 
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subsequent cell migration. During EMT, the epithelial cell basement 

membrane must be partially degraded in order to promote their delamination.  

In order to execute the EMT program, the cells express transcription factors 

like Snail transcription factors, which suppress the expression of type I 

Cadherins (important for the maintenance of cell to cell contact) and mediate 

the change in expression to type II Cadherins to enable cell migration. In the 

chick, neural crest cells change from expression of N-cadherin to Cadherin-6b 

before cell migration and to Cadherin-7 when they are migratory (Nakagawa 

and Takeichi, 1995; Coles et al., 2007; Park and Gumbiner, 2010). However 

in the mouse, neural crest cells change expression from N-cadherin to 

Cadherin-6 (Inoue et al., 1997). It is thought that the change in expression of 

type I to type II Cadherins is important for EMT. It was shown that type I and 

type II Cadherins exhibit very different adhesive properties and that 

expression of these Cadherins confer different effects on motility within the 

embryonic environment (Dufour et al., 1999; Chu et al., 2006; Coles et al., 

2007; Park and Gumbiner, 2010).  

It should also be noted that the way in which neural crest cells delaminate 

from the ectoderm differs between species, probably due to differences in 

neurulation. In mammals, the cranial neural crest cells delaminate from the 

ectoderm when the neural plate is still wide open (the neural tube is not yet 

formed) and the neural crest cells delaminate into the underlying 

mesenchyme. In the chick, because the neural fold is basically an epithelium 

that is folded onto itself, cranial neural crest cells migrates to their final 
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destination by moving between the neural tube and ectoderm before reaching 

sites with underlying mesenchyme.  

In zebrafish, the cranial neural crest exists as two separate masses of cells 

next to the central neural keel and these cells delaminate and migrate towards 

the branchial arch (Eisen and Weston, 1993; Schilling and Kimmel, 1994). In 

Xenopus, cranial neural crest cells delaminate from the ectoderm when the 

cranial neural tube is still open (Mayor and Aybar, 2001). Xenopus cranial 

neural crest cells initially delaminate as a mass of cells with polarized pioneer 

cells (Carmona-Fontaine et al., 2008), which dissociate from each other at 

later stages. It should be noted that although Xenopus is an amphibian 

(anuran), neurulation in Xenopus is different from other amphibian (urodele) 

like salamander (Nieuwkoop, 1996). The mode of neural tube formation in the 

cranial region of the chicken is somewhat similar to how neural tube is formed 

in Urodeles (along the entire anterior posterior axis). Fig. 1.5 describes the 

different modes of neural crest formation in mouse and chicken.  

Despite differences in morphology of the head in various animals (Duband et 

al., 1995), in general cranial neural crest delaminates from the ectoderm when 

the neural and non-neural ectoderm is not fully segregated from each other. 

This is in contrast to the trunk region where neural crest cells delaminate from 

the dorsal region of the neural tube, which is fully separated from the non-

neural ectoderm. Cranial and trunk neural crest cells migrate in different 

spatiotemporal modes. Trunk neural crest cells migrate as individual cells 

dorsolaterally or ventromedially, whereas cranial neural crest cells migrate 
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just beneath the ectoderm as a stream of cells (this is especially true in 

Xenopus).  

 
Fig. 1.5: Different modes of neural crest formation/migration in mouse 
and chicken.  
Neural crest migration in cranial and trunk region of mouse and chicken. Note 

that in the chicken, cranial neural crest cells delaminate as a very compact 

mass of cells in contrast to mouse where the cells delaminate singly into the 

underlying mesenchyme. S, source of delaminating cells, NE, neural 

ectoderm, and EC, Ectoderm 

Furthermore it must be emphasized that the way the cranial and trunk neural 

crest cells delaminate is very different – especially in chicken and amphibian 

where the majority of fate mapping experiments have been done. Cranial 

neural crest delaminate at stages when the neural tube is not yet fully fused 

whereas trunk neural crest cells delaminate from a fully closed neural tube 

(Duband et al., 1995). Because cranial neural crest cells delaminate before 
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neural tube is fully fused, grafts containing cranial neural crest are essentially 

neural folds, which contain both neural and non-neural ectoderm. This is in 

contrast to the trunk where the grafts contain only neural ectoderm from the 

neural tube. 
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1.5 Origin and cell fate of the neural crest 

The basis of what is the origin of a particular cell type can be determined by 

observing the cell morphology between different tissues and determining their 

relationship based on similarity in appearance. Another approach is to 

introduce an extrinsic label into specific cells early during development and 

observing later in development what are the progenies of the labeled cells. In 

this way the origin as well as the fate of the cells can be determined. In the 

case of neural crest, Wilhelm His first described that the border of the neural 

ectoderm gave rise to spinal ganglia (His, 1868) but it was Marshall who 

coined the term neural crest in 1879 (Marshall, 1879). 

Since then it has been shown that neural crest gives rise to a multitude of 

different anatomical structures including the jaws and ganglia. The origin and 

fate of the neural crest have been determined by a number of methods: 

labeling with vital dyes or viruses, genetic labeling with the Cre/loxP systems, 

ablation and grafting. 

In the following section, a brief introduction of the methods for performing 

lineage analysis and a summary of data supporting or contradicting the idea 

that neural crest cells are pluripotent is presented. 
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1.5.1 Methods for lineage analysis 

 Origins and fate map of neural crest - Labeling of cells 1.5.1.1
with extrinsic labels. 

In this method, an extrinsic label (usually a dye) is applied to the cells of 

interest and the fates of their progenies are tracked over time. The selection 

of the dye and method of labeling depends on the number of cells that are to 

be labeled. Nowadays the most common vital dyes used for labeling cells are 

DiI or labeled high molecular weight dextrans. Labeled dextrans have the 

advantage that they are retained within cells and therefore do not transfer to 

neighboring cells whereas DiI, a lipophilic small molecular weight compound 

labels the cell membrane and may transfer to neighboring cells. In the case of 

labeled dextrans, cells can either be labeled by electroporation or intracellular 

injections. With DiI, cells are labeled by contact with the dye; this is achieved 

by iontophoresis, injection of DiI solution or contact with the DiI crystal.  

The advantage of labeling cells by an extrinsic label is that it allows for smaller 

number of cells to be labeled (this is especially the case when cells are 

injected with dextrans). The microinjection of dextran into cells allows the 

determination of what is the development potential of a single cell and 

construction of high-resolution fate map. The disadvantage of using these 

dyes to label cells is that the label is diluted each time the cell divides.  
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 Origins and fate map of neural crest - Genetic labeling. 1.5.1.2

Viruses that are defective in replication, or constructs containing a reporter, 

can also be used to label cells. In its simplest form, a promoter driving the 

expression of a reporter like β-galactosidase or GFP is used to label specific 

cells. The promoter is only turned on in a discrete group of cells and the 

progeny of the labeled can be determined by expression of the reporter. The 

reporters used are usually quite stable and therefore can persist for a period 

of time even after expression has stopped.  

A more elaborate and permanent way of labeling cells is achieved by utilizing 

a tissue specific promoter to drive expression of a recombinase to activate a 

constitutively expressed reporter, for example the Cre/loxP or Flp/frt systems. 

This is a two-component system with a tissue specific promoter driving the 

expression of the site-specific recombinase and a constitutively expressed 

reporter that has a stop cassette flanked by sequences recognized by the 

site-specific recombinase. Under basal conditions, the presence of the stop 

cassette, a strong translational stop signal, prevents the expression of the 

reporter. However, when the cell switches on the expression of the 

recombinase, the stop cassette is removed and the reporter is expressed. The 

expression of the reporter by the cell is constitutive and because progenies 

inherit the activated reporter, progenies also express the reporter 

constitutively.  

There are variations of the two component genetic methods that allow smaller 

group of cells to be labeled, these include (i) the use of the site specific 



 34 

recombinase to drive inter-chromosomal recombination, a much more 

inefficient process compared to intra-chromosomal recombination (Zong et al., 

2005), and (ii) coupling inducible systems to the recombinase, for example 

fusing the estrogen hormone-binding domain to the recombinase – hence 

sequestering recombinase in the cytoplasm until it binds to tamoxifen which 

allows the recombinase to translocate to the nucleus to facilitate 

recombination (Vooijs, 2001). This later method allows labeling of cells at 

discrete time points (Branda and Dymecki, 2004). 

The advantage of genetic labeling method is that it is very reproducible and 

with the use of different promoters, the origin of cells can be mapped onto the 

expression of different molecules thus enabling very high-resolution fate 

mapping.  

The availability and selection of the promoter used for driving the 

reporter/recombinase is key to the success of this method since it determines 

which cells are labeled. A detailed knowledge of when and where the 

promoter is activated is required since spurious expression of the 

reporter/recombinase would result in a distinct group of cells being labeled 

and a wrong assignment of the cell fate of the labeled progeny. Wnt1 Cre, 

HtPA Cre or P0 Cre are typically used to label neural crest in the mouse and 

these lines have been used to confirm the derivatives originating from the 

neural crest in mouse (Yamauchi et al., 1999; Chai et al., 2000; Jiang et al., 

2000; 2002; Pietri et al., 2003).  
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 Origins and fate map of neural crest – Grafting/ablation 1.5.1.3

Tissue ablation consists of surgically removing small areas of tissues at early 

stages. The origin of the missing territory in the operated embryo after surgery 

is attributed to the region that is removed. Tissue grafting, however, involves 

transferring small pieces of tissue between the host and donor (wherein the 

host and donor animals must have intrinsic or extrinsic differences) and the 

subsequent identity of the progeny of the graft is determined by observation of 

the label. Usually the graft is made at sites where the corresponding structure 

in the host is removed. 

Weston and Johnston were among the first to use this method to track the 

neural crest over long periods of time with great resolution (Weston, 1963; 

Johnston, 1966). They used tritiated thymidine labeled chicken embryos as 

grafts. Subsequently, Le Douarin developed the chick/quail chimera system 

by taking advantage of the fact that quail cells have a distinctive nucleolus 

and thus could be distinguished from chicken cells (Le Douarin and Teillet, 

1974), circumventing the need to label the donor. Initially in this method, the 

quail cells were detected by using the Feulgen method which stains the 

nucleolus however subsequently an antibody (QCPN) was developed that 

recognized the quail nucleus (Lance-Jones and Lagenaur, 1987).  

The biggest advantage of the chick/quail chimaera system is that the label is 

permanent and thus the fates of progeny could be followed over prolonged 

periods of time. The disadvantage of this method is that it is technically 

challenging to perform micro-dissection and to maintain the grafted embryos 
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long enough after grafting. High-resolution fate maps are not possible since 

one cannot transfer a small amount of cells.  

The ablation technique suffers from the disadvantage that sometimes the 

tissue that is ablated can form again. To circumvent this problem, larger areas 

of tissue need to be removed to prevent the regeneration. 

  



 37 

1.5.2 Pluripotent versus fate restricted 

The question of whether neural crest cells are pluripotent or fate restricted is a 

long-standing one. In order to answer this question, there is a need to be very 

specific in how cell fate is defined. Specification can be defined as the 

process whereby a cell during development distinguishes itself from other 

neighboring cells and differentiates into a particular cell type.  

Because development is a continuum of differentiation whereby cells are 

initially pluripotent and through differentiation become fate restricted, it is 

necessary to be very strict about the time point, at which one wants to 

determine the differentiation potential. For example, during mouse 

gastrulation, formation of the primary germ layers by the inner cell mass 

involves loss of pluripotency. The mesoderm can form skeletal elements in 

the trunk but does not form neural tissue or skin. The mesoderm is fate 

restricted in comparison to the inner cell mass, which can give rise to all the 

cell types in the body.  

Furthermore when considering the question of whether a cell is pluripotent or 

fate restricted, it is necessary to consider two aspects of cell fate: 

specification, and commitment. Specification occurs as a result of the 

interaction with the environment and expression of molecules that drive 

changes in cell fate. Commitment can be defined as the intrinsic inability of 

cells to change its adopted cell fate. Once cells are committed to a particular 

cell fate, it means that the cell can no longer differentiate into other types of 

cells. A key difference between specification and commitment is that 
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specification involves the activation or loss of molecules that can change cell 

fate whereas commitment involves the maintenance of the cell fate. There are 

caveats to this since reprogramming has been elegantly shown by Takahashi 

and Yamanaka (Takahashi and Yamanaka, 2006), when fibroblasts were 

reprogramed into pluripotent stem cells via introduction of transcription 

factors. These fibroblast-like cells under normal circumstances can only give 

rise to limited cell types and a limited number of progenies but after 

reprogramming into pluripotent stem cells, these cells can give rise to all cell 

types as well as can be maintained indefinitely in culture. In this case, re-

specification of the fibroblasts was shown and commitment of the fibroblast to 

their cell fate explains why the reprograming efficiency was so low.  

The question of whether neural crest cells are pluripotent or fate restricted at 

the time of migration was addressed in the 1980s. In the beginning, a number 

of laboratories used in-vitro culture methods to address this issue. 

Subsequently with the advent of cell labeling with extrinsic dyes and genetic 

labeling other laboratories tried to address this issue in-vivo. 

There are distinct advantages and disadvantages of these two approaches. 

The advantage of in-vitro methods is that it is relatively easy to investigate 

whether single cells are pluripotent or not by simply performing limiting cell 

dilution. However this method suffers from the disadvantage that because the 

conditions for culturing the cells are artificial, there is a risk that the behavior 

of cells might not reflect what they would actually do in-vivo. Therefore the 

biggest advantage of in-vivo methods is that the behavior of cells within the 
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embryo can be most accurately assessed but the methods employed are 

more technically challenging. 

 

 In-vitro fate mapping experiments 1.5.2.1

In 1980, Sieber-Blum et. al. conducted the first study to examine whether the 

chick neural crest cells in the trunk were pluripotent or fate restricted at the 

onset of migration (Sieber-Blum and Cohen, 1980). Neural crest cells were 

isolated by culturing neural tubes, at a stage prior to neural crest migration, in 

tissue culture. The neural tubes were subsequently removed from culture 

when the neural crest cells had migrated out. Neural crest cells were then 

analyzed by the clonal dilution method to test their developmental potential. 

Due to the absence of good molecular markers at the time, the authors could 

only distinguish between pigmented (melanocytes) and non-pigmented cells 

(neurons or glia). They found a mixture of different types of colonies; colonies 

that gave rise to both pigmented and non-pigmented cells (28%) and colonies 

that gave rise to only pigmented cells (55%) or non-pigmented cells (17%). 

They concluded that some neural crest cells are pluripotent. 

In 1993, Sieber-Blum et. al. published another study to address the issue of 

whether mouse neural crest cells were pluripotent or fate restricted at the time 

of migration (Ito and Sieber-Blum, 1991). Neural crest cells were isolated in 

the same way as in chicken embryos. They found that there were cells that 

were fate restricted and could only differentiate into melanocytes while others 
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differentiated into melanocytes, neurons and glia, much like what was found in 

the previous study. The conclusion for this study was similar to the previous 

study in chick. 

