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Habe nun, ach! Mathematik,

Quantenphysik und Biologie,

Und leider auch Spinchemie!

Durchaus studiert, mit heißem Bemühn.

Da steh ich nun, ich armer Tor!

Und bin so klug als wie zuvor.



Abstract

In this PhD thesis I investigate the occurrence of quantum coherences and

their consequences in biological systems. I consider both finite (spin) and

infinite (vibrations) degrees of freedom.

Chapter 1 gives a general introduction to quantum biology. I summarize

key features of quantum effects and point out how they could matter in

biological systems.

Chapter 2 deals with the avian compass, where spin coherences play a fun-

damental role. The experimental evidence on how weak oscillating fields

disrupt a bird’s ability to navigate is summarized. Detailed calculations

show that the experimental evidence can only be explained by long lived

coherence of the electron spin.

In chapter 3 I investigate entanglement and thus coherence in infinite de-

grees of freedoms, i.e. vibrations in coupled harmonic oscillators. Two

entanglement measures show critical behavior at the quantum phase tran-

sition from a linear chain to a zig-zag configuration of a harmonic lattice.

The methods developed for the chain of coupled harmonic oscillators will be

applied in chapter 4 to the electronic degree of freedom in DNA. I model the

electron clouds of nucleic acids in DNA as a chain of coupled quantum har-

monic oscillators with dipole-dipole interaction between nearest neighbours

resulting in a van der Waals type bonding. Crucial parameters in my model

are the distances between the acids and the coupling between them, which

I estimate from numerical simulations. I show that for realistic parameters

nearest neighbour entanglement is present even at room temperature. I



find that the strength of the single base von Neumann entropy depends on

the neighbouring sites, thus questioning the notion of treating the quantum

state of single bases as independent units. I derive an analytical expression

for the binding energy of the coupled chain in terms of entanglement and

show the connection between entanglement and correlation energy, a quan-

tity commonly used in quantum chemistry.

Chapter 5 deals with general aspects of classical information processing

using quantum channels. Biological information processing takes place at

the challenging regime where quantum meets classical physics. The major-

ity of information in a cell is classical information which has the advantage

of being reliable and easy to store. The quantum aspects enter when infor-

mation is processed. Any interaction in a cell relies on chemical reactions,

which are dominated by quantum aspects of electron shells, i.e. quantum

mechanics controls the flow of information. I will give examples of biologi-

cal information processing and introduce the concepts of classical-quantum

(cq) states in biology. This formalism is able to keep track of the combined

classical-quantum aspects of information processing. In more detail I will

study information processing in DNA. The impact of quantum noise on the

classical information processing is investigated in detail for copying genetic

information. For certain parameter values the model of copying genetic in-

formation allows for non-random mutations. This is compared to biological

evidence on adaptive mutations.

Chapter 6 gives the conclusion and the outlook.
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Introduction

1.1 Motivation

Quantum effects are subtle. The fundamental unit of quantum mechanics has the very

small value of ~ ≈ 10−34J/s. In addition, quantum effects, like superposition and entan-

glement, are easily destroyed by interaction with the environment. This explains why

we usually do not observe quantum effects in the macroscopic world 1. A rule of thumb

is the (in)famous kBT argument, stating that whenever the interaction energies are

smaller than room temperature, quantum effects cannot persist. However, as quantum

mechanical laws are fundamental, in special situations the consequences of quantum

mechanics can be macroscopic. The explanation of the photoelectric effect (1) revealed

the quantised nature of energy carriers (photons) and the importance of energy levels.

But what about quantum effects in biology? For a long time the prevailing view was

that in ’warm and wet’ biological systems quantum effects cannot survive beyond the

trivial, i.e. explaining the stability of molecules. In the first part of this introduction I

will explain why the kBT argument fails. There might be similarities to the question

how weak electrical and magnetic fields can have an influence on biological systems,

see (2) for more details. In the second part I will briefly outline how quantum effects

can be harnessed in biological systems. Examples include ion channels, photosynthesis

and the olfactory sense, which are not covered in this thesis. I discuss in more detail

1It is a matter of taste what to classify as a quantum effect. Magnetism cannot be explained

without spins, and is consequently also a quantum effect. However, Maxwell’s equations provide an

efficient classical description of magnetic fields. In this context ’quantum effects’ describe phenomena

which are unexpected given every day’s life intuition.

1



1. INTRODUCTION

the avian magneto reception and special mutagenic events in DNA. Also, Schrödinger’s

cat will not be rescued here, see fig. 1.1

Figure 1.1: Xkcd web comic (http://imgs.xkcd.com/comics/fourier.jpg): The

Schrödinger cat is usually assumed to be in a superposition state of the form of

|Alive〉 + |Dead〉. Thus a fourier transformation can potentially save its life. However,

due to unforeseen complications, cat owners are advised not to use this method until fur-

ther knowledge is available on the side effects of Fourier transforms on cats.

1.2 The breakdown of the kBT argument

The kBT argument is a mean-field argument that is very useful for many systems

to estimate the possible impact of quantum mechanics on a given physical system.

The most simplistic argument against quantum effects in biological systems is that life

usually operates at 300−310K, which is by far too hot to allow for quantum effects. Let

me explain the argument in more detail to show where it breaks down when dealing with

living systems. A physical system with given Hamiltonian Ĥ in thermal equilibrium is

described by the density operator

ρThermal =
e−βĤ

Z
= p0|0〉〈0| + p1|1〉〈1| + ... , (1.1)

where β = 1
kBT

denotes the inverse temperature, |i〉 the orthonormal basis of the

Hamiltonian, Z = Tr(e−βĤ) and pi = e−βEi

Z the probability to be in state |i〉 with

2
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1.2 The breakdown of the kBT argument

corresponding energy Ei. If the energies {Ei} are small compared to the temperature,

then all probabilities are roughly equal, pi ≈ 1
Z . Due to thermal fluctuations, it is

impossible to predict which state |i〉 the system occupies, and thus the thermal state

is the totally mixed state ρT = 1
d with d the dimension of the Hilbert space. It is

impossible to process any information with the maximally mixed state, as any unitary

operation will leave the maximally mixed state unchanged. On the other hand, if the

energies are very small compared to the temperature, then the kBT argument presumes

the system to be in its ground state. However, there are many situations where this line

of argument fails, among them non-equilibrium dynamics, entanglement and effective

temperatures in complex systems.

1.2.1 Non-equilibrium

Some quantum effects are sensitive to temperature. For quantum computing using

ion traps or quantum dots, the systems have to be cooled to few Kelvin (3). But the

thermal argument is only true for equilibrium states. Let us consider spin systems in

more details. Electron spins have two possible states. For typical organic molecules,

the energy difference between these two states is much smaller than thermal energy. At

room temperature the spin is in a fully mixed state. Thus the quick conclusion is that

spins cannot be entangled at room temperature. However, dynamical systems avoid the

equilibrium state. It was shown theoretically that two spins, given a suitable cycling

driving, can maintain their entanglement even at finite temperature and coupled to

the environment (4). This is a good example to show how our intuition fails in non-

equilibrium situations. Even though every thermal state in the parameter regime is

separable, the non-thermal state passing along the parameter curve is not!

Another possibility is to use quantum effects before the system had time to equilibrate

with the environment. In spin chemistry, a weak magnetic field, on the order of 1−10mT

is shown to influence the rate of chemical reactions (5). This fields are incredibly weak

compared to thermal noise, the ratio is around µBB/kBT ≈ 10−5. The only explanation

how such weak fields can alter the outcome of chemical reactions is by manipulating

the spins of the involved molecules. This is of fundamental importance for animal

magneto reception. A species of birds, the European Robin, is believed to use this sort

of electron entanglement to measure earth magnetic field (6) for navigation. This will

be discussed in more detail in chapter 2.

3



1. INTRODUCTION

1.2.2 Entanglement

Now there are two ways to fall off the horse, and the next system, van der Waals forces

in DNA, shows how the kBT argument fails in the other direction. Van der Waals

bonding is one of the weakest chemical bonds and a special case of Casimir forces. As

will be explained in more detail in chapter 4 and 5, DNA consists of a sequence of the

four nucleic acids. The electron clouds of neighbouring sites have dipole-dipole interac-

tion, resulting in an attractive van der Waals bonding. The coupling between nucleic

acids leads to phonons with frequencies ω in the optical range. The interaction energies

are thus large compared to thermal energy, kBT/~ω << 1. The simple kBT argument

says that as the first excited state has so much more energy than thermally available,

the DNA has to be in its electronic ground state. For each single uncoupled nucleic

acids this is true, but the situation changes in a strand of DNA due to the coupling.

The attractive part of the dipole dipole interaction reduces energy, and also creates

entanglement between the π electron clouds of the bases. The electronic system is glob-

ally in the ground state. As a consequence of the global entanglement, the system has

to be locally in a mixed state. It is impossible to distinguish with local measurements

whether a local state is mixed due to temperature or due to entanglement. In chapter

4 it will be shown that entanglement creates local mixtures that correspond to more

than 2000K of thermal energy.

1.3 Quantum enhanced processing of classical informa-

tion

In the above paragraph I argued why quantum effects can exist in biological systems.

Here I will show how they can be advantageous. The first two examples of biological

systems, photosynthesis and ion channels, use coherence for transport problems. The

other examples, avian compass, olfactory sense and DNA, deal with the determination

of classical information using quantum channels. Spin correlations enable European

robins to measure earth magnetic field. The interacting spins constitute quantum

channels, which lead to the classical knowledge needed for navigation. In the olfactory

sense a quantum channel, phonon assisted electron tunnelling, is employed to identify

4



1.3 Quantum enhanced processing of classical information

different molecules. Finally, a quantum resonance phenomenon would in principle allow

to address specific base pairs in specific genes, leading to the phenomena of non-random

mutations.

1.3.1 Single particle - Coherence

Coherence effects play a fundamental role in transport problems, which is of impor-

tance for systems like ion channels or photosynthetic complexes (transferring electronic

excitations).

Describing coherence keeps track of more information than just the probabilities to

be in a certain state. Consider the most simple quantum state, a qubit,

ρ =

(

p0 c01
c10 p1

)

(1.2)

where pi are the probabilities to be in state |i〉 and c01 = c∗10 quantify the coherence

|0〉〈1| between the two states. While the pi’s can be directly measured, the coherences

are more subtle. The state ρ will have a different time evolution for different values of

c01. This is known as interference effects. If c01 = 0, then the particle is in a mixture

of states (either |0〉〈0| or |1〉〈1|), which is unknown to the observer. If c01 6= 0, then

the particle can be in superposition of both states. While it is always possible to find a

basis in which the state ρ is diagonal, some bases are intuitively preferred. In the case

of the double slit experiment, see Fig. 1.2, this basis is the left (|L〉) and right (|R〉)
path. In this experiment the key question is whether a single particle passes through

either the left or right slit (no coherence), or both slits simultaneously ( requires |L〉〈R|
coherence terms). If there is no path coherence, the particle will go through either of

the slits, and give rise to a classical pattern on the screen. With path coherence, the

particle goes through both slits simultaneously and will interfere with itself giving rise

to an interference pattern on the detector screen.

Coherence describes a particle’s ability to exist in several distinct states

simultaneously. These states can represent, for example, position, energy

or spin. In case of position superposition, a particle can gather non-local

information.

5
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|L〉

|R〉

a b

Figure 1.2: This graphic shows a typical double slit experiment. Photons are sent

through the double slit, leading to either pattern a or b on the detection screen. If it

can be known through which slit a photon passed, there exists no path coherence and

the detection screen shows a classical pattern (b), with highest arrival probability directly

behind the open slits. However, if no path information leaves the system, the photons fly

through both slits simultaneously. This path coherence leads to the typical interference

pattern (a). With coherence the photons can arrive at positions on the detector screen

which are classically forbidden, i.e. in the centre of the screen. Because of this ability to

change arrival destinations, interference effects are important for transport problems.

1.3.1.1 Ion channel

Coherence can be utilised in transport problems, because interference patterns are very

sensitive to a couple of parameters, e.g. the mass of the particle. It is a standing

conjecture (7) that interference effects might explain the efficiency of ion channels in

cells.

For a cell or bacterium to function properly it needs to maintain a delicate balance of

different ions inside and outside the cell. This non-equilibrium steady state is achieved

with the use of ion pumps and channels. The problem for an ion channel is to be highly

permeable for one species of ions, but tight for other ions. The potassium channel for

example transmits around 108 potassium ions per second through the membrane, while

only 1 in 104 transmitted ions is sodium. As both sodium and potassium ions carry the

same charge, the key difference between the ions is their mass. It is thus postulated

that the ion channels use interference effects leading to ion selected transport.

6

Cha1-Intro/DoubleSlit.eps
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Figure 1.3: Schematic illustration of the KcsA postassium channel after PDB 1K4C

taken from (7) . KcsA protein complex with four transmembrane subunits (left) and the

selectivity with four axial trapping sites formed by the carbonyl oxygen atoms in which

a potassium ion or a water molecule can be trapped. Path coherence along the trapping

sites can lead to ion species selected transport.

1.3.1.2 Photosynthesis

The transport problem that received the most scientific attention is photosynthesis.

After photon absorption the electron excitation needs to be transported to the reac-

tion centre, where a chemical reaction converts the energy into sugar. It was shown

experimentally at low temperatures that the photosynthetic complex FMO supports

coherent transport over a short period (8). There are a number of papers investigating

the details of the transport and the importance of coherence in the system. There is

good numerical evidence that the existence of coherence speeds up the transport

in the first part of the time evolution (see (9) and references therein). In the second

part interaction with the environment decoheres the system. It turns out that this de-

coherence further speeds up the excitation transfer, as it keeps the system from being

trapped in dark states.

1.3.2 Two particles - Entanglement

When discussing the behaviour of two particles, the most interesting point is the cor-

relations between them. Quantum information typically distinguishes two kinds of cor-

relations: classical correlations and entanglement. Entanglement is a strange quantum

mechanical property that allows two or more particles to be stronger than classically

correlated. This also means that while the global state is perfectly known, the local

7
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state is fully mixed. Let us consider a spin singlet state in more detail. I ignore the

thermal influence for now and focus on the properties of the ground state of the two par-

ticle system at zero temperature. The wavefunction is given by |ψ〉 = 1√
2
(| ↑↓〉− | ↓↑〉),

or as a density operator

ρ = |ψ〉〈ψ| =
1

2









1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1









. (1.3)

While this state looks somewhat similar to the above coherence example, there are

distinct differences. The coherence terms in the corner show that the spins of two

spatially separated electrons simultaneously are anti-correlated. That means that each

individual electron has not a defined spin. Mathematically this is more clear when

taking the partial trace of the state, i.e. write down the individual state (density

operator) of a single electron

ρA = TrB |ψ〉〈ψ| =
1

2

(

1 0
0 1

)

, (1.4)

which is the fully mixed state. As previously mentioned, the simple kBT fails in the

presence of entanglement. How can a single particle be in a fully mixed state at zero

temperature? Also note, that when a single particle is entangled with another one, it

cannot have the above described self-coherence. Entanglement creates non-local

correlations and non-thermal excitations.

1.3.2.1 Avian compass

The field of spin chemistry investigates the influence of spin correlations between two

spatially separated electrons on chemical reactions. There is experimental evidence

(10, 11, 12) that a migrating species of birds, the European Robin, exploits this fea-

ture to navigate in Earth magnetic field. The ratio of Earth magnetic field energy

to thermal energy is about µB60µT/kB310K ≈ 10−8. It is still puzzling for the sci-

entific community how birds are able to detect this miniscule signal. For the avian

compass to work, the spins of the two electrons need to be correlated. The easiest

way to create the correlations is by using Pauli exclusion principle to initialise the two

electrons in a singlet state. Coherent single electron photoexcitation and subsequent

electron translocation leads to an entangled state, which provides the necessary spin

8
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!B.

bird's eye retina

anisotropic

hyperfine

interaction

Zeeman

interaction

Figure 1.4: According to the RP model, the back of the bird’s eye contains numerous

molecules for magnetoreception (13). These molecules give rise to a pattern, discernible

to the bird, which indicates the orientation of the field. In the simplest variant, each such

molecule involves three crucial components (see inset): there are two electrons, initially

photo-excited to a singlet state, and a nuclear spin that couples to one of the electrons.

This coupling is anisotropic, so that the molecule has a directionality to it.

correlations. While both electron spins interact with earth magnetic field, one of them

additionally interacts with a nuclear spin. This causes the state of the electrons to

oscillate between singlets and triplets. After some time the excited states relax either

in a singlet or triplet state, leading to different chemical end products. The required

information about earth magnetic field is encoded in the oscillation frequency and can

be recovered by detecting the relative amount of singlet or triplet chemicals. This will

be covered in chapter 2.

1.3.3 Many particles - vibrations

For many particle systems vibrations are a common phenomenon. Vibrations, or

phonons, describe the collective movement of many particles. Dependent on whether

the movement of particles needs to be described by quantum or classical laws, the dy-

namics of vibrations is either quantum or classical. One characteristic parameter of

vibrations is their frequency. Molecules have a unique spatial arrangement of atoms,

linked by chemical bonds acting as springs. Each molecule thus has an individual set

of characteristic vibrations. In the olfactory sense, experimental evidence supports the

hypothesis that these vibrations are measured using phonon assisted electron transport

(14, 15). Even though molecular vibrations can be described efficiently using classical

methods, this mechanism still has a remarkable sensitivity to the quantum details of

9
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a molecule. It has been demonstrated that fruit flies can distinguish between normal

fragrant molecules and deuterium enriched molecules, although the molecules have a

very similar shape.

In chapter 4 of this thesis I will investigate phonons in DNA. As a preparation

for that, I will look at phonons in coupled harmonic oscillators in chapter 3. One

conclusions of chapter 4 is that the electronic degree of freedom in DNA is delocalised

even at body temperature. This insight will be of importance in chapter 5, where

information flow in biological systems is investigated at a more abstract level.

In this thesis I propose to use classical-quantum (cq) states for describing informa-

tion stored in DNA. The idea of cq states originates in quantum cryptography, where

classical information is encoded in quantum degrees, for example in the polarization of

photons. While cryptography aims at hiding information, biology faces the opposite

problem of making genetic information easily accessible inside a cell. DNA consists of

four nucleic acids; each nucleic acid encodes two bits of classical information. But how

exactly is this information accessed? Contrary to computers, where classical transistors

process the information, in a biological system everything depends on chemical reac-

tions. But chemistry is nothing but the quantum physics of a molecule’s electron shell

and single protons. This motivates the use of quantum channels for storing and process-

ing classical genetic information. There is a well developed mathematical framework

for determining exactly how much quantum and classical information can be processed

for a given physical system. In chapter 5 I will discuss how this concept can explain

the experimental occurrence of non-random mutations.

Finally, in the last chapter, I will discuss two ideas about the consequences of

quantum mechanics in biological system on a very general level.
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Avian Compass

Many animals have a magnetic sense, which allows them to navigate in earth magnetic

field. Examples include bacteria, sharks and birds (16). It is not yet fully understood

which physical process allows these animals to measure earth magnetic field, which

is very weak, around B ≈ 40µT . Often the magnetic energy µB is equal or smaller

than the thermal energy kT . This makes it a challenge to measure earth magnetic

field against thermal noise. There are several mechanisms by which this sense may

operate (16). In certain species (including certain birds (17, 18), fruit flies (19, 20)

and even plants (21)), the evidence supports a so-called Radical Pair (RP) mechanism.

This process involves the quantum evolution of a spatially-separated pair of electron

spins (12, 17), and such a model is supported by several results from the field of spin

chemistry (5, 6, 22, 23, 24). An artificial chemical compass operating according to

this principle has been demonstrated experimentally (25), and a very recent theoret-

ical study examines the presence of entanglement within such a system (26). In this

chapter I consider the timescales for the persistence of full quantum coherence, and

entanglement, within a specific living system: the European Robin. The analysis uses

recent data from experiments on live birds. I conclude that the RP model implies a

decoherence time in the birds’ compass which is extraordinarily long – beyond that of

any artificial molecular system.

11
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2.1 Experimental evidence on European Robins

By manipulating a captive bird’s magnetic environment and recording its response,

one can make inferences about the mechanism of the magnetic sensor (10, 11, 12, 27).

Specifically, European Robins are only sensitive to the inclination and not the polariza-

tion of the magnetic field (10), and this sensor is evidently activated by photons entering

the bird’s eye (11, 28). Importantly for the present analysis, a very small oscillating

magnetic field can disrupt the bird’s ability to orientate (12, 27). It is also significant

that birds are able to ‘train’ to different field strengths, suggesting that the navigation

sense is robust, and unlikely to depend on very special values for the parameter in the

model (27).

2.2 The Radical Pair model

The basic idea of the RP model is as follows: there are molecular structures in the bird’s

eye which can each absorb an optical photon and give rise to a spatially separated elec-

tron pair in a singlet spin state, see Fig. 2.1. Because of the differing local environments

of the two electron spins, a singlet-triplet evolution occurs. This evolution depends on

the inclination of the molecule with respect to the Earth’s magnetic field. Recombi-

nation occurs either from the singlet or triplet state, leading to different chemical end

products. The concentration of these products constitutes a chemical signal correlated

to the Earth’s field orientation. The specific molecule involved is unknown, but the

molecule cryptochrome is thought to be involved (32).

Making as few assumptions as possible about the detailed structure of the molecule,

a family of models with the necessary complexity to support this RP mechanism is ex-

amined. The aim is to understand whether full quantum coherence and entanglement

exist for long durations in the European Robin’s compass system. Figure 2.2 depicts

the most basic form of the model: two electronic spins (17) and one nuclear spin. The

nucleus interacts with only one of the electron spins, thus providing the asymmetry

required for singlet-triplet oscillations. In this model, as with the other models con-

sidered, I employ the Hamiltonian corresponding to the system once the two electrons

have become separated. That is, t = 0 corresponds to the moment of RP formation.

12
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[D∗
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Figure 2.1: In a spin chemistry scenario a molecule consisting of a donor (D) and acceptor

(A) part is initially in the electronic ground state, which constitutes a spin singlet state.

A photon of energy hν coherently excites one of the electrons. This excited electron moves

from the donor to the acceptor part. Now the two spatially separated electrons interact

with different local magnetic fields. While both electrons interact with earth magnetic

field, one electron in addition interacts with a nuclear spin. This leads to an oscillation

between singlet and triplet states. The time evolution of this oscillation depends on the

angle with earth magnetic field. Both states decay with a rate constant of kS or kT into a

singlet or triplet state. These two molecules can be chemically distinguished. The relative

concentration of singlet to triplet molecules varies over the bird’s retina, giving rise to a

pattern that encodes the angle with earth magnetic field.

The anisotropic hyperfine tensor coupling the nucleus and electron 1, is conveniently

written in its diagonal basis A = diag(Ax, Ay, Az), and an axially symmetric (or cigar-

shaped) molecule with Az = 10−5 meV and Ax = Ay = Az/2 is assumed. This is

the simplest assumption that can provide directionality, and the general shape and

magnitude of the tensor is chosen to be consistent with (29). The Hamiltonian is

H = Î ·A · Ŝ1 + γB · (Ŝ1 + Ŝ2),

where Î is the nuclear spin operator, Ŝi = (σx, σy, σz)i are the electron spin operators

(i = 1, 2), B is the magnetic field vector and γ = 1
2µ0g the gyromagnetic ratio with

µ0 being Bohr’s magneton and g = 2 the g-factor. The factor 1/2 in the gyromagnetic

ratio accounts for the fact that there is a spin one-half system, but here Pauli matrices

such as σz = diag{1,−1} etc are used. Here only one electron is coupled to one nucleus,

whereas the remote electron is so weakly interacting that it is described as free.

