
REALIZING AN AD+ MODEL

AS A DERIVED MODEL OF A PREMOUSE

ZHU YIZHENG

(B.Sc., Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2012

Acknowledgements

I would like to express my gratitude to Professor Feng Qi, my supervisor, for

his guidance during my study at National University of Singapore. As his student,

I have learned many wonderful insights into set theory from him. He and the

NUS mathematics department o↵ered me a chance to visit UC Berkeley and work

with Professor John Steel for about two semesters. The Berkeley visit was a great

experience for me. I would like to thank John Steel for his numerous help in

directing me to this project, explaining earlier results about it, and inspiring my

creativity. I am also indebted to everyone who made my Berkeley visit possible.

Especially, I an indebted to the graduate studies committee of NUS mathematics

department for financial supporting my visit to Berkeley.

I would like to thank everyone from Singapore logic group and Berkeley logic

group. I have benefited a lot from them. My gratitudes also go to Feng Qi,

Grigor Sargsyan, Shi Xianghui, John Steel and Nam Trang for their discussions and

suggestions on earlier versions of this paper during the Computational Prospects of

Infinity II: AII Graduate Summer School and Workshops in Singapore 2011. Many

iii

Acknowledgements iv

thanks to participants of the two conferences on core model induction and hod mice

that took place in Muenster in 2010 and 2011. The talks and conversations in the

two conferences gave me a lot of new fascinating ideas in inner model theory and

descriptive set theory.

Zhu Yizheng

February 2012

Contents

Declaration ii

Acknowledgements iii

Summary vii

1 Introduction 1

2 The S-operators 9

2.1 Preliminaries . 9

2.2 Rearranging stacks . 11

2.3 The S⇤,[0]-operator . 23

2.4 S-premouse . 36

2.5 The S[0]-operator . 42

2.6 The S-operators and the S⇤-operators 44

2.7 Defining strategy over an S-premouse 52

v

Contents vi

2.8 Iteration theory of S-premice . 73

2.9 Condensation of the S-operators . 77

3 The translation 95

3.1 Defining the translation . 95

3.2 Fine structure of potential S-premouse 104

3.3 Iterability . 115

3.4 Finishing the largest-Suslin-cardinal case 124

4 The ADR + (cf(✓) = ! _ “✓ is regular”) case 140

4.1 The S-operators . 141

4.2 The translation . 147

Bibliography 153

Index 156

Summary

Assuming AD++V = L(P(R)), and there is no proper class inner model containing

all the reals that satisfies ADR +“✓ is regular”, and assuming cf(✓) is not singular

of uncountable cofinality, we prove that in some forcing extension, either V is a

derived model of a premouse or V embeds into a derived model of a premouse.

vii

Chapter 1
Introduction

Inner models are of the form L[~E], where ~E codes a coherent sequence of extenders.

They are supposed to produce detailed information of large cardinals. The study

of inner models has entered the region of many Woodin cardinals. Neeman [5] con-

structed an inner model with a Woodin limit of Woodin cardinals assuming there

is a Woodin limit of Woodin cardinals in V . Steel [18] showed that the core model

exists assuming there is no inner model with a Woodin cardinal. Computation of

the core model and its relatived versions can be used to produce many Woodin

cardinals as a consistency lower bound from other axioms such as PFA. In that

region, the main obstacle of producing inner models with higher large cardinals is

the iterability problem. It is hard to define a canonical iteration strategy when

Woodin cardinals are overlapped by extenders. Woodin’s derived model theorem

plays a important role in analysis of premice with Woodin cardinals. Models of

determinacy appears when we reach Woodin cardinals.

Given a set A ✓ X!, the game GA is played as follows. Two players take turns

to play elements of X as in the following diagram. I picks x(i) for even i and II

picks x(i) for odd i. Player I wins GA if the outcome of the play, x, is in C. GA

is determined, or A is determined, if either of the players has a winning strategy.

1

2

AD, or the axiom of determinacy, is the statement that for every A ✓ !!, GA is

determined. In this thesis, R refers to the Baire space !!.

I x(0) x(2) x(4) · · ·
II x(1) x(3) x(5) · · ·

Woodin defines AD+, a strengthening of AD. A set of reals A is 1-Borel if there

is a set of ordinals S, an ordinal � and a formula � such that

x ✓ A $ L↵[S, x] = �[S, x].

If � is an ordinal and A ✓ �!, then A is determined if either of the two players has

a winning strategy in the game GA. Ordinal determinacy is the statement that

for any � < ✓, any continuous function f : �! ! !!, for any set A ✓ !!, the set

⇡�1(A) is determined.

Definition 1.1 (Woodin). AD+ is the following statement.

1. ZF + AD +DCR.

2. Every set of reals is 1-Borel.

3. Ordinal determinacy.

AD+ has many nice consequences. A set of reals A ✓ !! is �-Suslin if there is

a tree T ✓ !! ⇥ �! such that A = p[T] = {x 2 !! : 9y 2 �!(x, y) 2 T}. � is a

Suslin cardinal if there is A ✓ !! such that A is � Suslin but not �-Suslin for every

� < �. ADR is the statement that for each A ✓ R!, the game GA is determined.

Theorem 1.2 (Woodin). Assume AD+.

1. The set of Suslin cardinals is closed.

3

2. ADR holds i↵ there is no largest Suslin ordinal.

AD contradicts the axiom of choice, but models of AD has fruitful contents, be-

cause they are naturally associated to models of large cardinals. The derived model

theorem establishes the relationship between AD+ and large cardinals.

Theorem 1.3 (Derived model theorem I, Woodin, [10, 3]). Let � be a limit of

Woodin cardinals. Let G be V -generic over Coll(!, < �).

R⇤
G =

[

↵<�

R \ V [G�↵],

Hom⇤
G = {A ⇢ R⇤

G : 9↵ < �9T, U 2 V [G�↵](A = p[T] \ R⇤
G

^V [G�↵] |= T, U are < �-complementing trees),

A⇤
G = {B ⇢ R⇤

G : B 2 V (R⇤
G) and L(B,R⇤

G) |= AD+}.

Then

1. For B,C 2 A⇤
G, either L(B,R⇤

G) ⇢ L(C,R⇤
G) or L(C,R⇤

G) ⇢ L(B,R⇤
G).

2. L(A⇤
G,R⇤

G) |= AD+.

3. For each B 2 P(R⇤
G) \ V (R⇤

G), the following are equivalent

(a) B is Suslin-co-Suslin in V (R⇤
G).

(b) B 2 A⇤
G and B is Suslin-co-Suslin in L(A⇤

G,R⇤
G).

(c) B 2 Hom⇤
G.

The model L(A⇤
G,R⇤

G) is called the derived model at �.

4

Theorem 1.4 (Derived model theorem II, Woodin, [13, 12]). Suppose AD+. Then

in some forcing extension over V , either V is a derived model or V embeds into a

derived model.

Descriptive set theory can be used in analysis of the derived model of a pre-

mouse. This leads to a completely new approach of investigating inner model

theory. Among those descriptive set theoretic tools, the Solovay sequence often

characterizes the complexity of an AD+ model. We define ✓ = sup{↵ : there is a

surjection f : R ! ↵}.

Definition 1.5. Assume AD+. The Solovay sequence is a closed increasing se-

quence h✓↵ : ↵ ⌦i defined as follows.

1. ✓
0

= sup{↵ : there is a surjection f : R ! ↵ such that f is OD}.

2. if ✓� < ✓ then

✓�+1

= sup{↵ : there is a surjection f : P(✓�) ! ↵ such that f is OD}.

3. if � is a limit, then ✓� = sup↵<� ✓↵.

It follows that ✓
⌦

= ✓.

Theorem 1.6 (Woodin,[11, 3]). Assume AD+.

1. If ✓↵ < ✓, then ✓↵ is a Suslin cardinal.

2. If ✓↵ < ✓, then ✓↵+1

is a Woodin cardinal in HOD.

Hence ADR holds if and only if the length of the Solovay sequence is a limit ordinal.

A hierarchy of determinacy axioms can be obtained by measuring the length of the

Solovay sequence. The following are the first few theories of this hierarchy. Here

5

T
1

<con T
2

means Con(T
2

) ` Con(T
1

) but Con(T
1

) 6` Con(T
2

).

AD+ <con AD+ + ✓
1

= ✓ <con AD+ + ✓
2

= ✓ <con AD+ + ✓! = ✓ <con · · ·
<con AD+ + ✓!1 = ✓ <con AD+ + ✓!1+1

= ✓ <con · · ·
<con ADR + “✓ is regular” <con · · ·

Earlier results demonstrate a correspondence between some of those determinacy

axioms and large cardinal axioms.

Theorem 1.7 (Woodin). 1. Con(AD+) $ Con(ZFC+”there are infinitely many

Woodin cardinals”).

2. Con(AD+ + ✓
1

= ✓) $ Con(ZFC + 9�9 < �(� is a limit of Woodins and

 is < �-strong)).

3. Con(ADR) $ Con(ZFC + 9�(� is a limit of Woodins and a limit of < �-

strongs)).

The HOD computation, among other applications, builds a bridge between pre-

mice and AD+ models. Steel and Woodin [17, 15] showed that HODL(R) has fine

structure, assuming AD holds in L(R). Sargsyan [7] extended their results by car-

rying out a detailed analysis of HOD of AD+ models below ADR +“✓ is regular”.

Theorem 1.8 (Sargsyan,[7]). Assume AD+ + V = L(P(R)) and suppose that

there is no proper class inner model containing the reals and satisfying ADR +

“✓ is regular”. Then V HOD
✓ is a hod premouse.

A hod premouse is a special kind of layered hybrid premouse. The reader might

refer to [7] on the definition of hod premouse and related concepts. If P is a hod

premouse, its Woodin cardinals and limits of Woodin cardinals are enumerated as

h�P↵ : ↵ < �Pi in the increasing order. The hierarchy between �P↵ and �P↵+1

are of

6

the type L[~E,⌃P
↵], where ⌃

P
↵ is the iteration strategy of P(↵). Here P (↵) = P|µ↵,

where hµ↵ : ↵ < �Pi is a part of the language of P , and has the property that P |=
P(↵) = Lp�⌃<↵

! (P |�↵). All those �P↵ ’s are strong cutpoints, namely no extender

E on the P sequence with crt(E) �P↵ < lh(E). This makes the large cardinal

structure in HOD much simpler than the mouse giving arise to the corresponding

AD+ model. Many of the complexities are absorbed into the iteration strategies

coded in hod mice. Therefore, hod mice are much easier to analyze than mice.

(P ,⌃) is a hod pair if ⌃ is an iteration strategy for P with hull condensation. We

are interested in hod pairs (P ,⌃) where ⌃ is fullness preserving and has branch

condensation. Any two such hod pairs can be compared to another such hod pair.

The comparison maps commute and form a direct limit. The direct limit is exactly

HOD|✓↵ if there is a largest Suslin cardinal, or HOD|✓ if ADR holds. Those �P↵ ’s

map exactly to members the Solovay sequence.

The main idea of one direction of theorem 1.7, from strongAD+-hypotheses to large

cardinals, expressed in terms of hod mice, is to translate the strategies coded in the

HOD sequence into extenders that overlap Woodins cardinals of HOD. Because

of the success of study of HOD in stronger AD+ models, it is a natural project to

generalize the translation to the region we understand HOD. Intuitively, stronger

AD+ models have more complicated HOD’s, and hence their strategies should give

more extenders overlapping Woodins. In this paper we prove the fine-structural

refinement of theorem 1.4.

Theorem 1.9. Assume AD+ + V = L(P(R)) and suppose that there is no proper

class inner model containing the reals and satisfying ADR + “✓ is regular”.

1. Suppose there is a largest Suslin cardinal. Then there is a forcing P such that

in the P-generic extension, there is a premouse N such that letting � = !V
1

,

(a) N |= � is a limit of Woodin cardinals.

7

(b) V is a derived model of N at �.

2. Suppose ADR holds and cf(✓) = !_ “✓ is regular”. Then there is a forcing

P such that in the P-generic extension, there is a premouse N and a map j

such that

(a) N |= � is a limit of Woodin cardinals.

(b) j : V ! M is elementary, where M is a derived model of N at ✓.

Theorem 1.9 mostly answers the fundamental question: what are models of AD++

V = L(P(R)) when V is below ADR + “✓ is regular”? In particular, if V is the

minimum model of ADR + “✓ is regular”, then there is a premouse N such that

V embeds into the derived model of N . Besides, the translation procedure that is

used in the proof e↵ectively gets rid of extenders on mice over Woodins and essen-

tially reshape them into strategies, thus reducing the complexity of the iterability

problem. The connection that is drawn between mice, which represents large cardi-

nals, and hod mice, which can be easily iterated, contributes to the understanding

of inner models with Woodins and HOD of AD+ models.

We assume familiarity with [7]. The main idea in proving theorem 1.9 is a trans-

lation procedure between extenders that overlap certain Woodins and strategies.

Sections 2 and 3 handles the case ✓ = ✓↵+1

. In Chapter 2, we define the S-operators,

which are intended to code fragments of the iteration strategy while at the same

time corresponding to extenders that overlap Woodins. We shall work with a fixed

hod pair (P ,⌃) such that ⌃ is fullness preserving and has branch condensation, and

⌃ corresponds to the largest Suslin pointclass. We shall demonstrate how fragments

of ⌃ are computed from those S-operators. In Chapter 3, we define a translation

procedure, which turns extenders that overlap a certain Woodin cardinal into an

S-operator and vice versa. Section 3.4 concludes the proof of the ✓ = ✓↵+1

case,

using the translation procedure and a reflection argument. Chapter 4 handles the

8

ADR case. The S-operators defined in Section 2 and the translation defined in

Section 3 applies to the ADR case with slight modification. So we will be sketchy

there and hopefully the reader can fill out the details.

The premouse we get from Theorem 1.9 is well below a Woodin limit of Woodins.

Starting from a typical strong determinacy hypothesis, such as AD+ + ✓ = ✓!2+1

,

or ADR + “✓ is regular”, one could possibly investigate the exact large cardinal

strength of the premouse we get from Theorem 1.9, thus obtaining a lower bound

of that strong determinacy hypothesis. A more interesting question is to generalize

Theorem 1.9 beyondADR+“✓ is regular”. Sargsyan in an unpublished work carried

out theHOD analysis ofAD+ models below LST (the largest ✓ is a Suslin cardinal).

The translation is likely to generalize as long as HOD of an AD+ model is well

understood. A plausible conjecture is that starting from LST, we may get a mouse

with a Woodin limit of Woodins.

Conjecture 1.10. [6, Open problem 2] Con(LST) ! Con(“there is a Woodin limit

of Woodins”).

Chapter 2
The S-operators

In this chapter, we define the S-operators. Suppose for the moment we have a hod

pair (P ,⌃). An S-operator will code a fragment of ⌃. We shall build S-premice,

by enhancing premice with an additional predicate S. S-premice are essentially

⌃-premice, but strategies are regrouped in a very careful way. We recall that in

a ⌃-premouse, at each step in the relativized Gödel construction, we throw in

the ⌃(~T) into the next few steps, where ~T is the least stack that is not told the

strategy. However, an S-operator, in cases of interest, tells a part of ⌃ that will

correspond exactly to an extender. The main job is to cut ⌃ into pieces in a way

that each piece correspond to an extender in the future. There is a di�culty in

the case when P |= cf(�P) is measurable, since by hitting that measure, we create

more Woodins and thus have to take care of those new Woodins. This di�culty is

resolved by rearranging stacks, which is done in Section 2.2.

2.1 Preliminaries

Following the notation of [4], an iteration tree is a tuple T = hT, deg,D, hE↵,M⇤
↵+1

:

↵ + 1 < ⌘ii. We let MT
↵ be the ↵th model of T , ET

↵ be the ↵th extender of T ,

9

2.1 Preliminaries 10

T↵ = crt(ET
↵), ⌫

T
↵ = lh(ET

↵), i
T
�↵ : MT

� ! MT
↵ be the iteration map when � <T ↵,

(�,↵] \DT = ;.
We fix our terminologies. In this paper, an iteration tree is always a normal tree.

By a stack, we mean a stack of iteration trees. Stacks are usually denoted by ~T , ~U ,
etc, with a vector symbol on top.

Let ~T be a stack on P . Let ⌫ < �P . We let ~T � P(⌫) be the substack of ~T by

throwing away essential components that are above the image of P(⌫). We say

that ~T lives below P(⌫) if ~T = ~T �P(⌫). We say that ~T lives above P(⌫) if all

extenders of ~T are above P(⌫).

If P ,Q are hod premice, P Chod Q, ~T is a stack on P , we let ~T (Q) be the stack

on Q with the same tree structure, extenders, degree sequence as ~T has, if every

model is wellfounded.

If P ,Q,R are hod premice such that P Chod R, P Chod Q, ~T is a stack on ~R such

that ~T is based on P , then we let ~T (Q) = (~T �P)(Q).

The following observation will be useful, whose proof is straightforward.

Lemma 2.1. Let P be a hod premouse, ⌫ < �P . Let ~T be a stack on P(⌫) with

last model Q such that i~T exists. Suppose that ~T (P) is defined. Let R be the last

model of ~T (P). Then R is the ultrapower of P by the long extender derived from

i~T ��P⌫ . i
~T (P) : P ! R is the ultrapower map.

Suppose that j : M ! N is ⌃
1

-elementary. Given a stack ~T on M, we let k~T be

the copying stack on N . If ⌃ is an iteration strategy on N , let ⌃j be the pullback

strategy on M. If ⌃ is an iteration strategy on N , ~T is a stack on N according to

⌃, let ⌃~T be the tail of ⌃ defined by ⌃~T (~U) = ⌃(~T _ ~U).

2.2 Rearranging stacks 11

2.2 Rearranging stacks

Lemma 2.2. Suppose that P is a hod premouse. Let ⇣ < �P be an ordinal. Suppose

that T is an iteration tree on P above P(⇣) with last model Q
1

, U is an iteration

tree on P with last model Q
2

below P(⇣) such that iU exists. Let R
1

be the last

model of the tree U(Q
1

) on Q
1

. Suppose that all models of the copying tree iUT
on Q

2

are wellfounded. Let R
2

be the last model of iUT . Let l : Q
1

! R
2

be

the copying map, j : Q
1

! R
1

be the associated tree embedding. Then there is a

deg(T)-embedding ⇡ : R
1

! R
2

such that ⇡ � j = l.

Proof. We assume ⇣ = 0 for simplicity. Since T is above P(0) and U is above P(0),

we may apply U to every model of T . For ↵ < lh(T), let hN ⇠
↵ : ⇠ < lh(U)i be

models of U(MT
↵). For ↵ < lh(T) a successor, let h(N ⇠

↵)
⇤ : ⇠ < lh(U)i be models

of U(M⇤T
↵). For ↵ < lh(T), let j⌘⇠↵ : M⇤U(MT

↵)

⌫ ! N ⇠
↵ be the tree embedding when

(⌘, ⇠]U \ DU = ;. When � = T � pred(�) T ↵ and (�,↵] \ DT = ;, it is easy

to see that U(M↵) is the copying tree of U(M⇤
�) according to iT�↵ : M⇤T

� ! MT
↵ .

Let �⇠�↵ : (N ⇠
�)

⇤ ! N ⇠
↵ be the copying maps for ⇠ < lh(U). For � < ↵ < lh(T),

because MT
� and MT

↵ agree up to �T� which is a cardinal in both models, we have

j⌫⇠� �j0⌫� (⌫T�) = j⌫↵ �j0⌫� (⌫T�)

whenever ⌫ U ⇠ and [0, ⇠]U has no drop. It is easy to see that when [0, ⇠]U has a

drop, then N ⇠
↵ = MU

⇠ .

For ⇠ < lh(U), if [0, ⇠]U has no drop, let hK⇠
↵ : ↵ < lh(T)i be the copying tree iU

0⇠T
based onMU

⇠ . Let hs⇠�↵ : �,↵ lh(T), � <T ↵, (�,↵]\DT = ;i be tree embeddings

of iU⇠ T . Let k0⇠
↵ : MT

↵ ! K⇠
↵ be copying maps. Note that for ⌫ <U ⇠, if [0, ⇠]U

has no drop, then hK⇠
↵ : ↵ < lh(T)i, hs⇠�↵ : �,↵ < lh(T), � <T ↵i are also models

and embeddings of iU⌫⇠i
U
0⌫T , the copying tree of i

0⌫T according to iU⌫⇠ : MU
⌫ ! MU

⇠ .

Let k⌫⇠↵ : K⌫
↵ ! K⇠

↵ be the copying maps for ↵ < lh(T). If [0, ⇠]U has a drop,

2.2 Rearranging stacks 12

then let K⇠
↵ = MU

⇠ , s
⇠
�↵ = id, k⇠↵ = iU⇠ , k

⌫⇠
↵ = iU⌫⇠. It is not hard to see that

hk⌫⇠↵ : ⌫ U ⇠, (⌫, ⇠]U \DU = ;i form a commuting system.

Claim 2.3. Let ↵ < lh(T). Let ⇠ < lh(U) be a limit ordinal. Then hK⇠
↵, k

⌫⇠
↵ : ⌫ U

⇠, (⌫, ⇠]U \DU = ;i is the direct limit of hK⌫
↵, k

⌫⌘
↵ : v U ⌘ <U ⇠, (⌫, ⇠]U \DU = ;i.

Proof. We show by induction on ↵.

When [0, ⇠]U has a drop, then by definition, K⇠
↵ = MU

⇠ , k
⌫⇠
↵ = iU⌫⇠. The claim

follows.

Assume from now on that [0, ⇠]U has no drop. When ↵ = 0, we also have K⇠
↵ = MU

⇠ ,

k⌫⇠↵ = iU⌫⇠, so the claim follows. When ↵ = � + 1, let � = T � pred(↵). We already

know that hk⌫⇠↵ : ⌫ <U ⇠i form a commuting system. All we need to see is that

for all c 2 K⇠
↵, there are ⌫ <U ⇠ and b 2 K⌫

↵ such that c = k⌫⇠↵ (b). We assume for

simplicity that [0,↵]T has no drop. The fine ultrapower case is similar.

Fix c 2 K⇠
↵. Let f 2 K⇠

�, a 2 [k⇠�(⌫
T
�)]

<! be such that c = s�↵(f)(a). By induction,

there is ⌫ <U ⇠ and g, b 2 K⌫
� such that f = k⌫⇠� (g), a = k⌫⇠� (b). Then

c = s⇠�↵(k
⌫⇠
� (g))(k⌫⇠� (b))

= k⌫⇠↵ (s⌫�↵(g))(k
⌫⇠
� (b))

= k⌫⇠↵ (s⌫�↵(g))(k
⌫⇠
↵ (b)) by agreement in copying

= k⌫⇠↵ (s⌫�↵(g)(b)).

Suppose then ↵ is a limit. Fix c 2 K⇠
↵. Let � <T ↵, b 2 K⇠

� be such that c = s⇠�↵(a).

By induction, there is ⌫ <U ⇠ and b 2 K⌫
� such that a = k⌫⇠� (b). So

c = s⇠�↵(k
⌫⇠
� (b))

= k⌫⇠↵ (s⌫�↵(b)).

2.2 Rearranging stacks 13

Claim 2.4. Suppose that ↵ < lh(T), ⌫ U ⇠, [0, ⇠]U \DU = ;. Then

j⌫⇠↵ �N ⌫
↵ (0) = k⌫⇠↵ �K⌫

↵(0),

Proof. We show by induction on ↵. When ↵ = 0, the claim is immediate by

definition. When ↵ = � + 1 is a successor, let � = T � pred(↵). Fix some

c 2 K⌫
↵(0). Suppose that c = s�↵(f)(a), for some f 2 K⌫

�(0), a 2 j0⌫� (�T�). Then

k⌫⇠↵ (a) = k⌫⇠� (a) by agreement in copying

= j⌫⇠� (a) by induction

= j⌫⇠↵ (a).

So

k⌫⇠↵ (c) = k⌫⇠↵ (s�↵(f)(a))

= s⇠�↵(k
⌫⇠
� (f))(k⌫⇠↵ (a))

= s⇠�↵(j
⌫⇠
� (f))(j⌫⇠↵ (a)) by induction hypothesis

= �⇠�↵(j
⌫⇠
� (f))(j⌫⇠↵ (a)) since �⇠�↵, s

⇠
�↵ agree below N ⇠

� (0)

= j⌫⇠↵ (�⌫�↵(f))(j
⌫⇠
↵ (a)) by copying

= j⌫⇠↵ (�⌫�↵(f)(a))

= j⌫⇠↵ (s⌫�↵(f)(a)) since �⌫�↵, s
⌫
�↵ agree below N ⌫

� (0)

= j⌫⇠↵ (c).

Suppose now ↵ is a limit. Fix c 2 K⌫
↵(0). Let � <T ↵ and b 2 K⌫

�(0) be such that

2.2 Rearranging stacks 14

c = s⌫�↵(b). Then

k⌫⇠↵ (c) = k⌫⇠↵ (s⌫�↵(b))

= s⇠�↵(k
⌫⇠
� (b))

= s⇠�↵(j
⌫⇠
� (b)) by induction

= �⇠�↵(k
⌫⇠
� (b))

= j⌫⇠↵ (�⌫�↵(b))

= j⌫⇠↵ (s⌫�↵(b))

= j⌫⇠↵ (c).

We plan to define ht⇠↵ : ↵ < lh(T), ⇠ < lh(U)i with the following properties.

1. t⇠↵ : N ⇠
↵ ! K⇠

↵ is an embedding. When degT (↵) = !, t⇠↵ is fully elementary.

When degT (↵) = n < !, t⇠↵ is r⌃n+1

-elementary.

2. t0↵ = idMT
↵
,

3. t⇠
0

= idMU
⇠
,

4. If [0, ⇠]U has a drop, then t⇠↵ = idMU
⇠
,

5. If [0, ⇠]U has no drop, then t⇠↵ �N ⇠
↵(0) = idN ⇠

↵(0)
,

6. If ⌫ <U ⇠ and (⌫, ⇠]U has no drop, then k⌫⇠↵ � t⌫↵ = t⇠↵ � j⌫⇠↵ ,

7. If � <T ↵ and (�,↵]T has no drop, then s⇠�↵ � t⇠� = t⇠↵ � �⇠�↵,

8. If � < ↵ and [0, ⇠]U has no drop, then t⇠� �j0⇠� (⌫T�) = t⇠↵ �j0⇠� (⌫T�),

9. If [0, ⇠]U has no drop, ↵ = � + 1 is a successor, � = T � pred(↵), then for all

c 2 N ⇠
↵, one of the following holds.

2.2 Rearranging stacks 15

(a) degT (a) = ! and there are b 2 [j⇠�(⌫
T
�)]

<!, g 2 (N ⇠
↵)

⇤ such that t⇠↵(c) =

[t⇠�(b), t
⇠
�(g)]k0⇠� (ET

�)

.

(b) degT (a) = n < ! and there are b 2 [j⇠�(⌫
T
�)]

<!, g a r⌃n+1

-Skolem term in

(N ⇠
↵)

⇤ such that t⇠↵(c) = [t⇠�(b), t
⇠
�(g)]k0⇠� (ET

�)

.

Figure 2.1 illustrates the interactions among the maps arising from rearranging a

tree. We define t⇠↵ by induction on lexicographic ordering on (↵, ⇠).

When ↵ = 0, let t⇠↵ = idMU
⇠
for all ⇠ < lh(U).

When ↵ = � + 1 is a successor, let � = T � pred(↵). We shall define t⇠↵ by

a subinduction on ⇠. When ⇠ = 0, let t⇠↵ = idMT
↵
. When ⇠ = ⌘ + 1, denote

⌫ = U � pred(⇠). In case [0, ⇠]U has a drop, we let t⇠↵ = idMU
⇠
. Assume now [0, ⇠]U

has no drop. We also assume for simplicity that [0,↵]T has no drop. Otherwise we

deal with r⌃n+1

-Skolem terms instead. We define t⇠↵ : N ⇠
↵ ! K⇠

↵ as follows. Fix

c 2 N ⇠
↵. There is a 2 [⌫U⌘]

<! and f 2 N ⌫
↵ such that c = [a, f]UE⌘

. By property 10

of t⌫↵, there is b 2 [j⌫�(⌫
T
�)]

<! and g 2 (N ⌫
↵)

⇤ such that t⌫↵(f) = [t⌫�(b), t
⌫
�(g)]k0⌫� (ET

�)

.

Let h be the transpose of g, i.e. h(x)(y) = g(y)(x) for all x, y. We set

t⇠↵(c) = [t⇠�(j
⌫⇠
� (b)), t⇠�([a, h]EU

⌘
)]k0⇠� (ET

�)

We should check that t⇠↵ is well-defined and elementary. Take a formula �(·) with

2.2 Rearranging stacks 16

M⇤T
↵ MT

↵

(N ⌫
↵)

⇤ N ⌫
↵

(K⌫
↵)

⇤ K⌫
↵

(N ⇠
↵)

⇤ N ⇠
↵

(K⇠
↵)

⇤ K⇠
↵

j⌫�

t⌫�

k⌫�

k⌫⇠�

j⌫⇠�

t⇠�

j⌫�

t⌫↵

k⌫↵

k⌫⇠↵

j⌫⇠↵

t⇠↵

iT�↵

tree embedding of T

�⌫
�↵

copying map

s⌫�↵

tree embedding of k⌫0T

�⇠
�↵

copying map

s⇠�↵

tree embedding of k⇠0T

c
o
p
y
i
n
g
m
a
p
s

c
o
p
y
i
n
g
m
a
p
s

t
r
e
e
e
m
b
e
d
d
i
n
g
s
o
fU

(M
⇤↵
) T

t
r
e
e
e
m
b
e
d
d
i
n
g
s
o
fM

T↵

Figure 2.1: Rearranging a stack

2.2 Rearranging stacks 17

one free variable as an example,

N ⇠
↵ |= �(c)

! 9A 2 (EU
⌘)a8x 2 A N ⌫

↵ |= �(f(x))

! 9A 2 (EU
⌘)a8x 2 A K⌫

↵ |= �(t⌫↵(f)(x)) since t⌫� �N ⌫
↵ (0) = id by 5

! 9A 2 (EU
⌘)a8x 2 A {y < crt(k0⌫

� (ET
�)) : (K⌫

↵)
⇤ |= �(t⌫�(g)(y)(s

⌫
�↵(x)))} 2 (k0⌫

� (ET
�))t⌫�(b)

! 9A 2 (EU
⌘)a8x 2 A {y < crt(k0⌫

� (ET
�)) : (K⌫

↵)
⇤ |= �(t⌫�(g)(y)(x))} 2 (k0⌫

� (ET
�))t⌫�(b)

(since s⌫�↵ �(K⌫
↵)

⇤(0) = id and crt(EU
⌘) < o((K⌫

↵)
⇤(0)))

! 9A 2 (EU
⌘)a8x 2 A {y < crt(j0⌫� (ET

�)) : (N ⌫
↵)

⇤ |= �(g(y)(x))} 2 (j0⌫� (ET
�))b

(since t⌫� �⌫T� = t⌫� �⌫T� by 8)

! {y < crt(j0⌫� (ET
�)) : (N ⇠

↵)
⇤ |= �(j⌫⇠� (g)(j⌫⇠� (y))(a))} 2 (j0⌫� (ET

�))b

! {y < crt(j0⇠� (ET
�)) : (N ⇠

↵)
⇤ |= �(j⌫⇠� (g)(y)(a))} 2 (j0⇠� (ET

�))j⌫⇠� (b)

since j⌫⇠� �j0⌫� (⌫T�) = j⌫⇠� �j0⌫� (⌫T�)

! {y < crt(k0⇠
� (ET

�)) : (K⇠
↵)

⇤ |= �(t⇠�(j
⌫⇠
� (g))(y)(a))} 2 (k0⇠

� (ET
�))t⇠�(j

⌫⇠
� (b))

(by elementarity of t⇠�, and t⇠� �j⇠�(⌫T�) = t⇠� �j⇠�(⌫T�) by 8)

! {y < crt(k0⇠
� (ET

�)) : (K⇠
↵)

⇤ |= �(t⇠�(j
⌫⇠
� (h))(a)(y))} 2 (k0⇠

� (ET
�))t⇠�(j

⌫⇠
� (b))

! {y < crt(k0⇠
� (ET

�)) : (K⇠
↵)

⇤ |= �(t⇠�(j
⌫⇠
� (h)(a))(y))} 2 (k0⇠

� (ET
�))t⇠�(j

⌫⇠
� (b))

(by 5 on t⇠�)

! K⇠
↵ |= �([t⇠�(j

⌫
�⇠(b)), t

⇠
�([a, h]EU

⌘
)]k0⇠� (ET

�)

).

So t⇠↵ is well-defined and elementary. We need to verify that t⇠↵ has properties 1-9.

9 is clear by definition. The rest are easy except 5,8. For 5, let c < N ⇠
↵(0). We

may write c = [a, f]EU
⌘
, where a 2 [⌫U⌘]

<!, f 2 N ⌫
↵ , f : U⌘ ! N ⌫

↵ (0). By property 9

on t⌫↵, there is b 2 [j⌫�(⌫
T
�)]

<! and g 2 (N ⌫
↵)

⇤ such that t⌫↵(f) = [t⌫�(b), t
⌫
�(g)]k0⇠� (ET

�)

.

2.2 Rearranging stacks 18

It is easy to check by definition that t⇠↵ �⌫U⌘ = id. Therefore

t⇠↵(c) = t⇠↵(j
⌫⇠
↵ (f)(a))

= k⌫⇠↵ (t⌫↵(f))(t
⇠
↵(a))

= k⌫⇠↵ (f)(t⇠↵(a)) by property 5 on t⌫↵

= k⌫⇠↵ (f)(a)

= j⌫⇠↵ (f)(a) by Claim 2.4

= c.

To see 8, we need to check that t⇠� � j0⇠� (⌫T�) = t⇠↵ � j0⇠� (⌫T�). Fix c < j0⇠� (⌫T�). We

may write c = j⌫⇠↵ (f)(a), where a 2 [⌫U⌘]
<!, f 2 N ⌫

↵ , f : U⌘ ! j0⌫� (⌫T�). Then

t⇠↵(c) = t⇠↵(j
⌫⇠
↵ (f)(a))

= k⌫⇠↵ (t⌫↵(f))(t
⇠
↵(a))

= k⌫⇠↵ (t⌫�(f))(t
⇠
↵(a)) By property 9 on t⌫↵

= k⌫⇠↵ (t⌫�(f))(a)

= t⇠�(j
⌫⇠
� (f))(a)

= t⇠�(j
⌫⇠
� (f)(a))

= t⇠�(c).

This finishes definition of t⇠↵ when ⇠ is a successor. When ⇠ is a limit ordinal, if

[0, ⇠]U has a drop, we again let t⇠↵ = idMT
↵
. Assume now [0, ⇠]U has no drop. We

know N ⇠
↵ is the direct limit of N ⌫

↵ for ⌫ <U ⇠ under i⌫⌘↵ for ⌫ <U ⌘ <U ⇠. By

Claim 2.3, K⇠
↵ is the direct limit of N ⌫

↵ under k⌫⌘↵ for ⌫ <U< ⌘ <U ⇠. We then let

t⇠↵ : N ⇠
↵ ! K⇠

↵ be the natural embedding. Properties 1-9 are immediate so let us

check 10. Fix c 2 N ⇠
↵. Let ⌫ <U ⇠ and a 2 N ⌫

↵ such that c = j⌫⇠↵ (a). By property

2.2 Rearranging stacks 19

10 of t⌫↵, there are b, g such that t⌫↵(a) = s⌫�↵(t
⌫
�(g))(t

⌫
�(b)). So

t⇠↵(c) = k⌫⇠↵ (t⌫↵(a))

= k⌫⇠↵ (s⌫�↵(t
⌫
�(g))(t

⌫
�(b)))

= s⇠�↵(t
⇠
�(j

⌫⇠
� (g)))(k⌫⇠� (t⌫�(b)))

= s⇠�↵(t
⇠
�(j

⌫⇠
� (g)))(t⇠�(j

⌫⇠
� (b)))

= [t⇠�(j
⌫⇠(b)
�), t⇠�(j

⌫⇠
� (g))]k0⇠� (ET

�)

.

This finishes the definition of t⇠↵ for all ⇠ when ↵ is a successor. When ↵ is a

limit, we know that for all ⇠ < lh(U), K⇠
↵ is the direct limit of K⇠

� under s⇠�� for

� <T � <T ↵, (�,↵]T does not drop. A similar proof as in Claim 2.3 shows that

N ⇠
↵ is the direct limit of N ⇠

� under �⇠�� for � <T ↵, (�,↵]T does not drop. We then

let t⇠↵ : N ⇠
↵ ! K⇠

↵ be the natural embedding t⇠↵(�
⇠
�↵(b)) = s⇠�↵(t

⇠
�(b)). Properties

1-9 are easily verified. Property 10 is vacuous.

