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Summary 

Tremendous growth of biological data in the post genomic era has given rise to the 

recognition of biological complexity. Such complexity often limits human intuition in 

understanding how functional regulation is accomplished in a cell. The complexity of 

a typical cellular network has been argued to provide robustness to common 

perturbations, but at a cost of fragility to rare changes. Despite its obvious benefits, 

robustness property can turn into an Achilles heel if the cellular mechanisms that 

confer this property are hijacked, such as in cancer. Thus, the understanding of 

cellular complexity, robustness and its tradeoffs can greatly benefit the drug discovery 

efforts for human diseases.  

Cellular complexity has motivated the use of mathematical representations to 

describe biological networks. By way of systems analysis, these mathematical models 

can elucidate the mechanisms that are responsible for giving the observed functional 

behavior. To this end, the current dissertation presents novel systems analyses, to 

elucidate the cellular mechanisms that give rise to the functional dynamics, robustness 

and fragility in a cell, thereby providing a better understanding of complex diseases 

and guiding principles for systems oriented drug design. 

Most of the published systems analyses tools used for understanding the 

dynamics of deterministic and probabilistic models in systems biology relates the 

property of robustness of system output (in)sensitivity and these analyses share a 

common feature, which they rely on perturbations on the system parameters and 

quantification of the resulting change in system output. One of such commonly used 

tool for analyzing deterministic ordinary differential equation (ODE) models is the 

local parametric sensitivity analysis (PSA), which maps out the parametric 

dependence of system behavior. It is shown here that the dynamical aspect of cellular 

regulation is not immediately apparent from the associated parametric sensitivity 

coefficients and more importantly, that they can even lead to incorrect conclusions in 

understanding system dynamics. Briefly, the reason stems from the fact that the 

perturbations are realized on time-invariant system parameters, which means that the 

perturbations are persistent (analogous to a step change). Thus the dynamical 

information of when a parameter perturbation matters is not available. 

In order to overcome the above said drawback, for analyzing the dynamics of 

ODE models, three novel local dynamic sensitivity methods have been developed in 

this dissertation. These analyses are called the Green’s function matrix (GFM) 

analysis, the impulse parametric sensitivity analysis (iPSA) and the pathway 

parametric sensitivity analysis (pathPSA). Even though these methods are formulated 
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in lines of the classical PSA, i.e. based on cause-effect relationship, they differ in the 

manner with which the perturbations are introduced on the system. The GFM 

sensitivities introduce time-varying perturbations on the system states, while the iPSA 

introduce impulse perturbations on the system parameters, also at different times. 

Thus, the sensitivity coefficients from these analyses can reveal a dynamic, molecule-

by-molecule or parameter-by-parameter insight on how system behaviour and 

complementarily, how (an impulse) signal propagates through the network. 

Coincidentally, the iPSA coefficients can be calculated directly from the GFM 

coefficients, by simple matrix multiplications. These methods provide the necessary 

information to understand how system dynamics is achieved, i.e. which species 

(molecules) and which parameters (reactions) are essential and when they become 

important, respectively. 

 Cells often rely not on a single molecule or reaction, rather on a group of 

molecules and reactions that gives rise to the observed behavior. Hence, it is equally 

important to analyse pathways, comprising a (minimum) set of molecules and 

reactions that can (independently) carry out cellular response to stimuli. To this end, 

another novel local dynamic sensitivity analysis, called pathway parametric sensitivity 

analysis (pathPSA) is developed. The pathPSA combines the structural and dynamic 

information of the network. Hence, the analysis comprises two steps: (i) identification 

of functional pathways (structure), and (ii) introducing perturbations on the 

parameters associated with each pathway (dynamics). Like the GSM and iPSA, the 

pathPSA coefficients give dynamical insights on how the cellular functional behavior 

is accomplished and how the robustness/fragility is controlled by, in this case, 

pathways. i.e., which pathways are important and when they are important. The 

caveats of classical PSA and the efficacies of all the above said dynamical analysis 

tools (the GFM, iPSA and pathPSA) are demonstrated through applications to an 

ODE model of synthetic network motifs and a FasL-induced programmed cell death 

model of Jurkat T cell lines. 

Recent advances in single cell assays have revealed the cell-to-cell variability 

which can explain phenotypic heterogeneity, even in isoclonal cell population. Hence, 

the understanding cellular dynamics and analyzing robustness under such variability 

need a global analysis framework. Existing global analysis methods such as eFAST, 

DGSM and Glocal analysis, only employ perturbations in a single characteristic (e.g. 

mean and variance) of the molecular or parametric distribution, and these 

perturbations are also realized at a single time point. On the contrary, a novel global 

dynamic sensitivity analysis is developed in this dissertation with a similar aim as the 

new dynamical analyses above. In this analysis, perturbations are effected on the 

marginal density functions of molecules at different times, hence the name: molecular 

density perturbation (MDP) analysis. The efficacy of this method is compared with 
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the GFM and eFAST analysis through an application to a population model of 

TRAIL-induced programmed cell death in Hela cell line.  

Analyzing biological complexity and robustness properties can help in a better 

understanding of the mechanisms by which network functions are accomplished. 

Based on kinetic models and perturbation analyses, such as the ones presented here, 

dynamical insights on the functional regulation and signal propagation in the cellular 

network of interest can be obtained. The methods developed here are compared 

against related existing analyses; using well established signaling models of both 

synthetically generated and those from literature (e.g., programmed cell death 

models). The analyses give a species-by-species or parameter-by-parameter account 

of how a network function or output is accomplished and also where an induced 

perturbation travels. The analysis also gives experimental suggestions to tune the 

model. In practice, the results can guide model identification and reduction of cellular 

systems and suggest experimentally testable hypotheses. In addition, the biological 

knowledge gained can assist drug discovery efforts in the identification of potential 

drug targets, the understanding of drug efficacy and specificity, and finally the 

optimization of drug dosing and timing. The development of these methods represents 

a concrete step towards robustness-based drug design through systems biology. 

Finally, one of the major applications of PSA is in reduction of large scale 

reaction kinetic models. In contrast to the conventional PSA based model reduction, 

this dissertation presents five new techniques that are based on the dynamical 

information obtained from the iPSA and GFM sensitivities. The reduction of model 

dimensionality is carried out by either eliminating the reactions or species to which a 

selected model outputs show low sensitivities. Also, three combined model reduction 

algorithms based on both the iPSA and GFM sensitivities are presented. The 

efficacies of the methods are demonstrated through three industrially-relevant 

applications, including alkane pyrolysis, natural gas combustion, and industrial steam 

cracking of ethane. 
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Preface 

Systems biology applies systems theory concepts to study the interactions and 

functional behaviors in molecular biology, in which mathematical models are used to 

understand the dynamics of biological systems. The interdisciplinary nature of this 

research necessitates a fair amount of understanding of biology and mathematics. 

Hence the goal here is to give enough information in order to make this thesis, for the 

most part, self contained for readers from both fields. Admittedly, the information 

contained here is incomplete. However, the reader can gain enhanced understanding 

of biological robustness and its properties, and should be able to better appreciate the 

typical complexity of biological systems, and the usefulness of mathematical analysis 

in unraveling this complexity.  

This dissertation presents novel dynamic sensitivity analysis tools, for both 

deterministic and population (stochastic) models in systems biology. It is organized 

into eight chapters. At the beginning of each chapter, a synopsis, which situates the 

chapter in the context of the thesis and summarizes its content, is presented. Chapters 

1 and 2 introduce the premise and explain the existing problems in analyzing cellular 

dynamics. Chapters 3 to 6 introduce different dynamic sensitivity analyses, which 

majorly differ in the nature of their perturbations. The efficacies of all these methods 

are evaluated using cellular signaling pathway models (mainly involving apoptotic 

cell death). Chapter 7 gives one of the applications of these dynamic sensitivities for 

model reduction and Chapter 8 concludes the thesis. A more detailed organization of 

this dissertation is as follows: 
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 CHAPTER 1 – In this chapter, I introduce the complexity and robustness 

characteristics of biological systems, and present the need to understand system 

dynamics. Later, a brief review on different modeling paradigms and analysis 

tools used to understand cellular dynamics is presented. 

 CHAPTER 2 – In this chapter, I introduce and demonstrate the caveats of the 

classical parametric sensitivities (both local and global) in analyzing the dynamics 

of ordinary differential equation (ODE) models in systems biology. 

 CHAPTER 3 – To overcome the caveats of local parametric sensitivities, a novel 

dynamic sensitivity analysis based on time-varying perturbations on molecular 

concentrations of the ODE models, called Green’s function matrix (GFM) 

analysis, is developed. 

 CHAPTER 4 – To complement the GFM analysis, a novel dynamic sensitivity 

analysis based on impulse perturbations on parameters of the ODE models, called 

impulse parametric sensitivity analysis (iPSA), is developed in this chapter. 

 CHAPTER 5 – Here, a pathway based dynamic sensitivity analysis method, 

called pathway parametric sensitivity analysis (pathPSA), which introduces 

parametric perturbations on the elementary signaling modes (ESMs) of the ODE 

models, to quantify the system dynamics is developed. 

 CHAPTER 6 – A global dynamic sensitivity analysis, which introduces time-

varying perturbations on molecular density functions, named as molecular density 

perturbation (MDP) analysis, is developed. 

 CHAPTER 7 – Based on the dynamic sensitivities presented in Chapters 3 and 4, 

GFM and iPSA, five new algorithms for reducing detailed chemical kinetic 

models are developed in this chapter. 

 CHAPTER 8 – In this chapter, I present the summary of findings, show the 

contribution of the current dissertation and provide further recommendations for 

future work. 
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CHAPTER 1_____________________ 

1  Introduction 

Synopsis: 

This chapter introduces the concepts of complexity, robustness and 

dynamics of biological systems and emphasizes the need to understand 

them. An overview of modeling paradigms in systems biology and the 

associated systems analysis tools used to gain understanding of the 

underlying cellular mechanisms are also presented. The advantages and 

limitations of the state-of-the-art analyses tools are discussed and how 

this thesis contributes to overcome some of these limitations is shown. 

Finally, the motivation behind and the objectives of the dissertation are 

presented. 
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1.1  Complexity, Robustness and Dynamics of 

Biological Systems 

From the early 19th century, many problems in physics and chemistry were tackled by 

the reductionist approach [1], where the comprehension of a system is done by 

detailed characterization of its parts. This success led to the use of the same approach 

in the mid 19th century to study biological systems [2]. However, other than 

delineating the parts list for the contemporary molecular biology, reductionist 

approach often provided only incomplete explanation about biological behavior [3]. 

This failure can be attributed to a number of factors, of which the majority owes to the 

complexity found in the typical biological systems, for example neuronal 

interconnections in human brain and the diversity of our immune system. 

1.1.1  Cellular complexity 

Complex systems have been used to describe many problems in modern biology, 

chemistry, physics, engineering and others [4]. Complexity is a qualitative 

phenomenon, generally describing systems whose properties cannot be understood by 

decomposing and analyzing their components alone. A simple phosphorylation and 

dephosphorylation reaction of a protein dynamics as shown in Figure 1.1(a) is a good 

example for a complex system. The signal-response characteristics of this system 

cannot be inferred only from the components characteristics (i.e., from S: signal 

strength, R: de-phosphorylation level and RP: phosphorylation level) alone. Instead, 

the system also needs the kinetic rate information for both the phosphorylation and 

dephosphorylation reactions to ascertain the emerging signal-response behavior (i.e., 

based on the choice of rate kinetics the signal-response characteristics can be either 
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Figure 1.1.  Synthetic network motifs. (a) Simple phosphorylation – dephosphorylation motif, 
(b) Mutual activation motif. 

R

S

EP E

R RP

ATP ADP
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H2OPi

(a) (b)

hyperbolic or sigmoidal) [5]. Hence in short, complex systems are systems where the 

“whole is greater than the sum of its parts” [6]. Examples of complex systems can be 

readily found among natural and engineered systems, including biological networks 

(i.e., from genetic to protein to metabolic), signaling pathways, combustion reactions, 

ecosystems, the world-wide-web, and even the propagation of pandemic infections 

[6]. Ideas of complex systems are making their way into many fields including social 

sciences, political sciences, finance, biology and medicine. In fact, the theoretical 

study of complex systems has become a separate field of science in itself [7]. 

Biological complexity arises because of the large number of components and 

the even larger number of interactions between them. These interactions take place 

across multiple organizational levels with varying scales of time and space [8]. For 

example, a simplified network consisting of four genes, as shown in Figure 1.1(b), 

interacting in a nonlinear fashion, can give rise to a very complex behavior. The 

network shows fascinating emergent properties across different time scales, generates 

distinct output behavior depending upon the input signals, and the presence of 

feedback loop even makes the system behave like a bistable switch [5]. Hence, even 

though the behavior of the components of biological systems (i.e., genes, proteins, 

etc…) is simple, it is the system design and the interactions among them that make it 

more complex.  
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Many human diseases, including cancer, diabetes, and neural disorders, are 

manifestation of the (mal)functioning of the system components in biology. Hence, an 

understanding of the system complexity is hoped to shed light on these diseased states 

and could possibly influence the design of new drugs that are intended to treat these 

complex diseases [9]. However, as noted earlier, even to maintain homeostasis, 

biological systems can and need to constantly change and adapt themselves within a 

range of feasible parameters [6]. As a consequence, these systems may have evolved 

to possess some of the characteristic features such as: (i) self-organization: the ability 

of the system to organize themselves (without any external parameters) that are far 

different from being random, (ii) adaptability: the ability of the system to change its 

functionality in response to the surrounding, (iii) robustness: the ability of the system 

to maintain its functionality against perturbations, (iv) emergent behavior: the ability 

of the system to exhibit behaviors that are markedly different from its basic 

constituents, and (v) chaotic behavior: the ability of the system to generate 

unpredictable temporal behavior  [10]. 

1.1.2  Robustness: An organizational principle 

Robustness is a ubiquitous property of biological systems and has been recognized as 

a fundamental organizational principle in the evolution of cellular functions [11-13]. 

Robust behaviour has been observed in many biological systems, such as in -phage 

switching [14], bacterial chemotaxis [15], and Drosophila circadian rhythms [16]. 

Robustness is often thought as a desirable property of network interconnections, 

which is selected through evolution. Cellular complexity often appears to arise mainly 

from robustness as one of the design goal [17]. Studies have suggested that many 

biological networks show a robust behavior to variations in biomolecular 
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concentrations and such network structures are conserved across organisms [18-20]. 

Hence, understanding the connection between complexity and robustness became an 

active research topic [21-27].  

The definition of robustness is domain specific. In different organizational 

levels of biology, different types of robustness have been reported, ranging from 

genotypic to phenotypic to environmental to functional robustness [28]. This thesis 

concentrates particularly on functional robustness, a property that allows a system to 

maintain its functions despite internal and external perturbations [12]. In this case, in 

order to define robustness, one must identify three major components: system, 

function, and perturbations [29] and to perform robustness analysis, one needs to 

specify the system, its function (or behavior) that remains unchanged, and the type of 

uncertainties and disturbances for which this invariance property holds [17, 30]. 

General characteristic properties of a robust system are adaptation, parametric 

insensitivity and graceful degradation [18]. Some of the major network characteristics 

shared among robust systems are (i) motifs and modules, allowing for a distributed 

information processing and decoupling of sub-systems against perturbations [31], (ii) 

systems control mechanisms, such as feedback and feedforward loops [13], and (iii) 

alternative fail safe mechanisms, such as redundancy, diversity and purging [12]. A 

commercial jet airplane makes a good analogous engineering system to understand 

the above said biological robustness mechanisms [12]. Many commercial planes have 

an autopilot mode, operated through an automatic flight control system (AFCS), that 

maintains a flight path (direction, altitude, and velocity of flight) against variations in 

the conditions of external environment (such as winds, clouds, etc.). This control 

employs mechanisms, such as negative feedback control, in which deviations from the 

defined flight path are automatically corrected. AFCS is generally composed of three 
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modules with the same functions, thereby creating redundancy. However, each 

module is designed differently to avoid a common mode failure, analogous to, 

heterogeneity. The three computers are made to be modular, so that failure in one 

module does not affect the functions of other parts of the system. This type of 

mechanism is implemented using digital technologies that decouple low-level 

voltages from digital signal (ON/OFF of pulses), thereby preventing noise from 

influencing its functions. Although this is a simplified explanation of a man made 

robust system, the basic concepts are also relevant in biological systems. For instance, 

cancer can be viewed as a robust system with its genetically heterogeneous cell 

population, providing a high level of redundancy, and each cancer cell possesses the 

ability to counteract the action of drugs [9, 32]. Hence, an in depth understanding of 

the dynamics of the acquired robustness property of these diseases will also provide 

us with methods to control them.  

Though a commercial plane is robust against its component failure and 

perturbations in external conditions, it is also extremely fragile against highly 

improbable events such as total power failure [29]. Similarly, despite its obvious 

benefits, robustness property can turn into an Achilles heel if the cellular mechanisms 

that confer this property are hijacked, such as in cancer and diabetes [12, 18, 19, 32]. 

The acquired robustness property gives these diseases the ability to adapt to drug 

actions and develop drug resistance. Hence, how robustness and fragility of biological 

systems are exploited during disease onset and progression is one of the major factors 

which will open up a new avenue for drug discovery research [9]. 
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1.1.3  Dynamics of biological systems 

On a separate note, dynamics is a prominent feature of many important biological 

processes (e.g., oscillations in cell cycle and circadian rhythm [33, 34], switching 

behaviour in programmed cell death [35], and adaptation in chemotaxis [36]). Many 

cellular properties and functions, including robustness, are accomplished through 

intricate regulatory networks that control cellular processes from mRNA transcription 

to post-translational protein activity. Here, the word “regulatory” implicitly describes 

an active dynamical response to internal and external stimuli, in which an orchestra of 

cellular processes, from signaling to gene expression, maybe set in motion in response 

to a perturbation or a stimulus. For example, caspase dependent programmed cell 

death (apoptosis) may activate a chain of processes in response to a death signal, 

including the expression of pro-apoptotic genes, the inhibition of anti-apoptotic 

proteins, mitochondrial remodeling and subsequent release of pro-death proteins, and 

the cleavage of various caspases [37]. Thus, understanding cellular dynamics, to gain 

insights on the mechanisms that give rise to and control the dynamic behaviour, has 

become a prime concern [38-42]. But as seen earlier, the classical reductionist 

approach of biology does not immediately answer such questions. Hence, this requires 

a shift to “what to look for” in biology, in which a top-down approach should 

complement a bottom-up-approach [18].  

1.2  Systems Biology: A Novel Paradigm in 

Chemical and Biological Engineering 

The challenge of understanding emergent behaviors from complex cellular networks 

has motivated the use of quantitative (mathematical) representations of cellular 

networks and the analysis of such models to discover the basis of cellular phenotypes, 
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to predict the effects of network changes on cellular behaviour and to ultimately 

design networks with new and desired properties and functions [43, 44]. Systems 

biology approach attempts to understand biological systems much like engineering 

systems, through the identification of their structure and dynamics, the control and the 

design of cellular circuits with desired properties [13, 45]. Mathematical models of 

various cellular networks, such as cell cycle [46], circadian rhythm [47], and 

metabolism [48], have been developed from experimental data through reverse 

engineering. The analysis of these models of native biological and pathological 

systems has greater impacts such as: 

1. for better understanding of pathology and malfunction in order to provide 

potential therapeutic targets for treatment and diseases [9, 49, 50], 

2. to design biological systems having desired properties not existing in nature [51], 

3. to engineer organisms to produce valuable compounds [52]. 

1.2.1  Systems modeling in biology: An overview 

Many dynamical modeling paradigms have been used to represent cellular networks 

ranging from deterministic models to stochastic models, as shown in Figure 1.2. 

A deterministic model is one in which every set of variable states is uniquely 

determined by its parameters and by sets of initial states of these variables in the 

model. Examples of such models include Boolean models and ordinary differential 

equations (ODE) [53]. On the other hand, probabilistic models are models in which 

the states are random variables described by probability distributions. In this case, 

examples include Fokker-Planck equations (FPE) and chemical master equations 

(CME) [54]. The source of randomness can either be external or internal or both [55]. 

As a consequence, two identical systems starting from the same initial condition may 
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Figure 1.2. Spectrum of modeling in biology. Different paradigms of systems modeling, 
spanning from high level or abstract statistical models to detailed chemical master equations are 
depicted. 
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follow different trajectories due to its random (stochastic) nature. As seen in Figure 

1.2, different modeling paradigms span different levels of abstraction, giving varying 

levels of insights about the system and some of them are detailed below. 

Boolean Models (deterministic): Boolean models characterize the influence and 

information flow among system components using simple Boolean logics [53]. In a 

Boolean model, each variable of a system (e.g. gene activity) can assume two values, 

such as active (ON/1) or inactive (OFF/0), and the dynamics (i.e., changes with time) 

are based on a set of logical rules/Boolean functions which govern the relationship 

among the components of the network [25]. Mathematically, the dynamics of a 

Boolean network describing a regulatory system is given by  

     1t t x xb  (1.1) 

where nx R denotes the state variable representing the mRNA or protein levels 

(ON/OFF) and   txb is the vector valued Boolean rule, describing the relationship 
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between  tx  and  1t x . Although such models are the simplest abstraction of 

dynamical biological systems, they can provide qualitative information on the 

structure of interaction among genes and proteins [25]. Boolean models have been 

used to describe biological networks such as mammalian cell cycle [56], gap-gene 

genetic network involved in the fruit fly Drosophila melanogaster segmentation [57], 

and morphogenesis in Arabidopsis thaliana [58].  

ODE Models (deterministic): The most widespread formalism to model dynamical 

systems in science and engineering, including biology, makes use of ordinary 

differential equations (ODE). In systems biology, these are typically mechanistic 

models, which describe the concentrations of biomolecules, called states. 

Mathematically, an ODE model is written as [59, 60] 

 
     0

0 0

ˆ, ,
ˆ ˆ, ; ,

d t
t

dt
 

x p x
x p x p xg  (1.2) 

where the state nx   is typically the concentration vector of biomolecular species, 

such as mRNAs and proteins, while the function g  is the constitutive, often 

nonlinear, rate equation. The right hand side of the ODE captures the generation and 

consumption of biomolecules due to a variety of processes in the cell (e.g. 

transcription, translation, phosphorylation and dephosphorylation, etc). The rates of 

which depend on a set of kinetic parameters that are consolidated in the vector ˆ mp 

, representing the relevant kinetics, energy, and/or transport coefficients that appear in 

the constitutive equations. Since the initial conditions x0 can be treated in the same 

way as model parameters, the aggregate vector m np   is used here to denote the 

combined parameters and initial conditions, i.e. 0
ˆ

TT T   p p x . This formulation is 

general enough to describe most systems of interest in biology, such as metabolic, 
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signaling, and genetic regulatory models [61, 62], with examples including models of 

apoptosis [63] , cell cycle pathway [64] and circadian rhythm [47]. 

Fokker-Planck Equations (FPE) Models (probabilistic): Model parameters p̂  and 

the initial conditions 0x  in (1.2) are usually derived from (noisy) experimental data 

and therefore have inherent uncertainty. In other words, the parameters and initial 

conditions are random and can be described by density functions  ˆ ˆf
P

p  and  
0 0fX x , 

respectively. Consequently, under these conditions,  ,f tX x  satisfies the following 

partial differential equation , given by  

     0 0 0 0| | 0f t , t , f t , t ,
t

 
 

 X Xx x x x
x

g  (1.3) 

where    0 0 0 00 |f , t , f t ,X Xx x x  are the joint pdf of initial conditions. This 

formulation in (1.3) takes a specific form of Fokker-Planck equation with only drift 

velocity g , and no diffusion matrix [65, 66]. Only for very simple systems that (1.3) 

have an analytical solution, specifically where the separation of variables is possible 

or if the velocity g is constant [67]. In most cases, the solution is obtained using very 

simple but computationally intensive Monte-Carlo (MC) algorithms or by a complex 

but computationally efficient transformation of (1.3) to a Schrodinger equation [67]. 

Some of the examples of FPE models in systems biology include a model to 

characterize the cell migration process and a model to understand the apoptotic 

signaling in Hela cells [66]. 

Chemical Master Equation (CME) Models (probabilistic): CME model 

formulation describes biological processes in a cell as random events due to the low 

concentration of participants (nM level). As differential equations assume that 

concentrations of molecules vary continuously and deterministically, these 

assumptions no longer apply in many cases of cellular processes [68]. In a cell, some 



Thanneer Malai Perumal 12

molecules, such as the components of gene transcription, only exist at low copy 

number (~10s of molecules), thus violating the continuity assumption [68]. As a 

consequence, the same system starting from the same initial conditions may follow 

different trajectories due to the intrinsic random nature. In CME, discrete X  number 

of molecules are taken as state variables, and a joint probability distribution 

 0 0, | ,P t tx x  is introduced to express the probability that the cell contains iX  

molecules of the ith species at time t, given the initial condition 0X  at 0t [69, 70]. The 

time evolution of the function  ,P t x  can be expressed as follows: 

    
   
   

0 0

0 0 0 0
1 0 0

, | ,
, | , , | ,

, | ,

m
j j j

j j

v P t v t
P t t t P t t t

P t t





  
      

    


x - x - x
x x x x

x x x
 (1.4) 

where m is the number of reactions that can occur in the system, jv  is the state-

change vector representing the change in molecular states caused by the reaction j, 

 j x  is the propensity function describing the probability that reaction j will occur 

in the interval [ , )t t t   given that the system is in the state X  at time t  [71]. In the 

thermodynamic limit as the number of molecules become large and when the initial 

variability is avoided, the stochastic solution of (1.4) will approach a deterministic 

solution [72]. Though the master equation provides an intuitively clear picture of the 

stochastic process by accounting for the intrinsic fluctuations, its solution is 

computationally challenging, for example using the stochastic simulation algorithm 

(SSA) [70]. Nevertheless, this approach has gained increasing popularity with 

examples including models of phage λ-infected E.coli cells [73] and in circadian 

rhythms [74]. 
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1.2.2  Systems analysis tools in biology 

As discussed in the previous section, a mathematical model, which represents the 

biological pathway, provides an avenue to systematically investigate a cellular 

network, through the application of systems analyses [12, 75, 76]. Different modeling 

frame works (Boolean, ODE, Fokker-Plank and CME) necessitate the use of different 

types of analysis tools. Deterministic ODE models and probabilistic FPE models are 

of particular interest in this work. In fact, the analysis of ODE models is an active 

area of research in the field of systems biology and traditionally in mathematics and 

engineering as well, where existing methods range from structured singular value 

(SSV) to sensitivity analysis and bifurcation analysis (for more examples of analyses, 

see [21, 22, 25, 26, 77-81]). Below, some of these methods are outlined. In essence, 

these methods investigate the effects of perturbations in the model parameters or 

inputs on the system output behaviour, in order to ascertain the role of various cellular 

processes. The agreement and/or disagreement between model analysis and 

experimental findings or biological knowledge will give feedback about the validity 

of the model and to the design of future experiments, closing the loop in the iterative 

approach of systems biology [44]. 

Structured Singular Value (SSV) analysis: As described earlier, the underlying 

robust principles are believed to be universal in both biological and sophisticated 

engineering systems [20], motivating the use of tools from control systems theory for 

analyzing complex biological systems. SSV analysis has been developed for 

analyzing robustness in engineering systems with rigorous mathematical foundation 

and is readily available in standard software packages [82]. In this analysis, for a 

given bounded set of internally or externally occurring uncertainties (perturbations), 

robustness is checked by the loss of stability and performance in a system (output 
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Figure 1.3. Construction of the uncertainty system. An example of an uncertain system that is 
shaped into the P block system, where  is the block-diagonal matrix, [1p1 2p2]. This system 
can be lifted via linear fractional transformation to the M block structure and tested for robust 
stability. Closing the input/ output channels of the P block structure, one can test for robust 
performance. 
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behavior). In other words, a system is robust if certain stability and performance 

criteria are satisfied for all feasible perturbations   [26].  

SSV analysis can be thought as a generalization of the Nyquist stability 

criterion for single variable system [82]. In this case, robust stability (RS) of the 

system M  with respect to the uncertainity (or perturbations) ∆, is checked by 

computing μ , defined as follows  

       1
M min | det I-MΔ 0for structured 


    (1.5) 

where     defines the maximum singular value of the perturbation Δ  on the 

system M . Thus, 1   in (1.5) implies   1   , which means that there exist a 

permissible perturbation in which the system becomes stable (this is related to the 

singularity of I-MΔ ). When the uncertainties relates to model parameters, the 

analysis searches for a combination of parameter perturbations which cause the 

system to become unstable. Precise calculation of   is a NP-hard problem [82], but 

the bounds for   can be computed efficiently using off-the-shelf software. The robust 
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performance of MΔ  can be calculated in a similar fashion, requiring only a minor 

modification on M  and Δ . 

The SSV analysis is a frequency based analysis which considers the system 

response to a general class of input perturbations, i.e. static and dynamic [83]. 

However, the underlying theory behind this analysis assumes that the system is linear. 