A family of variants involving different hyperfine tensors, adding a second nuclear

spin (following previous studies where more than one nucleus couples to the system (6,

26, 27, 30)), and replacing the nuclear asymmetry with an anisotropic electron g-factor

is also considered. These models, and the results of the corresponding simulations, are

13
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Figure 2.2: According to the RP model, the back of the bird’s eye contains numerous

molecules for magnetoreception (13). These molecules give rise to a pattern, discernible

to the bird, which indicates the orientation of the field. Note that this implies that the

molecules involved are at least fixed in orientation, and possibly ordered with respect to one

another (17). In the simplest variant, each such molecule involves three crucial components

(see inset): there are two electrons, initially photo-excited to a singlet state, and a nuclear

spin that couples to one of the electrons. This coupling is anisotropic, so that the molecule

has a directionality to it.

presented in (31). In essence all models give rise to the same qualitative behavior as

the basic model described here. This is not surprising since there is a basic underlying

principle: The electron spins of the RP must be protected from an irreversible loss

of quantum coherence in order to be susceptible to the experimentally applied RF

field. The extremely low strength of this applied field dictates the timescale over which

quantum coherence must be preserved. Thus the inference of extraordinarily long

coherence times does not vary significantly over the various models.

Generally, the magnetic field is

B = B0(cosϕ sin ϑ, sinϕ sinϑ, cos ϑ)

+ Brf cosωt(cosφ sin θ, sinφ sin θ, cos θ), (2.1)

where B0 = 47 µT is the Earth’s magnetic field in Frankfurt (27), and the angles de-

scribe the orientation of magnetic field to the basis of the HF tensor. Brf = 150 nT

is an additional oscillatory field only applied in the simulations where explicitly men-

tioned. For resonant excitation with the uncoupled electron spin, ~ω = 2γB0, so that

ν = ω/(2π) = 1.316 MHz.

The axial symmetry of the HF tensor allows to set ϕ = 0 and focus on ϑ in the

range [0, π/2] without loss of generality. For the oscillatory field I set φ = 0.
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Cha3-Birds/birdretina3.eps


2.2 The Radical Pair model

To model the dynamics of the system with a quantum master equation (ME) ap-

proach, two ‘shelving states’ to the 8 dimensional Hilbert space of the three spins are

added. I employ Operators to represent the spin-selective relaxation into the singlet

shelf |S〉 from the electron singlet state, or the triplet shelf |T 〉 from the triplet con-

figurations. One of the two events will occur, and the final populations of |S〉 and |T 〉
give the singlet and triplet yield.

With the usual definition of singlet |s〉 and triplet states |ti〉 in the electronic sub-

space, while | ↑〉 and | ↓〉 describe the states of the nuclear spin, the following de-

cay operators are defined: PS,↑ = |S〉〈s, ↑ |, PT0,↑ = |T 〉〈t0, ↑ |, PT+,↑ = |T 〉〈t+, ↑ |,
PT−,↑ = |T 〉〈t−, ↑ |, and similarly for the ‘down’ nuclear states. This gives a total

of two singlet and six triplet projectors to discriminate the respective decays with a

standard Lindblad ME,

ρ̇ = − i

~
[H, ρ] + k

8
∑

i=1

PiρP
†
i − 1

2
P †
i Piρ+ ρP †

i Pi . (2.2)

For simplicity and because this choice corresponds exactly to the expression for the

singlet yield used in the previous literature, all eight projectors have been assigned the

same decay rate k. Note that Eqn. (2.2) does not yet contain environmental noise,

though this will not alter the estimate of k.

In the previous literature it has been common to employ a Liouville equation to

model the RP dynamics. In fact, a term-by-term comparison of the evolution of the

density matrix readily confirms that this former approach and this ME are exactly

equivalent in the absence of environmental noise. For equal singlet and triplet reaction

rates, both give rise to the same singlet yield that is often defined as the integral

Φ =
∫∞
0 〈ψ−|Trn(ρ(t))|ψ−〉ke−ktdt in the prior literature. Specifically, the ultimate

population of this singlet shelf |S〉 corresponds to Φ. However, when one presently

wishes to introduce various kinds of noise operators, the ME approach provides the

more intuitive framework.

The initial state of the model ρ0 assigns a pure singlet state to the electrons, and a

completely mixed state to the nucleus, ρ(0) = (|s, ↓〉〈s, ↓ | + |s, ↑〉〈s, ↑ |) /2 .

In the next step an appropriate choice for the parameter k in Eqn. 2.2 is deter-

mined. In Ref. (27), the authors report that a perturbing magnetic field of frequency of

1.316 MHz (i.e. the resonance frequency of the ‘remote’ electron) can disrupt the avian
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Figure 2.3: Angular dependence of the singlet yield in the presence of an oscillatory

field. The blue curve provides a reference of the singlet yield in the Earth’s magnetic field

(B0 = 47µT). The reference is independent of the decay rate for k ≤ 107 s−1, but has

been shifted upwards by 0.001 for better visibility. The red curves show the singlet yield

when a 150 nT field oscillating at 1.316 MHz (i.e. resonant with the Zeeman frequency of

the uncoupled electron) is superimposed perpendicular to the direction of the static field.

This only has an appreciable effect on the singlet yield once k is of order 104 s−1.

compass. They note that this immediately implies a bound on the decay rate k (since

the field would appear static for sufficiently rapid decay). Here the aim is to refine

this bound on k by considering the oscillating magnetic field strength which suffices to

completely disorient the bird’s compass, i.e. 150 nT. (Indeed, even a 15 nT field was

reported as being disruptive, but to be conservative in the conclusions the larger value

is taken here.) To model this effect, the oscillatory field component defined in Eqn. 2.1

is activated and the singlet yield as a function of the angle between the Earth’s field

and the molecular axis is examined. Consistent with the experimental work, it is found

that there is no effect at such weak fields when the oscillatory field is parallel to the

Earth’s field. Therefore the oscillatory field is set to be perpendicular. The results are
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Figure 2.4: Angular dependence of the singlet yield in the presence of noise (for k =

104/s). The blue curve provides a reference in the absence of noise and the red curves

show the singlet yield for different noise rates. As is apparent from the plot a noise rate

Γ > 0.1k has a dramatic effect on the magnitude and contrast of the singlet yield.

shown in Figure 2.3. I conclude that if the oscillating field is to disorient the bird, as

experiments showed, then the decay rate k should be approximately 104 s−1 or less.

For higher values of k (shorter timescales for the overall process) there is no time for

the weak oscillatory field to significantly perturb the system; it relaxes before it has

suffered any effect. Such a value for the decay rate is consistent with the long RP

lifetimes in certain candidate cryptochrome molecules found in migratory birds (32).

2.2.1 Quantum correlations

Taking the value k = 104 s−1, the primary question of interest is targeted: how ro-

bust this mechanism is against environmental noise. There are several reasons for

decoherence, e.g. dipole interactions, electron-electron distance fluctuations and other

particles’ spin interactions with the electrons. Such environmental noise is described
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by extending Eqn. 2.2 with a standard Lindblad dissipator

ρ̇ = − i

~
[H, ρ] + k

8
∑

i=1

PiρP
†
i − 1

2
P †
i Piρ+ ρP †

i Pi +
∑

i

Γi

(

LiρL
†
i −

1

2

(

L†
iLiρ+ ρL†

iLi

)

)

(2.3)

This is a general formalism for Markovian noise. Several noise models are consid-

ered: first, a physically reasonable generic model in which both phase and amplitude

are perturbed with equal probability. In this model, the noise operators Li are σx, σy,

σz for each electron spin individually (i.e. tensored with identity matrices for the nu-

clear spin and the other electron spin). This gives a total of six different noise operators

Li and the same decoherence rate Γ is used for all of them. The level of noise which

the compass may suffer can be approximated, by finding the magnitude of Γ for which

the angular sensitivity fails.

This is shown in Fig. 2.4. Conservatively, when Γ ≥ k, the angular sensitivity

is highly degraded. This is remarkable, since it implies the decoherence time of the

two-electron compass system is of order 100 µs or more 1! To provide context for this

number, the best laboratory experiment involving preservation of a molecular electron

spin state has accomplished a decoherence time of 80 µs (33).

It is interesting to characterise the duration of quantum entanglement in this living

system. Having inferred approximate values for the key parameters, entanglement from

the initial singlet generation to the eventual decay can be monitored. The metric I use

is negativity: N(ρ) = ||ρTA/2||, where ||ρTA || is the trace norm of the partial transpose

of the system’s density matrix. The transpose is applied to the uncoupled electron, thus

performing the natural partitioning between the electron, on one side, and the coupled

electron plus its nucleus, on the other. Fig. 2.5 shows how this negativity evolves

under the generic noise model. Clearly, the initial singlet state is maximally entangled.

Under noise, entanglement falls off at a faster rate than the decay of population from

the excited state.

1One could assume the bird to be more easily perturbed by the oscillatory field (Fig. 2.3), and

obtain a larger k. However, that same assumption of high sensitivity should then be applied to the

noise analysis (Fig. 2.4) and in fact the two assumptions would cancel to give the same basic estimate

for the decoherence rate. This cancellation is robust, being valid over an order of magnitude in k.
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Figure 2.5: The decline and disappearance of entanglement in the compass system, given

the parameter k and the noise severity Γ defined above. Here the angle between the Earth’s

field and the molecular axis is π/4, although the behavior at other angles is similar.

2.2.2 Pure phase noise

Interestingly, if the simulation starts with a completely dephased state: (|s〉〈s| +

|t0〉〈t0|)/2, the classical correlations are still sufficient for achieving adequate angu-

lar visibility and neither quantum phase coherence nor entanglement seems to be a

prerequisite for the efficiency of the avian compass.

To explore this idea further, the effect of ‘pure dephasing’ occurring during the

singlet-triplet interconversion is studied. In essence energy conserving noise operators,

Eqn. (2.4) are used, which are known to be the dominant source of decoherence in so

many other artificially made quantum systems. By applying this specific noise, it is

confirmed that the compass mechanism’s performance is essentially immune, while of

course the coherence of the quantum state of the electrons would be degraded.

One might be inclined to conclude that, if pure dephasing noise is indeed dominant,

then the avian compass need not protect quantum coherence for the long time scales
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suggested above. But crucially, it is also shown that if such noise were naturally present

at a high level in the compass (exceeding the generic noise level Γ by more than an order

of magnitude) then it would render the bird immune to the weak oscillatory magnetic

fields studied by Ritz et al. (34). Thus the sensitivity to oscillatory fields implies that

both amplitude and phase, and thus entanglement, are indeed protected within the

avian compass on timescales exceeding tens of microseconds.

Since the electron spin singlet state is not an eigenstate of the Hamiltonian, the

dephasing operators will be different from the ones mixing the phase of the singlet

and triplet state within the electronic subspace. Instead, the previously defined noise

operators of Li of Eq. (3) are replaced by appropriate dephasing operators as follows:

the remote electron and the electron nuclear spin subsystem are treated separately.

Within both subsystems, dephasing operators are defined as

Zi =
1√
2





∑

j 6=i
|λj〉〈λj | − |λi〉〈λi|





=
1√
2

(I4 − 2|λi〉〈λi|) , (2.4)

where {|λi〉} are the set of normalised eigenvectors of this subsystem. This results in

two dephasing operators for the remote electron (these can be combined to a single

σz operator rotated with the field) and four operators for the electron nuclear spin

subsystem. Each of these dephasing operators corresponds to fluctuations of one of the

(subsystem’s) energy levels.

Strikingly, the singlet yield is entirely unaffected by this particular kind of noise, i.e.

it is entirely independent of the dephasing rate Γz. Thus, a curve obtained with this

model coincides perfectly with the reference curve of Fig. 2.3. However, I show in the

following that the dephasing rate of this model can be at most ten times faster than the

generic noise rate to retain sensitivity to the oscillatory field. Fig. 2.6 shows the singlet

yield as a function of θ for different pure dephasing rates Γz. Pure phase noise would

actually protect the compass from the harmful effect of an applied oscillatory field (by

suppressing the Rabi oscillations caused by such a field). We see that an aggressive

pure dephasing rate of 1/Γz = 10 µs almost completely recovers the reference curve

(corresponding to a noise-free system without oscillatory field).
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Figure 2.6: Angular dependence of the singlet yield at k = 104 s−1 in the presence of

the oscillatory field for different pure dephasing rates Γz. This is to be compared with the

k = 104 s−1 line in Fig. 2.3. See text for an explanation.
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2.3 Alternative Explanations - Critical Review

The conclusions of this chapter seem indeed remarkable. Throughout the calculation

a value of 150nT for the amplitude of the noise magnetic field was used. Indeed,

disruption of magneto reception was reported even for 15nT . This value would lead

to even longer coherence times. The estimated duration of the coherence is surprising,

especially as the model does not explain why such a long coherence time would be

advantageous. One might assume that the radical pair sensor is extremely sensitive

to minute changes in the magnetic field. This general statement, however, would be

in contradiction with the experimental evidence that the European Robin’s sense of

magneto reception is not disturbed when the oscillating field is orthogonal to earth

magnetic field. More precisely, it could be that the radical pair magneto receptor

is exquisitely sensitive to tiny changes non-orthogonal to earth magnetic field. This

requires that the interaction of the sensor with the weak oscillating noise effect is of the

same order of magnitude as the interaction with the static field. As the amplitude of

the noise field is at least 2 orders of magnitude smaller than the static field, this would

either imply disproportionately insensitive interaction with the static field, which seems

unlikely given that this detector evolved for detecting static fields of the order of earth

magnetic field. Or, the detector interacts disproportionally strongly with oscillating

fields at 1.3MHz. At first sight this seems irrelevant for a bird’s evolution. However,

such a quantum resonance effect, which interacts disproportionally strongly with a

small range of frequencies, might have evolved accidentally. As oscillating fields of this

frequency are rare in natural conditions, a hypothetical detector having this sensitivity

would not suffer bad side effects. Additionally, the frequency of 1.3MHz corresponds

to the resonance frequency of a free electron spin, which supports the hypothesis of

accidental evolution. While it is not impossible for such a detector to evolve, this

model still does not explain the need for such sensitivity. Even worse, the paragraph

on pure phase noise indicates that the radical pair detector has to be shielded well

from environmental phase noise for keeping the sensitivity to weak oscillating fields.

Given that the required long coherence time for such a quantum resonance effect is

very difficult to achieve with lab methods, this answer, although possible, is still not

very satisfying, and the search for alternative explanations should continue. On the one

hand, it is desirable to find a theoretical model explaining why a long coherence time
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would be beneficial for a static magnetic field detector. On the other hand, one should

explore whether the reported loss of orientation of European Robins in the presence

of weak oscillating fields might be caused not by the noise field - detector interaction,

but some other physical effect inside the birds. It is still not fully understood how the

birds process the presumed singlet - triplet pattern on their retina. It cannot be ruled

out that the signal of earth magnetic field is corrupted in a subsequent part of the

information processing.
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3

Entanglement at the quantum

phase transition in a harmonic

lattice

The entanglement properties of the phase transition in a two dimensional harmonic

lattice, similar to the one observed in recent ion trap experiments, are discussed both,

for finite number of particles and thermodynamical limit. We show that for the ground

state at the critical value of the trapping potential two entanglement measures, the

negativity between two neighbouring sites and the block entropy for blocks of size 1,

2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in

general; not only in the finite dimensional case considered in (35). Finally, I consider

the thermal state and compare its exact entanglement with a temperature entanglement

witness introduced in (36)

3.1 Introduction

Coupled harmonic chains with short and long range interactions are ubiquitous in sci-

ence and engineering. Their application to calculate the phononic heat capacity by

Einstein (37) marks the birth of solid state physics. Beyond physics, harmonic chains

feature in chemistry and biology, where they are used to model behaviour of macro-

molecules, such as DNA (38) and cell membranes (39). In the last decade harmonic

systems have been revised using techniques developed in quantum information science
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3. ENTANGLEMENT AT THE QUANTUM PHASE TRANSITION IN

A HARMONIC LATTICE

to study correlation properties in the quantum regime and particularly at small tem-

peratures (40, 41, 42, 43). Thermodynamics has been very successful in characterising

“standard” phase transitions that occur at finite temperature when a macroscopic pa-

rameter, such as pressure, is changed (44). Quantum phase transitions (QPTs) appear

at zero temperature (45) and are due to the change of an external parameter, such as

the trapping potential of an ion trap. These transitions are driven by quantum fluctu-

ations and have been linked to entanglement for the case of finite dimensional systems

(35, 46).

Here I study a QPT in a continuous variable system: a system of trapped ions which

I model as a harmonic lattice (36, 47). The ions interact via a long-range Coulomb

repulsion and are trapped by two external potentials, see Fig. 3.1. They align in a

linear configuration for big enough transversal trapping potential, νt however when νt

is decreased the system undergoes a phase transition and the new equilibrium state

forms a zig-zag configuration. This model is motivated by ion trap experiments (48,

49, 50), where such a QPT occurs (51, 52). Recent analytical studies of the transition

using Landau theory (53) allowed to determine the system’s classical behaviour at the

transition point. Moreover, the numerical treatment of the quantised system of a few

ions promised the possibility of simulating linear and nonlinear Klein-Gordon fields on

a lattice (54). However, a comprehensive analytical study of the quantised system has

so far been lacking due to the complexity of the system.

Here I model the ion trap scenario as a lattice of harmonically coupled oscilla-

tors and present a quantitative characterization of the entanglement inherent in both

ground state configurations of the ions. For finite dimensional systems QPTs of first

(second) order are characterised by a discontinuity (a discontinuity in or divergence

of the first derivative) of the negativity (35). I show that also in the here considered

continuous variable system the structure of entanglement, measured by the negativity

and the von Neumann entropy, changes abruptly at the critical point and indicates the

occurrence of a QPT, in a similar way as classical correlations indicate standard phase

transitions. The first derivative of the negativity between two neighbouring ions has a

finite discontinuity and the von Neumann entropy of contiguous blocks of a single ion,

two and three ions all show a divergence in the first derivative. The long-ranged nature

of the Coulomb interaction leads to an increase of the block entropy with increasing

block size. This is in contrast to models with only nearest neighbour interaction where
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3.2 The model

‘area laws’ apply (55) and entanglement does not increase with block size, i.e. volume,

as long as the surface of the block is constant. However, the results show that the

increase in block entropy with the block size is quite small due to the fast decline of

the Coulomb potential.

The quantum fluctuations that cause the QPT are most dominant at zero temper-

ature. However, as experiments are performed at small, but finite temperatures it is

important to know how temperature affects these fluctuations (56). In the final part I

discuss thermal states and find that the sharpness of the QPT, indicated by the entan-

glement, fades out with increasing temperature. Another macroscopic consequence of

quantum fluctuations is the lowering of the energy of the system (36). I compute up to

which temperature the thermal state has a lower energy than any separable state. This

temperature witness could be implemented in an ion trap experiment by measuring the

average energy (i.e. mean excitation). Although the model is motivated by ion traps

realisations include the vibrational motion of molecules (38) (nuclei in the electronic

potential) and optical lattices (57).

3.2 The model

I consider the Hamiltonian, see Fig. 3.1,

H(νt) =

N
∑

j=1

(

p2
xj

+ p2
yj

2m
+
mν2

2
(x̃j − x̃j,0)

2 +
mν2

t

2
ỹ2
j + Vj

)

, (3.1)

where Vj = 1
2

∑

k 6=j
Q2

|~rk−~rj | are the Coulomb potentials of the sites with ~rj = (x̃j , ỹj)

absolute coordinates of the sites and x̃j,0 are the equilibrium positions in x direction.

N is the number of particles, Q is the charge of the ions and ν (νt) are the trapping

potentials in x (y) direction. I assume periodic boundary conditions, ~rj = ~rj+N .

To calculate the entanglement measures I approximate the Coulomb potential to

second order and expand about the equilibrium positions. The key step is then to

diagonalise the Hamiltonian into a set of uncoupled modes, the lattice vibrations, with

which analytic expressions for the measures can be obtained. Similar to the classical

calculation (53), I use a simplified model with equidistant equilibrium position in x

direction, spaced by the lattice constant a. Such condition can be realised for the

central ions of a long ion chain inside a linear Paul trap (58) or for ions confined in a

ring of large radius (51, 59).
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A HARMONIC LATTICE

x

y

y

x

{
a

b{

I

II

νt > νt,crit

νt < νt,crit

Figure 3.1: Sketch of the harmonic lattice under consideration: Each site is trapped

by two external potentials, ν in x direction and νt in y direction. For clearness only the

nearest neighbour coupling is indicated, however all ions interact via a long-range potential

which we approximate harmonically. This could be for instance a Coulomb potential such

as is common in ion experiments. The equilibrium distances between the sites are assumed

to be equidistant, with lattice constant a in x-direction and b along the y-direction. In I,

the transverse trapping potential νt is larger than the critical value and the ions arrange

linearly. As displayed in II, decreasing the transverse trapping potential below the critical

value νt,crit leads to a QPT causing the ions to move outwards and form a two-dimensional

zig-zag structure.

For big trapping potential the sites are arranged on a single line, i.e. x̃j,0 = a j

and ỹj,0 = 0, while for small enough νt, the equilibrium positions become x̃j,0 = a j

and ỹj,0 = (−1)j b2 and a two-dimensional zig-zag configuration is formed. The equation

determining the deviation b in y direction is obtained by summing the linear terms over

all sites and requiring it to vanish,

1

2
mν2

t = Q2
∑

τ=2l+1

1
√
τ2a2 + b2

3 , (3.2)

where τ = k− j numbers the neighbours of each sites. The harmonically approximated
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3.3 Calculation of entanglement measures

Hamiltonian becomes

H =

N
∑

j=1

(

p2
xj + p2

yj

2m
+
mν2

2
x2
j +

mν2
t

2
y2
j

)

(3.3)

+
Q2

2

N
∑

j=1

∑

τ>0

(

dxτ (xj − xj+τ )
2 + dyτ (yj − yj+τ )

2 + dxyτ (xj − xj+τ )(yj − yj+τ )
)

,

with xj = x̃j − x̃j,0 and yj = ỹj − ỹj,0 the deviations from equilibrium. Furthermore,

the dx,y,xy denote the second order Taylor coefficients of the Coulomb potential which

are, for the linear and zig-zag configuration,

dxτ =
1

(a τ)3
and dxτ =

2τ2a2 − δτ,odd b
2

2
√

(τa)2 + δτ,odd b2
5 , (3.4)

dyτ = − 1

2(aτ)3
and dyτ =

2δτ,odd b
2 − τ2a2

2
√

(τa)2 + δτ,odd b2
5 , (3.5)

dxyτ = 0 and dxyτ = δτ,odd (−1)j
3τab

2
√

(τa)2 + b2
5 . (3.6)

3.3 Calculation of entanglement measures

I am interested in the behaviour of the entanglement between the sites in the chain

for varying transverse trapping potential, νt, and particularly at the point of criticality,

νt,crit. I calculate the negativity, EN , for two modes regardless of all others, for instance,

the x degrees of freedom of two (neighbouring) sites. To measure the correlation of

one mode with all other modes, for instance the entanglement between the y degree of

freedom of a single site or block of sites with all the other degrees of freedom in the chain,

the von Neumann entropy, SV , is used. Other entanglement measures are available,

such as the entanglement of formation (60). Yet they are very hard to calculate in this

continuous variable scenario and I will be content with the two measures as stated. To

see the effect of the long-range interaction I compare the full long-range (LR) Coulomb

Hamiltonian with a cut-off version in which only nearest neighbours interact (NN) and

the interaction with more distant neighbours is set to zero.

For the linear configuration the Hamiltonian decouples into x and y parts. A discrete

Fourier transformation for the x (similar in y direction) of the form

xj =
1√
N

N
∑

l=1

ei
2π
N
jlXl and pxj =

1√
N

N
∑

l=1

e−i
2π
N
jlPxl , (3.7)
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maps the space coordinates of the sites into diagonal modes, the lattice vibrations or

phonons. The diagonal Hamiltonian is thenH =
∑N

l=1 ~ωxl
(

n̂xl +
1
2

)

+
∑N

l=1 ~ωyl
(

n̂yl +
1
2

)

where n̂xl =
P †

xl
Pxl

2~mωxl
+

mωxl X
†
l
Xl

2~
− 1

2 , and similarly n̂yl, are the number operators in x

and y direction for mode l, and the frequencies are

ωxl =

√

√

√

√ν2 + C
∑

τ>0

sin2
(

πlτ
N

)

τ3
and ωyl =

√

√

√

√ν2
t −

C

2

∑

τ>0

sin2
(

πlτ
N

)

τ3
(3.8)

where C = 4Q2

ma3 . The asymmetry of the system is reflected in the dispersion relations.

ωxl is always real, whereas ωyl would become complex for small values of transverse

trapping potential νt. This is where the quantum phase transition occurs. The critical

value νt,crit for LR interaction is νt,crit ≈
√

0.6C while for NN interaction it is νt,crit =
√

0.5C.