Finally note that Klh(U)�1

lh(T)�1

= R
1

, N lh(U)�1

lh(T)�1

= R
2

, and tlh(U)�1

lh(T)�1

is an embedding from

R
1

to R
2

. tlh(U)�1

lh(T)�1

is the desired map ⇡ as in Lemma 2.2.

It is not hard to show the following extension of Lemma 2.2.

Lemma 2.5. Suppose that P is a hod premouse. Let ⇣ < �P be an ordinal. Suppose

that ~T is an stack on P above P(⇣) with last model Q
1

such that i~T exists, ~U is a

stack on P with last model Q
2

below P(⇣) such that i~U exists. Let R
1

be the last

model of the stack ~U(Q
1

) on Q
1

. Suppose that all models of the copying stack i~U ~T
on Q

2

are wellfounded. Let R
2

be the last model of i~U ~T . Let l : Q
1

! R
2

be the

copying map, j : Q
1

! R
1

and k : Q
2

! R
2

be associated tree embeddings. Then

there is an elementary embedding ⇡ : R
1

! R
2

such that ⇡ � j = l.

Definition 2.6 (Simple rearrangement of a stack). Suppose that P is a hod pre-

mouse, �P has measurable cofinality in P . Let ⇣ be an least ordinal such that

2.2 Rearranging stacks 20

�P⇣ > cfP(�P). Suppose that ~T _ ~U is a stack on P with last model R. Suppose

that ~T is above P(⇣), ~U is below P(⇣). Denote ~W = ~U(P). Suppose that i ~W

exists and that all models of the copying tree i ~W ~T are wellfounded. Let R⇤ be

the last model of i ~W ~T . Let ⇡ : R ! R⇤ be as in Lemma 2.2. We say that

(~W ,Q⇤, i ~W ~T ,R⇤, ⇡) is the simple rearrangement of ~T _ ~U with respect to ⇣.

Definition 2.7 (Rearrangement of a stack). Suppose that P is a hod premouse,

�P has measurable cofinality in P . Let ⇣ be an ordinal such that �P⇣ > cfP(�P).

Suppose that ~T is a stack on P with last model such that i~T (P(⇣)) is defined.

Let hM↵,M⇤
↵, ~T↵, i↵� : ↵ < � ⌘i be the essential components of ~T . Then the

rearrangement of ~T with respect to ⇣ is a sequence h~U↵,Q↵, ~V↵,R↵, �↵�, ⇡↵�, ↵ :

↵ < � ⌘i with the following properties.

1. For each ↵ < ⌘, ~U↵ is a stack on P below P(⇣) with last model Q↵ such that

i~U↵ exists, ~V↵ is a stack on Q↵ above P(⇣) with last model R↵.

2. �↵� : Q↵ ! Q�, ⇡↵� : R↵ ! R�, (↵) : M↵ ! R↵ are su�ciently elemen-

tary embeddings.

3. For each ↵ < ⌘, if ~T↵ is above i
0↵(P(⇣)), then ~U↵+1

= ~U↵, �↵↵+1

= id,

~V↵+1

= ~V↵_ ↵ ~T↵, ⇡↵↵+1

= i ↵ ~T↵ , ↵+1

: M↵+1

! R↵+1

is the copying map.

4. For each ↵ < ⌘, if ~T↵ is below i
0↵(P(⇣)), let ⇤ : M↵+1

! R↵+1

be the copy-

ing map. let (~U⇤,Q⇤, ~V⇤,R⇤, ⇡⇤) be the simple rearrangement of ~V↵_ ↵ ~T↵,
then ~U↵+1

= ~U↵_ ~U⇤, �↵↵+1

= i~U
⇤
, ~V↵+1

= i~U
⇤~V↵, ⇡↵↵+1

= ⇡⇤ � i ↵ ~T↵ ,

 ↵+1

= ⇡⇤ � ⇤.

5. For each ↵ < ⌘ limit, we have ~U↵ =
S
�<↵

~U�, ��↵ : Q� ! Q↵ is the direct

limit map. ~V↵ =
S
�<↵ ��↵

~V�, ⇡�↵ : R� ! R↵ is the direct limit map.

 ↵ : M↵ ! R↵ is the direct limit map.

We say that (~U⌘,Q⌘, ~V⌘) is the result of the rearrangement of ~T with respect to ⇣.

2.2 Rearranging stacks 21

It may happen that at some point, the copying stack ⇡↵ ~T↵ or ��↵ ~U� is not well-

founded. If any model of the copying stack is illfounded, we leave the rearrangement

of ~T undefined.

In the next two lemmas we show that given a hod pair (P ,⌃) such that ⌃ is fullness

preserving and has branch condensation, �P has measurable cofinality in P , ⇣ is

an ordinal such that �P⇣ > cfP(�P), then ⌃ can be recovered from

{(R,⌃R) : There is a stack T on P(⌫) with last model such that iT exists,

and R is a hod initial segment of the last model of T (P)}.

by rearranging stacks. The technique of rearranging stacks enables us to define the

SP-operator in Sections 2.5 and 2.6 in the measurable cofinality case by induction.

Lemma 2.8. Suppose that (P ,⌃) is a hod pair, ⌃ is fullness preserving and has

branch condensation. Let ~T , ~U be two stacks on P with last model Q,R. Let ~T 0 =

~T �nondrop, ~U0 = ~U �nondrop with last models Q0,R0 respectively. Suppose that

there is an elementary embedding ⇡0 : R0 ! Q0 such that i~T
0
= ⇡ � i~U0

. Suppose

in addition, if i~T does not exist, then there is a deg(~T)-embedding ⇡ : R ! Q such

that ⇡ �R� = ⇡
0

�R�. Then ⌃R = (⌃Q)⇡.

Proof. Note that ⌃ is positional from [7, Lemma 3.6.1]. So ⌃R, ⌃Q makes sense.

Suppose the conclusion is false. Let � be least such that ⌃R� 6= (⌃Q⇡(�))
⇡. We

may and shall assume by wellfoundedness that there is no ~T
1

, ~U
1

, Q
1

, R
1

, ⇡
1

, ⇡0

1

,

�
1

such that (~T _ ~T
1

, ~U_ ~U
1

, ⇡
1

) consistute another counter example to the lemma

in place of (~T , ~U , ⇡0), ⌃R1
�
6= (⌃Q1

⇡(�))
⇡1 , but i~T1(�) > �

1

.

Thus there is a stack ~V on ~R(�) according to ⌃R(�) without last model such that ⇡~V
is according to ⌃Q(j(�)), but ⌃Q(j(�))(⇡~V) = b 6= c = ⌃R(�)(~V). Let j : M~V

b ! Mj~V
b

be the canonical map.

Let hM↵,M⇤
↵, ~V↵, i↵� : ↵ < � ⌘ + 1i be the essential components of ~V .

2.2 Rearranging stacks 22

Case 1. ~T 0 = ~T .

If i⇡~Ub is defined, then because i⇡~Vb � i~T = i⇡~Vb �⇡ � i~U = j � i~V�i~U and both ~T _⇡~V and

~U_~V are according to ⌃P , we know that ⌃(~U_~V) = b by branch condensation.

Hence ⌃R(~V) = b. Contradiction.

So it must be that there is a drop along b. By minimality of �, � is a successor and

(~V �⌘)�R(� � 1) has no drop. Let N = (M⇤
⌘)

�. Then T⌘ is below M⌘ and above

N . If M~V
b is a ⌃N -iterable ⌃N -premouse using the pullback strategy (⌃M⇡~V

b
)⇡,

then j ensures that M~U
b is the correct Q-structure. So ⌃R(~V) = b, contradiction.

Therefore there must be a stack ~W on M~V
b above N according to (⌃M⇡~V

b
)⇡ with

last model N
1

such that N
1

is not a ⌃N -premouse. This means there is (~S, d) 2 N
1

such that ~S is a stack onN according to ⌃N , ~S_d is according toN
1

’s strategy, but

⌃N (~S) 6= d. Now let N
2

be the last model of j ~W , k : N
1

! N
2

be the copying map.

Then k(~S)_k(d) is a stack on k(N) according to N
2

’s strategy. Since ~T _⇡~V_~j ~W
is a stack according to ⌃, N

2

sees ⌃k(N)

correctly. So ⌃k(N)

(k(~S)) = k(d). As

k ~S_d is a hull of k(~S)_k(d), ⌃k(N)

(k ~S) = d by hull condensation of ⌃k(N)

. It

follows that ⌃N 6= (⌃k(N)

)k. Therefore, letting T 1 = ⇡~V � ⌘, U1 = ~V � ⌘, Q1

be the last model of ~T _ ~T 1, R1 be the last model of ~U_ ~U1, ⇡1 : R1 ! Q1 be

the copying map, �
1

be such that R1(�
1

) = N , we get a smaller counterexample.

Contradiction.

Case 2. ~T
0

6= ~T .

By minimality of �, (~V �⌘)�R(� � 1) has no drop. A similar argument as in Case

1 gives that if we let T 1 = ⇡~V �⌘, U1 = ~V �⌘, Q1 be the last model of ~T _ ~T 1, R1

be the last model of ~U_ ~U1, ⇡1 : R1 ! Q1 be the copying map, �
1

be such that

R1(�
1

) = N , then we get a smaller counterexample. Contradiction.

Lemma 2.9. Suppose that (P ,⌃) is a hod pair, ⌃ is fullness preserving and has

branch condensation, �P has measurable cofinality in P. Let ⇣ be an ordinal such

that �P⇣ > cfP(�P). Let ~T be a stack on P according to ⌃. Then the rearrangement

2.3 The S⇤,[0]-operator 23

of ~T with respect to ⇣ is defined and the result of the rearrangement is also according

to ⌃.

Proof. We show by induction on initial segments of essential components of ~T .

Suppose we already know that for all ⇠ < ⌘, ~T �⇠ has a rearrangement h~U ⇠
↵,Q⇠

↵, ~V⇠↵,
R⇠
↵, �

⇠
↵�, ⇡

⇠
↵� : ↵ < � ⇠i such that (~U ⇠

⇠ ,Q⇠
⇠, ~V⇠⇠ ,R⇠

⇠) is according to ⌃. It is easy

to see by definition that for all ↵ � < ⇠ < µ < ⌘, ~U ⇠
↵ = ~Uµ

↵ , Q⇠
↵ = Qµ

↵, ~V⇠↵ = ~Vµ
↵ ,

R⇠
↵ = Rµ

↵, �
⇠
↵� = �µ

↵�. So we will omit superscripts from now on.

If ⌘ is a limit ordinal, then the rearrangement of ~T , if defined, has result (
S
↵<⌘

~U↵,
S
↵<⌘ �↵⌘

~V↵). All we need to see is that
S
↵<⌘

~U↵_
S
↵<⌘ �↵⌘

~V↵ is according to ⌃.

Because each ~U↵ is according to ⌃ by induction,
S
↵<⌘

~U↵ is according to ⌃. By

Lemma 2.8, each �↵⌘~V↵ is according to ⌃[↵<⌘ ~U↵
. So

S
↵<⌘ �↵⌘

~V↵ is according to

⌃[↵<⌘ ~U↵

Assume now ⌘ = ⇠ + 1 is a successor ordinal. Let h~U↵,Q↵, ~V↵,R↵, �↵�, ⇡↵� : ↵ <

� ⇠i be the rearrangement of ~T⇠. Then ⇡0⇠ ~T⇠ is according to ⌃R⇠
by Lemma 2.8.

If ~T⇠ is above i
0⇠(P(⇣)), then ⇡

0⇠
~T⇠ will be appended to ~V⇠ to form the result of

rearrangement of ~T . So the lemma holds. If ~T⇠ is below i
0⇠(P(⇣)), then ⇡

0⇠
~T⇠

applies to Q⇠. So Q⇠
_⇡

0⇠
~T⇠(Q⇠) is according to ⌃. Let Q⇤ be the last model of

⇡
0⇠
~T⇠. Let �⇤ = i⇡0⇠ ~T⇠(Q⇠). Then �⇤~V⇠ is according to ⌃Q⇤by Lemma 2.8. Therefore

the result of the rearrangement of ~T is according to ⌃.

2.3 The S⇤,[0]-operator

Throughout the rest of chapter 2 and chapter 3 we assume ✓↵+1

= ✓. We fix a hod

pair (P ,⌃) such that ⌃ is super-fullness preserving and has branch condensation,

�1(P ,⌃) = ✓↵, and whenever R 2 pI(P ,⌃) [pB(P ,⌃) is such that �R is a

successor, then there is a sequence ~B = hBi : i < !i ✓ (B(R�,⌃R�)L(�(R,⌃R),R)

2.3 The S⇤,[0]-operator 24

such that ~B strongly guides ⌃.

Given a triple (Q, �⇤, �) and an ordinal ⌫ such that

1. Q is an ⌃-iterate of P .

2. ⌫ < � �⇤ �Q,

3. Q |= cf(�⇤) is measurable,

we call (µ, ⌧,R, �⇤, �) a one-step blow-up of (Q, �⇤, �) above Q(⌫) if

1. µ is least such that

�Qµ > max(�Q⌫ , cf
Q(�⇤)),

2. ⌧ : Q ! R is an iteration map below Q(µ) that is according to ⌃Q,

3. sup ⌧ 00� � �⇤ < ⌧(�⇤),

4. if � < �⇤, then �, �⇤ are limit ordinals, sup ⌧ 00� < �, R |= “ cf(�⇤) is measur-

able, but cf(�) is not measurable”.

Let I be the set of P = hPi : i ni = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni such that

1. ⇣
0

= ⇡
0

= ;, P
0

= P , ↵⇤
0

= ↵
0

 �P ,

2. for all 0 i < n, (⇣i+1

, ⇡i+1

,Pi+1

,↵⇤
i+1

,↵i+1

)is a one-step blow-up of (Pi,↵⇤
i ,↵i)

above Pi(⇡i(⇣i)).

In Sections 2.3 and 2.6, we are going to define the SP-operators for P in the index

set I. For such P, we denote final(P) = Pn(↵⇤
n). Essentially, the SP-operator

encodes ⌃
final(P)

in a very special way. This section is devoted to the special case

when P = [0] = h(;, ;,P , 0, 0)i.

2.3 The S⇤,[0]-operator 25

Given a countable transitive self-wellordered, we let a
+

= L⇠[a], where ⇠ is the

least such that L⇠[a] |= ZFC. So a
+

is the minimum model of ZFC containing a

as an element. We denote Cone(a) = {b : b is countable transitive swo, a 2 b
+

}.
Fix a real e

0

which codes P . Fix an enumeration e : ! $ |P| such that eT e
0

.

When M = hM,2, etc, ⇡i is an Lm-structure, we let M� , or the reduct of M, be

the Lm \ {⇡̇}-structure hM,2, etci.

Definition 2.10. Given a Lm-structure M = hM,2, a, etc,R, ⇡i such that M� |=
ZFC, M� = HullM

�
(a [{a} [⇡), let �n = (supHullM

�
(b [{b} [(⇡ � e)�n), so

that supn<! �n = o(M).

1. Suppose that ⇡ : P ! R is elementary. The e-amenable code of M is the

structure

hM,2, a, etc,R, {(�n, (⇡ � e)�n : n < !}i,

2. Suppose that � : P ! Q is an iteration map in M whose generators are

below �Q� , � < �Q. Suppose ⇡ : Q(� + 1) ! R is elementary such that

⇡ �Q(�) = id and ⇡ is the ultrapower map of Ult(Q(�+1), ⇡ �Q|�Q�+1

). Then

the (e, �)-amenable code of M is the structure

hM,2, a, etc,R, {(�n, ⇡(An)) : n < !}i

where

An = {(i, ⌘, �(e(i))(⌘)) : �(e(i)(⌘)) 2 �Q�+1

, i n, ⌘ < �Q� }

It is easy to see that amenable codes are amenable. The original structure is not

amenable, so the purpose here is defining an amenable version of them. Essentially,

we cut ⇡ into ! many pieces, pick an increasing cofinal sequence in M of length !,

and glue those pieces to those ordinals. We make sure no information is lost when

2.3 The S⇤,[0]-operator 26

passing to amenable codes. Obviously, M is recoverable from the e-amenable code

of M. In the second case, M is also recoverable from the (e, �)-code of M. Well,

from the regularity of �Q�+1

, each An as in the definition is in Q|�Q�+1

, so ⇡(An)

does make sense. Each ordinal ↵ less than �Q�+1

is of the form �(e(n))(⌘) for some

⌘ < �Q� . Hence ⇡(↵) = ⇡(An)(n, ⌘). After that, we can recover the whole ⇡ from

⇡ ��Q�+1

since ⇡ is the ultrapower map of Ult(Q, ⇡ ��Q�+1

).

The following little lemma will be useful. It confirms that the recovery process

passes to ⌃
1

-elementary substructures.

Lemma 2.11. Let M = hM,2, etc,R, ⇡i be as in Definition 2.10.

1. Suppose that ⇡ is a function on P. Let Me be the e-amenable code of M.

Suppose that j : K ! Me is ⌃
1

-elementary, j(e,P , R̄) = (e,P ,R). Then

there is N such that K is the e-amenable code of N , ⇡N : P ! R̄ is elemen-

tary, j00⇡̇N = j � ⇡̇N = ⇡̇M.

2. Suppose that � : P ! Q is an iteration map in M whose generators are

below �Q� , � < �Q. Suppose ⇡ : Q(� + 1) ! R is elementary such that

⇡ �Q(�) = id and ⇡ is the ultrapower map of Ult(Q(�+1, ⇡ ��Q�+1

)). Suppose

that Ult(Q, ⇡) is wellfounded. Let : Q ! Ult(Q, ⇡) be the ultrapower map.

Let Me,� be the (e, �)-amenable code of M. Suppose that j : K ! Me,�

is ⌃
1

-elementary, j(e,P , �̄, Q̄, �̄, R̄) = (e,P , �,Q, �,R). Then there is N
such that K is the (e, �̄)-amenable code of N . Moreover, Ult(Q̄, ⇡N) is also

wellfounded. Letting ̄ : Q̄ ! Ult(Q̄, ⇡N) be the ultrapower map, then there

is k : Ult(Q̄, ⇡N) ! Ult(Q, ⇡) such that j �R̄ ✓ k, k � ̄ � �̄ = � �.

Proof. We only show part 2. Existence of N follows from defining

⇡N (x) = j�1(⇡(j(x)))

2.3 The S⇤,[0]-operator 27

for x 2 Q̄(�̄+1). We show that K is the amenable of N . Let h�n, An : n < !i be as
in definition of the (e, �)-amenable code of M. Let �̄n = j�1(�n), Ān = j�1(An).

Clearly h�̄n, Ān : n < !i are the corresponding objects of defining the (e, �̄)-

amenable code of N , and ⇡N (Ān) = j�1(⇡(An)). For the “moreover” part, The

map

k : Ult(Q̄, ⇡N) ! Ult(Q, ⇡)

is defined in the canonical way. For a 2 [R̄]<!, f 2 Q̄, f is a function from � to

Q̄, � < �
¯Q
¯�+1

let

k([a, f]
¯Q
⇡N) = [j(a), j(f)]Q⇡ .

We check that k is well-defined and elementary. Take a formula � with only one

free variable as an example.

Ult(Q̄, ⇡N) |= �([a, f]
¯Q
⇡N)

$a 2 ⇡N ({u < � : Q̄ |= �(f(u))})
$j(a) 2 ⇡({u < j(�) : Q |= �(j(f)(u))})
$Ult(Q, ⇡) |= �(j(f)(j(a))).

The facts that k � ̄ � �̄ = � � and j �R̄ ✓ k are easy to verify.

Definition 2.12. Suppose that a is countable transitive self-wellordered. Let

(Q,⇤) be a hod pair such that ⇤ is fullness preserving and has branch condensation.

Suppose that R is a ⇤-premouse over a. We say that R is ⌃2

1

(⇤)-suitable if there

is � such that

1. R |= � is the unique Woodin cardinal,

2. R = Lp⇤

!(R|�) 1,

1
For b countable transitive self-wellordered such that ⇤ acts on a model in b, Lp⇤0 (b) = b,

2.3 The S⇤,[0]-operator 28

3. If ⇠ < �, then Lp⇤(R|⇠) |= ⇠ is not Woodin.

For ⌃2

1

(⇤)-suitable R, we let �R be the unique Woodin cardinal of R.

Definition 2.13. Let R be a ⌃2

1

(⇤)-suitable. We say that R is ⇤-good if R is

short-tree iterable and ⇤-iterable for maximal trees.

We assume that e
0

has su�ciently high Turing degree so that for all x�T e
0

, there

is a ⌃-good R over x. (cf. [14, 8])

Definition 2.14 (The S⇤,[0]-operator). Suppose that a is countable transitive self-

wellordered such that e 2 a
+

. We will define S⇤,[0](a) as follows. Let Q be ⌃-

good over a. Let N = L[~E][a]Q|�Q . By the proof of MSC (see [7]), there is

R 2 pI(P ,⌃) \N such that ⌃R �N 2 N
+

. Let FN be the direct system

{R, ⇡RR0 : R,R0 2 pI(P ,⌃) \N , ⇡RR0 is a ⌃-iteration map.}

Let Q1
N be the direct limit of FN and ⇡1

N : P ! Q1
N be the direct limit map, so

that Q1
N 2 N

+

. Let M be the transitive collapse of the structure

hHullN+(a [{a} [⇡1
N),2, a, ~EN , ;, Q1

N , ⇡1
N i.

Then S⇤,[0](a) is the e-amenable code of M.

The S⇤,[0]-operator is well defined, because any two ⌃-good ⌃-mice over a coiterates

to a common ⌃-good ⌃-mouse. We are unable to show that S⇤,[0] has condensation

in general. However, by reducing it to another operator H [0], we can show that

S⇤,[0] does have condensation above a fixed real. The reduction is similar to the

interdefinability between H ~A
0

and H ~A
1

in [19, Section 12]. In what follows we define

the H [0]-operator.

Lp

⇤
n+1(b) is a ⇤-mouse over b which is the stack of sound ⇤-mice over b that project to Lp

⇤
n(b).

Lp

⇤
!(b) = [n<! Lp

⇤
n(b).

2.3 The S⇤,[0]-operator 29

Fix a countable transitive swo. Let N be ⌃P(0)

-good over a. By the universality

proof ([19, Lemma 11.1]), N is full, in the sense that for any transitive swo b 2 N ,

the maximal L[~E][b]N constructions reaches Lp(b). Therefore N can define the

short-tree iteration strategy of P(0) by choosing branches whose Q-structure is

an initial segment of some model of the maximal L[~E] construction over common

part of the tree. Let U be the generic genericity iteration tree on P(0) attempting

to make all reals yT xg generic over the extender algebra of the final model,

whenever xg codes (a, g), g is a Coll(!, a) generic filter over the final model (cf.

[8]). We assume that U has maximal possible length, i.e. either U has a last model

R such that all yT xg are generic over the extender algebra of R, whenever xg

codes (a, g), g is a Coll(!, a) generic filter over R, or U is maximal.

We claim that U must be maximal, lh(U) = (|a|+)N , and ⌃P(0)

(U) /2 N . For

otherwise let R be the result of the generic genericity iteration, then R 2 N and

�R is singular in N . Let g be Coll(!, a) generic over N . Let xg be the real that

codes (a, g). Then R \ N [xg] = {y 2 R : y is OD(xg)} by fullness of N . But

R \ R[xg] = {y 2 R : y is OD(xg)} because ⌃ is fullness preserving. Since the

extender algebra of R is �R-c.c., R[xg] |= �R is regular. Contradiction.

So N is able to define the last model of U as R = Lp!(M(U)), but ⌃P(0)

(U) /2 N .

Let’s say the formula “U̇ is the correct maximal genericity iteration tree on Ṗ with

last model R with respect to ȧ” expresses the conjunction of the following

1. ZFC+“U̇ is a generic genericity iteration tree on Ṗ attemping to make all

reals recursive in a real generically coding ȧ according the short-tree strategy

as certified by my maximal L[~E]-construction,”

2. U̇ is maximal,

3. Ṙ = Lp!(M(U̇)) as certified by my maximal L[~E] construction,

4. �Coll(!,ȧ) all yT xg are generic over the extender algebra of Ṙ at � ˙R. ”

2.3 The S⇤,[0]-operator 30

Let ⇡ = iU
_
⌃P(0)(U) be the iteration map. Let M be the least initial segment

of N such that U ,R 2 M and M thinks “U is the correct maximal genericity

iteration tree on P (0) with last model R with respect to a”. Then H [0](a) is the

(e, idP)-amenable code of the transitive collapse of

hHullM(a [{a} [⇡),2, a, EM, ;,U ,R, ⇡i.

Note that �(U) = (|a|+)N = (|a|+)M, o(R) = (|a|+!)N = (|a|+!)M. Let ja :

H [0](a) ! hM,2, ⇡, etci be the associated anticollapse map. Let hBi : i < !i ⇢
B(;, ;) which strongly guides ⌃P(0)

. Then since ran(⇡) ✓ ran(ja), by strong branch

condensation, j�1

a (R) is full. We claim that this implies ja �(|a|+!)M = id. Firstly

note that ja � (|a|+)M = id. For otherwise, let = crt(j) < (|a|+)M. Then

ja() = (|a|+)M. So j�1

a (U) = U �. The fullness of ja�1(R) ensures that U � is

maximal. Contradiction. So ja � (|a|+)M = id. So ja �M(U) = id. Since j�1

a (R) is

full, j�1

a (R) = R. So ja �R = id.

Definition 2.15. Let S be any operator defined on an HC-cone. Let z be a real.

We say that S has condensation above z if for all a 2 Cone(z),

S(a) is defined,

and whenever

j : N ! S(a)

is ⌃
1

-elementary, j(b, z) = (a, z), then

N = S(b).

Lemma 2.16. H [0] has condensation above e.

2.3 The S⇤,[0]-operator 31

Proof. Suppose that j : H̄ ! H [0](a) is ⌃
1

-elementary. Set U = U̇H[0]
(a), R =

ṘH[0]
(a), ⇡ = ⇡̇H[0]

(a). Suppose that j(e, ā, Ū , R̄) = (e, a,U ,R), j00⇡̄ = ⇡. We want

to show that H̄ = H [0](ā). Since ran(⇡) ✓ ran(j), by strong branch condensation,

R̄ is full. Since H̄ is iterable using the strategy induced by ja � j : H̄ ! M,

the short-tree strategy of P(0) as defined in H̄ is the correct short-tree strategy.

Since H̄ |= “Ū is the correct maximal generic iteration tree with last model R̄
with respect to ā”, Ū is indeed maximal in V and R̄ = Lp!(M(U)) is the result

of the generic genericity iteration. This means that Ū = UH[0]
(a), R̄ = RH[0]

(a). So

(|ā|+n) ¯H = (|ā|+n)H
[0]

(ā) for all n < !.

In this paragraph we show that ⇡̄ = ⇡H[0]
(ā). This requires a bit care. Denote

⌃P(0)

(U) = b. From the predicate ⇡̇H[0]
(a) we can define partial branches hbi : i <

!i ✓ H [0](a) such that [i<!bi = b. This is because some ~B ✓ B(;, ;) guides ⌃P (0)

.

By elementarity we get b̄i = j�1(bi) in H̄. Denote b̄ = [i<! b̄i. All we need to show

is that b̄ = ⌃P(0)

(Ū). By branch condensation, it su�ces to show that there is

k : M ¯Ū
b
! MU

b such that ⇡ = k � i
¯b. But for each i, j �M ¯U

max(

¯bi)
an embedding

from M ¯U
max(

¯bi)
into MU

max(bi)
. Thus we get k : M ¯Ū

b
! MU

b as the embedding

between direct limits.

Let us compare H̄ and H [0] to line up their extender sequence, using strategies

induced by ja � j and jā respectively. Let T
1

be the tree on the H̄-side, with last

model H
1

, T
2

be the tree on the H [0](ā)-side, with last model H
2

. Suppose for

example the H [0](ā)-side does not drop. Then all critical point of T
1

are above

(|ā|+!) ¯H, so Ū , R̄ are not moved in T
1

. We claim that all critical points of T
2

are

also above (|ā|+!) ¯H. For otherwise, let ⇠ be least such that T2⇠ < (|ā|+!) ¯H, then

H̄ |= T2⇠ is measurable, which is absurd.

The discussion as in the last paragraph shows that (Ū , R̄) is not moved during

the comparison. Since both H [0](ā) and H̄ thinks “Ṡ is the least level such that

U ,R 2 Ṡ and Ṡ |= Ū is the correct generic genericity iteration tree on P(0) with

2.3 The S⇤,[0]-operator 32

last model R̄ with respect to a”, neither side has a drop and H
1

= H
2

. As H [0](ā)

and H̄ are both the ⇡̄-sound, i.e. the Skolem hull of ā [{ā} [⇡̄ in either model

is the model itself, H [0](ā) and H̄ are both isomorphic to HullH1(ā [{ā} [⇡̄). So
H [0](ā) = H̄.

Definition 2.17. Let S be any operator defined on an HC-cone. Let z be a

real. We say that S extends naturally to generic extensions above z if for all a is

countable transitive swo such that z 2 a
+

, for all g ✓ Coll(!, a) generic over S(a),

let xg be a real which codes (g, a), then

S(xg) = S(a)[xg]

Here S(a)[xg] is understood as follows. We defineM[xg] forM = hM,2, a, ~E, S,Q,

⇡, etci, g Coll(!, a)-generic over M, and xg coding g, by induction on o(M).

M[xg] = hM [xg],2, a, ~E[xg], S[xg],Q, ⇡, etci.

Here, ~E[g] is the extender sequence obtained by extending each extender on the E-
sequence to the small generic extension by adding xg. S[xg] is part of the inductive

definition.

Lemma 2.18. H [0] extends naturally to generic extensions above e
0

.

Proof. Let a 2 Cone(e
0

). Let H [0](a) = hH,2, ⇡, a,U ,R, ~Ei. Suppose that g

is Coll(!, a)-generic over H [0](a). We want to show that H [0](xg) = hH[xg],2
, ⇡, xg,U ,R, ~E⇤i, where ~E⇤ is the canonical extension of ~E to a small generic ex-

tension. Let Q,N be as in definition of H [0](a). Then Q[xg] is ⌃P(0)

-good over xg,

N [xg] is the output of the L[~E][xg]-construction of Q[xg]|�Q[xg].

Let V = UH[0]
(xg). We claim that U = V . Since rank(a

+

) = rank((xg)+), the linear

2.3 The S⇤,[0]-operator 33

iteration part on hitting the bottom measure are the same. It is then straightfor-

ward to check by induction that for all ⇠ lh(U), MU
⇠ [xg] = MV

⇠ , (E
U
⇠)

⇤ = EV
⇠ ,

where (EU
⇠)

⇤ is the canonical extension of EU
⇠ on the generic extension by adding

xg.

Once we know U = V , it is then easy to verify thatH [0](xg) = hH[xg],2, ⇡, xg,U ,R, ~E⇤i.

Lemma 2.19. S⇤,[0] extends naturally to generic extensions above e
0

.

Proof. Let a 2 Cone(e
0

). Let S⇤,[0](a) = hM,2, a, ~E, ;, ;, ⇡,Qi. Suppose that g

is Coll(!, a)-generic over S⇤,[0](a). We want to show that S⇤,[0](xg) = hM [xg],2
, a, ~Eg, ;, ;, ⇡,Qi. Let Q,N be as in definition of S⇤,[0](a). Then Q[xg] is ⌃-good

over xg, N [xg] is the output of the L[~E][xg]-construction of Q[xg]|�Q[xg]. It su�ces

to show that Q1
N = Q1

N [xg]
.

Clearly FN ⇢ FN [xg]. Let j : Q1
N ! Q1

N [xg]
be the canonical map induced by the

inclusion FN ⇢ FN [xg]. For all R 2 FN [xg], by doing the generic comparison as in

[7], there is R0 2 pI(R,⌃) \ FN . So j is onto. So Q1
N = Q1

N [xg]
.

For each n < !, x 2 R such that e
0

2 x
+

, let

S⇤,[0]
n (x) = ThS⇤,[0]

(x)|⇠n({x} [(⇡S⇤,[0]
(x) � e)�n),

H [0]

n (x) = ThH[0]
(x)|⌘n({x} [(⇡H[0]

(x) � e)�n).

where ⇠n, ⌘n are ordinals that ⇡S⇤,[0]
(x)�e)�n and ⇡H[0]

(x)�e)�n glue to. Then S⇤,[0]
n ,

H [0]

n are uniformly Turing invariant operators. We will show that hS⇤,[0]
n : n < !i

and hH [0]

n : n < !i are cofinal in each other.

For each n < !, x 2 R \ Cone(e), we claim that there is k < ! such that

S⇤,[0]
n (x)T H [0]

k (x), H [0]

n (x)T S⇤,[0]
k (x). Clearly S⇤,[0]

n (x), H [0]

n (x) 2 Lp(x). We

need to show the converse direction, for all y 2 Lp(x), there is k such that

2.3 The S⇤,[0]-operator 34

yT S⇤,[0]
k (x), yT H [0]

k (x). By soundness of S⇤,[0](x) and H [0](x), it su�ces to

show that Lp(x) ✓ S⇤,[0](x) \ H [0](x). Let Q,N be as in definition of S⇤,[0](x).

Let j : S⇤,[0](x) ! hN
+

,2, etci be the uncollapsing map when S⇤,[0](x) is defined.

By the proof of MSC (see [7]), there is R 2 pI(P(0),⌃) \ N \ ran(j) such that

⌃R �N 2 ran(j) and x is Coll(!, �R)-generic over R. Since ran(iPR) ✓ ran(j),

j�1(R) is full. So j�1(R)[x] is full. So Lp(x) 2 S⇤,[0](x). A similar proof shows

that Lp(x) 2 H [0](x).

According to [16], there is a real z and functions f
0

, f
1

, g
0

, g
1

: ! ! ! such that for

all n < !, for all x such that zT x,

S⇤,[0]
n (x) = {f

1

(n)}H
[0]
f0(n)(x),

H [0]

n (x) = {g
1

(n)}S
⇤,[0]
g0(n)(x).

Let z
0

be a real which codes e
0

, z
1

, f
0

, f
1

, g
0

, g
1

. As in the discussion of [19, Section

12], we can obtain e↵ective maps p�q 7! p�hq and p�q 7! p�sq such that for all

countable transitive swo a such that z
0

2 a
+

, for all c
0

, . . . , cn 2 a, for all ⌃
1

formula �(v
0

, . . . , vn),

S⇤,[0](a) |= �(c
0

, . . . , cn) $ H [0](a) |= �h(c
0

, . . . , cn, z0),

H [0](a) |= �(c
0

, . . . , cn) $ S⇤,[0](a) |= �s(c
0

, . . . , cn, z0).

We sketch the map p�q 7! p�hq here, in preparation for a more complicated version

of these e↵ective maps in Section 2.9. Suppose

S⇤,[0](a) |= �(c
0

, . . . , ck).

Then for all g ✓ Coll(!, a) generic over both S⇤,[0](a) andH [0](a) such that g(i) = ci

2.3 The S⇤,[0]-operator 35

for all i k,

S⇤,[0](xg) |= “S⇤,[0](a) |= �(g(0), . . . , g(k))| {z }
call this �1

”.

Hence

9l p�
1

q 2 S[0]

l (xg).

Let �
2

(z
0

) be the formula

z
0

codes f
0

, f
1

, g
0

, g
1

, and there is l 2 ! such that p�
1

q 2 {f
1

(l)}HR
f0(l)

(xg).”

Then

H [0](xg) |= �
2

(z
0

)

Let �h(v
0

, . . . , vk, z) be the formula

“for all g ✓ Coll(!, a) generic over H [0](a) such that g(i) = vi for all i k, then

V [xg] |= �
2

(z).”

Then

H [0](a) |= �h(c
0

, . . . , ck, z).

In a similar way we can define the map p�q 7! p�sq.

The upcoming Lemma 2.20 is essentially [19, Theorem 12.8]. Lemma 2.18 and

Lemma 2.19 show up in its proof when we look into S⇤,[0] and H [0] operated on

reals coding a generic enumeration of a, where the reduction can be applied.

Lemma 2.20. S⇤,[0] has condensation above z
0

.

Proof. Let j : M ! S⇤,[0](a) be ⌃
1

-elementary, j(z
0

, b) = (z
0

, a). We want to show

that M = S⇤,[0](b). Firstly we show that

HullH
[0]

(a)
1

(j00b) \ a = j00b.

2.4 S-premouse 36

Suppose that c 2 HullH
[0]

(a)
1

(j00b) \ a. Let � be a ⌃
1

-formula and b
1

, . . . , bn 2 b be

such that v 2 c i↵

H [0](a) |= �(v, j(b
1

), . . . , j(bn)).