Nonlinear systems commonly found in biology, have to be linearized first before the 

application of the SSV analysis. To apply SSV analysis, the network and its 

uncertainty will also need to be rearranged into MΔ  block diagram. Figure 1.3 shows 

and example in which a (nominal) system with two inputs, an output and uncertainty 

about two of the model parameters can be shaped into the standard MΔ  block for 

SSV analysis, in which the uncertainties are collected into the Δ  block. Such analysis 

has been applied to study the robustness of biological systems, including Fas-induced 

apoptosis network [83], mitotic control in Xenopus frog eggs [76], and circadian 

pacemaker in Drosophila [76]. 

Bifurcation analysis: Bifurcation analysis, which has been extensively used in many 

fields, from engineering to chemistry to mathematics, can provide a diagram showing 

the dependence of system qualitative behavior on model parameters. This analysis 

describes the change in behavior of a system, for example from oscillatory behavior to 

stable steady state, when one or more model parameters are varied. The boundary in 

the parameter space across which these changes occur are called bifurcation points or 

loci [84]. The minimum distance between a nominal operating point and (the nearest) 

bifurcation loci in the parameter space, i.e., the minimum distance to bifurcation, has 

been used to measure robustness in biological networks [75]. This distance 

characterizes the minimum parameteric perturbation magnitude needed to change the 
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Figure 1.4. Two-parameter bifurcation diagram. Schematic representation of output profile and 
behavior loci of a sample system of one output and two parameters. (a) Output profile of the 
system for the parameter values represented by X in parameter space. (b) Output profile of the 
system for the parameter values represented by A in parameter space. (c) Behavior loci for a two 
parameter system. Distance AX is called as distance to bifurcation. 
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functional behavior, and thus directly correlates with robustness, i.e. larger the 

distance, more robust is the functional behavior.  

Consider a hypothetical system with an output variable y, e.g., a concentration 

level, and two parameters p1 and p2. For the nominal parameter values, the system is 

oscillating as shown in Figure 1.4(a). When parameter values are changed, system 

may lose the oscillating output, as illustrated in Figure 1.4(b). The transitions of the 

qualitative behavior of the system (oscillating to non-oscillating) for various values of 

parameters p1 and p2 are delineated in the form of a bifurcation diagram. Figure 1.4(c) 

shows an example of bifurcation loci for such a system, where the shaded and non-

shaded regime represents oscillating and non-oscillating behaviors, respectively.  The 

arrows show a perturbation (changes) on one of the system parameter, p2. As seen in 

Figure 1.4(c), by increasing or decreasing the parameter value (p2) from the operating 

point, the system behavior changes from oscillating to non-oscillating.  

The minimum distance X - A  in Figure 1.4(c) between the operating point and 

the nearest bifurcation loci gives a measure of the robustness of the system oscillatory 
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behavior. This distance characterizes the robustness of the system behaviour against 

given perturbation [85]. A system is then said to be globally robust if the feasible set 

of perturbations are of smaller magnitudes than the minimum distance to bifurcation. 

Though useful and powerful, bifurcation analysis is limited to the analysis of steady 

state behavior of a system. Software tools are available to map the bifurcation points 

of an ODE model of biochemical networks [86]. Some biological applications of this 

analysis include the analysis of Xenopus cell cycle oscillator [75], mitotic control in 

frog eggs [87], and cell cycle progression of budding yeast [88]. 

Parametric Sensitivity analysis: Sensitivity analysis of mathematical models is a 

well developed and used method in the science and engineering literature [89-95]. 

This analysis has also become a powerful tool to analyze mathematical models of 

biochemical pathways. It is the most common in silico analysis in systems biology 

due to its ease of computation and intuitive interpretation of the results. The 

sensitivity coefficients directly give information regarding the contribution of 

individual parts in a system to the desired system output behaviour. Low sensitivities 

indicate the property of robustness, and conversely high sensitivities implicate 

fragilities.  

In ODE models, the system behaviour is often described by the state or output 

time profiles (such as concentration). As mentioned above, the model parameters 

include the physicochemical parameters of the system (such as those related to 

reaction kinetics, transport properties, etc.) as well as initial conditions, operating 

conditions, and geometric parameters of the systems. These physicochemical 

parameters are measured experimentally or estimated theoretically and therefore, have 

uncertainties. On the other hand, the operating conditions may change in time for a 

variety of reasons, such as varying receptor concentration and environmental 



Thanneer Malai Perumal 18

conditions like temperature. The parametric sensitivity analysis investigates the state 

changes with respect to perturbation in the parameter values [83]. One version of the 

sensitivity analysis uses the parametric sensitivity coefficients, defined as  

 
 

,

Change in concentration at time

Change in kinetic parameter
i

i j
j

x tt
S

p


 


 (1.6) 

where ix is the ith state in an ODE model with n states and pj is the jth kinetic 

parameter of an ODE model with m parameters, as given by (1.2). These indices are 

obtained directly by differentiating, and solved simultaneously by integrating the 

ODE models in (1.2). A more detailed explanation of this method is given in Chapter 

2. Parametric sensitivity analysis has found wide applications in the analysis of 

biochemical networks, including programmed cell death [21, 83, 96-99], budding 

yeast cell cycle control [34], IL-6 signalling pathway [38], circadian rhythm model in 

Neurospora [33], coupled MAPK and PI3K signal transduction pathway [100], and 

many others. 

1.3  Thesis Motivation and Objectives 

As seen earlier, the complexity of cellular networks often limits human intuition in 

understanding how a functional regulation is accomplished in a cell. It is clear that the 

control of network functions cannot reside in a single gene or protein, and might well 

be dispersed over many components [42, 101]. A system is more than an assembly of 

genes and proteins and so its properties cannot be fully understood by merely drawing 

diagrams of their interconnections [102]. Although such a diagram represents an 

important first step, it is analogous to a static roadmap [101]. What one really seeks to 

know is the traffic patterns and the conditions under which they emerge. One would 

like to know how the existing molecular information can be used to understand the 

control of cellular behavior [18]. The classical reductionist approach of biology does 
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not immediately answer such questions. Since the underlying principles of complexity 

and robustness are universal in both biological and engineering systems, control 

systems theory from engineering can aid in understanding biological complexity, 

robustness and its tradeoffs in dynamical cellular systems. The marriage between the 

two fields has given birth to the field of systems biology, which focuses on the 

emergence of cellular functional behaviour (such as robustness) from the interactions 

of many biological components [18]. 

Unraveling biological complexity and understanding the mechanism of 

robustness and system dynamics has become an active field of research in systems 

biology [5, 16, 77, 103, 104]. The accomplishment of such goals will have 

tremendous impact on drug discovery research, synthetic biology and in 

biotechnology [19]. To this end, mathematical models coupled with quantitative 

analysis tools, as presented here, have been used. However, most of the methods 

presented in Section 1.2.2 investigate the effects of perturbations on model parameters 

or inputs on the system output behaviour to ascertain the importance and role of 

various cellular processes. As these methods focus solely on static perturbations on 

model parameters (including initial conditions), the dynamical aspect of cellular 

regulation is not immediately apparent from these analyses. In contrast, this 

dissertation presents novel sensitivity analyses methods that can dynamically illustrate 

molecule-by-molecule or reaction-by-reaction or even pathway-by-pathway insights, 

in producing the observed functional behaviour of the system. This is achieved by 

introducing dynamical perturbations on the system. Since the perturbations are 

dynamic in nature, the analyses presented in this work not only indicate which 

perturbations are important, but also point to when these perturbations matter. 
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 The results of the dynamical sensitivity analyses presented in this dissertation 

can be directly validated in experiments and may even suggest experimentally testable 

hypotheses. In addition to understanding the underlying mechanism of cellular 

systems and robust-yet-fragile behavior, the knowledge gained will have applications 

ranging from model identification and validation to model reduction. Also, these 

analyses can assist drug discovery efforts in the identification of potential drug 

targets, the understanding of drug efficacy and specificity, and finally the 

optimization of drug dosing and timing. As more in silico models of cellular networks 

emerge from the field of system biology, the proposed analyses will provide the 

enabling technology for the use of these models to benefit human health and medicine 

through robustness-based systems-oriented drug design. Finally, as an additional 

application of the sensitivity analyses, this dissertation also details novel model 

reduction algorithms based on dynamic sensitivities for reducing large kinetic models 

of chemical and biological systems  

 

Objectives: Therefore, based on the above discussion, the specific objectives of the 

current dissertation are: 

1. To show the caveats of classical parametric sensitivity analysis in understanding 

the system dynamics, 

2. To develop systems analysis methodologies based on dynamic sensitivities that 

can directly elucidate the cellular mechanisms behind robust-yet-fragile dynamical 

behavior, 

3. To apply the novel dynamic sensitivities to reduce detailed kinetic models of 

chemical and biological systems. 



Thanneer Malai Perumal 21

CHAPTER 2_____________________ 

2  Parametric Sensitivity Analysis†  

Sensitivity analysis for modelers? 

Would you go to an orthopedist who didn’t use X-ray? 

---------Jean-Marie Furbringer 
Synopsis: 

Classical parametric sensitivity analysis (PSA) has become one of the 

most commonly used tools in computational systems biology, in which 

sensitivity coefficients are used to study the parametric dependence of 

biological models. As seen in the previous chapter, many of these models 

describe dynamical behaviour of biological systems. Subsequently, PSA 

has been used to elucidate important cellular processes that regulate this 

dynamics. Hence, this chapter introduces three kinds of parametric 

sensitivity analyses: local, global and hybrid. Also, a careful interpretation 

of parametric perturbations used in the PSA is presented here to explain 

the issue of using this analysis in inferring dynamics. Based on a synthetic 

switch activation example, this chapter shows that the PSA coefficients 

are not suitable in inferring the mechanisms by which dynamical 

behaviour arises and in fact, may even lead to incorrect conclusions. 

                                                 
† Excerpts of this chapter are part of the following publication: 

HPerumal TM and Gunawan R. (2011) Understanding dynamics using sensitivity analysis: caveat 

and solution. BMC Syst. Biol., 5(1): 41H. PMID: 214060955 
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2.1  Theory of Classical Sensitivity Analysis 

Parametric sensitivity analysis (PSA) has found widespread applications in analyzing 

models of both scientific and engineering systems. It has become a must have tool in 

the computational systems biologists’ arsenal. In systems modeling of biology, PSA 

has found wide applications, such as for model calibration and identifiability, model 

validation and reduction, identification of bottlenecking processes, elucidation of 

mechanisms of complex cellular behaviour, and investigation of cellular robustness 

[13, 105]. In most common applications of this analysis, one computes sensitivity 

coefficients or metrics, which generally reflects the relationship between change in 

model output and the perturbation on system parameters that causes this change. A 

few notable examples of PSA applications in dynamic biological models include 

programmed cell death [21, 83, 96-98], budding yeast cell cycle control , IL-6 

signalling pathway [38], circadian rhythm models [16, 33, 103], and coupled MAPK 

and PI3K signal transduction pathway [100]. 

Sensitivity analysis is the most common model analysis tool for which many 

off-the-shelf software packages exist that provide an integrated and user-friendly 

computational platform for model simulations and analyses (e.g., MATLAB [106] 

and XPPAUT [107]). The PSA of ODE models can be readily done using software 

packages such as SimBiology toolbox of MATLAB [108], PottersWheel [109], 

Gepasi [110], Copasi [111], JDesigner/Jarnac [112], JSim [113], BioSens 

[114],SBML-SAT [115], and SensSB [116]. These and other softwares for sensitivity 

analysis have been summarized in the review articles by Alves. et al. [117] and Klipp. 

et al. [118]. Regardless of the tools used, the interpretations of the sensitivity metrics 

obtained are intuitive; parameters with large sensitivity magnitude are deemed to be 

important and hence, considered to be the controlling factors in the system functional 
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regulation. Consequently, one of the common uses of PSA in systems biology is to 

infer the importance (or lack of importance) of cellular processes or pathways and to 

provide mechanistic explanations for biological behaviour [38-42].   

Depending on the magnitude of perturbations, sensitivity analyses can be 

classified into three types, local (infinitesimal perturbation), global (finite 

perturbation) and hybrid (combination of local and global methods) analyses. These 

are discussed in detail below. 

2.1.1  Local analysis 

The solution to the non-linear ODE model of (1.2),  ,tx p , is the nominal solution. A 

finite parameter perturbation of magnitude p  on the system will change the nominal 

solution  ,tx p  to the perturbed solution  ,t  x p p . This perturbed solution of the 

states can be written using the Taylor series expansion as follows  

      
1

,
, , ....

m

j
j j

t
t t p

p


     


x p

x p p x p  (2.1) 

where the partial derivatives  , jt p x p  are the first order sensitivity coefficients, 

respectively. The first order coefficients describe the linear change in state vector x  at 

any time t  with respect to an infinitesimal perturbation on parameter jp . In general, 

the parametric perturbation can be introduced at any time  0t t    [93]. 

Mathematically, the first order sensitivity of state ix  with respect to parameter jp  is 

given by 

    
 ,

changein the - th  state at time
,

perturbation on the - th parameter at time
i

i j
j

x t i t
S t

p j


 


 


 (2.2) 
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But in the classical PSA, the perturbation time  is commonly taken to be the initial 

time 0t  and hence, the argument   is typically dropped out of (2.2) and the sensitivity 

coefficients only carry a single time dependence on the observation time t  [38-40, 42, 

105, 119-121]. Since the magnitude of perturbations considered are infinitesimally 

small, the sensitivity coefficients will depend on the nominal or baseline parameter 

values. Therefore, the sensitivities above are considered to be local.  

A variety of approaches have been developed to solve for the above said 

sensitivity coefficients for ODE models, including finite difference method, direct 

differential method (DDM) and Green’s function method [90-92, 94]. 

Finite Difference Method (FDM) [94]: The simplest way to calculate sensitivity 

coefficients in (2.2) is to apply finite difference approximation. Using only the first 

two terms of the Taylor series expansion in (2.1), one can compute the (first order) 

sensitivities by  

 

       

     

, ,,

, ,,

j j j

j
j j

j j j

j j

t p p t pt
O p

p p

t p p t pt

p p

  
  

 

  


 

x xx p

x xx p
 (2.3) 

Therefore, using FDM to calculate the sensitivity coefficients, one will need to solve 

the model twice, once using the nominal and another using the perturbed parameter 

values. FDM is particularly useful as it can handle any type of models (even when the 

derivative is not defined) as long as model outputs can be produced when the 

parameters are given. However, the computed sensitivities are only an approximation, 

whose accuracy depends upon the choice of the perturbation magnitude jp , i.e. 

smaller jp  should be used to reduce truncation error in the Taylor series, but not too 

small such that the difference in x due to the perturbation is still larger than the 

simulation error.  
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Direct Differential Method (DDM) [94]: DDM is an exact method for computing 

the sensitivities of ODE models. In order to obtain, the sensitivity coefficients as 

defined in (2.2), the ODE model in (1.2) is directly differentiated with respect to the 

model parameters to obtain the differential equation describing these parametric 

sensitivity coefficients [94], as follows:  

 
         0

+ ; n m n n

t td
t

dt  

  
 

   
x x x

J
p p p p

g

0 I  (2.4) 

where the matrix J  is called the Jacobian matrix, n m0  and n nI  are n×m zero and n×n 

identity matrices, respectively. Here, equation (2.4) is solved simultaneously with 

(1.2) to obtain the sensitivity coefficients in (2.2). DDM method is the most 

commonly used method for computing local sensitivity values, since it provides 

complete information about each sensitivity index as a function of the independent 

variables. However, when the number of parameters m far exceeds the number of 

states, DDM requires solving (n  1) + (n  m) coupled ODEs. Hence may become 

stiff and expensive to solve. A more computationally efficient method is presented 

below. In this dissertation, DDM is used to compute the local sensitivity coefficients. 

Green’s Function Method (GFM) [122]: In biological systems number of system 

states is usually smaller than parameters, i.e., n<m, and hence a more efficient way to 

solve (2.4) is by first solving the homogeneous ODE portion of (2.4) (i.e. without the 

second term on the right hand side). This problem corresponds to the following 

Green’s function problem  

 
       ,

, ; , 1
d t

t t
dt


   J

G
G G  (2.5) 
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where J is the Jacobian matrix and      ,t t   x xG  is the Green’s function 

matrix. Later, the sensitivity coefficients can be obtained using the following integral 

transformation:  

 
       

0

,0 . ,
t

j j

t
t t d

p p


 

 
 

 
x g

G G  (2.6) 

where each element   in the vector   is a Kronecker delta function.  

Adjoint Sensitivity Analysis [123]1: Another efficient way to calculate local 

parametric sensitivity coefficients is to use an adjoint method. Here, an adjoint 

problem of equation (2.5) is formulated as follows:  

 
         T ; f f

d t
t t t t

dt
  J J


   (2.6) 

The evaluation of  t  from equation (2.6) requires only one forward integration 

from 0t to ft of nominal model in (1.2) to compute  tx  and one backward integration 

from ft to 0t of the n-dimensional adjoint model. Having  t , parametric sensitivity 

coefficients are calculated using the following integration scheme: 

 
     

0

ft

j j

t t
t dt

p p

 


 
x


g

 (2.6) 

2.1.2  Global analysis 

Global analysis considers (large) finite perturbations to parameters and hence 

accounting for the (hyper surface) functional mapping from the input (perturbations) 

to the output (behavior) space, as shown in Figure 2.1. In this context, the local 

analysis above is only a first order approximation to such mapping, in which the 

sensitivity coefficients are the tangent vector at the nominal parameter values. As seen 

earlier in Section 1.2.1, large variations among cells originating from genomic and 

stochastic variations [73, 124] and the nonlinearity of typical cellular systems, may 
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Figure 2.1. Global and local analysis. Response surface over the domain of change of two input 
parameters.  
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limit the usefulness of local (linearized) analysis results. Hence, the first order local 

sensitivities may give an incomplete portrayal of the underlying mapping between the 

perturbations and system response. In a typical global analysis, the dependence of 

model output to parameters is evaluated by sampling parameter values from the 

feasible set and computing model output behavior for each parameter set. The global 

sensitivity coefficients are defined to reflect the variation of model outputs within the 

range of permissible parameter values. A few examples of global sensitivity methods 

are given below, while more detailed descriptions of similar analyses can be found 

elsewhere [125]. 

Stochastic Sensitivity Analysis [126]: This method is based on the assumption that 

all the input parameters and initial conditions are random variables whose probability 

density functions (pdf) are known. By doing so, the ODE model in (1.2) can be 

written as a Fokker-Planck model, which provides the pdf of  ,f tX x . Here, the 

global sensitivity of the system output can be computed from the expected value of  

    ,f t dx   XX x x  (2.7) 
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Stochastic sensitivity analysis has been widely applied in analyzing complex chemical 

kinetics [126-129], but seldom used to analyse systems biological models. 

Extended Fourier Amplitude Sensitivity Test (eFAST) [130]: This variance based 

method was originally developed by Cukier and coworkers [130] and later improved 

by Saltelli and coworkers [131]. This method studies how the variation in system 

output can be apportioned to different inputs. In a k-dimensional unit hypercube k , 

high dimensional model representation (HDMR) of the marginal pdf of output

 ,
iX if t x  is given by  

        0 0 , 0
,

, , , , , ....
i i k k lX i X i X k X X k l

k i k i l k l i

f t x f t x f t x f t x x
   

       (2.8) 

in which each individual term is also square integrable over the domain of existence 

[132]. It has been proven that if each term in (2.8) has a zero mean, the HDMR 

decomposition of  ,
iX if t x  is unique and every term in the decomposition is 

orthogonal to each other, giving  
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 (2.9) 

Hence, taking variance of  ,
iX if t x  in (2.8) and substituting (2.9), gives the 

ANOVA-HDMR decomposition of  V ,
iX if t x    as  
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 (2.10) 

Finally, dividing both sides of (2.10) by  V ,
iX if t x    will give the first order and 

total sensitivity indices as  
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Here, the first-order sensitivity index represents the direct (individual effects) 

contribution of each input variability to that of the output, while the total sensitivity 

index represents the total contribution of any input variance to the output variance, 

including the first-order and all higher order contributions due to interactions [132]. 

Thus, high sensitivity magnitudes point the importance of an input to the output. 

There exist a few algorithms that calculate the global sensitivity indices in (2.11) 

[132], but in the present dissertation, the eFAST algorithm of Saltelli and coworkers 

[132, 133] was used.  

2.1.3  Hybrid analysis 

It is clearly seen from the previous sections that global analyses are generally more 

computationally intensive than local analyses, whereas local analyses may not reflect 

the system behavior under all possible parameter sets. Hence, hybrid methods, like 

Derivative based Global Sensitivity Measures (DGSM) [134] and ‘Glocal’ analysis 

[135], have been proposed to combine local and global sensitivity analysis methods, 

to efficiently analyse the model behaviour under all possible parameters sets. These 

analyses use the global methods to search for all possible parameter sets and local 

methods to evaluate the system behavior under this parametric uncertainty. 

Derivative based Global Sensitivity Measures (DGSM) [134]: In this method, 

random samples of the pdf of initial conditions,  0 ,f tX x  and parameters,  ˆ 0
ˆ,f t

P
p  

in (1.3) are generated and used as nominal models for calculating local sensitivity 
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coefficients, as in (2.2). From the mean and variance of the resulting distribution of 

local sensitivity coefficients, global sensitivities are calculated as follows  
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 (2.12) 

where jG is the sensitivity coefficient. Assuming that local sensitivity coefficient 

calculations are as expensive as the model solutions, this analysis is computationally 

more efficient than the variance based global methods. Even though this analysis is 

very simple in implementation, it may fail to predict the changes in system behavior 

for global parametric variations of systems with multiple distinctive output peaks 

(multimodality). 

Glocal analysis [135]: In this analysis the sensitivity is related to the volume of 

(high-dimensional) parameter space, which can produce model output behavior that is 

consistent with the biology of the system. The calculation of such volume is achieved 

using a Monte Carlo, approach guided by principal component analysis in order to 

allow efficient sampling. A ‘local’ analysis is then performed to determine the 

sensitivity for each of the samples drawn from the previously identified volume of 

parameter space to five different kinds of perturbations, including concentration 

perturbations and molecular noise. This has been applied to study the robustness of 

cyanobacterial circadian oscillator [135]. 
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2.2  Caveats of Classical Sensitivity Analysis 

In many applications, classical PSA is used to generate parameter ranking based on 

the magnitude of sensitivity coefficients, either taken at a specific time or using 

consolidated sensitivity metrics, such as time-integral or average or norm of 

sensitivity coefficients [99, 120, 136], for example using:  
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 (2.13) 

where the indices i and j again denote the ith state and jth parameter, and Sinf, SFIM, Sint 

and 
kt

S are the sensitivity metrics based on infinite norm [120], Fisher information 

matrix [136], time integral [99] and sensitivity magnitude at a particular time, 

respectively. . The parameter ranking is subsequently used to conclude about the 

important mechanisms or the property (such as robustness) of the biological system 

behaviour [38-42].  

This section shows that the dynamical aspects of cellular functional regulation 

cannot be inferred from the sensitivity coefficients of PSA, neither directly nor as any 

of the consolidated sensitivity metrics shown above. More importantly, the 

corresponding parameter rankings from PSA can give erroneous inference about the 

controlling mechanisms. Briefly, the reason stems from the fact that in classical PSA, 

perturbations are introduced on system parameters, which are time-invariant or static. 

In other words, these parametric perturbations are persistent and their effects on the 

system behaviour are integrated over time. Therefore, while PSA can indicate which 

parameter perturbations are important, it does not point to when these perturbations 

matter.  This problem is illustrated using a local PSA of a synthetic network model. 
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Figure 2.2. A simple network model. (a) A simple network with 6 states and 4 reactions. Straight 
arrows connect substrate to product and the dotted arrows indicate enzymatic activity. Details of 
model equations and parameter values are given in Table A.1. (b) Activation of x6 under a constant 
stimulus of x1 = 1: complete network (+), indirect pathway knock-out (*) and direct pathway 
knockout (x). 
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Although the illustration here was done using local sensitivity analysis, the same issue 

generally applies to global PSA.  

2.2.1  Case study: Simple network model 

To illustrate the shortcoming of local PSA in analyzing system dynamics, consider a 

simple six state model involving three reactions with Michealis-Menten (MM) 

kinetics, as shown in Figure 2.2(a) (model parameters, rate kinetics and initial 

concentrations are given in Table A.1). In this network, the activation of x6 followed a 

switch-like dynamics in response to the stimulus x1, as illustrated in Figure 2.2(b) 

(nominal). The model describes two pathways that contribute to x6 activation: a direct 

x2 pathway and an indirect x2, x3, and x5 pathway.  

In this example, in silico knock-out experiments were performed by removing 

each pathway individually in order to assess the dominance of one pathway over the 

other in x6 activation. Both full network and knock-out (KO) simulations were 

performed under a stimulus of x1(t0 = 0) = 1. As illustrated in Figure 2.2(b), while the 
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Figure 2.3. Local parametric sensitivity analysis of x6 activation under x1 stimulus. The bar 
graphs show the consolidated sensitivity metrics of x6 with respect to model parameters based on 
(a) infinite norm, (b) Fisher Information Matrix (FIM) and (c) time integrated sensitivity 
coefficients; and (d) the sensitivity magnitudes at switching time (t = 7.12 time units). The 
parameter numbers refer to the reactions as shown in Figure 2.2, where the subscripts f denotes the 
forward rate constant and k and v denotes the rate constants of Michealis-Menten kinetics. 
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initial x6 activation in the indirect pathway KO remained the same as that of the 

original model, the switch-like activation was much less pronounced. On the other 

hand, the original switching behaviour was preserved in the direct pathway KO, but 

the switching time was delayed due to a slower initial activation. Taken together, 

these KO simulations suggested that the x6 activation is mainly accomplished through 

the indirect pathway, while the direct pathway contributes mainly to the initial x6 

activation. 

2.2.2  Parametric sensitivity analysis for dynamical 

systems: A caveat 

DDM method presented in Section 2.1.1 was also used to study the pathway 

dominance in this simple network. These sensitivity coefficients describe the change 

in system output (state trajectory) at time t  with respect to (an infinitesimal) 

perturbation on the system parameter values at time  . Here, the PSA was performed 

for the same stimulus  1 0 1x   with 0   and the sensitivity coefficients were 
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computed for the time range of 0–15 time units. The sensitivities of x6 with respect to 

all model parameters are ranked in Figure 2.3 using consolidated sensitivity metrics, 

i.e. infinite norm [120] (Figure 2.3(a)), FIM [136] (Figure 2.3(b)), and time-integral 

[99] (Figure 2.3(c)), and using sensitivity magnitudes at switching time ( 7.12t   time 

units; Figure 2.3(d)). The conclusion from these rankings was the same: (1) the largest 

sensitivity was associated with the kinetics of x1 conversion to x2 and (2) the direct 

pathway (r2) parameters have larger sensitivities than those from the indirect pathway 

(r4), suggesting larger influence of the direct pathway on the x6 activation. Hence, the 

conclusion from the PSA is in direct contradiction with the findings from in silico KO 

experiments. The above discrepancy between the KO and classical PSA results can be 

explained by taking a closer look at the way parametric sensitivity coefficients in (2.2) 

are calculated:  

        
0

, , ,
ˆ ˆ ˆ ˆ ˆ,

t t

i j i j i jt
S t S t dt S t H t dt


       (2.14) 

where  = t0  is the usual perturbation time,  ,
ˆ

i jS t  is the time derivative of sensitivity 

coefficient as shown in (2.4) and H(t) is the Heaviside step function. In this case, 

since model parameters are static or time-invariant, the parametric perturbations in the 

PSA consist of step changes in the parameter values, as depicted in Figure 2.4(a). 

Hence, the sensitivity coefficients at time t represent an integrated or accumulated 

change in the states from  to t due to a persistent parameter change started at time 

(see Figure 2.4(b)). Indeed, substituting the full equation of  S t  from (2.4) in 

(2.14) gives  

            
0

, , 1.. 1.. ,
ˆ ˆ ˆ ˆ,

t
i

i j i n n jt
j

g
S t S t t H t dt

p
 

 
   

  
 J  (2.15) 
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Figure 2.4. Illustration of perturbation-response in parametric sensitivity analysis. Solid lines 
represent the nominal and the dashed lines show the perturbed trajectory, respectively. Figures are 
not drawn to scale. 
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Here, one sees two terms in the integrand that contribute to the sensitivity coefficients 

at time t: (1) the first is related to the (integrated) sensitivities that are carried over 

from the initial perturbation time  and (2) the second accounts for the instantaneous 

rate changes due to the parametric perturbations that still persist at time .̂t  Thus, in 

the PSA, a large sensitivity magnitude of  , ,i jS t   indicates the importance of the j-th 

parameter in time window of  and t, during which the perturbation is applied to the 

system. Hence, the use of these coefficients to infer the dynamical importance of 

parameters is inappropriate and can even be misleading.  

The above said reason is responsible for the PSA of the simple network model 

rendering an incorrect conclusion regarding direct versus indirect pathway activating 

x6. As seen in the in silico KO experiments, the direct pathway regulates the initial 

activation of x6, while the actual switching is carried out by the indirect pathway. In 

the PSA of this model ( 0  ), the early importance of the direct pathway and also the 

reaction r1 persisted beyond the initial times in the sensitivity coefficients due to the 

aforementioned integrated effect. In this case, the importance of the indirect pathway 

was not apparent from the parameter sensitivity rankings in the background of large 

(integrated) sensitivities with respect to r1 and the direct pathway. Correspondingly, 
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the use of any time-consolidated sensitivity metrics will only worsen this problem. 