To diagonalise the Hamiltonian in the emerging zig-zag configuration, where the

previously independent phonons now couple in x− y-direction, see Eq. (3.3), I need to

amend the transformation in the y direction Eq. (3.7) and transform with

yj =
i√
N

∑

l

ei
2π
N
j(l+N/2)Yl and pyj =

i√
N

∑

l

e−i
2π
N
j(l+N/2)Pyl. (3.9)

The additional factor eiπj = (−1)j compensates the alternating sign of the x−y coupling

in the Hamiltonian. Expressed with a coupling matrix

Ml =









m
2 ω̃

2
xl 0 m

2 ω̃xyl 0
0 1

2m 0 0
m
2 ω̃xyl 0 m

2 ω̃
2
yl 0

0 0 0 1
2m









. (3.10)

the Hamiltonian can now be written as

H =
N
∑

l=1

(X†
l , P

†
xl
, Y †

l , P
†
yl

)Ml









Xl

Pxl

Yl
Pyl









, (3.11)

with coefficients

ω̃u,l =

√

ν2
u +

4Q2

m

∑

τ>0

du,τ sin2(πlτ/N) , u=x,y (3.12)

and

ω̃xyl =
Q2

m

∑

τ>0,odd

3τab

2
√

(τa)2 + b2
5 sin(2πlτ/N) . (3.13)
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3.3 Calculation of entanglement measures

For each l I need the symplectic transformation (61), denoted by Sl, that diago-

nalises the matrix Ml,

SlMl S
T
l = diag

(ωv,l
2
,
ωv,l
2
,
ωw,l
2
,
ωw,l
2

)

(3.14)

where

ωv,l =
1

2
√

2

√

ω̃2
xl + ω̃2

yl +
√

(ω̃2
xl − ω̃2

yl)
2 + 4ω̃2

xyl (3.15)

ωw,l =
1

2
√

2

√

ω̃2
xl + ω̃2

yl −
√

(ω̃2
xl − ω̃2

yl)
2 + 4ω̃2

xyl (3.16)

are the symplectic eigenvalues of Ml. These transformations are given by

Sl =

















0 −φl
√

ωv,lm
ψl

0 −2ω̃xyl

√

ωv,lm
ψl

φl√
2mωv,l ψl

0
ω̃xyl√
ωv,lmψl

0

0 −2ω̃xyl

√

ωv,lm
ψl

0 φl

√

ωv,lm
ψl

ω̃xyl√
ωv,lmψl

0 − φl

2
√
ωv,lmψl

0

















(3.17)

where φl = ω̃2
xl − ω̃2

yl +
√

(ω̃2
xl − ω̃2

yl)
2 + 4ω̃2

xyl and ψl = (ω̃2
xl − ω̃2

yl)
2 + 4ω̃2

xyl + (ω̃2
xl −

ω̃2
yl)
√

(ω̃2
xl − ω̃2

yl)
2 + 4ω̃2

xyl. The new normal modes are









vl
Pvl

wl
Pwl









= S−T
l









Xl

Pxl

Yl
Pyl









, (3.18)

and using the number operators n̂v,l =
P †

vl
Pvl

2~
+

v†
l
vl

2~
− 1

2 , and similarly for w, I find the

fully diagonalised Hamiltonian for the zig-zag configuration

H =
∑

l

[

~ωv,l

(

n̂v,l +
1

2

)

+ ~ωw,l

(

n̂w,l +
1

2

)]

. (3.19)

The calculation of the two-site negativity requires the evaluation of the covariance

matrix of the partially transposed state of the two sites (36, 47). In two dimensions

this is a 8 × 8 matrix of which the symplectic eigenvalues have to be found. However,

in the linear configuration of the ions, x and y degrees of freedom completely decouple

and it is sufficient to consider two 4× 4 covariance matrices independently. In contrast

the zig-zag configuration contains xy-coupling terms and it is a priori necessary to
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consider the full 8 × 8 matrix. As a result no entanglement occurs between the x and

y direction in the linear configuration while the zig-zag configuration could sustain

xy entanglement. However, I found that all expectation values coupling the x and y

direction, i.e. 〈xi yj〉, 〈pxi
pyj

〉 etc., vanish also in the zig-zag configuration.

To characterise the entanglement between two sites two sets of each two conditions,

as used in (36), emerge. For each site j these separability conditions are

0 ≤ S1,2(νt, τ) =
1

~2

〈

(xj ± xj+τ )
2
〉 〈

(pxj
∓ pxj+τ

)2
〉

− 1 (3.20)

and similarly for the y direction. The expectation values needed here can be calculated

using the transformation rules into the diagonal modes, Eq. (3.7) in the linear chain,

and Eq. (3.9) and Eq. (3.18) in the zig-zag configuration. If one of the inequalities is

violated then entanglement exists between the j-th site and its τ ’s neighbour and the

negativity,

EN =

2
∑

k=1

max
[

0,− ln
√

Sk + 1
]

, (3.21)

measures their degree of entanglement. The two criteria S1 and S2 witness two types of

entanglement. For example, the EPR pair originally considered in (62) shows violation

for S2 but not S1.

The von Neumann entropy of a single site j in either x or y dimension is obtained

following (63) with the formula

SV (rj) =
rj + 1

2
ln

(

rj + 1

2

)

− rj − 1

2
ln

(

rj − 1

2

)

(3.22)

where rj =
√

〈x2
j〉〈p2

xj
〉, and similiarly for the y direction, is the symplectic eigenvalue

of its reduced state. To evaluate the entropy of a block of n neighbouring sites the

block entropy is then simply

SV (n) =

n
∑

j=1

SV (rj) (3.23)

where the sum is taken over all n symplectic eigenvalues rj in either x or y dimension

within the block.
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3.3 Calculation of entanglement measures

3.3.1 Thermodynamical limit (N → ∞)

To obtain the negativity in x direction at zero temperature in the thermodynamical

limit in the linear configuration, I evaluate Eq. (4.8) in the ground state leading to

S1,2(νt, τ) =
1

N2

∑

l,k

ωx,k
ωx,l

(

1 ± cos

(

2πl

N
τ

))(

1 ∓ cos

(

2πk

N
τ

))

− 1,

and similarly for the entanglement in y direction. For the zig-zag configuration trans-

formation 3.18 gives a more complicated expression for the S1,2 criteria. The formula is

long and not enlightening, therefore I omit it. In the thermodynamical limit I substitute
πk
N = α, πl

N = β, and replace the sums with integrals,

S1,2(νt, τ) =
1

π2

∫ π/2

−π/2
ωx,α (1 ± cos (2ατ)) dα

∫ π/2

−π/2

(1 ∓ cos (2βτ))

ωx,β
dβ − 1

These integrals can be evaluated numerically and the plots are shown in Fig. 3.2 (red-

solid line). For one special set of parameters the above expression can be easily calcu-

lated analytically, namely for y direction in the linear configuration at the critical point

ν2
t,crit = C

2 for NN interaction. The S1 criterion between nearest neighbours becomes

S1(νt,crit, 1) =
4

π2

∫ π/2

0

√

C

2
· cos(α) (1 − cos (2α)) dα

×
∫ π/2

0

(1 + cos (2β))
√

C
2 · cos(β)

dβ − 1 =
4

π2
· 2

3
· 2 − 1 ≈ −0.46 (3.24)

which leads to a value of the negativity of EN ≈ 0.308.

In a similar fashion, the single-site von Neumann entropy for both, x and y direction,

can be evaluated in the thermodynamical limit. Here I show the calculation for the y

direction. The symplectic eigenvalue for a single site in y direction is rj =
√

〈y2
j 〉〈p2

yj
〉 =

√

∑N
k,l=1

1
N2 〈Y 2

l 〉〈P 2
yl
〉. Again I substitute sums with integrals and πk

N = α, which gives

an integral expression for the symplectic eigenvalue

rj =

√

√

√

√

1

π2

∫ π/2

0

1
√

ν2
t − C/2 sin2(α)

dα

∫ π/2

0

√

ν2
t − C/2 sin2(β)dβ. (3.25)

At the critical point ν2
t,crit = C

2 and for NN interaction this can be simplified to

rj =

√

1

π2

∫ π/2

0

1

cos(α)
dα

∫ π/2

0
cos(β)dβ → ∞ . (3.26)
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The first integral diverges and hence the symplectic eigenvalue and the von Neumann

entropy diverge at the QPT.

3.4 Behaviour of entanglement at zero temperature

Here I study the entanglement behaviour at zero temperature. Fig. 3.2 displays both

entanglement measures for decreasing transverse trapping potential νt. In the upper

plots (a and b) both measures for the x-entanglement are constant in the linear regime.

This is because the phonons in x direction are independent of the trapping in y direction.

At the critical point both negativity and entropy are not differentiable. Decreasing the

trapping potential beyond the critical value, where the zig-zag configuration is formed,

the x-entanglement is reduced due to the emerging x − y coupling. Because each site

in (b) couples to several different neighbours, the entanglement between two distinct

sites disappears.

In the lower plots (c and d) both entanglement measures for the y-entanglement

grow with decreasing trapping potential νt in the linear configuration. The even num-

bered ions oscillate exactly out of phase with the odd numbered ions due to the repulsive

Coulomb potential. The smaller νt, the larger these quantum fluctuations around equi-

librium position become. At the critical point the fluctuations become strong enough

for causing the ions to move outward. The entropy diverges and the negativity reaches

its maximal value of EN ≈ 0.308 where it is not differentiable.

For the nearest neighbour coupling (a and c) the negativity and entropy show

qualitatively the same behaviour. This can be understood easily as any entanglement

of a site with the rest of the chain, measured by the von Neumann entropy, is created

by the coupling with only the nearest neighbours. For the long-range interaction (b and

d), where a single site couples to all other sites, there are significant differences between

the two entanglement measures. While the negativity of two nearest neighbour sites

vanishes after a threshold value of νt, each single site remains entangled with the rest

of the chain, as seen by the positive value of the von Neumann entropy.

Both entanglement measures are functions of the eigenvalues of the Hamiltonian.

Therefore abrupt changes in entanglement can signal non-analyticity of ground state

energy, which is associated with QPT’s. In (35) it was shown for finite dimensional

systems that (under certain conditions) a discontinuity in or divergence of the first
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Figure 3.2: This graphic shows the von Neumann entropy of a single site and the

negativity between two neighbouring sites both, for x-entanglement (upper plots) and y-

entanglement (lower plots) of the ground state (T = 0). I compare the case where only

nearest neighbours interact (left plots) with the long-range Coulomb Hamiltonian (right

plots). Both models are approximated up to second order. The numerical values for the

plots are for the ground state (T = 0K) in the thermodynamical limit (N → ∞) and

Q = 1, m = 2. For NN the lattice constant is set to a = 1, and for LR it is a = 14/15 and

the plots include interactions up to the fourth neighbour. The change of entanglement at

the critical point, indicated by the vertical line, is clearly visible in all four plots.

derivative of the negativity is both necessary and sufficient to signal a QPT. It seems

intuitive that a similar characterisation holds also for continuous variable systems. Here

the divergence of entropy and finite discontinuity of the first derivative of negativity

shows a QPT of second order. After the phase transition the violated negativity crite-

rion switches from S1 to S2. Lowering the trapping potential further leads to another

“critical” point cy at which the negativity becomes zero while the entropy reaches its

minimal (non-zero) value.

The additional critical point cy (and cx in (b)) only appears when the interaction

is harmonic as is the case in our second order approximation of the Coulomb model.
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1

νt

y

x

Figure 3.3: This graphic shows the change of trapping potential in y direction. Different

geometries favour different momenta, as indicated with the arrows.

The point is due to a sign change of the second order coefficient dyτ (dxτ ) at cy (cx). As

a consequence the interaction switches from repulsive to attractive. When anharmonic

terms are taken into account, as in the numerical treatment in (54), these points vanish.

An intuitive way of understanding the switching between S1 and S2 is as follows, see

Fig. 3.3. Decreasing the trapping potential changes the relative strengths of the inner

and outer potential for the motion in the y direction. This leads to the change in

phase in the relative momenta of neighbouring sites. In one configuration the relative

potential favours momenta in the opposite directions, while the other configuration

favours motion in the same direction. This is reflected in the change from S1 to S2.

However, although the negativity vanishes at these points, a single site is still entangled

with the rest of the chain.

3.4.1 Block Entropy

The block entropy measures how much entanglement exists between a block of sites of

the lattice and the rest. For nearest neighbour interaction models there exist scaling

laws showing that the amount of entanglement scales with the boundary area and

not the volume of the reduced state (55). For a translational invariant chain with

NN interaction there exists even a computable analytical result for the negativity of a

bisected harmonic chain (40). Here I investigate the block entropy for blocks up to three

sites in the long-ranged Coulomb lattice. Due to the complexity of LR interactions few

results are known so far. The inset (c) illustrates the increase of correlation across the

block boundary with increasing block size. Correlations stretch to nearest neighbours

(NN) and next-nearest neighbour (NNN), as shown in Fig. 3.4 while third neighbour
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Figure 3.4: This graphic shows the block entropy for different number of sites in x (a)

and y (b) dimension for long range interaction in the thermodynamical limit. The entropy

increases with number of sites. The inset (c) shows the entanglement connections between

nearest neighbour and next nearest neigbour (NNN) sites.

entanglement is negligible. Increasing the block size from one to two there are twice

as many NNN connections across the boundary and hence the block entropy for two

sites is expected to increase. This intuition is confirmed in a) and b) showing the block

entropy in x and y direction, repectively. However, it can be seen that while the entropy

increases slightly with number of sites, no qualitative difference can be observed. This

is due to the fact that the additional, long range entanglement is much weaker because

the Coulomb potential falls off quickly, with 1/τ3 where τ is the distance of sites.

In y dimension (b) already the single site entropy is a good approximation for larger

blocks. This is because transversal next nearest neighbour entanglement turns out to

be very small. In x direction (a) there are significant differences for growing block

sites. Here next nearest neighbour entanglement cannot be neglected. Although the

number of connections between two and three sites is the same, the block three entropy

is still higher. This might be due to multipartite entanglement. Larger block sites are

difficult to evaluate, as the symplectic eigenvalues of the covariance matrix become very

complicated.
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3.5 Witnessing entanglement at finite temperature

One consequence of the entanglement of the sites is a lowering of the energy of the

system (36). This can be seen by assuming that the thermal state of the system is

separable, i.e. decoupled between modes. Then an effective, single site Hamiltonian

can be obtained by removing all second order couplings between the different sites, i.e.

〈(xj − xj+τ )
2〉ρS

= 〈x2
j + x2

j+τ − 2xjxj+τ 〉ρS
= 2〈x2

j 〉ρS
etc.. The total Hamiltonian

becomes the sum of the single site Hamiltonian Heff =
∑

j Hj with

Hj =
p2
xj + p2

yj

2m
+
m

2

(

Ω2
xx

2
j + Ω2

yy
2
j + Ωxyxjyj

)

(3.27)

where

Ωx =

√

√

√

√ν2 +
2Q2

m

∑

τ 6=0

dxτ and Ωy =

√

√

√

√ν2
t +

2Q2

m

∑

τ 6=0

dyτ

and Ωxy =
2Q2

m

∑

τ 6=0

dxyτ,j (3.28)

Then the thermal state takes the form

ρS =

N
⊗

j=1

e−βHj

tr
[

e−βHj
] , (3.29)

with β = 1
kBT

the inverse temperature. Using the transformations Eq. (3.7), Eq. (3.9)

and Eq. (3.18), 〈Heff〉 can be fully diagonalised. The internal energy U = 〈Heff〉 for

any separable state is bounded from below by zero point fluctuations, i.e.

〈Heff〉sep ≥
N~

2
(Ωx + Ωy + Ωxy) , (3.30)

and any state having a smaller energy must be entangled between the individual sites.

I now want to see how the ground state situation is modified at non-zero tempera-

ture. As the energy of the thermal state, i.e. the mean excitation of phonons, increases

with temperature there exists a critical temperature, Tc, for each value of the trap-

ping potential at which the thermal state matches the energy bound. The negativity

between the y degrees of freedom of two nearest neighbours for NN Hamiltonian is

evaluated numerically and plotted in Fig. 3.5 where the critical temperature for full

separability is also indicated as a red-line. When the trapping potential is lowered, the
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Figure 3.5: This graphic shows the negativity in y direction of two neighbouring ions

for decreasing trapping potential and increasing temperature (in units of [νt] =
√

Q2

ma3 and

[T ] = [νt]
~

2kB
, N = 20, Q = a = 1,m = 2). The red line indicates the critical temperature,

obtained with the energy witness argument, below which entanglement of some form must

be present in the chain.

negativity increases until reaching its maximal value at the critical νt,crit. Further low-

ering leads to a decrease of the negativity until it vanishes at point cy. However, when

further decreasing νt the negativity grows again, yet the two entanglement criteria S1,2

are now switched. As expected, increasing the temperature leads to smaller values of

negativity and smoothens the entanglement measures to make it differentiable at the

critical point. For large νt the negativity is small, but remains finite until relatively

high temperature. The sharp peak at the QPT remains almost constant for finite T and

decreases fast. Thermal states within the red outlined area have a smaller energy than

any separable state and their entanglement is therefore detected by the energy witness.

Remarkably, states at cy are entangled for temperatures up to Tc[1/νt = cy] = 0.12 [νt]~
2kB

,

even though there is no nearest neighbour entanglement in y direction. This is because

there is still nearest neighbour entanglement in x direction and possibly also multipar-
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tite entanglement the chain.

3.6 Conclusions

I revised the classical phase transition in a long range harmonic chain (53) using a fully

quantised model. Two measures of entanglement display critical behaviour: The von

Neumann entropy of a single site and blocks of two and three sites diverge at the critical

point while the negativity is not differentiable. Thus also in this continuous variable

system entanglement indicates a QPT, as previously shown for discrete systems (35).

The negativity depends only on single site and nearest neighbour correlations; the sin-

gle site von Neumann entropy even only depends on single site measurements. My

calculation shows that even this local, single site function is able to detect a global

change in configuration. This implies that instead of examining two point correlations

functions one can alternatively consider the entanglement measures stated. This will

be advantageous in experimental situations when the number of different measurement

procedures is best kept as low as possible. I am aware that for the moment ion traps

cannot yet perform the required measurements of e.g. single site variance of space and

momentum operator, but this is a technical, not a fundamental problem. Furthermore,

the results confirm that this phase transition is of second order as indicated in (53). At

finite temperature, the negativity still displays critical behaviour, as seen in Fig. 3.5,

however the non-differentiable cusp fades out quickly with increasing thermal noise.

Tuning across a QPT provides a means of changing the amount and structure of con-

tinuous variable. Experiments with ion-traps are ideally suited to study QPTs with

great precision.

40



4

Quantum information in DNA

Can quantum effects influence information processing in DNA? In order to answer I

will develop a simple model describing the quantum degrees of freedom along the chain

of DNA. I will show that, according to this model, the electronic degree of freedom is

even at room temperature de-localised, i.e. maintains coherence. In chapter 5 I will

mention possible effects on information flow.

I model the electron clouds of nucleic acids in DNA as a chain of coupled quantum

harmonic oscillators with dipole-dipole interaction between nearest neighbours result-

ing in a van der Waals type bonding. Crucial parameters in my model are the distances

between the acids and the coupling between them, which I estimate from numerical sim-

ulations (64). I show that for realistic parameters nearest neighbour entanglement is

present even at room temperature. I quantify the amount of entanglement in terms of

negativity and single base von Neumann entropy. I find that the strength of the single

base von Neumann entropy depends on the neighbouring sites, thus questioning the

notion of treating single bases as logically independent units. I derive an analytical ex-

pression for the binding energy of the coupled chain in terms of entanglement and show

the connection between entanglement and correlation energy, a quantity commonly

used in quantum chemistry.

4.1 Introduction

The precise value of energy levels is of crucial importance for any kind of interaction in

physics. This is also true for processes in biological systems. It has recently been shown
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for the photosynthesis complex FMO (8, 65, 66, 67) that maximum transport efficiency

can only be achieved when the environment broadens the systems energy levels. Also for

the olfactory sense the energy spectra of key molecules seem to have a more significant

contribution than their shape (15). In (68) the possibility of intramolecular refrigeration

is discussed. A common theme of these works is the system’s ability to use non-trivial

quantum effects to optimise its energy levels. This leads to the question whether a

molecule’s energy levels are only determined by its own structure, or if the environment

shapes the molecule’s energy level? Entanglement between system and environment is

a necessary condition to alter the system’s state. Here I study the influence of weak

chemical bonds, such as intramolecular van der Waals interactions, on the energy level

structure of DNA and discuss its connection to entanglement. To describe the van der

Waals forces between the nucleic acids in a single strand of DNA, I consider a chain

of coupled quantum harmonic oscillators. Much work has been done investigating

classical harmonic oscillators. However, this cannot explain quantum features of non-

local interactions. Also, classical systems can absorb energy quanta at any frequency,

whereas quantum systems are restricted to absorb energy quanta matching their own

energy levels. This is of importance for site specific DNA-Protein interaction, as the

probability of a protein to bind to a specific sequence of sites in DNA is governed by

the relative binding energy (69).

My work was motivated by a numerical study on the importance of dispersion

energies in DNA (64). Dispersion energies describe attractive van der Waals forces

between non-permanent dipoles. Recently their importance to stabilise macromolecules

was realised (70, 71). Modelling macromolecules, such as DNA, is a tedious and complex

task. It is currently nearly impossible to fully quantum mechanically simulate the

DNA. Quantum chemistry has developed several techniques that allow the simulation

of DNA with simplified dynamics. In (64) the authors first quantum mechanically

optimise a small fragment of DNA in the water environment. Then, the potential

energy of the system (see eq 1) is described by molecular dynamics (MD) and is divided

into the electrostatic and Lennard-Jones terms. The former term is modelled by the

Coulomb interaction of atomic point-charges, whereas the latter describes repulsion

and dispersion energies,

V (r) =
qiqj

4πǫ0rij
+ 4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (4.1)
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where the strength of the dispersion energy is scaled with the parameter ǫ. For ǫ = 1

the dynamics of the DNA strand is normal. For a weaker dispersion, ǫ = 0.01, there is

in increase of 27% in energy in the DNA. This increase of energy induces the unravelling

of the double helix to a flat, ladder-like DNA. Many factors contribute to the spatial

geometry of DNA, e.g. water interaction, the phosphate backbone, etc. However, one

of the strongest contributions is the energy of the electronic degree of freedom inside a

DNA strand, which is well shielded from interactions with water. Stronger interaction

(ǫ = 1) allows the electrons clouds to achieve spatial configurations that require less

structural energy. This allows a denser packing of the electron charges inside the double

helix.

Here I investigate with a simple model of DNA whether continuous variable entan-

glement can be present at room temperature, and how this entanglement is connected

to the energy of the molecule. There are many technically advanced quantum chemi-

cally calculations for van der Waals type interaction, i.e. (72). The aim of this work is

not to provide an accurate model, but to understand underlying quantum mechanical

features and their role in this biological system. Also, there are many parallel devel-

opments between quantum information and quantum chemistry. This work bridges

the concepts of entanglement and dispersion energies between the two fields. Finally,

the advantages of quantifying chemical bonds in terms of entanglement were already

mentioned in (73). Here I give the first example of a system whose chemical bonds are

described by entanglement.

4.2 Dispersion energies between nucleic acids

The nucleic bases adenine, guanine, cytosine and thymine are planar molecules sur-

rounded by π electron clouds. I model each base as an immobile positively charged

centre while the electron cloud is free to move around its equilibrium position, see

Fig. 4.1. There is no permanent dipole moment, while any displacement of the elec-

tron cloud creates a non-permanent dipole moment. Denoting the displacement of two

centres by (x, y, z), I assume the deviation out of equilibrium |(x, y, z)| to be small com-

pared to the distance r between neighboring bases in chain. The displacement of each

electron cloud is approximated to second order and described by a harmonic oscillator
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Figure 4.1: This graphic shows a sketch of a DNA nucleic acid. The mostly planar

molecules are divided into the positively charged molecule core (red) and the negatively

charged outer π electron cloud (blue-yellow). In equilibrium the centre of both parts

coincide, thus there is no permanent dipole. If the electron cloud oscillates around the

core, a non permanent dipole is created (74). The deviation out of equilibrium is denoted

by (x, y, z). The corresponding dipole is ~µ = Q(x, y, z). This oscillation might be caused

by an external field, or induced by quantum fluctuations, as it is given in a DNA strand.

with trapping potential Ω that quantifies the Coulomb attraction of the cloud to the

positively charged centre. A single DNA strand resembles a chain of harmonic oscilla-

tors, see Fig. 4.2, where each two neighboring bases with distance r have dipole-dipole

interaction.