Subsequent studies by Le Douarin et. al., isolated neural crest cells from 

chicken embryos (both trunk and cranial neural crest) and used limiting cell 

dilution and in-vitro cell culture to determine whether the cells are pluripotent 

or fate restricted (Baroffio et al., 1988; 1991; Lahav et al., 1998; Trentin et al., 

2004; Dupin et al., 2010). These studies looked at the differentiation potential 

of the cranial as well as trunk neural crest cells. To do that, cranial neural 

crest cells were isolated at approximately 10 somites at the mesencephalon 

and metencephalon levels. At this stage, the cranial neural crest cells have 

already started migrating as a mass of cells. The overlying ectoderm was also 

isolated along with the cranial neural crest cells during the procedure. For 

trunk neural crest cells, a similar approach as Siebler-Blum et. al. was 

adopted (Sieber-Blum and Cohen, 1980). Cell fate of the progeny was 

determined by immunohistological staining for markers of various cell fates. 

The initial study by Le Douarin et. al. of cranial neural crest cells in 1988, 

showed that about 40% of the clones could form different types of neurons, 

4% of the cells could form both neurons and melanocytes, 4% could form 

cartilage only, 1% could only form melanocytes, and 50% of the cells could 

form non-neuronal cells that were HNK1 positive (Baroffio et al., 1988). 

Subsequently in a follow-up study in 1991, they looked at a larger number of 

clones and found 10 clones out of 305 clones that gave rise to cartilage 

(Baroffio et al., 1991). Out of the 10 clones, 3 clones gave rise only to 
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cartilage, 5 gave rise to glia as well as cartilage and the remaining 2 could 

give rise to cartilage, neurons, glia and melanocytes. In this study the number 

of progenies each single isolated cell gave rise to was determined. 

Another study conducted by Le Douarin et. al. in 1998, showed that the 

addition of growth factors like Endothelin3 to the cultured neural crest cells, 

promoted the survival and proliferation of glia and melanocyte precursors 

(Lahav et al., 1998). Subsequently in 2004 it was also shown by subcloning 

the isolated neural crest cells, that the multipotent cells renewed themselves 

(Trentin et al., 2004).  

Based on these studies, Le Douarin et. al. concluded that neural crest cells 

undergoes gradual fate restriction to produce cells that are bipotent or single 

fate restricted cells and that the pluripotent progenitors can self renew. 

Furthermore, the authors concluded that the large number of cells generated 

by a pluripotent progenitor supported the notion that these pluripotent cells 

are stem cells (i.e. these cells could generate large number of progenies).  

It must be emphasized that in these studies, cranial neural crest was isolated 

at a stage when cranial neural crest cells have already extensively migrated 

and mix with the underlying mesenchyme. Therefore it is possible that these 

investigators had not isolated a pure population of neural crest cells. The 

claim that the cells were pluripotent in the head was based on the occurrence 

of a small number of clones (2 clones out of 305 clones ~0.7%) that could 

differentiate into multiple lineages. Although they claimed that the large 

number of progenies generated by these clones was supportive evidence that 
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they were multipotent progenitors along with other progenitors with a more 

limited development potential. It is entirely possible that the large number of 

progenies was derived from a few cells rather than a single cell. Even if these 

two clones were bona fide pluripotent neural crest cells, an alternative 

explanation might be that there are only a few pluripotent neural crest cells 

within a majority of fate restricted neural crest cells.  

Other studies concluded that trunk neural crest cells from rat embryos are 

pluripotent and that they are capable of self-renewal (Stemple and Anderson, 

1992). This is in agreement with studies by Le Douarin et. al. In their study, 

they isolated neural crest cells that emigrated out of neural tube explants. A 

study by the same group also showed that pluripotent neural crest cells could 

be isolated from embryonic sciatic nerve which is ensheathed by Schwann 

cells, a neural crest derivative (Morrison et al., 1999). 

A subsequent study by Henion and Weston in 1997, determined that a 

significant proportion of neural crest cells in the trunk of chicken embryos 

were already fate restricted when the cells commence their delamination from 

the neural tube (Henion and Weston, 1997). They cultured neural tube 

explants and isolated cells that emigrated out of the neural tube explant. 

Single cells were labeled at discrete time points to determine what the fates of 

individual clones were. They determined that even at early time points about 

40% of neural crest cells gave rise to progeny of a single phenotype. 

Additionally, they found that the majority of neural crest cells initially gave rise 

to neurons but at later times gave rise to melanocytes.  
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In 2003 Luo et. al., using live antibody staining for TrkC and c-Kit of neural 

tube explants and DiI labeling, showed that there are distinct populations of 

TrkC and c-Kit expressing cells and that these cells are fate restricted (Luo et 

al., 2003). Initially TrkC positive cells were able to give rise to both neurons 

and glia but subsequently at later times they gave rise only to neurons. This 

correlates well with what happens in-vivo. The advantage of these studies 

was that cells were maintained in a more native environment (neural crest 

cells were kept together although the environment they normally are in was 

removed).  

The studies led by Le Douarin and Anderson conclude that neural crest cells 

are pluripotent whereas the studies by Sieber-Blum et. al., and Henion and 

Weston conclude that the neural crest consist of some pluripotent cells and a 

significant portion of cells which are already fate restricted during early stages 

of their migration out of the neural tube. In the studies by Le Douarin and 

Anderson labs there were clones that gave rise to multiple cell fates as well as 

single cell fate, but the authors propose that the clones that gave rise to single 

cell fate were descendants of clones that gave rise to the multiple cell fates 

(Anderson, 1989). Without proof of phylogeny, it cannot be assumed that the 

clones that gave rise to single cell fate originated from cells with multiple cell 

fates and that there is gradual fate restriction happening. Therefore the 

different conclusions that were reached can be attributed to differences in 

interpretation of the results and the question of whether neural crest cells are 

fate restricted or pluripotent remains open. 
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As mentioned previously, a major flaw of in-vitro fate mapping experiments is 

the possibility that the adopted cell fate is due to differentiation induced by the 

foreign environment in which the cells are cultured. Another major problem 

with these in-vitro studies is the fact the neural crest is generated in a rostral 

to caudal manner. Therefore, when culturing tissue explants, a heterogeneous 

population of cells is obtained since cells from more rostral regions are more 

advanced in terms of migration as well as differentiation status. This is 

especially the case when cranial neural crest is cultured at a relatively late 

stage when they have already migrated out. Additionally these studies also 

raise the question of whether the neural crest cell is a homogenous population 

of cells. 

 

 In-vivo fate mapping studies 1.5.2.2

Studies by Bronner-Fraser and Fraser in 1988 and 1989 demonstrated by 

labeling single cells in dorsal neural tube of chicken embryos in the trunk that 

trunk neural crest cells were pluripotent (Bronner-Fraser and Fraser, 1988; 

1989). They labeled the cells between stages 10-17 (somites 8-28) or stages 

11-18 (somites 12-33). Out of the 20 embryos with labeled neural crest 

derivatives, only 3 embryos gave rise to single derivatives. Based on this, 

authors concluded that the neural crest cell progenitors are pluripotent.  

A study by Lumsden et. al. in 1991 investigated how cranial neural crest along 

the anterior/posterior axis gives rise to different segments of the crest 

derivatives (Lumsden et al., 1991). This was done by labeling cranial neural 
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crest at different times and anterior/posterior position, and determining the 

fates of the labeled cells. They showed that different regions of the cranial 

neural crest gave rise to distinct regions of neural crest derivatives; this is in 

agreement with what was found in the grafting experiments (Johnston, 1966; 

Le Lièvre and Le Douarin, 1975; Noden, 1975; Le Lièvre, 1978; Couly and Le 

Douarin, 1990). Another key finding of Lumsden’s study was that neural crest 

cells gave rise to derivatives in a ventral to dorsal sequence, i.e. the cells that 

delaminate first form the most ventral derivatives. For example they found that 

labeling neural crest cells in the midbrain at HH8- gave rise to derivatives in 

the periocular and maxillary mesenchyme (more ventral derivatives) whereas 

labeling the same region at HH9-, in addition to giving rise to the parts of the 

periocular and branchial arch mesenchyme, the trigeminal ganglia (a more 

dorsal derivative) was labeled as well.  

In contrast to the conclusion reached by Bronner-Fraser and Fraser, the 

results from Lumsden’s study suggest that cranial neural crest cells are 

already fate restricted when they delaminate since labeling at earlier time 

points gives rise to a presumably mesectodermal cell fate. This is especially 

striking since no attempt was made to specifically label the early or late 

delaminating neural crest cells. 

A recent paper (Krispin et al., 2010), demonstrate that the fate of the trunk 

neural crest could be predicted either by the relative position within the dorsal 

neural tube or the time that they delaminate. This is consistent with the fact 

that neural crest derivatives are colonized in a ventral to dorsal order 

(Serbedzija et al., 1989). Neural crest cells first migrate ventrally then 
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dorsolaterally (Erickson et al., 1992), cells that migrate dorsolaterally 

differentiate into melanocytes. Krispin et. al. showed that if cells that normally 

migrate ventrally are forced to migrate dorsolaterally, the cells still adopt their 

original neural fates. Therefore, the authors conclude that the neural crest 

cells are predetermined at an early stage even prior to delamination. 

This study contradicts the findings of Bronner-Fraser and Fraser, which 

demonstrated that trunk neural crest cells are pluripotent. The reason 

provided by Krispin et. al. for the discrepancy was cell labeling by the other 

group were not as precise as their study (i.e. labeling was done over a longer 

time window and included a larger segment of the trunk), whereas in their 

study - labeling of neural crest cells was performed shortly before neural crest 

cells migrated out of the neural tube. This imprecision may have resulted in 

the labeling of neuroepithelial progenitor cells that give rise to both 

neuroepithelia as well as neural crest. 

A study by Zirlinger et. al. in mice shows that Neurogenin2  expressing neural 

crest cells are predisposed to forming the dorsal root ganglia (Zirlinger et al., 

2002). Neurogenin2 (Sommer et al., 1996) is expressed by neural crest cells 

in the trunk, prior to cell delamination, and in the dorsal root ganglia. Based on 

the expression of Neurogenin2, it was unclear whether all trunk neural crest 

cells expressed this molecule. In order to determine what neural crest cells 

expressing Neurogenin2 gave rise to; the authors generated a transgenic 

mouse with Neurogenin2 promoter driving a Tamoxifen inducible Cre. By 

crossing the inducible Cre line with a Rosa26 reporter line and inducing the 

activation of Cre recombinase at discrete time points (prior to neural crest cell 
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delamination), they demonstrated that Neurogenin2 expressing neural crest 

cells are predisposed to forming the dorsal root ganglia but not the 

sympathetic ganglia however within the dorsal root ganglia they differentiate 

into both neurons and glia at about 50% frequency. This demonstrates that 

the trunk neural crest was already fate restricted prior to delamination from 

the neural tube.  

Another study using genetic fate mapping shows that there are two 

populations of premigratory neural crest progenitors (Wilson et al., 2004). It 

was shown that premigratory neural crest cells that express c-Kit give rise to 

melanocytes and these cells do not express p75 (a low affinity Neurotrophin 

receptor which has been used by other studies to isolate pluripotent neural 

crest cells). In chicken, it has also been shown that neural crest cells that 

migrate dorsolaterally express melanocyte markers (c-Kit and Mitf) prior to 

delamination and that these cells differentiate into melanocytes (Erickson and 

Goins, 1995; Wakamatsu et al., 1998).  

Two studies in zebrafish also show that the neural crest cells are fate 

restricted prior to cell delamination (Raible and Eisen, 1994; Schilling and 

Kimmel, 1994). In these studies single premigratory neural crest cells in the 

head and trunk were labeled. In the head, the labeled neural crest cells only 

gave rise to single cell types (Schilling and Kimmel, 1994). In cranial regions 

of zebrafish embryos, the premigratory neural crest cells are found as 2 

masses of cells that are lateral to the central neural keel. The study by 

Schilling and Kimmel show that the cells that are closest to the neural keel are 

fated to give rise to mesectodermal derivatives, and it is also assumed that 
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these cells would be the last to delaminate (lateral cells should delaminate 

first). Therefore it is quite strange that in cranial region of zebrafish, neural 

crest cells do not colonize derivatives in a ventral to dorsal sequence.  

In the trunk most of the labeled neural crest cells also gave rise to single 

derivatives and the progenitors that gave rise to multiple derivatives did so by 

producing single lineage restricted progeny (Raible and Eisen, 1994). In this 

study they traced the relationships of the progenitor and the progeny 

produced. It must also be noted that the clones that gave rise to multiple 

lineages gave rise to more progenies, therefore it is possible that these 

labeled cells might be precursor cells that give rise to neural epithelia and 

neural crest.  

Most of the in-vivo studies, except the single cell labeling done by Bronner-

Fraser and Fraser, show that the neural crest cells are fate restricted at the 

time of delamination or that most neural crest cells are only capable of giving 

rise to limited derivatives and are thus, not pluripotent. Some of these studies 

even show that at the premigratory stage there are sub-populations of cells 

that differentially express certain molecules that have been implicated for cell 

fate determination and these cells subsequently differentiate into that 

particular cell fate. Therefore in this case, a strong argument against 

pluripotency of the neural crest cells is the initial heterogeneity of the whole 

population. If at the premigratory stage, neural crest cells already differentially 

express molecules that have a role in directing cell fate then it would suggest 

that lineage segregation has already occurred at early stages and there are 

no truly pluripotent neural crest cells. Although it is not possible to exclude the 
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possibility that a small population of the neural crest cells is pluripotent: these 

pluripotent neural crest cells would be few and far between. 

 

1.5.3 Pluripotent or fate restricted - Conclusion 

Findings from in-vitro clonal cultures have demonstrated the presence of 

clones that can give rise to all derivatives, whereas findings from in-vivo 

studies has shown that most of neural crest cells are fate restricted at the time 

of delamination (fig. 1.6). There are mounting evidence from work by 

Kalcheim et. al. that even in the trunk where all cells delaminate from the 

dorsal neural tube, neural crest cells with distinct cell fates delaminate in a 

timely and orderly fashion (Krispin et al., 2010). Normally in the trunk, neural 

crest cells first migrate ventral-medially to give rise to neurons and glia but 

even when these cells were forced to migrate dorsal-laterally these cells still 

adopted a neuronal fate. However the situation for cranial neural crest cells 

remains  unclear.  
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Fig. 1.6: Summary of the debate over whether neural crest cells are 
pluripotent or fate restricted. 
(Sieber-Blum and Cohen, 1980; Ciment and Weston, 1982; Baroffio et al., 

1988; Bronner-Fraser and Fraser, 1988; Stemple and Anderson, 1992; Raible 

and Eisen, 1994; Schilling and Kimmel, 1994; Erickson and Goins, 1995; 

Henion and Weston, 1997; Weston et al., 2004; Breau et al., 2008; Krispin et 

al., 2010).  

The pluripotent neural crest cells found in in-vitro studies could simply be 

products of re-programing where an isolated cell reverts back to a more 

primitive state that is able to differentiate into multiple cell types. This 

possibility is unlikely as similar pluripotent neural crest cells have been 

isolated in other more differentiated tissue (Morrison et al., 1999; Wong et al., 

2006). It would be interesting to determine where these pluripotent cells 

isolated from differentiated tissues originated. However as mentioned before, 

data from in-vivo cell labeling experiments suggest that most cells are lineage 
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restricted prior to cell delamination, the exception being the studies by 

Bronner-Fraser and Fraser (Bronner-Fraser and Fraser, 1988; 1991). 