Then v 2 c i↵

S⇤,[0](a) |= �s(v, j(b
1

), . . . , j(bn), z0).

Let

d = {v 2 b : M |= �s(v, b
1

, . . . , bn, z0)}.

Then j(d) = c. So c 2 j00b.

It follows that there is a ⌃
1

elementary k : N ! H [0](a) such that k �b [{b} = j �
b[{b}. By Lemma 2.16, N = H [0](b). Hence for all ⌃

1

formula � and b
1

, . . . , bn 2 b,

M |= �(b
1

, . . . , bn)

$ S⇤,[0](a) |= �(j(b
1

), . . . , j(bn))

$ H [0](a) |= �h(j(b
1

), . . . , j(bn), z0)

$ H [0](b) |= �h(b
1

, . . . , bn, z0)

$ S⇤,[0](b) |= �(b
1

, . . . , bn).

So M = S⇤,[0](b) by soundness of M and S⇤,[0](b).

2.4 S-premouse

The general SP-operator inherits a structure called S-premouse.An S-premouse is

roughly an ordinary L[~E]-structure with an additional unary predicate S. In this

section, we deal with the abstract concept of potential S-premouse. We will define

fine structural objects of a potential S-premouse.

2.4 S-premouse 37

Definition 2.21. Let

Lm = {2, ȧ, Ė, Ḟ , Ṡ, ḃ, Q̇, ⇡̇}

be the language extending the language of set theory where ȧ, ḃ, Q̇ are constant

symbols, Ė, Ḟ , ⇡̇ are unary predicate symbols, Ṡ is a unary predicate symbol. Let

a 2 Cone(z). A potential S-premouse over a is a structure

N = hN,2, a, ~E,F, S, b,Q, ⇡i

in the language of 2, ȧ, Ė, Ḟ , Ṡ, ḃ, Q̇, ⇡̇ with the following properties.

1. N = J
~E,S
⇠ [a] for some ⇠.

2. N is an acceptable J-structure.

3. ~E is a partial unary function.

4. For all y 2 S, y is a Lm-structure. For ⌘ < ⇠, let N|⌘ be the initial segment

of N given by

N|⌘ = hJ ~E,S
⌘ [a],2, a, ~E �⌘, E⌘, S \ J

~E,S
⌘ [a], b⌘,Q⌘, ⇡⌘i

where

(b⌘,Q⌘, ⇡⌘) =

8
><

>:

(by, Q̇y, ⇡̇y), if y 2 S is unique such that o(y) = ⌘.

(;, ;, ;), otherwise.

5. For all y 2 S, y = N|o(y). (Henceforth, if y, y0 2 S and o(y) = o(y0), then

y = y0.)

6. ~E_F is a fine extender sequence in the sense of [4], whose levels are under-

stood as N|⌘.

2.4 S-premouse 38

The unary predicate Ṡ is intended to be the range of various successor S-operators

on its sequence. The constant ḃ is the preimage of the S-operator of N , i.e. there

is an P such that N = SP(b). Q and ⇡̇ are special objects of the S-operator.

They are intended to be the direct limit map ⇡ : P ! Q. We devote some e↵ort

on fine structure of a potential S-premouse. This much details play a part in

the translation procedure of chapter 3, as a potential S-premouse must have, to

some extent, equivalent fine structure with some premouse. Several parameters

are essential to the study of S-premouse. The reader may recall the definition

of µM, ⌫M, �M for an ordinary Mitchell-Steel premouse M (cf. [4, 20]). We will

define µM, ⌫M, �M for a potential S-premouse M in parallel.

Definition 2.22. Let M = hM,2, a, ~E,F, S, b,Q, ⇡i be a potential S-premouse.

We say M is E-active if F 6= ;, S-active if b 6= ;, and passive otherwise.

1. If M, is E-active then letting ⌫ = ⌫(F) and = crt(F), we say M is of

E-type I if ⌫ = (+)M, M is of E-type II if ⌫ is a successor ordinal, and M
is of E-type III if ⌫ is a limit ordinal > (+)M. Set

µM =

⌫M = ⌫

If M is of E-type II, let G be the longest non-type-Z proper initial segment

of F . We let

�M = the unique ⇠ 2 dom(~E) such that G = E⇠.

if there is such a ⇠. If there is no such ⇠, then setting ⌘ = ⌫(F), we let

�M = (⌘, a, f), where F = [a, f]M|⌘
E⌘

2.4 S-premouse 39

and (a, f) is least in the order of construction on M |⌘ with this property. If

M is of E-type I or III, then set �M = 0.

2. If M is S-active, then set

µM = 0

genM = {o(a) < ⇠ < o(b) : ⇠ /2 HullM
�
(⇠ [⇡)}

⌫M = sup{⇠ + 1, o(a) : ⇠ 2 genM}.

We say that M is of S-type II if ⌫M is a successor ordinal, S-type III if ⌫M

is a limit ordinal> o(a), S-type IV if ⌫M = o(a). For o(a) ⇠ < ⌫M, set

X⇠ = HullM
�
(⇠ [⇡), M⇠ be the transitive collapse of hX⇠,2, etc, ⇡i.

If M is of S-type II, we say M is of S-type-Z if ⌫M is a limit ordinal,

⌫M � 1 = sup(genM \ ⌫M � 1), and ((⌫M)+)M = ((⌫M)+)M
⌫M�1

.

If M is of S-type II, let µ = sup{⇠ + 1 : ⇠ 2 genM \ (⌫M � 1)}, If Mµ is not

of S-type-Z, then set

�M = o(Mµ).

If Mµ is of S-type-Z, then let

�M = o(Mµ�1).

3.

lM = {⇠ 2 o(K) : There is no y 2 SK such that o(by) < ⇠ < o(y)}.

lM is called the levels of M.

4.

IM = {⌘ < o(M) : 8y 2 S(o(y) > ⌘ ! ⌫M|o(y) � ⌘)}.

2.4 S-premouse 40

When M comes translating a premouse K, IM will be steps which get trans-

lated back into an initial segment of K. Some levels of M come from an

initial segment of an ultrapower of K. IM identifies initial segments of M.

In item 2, when M is S-active, ⇡M is intended to code a Jensen-type extender,

namely, the full embedding associated to the extender. Those parameters ⌫M, �M

are essentially Mitchell-Steel parameters of the extender that ⇡M codes. We stick to

Mitchell-Steel indexing scheme because the universality proof works only under this

indexing. Similar parameters also come up when translating a Jensen-premouse

into a Mitchell-Steel premouse (cf. [2]).

In an ordinary premouse over a, every ordinal bigger than the rank of a marks a

level. A successor level is the rudimentary closure of the previous one. However,

In a potential S-premouse, only ordinals in lK marks levels. A successor level is

usually an S-operator acted on the previous one. (cf. � ~A-premouse, [19])

Definition 2.23. LetM, N be potential S-premice. We callM an initial segment

of N , or M E N , if there is ⌘ such that M = N|⌘. We call M a proper initial

segment of N , or M C N , if M E N but M 6= N .

Let Lc be the language Lm expanded by a unary predicate symbol İ and additional

constant symbols µ̇, ⌫̇, �̇. Let

M = hM,2, a, ~E,F, S, b,Q, ⇡i

be a potential S-premouse over a. Then the ⌃
0

-code of M , or C
0

0

(M), is the

Lc-structure given by

1. If M is passive, then

C
0

(M) = hM,2, a, ~E, ;, S, ;, ;, ;, IM, ;, ;, ;i

2.4 S-premouse 41

2. If M is E-active of E-type I or II, then

C
0

(M) = hM,2, a, ~E,F c, S, ;, ;, ;, IM, µM, ⌫M, �Mi.

where F c is the amenable coding of F .

3. If M is E-active of E-type III, then

C
0

(M) = h|M|⌫M|,2, a, ~E �⌫M, F, S\|M|⌫M|, ;, ;, ;, IM\⌫M, µM, ⌫M, �Mi.

4. If M is S-active of S-type II or IV, then

C
0

(M) = hM,2, a, ~E, ;, S, b,Q, ⇡, IM, 0, ⌫M, �Mi.

5. If M is S-active of S-type III, then

C
0

(M) = h|M|⌫M |,2, a, ~E �⌫M , ;, S \ |M|⌫M |, b,Q, ⇡̃, IM, 0, 0, 0i.

where ⇡̃ = {(⇠, ⇡⇠) : o(a) ⇠ < ⌫M}, ⇡⇠ is the image of ⇡ under the transitive

collapse X⇠ ! M⇠.

The ⌃
0

code C
0

(M) is always amenable. Projecta ⇢n(M), standard parameters

pn(M) of a potential S-premouse are defined over C
0

(M) just as those of a pre-

mouse are defined over their ⌃
0

-codes, cf.[20].

If hN ⌘ : ⌘ < ⇠i, ⇠ limit, is a sequence of S-structures such that ⌘ < µ < ⇠ ! N ⌘ C
N µ, then

G

⌘<⇠

N ⌘ = h
[

⌘<⇠

|N ⌘|,2, a,
[

⌘<⇠

ĖN ⌘
, ;,

[

⌘<⇠

ṠN ⌘
, ;, ;, ;i

is the canonical “union” of the N ⌘’s

If N is a premouse over a, N = hJ ~E
↵ [a],2, a, ~E,F i, then let N(N) = hJ ~E_hF i

↵+1

[a],2

2.5 The S[0]-operator 42

, a, ~E_hF i, ;i.
If N is a potential S-premouse over a, N = hJ ~E,S

↵ [a],2, a, ~E,F, S, b,Q, ⇡i, then let

N(N) = hJ ~E_hF i,S,⇡
↵+1

[a],2, a, ~E_hF i, S 0, ;, ;, ;i, where

S 0 =

8
><

>:

S, if b = ;,

S [{N}, if b 6= ;.

2.5 The S [0]-operator

In this short section, we define the S[0]-operator from the S⇤,[0]-operator. In fact,

the S[0]-operator is not much di↵erent from the S⇤,[0]-operator. The only reason

why we develop the S[0]-operator lies in the fine-structural matter. In the future,

we are going to define the S[0]-premouse, whose successor level is S[0] of the previous

level. The naive way is to think of an S[0]-premouse as a stack the S⇤,[0]-operators

plus some extenders at certain levels. In order to get a nice iteration theory for the

S[0]-premice, we want every initial segment of an S[0]-premouse be sound, just as an

ordinal premouse. However, if we treat S⇤,[0](S⇤,[0](a)) as a potential S-premouse

over a, its initial segment of length bigger than o(S⇤,[0](a)) may project to a, and

hence may not be sound. We solve this problem by pausing a while before we

apply S⇤,[0] to S⇤,[0](a). The next S⇤,[0] will be applied to the stack of all S-mice

that extends S⇤,[0](a), projects across S[0](a), and is pure L[~E]-mice above S[0](a).

2.5 The S[0]-operator 43

Definition 2.24. Let a be countable transitive swo. Let K be a potential S-

premouse over a. Then

SSM(K) =
G

{M :M is a sound potential S-premouse extending K,

o(K) is a strong cutpoint of M,

8y 2 SM(o(y) o(K)),

M is iterable when hitting extenders above o(K),

⇢!(M) o(K).}

(SSM stands for “stack of S-mouse”).

Definition 2.25 (S[0]-operator). Let a be countable transitive. Let K be a poten-

tial S-premouse over a. Suppose S⇤,[0](SSM(K)) = hM,2, SSM(K), E, S,Q, ⇡i,
and suppose that hM,2, a, ESSM(K) [E, SSSM(K) [S,K, Q, ⇡i is a potential S-

premouse over a. Then let S[0](K) = hM,2, a, ESSM(K) [E, SSSM(K) [S,K, Q, ⇡i.

S[0] applies only on potential S-premouse. We say an operator S has condensation

for potential S-premouse above z if whenever K is a potential S-premouse above

some a 2 Cone(z) such that S(K) exists, and j : M ! S(K) is ⌃
1

-elementary,

z 2 ran(j), then M = S(j�1(K)).

Lemma 2.26. S[0] has condensation for potential S-premouse above z.

Proof. Let j : M ! S[0](K) be ⌃
1

-elementary. By Lemma 2.20, M, when treated

as a potential S-premouse over j�1(SSM(K)), is equal to S⇤,[0](j�1(SSM(K))). It

su�ces to show that j�1(SSM(K)) = SSM(j�1(K)). Clearly, j�1(SSM(K)) E
SSM(j�1(K)). Suppose towards a contradiction that j�1(SSM(K)) C SSM(j�1(K)).

Pick some j�1(SSM(K)) C N C SSM(j�1(K)), such that ⇢!(N) o(K). Then

N is OD(K). By fullness of S⇤,[0](j�1(SSM(K))), N 2 S⇤,[0](j�1(SSM(K))).

2.6 The S-operators and the S⇤-operators 44

Since (o(j�1(K))+)M = o(j�1(SSM(K))), by acceptability, N 2 j�1(SSM(K)).

Contradiction.

.

2.6 The S-operators and the S⇤-operators

We introduce a few notations that will come up in the measurable cofinality case.

Suppose that a countable transitive swo, R 2 a
+

is a hod premouse, M is a hybrid

premouse over b, ⌫ < �R, and R,⇤ 2 M such that

M |= ⇤ is an iteration strategy for R(⌫) which is commuting and positional.

Working in M, we let FM,⇤
a (R) be the direct system

{R
1

, ⇡R1R2 :R1

,R
2

are iterates of R below R(⌫) of size |a| according to ⇤,

⇡R1R2 is an iteration map}.

We call

dirlimM,⇤
a (R)

the direct limit of FM,⇤
a (R),

⇡M,⇤
a (R) : R ! QM,⇤

a (R)

the direct limit map.

If Q is an ⌃-iterate of P , � �⇤ �Q, j : Q ! R is an iteration according to

⌃Q, then we call

(R, j(�⇤), sup j00�)

2.6 The S-operators and the S⇤-operators 45

the j-promotion of (Q, �⇤, �).

Given P = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni 2 I. Let a countable transitive swo. We say

that P is a promotable index for a if P 2 a
+

and there are

Q = h(⌫i, �i,Qi, �⇤
i , �i) : i ni 2 I,

~j = hji : i ni, ~N = hNi : i ni

such that �
0

= ↵
0

, j
0

= idP , N0

= a, and for all i < n,

1. Ni+1

= M#,⌃Qi(⌫i+1)

1

(Ni).

2. Qi+1

= dirlim
Ni+1,⌃Qi(⌫i+1)

a (Qi),

3. �i+1

= ⇡
Ni+1,⌃Qi(⌫i+1)

a (Qi),

4. ji+1

: Pi+1

! Qi+1

is an iteration map below Pi+1

(⇡i+1

(⌫i+1

)),

5. (Qi+1

, �⇤
i+1

, �i+1

) is the ji+1

-promotion of (Pi+1

,↵⇤
i+1

,↵i+1

).

For P,Q, a,~j, ~N as above, we say that Q is the promotion of P for a, ~N is the

M#

1

-sequence of P for a, ~j is the lifting map sequence of P with respect to a.

We denote Q = pro(P, a). Clearly if P is an index for a, then there is a unique

promotion, a unique M#

1

-sequence, and a unique lifting map sequence for a. The

following picture shows the process of promoting an index.

Q
1

Q
2

Qn

P = P
0

= Q
0

P
1

P
2

Pn
⇡1

�1

⇡2

�2

⇡n

�n

j1 j2 jn

We say that P is a promoted index over a if P is a promoted index over a

and P = pro(P, a). Suppose that P = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni and Q =

2.6 The S-operators and the S⇤-operators 46

h(⌫i, �i,Qi, �⇤
i , �i) : i mi are promoted indices over a. Let

P <I
a Q

if

1. There is i n such that either (i m ^Qi 6= Pi) or i > m.

2. Let i be least as in 1. Then for all i j n, ↵⇤
j = ↵j. If in addition i m,

then ↵i < �i.

As the reader might expect, definition of SP(a) is based on SQ(a) for Q <I
a P. In

fact, for any promoted index P over a, {Q : Q <I
a P} is well-ordered under <I

a .

Let P = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni be an index. We say P is a successor index if

↵i is a successor ordinal, P is a limit index if ↵i is a limit ordinal. If P is a limit

index, we say P is of type A if

Pn |= “ cf(↵⇤
n) is not measurable” ^ (n = 0 _ (n > 0 ^ ↵n > sup ⇡00

n↵n�1

)).

P is of type B if

n > 0 ^ ↵n = sup ⇡00
n↵n�1

.

P is of type C if

Pn |= “ cf(↵⇤
n) is measurable”.

We are ready to define the SP-operator. It is an inductive definition on the hod

mouse prewellordering of final(P). To simplify notations, whenQ = h(⌫i, �i,Qi, �⇤
i , �i) :

i ni 2 I, ✏ ✏⇤ �n, we let

Q[✏] = Q�n_h⌫n, �n,Qn, ✏, ✏i,

2.6 The S-operators and the S⇤-operators 47

If in addition �⇤
n is a successor, then let

Q� 1 = Q[�⇤
n � 1].

We also let [�] = h(;, ;,P , �, �)i. So [0] = h(;, ;,P , 0, 0)i, which agrees with the

notation in Sections 2.3 and 2.5.

The successor SP-operators are defined to be roughly an SP�1-mouse with an

additional predicate indicating the direct limit map of all iterates of P . The SP�1-

mouse that will be used comes from the L[~E, SP�1]-construction. We define the

construction in general as follows. We will borrow a formula �t from Section 2.7. �t

looks for the indices of the S-operators of an S-premouse and there corresponding

strategies. For the time being, we just take it to be a first-order formula. We make

sure the definitions are not circular.

Definition 2.27 (The L[~E, SP]-construction). Let Q be ⌃-good. Let K 2 Q|�Q

be an potential S-premouse over a which is closed under SP+1. The maximal

L[~E, SP]-construction over a is a sequence hN⇠,M⇠ : ⇠ < Ordi with the following

properties.

1. N
0

= hrud(a),2, a, ;, ;, ;, ;, ;, ;i.

2. If M⇠ = hJ ~E,S
↵ ,2, a, ~E, ;, S, ;, ;, ;i, ↵ < �Q, and there are an total extender

F ⇤ on the Q-sequence, an extender F over M⇠, an ordinal ⌫ < ↵ such that

V⌫+! ✓ Ult(V, F ⇤)

and

F �⌫ = F ⇤ \ ([⌫]<! ⇥ J
~E
↵)

and

N⇠+1

= hJ ~E,S
↵ ,2, a, ~E,F, S, ;, ;, ;i

2.6 The S-operators and the S⇤-operators 48

is a potential S-premouse with ⌫ = ⌫N⇠+1 , then N⇠+1

is as above,

3. LetM⇠ = hJ ~E,S
↵ ,2, a, ~E,F, S, b,Q, ⇡i. If ↵ = �, let T = (base, deg, drop, lift,⇤)

be unique such that (Q|�Q)
+

|= �t(M⇠,T). Let d = max(drop(M⇠)). If it is

not the case that d = o(a)^deg(M⇠|min(lM⇠\o(a)+1)) = pro(P, a), letQ1
M⇠

be the direct limit of all ⌃-iterates of P that are in M⇠. Let ⇡1
M⇠

: P ! Q1
M⇠

be the direct limit map. Then N⇠+1

is the e-amenable code of the transitive

collapse of

hHull(M⇠)+(M⇠|d [⇡1
M⇠

),2, a, ~E, ;, S,M⇠|d,Q1
M⇠

, ⇡1
M⇠

i

4. Let M⇠ = hJ ~E,S
↵ ,2, a, ~E,F, S, b,Q, ⇡i. If neither of the above happens, then

N⇠+1

= N(M⇠).

5. If ↵ = �, but d = o(a)^ deg(M⇠|min(lM⇠ \ o(a)+ 1)) = pro(P, a), we termi-

nate the definition, and say N⇠ is the output of the L[~E, SP][a]-construction.

6. For all ⇠, if N⇠ is defined, then

M⇠ = core!(N⇠).

7. when ⇠ is a limit ordinal, then

N⇠ = lim inf
µ!⇠

Mµ,

Definition 2.28 (The S⇤,P operator). Suppose that P = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i

ni is a promotable successor index over a. We define S⇤,P(a) as follows. Let Q be

⌃-good over a. Assume that the L[~E, SP�1][a]-construction in Q|�Q converges to

2.6 The S-operators and the S⇤-operators 49

a SP�1-mouse over a. Let N be the output. By the proof of MSC (cf. [7]), there

is R 2 pI(P ,⌃) \N such that ⌃R �N 2 N
+

. Let FN be the direct system

{R, �RR0 : R,R0 2 pI(P ,⌃) \N , �RR0 is a ⌃-iteration map.}

Let Q1
N be the direct limit of FN and

⇡1
N : P ! Q1

N

be the direct limit map, so that Q1
N 2 N

+

. Let M be the transitive collapse of

the structure

hHullN+(a [{a} [⇡1
N),2, a, EN , SN , Q1

N , ⇡1
N i.

Then S⇤,P(a) is the e-amenable code of M.

We only define the S⇤,P-operator when P is a successor index. In what follows,

we plan to define the SP-operator in general. When P is a successor index, the

SP-operator relies on the S⇤,P-operator and the concept of “stack of the SP�1-

mouse”. When P is a limit index, the SP-operator relies on the SQ-operators, for

Q <I
a pro(P, a). We deal with successor indices first. To settle that, we give the

definition of the SP-premouse, presuming the SP-operator is defined.

Definition 2.29. Suppose that P is a promotable index over a.

1. (SP-premouse when restricted above �). Let K be a potential S-premouse

over a. Let � 2 [o(a), o(K)). We say K is an SP-premouse over a when

restricted above � if

(a) If ⌘ < µ are consecutive elements of lK \ �, then K|µ = SP(K|⌘),

(b) If max(lK) = µ exists, then K = SP(K|µ).

2.6 The S-operators and the S⇤-operators 50

2. (Stack of SP-mouse). Let K be an SP-premouse over a. Then

SSMP(K) =
G

{M :M is a sound potential SP-premouse extending K.

when restricted above o(K), o(K) is a strong cutpoint

of M.M is SP-iterable when hitting extenders

above o(K). ⇢!(M) o(K).}

(SSMP stands for “stack of SP-mouse”).

Definition 2.30. Suppose that P is a promotable index over a. K is a potential

S-premouse over a.

1. IfP is a successor index, S⇤,P(SSMP�1(K)) = hM,2, SSMP�1(K), E, S,Q, ⇡i
is defined, and hM,2, a, ESSMP�1

(K) [E, SSSMP�1
(K) [S,Q, ⇡i is a poten-

tial S-premouse, then SP(K) = hM,2, a, ESSMP�1
(K) [E, ;, SSSMP�1

(K) [
S,K, Q, ⇡i. Otherwise, we leave SP(K) undefined.

2. If P is a limit index, and for all Q <I
K pro(P,K), SQ(K) is defined, and for

all Q <I
K pro(P,K), SQ(K) C SR(K), then

SP(K) = h
[

Q<I
Kpro(P,K)

|SQ(K)|,2, a,
[

Q<I
Kpro(P,K)

ĖSQ
(K), ;,

[

Q<I
Kpro(P,K)

ṠSQ
(K),K, ;, ;i.

Otherwise, we leave SP(K) undefined.

Here is a deeper explanation about the limit case of definition 2.30. We can write

down SP(K) more explicitly, depending on the type of P. Clearly, SP(K) =

Spro(P,K)(K). So we need only consider SP(K) when P is a promoted index over

K. Let P = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i < ni be a limit promoted index over K. Let

hNi : i ni be its M#

1

-sequence.

2.6 The S-operators and the S⇤-operators 51

1. Suppose P is of type A. Let

C =

8
><

>:

[0,↵
0

), if n = 0

[sup ⇡00
n↵n�1

,↵n), if n > 0

Then {P[�] : � 2 C} is <I
K-cofinal in {Q : Q <I

K P}. So

SP(K) = h
[

�2C
|SP[�](K)|,2, a,

[

�2C
ĖSP[�]

(K), ;,
[

�2C
ṠSP[�]

(K),K, ;, ;i.

2. Suppose P is of type B. Let

C =

8
><

>:

[0,↵
0

), if n = 1

[sup ⇡00
n�1

↵n�2

,↵n�1

), if n > 1

Then {(P�n)[�] : � 2 C} is <I
K-cofinal in {Q : Q <I

K P}. So

SP(K) = h
[

�2C
|S(P�n)[�](K)|,2, a,

[

�2C
ĖS(P�n)[�]

(K), ;,
[

�2C
ṠS(P�n)[�]

(K),K, ;, ;i.

3. Suppose P is of type C. Let ⇣⇤ be least such that

�Qn
⇣⇤ > max(⇡n(�

Pn�1

⇣n
), cfPn(↵⇤

n)).

Let N ⇤ = M#,⇡Pn(⌫⇤)
1

(Nn), P⇤ = dirlim
N ⇤,⇡Pn(⇣⇤)
K (Pn), ⇡⇤ = ⇡

N ⇤,⇡Pn(⇣⇤)
K (Pn),

Let

C = [sup ⇡⇤00↵n, ⇡
⇤(↵⇤

n)).

(In other words, for any � 2 C, (⇣⇤, ⇡⇤,P⇤, �, �) is a one-step blow-up of

Pn above Pn(⇡n(⇣n)).) Then {P_h⇣⇤, ⇡⇤,Q⇤, �, �i : � 2 C} is <I
K-cofinal

2.7 Defining strategy over an S-premouse 52

in{Q : Q <I
K P}. So

SP(K) = h
[

�2C
|SP_h⇣⇤,⇡⇤,Q⇤,�,�i(K)|,2, a,

[

�2C
ĖSP_h⇣⇤,⇡⇤,Q⇤,�,�i

(K), ;,
[

�2C
ṠSP_h⇣⇤,⇡⇤,Q⇤,�,�i

(K),K, ;, ;i.

Once again, the only reason why we distinguish the S⇤,P-operator from the SP-

operator lies in the fine-structural matter. We want all initial segments of an

SP-premouse to be sound. The reader might ignore this subtle di↵erence when

reading Section 2.7, where we are going to define the strategy on an S-premouse

but no fine structure is involved.

It is easy to check through the definitions that if SP is defined above z, then for all

Q good over a, a countable transitive such that z 2 a
+

, we have SP � (Q|�Q) 2 Q
and is uniformly definable. Furthermore, we have the following

Lemma 2.31. SP extends to generic extensions above z.

2.7 Defining strategy over an S-premouse

If K is a potential S-premouse over a, we set

S̃K = {K|⇠ : either bK|⇠ 6= ;, or 9⌘(for cofinal-in-⇠-many µ,K|µ 2 SK and K|⌘ = bK|µ)}

S̃K is the range of all S-operators on the K-sequence, including limit S-operators.

It is possible that K 2 S̃K.

Definition 2.32. An potential S-premouse K over a is called an S-premouse if

there is a map y 7! deg(y) from S̃K into I, called the degree map, such that

1. For each y 2 S̃K, letting x = by, then deg(y) is a promoted index over x such

2.7 Defining strategy over an S-premouse 53

that y = Sdeg(x,y)(x).

2. For each y 2 S̃K, if by = a, then deg(a, y) I
a [�P].

3. For each y 2 S̃K, letting x = by, if x 6= a, then for each ⇠ 2 lK|o(x), a successor

element of lK|o(x), we have K|⇠ 2 S̃K and deg(y) I
x pro(deg(K|⇠), x).

Clause 3 demands that an S-premouse decreases in degree. The degree sequence

deg is always unique. We prove uniqueness of deg(x) for y 2 S̃K by induction on

o(y), as follows.

Let y 2 SK, x = by. If there is no z 2 S̃K such that o(x) < o(z) < o(y), obviously,

we must have deg(x, y) = [0]. If there is z 2 S̃K such that o(x) < o(z) < o(y),

then deg(x, y) is a successor index. By definition of the successor SP-operators,

there must be a largest z such that z 2 S̃K ^ x = bz. We assume as an induction

hypothesis that deg(z) is unique. If x = a, then by clause 2, deg(z) I
a [�P]. So

deg(y) is the <I
a -successor of deg(z) in {Q : Q <I

a [�P]}. If x 6= a, then pick any

pair µ, a successor element of lK|o(x). By clause 3, deg(y) I
x pro(K|µ), x). So

deg(y) is the <I
x-successor of deg(z) in {Q : Q I

x pro(deg(K|µ), x)}.
Let y 2 S̃K \ SK, x = by, and suppose that uniqueness of deg(v) for o(v) < o(y)

is proved. If x = a, then by clause 2, for any z 2 SK such that a = bz and

z 2 y, deg(z) I
a [�P]. Hence the deg(z)’s, for a = bz ^ z 2 y, form an <I

a -

increasing sequence in {Q : Q I
a [�P]}. Hence deg(y) is the least upper bound of

them, which is unique. If x 6= a, pick any µ, a successor element of lK|o(x). By

clause 3, for any z 2 SK such that x = bz and z 2 y, deg(z) I
x pro(deg(K|µ), x).

Hence the deg(z)’s, for x = bz ^ z 2 y, form an <I
x-increasing sequence in

{Q : Q I
x pro(deg(K|µ), x)}. Hence deg(x, y) is the least upper bound of them,

which is unique.

We denote the degree function by degK. degK will have this fixed meaning through-

out this paper.

2.7 Defining strategy over an S-premouse 54

If ⇠ 2 lK and ⇠ 6= a, we say K drops at ⇠ if letting µ = min(lK \ (⇠ + 1)), then

deg(K|µ) <I
K|⇠ pro(deg(K|⇠),K|⇠). We let DK be the set of drops of K union

{o(a)}. Every drop of K represents a drop in the hod mouse prewellordering, so

DK must be finite. We let dropK = {(y,Dy) : y 2 S̃K}.
For y 2 S̃K such that x = by 6= a, we let

baseK(y) = K|min(lx \ (max(Dx) + 1))

base(y) retreats to the place from which deg(y) could to be defined. We then let

liftK(y)

be the lifting map from final(deg(z)) to final(deg(y)), where z = y|min(ly \
(base(y) + 1)). For y 2 S̃K such that by = a, we let

baseK(y) = a.

liftK(y) = idP .

For each y 2 S̃K, we let

⇤K(y) = ⌃
final(deg(y))|by.

One of the main purposes of defining the SP-operator is that an ⌃
final(P)

\ K can

be defined from SP(K) in a uniform way. The defining formula is essentially doing

an induction on strategies acted on stacks based on hod premice below final(P).

More precisely, we need to inductively keep track of ⌃
final(deg(y)) for all y 2 S̃SP

(K).

The case when deg(y) is a successor index is monitored by ⇡y, which is a part of

the language of SK(K|⇠). The case when deg(y) is a limit index of type A or B is

easy. When deg(y) is a limit index of type C, the strategy is found by rearranging

2.7 Defining strategy over an S-premouse 55

stacks.

Definition 2.33. Let K be an S-premouse over some countable transitive swo.

We let TK = (deg, base, lift, drop,⇤) and say that TK keeps track of strategies for

stacks in K.

Our goal is to define ⇤K from K over any ZFC model. This is an inductive definition

on o(y) for the y 2 S̃K. deg, base, lift, drop are supplementary to defining ⇤K. The

formula �t will define TK.

Definition 2.34. �t(K,T) is the formula expressing conjunction of all of the fol-

lowing.

1. K is a potential S-premouse over some transitive swo a.

2. T is a 5-tuple. Write T = (base, deg, drop, lift,⇤).

3. base, deg, drop, lift,⇤ are functions on S̃K.

4. For each y 2 S̃K, let x = by. If x = a, then drop(y) = {o(a)}. If x 6= a, then

(a) drop(y) is a finite subset of lK|o(x).

(b) drop(y) \ o(x) = drop(x).

5. For each y 2 S̃K, let x = by. If x = by, then base(a, y) = ;. If x 6= a,

base(y) = K|⇠

where ⇠ = min(lx \ (max(drop(x) + 1)).

6. For each y 2 S̃K, such that a = by, lift(y) is identity map on the third

coordinate of the last element of deg(y).

2.7 Defining strategy over an S-premouse 56

7. (Base case.) Suppose y 2 S̃K, x = by, and there is no z 2 y such that

z 2 S̃K ^ x = bz. Then

deg(y) = [0],

lift(y) = hidPi.
o(x) /2 drop(y) , x 6= a ^ deg(base(y)) = [0].

For each (~T , b) such that ~T 2 x, we have that

⇤(y)(~T) = b

if and only if letting U_c be the last normal component of ~T _b, then one of

the following holds.

• The maximal L[~E] constructions in y|�y certifies that Lp(M(U)) |=
“�(U) is not Woodin” or U has a drop in a way that we cannot undo

the drop (cf. [7, Fact 3.5.5]), and c is defined using the maximal L[~E]

constructions in y|�y.

• The maximal L[~E] constructions in y|�y certifies that Lp(M(U)) |=
“�(U) is Woodin” and U does not drop in a way that we cannot undo

the drop, and there is � : MU
c ! Qy such that � � i~T = ⇡y.

8. (Successor case at the bottom of K.) Let y 2 SK be such that a = by.

Suppose z is 2-maximal in y such that z 2 S̃K ^ a = bz. Denote deg(z) =

h(⌫i, �i,Qi, �i, �i) : i mi. Then

deg(y) = deg(z) + 1,

Furthermore, put � =
S{⇤(v)lift(v) : base(v) = z}, then for each (~T , b) such

2.7 Defining strategy over an S-premouse 57

that ~T 2 a, we have that

⇤(y)(~T) = b

if and only if letting hM0

↵,M1

↵, ~T 0

↵ , ~T 1

↵ , i↵� : ↵ < � ⇢i be the essential

components of ~T _b, then �↵⇢ ~T 0

↵ is according to �, and if U_c is the last

normal component of ~T 1

⇢ , then one of the following holds.

• The maximal L[~E, (�)�↵⇢
~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is not Woodin” or U has a drop in a way

that we cannot undo the drop (cf. [7, Fact 3.5.5]), and c is defined using

the maximal L[~E] constructions in y|�y.

• The maximal L[~E, (�)�↵⇢
~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is Woodin” and U does not drop in a way

that we cannot undo the drop, and there is � : MU
c ! Qy(� + 1) such

that � � i~Tb = ⇡̃, where Qy(�) is the direct limit of all iterates of Qm(⌫m)

according to � that are in y|�y, and ⇡̃ : Qm(⌫m + 1) ! Qy(� + 1) is

an extension this direct limit map given by ⇡̃(�m � · · · � �
1

(f)(↵)) =

⇡y(f)(⇡̃(↵)), for f 2 P , ↵ < �Q⌫m .

9. (limit case at the bottom level of K.) Let y 2 S̃K \ SK be such that

a = by. Suppose for cofinally many z 2 y such that a = by, there are

Q
0

, . . . ,Qm�1

, ⌫m, �m,Qm, �z, � such that

(a) deg(z)�m = hQ
0

, . . . ,Qm�1

i,

(b) (deg(z))m = (⌫m, �m,Qm, �z, �z),

(c) � is the least upper bound of such �z’s, but � 6= �z for any such z.

We split into three subcases.

2.7 Defining strategy over an S-premouse 58

A. Suppose Qm |= “ cf(�) is not measurable”. We then have

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �)i,

We also have

⇤(y) = �{⇤(z) : deg(z) = deg(y)[�] for some �}.

B. Suppose that m � 1 and � = �m(�⇤
m�1

). Then

deg(y) = hQ
0

, . . . ,Qm�1

i,

Let � = ⇤(z), where deg(z) = deg(y)[⌫m]. For all (~T , b) such that ~T 2 a,

we have

⇤(y)(~T) = b

if and only if one of the following holds

i. i(~T
_b)�Qm�1(⌫m) is not defined. (~T _b)�Qm�1

(⌫m) is according to �.

ii. i(~T
_b)�Qm�1(⌫m) is defined. Let (~U ,Q, ~V) be the last stack of the re-

arrangement of ~T _b with respect to ⌫m. Then ~U is according to �.

Let l : Q ! Qm be the iteration map according to �. Then ~V is

according to

(�{(⇤(z)) : deg(z) = deg(y)_h(⌫m, �m,Qm, �, �)i for some �})l.

C. Suppose both A. and B. fails. Let

• ⌫⇤ be the least ⌫ such that ⌫ > �m(⌫m�1

) and �Qm
⌫ > cfQm(�).

2.7 Defining strategy over an S-premouse 59

• z, w 2 y be such that a = bz = bw and

deg(z) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, ⌫
⇤, ⌫⇤)i

deg(w) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, ⌫
⇤ + 1, ⌫⇤ + 1)i

• � =
S{⇤(v)lift(v) : base(v) = (z)}.

• N ⇤ = M#,�
1

(a) as computed inside w.

• Q⇤ = dirlimN ,�
Qm,a.