The Hamiltonian for the DNA strand of N bases if given by

H =
N
∑

j,d=x,y,z

(

p2
j,d

2m
+
mΩ2

d

2
d2
j + Vj,dip−dip

)

(4.2)

where d denotes the dimensional degree of freedom, and the dipole potential

Vj,dip−dip =
√
ǫ

1

4πǫ0r3
(3(~µj · ~rN )(~µj+1 · ~rN ) − ~µj · ~µj+1) (4.3)

with ~µj = Q(xj, yj , zj) dipole vector of site j and ~rN normalised distance vector between

site j and j + 1. Due to symmetry ~rN is independent of j. I choose periodic boundary

conditions, i.e. ~µN+j = ~µj . The dimensionless scaling factor ǫ is varied to study the

effects on entanglement and energy identical as in (64). In order to compare this model

with (64), I consider ’normal’ interaction, where the dipole-dipole interaction has full

strength modelled by ǫ = 1 and ’scaled’ interaction, where the dipole-dipole interaction

is reduced to a hundredth of the original strength modelled by ǫ = 0.01. The distance

between neighbouring bases in DNA is approximately r0 = 4.5Å. For generality I will

not fix the distance.

In general the single strand of DNA will not be perfectly linear and thus the dipole
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Figure 4.2: This graphic shows a sketch of a single DNA strand. The chain is along z

direction. Each bar in the single strand DNA represents one nucleic acid: adenine, thymine,

guanine or cytosine. Around the core of atoms is the blue outer electron cloud. The

oscillation of these electron clouds is modelled here as non-permanent harmonic dipoles,

depicted by the arrows, with trapping potential Ωd in dimension d = x, y, z.

potential has coupling terms of the form xz etc. Detailed analysis following (75) shows

that the energy contribution from the cross coupling terms is small, and they will be

ignored here. This leads to the interaction term

Vj,dip−dip =
Q2

4πǫ0r3
(+xjxj+1 + yjyj+1 − 2zjzj+1) . (4.4)

The different signs for x, y and z reflect the orientation of the chain along z direction.

A discrete Fourier transformation of the form

dj =
1√
N

N
∑

l=1

ei
2π
N
jld̃l

pj,d =
1√
N

N
∑

l=1

e−i
2π
N
jlp̃l,d (4.5)

decouples the system into independent phonon modes. These modes can be diagonal-

ized by introducing creation ad,l =
√

mΩd

2~

(

d̃+ i
mΩd

p̃l,d

)

and annihilation operator a†d,l.
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This results in the dispersion relations

ω2
xl = Ω2

x + 2

(

2 cos2

(

πl

N

)

− 1

)

Q2

4πǫ0r3m

ω2
yl = Ω2

y + 2

(

2 cos2

(

πl

N

)

− 1

)

Q2

4πǫ0r3m

ω2
zl = Ω2

z + 4

(

2 sin2

(

πl

N

)

− 1

)

Q2

4πǫ0r3m
(4.6)

and the Hamiltonian in diagonal form

H =

N
∑

l=1,d=x,y,z

~ωdl

(

nd,l +
1

2

)

, (4.7)

where nd,l = a†d,lad,l is the number operator of mode l in direction d.

The trapping potentials Ωd can be linked to experimental data (see table 4.2)

through the relation Ωd =
√

Q2

meαd
, where αd is the polarizability of the nucleid base.

So far I did not discuss the number of electrons in the cloud. Both the trapping poten-

tial Ω2
d as well as the interaction term Q2

m depend linearly on the number of electrons,

and thus the dispersion frequencies ω2
d,l have the same dependence. The quantities of

interest in this chapter are entanglement and energy ratios, which are both given by

ratios of different dispersion frequencies and are thus invariant of the number of elec-

trons involved. In Table 4.2 I assumed the number of interacting electrons to be one,

but the final results are independent of this special choice.

Table 4.1: Numerical values for polarizability of different nucleid acid bases (76) in units

of 1au = 0.164 · 10−40Fm2. The trapping frequencies are calculated using the formula

Ω =
√

Q2

meα
and are given in units of 1015Hz.

nucleic acid αx αy αz Ωx Ωy Ωz

adenine 102.5 114.0 49.6 4.1 3.9 6.0

cytosine 78.8 107.1 44.2 4.7 4.1 6.3

guanine 108.7 124.8 51.2 4.0 3.8 5.9

thymine 80.7 101.7 45.9 4.7 4.2 6.2

Although the values for the four bases differ, all show similar Ωx ≈ Ωy (transverse),

while there is an increase of 50% in the longitudinal direction, Ωz ≈ 3
2Ωx,y. In the
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following I will approximate the chain to have the same value of trapping potential

at each base. In x, y direction I will use Ωx,y = 4 · 1015Hz, and in z direction Ωz =

6 · 1015Hz.

4.3 Entanglement and Energy

I now investigate the influence of entanglement on energy. I will also derive an analytic

expression for the change in binding energy depending on entanglement witnesses.

The chain of coupled harmonic oscillators is entangled at zero temperature, but is

it possible to have entanglement at room temperature? There is a convenient way

to calculate a criterion for nearest neighbour entanglement for harmonic chains (36),

which compares the temperature T with the coupling strength ω between neighbouring

sites. In general, for 2kBT
~ω < 1 one can expect entanglement to exist. Here the cou-

pling between neighbouring clouds is given by ω =
√√

ǫ Q2

4πǫ0mr3
≈ ǫ1/41.6 · 1015Hz for

r = 4.5Å, which leads to 2kB300K
~ω = 0.05 for ǫ = 1 and 0.16 for ǫ = 0.01. This means

that the coupling between electron clouds is dominant compared to the temperature,

and thus implies the existence of entanglement even at biological temperatures. An ex-

act method to quantify the amount of entanglement in harmonic states is the violation

of one of the two inequalities, related to the covariance matrix the state (63).

0 ≤ S1 =
1

~2

〈

(dj + dj+1)
2
〉 〈

(pd,j − pd,j+1)
2
〉

− 1 (4.8)

0 ≤ S2 =
1

~2

〈

(dj − dj+1)
2
〉 〈

(pd,j + pd,j+1)
2
〉

− 1 (4.9)

with dj the position operator of site j in direction d and pd,j the corresponding momen-

tum operator. If one of the inequalities is violated, the sites j and j + 1 are entangled.

The negativity, a widely used measure for entanglement, is calculated using the formula

Neg =
∑2

k=1 max
[

0,− ln
√
Sk + 1

]

. The negativity measures the amount of entangle-

ment between two subsystems. It can be directly calculated from space and momentum

operator expectation values, namely the above defined S1,2 criteria. The amount of neg-

ativity between neighbouring bases for room temperature is shown in Fig. 4.3. For the

normal coupling there is substantially more entanglement present than for the scaled

interaction. This correlates with the amount of binding energy found in (64), where
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Figure 4.3: This graphic shows the nearest neighbour negativity as a function of distance

between sites in Å at T = 300K. The three upper curves are for scaling factor ǫ = 1, the

lower two curves are for scaling factor ǫ = 0.01. The red curve is for z direction and

Ωz = 6 · 1015Hz. The blue and green curve are for x direction and Ωx = 4 · 1015Hz and

Ωx = 3 · 1015Hz. The negativity for ǫ = 0.01 is much smaller than in the unscaled case.

The amount of negativity strongly depends on the distance r between sites and the value of

trapping potential Ω. The lower the potential, the higher the negativity. A typical distance

between neighbouring base pairs in DNA is approximately r = 4.5Å. Along the chain (z-

direction) the S1 criterion is violated, whereas transversal to the chain S2 (x-direction) is

violated. This reflects the geometry of the chain. Along the main axes of the chain energy

is reduced by correlated movement. Transversal to the chain it is energetically better to

be anti-correlated.

the DNA with normal coupling has a lower energy than the DNA with scaled coupling.

The above result motivates the question whether the binding energy can be ex-

pressed in terms of entanglement measures. In the limit of long distances, an analytical

expression connects the amount of binding energy in the chain of oscillators with the

values of S1,2. Due to the strong coupling the chain of oscillators is effectively in its

ground state, which I will assume in the following analysis.

The dispersion relations of the electron cloud oscillations can be expanded for large

distances, i.e. r3 → ∞

ωzl ≈ Ωz − 4
Q2

4πǫ0m

1

2Ωz
cos

(

2πl

N

)

1

r3
+O

[

1

r6

]

(4.10)

and similarly 1/ωzl

1

ωzl
≈ 1

Ωz
+ 4

Q2

4πǫ0m

1

2Ω3
z

cos

(

2πl

N

)

1

r3
+O

[

1

r6

]

(4.11)
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Inserting this expansion into the entanglement criterion S2 gives:

Sz,2 ≈ − Q2

πǫ0m

1

2Ω2
z

1

r3
, (4.12)

while the corresponding expression for Sz,1 has a positive value. A similar expansion

of the dispersion relation in the x direction leads to:

Sx,1 ≈ − Q2

2πǫ0m

1

2Ω2
x

1

r3
. (4.13)

This implies that nearest neighbor (n.n.) electronic clouds are entangled even at large

distances. However the amount of entanglement decays very fast. I will now compare

this result with the binding energy in the ground state. The binding energy is defined

as the difference of energy of the entangled ground state and any hypothetical separable

configuration

Ez,bind = 〈Ĥz〉 −
N
∑

I=1

〈ĤzI〉 = ~/2

(

N
∑

l=1

ωzl −NΩz

)

. (4.14)

This definition is analogous to the definition of correlation energy in chemistry (77).

The first approximation to the full Schrödinger equation is the Hartree-Fock equation

and assumes that each electron moves independent of the others. Each of the electrons

feels the presence of an average field made up by the other electrons. Then the electron

orbitals are antisymmetrised. This mean field approach gives rise to a separable state, as

antisymmetrisation does not create entanglement. The Hartree-Fock energy is larger

than the energy of the exact solution of the Schrödinger equation. The difference

between the exact energy and the Hartree-Fock energy is called the correlation energy

Ecorr = Eexact − EHF . (4.15)

This definition of binding energy is a special case of the correlation energy, but the anal-

ysis here is restricted to phonons (bosons) instead of electrons. This model describes

the motional degree of freedom of electrons, namely the displacement of electron clouds

out of equilibrium. I show for this special case that the amount of correlation energy

is identical to entanglement measures.

Expanding the binding energy for r3 → ∞, the leading term is of order 1
r6

Ez,bind ≈ ~/2

(

−
(

Q2

πǫ0m

)2
N

16Ω3
z

1

r6

)

= −N~Ωz

8
S2

2 , (4.16)
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since the first order vanishes due to symmetry and similarly for x direction:

Ex,bind ≈ −N~Ωx

8
S2

1 . (4.17)

Eqs. 4.16, 4.17 show a simple relation between the entanglement witnesses S1,2 and the

binding energy of the chain of coupled harmonic oscillators. The stronger the entangle-

ment, the more binding energy the molecule has. Interestingly, along the chain the S1

criterion is violated, whereas transversal to the chain S2 is violated. This reflects the

geometry of the chain. Along the main axes of the chain energy is reduced by correlated

movement. Transversal to the chain it is energetically better to be anti-correlated. This

means that the entanglement witnesses S1,2 not only measure the amount of binding

energy, but also the nature of correlation which gives rise to the energy reduction. This

relation motivates the search for entanglement measures describing the binding energies

of complex molecules. While the binding energy just measures energy differences the

corresponding entanglement measures reflect more information. Without correlations

between subsystems there would not be a chemical bond. It is precisely the purpose of

entanglement measures not only to quantify, but also to characterise these correlations.

4.4 Aperiodic potentials and information processing in

DNA

In the above calculations I assumed a periodic potential, which allowed me to derive

analytical solutions. Here I investigate the influence of aperiodic potentials and discuss

the robustness of the previous conclusions.

Firstly I note that the potentials for different nucleic acids do not differ significantly,

see table 4.1. Hence one would intuitively assume that a sequence of different local

potentials changes the amount of entanglement but does not destroy it. To check this

intuition more thoroughly, one can use the phonon frequencies of the aperiodic chain

of oscillators. For a finite one-dimensional chain of 50 bases without periodic boundary

conditions and with the sequence of nucleic acids randomly chosen, I solve the resulting

coupling matrix numerically. The smallest dispersion frequency determines the thermal

robustness; the smaller the frequencies ωl the larger the probability that the thermal

heat bath can excite the system. Sampling over 1000 randomly chosen sequences yielded

min(ωl) = 3.2 · 1015Hz as the smallest dispersion frequency. Comparing this with the
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4.4 Aperiodic potentials and information processing in DNA

thermal energy gives 2kB300K
~ωl

≈ 0.03, which is still very small.

Thus the thermal energy is more than 20 times smaller than the smallest phonon

frequency, which allows to continue working with the ground state of the system.

Different sequences will cause fluctuations in the amount of entanglement in the chain

of bases. I determine for each string the average of single site von Neumann entropy and

compare it with the classical amount of information measured by the Shannon entropy

of each string. The von Neumann entropy of a single site j is obtained following (63)

with the formula

SV (rj) =
rj + 1

2
ln

(

rj + 1

2

)

− rj − 1

2
ln

(

rj − 1

2

)

(4.18)

where rj = 1
~

√

〈x2
j 〉〈p2

xj
〉, is the symplectic eigenvalue of the covariance matnrix of the

reduced state.

To check whether the relative frequency of A,C,G and T influences the amount of en-

tanglement within the coupled chain of oscillators, I also calculate the classical Shannon

entropy of each string. Fig. 4.4 shows the average amount of single site quantum en-

tropy vs. classical entropy. There is, within this model, no direct correlation between

classical and quantum entropy. For the same amount of Shannon entropy, i.e. same

relative frequencies of A,C,G and T, the value of quantum correlations varies strongly

between around vNE = 0.007 and vNE = 0.025. One notes that for achieving a

comparable amount of local disorder by thermal mixing a temperature of more than

2000K is needed. This is a quantum effect without classical counterpart. Each base

without coupling to neighbours would be in its ground state, as thermal energy is small

compared to the energy spacing of the oscillators. As the coupling increases, the chain

of bases evolves from a separable ground state to an entangled ground state. As a

consequence of the global entanglement, each base becomes locally mixed. This feature

cannot be reproduced by a classical description of vibrations. When a classical system

is globally in the ground state, also each individual unit is in its ground state. Although

it is already well known that globally entangled states are locally mixed, little is known

about possible consequences for biological systems. In the following paragraph I discuss

one such quantum effect on the information flow in DNA.
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Figure 4.4: This graphic shows the average single site von Neumann entropy of a chain

of nucleic acids dependant on the classical Shannon entropy of the string. Each string

contains 50 bases with a random sequence of A,C,G, or T. The distribution of nucleic acids

determines the classical Shannon entropy. For each nucleic acid the value of polarizability

of Table 4.1 in x direction is used. The distance between sites is r = 4.5 · 10−10m. The

plot has a sample size of 1000 strings. There is no direct correlation between quantum

and classical information. The average amount of von Neumann entropy varies strongly

for different sequences.

How much information about the neighbouring sites is contained in the quantum

degree of freedom of a single base? Is it accurate to describe the electronic degree of

freedom of a single nucleic acid as an individual unit or do the quantum correlations

between bases require a combined approach of sequences of nucleic acids?

This will be of importance in the following chapter dealing with information flow

in biological systems. There I will consider a model describing mutations in DNA. A

crucial component for that model is energy quanta taken from the electronic degree

of freedom of nucleic acids. If the amount of available energy is sequence dependent,

i.e. changes with changing neighbours, then there could be non-random mutations.

In the previous sections I showed that there is a correspondence between the amount

of entanglement present and the binding energy of nucleic acids. Therefore, instead

of checking the available energy levels, I will look at the von Neumann entropy. I

will restrict myself to proof-of-principle, i.e. showing that the quantum state of an

aperiodic chain of coupled harmonic oscillators in principle encodes information about

its neighbours and is hence sequence dependent.

The single site von Neumann entropy measures how strongly a single site is entan-

gled with the rest of the chain and is therefore a good measure to answer how strongly

the quantum state of a single site depends on its neighbours. In the following I consider
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4.5 Conclusions and discussion

a string with 17 sites of a single strand DNA. Site 9 as well as sites 1-7 and 11-17 are

taken to be Adenine. The identity of nucleic acids at sites 8 and 10 varies. Table 4.2

shows the resulting von Neumann entropy of site 9 dependent on its neighbours. The

value of a single site depends on the direct neighbourhood. There is, for example, a dis-

tinct difference if an Adenine is surrounded by Cytosine and Thymine (vNE = 0.078)

or by Cytosine and Guanine (vNE = 0.084). On the other hand, in this model there

is little difference between Adenine and Guanine in site 8 and Guanine in site 10. Of

course this model has not enough precision to realistically quantify how much a single

site knows about its surroundings. Nevertheless it indicates that the quantum state

of a single base should not be treated as an individual unit. When quantifying the

information content and error channels of genetic information, the analysis is usually

restricted to classical information transmitted through classical channels. While I agree

that the genetic information is stored using classical information, e.g. represented by

the set of molecules (A,C,G,T), I consider it more accurate to describe the processing

of genetic information by quantum channels, as the interactions between molecules are

determined by laws of quantum mechanics.

Table 4.2: Numerical values for the von Neumann entropy of site 9 (Adenine) in a chain

with open boundary condition containing 17 bases. The bases 1-7 and 11-17 are taken to

be Adenine. The column gives the nucleic acid of site 8, the rows of site 10. The von

Neumann entropy of site 9 varies with its neighbours.

Adenine Cytosine Guanine Thymine

Adenine 0.077 0.082 0.078 0.081

Cytosine 0.082 0.079 0.084 0.078

Guanine 0.078 0.084 0.079 0.083

Thymine 0.081 0.078 0.083 0.078

4.5 Conclusions and discussion

In this chapter I modelled the electron clouds of nucleic acids in a single strand of

DNA as a chain of coupled quantum harmonic oscillators with dipole-dipole interac-

tion between nearest neighbours. The main result is that the entanglement contained
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in the chain coincides with the binding energy of the molecule. I derived in the limit

of long distances and periodic potentials analytic expressions linking the entanglement

witnesses to the energy reduction due to the quantum entanglement in the electron

clouds. Motivated by this result I propose to use entanglement measures to quantify

correlation energy, a quantity commonly used in quantum chemistry. As the interac-

tion energy given by ~ω is roughly 20 times larger than the thermal energy kB300K

the motional electronic degree of freedom is effectively in the ground state. Thus the

entanglement persists even at room temperature. Additionally, I investigated the en-

tanglement properties of aperiodic potentials. For randomly chosen sequences of A,C,G,

or T I calculated the average von Neumann entropy. There exists no direct correlation

between the classical information of the sequence and its average quantum information.

The average amount of von Neumann entropy varies strongly, even among sequences

having the same Shannon entropy. Finally I showed that the quantum state of a sin-

gle base contains information about its neighbour, questioning the notion of treating

individual DNA bases as independent bits of information.
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5

Information flow in biological

systems

Mankind has entered the era of information processing. Leaving the century of ther-

modynamics, it is now a fashion to explain everything in terms of information. This

includes biological systems. But what exactly is bio-logical information? And how is

it processed? Biological information processing takes place at the challenging regime

where quantum meets classical physics. Quantum effects will not play a large scale

role in biology. Not only is it difficult to maintain coherence at body temperature in a

noisy system, but living systems themselves have little use of phase information (except

for transport problems, see introduction), a crucial component of quantum computers.

The functionality of cells or bacteria depends on a delicate balance of concentrations

of different molecules. Therefore the majority of information in a cell is classical in-

formation which has the advantage of being reliable and easy to store. The quantum

aspects enter when information is processed. Any interaction in a cell relies on chemical

reactions, which are dominated by quantum aspects of electron shells, i.e. quantum

mechanics controls the flow of information. This insight is far from being new. The

division of molecules into a classical part and a quantum part is a key aspect of the

Born-Oppenheimer approximation (78), which is used successfully for many problems

in computational chemistry since 1927. In a nutshell, as the nuclei of molecules are

roughly a 1000 times heavier than the electrons, they can be approximated as classical

particles. For a given set of nuclei coordinates (classical information), the Schrödinger

equation is solved for the electrons, giving the solution of the quantum part. The
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idea of the Born-Oppenheimer approximation will be re-examined in this chapter un-

der the aspect of information processing in living systems, see fig. 5.1. I will discuss

classical information
=

set of nuclei coordinates

quantum information
=

electron orbitals

 information processing
=

chemical reactions

determines determines

changes

Figure 5.1: The Born-Oppenheimer approximation starts with separating complex

molecules into the set of coordinates of the heavy nuclei, which are treated as classical

particles, and the light electrons, which are treated fully quantum mechanically. The set

of nuclei determines via the Schrödinger equation the electronic state of the molecule. Any

interaction in a cell uses chemical reactions, which are determined by the electronic states

of the molecules. A chemical reaction can turn a given molecule into a different one, thus

changing the classical information.

in detail the interplay between classical information-storage and quantum controlled

information-processing in living systems. First I give a small review on the meaning

of information and entropy. One problem of quantifying information in biological sys-

tems is that usually neither the coding part nor decoding part of a molecule is known.

The formalism of channel capacities is able to circumvent this problem, and will be

introduced in the first part of this chapter. Then I will give examples of biological

information processing and introduce the concepts of classical-quantum (cq) states in

biology. This formalism is able to keep track of the combined classical-quantum as-

pects of information processing. In more detail I will study information processing in

DNA. Copying genetic information is modelled as a two-step mechanism. The first step

measures the quantum part, which determines the actual copying process in the second

step, see fig. 5.1 and section 5.2.5. This simple model of copying genetic information

allows to study general properties of quantum and classical capacities of genetic chan-

nels. The model uses three parameters, whose biological meaning will be explained in

table 5.1. A copying mistake is also referred to as a mutation. In section 5.3 I will

review experimental results on apparently non-random mutations in bacteria. So far no

model can explain the existence of non-random mutations, which would require us to
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re-think our understanding of genetics. Section 5.5 shows for which parameter values

the experiments could be explained by the simple classical-quantum two-step muta-

tional mechanism. Section 5.4 discusses possible quantum mechanisms for achieving

these parameters values.

Last but not least, the consequences of sequence dependent mutations will be dis-

cussed.

5.1 Information theory

’Information means in-formation’.

• What is information?

The mathematical definition of information was first given by Shannon (79). The

information content of a message is given by the decrease of uncertainty after

receiving the message. The information content can be quantified in two steps:

first one has to choose an alphabet Σ, which is suitable to describe the message.

An alphabet is a finite set of symbols, Σ = {xi, i ∈ {1...N}}, where each symbol

xi occurs in the message with probability pi ≥ 0, s.t.
∑N

i=1 pi = 1. This leads to

a probability distribution P = {pi, i ∈ {1, ..., N}}. Then the well known formula

H(P ) = −
∑

pi log pi , (5.1)

whereH(P ) denotes the Shannon entropy of the probability distribution P , quan-

tifies the entropy of a message. This formalism is exact in the limit of infinite

messages. For messages of finite size errors occur, which can be quantified by

smooth entropies (80).

• Information is physical

Although information itself is an abstract concept, its realisation always needs

a physical system (81). Understanding the physics of a system is crucial for

understanding its information processing capacity. Every logical bit encoded in

a physical degree of freedom has a non-zero probability to be corrupted by the

environment. When a system has two different physical states, representing for

example logical 0 and 1, interactions with the environment can alter the system’s

state and thus lead to logical errors. This idea will be discussed throughout the

whole chapter.
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5.1.1 Channels - sending and storing

Channels provide the most general formalism on how information can be sent from

one party to another, see (82) for a general introduction. One advantage of using

the channel picture of information is that it makes no assumption about the way a

physical system encodes information. For a given physical system, the channel capac-

ities determine how much information can be sent in principle. When dealing with

biological systems, little is known for certain due to the complexity of the system.