Another argument for the pluripotency of neural crest cells comes from 

heterochronic grafting experiments. Findings from these experiments suggest 

that the environment that the neural crest cells encounters during migration 

determines the cell fate of these cells. Grafts from mesencephalon levels 

containing late delaminating neural crest cells could give rise to the 

derivatives generated by early delaminating neural crest cells (Baker et al., 

1997).  

This is also the case for cardiac neural crest cells. It was shown that the early 

and late emigrating neural crest cells give rise to different derivatives but the 

late emigrating population can give rise to derivatives from early emigrating 

populations when the two populations are swapped (Boot et al., 2003). As 

mentioned before, neural crest cells that migrate out first give rise to more 

ventral derivatives. This seems to suggest that early or late delaminating 

neural crest cells contain cells that are not fate restricted and therefore can 

compensate for each other.  

It is known from grafting experiments that neural crest cells from different axial 

levels can generate the derivatives of their new location when grafted into an 

ectopic location (Le Douarin and Teillet, 1974). In this study when neural crest 

cells that normally give rise to adrenal medullar (somites 18-24) were grafted 

into vagal regions (somites 1-7), they gave rise to vagal neural crest derived 

enteric neurons. This seems to suggest that neural crest cells from different 



 52 

axial levels contain pluripotent cells that are not fate restricted and hence can 

give rise to derivatives found in the site into where they are grafted. 

Furthermore this may also imply that neural crest cells generated at different 

axial levels have the same developmental potential. 

Studies where neural crest cells have been ablated show that when either 

cranial and cardiac neural crest domain is ablated within a discrete time point, 

neural crest cells are not lost but can be reformed by neighboring regions 

(Yntema and Hammond, 1945; McKee and Ferguson, 1984; Scherson et al., 

1993; Buxton et al., 1997; Boot et al., 2003; Ezin et al., 2011). Scherson et. al. 

shows that when neural crest is removed, newly formed neural crest cells are 

derived from the adjoining ventral neural tube and not from posterior or 

anterior sites (Scherson et al., 1993).  

In the case of cardiac neural crest ablation, surrounding tissue can only 

compensate for the ablation if ablation is carried out relatively early (i.e. 

compensation is lost if ablation is carried out after HH 9 (Ezin et al., 2011)). 

The scenario is different in the trunk where ablated neural crest cells will not 

be reformed (Yntema and Hammond, 1945). This also highlights another 

difference between cranial and trunk regions.  

From the above grafting and ablation experiments it seems reasonable to 

suggest that the neural crest cell display a high level of plasticity, and neural 

crest cells at different regions have the same differentiation potential. It also 

shows that neighboring tissues, at least in the cranial and cardiac regions, 

retain the ability to form neural crest cells. Taken together this might mean 
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that inductive signals persist in these regions and when a segment of the 

neural fold is transferred to a new location, they may be induced to give rise to 

derivatives that are normally not formed by that particular segment. Therefore 

the plasticity of neural crest might not reflect that cells are pluripotent but 

rather neural crest cells are not irrevocably committed to a particular cell fate 

and are competent to respond to cues in the local environment. Alternatively, 

nearby surrounding regions may have the capacity to form neural crest cells 

but lack certain factors (Dickinson et al., 1995; Selleck and Bronner-Fraser, 

1995). Recently it is becoming clearer from in-vivo lineage analysis that neural 

crest cells are most probably fate restricted prior to delamination. 

 

 Unique skeletogenic potential of the cranial neural 1.5.3.1
crest 

The term mesectoderm was originally used by Platt to describe cells that 

originated from the ectoderm that gave rise to mesodermal derivatives. 

Mesectoderm is formed by cranial neural crest cells (from mesencephalon to 

anterior rhombencephalon) when they are ectopically grafted into the trunk 

(Le Douarin and Teillet, 1974). This suggests that the cranial neural crest is 

committed to a mesectodermal cell fate. When the reverse experiment is 

done, trunk neural crest does not form mesectoderm (Nakamura and Ayer-le 

Lievre, 1982). However, they find that if a unilateral graft of trunk regions 

(between somite 20-30) was grafted into cranial region with lateral half of the 

hindbrain intact, the graft can give rise to mesectoderm, but they do not give 

rise to cartilage or bone. This seems to suggest that the neural crest cells that 
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form cartilage and bone are intrinsically different from the other neural crest 

cells. In particular, these studies also highlight the key difference between 

trunk and cranial neural crest is actually bone and cartilage formation. 

A study by McGonnell et. al. in chicken show that trunk neural crest cells have 

skeletogenic potential (McGonnell and Graham, 2002) and this was also 

shown by Abzhanov et. al. (Abzhanov et al., 2003). When explants of trunk 

neural tube of were cultured for long periods in media conducive for bone 

cartilage formation, trunk neural crest cells could give rise to bone and 

cartilage. Furthermore McGonnell and Graham show that in-vivo, when trunk 

neural crest cells can form bone or cartilage when directly transplanted into 

the branchial arch. The authors postulate that the inability of trunk neural crest 

to form bone or cartilage is due to aberrant migration of trunk neural crest in 

the head since they can form bone and cartilage when directly transplanted 

into the branchial arch.  

The finding that trunk neural crest cells can only form cartilage or bone after 

prolonged culture whereas cranial neural crest readily form cartilage and 

bone, led Abzhanov et. al. to investigate whether trunk neural crest cells were 

“converting” to a more cranial neural crest state and found that this was the 

case. There was upregulation of markers that are expressed by cranial neural 

crest as well as downregulation of Hox genes that are normally expressed by 

these explants. Therefore it is highly likely that the ability of the trunk neural 

crest to form cartilage and bone is due to de-differentiation to a more cranial 

neural crest state and under normal circumstances the trunk neural crest cells 

is unable to form bone or cartilage. 
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Some data from grafting experiments seems to suggest that neural crest are 

pre-patterned (Couly et al., 1998). When grafts of rhombomere 4-6 (express 

Hoxa2) were transferred to posterior mesencephalon or rhombomere 1-2 (do 

not express Hox), they found that these neural crest cells derived from 

rhombomere 4-6 cannot give rise to bone and cartilage but are able to give 

rise to other mesectodermal and neural derivatives. This is in contrast to the 

reverse experiment, where they found that neural crest cells from posterior 

mesencephalon or rhombomere 1-2 grafted to rhombomere 4-6 gave rise to 

the hyoid, which is derived from neural crest cells from rhombomere 4-6.  

This is in contrast to what was reported by Noden et. al. who observed that 

when mesencephalic neural crest was transplanted to rhombomere 4-6, an 

ectopic lower jaw was formed (Noden, 1983). In the study by Couly et. al., 

duplication of the lower jaw was observed when mesencephalic or 

rhombomere 1-2 was grafted together with the neural tube. It was 

subsequently found that the isthmus was secreting FGF8, which was 

responsible for the different observations (Trainor and Krumlauf, 2001). FGF8 

is able to inhibit the expression of Hoxa2 in rhombomere 4 and leads to the 

transformation of this region into behaving more like the neural crest cells 

originating from anterior Hox negative regions. 

It was shown previously that the neural crest cells in cranial regions can be 

divided into 2 subpopulations, an anterior population that do not express Hox 

genes and a posterior population that express Hox genes. Homeotic genes 

(also known as Hox genes) are a group of homeobox containing transcription 

factors that are expressed by rhombomeres in the hindbrain, neural crest as 
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well as in the ectoderm (Hunt et al., 1991a; 1991b). Homeotic genes are 

important for the patterning of the anterior and posterior axis as well as the 

BA. Cranial neural crest gives rise to bones and cartilage of the lower jaw and 

the inner ear, BA1 gives rise to the lower jaw whereas BA2 gives rise to the 

bones of the inner ear. Neural crest cells that do not express Hox genes give 

rise to the cells in the BA1, whereas neural crest expressing Hox give rise to 

the cells within BA2.  

In summary, based on all these experiments, it is reasonable to suggest that 

there is something unique about cranial neural crest from the mesencephalon 

and rhombomere 1-2 (which do not express Hox genes) since they form 

cartilage ectopically (Couly et al., 1998). Furthermore cranial neural crest from 

rhombomeres 4 and 6 that express Hox do not give rise to bone or cartilage 

when grafted into the mesencephalon or rhombomere 1-2 (Couly et al., 1998). 

However two studies show by transplanting small numbers of cells instead of 

small tissue between different hindbrain segments, that cells can be 

reprogrammed to the identity of their new environment (Trainor and Krumlauf, 

2000; Schilling et al., 2001). It was previously shown by Couly et. al., that 

heterotopic grafts do not express the Hox genes of the new environment. This 

shows that the identity of the cells is dependent on community effects, how 

neighboring cells affect the behavior of each other, as well as the new 

environment. This might also explain the discrepancy between the results of 

the grafting experiments between Noden and Couly. Additionally given the 

fact that trunk regions can be induced to form mesectoderm only in the 

presence of an intact lateral hindbrain, one might speculate that there might 
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be inducers within cranial regions that are promoting the formation of the 

mesectoderm.  

From these studies, it is at present unclear what accounts for the unique 

skeletogenic potential of the cranial neural crest and whether cranial and trunk 

neural crest cells have the same developmental potential. From the studies on 

the role of Hox genes in patterning the neural crest, it might be possible that 

the Hox genes have a role in determining whether cells can give rise to bone 

or cartilage.   
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Chapter 2: Materials and Methods 

2.1 Animal Welfare and housing 

All experiments involving animals were reviewed and approved by the 

Institutional Animal Care and Use Committees of Agency for Science, 

Technology, and Research (A*STAR) Biomedical Science Institutes (IACUC 

No. 070250 and 100551). Mice were housed in the Biological Resource 

Center of the Biomedical Research Institute. 

 

2.2 Genotyping of animals 

DNA was extracted from tail clippings using the hotshot method of DNA 

extraction (Truett et al., 2000). In brief, 150µl of lysis buffer (25 mM NaOH, 0.2 

mM EDTA) was added to the tail clippings and incubated for 30min at 95oC. 

Samples were chilled on ice and 150µl neutralization buffer (40 mM Tris-HCl) 

was added. Samples were diluted with water to 500µl and 1µl of the DNA 

sample was used for the PCR genotyping. 

 

Four strains of mice were used in the current study; Sox1 Cre; HtPa Cre; 

Gt(ROSA)26Sortm1.1(EYFP); and Gt(ROSA)26Sortm1(LacZ). Genotyping of Sox1 

Cre mice was done by PCR using the primers Sox1 Cre F: 5’-

gatcgctgccaggatatacg and Sox1 Cre R: 5’-ctctgaccagagtcatccttagc, and 

observing a band that is ~400bp. Genotyping of HtPA Cre was via PCR using 
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the primers HtPA Cre F: 5’-tgtctcctcttctttctctta and HtPA Cre R: 5’-

cgcctgaagatatagaagata, and observing a ~450bp band. Genotyping of 

Gt(ROSA)26Sortm1.1(EYFP); and Gt(ROSA)26Sortm1(LacZ) was done by PCR 

using these 3 primers: Rosa1: 5’- aaagtcgctctgagttgttat, Rosa2: 5’-

gcgaagagtttgtcctcaacc, and Rosa3: 5’-ggagcgggagaaatggatatg and observing 

a wild type band that was 600bp and a mutant band that was 300bp. 

 

2.3 Generation of mouse embryos for lineage analysis 

In order to obtain Sox1 Cre YFP or Sox1 Cre LacZ embryos for analysis, 

timed matings of Sox1 Cre and YFP or LacZ reporter mice were carried out. 

To determine the day of mating, vaginal plugs was checked the next couple of 

days and it was considered E0.5 on the day of observation of the vaginal plug.  

 

2.4 Collection of early mouse embryos 

Embryos were collected between E8.0 to E13.5. The embryos were carefully 

dissected from the decidual and the membranes covering the embryo were 

removed. Embryos were checked for yellow fluorescent protein (YFP) 

expression under a fluorescent stereomicroscope. The embryos were 

straightened before fixation for 30min at 4oC in 4% PFA. For analysis of E9.5 

and E10.5 embryos, the time of fixation was increased to 1hr, whereas for 

E13.5 embryos, the time of fixation was 2hrs. 
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2.5 Collection of early chicken embryos 

Fertilized chicken eggs were obtained from Chew’s Agriculture. The eggs 

were incubated in a 38 oC incubator to the appropriate stages. Embryos were 

removed in Tyrode’s saline. For ex-ovo culture of chicken embryos for lineage 

analysis, care was taken to ensure that the area opaca is intact. The embryos 

were fixed in 4% PFA for 30min at 4 oC for cryo-sectioning. 

 

2.6 Ex-ovo culture and labeling of the neural fold of 
early chicken embryos (Pastry culture) 

After removing the embryos from the eggs, lateral regions of the neural fold 

(3-5 somite chicken embryo) or neural tube (6-8 somite chicken embryo) was 

labeled by DiI. The lateral region of the neural fold was labeled by applying a 

small drop of dye with a picospritzer (PLI-100, Harvard Apparatus) whereas 

the neural tube was labeled by injecting dye into the lumen of the closed 

neural tube. A picture of the labeled chicken embryo was taken to determine 

where the dye was applied. The embryos were cultured by pastry culture 

(Nagai et al., 2011) for 2 days at 38 oC before being fixed in 4% PFA at 4 oC 

overnight for analysis of where and what the initial labeled cells became. After 

2 days of culture, generally the embryos developed to HH 16-18. 
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2.7 Embedding of embryos for cryo-sectioning 

The embryos were briefly rinsed in PBS and equilibrated in 30% sucrose 

before orientating and freezing in Tissue-Tek® O.C.T. compound (Sakura 

Finetek, Torrance, CA, USA) in dry ice/ethanol bath. The tissue block was 

stored at -80 oC before sectioning in cryostat. The sections were sectioned at 

15mm thick. 

 

2.8 Analysis of postnatal day 0 skull 

For the analysis of X-gal stained skulls, newborn pups were decapitated. The 

skull was prepared for x-gal staining by removing the skin around to aid in 

penetration of the x-gal. To prepare whole mounts of the skull, the brain was 

removed as well so as to better visualize the stained bones in the skull since 

the entire brain was labeled in the Sox1 Cre animals. For sections, the brain 

was left in place. After removing the skin, the skull was briefly rinsed in PBS 

and fixed for 2hrs in PBS containing 0.02% Np40, 1% PFA, and 0.2% 

gluteraldehyde at 4oC. The skulls were rinsed 2 times in staining solution (1x 

PBS, 0.2% NP40, and 2mM MgCl2) without X-gal, K3Fe(CN)6, and 

K4Fe(CN)6.3H2O. Skulls were stained for 2 days at 4oC with staining solution 

containing 1mg/ml Xgal, 5mM K3Fe(CN)6 and 5mM K4Fe(CN)6.3H2O. After 

staining, the skulls were washed 2x in PBS for 30min each. The skulls were 

then refixed in 4% PFA overnight.  
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For skulls that were sectioned, they were rinsed in PBS and soaked in 0.5M 

EDTA overnight with constant agitation before dehydration in an alcohol 

series and embedding in wax. The skull was sectioned at 8mm thick and 

sections counterstained with neutral red.  