2.3  Summary 

Sensitivity analysis has become one of the must have tools in the computational 

systems biologist arsenal. It addresses the manner in which the functional output 

behavior depends on the system parameters. As seen in Section 2.1, based on the type 

of parametric variations, sensitivity analysis falls in to three categories: local, global 

and hybrid. Local analysis provides an asymptotic approach by analyzing the local 

linearized change of system output with respect to an infinitesimal (asymptotically 

small) parametric variation at a given point in the parameter space (a nominal 

operating condition). On the other hand, global analysis provides an exploratory 

approach by addressing the change in model behavior over a wide range of parameter 

values. Complementing both these analyses, hybrid methods combine both the local 

and global methods to analyse the parametric dependence of system output behavior 

under uncertainty. Even though this chapter introduces and provides interpretations of 

some of these methods, for a more detailed explanation and applications of these 

methods, readers are referred to more detailed reviews [94, 105, 125].  

While classical parametric sensitivity analysis provides a powerful tool to 

understand the parametric dependence of biological behaviour, its suitability in 

inferring mechanisms of dynamic behaviour has not been properly addressed. Using 

both, a rigorous theoretical formalism and a synthetic network model, the problem of 

using the classical PSA in identifying the controlling mechanisms of a dynamical 

system is illustrated. The issue mainly arose from the information needed to do this 

inference, where one needs to know not only which parameters are critical, but also 

when they matter. However, the persistent parametric perturbations in standard PSA 

are incapable of providing this information as the sensitivity coefficients represent an 
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integrated effect. Of course, this does not mean that the PSA of dynamical models is 

incorrect, but rather indicates the fact that the interpretation of the sensitivity 

coefficients should be carefully managed. In particular, a large sensitivity magnitude 

with respect to a parameter suggests the importance of this parameter in the time 

period between the perturbation time  and the state observation time t, but not its 

dynamic importance. 
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CHAPTER 3_____________________ 

3  Green’s Function Matrix based 

Sensitivity Analysis‡ 

Synopsis: 

The use of mathematical models to understand the functional regulations 

in a cell and the caveat of classical (parametric) sensitivity analysis in 

understanding the underlying system dynamics have been shown in 

Chapters 1 and 2, respectively. In order to overcome the caveat of PSA, 

this chapter introduces a dynamical sensitivity analysis based on the use of 

the Green’s Function Matrix (GFM) as sensitivity coefficients with 

respect to concentration perturbations. In contrast to the classical 

(parametric) sensitivity analysis, the GFM analysis gives a dynamical, 

molecule-by-molecule insight on how system behaviour is accomplished 

and complementarily how (impulse) signal propagates through the 

network. The efficacy of the method is demonstrated through 

applications to common network motifs and a FasL-induced 

programmed cell death model in Jurkat T cell line.  

                                                 
‡ Excerpts of this chapter are part of the following publications: 

HPerumal TM, Wu Y, and Gunawan R. (2009) Dynamical analysis of cellular networks based on the 

Green's function matrix. J Theor Biol, 261(2) 248-59. PMID:19660478 

Perumal TM, Yan W and Gunawan R. (2008) Robustness analysis of cellular systems for in silico drug 

discovery, In Proceedings of the 17th World Congress - The International Federation of Automatic Control 

(IFAC), Seoul, Korea, July 6-11, PP: 12607-12612 
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3.1  Introduction 

As seen earlier in Chapter 1, the complexity of cellular networks often limits human 

intuition in understanding functional regulations in a cell from static network 

diagrams. To this end, mathematical models of ordinary differential equations (ODE) 

have commonly been used to simulate dynamical behaviour of cellular networks, to 

which a quantitative model analysis can be applied in order to gain biological insights. 

Unfortunately, as shown in Chapter 2, the dynamical aspect of cellular regulation may 

not be immediately apparent from the application of existing ODE model analyses 

tools, like the classical parametric sensitivity analysis (PSA). The reason stems from 

the fact that the perturbations considered are on system parameters, which are static 

variables and hence are persistent in nature, thereby showing an integrated effect on 

the system output. Also they are realized at single time point, which is usually the 

initial time.  

In contrast, the analysis presented here, is able to dynamically illustrate the 

sequence of molecules that participate in producing the observed functional behavior 

of the system. This analysis is based on  the Green's Function Matrix (GFM), which is 

a well-known method to solve non-homogeneous differential equations [137], 

including those for classical PSA [94]. Specifically, the analysis uses the GFM as 

sensitivity coefficients with respect to impulse perturbations on the state variables at 

different initial times, and thereby reveals dynamic information about the actively 

participating states. Though this aspect of the GFM has been previously introduced to 

analyze ODE models of combustion kinetics [138], it was not been well characterized 

and understood to analyse the dynamics of deterministic ODE models in systems 

biology. Here, the application of the GFM analysis on a model of FasL-induced 

programmed cell death in human cancer T cell line Jurkat [98] revealed the key 
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regulators of caspase-3 activation and the FasL death signal propagation in the 

network. The information gained from the GFM analysis can be useful in the drug 

discovery research to identify potential drug targets, to understand drug efficacy and 

specificity, and to optimize drug dosing and timing. 

3.2  Green’s Function Matrix (GFM) based 

Sensitivity Analysis 

The GFM analysis is built on the same lines of PSA, i.e., cause-effect relationship. It 

was shown earlier in Section 2.1.1, the Green’s function method can be used to 

calculate the classical parametric sensitivity coefficients, in which the homogeneous 

part of (2.4) (the Green’s function problem) is computed first and subsequently the 

sensitivity coefficients are obtained by an integral transformation of the non-

homogeneous part [122]. Here, the GFM coefficients themselves better portray the 

dynamical behavior of the system [138]. As explained earlier, the GFM coefficients in 

essence reflect the model sensitivities to perturbations on concentrations at time  and 

hence the (i,j)th element of the GFM  ,t xS  corresponds to 

    
 ,

changein the - th state at time
,

perturbation on the - th stateat time
ix

i j
j

x t i t
S t

x j


 


 


 (3.1) 

where xi and xj are the ith and jth state in an ODE model in and the observation time t is 

larger than or equal to the perturbation time . In other words, the GFM coefficients 

quantify the relative change in the ith system state at time t caused by an impulse 

perturbation in the jth state at time  Figure 3.1(a) illustrates the cause-effect 

relationship between an impulse perturbation on xj at time  and its corresponding 

effect on xi at time t. These coefficients are formulated directly from and solved 

simultaneously with (1.2). Like in the classical PSA, the GFM analysis is also 
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Figure 3.1. Green’s Function Matrix analysis (figures are not drawn to scale) (a) The (i,j)th 
GFM coefficient describes the (normalized) ratio between the relative change xi in the ith 
molecular concentration at time t and the causative impulse perturbation xj applied to the jth 
molecular concentration at time . The dashed lines show the concentrations after the perturbation 
xj is introduced. (b)  A signal progressing from xj through the molecule xi is defined as the 
impulse change in xi at time t relative to the impulse perturbation xj at time . In this example, 
the early signal is positive since the perturbation initially leads to an increase in xi, but becomes 
negative later and then disappears over time as xi reached its steady state value. 
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reported as the normalized sensitivities and henceforth the notation  ,t xS  shall 

refer to: 

     
 

 
 

 
 ,

log
,

log
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j i j

xx t x t
S t

x x t x




 
 

 
 

 (3.2) 

Each (i,j)th element of the GFM can be visualized as a heat map, as shown in 

Figure 3.2. The positive (negative) sensitivities in the heat map illustrate the 

dynamical aspect of the perturbation-output relationship: if the states denote 

molecular concentrations, then an impulse increase in the jth molecular concentration 

xj at time  will cause an eventual increase (decrease) in the ith molecular level xi at 

time t. The lower right half of the plot is null as the system is causal, i.e. the 

perturbation will not cause any changes in the states at times t < .  

Other dynamical information that can be extracted from the GFM relates to 

how the effect of a perturbation propagates in the network. By defining this 

perturbation as a signal, the signal progression through molecules or nodes is 

measured by the time incremental (impulse) change in the molecular concentration xi 
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Figure 3.2. A heat map of the GFM coefficient. The heat map visualizes the (i,j)th GFM 
coefficient, showing the change in the xi level with respect to a perturbation on the xj. The x-axis of 
these plots represents the perturbation time  at which an impulse perturbation is introduced on xj, 
while the y-axis represents the observation time t at which the level of xi changes. 
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at time t relative to the original perturbation, as illustrated in Figure 3.1(b). Hence, 

when time tends to infinity, the impulse signal asymptotically reaches zero. 

Mathematically, the (propagated) signal starting from xj at time  is defined as: 

 
   

 0

1
lim i i

t
j

x t t x t

t x  

   
 

 (3.3) 

where      i i ix t x t x t    and  ix t  refers to the perturbed state trajectory. Taking 

the limit of perturbation magnitude to zero (infinitesimal perturbation) and 

reformulating the numerator terms, one can obtain a signal propagation measure 

according to: 
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 (3.4) 

Thus, the evaluation of the signal propagation measure involves a simple matrix 

multiplication between Jacobian and the GFM, as given in (2.5). 
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Figure 3.3. GFM analysis of networks without feedback. The GFM of the overall system can be 

reconstructed from the analysis of each modular sub-network. (a) Let 1x  and 2x  be the state 

vectors of systems A and B in series, respectively, in which the communication between the 

systems is accomplished by 1y . The GFM of the output 2y  in response to the stimulus S can be 

calculated from the GFM of A and B according to (3.5). (b) The same analysis can also be done 
for networks with cross talks. 
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The calculation of the GFM coefficients from the combined ODEs of (1.2) and 

(2.5) for different 's is computationally expensive if done directly. Since (1.2) is a 

linear time-varying (LTV) system and the GFM is the fundamental matrix of this 

system, the computational cost can be reduced significantly by taking advantage of 

the semigroup property, in which 

      2 0 2 1 1 0, , ,t t t t t tx x xS S S  (3.5) 

for any 0 1 2t t t   [139]. Thus, the complete information of  ,t xS  can be 

constructed sequentially from the solutions of  ,k k   xS  for all time of 

perturbations k’s, i.e. one only needs to solve (2.6) for one time step   from each 

k. In a modular system without feedback, like those in Figure 3.3, the GFM analysis 

of the overall network can be reconstructed from the analysis of individual 

subsystems.  For example, consider two modules A and B interacting by means of the 

molecule y1, as shown in Figure 3.3(a). The GFM coefficients of the overall system 
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can be computed from the GFM of A and B using the chain rule of differentiation as 

follows: 

 
 
 

 
 

 
 

2 2 1

1 1 1

tt t y t
dt

y t 
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
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x x

x x
 (3.6) 

where 1x  and 2x  are the state vector of the ODEs describing module A and B, 

respectively. As existing modeling efforts in systems biology typically focus on 

subsystems of the whole cellular networks, the GFM based analysis of subsystems, 

possibly done by separate research laboratories, can be integrated easily. On the other 

hand, the traditional (parametric) sensitivity analysis of the combined networks will 

require solving the sensitivity coefficients of the full system, which may involve a 

significant computational cost. The same integration is also possible in general 

nonlinear systems with cross-talks, as shown in Figure 3.3(b). Unfortunately, if there 

exists any feedback in the network, such reconstruction is no longer possible. 

3.3  Case Studies 

3.3.1  Application to common network motifs 

A complex molecular network is often made up of simpler network modules, i.e. a 

network of networks, connected by standard linkages [140]. In order to illustrate the 

property of the GFM coefficients, this analysis was first applied to examples of 

common network motifs in biology [5]. In these small networks, the system output R 

responds to a constant stimulus S (see Section B.1 for model equations, parameter 

values, and the ODE solver used). Table 3.1 describes the results of the GFM analysis 

in comparison to the classical parametric sensitivity analysis, when applied to three 

network motifs. 
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Table 3.1:  Green’s Function Matrix (GFM) analysis of simple network motifs  
(a) Temporal profiles of five highest parametric sensitivities in the model.  
(b) The    heat    map illustrate the GFM coefficients of output response R with respect to the perturbations on the molecules (states) in the network. For comparison, each 

heat   map  is scaled accordingly to have values between −1 and 1 by the scaling factor reported in the lower right corner of the plot.  
(c) Signal progression of stimulus S at steady state on the network. The signal progression is quantified by the time derivatives of the GFM coefficients evaluated for an 

impulse change of stimulus S. The values are scaled between −1 and 1 and the scaling factors are listed on the right y-axis. A red signal signifies a positive effect analogous 
to an (impulse) up-regulation and a green signal correlates to a negative effect analogous to a (impulse) down-regulation. The GFM coefficients were sorted according to 
the timing of the stimulus S signal by way of the cosine clustering method (see supplemental information). 
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3.3.1.1  Perfectly adapted signal-response model 

The first and the simplest example is made up of synthesis and degradation processes 

(Table 3.1[i]). In most cases, this network motif is embedded in more complex 

pathways to generate adaptive signal-response curves [140]. For a constant stimulus 

S, the response R exhibits a perfect adaptation as shown in Table 3.1. Perfect 

adaptation means that although the transient response depends on the stimulus 

strength, the steady state magnitude of R is independent of S. The classical parametric 

sensitivity analysis suggested that the response R depends most strongly to the 

synthesis parameter (k3) and the degradation parameter (k2). 

The GFM analysis of the response R with respect to perturbations on X and R 

itself revealed the underlying system dynamics. Perturbations of X at early times had 

lesser effect on R than those at latter times, indicating that the initial level of X was of 

lesser importance than the production of X due to the stimulus S. In addition, these 

perturbations had a negative effect on the levels of R due to the degradatory action by 

X. As expected, the analysis illustrated the perfect adaptation response in which 

perturbations on R and X only cause transient changes and the steady state level of R 

is insensitive to these perturbations.  

3.3.1.2  Mutual activation model 

The second network motif consists of synthesis, degradation, phosphorylation and 

dephosphorylation processes (Table 3.1[ii]).  The network diagram and the simulated 

trajectory intuitively explained that in response to a constant stimulus S, the output 

molecule R is produced or activated and this R will in turn lead to higher production 

of itself through a positive feedback involving phosphorylation of the enzyme E to 

EP. Since R and EP mutually activate each other, this network motif is called a 
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Figure 3.4. In silico validation of the GFM analysis. (a) Mutual activation model under signal 
stimulus S = 15. An impulse perturbation of 25% relative magnitude was introduced to R at  = 5 
( = 0.02 units). The responses R  before (--) and after ( ) perturbation are shown here with the 
EP profiles before (—) and after (—  ) perturbation. (b) Caspase-3 Activation under 2nM FasL 
Stimulus. Impulse perturbations of 50% relative magnitude were introduced on pro-caspase-8 at  
= 0 (Procaspase-8 = 16.665 nM) and  = 4000 seconds (Procaspase-8 = 11.490 nM). The active 
caspase-3 concentrations are plotted for nominal (—), Procaspase-8 at � = 0 (+), and 
Procaspase-8 at � = 4000 seconds (*).
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mutual activation model. The parametric sensitivity analysis of this model showed 

that the response R is more sensitive to the stimulus S than to the positive feedback 

action of EP.  

  The GFM analysis of the response R with respect to perturbations on EP and 

R gave a counter-intuitive dynamic picture. According to the GFM analysis, an 

impulse perturbation on R initially gave an expected increase in R (positive 

sensitivities), but later led to a drop in the level of R (negative sensitivities). In order 

to validate this observation and to explain the cause, a perturbation on R was 

introduced in the simulation at time = 5. As shown in Figure 3.4(a), this perturbation 
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resulted in a prolonged decrease in the phosphorylation of E, thereby reducing the 

amount of R produced by the positive feedback loop. The GFM coefficients of EP 

with respect to R further confirmed this conclusion (see Section B.1). The transition 

from fast and direct stimulus response to slow and indirect positive feedback was not 

apparent from the integrated parametric sensitivities. 

3.3.1.3  Negative feedback oscillator model 

Oscillations in biological systems are often produced by a negative feedback loop or 

by a combination of positive and negative feedback loops. The next network motif 

consists of simple synthesis-degradation and phosphorylation-dephosphorylation 

processes in a negative feedback fashion (Table 3.1[iii]). The synthesis of R induced 

by S phosphorylates Y, which in turn phosphorylates X. The phosphorylated XP 

subsequently acts to inhibit the synthesis of R, forming the negative feedback loop. 

For a given stimulus S, the system executes sustained oscillations of R, YP and XP. 

The parametric sensitivity analysis of this oscillatory system diverged with time due 

to period changes, as expected, thus requiring further treatment to decouple the period 

and amplitude effects [79].  

The GFM analysis of R with respect to impulse perturbations on R, YP and XP 

showed positive and negative sensitivity oscillations, which was expected to be in a 

limit cycle oscillatory system. Here, impulse perturbations on the states like those 

considered in the GFM caused a phase shift (lead/lag), in which the perturbed 

trajectory R alternated from being higher and lower than the nominal response. 

Similar analysis had been used to compute the phase sensitivities in an oscillatory 

system, such as circadian rhythms [78] 
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3.3.1.4  Tracking the progression of stimulus signal  

Network diagrams can be used as mental models to qualitatively illustrate how an 

impulse signal propagates in the network. However, such pictures lack quantitative 

and dynamic information as these diagrams are static in nature. In addition, complex 

network structures such as feedback/feedforward loops in biology will further 

complicate the deduction of signal progression from static diagrams.  When kinetic 

ODE models and parameters of these networks are available, the time derivatives of 

the GFM coefficients can be used to visualize the signal propagation by measuring 

the transient impulse changes in the molecular concentrations (i.e. nodes in the 

network) caused by the initial signal, as described above and illustrated in Figure 

3.1(b). 

Table 3.1 (last column) also gives the dynamical progression of an impulse 

signal of stimulus S in the simple network motifs above. The signal progression plots 

elucidate the timing and magnitude of signal as it travels through the nodes (states, 

molecules) in the network. In the case of perfectly adapted system, the signal was 

immediately seen in R, while only progressed to X after some time delay. This was 

consistent with the GFM analysis above indicating that early perturbations of X did 

not matter as much as later. In the mutual activation model, the signal appeared in R 

and EP almost simultaneously. However, the signal disappeared from R after t = 1, 

while impinged on EP until t = 10. In other words, the direct activation of R by S 

dominated over the positive feedback early on, which was reversed at the later times. 

Finally, in negative feedback oscillator, the initial carrier of signal was R, followed by 

YP and then XP, as expected. Once the oscillations developed, the signal progression 

showed repeating patterns of the R-YP-XP sequence.  
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Figure 3.5. Network model of FasL-induced programmed cell death in Jurkat T cell lines. 
The type-I pathway involves a direct cleavage of pro-caspase-3 by caspase-8 to form an active 
caspase-3, while the type-II pathway describes a mitochondria-dependent activation of caspase-3. 
The rate equations and parameters are available in supplementary material (see Section B.2). The 
caspase-3 activation follows a switch-like behaviour in response to a constant FasL stimulus of 2 
nM (see inset). 
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In the above examples, the GFM analysis was able to illustrate dynamically 

the progression of system response to a stimulus and of signal from a stimulus. The 

results were much in agreement with the knowledge of how these network motifs 

function and are designed, demonstrating the validity and efficacy of this analysis in 

known, small networks. In the next section, the GFM analysis was applied to a more 

complex network involving the programmed cell death to deduce the dominant 

pathway in the signaling network.  

3.3.2  Application to FasL-induced cell death model of 

human Jurkat cells 

In this example, the states represent biomolecules involved in the programmed cell 

death (apoptosis) signalling of human Jurkat T lymphocytes induced by the death 



Thanneer Malai Perumal 51

ligand FasL (see Figure 3.5). The model equations and parameters were obtained from 

a fit to experimental data [98](see Section B.2 for detailed reaction rates, kinetic 

parameters, type of solvers used and their settings). The output of interest was 

caspase-3, also known as the executioner caspase, which is a protease that cleaves 

many protein substrates [37]. In this network model, the activation of caspase-3 

followed a switch-like response to a FasL stimulus as shown in Figure 3.5 (see inset). 

Although the model still lacks detailed descriptions of several key molecules in cell 

death signalling (e.g., Bax/Bad, Bid), it includes two major pathways for the caspase-

3 activation: a direct caspase-8 (type-I) and a mitochondria-dependent pathway (type-

II). The GFM analysis was used below to assess the dominance of one pathway over 

the other in this cell death model, as well as to study the signal propagation of a FasL 

stimulus through the network. The parametric sensitivity and GFM analysis was 

performed under a constant FasL stimulation (FasL = 2nM) over the time range of 0 

to 10,000 seconds in order to allow the system to reach its new steady state. In this 

case, the model simulated an apoptotic cell, and the purpose of the analysis was to 

elucidate the key reactions and thereby predicting the important pathway in the 

regulation of the caspase-3 activation during programmed cell death (see Figure 3.5 

inset). 

3.3.2.1  Parametric sensitivity analysis 

By selecting caspase-3 as the output of interest, the sensitivities of active caspase-3 

level to perturbations on the model parameters in the network� are given in Figure 

3.6 in the order of decreasing importance. The sensitivity indices represent a 

consolidation of the parametric sensitivities over time using the Fisher Information 

Matrix [77, 141]. The analysis revealed that: (a) the formation of DISC complex and 

the subsequent activation of pro-caspase-8 had a very high sensitivity indicating the 
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Figure 3.6. Parametric sensitivity analysis of caspase-3 activation by a FasL stimulus. The 
bar graph represents a consolidation of the parametric sensitivity of active Caspase-3 
concentration over a time range of 0 – 10000 seconds based on the Fisher Information matrix. The 
parameter numbers refer to the reactions as shown in Figure 3.5, where f and r represents forward 
and backward rate constants for reversible reactions and k represents the rate constants for 
irreversible reactions. Detailed parameter values are given in Section B.2. 
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importance of capsase-8 production (at least initially), (b) the formation of caspase-

8:procaspase-3 complex had higher sensitivity than that of apoptosome:procaspase-3 

complex. Other sensitivity indices such as using the maximum absolute values or 

peak sensitivities at a given time (taken as switching time), gave the same conclusions 

(see Figure B.2 and B.3). Hence, the parametric sensitivity analysis suggested a Type-

I dominant pathway in the cell death regulation of Jurkat cells. 

3.3.2.2  Green’s function matrix (GFM) analysis  

Again, by selecting caspase-3 as the output of interest, the sensitivities of active 

caspase-3 level to perturbations on the different molecules in the network at different 

's� are illustrated in Figure 3.7. Each subplot represents an element in the row of 

GFM corresponding to the active caspase-3. The time range on the t-axis (ordinate) 
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Figure 3.7. Green’s Function Matrix (GFM) analysis of caspase-3 activation. The heat maps 
represent the GFM coefficients of caspase-3 active level with respect to the perturbations on 

different molecules in the network  caspase-3 jx  . For comparison, each heat map is scaled 

to have values bounded by ±1 by the scaling factor (absolute maximums) reported in the lower 
right corner of the plot. The red arrows illustrate the type-I regulation of caspase-3 activation, 
while the blue arrows show the type-II mitochondrial-pathway. As expected, the analysis showed 
that the upstream molecules (Fas, DISC, pro- and caspase-8) constituted the early responders to 
FasL stimulus, as seen in the localization of high sensitivities around low  values. During the 
caspase-3 switch (5000 – 7000 seconds), type-II molecules (activated mitochondria, apoptosome, 
apoptosome:pro-caspase-3 complex) were directly implicated to be the key regulators by the 
(diagonal) location and magnitude of the peak sensitivities. On the other hand, the type-I pathway 
was mostly responsible for the early activation of caspase-3 (~2000 seconds), which was again 
illustrated by the location of the peak sensitivities. There were only two inhibitors of apoptosis: 
XIAP and Bcl-2 (not taking into account molecular complexes).  
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between 5000 to 7000 seconds is of particular interest as these times correlates with 

the switching of caspase-3 activation by FasL stimulus.  

In contrast to the conclusion reached by the parametric sensitivity analysis, a 

careful observation of the GFM coefficients in Figure 3.7 revealed a dominant 

mitochondria-dependent (type-II) pathway in the activation of caspase-3. Specifically, 

the analysis painted the following dynamical picture in regard to this activation (again 

by focusing on the t-axis between 5000 to 7000 seconds): (a) the formation of DISC 

and the subsequent activation of caspase-8 were the initial cell death response; (b) 

active caspase-8  next helped to “activate” the mitochondria by membrane 



Thanneer Malai Perumal 54

permeabilization; and finally (c) this led to the formation of apoptosome and the 

eventual cleavage of pro-caspase-3 to active caspase-3. In addition, the analysis 

suggested that type-I pathway had a more dominant role only in the early caspase-3 

activation ( 0 3000t  seconds) based on the t-axis location of the peak sensitivities 

with respect to caspase-8 and caspase-8:pro-caspase-3 complex. This conclusion from 

the GFM analysis is further supported by experimental evidence showing that knock-

outs of the mitochondrial pathway abolished FasL-induced cell death in Jurkat T cell 

line [142]. 

The most prominent inhibitor of apoptosis in the model was Bcl-2 and XIAP, 

as indicated by the large negative sensitivities. Bcl-2 action however was limited 

within the first second of the FasL stimulus (see Figure B.4). Indeed, both Bcl-2 and 

XIAP are well known inhibitors of apoptosis [37]. In addition, the analysis also 

suggested a few molecules that have dual roles: pro- and anti-apoptotic. For example, 

procaspase-6 appeared to have a pro-apoptotic nature due to its role in a positive 

feedback loop with caspase-8, but at the same time exhibited anti-apoptotic behaviour 

due to its binding with cleaved caspase-3. The contribution from the positive feedback 

loop of caspase-6, -8, and -3 however was relatively insignificant in comparison to the 

mitochondrial pathway, as the (normalized) sensitivities were two orders of 

magnitude lower than those of type-II.  Dual roles of other molecules in the model 

such as the caspase-3:XIAP and apoptosome:XIAP complexes were due to their 

subsequent dissociation into caspase-3 or other pro-apoptotic molecules, and hence 

were of little interest. In general, the sensitivities with respect to molecular complexes 

carry little physical significance as these molecules are either reaction intermediates 

or sometimes mathematical abstractions.  
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Figure 3.8. Signal progression of FasL impulse through the programmed cell death network. 
The signal progression is quantified by the time derivatives of the GFM coefficients under zero 
FasL background. The values are scaled to be between ±1 and the scaling factors (respective 
maximum magnitudes) are shown on the right side of the figure. A red signal signifies a positive 
effect analogous to an (impulse) up-regulation and a green signal correlates to a negative effect 
analogous to a (impulse) down-regulation. The GFM coefficients were sorted according to the 
timing of the FasL signal by way of the cosine clustering method (see Section B.3). 
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As a validation of the analysis, in silico perturbation experiments were performed by 

increasing pro-caspase-8 concentration at two different times:  = 0 and  = 4000 

seconds. In comparison to the nominal trajectory, Figure 3.4(b) shows a significant 

increase in the caspase-3 activation when the initial pro-caspase-8 level was increased 

by 50%. The same percentage increase at  = 4000 seconds however rendered little 

observable change. This finding is in agreement with the high and low sensitivities of 

caspase-3 to pro-caspase-8 perturbations at  = 0 and  = 4000 seconds, respectively 

(see Figure 3.7). Hence, even though GFM is a local analysis (i.e., the perturbations 

considered are infinitesimal), the results can predict the system response to finite 

perturbations. 
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3.3.2.3  Progression of FasL death signal 

Figure 3.8 illustrates the dynamical progression of an impulse signal of FasL through 

different molecules in the cell death network under zero FasL background (i.e., 

FasL=0). This figure elucidates the timing, location, and magnitude of FasL signal as 

it travelled through the nodes (molecules) in the network. The initial carriers of FasL 

signal were Fas receptors and DISC (death inducing signalling complex) as expected, 

with DISC having a shorter duration (< 1s) due to the activity of FLIP. The next few 

nodes in the signal progression included pro-caspase-8, FLIP, and caspase-8 until 

approximately 50 seconds. Both type-I (direct caspase-8) and type-II pathway 

(mitochondria-dependent) were subsequently involved, but in different manners. 

Type-I pathway carried the first signal to caspase-3 (through caspase-8:caspase-3 

complex), as indicated by the larger magnitude of signal progression than its type-II 

counterpart (e.g., caspase-8:mitochondria) (see Figure B.5). The early response of 

type-I pathway is consistent with the above analysis under constant FasL stimulation. 

However, this signal lasted only as long as caspase-8 signal persisted. 

On the other hand, mitochondrial pathway underwent much prolonged signal 

duration, bringing about a second, delayed signal to caspase-3 beyond 4000 seconds. 

As seen in Figure 3.8, the signal traversed through the type-II route by way of 

mitochondrial activation (membrane permeabilization and release of pro-apoptotic 

species), apoptosome formation, and finally cleavage of pro-caspase-3 to caspase-3. 