For a suitable approximation of the system, channel capacities allow to estimate the

physically-possible information processing capacity, which is an upper bound on the

actual information processing taking place. In the following I will explain some basics

of channels. This knowledge will be used later to discuss possible quantum influences

on the copying of genetic information in section 5.2.5.

In order to store or send information, its physical realisation needs to be stored or

sent. A classical message is encoded in code words ρx , x ∈ {1...n}, which are sent

through a channel denoted by G. A channel can be used once or several times, see

fig. 5.2. Sometimes the message and the code word coincide. Each single letter of the

Latin alphabet encodes its own message. However, the message of a single word is en-

coded in sequences of letters. Unless one writes Chinese, the message of a single word

and its encoding is not the same. This will be important when dealing with the question

how exactly information is encoded in biological systems, i.e. in which physical degree

of freedom. Inevitably, sending the code words through a noisy channel will induce

errors in the message. An elegant formalism to keep track of the information sent and

to describe the main effects causing errors is given by the channel picture in computer

science. In general a message is encoded into a physical system, which can constitute of

one or more particles. This encoding, symbols, is sent through a usually noisy channel,

after which a measurement determines the symbols and following decoding gives the

retrieved message, see fig. 5.2. The channel G itself is usually defined in terms of Kraus

operators. If the underlying physics of the channel is classical (quantum) it is referred

to as a classical (quantum) channel.
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Figure 5.2: This graphic shows the most general description of a channel. A message is

encoded into an alphabet of code symbols, which are sent through a possibly noisy channel

G. After measurement of the symbols decoding gives the retrieved message. The channel

can be used one time or several times.

In mathematical terms this is described as

ρout = G(ρin) =
M
∑

i=1

EiρinE
†
i , (5.2)

where Ei are the Kraus operators fulfilling
∑M

i=1E
†
iEi = 1, ρin is the input state, ρout

the corresponding output state of the channel.

Suppose the alphabet consists of the letters {ρi, i ∈ {1, 2}} and there exists decodings

that can perfectly distinguish the two states. The initial state is, for example, ρin = ρ1.

After passing through the noisy channel, the output state is ρout = (1− p)ρ1 + pρ2, i.e.

with probability 1−p the state is sent correctly as ρ1 and with prob. p a different state,

here ρ2, exits the channel. An important question is how many bits k of information

can be sent reliably through the channel G with n uses of the channel. In other words,

what is the maximal rate R · n = k of sending reliably information? The maximal rate

is also known as the channel capacity. In the following paragraph I will calculate the

channel capacity for the simplest channel, the identity channel.

5.1.2 Identity Channel

Here I will consider the ideal scenario, namely the channel transmits the message cor-

rectly, without changing anything, i.e. G(ρ) = ρ , ∀ρ ∈ H. The aim is to transmit k

bits of information without error. It is possible to use the channel G n times, which
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leads to a rate of transmission of R = k/n. A state ρx is chosen to encode the mes-

sage x, x ∈ {0, 1}⊗nR. After passing through the channel the output state is given by

ρout = G⊗nR(ρx). For the decoding a measurement POVM Dx is applied on the state

ρout such that Tr(Dx(ρx)) = 1 while Tr(Dx(ρy 6=x) = 0.

The probability of decoding the state correctly is given by

Psucc(Rn = k) = max
{Dx}x,{ρx}x

1

2nR

∑

x∈{0,1}⊗nR

Tr
(

Dx(G
⊗nR(ρx))

)

. (5.3)

Note that for any channel G the maximisation is performed over all possible encodings

(states ρx) and decodings (measurements Dx). For the identity channel the maximal

rate, i.e. the channel capacity, can be determined analytically. Eq. 5.3 simplifies to

Psucc(Rn = k) = max
{Dx}x,{ρx}x

1

2nR

∑

x∈{0,1}⊗nR

Tr (Dx(ρx))

≤ max
{Dx}x

1

2nR

∑

x∈{0,1}⊗nR

Tr (Dx)

≤ 2−nR Tr(1)

= 2n(1−R) , (5.4)

where in the second line the Cauchy-Schwarz inequality was used, and the dimension

of the measurement POVM is d = 2n. If the rate is chosen to be larger than one, i.e.

k > n, the probability of decoding the message correctly drops exponentially. The best

achievable rate is R = 1.

5.1.3 More channel capacities

The above scenario is valid both for classical and quantum channels. How is it possible

to calculate channel capacities for more interesting cases than the identity channel?

There is a useful theorem by Holevo-Schumacher-Westmoreland (82) which quantifies

how much classical information can be sent through a noisy quantum channel with one

use of the channel.

Theorem: Classical one shot capacity for noisy channels

Let G be a trace-preserving quantum operation. The one-shot classical capacity can

60



5.1 Information theory

be calculated as

C1(G) = max
{pj ,ρj}



S



G





∑

j

pjρj







−
∑

j

pjS(G(ρj))



 , (5.5)

where S denotes the von Neumann entropy. It can be shown that the maximisation

of 5.5 may be achieved using an ensemble of at most d2 pure states, where d is the

dimension to the input channel.

message retrieved
message

G

encoding decoding

Figure 5.3: The one shot classical capacity quantifies how much information can be sent

reliably if the channel G can be used only once.

It is straightforward to generalise the classical channel of 1 use, see fig. 5.3, of a

quantum channel to n uses:

Cn(G) = max
{pj ,ρj∈H⊗n}



S



G⊗n





∑

j

pjρj







−
∑

j

pjS(G⊗n(ρj))



 . (5.6)

If in addition sender and receiver also share an infinite amount of entanglement, they

can use this entanglement to improve transmission of classical information (83, 84, 85),

see fig. 5.4. The maximal transmission rate is now termed ‘entanglement assisted

classical capacity’ and can be calculated in the following way :

CE = max
ρ∈H

(S(ρ) + S(G(ρ)) − S((G ⊗ 1anc)(Φ))) , (5.7)

where S is the von Neumann entropy, G the genetic channel and Φ the purification of

ρ on the larger Hilbertspace.

Similar channel capacities exist for sending quantum information. The channel

capacities (83, 85, 86, 87) are calculated as

Q1 = max
ρ∈H

(S(G(ρ)) − S((G⊗ 1anc)(Φ))) (5.8)

QE = CE/2 , (5.9)

where Q1 is the one-shot quantum capacity and QE denotes the entanglement assisted

quantum capacity.
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encoding
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|ψ〉

Figure 5.4: If the sender of the message and the receiver share initial entanglement

denoted by |ψ〉, they can enhance both classical and quantum channel capacity, by applying

teleportation protocols.

5.1.4 Examples of information processing in biology

When reading the words ‘information processing’ one thinks with a high likelihood

of a computer, which is a well understood deterministic system. The basic unit of a

computer is a transistor. Electrical currents control the flow of each single bit of in-

formation. On the contrary, biological systems are messy. Even a single cell consists

of a plethora of different molecules. Everything moves and wiggles around. Instead of

deterministic calculations, everything is based on statistical interaction. Two molecules

only interact if they meet by chance. Yet, even in this chaos, there is an intricate in-

formation processing taking place. One type of molecule usually interacts non-trivially

only with one or two other types of molecules.

This conditional interaction constitutes a powerful feedback system, keeping the cell

in a functional non-equilibrium state. In the following I will mention some examples of

molecules processing or storing information (88).

• DNA - information storage

Deoxyribonucleic acid, or DNA, is a nucleic acid that contains the genetic instruc-

tions used in the development and functioning of all known living organisms. The

main role of DNA molecules is the long-term storage of information. DNA is of-

ten compared to a set of blueprints, like a recipe or a code, since it contains

the instructions needed to construct other components of cells, such as proteins

and RNA molecules. The DNA segments that carry this genetic information are

called genes, but other DNA sequences have structural purposes, or are involved

in regulating the use of this genetic information. Along with RNA and proteins,
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Figure 5.5: The B-DNA helix (89) consists of thymine-adenine and cytosine-guanine base

pairs, held together by phosphor bonds at the backbone. T and C are larger nucleic bases,

and constitute the pyrimidines, whereas the smaller nucleic acids A and G are purines.

Two factors contribute to the base pairing: the position of protons and the size of base

pairs.

DNA is one of the three major macromolecules that are essential for all known

forms of life.

DNA consists of two long polymers of simple units called nucleotides, with back-

bones made of sugars and phosphate groups joined by ester bonds. These two

strands run in opposite directions to each other and are therefore anti-parallel.

Attached to each sugar is one of four types of molecules called nucleobases (in-

formally, bases). It is the sequence of these four nucleobases along the backbone

that encodes information. This information is read using the genetic code, which

specifies the sequence of the amino acids within proteins. The code is read by

copying stretches of DNA into the related nucleic acid RNA, in a process called
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transcription.

• DNA polymerase- information read out and copying

A DNA polymerase is an enzyme that helps catalyze in the polymerization of

deoxyribonucleotides into a DNA strand. DNA polymerases are best-known for

their feedback role in DNA replication, in which the polymerase ”reads” an intact

DNA strand as a template and uses it to synthesize the new strand. This process

copies a piece of DNA. The newly-polymerized molecule is complementary to the

template strand and identical to the template’s original partner strand.

• Transcription- from DNA to RNA

Transcription is the process of creating a complementary RNA copy of a se-

quence of DNA. Both RNA and DNA are nucleic acids, which use base pairs of

nucleotides as a complementary language that can be converted back and forth

from DNA to RNA by the action of the correct enzymes. During transcription,

a DNA sequence is read by RNA polymerase, which produces a complementary,

antiparallel RNA strand. As opposed to DNA replication, transcription results

in an RNA complement that includes uracil (U) in all instances where thymine

(T) would have occurred in a DNA complement.

• Kinase

In chemistry and biochemistry, a kinase, alternatively known as a phosphotrans-

ferase, is a type of enzyme that transfers phosphate groups from high-energy

donor molecules, such as ATP, to specific substrates. The process is referred to

as phosphorylation, One of the largest groups of kinases are protein kinases, which

act on and modify the activity of specific proteins. Kinases are used extensively

to transmit signals and control complex processes in cells. Up to 518 different

kinases have been identified in humans. The enormous diversity, as well as their

role in signalling, makes them an object of study.

5.1.5 Biology’s measurement problem

One of the key questions in biology is how certain molecules are recognised (= ‘decoding’

in channel capacity language). A good example for the complexity of this problem is the

olfactory sense. Our nose enables us to acquire information about our surroundings by
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identifying fragrant molecules in the air. If it smells of smoke, we know we are in danger

of fire. The question is how a human perceives the smell of a certain molecule, and

which molecules smell similar and which smell different. One of the scientific approaches

to identifying a molecule is to specify which atoms bond to each other. This leads to

the well known graphical representations filling chemical textbooks. It might have been

this static, visual representation that lead scientists to believe that the sense of smell

has something to do with the shape of a molecule. Recent experimental evidence on

fruit flies (90) implies the contrary, namely that not the shape, but the vibrations of

a molecule characterise its smell. This leads to the question how biological systems

perform measurements? Which degrees of freedom, e.g. shape or vibration, participate

in the measurement? Physicists spend a great deal of time discussing the question

of what exactly constitutes a measurement. While there is no final agreement on the

philosophical aspects, at least there is a useful mathematical formalism describing how

a system and its measurement device interact, such that the measurement device is

able to read out information about the system. I model the measurement problem

in biology, i.e. how one molecules recognises the identity of another molecule, in the

following way. One molecule acts as a measurement device on the target molecule.

In the olfactory sense, the receptors in our nose constitute the measurement device,

and the fragrant molecules the target. The target’s degrees of freedom that do not

participate in the measurement process are denoted by |x〉. The target’s quantum

degrees participating are denoted by |ψx〉 in the pure case, and ρQx in the generalised

mixed case. The measurement apparatus starts in a pure state |Φ0〉. The interaction

between the system - molecule and measurement apparatus is given by the unitary time

evolution Û(t) = eiĤintt/~,

|x〉 ⊗ Û(t) (|ψx〉 ⊗ |Φ0〉) = |x〉 ⊗
∑

i

ci(t)|ξi〉|Φi〉 . (5.10)

In general the measurement will change the target’s quantum state |ψx〉, such that the

resulting target’s quantum states after the measurement are |ξi〉. Note that neither the

accessible set of states {|ψx〉} before the measurement nor the accessible set of states

{|ξi〉} after the measurement need to be mutually orthogonal. In a physics experiment

the measurement device’s states are usually chosen such that different measurement

outcomes j, k are perfectly distinguishable, i.e. 〈Φk||Φj〉 = δkj . While this is the best

choice for minimising measurement mistakes, there might be other chemical constraints
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leading to not perfectly distinguishable measurement states. Ideally, the interaction

Û(t) is such that |cx(t)|2 = 1, i.e. the measurement outcome is always correctly x.

While it is in general too difficult to give a closed form of the time evolution, it can be

written in terms like

Û(t)|kl〉 ≈ ei(ωk−ωl)t|kl〉 , (5.11)

where |kl〉 represents the diagonal basis of the system-measurement interaction with

corresponding eigenvalues ωl, ωk. That means in general the time evolution of two

interacting states |kl〉 will depend on the relative value of their eigenvalues. If the

eigenvalues are nearly the same, the states will evolve very slowly, in the extreme case

of ωk = ωl the states will not evolve at all. If the eigenvalues are of different orders of

magnitude, the states |kl〉 will evolve rapidly.

Here, at the moment when the measurement takes place, is a possibility to externally

alter the measurement outcome. If in addition to the measurement interaction an

external field is applied, in general the eigenvalues are going to change. Consider the

scenario that 0 < ωk − ωl << 1, i.e. the eigenvalue ωk is just a little larger than

ωl. If an external field makes ωk a little smaller, then suddenly 0 > ωk − ωl, i.e. the

exponent of the time evolution has a different sign! This will give rise to a possibly

completely different time evolution of the state. The possibility that weak fields change

the measurement outcome of such a biological measurement, thus leading to errors in

the cell’s information processing, will be discussed in section 5.1.8.

5.1.6 Does QM play a non-trivial role in genetic information process-

ing?

DNA stores the blueprints for sequences of amino acids, which fold into functional pro-

teins. These sequences consist of classical information, there is little need to invoke

quantum information processing. But the processing of genetic information relies on

chemical reaction. As seen in chapter 2, even small amounts of energy can change the

outcome of chemical reactions. Is there a way the laws of QM contribute non-trivially

to the processing of genetic information? In previous literature (91) this was denied,

arguing with the impossibility to copy quantum information perfectly, the so called

’no-cloning theorem’ (82). Although it is evidently impossible to design a quantum

information replicator, this says nothing about the possibility of employing quantum
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assisted copying of classical information. The following sections will deal with the ques-

tion to which extent quantum degrees of freedom can influence information processing

in biological systems.

5.1.7 Classical quantum states in genetic information

It is in general not an easy problem to decide what exactly constitutes a quantum effect.

The scientific community itself still discusses which parts of quantum computing are

really quantum. In the following, I will introduce a pragmatic definition of what can be

considered quantum and classical in a biological system. The idea underlying the Born-

Oppenheimer approximation, i.e. separating molecules into a classical and quantum

part, is as follows: A key difference between classical and quantum physics is that

quantum particles can exist in a superposition of two or more states. Consequently, the

classical part of a molecule is defined as everything that is, for all practical purposes,

impossible to superimpose, because, for example, it is too heavy. Straightforwardly,

everything about a molecule that can exist in superpositions, is considered to be the

quantum part of a molecule. Usually both the electrons and single protons can exist in

superposition of different states. Only in very controlled experimental situations can

whole molecules show interference properties (92).

I propose to use cq states for describing information processing in living systems.

The chemical identity of a molecule, given mainly by the nuclei, constitutes without

doubt classical information. However, the processing of this classical information is

governed by chemical reactions. Therefore, quantum degrees of freedom presumably

influence the flow of biological information by governing the outcome of chemical reac-

tions.

The mathematical definition of a cq state is

ρcq =
∑

x∈Σ

px|x〉〈x| ⊗ ρQ,x , (5.12)

where the first classical part |x〉〈x|, x ∈ Σ, Σ being the corresponding alphabet of

the biological problem, describes the classical information (=message) of, for example,

the identity of a molecule, say adenine or cytosine. The second part ρQ,x represents

the corresponding quantum part of the molecule, which is determined by the classical

information x. This quantum part plays a crucial role for the outcome of chemical
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reactions and will constitute in the following paragraphs the code words in the channel

formalism. The term px ≥ 0 with
∑

x∈Σ px = 1 describes the probability that molecule

x enters the chemical reaction. As it is impossible to superimpose different classical

information in the same space volume there are no off diagonal elements in the first

part. The second part describes its corresponding quantum state, i.e. the electronic

degrees of freedom and possibly also the single protons constituting the H-bonds in

DNA base pairs.

For example, consider the protons of the nucleic acid cytosine, see fig. 5.6.
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Figure 5.6: This figure shows the normal form of the nucleic acid cytosine. If sufficient

energy is applied, the upper right proton can tunnel to the middle nitrogen atom, see

dotted arrow, leading to the tautomeric form. At the same time the electronic double

bond switches accordingly.

The proton position at the upper nitrogen atom is the ground state of the molecule.

However, it is also possible that the proton binds to the middle nitrogen, see dotted

arrow in fig. 5.6, which requires a higher energy. It is conjectured (93) that the proton

distribution of nucleic acids determines the copying process of genetic information. This

idea will be discussed in detail in section 5.2. In order to focus on the key aspects of

this copying process, a simplified version of nucleic acids will be developed.

Instead of having four different genetic letters, only two, denoted by logical ’0’

and ’1’, will be considered. Let me consider the example of two molecules encoding

logical ’0’ and ’1’. Because they are different molecules the single protons ’see’ different

potentials for their position. Fig. 5.7 shows an example of proton position coding.
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∆E

Molecule '0' Molecule '1'

|L〉

|L〉|R〉

|R〉

Figure 5.7: I consider the scenario that information is encoded in the position of a single

proton (left or right). This figure shows the potential for a single proton for two different

molecules. If the energy gap ∆E between ground state and first excited state is sufficiently

big, the ground state can be used reliably to encode classical information, here logical ’0’

is encoded in |L〉 and logical ’1’ in |R〉. For finite temperature the tunnel probability to

the excited state gives rise to errors in this encoding.

Assuming that information is encoded in the ground states, the cq states of this coding

scheme are

ρ0 = |0〉〈0| ⊗ |L〉〈L| (5.13)

ρ1 = |1〉〈1| ⊗ |R〉〈R| . (5.14)

The two different molecules represent different classical information, i.e. different nuclei

coordinates. This leads in the Born-Oppenheimer approximation to different potentials

for the quantum part of the molecules.

In general, each molecule has its own unique quantum part. In this example, the

ground state |L〉 encodes the classical information 0. However, the excited state of

molecule ‘1’ is also given by |L〉. That means if molecule ‘1’ is in its excited state, it

could be mistaken to be molecule ‘0’. This idea will be explained in more detail in the

following paragraphs of the chapter.

The key ideas of using cq states to describe information flow in biological systems

are the following:

(1) The classical information of the identity of molecules is encoded in the quantum

states of each molecule.

(2) Chemical reactions only interact with the quantum part ρQ,x of molecule x.

(3) If environmental influences change the quantum part of a molecule, logical errors
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for the classical information can occur, for example because the altered quantum part

leads to different chemical reactions.

If we continue to model chemical reactions in the channel picture, then each molecule

has its own set of Kraus operators describing the possible ways to act on the cq state

of the molecule. In general it is very difficult to correctly describe all environmental

influences that could change the quantum part of a molecule. One cause of error is

body temperature, leading to a thermal state of the quantum part, see sec. 5.2.4. But

also weak oscillating fields could corrupt the signal, see chapter 2 and the following

paragraph. Finally, in sec. 5.4 of this chapter I will discuss the possibility that neigh-

bouring nucleic acids within a strand of DNA influence the probability of changing the

quantum state of a certain nucleic acid.

Because of the interplay between the classical and the quantum part of molecules

it is important to treat both parts together in the same formalism provided by the cq

states.

5.1.8 Weak external fields

Ever since mankind started changing its environment, people have discussed the possi-

ble consequences for ourselves. With the intensive use of radio signals the potentially

harmful influence of so called ‘electro-smog’ is investigated. It is an ongoing discus-

sion whether electro-smog, here modelled as weak external fields, can influence living

systems despite its weak amplitude. Mean field models, neglecting quantum details,

usually cannot find a possible influence (2). However, in this paragraph I show how ar-

bitrarily weak fields, if on resonance, can alter information processing in living systems.

Suppose there is one type of molecule, denoted by logical ‘0’, whose quantum de-

gree of freedom can be approximated as a pure state |ψ0〉. The corresponding cq-state

takes the form ρ0 = |0〉〈0| ⊗ |ψ0〉〈ψ0|. Similarly, there exists another type of molecule,

denoted by logical ‘1’, whose quantum degree of freedom can be approximated as pure

state |ψ1〉, leading to the cq-state ρ1 = |1〉〈1| ⊗ |ψ1〉〈ψ1|. In addition I assume that

〈ψ0|ψ1〉 = 0, i.e. under normal situations the two molecules can in principle be perfectly

distinguished. Let me furthermore suppose that there exists an excited quantum state

|Ψ0〉 of molecule ‘0’ which resembles the quantum state of molecule ‘1’, s.t. 〈Ψ0|ψ1〉 ≈ 1.
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That means the excited state of one type of molecules resembles the ground state of

another type. Normally this does not cause problems, because I defined |ψ0〉 as the

quantum state that molecule ‘0’ typically exists in. However, a weak field on resonance

with the energy gap between the states |ψ0〉 and |Ψ0〉 can change the quantum part of

molecule ‘0’, such that

Êextρ0Ê
†
ext = |0〉〈0| ⊗ (p0|ψ0〉〈ψ0| + p1|Ψ0〉〈Ψ0|) , (5.15)

where I assumed that the cell environment destroys any coherence between the states

|ψ0〉 and |Ψ0〉, and p0,1 are the corresponding probabilities to be in the state |ψ0〉, |Ψ0〉.
Now, with probability p1, the target molecule is mis-decoded as logical ‘1’. The key

question is which values p1 can have, i.e. how strongly an external field can corrupt a

quantum state.

In the following part of this section I will review results from (94) on quantum res-

onance to answer this question.

Molecule ‘0’ has two states of importance, |ψ0〉 and |Ψ0〉. A two level system is

described by the Hamiltonian

H =
~

2
∆σz , (5.16)

where σz denotes the pauli z matrix, and ~∆ is the energy gap between ground and

excited state. In general ~∆ >> kBT , otherwise the signal would be too easily cor-

rupted by thermal noise. Even small external fields, if on resonance, can have a large

impact on a quantum system. If the system is under influence of a weak external field

oscillating in the x− y plane, it is described by

H =
~

2
∆σz +

~

2
A cos(ωt)σx +

~

2
A sin(ωt)σy , (5.17)

with σx,y being the Pauli x, y matrix, A the amplitude of the external field, and ω the

frequency of its oscillation. A suitable rotation brings this system into the form

Heff = −1

2
~ασa , (5.18)

with

σa =
(∆ + ω)σz +Aσx

α

α =
√

(∆ + ω)2 +A2 , (5.19)
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ρ0 = |0〉〈0| ⊗| ψ0〉〈ψ0|

ρ1 = |1〉〈1| ⊗| ψ1〉〈ψ1|

click '0'

click '1'

ρ0 = |0〉〈0| ⊗ (p0|ψ0〉〈ψ0| + p1|Ψ0〉〈Ψ0|)

E(t) = A cos(ωt)
click '0'

click '1'

p0

p1

a)

b)

Figure 5.8: This graphic sketches the recognition of molecules by using their quantum de-

gree of freedom. In a the normal situation is shown, where two different kinds of molecules

have two different quantum states, and are thus reliably distinguishable. In b, a noise field

is applied on the molecule encoding logical ‘0’. The effect of the noise field, see main text

for detailed explanation, is to change the quantum state, such that it is mis-decoded with

probability p1.