For whole mount x-gal stained skull, the skulls were rinsed with PBS and 

soaked in 2% KOH for 2 weeks to clear the soft tissue. The skulls were then 

transferred into 100% glycerol for 2 days, and this was repeated 2 times. 

 

2.9 Immunostaining of sections 

After sectioning, the O.C.T was removed by washing the slides with PBST 

(PBS containing 0.1% Triton X100) for 3 times (5min each time). Blocking was 

done by incubating the slides with blocking solution (PBST containing 10% 

normal donkey serum) for 2hrs at room temperature. Primary antibody was 

diluted in blocking solution and was added to the slides overnight at 4 oC. The 

slides were washed by incubating the slides with PBST for 6min and this was 

repeated three times. Secondary antibody was diluted in blocking solution and 

incubated with the slides for 2hrs at room temperature before washing again 

with PBST for three times and 6min each time. For DAPI staining, PBST 

containing 0.2µg/ml of DAPI was added after secondary antibody and 

incubated for 10min before commencing washing. 
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2.10 Whole mount immunostaining 

After fixation, the embryos were washed with PBS. Embryos were transferred 

to PBST (PBS containing 0.5% Triton-X100) for 10min. The embryos were 

then permeabilized by incubating them in acetone (kept at -20 oC) for 45s, 

followed by washing for three times in PBST for 10min each time. Blocking 

solution (PBST containing 5% normal donkey serum, 1% DMSO) was added 

to the embryos and incubated overnight at 4oC. This was followed by another 

overnight incubation with primary antibody (diluted in blocking solution). The 

embryos were washed three times with PBST for 1hr each time. Secondary 

antibody (diluted in blocking solution) was incubated overnight at 4oC with the 

embryos. The embryos were then washed three times with PBST for 1hr each 

time. Finally the embryos were stored or imaged in PBS containing 50% 

glycerol. 

 

2.11 Confocal imaging 

After immunostaining, images were acquired with an Olympus fluoview 

FV1000 confocal microscope. Images were processed in an image 

processing software, Fiji. 
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2.12 Antibodies 

Table 2.1: Antibodies used in this study: 

Name Immunized Species Reference 

E-cadherin Rat, monoclonal Sigma (St. Louis, MO, 
USA) 

L-CAM Goat, polyclonal Gift from Warren Gallin 

Sox1 Goat, polyclonal R&D Systems, 
Minneapolis, MN, USA 

NCD2 Rat, monoclonal R&D Systems 

Fibronectin Rabbit, polyclonal Sigma 

Laminin Rabbit, polyclonal Sigma 

Sox9 Rabbit, polyclonal Millipore, Berllerica, MA, 
USA 

Sox10 Goat, polyclonal Santa Cruz 
Biotechnology, Santa 
Cruz, CA 

GFP Chicken, polyclonal Abcam, Cambridge, 
United Kingdom 

Pax3 Mouse, monoclonal DSHB, Developmental 
Studies Hybridoma 
Bank, University of Iowa 

Pax7 Mouse, Monoclonal DSHB 

Msx1 Mouse, monoclonal DSHB 

Ap2 Mouse, monoclonal DSHB 

Snail2 Mouse, monoclonal DSHB 

RhoB Mouse, monoclonal DSHB 

β-Dystroglycan Mouse, monoclonal Novocastra laboratories 
(UK) 

p75 Rabbit, polyclonal Promega, Madison, 
WI 
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Chapter 3: Characterization of mouse neural crest 

3.1 Characterization of premigratory cells 

In the following chapter, we try to determine where within the ectoderm cells 

are delaminating from and whether there is a link between origin and cell fate 

in mouse embryos. To investigate where cells are delaminating from, and 

whether the neural fold is phenotypically homogenous we wanted to 

determine the molecular characteristics of this region of the ectoderm. 

Immunostaining of mouse embryos with E-cadherin, Sox1 and neural crest 

markers (Sox9, Tfap2a and Pax7) would define distinct ectodermal domains: 

the non-neural ectoderm, neural ectoderm and where cells are delaminating 

from respectively. 

 
Fig. 3.1: Expression of Sox9 within the non-neural ectoderm in the 
cranial region of E8.0 2 somite mouse embryos.  
Sox9 is expressed in the E-cadherin (Ecad) expressing non-neural ectoderm 

but not in the Sox1 expressing neural ectoderm (A-B). (B), magnified view of 

the neural fold. Blue dotted line; Sox9 expressing cells in the non-neural 

ectoderm. Scale bar is 20µm. 
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Fig. 3.2: Expression of Tfap2a and Pax3 in the cranial region of E8.0 2 
somite mouse embryos.  
Dorsal markers like Tfap2a and Pax3 are also expressed in the non-neural 

ectoderm and are not expressed in the neural ectoderm (A-D). (B, D) 

magnified view of the neural fold. Blue diamond; show the boundary between 

the neural (Sox1) and non-neural ectoderm (Ecad). Scale bar is 20µm. 

Fig. 3.1 shows a wild-type mouse embryo at E8.0 with 2 somites, Sox9 (a 

neural crest marker) and E-cadherin are co-expressed by the same cells. At 

this stage Sox1 is already expressed in the neural ectoderm but there is no 

expression of Sox9 in the neural ectoderm. Other neural crest markers like 

Pax3 and Tfap2a at this stage show a very similar pattern of being expressed 
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in the non-neural ectoderm (fig. 3.2), although Pax3 is also expressed in the 

dorsal neural ectoderm expressing Sox1 (fig 3.2D), Pax3 has been shown to 

be important for the development of dorsal neuronal derivatives in the spinal 

cord (Mansouri and Gruss, 1998).  

From the observation above, the neural crest markers (Sox9, Tfap2a and 

Pax3) are first expressed in the non-neural ectoderm. From fig. 3.1 and 3.2, 

the cells expressing the neural crest markers are still epithelial at this stage. It 

has been shown that the breakage of the basement membrane is an early 

event during EMT (Nakaya et al., 2008). From fig. 3.3 A-B, the basement 

membrane is still intact under cells expressing Tfap2a showing that these 

cells have not undergone EMT. As the cells still have not migrated out of the 

ectoderm, there is the possibility that these cells that are going to delaminate 

may be induced into neural ectoderm before delaminating from the neural 

fold. At ~3 somites when cells have not delaminated, there is reduced 

amounts of basement membrane beneath the Sox9 cells, these Sox9 positive 

cells are located in the non-neural ectoderm since they do not express Sox1.  
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Fig. 3.3: Appearance of the basement membrane underlying the neural 
crest in the cranial region of E8.0 mouse embryo.  
Neural crest cells have not started migrating out of the ectoderm (A-B). Sox9 

cells in the non-neural ectoderm are beginning to delaminate as shown by the 

breakage of the basement beneath these cells (C, D). (A, B) 2 somite. (C, D), 

~3somite, red dotted line shows reduced amounts of laminin under Sox9 

expressing cells. (B, D), magnified view of the neural fold. Blue diamond; 

show the boundary of the neural ectoderm (Sox1). Scale bar is 20µm.   
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3.2 Characterization of cells that have delaminated 

In embryos that are at E8.0 (4 somites), cells are beginning to delaminate 

from the ectoderm. At this stage, Sox9 is still expressed in the E-cadherin 

expressing non-neural ectoderm (fig. 3.4). At this stage there are a few Sox9 

positive cells that also express Sox1 and recently delaminated Sox9 cells, 

which are just next to the ectoderm, have reduced amounts of E-cadherin. 

Consistent with the fact that these cells have just undergone EMT from the 

non-neural ectoderm (fig. 3.4B), since cells have to down-regulate E-cadherin 

in order to delaminate.  

 
Fig. 3.4: Expression of Sox9 within the non-neural ectoderm in the 
cranial region of E8.0 4 somite mouse embryos.  
During early cell delamination, Sox9 is expressed mainly in the E-cadherin 

expressing non-neural ectoderm and not in the Sox1 expressing neural 

ectoderm (A-B). Red dotted lines are cells that have delaminated but still 

express low levels of E-cadherin and blue asterisk are cells that are double 

positive for Sox9 and Sox1. (B) magnified view of the neural fold. Scale bar is 

20µm.  

 

* 
* 

* 

* 
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Tfap2a expression within the neural fold shows a similar pattern to Sox9 at 

this stage, being mainly expressed in the non-neural ectoderm expressing E-

cadherin (fig. 3.5). Furthermore, breakage of basement membrane is seen 

over the non-neural ectoderm (cells do not express Sox1 in this region). This 

means that cells are delaminating from the non-neural ectoderm (fig. 3.6).  

 
Fig. 3.5: Expression of Tfap2a within the non-neural ectoderm in the 
cranial region of E8.0 4 somite mouse embryos.  
During early cell delamination, Tfap2a is expressed mainly in the E-cadherin 

expressing non-neural ectoderm and not in the Sox1 expressing neural 

ectoderm (A-B). Red dotted lines are cells that have delaminated but still 

express low levels of E-cadherin and blue asterisk are cells that are double 

positive for Tfap2a and Sox1. (B), magnified view of the neural fold. Scale bar 

is 20µm.  

* 

* 
* 
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Fig. 3.6: Disruption of the basement membrane in the cranial region of 
E8.0 4 somite mouse embryo occurs under the non-neural ectoderm.  
Cells have started migrating out of the ectoderm and breakage of basement 

membrane occurs under Sox9 cells that are located in the non-neural 

ectoderm (A, B). (A and B) 4 somites, red dotted line shows reduced amount 

of Laminin under Sox9 expressing cells. (B), magnified view of the neural fold. 

Blue diamond; show the boundary of the neural ectoderm (Sox1). Scale bar is 

20µm.  

In older embryos at E9.0 (8-10 somites), the border between the neural and 

non-neural ectoderm is more clearly defined. At this stage, Sox9 is expressed 

in the neural ectoderm (fig. 3.7). These cells are delaminating from a region of 

the neural ectoderm that express a lower level of Sox1, compared to more 

ventral parts of the neural ectoderm, and the cells that have just delaminated 

do not contain any E-cadherin.  
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Fig. 3.7: Expression of Sox9 within the neural ectoderm in the cranial 
region of E9.0 10 somite mouse embryos.  
Sox9 is expressed in the Sox1 expressing neural ectoderm but not in the non-

neural ectoderm expressing E-cadherin (A-B). Blue asterisk are cells 

expressing both Sox9 and Sox1, and white dotted line are cells that have just 

delaminated which do not contain E-cadherin. Note that the dorsal most cells 

of the neural ectoderm express low levels of Sox1. (B), magnified view of the 

neural fold. Scale bar is 20µm. 

Expression of other neural crest markers shows that they are now also 

expressed in the dorsal neural ectoderm. Tfap2a, which at earlier stages was 

mainly expressed in the E-cadherin positive non-neural ectoderm (fig. 3.2A 

and B), is now also expressed in the dorsal neural ectoderm (fig. 3.8A and B). 

Similarly for Pax3, which was at earlier stages expressed in the E-cadherin 

positive non-neural ectoderm (fig. 3.2C and D), is now solely expressed in the 

Sox1 positive neural ectoderm (fig. 3.8 C and D). 

From the observations above, there is a shift in the expression pattern of the 

neural crest markers from the non-neural ectoderm to the neural ectoderm 

during initial and at later stages of cell delamination.  

* * * * 
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Fig. 3.8: Expression of neural crest markers in the cranial region of E8.5 
and E9.0 mouse embryos. 
Tfap2a and Pax3 are both expressed in the Sox1 expressing neural ectoderm 

(blue asterisk) at later stages of cell delamination (A-D). (A and B), Tfap2a 

expression in 6 somite embryo. White dotted line; cells that have recently 

delaminated do not express E-cadherin. (C and D), Pax3 expression in 10 

somites embryo. (B and D), magnified view of the neural fold. Scale bar is 

20µm. 
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3.3 Characterization of delaminating cells in the trunk. 

In the trunk, the neural ectoderm and non-neural ectoderm are segregated 

prior to the delamination of the neural crest cells (fig. 3.9). Sox1 is expressed 

in the entire neural ectoderm, however expression is stronger in the ventral 

region compared to the dorsal region. At the dorsal region, there is lower 

expression of Sox1.  

At this stage neural crest cells in the trunk have not started migrating out of 

the neural tube, Sox9 is only expressed in the neural ectoderm (fig. 3.9A) and 

it is the same case for other neural crest markers like Tfap2a (fig. 3.9B) and 

Pax3 (fig 3.9C). This is very different from the situation in the cranial region 

where prior to and during early cell delamination, these markers are first 

expressed in the non-neural ectoderm and only at later stages of migration, 

these markers begin to be expressed in the neural ectoderm. 
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Fig. 3.9: Expression of neural crest markers within the neural ectoderm 
in the trunk region of E9.0 mouse embryos.  
In 10-12 somite embryo, neural and non-neural ectoderm are segregated prior 

to neural crest delamination in the trunk. In this region, the dorsal neural 

expresses lower levels of Sox1 (white dotted line) and this is where the neural 

crest markers are expressed (A-C). (A), Sox9 expression in 10 somite trunk. 

(B), Tfap2a expression in 12 somite trunk. (C), Pax3 expression in 10 somite 

trunk. Scale bar is 20µm   
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3.4 Cells delaminating from the non-neural ectoderm 
are found mainly at the level of the midbrain. 

It is known that the neural crest cells in the midbrain region are the first to 

delaminate. To have a better idea of where cells are delaminating from the 

non-neural ectoderm as well as how the border region looks like at different 

axial levels, whole mount immunostaining of Sox1, Sox9 and E-cadherin was 

performed on E8.5 embryos (5 somite). At this stage the Sox9 expressing 

cells are mainly found in the midbrain region (fig. 3.10) and some cells have 

already started to delaminate.  

In the midbrain region (fig. 3.10A), there is a region where there is reduced 

expression of E-cadherin next to the Sox1 expressing neural ectoderm. At 

more posterior regions, there is no such region with reduced expression of E-

cadherin and the neural ectoderm expressing Sox1 is tightly apposed to the 

non-neural ectoderm expressing E-cadherin. This together with fig. 3.4 shows 

that the border between the neural and non-neural ectoderm at the midbrain 

is not well defined at the earliest stage of neural crest migration (cells which 

are delaminating are found at this boundary). The region with reduced 

expression of E-cadherin corresponds to cells delaminating from the non-

neural ectoderm (compare fig. 3.10A and fig. 3.10B). Fig. 3.10C shows an 

optical section through this region, with Sox9 cells delaminating from the non-

neural ectoderm.  
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Fig. 3.10: Whole-mount immunostains at midbrain level reveal that Sox9 
labelled cells accumulate in an intermediate region between lateral non-
neural and neural ectoderm. 
Confocal image of the cranial region of a whole mount immunostained 5 

somites mouse embryo stained with Sox1, Sox9 and E-cadherin. Blue dotted 

line; region with reduced expression of E-cadherin (A and B). Yellow asterisk; 

Sox9 and E-cadherin double positive cells in the midbrain region (B and C). 