Although the magnitude of signal progression through these nodes were lower than 

those of type-I (see Figure 3.8 right ordinate), the signal lasted for much longer to 

give an overall larger change in the actual concentrations. In addition, the signal 

progression through pro-caspase-6 had a similar pattern to the active caspase-3 as the 

two molecules form a complex. However, the positive feedback of caspase-6 did not 
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play a major role in carrying FasL signal as suggested by the low magnitudes of the 

signal progression measure. Again, this is consistent with the above analysis for a 

constant FasL stimulation.  

3.4  Discussion 

Evolution has given rise to large and complex cellular networks, making their 

understanding non-intuitive. As demonstrated in the application to small network 

motifs and the Jurkat cell death model, the GFM analysis can reveal how a given 

cellular output behaviour is regulated and how a network responds to an impulse 

perturbation on its states or molecules. The power of this analysis comes from the 

dynamical sensitivities with respect to state perturbations introduced at multiple time 

point’s 's. Based on these dynamical sensitivities, one can obtain a step-by-step 

illustration of the events happening during a functional regulation or signal 

propagation. In contrast, the classical parametric sensitivities lack this dynamical 

information due to an integrated response to a step perturbation at initial time. In 

general, as more realistic and hence more complex network models emerge from 

systems biology efforts, the GFM analysis will complement other model analyses in 

explaining how network functionality and dynamics are accomplished.   

3.4.1  Experimental and biological relevance 

Sensitivity coefficients have become a common measure of robustness in systems 

biology, where low sensitivities indicate a robust behaviour, and high sensitivities 

point to a fragile output with respect to the specific perturbations under consideration 

[12, 13, 16, 22, 25, 26, 75, 96, 100, 143, 144]. As seen in Chapter 1, robustness has 

been argued to be an advantageous feature in life (cells, organisms, and population) 
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[145]. However, extreme robustness, by nature or engineering design, to common 

perturbations is known to pair with high fragility (the opposite of robustness) to rare 

events [146]. This robust-yet-fragile characteristic manifests in the large discrepancy 

between an overall insensitivity of cellular functions to most perturbations and the 

extreme sensitivity to few parameters [16].  

 Based on the relationship between robustness and sensitivity coefficients, the 

GFM analysis reveals the network fragility points in the form of key biological 

molecules, where such fragility points (as seen in Section 3.3.2.2) dynamically move 

from one molecule to the next during cellular regulation. Specifically, the GFM gives 

information about the molecules that are critical in regulating the system behaviour 

and portrays two dynamical aspects of the cause-effect relationship: the times at 

which the perturbations become important and at which the system output is 

significantly affected. One can obtain two biological insights from the GFM of a 

given network model. First, by choosing a particular output behaviour xi and 

observing its sensitivities to perturbations on other molecules xj’s in the network (a 

row of  x ,t S ), large magnitudes of GFM coefficients will reveal the important 

molecules in the network that actively participate in bringing about the observed 

output behaviour (e.g. see Figure 3.2). In addition, the peak sensitivities to these key 

players will appear in sequence along the time axis  (e.g., see Figure 3.7), which 

further illustrates the timing of how a particular output is regulated by these 

molecules. Such information can be useful in various applications from network 

validation and reduction to drug discovery.  

Another biological insight comes from perturbing a chosen molecule xj and 

observing its effect on the concentrations of other molecules xi’s in the network (a 

column of   x ,t S ), by defining an impulse perturbation as a signal, the selected 
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GFM coefficients will show how a signal initiated from a molecular species 

propagates through the network (e.g. see Figure 3.8). Such information should be 

useful in the understanding of drug efficacy and specificity.  

3.4.2  Comparison with the classical sensitivity analysis 

As noted above, the GFM analysis differs from the classical parametric sensitivity in 

that the perturbations are realized on the system states instead of on the model 

parameters. In fact, one can view the GFM analysis as a generalization of the classical 

parametric sensitivities with respect to initial concentrations in which the 

perturbations are introduced at different initial times.  To aid the comparison between 

the two analyses, the ODE model in (1.2) is rewritten to include the model parameters 

in a generalized state vector z, as follows: 

 
 
0

d
dt
d
dt

d

dt

 
  
 

   
    

  

x

p

x
z

p

zz g
 (3.7) 

In this context, the parametric sensitivities is a subset of the GFM of z, such that 

      01 ; 1 ,n n n pt t t  zS S    (3.8) 

where  1 ; 1n n n p 
zS    is a submatrix of the GFM by including elements from rows 1, 2, 

…, n and columns n+1, n+2, …, n+p. Since the parameters have zero dynamics, the 

impulse perturbation effectively results in a step change in the parameter value. 

Therefore, the parametric sensitivities reveal the integrated change in the system 

output due to a persistent perturbation in the parameters. Due to this integrated nature, 

the parametric sensitivities may not be suitable when used directly to infer the 
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dynamical importance of pathways, as shown in the application to the cell death 

model.  

At a first glance, there are also similarities in the mathematical appearance of 

the GFM and the control coefficients in Metabolic Control Analysis (MCA), an 

analysis tool in metabolic engineering that reveals the distribution of control of 

metabolite concentration and fluxes over enzymes. Mathematically, the control 

coefficients in MCA are equivalent to parametric sensitivity analysis applied to 

kinetic metabolic models, in which the parameters represent enzyme activity or level. 

As in (3.7), a generalized state vector can be defined to include metabolite levels and 

enzyme activities, in which the enzyme activities have zero dynamics. Again, the 

concentration control coefficients in MCA can be obtained as submatrix of the GFM 

for which  = t0. The GFM impulse perturbations also integrate to give a step change 

in the enzyme activities. Thus, the same fundamental differences exist between the 

GFM and MCA as between the GFM and the classical PSA.  

Despite these similarities, the summation theorem does not generalize to the 

full GFM, i.e. the row sum  , ,x
i j

j

S t   does not necessarily equal to 0, even at steady 

state. The reason stems from the invalidity of the assumption taken in the summation 

theorem, where the change in the steady state concentrations due to a perturbation in 

concentration at the initial or intermediate time equals to zero (i.e.   0i ss
x  ) [147]. 

For example, consider a closed system with two molecules A and B, where A produces 

B through a reversible enzymatic transformation ( A B ). In this system, 

appropriately chosen perturbations of the enzyme activities for the forward and 

reverse reactions can be introduced that do not cause any changes in the 

concentrations of A and B, giving the summation theorem in MCA. However, a 
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perturbation on the level of either A or B will give different equilibrium 

concentrations due to mass conservation in a closed system. Hence, considering the 

generalized state with enzyme activities as parameters, the summation and 

connectivity theorem is valid only on a portion of the GFM (e.g.  1 ; 1n n n p 
xS   ), but not 

necessarily for the complete GFM. 

3.4.3  Applications of GFM analysis 

The GFM analysis can be useful in many applications. For example, the agreement 

and disagreement between model analysis and experimental observations and/or 

biological knowledge can be used for model validation and the design of experiments. 

Here, the agreement between the analysis of the programmed cell death model and 

experimental evidence of the type-II regulation [142], gives support to this model 

validity, which was not given in the original publication [98] but confirmed by a 

subsequent analysis using a different method [148].  

When a disagreement arises, the analysis gives experimentally testable 

predictions about the effect of a perturbation on the key molecular player(s). In the 

cell death example, the GFM suggested that the signaling follows a mitochondrial-

dependent pathway. Indeed, many cancer cells up-regulate their anti-apoptotic 

proteins within the type-II pathway to evade apoptosis [149].  Hence, an interesting 

hypothesis is to reroute the cell death signaling in type-II cells through the type-I 

pathway. The GFM analysis of Jurkat model highlighted two molecules: procaspase-8 

and Bcl-2 that have an early positive effect on type-I and an early negative effect on 

type II, respectively. This information suggests that by upregulating the available 

procaspase-8 and Bcl-2, one can increase the throughput of type-I and at the same 

time attenuate the contribution of type-II pathway. The GFM analysis of this mutant 
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Figure 3.9. Model reduction of FasL-induced apoptosis pathway. The active caspase-3 
concentrations are shown for the nominal (original) (—) and reduced models without type-I (+), 
type-II (°) or caspase-6 feedback pathway (∆). 
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network in silico confirmed that the cell-death occurs through type-I pathway (see 

Figure B.6 and B.7 for detail). The corresponding experiments using Jurkat cells may 

involve a viral transfection to overexpress procaspase-8 [150, 151] and knocking out 

Bcl-2 family proteins, Bax and Bad [142]. 

The GFM results can also be used to reduce model complexity. For example, 

based on the dominance of type-II pathway as revealed by the GFM analysis, the cell 

death model can be reduced by knocking out the type-I pathway and the caspase-6 

feedback loop, as the caspase-3 switch was less sensitive to perturbations on these 

molecules. Figure 3.9 indicate that the reduced system still commits to cell death even 

in the absence of these pathways, while preserving the switch-like response. Since the 

contribution of the type-I pathway is non-zero, especially in the earlier times, the 

caspase-3 activation is slightly delayed. On the other hand, the removal of the type-II 

pathway significantly slows down the apoptosis and abolishes the switch 

characteristic, as shown in Figure 3.9. 

As mentioned above, the results of the GFM analysis can also guide the drug 

discovery research to identify potential molecules for drug targets or drug cocktail. 
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Multicomponent therapy using combination of drugs has increasingly gained more 

attention with various reported successes, such as salmeterol-fluticasone in asthma 

(Advair - GlaxoSmithKline) [152] and AZT-3TC in HIV infection (Combivir -

GlaxoSmithKline) [153]. The selection of drug combinations in a clinical setting 

however had been done through deliberate mixing by rational design or happenstance. 

Therefore, a systematic method in multicomponent therapeutics is highly desirable, 

either by a large scale screening [154] or by in silico network analysis as recently 

outlined by Kitano [9]. The GFM analysis can help realize such systems-oriented drug 

discovery.   

In the analysis of the cell death model, the stimulus is initiated from the Fas 

receptor, which belongs to the TNF (tumor necrosis factor) receptor family. In 

practice, several cancer therapeutic agents target TNF receptors to trigger 

programmed cell death, such as Apo2L/TRAIL from Genentech and Amgen [155]. In 

general, a large sensitivity magnitude in Figure 3.7 implies a synergistic action 

between a Fas receptor drug and the perturbation in the corresponding molecule. 

Specifically, this analysis suggests that the effectiveness of such drugs in Jurkat cells 

should depend on the type-II pathway. Therefore, the use of other drugs that increase 

the activity of type-II pathway should also boost the sensitivity of these cancer cells to 

the apoptotic insult by a Fas-receptor targeting agent. In addition, the GFM analysis 

also gives suggestion to the most effective timing (dynamics) of type-II targeting 

drugs, which should be delivered ~4000 seconds after the TNF drug. A more detailed 

model of the cell death network than the one used here, will be needed to provide 

more concrete suggestions of the target molecules.  

In addition, as many new drugs are designed to target specific molecules in the 

network, a drug action can therefore be represented as a molecular perturbation. To 
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this end, the GFM analysis allows the visualization of the signal progression from a 

dose of such drug, as demonstrated in Figure 3.8. Hence, the drug efficacy and 

specificity can be studied by looking at the propagation of the drug “signal” through a 

disease network model. In particular, the overall drug effects depend not only on the 

magnitude but also on the duration of the signal. In the analysis of Jurkat cell death 

model, a signal initiated by Fas ligand or other related drugs will indeed reach the 

intended caspase-3 activation with the type-I pathway transmitting the early signal 

and the type-II being the dominant albeit slower signal carrier. Such information is 

not necessarily obvious from the static diagram or from the simulation of the 

concentrations.  

3.4.4  Advantages and limitations of GFM analysis 

As described in Section 3.2, the calculation of the GFM coefficients for 

different 's is computationally efficient by taking advantage of the semigroup 

property. Therefore, one only needs to solve for the GFM coefficients for a single 

time step   starting from each k, while the dynamic GFM coefficients for different 

(t,) pairs are calculated using inexpensive matrix multiplications. For example, the 

application of dynamic sensitivities to the Fas-induced apoptosis model with 28 

species and 32 reversible reactions took less than 10 minutes, using a computer 

workstation with a dual-core CPU (Intel 6300 @ 1.86GHz) and 3GB RAM. 

Like the standard parametric sensitivity analysis, the aforementioned results 

from the GFM also depend on the choice of the model parameters as well as the initial 

conditions. That is, the GFM analysis gives only local information about the cellular 

network based on infinitesimal perturbations. To account for cell to cell variability 

and other sources of uncertainty, a similar global analysis should consider a region in 
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the parameter or initial state space and improves upon the local analysis that focuses 

only at one choice of parameter set or initial states. The extension of the GFM 

analysis to global (finite) perturbations will be shown in Chapter 6.  

3.5  Summary 

In summary, biological complexity often necessitates the use of systems-oriented 

approach to establish the cause-effect relationship between a cellular network model 

and it’s experimentally observed property or function. Based on a kinetic model and 

impulse perturbations on the molecular concentrations, the GFM analysis offers 

dynamical insights on the functional regulation and signal propagation in the cellular 

network, for which the classical parametric sensitivity analysis may fail. In the 

application to the programmed cell death model, the GFM analysis gave a molecule-

by-molecule account of how cell death regulation is carried out through the type-II 

pathway, in contrast to the type-I pathway dominance concluded from the parametric 

sensitivity analysis. Model reduction by deleting either type-I or type-II pathway 

confirmed the importance of type-II over type-I. Based on the results, an 

experimentally testable hypothesis was offered that reroutes the cell death regulation 

in type-II cells through the type-I pathway by the over expression of Bcl-2 and 

procaspase-8.  Finally, the analysis can guide the drug discovery efforts in the 

identification of potential drug targets, the understanding of drug efficacy and 

specificity, and the optimization of drug dosing and timing. The development of this 

method represents a concrete step towards robustness-based drug design through 

systems biology.  

 



 

CHAPTER 4_____________________ 

4  Impulse Parametric Sensitivity 

Analysis§ 

Synopsis: 

To avoid the caveat of classical parametric sensitivity analysis (PSA) in 

analyzing system dynamics, a novel Green’s function matrix (GFM) 

analysis that maps out the dynamic concentration dependence of system 

behaviour was developed in Chapter 3. In many systems biology 

applications, the dynamic parametric dependence of system behavior is 

often desired. To this end, this chapter details a novel sensitivity analysis, 

based on impulse perturbations to model parameters, called impulse 

parametric sensitivity analyses (iPSA). The iPSA gives a step-by-step 

mechanistic insight on how a particular output behavior is accomplished 

and complementarily how (an impulse) perturbation on the parameters 

propagates through the network. More specifically iPSA coefficients can 

reveal which parameters are critical and when they become important.  

The efficacy of this analysis is again demonstrated on the ODE model of 

FasL-induced cell death of human Jurkat T-cells. 

                                                 
§ Excerpts of this chapter are part of the following publications: 

HPerumal TM and Gunawan R. (2011) Understanding dynamics using sensitivity analysis: caveat 

and solution. BMC Syst. Biol., 5(1): 41H. PMID: 214060955  

Perumal TM and Gunawan R. (2011) Impulse Parametric Sensitivity Analysis, In Proceedings of the 

18th World Congress - The International Federation of Automatic Control (IFAC), Milan, Italy, PP: 

9686-9690 
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4.1  Introduction 

As seen from the previous chapters that complex systems are typically characterized 

by a large number of interacting chemical or biochemical species, often giving rise to 

non-intuitive behaviour. Also, mathematical models of these systems have been built, 

on which quantitative analyses can be applied to gain mechanistic understanding and 

subsequently to guide process optimization, design and control. Importantly, in 

systems modeling in biology, the classical PSA has become a powerful tool in 

investigating how system behaviour depends on model parameters [105]. But, as 

shown in Chapter 2, the dynamical aspect of cellular regulation is not immediately 

apparent from the classical PSA metrics due to the persistent nature of perturbations. 

More importantly they can even mislead the modelers in understanding system 

dynamics and controlling mechanisms. In order to gain dynamical insights, a method 

based on perturbations on concentrations at different times, called as the Green’s 

function matrix (GFM) sensitivity analyses was presented in Chapter 3.  

Nevertheless, it is also often desired to obtain the parametric dependence on 

system output behavior. This is because (kinetic) parameters are directly related to the 

processes of the system. Hence, complementary to the GFM analysis, this chapter 

contains detailed development of an impulse parametric sensitivity analysis (iPSA). 

The fundamental difference between the GFM and iPSA is in the type of 

perturbations introduced. The iPSA makes time-varying impulse perturbations to 

model parameters, instead of concentrations (model states). From the time-varying 

impulse perturbations, the iPSA can also give answers to the following questions 

about state dynamics: which are the important parameters and when do they become 

important? , 0.jp     While both iPSA and GFM analyses can give a step-by-step 
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Figure 4.1. Impulse Parametric Sensitivity Analysis (iPSA). (a-b) Impulse perturbations on 
parameters cause an immediate and localized effect on the states. (c-d) Derivation of iPSA uses a pulse 

perturbation to approximate the impulse, in the limit , 0.jp     
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mechanistic insight on how particular system behaviour is accomplished and how (an 

impulse) perturbation propagates through the network, the choice of using one over 

the other depends on the purpose of the analysis. The efficacy of the iPSA analysis is 

also demonstrated through the same example as presented in Section 3.3.2: a FasL-

induced programmed cell death model of Jurkat T-cells [98].  

4.2  Impulse Parametric Sensitivity Analysis (iPSA) 

As mentioned earlier, the iPSA introduces impulse perturbations to model parameters 

and quantifies the resulting change in system states, as illustrated in Figure 4.1(a-b). 

In this case, the corresponding impulse sensitivity coefficient given by  

  ,

changein the - th  stateat time
,

impulse perturbation on the - th parameter at timei j

i t
iS t

j



  (4.1) 

reflects the change in the ith state at time t due to an impulse perturbation on the jth 

parameter at time . Since impulse perturbations on system parameters can cause an 
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immediate and localized effect on system states at the time of perturbation, the 

dynamical inference of parametric importance can be obtained from these time 

varying impulse perturbations. Hence, the iPSA can give not only the important 

parameters, but also the time of importance on the state dynamics.  

The derivation of the iPSA coefficients follows the illustration in Figure 4.1(c-

d). Analogous to the PSA, the sensitivity coefficients of the iPSA are derived by 

quantifying the ratio between the change in the state ix  at time t  and the causative 

pulse perturbation of size jp    at time  . The perturbation is exerted on the 

parameter jp  for duration of  . The derivation starts by quantifying the change in 

the states x  at time    using a Taylor series expansion: 

        2
1.. , , j

jn j

p
S p    




       


x  (4.2) 

where    1.. , ,n jS      is the vector of parametric sensitivity coefficients as given in 

(2.2). Subsequently, this change     x  is propagated to the change in the state 

ix  at any time t  using the GFM  ,x t   S  as in (3.1). Thus, the change  ix t  

due to the pulse perturbation is given by  

        , 1.. , .x
i i nx t S t          x  (4.3) 

Substitution of (4.2) in (4.3) gives  

            2
, 1.. 1.. ,, , .jx

i ji n n j

p
x t S t S p    




       


 (4.4) 

Subsequently, by taking Taylor series expansion of the parametric sensitivities around 

the time of perturbation   and dividing both sides by jp , one will arrive with:  
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(4.5) 

Finally, taking the limit as , 0jp     such that the pulse perturbation becomes an 

impulse, the iPSA coefficient is obtained as:  

        , , 1.., ,x
i j i n

j

iS t S t
p

  



g

 (4.6) 

By rewriting (4.6) as:  

          , , 1.. 1.. ,, , ,x
i j i n n jiS t S t iS     (4.7) 

one can further see that the impact of this impulse perturbation takes effect only at the 

perturbation time   and that the consequence on the state trajectory is equivalent to 

perturbing the states themselves, similar to the GFM analysis presented in Chapter 3. 

Therefore, the calculation of the iPSA coefficients in (4.1) simply requires a matrix 

multiplication of the GFM coefficients in (3.1) with the non-homogeneous term 

jp g  at the initial time  . Like in the PSA and GFM, the iPSA coefficients should 

also be normalized for comparison and parameter ranking purposes, according to: 

      , ,, , j
i j i j

i

p
iS t iS t

x t
   (4.8) 
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Figure 4.2 Impulse parametric sensitivity analysis of x6 activation under x1 stimulus. iPSA 
coefficients of x6 with respect to impulse parametric perturbations in kf1(+), kv2(*), kv3(x) and kv4 
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Since the iPSA involves two times, i.e., the time of perturbation   and the 

time of observation t , like GFM coefficients in (3.2), each of (i,j)th element of the 

iPSA coefficients in (4.8) can also be visualized as a heat map. Similarly another 

dynamical information that can be extracted from the iPSA relates to how the effect of 

an impulse perturbation on one of the system parameter propagates in the network.  

4.3  Case Studies 

4.3.1  Simple network model 

In the first case study, the efficacy of iPSA was studied using the simple network 

model presented in Section 2.2.1, under the same stimulus and for the same time 

range. Figure 4.2 shows the iPSA sensitivity coefficients of x6 at the end of simulation 

time (t = 15 time units), with respect to the four most important parameters at 

different perturbation times (for the complete iPSA sensitivities, see Figure C.1). In 

agreement with the KO simulations in Section 2.2.1 and in contrast to the findings 

from the classical PSA in Section 2.2.2, the impulse sensitivities gave support to the 

dominance of the indirect pathway. Specifically, the results showed that x6 activation: 
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Figure 4.3. Local parametric sensitivity analysis of the programmed cell death model. (a-c) 
The bar graphs represent the ten largest sensitivity metrics of caspase-3 based on infinite norm, 
Fisher Information Matrix (FIM), time integrated sensitivity coefficients, and sensitivity 
magnitudes at the switching time (t = 6060s). The complete parameter ranking is given in Figure 
C.3. The parameter numbers refer to the reactions shown in Figure 3.5, where the subscripts f and 
r denote forward and backward rate constants for reversible reactions and k denotes the rate 
constants for irreversible reactions. 
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(1) is initiated by r1 (high initial sensitivity to parameter kf1); (2) is accomplished 

mainly by the direct pathway prior to the switching time (sensitivity to r2 is higher 

than to r4 during these times); and (3) is subsequently carried by the indirect pathway 

(highest sensitivity to r4 during switching times). A higher resolution analysis using 

heat maps of the complete iPSA coefficients with t and  between 0 and 15 time units 

gave the same conclusion (see Figure C.2).  

4.3.2  FasL-induced cell death of human Jurkat T-cell 

lines 

In the second case study, a more complex biological network of FasL-induced 

programmed cell death in human Jurkat T-cell lines [98], as presented in Section 

3.3.2, is considered. The iPSA was performed to assess the dominance of one 

pathway over the other, as well as to compare the dynamics of caspase-3 activation by 

both the pathways. 
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Figure 4.4. The iPSA of caspase-3 activation. (a-h) The heat maps illustrate the iPSA coefficient 
of active caspase-3 level with respect to perturbations on the specified parameter in the network, 
indicated in the title. The parameter numbers refer to the reactions shown in Figure 3.5, where the 
subscripts f and r denote forward and backward rate constants for reversible reactions and k 
denotes the rate constants for irreversible reactions. The x-axis is the time at which impulse 
perturbation is applied, while the y-axis indicates the observation time of caspase-3. Each plot is 
scaled to have values between ±1 by the scaling factor in the bottom right corner. 
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The classical PSA and the iPSA analyses were calculated under a constant 

FasL stimulation (FasL = 2nM) over the time range of 10,000 seconds. The rankings 
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of the important parameters that control caspase-3 according to the PSA are shown in 

Figure 4.3, using consolidated metrics as in (2.13): infinite norm [120](Figure 4.3(a)), 

FIM [136] (Figure 4.3(b)), and time integral [99](Figure 4.3(c)), and using the 

sensitivity magnitudes at switching time (Figure 4.3(d)) (see Figure C.3 for detailed 

sensitivity rankings). From these rankings, one could not obtain any definitive 

conclusion regarding the dominance of one pathway over the other.  

On the contrary, the iPSA sensitivity of caspase-3 in Figure 4.4 clearly 

supported a type-II dependent caspase-3 switching with an early type-I dependent 

activation, in agreement with two previous analyses of this model using the Green’s 

function matrix in Section 3.3.2.2 and model reduction in Section 3.4.3 Figure 4.4(a-

h) shows the iPSA coefficient heat maps of selected parameters of the system in 

caspase-3 activation. By focusing on the observation time between 4000 to 7000 

seconds (switching duration) in the y-axis of Figure 4.4, one can identify the sequence 

of key parameters that control the observed caspase-3 activation. Figure 4.4(a-b) 

suggests that the upstream reactions r1 and r3 (DISC and caspase-8 formation) were 

among the early significant contributors before switching. Figure 4.4(c) illustrates that 

the initial caspase-3 activation can be mostly attributed to the type-I mitochondria-

independent pathway. Figure 4.4(d-e) suggests that a type-II dominant pathway in the 

caspase-3 activation. Furthermore, Figure 4.4(c) also points to the lack of type-I role 

during switching. As seen in Figure 4.4(f) one can also deduce the insignificance of 

caspase-6 feedback pathway. Also, looking at the impulse sensitivities of forward rate 

constants of r17 and r8 in Figure 4.4(g-h), one can conclude that XIAP and Bcl-2 are 

the strong and weak inhibitors of caspase-3 activation, respectively (see Figures C.4 

and C.5 for more detail). 
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Figure 4.5. The iPSA of caspase-3 at the final output time. iPSA of caspase-3 with respect to 
impulse parametric perturbations in J1_f(+), J5_k(*) and J14_k(•) inferred at  t = 10000s (the final 
output time). The parameter numbers refer to the reactions shown in Figure 3.5, where the 
subscripts f and r denote forward and backward rate constants for reversible reactions and k 
denotes the rate constants for irreversible reactions. 
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A more detailed understanding can also be obtained by fixing the observation 

time (t) of interest. The iPSA coefficients of caspase-3 at the final time (t = 10000s) in 

Figure 4.5 confirms the above dynamic regulation of caspase-3 activation, suggesting 

a type-II dominance in the cell death regulation of human Jurkat T-lymphocyte cell 

lines (sensitivities to J5_k is larger than that to J14_k only before switching). The 

same conclusion on caspase-3 activation came from the GFM analysis of this model 

in Section 3.3.2, which was also in agreement with the previous experimental results 

[142]. 

The other dynamical information that can be extracted from the iPSA 

coefficients relates to how an impulse perturbation given to a rate constant propagates 

through the network. By setting the perturbation time to zero (t0=0), Figure 4.6 

elucidates the magnitude of changes in the molecular concentrations as the impulse 

signal initiates from the first reaction (i.e., sensitivities to J1_f) and travels through the 

network. In this case, the signal starts from the upstream reactions that are common to 

both the pathways, followed by type-I and caspase-6 feedback, and later traverses 
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Figure 4.6. Impulse signal progression of J1_f through FasL-induced apoptosis network. 
Impulse signal here is defined as the sensitivity of system states with respect to the impulse 
perturbation on the parameter J1_f. The values are scaled between -1 and +1. The scaling factors 
are shown on the right side of the figure. The coefficients were sorted according to the timing of 
the signal by way of cosine clustering method. 
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through the type-II pathway. This finding is consistent with the above finding of 

caspase-3 activation. 

4.4  Discussion 

Like the PSA and GFM, the iPSA can be used for the same applications: from 

model identification to model validation and refinement/reduction, as well as for the 

purpose to understand the robustness-fragility trade offs and the underlying 

mechanisms that give rise to the observed system dynamics. The choice of using one 

over the other depends only on the purpose of the analysis. For example, since system 

fragility is measured as high sensitivity to parametric perturbations, the iPSA 

coefficients can reveal system fragilities in terms of key processes and such fragilities 

(as seen in Section 4.3.2) dynamically move from one process to another. Like the 
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GFM, one can also obtain signal propagation starting from a specific parameter or 

process and observe its effect on the molecular concentrations in the network. 

The discrepancy between the PSA and iPSA results can again be explained in 

the context of persistent versus impulse perturbations. As seen in the PSA parameter 

rankings in Figure 4.3 and following the insights offered by the iPSA in Figure 4.4 

and 4.5, the effect of perturbing early response processes, including type-I pathway, 

was integrated over time in the classical PSA. For example, the highest ranked 

parameters in the PSA were associated with the first three reactions, r1 to r3, in the 

model. Such integration masked the dynamical importance of different parameters, 

while using the PSA metrics. In contrast, the conclusions from the iPSA is in 

agreement with the simulations of KOs of type-I and type-II pathways in Figure 3.9. 

The example above illustrates the problem of using the classical PSA in 

identifying the controlling mechanisms of a dynamical system. Of course, this does 

not mean that the PSA of dynamical models is incorrect, but rather as presented in 

Chapter 2, the interpretation of the sensitivity coefficients should be carefully 

managed. In particular, a large sensitivity magnitude with respect to a parameter 

suggests the importance of this parameter in the time period between the perturbation 

time  and the state observation time t. In contrast, the iPSA is developed with 

dynamics in mind, where the impact of a single perturbation on the system is realized 

only at the perturbation time and subsequently they were delivered at varying 

perturbation times. By doing so, the iPSA coefficients can elucidate the way system 

dynamics x(t) is achieved, by indicating which and when parameters or processes are 

essential. Because of the persistent nature of perturbations used in the PSA, it is still 

not possible to reproduce the conclusions of the iPSA by varying the time of 

perturbations (see Figures C.6 and C.7). However, as with the local PSA, impulse 



Thanneer Malai Perumal 78

perturbations are also local in nature and thus the impulse sensitivities will depend on 

the nominal parameter values. The global equivalent of iPSA can be formulated using 

pulse perturbations and is of future interest. 