Is it possible that this weak field can corrupt the signal by bringing the system into

the excited state? The probability to find the system in the excited state at time T is

given by

Pexc =

∣

∣

∣

∣

A

α
sin

(

1

2
αT

)∣

∣

∣

∣

2

, (5.20)

This formula has a time dependant oscillating part, and an amplitude part. The am-

72

Cha6-Mut/noiseField.eps


5.2 Copying genetic information

plitude is
A2

α2
=

A2

(∆ + ω)2 +A2
≤ 1 , (5.21)

The maximum is taken at resonance ∆+ω = 0, which is given when the oscillating field

rotates in clockwise direction. No matter how small the amplitude A of the external

field, if the frequency ω is sufficiently close to resonance, the probability for the system

to be in the excited state reaches 1 and will then oscillate. That means that even

very weak external fields can have a non-trivial influence on living systems, if they

resonate with coding quantum states. This is exactly what is happening in the avian

compass, see chapter 2. A very weak oscillating field is able to corrupt the bird’s sense

of magnetoreception, because it is on-resonant with the two important quantum states

needed for navigation.

5.2 Copying genetic information

In the previous section I discussed abstract properties of channels and measurements.

In this section I will apply these concepts to the problem of copying genetic information.

DNA stores the genetic blueprint for assembling functional proteins. The genetic

alphabet consists of four nucleic acids, adenine, cytosine, guanine and thymine. All

nucleic acids are mostly planar, and can thus be easily put into sequence. In addition,

H-bonds allow the nucleic acids to form pairs of two, adenine-thymine and cytosine-

guanine, see fig. 5.9. Sequences of these two base pairs form the double helix.

Both when DNA is replicated and genes are read-out (transciption), the information

stored in DNA needs to be accessed. The double strand is separated into two single

strands, each serving as a template for copying.

The molecule DNA polymerase reads out the genetic information stored in the

single strand, namely the sequence of four different nucleic acids, and assembles a

complementary DNA strand. Following the line of argument of the previous section, it

is now time to discuss which physical degrees of freedom participate in the measurement.

The bonding properties of nucleic acids are determined by two parameters. Firstly,

the proton positions have to be anticorrelated, to allow hydrogen bonding, see fig. 5.9.

Secondly, the nucleic acids have different sizes. Adenine and guanine are purines, i.e.

big (b) molecules. On the other hand, cytosine and thymine are pyrimidines, i.e. small

(s) molecules. The width of DNA, including the base pair and its phosphate backbone,
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Figure 5.9: In the normal form, the ground state of the molecules, there are two possible

nucleic acid combinations, adenine-thymine and cytosine-guanine, so called base pairs. Two

parameters determine the base pairing. The proton position of the two nucleic acids have

to be anti-correlated, to allow H-bonding. In addition, purines, i.e. the bigger molecules,

are matched with pyrimidines, i.e. the smaller molecules, such that the total width of the

two different base pairs is the same.

is limited to about 2nm , that means the small and big molecules are matched. If two

small (big) nucleic acids bind, the resulting position in the DNA is strand is to narrow

(thicken), and this error is corrected. This is summarised in fig. 5.9 and eq. 5.22.

The following equations summarise in informal notation the two parameters deter-

mining how nucleic acids bind. This notation will never be used in any formula and just

serves to emphasise certain aspects of nucleic acids. The first ket denotes the proton

position distribution, where 0 represents no proton, and 1 represents proton present at

that position in the nucleic acid, compare with Fig. 5.9. The second ket describes the

size of the nucleic acids, i.e. either purines (b) or pyrimidines (s).

Adenine = |001〉|b〉

Cytosine = |001〉|s〉

Guanine = |110〉|b〉

Thymine = |010〉|s〉 . (5.22)

When reading out the information stored in DNA, both degrees of freedom are

accessed. This is necessary, because the proton distribution itself does not allow to

distinguish Adenine and Cytosine.

74

Cha6-Mut/keto.eps
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5.2.1 Mutations and its causes

Although DNA replication is in general quite precise, it is not perfect. Copying errors

are usually referred to as mutations. Some mutations are due to classical physics,

for example breakage of DNA strands. Other errors like point mutation (substituting

one genetic letter with a different one) and ±x frameshift mutations, i.e. inserting or

deleting x nucleic acids in a single DNA strand, are more difficult to explain. While the

approximate mutation rate (copy errors per genome per generation) for most organisms

is known, little is understood about the mechanism how and why these mutations

actually occur. Using the concepts of computer science, the problem is phrased as

follows: It is known that the storage of genetic information constitutes a noisy channel.

Similarly, copying genetic information is also subject to noise. It is unknown how to

best describe the channels, i.e. which physical processes exactly are the cause for a

mutation. Löwdin argued (93) that tautomeric forms of nucleic acids, i.e. excited

nucleic acids having a different proton distribution, may be the cause of point and

frameshift mutations. For an overview on mutation see (95).

5.2.2 Tautomeric base pairing

While the size of a nucleic acid cannot be changed or superimposed, the proton position

of a nucleic acid can be altered. It was proposed by Löwdin (93) that such a shift in

proton position can be the cause of point mutations, see also fig. 5.11. Following the

concepts of the previous section, the size of a nucleic acid is part of the classical degrees

of freedom, whereas the proton positions are treated as quantum degrees of freedom.

Shifting protons changes the energy of the nucleic acid. The amount of energy

required to do that exceeds kT by roughly an order of magnitude, see later discussion,

so this is a rare event. If one of the nucleic acids is in its tautomeric form, the binding

to other nucleic acids changes, as summarised in fig. 5.10.

Using the same informal notation as above, the shifted proton position are sum-
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Figure 5.10: When one of the nucleic acids is in an excited tautomeric form, the proton

position is changed. Adenine*, for example, cannot bind any longer with thymine, because

the protons would repel each other. Instead, it is now possible to bind with cytosine.

marised as follows:

Adenine* = |010〉|b〉

Cytosine* = |010〉|s〉

Guanine* = |101〉|b〉

Thymine* = |001〉|s〉 . (5.23)

Fig. 5.10 shows how the altered proton position leads to different base pairing. As the

tautomers constitute an excited state, they will automatically return to the ground

state after a while. Only if the genetic information is copied during the lifetime of the

tautomer, it causes a mutation.

5.2.3 Non-coding tautomeric base pairing

In the previous section I discussed the nucleic acid’s base pairing properties for the case

that a single nucleic acid is in a tautomeric form, which is mis-interpreted as a different
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Figure 5.11: This picture shows how a tautomeric form (unstable) can be transformed

into a permanent mutation in the copying processes. In a the parental DNA is in its normal

form. After the double helix was opened to access the nucleic acids in the single strand, the

guanine molecule became excited into its tautomeric form. G∗ is now matched with thymine

instead of adenine, b. While one of the two resulting first generation daughter strands is a

perfect copy, the other has an abnormal G∗ − T base pair, c. In the next copying process,

d, the abnormal base pair is copied into two normal base pairs, one having a permanent

point mutation, replacing the inital guanine-cytosine pair with a adenine-thymine pair.

genetic letter, leading to different base pairing. This is important for dividing cells.

But also stationary, i.e. non-dividing, cells are subject to mutations. One explanation

is given by single and double proton tunneling within a base pair.

5.2.3.1 Double proton tunnelling

Base pairs are held together by the H-bonds between the nucleic acids, two proton

bonds for an A − T pair and three for a C − G pair. In an H-bond, the proton is in

a covalent bond with its original bonding atom, and interacts non-covalently with the

closed electron orbitals of the oxygen or nitrogen atom of the other molecule. It is

possible that protons tunnel from their original molecule to the other molecule. When

two protons tunnel within a base pair, the excited base pair resembles the other one

concerning proton position, i.e. A∗ − T ∗ ≈ G − C and C∗ − G∗ ≈ T − A. When a

DNA polymerase reads out the genetic information, it separates the two strands. The

altered proton position is measured and gives rise to a genetic error. This is widely

believed to be a cause for point mutations.
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5.2.3.2 Single proton tunneling

In the previous examples about tautomeric base pairing, one genetic letter was mis-

interpreted to be a different genetic letter, which can lead to a mutation. However,

there are also excited states, caused by single proton tunneling, which do not resemble

any genetic letter, for example:

Adenine† = |011〉|b〉

Cytosine† = |011〉|s〉

Guanine† = |100〉|b〉

Thymine† = |000〉|s〉 . (5.24)

This proton position coding scheme is not recognised as a valid genetic letter. It

is believed that such a single proton tunneling event is the cause for −1 frameshift

deletions. When DNA polymerase finds this excited base pair, it is taken out of the

DNA strand because it does not resemble a valid DNA base pair.

5.2.4 The thermal error channel

Whenever information is encoded in a specific quantum state of a molecule at finite

temperature, there is an error probability that the molecule is brought into a different

state by interactions with the environment. Section 5.1.8 discussed the possibility that

a weak, resonant external field might corrupt the quantum signal. A more common

source of errors is temperature. I will show the effects of temperature on the example

introduced in section 5.1.7. The system consists of two different classical letters, ‘0’

and ‘1’, where the ground state of the molecules encoding ‘0’ is left |L〉 and ‘1’ is

right |R〉. There is an energy barrier ∆E to the first excited state. If, due to thermal

energy, the molecule encoding logical ‘0’ is in its first excited state |R〉, by measuring

its quantum part, it will be mis-decoded. At zero temperature, the excited state of a

molecule has a finite probability to decay into the ground state, while the ground state

cannot become excited, as there are no energy quanta available. At finite temperature,

the situation changes. Both ground and excited state have a non-zero probability to

become corrupted. This is a well known physical problem. Which quantum operation

describes the effect of dissipation to an environment at finite temperature? This process,
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generalised amplitude damping (GAD), is defined for single qubits by the operation

elements (82)

E1 =
√
p

(

1 0
0

√
1 − γ

)

(5.25)

E2 =
√
p

(

0
√
γ

0 0

)

(5.26)

E3 =
√

1 − p

( √
1 − γ 0
0 1

)

(5.27)

E4 =
√

1 − p

(

0 0√
γ 0

)

, (5.28)

with γ = 1 − e−t, t time and p ∈ [0, 1]. For p = 0 or p = 1 the channel reduces to an

amplitude damping channel. The input state

ρin =

(

pL cLR
c∗LR 1 − pL

)

, (5.29)

where pL is the probability that the particle is in the left well, and cLR describes the

coherences of the particle being in the between left or right potential well, exits the

GAD channel as ρout =
∑4

i=1EiρinE
†
i with

ρout =

(

pL(1 − γ) + pγ cLR
√

1 − γ
c∗LR

√
1 − γ 1 − pL(1 − γ) − pγ

)

. (5.30)

The steady state is achieved for t→ ∞ or γ → 1 and is given by

ρ∞ =

(

p 0
0 1 − p

)

. (5.31)

This final state is equivalent to a thermal state for p = ex

ex+e−x with x = ~∆0
2kBT

, where

~∆0 is the energy gap to the first excited state of molecule ’0’. The thermal state is

ρTherm =
e−βH

Z
= pL|L〉〈L| + pR|R〉〈R| , (5.32)

where β = 1
kBT

the inverse temperature and Z = Tr(e−βH) is the partition function.

The probabilities are given as

pL =
ex

ex + e−x
pR =

e−x

ex + e−x
. (5.33)

The larger the temperature, the more likely to find the molecule in its excited state.

Now, at finite temperature, the cq state takes the form

ρcq = |0〉〈0| ⊗ (pL|L〉〈L| + pR|R〉〈R|) . (5.34)

79



5. INFORMATION FLOW IN BIOLOGICAL SYSTEMS

Fig. 5.12 and 5.13 show the probabilities to be in the excited state. The larger the

temperature T compared to the energy gap ~∆, the larger the probability for the

molecule to be in the excited state, i.e. only for low temperatures do ground states

provide a good coding scheme.
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Figure 5.12: This graphic shows the probability to be in the excited state pR dependent

on 1

x
= 2kBT

~∆
. For large temperatures, the error probability approaches asymptotically

1/2.
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Figure 5.13: This graphic shows the probability to be in the excited state pR dependent

on 1

x
= 2kBT

~∆
for small temperatures.

5.2.5 Channel picture of genetic information

A quantum system can have many degrees of freedom. Modelling many degrees of

freedom exactly is practically impossible. Therefore, the analysis is usually restricted

to small systems, which are well approximated by a small number of dimensions. Ex-

amples include glass fibre cables, electro-magnetic waves and single spins in quantum

dots. Here, in contrast, I want to quantify the amount of information transmitted in
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5.2 Copying genetic information

DNA. DNA stores reliably classical information. There are earlier attempts to quan-

tify the amount of information processed in genetic channels, see (96). However, this

work focuses entirely on classical channels. In the following I will show that even in

the absence of quantum coherences, the mere existence of a quantum channel can in

principle influence non-trivially the flow of genetic information.

There is good reason to believe that the quantum part of nucleic acids contributes to the

information processing, which a purely classical description cannot capture. In order

to study the influence of quantum information on genetic channels, I will investigate

different channel capacities for a simplified genetic system. Instead of four nucleic acids

I will only model two genetic (classical) symbols, denoted by ‘0’ and ‘1’. The principle

of proton position coding for genetic symbols is kept but simplified. Only one proton

can be in either (or both) wells of a skewed double well potential, see fig. 5.7.

For genetic / logical 0 the ground state consists of proton left |L〉, and the first

excited state of proton right |R〉, and vice versa for genetic 1. The quantum part

interacts with an environment at finite temperature. Each molecule is excited with

rate γexc, and decays with rate γdec. If a molecule, while copying, is detected in the

excited state, it is switched with rate σ to the complementary genetic symbol. Fig.

5.14 summarises the combined classical and quantum aspect of genetic information for

a simple model.

In section 5.1.7 I already discussed the scenario of a molecule identifying other

molecules by measuring their quantum degree of freedom. If the target molecule occu-

pies a ‘wrong’ quantum state, its information is misinterpreted and lead to a different

signalling pathway, but the target molecule itself would not change. However, when

DNA is copied, a ’wrong’ quantum state leads to a logical error on the classical part,

and the new daughter DNA strand keeps the change. The model for copying genetic

information can be decomposed into two single channels: One channel acts only on the

quantum part (|L〉, |R〉), and models how the environment acts on the quantum regis-

ter, while the other channel changes the classical, logical, bit (|0〉〈0|, |1〉〈1|) dependent

on the quantum state of the system, and models the actual copying process. This in-

terplay of classical and quantum information is best described by cq states introduced

in section 5.1.7.

I will use the following Hilbert space structure: the first Hilbert space describes the

classical part, tensored by the quantum part, leading to pure state basis
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|0〉〈0| ⊗| L〉〈L|.

|0〉〈0| ⊗| R〉〈R|.

|1〉〈1| ⊗| R〉〈R|.

|1〉〈1| ⊗| L〉〈L|.

γexc
γdec

σ

Figure 5.14: This graphic shows a toy model of genetic information flow. Each molecule

has a classical part, encoding ’0’ or ’1’, and and a quantum part, with a ground and

excited state. The ground state of one molecule corresponds to the first excited state

of the other. The quantum part interacts with an environment at finite temperature,

which is described with the parameters γexc (excitation rate) and γdec (decay rate). The

interaction of quantum part with the environment constitutes a generalized amplitude

damping channel. In addition, a second channel acts on the classical part. Conditional on

the quantum register, it can switch the classical symbol with rate σ. See main text for

detailed description.

(|0, L〉, |0, R〉, |1, L〉, |1, R〉). The first and the fourth entry represent ground states,

whereas the second and third entry are excited states. As the classical part cannot be

in superposition, this restricts the possible input states to the following form

ρin = p0|0〉〈0| ⊗ ρ0 + p1|1〉〈1| ⊗ ρ1

= p0









p0L c0LR 0 0
c∗0LR p0R 0 0

0 0 0 0
0 0 0 0









+ p1









0 0 0 0
0 0 0 0
0 0 p1L c1LR
0 0 c∗1LR p1R









, (5.35)

where pi is the probability that the molecule encoding logical i , i ∈ {0, 1} is present

with p0 + p1 = 1, piL, piR describes the probability for molecule i to be in the quantum

state |L〉, |R〉, and ciLR quantifies the coherence between between the states |L〉, |R〉.
Although the matrix representation uses four dimensions, the above considered cq state

has only two dimensions. The dimension of the tensor product is the product of di-

mensions of the original spaces. The classical part consists only of two probabilities,

which are positive and real valued. The first space therefore has one dimension. The

second space describes a qubit, and has two dimensions, ρi ∈ C⊗2.
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The system is embedded into an environment at finite temperature, which is described

with the following master equation

ρ̇ = − i

~
[ρ, Ĥ]+γexc (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+γdec (2σ+ρσ− − σ−σ+ρ− ρσ−σ+) , (5.36)

where γexc describes the excitation of a molecule from the ground to the excited state,

and γdec the opposite, and σ± = σx ± iσy is the raising and lowering Pauli operator.

The excitation and decay of each molecule constitutes a generalised amplitude damping

(GAD) channel. Its Kraus operators on the molecules encoding ’0’ take the form

E0,1 = |0〉〈0| ⊗ √
p

(

1 0
0

√
1 − γ

)

(5.37)

E0,2 = |0〉〈0| ⊗ √
p

(

0
√
γ

0 0

)

(5.38)

E0,3 = |0〉〈0| ⊗
√

1 − p

( √
1 − γ 0
0 1

)

(5.39)

E0,4 = |0〉〈0| ⊗
√

1 − p

(

0 0√
γ 0

)

, (5.40)

with p = γdec

γexc+γdec
and γ = 1 − exp(−t/(γexc + γdec)). The parameter γexc describes

the temperature of the environment and the likelihood that a molecules absorbs an

energy quantum. The parameter γdec describes the rate of emitting a quantum to the

environment. This depends both on the temperature and the lifetime of the excited

state. The larger γ, i.e. the more time t the particle spends in the generalised amplitude

damping channel, the closer the output state to the thermal state, which is independent

of its initial configuration. For a biological scenario large values of γ seem reasonable, as

most of the time the DNA is just stored, with the environment acting on the quantum

part. The parameter p will have a value close to 1. In general de-excitation will be much

more likely than excitation of a nucleic acid. Similar Kraus operators E1,i, i ∈ {1, 2, 3, 4}
describe the channel for the molecules encoding ’1’.

The switching channel measures the quantum part, and then acts on the classical

part. If the measurement outcome of the quantum register is for example |L〉〈L|, then

there are two possible events. The quantum register belongs to a molecule encoding

logical ‘0’. In this case nothing happens, the measurement outcome will be correctly
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decoded as ‘0’. However, if molecule ‘1’ was measured, during the copying process it

will be decoded as logical ‘0’ and the next strand of daughter DNA will have a different

bit value at this position. This constitutes an amplitude damping (AD) channel. Its

Kraus operators are

FL,1 =

(

1 0
0

√
1 − σ

)

⊗ |L〉〈L| (5.41)

FL,2 =

(

0
√
σ

0 0

)

⊗ |L〉〈L| (5.42)

FR,1 =

( √
1 − σ 0
0 1

)

⊗ |R〉〈R| (5.43)

FR,2 =

(

0 0√
σ 0

)

⊗ |R〉〈R| , (5.44)

with σ describing the average rate at which the information is copied. There are many

interactions in a living cell that can lead to a measurement of the quantum register of the

kind |R〉〈R|, |L〉〈L|, leading to a projection of the quantum state to the |R〉, |L〉 basis.

But not every measurement is connected to actually copying the genetic information.

The higher (lower) the value of σ the more (less) likely it is that a projection of the

quantum register is due to a copying process. For a realistic biological scenario σ is

very small. Table 5.1 provides a summary of the parameters and their meaning in a

cell or bacteria.

The overall channel is given by the concatenation of the two channels,

G(ρin) =
∑

q=R,L,i=1,2

∑

m=0,1,j=1−4

Fq,iEm,jρinE
†
m,jF

†
q,i . (5.45)

It is worth discussing whether this channel description of copying genetic informa-

tion is the most accurate one. The quantum degrees themselves are not used for storing

genetic information; they just act as the code words of the channel encoding. Once

the copying process is finished, it can be argued that the quantum degree if forgotten

by the system, and should be traced out in the channel description. This would imply

that once a copying mistake happened, it cannot be corrected, as the channels forgets

everything about its history. However, life is more complicated. There are post-copying

DNA error-correcting mechanisms. One of them uses methyl groups (95). Suppose a

copying mistake happens, and guanine is matched with thymine instead of cytosine. An

enzyme is able to determine that a copying mistake occurred, as G−T is not a normal
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parameters in genetic model biological meaning

-usually γexc << γdec s.t. p ≈ 1

- can differ over orders of magnitude for different base pairs

p = γdec

γexc+γdec
- two ways to change value of p:

- increased probability to excite base pair

( possible mechanism discussed in this thesis)

- increased life time of excited state

γ = 1 − e−t/(γexc+γdec) measures time it takes to equilibriate to effective temperature

read-out probability

influenced by stress, i.e. starving, and

σ how often DNA polymerase in vicinity of excited base pair,

→ double stranded breaks also influence value of σ

Table 5.1: Each of the parameters in the genetic channel model corresponds to parameters

in living systems. Section 5.3 explains the biological terms used here.

base pair. Given only the G−T pair itself it would be impossible to decide which is the

true original and which the faulty copying mistake. However, another effects helps to

decide which strand is the original. The nucleic acid adenine becomes methylated, i.e.

a methyl group attaches itself to adenine in a DNA sequence. This takes some minutes

after copying. This means the old template strand has all adenine molecules methy-

lated, whereas the new strand has not. If an enzyme detects the faulty G−T base pair

before the surrounding adenine molecules become methylated, the copying mistake can

be corrected. That means that a genetic channel stores more information than just the

classical symbols of the genetic alphabet. Here I consider the more general scenario

of keeping track of the quantum register. As tracing out only looses information, the

channel rates here can be taken as upper bounds on the channels which do forget the

quantum part.

The channel measures first the classical part, and acts conditionally on the quantum

part. The measurement on the classical register is an important part of the system,

as it determines the corresponding Kraus operators for the quantum part. The sys-

tem considered here is symmetric with respect to the classical information ‘0’,‘1’. Both
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quantum parts have equal probability to be corrupted by interactions with the environ-

ment. However, one of the molecules might have a different energy gap between ground

and first excited state, leading to different parameters values in the Kraus operators for

the channel. Then, the channel measures the quantum part, and replaces the classical

symbol with its corresponding quantum measurement outcome. Because of the second

measurement, the state looses all coherence, and exits the channel in diagonal form.

The output state is

ρout = G(ρin) = diag{p0(p0L(1 − γ) + pγ) − p1(p1L(γ − 1) + (p− 1)γ)σ, (5.46)

p0(1 + p0L(γ − 1) − pγ)(1 − σ),

p1(p1L(1 − γ) + (1 − p)γ)(1 − σ),

p1(1 + p1L(γ − 1) + (p− 1)γ) + p0(1 + p0L(γ − 1) − pγ)σ} .

For t >> γexc + γdec the output state ρout will thermalise to the new effective

temperature p. In the limit of t→ ∞ or equivalently γ → 1 the output state takes the

form

ρout = G(ρin) = diag{p0p− p1(p− 1)σ, (5.47)

p0(1 − p)(1 − σ),

p1(1 − p)(1 − σ),

p1p+ p0(1 − p)σ} .

The initial terms p0,L etc. all vanish and the thermal state is independent of the initial

state.

The channel is chosen to be symmetric with regard to logical ‘0’ and ‘1’. Therefore

the most efficient coding requires as many molecules encoding logical ‘0’ as logical ‘1’,

which means p0 = p1 = 1/2. Comparison with section 5.2.4 shows that the effective

temperature Teff , i.e. the population of the excited state compared to the ground

state, is given by
ex

ex + e−x
= p− σp+ σ , (5.48)

with x = ~∆
2kBTeff

. Inverting eq. 5.48 gives the dependence of the inverse temperature

on the channel parameters p, σ

~∆

2kBTeff
=

1

2
log

(

y

1 − y

)

(5.49)
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with y = p− σp+ σ.

This example shows that the concept of temperature, in the sense of occupation of

0.2 0.4 0.6 0.8 1.0
p + Σ - Σp

-3

-2

-1

1

2

x

Figure 5.15: This graphic shows the parameter x = ~∆

2kBTeff
over the channel parameters

y = p− σp + σ. The effective temperature is zero for y = 1. For y = 1/2 Teff is infinite.