Diamond, marks the end of the midbrain region (C), Cross section of (B) at 

the triangle. Scale bar is 40µm   
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3.5 Characterization of derivatives in Sox1 Cre 

Sox1 is expressed very early during neural development (Pevny et al., 1998; 

Wood and Episkopou, 1999). Interestingly, Takashima et. al. reported that in 

Sox1 Cre YFP embryos at E9.5, very little mesectoderm within BA1 was 

labeled (Takashima et al., 2007). This prompted us to request the mouse line 

from them for further analysis. 

To ensure that the Sox1 Cre was acting at the earliest stages of neural 

induction, we crossed the Sox1 Cre mice with the Rosa26 YFP reporter line 

and looked at E8.0 (2-4 somites) embryos. Fig. 3.11A and B shows that YFP 

is expressed in a similar way to the endogenous Sox1 protein except that at 

these early stages, expression of the reporter is more mosaic (weak 

expression). This is probably due to the slight delay in activation of the YFP 

reporter compared to expression of Sox1 protein.  

At early stages (fig. 3.11C and D) majority of the delaminating cells are not 

labeled. However due to the weak YFP signal, it is unclear whether there are 

some YFP positive cells which are delaminating (triangle in fig 3.11D, this will 

be discussed in greater detail in the later section). However at about 8 

somites, the second population of cells delaminating from the neural ectoderm 

in the head is labeled (fig. 3.12). In the trunk of Sox1 stained embryos (fig. 

3.9), the dorsal region weakly expresses Sox1, however in the Sox1 Cre YFP 

embryos, the entire neural ectoderm is labeled prior to neural crest cell 

delamination (fig. 3.13).  
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From these results, Sox1 Cre in the cranial region preferentially labels the 

cells that delaminate at later times from the neural ectoderm; however in the 

trunk it labels all delaminating cells.  

 
Fig. 3.11: YFP is expressed in the neural ectoderm in Sox1 Cre YFP 
embryos at early stages of neural crest formation.  
YFP is expressed in the neural ectoderm prior to delamination of cells (A and 

B). When cells are beginning to delaminate, the majority of cells are not YFP 

positive (C and D). (A and B), 2 somite embryo. Blue dotted line; Sox9 

expression in the non-neural ectoderm. (C and D), 4 somite embryo. Blue 

dotted line; Sox9 expressing cells which are delaminating. Due to the 

relatively weak YFP signal it is unclear whether some cells are YFP labeled 

(triangle). (B and D) magnified view of the neural fold. Scale bar is 20µm. 
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Fig. 3.12: Sox1 Cre labels the second population of delaminating cells.  
At E9.0 (8 somites) when the second populations of cells are delaminating 

from the neural ectoderm, the dorsal neural tube is entirely labeled (A4 and 

B4, blue dotted line) and cells originating from this region are also labeled 

(B4, white dotted line). (B), magnified view of the neural fold Scale bar is 

20µm 

 
Fig. 3.13: Sox1 Cre labels the neural tube in the trunk prior to 
delamination of cells  
In the trunk, the entire neural tube is YFP positive prior to neural crest 

delamination. (A), E9.5 (19 somite) Sox1 Cre YFP embryo. Scale bar is 20µm. 
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3.6 Derivatives labeled in Sox1 Cre animals 

As shown in the previous section, we showed that the Sox1 Cre preferentially 

labels the cells that delaminate from the neural ectoderm; this allows us to 

determine whether there is a link between cell fate and origin. 

From the previous sections, it was shown that Sox1 as well as the reporter is 

activated in the neural ectoderm of the trunk prior to any cell delaminating. 

This prompted us to determine whether the neural crest derivatives in the 

trunk are labeled. In the trunk, the dorsal root ganglia, sympathetic ganglia 

and melanocytes, which are derived from the neural crest, are labeled in the 

Sox1 Cre line (fig. 3.14).  

 
Fig. 3.14: Labeled trunk neural crest derivatives in Sox1 Cre YFP 
embryos. 
E10.5 Sox1 Cre YFP embryo (A and B). DRG, dorsal root ganglion. SG, 

sympathetic ganglia. Red asterisk, melanocytes (B). Scale bar is 40µm 



 82 

 
Fig. 3.15: Glial cells within the trigeminal ganglia are well labeled in Sox1 
Cre YFP embryos.  
E11.5 Sox1 Cre YFP embryo (A and B). (A), Cranial region containing the 

trigeminal ganglia. FNM, frontal nasal process. TG, trigeminal ganglia. (B), 

trigeminal ganglia. Neurons express HuC/D whereas glia expresses Sox10. 

Glial cells as well as some neurons in the trigeminal ganglia, are derived from 

neural crest, is labeled in Sox1 Cre. There are also a few YFP cells that 

express HuC/D (yellow cells in B4). Scale bar in A and B are 100µm and 

20µm respectively.  
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Cross-section through the cranial region showed that the trigeminal ganglion 

is well labeled in Sox1 Cre YFP embryos. Glial cells in the trigeminal ganglia 

express Sox10 and are derived from the neural crest. These cells also 

express YFP showing that in the Sox1 Cre line (fig. 3.15), they originate from 

the neural ectoderm. In contrast, most of the neurons in the trigeminal ganglia 

are not labeled in the Sox1 Cre line (fig. 3.15B), this is consistent with 

previous data that most neurons (express HuC/D) in the cranial ganglia are 

derived from the cranial placode and not neural crest derived (D'Amico-Martel 

and Noden, 1983),  

To determine whether mesectoderm, in particular bone and cartilage, are 

labeled in the Sox1 Cre, we looked at the BA1 of E11.5 embryos. This stage 

was chosen as bone and cartilage precursors begin to express Sox9 

(Akiyama et al., 2005).  

In fig. 3.16, there are YFP expressing cells within BA1 but most of these cells 

do not express Sox9. This is most prominent in more ventral regions of BA1 

(compare fig. 3.16A and fig. 3.16B). To further confirm that bone and cartilage 

from BA1 are not labeled, we looked at the skull from Sox1 Cre LacZ embryos 

at later stages. These skull preparations show that the mandible, which is 

derived from BA1, is not extensively labeled (fig. 3.17). 
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Fig. 3.16: Cartilage/bone precursors are not well labeled in the Sox1 Cre 
YFP embryos.  
Cross-section of the head in E11.5 Sox1 Cre YFP embryos. BA1, branchial 

arch one. BA2, branchial arch two (A and B). (A), is a cross section that is 

more caudal than (B). Few cells expressing YFP (green) are found in the 

Sox9 expressing regions (red). Scale bar is 100µm. 
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Fig. 3.17: Skull preparations of Sox1 Cre LacZ embryos.  
The mandible is derived from neural crest cells that originate from the 

mesencephalon however X-gal staining in the mandible is not obvious in Sox1 

Cre LacZ embryos. (A), E16.5 skull preparation. (B), E18.5 skull preparation. 

M, Mandible that is derived from BA1.  

M 

M 

A 

B 
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To quantitate what is the contribution of Sox1 Cre to neuronal versus 

mesectodermal derivatives, we counted the number of YFP positive cells in 

the trigeminal ganglion as well as BA1 at E9.0 (~15somites). Consecutive 

sections from Sox1 Cre/YFP embryos were collected and the sections were 

stained with Tfap2a, Sox10 and YFP to show the crest derivatives in the 

trigeminal ganglion as well as BA1. Crest derivatives in the trigeminal ganglia 

as well as mesectodermal express Tfap2a as well as Sox10; in addition 

Tfap2a is also expressed in the ectoderm. Fig. 3.18A shows the regions that 

was counted to generate the graph in fig. 3.18B. Fig. 3.18B shows the 

percentage of YFP labeled cells in the trigeminal ganglia versus BA1. From 

fig. 3.18B, the trigeminal ganglion is much better labeled compared to BA1. 

 

Fig. 3.18: Quantification of YFP labeled cells in the trigeminal ganglia 
and branchial arch.  
The number of YFP, Tfap2a and Sox10 in the trigeminal ganglia (A) and 

branchial arch one (B) was counted to calculate the percentage of YFP 

labeled cells in each of these regions (C). (A), white dotted line; trigeminal 

ganglia. (B), blue dotted line; BA1. Scale bar in (A) and (B) are 100 µm. (C), 

each bar represents one animal.  
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In Sox1 Cre YFP embryos, neuronal derivatives are well labeled, whereas 

very few mesectodermal derivatives are labeled (fig. 3.16 and fig. 3.18). This 

coupled with the finding that in Sox1 Cre the second population of cells 

originating from the neural ectoderm is labeled lead us to conclude that the 

first population of cells that are delaminating from the non-neural ectoderm 

are giving rise to mesectodermal derivatives whereas the second population 

of cells originating from the neural ectoderm give rise to neuronal derivatives. 

This is in contrast to the trunk where all the derivatives from the neural crest 

are labeled. 

However the presence of YFP expressing cells within BA1 as well as in other 

regions (branchial arch two in fig. 3.16) suggests that perhaps cells originating 

from neural ectoderm might also be capable of giving rise to mesectoderm. 

There are two possibilities about the origin of these cells, the first possibility is 

that they originate from the neural ectoderm and the second possibility is due 

to ectopic activation of Cre in regions that do not normally express Sox1.  

When the expression of Sox1 protein (fig. 3.2A and B) is compared to reporter 

activation (fig. 3.11A and B), there is a graded expression of Sox1 protein in 

the dorsal region of the neural fold; this is in contrast to the activation of YFP 

in the Sox1 Cre YFP embryos. Furthermore at early stages of delamination, 

sporadic cells expressing YFP can be seen in areas, which are clearly 

expressing E-cadherin (fig. 3.19) (Cells express YFP, Sox9 and E-cadherin, 

these cells will be referred to as triple positive cells in the subsequent 

sections). Although we cannot rule out the possibility that the labeled 
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mesectoderm originates from the neural ectoderm, we think that at least some 

of the labeled mesectoderm originates from the triple positive cells. 

 

Fig. 3.19: Aberrant activation of YFP in the non-neural ectoderm in Sox1 
Cre YFP embryos.  
E8.5 (7 somites) Sox1 Cre YFP embryo. 2 serial sections of the same 

embryo; (A and B) is more posterior to (C and D). White asterisk, triple 

positive cells. (B and D) magnified view of the neural fold Scale bar is 20µm 

An explanation for the appearance of the triple positive cells is probably due 

to the way that Cre works. Activation of the reporter reflects a threshold of Cre 
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activity that is needed to remove the upstream stop codon (an on or off state); 

it is unable to recapitulate a graded response. Furthermore it is also possible 

that under normal circumstances cells expressing a low level of Sox1 that 

ends up in the non-neural ectoderm will simply turn off Sox1 expression and 

convert to a non-neural ectoderm fate (boundary concept, (Dahmann et al., 

2011)) and because activation of the reporter is permanent, it does not reflect 

this kind of dynamic expression. 
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Chapter 4: Characterization of delaminating cells in 
chicken embryos 

4.1 Expression profiles of neural crest markers in 
chicken 

Due to the presence of the triple positive cells and the presence of YFP 

labeled mesectoderm in Sox1 Cre YFP embryos, we searched for another 

approach to determine whether there are cells delaminating from the non-

neural ectoderm and whether these cells give rise to mesectodermal 

derivatives. The study by Lumsden et. al. had already shown in the chick that 

labeling the neural crest at early stages gave rise to mesectodermal 

derivatives whereas labeling the neural crest at later stages gives rise to 

neuronal and mesectodermal derivatives (Lumsden et al., 1991). What is 

remarkable in this study is that no specific region was being targeted and 

seems to suggest that the neural crest is fate restricted. 

To determine whether cells are delaminating from the neural or non-neural 

ectoderm, we looked at the expression of L-CAM (chicken E-cadherin 

ortholog) and N-cadherin which are expressed in the non-neural and neural 

ectoderm respectively (Edelman et al., 1983; Hatta and Takeichi, 1986). Both 

of these molecules are expressed very early during embryogenesis, and we 

looked at the expression of Snail2, Pax7, Msx1/2, Sox9 and Tfap2a to 

determine in which domain these cells are delaminating from. 
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Fig. 4.1: Formation and delamination of cells from the midbrain region of 
chicken embryos.  
Snail2 expressing neural crest cells in the neural fold (A-D), magnified views 

of (A, C and D) are shown in fig. 4.2. N-cadherin (Ncad) is initially only 

localized to the apical surface (A), however from ~3 somites onwards it is also 

localized on the lateral surface of cells (B-D). (A), 1-2 somites. (B), 3 somites. 

(C), 5 somites. (D), 7-8 somites. Scale bar is 20µm. 
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Fig. 4.2: Expression of Snail2 and Tfap2a in the neural fold of the 
chicken. 
Cells co-expressing Snail2 and L-CAM, blue dotted line (A-B). Snail2 

expressing cells in the neural ectoderm, white dotted line (C). Yellow dotted 

line; L-CAM expressing region (D and E). Tfap2a expressing cells in the 

neural ectoderm (E and F). (A), 1-2 somites. (B), 5 somites. (C), 7-8 somites. 

(D), 2 somites. (E), 5 somites. (F), 7 somites. Scale bar is 20µm. 
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Fig. 4.3: Expression of Msx1/2 and Pax7 in the neural fold of the chicken. 
White dotted line; cells that expresses lower levels of Msx1/2 (C). (A), 2 

somites. (B), 4 somites. (C), 7 somites. (D), 2 somites. (E), 5 somites. (F), 7 

somites. Yellow dotted line; L-CAM expressing non-neural ectoderm. Blue 

dotted line; N-cadherin expressing neural ectoderm. Scale bar is 20µm 
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As mentioned before, the mode of delamination of cells in chicken is different 

from mouse. We looked at the expression pattern of Snail2 in the midbrain 

region of chicken embryos at various stages to try to determine the dynamics 

of cell delamination and whether there are two populations of Snail2 

expressing cells. Fig. 4.1 shows the formation of the midbrain neural tube and 

the expression of Snail2, N-cadherin and L-CAM at various intermediate 

stages. The neural fold first elevates at about 2-3 somites, apposition of the 

neural fold occurs at about 5 somites and fusion of the neural tube occurs at 

about 7 somites. During this process of neural tube formation (fig 4.1), Snail2 

is expressed in the neural fold and cells can be seen migrating away at about 

7 somites a time at which fusion of the neural tube has occurred (fig. 4.1D), 

when there are still Snail2 expressing cells within the neural tube(Newgreen 

and Erickson, 1986). 

From this series of images it is difficult to determine the exact time when EMT 

occurs, unlike in the mouse where cells delaminate directly into the 

mesenchyme. The morphology of the neural fold undergoes dramatic 

changes due to fusion and delamination of cells. In order to better define the 

delaminating cells, expression of Snail2 and other neural crest specifiers like 

Tfap2a, Msx1/2, Pax7 and Sox9 in the neural fold at different stages of neural 

tube formation was looked at (fig. 4.2 to 4.4). This will also determine whether 

all delaminating cells express the same markers. 

At HH7+ (1-2 somites), the neural plate is beginning to form and at this stage 

N-cadherin is mainly localized to the apical surface of the central part of the 

neural plate, whereas L-CAM is expressed at the lateral edges of the neural 
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fold. Snail2 (expressed very early during the formation of neural crest (Nieto 

et al., 1994)) is expressed in the L-CAM expressing non-neural ectoderm (fig. 

4.2A).  