4.5  Summary 

Understanding systems dynamics is of great interest in many fields. To this end, this 

chapter presented a novel sensitivity analysis, called impulse parametric sensitivity 

analysis (iPSA) that offers dynamical insights on the functional regulation and signal 

propagation in a system. In contrast to the state perturbations in the GFM analysis, the 

iPSA makes use of impulse perturbations introduced at different times on the model 

parameters to produce the necessary information for understanding system dynamics. 

In the application to a FasL-induced programmed cell death model of Jurkat cells, the 

iPSA suggested a type-II regulation in caspase-3 activation in this cell line, which was 

expectedly in agreement with both the theoretical GFM analysis presented in Chapter 

3 and the experimental evidence from literature [142]. But an application of the 

classical PSA failed in these cases. Since the discrepancy between the PSA and iPSA 

arises from a fundamental difference in the manner of which parametric perturbations 

are realized (i.e. persistent vs. impulse), the same caveat and solution can be 

generalized to the global sensitivity analyses, in which the parameter perturbations are 

also persistent in nature. 
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CHAPTER 5_____________________ 

5  Pathway Parametric Sensitivity 

Analysis** 

Synopsis: 

Chapters 3 and 4 introduced two novel local dynamic sensitivity analyses 

for analyzing ODE models of biological systems. In addition to kinetic 

(dynamic) information, an ODE model also possesses information on the 

network structure of a biological system. Structural analyses, such as 

degree distribution or elementary mode analysis, have given insights 

about the design principles of biological networks. This chapter presents 

a novel pathway parametric sensitivity analysis (pathPSA), which 

combines structural and dynamical analysis of cellular network models. 

The new analysis is based on the identification of pathways in a given 

ODE model and the iPSA. Consequently, pathPSA can reveal the cause-

effect relationship between pathways and the system dynamics. The 

usefulness of this analysis is demonstrated again through an application to 

a biological model of FasL-induced apoptotic cell death in human Jurkat 

T-cell lines.  

                                                 
** Excerpts of this chapter will be part of the following manuscript: 

HPerumal TM and Gunawan R. pathPSA: A novel dynamic sensitivity analysis tool for 

analyzing biological systems, In preparation H. 
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5.1  Introduction 

The structure or topology of biological networks, i.e. the connectivity among 

molecules, has been shown to be closely related to their functions [156]. Structural 

analyses have also been used to understand the relationship between network structure 

and system functionality [157]. Structural analyses methods used in systems biology 

are typically extended from graph theory, as biological networks are often represented 

as graphs.  Examples of such methods include simple centrality measures [158, 159], 

communicability measures [160], SigFlux method [161], simple path [162] and more 

recently, the elementary signaling mode (ESM) analysis [162]. Nevertheless, the 

application of these methods to a given network reveals how important a particular 

molecule or a reaction is to network connectivity and system functionality. 

Cellular functions rely on coordinated activities of group of molecules and 

reactions [43]. In this regard, the term “pathway” is often used to define a set of 

molecules and reactions in the network that connect the input (stimulus) to the output 

(response). This chapter presents a novel sensitivity analysis that combines structural 

and dynamical analysis through the identification of pathways and the application of 

the iPSA. The new analysis, called pathway parametric sensitivity analysis 

(pathPSA), first obtains pathways connecting the input and output of a given network 

model using an extension of the Elementary Signaling Mode (ESM) analysis [162], 

and subsequently applies the iPSA to analyze the sensitivity with respect to 

perturbation of parameters associated with these pathways. In contrast to the GFM 

analysis and iPSA, pathPSA can provide direct information on the active pathways 

which participate dynamically in producing the observed cellular function. The 

efficacy of the present method is demonstrated again through a biological application 
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to understand the competing mechanisms of type-I/II apoptosis in Jurkat T-cell lines, 

which gives rise to the caspase-3 cleavage [98]. 

5.2  Pathway Parametric Sensitivity Analysis 

(pathPSA) 

5.2.1  Mathematical models  

In the pathPSA, ODE models in (1.2), are now written in more detail as:  

 
       0 0

,
, ,           

d t
t

dt
  

x p
x p Nr x p x xg  (5.1) 

Here, the vectors ,nx   0 ,nx   and pp   denote the molecular concentrations, 

their initial conditions, and the model parameters, respectively as in (1.2). The matrix 

N  denotes the stoichiometric matrix and the vector function  , rr x p   contains the 

reaction rate equations. This formulation is necessary in order to combine information 

pertaining to the structure ( N ) and dynamics (  ,r x p ).  

Like the dynamic sensitivity analysis in previous chapters, the pathPSA is also 

built on the basis of cause-effect relationship between perturbations and system output 

changes. The corresponding pathPSA coefficients represent the sensitivity of the 

system output(s) with respect to simultaneous perturbations to all reactions belonging 

to each pathway. To introduce such perturbations to pathways, the ODE model in 

(5.1) has to be re-parametrized (see below). In this case, the calculated sensitivity 

coefficients can be used to portray the dynamical importance of pathways in 

regulating the observed output behavior. The pathPSA consists of the following three 

steps: (1) pathway identification: identification of all potential functional pathways, 

connecting the input(s) to the output(s) of the system, (2) model re-parametrization: 
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incorporation of surrogate parameters associated with each pathway  in the ODE 

model in (5.1), called pathway parameters, (3) sensitivity analysis: iPSA of system 

outputs with respect to perturbations on pathway parameters.  

5.2.2  Pathway identification  

Pathway identification is done in two steps. First, all possible basic functional units 

that connect system input(s) to output(s) are identified. Later, associated side 

processes such as feedback and inhibition and degradation reactions are identified. 

Finally, the final set of pathways is constructed by combinations of the basic 

functional units and the side processes.  

The explanation of the pathPSA below has been done in the context of a signal 

transduction network, but the same procedure can be applied to other biological 

systems, such as metabolic networks.  The topology of a signaling network can be 

represented as a directed graph  ,G V E  in which the vertices (or nodes) V  denote 

the signaling components (i.e., molecular concentrations x  in (5.1)) and the edges E  

denote the biological interactions or transformations (i.e., reactions  ,r x p  in (5.1)). 

Given a graph, a variety of methods are available in literature that can identify 

possible pathways connecting an input (e.g., ligand) and an output (e.g., cellular 

response) node. Examples of such methods include the identification of classical 

simple paths [163] and elementary signaling modes (ESMs) [162]. Since the concept 

of ESM can account for directionality and synergistic interactions among signaling 

components [162], it is adopted in the present analysis for pathway identification. An 

ESM is defined as the minimal set of molecules (nodes) that can perform a signal 

transduction from the input (stimulus) to the output (response). The minimality here 

signifies that an ESM is composed of non-redundant set of molecules, and in the 
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pathPSA, the ESMs and the connectivity matrix are used to generate basic signaling 

units connecting input(s) to ouput(s). The identification of such ESMs involves 

rewriting a given network graphs in an enriched representation and a depth-first 

search of the enriched representation [162].  

The basic signaling units do not include side processes and other types of 

regulatory interactions such as feedback, inhibition and degradation. To identify 

feedbacks associated with an ESM, the same algorithm for identifying ESMs is used, 

but applied in the reverse direction. In this case, the ESM algorithm is used to identify 

reverse connectivity among all pairs of downstream-upstream molecules (except for 

the stimulus node) in an ESM.  In addition, finding inhibition and degradation 

reactions can be represented as searching for synergistic nodes which are one node 

away from an ESM. Finally, the pathways considered in the pathPSA are formed by 

uniquely combining the basic signaling units with all side processes identified above.   

5.2.3  Model re-parameterization 

The basic idea of pathway perturbation is to scale the rate equations associated with a 

particular pathway simultaneously by the same relative magnitude. To do so, 

perturbations of pathways in the pathPSA are carried out by introducing surrogate 

parameters . In this case, the rate equations  ,r x p  in (5.1) that are associated with 

the ith pathway are premultiplied by a scalar parameter i, whose value is set to 1. In 

other words, the model in (5.1) is rewritten as 

 
       *

0 0
,

, , ,           

where 1,   :  index of pathwayi

d t
t

dt
i

  



x p
x p Nr x p x xg 

 (5.2) 
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where pathn  and npath is the number of identified pathways. Note that the 

introduction of the parameters does not changes the model solution. Also, a single 

rate equation will be pre-multiplied by as many ’s as the number of pathways that 

involve this particular connection. 

5.2.4  Dynamical analysis 

The third and final step in the pathPSA is to perform dynamical impulse parametric 

sensitivity analysis (iPSA) with respect to the pathway parameters   in (5.2). As said 

earlier, the pathPSA coefficients are obtained by introducing time-varying impulse 

perturbations on the pathway parameters   at time   and quantifying the resulting 

output change at time  t  , given by  

  ,

changein the - th  stateat time
,

impulse perturbation on the - th pathway at time
path

i j

i t
iS t

j



  (5.3) 

Like the iPSA coefficients, the pathPSA coefficients in (5.3) can be formulated from 

and directly solved with the model and the GFM sensitivities for the model in (5.2) 

using the following: 

        
, , 1.., ,

i j

path x
i n

j

iS t S t  






r
N  (5.4) 

Again, the pathPSA coefficients in (5.4) should also be normalized for comparison 

between different pathways and outputs, according to  

      , ,, , jpath path
i j i j

i

iS t iS t
x t


   (5.5) 

Since pathPSA also involves two times, i.e., time of perturbation   and time 

of observation t , like the GFM in (3.1) and iPSA in (4.1), each (i,j)th element of the 

pathPSA coefficients in  (5.5) can be visualized as a heat map, similar to that in 
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Figure 3.2. Again, high (low) sensitivity magnitudes indicate the important 

(unimportant) pathways in carrying the signal from input to output. 

5.3  Case Study: Application to FasL-Induced 

Apoptotic Cell Death 

The efficacy of pathPSA is demonstrated by its application to FasL-induced apoptotic 

cell death in human Jurkat T-cell lines [98], as presented in Section 3.3.2. Figure 3.5 

and Section B.2 summarize the model, which consists of 28 molecular species (nodes) 

and 32 reactions (edges). The simulation conditions and the output of interest 

remained the same as that of the GFM and iPSA analysis in Sections 3.3.2.2 and 

4.3.2, respectively. As seen in Figure 3.5 (inset), the output executioner caspase-3 

followed a switch-like response to a constant FasL stimulus, in which the signaling is 

effected by two alternative signaling mechanisms: direct type-I and mitochondrial-

dependent type-II. The GFM analysis in Section 3.3.2.2 and the iPSA in Section 4.3.2 

revealed the importance of type-II mechanism in this activation. 

First step of the pathPSA is in the identification of the basic functional units 

(i.e., main ESMs) and the side (regulatory) processes associated with each of these 

units. As expected, depth-first search algorithm resulted in two main basic signaling 

units: type-I and type-II, which can carry out the signal transduction from FasL 

stimulus to the caspase-3 activation. In addition, reverse application of the same 

algorithm for each basic unit gave one feedback mechanism (i.e., caspase-6 feedback 

activation of caspase-8) and four inhibition reactions (i.e., DISC inhibition by FLIP, 

caspase-3 inhibition by XIAP, mitochondria inhibition by Bcl-2 and the apoptosome 

inhibition by XIAP). Besides these main ESMs and side process one side or by-

product reaction (i.e., Smac inhibition of XIAP), which was not identified by the 
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Figure 5.1. Dendrogram of pathPSA coefficients. Binary classification tree for normalized 
pathPSA coefficients of active caspase-3 to the perturbations on the seventy two pathway 
parameters specified above. Here, the symbol representations are as follows: T1: type-I, T2: type-
II, FB: Caspase-6 feedback, DI: Flip inhibition of DISC, C3I: Caspase-3 inhibition by XIAP, MI: 
Mitochondria inhibition by Bcl-2, AI: Apoptosome inhibition by XIAP and XI: XIAP inhibition 
by Smac. 
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current algorithm, was also considered as a regulatory mechanism for the sake of 

completeness of the present hypothesis.  

Based on the identified basic functional units and their associated regulatory 

mechanisms, 72 total unique pathway combinations (8 involving type-I and 64 



Thanneer Malai Perumal 88

involving type-II) can be formulated (see Table D.1 for the detailed list). The 

pathPSA analysis was performed again under a constant FasL stimulation (FasL = 

2nM) over the time range of 10,000 seconds, like in Sections 3.3.2 and 4.3.2, and for 

the same purpose: to understand the underlying mechanisms of caspase-3 activation. 

The pathPSA coefficients of caspase-3 with respect to perturbations on 72 pathways 

combinations can be analyzed, giving not only the information on which pathway 

matters but also portray the time (when) it matters (see Figure D.1). However, many 

of these pathways are overlapping and hence, some of the information obtained is 

expected to be correlated. Correlation metrics can be computed and clustered, for 

example based on the Euclidean distances among them and using centroid distance as 

the linkage class. Figure 5.1 shows the resulting binary classification tree of the 

pathPSA coefficients of caspase-3. In general, there exist three clusters (with cluster 

distance greater than 0.1), two for type-I and one for type-II, that have significantly 

different sensitivity behavior to pathway perturbations. The main difference between 

the two clusters of type-I is the inclusion of regulatory inhibition of caspase-3 by 

XIAP. Aside from this inhibition, adding other regulatory mechanisms to the basic 

signaling units (i.e., type-I/II) did not appreciably change the profile of pathPSA 

coefficients. 

The heat map analysis of the three pathPSA clusters is shown in Figure 5.2. 

Specifically, the pathPSA analysis suggested the following dynamic picture: (i) early 

caspase-3 response through type-I pathway is triggered (Figure 5.2(a)),  (ii) inhibition 

by XIAP becomes active following the early caspase-3 activation (Figure 5.2(b)), and 

(iii) finally,  type-II pathway carries the main cell death signaling, giving the switch-

like caspase-3 activation (Figure 5.2(c)).  Therefore, pathPSA analysis clearly 

supported a type-II dependent caspase-3 switching with an early type-I dependent 
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Figure 5.2. PathPSA of caspase-3 activation. (a-c) The heat map plots illustrate the cluster of 
pathPSA coefficients of active caspase-3 level with respect to perturbations to pathways. Here, 
clusters 1-3 represents type-I, type-I with caspase-3 inhibition by XIAP and type-II pathways, 
respectively. The x-axis is the time at which impulse perturbations are applied, while the y-axis 
indicates the observation time of caspase-3. Each plot is scaled to have values between -1 and +1 
by the scaling factor in the bottom right corner. 
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activation of caspase-3, which is followed by XIAP inhibition for a short period. The 

inhibition by XIAP explains the transition of importance between type-I and type-II 

signaling.  These observations are in general agreement with the results from the 

GFM and iPSA of this model in Sections 3.3.2 and 4.3.2. Also, other regulatory 

pathways such as caspase-6 feedback and DISC, mitochondria, apoptosome 

inhibitions appeared to have negligible impact on the cell death signaling.  

5.4  Discussion 

5.4.1  Experimental and biological relevance 

Understanding the non-intuitive behavior of biological systems can be done using 

variety of approaches in systems biology. Existing methods range from static 

structural analysis to dynamic sensitivity analysis, each having its own advantages 

and disadvantages. To this end, this chapter presents a novel dynamical sensitivity 

analysis that considers system topology, called as the pathPSA. This analysis 

combines both structural and dynamical information, by extracting network 
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topological information as functional pathways and introducing dynamical impulse 

perturbations on these functional pathways as parametric perturbations.  

Certain cellular network topologies (e.g. scale-free, small world network) are 

related to (structural) robustness property. In the earlier discussions on dynamical 

robustness, this property has been defined as insensitivity to perturbations and 

consequently can be studied using different types of sensitivity analysis. Here, the 

pathPSA provides a marriage between structural and dynamical robustness using 

sensitivity analysis with respect to dynamical perturbations of network pathways. 

Specifically, pathPSA directly gives information about the pathways that are critical 

in regulating the (robust) system behavior, as well as portrays two dynamical aspects 

of the cause-effect relationship: the times at which the pathway perturbations become 

important and at which the system output is significantly affected by these pathways.  

Like the GFM and iPSA, such information can again be used in various 

applications, such as model identification and reduction, drug discovery research in 

understanding the mechanism of drug action and in identifying the target paths. The 

choice of using pathPSA over other dynamical sensitivities presented in Chapters 3-4 

depends only on the end application. For instance, if the molecules and reactions 

under query are smaller in number, then the GFM and iPSA can be sufficient enough 

to infer the system dynamics, but when the system size increases (with increasing 

number of molecules and even more increasing number of reactions), which is usually 

the case in biological systems, then the pathPSA provides a viable and efficient tool to 

analyse the system mechanisms directly by perturbing pathways, rather than system 

molecules and reactions. 
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5.4.2  Comparison with classical PSA, GFM and iPSA 

While the PSA, GFM and iPSA introduce perturbations either on system parameters 

or on molecular concentrations, the pathPSA introduce (impulse) perturbations on 

functional pathways, which represent a set of reactions that can give rise to the 

observed output behavior. As there are typically much fewer basic functional units 

than the number of parameters and species in a network (i.e., main ESMs), the 

interpretation of the results of pathPSA, after clustering, should be easier than that of 

the PSA, GFM and iPSA. However, like the analyses presented in Chapters 2-4, the 

results of pathPSA will depend on the choice of the pathway parameters. That is, the 

pathPSA gives local information about the cellular network based on infinitesimal 

perturbations around the nominal parameters. The extension of the pathPSA to global 

(finite) perturbations is of future interest.   

The pathway identification considered in this chapter borrows the concept of 

ESMs and extends it to include other regulatory and side processes, such as feedback, 

inhibition and degradation reaction. However, the algorithm neglects any side 

processes, which are two nodes away from the basic functional unit. While such 

interactions could be identified and included in the pathway identification procedure, 

this may lead to a combinatorial increase in the number of pathways. Nevertheless, if 

desired, the pathPSA formulation is general enough to account for such change of 

pathway definition.  

Another limitation of pathPSA is in the number of pathways to be analyzed. 

Pathways are formulated based on combinations of basic functional units (ESMs) and 

the associated side processes. This could result in an exponential increase in the 

number of pathways formed and hence to an increased computational cost. This issue 

can be avoided by a segregated (step-wise) pathPSA. Initially, pathPSA is performed 
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only for the basic signaling units (ESMs). Basic units that have “small” sensitivities 

can be ignored, while pathways can be defined for those that are important. In this 

case, the analysis need not be done on the complete set of pathways in a given 

network. 

5.5  Summary 

Biological complexity arises not only because of large number of components and 

non linear interactions, but also because of the system topology. Hence, a systems-

oriented approach to establish the dynamic cause-effect relationship between the 

topology of a cellular network model and its experimentally observed dynamic 

property or function, is needed. To this end, a novel sensitivity analysis, called 

pathway parametric sensitivity analysis (pathPSA) that offers dynamical insights on 

the functional regulations of a system output by pathways, is presented here. In 

contrast to the individual state perturbations in the GFM analysis and parametric 

perturbation in the iPSA and PSA, the pathPSA makes use of perturbations of 

pathways that connect system input to output. The analysis is done by first identifying 

the basic functional units and their associated side processes, followed by re-

parametrizing the dynamic ODE model of the system and finally, performing impulse 

parametric sensitivity analysis on the pathway parameters. In the application to the 

Fas-induced programmed cell death model for Jurkat T-cells, the pathPSA result 

suggested an early type-I dominant regulation of caspase-3 activation, which later 

gets transferred to type-II regulation, after XIAP inhibition. The applications of 

pathPSA include model diagnosis, model reduction, model refinement and drug 

discovery, such as for understanding the mechanism of drug action and identifying 

the target paths.  
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CHAPTER 6_____________________ 

6  Molecular Density Perturbation 

Analysis†† 

Synopsis: 

Despite the existence of cell-to-cell variability, the overall function at 

organ levels typically remains tightly controlled. A quantitative 

understanding of this cellular phenotype under uncertainty requires 

modeling frameworks that are able to account for intrinsic and extrinsic 

cellular variability. To this end, probabilistic models, like the ones 

presented in Section 1.2.1 have been used. Thus far, three local dynamic 

sensitivity methods (the GFM, iPSA and pathPSA) have been created for 

analyzing ODE models of single cells. In contrast this chapter contains a 

global sensitivity method, called molecular density perturbation (MDP) 

analysis, to analyze probabilistic models of cellular populations. Like the 

GFM analysis, this method takes a molecular centric perturbation 

approach, but under uncertainty. The efficacy of the MDP analysis is 

demonstrated through an application to a population model of TRAIL-

induced apoptosis in Hela cells. The MDP analysis was also performed to 

compare the sensitivities of apoptotic and non-apoptotic cells to reveal 

differentially regulated molecules disrupting the apoptotic mechanism.  

                                                 
†† Excerpts of this chapter will be part of the following manuscript: 

HPerumal TM and Gunawan R. Elucidating the dynamics of cellular populations: a dynamic 

perturbation approach on molecular density functions,  In preparation 
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6.1  Introduction 

Single cell assays, such as using immunofluorescence-based flow cytometry and high-

throughput immunofluorescence microscopy, have revealed the existence of cell-to-

cell variability, which can explain phenotypic heterogeneity seen in cellular 

populations [124, 164]. Such heterogeneity can arise from genetic [165], epigenetic 

[166], non-genetic/stochastic [66, 68] and/or extracellular environmental variations 

[167]. Genetic variations are stable and passed on to progenies, and epigenetic 

modifications are also heritable even for a higher number of cell divisions (~10-105) 

[168]. Since genetic and epigenetic are heritable factors, these determine the mean 

levels or activities of proteins [124]. Nevertheless, there also exist other stochastic 

factors such as that arising due to random discrete processes involving low copy 

numbers of biomolecules (genes and proteins) [68]. In addition, environmental 

variations (e.g. morphogen gradients during embryogenesis) can further contribute to 

cell-to-cell differences, and such effect can impact both the mean and variance of 

gene expressions. Despite the ubiquity of such cell-to-cell variation from 

microorganisms to higher mammals, the overall population/tissue/organ level 

phenotype is tightly controlled [164]. Hence understanding the impact of biological 

variability in cellular information processing and analyzing the population dynamics 

under uncertainties are important. 

Understanding the maintenance of cellular phenotype under uncertainty 

quantitatively requires modeling frameworks that are different from the ODEs seen in 

previous chapters. To this end, probabilistic models, such as Fokker-Planck equations 

(FPE) [126] and chemical master equations [69] (seen in Section 1.2.1), have been 

used to describe the cell-to-cell variability. These models differ in the manner with 

which they account for the source of variability. Some examples of these probabilistic 
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models in biology include the modeling of gene expression in eukaryotes [169], signal 

transduction [170], and cell death (apoptosis) [66, 171].  The analysis of such models 

are typically based on global or hybrid sensitivities, as presented in Section 2.1.2 and 

2.1.3, such as SOBOL sensitivity [132], DGSM [134], and Glocal analysis [135]. As 

mentioned in Chapter 2, the dynamical aspect of cellular regulation however may not 

be immediately apparent from the application of these analyses due to the persistent 

manner of the underlying perturbations used. Since biological functions are often 

dynamic in nature, there is a necessity to understand the dynamical regulation as done 

in the previous chapters, but in the face of cell-to-cell variability.  

Like the GFM, iPSA and pathPSA, the novel global analysis presented here 

can generate dynamical information for a cellular population under uncertainty. This 

analysis is accomplished through perturbations of marginal density functions of 

molecular concentrations at different times, hence the name molecular density 

perturbation (MDP) analysis. The MDP coefficients, analogous to the GFM 

sensitivity coefficients, are used to reveal the dynamical information about actively 

participating molecules. The efficacy of this method in comparison to single cell 

analysis like the GFM (seen in Section 3.2) and iPSA (seen in Section 4.2) and to  a 

common population analysis eFAST [132] (seen in Section 2.1.2), is evaluated 

through an application to a population (Fokker-Planck) model of TRAIL-induced 

programmed cell death in Hela cell line [66]. Here, the heterogeneity in population 

arises only due to the variability in initial concentrations of biomolecules. The MDP 

analysis is used to reveal the key regulators of cPARP activation in Hela cell 

population. Also, a separate MDP analysis of apoptotic and non-apoptotic cellular 

population, predicted by the same model, shows the differentially regulated molecules 

in cPARP activation.   
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6.2  Molecular Density Perturbation (MDP) 

Analysis  

The MDP analysis is formulated using the same basis of cause-effect relationship as 

in the classical PSA in (2.2) [94]. The MDP coefficients are defined as to quantify the 

change in the output molecular probability density function (effect) due to the change 

in the density function of molecular input (cause). Similar to the GFM analysis, the 

MDP takes a molecular centric approach. The first order MDP sensitivity coefficients 

are obtained by introducing perturbations on marginal densities of input molecules 

jX  at time   and quantifying the resulting change in the marginal densities of the 

output molecules iX  at any time t  .In this case, the MDP coefficients  ,x t Sg , 

which is an n n  matrix, is calculated using the following ratio  

      
 

,
,

,
i

j

X ix
ij i

X j

F t x
gS t sign X

F x





 


 (6.1) 

where ix  and jx  are the random variables of molecules Xi and Xj, respectively, and 

 ,
iX iF t x  is the distance between positively and negatively perturbed marginal 

densities of Xi at time t . The positively (negatively) perturbed marginal density of Xi 

is associated with a positive (negative) mean perturbation of the population of the 

input molecule Xj. Finally, the function Xi is the difference between the expected 

values of Xi from the positively and negatively perturbed population. Intuitively, 

second and higher order MDP coefficients can be obtained by considering the joint 

density function,  ,F tX x  of inputs and outputs (e.g., second order MDP coefficient 

of the output molecule iX  with respect to the input molecules jX  and kX  is given by 

     ,, , , ,
i j k

x
ijk X i X X j kgS t F t x F x x    ). 
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This chapter has used both probability density function (PDF) and cumulative 

density function (CDF) distances to indicate the magnitude. Six density distance 

metrics from the literature [172] are compared, including four PDF distances: 

Kullback-Leibler distance (KL), Jeffrey distance (J), Jennson-Shanon (JS) 

divergence and engineering metric (e), and two CDF distances: Kolmogorov-

Smrinov CDF distance (KS) and Cramer-Von Mise distance (CVM) (see Section E.1 

for definitions). Particularly, the Cramer-Von Mise distance (CVM) is given by  

       2

CVM , , ,p n
i ii

p n
X i i i iXX

F t x F t x F t x dx



    (6.2) 

where superscripts p and n denote the densities associated with positive and negative 

mean perturbation of the input molecular population.  In this case,  ,p
i

p
iX

F t x  and 

 ,n
i

n
iX

F t x  represent the marginal cumulative distribution functions. Like local 

sensitivity coefficients in (3.2) and (4.8), the MDP coefficients are formulated in 

terms of the normalized variables max max;i i i j j jx x x x x x   giving the following 

normalized sensitivity metric 
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 (6.3) 

As in the GFM and iPSA coefficients, the MDP coefficients will have two 

time axis, time of perturbation  and time of observation t and again each (i,j)th 

element of  ,x t Sg  can be visualized as heat maps as shown in Figure 6.1. An 

analogous interpretation of these sensitivities with that of the GFM also exists, where 

a change in the marginal densities of jth molecular concentration jX  at time   cause 

an eventual increase (no change) in the marginal densities of ith molecular 

concentrations iX  at time   t t  . Since the system is causal, the lower right half of 
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Figure 6.1. A heat map of the MDP coefficients. The heat maps visualizes the (i,j)th element of 

MDP coefficient, showing the change in molecular density function  ,
iX iF t x  with respect to 

perturbation on molecular density function  ,
jX jF x . The x-axis of these plots represents the 

perturbation time   at which perturbations are introduced on random variable jX  while the y-

axis represents the observation time t at which changes in random variable iX  are measured. 

MDP coefficient in the heat map is scaled accordingly to have magnitudes bounded by ±1, by the 
scaling factor reported in the lower right corner of the plot. 
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the plot is again null.  The sign of the MDP sensitivities may reflect the potential 

action of the input molecule, i.e. positive sensitivities indicate activators (or 

substrates) and negative sensitivities indicate inhibitors. 

As noted above, the proposed MDP analysis differs from the existing global 

sensitivity analyses in the way that the perturbations are realized and the resulting 

changes are quantified. This is in contrast to the use of moments of the density 

function than quantifying the change of the density functions, e.g. by variance 

decomposition in eFAST [132] or by mean change in DGSM [134]. Therefore, the 

MDP analysis avoids the shortcomings of eFAST in handling co-linearity between 

input perturbations and of DGSM in handling multi-modal distributions. Also, the 

perturbations in MDP analysis are dynamic in nature, i.e., introduced at varying times 

. Consequently, the result of MDP analysis can reveal network fragility in the form 
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of key biological molecules, where such fragilities may dynamically change from one 

molecule to the next during cellular regulation. 