• �⇤ = ⇡N ,�
Qm,a.

Then

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �), (⌫
⇤, �⇤,Q⇤, sup �⇤00�m, sup �⇤00�m)i,

lift(y) = idQ⇤ .

We also have

⇤(y) = �{(⇤(z))~U : deg(z) = (deg(y)�m+ 1)[�] for some �}.

where ~U is any stack on Qm leading to Q⇤ according to �.

10. (Successor case.) Let (y) 2 SK, x = by 6= a. Suppose z is 2-maximal in

y such that z 2 S̃K ^ x = bz. Denote deg(z) = h(⌫i, �i,Qi, �⇤
i , �i) : i mi.

Then �⇤
m = �m,

deg(y) = deg(z) + 1.

Put deg(base(y)) = h(⌫̄i, �̄i, Q̄i, �̄⇤
i , �̄i) : i ki, and let hji : i li be the

sequence as follows:

• j
0

= idP ,

2.7 Defining strategy over an S-premouse 60

• for each i < m, if i < k ^ sup j00i (�̄i) = �i, letting w 2 y be such

that w 2 SK ^ x = bw and deg(w) = hQ
0

, . . . ,Qii[⌫i+1

], then ji+1

is an iteration map from Q̄i+1

to Qi+1

according to �, where � =
S{(⇤(v))lift(v) : base(v) = w}. Otherwise, we terminate the definition

of hji : i li.

Then

o(x) /2 drop(y) , m = k = l ^ jm(�̄m) = �m + 1.

If m = k = l ^ jm(�̄m) = �m + 1, then

lift(y) = jm.

Otherwise,

lift(y) = idQm .

Furthermore, put � =
S{⇤(v)lift(v) : base(v) = z}, then for each (~T , b) such

that ~T 2 x, we have that

⇤(y)(~T) = b

if and only if letting hM0

↵,M1

↵, ~T 0

↵ , ~T 1

↵ , i↵� : ↵ < � ⇢i be the essential

components of ~T _b, then �↵⇢ ~T 0

↵ is according to �, and if U_c is the last

normal component of ~T 1

⇢ , then one of the following holds.

• The maximal L[~E, (�)�↵⇢
~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is not Woodin” or U has a drop in a way

that we cannot undo the drop (cf. [7, Fact 3.5.5]), and c is defined using

the maximal L[~E] constructions in y|�y.
• The maximal L[~E, (�)�↵⇢

~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is Woodin” and U does not drop in a way

that we cannot undo the drop, and there is � : MU
c ! Qy(� + 1) such

2.7 Defining strategy over an S-premouse 61

that � � i~Tb = ⇡̃, where Qy(�) is the direct limit of all iterates of Qm(⌫m)

according to � that are in y|�y, and ⇡̃ : Qm(⌫m + 1) ! Qy(� + 1) is

an extension this direct limit map given by ⇡̃(�m � · · · � �
1

(f)(↵)) =

⇡y(f)(⇡̃(↵)), for f 2 P , ↵ < �Q⌫m .

11. (limit case.) Let y 2 S̃K \ SK and x = by 6= a. Suppose that for cofinally

many z 2 y, there are Q
0

, . . . ,Qm�1

, ⌫m, �m,Qm, �z, � such that bz = x and

(a) deg(z)�m = hQ
0

, . . . ,Qm�1

i,

(b) (deg(z))m = (⌫m, �m,Qm, �z, �z),

(c) � is the least upper bound of such �z’s, but � 6= �z for any such z.

Put deg(base(y)) = h(⌫̄i, �̄i, Q̄i, �̄⇤
i , �̄i) : i ki, and let hji : i li be defined

exactly as in item 10. We split into three subcases.

A. Suppose neither of the following holds:

i. Qm |= “ cf(�) is measurable”.

ii. jm is defined, � = sup j00m�̄m, Q̄m |= “ cf(�̄⇤
m) is measurable”.

Then we have

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �)i,

o(x) /2 drop(y) , m = l = k ^ � = sup j00m�̄m.

If m = l = k ^ � = sup j00m�̄m, then

lift(y) = jm.

Otherwise,

lift(y) = idQm .

2.7 Defining strategy over an S-premouse 62

We also have

⇤(y) = �{⇤(z) : deg(z) = deg(y)[�] for some �}.

B. Suppose that m � 1 and � = �m(�⇤
m�1

). Then

deg(y) = hQ
0

, . . . ,Qm�1

i,

If o(y) 2 lK, then

o(x) /2 drop(y) if and only if m� 1 = l = k ^ �⇤
m�1

= jm�1

(�̄m�1

).

If m� 1 = l = k ^ �⇤
m�1

= jm�1

(�̄m�1

), then

lift(y) = jm�1

.

Otherwise,

lift(y) = idQm�1 .

Furthermore, let � = ⇤(z), where x = bz ^ deg(z) = deg(y)[⌫m]. Then

for all (~T , b) such that ~T 2 x, we have

⇤(y)(~T) = b

if and only if one of the following holds

• i(~T
_b)�Qm�1(⌫m) is not defined. (~T _b)�Qm�1

(⌫m) is according to �.

• i(~T
_b)�Qm�1(⌫m) is defined. Let (~U ,Q, ~V) be the last stack of the re-

arrangement of ~T _b with respect to ⌫m. Then ~U is according to �.

Let l : Q ! Qm be the iteration map according to �. Then ~V is

2.7 Defining strategy over an S-premouse 63

according to

(�{(⇤(z)) : x = bz ^ deg(z) = deg(y)_h(⌫m, �m,Qm, �, �)i for some �})l.

C. Suppose both A. and B. fails. Let ⌫⇤, z, w,�,N ⇤,Q⇤, �⇤ be defined exactly

as in item 9C. Then

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �
⇤, �), (⌫⇤, �⇤,Q⇤, sup �⇤00�, sup �⇤00�)i,

where

�⇤ =

8
><

>:

jm(�̄⇤
m), if � = sup j00m�̄m,

�, otherwise.

We have

o(x) 2 drop(y) $ m+ 1 = l = k ^ � = sup j00m�̄m ^ �̄m+1

= sup �̄00
m+1

�̄m.

If m+ 1 = l = k ^ � = sup j00m�̄m ^ �̄m+1

= sup �̄00
m+1

�̄m, then

lift(y) = the iteration map from Q̄m+1

to Qm+1

according to �jm .

Otherwise,

lift(y) = idQ⇤ .

We also have

⇤(y) = �{(⇤(z))~U : x = bz ^ deg(z) = (deg(y)�m+ 1)[�] for some �}.

where ~U is any stack on Qm leading to Q⇤ according to �.

Theorem 2.35. Let K be an S-premouse over a. Let M be any transitive ZFC

2.7 Defining strategy over an S-premouse 64

model containing {K}. Then
TK 2 M

and

TK is the unique v such that M |= �t(K, v).

Proof. We may assume by induction that for any K0 that arose in the L[~E, S]-

construction of an S-operator in K, the lemma holds for K0. By that we mean, if

y 2 SK, x = by, P = degK(y), H = SSMP�1(x), and H is a model that arose in

the L[~E, SP�1]-construction over a ⌃-good Q, then the theorem holds for K.

We carry out a construction T = (base, deg, drop,⇤, lift) in M . Inductively on o(y)

for y 2 S̃K, we will decide values of the following:

• base(y)

• deg(y)

• drop(y)

• lift(y)

• ⇤(y)

and prove that for each ⇠ o(K), {(base(y), deg(y), drop(y), lift(y),⇤(y)) : y 2 S̃K|⇠}
= TK|⇠.

The base case at the bottom level of K.

Let y 2 SK be such that o(y) = min{o(z) : z 2 S̃K}. Let x = by. We must have

x = a, since otherwise, lK|o(x) = o(x) \ o(a) would have at least two elements, say

(⇠, µ) are consecutive ones, then by clause 3 of definition 2.32, K|µ 2 S̃K, which

means K|µ 2 S̃K, contradiction. Let base(y), lift(y),⇤(y) be defined as in item 7

of definition 2.34. We need to show that they are the correct objects of TK, i.e.

2.7 Defining strategy over an S-premouse 65

, base(y) = baseK(y), lift(y) = liftK(y), ⇤(y) = ⇤K(y). Clearly, y = S[0](a). The

only nontrivial fact we have to verify is

⇤(y) = ⌃P(0)

�a.

The verification of this fact is simliar, but simpler to the general successor case.

So we devote our e↵ort to the successor case.

The successor case at the bottom level of K.

Now suppose y 2 SK, a = by and z is 2-maximal in y such that z 2 S̃K ^ a = bz.

Suppose, by induction, for every v 2 S̃K such that o(v) < y, we have defined

base(v), deg(v), lift(v),⇤(v), and base(v) = baseK(v), deg(v) = degK(v), lift(v) =

liftK(v), ⇤(v) = ⇤K(v). Now let base(y) = ; and let deg(y), lift(y),⇤(y) be as in

item 8 of definition 2.34. We need to sow that they are the correct objects of TK,

i.e.

base(y) = baseK(y), deg(y) = degK(y), lift(y) = liftK(y),⇤(y) = ⇤K(y).

By induction, we know that deg(z) = degK(z) is the unique Q such that z = SQ(a)

and Q I
a [�P]. Therefore, y = SQ+1(a). The only nontrivial fact we are left to

verify is

⇤(y) = ⌃Qm(�m+1)

�a,

where deg(z) = h(⌫i, �i,Qi, �i, �i) : i mi. In other words, we need to show that

letting � =
S{⇤(u, v)lift(u,v) : base(v) = z}, then for all (~T , b) 2 a,

⌃Qm(�m+1)

(~T) = b

if and only if letting hM0

↵,M1

↵, ~T 0

↵ , ~T 1

↵ , i↵� : ↵ < � ⇢i be the essential com-

ponents of ~T _b, then �↵⇢ ~T 0

↵ is according to �, and if U_c is the last normal

2.7 Defining strategy over an S-premouse 66

component of ~T 1

⇢ , then one of the following holds.

1. The maximal L[~E, (�)�↵⇢
~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is not Woodin” or U has a drop in a way that we

cannot undo the drop (cf. [7, Fact 3.5.5]), and c is defined using the maximal

L[~E] constructions in y|�y.

2. The maximal L[~E, (�)�↵⇢
~T 0
↵
] constructions in y|�y certifies that

Lp
(�)�↵⇢

~T 0
↵ (M(U)) |= “�(U) is Woodin” and U does not drop in a way that

we cannot undo the drop, and there is � : MU
c ! Qy(� + 1) such that

� � i~Tb = ⇡̃, where Qy(�) is the direct limit of all iterates of Qm(⌫m) according

to � that are in y|�y, and ⇡̃ : Qm(⌫m + 1) ! Qy(� + 1) is an extension this

direct limit map given by ⇡̃(�m � · · · � �
1

(f)(↵)) = ⇡y(f)(⇡̃(↵)), for f 2 P ,

↵ < �Q⌫m .

In order to see the above, letting Q,N ,Q1
N , ⇡1

N be as in definition of Sdeg(y)(a). Re-

call from definition 2.30 that y = Sdeg(x,y)(a) is the amenable code of a Skolem hull

of N
+

. If ~T falls under the case 1, since the clause of the case 1 is first order defin-

able inside N
+

, by hull condensation, it su�ces to show the first case applies inside

N
+

with y|�y, Qy, ⇡y replaced by N , Q1
N , ⇡1

N . But � � (y|�y) = ⌃Qm(�m)

� (y|�y)
by induction. Recall that N comes from the maximal L[~E, Sdeg(z)]-construction

in a suitable ⌃-premouse. By the universality proof, a maximal L[~E,⌃Qm(�m)

]

-construction done inside a maximal L[~E, Sdeg(z)] construction done inside Q is

full. This means any maximal L[~E,⌃Qm(�m)

] construction done inside (N)
+

is full.

Hence N sees strategies for ~T under case 1 correctly. If ~T falls under case 2, we

take � and ⇡̃ be as in the clause of case 2. We set �0 be such that Q1
N (�0+1) is the

direct limit of I(Q⌫m ,⌃Q⌫m
) \N and ⇡̃0 : Qm(⌫m + 1) ! Q1

N (�0 + 1) be the direct

limit map. Then ⇡̃ has the property ⇡̃0(�m � · · · � �
1

(f)(↵)) = ⇡y(f)(⇡̃0(↵)), for

f 2 P , ↵ < �Q⌫m . Thus �0 goes to � under the transitive collapse map of defining

2.7 Defining strategy over an S-premouse 67

y = Sdeg(y)(x), and ⇡̃0 goes pointwise to ⇡̃. Since Q1
N is the direct limit of iterates

of P that are in N , there is in V an iteration : MU
c ! Q1

N such that � i~Tb = ⇡̃0.

 is not in N , but since ⌃Qm(⌫m+1)

is strongly guided by an !-sequence of OD

sets, there exist partial branches ci, partial maps i, i < !, such that c = [i<!ci,

 i = \{id : d is a branch through U whose final model is full,ci ✓ d}, = [i<! i,

and each ci, i 2 N
+

. The images of these ci’s and i’s under the transitive col-

lapsing map of defining y = Sdeg(y)(x) piece together into the branch c and a map

� : MU
c ! Q̃y(�+1). Therefore, c and � witnesses the clause of case 2. Moreover,

any c0 which satisfies this clause must be equal to c by branch condensation.

The limit case at the bottom level of K.

Now suppose y 2 S̃K\SK and a = by. Suppose, by induction, for every v 2 S̃K such

that o(v) < y, we have defined base(v), deg(v), lift(v),⇤(v), and showed base(v) =

baseK(v), deg(v) = degK(v), lift(v) = liftK(v), ⇤(v) = ⇤K(v). Now let base(y) = ;
and let deg(y), lift(y),⇤(y) be as in item 8 of definition 2.34. We need to sow that

they are the correct objects of TK.

By induction, for each z 2 y such that bz = a, deg(z) = degK(z) is the only Q

such that z = SQ(a) and Q I
a [�P]. So there is Q

0

, . . . ,Qm�1

, ⌫m, �m,Qm, �z, �

for cofinally-in-y many z as in the first paragraph of definition 2.34 item 9. Define

deg(y), base(y),⇤(y) as in definition 2.34 item 9, splitting into three subcases.

If we are under subcase A, then clearly

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �)i,

is the least index R such that

R I
a [�P] and degK(z) <I

a R for any z 2 y such that a = bz.

Note that deg(y) is of type A. Hence, degK(y) = deg(y). Since Qm |= “ cf(�) is not

2.7 Defining strategy over an S-premouse 68

measurable”, ⌃Qm(�) = ��<�⌃Qm(�). Hence ⇤(y), being the join of {⇤(z) : z 2 y ^ x = bz},
is equal to ⌃Qm(�) by induction.

If we are under subcase B, then

deg(y) = hQ
0

, . . . ,Qm�1

i,

is the least index R such that

R I
a [�P] and degK(z) <I

a R for any z 2 y such that a = bz.

The reason is that every extension of deg(y) is already taken care of, because by

definition of I, to make an index, the ordinal on Qm must be < �m(�⇤
m�1

) = �.

Hence deg(y) = degK(y). Note that deg(y) is of type B. The fact that ⇤(y) = ⇤K(y)

follows from induction and Lemma 2.9.

If we are under subcase C, then it is not hard to see that the deg(y) defined over

there is the least R such that

R I
a [�P] and degK(z) <I

a R for any z 2 y such that a = bz.

The crucial part is that the final ordinal on Q⇤ is equal to sup�⇤00�m, the least

possible one to make an index. Note that deg(y) is of type C. The fact that

⇤(y) = ⇤K(y) follows from induction.

At a level of K higher than o(a).

Suppose now y 2 S̃K, x = by 6= a. Suppose, by induction, for every v 2 S̃K

such that o(v) < o(y), we have defined base(v), deg(v), lift(v),⇤(v), and showed

base(v) = baseK(v), deg(v) = degK(v), lift(v) = liftK(v), ⇤(v) = ⇤K(v). Now let

base(y), deg(y), lift(y),⇤(y), drop(y)be as in item 8 of definition 2.34. We have to

show that they are the correct objects of TK,

2.7 Defining strategy over an S-premouse 69

It is important to observe that base(y) depends only on SK and drop(x). By

induction, drop(x) = dropK(x), hence

base(y) = baseK(y).

Let deg(base(y)) = Q̄ = h(⌫̄i, �̄i, Q̄i, �̄⇤
i , �̄i) : i ki. We let R = hR

0

, . . . ,Rki =
pro(Q̄, x). Let hji : i li be constructed as in item 10. The definition there

ensures hji : i li is a part of the lifting sequence of deg(base(y)), and moreover,

l is the least such that Rl 6= Ql _ l = m.

Let’s skip the base case that there is no z 2 y such that z 2 SK.

The successor case

Suppose (y) 2 SK. Suppose z 2 y is 2-maximal such that z 2 S̃K ^ a = bz. By

induction, deg(z) = degK(z). Hence

deg(y) = deg(z) + 1 = degK(z) + 1 = degK(y).

The third equality above is because degK(z) + 1 is the least promoted index over

x which is >I
x degK(z). We show that the truth value of “o(x) 2 drop(y)” agrees

with the truth value of “o(x) 2 dropK(y)”. This is simply a repetition of definition

of dropK:

o(x) /2 dropK(y)

if and only if

degK(y) = pro(degK(baseK(y)), x)

if and only if

deg(y) = pro(deg(base(y)), x)

2.7 Defining strategy over an S-premouse 70

if and only if

m = k = l ^ jm(�̄m) = �m + 1.

if and only if

o(x) /2 drop(y).

The fact

lift(y) = liftK(y)

is also clear. The same proof as in the successor case at the bottom level of K
implies ⇤(y) = ⇤K(y).

The limit case.

Now suppose y /2 SK. Let Q
0

, . . . ,Qn�1

, ⌫m, �m,Qm, � and h(⌫̄i, �̄i, Q̄i, �̄⇤, �̄i) : i
ki, hji : i libe defined as in item 11 of definition 2.34. The definition shows that

hji : i li is a part of the lifting maps of defining pro(deg(base(y)), x).

Suppose we are under subcase A, we show that

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �)i

is the least index which is I
x pro(deg(base(y)), x) and >I

x deg(z) for any z 2 y

such that z 2 SK ^ x = bz. Henceforth deg(y) = degK(y). The case hypothesis

Qm |= “ cf(�) is not measurable” shows deg(y) is an index of type A. If jm is

not defined, then pro(deg(base(y)), x) and deg(y) di↵er at a coordinate m � 1.

Hence by definition of <I
x, any index extending hQ

0

, . . . ,Qm�1

i whose mth and

later coordinate agree on ordinals with or without star is <I
x pro(deg(base(y)), x).

Hence deg(y) is the index as required. If jm is defined, then pro(deg(base(y)), x)�
m + 1 = hQ

0

, . . . ,Qm�1

, (⌫m.�m,Qm, jm(�̄⇤
m), sup j

00
m�̄m)i. The case hypothesis ei-

ther � < sup j00m�̄m) or Q̄m |= “ cf(�̄⇤
m) is not measurable” implies deg(y) I

x

pro(deg(base(y)), x): If � < sup j00m�̄m, then m is the least coordinate where deg(y)

2.7 Defining strategy over an S-premouse 71

and pro(deg(base(y)), x) disagree, hence by definition, deg(y) <I
x pro(deg(base(y)), x).

If Q̄m |= “ cf(�̄⇤
m) is not measurable”, then jm is continuous at �̄⇤

m = �̄m, hence

� sup j00m�̄m = jm(�̄⇤
m). Hence deg(y) I

x pro(deg(base(y)), x). (The case hy-

pothesis is necessary, since otherwise � = sup j00m�̄m < jm(�̄⇤
m), thus the deg(y)

defined here is no longer <I
x pro(deg(base(y)), x)!)

The facts that lift(y) = liftK(y), o(x) 2 drop(y) $ o(x) 2 dropK(y) ⇤(y) = ⇤K(y),

are straightforward to verify.

Suppose now we are in subcase B. The case hypothesis � = �m(�⇤
m�1

) implies that

deg(y) = hQ
0

, . . . ,Qm�1

i

is the least that is <I
x pro(deg(base(y)), x) but >I

x every deg(z), for z 2 y^x = bz.

In other words, we have reached the “ceiling” of the m-th coordinate, and thus

we are forced to step back onto the m � 1-th coordinate. From the viewpoint of

strategies captured, we have collected enough strategies on Qm, a suitable iteration

of Qm�1

, and thus we already have the strategy of Qm�1

(�⇤
m�1

). Therefore y =

Sdeg(y)(x). deg(y) = degK(y). Note that deg(y) is an index of type B.

The facts that lift(y) = liftK(y), o(x) 2 drop(y) $ o(x) 2 drop(y) are straightfor-

ward to verify. ⇤(y) = ⇤K(y) is due to Lemma 2.9.

Suppose now we are under subcase C. If

jm is not defined, Qm |= “ cf(�) is measurable” and � < �m(�
⇤
m�1

),

then

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �), (⌫
⇤, �⇤, sup �⇤00�, sup �⇤00�)i

is I
x pro(deg(base(y)), x) and is the least >I

x each the previous deg(z), z 2 y^x =

2.7 Defining strategy over an S-premouse 72

bz. In other words, we have reached a place of measurable cofinality, Qm(�). We

have already captured the strategy of all Qm(✏)’s for ✏ < �. However, they are not

enough capture the strategy ofQm(�). Therefore, we have to pause, do an iteration

of Qm(�) using strategies we already know yet creating new Woodins, and collect

strategies for initial segments of that iterate. (The reader may compare this with

subcase B. In subcase B, we have collected enough strategy and thus happy to step

backwards.) We are currently in the beginning of extending an index. Thus the

last ordinal of the index is sup �⇤00�. The reader can also see the reason we defined

the one-step blow-up in Section 2.3. If

jm is defined, Qm |= “ cf(�) is measurable”,

then � < sup j00m�̄m = �m. This is because when �̄m = �̄⇤
m, then jm hits the

order-zero measure on cfQ
⇤
m(�̄m); when �̄m < �̄⇤

m, then Q̄m |= “ cf(�̄m) is not

measurable. Thus Qm |= “ cf(�m) is not measurable”. So the deg(y) as above is

I
x pro(deg(base(y)), x). If

jm is defined, Qm |= “ cf(�) is not measurable”,

� = sup j00m�̄m, Q̄m |= “ cf(�̄⇤
m) is measurable”

then we still need to extend the index, as hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, �, �)i is no
longer <I

x R, basically because � = sup j00m�̄m < jm(�̄⇤
m). The least index bigger

than each previous deg(z), z 2 y ^ x = bz is

deg(y) = hQ
0

, . . . ,Qm�1

, (⌫m, �m,Qm, jm(�̄
⇤
m), �), (⌫

⇤, �⇤, sup �⇤00�, sup �⇤00�)i.

Therefore deg(y) = degK(y). The facts that lift(y) = liftK(y), o(x) 2 drop(y) $
o(x) 2 dropK(y) ⇤(y) = ⇤K(y), are straightforward to verify.

2.8 Iteration theory of S-premice 73

This inductive construction of T = (base, deg, drop, lift,⇤) as above can be carried

out in any ZFC model containing K. Therefore TK 2 M , and TK is the unique v

such that M |= �t(K, v). This finished the proof of Theorem 2.35.

Theorem 2.35 indicates that the SP-operator has approximately equal information

as ⌃final(P)

does. An SP-premouse K can define ⌃final(P)

�K. On the other hand,

an ⌃-good Q can define SP �(Q|�Q).

2.8 Iteration theory of S-premice

We are going to develop the iteration theory of S-mice, including comparison, solid-

ity and condensation, just like that of ordinary premice. We say � is an S-iteration

strategy for an S-premouse M if every �-iterate of M is an S-premouse. We say

M is S-iterable if it has an S-iteration strategy. An S-mouse is an S-iterable

S-premouse. Eventually, we want to show that the L[~E, S[�P]]-construction in any

good universe has an S-iteration strategy which is induced by the background

strategy. In order to carry out the proof, we introduce the concept of piecewise

S-iterability. We say � is a semi-S-iteration strategy if letting d = maxDM, then

any � iterate that is above d is an S-premouse. M is semi-S-iterable if M has a

semi-S-iteration strategy. A semi-S-mouse is a semi-S-iterable S-premouse.

We start with a general comparison result. In the comparison between two S-mice,

we hit the least disagreement on their E-sequence, just like comparing two ordinary

mice. The S-predicate will then automatically line up, since both are S-premouse.

There is only one exception, that is, two models may agree up to some point, one

side has an S-predicate after that, but the other side does not. In that case, we

declare that the comparison is done, and the former one is longer than the latter.

We spell out the detailed definition of comparison.

2.8 Iteration theory of S-premice 74

Definition 2.36. Let M and N be S-mice, and suppose � and � are their S-

iteration strategies. Then the comparison between M and N according to (�,�)

is the pair (T ,U) such that T is a padded normal iteration tree on M according

to �, U is a padded normal iteration tree on N according to �, lh(T) = lh(U) = ✓,

and for all ↵ < ✓, letting �↵ be the least � such that MT
↵ |� 6= MU

↵ |�, then either

of EMT
↵

�↵
or EMU

↵
�↵

is nonempty, and the extenders applied on both sides are the

extenders indexed at �↵, and either MT
✓ and MU

✓ are lined up, or letting �✓ be the

least � such that MT
↵ |� 6= MU

↵ |�, then MT
↵ |�✓ 2 SMT

↵ $ MU
↵ |�✓ /2 SMT

↵ .

The comparison must succeed, because otherwise, we keep hitting extenders so as

to reach a pair of trees (T ,U) of length !
1

+1. The usual argument of comparison

gives a contradiction. Given two S-mice M and N , we say M is a pseudo-initial

segment of N if either M C N , or letting � be the least � such that M|� 6= N|�,
then M|� /2 SM but N|� 2 SN . We say M is a proper pseudo initial segment

of N if M is a pseudo initial segment of N but M 6= N . So the comparison

results in two iterates of the original S-mice that are lined up under pseudo-initial

segment. We show that, as in comparison of usual mice, at most one side of the

main branches has a drop.

Theorem 2.37. Let M and N be S-mice, and suppose � and � are their iteration

strategies. Let (U , T) be the comparison between M and N according to �,�. Let

lh(T) = lh(U) = ✓. Then either

• [0, ✓]T does not drop in model or degree, and MT
✓ is a pseudo initial segment

of MU
✓ , or

• [0, ✓]U does not drop in model or degree, and MU
✓ is a pseudo initial segment

of MU
✓ .

Proof. The usual proof of comparison shows that if MT
✓ = N T

✓ , then at most one

side has a drop. So let’s suppose, for instance, MT
✓ is a proper pseudo initial

2.8 Iteration theory of S-premice 75

segment of MU
✓ . We claim that [0, ✓]T has no drop in model or degree. Otherwise,

MT
✓ is not sound. Usual arguments show that some extender ET

� applied on

the T -side agrees with the core map of MT
✓ up to its length. But ⇢(MT

✓) >

�✓. So the comparison on the T -side must have stopped before we apply ET
� .

Contradiction.

If M and N are semi-S-mice, and d = maxDM = maxDN , M|d = N|d, then
semi-S-iteration strategies su�ce to compare M and N . In fact, we only compare

the part above d. Moreover, as there is no drop after d, it can’t be that the last

model of one side is a proper pseudo initial segment of the other. Thus the proofs

of solidity and condensation carries verbatim over to the semi-S-mice case (cf. [4,

Theorem 8.1 and 8.2]).

Lemma 2.38 (Solidity). Let N be a semi-S-mouse over a. Let d = maxDN ,

P = deg(N|d). Assume that if K is an S-premouse over a, a 2 Cone(z), j : S̄ !
SP(K) is ⌃

1

-elementary, j(a,H,P) = (a,K,P), then S̄ = SP(H). Then standard

parameters of N are solid and universal.

Proof. Then ⇢!(N) � d. So the nth core maps are above d. All comparison

arguments that arise are above d, so semi-S-iteration strategy su�ces for the proof.

The additional assumption of the lemma on condensation of SP is used to guarantee

that if M is a SP-premouse, j : K ! M, j � d = id, N|d E K, then K is a SP-

premouse as well.

Lemma 2.39 (Condensation). Let N be an !-sound semi-S-mice. Suppose ⇡ :

H ! N is fully elementary, and crt(⇡) = ⇢!(H) = ⇢!(N). Let d = maxDN ,

P = deg(N|d). Assume that if K is an S-premouse over a, a 2 Cone(z), j : S̄ !
SP(K) is ⌃

1

-elementary, j(a,H,P) = (a,K,P), then S̄ = SP(H). Then H is an

initial segment of N .

2.8 Iteration theory of S-premice 76

Lemma 2.40. Let Q be ⌃-good. Assume that if K is an S-premouse over a,

a 2 Cone(z), j : S̄ ! SQ(K) is ⌃
1

-elementary, j(a,H,Q) = (a,K,Q), and

pro(Q,K) I
K pro(P,K), then S̄ = SQ(H). Then every model of the L[~E, SP][a]-

construction in Q is a semi-S-mouse. Consequently, the L[~E, SP][a]-construction

in Q converges.

Proof. We show by induction on ⇠ that every N⇠,M⇠ is a semi-S-mouse. Assume

M⇠ is a sound semi-S-mouse. If M⇠ falls under case 2 or case 4 of definition 2.27,

then N⇠+1

is immediately a S-premouse. If we let ⇤N⇠+1
be the strategy of N⇠+1

induced from the background universe, and K is a non-dropping iterate above

maxDN⇠+1 , then K is also an S-premouse. This is because we have a lifting map

k : K ! j(N⇠+1

), where j : Q ! R is an background iteration map. j(N⇠+1

) is

an S-premouse by elementarity, and the assumption of the lemma tells us K is an

S-premouse as well.

If M⇠ falls under case 3, let T, d be in the definition. Theorem 2.35 tells us

T = TM⇠ , i.e. T is the correct object that keeps track of the strategy in M⇠. Put

d⇤ = (d+)M⇠ . Then d, d⇤ are strong cutpoints of M⇠. We claim that M⇠|d⇤ =

SSMQ(M⇠|d), where Q = degM⇠(�), � = min(lM⇠ \ (d + 1)). On one hand,

since M⇠ is iterable, M⇠|d⇤ E SSMQ(M⇠|d). On the other hand, every level of

SSMQ(M⇠|d) is OD(SQ), hence is in M⇠ by fullness, and hence is in M⇠|d⇤ by

acceptability. But Hull(M⇠)+(M⇠|d [⇡1
M⇠

) is full by assumption. Hence the hull

contains d⇤. Since d⇤ is a cardinal strong cutpoint of M⇠, we can treat M⇠ as a SQ-

premouse over M⇠|�⇤. But then, M⇠ is exactly the output of the L[~E, SQ][M⇠|�⇤]-
construction in Q. That means Q1

M⇠
, ⇡1

M⇠
are exactly the objects used in defining

S⇤,Q+1(M⇠|d⇤). It follows then N⇠+1

= SQ+1(M⇠|d). So N⇠+1

is a SP-premouse. A

similar proof as in the last paragraph shows that the induced strategy of N⇠+1

is

a semi-S-iteration strategy.

M⇠+1

is a fine-structural core of N⇠+1

. Let d = maxDN⇠+1 . Then ⇢!(N⇠+1

) � d.

2.9 Condensation of the S-operators 77

Thus by Lemma 2.39, M⇠+1

is an S-premouse. A similar proof shows that the

induced strategy of M⇠+1

is a semi-S-iteration strategy.

If ⇠ is a limit, then N⇠ is a SP-premouse since each Mµ, µ < ⇠ is a SP-premouse.

The induced strategy of N⇠ is a semi-S-iteration strategy.

2.9 Condensation of the S-operators

Condensation of the SP-operator is important, as the next operator SP+1 relies on

an L[~E, SP]-construction. At certain steps of the L[~E, SP]-construction, we take

fine structural cores. Condensation of the SP-operator guarantees that an SP-

premouse condenses to an SP-premouse. So far, we don’t know if all SP-operators

are not vacuous!

Once again we will show that each SP has condensation on a cone by reducing

it to the HP operator. The HP-operator has the same Wadge rank as SP, when

coded as a subset of reals, but has condensation outright. The successor step is

just like in Section 2.3. At a limit step with non-measurable cofinality we simply

take the intersection of countably many cones. The situation at a limit step with

measurable cofinality is harder, where the coding lemma is involved to get the base

of the cone.

In the following paragraphs we define the HP operators for successor P’s. Fix a

countable transitive swo. Suppose that P is an index for a, dom(P) = n+1, ↵n is a

successor ordinal. Let Q be the promotion of P for a. Let ~N = hNi : i ni be the
M#

1

-sequence of Q for a. Let N be ⌃Qn(�n�1)

-good over Nn. By the universality

proof, N is full, in the sense that for any transitive swo b 2 N , the maximal

L[~E,⌃Qn(�n�1)

][b]N constructions reaches Lp⌃Qn(�n�1)(b). N can define the short-

tree iteration strategy of Qn(�n) by choosing branches whose Q-structure is an

initial segment of some model of the L[~E,⌃Qn(�n�1)

] construction over common part

2.9 Condensation of the S-operators 78

of the tree. Let U be the generic genericity iteration tree on Qn(�n) attempting

to make all reals yT xg generic over the extender algebra of the final model,

whenever xg codes (a, g), g is a Coll(!, a) generic filter over the final model (cf.

[8]) according to the short-tree strategy. We assume that U has maximal possible

length, i.e. either U has a last model R such that all yT xg are generic over the

extender algebra of R, whenever xg codes (a, g), g is a Coll(!, a) generic filter over

R, or U is maximal.

We again claim that U must be maximal, lh(U) = (|a|+)N , and ⌃Qn(�n)(U) /2 N .

For otherwise let R be the result of the generic genericity iteration, then R 2 N
and �R is singular in N . Let g be Coll(!, a) generic over N . Let xg be the real

that codes (a, g). Then R\N [xg] = {y 2 R : y is OD(xg,⌃Qn(�n�1))} by fullness of

N . But R \R[xg] = {y 2 R : y is OD(xg,⌃Qn(�n�1))} because ⌃ is super-fullness

preserving. Since the extender algebra of R is �R-c.c., R[xg] |= �R is regular.

Contradiction.

So N is able to define the last model of U as R = Lp
⌃Qn(�n�1)

! (M(U)), but

⌃Qn(�n)(U) /2 N . Let ⇡ = iU
_
⌃Qn(�n)(U) be the iteration map. Let M be the

least initial segment of N such that U ,R 2 M and M |= “U is the maximal

correct genericity iteration tree with last model R with respect to a”. Then HP(a)

is the (e, �n � · · · � �1)-amenable code of the transitive collapse of

hHullM(a [{a} [⇡),2, a, EM, SM,U ,R, ⇡i.

Note again that �(U) = (|a|+)N = (|a|+)M, o(R) = (|a|+!)N = (|a|+!)M. Let

ja : H [0](a) ! hM,2, etci be the associated anticollapse map. For the similar

reason as in Section 2.3, ja �(|a|+!)M = id.

The proof of Lemma 2.18 and Lemma 2.16 carries over to the general case, Lemma 2.41

and Lemma 2.42. Lemma 2.42 is a stronger form of condensation. It applies to

2.9 Condensation of the S-operators 79

di↵erent H-operators: A ⌃
1

-elementary substructure of HQ(a) condenses to HP(b)

with the possibility thatP 6= Q. We even allow the possibility Pn(↵⇤
n) 6⌘DJ Qn(�⇤

n).

This stronger form of condensation is necessary in the condensation proof of SP

in the measurable cofinality case as well as in the translation procedure of sec-

trion 3. Again, the proof of Lemma 2.42 relies on Lemma 2.11. Lemma 2.42 is the

only reason why we make the e↵ort defining the (e, �)-amenable code and proving

Lemma 2.11.

Lemma 2.41. Let P be an index for a. Then for all g ✓ Coll(!, a) generic over

HP(a),

HP(xg) = HP(a)[xg].

Lemma 2.42. Suppose that j : H̄ ! HP(a) is ⌃
1

elementary. P is a promoted

index over a, Q is a promoted index over b. Suppose that

j(Q, b, z
0

) = (P, a, z
0

)

Then

H̄ = HQ(b).

For each n < !, x 2 R such that SP(x) is defined, let

SP
n (x) = ThSP

(x)|⇠n({x} [(⇡SP
(x) � e)�n),

HP
n (x) = ThHP

(x)|⌘n({x} [(⇡HP
(x) � e)�n).

where ⇠n, ⌘n are ordinals that (⇡SP
(x) � e) �n and (⇡HP

(x) � e) �n glue to. We say

that a real z codes a reduction between SP and HP if z codes (f
0

, f
1

, g
0

, g
1

) in a

fixed coding system such that for all x�T z,

SP
n (x) = {f

1

(n)}HP
f0(n)(x),

2.9 Condensation of the S-operators 80

HP
n (x) = {g

1

(n)}SP
g0(n)(x).