The morphology of cells that are expressing Snail2 is also more cuboidal and 

resembles the cells that are in the non-neural ectoderm rather than the 

spindle shaped cells of the neural ectoderm. Most of the neural crest markers 

like Tfap2a, Msx1/2 and Pax7 are also expressed in the L-CAM expressing 

non-neural ectoderm at this stage (fig. 4.2D, 4.3A and 4.3D).  

At HH8 (3-5 somites), the neural groove is beginning to close and the neural 

folds are apposed to each other and the neural fold thickens compared to 

earlier stages (fig. 4.2A and B). N-cadherin in addition to being localized to the 

apical surface is also localized to lateral region of neural ectodermal cells, 

which are found in more medial regions of the neural tube beginning at 3 

somites (fig. 4.1B). Snail2 is expressed in the non-neural ectoderm at this 

stage, on the outer surface of the neural fold (fig. 4.2B). This is also consistent 

with the fact that these cells express lower levels of L-CAM compared with 

more lateral cells since it is known that Snail2 down-regulates the expression 

of E-cadherin (Nieto et al., 1994). Tfap2a is also expressed in the non-neural 

ectoderm (fig. 4.2E) and some cells in the N-cadherin expressing neural 

ectoderm.  

Msx1/2 is mainly expressed in the non-neural ectoderm (fig. 3.3B, very little 

Msx1/2 expressing cells co-express N-cadherin). Whereas Pax7 (fig. 4.3E) is 

expressed in more ventral regions of the neural ectoderm compared to 
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Msx1/2. At this stage, both Msx1/2 and Pax7 are also expressed in the L-

CAM expressing non-neural ectoderm. In the case of Msx1/2 (fig. 4.3B), it 

seems to be expressed broadly in the non-neural ectoderm but is expressed 

more strongly in the neural fold which express higher levels of L-CAM. In the 

spinal cord, both Msx1/2 and Pax7 have been shown to be important for 

specification of different types of neurons in the dorsal and intermediate 

neural tube (Timmer et al., 2002). 

At HH9 (7-8 somites), the neural groove has completely fused and cells have 

started migrating out. The neural and non-neural ectoderm has fully separated 

(fig. 4.2C, complementary expression of L-CAM in non-neural ectoderm and 

N-cadherin in neural ectoderm). Snail2 is only expressed in the neural 

ectoderm (fig. 4.2C). Tfap2a is expressed in both the neural and non-neural 

ectoderm, very similar to the previous stage (fig. 4.2F). Both Snail2 and 

Tfap2a are also expressed in migratory cells.  

In fig. 4.3C, Msx1/2 is still expressed in the non-neural ectoderm overlying the 

fusion point. Expression of Msx1/2 is lower in the core of the neural fold 

(these cells are presumably going to migrate soon); cells that are at the edges 

of the neural fold express Msx1/2 at higher levels. Pax7 is expressed in the 

migratory cells and is expressed at lower levels in the non-neural ectoderm 

(L-CAM expressing cells express lower levels of Pax7 compared with 

migrating cells, fig. 4.3F). It is also expressed in the dorsal neural ectoderm 

(fig 4.3F).  
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Sox9, a neural crest marker, is weakly expressed in the neural fold from HH7+ 

to HH8+ (fig. 4.4). At these stages expression of Sox9 is very restricted; it is 

only expressed in the non-neural ectoderm of the neural fold that is going to 

fuse. Comparing the expression pattern of Sox9 with Msx1/2, Msx1/2 

expression is much broader and earlier than Sox9. At HH9, Sox9 is expressed 

in the dorsal neural ectoderm (fig. 4.4C).  

 
Fig. 4.4: Expression of Msx1/2 and Sox9 at various stages in the neural 
fold.  
Sox9 is not expressed by all Msx1/2 expressing cells. (A), 2-3 somites. (B), 4 

somites. (C), 7 somites. Scale bar is 20µm 
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These images show that the neural fold is actually made up of two regions: a 

non-neural ectoderm and a neural ectoderm domain and the expression 

pattern of neural crest markers within the neural fold is highly dynamic 

(differences in their levels and location of expression). These images also 

show that there is two populations of cells within the neural fold namely cells 

that originate from the non-neural and neural ectoderm. It is unclear whether 

all cells within the neural fold express the same markers in the same temporal 

sequence. For example, only a very small subset of cells in the neural fold 

express Sox9 compared to Msx1/2 (fig. 4.4A and B) however at later stages 

Sox9 is expressed by cells emerging from the neural ectoderm (fig. 4.4C). 

Furthermore, the topology of the neural fold makes it difficult to determine 

which population of cells delaminate and migrate out first.  
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4.2 Cells found in the non-neural ectoderm delaminate 
first 

It has been shown that cells that delaminate first give rise to ventral 

derivatives whereas cells that delaminate later give rise to dorsal derivatives. 

In the head, the mesectoderm in the BA is found more ventrally compared to 

neuronal derivatives in the cranial ganglion. In cranial regions, this means that 

cells that delaminate first give rise to mesectodermal derivatives in the BA 

whereas cells that delaminate later give rise to neuronal derivatives in the 

cranial ganglia. One of the characteristics of an epithelium is the presence of 

a basement membrane on the basal side. In order to undergo EMT, epithelial 

cells have to break down the basement membrane before migration starts. 

We tried to determine whether the first cells to delaminate from the neural fold 

originate from the non-neural ectoderm by looking at the integrity of the 

basement membrane but at this stage there is no intact basement membrane 

between neural and non-neural ectoderm (fig. 4.5), hence based on the 

morphology of the basement membrane, we were unable to determine the 

sequence in which cells delaminated from the neural fold. This is similar to 

electron microscope studies by Tosney and immunostaining of basement 

membrane by Lawson et. al. (Tosney, 1982; Lawson et al., 2001). In fig 4.5C, 

the neural crest cells are probably starting to migrate out.  
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Fig. 4.5: Morphology of the basement membrane at various stages 
during neural crest formation/migration.  
Fibronectin is a component of the basement membrane. An intact basement 

membrane is present under the Snail2 expressing cells only at 2 somites (A), 

at later stages the Snail2 expressing cells are not contacting the basement 

membrane (B and C). (A), 2 somites. (B), 3-4 somites. (C), 5-6 somites. Scale 

bar is 20µm. 

RhoB has been shown to be expressed in neural crest cells and is important 

for the remodeling of the actin cytoskeleton required for changes in cell shape 

as well as migration (Liu and Jessell, 1998; Del Barrio and Nieto, 2004). 

When the neural fold becomes apposed to each other at 5 somites, not all 
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Snail2 expressing cells express RhoB (fig. 4.6A). RhoB is only expressed in 

the Snail2 expressing cells that also express L-CAM. However when the 

neural tube becomes closed at 7 somites, most Snail2 expressing cells 

express RhoB including Snail2 expressing cells in the neural ectoderm (fig. 

4.6B). This means that the first population of cells that is formed in the non-

neural ectoderm is the first to express RhoB. 

 

Fig. 4.6: Snail2 expressing cells in the non-neural ectoderm expressing 
L-CAM are the first cells to express RhoB.  
Snail2 expressing cells found in the non-neural ectoderm are the first cells to 

express RhoB (A). Subsequently after fusion of the neural tube, Snail2 

expressing cells found in the neural ectoderm also express RhoB (B). Yellow 

dotted lines show the region that is expressing RhoB. (A), 5 somites. (B), 7 

somites. Scale bar is 20µm.  



 102 

Cells within the epithelium exhibit apical/basal polarity, and during EMT, this 

apical/basal polarity is lost. β-dystroglycan is found in the basal compartment 

of epithelial cells (Nakaya et al., 2012). When the neural fold becomes 

apposed to each other at 5 somites, β-dystroglycan is not localized to the 

basal compartment in Snail2 expressing cells that also express L-CAM, 

instead β-dystroglycan is found in the entire cell cortex (fig. 4.7). β-

dystroglycan in Snail2 expressing cells, which are found more ventrally in the 

neural ectoderm, is only localized to the basal compartment. At 5 somites, 

Snail2 expressing cells, which are found in the non-neural ectoderm, have lost 

their apical/basal polarity and undergone EMT.  

 

Fig. 4.7: Snail2 expressing cells in the non-neural ectoderm expressing 
L-CAM are not polarized.  
At 5 somites when the neural tube is beginning to fuse, Snail2 expressing 

cells found in the non-neural ectoderm expressing L-CAM are not polarized as 

shown by the localization of β-dystroglycan (β-DG) in the entire cell cortex. 

Yellow dotted lines show the region of the neural fold that β-dystroglycan is 

found in the entire cell cortex. Scale bar is 20µm.   
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At 5 somites, only Snail2 expressing cells in the non-neural ectoderm express 

RhoB and are not polarized, as shown by a cortical localization of β-

dystroglycan. This shows that these Snail2 expressing cells in the non-neural 

ectoderm have already undergone EMT and delaminate first.  

It has been shown that during the fusion of the neural fold to form the neural 

tube, cells at the neural fold move medially towards the midline (Brouns et al., 

2005). This might mean that the Snail2 expressing cells in the non-neural 

ectoderm moves towards the midline prior to delamination. To address this 

issue, we labeled the neural fold with DiI at 5 somites to follow the movement 

of these cells. 

From fig. 4.8, cells that are initially located laterally move towards the midline 

and subsequently after fusion of the neural folds, migrate outwards. During 

closure of the neural tube, cells that express Snail2 in the non-neural 

ectoderm move towards the midline and subsequently delaminate after fusion 

of the neural folds. 

Both morphogenetic movement as well as the organization of the neural fold 

supports the idea that the Snail2 expressing cells in the non-neural ectoderm 

delaminate first and give rise to the leading edge of the migratory cells. These 

cells would be expected to migrate further and give rise to more ventral 

derivatives whereas cells that delaminate later from the neural ectoderm 

would give rise to more dorsal derivatives. 
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Fig. 4.8: Lateral to medial movement of the cells in the neural fold prior 
to fusion of the neural tube and subsequent delamination of these cells.  
DiI was used to label the lateral non-neural ectoderm at 5 somites (prior to 

fusion of the neural tube). A time-lapse of the movement of these DiI labeled 

cells is shown. Midline of the neural tube is shown by the dotted line, anterior 

of the embryo is on the right side of these images. After about 3hrs, the neural 

tube is fully closed and migration of the DiI labeled cells can be seen 15mins 

later (yellow arrow).  

  

Neural tube 
closure 
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4.3 Lineage tracing in chicken embryo with DiI 

We took advantage of the fact that chicken embryos could be cultured ex-ovo 

for approximately two days to differentially label different regions of the neural 

fold to determine whether they gave rise to cells with different cell fates. The 

non-neural ectoderm was labeled by applying a spot of DiI on the surface of 

the neural fold. We made use of the fact that at approximately 7 somites the 

neural tube is closed and injected DiI solution into the neural tube to label the 

cells delaminating from the neural ectoderm.  

To determine whether only cells delaminating from the neural ectoderm are 

labeled when DiI is injected in the lumen of the neural tube at HH9 (7 

somites), we fixed and sectioned the embryo after labeling. Fig. 4.9A shows 

the embryo after labeling; cross-sections of these embryos show that only 

cells within the neural ectoderm are labeled (fig. 4.9B and fig 4.9C).  
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Fig. 4.9: DiI labeling of cells delaminating from neural ectoderm. 
(A), DiI labeling of the neural tube of a 7 somite chicken embryo. (B) and (C) 

cross section at  level indicated in (A). Dotted lines highlight the labeled cells 

within the neural ectoderm, in particular the Snail2 expressing cells are 

labeled. Note that in the images of L-CAM immunostaining the apical surface 

of the neural ectoderm seem to be L-CAM positive but this is probably due to 

bleed-through from the strong DiI signal. Scale bar is 20µm 
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When the non-neural ectoderm of the neural fold is labeled with DiI, 

mesectoderm within BA1 is labeled, and only some cells within the trigeminal 

ganglia are labeled (fig. 4.10). The majority of the cells end up in the branchial 

arch. Fig. 4.11 show a cross-section of the BA1 in the first embryo of fig 4.10. 

This section shows clearly that mesectoderm within BA1, which expresses 

Tfap2a at this stage, is labeled with DiI. Hence, the non-neural ectoderm 

within the neural fold gives rise to mesectoderm of the first branchial arch. 

From the embryos that survive to day two of culture, 10 out of 12 embryos 

show that when the non-neural ectoderm is labeled, cells in the branchial arch 

are preferentially labeled. 

Although there are cells within the trigeminal ganglia that are labeled, at 

present we are unable to determine whether they are derived from the non-

neural ectoderm component of the neural fold or from cranial placodes. Xu et. 

al. show that at the 4 somite stage, the cranial placodes are derived from the 

Pax3 negative ectoderm (Xu et al., 2008). We have stained the sections with 

Islet1/2, which is expressed by neurons derived from the cranial placode 

(Ericson et al., 1992; Xu et al., 2008), but due to the juxtaposition of the glia 

and neurons within the trigeminal ganglia as well as the dispositions of DiI 

within the cell, we are uncertain whether the labeled cells are neurons or glia 

and whether they are derived from cranial placode. 
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Fig 4.10: DiI labeling of non-neural ectoderm.  
DiI was used to label the lateral non-neural ectoderm of the neural fold at the 

stages indicated on the left, and embryos were cultured for 2 days. Note that 

the mesectoderm in BA1 (green line) are labeled, whereas cells within the 

trigeminal ganglia (red line) are not well labeled.   
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Fig 4.11: Section of DiI labeled non-neural ectoderm of chicken embryo 
after 2 days of culture.  
Cross-section of the first embryo in fig. 4.7 after 2 days of culture. (A), section 

through BA1 immunostained with Tfap2a. (B), section through the trigeminal 

ganglia immunostained with Islet1/2. Yellow diamonds; DiI label.   
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When the neural ectoderm was labeled with DiI, it did not give rise to 

mesectoderm within BA1 but the trigeminal ganglion was well labeled (fig. 

4.12). Sections through the trigeminal ganglion show that there are many DiI 

labeled cells here. In this case these labeled cells are neural crest derived 

and not derived from cranial placode because the non-neural ectoderm could 

not have been labeled in this case (fig. 4.9). When the neural ectoderm was 

labeled, eight out of ten embryos that survived to day two of culture showed 

absence of labeled cells within the branchial arches and labeled cells within 

the trigeminal ganglia.  

From the expression pattern of the neural crest markers as well as labeling 

experiments in the chicken, we conclude that similarly to the mouse, there 

seems to be two populations of cells within the neural fold that have distinct 

cell fates. In the chicken, the expression profile of neural crest markers seems 

to be more drawn out compared to the mouse and it seems to reveal that the 

cells within the neural fold are highly heterogeneous, and this heterogeneity 

might reflect differences in induction.  
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Fig 4.12: DiI labeling of neural ectoderm.  
DiI was injected into the neural tube at the stages indicated on the left, and 

embryos cultured for 2 days. Note that the mesectoderm in BA1 (green line) is 

not labeled. Trigeminal ganglion is shown by the red line.   
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Fig 4.13: Section of DiI labeled neural ectoderm of chicken embryo after 
2 days of culture.  
Cross-section of the trigeminal ganglion (first embryo in fig. 4.9), with Islet1/2 

expression shown in green. Yellow diamond; DiI label. 
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Chapter 5: Discussion 

5.1 Characteristics of the two populations of cells 
within the cranial neural fold 

In the current study, we focused on neural crest cells that originate from the 

midbrain and give rise to both the mesectoderm of BA1 as well as the 

trigeminal ganglion (Lumsden et al., 1991; Osumi-Yamashita et al., 1994). 