Similar to the GFM analysis of single cell models presented in Chapter 3, the 

MDP analysis of cellular population model can also reveal two major biological 

insights: either by choosing a particular output xi and observing the sensitivities of its 

variability (density function) to changes in the uncertainty of other molecules xj’s (a 

row of  ,x t Sg ), or by choosing a particular perturbation in the uncertainty of xj and 

observing the resulting effects on the variability of the other molecules xi’s in the 

network (a column of  ,x t Sg ). The information gained from MDP analysis can be 

used to understand the consequences of cell-to-cell variability [124], such as in drug 

discovery research, to identify potential drug targets, to understand drug efficacy and 

specificity, to optimize drug dosing and timing and also in analyzing the robustness-

fragility of systems under uncertainty [164]. 

6.3  Application to TRAIL-induced Cell Death 

Model of HeLa cell Population 

Figure 6.2 depicts the extrinsic cell death (apoptosis) signaling network triggered by 

the TNF-related apoptosis-inducing ligand (TRAIL) in Hela cells. A mathematical 

model was constructed on the basis of mass-action kinetics using ordinary differential 

equations (ODEs) [66]. The model has 58 species, 28 reactions, 18 non-zero initial 

conditions and 70 parameters (see Section E.2 for initial conditions, parameter values 

rate equations, ode solver type and its settings). The model parameters and initial 

conditions were acquired from a parameter fitting to experimental data, consisting of 

both single-cells and population-based experiments such as imaging, flow cytometry, 

and immunoblotting [59, 66, 173]. Although the model lacks detailed descriptions of 
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Figure 6.2. Network model of TRAIL-induced cell death in Hela cell lines. Type-I pathway 
involves a direct cleavage of pro-caspase-3 by caspase-8 to form an active caspase-3 which 
cleaves the substrate PARP to cPARP, while the type-II pathway describes a mitochondria-
dependent activation of caspase-3 in turn activating the substrate. 
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few key mechanisms in the extrinsic cell death signaling (e.g., details of DISC and 

mitochondrial pore formation), it has extensive details on most of the significant 

mechanisms for the activation of endogenous executioner caspase (C3) and its 

downstream substrate (PARP) cleavage [59]. Specifically the model has four major 

mechanisms: (i) upstream pathway, representing TRAIL activation of pro-caspase-8 

(to caspase-8), (ii) mitochondrial independent pathway (type-I), representing an 

enzyme cascade in which caspase-8 cleaves inactive pro-caspase-3 (to active caspase-

3) and inhibition of active caspase-3 by XIAP, (iii) a mitochondrial pathway (type-II), 

in which caspase-8 promotes the formation of mitochondrial pores, the consequent 

release of CyC (cytochrome-C) into the cytosol, and finally the activation of caspase-

3, and (iv) pro-caspase-6 positive feedback-loop, cleaving pro-caspase-8 (to caspase-

8).  

The output of interest in this model is the cleavage of the substrate PARP (to 

cPARP) by activated executioner caspase-3. Here, single cell model analysis using the 
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Figure 6.3. Green’s Function Matrix (GFM) analysis of cPARP activation by a constant 
TRAIL stimulus in a single cell. (a) cPARP activation follows a delayed snap-action behaviour 
in response to a constant TRAIL stimulus. (b-c) The heat maps represent the ten largest GFM 
coefficients of the cPARP active level with respect to perturbations on different molecules in the 
network. The x-axis of these plots represents the time  at which perturbation is introduced on each 
molecule, while the y-axis represents the time t at which the active cPARP level changes. Each 
heat map is scaled accordingly to have values bounded by ±1, using the scaling factor reported in 
the lower right corner of the plot. (b) GFM analysis during pre-MOMP period (before 2.36 hours). 
The analysis showed that the common upstream ((in) active receptor, pro- and caspase-8) and 
downstream molecules (C3 and XIAP) constituted the early responders to TRAIL stimulus. (c) 
Post-MOMP (after 5.3 hours), both upstream molecules (receptor, caspase-8), XIAP and specific 
type-II molecules (Bid and Bax) are directly implicated to be the key regulators of cPARP switch 
by the location and magnitude of the peak sensitivities. 
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GFM analysis and iPSA and population analysis using the eFAST and MDP analysis 

are applied to reveal the important mechanism(s) of cPARP activation, and to identify 

key differences between cells that respond positively to TRAIL (apoptotic) and those 

that escape cell death (non-apoptotic). 
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6.3.1  GFM and iPSA analysis of TRAIL induced 

apoptosis of a single cell  

GFM analysis of apoptosis in a single Hela cell (a representative mean of 

population) reveals pro-caspase-8 and XIAP to be the key components in cPARP 

activation: The GFM analysis was performed under a constant TRAIL stimulation on 

the single cell ODE model using population mean concentration as the initial 

condition (see Section E.2) [173]. The analysis was carried out over a time range of 0 

to 5.3 hours to allow the system to reach a new steady state. During this time period, 

the single cell model simulated an apoptotic cell, in which the activation of cPARP in 

response to TRAIL follows a delayed snap action switch like profile (Figure 6.3(a)). 

Each subplot in Figure 6.3(b-c) here represents an element in the row of GFM matrix 

corresponding to active cPARP. 

To study the activation dynamics of cPARP in greater detail, the GFM 

analysis was split into two phases: pre-MOMP (before 2.36 hours) and post-MOMP 

(after 2.36 hours). Figure 6.3(b) and 6.3(c) portray the ten most important molecules 

in the cPARP activation according to the GFM sensitivities during the pre- and post-

MOMP, respectively (see Section E.3 for detailed analysis). The sensitivities with 

respect to molecular complexes are omitted, as these molecules are either reaction 

intermediates or mathematical approximations and carry little physical significance 

(see Video E.1 for detailed ranking and analysis). According to the results of the GFM 

analysis, the delayed snap-action activation is majorly governed by the mitochondrial 

dependent pathway (type-II), but the most important molecules are pro-caspase-8 and 

XIAP.  The same conclusion is also obtained through an application of the impulse 

parametric sensitivity analysis (iPSA) (see Section E.4). 
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Figure 6.4. Extended Fourier Amplitude Sensitivity Test (eFAST) of cPARP activation in a 
cellular population. (a-c) represents the first order sensitivity of cPARP to the molecules indicated 
below. The dashed lines (--) at 1.77 and 4.23 hours indicates the start and end of MOMP, 
respectively. (a) upstream molecules, receptor (+), pro-caspasse-8 (×), Bar (o), pro-caspase-3 (), 
XIAP (), pseudo (), (b) type – II molecules (upstream of MOMP), Bid (+), Bcl2c (×), Bax (o), 
Bcl2 (), pseudo (), (c) type – II molecules (downstream of MOMP), membrane bound 
cyctochrome-c (+), membrane bound Smac (×), Apaf (o), pro-caspase-9 (), pseudo (). eFAST 
analysis points to the initial variability in XIAP and pro-caspase-8 to be the important regulators of 
cPARP activation. 
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6.3.2  eFAST analysis of TRAIL induced apoptosis  

eFAST analysis of apoptosis in Hela cell population reveal XIAP and pro-caspase-8 

to be the key components in cPARP activation: A global sensitivity analysis of the 

cellular population version of the same apoptosis model was performed using the 

eFAST algorithm [131], as presented in Section 2.1.2. The analysis was done under 

the same TRAIL stimulation over the time range between 0 and 5.3 hours, using a cell 

population size of 1000 and with five replicates. The initial conditions of the cells 

were sampled from a log-normal distribution using Latin Hypercube Sampling (LHS) 

algorithm (see Section E.2 for mean values and coefficients of variations). Note that 

the sensitivity coefficients were calculated only with respect to the 18 molecules 

whose nominal initial conditions were non-zero. The cell population simulation 

revealed that 94.69% of the cells undergo apoptosis. Figure 6.4 shows the time-
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Figure 6.5. Extended Fourier Amplitude Sensitivity Test (eFAST) of cPARP activation in 
apoptotic and non-apoptotic cell population. (a-f) represents the first order sensitivity of cPARP 
to the molecules indicated below and the dotted lines (--) at 1.77 hours indicates the start of 
MOMP. (a-c) the dotted lines at 4.23 hours indicate the end of MOMP in apoptotic cell 
population; (d-f) the dotted lines at 5.3 hours indicate the end of MOMP in non-apoptotic cell 
population. (a,d) upstream molecules, receptor (+), pro-caspasse-8 (×), Bar (o), pro-caspase-3 (), 
XIAP (), pseudo (), (b,e) type – II molecules (before MOMP), Bid (+), Bcl2c (×), Bax (o), 
Bcl2 (), pseudo (), (c,f) type – II molecules (after MOMP), membrane bound cyctochrome-c (+), 
membrane bound Smac (×), Apaf (o), pro-caspase-9 (), pseudo (). A comparative eFAST 
analysis of apoptotic and non-apoptotic cell population points to the initial variability in XIAP and 
membrane bound Smac to be the differentially regulated molecules responsible for cPARP 
activation. 
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varying first-order sensitivity coefficients of cPARP with respect to 13 molecules 

with the largest cPARP sensitivities (see Section E.5 for more detailed results). A 

pseudo molecule with no dynamics was artificially introduced into the system to 

quantify for the variability in the calculated sensitivity coefficients due to finite 

sampling.  

The global analysis was split into three dynamic regimens: (i) pre-MOMP 

(before 1.77 hours), defined as the period of which at least 1% of the population 
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possess one mitochondrial pore, (ii) MOMP (between 1.77 and 4.23 hours), defined as 

the period between the end of pre-MOMP and the time at which 99% of the 

population have accomplished 99% of CyC/Smac release, and (iii) post-MOMP (after 

4.23 hours). From Figure 6.4(a), it is clear that variability in the upstream molecules: 

pro-caspase-8 and pro-caspase-3, and the inhibitor XIAP significantly contributes to 

the final cPARP variability. During MOMP, Figure 6.4(b) further suggests that in 

addition to these molecules, a few type-II related molecules, such as Bid, Bax and 

Bcl2, also regulate cPARP activation, as indicated by the sensitivities. Interestingly, 

Figure 6.4(c) indicates that the variability of downstream type-II molecules, e.g. 

membrane bound cytochrome-c, Smac, Apaf and pro-caspase-9, does not carry much 

effect on the MOMP. In summary, eFAST analysis shows that the variability in the 

initial concentrations of pro-caspase-8, XIAP and Bid are the determinant of the cell 

death decision (by way of cPARP activation), which is in much agreement with the 

single cell GFM analysis above.  

 

Comparative eFAST analysis of apoptotic and non-apoptotic cell population reveals 

initial XIAP and membrane bound Smac to be the differentially regulated 

molecules in cPARP activation: The eFAST analysis was repeated to analyze two 

subpopulations with cells that responded positively to TRAIL (committing to 

apoptosis) and those that did not. The purpose of the analysis is to elucidate the key 

components (molecular species) that contribute to the differences in the final cPARP 

concentration. Figure 6.5(a-f) shows the time-varying global (first order) sensitivities 

with respect to thirteen molecules with the largest sensitivities (in magnitude) and to 

the pseudo molecule (see Section E.6 for more detailed results). As expected, the 

results of the eFAST analysis of apoptotic subpopulation, as shown in Figure 6.5(a-c), 
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Figure 6.6. Molecular Density based Perturbation (MDP) analysis of cPARP activation by a 
constant TRAIL stimulus in cellular population. (a) cPARP activation follows a switch-like 
behaviour in response to a constant TRAIL stimulus. Dotted lines (--) indicate the 1% and 99% 
bounds and lines (-) represents the median evolution, respectively. (b-c) The heat maps represent 
the average values of top ten MDP coefficients of cPARP active level with respect to the 
perturbations on different molecules in the network. The x-axis of these plots represents the time  
at which perturbation is introduced on each molecule, while the y-axis represents the time t at 
which the active cPARP level changes. Each heat map is scaled accordingly to have magnitudes 
bounded by ±1, by the scaling factor reported in the lower right corner of the plot along with the 
variance of MDP coefficients over five runs. (b) MDP analysis performed till MOMP (till t = = 
1.76 hours) delay. As expected, in agreement with the single cell analysis, MDP analysis showed 
that the common upstream ((in) active receptor, pro- and caspase-8) and downstream molecules 
(C3 and XIAP) constituted the early responders to TRAIL stimulus. (c) After MOMP (till t = = 
5.3 hours), contradicting to the single cell analysis, MDP analysis type-II specific molecules 
(number of mitochondrial pore opening, membrane bound cytochrome-c, Smac and inital available 
Apaf) are directly implicated to be the key regulators by the location and magnitude of the peak 
sensitivities. 
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were equivalent to that done for the whole population, as the majority of cells in the 

population (~95%) were apoptotic. The comparison between the eFAST results of 

apoptotic and non-apoptotic subpopulations suggests that the initial XIAP and 

membrane bound Smac are the determining factors for apoptotic decision.  

6.3.3  MDP analysis of TRAIL induced apoptosis  
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MDP analysis of Hela cell population reveals mitochondrial pore opening, initial 

membrane bound cytochrome-c, Smac, and Apaf in cytosol to be the key 

components in cPARP activation: The MDP analysis was done in the same spirit as 

the GFM and eFAST analyses above and under the same conditions. The MDP 

sensitivities were calculated using the CVM density distances, in which active cPARP 

was selected as the output molecule. Figure 6.6(b-c) shows the heat map of the MDP 

sensitivities, analogous to those of the GFM analysis (see Video E.5 for more detailed 

results). Following the eFAST analysis, the MDP analysis was split into three 

dynamic regimens (before, during and after MOMP).  

Figure 6.6(b-c) portrays the ten molecules with the largest cPARP MDP 

sensitivities in magnitude, before and during MOMP, respectively. The sensitivities 

with respect to molecular complexes are again omitted (included in Section E.7). In 

this case, the MDP sensitivities reveal that: (i) caspase-8 and caspase-3 activation and 

caspase-3 inhibition by  XIAP are the important global mechanisms during pre-

MOMP, (ii) mitochondrial dependent (type-II) pathway molecules, including Bid, 

Bax, Apaf, CyC and Smac gain importance over direct caspase-8 pathway during 

MOMP, (iii) post-MOMP cPARP activation is majorly determined by the 

mitochondrial dependent (type-II) pathway, such as active mitochondrial pore 

opening, and by initial available concentrations of  Apaf and membrane bound 

cytochrome-c/ Smac. In comparison to the single cell GFM analysis and the global 

eFAST analysis, the MDP analysis suggest the same initial regulator of cPARP 

activation to be caspase-8, -3 and XIAP, but unlike the GFM and eFAST analyses, the 

MDP sensitivities indicate active mitochondrial pores and the initial available 

membrane bound CyC/Smac and inactive Apaf as the most important factors during 

and after MOMP. 



Thanneer Malai Perumal 109

 
Figure 6.7. Comparative MDP analysis of cPARP activation by a constant TRAIL stimulus 
in (a,c) apoptotic and (b,d) non-apoptotic cell population. (a-b) Activation levels of cPARP to a 
constant TRAIL stimulus normalized with respect to the initial available PARP levels. Dotted lines 
(--) indicate the 1% and 99% bounds and lines (-) represents the median evolution, respectively. 
(c-d) Bar graphs represent the top ten sensitive molecules at steady state. As seen from the graph 
XIAP, Smac, Apaf(s) and C9 are the differentially regulated molecules. 
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Comparative MDP analysis of apoptotic and non-apoptotic Hela cell population 

reveals XIAP and membrane bound Smac to be the differentially regulated 

molecules in cPARP activation: Similar to the global eFAST analysis, the MDP 

analysis was repeated to analyze subpopulation of apoptotic and non-apoptotic cells. 

In this case, the final cPARP concentration was taken to be the biomarker of apoptosis 

(see Figure 6.7(a-b)). The MDP sensitivities of the final cPARP activation were 

further compared according to the infinite norm over the perturbation times . Figure 
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
 

    Rank  CV Rank  

Ms 210.552 0.651 1.200 0.333 
CyCm 162.247 0.833 1.800 0.222 
Apaf 21.445 0.889 4.200 0.350 

Smacm 10.486 0.370 3.600 0.136 
CyC 0.647 0.421 10.800 0.170 
CyCr 0.601 0.442 12.200 0.256 
XIAP 0.588 0.546 13.200 0.297 
Bid 0.492 0.156 11.400 0.043 
C8 0.429 0.144 12.400 0.040 
R 0.342 0.053 14.400 0.034 

Table 6.1. Represent the variability in the top ten MDP coefficients, calculated with respect 
to five replicated experiments. First and second column represents the mean and coefficients of 
variations of the infinite norms of sensitivity magnitudes calculated till the end time (t =  = 5.3 
hours). Third and fourth column represents the corresponding mean and coefficient of variation of 
the sensitivity rankings considered. 

6.7(c-d) shows the ranking of the top ten molecules according to the magnitude of the 

infinite norm of MDP sensitivities above (see Section E.8 for detailed analysis). The 

MDP ranking of apoptotic subpopulation was in much agreement with the analysis for 

the whole population, as most cells in the complete population were apoptotic. The 

analysis of the non-apoptotic subpopulation again differ from that of the apoptotic 

cells in the importance of XIAP and membrane bound Smac, as also found previously 

by the global eFAST analysis. 

6.4  Discussion 

6.4.1  Variability in the conclusion of MDP analysis 

Since the MDP (as well as the eFAST) coefficients are calculated from Monte Carlo 

simulations, there is a variability associated with finite sampling. This variability can 

arise from the different stages in the density distance calculation, ranging from the 

random sample generation (e.g. from the choice of random number generator used) to 

the normalization technique and the reconstruction of density functions. Partly, the 

magnitude of the error (bias) in the MDP coefficients can be estimated using a pseudo 
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Table 6.2(a): Ranking correlation between distance metrics of MDP analysis (mean, 10%) 
Measure CVM e J JS KL KS 
CVM 1.000 0.871 0.793 0.816 0.361 0.935 

e 0.871 1.000 0.785 0.811 0.461 0.906 
J 0.793 0.785 1.000 0.963 0.511 0.801 

JS 0.816 0.811 0.963 1.000 0.533 0.863 
KL 0.361 0.461 0.511 0.533 1.000 0.369 
KS 0.935 0.906 0.801 0.863 0.369 1.000 

Table 6.2(b): Ranking correlation between 
different  perturbation magnitudes (CVM, 

mean) 

Table 6.2(c): Ranking correlation between 
different perturbation types (CVM, 10%) 

Magnitude (%) 1 10 100 Type Mean Variance 
1 1.000 0.998 0.965 Mean 1.000 0.786 

10 0.998 1.000 0.973 
Variance 0.786 1.000 

100 0.965 0.973 1.000 

state in the system with a nominal value of one and no dynamics.  In theory, the 

pseudo variable should have no effect nor it should be affected by other system states 

and thus, is the MDP coefficients associated with this state should be zero. In this 

case, non-zero MDP coefficient of the pseudo state provides an estimate of the finite 

sampling error. Another way of accounting the variability in MDP coefficients is to 

use repeated experiments. In the current work, five random samples of size 1000 cell 

were analyzed. The coefficient of variation in the infinite norm of the top ten MDP 

sensitivities and the associated ranking are presented in Table 6.1. While the 

coefficient of variation can reach as high as 0.889, the relative ranking of the 

molecules is more consistent among replicates. In other words, the use of the MDP 

sensitivities in a comparative study to rank the importance of molecules, such as those 

done in the case study above, is reliable. 

Also, the results of the MDP analysis depend on the metrics and parameters 

used to perform the analysis, including: (i) the density distance (i.e., CVM, e, J, JS, 

KL and KS), (ii) the type of perturbation (e.g., mean, variance or both), and (iii) the 

magnitude of perturbation. The MDP analysis in the case study above has used CVM 

with 10% mean perturbation of the input density function, while the variance of the 

log-normal distribution was kept the same. The effect of using a different density 
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distance and different type and magnitude of perturbations on the results of the MDP 

analysis (i.e. the ranking of importance of molecules) of the case study above is 

summarized in Table 6.2. Here, the correlations between MDP sensitivity rankings 

produced by six different density distances (Table 6.2(a)) or by three different 

perturbation magnitudes (Table 6.2(b)) or by two different types of perturbation 

(Table 6.2(c)) show that with the exception of the Kullback-Leibler (KL) divergence, 

the rankings of sensitivities are relatively similar, i.e. molecules that are found to be 

important by one calculation of MDP analysis are also relatively important by MDP 

sensitivities computed using different metric or perturbation. The correlation between 

two CDF distance metrics CVM and KS is expectedly high. Also, PDF-based metrics 

are generally more sensitive to finite sampling error, as shown in Table 6.3, and for 

this reason, CDF distance metrics are preferred. In the case study above, CVM was 

used as the distance metric, since it has better sample-to-sample reproducibility than 

KS.  

6.4.2  Relevance and Application 

Predicting and understanding biological behavior are further complicated by cellular 

stochasticity that arises from genetic and non-genetic factors. As demonstrated in the 

application to the population model of cell death, the MDP analysis can give insights 

into how a particular behavior of a cell population is dynamically regulated. Also, 

similar to the signal tracking analysis using the GFM coefficients, a complementary 

analysis of the MDP coefficients can reveal how a cellular population responds to 

changes in the variability of one of its molecules.  
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Figure 6.8. In silico validation of and hypothesis generation using the MDP Analysis of 
cPARP activation under constant TRAIL Stimulus. Different characteristic (first column - 
mean, second column - median and third column - standard deviation) profiles of normalised 
active cPARP levels for nominal (line) and perturbed profiles (symbols) are compared. (a-c) In 
silico validation experiments for MDP analysis, mean levels of molecular density function of pro-
caspase-8 are increased by a fold at both the initial time,  =0 and  =2.14 hours. The 
characteristics of normalised active levels of cPARP molecular density functions are plotted for 
nominal (—), change in pro-caspase-8 at  =0 (+), and at  =2.14 hours (x). (d-f) Hypothesis 
generation for the whole cell population, mean levels of initial procaspase-8 ( =0 hours) or the 
available mitochondrial pore opening during switching ( =2.14 hours) are increased by a fold. 
The characteristics of normalised active levels of cPARP molecular density functions are plotted 
for nominal (—), change in pro-caspase-8 at  =0 (+) and change in available mitochondrial pore 
opening during switching at  =2.14 hours (x).  
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Some parts of the MDP analysis can be validated through experiments that 

perturb the variability of external molecules, for example using a bolus injection. In 

such an example, the experiment reproduces the mean perturbation in the calculation 

of MDP coefficients. But, to validate the conclusions obtained from the MDP analysis 

of the TRAIL induced cell death case study, in silico perturbation experiments were 

performed. In this in silico experiment, the mean level of pro-caspase-8 in the cellular 

population is increased by 100%, at two different times:  = 0 and  = 2.14 hours. As 

predicted by the MDP analysis in Figure 6.6, the perturbation at  = 0 led to a 

significant change in the cPARP activation among cells (measured by the change in 



Thanneer Malai Perumal 114

mean, median and standard deviation), while the perturbation at  = 2.14 hours 

rendered little change (see Figure 6.8(a-c)).  

The consideration of variability of the cell population in sensitivity analysis is 

important as single cell analysis can be misleading. However, the type of global 

analysis used also matters. For example, the eFAST and MDP analysis gave different 

conclusions about the molecules regulating cPARP activation during and post-MOMP 

(see Figures 6.4 and 6.6). The MDP analysis predicted that mitochondrial pore 

opening and its subsequent cytochrome-c release to be the most important factors 

during this period, while the eFAST analysis indicated the initial pro-caspase-8 to be 

the most important. As shown in Figure 6.8(d-f), an increase of pro-caspase-8 initially 

(at  = 0 hour) by one fold and a similar increase in mitochondrial pores during 

switching ( = 2.14 hours) lead to equally higher cPARP (mean and median) 

activation levels in the population. The effect of having higher initial pro-caspase-8 

level decreases the switching time in the cPARP activation, but this render a small 

change in the cPARP variability among the cells and no change in the fraction of 

apoptotic cells in the population. But, higher number of mitochondrial pores around 

cPARP switching period leads to much lower variability among cells and importantly, 

increases the percentage of apoptotic cells from 94.36% to 96.82%. Hence, the 

eFAST analysis is unable to provide the dynamical importance of molecules due to 

the timing of the perturbations. This issue is similar to the one raised in Section 2.2, 

where an analysis based on fixed time perturbation will not be able to describe the 

dynamical importance of the system components. Extending the eFAST analysis 

using perturbations at different times will violates the orthogonal pair assumption 

(i.e., input distributions must be non-correlated), that is needed in the calculation of 

the SOBOL’s sensitivity indices in this analysis (see [132] for details). 



Thanneer Malai Perumal 115

6.4.3  Comparison with GFM, iPSA and eFAST analyses 

Since MDP analysis is based on perturbations with respect to molecular density 

functions introduced at multiple time points and on different molecules, it directly 

provides a molecule-by-molecule illustration of events happening during the 

functional regulation of system output behaviour under uncertainty. Even though local 

dynamic sensitivity analysis, like GFM presented in Chapter 3, on a representative 

single cell model of the cellular population can give such molecule-by-molecule 

interpretation, it fails to predict the truthful mechanism, as seen in its application to 

the cell death model in Section 6.3.1. This is because the nature of the perturbation 

considered here is local and on a single moment (i.e., mean change) of the 

distribution. Hence, it does not characterize the whole change in distribution. 

On the other hand, a more common global parametric sensitivity analysis, like 

eFAST also fails to predict the population dynamics (as exemplified by the cell death 

analysis in Section 6.3.2). The reason stems from the fact that the eFAST analysis 

only quantifies or decomposes the output variability in terms of initial input 

variability alone. The contribution of intermediate complexes and activated species 

are neglected, since they are not present during the initial time. Extending eFAST 

analysis to times other than initial time violates the orthogonal pair assumption (i.e., 

input distributions must be non-correlated), the basis by which SOBOL’s sensitivity 

indices have been formulated (see [132] for details). Therefore, other than indicating 

the contribution of input variability to that of the output variability, eFAST analysis 

cannot give mechanistic insights on the system output behaviour. Due to this, existing 

global sensitivity analysis may be misleading or not even give any conclusions about 

the key regulatory molecules and pathways. 
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6.4.4  Applications of MDP analysis 

The results from the MDP analysis can be useful in many applications, some 

of which have been mentioned previously. For example, the agreement or 

disagreement between model analysis and experimental observations or biological 

knowledge can be used for model validation and design of experiments. Furthermore, 

despite the importance of cell-to-cell variability is increasingly recognized, the extent 

to which this affects the cell population phenotypic response to drug 

resistance/sensitivity remains unanswered [124]. Hence, analysis tools for models 

under uncertainty, like the MDP analysis presented here, can be used in drug 

discovery research to identify potential molecules for drug targets or drug cocktail to 

treat cancer cells, in which population variability is an important factor. In this case, 

the failure to guarantee 100% positive response of the cancer cell population to the 

drugs can lead to cancer recurrence. By building cell population models and applying 

population-based analysis, like the MDP, the decision of drug combinations to use 

and the appropriate dose to use will no longer need to be done by trial and error. 

6.5  Summary 

In summary, cellular heterogeneity and biological complexity necessitate the use of 

systems-oriented approach to establish the cause-effect relationship between 

molecules and their interactions and population phenotype. Based on cell population 

models and perturbations on the molecular density functions, the MDP analysis offers 

dynamical insights on the functional regulation in the cellular network, for which 

either the single cell analysis (like PSA, GFM and iPSA) or standard global sensitivity 

analysis (like eFAST) may not. In the application to the TRAIL induced cell death 

model, the MDP analysis predicted that mitochondrial pore opening and cytochrome-



Thanneer Malai Perumal 117

c release to be the important deciding factors for cells in a population to commit to 

cell death,  while the single cell GFM analysis and the eFAST global analysis both 

indicated other molecules (XIAP and pro-caspase 8). In this case, in silico 

perturbation experiments agreed with the findings from the MDP analysis. Finally, the 

MDP analysis can guide drug discovery efforts in the identification of potential drug 

targets, the understanding of drug efficacy and specificity, and the optimization of 

drug dosing and timing, in which cell-to-cell variability can affect the efficacy of 

drugs, such as in cancer. 
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CHAPTER 7_____________________ 

7  Dimensionality Reduction of 

Large Kinetic Models‡‡ 

Synopsis: 

This chapter presents novel automated model reduction techniques based 

on dynamic sensitivities of the GFM and iPSA presented in Chapters 3 

and 4. The efficacies of the proposed methods are compared with a model 

reduction algorithm based on the classical PSA, through applications of 

these methods to produce reduced-order models of the reaction kinetics 

in alkane pyrolysis, natural gas combustion (GRI Mech 3.0) and 

industrial steam cracking of ethane.  

                                                 
‡‡ Excerpts of this chapter will be part of the following manuscript: 

HPerumal TM, Krishna SM, Tallam SS and Gunawan R. Reduction of kinetic models using 

dynamic sensitivities,  Comp. and Chem. Engg., (In submission H) 
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7.1  Introduction 

Many contemporary world problems, such as the ones discussed in this thesis 

(understanding biological complexity) or elsewhere (global climate change and 

energy issues), are in one way or another related to complex chemical processes, 

ranging from enzyme kinetics to atmospheric reactions to combustion and 

hydrocarbon processing. The understanding of these processes often necessitates the 

creation and use of detailed kinetic models that describe the intermediates and 

reactions in the system. Such mechanistic knowledge is important for the control, 

design or manipulation of these systems. Nevertheless, a reduced-order model that is 

valid under certain conditions is often desired for computational reasons (e.g., in 

model-based optimization and control applications).  