As y further decreases, the effective temperature becomes negative, as the population of

the excited states becomes more likely than the population of the ground states.

excited states, in biological is complicated. Not only external parameters like γexc con-

tribute, but also internal parameters like γdec and σ determine the effective temperature

of the system.

5.2.5.1 Results for quantum capacity

The measurement on the quantum register has consequences for the quantum capacity

Q1 of the channel, namely it vanishes for all values of channel parameters p, γ, σ. This

can be explained when looking again at the formula for the quantum capacity:

Q1 = max
ρ∈H

(S(G(ρ)) − S((G⊗ 1anc)(Φ))) , (5.50)

Whereas the first terms quantifies the entropy of the output state ρout, the second

term gives the entropy of the purification of the output state on a larger Hilbert space.

In general, if the channel G were, for example, the identity channel G(ρ) = ρ, then

the pure state of the purification Tr2|ψ〉〈ψ| = ρ could be chosen to be a maximally

entangled state, such that ρ = 1/4. In this case, the entropy of the output state

is S(G(ρ)) = S(ρ) = log 2 = 1, as d = 2, but the entropy of the purification is zero,

because it is a pure state. Thus the positive value of the quantum capacity is due to the
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channels ability to sustain entanglement between the particle sent through the channel

and the remaining particle. Here, the genetic channel G performs a measurement on

the quantum part. This measurement destroys any potential entanglement between

the state ρ and its environment. In addition, as the resulting switch operation is

restricted to the classical degree of freedom |0〉〈0|, |1〉〈1|, there is no possibility that the

measurement |L〉〈L|, |R〉〈R| leads to entanglement between the quantum state of ρ and

the measurement device. That means the genetic channel fully breaks entanglement,

such that (G ⊗ 1anc)(Φ) =
∑d

i=1 ρout,i ⊗ ρanc,i, where the ρanc,i are the final states of

the ancilla. This separable mixture of states has at least as much entropy as the output

state ρout itself. Therefore the quantum capacity Q1 is zero.

5.2.5.2 Results for one-shot classical capacity

How much classical information can be sent through the noisy channel? The one-shot

classical capacity can be calculated using the following equation

C1(G) = max
{pj ,ρj}



S



G





∑

j

pjρj







−
∑

j

pjS(G(ρj))



 , (5.51)

where it suffices to optimise over d2 pure states. Here d = 2, and thus four pure states

are required for the maximal classical one-shot capacity.

The pure states here take the form

|ψ1〉 = |0〉|L〉

|ψ2〉 = |0〉|R〉

|ψ3〉 = |1〉|L〉

|ψ4〉 = |1〉|R〉 . (5.52)

Numerical optimisation of eq. 5.51 leads to the following results. For any value of p,

the classical one-shot capacity is maximal C1 = 2 for γ = σ = 0. With growing value

of σ and γ the one-shot classical capacity drops, until it reaches zero for γ = σ = 1

and p = 0.5, see fig. 5.16. In a biological setup a large value of γ seems reasonable.

DNA read-out requires the movement of macro molecules, which is slow compared to

the time it takes for a quantum system to equilibrate. In the rest of the chapter I will

work with the assumption that each nucleic acid is thermalised with its environment,
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γ

σ

C1

Figure 5.16: This graphic shows the one-shot classical capacity for p = 1 (light blue),

p = 0.9 (red), and p = 0.5 (green). The classical capacity decreases as the parameters γ

and σ increase.

i.e. γ = 1. As a consequence, maximal one bit of information can be sent through the

genetic channel, compare with fig. 5.16.

The two-step mechanism for mutations will be of importance later in this chapter.

The parameter σ depends on classically observable processes in the cell, i.e. which DNA

polymerase reads out the information, how often a certain gene is accessed, etc. On

the contrary, the parameter p is more difficult to observe and depends on the precise

quantum properties of the system. While a lot is known about the classical properties

influencing the value of σ, little is known of p.

5.2.5.3 Results for entanglement assisted classical capacity CE

The numerical results for the entanglement assisted classical capacity CE are shown in

Fig. 5.17. For γ = σ = 0 the entanglement assisted classical capacity takes its maximum

of CE = 2 log d = 2 as d = 2. For larger value of γ and σ the classical capacity drops

quickly and vanishes completely for p = 0.5 and σ = γ = 1. For biological systems a

large value of γ is plausible. Hence the entanglement assisted classical capacity yields

here little advantage over the one-shot classical advantage.
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Figure 5.17: This graphic shows the entanglement assisted classical capacity (numerical

results) for p = 0.1 (red curve) and p = 0.5 (blue curve).

5.3 Sequence dependent mutations

In the previous paragraphs I discussed the mechanism of random mutations. But is

that all to mutations? Is it possible to have non-random mutations? Note that there

are two possible distinctions between non-random mutations. The one that is often

discussed in existing literature is Lamarckian mutations, where an organism changes

its genome to a certain environment to achieve better performance. The causal line of

argument is that mutations leading to an advantage for the organism are preferentially

induced. Up to now there exists no detailed explanation how this should be possible.

Selection, up to current understanding, only acts on the phenotype, and not on the

genotype. It seems very difficult to imagine how a living systems figures out itself

which mutations are beneficial and induce these preferentially. These kind of models

will not be discussed here. On the contrary, non-random mutations can also mean

sequence dependant mutations (SDM), i.e. the probability of a base pair to mutate

depends on the neighbouring nucleic acids, simply because the relevant physical effects

allow for it. This would mean that the neighbouring DNA sequence and maybe also

other cell parameters influence non-trivially the mutation probability of a single site,

independent of the consequences for the phenotype. Nevertheless, living systems which

randomly evolve to exploit these SDM for their own good would have evolutionary
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advantages. In appropriate circumstances, where a SDM leads to an advantage for

the organism, it would appear to be a Lamarckian mutation, although the underlying

mechanism would be very different. This will be discussed again in section 5.5.

However, if such a mutational mechanism exists, it would, in a given set of DNA

sequences, eliminate itself. Any base pair having a neighbourhood that increases its

mutation rate will eventually mutate. After long time the DNA strands will equilibrate

to special sequences where each base pair has the same mutation probability, such that

the sequence dependant mutation channel is indistinguishable from thermal random

mutations. Such a mechanism would drastically change our understanding of informa-

tion storage in DNA. It would mean that firstly not all possible sequences of DNA are

equally likely and secondly mutations leading to deviation from equilibrium sequences

should lead to further mutations. In this section I first review the experimental evi-

dence supporting such a theory, the codon bias and adaptive mutations. Then I will

introduce a physical mechanism that could give rise to sequence dependent mutations

and discuss its plausibility.

5.3.1 Codon bias

If a SDM mechanism exists, its actions should be clearly visible in the statistics of

DNA. While a bias in DNA does not prove directly the existence of SDMs, the ab-

sence of such a bias would instantly disprove the idea. Generally, there is a com-

petition between mutational forces, changing an organism’s genotype, and selection

forces, acting on the phenotype. If a mutation turns out to be lethal for the organ-

ism, it will not be passed on to future generations. But not all mutations compete

with selection forces. Firstly, there are non-coding regions of the genome, so called

intergenic regions, which are not translated into proteins, and therefore do not directly

influence the phenotype. Secondly, some mutations are ‘silent’, because they do not

change the resulting protein. As these two kinds of mutations do not directly com-

pete with evolution, they should contain a fingerprint of SDM. In (97) the authors

count the occurrence of codons, i.e. three consecutive nucleic acids, in the genome

of a 100 different species. The codon code maps triplets of nucleic acids into amino

acids, see table 5.2. There are 64 possible codons, but only 20 used amino acids. That

means the mapping has some redundancy. Some amino acids are only encoded by two

codons (‘AAA′, ‘AAG′ → ‘Lysine′) , while others are represented by 6 different codons
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(‘′CGA′, ‘CGC ′, ‘CGG′, ‘CGT ′, ‘AGA′, ‘AGG′ → Arginine). The resulting functional-

ity of a protein is invariant under different coding for its amino acids. Therefore, one

would expect the occurrence of codons to be randomly distributed. When a codon

starts with ‘CG′, the third position should not matter, as all nucleic acids maps to the

same amino acid ‘Arginine’. Therefore, random mutations should fully randomise the

third position of a CG codon.

Amino acid Codons Amino acid Codons

Alanine GCT, GCC, GCA, GCG Cysteine TGT, TGC

Aspartic acid GAT, GAC Glutamic acid GAA, GAG

Phenylalanine TTT, TTC Glycine GGA, GGC, GGG, GGT

Histidine CAT, CAC Isoleucine ATT, ATC, ATA

Lysine AAA, AAG Leucine CTA, CTC, CTG, CTT

TTA, TTG

Methionine ATG Asparagine AAT, AAC

Proline CCA, CCC, CCG, CCT Glutamine CAA, CAG

Arginine CGA, CGC, CGG, CGT Serine TCT, TCC, TCA, TCG

AGA, AGG AGT, AGC

Threonine ACT, ACC, ACA, ACG Valine GTT, GTC, GTA, GTG

Tryptophan TGG Tyrosine TAT, TAC

Start ATG Stop TAA, TGA, TAG

Table 5.2: Each of the amino acids as well as the start and stop codon are encoded by a

sequence of three nucleic acids, A,C,G, and T. As there are 20 different amino acids, and

64 possible triplets, the code has some redundancy. For example the amino acid Leucine is

encoded by 6 different triplets. Note that if there are multiple codons for the same amino

acid, usually the third position varies.

On the contrary, the distribution of codons is biased. For example, a hypothetical

organism uses only ‘′CGA′, ‘CGC ′ in its genome, but not the other four possibilities.

The authors of (97) furthermore show that the bias can be effectively described by

two parameters. That means that the bias is not random, but has structure. The first

parameter relates to the GC content of the genome. As the GC bond is stronger than the

AT, AT is more likely to mutate. The second parameter correlates with the intergenic

codon bias. DNA consists of regions that code for proteins (genes), and intergenic
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regions whose function is not yet entirely understood. As the intergenic region is not

translated into tRNA (which might provide an explanation for the gene codon bias 1),

this bias is difficult to explain with selection pressure. As discussed earlier in (82),

the most efficient codes are completely random. Any correlations between sections

of the DNA strand reduce the genetic code’s efficiency. However, it was found out

that (97) ‘the nearest neighbour nucleotide biases found in the intergenic region are

in all cases positively correlated with biases in the third codon position of genes from

the same origin’. Both the non-coding DNA regions as well as many third position

of codons do not directly influence the phenotype of an organism. Changes at those

position in the genome do not alter the resulting proteins, and are thus not affected

by selective pressure. In the absence of other directional mutational forces, random

mutations should fully randomise any non-coding part of DNA. Each bias, in the non-

coding DNA and third codon position, could have its own independent explanation.

However, the correlations between the biases indicate a common cause, namely a new

mutational mechanism.

This is strong evidence that not all sequences are equally likely. How is it possible

that the non-coding regions of DNA are correlated with codon biases in coding regions?

The authors (97) conclude that the easiest explanation is a genome wide mutational

event, although they do not specify the detailed mechanism. Even more surprisingly,

the bias depends on the species (97, 98), i.e. different species have a different bias.

This implies that the underlying mechanism not only depends on the DNA itself, but

possibly also on other influences inside a cell.

5.3.2 Adaptive mutations

Another hint at the existence of sequence dependant mutations would be given by

’follow-up’ mutations. An initial mutation in a gene might increase the probability of

having further mutations. After a long time different sequences equilibrate such that the

mutation probability for each base pair is roughly the same, and thus indistinguishable

from thermal noise. A random mutation is likely to increase the probability of SDM

1For each different codon a cell needs to synthesize a matching tRNA molecule. It would be

energetically favourable to produce only two different tRNA instead of six for mapping to the same

amino acid.
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occuring, especially at the position of the original random mutation, as the disturbance

out of equilibrium is biggest there, see fig. 5.29.

A beautiful example of this is given by the experimental evidence of adaptive muta-

tions, where an unknown mechanism reverts the original mutation. The phenomena of

adaptive mutations present a riddle to the science community. Pioneering experiments

on adaptive mutations were performed by Cairns et al in 1988 (99) and much work has

been undertaken to confirm and refine these initial findings (100, 101, 102). A typical

experiment is this. A colony of E-coli bacteria is prepared with a lac− gene 1 which

renders it unable to process lactose, due to a +1 frameshift mutation. The colony

is subsequently incubated in an environment where lactose is the only energy source.

Surprisingly, the lac− gene mutates to lac+, −1 frameshift, with a hundred-fold rate

compared to the mutation rate in a non-lactose environment (103), thus enabling lactose

processing. Other genes also show a small increase in their mutation rate (104, 105, 106)

and a few genes have an increase in rate comparable to that of the lac gene (107, 108).

This indicates that the lac mutations are induced preferentially to allow the bacteria to

adapt to their environment at a rate faster than if the mutations were genuinely ran-

dom. Indeed, the bacteria seem to “know” which mutations will be most beneficial for

their survival and appear to “stimulate” these. While the lac mutation in E-coli is only

one example of adaptive mutations, they have also been confirmed in other bacteria

and yeast in the presence of lactose and in absence of important amino acids (100). As

neatly put by Rosenberg (101) “The emerging mechanisms of adaptive genetic change

cast evolution, development and heredity into a new perspective, indicating new models

for the genetic changes that fuel these processes.”

5.4 A quantum resonance model

The key question of this paragraph is the following: Is there a physical mechanism, that

would ’selectively’ excite, dependant on the environmental conditions, only one specific

base pair into its tautomeric form, thus leading to a sequence dependant mutation?

Resonance model.– The experimental data on adaptive mutations indicates an ex-

tremely selective underlying mechanism. In physical experiments such behaviour is

1The gene− notation means that the protein expressed from a certain gene is not functional.

Similarly, the gene+ notation means that a protein expressed from that gene is functional.
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Figure 5.18: Experimental results taken from (109). In the lac reversion experiments,

in initial +1 frameshift mutation at position 1039 is, under certain environmental cir-

cumstances, reverted by a -1 frameshift mutation, thus restoring the functionality of the

resulting protein. The crosses and dots mark where such a -1 frameshift mutation oc-

curred. Remarkably, most reverting mutations occur exactly at the same position where

the genome was originally altered.

produced by resonance effects that can be incredibly sensitive to miniscule changes

(110, 111). I propose that such a resonance effect underlies the phenomenon of adap-

tive mutations. This would explain how a specific base pair in a specific gene can be

targeted, a common feature of adaptive mutations. Here, the bacteria are in stationary

phase. They cannot divide, because not enough energy is available. As a consequence

I will now look into the mutational mechanism during stationary phase, induced by

errors of the DNA polymerase molecule. That means that a complete base pair, AT

or CG, is corrupted, see section 5.2.3. In the experiments a −1 frameshift mutation

restores the functionality of the gene’s resulting protein, see fig. 5.18. This seems eas-

iest explained by a single or double proton shift within a base pair. The new proton

positions would not constitute a valid genetic letter, and thus the base pair would be

discarded by DNA polymerase. In the following I will concentrate on single proton

shifts within a base pair.

The key quantity from the physics perspective is the energy gap required to shift

protons. I model each base pair as a two level system separated by the energy ~∆ 1,

1The energy levels need not be sharp, it suffices to assume that their broadening is significantly
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Figure 5.19: Section 5.3.1 discussed the experimental evidence on mutation events de-

pendant on the species, and section 5.3.2 summarised the occurrence of adaptive mutations

mutations. In this paragraph I will suggest a quantum resonance model that can explain

both experimental findings.

where the excited state describes the shifted proton. The two different base pairs (AT

and CG) have different energy gaps, simply due to their different chemical composition.

These energy levels will change (albeit by a small amount compared with the gap

itself) depending on the neighbouring base pairs, see fig. 5.20. This model discusses

the source for bridging this energy gap. In Löwdin’s analysis the proton transfer occurs

via quantum tunnelling, which is a static process independent of the environment. The

tunneling probability is roughly the same for all base pairs. In contrast, I propose

a resonant energy transfer between the two proton states, which is a dynamic effect.

Importantly, the excitation probability depends sensitively on a number of parameters,

and thus could differ over orders of magnitudes for different base pairs, see fig. 5.27.

5.4.1 Directed generation or directed capture

The creation of a sequence dependent mutation requires three components: Firstly, the

energy gap to a tautomeric form has to be bridged, i.e. some physical process needs

to supply energy. Secondly, the lifetime of the excited state has to be sufficiently long.

smaller than the energy gap itself.
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individual base pairs

AT CG GC TA

coupled base pairs
Energy

∆TA∆AT ∆CG ∆GC

Figure 5.20: This graphic shows the energies of base pairs in their normal form (ground

state) and tautomeric form (excited state). The dashed lines describe individual base

pairs, while the solid lines sketches how the energy levels shift when the base pairs are

embedded in a gene’s sequence. Without coupling both AT and TA (CG and GC) have

the same energy gap between normal and tautomeric form. However, this is not the case

with coupling, where the precise value of the energy gap depends on the neighbourhood

of the base pair. While it is difficult to determine the precise value of the energy gap, the

order of magnitude ranges from ~∆ ∈ 0.5 − 0.8eV

Thirdly, a DNA polymerase has to be in the vicinity, to transform the excited state

into a permanent mutation. The first two points are not completely independent of

each other. If the lifetime of the excited state is independent of the sequence of nucleic

acids, then SDM requires a directed energy transfer into the target base pair. If, on

the contrary, the lifetime of the excited state is sequence dependent, then simple ther-

mal tunneling would be sufficient for creating SDM. While random base pairs become

excited, only special base pairs have a long enough lifetime to lead to a permanent

mutation. This second possibility, sequence dependant capturing, requires detailed cal-

culations of DNA strands, which are currently out of reach of numerical simulations.

In the following I will focus on the first possibility, sequence dependent generation of

excited states.

The problem of proton movement is, contrary to electron movement, poorly under-

stood. As protons have a 1836 times larger mass than electrons, they couple differently

to light. For example, it would be unlikely for a proton to directly absorb a high energy

photon (around the missing 0.6eV ) to get into the excited state. Because of its mass
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Figure 5.21: The proposed mechanism for selected excitation of base pairs has two steps.

First, a base pair is excited into a vibrational mode of energy ~ω, where one of the protons

constituting the H-bonds within the base pairs oscillates strongly out of equilibrium. This

first excitation can either be thermal or through photon absorption. In the second step,

the moving proton scatters with the electrons, whereby the missing energy ~(Ω − Ω′) for

reaching the tautomeric form is transferred from electrons to the proton.

the proton has high inertia. Before the proton starts moving the photon is already

gone. One way to deal with the proton’s inertia is to consider vibrations. The O-H and

N-H bonds within a base pair can undergo vibrations. Numerical studies (112) show

that there exist vibrations within A-T and C-G pairs, where a single proton oscillates

out of equilibrium position. The basic idea is that the moving proton couples strongly

to the delocalized electron cloud. Electrons and proton scatter, whereby the missing

energy quantum is transferred from the electrons to the proton, causing it to shift its

position in the base pair, leading to a tautomeric form, see fig. 5.21 for an overview. In

the following, each step of the model will be explained in more detail.

5.4.2 Vibrational states of base pairs

In (112) single proton oscillations in base pairs are numerically investigated. The

wavenumber of proton vibrations ranges from 500cm−1 to 3550cm−1. In addition, it

was found that the energy of vibration depends on the neighbourhood. The peaks

of the vibrational spectra shift up to 500cm−1 when adding a second base pair as a

neighbourhood for the first. The results for double base pairs are shown in fig.’s 5.22
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a)

b)

Figure 5.22: This graph shows a snapshot from the numerical simulations performed

in (112). In (a), a two AT-AT base pairs are shown in their normal configuration, i.e.

ground state. In figure (b) the same double base pair is shown where one base pair is in a

vibrationally excited state. The proton H60 oscillates out of equilibrium and comes close to

the neighbouring nitrogen atom. The energy of this vibration is around 3680cm−1, which

corresponds to 0.46 eV.

and 5.23 for AT-AT as well as fig.’s 5.24 and 5.25 for CG-GC.

5.4.3 Electron scattering

The single proton vibrations discussed in the previous section can supply up to ap-

proximately 0.46eV of energy. The energy needed to create a tautomer is around

0.5 − 0.8eV , which is more than the energy of proton vibrations. I propose that the

electronic vibrational degree of freedom of the DNA’s π-stacks provides the missing

energy. It is experimentally known that electron scattering, induced by visible light in

Raman spectroscopy, transfers energy to vibrational degrees of freedom in the range

of 1200cm−1 − 900cm−1, equivalent to ~Ω = 0.15eV − 0.11eV (113). It is natural

that the gene’s electrons interact electrostatically with the base pair’s protons. When

protons move, these electrons invariably must undergo vibrations and vice versa. The

tautomeric forms discussed in section 5.2.3, where a single proton completely tunnels

to the opposite nucleic acid, need more energy than is provided by the single proton

oscillation. This additional energy might come from electronic vibrations (114). These
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Figure 5.23: This graph shows the distance variation of the strong part of the H-bond

H(60)-N(45) and the weak part H(60)-N(17) of the AT-AT double base pair. Due to the

vibration the distance of the proton H60 to the nitrogen atom of the opposite nucleic acid

shortens significantly from around 2.5Å to 1.9Å, which is only 0.4Å more distance than

the strong part of the H-bond.

a)

b)

Figure 5.24: This graph shows a snapshot from the numerical simulations performed

in (112). In (a), a two CG-GC base pairs are shown in their normal configuration, i.e.

ground state. In figure (b) the same double base pair is shown where one base pair is in

a vibrationally excited state. The proton with number H27 oscillates out of equilibrium

and comes close to the neighbouring nitrogen atom. The energy of this vibration is around

3630cm−1, which corresponds to 0.45 eV.
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Figure 5.25: This graph shows the distance variation of the strong part of the H-bond

H(27)-N(25) and the weak part H(27)-N(38) of the AT-AT double base pair. Due to the

vibration the distance of the proton H27 to the nitrogen atom of the opposite nucleic acid

shortens significantly from around 2.5Å to 1.9Å, which is only 0.4Å more distance than

the strong part of the H-bond.

depend strongly on the base pair sequence. This is because each base pair has a specific

local potential for its π electron clouds. The coupling between the electronic degrees

of freedom of different base pairs gives rise to unique vibrational energies in the sense

that replacing one base pair with another will change these energies. This sequence

dependence goes beyond the boundaries of a gene and extends to the neighbourhood.

The same gene, surrounded by a different base pair sequence, will have different elec-

tronic vibrational energies. This is in agreement with experimental data. Firstly, the

higher than normal mutation rate occurs only if the lac− gene is located on the episome

and not on the chromosome (115, 116). The neighbourhood of the lac− gene is totally

different for the two locations. This leads to different vibrational energies, turning the

lac− gene on the chromosome off-resonant with the lactose radiation field.

Secondly, in an experiment (108) a Tn10 gene was inserted at different distances to

the lac− gene on the episome. It was observed that the closer the Tn10 gene to the lac−

gene, the stronger the repression of the lac+ mutation. Qualitatively this is exactly

what this model would predict. The closer the insertion of the Tn10 gene, the stronger

the perturbation of the electronic vibrations which again leads to off-resonance. To

confirm that such an influence can exist at large distances of several 1000 base pairs,

as reported in the experiment, will require extensive calculations.
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Figure 5.26: This graphic shows the time-independent part, p0 in 10−6, of the excitation

probability (5.53) over the electronic vibrational energy ~(Ω−Ω′) and the base pair’s energy

gap ~∆. The ridge visualises the resonance condition. The energy of the proton vibration

is ~ω = 0.43eV and the coupling proton vibration is chosen as 2~λ = 10−6eV , motivated

from standard physics experiments, see supplement. I have highlighted two different base

pair energy gaps, blue curve (~∆ = 0.572eV ) and green curve (~∆ = 0.567eV ). Exciting

these base pairs with two different electronic energies, red curve (~(Ω − Ω′) = 0.137eV )

and orange curve (~(Ω−Ω′) = 0.142eV ), gives very different probabilities. The excitation

probability is high only when the combined energy of electronic vibration together with

the proton vibration energy matches the base pair energy gap. This is the case for the

combinations of green&red curves, p0 = 12·10−6, and blue&orange curves, p0 = 2·10−6. In

contrast, the off-resonant combinations, such as green&orange have a much lower excitation

probability, p0 = 1.8 ·10−8. This quantitative analysis shows that with realistic parameters

the resonance model predicts the increase in mutation rate by a factor of 100 for a specific

gene - base pair combination, as found in experiment.
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Base pair excitation probability.– The emphasis of the model is on two energetic

contributions, one energy quantum from the delocalised gene’s electronic vibrations

and another thermal proton vibration, that resonates with the base pair.