To show that SP has condensation when P is of type C, we will need the notion

of coding a reduction on further extensions of SP. As a motivation, let’s consider

the typical case when P = [], is the least measurable of P . As an induction

hypothesis, assume that for all hP,P
1

i 2 I such that ↵
1

successor, there is a

real which codes a reduction between ShP,P1i and HhP,P1i. Let A be the set of

(x, z) 2 R2 such that

1. x codes (~Tx,Px). Denote Px = (0, ⇡x,Px,↵x,↵x). Then ↵x is a successor.

2. ~Tx is a stack on P below P(0) according to ⌃P(0)

with last model Px such

that i~Tx = ⇡x.

3. hP,Pxi 2 I.

4. z codes a reduction between ShP,Pxi and HhP,Pxi.

Let ⇤ be the following prewellordering on {x : 9z(x, z) 2 A}.

x ⇤ y $ Px(↵x) DJ Py(↵y).

Note that by Lemma 2.1, the comparison between Px and Py is below images of

�Px
0

and �Py

0

. So ⇤ is actually �1

1

(⌃Pn(0)). By the coding lemma, there is B ✓ A

such that B is
˜
⌃1

1

(⌃Pn(0)), and for all x 2 field(⇤), there is y =⇤ x and w such

that (y, w) 2 B. Let U ✓ R3 be the universal ⌃1

1

(⌃P(0)

) set. Let z be a real of

su�ciently high Turing degree such that for all ✏ < , there is a real recursive in

w which codes a reduction between SP[✏] and HP[✏], and that

Uz

2.9 Condensation of the S-operators 81

is the set of (x, w) such that

there is y such that y =⇤ x, (y, w) 2 B.

We sketch a proof that if K is an S-premouse over a, a 2 Cone(z), j : S̄ ! SQ(K) is

⌃
1

-elementary, j(H,Q) = (K,Q), and pro(Q,K) I
K pro(P,K), then S̄ = SQ(H).

Consequently, the L[~E, SP]-construction in any good universe converges. The proof

is done by induction on final(Q). If Q = [✏] for some ✏ < �P , then S̄ = SQ(H)

follows from choice of z. So let’s assume Q >I
K [✏] for all ✏ < �P . This means

Q = [�P]_h0, ⇡⇤,Q⇤, ✏, ✏i for some ⇡⇤,Q⇤, ✏. The main di�culty is when Q is a

successor index. Let’s assume Q is a successor index. Let N = M#,⌃P(0)

1

(b).

We show that if b 2 Cone(z), g is Coll(!, b)-generic over S⇤,Q(b), N = M#,⌃P(0)

1

(b),

x codes (~Tx,Px), Px = (0, ⇡x,Px,↵x,↵x), ↵x is a successor, ~Tx is a stack on P
below P(0) according to ⌃P(0)

with last model Px such that i~Tx = ⇡x, then there

is w 2 N [g] such that (z, x, w) such that (z, x, w) 2 U . Moreover, for all w 2 N [g]

such that (z, x, w) 2 U , w codes a reduction between S⇤,Q and HQ above S⇤,Q(b).

Let g, N , x be as above. Let

⇡1 : N ! M1

be the direct limit embedding of all iterates of N = M#,⌃P(0)

1

(b) according to its

unique (!
1

,!
1

)-strategy. We know by induction that

there are y, w such that y =⇤ x and (y, w) 2 B

By choice of z,

Uz,x = {w : 9y y =⇤ x and (y, w) 2 B}.

Here is the crucial step. By generic interpretability, M1 has definable trees T
0

, T
1

2.9 Condensation of the S-operators 82

on ! ⇥ �M1 such that p[T
0

] = ⌃P(0)

= R \ p[T
1

]. (cf.[7, Theorem 4.2.5]) Hence

there is a tree T definable over M1 such that p[T] = U . By absoluteness,

M1[g] |= 9w (z, x, w) 2 p[T].

Hence

N [g] |= 9w (z, x, w) 2 p[⇡1�1(T)].

Since p[⇡1�1(T)] ✓ p[T], there is w 2 Nn+1

[g] such that (z, x, w) 2 U . Moreover,

By choice of z, for all w0 2 N [g] such that (z, x, w0) 2 U , there is y 2 N [g]

such that y =⇤ x, w0 codes a reduction between ShP,Pyi and HhP,Pyi. Since N 2
SP[1](a), whenever b 2 Cone(SR(a)), we have pro(hP

0

,Pyi, b) = pro(hP
0

,Pxi, b) =
pro(R, b). Hence w0 codes a reduction between SR(b) and HR(b) above SR(a).

We can then obtain e↵ective maps p�q 7! p�h
Qq and p�q 7! p�s

Qq such that for all

countable transitive swo b 2 Cone(S⇤,Q(a)), for all c
0

, . . . , ck 2 b, for all ⌃
1

formula

�(v
0

, . . . , vk),

S⇤,Q(b) |= �(c
0

, . . . , ck) $ HQ(b) |= �h
Q(c0, . . . , ck, z, ~N),

HQ(b) |= �(c
0

, . . . , ck) $ S⇤,Q(b) |= �s
Q(c0, . . . , ck, z, ~N).

Here is a sketch of definition of p�q 7! p�h
Qq. Assume that

S⇤,Q(b) |= �(c
0

, . . . , ck).

Then for all g ✓ Coll(!, b) generic over both S⇤,Q(b) and HQ(b) such that g(i) = ci

for all i k,

S⇤,Q(xg) |= “S⇤,Q(b) |= �(g(0), . . . , g(k))| {z }
call this �1

”.

2.9 Condensation of the S-operators 83

Hence

9l p�
1

q 2 SQ
l (xg).

Let �
2

(z,N) be the formula

“Let x be such that

1. x codes (~Tx,Px). Denote Px = (⌫x, ⇡x,Px,↵x,↵x).

2. hP,Pxi 2 I as witnessed by ~Tx.

3. Px(↵x) and Q⇤(✏) coiterate to the same model.

Let w be such that (z, x, w) 2 p[⇡�1

1 (T)]. Then w codes f
0

, f
1

, g
0

, g
1

, and there is

l 2 ! such that p�
1

q 2 {f
1

(l)}HQ
f0(l)

(xg).”

Then

HQ(xg) |= �
2

(z,N).

Let �h
Q(v0, . . . , vk, z,N) be the formula

“for all g ✓ Coll(!, b) generic over HQ(b) such that g(i) = vi for all i k, then

V [xg] |= �
2

(z, ~N).”

Then

HQ(b) |= �h
Q(c0, . . . , ck, z, ~N).

In a similar way we can define the map p�q 7! p�s
Qq. The same proof as in

Lemma 2.20 gives that S⇤,Q has condensation above S⇤,Q(b). This, combined with

a proof like Lemma 2.26, shows S̄ = SQ(H).

Let’s turn back to the general case. In general, the promotion of an index over a

is sensitive to a. So it is necessary to consider the equivalence class of an index

instead of a single one. Given P = h(⌫i, �i,Qi, �⇤
i , �i) : i ni 2 I and Q =

h(⌫i, �i,Qi, �⇤
i , �i) : i ni 2 I, we say that P ⇠I Q if for all i n,

2.9 Condensation of the S-operators 84

1. Pi(↵⇤
i) ⌘DJ Qi(�⇤

i).

2. For all ✏ < ↵i, Pi(✏) <DJ Qi(�i).

3. For all ✏ < �i, Qi(✏) <DJ Pi(↵i).

So P and its promotion will be ⇠I-equivalent. Let [P]I be the set of Q 2 I such

that P ⇠I Q. Let

�
[P]I = {(x, y) 2 R2 : x code Q 2 [P]I , y 2 Code(⌃Qn(⌫n))}.

Let

U
[P]I ✓ R3

be the canonical universal ⌃1

1

(�
[P]I) set.

Lemma 2.43. Let P = h(⌫i, �i,Qi, �⇤
i , �i) : i ni 2 I. Then �

[P]I is �1

1

(⌃Pn(⇣n)).

Consequently, U
[P]I is ⌃1

1

(⌃Pn(⇣n)).

Proof. We inductively show that �
[P�i+1]I is �1

1

(⌃Pi(⇣i)) for all i n. The base

case i = 0 is trivial. The inductive case follows from Lemma 2.1: Suppose that

Q � i + 1 2 [P� i+ 1]I . Then the comparison between Qi+1

and Pi+1

is below

images of �Qi+1
⌫i+2 and �Pi+1

⇣i+2
. If Qi+1

(�i+1

) and Pi+1

(↵i+1

) iterate to Ri+1

via U and

T respectively, then ⌃Qi+1(⌫i+1) = ((⌃Pi+1(⇣i+1))T)
iU .

Given any (R,⇤) 2 pB(P ,⌃) \ a, let ⇡1 : M#,⇤
1

(a) ! M1 be the direct limit

map of all iterates of M#,⇤
1

(a) according to its unique strategy. Then M1 has

definable trees T
0

, T
1

on !⇥ �M1 such that p[T
0

] = ⇤ = R \ p[T
1

] (cf. [7, Theorem

4.2.5]). Let T be the tree on (! ⇥ !)⇥ �M1 canonically definable from T
0

and T
1

such that p[T] = U
[P]I . We then set TM#,⇤

1 (a) = ⇡1�1(T).

2.9 Condensation of the S-operators 85

Let P 2 I be a limit index of type C. Let dom(~P) = n + 1. We say that a real z

codes a reduction on further extensions of [P]I if for all Q, ~N , a, g, hxi : i mi
such that

1. a 2 Cone(z),

2. Q = h(⌫i, �i,Qi, �⇤
i , �i) : i mi 2 I is a promotable successor index over a,

~N is the M#

1

-sequence of pro(Q, a) for a.

3. dom(Q) = m+ 1 > n+ 1, Q�n+ 1 ⇠I P,

4. g ✓ Coll(!, a) is generic over S⇤,Q(a).

5. for all n < i m, �⇤
i = �i,

6. for all i m, xi 2 Ni[g], xi codes (~Txi ,Qi).

7. ~Tx0 = ;. For all i < m, ~Txi+1 is a stack on Qi below Qi(⌫i) according to

⌃Qi(⌫i) with last model Qi+1

such that i~Txi is defined.

there is hwi : n < i mi 2 Nm[g] such that

1. (z,�jn+1

xj, wn+1

) 2 U
[Q�n+1]I .

2. For all n < i < m, (wi,�ji+1

xj, wi+1

) 2 U
[Q�i+1]I .

Moreover, for all such hwi : n < i mi, wm codes a reduction between S⇤,Q and

HQ above SQ(a).

Definition 2.44. Let P 2 I, dom(~P) = n+ 1. We say that z is a nice real for P

if all of the following holds.

1. (Reduction) For all ✏ ↵n successor or 0, if P[✏] 2 I, then there is yT z

such that y codes a reduction between S⇤,P[✏] and HP[✏].

2.9 Condensation of the S-operators 86

2. (Reduction on further extensions) For all ✏ ↵n, if P[✏] is a limit index

of type C, then there is yT z such that y codes a reduction on further

extensions of [P(✏)]I .

3. (Condensation) If K is an S-premouse over a, a 2 Cone(z), j : S̄ ! SQ(K)

is ⌃
1

-elementary, j(H,Q) = (K,Q), and pro(Q,K) I
K pro(P,K), then

S̄ = SQ(H). Consequently, the L[~E, SP]-construction in any good universe

converges.

Theorem 2.45. For all P 2 I, there is a nice real for P.

Proof. We show by induction on hod mouse prewellordering of final(P). Let P =

h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni

Case 1. P = [0]

Let z
0

be as in Lemma 2.26. Then clearly z satisfies properties 1 and 3 of definition

of a nice real for [0]. 2 is vacuous.

Case 2. P is a successor index

Let z
0

be a nice real for P� 1.

We claim that for all n < !, x 2 R such that z
0

T x, there is k < ! such that

SP
n (x)T HP

k (x), H
P
n (x)T SP

k (x). Since SP
n (x) is a real in an SP�1-mouse over

x, SP
n (x) 2 LpSP�1

(x). So SP
n (x) 2 Lp⌃Pn(↵n�1)(x). Since HP

n (x) is a real in a

⌃Pn(↵n�1)

-mouse over x, HP
n (x) 2 Lp⌃Pn(↵n�1)(x). On the other hand, we show

that for all y 2 Lp⌃Pn(↵n�1)(x), there is k such that yT SP
k (x), yT HP

k (x). By

soundness of SP(x) and HP(x), it su�es to show that Lp⌃Pn(↵n�1)(x) ⇢ SP(x) \
HP(x). Let Q,N be as in definition of SP(x). Let j : SP(x) ! hN

+

,2, etci be the
uncollapsing map. By the proof of MSC, there is R 2 pI(Pn(↵n),⌃) \N \ ran(j)

such that R is an iterate of Pn(↵n) above Pn(↵n � 1), ⌃R �N 2 N
+

\ ran(j), and

x is generic over the extender algebra of R at �R. Since ran(iPR) ✓ ran(j), by

strong branch condensation, j�1(R) is full. So j�1(R)[x] is full by super fullness

2.9 Condensation of the S-operators 87

preservation. So Lp⌃Pn(↵n�1)(x) ✓ SP(x). For the similar reason, Lp⌃Pn(↵n�1)(x) ✓
HP(x).

Since SP
n , H

P
n are uniformly Turing invariant operators, according to [16], there is

a real z�T z
0

which codes a reduction between SP and HP. We show that z is a

nice real for P. 1 and 2 follow from induction.

Condensation of S⇤,P above Cone(z) follows as in Lemma 2.20 and from 2.19.

Condensation of SP for S-premice above a 2 Cone(z) follow from a proof similar

to 2.26. This and the induction hypothesis shows 3.

Case 3. P is a limit index of type A.

Let z be such that for all sup ⇡00
n↵n�1

 ✏ < ↵n, there is yT z such that y is a nice

real for SP[✏]. We claim that z is a nice real for ↵n.

We prove that SP has condensation for S-premice above any a 2 Cone(z). Let

j : S̄ ! SP(K) be ⌃
1

-elementary, where K is an S-premouse over a, a 2 Cone(z).

Suppose that j(H) = (K). We want to show that S̄ = SP(H). Let Q = pro(P,K),

~M be the M#

1

-sequence of Q for K, ~k be the lifting sequence of P for K, R =

pro(P,H), ~N be the M#

1

-sequence of R for H, ~l be the lifting sequence of P for

H. We can show that

j(R, ~N) = (Q, ~M).

This is done by induction. The base case,

j(R
0

, �
0

,N
0

) = (Q
0

, �
0

,M
0

)

is because Q
0

= Q
0

= P , �
0

= �
0

= ↵
0

, ~N
0

= b, ~M
0

= a. Suppose we already

know that

j(Ri,Ni) = (Qi,Mi).

2.9 Condensation of the S-operators 88

Then by hull condensation of ⌃, j�1(M#,⌃Qi(⌫i)

1

(Mi)) = M#,⌃Ri(µi)

1

(Ni). Hence

j(Ri+1

,Ni+1

) = (Ri+1

,Mi+1

).

This finishes showing that j(R, ~N) = (Q, ~M). For every ✏ such that P[✏] 2 I,
Q[kn(✏)] = pro(P[✏],K), Q[ln(✏)] = pro(P[✏],H). So

j�1(SQ[kn(✏)](K)) = j�1(SP[✏](K))

= SP[✏](H) by induction

= SR[ln(✏)](H).

Since k00
n↵n is cofinal in �n, l00n↵n is cofinal in �n,

S̄ = SP(b)

This and induction hypothesis concludes property 3 of a nice real. 1 and 2 follow

from induction.

Case 4. P is a limit index of type B.:

Similar to Case 3.

Case 5.P is a limit index of type C:

Let ⇣⇤ be least such that �Qn
⇣⇤ > max(⇡n(�

Pn�1

⇣n
), cfPn(↵⇤

n)). Let A be the set of

(x, z) 2 R2 such that

1. x = �in+1

xi. For each i n + 1, xi codes (~Txi ,Pxi). Denote Pxi =

(⇣xi , ⇡xi ,Pxi ,↵
⇤
xi
,↵xi).

2. hPxi : i n+ 1i 2 I as witnessed by h~Txi : i n+ 1i.

3. hPxi : i ni ⇠I P. Pxn(⇣xn+1) ⌘DJ Pn(⇣⇤).

2.9 Condensation of the S-operators 89

4. z is a nice real for hPxi : i n+ 1i.

Let ⇤ be the prewellordering on {x : 9z(x, z) 2 A} as follows.

x ⇤ y $ Pxn+1(↵
⇤
xn+1

) DJ Pyn+1(↵
⇤
yn+1

).

Note that by Lemma 2.1, the comparison between Pxn+1 and Pyn+1 is below images

of ⇡xn+1(�
Pxn+1

⇣xn+1
) and ⇡yn+1(�

Pyn+1

⇣yn+1
). So ⇤ is actually in �1

1

(⌃Pn(⇣⇤)). By the coding

lemma, there is B ✓ A such that B is
˜
⌃1

1

(⌃Pn(⇣⇤)), and for all x 2 field(⇤), there

is y ⌘⇤ x and w such that (y, w) 2 B. Let z be a real of su�ciently high Turing

degree such that

1. for all ✏ < ↵n such that P[✏] 2 I, there is a nice real for P[✏] which is

recursive in z,

2. (U
[P]I)z = {(x, w) : 9y(y ⌘⇤ x ^ (y, w) 2 B)}

We want to show that z is a nice real for P. Property 1 follows from induction and

choice of z. To get property 2, we just need to show that z codes a reduction on

further extensions of [P]I . Let Q, ~N , a, g, hxi : i mi be as in definition of coding

a reduction on further extensions of [P]I . Let

⇡1 : M#,⌃Qn(µn)

1

(Nn) ! M1

be the direct limit embedding of all iterates of M#,⌃Qn(µn)

1

(Nn) according to its

unique (!
1

,!
1

)-strategy. (Note thatM#,⌃Qn(µn)

1

(Nn) = Nn+1

.) Note that U
[Q�n+1]I =

U
[P]I . We know by induction that

there are y, w such that y =⇤ xn and (y, w) 2 B.

2.9 Condensation of the S-operators 90

By choice of z,

(U
[Q]I)z,xn = {w : 9y y =⇤ xn and (y, w) 2 B}.

Since p[⇡1(TNn+1)] = U
[Q]I , by absoluteness,

M1[g] |= 9w (z, xn, w) 2 p[⇡1(TNn+1)].

Hence

Nn+1

[g] |= 9w (z, xn, w) 2 p[TNn+1].

Since p[TNn+1] ✓ p[⇡1(TNn+1)], there is w 2 Nn+1

[g] such that (z,�jnxj, w) 2
U
[Q]I . Moreover, By choice of z, for all w0 2 Nn+1

[g] such that (z,�jnxj, w0) 2
U
[Q]I , there is y 2 Nn+1

[g] such that y ⌘⇤ x, w0 is a nice real for hPyi : i n+ 1i.
If m = n + 1, then w0 codes a reduction between S⇤,hPyi :in+1i and HhPyi :in+1i.

Since Nn+1

2 S⇤,Q(a), pro(hPyi : i n + 1i, b) = pro(hPxi : i n + 1i, b) =

pro(Q, b) whenever b 2 Cone(S⇤,Q(a)). Hence w0 codes a reduction between S⇤,Q(b)

and HQ(b) whenever b 2 S⇤,Q(a).

Ifm > n+1, then w0 codes a reduction on further extensions of [hPyi : i n+ 1i]I .
This means there is hwi : n+ 1 < i mi 2 Nm[g] such that

1. (w0,�jn+2

xj, wn+2

) 2 U
[Q�n+2]I .

2. For all n+ 1 < i < m, (wi,�ji+1

xj, wi+1

) 2 U
[Q�i+1]I .

Hence hwi_hwi : n+1 < i mi verifies requirement 1 and 2 of coding a reduction

on further extensions of [P]I . Moreover for all hw0
i : n+ 1 < i mi such that

1. (w0,�jn+2

xj, w0
n+2

) 2 U
[Q�n+2]I .

2. For all n+ 1 < i < m, (w0
i,�ji+2

xj, w0
i+1

) 2 U
[Q�i+1]I .

2.9 Condensation of the S-operators 91

w0
m codes a reduction between ShPxi :imi and HhPxi :imi above S⇤,Q(a). Since

Nm 2 S⇤,Q(a), pro(hPxi : i mi, b) = pro(Q, b) whenever b 2 Cone(S⇤,Q(a)).

Thus w0
m codes a reduction between S⇤,Q and HQ above Cone(S⇤,Q(a)). This fin-

ishes verifying property 2 of a nice real.

We now prove property 3. This is by induction on final(Q). Let a 2 Cone(z),

Q 2 I. Let K be an S-premouse over a. Let Q 2 I be such that pro(Q,K) I
K

pro(P,K). Suppose j : S̄ ! SQ(K) is ⌃
1

-elementary, j(Q,H) = (Q,K). We want

to prove S̄ = SQ(H). If Q I
K pro(P[✏],K) for some ✏ < ↵n, then S̄ = SQ(H)

follows from z being a nice real for P[✏]. So let’s assume Q >I
K pro(P[✏],K) for

all ✏ < ↵n. This means Q � n + 1 ⇠I P, which allows us to use the property of

coding a reduction on further extensions of [P]I . If Q is a successor index, then

by the property of coding a reduction on further extensions of [P]I , we can obtain

e↵ective maps p�q 7! p�h
Qq and p�q 7! p�s

Qq such that for all countable transitive

swo b 2 Cone(S⇤,Q(a)), for all c
0

, . . . , ck 2 b, for all ⌃
1

formula �(v
0

, . . . , vk),

S⇤,Q(b) |= �(c
0

, . . . , ck) $ HQ(b) |= �h
Q(c0, . . . , ck, z, ~N),

HQ(b) |= �(c
0

, . . . , ck) $ S⇤,Q(b) |= �s
Q(c0, . . . , ck, z, ~N).

Here is a sketch of definition of p�q 7! p�h
Qq. Assume that

S⇤,Q(b) |= �(c
0

, . . . , ck).

Then for all g ✓ Coll(!, b) generic over both S⇤,Q(b) and HQ(b) such that g(i) = ci

for all i k,

S⇤,Q(xg) |= “S⇤,Q(b) |= �(g(0), . . . , g(k))| {z }
call this �1

”.

Hence

9l p�
1

q 2 SQ
l (xg).

2.9 Condensation of the S-operators 92

Let �
2

(z, ~N) be the formula

“Let hxi : n < i mi be such that

1. For each i m, xi 2 Ni[g]. xi codes (~Txi ,Pxi). DenotePxi = (⌫xi , ⇡xi ,Pxi ,↵
⇤
xi
,↵xi).

2. hPxi : i mi 2 I as witnessed by h~Txi : i mi.

3. hPxi : i mi ⇠I Q.

Let hwi : n < i mi 2 Nm[g] be such that (z,�
0<jnxj, wn+1

) 2 p[TNn+1], and

for all n < i < m, (wi,�0<ji+1

xj, wi+1

) 2 p[TNi+1]. Then wm codes f
0

, f
1

, g
0

, g
1

,

and there is l 2 ! such that p�
1

q 2 {f
1

(l)}HQ
f0(l)

(xg).”

Then

HQ(xg) |= �
2

(z, ~N).

Let �h
Q(v0, . . . , vk, z, ~N) be the formula

“for all g ✓ Coll(!, b) generic over HQ(b) such that g(i) = vi for all i k, then

V [xg] |= �
2

(z, ~N).”

Then

HQ(b) |= �h
Q(c0, . . . , ck, z, ~N).

In a similar way we can define the map p�q 7! p�s
Qq. The same proof as in

Lemma 2.20 gives that S⇤,Q has condensation above S⇤,Q(b). This, combined with

a proof like Lemma 2.26, shows S̄ = SQ(H).

If Q is a limit index of type A or B, then S̄ = SQ(H) by induction. If Q is

a limit index of type C, we need to show a stronger form of condensation. Let

R = pro(Q,K), ~M be the M#

1

-sequence of R for K, R̄ = pro(R,H), ~N be the

M#

1

-sequence of R̄ for H. Let M⇤ = M#,⌃Rn(µ⇤)
1

(Mm), N ⇤ = M#,⌃R̄n(µ⇤)
1

(Nm).

2.9 Condensation of the S-operators 93

R⇤ = dirlimM⇤

K (Rn), R̄⇤ = dirlimN ⇤

H (R̄n), The same proof as in case 3 shows that

j(R̄, ~N ,N ⇤, R̄⇤) = (R, ~M,M⇤,R⇤).

For every successor ✏ such that R̄_hµ̄⇤, ⌧̄ ⇤, R̄⇤, ✏, ✏i 2 I, SR(K)Coll(!,K) satisfies the

following:

“ Let x be a real coding hxi : i n+ 1i such that xi 2 Mi[g] for all i n,

xn+1

2 M⇤[g], x
0

= P
0

, xi codes (~Txi ,Pxi),

hPxi : i m+ 1i ⇠I R_hµ⇤, ⌧ ⇤,R⇤, j(✏), j(✏)i. Then p[(TN ⇤
)z,x] \M⇤[g] 6= ;.

For all w 2 p[(TM⇤
)z,x] \M⇤[g], w codes a reduction between

SR_hµ⇤,⌧⇤,R⇤,j(✏),j(✏)i(K) and HR_hµ⇤,⌧⇤,R⇤,j(✏),j(✏)i(K)”

So S̄Coll(!,H) satisfies the following:

“ Let x be a real coding hxi : i n+ 1i such that xi 2 Ni[g] for all i n,

xn+1

2 N ⇤[g], x
0

= P
0

, xi codes (~Txi ,Pxi),

hPxi : i m+ 1i ⇠I R̄_hµ̄⇤, ⌧̄ ⇤, R̄⇤, ✏, ✏i. Then p[(TN ⇤
)z,x] \N ⇤[g] 6= ;. For all

w 2 p[(TN ⇤
)z,x] \N ⇤[g], w codes a reduction between j�1(S

¯R_hµ̄⇤,⌧⇤, ¯R⇤,✏,✏i(K))

and j�1(H
¯R_hµ̄⇤,⌧̄⇤, ¯R⇤,✏,✏i(K)).”

By Lemma 2.42,

j�1(HR_hµ⇤,⌧⇤,R⇤,✏,✏i(K)) = H
¯R_hµ̄⇤,⌧̄⇤, ¯R⇤,✏,✏i(H).

Since for all w 2 p[(TN ⇤
)z,x], w codes a reduction between S

¯R_hµ̄⇤,⌧̄⇤, ¯R⇤,✏,✏i(H) and

H
¯R_hµ̄⇤,⌧̄⇤, ¯R⇤,✏,✏i(H),

j�1(SR_hµ⇤,⌧⇤,R⇤,j(✏),j(✏)i(K)) = S
¯R_hµ̄⇤,⌧̄⇤, ¯R⇤,✏,✏i(H).

Therefore, S̄ = SP(c).

2.9 Condensation of the S-operators 94

This finishes property 3. Hence z is a nice real for P.

From now on we fix a nice real z for [�P]. We end this section with a key conden-

sation result which will be crucial in the translation procedure of chapter 3. Its

proof is essentially included in the proof of Theorem 2.45.

Theorem 2.46. Suppose that P is a promoted index over K, Q is a promoted index

for H, K is an S-premouse over a, H is an S-premouse over b, a, b 2 Cone(z).

Suppose that j : S̄ ! SP(K) is ⌃
1

elementary, j(H,Q) = (K,P). Then S̄ = SQ(b).

Chapter 3
The translation

In this chapter, we define a translation procedure that turns extenders into S-

operators.

3.1 Defining the translation

Let Q be a ⌃-good ⌃-premouse over a such that a 2 Cone(z). Let ⌘ be a cardinal

of Q such that Q|� � Q. Let N
0

= L[~E]
Q|⌘

. Suppose that ⌘ is Woodin in (N
0

)
+

,

Q|⌘ is generic over N
+

for Q⌘, the ⌘-generators extender algebra at ⌘. For N be

a (!
1

,!
1

)-iterable premouse extending (N
0

)
+

such that ⌘ is Woodin in N , let

U(N , ⌘) = { ~E = hEi : i ni :E
0

is on the N -sequence,

Ei+1

is on the Ult(N , Ei)-sequence,

for all i n, Ei overlaps ⌘.}

95

3.1 Defining the translation 96

let

P (N , ⌘) = {K : either (N
0

)
+

E K E N ,

or there is ~E 2 U(N , ⌘) such that (N
0

)
+

E K E Ult(N , En)}

Let <P (N ,⌘) be the following binary relation on P (N , ⌘). For K
1

,K
2

2 P (N , ⌘),

K
1

<P (N,⌘) K
2

just in case either

K
1

C K
2

or

there is ~E = hEi : i ni 2 U(K
2

, ⌘) such that K
1

E Ult(N , En).

Lemma 3.1. <P (N ,⌘) is a well-order on P (N , ⌘).

Proof. Obviously, <P (N ,⌘) is anti-reflexive.

<P (N ,⌘) is total. Suppose that K,M 2 P (N , ⌘), K 6= M. If both K and M are

initial segments of N , then one must be a proper initial segment of the other, so

they are lined up under <P (N ,⌘). If K C N but M 6C N , let ~F = hFi : i
mi 2 U(N , ⌘) be such that M E Ult(N , Fm) and hlh(Fi) : i mi is lexico-

graphically least with this property. Clearly hlh(Fi) : i mi is a strict increasing

sequence. If N||lh(F
0

) E K, then ~F 2 U(K, ⌘) witnesses that M<P (N ,⌘)K. If

K C N||lh(F
0

), then K C M since M|lh(F
0

) = N|lh(F
0

). So K<P (N ,⌘)M. As-

sume then K 6C N and M 6C N . Let ~E = hEi : i ni 2 U(N , ⌘) be such

that K E Ult(N , En) and hlh(Ei) : i ni is lexicographically least with this

property. Let ~F = hFi : i mi 2 U(N , ⌘) be such that M E Ult(N , Fm) and

hlh(Fi) : i mi is lexicographically least with this property. Let k be maxi-

mal such that ~E � k = ~F � k. If both Ek and Fk are defined, assume wlog that

lh(Ek) < lh(Fk). Then M|lh(Fk) = Ult(N , Ek�1

)|lh(Fk). So hEk, . . . , Eni 2

3.1 Defining the translation 97

U(M, ⌘), witnessing that K<P (N ,⌘)M. If Ek is not defined, but Fk is defined,

again we have M|lh(Fk) = Ult(N , Ek�1

)|lh(Fk). If Ult(N , Ek�1

) C K, then

hFk, . . . , Fmi 2 U(K, ⌘) witnesses that M<P (N ,⌘)K. If K C Ult(N , Ek�1

)||lh(Fk),

then K C M. So K<P (N ,⌘)M.

<P (N ,⌘) is transitive. Assume that K
1

<P (N ,⌘)K
2

, K
2

<P (N ,⌘)K
3

as witnessed by

~E 2 U(K
2

, ⌘), ~F 2 U(K
3

, ⌘) respectively, then ~F_ ~E 2 U(K
3

, ⌘) witnesses that

K
1

<P (N ,⌘)K
3

.

<P (N ,⌘) is wellfounded because N is iterable.

Let g ✓ Q⌘ be the natural N -generic filter which codes Q|⌘. Let Q,D be easily

definable functions such that Q(g) = Q1
N0|⌘, D(g) = ⇡1

N0|⌘, where ⇡
1
N0|⌘ : P ! Q1

N0|⌘

is the direct limit map of I(P ,⌃) \N
0

|⌘.

Definition 3.2. Trg is a function on P (N , ⌘) defined by induction on <P (N ,⌘).

1. If K = (N
0

)
+

, then Trg(K) = h|K|[g],2, g, ;, ;, ;, ;, ;, ;i.

2. If K = N(M), then Trg(K) = N(Trg(M)).

3. If o(K) is a limit, K is passive, then Trg(K) =
F
⌘<o(K)

Trg(K|⌘).

4. If K is active with top extender E, crt(E) > ⌘, let E[g] be the canonical

extension of E to the generic. Let Trg(K) be
F
⌘<o(K)

Trg(K|⌘) but adding
the top extender E[g].

5. If K is active with top extender E, crt(E) < ⌘, let Trg(Ult((N
0

)
+

, E)) =

hJ ~E,S
↵ [g],2, g, ~E, ;, S, ;, ;, ;i. Let d be the last drop of Trg(Ult(N

0

, E)). Then

Trg(K) is the e- amenable code of transitive collapse of the hull of d[iE�D(g)

over

hJ ~E,S
↵ [g],2, g, ~E, ;, S, T rg(Ult((N

0

)
+

, E))|d, iE(Q(g)), iE �D(g)i.

3.1 Defining the translation 98

The translation generalizes the one in [19]. Details of a similar translation in a

di↵erent context is carried out in [1]. The crucial part is in case 5. We translate an

extender overlapping ⌘ into an S-operator. Although we develop the translation in

an abstract manner without relevance to the S-operators, we are only interested

in cases when Trg(K) is a mixed S-premouse. So suppose Trg(Ult(N , E)) has

largest drop d, and suppose P is the degree at d. This means we have reached

a maximal L[~E, SP] model over Trg(Ult(N , E)), and we aim to define Trg(K) =

SP+1(Trg(Ult(N , E))|d), feeding in some new information and thus raising the

degree by one bit. Before proceed into the detailed proof of the interdefinability of

the translation, let’s sketch why E is recoverable from Trg(K) in case 5. Suppose

we have obtained H such that Trg(H) is equal to Trg(K) without top S-predicate.

We may recover E by

(A, s) 2 E

if and only if for some n, A ✓ []n, s 2 [o(K)]n, and

there is B 2 HullH([ran(⇡Trg(K))) such that s 2 B and B \ []n = A.

It relies on the following fact.

Let S be the transitive collapse of Hull(N0)+([⇡1
N). Then P()N ✓ S.

This is an important fact aboutN , being the full L[~E] construction inside a suitable

⌃-premouse. We will prove this fact in Section 3.4. For the mean time, let’s

grant this fact, and develop basic properties of the translation. Given (A, s) 2 E,

A ✓ []n, s 2 [o(K)]n, since P()N ✓ S, there is a Skolem term ⌧ , an ordinal c

and a 2 ran ⇡1
N = D(g) such that

A = ⌧ (N0)+(c, a) \ []n.

3.1 Defining the translation 99

Let k : Trg(K) ! hJ ~E,S
↵ [g],2, g, ~E, ;, S, T rg(Ult((N

0

)
+

, E))|d, iE(Q(g)), iE �D(g)i
be the uncollapse map. Let ⌫ = crt(k). Then we can show k � H : H !
Ult((N

0

)
+

, E) is the restriction of k. Note iE(a) 2 iE � D(g) ✓ ran k. Let

B = ⌧H(c, k�1(iE(a))), then B \ [⌫]n = k(B)\ [⌫]n = ⌧Ult((N0)+,E)(c, iE(a))\ [⌫]n =

iE(A) \ [⌫]n. Hence B \ []n = A. Moreover, s 2 iE(A). So s 2 B once

we have lh(E) ⌫. However, we always have ⌫(E) ⌫. This is proved in

three steps. Firstly, if µ is a generator of E but not the largest, then d �
µ. Otherwise, let ⇠ index E � µ + 1 on K. Then Ult((N

0

)
+

, E � µ + 1) em-

beds into Ult((N
0

)
+

, E) with critical point > µ. The embedding extends to

l : Ult((N
0

)
+

, E �µ+ 1)[g] ! Ult((N
0

)
+

, E)[g], or l : Trg(Ult((N
0

)
+

, E �µ+ 1)) !
Trg(Ult((N

0

)
+

, E)). Let P = deg(Trg(Ult((N
0

)
+

, E)|d). Then l�1(P, d) = (P, d).

That means, Trg(Ult((N
0

)
+

, E � µ + 1)) has largest drop d whose degree is P.

By definition, Trg(K|⇠) reaches degree P+ 1 at d. Hence Trg(Ult((N
0

)
+

, E))

reaches degree P + 1 at d. Contradiction! Secondly, if µ = ⌫(E � (⌫(E) � 1)),

then (µ+)Ult((N0)+,E) > ⌫(E). This is because E � ⌫(E) � 1 2 Ult((N
0

)
+

, E).

Hence Ult((N
0

)
+

, E) has a surjection from µ onto ⌫(E) � 1. It follows then

(d+)Trg(Ult((N0)+,E)) � lh(E). Finally, we always have (d+)Trg(Ult((N0)+,E)) ⌫.