A variety of methods exist that can provide reduced order models from the full 

ordinary differential equation (ODE) kinetic models, which are the most common 

formalism used to describe chemically reacting systems. The general aim of these 

methods is to obtain the simplest model with the fewest intermediates and/or 

reactions, while still retaining the essential features of the detailed model [174]. For 

example, reduced-order linear ODE models could be obtained using methods from 

linear systems theory, such as balanced truncation or generalized Grammians [175], 

for which the upper bound of the H∞ norm of reduced model error could be computed. 

However, the applications of linear system methods to complex chemical processes 

have been limited as the kinetic models typically involve nonlinear rate equations. 

For nonlinear models, dimensionality reductions have conventionally been 

done using the quasi-steady species (QSS) and partial equilibrium assumptions. The 

reduction is achieved by assuming the radicals and fast reversible reactions to be in 

equilibrium and by ignoring the slow (unimportant) reactions [176, 177]. Such 
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reduction techniques however require inputs from an experienced and knowledgeable 

user. Another common method relies on model sensitivity coefficients to rank the 

importance of reactions [93, 178-180] as these coefficients reflect the ratio of changes 

in the system outputs with respect to perturbations in kinetic parameters [94]. In this 

case, model reduction was performed by eliminating species and reactions that were 

not affecting the system outputs, as indicated by small sensitivity magnitudes. While 

this method could potentially be automated, its good performance often requires 

knowledgeable user guidance as to which reactions to remove [178]. More advanced 

model reduction methods also exist, including computational singular perturbation 

(CSP) [181], chemical lumping [182], intrinsic low dimensional manifolds (ILDM) 

[183], directed relation graph with (DRGEP) or without (DRG) error propagation 

[184], target factor analysis [185], and flux based methods [186]. Each of the methods 

has its own advantages and disadvantages, some of which have been discussed 

elsewhere [187]. 

In this chapter, five new dynamic sensitivity-based model reduction methods 

are proposed. The crucial difference between these and existing sensitivity coefficient 

based methods is the use of time-dependent perturbations in the sensitivity analysis, 

i.e. the use of Green’s function matrix (GFM) analysis from Chapter 3 and the 

impulse parametric sensitivity analysis (iPSA) from Chapter 4. It was clearly 

understood from Chapters 2-4 that the dynamical importance of reactions cannot be 

inferred from the traditional parametric sensitivity coefficients, but is immediately 

apparent from the iPSA and GFM analysis. Since very large scale curated kinetic 

models of signaling networks are seldom available and since the reduction analyses 

presented here are applicable for general ODE models, the efficacies of the proposed 

methods are compared through the reduction of chemical kinetic models, including 
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Figure 7.1. Sensitivity analysis. Illustrations of different types of perturbations and their effect on 
system dynamics in (a-b) the traditional PSA, (c-d) the GFM and (e-f) the iPSA. Solid lines 
represent the nominal trajectory and the dashed lines show the perturbed trajectory, respectively. 
Figures are only meant to illustrate the basic concepts and thus are not drawn to scale. 
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alkane pyrolysis [188], natural gas combustion (GRI Mech 3.0) [189] and a recently 

published mechanistic model for industrial steam cracking of ethane [60]. 

7.2  Methods 

The most common formalism in the detailed kinetic modeling of chemically reacting 

systems is the ordinary differential equations (ODEs), as in (1.2). For chemically 

reacting systems, the right hand side of (1.2),  ,x pg  can be written as  ,Nr x p , 

where the matrix N  denotes the stoichiometric matrix, and the vector-valued function 

 , rr x p   contains the reaction rate equations. The solution to the ODE model 

gives the time trajectory of the chemical species concentrations  tx  in the system. 

7.2.1  Model reduction using parametric sensitivity 

analysis (PSA) 

One of the many applications of local PSA is model reduction, which is done using a 

simple algorithm: remove reactions whose rate constants have low sensitivity 
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magnitudes, as these are deemed unimportant. When using local PSA sensitivities, 

parameters are first sorted based on some metrics of importance, such as norm of the 

sensitivity coefficients in (2.2) (e.g. infinite norm:   , ,maxi j i j
t

S S t

  [99]) or 

eigenvalues of the Fisher information matrix FIM (i.e., T 1FIM = S V S , where V is a 

weighting matrix [178, 190]). Subsequently, reactions are removed one at a time, 

starting from the lowest importance metric, until a certain criteria based on model 

reduction error (i.e. difference between the full and reduced model), model size or 

some combinations of the two, is optimized. 

It has been discussed in detail in Section 2.2 that the parameter perturbations 

used in the local PSA are persistent in nature. Hence, the information obtained from 

the sensitivity coefficients above reflects the integrated changes in system output that 

resulted due to a step change in the parameter values at the initial time, as depicted in 

Figure 7.1(a-b). As a result, any parametric perturbations which cause large changes 

in the species concentrations at early times may generate artificially high sensitivity 

ranking throughout the simulation period, while key reactions participating only at 

later times, maybe incorrectly ranked low in sensitivity (see Section 2.2.2 for detail). 

Consequently, a model reduction procedure based on such analysis will favor towards 

preserving reactions of early importance in the model, while mistakenly removing 

reactions with later significance. 

7.2.2  Model reduction using dynamic sensitivity analysis 

(iPSA and GFM) 

As the caveat of PSA is rooted from the persistent nature of the parameter 

perturbations, Chapters 3 and 4 have presented two (local) sensitivity analyses, 

namely the Green’s function matrix (GFM) analysis and impulse parametric 
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sensitivity analysis (iPSA). In the iPSA, perturbations are introduced as impulses on 

system parameters at different initial times (see Figure 7.1(c-d)). Meanwhile, the 

GFM relies on time-dependent perturbations on species concentrations (see Figure 

7.1(e-f)). By using time-dependent perturbations, the associated sensitivity 

coefficients can directly reveal the dynamical importance of chemical species and 

reactions, without the integrated effect as in the traditional PSA. Thus, these 

sensitivity analyses not only give answers to which species and parameters are 

important, but also when they matter. 

Following the model reduction procedure in the traditional PSA, the 

dynamical importance of species and parameters are first sorted based on some 

metrics of the sensitivity coefficients in (3.2) and (4.8). In the model reduction using 

the GFM and iPSA below, infinite norm has been used as the metric for ranking, i.e. 

for the GFM:   , ,,
max ,

i j i j

x x

t
S S t





  and for the iPSA:   , ,

,
max , .i j i j

t
iS iS t





  

Species (parameters) having the same sensitivity metrics are further sorted based on 

the number of reactions (species) that they are associated with. Starting from the 

lowest sensitivities, the model reduction is carried out by sequentially removing 

species (in the GFM based method) or reactions (in the iPSA based method) of the 

model. In the GFM based reduction, deleting a species from the model means 

removing the corresponding differential equation from the model and all rate 

equations associated with reactions in which this species acts as a substrate. 

There exists a trade-off between reducing models reaction-wise and species-

wise. When the number of reactions far exceeds the number of species, as typically 

encountered in complex chemical processes, the elimination of reactions guided by 

parametric sensitivity ranking generally produces a finer gradation of reduced order 

models and of model reduction error, in comparison with the elimination of species by 
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the GFM reduction. On the other hand, species-wise removal will outpace reaction-

wise method in terms of model dimensionality reduction, either measured by the 

number of remaining species or reactions. Naturally, if the number of species exceeds 

that of reactions, then the reverse circumstances apply. 

7.2.3  Combined methods for model reduction 

The iPSA and GFM analyses offer different, but complementary, information 

regarding the dynamical importance of reaction pathways. By combining the two 

analyses, three combined model reduction strategies have been formulated in this 

chapter. The proposed methods follow reaction-wise reduction approach as this will 

provide more refined control over model reduction error in a typical complex 

chemical reaction network, as discussed above. The strategies are designed to be fully 

automated, but at the same time, to allow some flexibility to accept user inputs, such 

as maximum tolerable error or model size. Existing model reduction methods that 

combine the sensitivities with respect to parameters and initial concentration of 

species typically follow a two-stage procedure. The first stage involves the removal of 

species using information from the initial condition sensitivities (i.e. the GFM 

coefficients with  = 0) or other methods such as the DRGEP, which is then followed 

by the elimination of reactions using the traditional PSA, PCA (principal component 

analysis), or CSP methods [178, 191]. The transition between the first and second 

stage is usually not known a priori, and a user specification, for example on the 

reduced model error, is required (e.g. remove species until before the model reduction 

error exceeds the specification, then continue with the removal of reactions) [178]. To 

become fully automated, the proposed algorithms here rely on the Pareto optimization 

of model reduction, using criteria such as the extent and the error of model reduction. 
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Figure 7.2. Top – Down (TD) and Bottom – Up (BU) algorithms. Abscissa represents species 
sensitivity rankings (low to high) and ordinate represents parameter rankings (low to high). 
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In these algorithms, the parameter and species perturbation sensitivities are 

combined to produce new ways to rank reactions. In particular, new rankings are 

generated by first creating a 2-dimensional plot of the permuted stoichiometric matrix, 

where the rows and columns are sorted according to the GFM and iPSA sensitivity 

metrics, respectively, from low to high (see Figure 7.2). For each reaction (or 

parameter), the maximum distance to the origin (lower left corner) or the minimum 

distance to the highest sensitivity rank (upper right corner) are computed, from which 

combined reaction rankings and algorithms for obtaining reduced order models are 

developed (see Algorithms 1 and 2 in Section 7.2.3.1 and 7.2.3.2). Alternatively, the 

reaction-wise removal of parameters could also be done sequentially according to the 
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species ranking by the GFM sensitivities (see Algorithm 3 in Section 7.2.3.3). If the 

number of species becomes larger then the number of reactions, it is also possible to 

generate rankings for the importance of chemical species from Figure 7.2. In such a 

case, model reduction could be done in a similar fashion as the three algorithms 

below, except using a species-wise removal. 

7.2.3.1  Algorithm 1 (Top – Down Approach, iPSA-GFM TD) 

In essence, the first algorithm makes use of the ranking obtained from the maximum 

distance to the origin in Figure 7.2(a) to order reactions based on the potential direct 

and indirect error of removing a single reaction. The direct error here is gauged by the 

parametric sensitivities (iPSA), while indirect error is in relation to changes in the 

associated species concentrations and is incorporated by considering the GFM 

sensitivities. In the first algorithm, a top-down model reduction approach was taken 

by removing one reaction at a time, starting from the parameter with the lowest 

maximum distance. In this case, a species can be removed indirectly from the model 

when the respective ODE has a zero right hand side. The best reduced model is 

determined from the Pareto optimal front between the root mean square relative error 

(RMSRE) of and the fraction of remaining reactions in the reduced model. 

7.2.3.2  Algorithm 2 (Bottom – Up Approach, iPSA-GFM BU) 

The second combined sensitivity rankings using the minimum distance to the highest 

sensitivity rank reflects the potential benefit of including a particular reaction. 

Consequently, the second algorithm takes a bottom-up approach, in which reduced 

order models are created by including reactions (and indirectly chemical species) into 

the model. Again, the best reduced order model is determined using the same Pareto 

optimal front as in the first algorithm. 
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7.2.3.3  Algorithm 3 (Sequential Approach, iPSA-GFM SQ) 

In the third algorithm, the reduction is done using sequential Pareto optimizations in a 

sequential manner. Starting from the species with the lowest GFM sensitivity metric, 

a set of reduced order models are generated by removing reactions sequentially 

according to the iPSA sensitivity metrics. The Pareto optimal reduced-order model is 

then determined and this model becomes the starting point for the subsequent 

reduction step using the next species of the GFM ranking. The procedure is repeated 

and the last Pareto optimal model is taken to be the best reduced model. 

7.3  Examples 

The efficacy of the new methods (iPSA, GFM, iPSA-GFM TD, iPSA-GFM BU, and 

iPSA-GFM SQ) are first compared with that of the traditional PSA based model 

reduction by applying these reduction methods to the models of : (i) alkane pyrolysis 

[188], (ii) natural gas combustion (GRI Mech 3.0) [189], and (iii) an industrial ethane 

pyrolysis [60]. The performance criteria of the reduction techniques are based on (i) 

the model reduction error, calculated as the root mean square of the relative error 

(RMSRE) between the reduced and the full model simulation, and (ii) the number of 

reactions remaining, calculated as the fraction of reactions that remain in the reduced 

model. Particularly, the Pareto optimal point of both the performance metrics, i.e. the 

minimum Euclidean distance to the origin, is used in the final comparison. 

7.3.1  Alkane pyrolysis model 

The low-temperature alkane pyrolysis model consists of 38 species and 98 irreversible 

reactions [188]. In the model reduction below, only six species C3H8, H2, CH4, C3H6, 

C2H4 and C2H6 trajectories, as shown in Figure 7.3, were considered as the main 
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Table 7.1: Reduction of Alkane Pyrolysis Model using PSA, iPSA and GFM 

Methods* 
Species 

Remaining 
Reactions 

Remaining 
RMSRE (%) 

Pareto Optimal 
Distance 

(a): Pareto Optimal Model 
iPSA 15 23 11.860 0.263 
PSA 18 33 7.558 0.345 
GFM 29 63 10.822 0.652 

(b): Fixed Reactions (38) 
iPSA 19 35 1.613 0.358 
PSA 21 38 3.181 0.389 
GFM 24 34 76.940 0.844 

(c): Fixed Error (0.5%) 
iPSA 21 43 0.381 0.439 
PSA 24 55 0.469 0.561 
GFM 30 81 0.175 0.827 

* Sorted based on the optimal Pareto distance 

 
Figure 7.3. Low temperature alkane pyrolysis model. Time profiles of C3H8 (×) in the right 
ordinates and H2 (+), CH4 (o), C3H6 (*), C2H4 () and C2H6 () in the left ordinates. The reactions 
are simulated at 817.16K and initiated only with 1.912 x 10-3 mol dm-3 of propane. The simulation 
was carried out for 100 seconds to reach 2% propane conversion, for which the original model was 
validated. 
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model outputs and used in the calculation of sensitivities and model reduction errors. 

The performance of individual model reduction techniques based on the PSA, iPSA 

and GFM are compared in Figure 7.4(a), while Table 7.1(a) summarizes the Pareto 

optimal reduced model from each of these methods (see Table F.1 for more detailed 

results). The PSA and iPSA coefficients were computed with respect to the rate 

constants. By comparing the Pareto optimal distances to the origin in Table 7.1(a), the 
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Figure 7.4. Reduction of low temperature alkane pyrolysis model. (a-b) the Pareto frontiers in 
terms of normalized relative root mean square error and normalized model dimension (number of 
reactions). (a) Pareto frontiers of the PSA (o), iPSA (*) and GFM (+) based individual methods. 
(b) Pareto frontiers of the iPSA (*), iPSA-GFM BU (), iPSA-GFM TD () and iPSA-GFM SW 
(×) based combined methods. 
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model reduction based on the iPSA provided the best balance between model 

reduction error and model dimensionality. Meanwhile, the GFM based reduction 

outperformed the other two methods when the desired number of species was 

specified (see Table F.1(d) for results). Such an advantage is not surprising 

considering that the GFM sensitivities directly relate to the dynamical importance of 

species and thus reflect the impact of removing a chemical species from the model. 

Taken together, the results of the performance comparison above demonstrate the 

benefit of using time-dependent sensitivities over the traditional PSA in model 

reduction. 

The automated reduction algorithms in this example were also compared with 

a manual reduction of the same model, which resulted in a reduced model with 38 

reactions and a relative error of 0.5% [178]. In this case, new Pareto optimal reduced-

order models were obtained from the Pareto frontiers in Figure 7.4(a) by setting an 

upper bound on either the reduction error (0.5%) or the total number of remaining 

reactions (38), as summarized in Table 7.1(b-c). The iPSA model reduction still gave 

a better Pareto optimal distance than the PSA and GFM. Importantly, without any 

user guidance, the iPSA model reduction was able to produce reduced order models 

that are comparable to the reduction done by an expert user [178].    
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Table 7.2:Reduction of Alkane Pyrolysis Model using Combined iPSA and GFM 

Methods* 
Species 

Remaining 
Reactions 

Remaining 
RMSRE (%) 

Pareto Optimal 
Distance 

 (a): Pareto Optimal Model 
iPSA-GFM (SQ) 14 16 15.820 0.227 

iPSA 15 23 11.860 0.263 
iPSA-GFM (BU) 15 23 11.860 0.263 
iPSA-GFM (TD) 15 23 11.860 0.263 

 (b): Fixed Reactions (38) 
iPSA 19 35 1.613 0.358 

iPSA-GFM (BU) 19 35 1.613 0.358 
iPSA-GFM (TD) 19 36 1.777 0.368 
iPSA-GFM (SQ) 17 37 10.160 0.391 

 (c): Fixed Error (0.5%) 
iPSA 21 43 0.381 0.439 

iPSA-GFM (BU) 21 43 0.381 0.439 
iPSA-GFM (TD) 21 43 0.381 0.439 
iPSA-GFM (SQ) 20 54 0.402 0.551 
* Sorted based on the optimal Pareto distance 

The performances of the three combined reduction methods were subsequently 

evaluated against that of the iPSA reduction, as illustrated by the Pareto frontiers in 

Figure 7.4(b). Table 7.2 suggests that the combined methods generally perform as 

well as or better than the iPSA model reduction and that the sequential approach 

(iPSA-GFM SQ) approach gives the best Pareto optimal model reduction (also see 

Table F.1 for more detailed comparison). Thus, the use of combined dynamical 

information from the iPSA and GFM sensitivities can provide some advantage over 

using individual sensitivities, but off course at the cost of increased computational 

effort. 

7.3.2  Natural gas combustion – GRI-Mech 3.0 

The GRI-Mech 3.0 is a detailed kinetic model of isobaric-isothermal natural gas 

combustion with NO formation and reburn chemistry [189]. The model has 53 species 

and 650 irreversible (or 325 reversible) reactions. In this case, the reduction was done 

to obtain a reduced order kinetic model for NO emission during methane oxidation at 
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Figure 7.5. Isobaric-Isothermal natural gas combustion (GRI Mech 3.0) model. Simulation of 
Nitrogen – N2 (×), NO (+), HCN (o), HNCO (*) and NH3 () profiles at 1300K and 1atm with a 
feed mixture of CH4, C2H6, O2, NO, H2O and N2, of 2864 ppm, 5090 ppm, 947 ppm, 2.16%, 
96.92%, respectively. The simulation was run until CH4 was exhausted (0.8 seconds). 
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Figure 7.6. Reduction of isobaric-isothermal natural gas combustion (GRI Mech 3.0) model. 
(a-b) the Pareto frontiers in terms of normalized relative root mean square error and normalized 
model dimension (number of reactions). (a) Pareto frontiers of the PSA (o), iPSA (*) and GFM (+) 
based individual methods. (b) Pareto frontiers of the iPSA (*), iPSA-GFM BU (), iPSA-GFM TD 
() and iPSA-GFM SQ (×) based combined methods. 
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a constant pressure and temperature. Nitrogen containing species, including NO, 

HNCO, HCN, N2 and NH3 were here considered as the main products, whose time 

trajectories are shown in. Figure 7.5. The PSA and iPSA sensitivities were computed 

with respect to the rate constants. 

Figure 7.6 shows the Pareto frontiers from each model reduction algorithm 

based on the sensitivities of the five nitrogen containing chemical species mentioned 

above, while Table 7.3 summarizes the Pareto optimal reduced order model from each 

method (see Table F.2 for more detailed results).  Again, the iPSA reduction 
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Table 7.3: Model Reduction of Natural Gas Combustion - GRI Mech 3.0 Model  

Methods* 
Species 

Remaining 
Reactions 

Remaining 
RMSRE (%) 

Pareto Optimal 
Distance 

iPSA-GFM (SQ) 39 129 22.462 0.300 
iPSA 49 253 20.074 0.438 

iPSA-GFM (BU) 49 253 20.074 0.438 
iPSA-GFM (TD) 49 253 20.074 0.438 

PSA 51 329 18.332 0.538 
GFM 3 1 74.161 0.742 

* Sorted based on the optimal Pareto distance 

 
Figure 7.7. Industrial steam cracking of ethane at steady state in a PFR. (a) Concentration 
profiles of C2H4 (/×), C2H6 (--/o), CH4 (·/) and H2 (···/) in the left y-axis and C3H6 
(·/*) and C2H2  (···/) in the right y-axis, (b) Temperature (/×) profile in left y-axis and 
the pressure  (--/o) profile in the right y-axis, as predicted by the full model (lines) and the 
reduced model (symbols) at steady state along the length of the PFR. Model simulations were 
performed at steady state in a PFR of length 100 m and cross-section 0.009161 m2, with an inlet 
feed mixture consisting of 21.53 moles of C2H6, 0.22 moles of C2H4 and 0.18 moles of C3H6, at 
1000K and 3atm. The end of reactor length corresponds to 60% conversion of C2H6. 
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performed better than the PSA and GFM based methods and the combined methods 

had a slight advantage over the iPSA alone. Likewise, the combined sequential 

approach (iPSA-GFM SQ) gave the best overall reduced order model (i.e., the one 

with the smallest Pareto optimal distance).   

7.3.3  Ab initio kinetic model of industrial ethane pyrolysis 

In a recent publication, Sun and Sayes proposed a first-principle kinetic model of an 

industrial steam cracking of ethane [60]. The reaction network consists of 20 chemical 

species with 10 intermediate radicals and 150 irreversible elementary reactions. In this 

case, heavy hydrocarbons larger than C4 have been neglected. Thermodynamic and 

kinetic parameters of the reactions were obtained from first principle calculations. The 
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Table 7.4: Reduction of Ethane Cracking Model 

Methods* 
Species 

Remaining 
Reactions 

Remaining 
RMSRE (%) 

Pareto Optimal 
Distance 

(a): Pareto Optimal Model 
iPSA-GFM (SW) 11 15 17.532 0.202 

iPSA 19 36 10.140 0.261 
iPSA-GFM (BU) 19 36 10.140 0.261 
iPSA-GFM (TD) 19 36 10.140 0.261 

PSA 19 28 18.308 0.261 
GFM 18 46 40.411 0.507 

(b): Fixed Error (1%) 
iPSA 20 67 0.838 0.447 

iPSA-GFM (BU) 20 67 0.838 0.447 
iPSA-GFM (TD) 20 67 0.838 0.447 

PSA 20 79 0.413 0.527 
iPSA-GFM (SW) 20 134 0.887 0.893 

GFM 20 150 0.000 1.000 
* Sorted based on optimum Pareto distance 

model prediction of C2H6, C2H4 and H2 yields were within 5% deviation of the 

experimental data generated from a plug flow reactor (PFR) at steady state [60].  

In this example, reduced order kinetic models of the ethane pyrolysis process 

were obtained based on the sensitivities of six chemical species of interest: C2H6, 

C2H4, C3H6, CH4, H2 and C2H2, at steady state along the length of the PFR, whose 

concentrations are shown in Figure 7.7(a). The iPSA and PSA coefficients were 

computed with respect to perturbations in the pre-exponential factors of the rate 

constants. The iPSA-GFM SQ algorithm again gave the best Pareto optimal reduced 

order model, as shown in Table 7.4a. However, if the RMSRE among the six species 

mentioned above was desired to be less than 1%, the iPSA method gave the best 

Pareto optimal model (see Table 7.4b), reducing the full model from 150 reactions to 

67 reactions, with a RMSRE of only 0.838% . Table 7.5 further shows the percent 

removal of reactions associated with each species in the reduced model. Importantly, 

the model reduction reveals that reactions involving higher carbons, such as C4H10, 

C3H8, C4H9 radicals can be removed without much change in the model prediction 

(see Table F.3 for more detailed list). As demonstrated in Figure 7.7, the iPSA 
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Table 7.5: Reduction of Ethane Cracking Model 
Species Name* Before Reduction After Reduction % Reduction 

C4H10  40 5 87.50 
C3H8 38 7 81.58 
·C4H9 24 5 79.17 
CH4  20 5 75.00 

·C4H7 24 6 75.00 
C4H8 28 7 75.00 
·C3H7 26 7 73.08 

·2-C3H7 22 8 63.64 
·2-C4H9 24 9 62.50 

·CH3 36 16 55.56 
H2  20 9 55.00 

C4H6 4 2 50.00 
·H 52 27 48.08 

·C2H3 30 17 43.33 
C2H4 28 18 35.71 
·C2H5 30 20 33.33 
·C3H5 24 16 33.33 
C3H6  28 19 32.14 
C2H6  22 15 31.82 
C2H2  4 4 0.00 

* Sorted based on percentage change 

reduced model is able to recapitulate the concentration profiles of the product species 

as well as the temperature and pressure profiles along the reactor length, at steady 

state. 

7.4  Summary 

Reduced order models of complex chemical kinetics are often desired for many 

reasons. While the traditional sensitivity analysis has been commonly used for this 

purpose, the reduction often requires supervision from experts to produce a good 

reduced order model. In this chapter, five automated model reduction algorithms are 

introduced based on previously developed time-varying species or impulse parametric 

perturbation sensitivities, named as the GFM and the iPSA sensitivity coefficients, as 

seen in Chapters 3 and 4, respectively. The use of impulse and species perturbations 

provided direct dynamical information regarding the degree and timing of the 
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importance of reactions and species, which was not straightforwardly available from 

the traditional PSA. Applications to three large kinetic models, including the GRI 

Mech 3.0 with 650 reactions, demonstrated the advantage of using impulse and 

species sensitivities for model reduction over the classical PSA. In general, the Pareto 

optimal reduction performance can be achieved by combining both parameter and 

species perturbation sensitivities using the iPSA-GFM SQ method. However, when a 

small relative reduction error is desired, the iPSA based reduction method usually 

produces the smallest model dimension. For example, the application of the iPSA 

reduction on a model of industrial ethane pyrolysis led to a reduction from 150 to 67 

reactions with a relative error of <1%. 
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CHAPTER 8_____________________ 

8  Thesis Outlook 

Synopsis: 

This chapter summarizes the major outcomes of the present dissertation 

and discusses the implications for future research. In particular, the needs 

for dynamic sensitivity analyses are explained and the specific 

contributions of this dissertation to meet this need are presented. In 

addition, this chapter also presents the major applications and discusses 

the limitations of the sensitivity analyses presented here. Finally, future 

directions, in both theoretical and application areas, for the improvement 

of the current dynamic sensitivity analyses are presented. 
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8.1  Dynamical Sensitivity Analyses of Kinetic 

Models in Biology 

8.1.1  Motivation 

Through millennia of evolution, cells have developed intricate networks of signaling, 

gene regulation, and metabolism to accomplish their myriad functions under 

significant intrinsic and extrinsic uncertainties. Reductionist approach in the genomic 

era has uncovered significant amount of information about the cellular components 

and their interactions in these networks. However, as seen in Chapter 1, post genomic 

era has given rise to new set of challenges, such as in understanding how a cellular 

behaviour or function is accomplished by large complex networks. These challenges 

are addressed using system level understanding of biology, in which quantitative 

(mathematical) representations of cellular networks are constructed and then analyzed 

to discover the basis of cellular phenotypes, to predict the effect of network changes 

on cellular behavior, and to ultimately design networks with new and desired 

properties and functions. 

As shown in Section 1.2.1, there exist many modeling paradigms and as many, 

if not more, systems analysis tools that can be used to understand the underlying 

cellular mechanisms. Each of these methods has their own advantages and limitations. 

In order to ascertain the importance and role of various cellular processes, most of 

these methods investigate the effects of perturbations on model parameters and/or on 

system inputs in the system output behaviour. As these methods focus solely on 

model parameters, including initial conditions, its suitability to understand the 

dynamical aspects of cellular regulation has not been addressed to date. As seen in 
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Section 2.2, with a rigorous theoretical formalism and a synthetic network model, this 

dissertation shows the caveat of using classical sensitivity analysis in obtaining the 

mechanistic understanding of a dynamical system. The reason mainly stems from the 

fact that the perturbations effected are on system parameters that have no dynamics 

and are static, i.e., introduced only at the initial time point. Hence, providing the time 

integrated effect of perturbation-output relationship. Therefore, a dynamic 

perturbation framework is needed to understand the underlying mechanisms, which 

gives rise to the observed system behavior. 

8.1.2  Sensitivity analyses 

To avoid the above said caveat of the classical PSA in understanding system 

dynamics, this dissertation presents four novel dynamic sensitivity analyses. These 

analyses are the Green’s function matrix (GFM) analysis, the impulse parametric 

sensitivity analysis (iPSA), the pathway parametric sensitivity analysis (pathPSA) and 

for cellular population models, the molecular density perturbation (MDP) analysis. 