As resonance is an ubiquitous phenomenon in physics there are a number of dif-

ferent physical couplings that would produce similar resonance observations. More

experimental data are needed to pinpoint the precise coupling mechanism.

Typically electrons absorb energy quanta to transfer to excited orbitals. In contrast,

the excited state considered here consists of protons that have transferred to different

positions in the base pair with higher energy.

As a consequence, neighbouring base pairs, although embedded in nearly the same

electronic vibrations, can have, due to small differences in base pair energy gap ~∆,

very different probabilities to become excited. For a first approximation of the resonant

energy transfer from electrons to protons, I take a standard model from quantum optics

methods (117), which is also commonly used in quantum biology. For this coupling

process the probability for a base pair to transfer to its tautomeric form is

pexcite(t) =
4λ2

4λ2 + (∆ − (Ω − Ω′) − ω)2
sin2

(

Rt

2

)

, (5.53)

where λ is the coupling constant between the base pair combined with the electronic

vibration and the proton vibration. The energy matching condition is expressed by the

term ~(∆ − Ω + Ω′) − ~ω. The probability of excitation oscillates in time, t, with the

so-called Rabi frequency, given as R =
√

(∆ − Ω + Ω′ − ω)2 + 4λ2.

Formula (5.53) shows the two key features relevant for the discussion of adaptive

mutations. One is that the probability is highly sensitive to the energy difference

~(∆ − Ω + Ω′) − ~ω. For a given proton vibration, i.e. fixed ω, even a small change

in the combined base pair and electron vibration energy, ~(∆ − Ω + Ω′), can lead to

a sharp drop in probability of excitation. The time-independent part of the excitation

probability, p0 = 4λ2

4λ2+(∆−Ω+Ω′−ω)2
, is shown in fig. 5.26. The second feature is that

the coupling to the proton vibration, 2λ, determines the width of the resonance peak.

In the following I show how our model qualitatively explains known experimental data.

This mechanism is not limited to the lac gene; it can also induce non-selected

mutations. A set of experiments (107, 108) show a higher than normal reversion rate

of the mutant Tn10 gene during lactose selection. The initial +1 frameshift mutation

makes the bacteria sensitive to the antibiotic tetracycline (tets). Here the tet mutation
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rate is comparable to the lac mutation rate. This is remarkable as the presence of

lactose is not immediately causally connected to the resistance to antibiotics. This

model can explain such a fact if the electronic gene vibration of the mutated gene, is in

resonance with the energy needed for exciting a base pair in the tet gene. The degree

of mis-tuning determines the rate of mutations: a gene-base pair combination with

bigger mismatch to resonance will mutate at a much lower rate than one with strong

resonance, see eq. (5.53) and fig. 5.26. The expected picture is that many genes mutate

at a slightly increased rate. This is observed in several experiments (104, 105, 106, 107).

5.4.3.1 Excitation mechanism

There are two possible excitation mechanisms, the thermal tunnelling and the resonant

energy transfer. In order to compare the two mechanisms, fig. 5.27 shows the excitation

probability for thermal tunneling (red) and resonant excitation transfer (blue) given

that an initial energy of 0.43eV is supplied. The thermal tunnelling and resonant exci-

tation transfer have a distinct excitation profile for different energy gaps ~∆. However,

so far the influence of thermal line broadening is not discussed here. While in principle

such a resonant excitation transfer can lead to sequence dependent excitation of base

pairs, a more detailed calculation is required to confirm the mechanism.

5.4.4 The importance of selective pressure

The simple model of copying genetic information sensitively depends on the switching

parameter σ. It was mentioned a couple of times that this parameter can be actively

changed by a cell or bacteria. Here I will mention two ways of doing so. All experiments

on adaptive mutations put selective pressure on the bacteria. In the case of the lac

mutation, lactose is the only available carbon source and this lactose environment

selects bacteria which develop mutations in the lac− gene. Firstly, the lack of usable

nutrition puts the bacteria into stress, which alters their metabolism (109), which

changes the switching parameter σ introduced. A more error prone DNA polymerase

will lead to a higher value of σ. Secondly, although the lactose cannot be utilised, its

presence leads to a higher read-out rate of the lac gene (see lactose regulatory network),

and thus also increases the value of σ. This is of importance for the generation of

mutations. So far I discussed mechanisms how to excite a special base pair. For

turning the excitation into a permanent mutation a second step, the copying or error
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!∆

excitation

probability p0

Figure 5.27: This graphic compares the thermal (red) excitation probability with the

resonant mechanism (blue) given that energy of ~ω = 0.43eV is externally supplied. The

thermal excitation probability is given by p0 = exp(−~∆ + 0.43eV )/kT ). Over the range

of ~∆, i.e. the energy gap of a base pair, the thermal excitation probability is roughly

constant. For the resonant excitation mechanism, given by eq. 5.53 with 2λ = 10−4, there

is a sharp excitation peak.

correction of DNA polymerase, is required. The general interplay between excitation

of base pairs and read-out rate of genes is discussed in the next section.

5.5 Change or die!

Mutations are important for life. Without genetic change, life would be stuck in its

present form, and have little chance of further development. Viruses and bacteria seem

to be masters of using mutations to develop new skills and fight, for example, antibi-

otics. But when a random mutation occurs, there are two possible effects. Firstly, the

mutation does nothing harmful, i.e. all proteins and their expression mechanisms stay

functional, or even improves the performance of the bacteria. Such mutations are good

for the organism. Secondly, a mutation destroys an important functional protein. In

severe cases this might, in the long run, lead to the death of the organism. Before
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that, the bacteria will enter a state of stress, possibly because of starvation as in the

lac experment, see section 5.3.2. Is there a way of selectively undoing harmful muta-

tions? This would provide enormous evolutionary advantages. The problem is, after

a mutation becomes permanent1, there is no way for the bacteria to find out where

exactly the mutation occurred. The DNA itself is the backup of genetic information,

and if the backup is corrupted, it is impossible to tell where the error happened. How-

ever, if sequence dependant mutations are physically possible, there is a mechanism to

achieve exactly this. In the previous section I discussed the possibility that a quantum

resonance effect excites mainly only a specific base pair in a specific genetic neighbour-

hood into the excited tautomeric form. If the resonance condition is sufficiently sharp,

effectively only a single base pair is excited. But can this quantum signal indeed be

the cause of the observed mutation events? More precisely, it is in principle possible to

undo a malevolent mutation without mutating other, correct, base pairs? Similarly, if

the initial mutation causes no harm, is it possible not to increase the mutation rate? To

answer these questions, I will look again at the one-shot classical capacity discussed in

section 5.2.5.2. There are three parameters entering the formula of C1: the parameter

γ = 1− exp(−t/(γexc + γdec) describes how far a single base pair is in equilibrium with

its environment. Here I set γ = 1. It takes a relatively long time for a DNA polymerase

to reach the targeted base pair, hence it seems reasonable to assume that the base

pair is fully thermalised. Secondly, the parameter p = γdec

γexc+γdec
is the probability that

the system, once thermalized, is in the ground state. Usually, p ≈ 1, i.e. with nearly

certainty the base pair is in its ground state. The action of the quantum resonance

effect is to decrease this probability for a specific base pair. Note that this a physical

effect bound to the DNA sequence itself, not to a DNA polymerase molecule. If such

a resonance effect is possible within DNA, it would be nearly impossible for a living

cell to develop methods to avoid this signal corruption. Finally, the third parameter is

the copying probability σ. This parameter describes the likelihood that a measurement

is due to a DNA polymerase molecule, which would change the excited state into a

permanent mutation. Contrary to the parameter p, a cell can influence the value of σ.

It is, for example, known that in starvation bacteria change their DNA error correcting

mechanism. Instead of the normal DNA polymerase, a more error prone polymerase is

1I.e. enough time after copying has past such that no post-copying error correction scheme can

locate the error.
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used. This increases the value of σ. Fig. 5.28 shows the one-shot capacity dependent

on p and σ.

C1

functional, 
un-mutated gene

dysfunctional, 
mutated gene

functional, 
mutated gene

un-mutated gene,
increased read-out

Figure 5.28: This graphic shows one-shot classical capacity C1 dependant on p and

σ for γ = 1, i.e. the quantum state is fully thermalized for the effective temperature

given by p. In the normal case, un-mutated genome (p large) and cell not starving (σ

small) the classical capacity is maximal. In the case a random mutation decreases p, but

is otherwise harmless (σ small), the classical capacity is only little smaller. However, if

an initial mutation (p small) does harm to the cell (σ large), the prob. for a mutation

increases strongest. Other base pairs, with large p, have even in this changed DNA error

mechanism (σ large) little increased error probability. Thus a cell would in principle be

able to repair preferentially an initially mutated base pair.

Using a two step mechanism indeed allows to increase the mutation rate locally

where a harmful mutation occurred. The first parameter, the effective temperature p,

increases for initial mutations. If the mutation are harmless, σ remains unchanged.

That means the mutation out of an equilibrium sequence would only slightly increase

the mutation rate at this point. This effect might be so small that it remains unnoticed

in the thermal noise of random mutations. The bias in the codon code might have

developed this way. Mutations in the third position of a codon do not change the

functionality of the resulting protein. If, however, a mutation is harmful, and puts

stress on the bacteria, the bacteria will change its genetic read-out mechanism to a

more error-prone polymerase, which is described by a higher value of σ. This will lead
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to preferentially mutating sequences which already have mutations out of equilibrium.

Once the gene is ’repaired’, the bacteria changes again to the normal DNA read-out

mechanism, to prevent further mutations.

Such a change of DNA repair mechanism of course also has consequences for other

genes. If a gene has acquired neutral or beneficial mutations, under normal, un-stressed

conditions the probability for mutations increases little, see blue dot in fig. 5.29a.

However, if other genes activate a more error-prone DNA polymerase, excited base

pairs are more likely to mutate, fig. 5.29b. Thus a mutation in one gene could lead

to follow-up mutations in other genes. As this line of argument is only qualitative, it

needs further calculations to check the quantitative aspects of this model.

5.6 Summary

In this chapter I discussed information processing in living systems with focus on copy-

ing genetic information. I applied the concept of cq states to chemical reactions, and

showed how the occupancy of different quantum states influences the classical infor-

mation processing. I showed that in principle, given a small number of realistic as-

sumptions, bacteria can on average undo malevolent mutations. Indeed, the effects

discussed in this chapter do not need any coherence. By setting the parameter γ = 1,

all initial coherences of the involved cq states vanish, but still the existence of quantum

states plays a non-trivial role. But without coherences, is it still adequate to talk about

quantum effects? Violation of Bell’s inequality, quantum computers, etc. heavily rely

on the magic ingredient superposition aka coherence. Here, however, I mainly discussed

energy levels and effective temperatures. By considering the modest, down-to-earth be-

ginning of quantum mechanics, one realises these two concepts are at the very heart

of quantum mechanics, and should not be dismissed as ‘trivial quantum mechanics’, as

they have considerable impact on the macroscopic world. The first breakthrough to our

modern understanding of the quantised world was in 1900, when Planck published his

work ‘on the theory of the distribution law of the normal spectrum’. He realised that

the spectrum of a black body can only be explained by assuming that energy is only

exchanged in discrete quanta. Five years later Einstein published that the existence of

discrete energy levels underlies the photoelectric effect. It is precisely these physical

effects that could enable living systems to exploit the possibility of sequence dependent
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mutations.

I hope the reader does not mind me to summarise again the key assumptions which

would enable sequence dependent mutations:

Existence of quantum state signalling point mutation

Some point mutations are induced by the occupancy of an excited state of nucleic base

pairs. Without the existence of such an energy level there is little possibility to signal

that this specific base pair should be mutated. In section 5.4 I estimated that such an

energy level can at least in principle exist.

Effective temperature changes significantly over different base pairs

In section 5.2.5 I showed that the occupancy of different states resembles an effec-

tive temperature for the system. Three effects contribute to the effective temperature,

namely the likelihood of excitation (γexc), the life time of the excited state (γdec) and

the copying probability (σ). While the copying probability can be influenced actively

by a bacterium, the excitation and de-excitation of a base pair are fundamental quan-

tum parameters determined by the physics of DNA itself (and its surrounding solvent

etc). If at least one of these two parameters is DNA sequence dependent, then a whole

class of mutations is also sequence dependent. This would change our understanding of

genetics drastically. One should note here that the computation of each parameter is

currently for all practical purposes impossible. Moreover, as it simultaneously involves

moving protons and electrons, most numerical approximations fail. Intensive research

is needed to fully understand whether this mechanism actually takes place.
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a) 
mutation probability
without stress

Mutational steps

b) 
mutation probability
with stress

Mutational steps

Figure 5.29: This graphic shows a sketch of the probability to mutate for a sequence of

DNA. In reality the probability to mutate for each base pair within a sequence will depend

on several parameters. Here, I consider only a one-dimensional mutation landscape. The

bars at the x-axis represent the discrete mutational steps. In (a) the cell or bacteria

is not subject to stress, i.e. has in general a smaller mutation probability, a relatively

flat mutational landscape. Over time, the sequence dependent mutational mechanism

will mutate genes along the landscape to the local minima, the equilibrium sequences.

However, random mutations will shift these equilibrium sequences uphill the potential. For

step local minimum random mutations can shift the equilibrium sequences only slightly

uphill, i.e. few or single mutations, see black circle. In case of a relatively flat local

potential minimum several mutations can occur without increasing the overall mutation

probability significantly, see blue circles. In (b) the cell or bacteria is subject to stress. As

a consequence, the mutation potential steepens. In case of single mutations there is a high

probability that the stress leads to back-mutations, which undo the initial mutations, as in

the case of adaptive mutations. In the case of several mutations, blue circles, the situation

is different. In addition to the possibility of back-mutations (right arrow) there is also the

possibility of on-going mutations (left arrow).
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6

Conclusions and Outlook

Does quantum mechanics play a non-trivial role in life? If it is possible, and

advantageous for the living system, the answer has to be yes! If there is a useful way

of harnessing quantum correlations, Nature’s 4 billion year research and development

program is bound to have found it. Confirming that a living system employs quantum

effects is hard, and needs to be proven individually for each system.

In the case of European Robin much progress has been achieved. The experimental

evidence from weak oscillating fields together with the detailed analysis of chapter 2

of this thesis provides strong evidence about the long coherence time of electron spins

in European Robins. However, it remains poorly understood why these this long

coherence time is beneficial or how it is achieved.

The second biological system under consideration in this thesis is DNA. In chapter

4 the electronic degree of freedom of nucleic acids is investigated. A harmonic model

for the coupling between electrons of neighbouring nucleic acids is developed. The

polarizability, which is different for the four nucleic acids, constitutes a local trapping

potential for the electrons. Van der Waals forces between neighbouring sites give a

coupling mechanism between sites. For realistic parameters this model predicts that

the electronic degree of freedom maintains coherence and entanglement even at body

temperature. This also means that the electronic degree of freedom is delocalised. As a

consequence, the precise value of the energy of the electronic eigenstates is also nucleic

acid sequence dependent. The model so far does not include broadening of the energy

levels due to coupling to vibrations. A more detailed analysis is needed to find out how

far the electronic degree is sequence dependent.
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While in chapter 4 the physical properties of DNA are investigated, in chapter 5

I discuss information flow in living systems from a general point of view. The con-

cept of cq states, known from quantum cryptography, is applied to biological systems.

The Born-Oppenheimer approximations motivates the separation of molecules into a

classical part, that reliably encodes classical information, and a quantum part, that

processes the classical information by determining the outcome of chemical reactions.

If, due to environmental influences, a molecule is in an unusual quantum state, logical

errors might occur. Sources for such errors are discussed.

In more detail the influence of quantum states on the copying fidelity of DNA is inves-

tigated. A simple model for copying genetic information is developed, which is strongly

motivated by the current understanding of DNA. The model consists of two genetic

letters encoding logical ‘0’ and ‘1’. The classical information can only be accessed by

measuring the quantum states of the two molecules, which are taken to be orthogonal.

However, the excited state of one molecule resembles the ground state of another. This

is taken to be the source of logical errors in copying genetic information. Mechanisms

for bringing the molecules into excited states are discussed. One possible mechanism

uses energy from the electronic degree of freedom. As the value of electronic eigen

energies is possibly sequence dependent, a physical mechanism transferring this energy

to the genetic letters might cause sequence dependent mutations. This is compared to

the experimental evidence from biology on non-random mutations. The consequences

of such a mechanism on bacteria are discussed. If possible, it would in-principle allow

bacteria on average to undo malevolent mutations with a non-zero probability.

This thesis only shows that such non-random mutations events are in-principle

possible, given that a number of physical parameters take certain values. More detailed

analysis is needed to further investigate the possibility of non-random mutations.

In addition to the discussed ideas on how quantum mechanics can affect biological

systems, here I will bring attention to two further concepts that might apply in biology.

6.1 Predictive power and QM

The title of this thesis is ’Quantum Coherence in biological systems’. So far everything

I discussed could also have been ’Quantum Coherence in non-equilibrium physical sys-

tems’. Spin chemical effects are mainly studied outside living birds, and stacks of
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nucleic acids are a priori not alive themselves. This reflects the problem of defining

biological systems. Biology refers to the study of living systems, but this just shifts the

problem to defining what life is. 1

Let me compare the motion of a bird and a kite. Both are flying under suitable

conditions in the sky, and yet there are distinct differences between the two systems.

The kite just obeys laws of physics in the sense of the following: If the wind changes

its direction, so will the kite, if the wind blows stronger or weaker, the kite will rise or

fall. Birds are different. While birds and kites have to obey the same laws of physics,

birds learned to react. Given a change in the wind, the bird will decide to change, for

example, the position of its wings, to counteract the change in wind. Or it might just

fly somewhere else, where the wind conditions are better for flying. The ability to react

to its environment is a feature that all living systems share. If one were able to design

a robot, that looks a bird, and makes the same decisions given a certain environmental

input, like a bird, then most people would not be able to distinguish the robot from

the living bird. How does a bird, or any other living system, achieve this? I will not

attempt to answer the question how far a bird is conscious about itself flying. But there

is clearly some sort of information-processing-and-predicting-the-future taking place in

the bird. This requires a lot of computing inside the bird. In more detail, the bird

needs to have a predictive model about itself and its environment. The bird needs to

be able to predict, for example, ’If the wind slows down, I will lose height’. If losing

height is not advantageous for the bird, it needs to decide what counter action to initi-

ate. The more information one stores about its environment, the better one can react

to it. If the future state about the environment is predicted correctly, one can either

adapt to changes or exploit resources. Although little is known about how exactly the

brain stores information, or how decisions are made, living organisms nevertheless have

to obey fundamental laws of physics and computation. Even though it is difficult to

determine how many bits of information an organism can store, it is easy to assert

that the total memory is finite. The more information an organism wants to store and

process, the more energy has to be spent on it. 2 One the other hand, just spending

1Well, life is what happens despite of what physicists consider possible.
2 The required amount of energy can be substantial. Humans are better at abstract mathematics

than monkeys because we optimised energy intake by cooking our food before eating, which allows us

to sustain a bigger brain.
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more energy on information processing does not necessarily improve predictions, as the

computational models used might be wasteful. Is there a way to determine the minimal

amount of resources that need to be spent for simulating one’s environment, and clas-

sify the efficiency of the computational model? Computer science developed theoretical

models to measure exactly this. It has been shown (118) that using QM allows to pre-

dict the future more efficiently, i.e. using less resources. The key idea is this: the state

of the environment is partitioned into equivalence classes. If two states lead to the same

future statistics, there is no need to distinguish between them, and they represent the

same equivalence class. If two states lead to different futures, they are distinguished

and stored as different states. Sometimes, however, the future statistics of two states

are very similar, but not completely the same. If the information is stored classically,

the two states leading to similar futures have to be stored fully distinguishable. Storing

the same information quantum mechanically requires less resources.

Maximising the predictive power of a brain thus requires using quantum mechanical

effects. While it is very difficult to determine whether living system actually use QM

to maximise their predictive power with given resources, the physically-possible most

efficient predictive black box does use quantum effects.

6.2 Life, levers and quantum biology

Levers are ubiquitous in everybody’s life. Their technological advantage allowed hu-

mans to become ever more sophisticated. While there are many different kinds of levers,

the simplest just needs a stone and a plank. Imagine a weight that is too heavy to

be lifted. When putting the plank over the stone and under the heavy object in the

correct way, it can be lifted with a relatively small amount of force. That means, with

an appropriate construction, a small mass can affect the motion of a large mass. The

principle of levers governs almost all processes of our daily life: any tool, from screw

drivers to hammers, uses leverage. In our cars the turning of the key (which requires

a tiny force) starts the engine (which sets free a big force). Computers are based on

transistors, whose basic functional principle is that a small electrical current controls

a bigger current. Levers are not bound to physical sytems. Even in the stock market

there exist levers in the form of options. But how about life? Did humans invent the

idea of levers, or did we just re-invent it?
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In the following I will argue that this simple principle is one key feature of life: life is

behaviour, life is physics beyond the postulate of equal a priori probability. Behaviour

can be regarded as controlled reaction to an environmental stimulus, which can be

decomposed into three key steps:

1) detecting a stimulus from the environment,

2) internal data processing leading to a decision about how to react (discussed in the

previous paragraph) and finally

3) amplification of small-energy decision, e.g. firing of neurones in the brain, to large-

scale reaction, for example moving one’s hand.

The energy scale difference between (2) and (3) is needed for showing the phenomena

of behaviour. Making a non-trivial decision usually requires to choose from many

possible actions. If the decision is not made on a significantly smaller system than

the organism itself, the whole organism would have to randomly stumble through the

possible reactions, until reaching an advantageous one. This would hardly resemble

the process of decision making. This is one of the reasons why biological phenomena

so stubbornly refuse to fit into a nice physical formula: The work horses of physics,

statistical physics and thermodynamics, are just not suitable to handle amplification

processes. One might argue that the reason we understand quantum mechanics so well

is that there is no lever effect possible. Each quantum is already the smallest possible

energy, no other smaller energy can affect it.

Now that we established that levers are important for life, we have to identity which

sort of levers actually occur in living systems. Shape is without doubt a lever, that

controls the outcome of reactions. If the shape of two molecules do not fit, they do not

react. Are there other possible levers? Presumably yes. Life is chemistry, and chemistry

is quantum mechanics. The existence and occupation of discrete molecular eigenstates

controls the outcome of chemical reactions. The spin chemical reactions underlying

the avian compass recently received much attention, see chapter 2 of this thesis. The

change of a single quantum number, the spin, may have macroscopic implication on the

direction European Robins choose to fly to. The way quantum mechanics controls the

outcome of chemical reactions constitutes a powerful lever. The physical possibility of

using quantum mechanics as a lever for chemical reactions, and the potential powerful

benefits for living systems, make it likely that Nature in its four billion year research

and development program learned to exploit these kind of quantum effects.
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The occurrence of adaptive mutations might be another example of a bio-quantum

lever. In chapter 5 it was argued that quantum mechanics allows, in principle, to

selectively excite a special base pair in a special gene into its tautomeric form. The

tautomeric form resembles an option for a mutation. If DNA polymerase detects the

tautomer quickly enough, it can lead to a permanent mutation. Other processes in the

cell control how often a certain gene is read out, i.e. how likely the optional mutations

are turned into actual mutations. A relatively small energy, around 20 times of ther-

mal energy, is needed to create a tautomer. The energetic consequences of mutations

on gene expression are huge, as they potentially decide between the life or death of

an organism. Thus the optional mutations created by tautomers would constitute a

powerful lever.

Das also war des Pudels Kern!

Quantum effects are ubiquitous in biological systems. Even though the why and how

of existence of quantum effects is seldom understood, there is little doubt about the

that. This thesis mentions many possibilities how harnessing quantum effects can be

advantageous for biological systems. I hope this work will trigger further research into

quantum biology.

116



References
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