As mentioned in the introduction, neural crest markers are broadly 

categorized based on their expression pattern (Nieto, 2001; Morales et al., 

2005; Sauka-Spengler and Bronner-Fraser, 2006; Betancur et al., 2010a). 

Pax3, Pax7, Msx1 and Tfap2a are categorized as neural plate border 

specifiers, whereas Sox9 and Snail2 are categorized as neural crest 

specifiers (as mentioned before, it should be noted that Snail2 is not strictly a 

neural crest specifier but the expression of Snail2 within the neural fold 

represent cells which are going to undergo EMT and it is also for this reason 

that Snail2 is categorized as a neural crest specifier). We have shown that at 

early stages (HH7+, TS12), in both mouse and chicken, these molecules are 

all expressed in the non-neural ectoderm whereas at later stages they are 

expressed in the dorsal neural ectoderm.  

We find that there are two populations of delaminating cells within the neural 

fold of cranial regions. Both population of cells express neural crest markers 

however the first population originates from the non-neural ectoderm 

expressing E-cadherin or L-CAM whereas the second population originates 

from the neural ectoderm expressing Sox1 or N-cadherin, in mouse and 
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chicken respectively. This means that the neural fold as well as cells that are 

leaving are phenotypically heterogeneous. The second population of cells 

originating from the neural ectoderm in the head seems to be more similar to 

the cells in the trunk in terms of origin and perhaps fate.  

In fig. 5.1, we show a summary of the expression pattern of these neural crest 

markers during early stages of embryogenesis. There are differences in the 

expression pattern of the dorsal markers in mouse and chicken, for example 

Msx1/2 and Pax7 are still expressed in the non-neural ectoderm after 

extensive migration of neural crest in chicken but not in mouse. In mouse 

embryos the region that cells are delaminating from does not seem to show 

as much differences in the expression pattern of the neural crest markers as it 

does in chicken. This is especially the case for Sox9 which in mouse is 

expressed much earlier and in all cells that delaminate whereas in chicken 

Sox9 seems to be only expressed in a subset of cells and also expressed at a 

later time. From our observation, we propose that in the head, neural crest 

formation first occurs in non-neural ectoderm and subsequently occurs in the 

neural ectoderm. This is in contrast to the trunk where neural crest is formed 

exclusively in the neural ectoderm.  

 



 115 

 
Fig. 5.1: Summary of neural crest marker expression at different times in 
the cranial and trunk region.  
Dorsal markers in the figure refer to Pax3, Pax7 and Msx1/2. Snail2 is 

expressed in a similar area as Sox9. 

The period of formation and delamination of neural crest cells in chicken is 

much longer compared with mouse and perhaps it is for this reason that there 

seems to be greater temporal resolution of the expression profiles of the 

neural crest markers in avian. The expression profiles of neural crest markers 

in chicken reveal that there is a lot of heterogeneity, i.e. it is unclear whether 

all cells express the same markers. From this study it is unclear whether 

during the process of induction/formation of neural crest cells, all the neural 

crest markers are expressed in the same sequence or at the same time 

during induction/formation. 

In the mouse where the neural crest cells delaminate into the underlying 

mesenchyme, it is obvious that the first population of cells does not get 

incorporated into the dorsal neural tube, therefore this first population of cells 

that delaminate never express Sox1 and are distinct from the second 
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population of cells. This finding is also supported by the histological studies by 

Nichols (Nichols, 1981; 1986).  

However in the chicken, because of the topology of the neural fold, it is much 

more difficult to conclude which cells are delaminating. At 2-3 somites (fig. 

4.2A), Snail2 is mainly expressed in the non-neural ectoderm (L-CAM 

expressing) in the midbrain. Apposition of the neural fold occurs at around 4-5 

somites (fig. 4.2B), and at this stage Snail2 is expressed in the entire neural 

fold, in particular Snail2 expressing cells also express L-CAM. Fusion of the 

neural fold occurs around 7-8 somites (fig. 4.2C), when most of the Snail2 

expressing cells are seen migrating out between the neural and non-neural 

ectoderm but there are still Snail2 expressing cells within the median dorsal 

neural ectoderm (N-cadherin expressing) that are still delaminating (cells stop 

migrating out of the midbrain after ~10 somites).  

In chicken embryos, during the period spanning neural crest formation to their 

emigration out of the ectoderm, the entire cranial ectoderm is undergoing 

morphological rearrangement, from a relatively flat ectoderm to formation of 

the neural tube. Numerous studies on neural tube closure in the chicken have 

shown that there is a medial movement of the neural fold in the midbrain 

region (van Straaten et al., 2002; Brouns et al., 2005; Fleury, 2011). When DiI 

was used to label the non-neural ectoderm of the neural fold (fig. 4.8), we 

observed that these cells move towards the midline and subsequently 

delaminate. What this means for neural crest cells is that the L-CAM 

expressing cells at 2-3 somites, which are initially lateral of the neural 

ectoderm, moves to the top of the closing neural tube at 4-5 somites. At about 
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7-8 somites, when the cells start to migrate out of this region, the definitive 

ectoderm moves over this region and because there is still a population of 

cells that are still delaminating from the neural ectoderm, this may create a 

false impression that all the cells that delaminate from this region are derived 

from the neural ectoderm.  

We also show that Snail2 expressing cells found in the non-neural ectoderm 

undergoes EMT first based on the expression of RhoB and loss of 

apical/basal polarity. This means that Snail2 expressing cells in the non-

neural ectoderm expressing L-CAM do not convert into neural ectoderm 

expressing N-cadherin before delaminating, instead they are delaminating first 

and forming the lead edge of the migratory mass of cells to form 

mesectodermal derivatives that are located more ventrally. 

Furthermore, numerous studies have shown that melanocytes that are the last 

to depart, and melanocyte progenitors differentially express melanocyte 

markers prior to departure from the neural tube (DuShane, 1935; Hayashi, 

1993; Erickson and Goins, 1995; Wehrle-Haller and Weston, 1995; Wilson et 

al., 2004). This provides very convincing proof that the premigratory neural 

crest cells are a heterogenous population of fate-restricted cells.  

In Sox1 Cre YFP E9.5 mouse embryos, neuronal derivatives like the cranial 

ganglia in the head are preferentially labeled. In these embryos the second 

population of delaminating cells is labeled whereas the first population is not 

labeled. This means that the second population preferentially gives rise to the 

neuronal derivatives. 



 118 

Our lineage tracing experiments in chicken embryo show that labeling the 

cells in the non-neural ectoderm in the neural fold labels mesectoderm of 

BA1, whereas labeling the neural ectoderm in the neural fold labels neuronal 

derivatives. This shows convincingly that these two populations of cells give 

rise to distinct population of cells with different cell fates. The results obtained 

from our study is also similar to what Lumsden et. al. obtained in 1991 

(Lumsden et al., 1991), although in their study they did not try to label specific 

regions within the neural fold, but they found that cells gave rise to ventral 

derivatives (mesectoderm) before giving rise to more dorsal ones (neuronal 

derivatives). Interestingly, they found that labeling the neural fold at early 

stages only gave rise to mesectodermal derivatives in BA1 whereas at later 

stages both neuronal and mesectoderm labeling was obtained. This shows 

that cells in the neural fold are not pluripotent and also reconfirms the results 

from the lineage tracing data from the Sox1 Cre embryos. 

In the studies that concluded that the neural crest cells are pluripotent, the 

authors propose that these pluripotent neural crest cells self-renew and 

subsequently generate progenies that have more restricted developmental 

potentials (Anderson, 1989; Le Douarin et al., 2004). Furthermore, they found 

that they could isolate these pluripotent neural crest cells during later stages 

of embryonic development even when the cells had already differentiated 

(Morrison et al., 1999; White and Anderson, 1999).  

If all neural crest cells are pluripotent prior to delamination, a mosaic pattern 

in all derivatives (both mesectodermal and neuronal derivatives) would be 

expected. Cells were labeled prior to delamination in all our labeling 
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experiments and we show that the region where cells are originating from and 

their time of delamination makes a difference in the ultimate cell fate that they 

adopt. Based on this, we conclude that the neural fold consists of at least two 

populations of cells and therefore it is unlikely that all the cells are pluripotent. 

Studies by Krispin et. al. have also shown that the trunk neural crest is fate 

restricted (Krispin et al., 2010) similar to our results. 
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5.2 Definition of neural crest and origin of cranial 
mesenchyme 

As mentioned in the introduction in the original studies that looked at the 

origin of the cranial mesenchyme, there was disagreement over whether 

mesectoderm originated from neural crest or lateral ectoderm. Platt JB 

attributed the lateral ectoderm as the origin of mesectoderm (Platt, 1893; 

1894). However Landacre attributed the origin of the mesectoderm to neural 

crest cells (Landacre, 1921). A critical reading of these articles reveals that 

the disagreement was over how the neural fold and neural crest were defined. 

Platt in her 1894 paper describes the formation of the neural fold and 

contribution to cranial mesenchyme and cranial ganglia as follows (original 

German text): 

“In Fig. 5 sieht man, dass, noch vor dem Schlusse der Neuralfalten, das 

Ektoderm Zellen zur Bildung der Trigeminus-Anlage zu liefern angefangen 

hat. Sowie sich die Neuralfalten in dieser Gegend schliessen, vereinigt sich 

das Ektoderm auf einer ansehnlichen Strecke in vertikaler Richtung (Fig. 8). 

Von dem oberen Theil der Vereinigung spaltet sich die Oberhaut ab, aus dem 

unteren bildet sich die dorsale Wandung des Gehirns, während Zellen aus 

dem mittleren Theile der Vereinigung in die Trigeminus-Anlage auswandern, 

welche auch noch weiter durch Zellen verstärkt wird, die vom ektoderm zu 

beiden Seiten der vereinigungslinie fortdauernd abgegeben werden, wie es in 

Fig 14 abgebildet ist.” 
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“Durch Vergleich der Schnitte 5, 8 and 14 wird man überzeugt, dass die 

Behauptung Beard's (2), die äussere Schicht des Epiblasts sei an der Bildung 

der Ganglienanlage unbetheiligt, bei Necturus nicht zu vertheidigen ist,  denn 

aus der ektodermalen Vereinigung wandern viele mittlere Zellen, die einst in 

der äusseren ektodermschicht gelegen, direct in die Trigeminus-Anlage über. 

An der Bildung der Trigeminus-Anlage nehmen wenige Zellen aus der 

Wandung des Neuralrohrs Theil. Für den Facialis gilt aber das Gegenteil, da 

durch die Auswanderung der Zellen aus der oberen Wandung des 

Neuralrohres die mittlere dorsale Decke des Gehirns eine Zeitlang verloren 

wird, was eine secundäre Schliessung nöthig macht.” 

English translation, in this article we interpret the Trigeminus-Anlage and 

Facialis as the primordium of cartilage/bone and cranial ganglia respectively: 

“In Fig 5 you see that, before the neuronal fold fuses, the ectoderm have 

already started to proliferate to form the Trigeminus anlage. As soon as the 

neuronal fold fuses, the ectoderm forms a vertical contact for a considerable 

length (Fig 8). From the upper part of this vertical contact derives the 

epidermis, and from the lower part of this vertical contact the dorsal wall of the 

brain, while the cells from the middle part of that vertical contact migrate into 

the Trigeminus anlage. This Trigeminus anlage gets further reinforcement 

from ectodermal cells which are constantly generated on both sides of this 

vertical contact.” 

“Comparing the sections 5, 8, 15, one gains the conviction that the claim of 

Beards (2), that the outer layer of the epiblast would not be involved in the 
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formation of the ganglion anlage, cannot be defended in the case of Necturus. 

This is because many middle cells, which once belonged to the outer layer of 

the ectoderm, migrate from the ectodermal contact directly into the Trigeminal 

Anlage. Only few cells from the neuronal tube wall take part in the formation 

of the Trigeminus Anlage. Yet, the opposite is the case for the facialis. This is 

because cells migrate away from the dorsal neural tube, and by doing this the 

middle dorsal roof of the brain gets lost for some time. This necessitates a 

secondary fusion.” 

In the paper by Landacre (Landacre, 1921), the author describes the neural 

crest as follows:  

“The neural crest cells - Selachians and other types - represent the dorsal 

portion of the lateral walls of the neural tube which is at first continuous with 

the ectoderm. The neural crest is incorporated in the neural tube, forming a 

wedge-shaped mass in its dorsal portion. This wedge-shaped mass later 

becomes detached from the tube and migrates laterally and ventrally.” 

Furthermore although Landacre acknowledges that there are ectodermal cells 

overlying the neural fold, strangely he fails to account for these cells after the 

fusion of the neural fold, we think that these cells actually contribute to the 

formation of the neural crest in this case. He describes the fusion of the neural 

fold as follows: 

“In the closure of the neural groove (fig. 2) the superficial pigmented cells 

lining the dorsal two-thirds of the neural tube come into contact and obliterate 

that portion of the canal lined by flat cells.” 
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From the authors’ description of the neural fold fusion and subsequent 

delamination of cells, the disagreement between these two authors stem from 

their definition of the neural fold. Platt describes the neural fold as consisting 

of two separate components, a neural and non-neural component, whereas 

Landacre interpreted the neural fold as a single entity, which was derived from 

the neural ectoderm. Based on this, Platt concludes that there are two 

populations derived from the neural fold, the neural crest originating from the 

neural ectoderm which gives rise to the cranial ganglia and the lateral 

ectoderm, which gives rise to mesectoderm. In contrast Landacre interpreted 

that the entire neural fold gives rise to neural crest, which subsequently gives 

rise to mesectoderm as well as cranial ganglia (fig. 5.2). 

Both authors relied on morphological features to distinguish origins so what 

might have led both authors to have different views of the same anatomical 

structure? We think that the probable reason for this discrepancy is maybe 

due to the preparation of the sample as well as species analyzed (Landacre 

was using Plethodon glutinosus whereas Platt was using Necturus – both are 

urodeles). Neural induction and neural crest formation in avian and 

amphibians (urodeles) are quite similar. This observation coupled with the fact 

the papers published by Platt were sometimes confusing and difficult to follow, 

as commented by Landacre (Landacre, 1921), led subsequent authors also to 

conclude that it was the neural crest that gave rise to cranial mesenchyme. 
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Fig. 5.2: Discrepancy in the definition of neural fold territories between 
Platt and Landacre.  
Open neural tube of Necturus (A1) and fusion of the neural tube (A2), figure 5 

and 8 taken from Platt respectively (Platt, 1894). (A), the neural fold is 

illustrated as 2 layers, Ect, non-neural ectoderm and nr, neural ectoderm. 

Image courtesy of Biodiversity Heritage Library. (B1-4), figures 1 to 4 taken 

from Landacre (Landacre, 1921). This series of pictures illustrate the fusion of 

the neural fold. It should be noted the neural crest is depicted as a separate 

region in these images. (C), definition of neural fold (left), lateral non-neural 

ectoderm and neural crest according to Platt JB and Landacre FL (right). 