This is a property about the S-operator, namely, SSMP(Trg(Ult((N
0

)
+

, E))|d) ✓
SP+1(Trg(Ult((N

0

)
+

, E))|d). Again, we grant this fact before proving interde-

finability. So far we are done with one direction. For the opposite direction,

suppose (A, s) 2 E, A ✓ []n, s 2 [o(K)]n, and B 2 ⌧H(c, a) for some c < , a 2
ran(⇡Trg(K)) such that s 2 B and B\[]n = A. Then k(B) = ⌧Ult((N0)+,E)(c, k(a)) 2
ran(iE). Hence i�1

E (k(B)) \ []n = B \ []n = A. Hence s 2 B \ [o(K)]n =

k(B) \ [o(K)]n = iE(A) \ [o(K)]n. Hence (A, s) 2 E.

Lemma 3.3. Suppose that N is an iterable premouse extending (N
0

)
+

. Assume

that for any ~E = hEi : i ni, letting = crt(En), then

1. P() \N ✓ S.

3.1 Defining the translation 100

2. If Trg(Ult(N
0

, E)) is defined, then it has a drop. Let d be the largest drop of

Trg(Ult(N , E)), then (d+)Trg(Ult(N ,E)) ✓ HullTrg(Ult(N ,E))(d [i00ED(g)).

Then for all M 2 P (N , ⌘),

1. Trg(M) is defined. Trg(M) 2 M [g]
+

. If, in addition, M |= ZFC� is either

passive or crt(FM) > ⌘, then Trg(M) and M[g] have the same universe.

2. |M|, ĖM and ḞM are uniformly definable classes in Trg(M). More pre-

cisely, there are formulas �
1

(·),�
2

(·),�
3

(·, ·),�
4

(·) such that

u 2 |M| $ Trg(M) |= �
1

(u),

u 2 ĖM $ Trg(M) |= �
2

(u),

if M has top extender F with crt(F) = < ⌘, then

u 2 ḞM $ Trg(M) |= �
3

(u,),

Otherwise,

u 2 ḞM $ Trg(M) |= �
4

(u),

Proof. �
1

, . . . ,�
4

defines the backward translation from Trg(M) into M. Let

TrInv(V |�) = u be the formula

there is a sequence of premice hK↵ : o((N
0

)
+

) ↵ �i such that

1. Ko((N0)+)

= (N
0

)
+

,

2. K↵+1

= N(K↵),

3. If ↵ is a limit ordinal, there is no (x, y) 2 Ṡ such that o(y) = ↵, then

K↵ =
F{K� : � 2 IV |↵}� (E↵ �

F{K� : � 2 IV |↵}).

3.1 Defining the translation 101

4. If there is (x, y) such that o(y) = ↵, then K↵ = K� � G, where � = sup Iy,

and G is unique such that for some µ < o(N),

(a) G is a (µ, o(K�))-extender over K� as defined by

(A, s) 2 G

if and only if for some n, A ✓ [µ]n, s 2 [o(K�)]n, and

there is B 2 HullH(µ [ran(⇡y)) such that s 2 B and B \ [µ]n = A.

where H =
F{K� : � < ↵} for some su�ciently big � < ↵.

(b) H embeds into Ult(N
1

, G) with critical point � o(K) such that ran ⇡y

is sent pointwise to i00GD(g).

5. u = K�.

Clearly, if hK↵,K↵ : o((N
0

)
+

) ↵ �i and u as above exist, then they are unique.

Hence the definition makes sense. We let �
1

(u) be the formula

9� 2 IV 9n < ! u 2 Sn(TrInv(V |�)).

�
2

(u) be the formula

9� 2 IV u 2 ETrInv(V |�)_hF TrInv(V |�)i.

�
3

(u, v) be the formula

Let � = sup IV . Then for some n, (u)
0

✓ [v]n, (u)
1

2 [�]n and

9X 2 ⇡̇9B 2 HullV
�
(ḃ [B)((u)

1

2 B ^ B \ [v]n = (u)
0

).

3.1 Defining the translation 102

(Recall that V � is the reduct of V removing the predicate ⇡̇.) �
4

be the formula

x 2 Ḟ .

We prove the lemma by induction on <P (N ,⌘).

Case 1. M = (N
0

)
+

.

By definition, Trg(M) and M[g] have the same universe. Trivially, �
1

,�
2

,�
4

defines M, EM, FM over Trg(M).

Case 2. M = N(K) for some K.

We show that �
1

,�
2

,�
4

correctly defines |M|, EM, FM over Trg(M). We have,

by induction hypothesis, for each H<P (N ,⌘)K,

Trg(K) |= TrInv(Trg(H)) = H.

Hence

Trg(M) |= TrInv(Trg(H)) = H.

If K = N(H) for some H, then, ~H = hTrInv(Trg(M)↵) : ⇠
0

 ↵ o(Trg(H))i
witnesses TrInv(Trg(H)) = H. Hence ~H_hTrg(K)i witnesses TrInv(Trg(K)) =

K inside Trg(M), simply because Trg(K) = N(Trg(H)).

If K is of limit level, we show that ITrg(K) = {o(Trg(H)) : H E K}. We first

observe that for every (x, y) 2 STrg(K), suppose (x, y) comes from the extender

G, then genTrg(K)|o(y) = genG \ ⌘. Hence ⌫y = ⌫(G). Now fix an H C K,

we show o(Trg(H)) 2 ITrg(K). Suppose toward a contradiction that for some

(x, y) 2 STrg(K), (⌫+)Trg(K)|o(y) < o(Trg(H)) < o(y). Suppose (x, y) comes from

the extender En with hE
0

, . . . , Eni 2 U(N , ⌘), lh(E
0

) < · · · < lh(En). Then

lh(En) = (⌫+)Trg(K)|o(y). But o(Trg(H)) < o(y) implies o(H) < lh(E
0

). Contra-

diction. On the other hand, if ⇠ 6= o(Trg(H)) for any H C K, letting H
0

be the

3.1 Defining the translation 103

least initial segment of K such that ⇠ < o(Trg(H
0

)), then H
0

has a top exten-

der G such that crt(G) < ⌘. Thus for some x, (x, Trg(H
0

)) 2 STrg(K). Then

lh(H
0

) = (⌫+)Trg(H0 < o(Trg(H)) < o(Trg(H)
0

). This means ⇠ /2 ITrg(K).

The fact ITrg(K) = {o(Trg(H)) : H E K}, together with induction hypothesis, im-

plies that

Trg(M) |= TrInv(Trg(K)) = K.

when K is either passive or active with crt(FK) > ⌘. One simply traces through

clause 3 of definition of TrInv.

When K is active with crt(FK) = < ⌘, we have �
3

(·,) correctly defines FK over

Trg(K). The definition of �
3

fits into clause 4 of definition TrInv(Trg(K)), except

uniqueness of µ. We present the uniqueness proof here. Suppose there happens to

be another G 6= FK such that clause 4(a)(b) defines a (µ, o(K))-extender G over K,

and, replacing the top extender of K with G, we also get a premouse. Then µ 6= .

Assume wlog µ < . Then G � 2 N by initial segment condition. On the other

hand, we have an natural embedding k : Ult((N
0

)
+

, G�) ! Ult((N
0

)
+

, G) and an

embedding l : H ! Ult((N
0

)
+

, G) such that l � o(K) = id, l00⇡Trg(K) = i00G ran ⇡1
N 0 .

Hence k � l�1 : Ult((N
0

)
+

, G) ! H is identity on and sends i00G� ran ⇡
1
N to

⇡Trg(K) pointwise. Since P()N ✓ S, every subset A of can be written as

A = ⌧ (N0)+(c, a) \ for some Skolem term ⌧ , ordinal c < and a 2 ran ⇡1
N .

Let j : (N
0

)
+

! H be the embedding coming from taking an Skolem hull of

Ult((N
0

)
+

, FK). Then j(A) = ⌧H(c, j(a)). But j(a) 2 ⇡Trg(K) ✓ ran(k � l�1).

Hence (k � l�1 � j)(A) \ = A 2 Ult(N , G �). Thus P()N ✓ Ult(N , G �). In

particular, G� 2 Ult(N , G�). Contradiction.

Case 3. M is limit level, either M is passive or crt(FM) > ⌘.

Correctness of TrInv and �
1

,�
2

,�
4

over Trg(M) is essentially shown in Case 2.

We show that if M |= ZFC�, then Trg(M) and M[g] have the same universe. On

one hand, for each K C M, Trg(K) 2 M[g] since the translation can be carried

3.2 Fine structure of potential S-premouse 104

out in M [g]. Hence |Trg(M)| ✓ |M[g]|. On the other hand, for each K C M, K
is definable over Trg(K). Hence K 2 N(Trg(K)) = Trg(N(K)) ✓ Trg(M). Hence

|M[g]| ✓ |Trg(M)|.
Case 4. crt(FM) = < ⌘.

Correctness of TrInv and �
1

,�
2

over Trg(M) is essentially shown in Case 2.

The fact �
3

(·,) defines FM over Trg(M) is follows from the discussion before

Lemma 3.3. If one goes through the argument there, the two assumptions of this

lemma comes into play.

3.2 Fine structure of potential S-premouse

According to Lemma 3.3, K is always a definable class over Trg(K). We will show

that the projecta and standard parameters of K andTrg(K) are equal modulo g.

So we are left to show the other direction, translating ⌃
1

-facts of Trg(K) to that

of K. We wish to encode an isomorphic copy of Trg(K) inside K[g]. Sections 3.2

and 3.3 is adaption of[1] to the present context.

Definition 3.4. Fix M 2 P (N , ⌘). We define Shoenfield terms A⇠, ⇠⇠, ✏⇠,

E⇠, F ⇠, S⇠, b⇠, Q⇠, ⇡⇠, I⇠, µ⇠, ⌫⇠, �⇠, for each o((N
0

)
+

) ⇠ o(M) by induction on

⇠. We will ensure that for any h ✓ Q⌘ generic over M , ⇠⇠
h is an equivalence relation

on A⇠
h, ✏

⇠
h, E

⇠
h, F

⇠
h , S

⇠
h, b

⇠
h,Q⇠

h, ⇡
⇠
h, I

⇠
h, µ

⇠
h, ⌫

⇠
h, �

⇠
h are relations of an appropriate arity

on A⇠
h that are ⇠⇠

h-invariant. Let A⇠
h be the transitive collapse of the structure

hA⇠
h/ ⇠⇠

h, ✏
⇠
h/ ⇠⇠

h, E
⇠
h/ ⇠⇠

h, F
⇠
h/ ⇠⇠

h, S
⇠
h/ ⇠⇠

h, b
⇠
h/ ⇠⇠

h,Q⇠
h/ ⇠⇠

h, ⇡
⇠
h/ ⇠⇠

h, I
⇠
h/ ⇠⇠

h, µ
⇠
h/ ⇠⇠

h

, ⌫⇠h/ ⇠⇠
h, �

⇠
h/ ⇠⇠

hi and let u⇠h be the collapsing map.

1. For ⇠ = o((N
0

)
+

), let A⇠ = (N
0

)Coll(!,⌘)
+

. ⇠⇠, ✏⇠ are standard Q⌘-names such

3.2 Fine structure of potential S-premouse 105

that for any h ✓ Q⌘ generic over M,

⇠⇠
h = {(x, x) : x 2 (N

0

)
+

[h]}
✏⇠h = {(x, y) : x 2 y, y 2 (N

0

)
+

[h]}.

We define E⇠ = F ⇠ = S⇠ = b⇠ = Q⇠ = ⇡⇠ = I⇠ = µ⇠ = ⌫⇠ = �⇠ = ;.

2. Suppose M|⇠ is either of successor level, or of limit level but passive or

crt(EM
⇠) > ⌘. A⇠ is the standard Q⌘-name such that for any h ✓ Q⌘ generic

over M,

A⇠
h = {(⇠

1

, pfq, x) : ⇠
1

< ⇠, x 2 A⇠, f codes a binary rudimentary function}

�⇠, u⇠ are standard Q⌘-names such that for any h ✓ Q⌘ generic over M,

⇠⇠
h = {((⇠

1

, pfq, x), (⇠
2

, pf 0q, x0)) : f(u⇠1h (x),A
⇠1
h) = f 0(u⇠2h (x

0),A⇠2
h)},

u⇠h(⇠1, pfq, x) = f(u⇠1h (x),A
⇠1
h)

We will ensure that u⇠h is the transitive collapsing map associated to A⇠
h/ ⇠⇠

h.

✏⇠h, E
⇠
h, F

⇠
h , S

⇠
h, b

⇠
h,P

⇠
h,Q⇠

h, ⇡
⇠
h, H

⇠
h, µ

⇠
h, ⌫

⇠
h, �

⇠
h are standard Q⌘-names such that

3.2 Fine structure of potential S-premouse 106

for any h ✓ Q⌘ generic over M,

✏⇠h = {(X, Y) : u⇠h(X) 2 u⇠h(Y)}
E⇠

h = {(⇠
1

, pfq, x) : u⇠h(⇠1, pfq, x) 2 E⇠2
h
_hF ⇠2

h i for some ⇠
2

}
F ⇠
h = {X : u⇠h(X) 2 F [h]}

S⇠h = {(⇠
1

, pfq, x) : for some ⇠
2

, either u⇠h(⇠1, pfq, x) 2 S⇠2h ,

or crt(EM
⇠2) < ⌘, u⇠h(⇠1, pfq, x) = A⇠2

h }
b⇠h = Q⇠

h = ⇡⇠h = {X : u⇠h(X) = ;}
I⇠h = {(⇠

1

, pfq, x) : u⇠h(⇠1, pfq, x) = A⇠2
h for some ⇠

2

 ⇠
1

}
µ⇠h = {X : u⇠h(X) = µM|⇠}
⌫⇠h = {X : u⇠h(X) = ⌫M|⇠}
�⇠h = {X : u⇠h(X) = �M|⇠}

3. Suppose EM
⇠ < ⌘. Set F = ĖM

⇠ , = crt(F). Let [r, x] represent Q⌘ in the

ultrapower. Then A⇠ is such a Coll(!, ⌘)-name: for any Q⌘-generic h, A⇠
h is

the set of (p, (p⌧q, n, a, f)ˇ) such that

(a) p 2 Q⌘,

(b) ⌧ is a Skolem term,

(c) n < !,

(d) a 2 [lh(F)]<!,

(e) f 2 M is a function from |a| to o((N
0

)
+

),

(f) Let [s, y] represent p in the ultrapower. Then for Fa[r[s-a.e. u 2 |a[r[s|,

(N
0

)
+

satisfies the following: y(us
a[r[s) forces over x(u

r
a[r[s) that letting

3.2 Fine structure of potential S-premouse 107

ġ be the standard x(ur
a[r[s)-name for the generic, then

Trġ((N
0

)
+

) |= “f(ua
a[r[s) < my largest drop”

⇠⇠ is the set of standard names for ordered pairs ((p, (p⌧q, n, a, f)ˇ),
(p, (p�q,m, b, e)ˇ)) 2 (A⇠)2 such that letting [s, y] represent p in the ultra-

power, then for Fa[b[r[s-a.e. u 2 a[b[r[s,

(N
0

)
+

|=y(us
a[b[r[s)�x(ur

a[b[r[s)Trġ((N
0

)
+

) |=
“⌧(D(ġ �n), f(ua

a[b[r[s)) = �(D(ġ �m), g(ub
a[b[r[s))”.

✏⇠ is the set of standard names for ordered pairs ((p, (p⌧q, n, a, f)ˇ),
(p, (p�q,m, b, e)ˇ)) 2 (A⇠)2 such that letting [s, y] represent p in the ultra-

power, then for Fa[b[r[s-a.e. u 2 a[b[r[s,

(N
0

)
+

|= y(us
a[b[r[s)�x(ur

a[b[r[s)Trġ((N
0

)
+

) |=
“⌧(D(ġ �n), f(ua

a[b[r[s)) 2 �(D(ġ �m), g(ub
a[b[r[s))”.

E⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) 2 Ė”.

F ⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = ;”.

S⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

3.2 Fine structure of potential S-premouse 108

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) 2 Ṡ”.

b⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s))

= V |my last drop”.

Q⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = Q(ġ)”.

⇡⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|=y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = (X, Y),

where for some m,X = supHullV (D(ġ)�m [V |my last drop),

Y = D(ġ)�m.”

I⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, [s, z] represent ⇠ in the ultrapower, then for Fa[r[s-a.e. u 2
a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) 2 IV |zsa[r[s”.

µ⇠ = F ⇠ (also interpreted as the empty set).

3.2 Fine structure of potential S-premouse 109

⌫⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting [s, y] represent p in the

ultrapower, [s, z] represent ⌫F in the ultrapower, then for Fa[r[s-a.e. u 2
a[r[s,

(N
0

)
+

|= y(us
a[r[s)�x(ur

a[r[s)Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = zsa[r[s”.

If �M|⇠ is an ordinal, then �⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that letting

[s, y] represent p in the ultrapower, [s, z] represent �M|⇠ in the ultrapower,

then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|=y(us
a[r[s)�x(ur

a[r[s) let X = o(Trġ((N
0

)
+

|zsa[r[s)), then
Trġ((N

0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = X”.

If �M|⇠ is a triple (A,B,C), then I⇠ is the set of (p, (p⌧q, n, a, f)ˇ) such that

letting [s, y] represent p in the ultrapower, [s, z] represent EA, [s, w] represent

(B,C), then for Fa[r[s-a.e. u 2 a[r[s,

(N
0

)
+

|=y(us
a[r[s)�x(ur

a[r[s) let X = o(Trġ(Ult((N
0

)
+

, zsa[r[s)|[ws
a[r[s]

(N0)+

zsa[r[s
)),

then Trġ((N
0

)
+

) |= “⌧(D(ġ �n), f(ua
a[r[s)) = X”.

We let AM,⇠M, etc stand for Ao(M),⇠o(M), etc.

The next lemma says we can encode a copy of Trg(M) inM in an ⌃
1

-way (actually,

we can show in a �
1

-way). The proof is more or less a tedious repetition of

definition 3.4, so we state the lemma without proving it.

Lemma 3.5. Let M 2 P (N , ⌘). Let A⇠, etc be defined as in Definition 3.4.

Then for any h ✓ Q⌘ generic over M, ⇠⇠
h is an equivalence relation on A⇠

h,

✏⇠h, E
⇠
h, F

⇠
h , S

⇠
h, b

⇠
h,Q⇠

h, ⇡
⇠
h, I

⇠
h, µ

⇠
h, ⌫

⇠
h, �

⇠
h are relations of an appropriate arity on A⇠

h

that are ⇠⇠
h-invariant. hA⇠

g/ ⇠⇠
g, ✏

⇠
g/ ⇠⇠

g, E
⇠
g/ ⇠⇠

g, F
⇠
g / ⇠⇠

g, S
⇠
g/ ⇠⇠

g, b
⇠
g/ ⇠⇠

g,Q⇠
g/ ⇠⇠

g

3.2 Fine structure of potential S-premouse 110

, ⇡⇠g/ ⇠⇠
g, I

⇠
g/ ⇠⇠

g, µ
⇠
g/ ⇠⇠

g, ⌫
⇠
g/ ⇠⇠

g, �
⇠
g/ ⇠⇠

gi is isomorphic to C
0

(Trg(M)). More

importantly, the maps

⇠ 7! A⇠,⇠⇠, ✏⇠, E⇠, F ⇠, S⇠, b⇠,Q⇠, ⇡⇠, I⇠, µ⇠, ⌫⇠, �⇠

are uniformly ⌃
1

over C
0

(M). Moreover each of the sets

AM,⇠M, etc

are ⌃
1

over C
0

(M).

We show that fine structure is preserved under the ⇤-transform.

Lemma 3.6. Let M 2 P (N , ⌘). Let j � 1 be a natural number.

1. There is an e↵ective map ⇤ : r⌃j ! r⌃j such that for all � 2 r⌃j and all

b 2 M,

C
0

(M) |= �(b) $ C
0

(Trg(M)) |= �⇤(b, g).

We also have an e↵ective map ⇤ : Skj ! Skj such that, for all t 2 Skj and

all b 2 M,

tM(b) = (t⇤)Trg(M)(b, g).

2. There is an e↵ective mapˆ: r⌃j ! r⌃j such that for all 2 r⌃j, ↵ 2 o(M),

b 2 Trg(M), if ⌧ 2 M is such that uMg (⌧) = b, then

C
0

(Trg(M)) |= (↵g, b) $ 9q 2 gC
0

(M) |= q�Q⌘ ̂(↵, ⌧).

where ↵g = o(Trg(M|↵)). We also have an e↵ective map :Skj ! Skj such

that, for all s 2 Skj, ↵ 2 o(M), b 2 Trg(M), if ⌧ 2 M is such that

3.2 Fine structure of potential S-premouse 111

uMg (⌧) = b, then there is q 2 g such that

uMg (ŝM(↵, ⌧, q)) = sTrg(M)(↵g, b).

3. for each ⌘ < ↵ < o(M), ↵ is a cardinal of M if and only if ↵ is a cardinal

of Trg(M).

4. ⇢j(M) = ⇢j(Trg(M)),

5. pj(M) \ ⌘ = pj(Trg(M)),

6. M is j-sound ! Trg(M) is j-sound.

Proof. The case j > 1 is not much di↵erent from the j = 1 case. For the sake of

briefness, we only prove the j = 1 case. We also assume that M is not of E-type

III in the sense of [4], so that no squash is applied when forming C
0

(M). The

reader should have no problem fulfilling the remaining cases.

1. Case 1. M = (N
0

)
+

.

trivial.

Case 2 : M is of successor level or limit passive level.

Given � 2 ⌃
1

, �⇤(v) is the formula

“There is � 2 İ such that TrInv(V |�) = K, and for some n < !, Sn(K) |= �(v).”

Given t 2 Sk
1

,

t⇤(b, g) = tSn(TrInv(V |�))(b) for some �.

Case 3 : M is active, crt(FM) > ⌘.

Given � 2 r⌃
1

, �⇤(v) is the formula

“There is ⇠ 2 İ such that TrInv(V |⇠) = K, and K � (Ḟ c \K) |= �(v).”

3.2 Fine structure of potential S-premouse 112

Given t 2 Sk
1

,

t⇤(b, g) = tK�(Fc\K)(b), for some K = TrInv(V |⇠), ⇠ 2 İ .

Case 4 : M is active, crt(FM) < ⌘.

Given � 2 r⌃
1

, �⇤(v) is the formula

“Let TrInv(V | sup İ) = K. Then there is � < o(K), G ✓ K|�, and (X, Y) 2 ⇡̇

such that

(a) G is the set of quadruples (�, ⇠, s, A) such that � < ()+N , ⇠ < �, s 2 [⌫̇]<!,

A ✓ []<!, and letting

Z = {(t, B) : for some n, t 2 [⌫̇]n, B 2 []n \K|�, 9C 2 HullTrInv(V |X)

([ranY)(s 2 C ^ B = C \ []n)},

then Z 2 K|⇠, (s, A) 2 Z, and moreover, for each t 2 [⌫]n and B 2 N|�\ []n,,

either (t, B) 2 Z or (t, \B) 2 Z.

(b) K|� �G |= �(v).”

Given t 2 Sk
1

,

t⇤(b, g) = tK|��G(b), where K = TrInv(V | sup İ), and some G as in (a) above.

2. Comes from Lemma 3.5. Given 2 ⌃
1

, ̂(↵, v) is the formula “hAM
h / ⇠M

h

, etci |= (↵0, ⌧).” where ↵ 7! ↵0 is the canonical map such that uMg (↵0) = ↵g.

Given s 2 Sk
1

,

ŝ(↵, ⌧, q) = w where q�w is the <AM
h
-least such that s(↵0, ⌧).

3.2 Fine structure of potential S-premouse 113

3. If ↵ < o(M) is a cardinal ofM, then ↵ is a cardinal of eachK,M|↵<P (N ,⌘)N<P (N ,⌘)M.

Hence Trg(M|↵) E K for each such K. Since M |↵ |= ZFC�, o(Trg(M)|↵) = ↵.

By induction, for each such K, ⇢!(Trg(K)) = ⇢!(K) � ↵. Hence ↵ is a cardinal of

Trg(M). Conversely, if ↵ is a cardinal of Trg(M), then since M ✓ Trg(M), ↵ is

a cardinal of M.

4. Some arguments of [9] can be used here. We show by contradiction. Suppose

⇢
1

(M) 6= ⇢
1

(Trg(M)).

Case 1. ⇢
1

(M) < ⇢
1

(Trg(M)).

Subcase 1.1 ⇢
1

(M) < o(M).

Let ⇡ : M⇤ ! C
0

(M) be the �
1

-core map. Let p̄ = ⇡�1(p
1

(M)). There is then a

⌃C0(M⇤
)

1

(p̄) prewellorder of ⇢
1

(M) of order type at least ⇢
1

(M)+M⇤
. As p

1

(M) is

1-universal, ⇢
1

(M+M) = ⇢
1

(M)+M⇤
. By 3, ⇢

1

(M)+M = ⇢
1

(M)+Trg(M). But by 1,

B is ⌃C0(Trg(M))

1

(p, g), hence B 2 C
0

(Trg(M)). Contradiction.

Subcase 1.2 ⇢
1

(M) = o(M).

We claim that M /2 Trg(M). (Proof: Suppose that M is of minimal height

such that M 2 Trg(M). Clearly M can’t be of limit level either passive or

crt(FM) > ⌘. M can’t be active limit level with crt(FM) < ⌘ because FM can’t

be in Ult(M,FM). M can’t be of successor level because rud(x) 2 rud(y) implies

x 2 y.) Hence there is a ⌃C0(Trg(M))

1

subset of o(M) which is not in C
0

(Trg(M)).

Case 2 ⇢
1

(M) > ⇢
1

(Trg(M)).

LetA = {↵ < ⇢
1

(Trg(M)) : C
0

(Trg(M)) |= (↵, b)}, ⌃
1

, such thatA /2 Trg(M).

Let B = {↵g : ↵ 2 A}. So B /2 Trg(M). Let ⌧ be such that uMh (⌧) = b. Then

↵ 2 B $ C
0

(Trg(M)) |= (↵g, b)

$ 9q 2 gC
0

(M) |= q� ̂(↵, ⌧).

Set C = {(q,↵) : q 2 Q⌘,↵ < ⇢
1

(Trg(M))C
0

(M) |= q� ̂(↵, ⌧)}. Then C is coded

3.2 Fine structure of potential S-premouse 114

into a bounded subset of ⇢
1

(M). Hence C 2 C
0

(M). Hence B 2 C
0

(M)[g]. Hence

B 2 C
0

(Trg(M)). Contradiction.

5. The proof is similar to 4.

Suppose not. p
1

(M) \ ⌘ 6= p
1

(Trg(M)).

Case 1. p
1

(M) \ ⌘ <⇤ p
1

(Trg(M)).

Subcase 1.1 ⇢
1

(M) < o(M).

Let ⇡ : M⇤ ! C
0

(M) be the �
1

-core map. Let p̄ = ⇡�1(p
1

(M)). There is then a

⌃C0(M⇤
)

1

(p̄) prewellorder of ⇢
1

(M) of order type at least ⇢
1

(M)+M⇤
. As p

1

(M) is

1-universal, ⇢
1

(M+M) = ⇢
1

(M)+M⇤
. By 3, ⇢

1

(M)+M = ⇢
1

(M)+Trg(M). But by 1,

B is ⌃C0(Trg(M))

1

(p \ ⌘, g), hence B 2 C
0

(Trg(M)). Contradiction.

Subcase 1.2 ⇢
1

(M) = o(M).

We have M /2 Trg(M). Hence there is a ⌃C0(Trg(M))

1

subset of o(M) which is not

in C
0

(Trg(M)). Therefore p
1

(Trg(M)) = ;. Contradiction.
Case 2 p

1

(M) \ ⌘ >⇤ p
1

(Trg(M)).

Let A = {↵ < ⇢
1

(Trg(M)) : C
0

(Trg(M)) |= (↵, p
1

(Trg(M)))}, ⌃
1

, such that

A /2 Trg(M). LetB = {↵g : ↵ 2 A}. SoB /2 Trg(M). Let ⌧ be ⌃
1

(p
1

(Trg(M)), g)

definable over C
0

(M) such that uMg (⌧) = p
1

(Trg(M)). Then

↵ 2 B $ C
0

(Trg(M)) |= (↵g, p
1

(Trg(M)))

$ 9q 2 gC
0

(M) |= q� ̂(↵, ⌧).

Set C = {(q,↵) : q 2 Q⌘,C0

(M) |= q� ̂(↵, ⌧)}. Then C is coded into a

⌃
1

(p
1

(Trg(M)), ⌘) subset of ⇢
1

(M). Our case assumption says that C 2 C
0

(M).

Hence B 2 C
0

(M)[g]. Hence B 2 C
0

(Trg(M)). Contradiction.

6. Assume M is 1-sound. We first show that p
1

(Trg(M)) is 1-universal. Fix

A ✓ ⇢
1

(Trg(M)) = ⇢
1

(M) such that A 2 Trg(M). We want to show that {A}

3.3 Iterability 115

is ⌃Trg(M)

1

(⇢
1

(Trg(M)) [{p
1

(Trg(M)), g}). Fix ⌧ 2 M such that ug(⌧) = A. We

know, since M is 1-sound, that {⌧} is ⌃C0M
1

(⇢
1

(M) [{p
1

(M)}). Let t 2 Sk
1

,

↵ < ⇢
1

(M) be such that ⌧ = t(↵, p
1

(M)). Thus A is the unique x 2 Trg(M) such

that 9� 2 İC0(Trg(M))9Y (Y = tTrInv(V |�)(↵, p
1

(M)) ^ uTrInv(V |�)
g (Y) = x). Thus

{A} is ⌃C0(Trg(M))

1

(⇢
1

(Trg(M)) [{p
1

(Trg(M)), g}).
Next we show that Trg(M) is 1-solid. Say p

1

(Trg(M)) = h↵
0

, . . . ,↵ki = p
1

(M)\⌘.
Fix i k, 2 ⌃

1

andA = {↵ < ⇢
1

(Trg(M)) : C
0

(Trg(M)) |= (↵, (↵
0

, . . . ,↵i�1

))}
be a set of ordinals that is ⌃C0(Trg(M))

1

({↵
0

, . . . ,↵i1 , g}). We want to show A 2
Trg(M). Let B = {↵g : ↵ 2 A}. Let ⌧ be ⌃C0(M)

1

(↵
0

, . . . ,↵i�1

, g) such that

uM
g (⌧) = (↵

0

, . . . ,↵i�1

). Then

↵ 2 B $ C
0

(Trg(M)) |= (↵g, (↵
0

, . . . ,↵i�1

))

$ 9q 2 gC
0

(M) |= q� ̂(↵, ⌧).

Set C = {(q,↵) : q 2 Q⌘,C0

(M) |= q� ̂(↵, ⌧)}. Then C is coded into a

⌃
1

(↵
0

, . . . ,↵i�1

, ⌘) subset of ⇢
1

(M). From solidity of M, we know C 2 C
0

(M).

Hence B 2 C
0

(M)[g]. Hence B 2 Trg(M). Hence A 2 Trg(M).

Finally, the proof that Trg(M) is 1-sound is just a repetition of the proof that

p
1

(Trg(M)) is 1-universal. This completes the proof of Lemma 3.6 for j = 1.

Lemma 3.7. Trg(M) is a potential S-premouse.

Proof. Every proper initial segment of Trg(M) is sound by 6 of Theorem 3.6.

Therefore, Trg(M) is acceptable.

3.3 Iterability

In this section we show that if M is iterable via a strategy ⌃ such that every

⌃-iterate of M translates into an S-premouse, then Trg(M) is S-iterable. The

3.3 Iterability 116

phrase “translates into an S-premouse” means the S predicate of the result of the

translation expresses the correct S-operators as we have defined in Section 2.

Lemma 3.8. Suppose Trg(M) is defined. Let E be an extender over Trg(M),

Ê = E \ M is an extender over M. Assume furthermore that E is close to

Trg(M), Ê is close to M. = crt(E) = crt(Ê). Let k be the largest j such that

 < ⇢j(M). Then for all j k, if Trg(Ultj(M, Ê)) is defined, then

Trg(Ultj(M, Ê)) = Ultj(Tr
g(M), E),

i
ˆE = iE �M.

and if ⌧ 2 AM, then

iTrg(M)

E (uMg (⌧)) = uUltj(M, ˆE)

g (iM
ˆE
(⌧)).

Proof. Say (·, µ), E(·, µ), F (·, µ) defines |M|, EM, (F c)M over C
0

(Trg(M)). Let

K be the premouse whose ⌃
0

-core is defined by (·, µ), E(·, µ), F (·, µ) over
C
0

(Ultj(Trg(M), E)). Then iE �M : M ! K is ⌃
1

-elementary. We show that

K = Ultj(M, Ê) and iE �M = i
ˆE.

Let � : Ult(M, Ê) ! K be the map

�([a, f]M
ˆE
) = [a, f]Trg(M)

E

for a 2 [lh(E)]<!, f : |a| ! M, j = 0 ! f 2 M, j � 1 ! f 2 r
˜
⌃M

j . Clearly �

is well defined and ⌃
1

-elementary, � � i
ˆE = iE, � � lh(E) = id. It remains to show

that � is onto.

Well, an element of K is of the form

[a, f]Trg(M)

E

3.3 Iterability 117

where a 2 [lh(E)]<!, f : |a| ! M, j = 0 ! f 2 Trg(M), j � 1 ! f 2
r
˜
⌃j(Tr

g(M)). We should find g : |a| ! M, j = 0 ! g 2 M, j � 1 ! g 2 r⌃M
j ,

such that g(u) = f(u) for Ea-a.e. u.

Case 1 . j = 0.

Subcase 1.1 . M = N(K) for some K.

We may assume that ran(f) ✓ Sn(K) for a fixed n < !. Let ḟ 2 AM be such that

uMg (ḟ) = f . We have

[

q2g
{u 2 []|a| : Sn(K) |= 9q�uSn(K)(ḟ)(ǔ) = y̌} = []|a| 2 Êa.

But |g| ⌘ < . So there must be some q
0

2 g such that

A
0

= {u 2 []|a| : Sn(K) |= 9yq
0

�uSn(K)(ḟ)(ǔ) = y̌} 2 Êa.

So let g 2 M be the function on []|a| defined by

g(u) =

8
><

>:

v, if Sn(K) |= q
0

�uSn(K)(ḟ)(ǔ) = v̌.

0, otherwise.

Then A
0

2 Êa ✓ Ea and A
0

✓ {u : g(u) = f(u)}.
Subcase 1.2 M is of limit level which is either passive or crt(FM) > ⌘.

Say uMg (ḟ) = f . Let K C M be such that ḟ 2 K. A similar argument as before

gives g 2 N(K) such that g(u) = f(u) for Ea-a.e. u.

Subcase 1.3 . crt(FM) < ⌘.

o(M) must be a cardinal in Trg(M). Hence f 2 Trg(K) for some K C M. The

rest goes as before.

Case 2. j � 1.

3.3 Iterability 118

We assume j = 1. The case j > 1 is not much di↵erent. If ⇢
1

(M) = o(M), then 0-

ultrapowers agree with 1-ultrapowers, so case 1 applies. We assume now ⇢
1

(M) <

o(M). Denote ⇢ = ⇢
1

(M) = ⇢
1

(Trg(M)), p = p
1

(M)\⌘ = p
1

(Trg(M)). We know

Ult
1

(Trg(M), E) is 1-sound and ⇢
1

(Ult
1

(Trg(M), E)) lh(E), p
1

(Ult
1

(Trg(M), E)) =

iE(p). Thus a general element of K is of the form

sC0(Ult1(Trg(M),E))(iE(p), [a, f]
Trg(M)

E)

where s 2 Sk
1

, a 2 [lh(E)]<!, f 2 Trg(M), f : ! ⇢. The identical argument as

in case 1 gives g 2 M such that f(u) = g(u) for a.e. u 2 []|a|. By 2 of Theorem 3.6,

there is t 2 Sk
1

such that tC0(M)(p, g(u)) = sC0(Trg(M))(p, g(u)). Thus, the element

tUlt1(M, ˆE)(i
ˆE(p), [a, g]

M
ˆE
) will be mapped to sC0(Ult1(Trg(M),E))(iE(p), [a, f]

Trg(M)

E).

So far we have finished proving Trg(Ultj(M, Ê)) = Ultj(Trg(M), E), i
ˆE = iE �M.

iTrg(M)

E (uMg (⌧)) = u
Ultj(M, ˆE)

g (iM
ˆE
(⌧)) then follows from elementarity of iE. Take

⌧ 2 AM. Let ug(⌧) = b. Then Trg(M) |= uMg (⌧) = b. By elementarity,

Ultj(Trg(M)) |= u
Ultj(M, ˆE)

g (iE(⌧)) = iE(b). We just proved i
ˆE = iE � M. So

u
Ultj(M, ˆE)

g (i
ˆE(⌧)) = iE(b)

Theorem 3.9. Suppose M has an iteration strategy ⌃ such that every ⌃-iterate

of K translates into an S-premouse. Then Trg(M) is S-iterable.