 

Newgreen and Thiery in 1980, showed that cranial and sacral neural crest 

cells in in-vitro culture are able to secrete Fibronectin (Newgreen and Thiery, 
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1980). Furthermore they show that the neural crest cells at the peripheral of 

the culture, delaminating first from the explant, secrete much more Fibronectin 

and have a distinct morphology to other cells that are more stellate. In this 

study the authors propose that Fibronectin might have a role in guiding the 

migration of neural crest cells. Furthermore, in the studies by Nichols, it was 

found that the early and late delaminating cells originate from sites stained 

differentially with toluidine blue (toluidine blue stains carbohydrates found in 

glycoproteins and proteoglycans) (Nichols, 1981; 1986). These studies further 

indicate that the neural fold is heterogeneous (at least made up of two 

populations of cells) and fate restriction probably happens prior to cell 

delamination.  

The first cells to delaminate from the neural fold express E-cadherin whereas 

the second population of cells express N-cadherin, this difference in adhesion 

system might also mean that they delaminate in different ways since 

delamination requires the downregulation of the adherens junctions. De 

Calisto et. al. showed that the first neural crest cells to delaminate in Xenopus 

express Frizzled7 (De Calisto et al., 2005). They also show that migration of 

the neural crest requires the activation of the non-canonical Wnt signaling. 

This is another demonstration that the cells that are at the leading edge are 

distinct from cells that delaminate slightly later.  

In summary, we find that cells in cranial regions are delaminating from 

different ectodermal regions within the neural fold at different times, first from 

non-neural ectoderm and subsequently from neural ectoderm, we conclude 

that it is more probable that the neural crest is already heterogeneous in the 
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neural fold (Fig. 1.4C) it is also possible that fate restriction happens shortly 

before delamination from neural fold (fig. 1.4B). As alluded in the introduction, 

the original problem lies in the definition of the neural fold and based on the 

heterogeneity of the cranial neural fold, we would like to propose that there 

are two distinct regions within the neural fold and to separately define these 

two populations of cells; ectodermal crest for cells delaminating from the E-

cadherin expressing region in the neural fold; and neural crest for cells 

originating from the Sox1/N-cadherin expressing region of the neural fold (Fig. 

5.3). The ectodermal crest and neural crest would give rise to different 

derivatives namely mesectodermal and neuronal/pigment derivatives 

respectively.  

 
Fig. 5.3: Revisiting the neural crest.  
Ectodermal crest originates from E-cadherin positive region and gives rise to 

mesectodermal derivatives whereas neural crest originates from Sox1/N-

cadherin positive region and gives rise to neural/pigment derivatives. 
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5.3 Fate restriction and cell fate commitment 

It must be emphasized that although we propose that these cells are fate 

restricted, it does not mean that these cells are committed to a particular cell 

fate meaning that the ectodermal crest will only adopt a mesectodermal fate 

and the neural crest will only adopt neuronal cell fate. As explained before 

these two processes are distinct. Challenging single cells with new 

environments and determining whether they retain their original cell fate is 

required to determine whether these cells are committed. 

Initial studies have shown that the cranial neural crest cells that give rise to 

BA1 forms ectopic mesectoderm when transplanted into the trunk, this 

provides some evidence that perhaps the ectodermal crest is committed to a 

mesectodermal fate. However orthotopic and heterochronic grafting have also 

shown that the early and late neural crest cells can compensate for each 

other (Baker et al., 1997) but the study by McGonnell et. al. and Abzhanov et. 

al. have shown that trunk neural crest cells can produce mesectoderm 

(particularly cartilage and bone) but do this via first dedifferentiating to a 

cranial state (McGonnell and Graham, 2002; Abzhanov et al., 2003). These 

studies provide somewhat conflicting evidence for whether cells are 

committed.  Under normal circumstances the place as well as time of 

delamination determines the particular cell fate whereas ablation or 

transplantation into a new environment might trigger some form of 

reprograming to induce adoption of new characteristics.   
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5.4 Mesectodermal derivatives from other axial levels 

In other areas of the LacZ labeled Sox1 Cre skull, there seems to be a rather 

large amount of mesectoderm that is labeled in BA2 (fig. 3.16 and fig. 3.17). 

Mesectoderm in BA2 originates from neural crest cells that are derived from 

the posterior forebrain and hindbrain. Neural crest from different axial levels 

migrates in segmental streams to their target sites. For example neural crest 

cells from the midbrain and anterior hindbrain migrate to BA1 whereas neural 

crest cells from rhombomere 3-5 migrate into BA2 (Lumsden et al., 1991; 

Osumi-Yamashita et al., 1994; Santagati and Rijli, 2003). It should be noted 

that rhombomere 3 makes a minor contribution to BA1 (Sechrist et al., 1993). 

In our characterization of the cranial neural crest of the midbrain, we have 

found that the second population of cells originates from the neural ectoderm 

and give rise to neuronal derivatives. This second population of cells has very 

similar characteristics to trunk neural crest cells, in terms of origin as well as 

differentiation potential. In this way, origin or perhaps segregation of the 

primitive ectoderm might have a direct effect on cell fate.  

The organization of the ectoderm is very different along the anterior posterior 

axis. Interestingly segregation of neural and non-neural ectoderm seems to 

correlate with the loss of mesectoderm derivatives as well as the type of 

mesectodermal derivatives from different axial levels.  

In the anterior cranial region, the neural fold adopts a very open configuration; 

neural and non-neural ectoderm is continuous, whereas in the posterior trunk 

the neural and non-neural ectoderm is separated very early on. However in 
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hindbrain regions the segregation of the neural and non-neural ectoderm 

seems to be an intermediate between the cranial and trunk region. If the 

segregation of neural and non-neural ectoderm has an effect on neural crest 

formation and fate then it is possible that at these intermediate levels, 

mesectoderm might be derived from cells, which have an intermediate 

ectodermal phenotype. Alternatively other factors may be responsible for the 

ability of neural ectoderm derived cells to give rise to mesectoderm or neural 

ectoderm derived cells may have a reduced capacity to give rise to 

mesectoderm. 

There was a recent study investigating the migration of the vagal neural crest 

which reports that neural crest cells that populate the gut migrate ventrally 

whereas neural crest cells that migrate to the pharyngeal arches and heart 

migrate dorsolaterally (Kuo and Erickson, 2011). They show that these cells 

are fate restricted, i.e. early emigrating cells give rise predominantly to smooth 

muscle cells (these cells migrate dorsolaterally). In the head, neural crest cells 

only migrate dorsolaterally whereas in the trunk neural crest cells migrate both 

dorsolaterally as well as ventrally. It is unclear why vagal neural crest cells 

behave this way. Furthermore anterior vagal neural crest in contrast to 

posterior vagal neural crest show a difference in their migratory plasticity and 

the fate that they adopt. For example, when anterior vagal neural crest cells 

that normally migrate dorsolaterally (these cells give rise to smooth muscle 

cells in the pharyngeal arches) migrate ventrally they still go on to form 

smooth muscle cells in the pharyngeal arches. Maybe these neural crest cells 

from intermediate levels are coming from a region that has characteristics of 

both neural and non-neural ectoderm.  
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It must be emphasized because of the clearer segregation of neural and non-

neural ectoderm in the midbrain as well as the unique ability of this region to 

give rise to cartilage and bone, we chose to focus on the midbrain.   
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5.5 Future work 

5.5.1 What accounts for the difference between the two 
populations? 

One thing that the current work does not address is how the two populations 

of neural crest cells within the head are different. This is especially disturbing 

when you consider that both populations of cranial neural crest cells express 

a very similar repertoire of transcription factors except Sox1/N-cadherin or E-

cadherin/L-CAM in mouse and chicken respectively. But based on fate 

mapping experiments, these two populations of cell have very distinct cell 

fates. Therefore there are two scenarios, which might explain why the two 

populations of cells have distinct cell fates: 

1. Neuralization of the ectoderm endows the cells with a more neural 

fate. 

2. Differential activity of each transcription factor 

 

 Neuralization of the ectoderm endows the cells with a 5.5.1.1
more neural cell fate 

In cranial regions, there is a gradient of Sox1 expression within the neural 

fold, higher expression in more ventral regions and lower expression in more 

dorsal region. There is also an opposite gradient of E-cadherin expression, 

higher expression in more lateral regions. Sox1 is a member of the SoxB1 

family of transcription with known roles in the induction of neural ectoderm. 
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This expression gradient of Sox1 and E-cadherin might mean that the neural 

fold region is in a state of deciding between neural and non-neural ectoderm 

fate. This idea is supported by the study by Streit and Stern, showing that this 

region, unlike the lateral ectoderm, can be induced to form neural ectoderm 

(Streit and Stern, 1999; Linker et al., 2009). They also show that BMP, FGFs 

and their inhibitors in the surrounding region are important for the 

establishment and maintenance of this region.  

What this might mean for neural crest formation is that these cells are 

generated in a region where there is a gradient of different inducers and these 

inducers might have different effects on cell fate. In the studies on the 

developmental potential of neural crest in-vitro by Le Douarin et. al. and 

Anderson et. al., they show that various growth factors have different effects 

on the types of derivatives that are obtained (Baroffio et al., 1988; 1991; Shah 

et al., 1994; 1996; Shah and Anderson, 1997; Lahav et al., 1998; Trentin et 

al., 2004). It has been proposed that these factors act when the cells have 

reached their destinations. 

It has been shown that there are a number of growth factors that are involved 

in the specification of neural crest, but as we have shown that fate restriction 

happens relatively early (prior to delamination), it is unclear when and what 

are the specific effects of these growth factors. Are the two populations of 

cells induced in the same way or are they induced in a different way? 

The study by Lee et. al. shows that constitutive Wnt signaling induces neural 

crest cells to adopt a sensory fate at the expense of other cell types (Lee et 
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al., 2004). Another study by Blentic et. al., show that FGF has an important 

role in specification of mesectoderm, although the authors attribute it to FGF8 

that is secreted by the pharyngeal endoderm and not responding to FGF from 

the isthmus (Blentic et al., 2008). From these studies, it is clear that growth 

factors have very important roles for the specification of cell fate however it is 

unclear what are the specific effects of these growth factors and when they 

act. These studies also highlight the possibility that these factors might be 

inducing the formation of cells with distinct cell fates rather than inducing 

“pluripotent” neural crest progenitors.  

There have been a number of studies on the activation of signaling pathways 

during embryonic development (Corson et al., 2003; Lunn et al., 2007; Mani et 

al., 2010). A systemic temporal analysis of pathway activation during 

embryonic development in relation to expression of neural crest markers 

might reveal what are the effects these growth factors have and perhaps it 

might reveal that the two populations of cells are induced differently. 

 

 Differential activity of each transcription factor 5.5.1.2

From the expression studies of transcription factors involved in neural crest 

formation in chicken embryos, it is unclear whether all neural crest cells 

express the same repertoire of transcription factors and in the same 

sequence. In such a scenario, there might be dramatic differences in the 

transcriptional output of the neural crest cells, since the activity (either 

repressor or activator) of each transcription factor might be affected by the 
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activation or absence of another transcription factor. Alternatively these 

transcription factors might form different complexes with each other and this 

will also affect the transcription output. 

Even if the cells within the neural fold might express the same transcription 

factors, it is possible that the duration of expression of each transcription 

factor is different in the different regions of the neural fold. For example, if a 

transcription factor has a role in promoting a neuronal cell fate and it is 

expressed for a longer period in the cells that are more medial, it would 

promote adoption of a neuronal cell fate in these medial cells. 

From the inactivation of transcription factors that are involved in neural crest 

formation, there has not been a single mutant so far, which totally lacks all 

neural crest cells and most of these mutants have very specific defects, either 

neuronal or mesectodermal defect. This seems to indicate that the neural 

crest cells are a fate restricted population of cells and that the transcription 

factors involved in inducing neural crest cells may also have roles in 

specifying cell fate.  

So far there has only been a few studies, which have indicated that the 

transcription factors involved in the induction of neural crest cells also have 

roles in specifying cell fate (Drerup et al., 2009; Mundell and Labosky, 2011). 

If these transcription factors besides acting on inducing the formation of the 

neural crest, also have later roles in specification of cell fate it would be 

reasonable to expect that other populations of cells are expanded when these 
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factors are lost. Based on this it might be worthwhile to re-analyze mutants to 

determine whether there is re-specification of cell fate. 

These two scenarios may not be mutually exclusive and both might be acting 

together. For example in the development of the spinal cord, generation of 

specific neurons is a very orderly process. There are progenitors within the 

early spinal cord that respond to gradients of growth factors (Jessell, 2000). 

This growth factor gradient is translated into a differential expression of 

transcription factors, which have distinct roles in the formation of different 

types of neurons, by the progenitor cell. Deletion of these transcription factors 

leads to the absence of certain neurons but an expansion of other neurons. 

Perhaps for the neural crest specification of cell fate might operate in a similar 

way. 

 

5.5.2 Analysis of promoter elements 

As pointed out in the previous section, the knockout phenotypes of 

transcription factors within the genetic network of neural crest seems to 

suggest that these transcription factors also have roles in the specification of 

cell fate. This means that these transcription factors like the growth factors 

have multiple roles at different times and it would be of interest to determine 

whether there are distinct regulatory elements within the promoter that might 

reveal spatial and temporal roles. 
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For example if these transcription factors also have roles in determining cell 

fate, then it is possible that they might be differentially activated in the two 

populations. Sox10 is expressed in the otic placode and neural crest cells at 

different times, this reflects the complex regulation of this gene and there are 

a number of studies that have looked for enhancers that lie within this gene 

(Deal et al., 2006; Dutton et al., 2008; Betancur et al., 2010b; 2011). The 

studies by Betancur et. al., demonstrate that the same enhancer is being 

regulated by different transcription factors. Perhaps a more extensive study of 

the different genes that have been implicated for the formation of neural crest 

would allow more insights on what determines the cell fate of individual cells 

and when cell fate is established. It might also yield a regulatory element that 

is specific for the ectodermal and neural crest. 
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5.6 Conclusion 

In the current study we have focused on analysis of cell delaminating from 

midbrain regions and we have shown that there seems to be a link between 

ultimate cell fate and origin. We show that the neural fold is heterogeneous 

and consist of two regions, one that is E-cadherin/L-CAM positive (non-neural 

ectoderm) and the other is Sox1/N-cadherin positive (neural ectoderm). In the 

mouse, delamination of cells from the neural fold follows a lateral to medial 

sequence, from the non-neural ectoderm first followed by the neural 

ectoderm. These two populations of cells have distinct cell fates. Based on 

the differences in origins as well as cell fates, we propose to define the cranial 

neural crest as two distinct populations of cells: ectodermal crest for the cells 

originating from the non-neural ectoderm and giving rise to mesectoderm; and 

neural crest which originate from the neural ectoderm giving rise to neuronal 

derivatives. Fate analysis in the mouse has shown that mesectodermal 

derivatives in more caudal regions are also labeled; at present we cannot 

provide a definitive explanation for this finding. We acknowledge the 

possibility that neural ectoderm might also be able to give rise to 

mesectoderm in this region. 
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