Proof. Fix an iteration strategy ⌃M for M. We wish to inductively define an

iteration strategy � for Trg(M). If we assume we have an iteration tree T of limit

length on Trg(M) which is by � so far, the next step of the induction is to pick

a branch through T to be �(T). We do this by translating T to a tree on M,

using ⌃M to pick a branch there, and then pulling the branch back to T . So the

key to the theorem will be define a translation from iteration trees on Trg(M) to

iteration trees on M.

Fix a normal iteration tree T on Trg(M). Note that we require all extenders used

3.3 Iterability 119

on T to have critical points above ⌘, as Trg(M) to be an mixed S-premouse. We

will inductively build an iteration tree U on M and maps

⌧, � : lh(T) ! lh(U).

⌧ picks the model on the U -side which gets translated into the S-premouse on the

T -side, namely, Trg(MU
⌧↵) = MT

↵ . � picks the model on the U -side which has the

extender applied on the T -side, namely, ET
↵ = EU

�↵ [g]. We start by setting ⌧
0

= 0

and U �⌧
0

+ 1 = hMi.
Fix � > 0 and assume that we have defined increasing sequences of ordinals h⌧� :

� < �i and h�� : � < ↵i, where ↵ = � if � is a limit ordinal and ↵ + 1 = �

otherwise. Say, moreover, that h⌧� : � < �i is a continuous sequence. Let l� =

sup{⌧� + 1 : � < �} and say we have constructed a normal iteration tree U � l� on

M such that for all � < � we have

(a) for all ⇠ < �, if � < ⇠ then ⌧� �� < ⌧⇠, and if ⌧� <U 0 ⌧⇠ then � <U ⇠.

Moreover, if U doesn’t drop between ⌧� and ⌧⇠, then T doesn’t drop between

� and ⇠.

(b) Trg(MU
⌧�) = MT

� .

(c) If � = ↵ + 1 is a successor ordinal, then for all � < ↵,

EU
�� = ET

� \MU
�� .

If � is a limit ordinal, then this holds for all � < �.

(d) degU(⌧�) = degT (�).

(e) For every ⇠ < �, if ⌧� <U 0 ⌧⇠ and there is no dropping between ⌧� and ⌧⇠ on U ,

3.3 Iterability 120

so that iU⌧�⌧⇠ : MU
⌧� ! MU

⌧⇠
is defined, then for all x̄ 2 A

MU
⌧�

g ,

u
MU

⌧⇠
g (iU⌧�⌧⇠(x̄)) = iU�⇠(u

MU
⌧�

g (x̄)).

(f) ⌧� is a limit ordinal if and only if � is a limit ordinal, and

�(T ��) = {⇠ < � : ⌧⇠ 2 ⌃(U �⌧�)}

is a cofinal, wellfounded branch through T ��.

We wish to extender our construction to h⌧� : � �i, h�� : � < �i, and U � l�+1

=

U �⌧� + 1 and show that it still satisfies properties (a)-(f).

Let us first consider the situation where � is a successor ordinal, say � = ↵+1. We

start by defining �↵(� ⌧↵) and the normal extension U ��↵ + 1 using the following

sublemma.

Sublemma 3.10. Say K is iterable and Trg(K) is defined. If E is on the Trg(K)-

sequence indexed at �, then there is ~F = hFi : i < ni 2 U(K, ⌘) such that letting

E 0 = EUlt(N ,Fn�1)

� , then E 0[g] = E.

Proof. If EK
� [g] = E we are done with F = ;. Otherwise, let ↵

0

be least such

that E = ETrg(K|↵0)

� . Then it must be that EK
↵0

< ⌘. So E = E
Trg(Ult(N ,EK

↵0
))

� . If

E
Ult(N ,EK

↵0
)

� [g] = E, we are done with F = hEK
↵0
i. Otherwise, let ↵

1

be least such

that E = ETrg(K|↵1)

� . Then it must be that EK
↵1

< ⌘. So E = E
Trg(Ult(N ,EK

↵1
))

� .

Continuing this process, we will reach a finite increasing sequence h↵i : i < ni
such that letting F

0

= EK
↵0
, Fi = EUlt(N ,Fi�1)

↵i , then ~F = hFi : i < ni satisfies the

sublemma.

We call ~F as constructed in Sublemma 3.10 the recovery sequence of E with respect

to K. Now let ~F = hFi : i < ni be the recovery sequence of ET
↵ . We claim

3.3 Iterability 121

that lh(F
0

) > lh(EU
�) for any � < ⌧↵, so that U � ⌧↵ + 1 can be extended to

a normal tree V by adding ~F . Well, if not, then since lh(EU
�) is a cardinal in

MU
⌧↵ , the whole process of constructing ~F can be carried out inside M⌧U↵ . Hence

lh(ET
↵) < lh(EU

��) = lh(ET
�), contradicting the normality of T . We then let

U 0 ��↵ + 1 = V and MU
�↵ = R for V and R given by the above construction. The

extender we choose at stage �↵ of U will be EU
�↵ = ET

� \ MU
�↵ , so hypothesis (c)

continues to hold.

Now we need to determine the model on the U -side to which we will apply EU
�↵ .

Say � is least such that crt(ET
↵) < ⌫(ET

�). So in T we are going to have MT
↵+1

=

Ultk↵+1(Q�, ET
↵) for the longest possible Q� E MT

� , where k↵+1

is the largest k !

such that crt(ET
↵) < ⇢k(Q�). Say that on the U -side, we apply EU

�↵ to Q0
�. We

need that Q0
� is the largest initial segment of MU

⌧�
over which ET

��
is an extender,

so that by Lemmas 3.6 and 3.8,

Trg(Q�0) = Q�

and

k↵+1

= the largest k ! such that crt(EU
�↵) = crt(ET

↵) < ⇢k(Q0
�)

Trg(Ultk↵+1(Q0
�, E�U0

↵
)) = MT

↵+1

.

Say �0 such that crt(ET
↵) = crt(EU

�↵) < ⌫(EU
�0). If ⌧� = �0 we are done. If

not, let F
0

, . . . , Fn be the recovery sequence of ET
� with respect to MU

⌧�
. Then

⌫(EU
⌧�
) crt(EU

�↵) < ⌫(Fi) for some i n. But ⌫(Fi) < (⌫(EU
⌧�
))

+MU
⌧� by the

proof of Sublemma 3.10. This implies that cf(ET
↵) is not a cardinal of MT

� , so Q�

must be a proper initial segment of MT
� . On the other hand, Trg(Q0

�) is an initial

segment of MT
� , and Trg(Q0

�) itself has an initial segment over which ET
↵ is an

extender. Therefore, Trg(Q0
�) = Q� and we are done.

3.3 Iterability 122

Finally, we consider how to continue the construction when � is a limit ordinal.

We first need to check that (f) holds at �. That is, we need to see that

�(T ��) = {⇠ < � : ⌧⇠ 2 ⌃(U �⌧�)}

is a cofinal, wellfounded branch through T � �. Note that by our construction,

if � < ⌧� is such that MU
� 6= MU

⌧⇠
for all ⇠ < �, it must be because MU

� is a

U 0-immediate successor of 0. So any cofinal branch through U � ⌧�, in particular,

⌃(U 0 �⌧�), can contain at most one such �. Thus, for every ↵ < �, there is some �

such that ↵ < � < � and ⌧� 2 ⌃(U � ⌧�), and thus � 2 �(U ��). So �(T ��) is a
cofinal branch.

Moreover, letting b = �(T ��), and b0 = ⌃(U �⌧�), we have

dirlim�2b MT
� = dirlim�2b Trg(MU

⌧�) = Trg(dirlim�2b MU
⌧�) = Trg(dirlim⇠2b0 MU

⇠).

The first equality is by inductive property (b) at ordinals < �, the third is because

⌧ maps � cofinally into ⌧�, and the second is by the final sublemma.

Sublemma 3.11. dirlim�2b Trg(MU
⌧�) = Trg(dirlim�2b MU

⌧�)

Proof. The uncollapsed version of dirlim�2b Trg(MU
⌧�) is a structure with universe

{(�, x) : � 2 b, x 2 Trg(MU
⌧�)}/ ⇠

where (�, x) ⇠ (⇠, y) $ 9✓ 2 b(iU�✓(x) = iU⇠✓(y)). The uncollapsed version of

dirlim�2b MU
⌧� is similarly a structure with universe

{(�, x) : � 2 b, x 2 MU
⌧�}/ ⇡

where (�, x) ⇡ (⇠, y) $ 9✓ 2 b(iU⌧�⌧✓(x)) = iU⌧⇠⌧✓(y), but we already know that this

3.3 Iterability 123

branch is wellfounded, so we identify dirlim
MU

⌧�

�2b with its transitive collapse. We will

provide an isomorphism h between the uncollapsed version of dirlim�2b Trg(MU
⌧�)

and Trg(dirlim�2b MU
⌧�).

For every pair (�, x) with � 2 b and x 2 Trg(MU
⌧�), where is a term x̄ 2 MU

⌧� such

that x = u
MU

⌧�
g (x̄). So we define the map h by

h([�, x]⇠) = u
dirlim�2b MU

⌧�
g ([⌧�, x̄]⇡).

Hypothesis (e) can be used to show h is welldefined and elementary. The argument

is standard. Take �(v) be a formula with one free variable as an example, take

(�, x)⇠ in the direct limit, and let x̄ 2 A
MU

⌧�
g such that u

MU
⌧�

g (x̄) = x,

dirlim�2b Trg(MU
⌧�) |= �([�, x]⇠) $ 9✓ 2 b Trg(MU

⌧✓
) |= �(i�✓(x))

$ 9✓ 2 b 9q 2 g MU
⌧✓
|= q��̂(iU⌧�⌧✓ x̄)

$ 9q 2 g dirlim⇠2b MU
⌧⇠
|= q��̂(i⌧�b0(x̄))

$ Trg(dirlim⇠2b MU
⌧⇠
) |= �(u

dirlim⇠2b MU
⌧⇠

g (x̄))

$ Trg(dirlim⇠2b MU
⌧⇠
) |= �([⌧�, x̄]⇡)

It remains to show h is onto. For any y 2 Trg(dirlim�2b MU
⌧�), we can fix ȳ 2

dirlim�2b MU
⌧� such that u

dirlim�2b MU
⌧�

g (ȳ) = y. But then, since ⌧ is cofinal in the

branch b0, we can fix ⇠ and some x̄ 2 MU
⌧⇠

such that ȳ = [⌧⇠, x̄]⇡. Therefore,

h([⇠, x]⇠) = ([⌧⇠, x̄]⇡)g = u
dirlim�2b MU

⌧�
g (ȳ) = y.

3.4 Finishing the largest-Suslin-cardinal case 124

Therefore, since b0 is wellfounded, b will be as well. Since

MT
� = dirlim�2b MT

� = Trg(dirlim⇠2b0 MU
⇠) = Trg(MU

⌧�
),

the sublemma also shows that hypothesis (b) holds at �.

3.4 Finishing the largest-Suslin-cardinal case

Recall that we work under the assumption AD+ + V = L(P(R)) + ✓ = ✓↵+1

.

We fixed a hod pair (P ,⌃) such that M1(P,⌃) = HOD|✓↵. We verify that the

requirements of Lemma 3.3 are met.

Fix Q, ⌃-good. Let N = L[~E]
Q
. For each R 2 B(P ,⌃)[{P}, let R be the least

 such that for some R0 2 (B(P ,⌃) [{P}) \ (H++)N ,

1. R DJ R0.

2. ⌃R0 \N 2 N
+

SoR 7! R is an increasing mapping with respect to the hod mouse prewellordering

of R. In fact, any strong cardinal of N below P must be some R, as shown in

the following

Lemma 3.12. Let R 2 B(P ,⌃) [{P}.

1. Suppose �R = 0. Then R is the least strong of N .

2. Suppose �R is a successor. Let µ = R�. Let be the least strong of N which

is > µ. Then R .

3. Suppose �R is a limit. Let µ = sup{R0 : R0 2 B(R,⌃R)}. Then R
(µ+)N .

3.4 Finishing the largest-Suslin-cardinal case 125

Proof. 1. Denote
0

= the least strong of N . The proof of MSC shows that

R
0

, as witnessed by (HOD|✓)D(N ,<0). It remains to see that there is no

R0 2 I(P(0),⌃P(0)

)\N such that ⌃R0\N 2 N
+

. Suppose towards a contradiction

there exists such an R0. Since
0

is a limit of cutpoint Woodins of N , we can pick

⇠ 2 (|R0|N ,
0

) which is a cutpoint Woodin. In N , we can iterate R0 to R00 making

N|⇠ generic. By fullness preservation, (⇠+)N = (⇠+)R
00
[N |⇠]. However, (⇠+)R

00
is

singular in N , and (⇠+)R
00
= (⇠+)R

00
[N |⇠] by the �-c.c. of the extender algebra.

Contradiction.

2. Let R
1

2 (Hµ++)N be such that ⌃R1 \ N 2 N
+

and R
1

wins the comparison

against R�. Then by the mouse set proof, R is not bigger than the least strong

of L[~E,⌃R1][R1

]N . So R is not bigger than .

3. Let Mµ be the direct limit of (R0,⇤0)’s such that R0 2 (Hµ++)N , ⇤0 is an

(o(N), o(N))-iteration strategy for R0 which is fullness preserving and has branch

condensation. Then N captures iteration strategies for all proper hod initial seg-

ments of M1.

We know by definition of µ that for any R0 2 B(R,⌃R), there is ↵ < �Mµ such

that Mµ(↵) wins the comparison against R0.

Let ⇤ = �↵<�Mµ⌃
Mµ
↵ and M+

µ = Lp⇤

!(Mµ). Then M+

µ �DJ R. If M+

µ |=
“ cf(�M

+
µ) is not measurable”, then ⌃M+

µ
\N 2 N

+

. Hence R µ+. If not, let

⌫ be the order 0 measure on cf(�M
+
µ). Set M0

µ = (Ult(M1, ⌫)(i00µ�
Mµ)). Then

⌃M0
µ
\N 2 N

+

. Hence again R µ+.

Theorem 3.13. Let Q be ⌃-good. Let N = L[~E]
Q|�Q

. For each , let S be the

transitive collapse of H = HullN ([ran ⇡1
N). Then for each P , if is a

strong cardinal of N , then P()N = P()S.

Proof. Let R be of least rank in the hod mouse prewellordering such that = R.

Case 1. �R is a successor cardinal.

3.4 Finishing the largest-Suslin-cardinal case 126

In this case, µ = R� < . Lemma 3.12 implies must be the least strong cardinal

of N above µ. Let Mµ,⇤,M+

µ be as in the proof of Lemma 3.12. Since R > µ,

M+

µ =DJ R�.

Let M⇤ = (HOD|✓)D(L[~E,⇤][M+
1]

N ,<). Then by the proof of MSC, M⇤ =DJ R and

⌃M⇤ �N 2 N
+

. We claim that (+)N ✓ M⇤. For otherwise, M⇤ has cardinality

in N . Let E be an extender on N with critical point . Let E⇤ be the resurrection

of E. Then M⇤, iE �M⇤ 2 iE⇤(N). By elementarity, ⌃iE⇤ (M⇤
)

� iE⇤(N) 2 iE⇤(N
+

).

Therefore, ⌃M⇤ �Ult(N , E) 2 Ult(N
+

, E), by pulling back the strategy of iE⇤(M⇤).

Hence,

iE⇤(N
+

) |= “ I have captured the iteration strategy of some M of size < iE⇤()

which is fullness preserving and has branch condensation, and

M iterates longer than Mµ”

By elementarity,

N
+

|= “ I have captured the iteration strategy of some M of size <

which is fullness preserving and has branch condensation, and

M iterates longer than Mµ”

This means R < . Contradiction.

But we can show M⇤ ✓ H. Let

' : P ! P

be the iteration map whose generators are below such that M⇤ Chod P. Let

 : P ! Q1
N

3.4 Finishing the largest-Suslin-cardinal case 127

be the tail of the direct limit map. , being the least strong of N above µ, is in

H. Hence M⇤ 2 H. It follows from proof of MSC then �M⇤ 2 H. Now fix

any ↵ 2 M⇤. We may find f 2 P and a 2 []<! such that

↵ = '(f)(a).

Hence

↵ = '(f)(a)

= �1(⇡1
N (f))(a)

= (�M⇤)�1(⇡1
N (f))(a)

2 H

It follows that + ✓ H. Hence P()N = P()S .

Case 2. �R is a limit ordinal.

Let M,⇤,M+

 be as in Lemma 3.12 with in place of µ. Observe that �M is a

limit ordinal, M+

 wins the comparison against R, but every hod initial segment

of M+

 loses the comparison against R. We have o(M) < (+)N , as the direct

limit system has N -size . Let M⇤ = Lp⇤(M). Essentially a similar argument as

in Case 1 gives that o(M⇤) = (+)N : otherwise, let E be an extender on N with

critical point . Then M⇤, iE⇤ �M⇤ 2 Ult(N , E). Let E⇤ be the resurrection of E.

It follows then ⌃M⇤ � iE⇤(N) 2 iE⇤(N
+

). The fact E⇤ is a background extender on

Q implies that M⇤ iterates to iE⇤(M⇤). Here is the reason. M⇤, being the direct

limit, means that there is a stack ~T on P with last model P such that M⇤ C P.
So iE⇤(~T), a continuation of ~T , is a stack on P with last model iE⇤(P) such that

iE⇤(M⇤) C P. Moreover, iE⇤ agrees with the tail of the iteration map along

iE⇤(~T)\ ~T : Pick any y 2 P, there is K, an model of along ~T , and x 2 K such that

3.4 Finishing the largest-Suslin-cardinal case 128

y = iKP(x). Thus iE⇤(y) = iE⇤(iKP(x)) = iK,iE⇤ (P)(x) = iP,iE⇤ (P)(iK,P(x)) =

iP,iE⇤ (P)(y). Hence,

iE⇤(N
+

) |= “ I have captured the iteration strategy of some M of size < iE⇤()

which is fullness preserving and has branch condensation, and

M iterates to iE⇤(M⇤).”

By elementarity,

N
+

|= “ I have captured the iteration strategy of some M of size <

which is fullness preserving and has branch condensation, and

M iterates to M⇤”

This means R < . Contradiction. We continue out proof. In contrast to the

successor strong case, now we don’t necessarily have 2 H. We split into two

cases.

Subcase 2.1 2 H.

Let ' : P ! P be the iteration map whose generators are below such that

M Ehod P. Let : P ! Q1
N be the tail of the direct limit map. We have

 �M 2 H. (We don’t necessarily have �M+

 in this hull. N does capture

strategies of all proper hod initial segments of M+

 , but N does not capture the

full strategy of M+

) The same argument as in Case 1 shows o(M) ✓ H. Now

some more argument is needed in order to get + ✓ H. Fix an A 2 P(oM)\M+

 .

3.4 Finishing the largest-Suslin-cardinal case 129

We may assume A = '(f)(a), f 2 P , a 2 []<!. Then for any � 2 o(M),

� 2 A $ (�) 2 (A)

$ (�) 2 ('(f)(a))

$ (�) 2 ⇡1
N (f)((a))

$ (�) 2 ⇡1
N (f)((�M)(a))

Hence A 2 H. Hence (+)N = o(Lp⇤(M)) ✓ H.

Subcase 2.2 /2 H.

 is a strong limit of strongs of N . If we let ⌫ = min(H \), then ⌫ is also

a strong limit of strongs of N . Otherwise, the largest strong or strong limit of

strong of N below ⌫, say µ, is definable from ⌫ over N , hence in the hull, but

 µ < ⌫, contradiction. The discussion before subcase 2.1 shows that (+)N =

(o(M)+)M
+
 , (⌫+)N = (o(M⌫)+)M

+
⌫ .

Let �
1

: P ! P be an iteration map whose generators are below such that

M+

 Ehod P. Let � : P ! P⌫ be an iteration map whose generators are below ⌫

such that M+

⌫ Ehod P⌫ . Let �
2

= � � �
1

. Let : P⌫ ! Q1
N be the tail of direct

limit map. We firstly show that H \ (⌫+)N +1 ✓ ran �. Fix an � 2 H such that

� (⌫+)N . Suppose � = �
2

(f)(↵), f 2 P , ↵ < ⌫. Let

� = min{↵̄ < ⌫ : �
2

(f)(↵̄) = �}.

Since �
2

(f) � ⌫ = (� ⌫)�1(⇡1
N (f) � ⌫) 2 H, we have � 2 H. But � < ⌫, hence

� < . Hence � = �
2

(f)(�) = �(�
1

(f)(�)) 2 ran(�).

Observe that �00o(M) ✓ o(M⌫). The above paragraph shows that (⌫+)N has a

preimage under �. So ��1((⌫+)N) � (o(M)+)M
+
 = (+)N . On the other hand,

3.4 Finishing the largest-Suslin-cardinal case 130

we can show that �00(+)N ✓ H. Fix an ↵ < o(M). Say ↵ = �
1

(f)(a), f 2 P ,

↵ 2 []<!. Then

�(a) = �(�
1

(f)(a))

= �
2

(f)(�(a))

= �
2

(f)(a)

= (�o(M⌫))
�1(⇡1

N (f))(a)

2 H.

We conclude that �((+)N) (⌫+)N , �00(+)N ✓ H. Hence (⌫+)N collapses

down to an ordinal � (+)N when forming the transitive collapse H ! S.

Condensation implies that every level of H projecting to ⌫ collapses down to

an initial segment of N projecting to . Hence S|(+)S ◆ N|(+)N . Hence

P()S = P()N .

Lemma 3.14. Suppose that j : L[Q|⌘] ! L[Q] is elementary, j �⌘ = id, j(⌘) = �
0

.

Let N|⇠ be an initial segment of N . Suppose ⌘ is Woodin in N|⇠, so that Q|⌘ is

generic over N|⇠ over the extender algebra. Let g = j�1(G) ✓ Q⌘ be the natural

N|⇠-generic filter. Let hE⇤
0

, . . . , E⇤
ni be extenders giving rise to a finite iteration

tree T on Q. Assume that each E⇤
i overlaps ⌘. Then Trg(iE⇤

n
(N|⌘)) is defined and

is an S-premouse.

Proof. Since each E⇤
i overlaps ⌘, 0 is the predecessor of every other node of T .

As there is no infinite iteration tree such that 0 is the predecessor of every other

node, we may arrange an induction and assume that for all U extending T such

that every extender applied on U overlaps ⌘, Trg(iU(N|⌘)) is defined and is an

S-premouse.

By Lemma 3.3, all we need to see is that when hEn+1

, . . . , Emi 2 U(iE(N|⌘), ⌘),

3.4 Finishing the largest-Suslin-cardinal case 131

 = crt(Em), then letting SN|⌘
� be the transitive collapse of Hull(N|⌘)+([D(h)),

all of the following holds.

1. P()N|⌘ ✓ SN|⌘
 .

2. Trg(Ult(N|⌘, Em)) has a drop. Let d be the largest drop of Trg(Ult(N|⌘, Em)),

then (d+)Trg(Ult(N|⌘,Em)) ✓ HullTrg(Ult(N|⌘,Em))(d [i00ED(g)).

3. Let K = Ult(N , En�1

)|lh(Em) if m > 1, or K = N|lh(E
0

) if m = 0. Then

Trg(K) = SP+1(Trg(Ult(N|⌘, Em))|d) is an S-premouse.

1 and 2 above will tell us Trg(iE⇤
n
)(N|⌘) is defined; 3 will tell us Trg(iE⇤

n
)(N|⌘) is

an S-premouse.

1 comes from Theorem 3.13. If P , then P()N ✓ SN
 , hence by elementarity,

P()N⌘ ✓ SN|⌘
 . But we always have P . Otherwise, is a limit of Woodins

of N . Pick � 2 (P ,) Woodin of N . Then � is ⌃2

1

(⌃)-Woodin in N . Hence � is

⌃2

1

(⌃)-Woodin in Q. This contradicts suitability of Q.

We show 2. If Trg(Ult(N|⌘, Em)) has no drop, that means Trg(Ult(N|⌘, Em))

is a S[�P]-premouse, i.e. it has reached the largest degree all the way. The-

orem 2.35 tells us a basic property of the S-operators that an S[�P]-premouse

defines ⌃P . Hence Ult(N |⌘, Em)[g] knows how to iterate P . By generic compar-

ison argument, there is R 2 I(P ,⌃) such that R 2 Ult(N|⌘, Em)|iEm() and

⌃R �Ult(N|⌘, Em) 2 Ult(N|⌘, Em)+. By elementarity, there is R 2 I(P,⌃) such

that R 2 N| and ⌃R � N 2 N
+

. This means P < . Contradiction. Now

let d be the largest drop of Trg(Ult(N|⌘, Em)). Let d⇤ = (d+)Trg(Ult(N|⌘,Em)). To

show d⇤ ✓ HullTrg(Ult(N|⌘,Em))(d [i00ED(g)), it su�ces to show that Trg(K) =

SP+1(Trg(Ult(N|⌘, Em))|d). We prove this next.

3.4 Finishing the largest-Suslin-cardinal case 132

Regarding 3, let E⇤
n+1

, . . . , E⇤
m, kn+1

, . . . , km be as follows.

E⇤
n+1

= the resurrection of En+1

kn+1

: Ult(N|⌘, En+1

) ! iE⇤
n
(N|⌘) is the lifting map

When i > n,

E⇤
i+1

= the resurrection of ki(Ei),

si+1

: Ult(N|⌘, ki(Ei)) ! iE⇤
i
(N|⌘) is the lifting map

ti+1

: Ult(N|⌘, Ei) ! Ult(N|⌘, ki(Ei)) is the canonical map

ki+1

= si+1

� ti+1

.

Our induction hypothesis says that Trg(iE⇤
m
(N|⌘)) is defined and is an S-premouse.

We know km extends to a map from Ult(N|⌘, Em)+[g] ! (iE⇤
m
(N|⌘))

+

[g]. Still

call this km. By Lemma 3.3, the universe of Trg(iE⇤
m
(N|⌘)) is equal to the uni-

verse of iE⇤
m
(N|⌘)[g]. The map km pulls back the property of well-definedness

of translation back to Ult(N|⌘, Em). Thus Trg(Ult(N , Em)) is well-defined and

has universe equal to Ult(N|⌘, Em)[g]. km is actually an elementary map from

Trg(Ult(N|⌘, Em)) to Trg(iE⇤
m
(N|⌘)). By Theorem 2.46, Trg(Ult(N|⌘, Em)) is

an S-premouse as well. Let d be the largest drop of Trg(Ult(N|⌘, Em)). Let

P = deg(Trg(Ult(N|⌘, Em))|d). Then km(d) is the largest drop of Trg(iE⇤
m
(N|⌘))

and km(P) = deg(Trg(iE⇤
m
(N|⌘))|k(d)). We just need to prove the following sub-

lemma

Sublemma 3.15. Skm(P)+1(Trg(iE⇤
m
(N|⌘))|km(d)) is the amenable code of the

3.4 Finishing the largest-Suslin-cardinal case 133

transitive collapse of

hHull(Trg(iE⇤
m
(N|⌘)))+(d⇤),2, g, ĖTrg(iE⇤

m
(N|⌘)), ;, STrg(iE⇤

m
(N|⌘)),

T rg(iE⇤
m
(N|⌘))|km(d), iE⇤

m
(Q1

N|⌘), ran(iE⇤
m
� ⇡1

N|⌘)i

Proof. By fullness of background constructions, SSMkm(P)(Trg(iE⇤
m
(N|⌘))|km(d)) =

Trg(iE⇤
m
(N|⌘))|d⇤, where d⇤ = (km(d))

+Trg(iE⇤
m
(N|⌘)). Hence it su�ces to show that

S⇤,km(P)+1(Trg(iE⇤
m
(N|⌘))|d⇤) is the amenable code of the transitive collapse of

hHull(Trg(iE⇤
m
(N|⌘)))+(km(d)),2, T rg(iE⇤

m
(N|⌘))|d⇤, ĖTrg(iE⇤

m
(N|⌘)), ṠTrg(iE⇤

m
(N|⌘)),

iE⇤
m
(Q1

N|⌘), ran(iE⇤
m
� ⇡1

N|⌘)i

Let R = (L[~E,⌃][Trg(iE⇤
m
(N|⌘))|d⇤])Ult(Q,E⇤

m)|iE⇤
m
(�Q). Then R is a good uni-

verse of defining the S-operators. Let H = L[~E, SP][Trg(iE⇤
m
(N|⌘))|d⇤]R. Then

S⇤,km(P)+1(Trg(iE⇤
m
(N|⌘))|d⇤) is the amenable code of the transitive collapse of

hHullH+(d⇤),2, T rg(iE⇤
m
(N|⌘))|d⇤, ĖH, ;,SH,Q1

H , ⇡1
H i

where ⇡1
H : P ! Q1

H is the direct limit map of I(P ,⌃) \H. Since d⇤ is a strong

cutpoint of Trg(iE⇤
m
(N|⌘)), d⇤ is a strong cutpoint of Trg(iE⇤

m
(N)) as well. We

can view Trg(iE⇤
m
(N)) as an SP-premouse over Trg(iE⇤

m
(N))|d⇤. We may compare

the constructions of Trg(iE⇤
m
(N)) versus H, by hitting background extenders of

disagreements. Universality of maximal background constructions tells us that

there are S
1

and S
2

, which are iterates of Q, such that iQS1(Tr
g(iE⇤

m
(N))) =

iQS2(H). Note by elementarity of iE⇤
m
that iE⇤

m
(⇡1

N) : P ! iE⇤
m
(Q1

N) is the direct

limit map of I(P,⌃)\ Trg(iE⇤
m
(N)). By elementarity, iQS1 � iE⇤

m
� ⇡1

N = iQS2 � ⇡1
H .

Hence, S⇤,km(P)+1(Trg(iE⇤
m
(N|⌘))|d⇤) is the amenable code of the transitive collapse

3.4 Finishing the largest-Suslin-cardinal case 134

of

hHullTrg(iE⇤
m
(N+))(d⇤),2, T rg(iE⇤

m
(N|⌘))|d⇤, ĖTrg(iE⇤

m
(N)), ;,STrg(iE⇤

m
(N)),

iE⇤
m
(Q1

N), iE⇤
m
� ⇡1

N i.

But we have the elementary j : L[Q|⌘] ! L[Q] with j � ⌘ = id, j(⌘) = �
0

. This

implies

ThN+(⌘ [ran ⇡1
N [{Q1

N }) = Th(N|⌘)+(⌘ [ran ⇡1
N|⌘ [{Q1

N|⌘})

By applying iE⇤
m
to the above equality, we get

ThiE⇤
m
(N+)(iE⇤

m
(⌘) [ran(iE⇤

m
� ⇡1

N) [{iE⇤
m
(Q1

N)}) =
ThiE⇤

m
((N|⌘)+)(iE⇤

m
(⌘) [ran(iE⇤

m
� ⇡1

N|⌘) [{iE⇤
m
(Q1

N|⌘)}).

Therefore, S⇤,km(P)+1(Trg(iE⇤
m
(N|⌘))|d⇤) is the amenable code of the transitive

collapse of

hHull(Trg(iE⇤
m
(N|⌘)))+(km(d)),2, T rg(iE⇤

m
(N|⌘))|d⇤, ĖTrg(iE⇤

m
(N|⌘)), ṠTrg(iE⇤

m
(N|⌘)),

iE⇤
m
(Q1

N|⌘), ran(iE⇤
m
� ⇡1

N|⌘)i

This proves the sublemma.

From the sublemma, km induces the embedding from Trg(K) = hHullTrg(Ult(N|⌘,Em))+(d),

2, g, ĖTrg(Ult(N|⌘,Em)), ;, ṠTrg(Ult(N|⌘,Em)), T rg(Ult(N|⌘, Em))|d, iE⇤
m
(Q1

N|⌘), ran(iEm�
⇡1
N|⌘)i to Skm(P)+1(Trg(iE⇤

m
(N|⌘))|km(d)). By Theorem 2.46, Trg(K) is an S-

premouse.

Lemma 3.16. Suppose that j : L[Q|⌘] ! L[Q] is elementary, j �⌘ = id, j(⌘) = �
0

.

Let N|⇠ be an initial segment of N . Suppose ⌘ is Woodin in N|⇠, so that Q|⌘ is

3.4 Finishing the largest-Suslin-cardinal case 135

generic over N|⇠ over the extender algebra. Let g = j�1(G) ✓ Q⌘ be the natural

N|⇠-generic filter. ThenTrg(N|⇠) is an S-premouse, and is S-iterable.

Proof. Major arguments are already in Lemma 3.14. To see Trg(N|⇠) is an S-

premouse, we need to see when hE
0

, . . . , Eni 2 U(N|⇠, ⌘), = crt(E), then letting

SN|⌘
� be the transitive collapse of Hull(N⌘)+([D(h)),

1. P()N ✓ SN|⌘
 .

2. Trg(Ult(N|⌘, En)) has a drop.

3. Let K = Ult(N , En�1

)|lh(En) if n > 1, or K = N|lh(E
0

) if n = 0. Then

Trg(K) is an S-premouse.

If n > 0, this is what we proved in Lemma 3.14. If n = 0, the same proof

of Lemma 3.16 goes through. To see that Trg(N|⇠) is S-iterable, according to

Theorem 3.9, we need to see that letting ⇤ the induced strategy of N|⇠, then every

� iterate of N|⇠ above ⌘ translates into an S-premouse. Let M be a ⇤-iterate of

N|⇠. By lifting the tree on N|⇠ onto Q, we get an iterate R of Q above ⌘ and a

lifting map k : M ! K, where K is a model of L[~E]-construction of R, k �⌘ = id.

The map iQR�j : L[R|⌘] ! L[R] meets the assumptions of this lemma. The result

we just proved gives that Trg(K) is an S-premouse. By Theorem 2.46, Trg(M) is

an S-premouse as well.

We have done preparation work showing S-iterability of translations of background

constructions. Let’s finally start proving the main theorem. We define a Prikry

forcing as in [14]. If a is countable transitive, x 2 R, x is coded by a real recursive

in x, let

Fx
a = {Qz : zT x ^Qz is ⌃-good over a}.

If T is a tree projecting to the universal ⌃2

1

(⌃)-set, we may simultaneously compare

all Qz 2 Fx
a inside L[T, x], while at the same time making all reals recursive in x

3.4 Finishing the largest-Suslin-cardinal case 136

generic for the extender algebra at the image of the Woodin cardinal. L[T, x] can

find the correct branch for short trees, because it can figure out theQ-structures: If

M 2 L[T, x] is a ⌃-mouse over a with a Q-structure Q(M), then both Q(M) and

the iteration strategy for Q(M) are OD(⌃,M), so Q(M) 2 L[T, x]. Hence the

simultaneous comparison is definable in L[T, x] until one of the trees is maximal.

But then suitability of the Qz’s imply that as soon as one of the trees in the

comparison is maximal, the others are also maximal. L[T, x] can therefore figure

out the last model of the simultaneous comparison, that is Lp⌃

!(M(T)) for one

of the comparison trees T , without figuring out the last branch. We then let Qx
a

be the result of the simultaneous comparison. For d = [x]T a Turing degree, we

denote Qd
a = Qx

a for any x 2 d. For ~d = {d
0

T . . . dn} we let

Q~d
0

= Qd0
a

Q~d
i+1

= Qdi+1

Qi

Let ⌫hQ0,...,Qni be the measure on {Qd
Qn

: dnT d} as induced by the Martin measure

on the Turing degrees:

⌫n(A) = 1 $ for a Turing cone of d,Qd
Qn

2 A.

P
0

is tree Prikry forcing whose conditions are (hQ
0

, . . . ,Qni, S) with the following

properties.

1. for some ~d = {d
0

T . . .T dn}, hQ0

, . . . ,Qni = ~Q~d.

2. for each v 2 S, either v is an initial segment of hQ
0

, . . . ,Qni or hQ0

, . . . ,Qni
is an initial segment of v.

3. for each hQ
0

, . . . ,Qmi 2 S, {R : hQ
0

, . . . ,Qm,Ri 2 S} 2 ⌫hQ0,...,Qmi.

Let P
0

be the forcing defined as above in L(U,R), U is a ⌃2

1

(⌃)-complete set, and

3.4 Finishing the largest-Suslin-cardinal case 137

let P be such forcing defined in V . Let Q1 be the Prikry generic ⌃-premouse for

P
0

over L(U,R). The Prikry condition [3, 14] shows that Woodins cardinals of each

stem is still Woodin in L[Q1]. Let �
0

< �
1

< · · · list the Woodins of Q1. Build

• R
1

= (L[~E, S[�P]][Q
0

])Q1|�1 ,

• Ri+1

= (L[~E, S[�P]][Ri])Q1|�i+1 .

Let R1 =
S

n<!Rn. Then R1 can be viewed as an S-premouse over Q
0

.

Lemma 3.17. Let h be generic over V [Q1] for the poset whose conditions are

hh
0

, . . . , hni such that hi : ! ! �n are generic over L[R1][Q1|�
0

] for Coll(!, �n).

Then

1. The universal ⌃2

1

(⌃) set is Suslin in L[R1](RV).

2. L(U,R) = (L(Ah,R⇤
h))

L[R1][h] = (L(Hom⇤
h,R⇤

h))
L[R1][h].

Proof. 1. Let Tn be the tree in L[R1](R⇤
h) attempting to build x, y, z, w such that

(a) x, y 2 R⇤
h,

(b) z codes M � Rn. z(0) codes z
0

2 M, z(1) codes z
1

2 M, z(2) codes a

condition p 2 Coll(!, �n).

(c) w codes a M-generic filter g for Coll(!, �n),

(d) M |= z
0

, z
1

are Coll(!, �n)-names for reals.

(e) (z
0

)g = x, (z
1

)g = y,

(f) M |= p�Coll(!,�n)z1 2 L[~E,⌃][z
0

].

Let T = [n<!Tn. Since the maximal L[~E,⌃] construction in Rn is OD(⌃)-full ,

p[T] = {(x, y) : y 2 OD(⌃, x)}. So p[T] is universal ⌃2

1

(⌃).

3.4 Finishing the largest-Suslin-cardinal case 138

2. By 1, every Suslin-co-Suslin set of reals is in (L(Hom⇤
h,R⇤

h))
L[R1][h]. So L[�,RV] ✓

(L(Hom⇤
h,R⇤

h))
L[R1][h], where � is the pointclass of all Suslin-co-Suslin sets of re-

als. If U /2 L(�,RV), then L(�,RV) is model of ADR + ✓ is regular, contradicting

our minimality hypothesis. Thus, L(U,RV) ✓ (L(Hom⇤
h,R⇤

h))
L[R1][h]. As we can’t

force a sharp from a set forcing, we have L(U,R) = (L(Hom⇤
h,R⇤

h))
L[R1][h] =

(L(Ah,R⇤
h))

L[R1][h].

Therefore, L[R1] has a derived model L(U,R). Let N = L[~E]
Q1|�0

, G be the Q�0-

generic object which codes Q1|�
0

. We claim that R1 can be translated backwards

modulo G into a premouse N1 .N .

This is a reflection argument. By taking a Skolem hull in L[R1], we get

j : L[S] ! L[R1].

and ⌘, h,M such that crt(⇡) = ⌘ < �
0

, ⇡(⌘) = �
0

, ⇡(g,M,S) = (G,N ,R1).

Let ⇠ be the least such that there is a definable failure of Woodinness of ⌘ over

N|⇠. Then Trg(N|⇠) is defined and iterable by Lemma 3.16. But definably over

Trg(N|⇠), there is a failure of Woodinness of ⌘. Let’s compare Trg(N|⇠) versus S.
According to Theorem 2.37, the comparison terminates. Since S |= ⌘ is Woodin,

the S-side comes out shorter. But Trg(N|⇠) |= “8⇠TrInv(V |⇠) is defined”, since
Trg(N|⇠) comes from the translation. The formula “8⇠TrInv(V |⇠) is defined” is

expressible in a ⇧
1

-way. Therefore, S |= “8⇠TrInv(V |⇠) is defined”. Therefore,

R1 |= “8⇠TrInvG(V |⇠) is defined”. This finishes the claim and thus there is

N1 such that TrG(N1) = R1. Hence the premouse L[N1] has a derived model

L(U,R).

If V = L(U,R), we then have finished the successor case. If V 6= L(U,R), we

will put more extenders above N1 to get a premouse whose derived model is

V . Since the S-operators have the generic interpretation property, we may define

3.4 Finishing the largest-Suslin-cardinal case 139

S-operators acted on arbitrary transitive sets containing z
0

. Given a countable

transitive such that z
0

2 a, we let SP(z
0

) be the unique structure M such that for

each g ✓ Coll(!, a) generic, M[g] = SP(g). We say M is mixed S-premouse over

R if every countable elementary substructure M̄ of M with z
0

2 M̄ is a mixed

S-premouse.

Lemma 3.18. Let A 2 P(R). Then A is in an S[�P]-mouse over R.

The proof is identical to the proof that every subset of the reals is in a ⌃-mouse

over R [8].

Every dense set in P is predense in P, so Q1 is generic over V . Let ⇠
0

> ✓L(U,R)

be least such that L⇠0(U,R) |= ZF�. Let S be the S[�P]-mouse over R such that

P(R)S = P(R)V . We may rearrange S into a S[�P]-mouse S
0

over L⇠0(U,R) such

that P(R)S0 = P(R)V . We then level-by-level translate S
0

into a S[�P]-mouse S
1

over L⇠0(U,R)[R1][H]. Since R1[H] is able to L⇠0(U,R), we may translate S
1

into a S[�P]-mouse S
2

over R1[H]. By inverting the generic extension, we get a

S[�P]-mouse S
3

over R1 such that S
3

[H] = S
2

. Let S
4

be S
3

rearranged as a

S[�P]-mouse over Q1|�
0

. Exactly the same argument shows that there is a class

premouse N ⇤ .N1 such that TrG(N ⇤) = S
4

. So

(L(A⇤
h,R⇤

h))
N ⇤

[h] = V.

This finishes the ✓ = ✓↵+1

case.

Chapter 4
The ADR + (cf(✓) = ! _ “✓ is regular”)

case

We show the second half of the main theorem. We assume AD++ ✓ = ✓↵ for some

limit ordinal ↵, and either cf(✓) = ! or ✓ is regular. Woodin [13] showed that in

this case, V is embeddable into a derived model of HOD at ✓. In this chapter, we

show that we can translate HOD into a premouse N ✓ HOD, where all Woodin

cardinals of HOD remain Woodin in N , without loss of essential information. We

will then show HOD and N have the same derived model, thus finishing the proof

of Theorem 1.9.

The translation uses pretty much the similar idea as in the largest Suslin cardinal

case. The di↵erence is, in chapter 2 and 3, we had a largest Suslin pointclass, and

thus a largest hod pair (P ,⌃) such that ⌃ is fullness-preserving and has branch

condensation. All the S-operators were based on this hod pair. The translations

were getting rid of overlapping extenders and replacing them by fragments of ⌃.

In the current case, however, we don’t have such a largest hod pair. Therefore,

the S-operators will vary, depending on which hod pair we chose in advance. Most

of the ideas in this chapter is from chapter 2 and 3. We will be sketchy and only

140

4.1 The S-operators 141

highlight the new idea.

4.1 The S-operators

Suppose (P ,⌃) is a hod pair such that ⌃ is fullness preserving and has branch

condensation. We define the same objects as in chapter 2, but emphasizing their

dependence on (P ,⌃). I
(P,⌃)

is the index set I as defined at the beginning of

Section 2.3, but of course based on this particular (P ,⌃). We repeat the definition

here: IP,⌃ is the set of P = hPi : i ni = h(⇣i, ⇡i,Pi,↵⇤
i ,↵i) : i ni such that

1. ⇣
0

= ⇡
0

= ;, P
0

= P , ↵⇤
0

= ↵
0

 �P ,

2. for all 0 i < n, (⇣i+1

, ⇡i+1

,Pi+1

,↵⇤
i+1

,↵i+1

) is a one-step blow-up of (Pi,↵⇤
i ,↵i)

above Pi(⇡i(⇣i)).

The notion of an index being successor, or limit of type A,B,C are exactly the same

as before. For notational convenience, we let [↵] = h(;, ;,P ,↵,↵)i. This notation
of course depends on P , but we often suppress it when the meaning is clear.

The various S-operators and H-operators are defined pretty much the same as in

Sections 2.3, 2.5, 2.6, the only di↵erence is we need “finite layers” of operators.

We let J be the set of ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P) such that

1. (P ,⌃) is a hod pair such that ⌃ is fullness preserving and has branch con-

densation,

2. ↵
0

< . . . < ↵n = �P ,

3. for each i n, ei : ! ! |P(↵i)| is a bijection,

4. P 2 I
(P,⌃)

. If n > 0, then [↵n�1

] I(P,⌃) P.

4.1 The S-operators 142

We will define the Sv-operator for v 2 J . Suppose ((P ,⌃),↵
0

, e
0

,P) 2 J . The

operators at this level are exactly the same as in Section 2.3. If P = [0], a is

countable transitive self-wellordered such that e
0

2 a
+

, we will define S⇤,[0](a) as

follows. Let Q be ⌃-good over a. Let N = L[~E][a]Q|�Q . By the proof of MSC [7],

there is R 2 pI(P ,⌃) \N such that ⌃R �N 2 N
+

. Let FN be the direct system

{R, ⇡RR0 : R,R0 2 pI(P ,⌃) \N , ⇡RR0 is a ⌃-iteration map.}

Let Q1
N be the direct limit of FN and ⇡1

N : P ! Q1
N be the direct limit map, so

that Q1
N 2 N

+

. Let M be the transitive collapse of the structure

hHullN+(a [{a} [⇡1
N),2, a, ~EN , ;, Q1

N , ⇡1
N i.

Then S⇤,[0](a) is the e-amenable code of M.

The general S-operators, inherits a structure called finitely layered S-premouse.

Similar to S-premouse as defined in Section 2.4, with the exception that di↵erent

layes of S-operators are distinguished. We let

Ll = {2, ȧ, Ė, Ḟ , Ṡ
0

, ḃ
0

, Q̇
0

, ⇡̇
0

, Ṡ
1

, ḃ
1

, Q̇
1

, ⇡̇
1

, . . .}

be the language extending the language of set theory where ȧ, ḃ
0

, ḃ
1

, . . . , Q̇
0

, Q̇
1

, . . .

are constant symbols, Ė, Ḟ , ⇡̇
0

, ⇡̇
1

, . . . are unary predicate symbols, Ṡ
0

, Ṡ
1

, . . . are

unary predicate symbols. A potential finitely layered S-premouse over a is a struc-

ture

N = hN,2, a, ~E,F, S
0

, b
0

, Q
0

, ⇡
0

, S
1

, b
1

, Q
1

, ⇡
1

, . . .i

in the language of Ll with the following properties.

1. There is some n < ! such that for all m > n, Sm = bm = Qm = ⇡m = ;.

4.1 The S-operators 143

2. N = J
~E,S0,S1,...
⇠ [a] for some ⇠.

3. N is an acceptable J-structure.

4. ~E is a partial unary function.

5. For all i < !, for all y 2 Si, y is a Ll-structure. For ⌘ < ⇠, let N|⌘ be the

initial segment of N given by

N|⌘ = hJ ~E,S0,S1,...
⌘ [a],2, a, ~E �⌘, E⌘, S0

\ J
~E,S0,S1,...
⌘ [a], b⌘

0

, Q⌘
0

, ⇡⌘
0

,

S
1

\ J
~E,S0,S1,...
⌘ [a], b⌘

1

, Q⌘
1

, ⇡⌘
1

, . . .i

where

(b⌘i ,Q⌘
i , ⇡

⌘
i) =

8
><

>:

(by, Q̇y, ⇡̇y), if y 2 Si is unique such that o(y) = ⌘.

(;, ;, ;), otherwise.

6. For all i, for all y 2 Si, y = N|o(y). (Henceforth, if y, y0 2 Si and o(y) = o(y0),

then y = y0.)

7. ~E_F is a fine extender sequence in the sense of [4], whose levels are under-

stood as N|⌘.

Suppose N is a potential finitely layered S-premouse. We say N is n-layered if n

is least such that for all m > n, Sm = bm = Qm = ⇡m = ;. For convenience, we

will suppress those Sm, bm, Qm, ⇡m for m > n and write

N = hN,2, a, ~E,F, S
0

, . . . , Sn�1

, bn�1

, Qn�1

, ⇡n�1

i.

4.1 The S-operators 144

We define fine structural relavent objects of finitely layered S-premice similar to

Section 2.4. After those preparations, we can start defining the S(P,⌃),↵0,e0,[0]-

operator, similar to Section 2.5. If a is countable transitive swo, K is a potential

S-premouse over a, then we let

SSM(K) =
G

{M :M is a sound potential S-premouse extending K,

o(K) is a strong cutpoint of M,

8i < ! 8y 2 SM
i (o(y) o(K)),

M is iterable when hitting extenders above o(K),

⇢!(M) o(K).}

Suppose S⇤,(P,⌃),↵0,e0,[0](SSM(K)) = hM,2, SSM(K), E,Q
0

, ⇡
0

i, and suppose that

hM,2, a, ESSM(K)[E, SSSM(K)

0

,K, Q
0

, ⇡
0

, SSSM(K)

1

, ;, ;, ;, . . .i is a potential S-premouse

over a. Then let S[0](K) = hM,2, a, ESSM(K)[E, SSSM(K)

0

,K, Q
0

, ⇡
0

, SSSM(K)

1

, ;, ;, ;, . . .i.
We leave it to the reader defining the successor case and the limit case of S(P,⌃),↵0,e0,P.

Suppose now ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P) 2 J , n > 0. We again define by induc-

tion by hod mouse prewellordering of final(P). The base case is P = [↵n�1

]. We

let S(P,⌃),↵0,e0,...,↵n,en,[↵n�1](a) = S(P,⌃),↵0,e0,...,↵n�1,en�1,[↵n�1](a). Notice however the

[↵n�1

] has di↵erent meanings in the two superscripts of the equation. We sketch

how to define S(P,⌃),↵0,e0,...,↵n,en,[↵n�1]+1, and leave the rest as an exercise to the

reader.

If S(P,⌃),↵0,e0,...,↵n,en,[↵n�1]-mice has condensation above (a), then S⇤,(P,⌃),↵0,e0,...,↵n,en,[↵n�1](a)

is defined as follows. Let Q be ⌃-good over a. Assume that the

L[~E, S(P,⌃),↵0,e0,...,↵n,en,[↵n�1]][a]-construction inQ|�Q converges to a S(P,⌃),↵0,e0,...,↵n,en,[↵n�1]-

mouse over a. Let N be the output. By the proof of MSC [7], there is R 2

4.1 The S-operators 145

pI(P ,⌃) \N such that ⌃R �N 2 N
+

. Let FN be the direct system

{R, �RR0 : R,R0 2 pI(P ,⌃) \N , �RR0 is a ⌃-iteration map.}

Let Q1
N be the direct limit of FN and

⇡1
N : P ! Q1

N

be the direct limit map, so that Q1
N 2 N

+

. Let M be the transitive collapse of

the structure

hHullN+(a [{a} [⇡1
N),2, a, EN , SN

0

, SN
1

, . . . , SN
n , Q1

N , ⇡1
N i.

Then S⇤,P(a) is the en-amenable code of M.

Denote N = SSM (P,⌃),↵0,e0,...,↵n,en,[↵n�1](K). If S⇤,(P,⌃),↵0,e0,...,↵n,en,[↵n�1]+1(N) =

hM,2,N , E, S
0

, . . . , Sm, Q, ⇡i is defined, and hM,2, a, EN[E, SN
0

[S
0

, ;, ;, ;, . . . , SN
n [

Sn,K, Q, ⇡, . . .i is a finitely layered potential S-premouse, then S(P,⌃),↵0,e0,...,↵n,en,[↵n�1](K)

be this finitely layered potential S-premouse. Otherwise, we leave SP(K) unde-

fined. So the direct limit map is thrown into the n-th layer.

We again leave it to the reader defining the H-operators and other relavent con-

cepts. Once again, we have a nice real for each index.

Definition 4.1. Let ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P) 2 J , dom(P) = n + 1. We say

that z is a nice real for ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P) if all of the following holds.

1. (Reduction) For all ✏ ↵n successor or 0, if ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P[✏]) 2
J , then there is yT z such that y codes a reduction between S⇤,(P,⌃),↵0,e0,...,↵n,en,P[✏]

and HP[✏].

2. (Reduction on further extensions) For all ✏ ↵n, if P[✏] is a limit index

4.1 The S-operators 146

of type C, then there is yT z such that y codes a reduction on further

extensions of ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en, [P(✏)]I(P,⌃)
).

3. (Condensation) If K is an finitely layered S-premouse over a, a 2 Cone(z),

j : S̄ ! S(P,⌃),↵0,e0,...,↵n,en,Q(K) is ⌃
1

-elementary, j(H,Q) = (K,Q), and

pro(Q,K) I(P,⌃)

K pro(P,K), then S̄ = S(P,⌃),↵0,e0,...,↵n,en,Q(H). Consequently,

the L[~E, S(P,⌃),↵0,e0,...,↵n,en,P]-construction in any good universe converges.

Theorem 4.2. For all ((P ,⌃),↵
0

, e
0

, . . . ,↵n, en,P) 2 J , there is a nice real for

P.

So far, we have finished defining the S-operators. We point out that those def-

initions can be fully worked out in a hod mouse. If (P ,⌃) is a hod pair such

that ⌃ is fullness preserving and has branch condensation, then for every ↵ < �P ,

for every � < �P , for every g generic over P for Coll(!, �), if a 2 P|�P [g], then
a ⌃P(↵)-good ⌃P(↵)-premouse over a is locally constructible inside P . Hence all

the S(P (↵),⌃P (↵)),↵0,e0,...,↵n,en,P-operators are constructible in P [g], for g Coll(!, �P↵)-

generic over P , provided they are defined. We emphasize that although the exis-

tence of a nice real is not provable in P , the whole construction of the S-operators

is definable in P [g] provided existence of a nice real in P [g].

However, nice real is not an issue in P [g], as it always exists in any Coll(!, �P↵+1

)-

generic extension. This is shown by doing genericity iterations. Suppose ↵
0

<

↵
1

< · · · < ↵n = ↵ < �P . We argue that in any Coll(!, �P↵+1

)-generic extension

over P , if e
0

, e
1

, . . . , en 2 P [g] are enumerations of P(↵
0

),P(↵
1

), . . . ,P(↵n) from !

respectively, then there must be a nice real for ((P(↵),⌃),↵
0

, e
0

, . . . ,↵n, en, [↵]) in

P(↵+1)[g]. Take a nice real z. We iterate from P to R in the window [�P↵ , �
P
↵+1

] to

make z generic over the extender algebra of R at the image of �P↵+1

. Then R[g][z]

thinks that S(P(↵),⌃),↵0,e0,...,↵n,en,[↵](a) is defined whenever a 2 R|�R[g][z] is such

that R|iPR(�P↵+1

)[g][z] 2 a. Because the S-operators extend naturally onto generic

4.2 The translation 147

extensions, S(P(↵),⌃),↵0,e0,...,↵n,en,[↵](a) is defined whenever a 2 R|�R[g] is such that

R|iPR(�P↵+1

)[g] 2 a. Hence by elementarity, P [g] thinks that S(P(↵),⌃),↵0,e0,...,↵n,en,[↵](a)

is defined whenever a 2 P|�P [g] is such that P|�P↵+1

[g] 2 a. The internal con-

structibility of the S-operators will be useful in the next section.

4.2 The translation

We would like to define a translation procedure as in chapter 3. In the current

context, we will do a finite iteration of translation as done in chapter 3. Every

single step stands for a correspondence between one particular layer of S-operators

and extenders which overlaps the height of the hod mouse representing that layer.

We work with a hod pair (P ,⌃) such that ⌃ is fullness preserving and has branch

condensation. Suppose ↵
0

< ↵
1

< · · · < ↵n < ↵n + 1 = �P . Let h
0

, . . . , hn be such

that each hi is a generic filter over P for Coll(!, �P↵i+1

), and hi 2 P [hi+1

]. Suppose

e
0

, . . . , en are such that each ei is a bijection from ! to |P(↵i)| and ei 2 P [hi].

Suppose first n = 0. Let N
0

= L[~E]
P|�P

. So �P is Woodin in (N
0

)
+

. Suppose N is

a mouse extending (N
0

)
+

such that �P is still Woodin in N . Thus, P|�P is generic

over N for the �P-extender algebra at �P . Let g
0

be the generic filter that codes

P|�P . The translation Trg0,h0

(P,⌃),↵0,e0
(N) will be a 1-layered S-premouse over h

0

.

The definition of Trg0,h0

(P,⌃),↵0,e0
(N) is essentially in chapter 3. We briefly restate it

in the current context. U(N , �P), P (N , �P), <P (N ,�P) is defined as in Section 3.1.

Iterability of N implies that <P (N ,�P) is a well-order. Trg0,h0

(P,⌃),↵0,e0
is a function

defined on K 2 P (N , �P) by induction on <P (N ,�P). Let Q
0

, D
0

be easily definable

functions such that Q(g
0

) = Q1
N0
, D(g

0

) = ⇡1
N0
, where ⇡1

N0
: P(↵

0

) ! Q1
N0

is the

direct limit map of I(P(↵
0

),⌃P(↵0)) \N
0

. Then

1. If K = (N
0

)
+

, then Trg0,h0

(P,⌃),↵0,e0
(K) = h|K|[h

0

],2, h
0

, ;, ;i.

4.2 The translation 148

2. If K = N(M), then Trg0,h0

(P,⌃),↵0,e0
(K) = N(Trg0,h0

(P,⌃),↵0,e0
(M)).

3. If o(K) is a limit, K is passive, then Trg0,h0

(P,⌃),↵0,e0
(K) =

F
⌘<o(K)

Trg0,h0

(P,⌃),↵0,e0
(K|⌘).

4. If K is active with top extender E, crt(E) > �Q, let E[g
0

] be the canonical ex-

tension of E to the generic. Let Trg0,h0

(P,⌃),↵0,e0
(K) be

F
⌘<o(K)

Trg0,h0

(P,⌃),↵0,e0
(K|⌘)

but adding the top extender E[g
0

].

5. IfK is active with top extender E, crt(E) < �Q, let Trg0,h0

(P,⌃),↵0,e0
(Ult((N

0

)
+

, E)) =

hJ ~E,S
↵ [h

0

],2, h
0

, ~E, ;, S, ;, ;, ;i. Let d be the last drop of Trg0,h0

(P,⌃),↵0,e0
(Ult(N

0

, E)).

Then Trg0,h0

(P,⌃),↵0,e0
(K) is the e

0

- amenable code of transitive collapse of the

hull of d [iE �D(g
0

) over

hJ ~E,S
↵ [h

0

],2, h
0

, ~E, ;, S, T rg0,h0

(P,⌃),↵0,e0
(Ult(N

1

, E))|d, iE(Q(g
0

)), iE �D(g
0

)i.

A reflection argument same as in the largest Suslin cardinal case shows that when

(R,�) is a hod pair such that � is fullness preserving and has branch condensation,

P Chod R, and S is a 1-layer S-mouse over P [h
0

] that is definable over R, then

we can translate S backwards into a premouse M
0

. In particular, M
0

has the

following property.

1. Trg0,h0

(P,⌃),↵0,e0
(M

0

) = S

2. M
0

[h
0

] and S have the same universe.

Suppose now n > 0. Let Nn = (L[~E, S(P,⌃),↵0,e0,...,↵n�1,en�1][P(↵n�1

+ 1)[hn�1

]])P .

So �P is Woodin in (Nn)+. Suppose N is a (n � 1)-layered S-premouse extend-

ing (Nn)+ such that �P is still Woodin in N . Thus, P|�P is generic over N for

the �P-extender algebra at �P . Let gn be the generic filter that codes P|�P . The

translation Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
(N) will be a n-layered S-premouse. The definition

of Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
(N) is as follows. As before, we define U(N , �P), P (N , �P),

4.2 The translation 149

<P (N ,�P). Iterability of N implies that <P (N ,�P) is a well-order. Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en

is a function defined on K 2 P (N , ⌘) by induction on <P (N ,�P). Let Qn, Dn be eas-

ily definable functions such that Q(gn) = Q1
Nn

, D(gn) = ⇡1
Nn

, where ⇡1
Nn

: P(↵n) !
Q1

Nn
is the direct limit map of I(P(↵n),⌃P(↵n))\Nn.. The only di↵erence from the

n = 0 case is when K is active with top extender E, crt(E) < �P . Suppose in this

case, Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
(Ult(Nn, E)) = hJ ~E,S0,...,Sn

↵ [g],2, g, ~E, ;, S
0

, ;, ;, ;, . . . , Sn, ;, ;, ;i.
Let d be the last drop of Trg(Ult(Nn, E)). Then Trg(K) is the en- amenable code

of transitive collapse of the hull of d [iE �D(g) over

hJ ~E,S0,...,Sn
↵ [gn],2, gn, ~E, ;, S

0

, ;, ;, ;, . . . , Sn, T r
g(Ult(N

1

, E))|d, iE(Q(g)), iE�D(g)i.

That means, we put information about the extender into the ⇡n-predicate.

Again, a reflection argument shows the following. Suppose (R,�) is a hod pair

such that � is fullness preserving and has branch condensation, P Chod R. Suppose

S is an n-layer S-premouse over P [h], then S[hn] can be translated back into an

n� 1-layered premouse Mn�1

that extends Nn. In particular,

1. Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
(Mn�1

) = Shn

2. Mn�1

[hn] and Shn have the same universe.

IfMn�1

2 R[hn�1

], then by carrying out one more step of the backward translation,

we can get a n�2-layered premouseMn�2

over P(↵n�2

)[hn�2

] that extendsNn�1

=

(L[~E, S(P,⌃),↵0,e0,...,↵n�2,en�2][P(↵n�2

+ 1)[hn�2

]])
P|�P↵n�1+1 . That means,

1. Trg0,...,gn,(P,⌃),↵0,e0,...,↵n�1,en�1(Mn�2

) = Mn�1

2. Mn�2

[hn�1

] and Mn�1

have the same universe. Hence, Mn�2

[hn] and S have

the same universe.

The second step of the translation turns S-operators at the n � 1-st layer into

extenders overlapping �P↵n�1
. Continuing in this way, we will eventually get rid of

4.2 The translation 150

all layers of S-operators and reach a premouse M
0

that extends N
0

= (L[~E])
PP
�↵0+1

. M
0

has the following property.

1. Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
� Trg0,h0,...,gn�1,hn�1

(P,⌃),↵0,e0,...,↵n�1,en�1
· · · � Trg0,h0

(P,⌃),↵0,e0
(M

0

) = S

2. M
0

[hn] and S have the same universe.

We write ITrg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
= Trg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
� Trg0,h0,...,gn�1,hn�1

(P,⌃),↵0,e0,...,↵n�1,en�1
· · · �

Trg0,h0

(P,⌃),↵0,e0
for short. In cases of interest, S is the output of the L[~E, S(P,⌃),↵0,e0,...,↵n,en,[↵n]]

construction up to �R over P [hn]. But then, the result of the reverse translation

of S, M
0

, is in the ground model R. The reason is, the only place that depends

on the generic filter is in the ei-amenable codes, which comes from the generic

enumeration of the respective P(↵i)’s. These amenable codes contain information

about the direct limit map from hod mice to certain direct limits. The direct limit

maps is the only crucial information coded in the S-operators, and it is important

to notice that the maps are in the ground model. In the translation, the generic

enumeration is not important at all, because we decode the direct limit maps from

the S-operators. A level-by-level induction on the height of S shows that M
0

is

in the ground model. M
0

is the mouse that we extract from the hod mouse, P .

Those kinds of mice will merge into HOD under iteration maps of hod mice.

We give a short remark that independence of the generic extension and the internal

constructibility of the S-operators is also applicable to the largest Suslin cardinal

case. Suppose we have forced R, an !-suitable ⌃-premouse over P , where (P ,⌃)

is a hod pair giving rise to the largest Suslin pointclass, then we may let S =

(L[~E, SP][Q(h)])R[h], where Q is the initial segment of R that is ⌃-suitable over

P , h is Coll(!, �Q)-generic over R. The reverse translation gives a premouse M
such that Trg(M) = S

0

. M will then have derived model V .

4.2 The translation 151

Returning to the ADR-case, we let NR;↵0,...,↵n be the mouse we defined there, i.e.

ITrg0,h0,...,gn,hn

(P,⌃),↵0,e0,...,↵n,en
(NR;↵0,...,↵n) = (L[~E, S(P,⌃),↵0,e0,...,↵n,en,[↵n]][P [hn]])

R|�R[hn].

So NR;↵0,...,↵n is first-order definable over R from ↵
0

, . . . ,↵n. Let f : ! ! ✓ be

a strictly increasing cofinal map, possibly in the generic extension over V collaps-

ing ✓ to countable. For each hod pair (P ,⌃) such that ⌃ is fullness preserving

and has branch condensation, for any ↵
0

< ↵
1

< · · · < ↵n = �P such that

M1(P(↵i))|�M1(P(↵i)) = HOD|✓f(i), we let Hn = iP1(NP;↵0,...,↵n). Because of

the local definability of NR;↵0,...,↵n and commutativity of iteration maps among

hod mice, Hn is independent of the choice of (P ,⌃) and hence is in HOD. Let

H = [n<!Hn. Then L[H] is a premouse whose Woodins sup to ✓.

We prove that we can force an elementary embedding from V to a derived model

of L[H] at ✓. We will be using Woodin’s proof of V embeds into a derived model

of HOD. The main result we will use is summarized in the following theorem.

Theorem 4.3 (Woodin, [13]). Suppose ADR holds and either cf(✓) = ! or ✓ is

regular. Let G be Coll(!, < ✓)-generic over HOD such that 8x 2 RV 9� < ✓x 2
HOD[G � �]). Let R⇤

G, Hom⇤
G be associated objects of the derived model of HOD.

Then there is an elementary j : V ! L(R⇤
G, Hom⇤

G). Moreover, j00✓ is cofinal in

✓L(R
⇤
G,Hom⇤

G). For each A 2 V , let � < ✓ and let hT�, T ⇤
� : � < � < ✓i ✓ HOD[G �

�] \ V be trees such that for all � < � < ✓, p[T�] = A, p[T ⇤
�] = R \ A, HOD[G �

�] |= T�, T ⇤
� are �-complementing trees, then j(A) =

S
�<�<✓(p[T�])

HOD(R⇤
G).

Let G be Coll(!, < ✓)-generic over both L[H] and HOD such that 8x 2 RV 9� <

✓x 2 L[H][G � �] and 8� < ✓9� < ✓V HOD
� 2 L[H][G � �]. Let R⇤

G be the reals in

the symmetric collapse. Let (Hom⇤
G)

HOD be the power set of reals in the derived

model of HOD and (Hom⇤
G)

L[H] be the power set of reals in the derived model of

L[H]. By Theorem 4.3, there is j : V ! L(R⇤
G, (Hom⇤

G)
HOD). It remains to show

4.2 The translation 152

that (Hom⇤
G)

L[H] = (Hom⇤
G)

HOD. The ✓-direction is clear. For the ◆-direction, as

j00✓ is cofinal in ✓L(R
⇤
G,(Hom⇤

G)

HOD
), it is enough to show that for all A 2 P(R) \ V ,

j(A) 2 (Hom⇤
G)

L[H]. By Theorem 4.3, it is enough to get T, T ⇤ 2 L[H][G��], some

� < ✓ such that A ✓ (p[T])L[H](R⇤
G),R \ A ✓ (p[T ⇤])L[H](R⇤

G), L[H][G � �] |= T, T ⇤

are ✓-absolute complementing trees, and for each � < ✓, T ��, T ⇤ �� 2 V . We may

assume A = Code(⌃) for some hod pair (P ,⌃) such that ⌃ is fullness preserving

and has branch condensation, M1(P ,⌃)|�M1(P,⌃) = HOD|✓↵n , for some n < !.

Pick � < ✓ big enough such that w(⌃) < �. Let � be the strategy of HOD|✓↵n

coded in HOD, when viewing HOD as a hod mouse. Now over L[H][G��], we can
carry out the translation ITrg0,h0,...,gn,hn

(HOD|✓↵n ,�),↵0,e0,...,↵n,en
(H), where hi is Coll(!, ✓↵i+1

)-

generic over H such that HOD|✓↵i is coded in hi, gi is the canonical generic filter

over the �↵i+1

-extender algebra of H. The result of the translation will be a n-

layered S-premouse over hn, from which we can define the strategy of HOD|✓↵n ,

using a formula similar to 2.34.

Thus, we have trees T
0

, T ⇤
0

2 L[H][G � �] which projects to Code(�) and R \
Code(�). But in L[H][G��], we have the iteration mapping ⇡ from P to HOD|✓↵n .

Hence we have T, T ⇤ 2 L[H][G��] which projects to Code(�⇡) and R \Code(�⇡).

As each proper initial segment of H is in V , for each � < ✓, T � � and T ⇤ � � are

in V as well. Since ⌃ ✓ j(⌃), HOD|✓↵n is a j(⌃)-iterate of P from the point of

view in L((Hom⇤
G)

HOD[G],R⇤
G). Hence (HOD|✓↵,�) is a tail of (P , j(⌃)). Hence

�⇡ = j(⌃). This implies j(A) 2 (Hom⇤
G)

L[H][G]. Thus j embeds V into a derived

model of L[H].

Bibliography

[1] Eric Closson. The Solovay sequence in derived models associated to mice,

Ph.D dissertation, UC Berkeley, 2008.

[2] Gunter Fuchs. �-structures and s-structures: translating the models. Ann.

Pure Appl. Logic, 162(4):257–317, 2011.

[3] Peter Koellner and W. Hugh Woodin. Large cardinals from determinacy. In

Handbook of set theory. Vols. 1, 2, 3, pages 1951–2119. Springer, Dordrecht,

2010.

[4] William J. Mitchell and John R. Steel. Fine structure and iteration trees,

volume 3 of Lecture Notes in Logic. Springer-Verlag, Berlin, 1994.

[5] Itay Neeman. Inner models in the region of a Woodin limit of Woodin cardi-

nals. Ann. Pure Appl. Logic, 116(1-3):67–155, 2002.

[6] Grigor Sargsyan. A shorter tale of hybrid mice, to appear in the Bulletin of

Symbolic Logic.

[7] Grigor Sargsyan. A tale of hybrid mice, Ph.D dissertation, UC Berkeley, 2009.

153

Bibliography 154

[8] Grigor Sargsyan, John Steel, and Nam Trang. Capturing sets of reals by

R-mice, in preparation.

[9] Ralf Schindler and John Steel. The self-iterability of L[E]. J. Symbolic Logic,

74(3):751–779, 2009.

[10] John R. Steel. The derived model theorem, available at

http://www.math.berkeley.edu/⇠steel.

[11] John R. Steel. Notes on AD+, unpublished notes.

[12] John R. Steel. Notes on the derived model theorem, unpublished handwritten

notes.

[13] John R. Steel. Notes on V as a derived model, unpublished handwritten notes.

[14] John R. Steel. An optimal consistency strength lower bound for ADR, unpub-

lished notes.

[15] John R. Steel. Woodin’s analysis of HODL(R), available at

www.math.berkeley.edu/⇠ steel.

[16] John R. Steel. A classification of jump operators. J. Symbolic Logic, 47(2):347–

358, 1982.

[17] John R. Steel. HODL(R) is a core model below ⇥. Bull. Symbolic Logic,

1(1):75–84, 1995.

[18] John R. Steel. The core model iterability problem, volume 8 of Lecture Notes

in Logic. Springer-Verlag, Berlin, 1996.

[19] John R. Steel. Derived models associated to mice. In Computational prospects

of infinity. Part I. Tutorials, volume 14 of Lect. Notes Ser. Inst. Math. Sci.

Natl. Univ. Singap., pages 105–193. World Sci. Publ., Hackensack, NJ, 2008.

Bibliography 155

[20] John R. Steel. An outline of inner model theory. In Handbook of set theory.

Vols. 1, 2, 3, pages 1595–1684. Springer, Dordrecht, 2010.

REALIZING AN AD+ MODEL

AS A DERIVED MODEL OF A PREMOUSE

ZHU YIZHENG

NATIONAL UNIVERSITY OF SINGAPORE

2012

R
E
A
L
IZ

IN
G

A
N

A
D

+

M
O
D
E
L

A
S

A
D
E
R
IV

E
D

M
O
D
E
L

O
F

A
P
R
E
M

O
U
S
E

Z
H
U

Y
IZ

H
E
N
G

2
0
1
2

	Declaration
	Acknowledgements
	Summary
	Introduction
	The S-operators
	Preliminaries
	Rearranging stacks
	The S*,[0]-operator
	S-premouse
	The S[0]-operator
	The S-operators and the S*-operators
	Defining strategy over an S-premouse
	Iteration theory of S-premice
	Condensation of the S-operators

	The translation
	Defining the translation
	Fine structure of potential S-premouse
	Iterability
	Finishing the largest-Suslin-cardinal case

	The ADR+(cf()=`` is regular") case
	The S-operators
	The translation

	Bibliography
	Index