While the GFM analysis, iPSA and pathPSA are used to study deterministic ODE 

models, MDP analysis is applied to understand the dynamics of probabilistic models 

in systems biology. However, irrespective of the modeling paradigms, these analyses 

are built on a cause-effect relationship, in which time-varying perturbations are 

introduced to a system parameter and the resulting change in output behavior is 

measured. Based on the resulting perturbation-effect ratio, these sensitivity 

coefficients offers step-by-step dynamical insights on the functional regulations and in 

some cases signal propagation in the cellular network. 
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Specifically, the GFM analysis (Chapter 3) and iPSA (Chapter 4) dynamically 

perturb the molecular concentrations and system parameters, respectively. In contrast 

to the perturbations in the GFM analysis, the iPSA makes use of impulse 

perturbations to produce the necessary information. Based on the resulting sensitivity 

coefficients, the dynamical state-by-state and parameter-by-parameter dependence of 

system behaviour are mapped out. On the other hand, the pathPSA (Chapter 5) 

decomposes system structure into functional pathways and introduces time-varying 

dynamic perturbations on the pathways. Analogous to the GFM analysis for ODE 

models, the MDP analysis (seen in Chapter 6) introduces time-varying perturbations 

on the molecular density functions of probabilistic models, revealing the dynamical 

state dependence of system behavior under uncertainty. Not only the analyses reveal 

which states, parameters or pathways are critical, the dynamic sensitivities presented 

in this dissertation also indicate when they become important.  

The efficacies of these analyses are demonstrated through ODE and 

population models of synthetic networks and apoptotic cell death. The analyses 

presented above can guide the drug discovery efforts in the identification of potential 

drug targets, the understanding of drug efficacy and specificity, in understanding the 

mechanism of drug action and in the optimization of drug dosing and timing. The 

development of these methods represents a concrete step towards robustness-based 

drug design through systems biology. 

8.1.3  Model reduction 

In the above said examples, dynamic sensitivities are used to obtain the step-by-step 

mechanistic insights and to identify the important states, parameters or pathways, 

which give rise to the observed system behavior. Other than understanding system 
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dynamics and robustness-fragility, dynamic sensitivities are also used in many 

applications in systems biology, ranging from model reduction/refinement to model 

validation/analysis and the design of experiments. One application of the dynamic 

sensitivities for dimensionality reduction of large reaction kinetic models is presented 

in Chapter 7. Here, five automated model reduction algorithms are introduced based 

on previously developed the GFM and iPSA sensitivities. The use of species and 

impulse perturbations provides direct dynamical information regarding the degree and 

timing of the importance of species and reactions, which are not available from the 

classical PSA. In addition, a better reduction performance could be achieved by 

combining both parameter and species perturbation sensitivities.  

8.1.4  Contributions 

The specific contributions of this dissertation include: 

1. an illustration of the caveat of using classical PSA to understand the system 

dynamics and to obtain the mechanistic details of dynamic ODE models of 

biological systems. 

2. three novel dynamic sensitivity analysis methods based on perturbations on 

molecular concentrations (GFM), system parameters (iPSA), and system 

structure (pathPSA), for analyzing the dynamics of deterministic ODE models 

in systems biology. 

3. a novel dynamic sensitivity analysis method based on perturbations on 

molecular density functions to analyze the dynamics of cellular population 

models in systems biology. 

4. five new reduction algorithms based on dynamic GFM and iPSA sensitivities 

to reduce models of detailed chemical kinetics.  
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8.1.5  Advantages and limitations 

8.1.5.1  Sensitivity analyses for deterministic models  

Results of the dynamic sensitivities used to analyse ODE models, i.e., GFM, iPSA 

and pathPSA, depend on the choice of the model parameters as well as the initial 

conditions. That is, these analyses introduce infinitesimal perturbations around a fixed 

(nominal value) local point of the system. Hence provide only with the local linear 

information about the cellular network at a given operating conditions. To account for 

cellular and parametric uncertainty, multiple local dynamic sensitivity analysis can be 

performed along the system trajectory. Such global analysis should consider a region 

in the parameter or initial state space and improves upon the local analysis that 

focuses only at one choice of parameter set or initial conditions. 

 

Computational Efficiency: As seen from Sections 4.2 and 5.2, both iPSA and 

pathPSA coefficients are calculated from the GFM coefficients by simple matrix 

multiplication with the non-homogeneous terms, which is computationally 

inexpensive. Therefore, the major computational efforts of all the local methods are 

based on the calculation of GFM. From Section 3.2, calculation of GFM coefficients 

for different 's is computationally inexpensive by taking advantage of the semigroup 

property. In this case, one only needs to solve for the GFM coefficients for one time 

step   from each k, while the remaining GFM for different (t,) pairs are calculated 

using simple, inexpensive matrix multiplications. Therefore, all the local methods are 

computationally efficient. For example, the application of dynamic sensitivities to the 

Fas-induced apoptosis model with 28 species and 32 reversible reactions took less 
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than 10 minutes using a computer workstation with dual-core CPU (Intel 6300 @ 

1.86GHz) and 3GB RAM. 

 

Scalability: Most of the systems in biology are modularized and hence for such 

modular systems, all the local dynamic sensitivity analyses presented in this thesis are 

scalable. Since all the local dynamic sensitivities are based on GFM and in turn as 

seen from Section 3.2 that the GFM analysis of the overall network can be 

reconstructed from the analysis of individual subsystems, the local dynamic 

sensitivities of the systems are scalable. Unfortunately, if there exist any feedback 

mechanisms from downstream molecules, forming loops, such scalability are no 

longer possible. 

8.1.5.2  Sensitivity analysis for probabilistic models 

In comparison to the local methods, the MDP analysis presented in Chapter 6 is a 

global analysis method. The result from such global analysis should not depend upon 

the nominal values of the system as the states or parameters of the system are 

considered as random variables, described by probability density functions (e.g. 

uniform or Gaussian).  

 

Variability of Metrics: The sensitivity metrics in the MDP analysis, like any other 

Monte Carlo methods, are affected by noise due to the use of finite samples in 

approximating the probability density function. As seen in Section 6.4.1, even though 

this variability is prominently seen in the absolute values of the global sensitivity 

coefficients, the importance ranking is preserved and hence the end conclusion from 

such ranking is still reliable.  
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Computational efficiency: As seen in Section 6.2, solving global methods requires 

simulating the ODE model in (1.2) a large number of times. For example, for an 

uncertain system of n states with s sample size and t time points, the MDP analysis for 

a single output state requires 2×n×t×s evaluations of the nominal model. Hence, the 

numerical calculations of global sensitivity coefficients are computationally 

expensive. For the TRAIL-induced apoptosis model presented in Section 6.3.3 with 

52 molecular species and 70 parameters, the MDP analysis with 1000 samples and for 

100 time points took roughly 52 hours using MATLAB distributed computing engine 

with 16 computing nodes, each having a single core CPU (Intel 6300 @ 1.86GHz) 

and 1GB of RAM. 

 

Higher order sensitivities: Both the local and global analyses presented in this 

dissertation are first order sensitivities. i.e., the perturbations on system states, 

parameters or pathways are effected one at a time (OAT). Second and higher order 

sensitivities will involve simultaneous perturbations on states or parameters. Even 

though the higher order extensions of the current dynamic sensitivities are possible, 

they are less commonly computed and hence the focus of the current work is only on 

the first-order sensitivities and the higher order sensitivities are of future interest. 

Nevertheless, the pathPSA can analogously be compared to multi-perturbation 

approach, since perturbing a single pathway means perturbing multiple reactions 

simultaneously. 

8.2  Recommendations for Future Work 

Following the developments and observations made during the course of this research 

work, recommendations for future work, both in the area of theoretical development 



Thanneer Malai Perumal 144

and application of the existing methods, are shown in Figure 8.1 and are outlined 

below. 

 

Theoretical development: The immediate development in the current theoretical 

framework is to extend the local iPSA and pathPSA to account for cellular variability, 

i.e. translating these into global analysis. The resulting global analysis can mimic the 

MDP analysis in the way perturbations are introduced on the system (i.e. instead of 

molecular perturbations, the analyses will introduce pulse perturbations on the 

parametric distributions).  

Though the dynamic sensitivities presented here investigates only the first 

order sensitivities (one at a time), second and higher order sensitivity (combinatorial 

perturbation) approach is of future interest. Such an approach is definitely expected to 

shed more light on the underlying system mechanisms which gives rise to the 

observed behaviour. The only problem that can be immediately foreseen is the high 

computational cost in doing such calculations.  

 

Existence of summation theorem: As seen in Chapter 3, there exist similarities 

between the local dynamic sensitivities (the GFM, iPSA and pathPSA) and the 

metabolic control coefficients. Mathematically, the metabolic control coefficients are 

equivalent to the classical PSA. Hence, the difference between control coefficients 

and local dynamic sensitivities are the same as with the classical PSA coefficients. It 

has already been shown in Section 3.4.2 that the summation theorem of control 

analysis does not generalize to the GFM analysis, whereas, the possibility of such a 

summation theorem for iPSA and pathPSA is of greater interest to purse in the near 
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future. One such summation theorem is expected to shed lights on the underlying 

biological principles. 

 

Mathematical accuracy and Computational efficiency: Even though the calculations 

of local dynamic sensitivities (the GFM, iPSA and pathPSA) presented in Chapters 3-

5 are computationally efficient and scalable, they are mathematically inaccurate. The 

reason stems from the fact that the local dynamic sensitivities are now solved as 

ODEs with continuous observation time t and a discrete perturbation time . To avoid 

this discretization a partial differential equation (PDE) implementation of local 

dynamic sensitivities is of future interest.  

The present calculation of MDP sensitivities shows lot of variability and also 

computationally expensive to calculate. Hence, a future development in this area 

could aim to reduce both variability and computational cost. The possible approach 

ranges from formulating rigorous sensitivity metrics to choosing a good sampling 

strategy and normalisation procedure. 

 

Applications of dynamic sensitivities: As seen in Chapter 7, one of the applications of 

local dynamic sensitivities is for model reduction. Hence, using the pathPSA and 

MDP analysis to reduce kinetic models is an obvious extension. In addition, another 

potential application of these dynamic analyses is in the area of design of experiments 

and in identifiability analysis. Using dynamic sensitivities is expected to give more 

information for experimental design and parameter identifiability. 
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Figure 8.1. Thesis outlook and future work. This figure highlights different methods developed in the current dissertation and some of their applications. It also 
summarizes the breath and depth of the current research. In addition, possible extension of the current works are mentioned (highlighted in brown color) 
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Appendix A 

A.1 Simple Network Model 

Table A.1 - Simple Network Model 
Solvers ODE15S of MATLAB/CVODE 

Solver Settings AbsTol = RelTol = 1e-12 
Initial Conditions Rate Constants 

x1 1 kf1 0.06 
x2 0 kv2 1 
x3 1 kk2 2 
x4 1 kv3 1 
x5 0 kk3 2 
x6 0 kv4 1 
  kk4 2 

Reaction Number Rate Equation 
r1 kf1*x1 
r2 kv2*x2*x4/(kk2+x4) 
r3 kv3*x2*x3/(kk3+x3) 
r4 kv4*x5*x4/(kk4+x4) 

Differential Equations
dx1/dt -r1 
dx2/dt +r1 
dx3/dt -r3 
dx4/dt -r2 –r4 
dx5/dt +r3 
dx6/dt +r2+r4 
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Appendix B 

B.1 Common Network Motifs 

B.1.1 Perfectly Adapted Signal-Response Model 

Table B.1 – Perfectly adapted signal-response model 
Solvers ODE15S of MATLAB 

Solver Settings AbsTol = RelTol = 1e-12 
Initial Conditions Value (arbitrary units) 

R 1.00 
X 0.00 

Parameter Name Value (arbitrary units) 
k1 2.00 
k2 2.00 
k3 1.00 
k4 1.00 

Differential Equations
d[R]/dt k1*S-k2*X*R; 
d[X]/dt k3*S-k4*X; 

 

B.1.2 Mutual Activation Model 

Table B.2 – Mutual activation model 
Solvers ODE15S of MATLAB 

Solver Settings AbsTol = RelTol = 1e-12 
Initial Conditions Value (arbitrary units) 

R 0.50 
EP 0.50 

Parameter Name Value (arbitrary units) 
k0 0.40 
k1 0.01 
k2 1.00 
k3 1.00 
k4 0.20 
J3 0.05 
J4 0.05 

Differential Equations 
d[R]/dt k0*EP+k1*S-k2*X*R 

[EP] G(k3*R,k4,J3,J4) 
G(u,v,J,K) 2*u*K/(v-u+v*J+u*K+sqrt((v-u+v*J+u*K)^2-4*(v-u)*u*K))
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B.1.3 Negative Feedback Oscillator Model 

Table B.3 – Negative Feedback Oscillator model 
Solvers ODE15S of MATLAB 

Solver Settings AbsTol = RelTol = 1e-12 
Initial Conditions Value (arbitrary units) 

X 5.4504 
YP 0.7990 
RP 0.0435 

Parameter Name Value (arbitrary units) 
k0 0.00 
k1 1.00 
k2 0.01 

k2P 10.00 
k3 0.10 
k4 0.20 
k5 0.10 
k6 0.05 

Km3 0.01 
Km4 0.01 
Km5 0.01 
Km6 0.01 

Differential Equations 
d[X]/dt k0+k1*S-k2*X-k2P*RP*X; 

d[YP]/dt (k3*X*(1-YP)/(Km3+1-YP))-(k4*YP/(Km4+YP)); 
d[RP]/dt (k5*YP*(1-RP)/(Km5+1-RP))-(k6*RP/(Km6+RP)); 

 

B.2 FasL-induced Cell Death Model of Human Jurkat 

Cells 

Table B.4 –FasL-induced cell death model 
Solvers ODE15S of MATLAB/CVODE 

Solver Settings AbsTol = RelTol = 1e-12 
State Name Initial Condition (nM) 

Fas 16.67 
ProCaspase 8 33.33 

DISC 0.00 
DISC:Casp8 0.00 
Caspase-8 0.00 

ProCaspase-3 200.00 
Casp-8:Casp-3 0.00 

Caspase-3 0.00 
Bcl-2 75.00 
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Bcl-2:Mito 0.00 
Mitochondria 83.06 

Caspase-8:Mitochondria 0.00 
Activated Mitochondria 0.00 

Apoptosome 16.61 
Activated Apoptosome 0.00 

Activated Apoptosome:Caspase-3 0.00 
Smac 100.00 

Activated Smac 0.00 
XIAP 30.00 

Apoptosome:XIAP 0.00 
Activated Smac:XIAP 0.00 

Caspase-3:XIAP 0.00 
Caspase-3:Caspase-6 0.00 

Caspase-6 0.00 
Caspase-6:Caspase-8 0.00 

ProCaspase-6 10.00 
FLIP 8.00 

DISC:Flip 0.00 
FasLigand 2.00 

Parameter Name Value 
P1_f 0.0101 
P1_r 0.896 
P2_f 0.00889 
P2_r 0.785 
P3_k 0.0294 
P4_f 0.000438 
P4_r 0.788 
P5_k 0.0225 
P8_f 0.0662 
P8_r 0.00526 
P9_f 1.00E-05 
P9_r 0.767 

P11_k 0.0168 
P12_k 0.00182 
P13_f 0.00844 
P13_r 0.591 
P14_k 0.0125 
P15_f 0.0903 
P15_r 0.0102 
P16_r 0.00132 
P18_f 1.08E-05 
P18_r 0.537 
P19_k 0.00197 
P20_f 0.0268 
P20_r 0.467 
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P21_k 0.00531 
P22_f 0.0799 
P22_r 1.00E-06 
P16_f 0.007 
P17_f 0.0025 
P17_r 0.0024 
P10_k 0.0225 

Rate Equations 
r1_f P1_f*FasL*FADD; 
r1_r P1_r*DISC; 
r2_f P2_f*Casp8*DISC; 
r2_r P2_r*Casp8_DISC; 
r3_k P3_k*Casp8_DISC; 
r4_f P4_f*Casp8_act*Casp3; 
r4_r P4_r*Casp3_Casp8_act; 
r5_k P5_k*Casp3_Casp8_act; 
r8_f P8_f*Bcl2*Mit; 
r8_r P8_r*Bcl2_Mit; 
r9_f P9_f*Casp8_act*Mit; 
r9_r P9_r*Mit_Casp8_act; 

r10_k P10_k*Mit_Casp8_act; 
r11_k P11_k*Apopt*Mit_act; 
r12_k P12_k*Smac*Mit_act; 
r13_f P13_f*Apopt_act*Casp3; 
r13_r P13_r*Casp3_Apopt_act; 
r14_k P14_k*Casp3_Apopt_act; 
r15_f P15_f*Apopt*XIAP; 
r15_r P15_r*XIAP_Apopt; 
r16_f P16_f*XIAP*Smac_act; 
r16_r P16_r*XIAP_Smac; 
r17_f P17_f*XIAP*Casp3_act; 
r17_r P17_r*XIAP_Casp3_act; 
r18_f P18_f*Casp3_act*Casp6; 
r18_r P18_r*Casp6_Casp3_act; 
r19_k P19_k*Casp6_Casp3_act; 
r20_f P20_f*Casp8*Casp6_act; 
r20_r P20_r*Casp8_Casp6_act; 
r21_k P21_k*Casp8_Casp6_act; 
r22_f P22_f*DISC*Flip; 
r22_r P22_r*Flip_DISC; 

Differential Equations
d[FADD]/dt r1_r - r1_f 
d[Casp8]/dt r20_r - r20_f - r2_f + r2_r 
d[DISC]/dt r1_f - r1_r - r22_f + r22_r - r2_f + r2_r + r3_k 
d[Casp8_DISC]/dt r2_f - r2_r - r3_k 
d[Casp8_act]/dt r10_k + r21_k + r3_k - r4_f + r4_r + r5_k - r9_f + r9_r 
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d[Casp3]/dt r13_r - r13_f - r4_f + r4_r 
d[Casp3_Casp8_act]/dt r4_f - r4_r - r5_k 
d[Casp3_act]/dt r14_k - r17_f + r17_r - r18_f + r18_r + r19_k + r5_k 
d[Bcl2]/dt r8_r - r8_f 
d[Bcl2_Mit]/dt r8_f - r8_r 
d[Mit]/dt r8_r - r8_f - r9_f + r9_r 
d[Mit_Casp8_act]/dt r9_f - r10_k - r9_r 
d[Mit_act]/dt r10_k 
d[Apopt]/dt r15_r - r15_f - r11_k 
d[Apopt_act]/dt r11_k - r13_f + r13_r + r14_k 
d[Casp3_Apopt_act]/dt r13_f - r13_r - r14_k 
d[Smac]/dt 0-r12_k 
d[Smac_act]/dt r12_k - r16_f + r16_r 
d[XIAP]/dt r15_r - r15_f - r16_f + r16_r - r17_f + r17_r 
d[XIAP_Apopt]/dt r15_f - r15_r 
d[XIAP_Smac]/dt r16_f - r16_r 
d[XIAP_Casp3_act]/dt r17_f - r17_r 
d[Casp6_Casp3_act]/dt r18_f - r18_r - r19_k 
d[Casp6_act]/dt r19_k - r20_f + r20_r + r21_k 
d[Casp8_Casp6_act]/dt r20_f - r20_r - r21_k 
d[Casp6]/dt r18_r - r18_f 
d[Flip]/dt r22_r - r22_f 
d[Flip_DISC]/dt r22_f - r22_r 

 

B.3 Clustering Method 

To better track the signal propagation through the network, the nodes are clustered 

according to the cosine distance drs between two time-vectors mS  and nS , as follows 

    
1 1

2 21 /T T T
rs m n m m n nd S S S S S S

 
  
 

       (H.1) 

where      , 1 , 2 ,, , ,
Tx x x

m m j m j m j NS dS t dt dS t dt dS t dt     
  for an impulse 

signal starting from xj at time  and N is the total number of time points. As the name 

suggests, the cosine distance measures the cosine of angle between the vectors, and 

hence vectors with similar distance values appear together. Finally, the clusters are 

then sorted according to the timing of the first measurable signal.  
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B.4 Appendix Figures 

 

 
Figure B.1. The heat maps represent the GFM coefficients of output response EP with respect to the 

perturbations on different molecules in the network,   jEP x  . For comparison, each heat map is 

scaled accordingly to have values between -1 and 1 by the scaling factor reported in the lower right 
corner of the plot. 
  

 
Figure B.2. Bargraph showing parametric sensitivity indices of activated caspase 3 with respect to all 

kinetic parameters sorted according to their maximum values over the entire simulation time ( 0 – 
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10000s). Parameter numbers corresponds to the reaction numbers as shown in Figure 3.5. The right 

ordinate represents the time at which these maximum occurs. 

 

 
Figure B.3. Bargraph showing absolute value of parametric sensitivity indices of activated caspase3 

with respect to kinetic parameters at the switching time (t = 6080.4 s). Parameter numbers corresponds 

to the reaction numbers as shown in Figure 3.5. 

 

 
Figure B.4. The heat map represents the GFM coefficient of caspase-3 active level with respect to 

perturbations on Bcl-2 in the network.  
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Figure B.5. Complete Signal Progression of FasL Impulse through the Programmed Cell Death 
Network (detailed version along with the complexes). The signal progression is quantified under zero 
FasL background. The values are again scaled between -1 and 1 and the scaling factors are listed as the 
right ordinate.  
 

 
Figure B.6. Overexpression of procaspase-8 and Bcl-2 reroutes the apoptosis regulation through the 

type-I pathway. The procaspase-8 and Bcl-2 level is increased by 6 and 10 folds, respectively.  The 

shift to the type-I regulation is evident from the heat map of caspase-8:caspase-3 complex, a type-I 
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molecule. The peak sensitivity of the complex now coincides with the activation time of caspase-3. A 

complete pathway analysis is given in Figure B.7. 

 

Figure B.7. Greens Function Matrix (GFM) Analysis of Caspase-3 Activation by FasL Stimulus for 

upregulated pathway. The heat maps represent the GFM coefficients of caspase-3 active level with 

respect to the perturbations on different molecules in the network,  caspase-3 jx  . Each heat 

map is scaled accordingly to have values between -1 and 1 by the scaling factor reported in the lower 

right corner of the plot. The red arrows illustrate the type-I regulation of caspase-3 activation, while the 

blue arrows show the type-II mitochondrial-pathway. The analysis showed that the upstream molecules 

(Fas, DISC, pro- and caspase-8) constituted the early responders to FasL stimulus, as seen in the 

localization of high sensitivities around low  values. During the caspase-3 switch (1000 – 4000 

seconds), the type-I molecule (caspase8:caspase3 complex) were directly implicated to be the key 

regulators by the (diagonal) location and magnitude of the peak sensitivities. On the other hand, the 

type-II pathway has very less contribution to the late activation of caspase-3, which was again 

illustrated by the location of the peak sensitivities and their maximum values.  
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Appendix C  

C.1 Appendix Figures 

 
Figure C.1. Impulse Parametric Sensitivity Analysis (iPSA) of x6 activation in response to x1 
stimulus at switching time (t = 7.12). (a) kf1(+), (b) kv2(+) and kk2(x), (c) kv3(+) and kk3(x), (d) 
kv4(+) and kk4(x) 
 

 
Figure C.2. Impulse Parametric Sensitivity Analysis (iPSA) of x6 activation in response to x1 
stimulus. Each heat map illustrates the iPSA coefficient of active x6 level with respect to perturbations 
on one parameter in the network, indicated in the title. The x-axis gives the time at which impulse 
perturbation is applied to the parameter, while the y-axis indicates the observation time of x6(t). For 
comparison purpose, each plot is scaled to have values between -1 and +1 by the scaling factor reported 
in the abscissa. The plots are arranged in the decreasing order of their scaling factors (left to right, top 
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to bottom). The heat map suggests that: (a) the early response to the stimulus depends on kf1, as 
indicated by the large sensitivity peak near the y-axis (early perturbation is important and the impact is 
delayed); (b) the early activation of x6 depends on kv2 and kk2, as indicated by the sensitivity peaks 
along the diagonal (little or no delay in between perturbation and impact) during initial times; (c) the 
activation depends mainly on kv4 and kk4, as indicated by the peaks along the diagonal during the 
switching time; and finally (d) kv3 and kk3 control the intermediates, as the peaks lie in between the y-
axis and the diagonal.  
 

 
Figure C.3. Local Parametric Sensitivity Analysis of caspase-3 activation under a constant FasL 
stimulus. (a-c) The bar graphs represent consolidated sensitivity metrics of caspase-3: infinite norm, 
Fisher Information Matrix (FIM), time integrated sensitivity coefficients, respectively, with respect to 
the parameters indicated on the y-axis. (d) The PSA coefficients of caspase-3 magnitudes with respect 
to the same parameters at switching time (t=6060s). The parameter numbers refer to the reactions as 
shown in Figure 3.6, where the subscripts f and r denote forward and backward rate constants for 
reversible reactions and k denotes the rate constants for irreversible reactions. 
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Figure C.4. Impulse Parametric Sensitivity Analysis (iPSA) of caspase-3 activation by a constant 
FasL (2nM) stimulus. Each heatmap illustrates the iPSA coefficient of active caspase-3 level with 
respect to perturbations on one parameter in the network, indicated in the title. The x-axis gives the 
time at which impulse perturbation is applied to the parameter, while the y-axis indicates the 
observation time of caspase-3(t). For comparison purpose, each plot is scaled to have values between -1 
and +1 by the scaling factor reported in the abscissa. The plots are arranged in the decreasing order of 
their scaling factors (left to right, top to bottom). The heatmap mainly suggests that: (a) the early 
activation of caspase-3 is due to the type-I pathway, and (b) the procaspase-3 cleaving by type –II 
pathway is active during the switching. Therefore, the iPSA suggests a type-II dependent activation of 
caspase-3. 
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Figure C.5. Impulse Parametric Sensitivity Analysis (iPSA) of caspase-3 at t = 10,000 seconds by 
a constant FasL (2nM) stimulus 
 

 
Figure C.6. Local Parametric Sensitivity Analysis (PSA) of x6 activation in response to x1 
stimulus. Each heatmap illustrates the local PSA coefficient of active x6 level with respect to 
perturbations on one parameter in the network, indicated in the title. The x-axis gives the time at which 
perturbation is applied to the parameter, while the y-axis indicates the observation time of x6(t). For 
comparison purpose, each plot is scaled to have values between -1 and +1 by the scaling factor reported 
in the abscissa. The plots are arranged in the decreasing order of their scaling factors (left to right, top 
to bottom).  
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Figure C.7. Local Parametric Sensitivity Analysis (PSA) of caspase-3 activation by a constant 
FasL (2nM) stimulus. Each heatmap illustrates the local PSA coefficient of active caspase-3 level 
with respect to perturbations on one parameter in the network, indicated in the title. The x-axis gives 
the time at which impulse perturbation is applied to the parameter, while the y-axis indicates the 
observation time of caspase-3(t). For comparison purpose, each plot is scaled to have values between -1 
and +1 by the scaling factor reported in the abscissa. The plots are arranged in the decreasing order of 
their scaling factors (left to right, top to bottom).  
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Appendix D 

Table D.1: Pathway parameters for FasL-induced apoptosis model in Section B.2 
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r12_k   α33   α36  α38  α40  α42  α44  α46 α47  α49 α50  α52  α54  α56 α57  α59 α60 r12_k 

r13_f α31 α32 α33 α34 α35 α36 α37 α38 α39 α40 α41 α42 α43 α44 α45 α46 α47 α48 α49 α50 α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r13_f 

r13_r α31 α32 α33 α34 α35 α36 α37 α38 α39 α40 α41 α42 α43 α44 α45 α46 α47 α48 α49 α50 α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r13_r 

r14_k α31 α32 α33 α34 α35 α36 α37 α38 α39 α40 α41 α42 α43 α44 α45 α46 α47 α48 α49 α50 α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r14_k 

r15_f    α34   α37  α39 α40   α43  α45 α46  α48 α49 α50   α53  α55 α56  α58 α59 α60 r15_f 
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r17_f α31    α35 α36 α37    α41 α42 α43    α47 α48 α49  α51 α52 α53    α57 α58 α59  r17_f 

r17_r α31    α35 α36 α37    α41 α42 α43    α47 α48 α49  α51 α52 α53    α57 α58 α59  r17_r 

r18_f α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r18_f 

r18_r α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r18_r 

r19_k α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r19_k 

r20_f α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r20_f 

r20_r α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r20_r 

r21_k α31 α32 α33 α34 α35 α36 α37 α38 α39 α40           α51 α52 α53 α54 α55 α56 α57 α58 α59 α60 r21_k 

r22_f α31 α32 α33 α34       α41 α42 α43 α44 α45 α46     α51 α52 α53 α54 α55 α56     r22_f 
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r22_f α61 α62 α63 α64  α66 α67 α68 α69  α71 α72 r22_f
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Figure D.1. The pathPSA of caspase-3 activation. Each heat maps illustrate the pathPSA coefficient of active caspase-3 level with respect to perturbations on the 
pathways, whose names are indicated in the title. The x-axis is the time at which impulse perturbations are applied, while the y-axis indicates the observation time of 
caspase-3. Each plot is scaled to have values between 0 and ±1 by the scaling factor given below the heat maps as x-axis label. 
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Appendix E 

E.1 Probability distance metrics 

Engineering Metric: 
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Jeffrey Divergence: 
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Jensen-Shannon Divergence: 
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Kullback-Leibler Distance: 
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Kolmogorov-Smirnov Metric: 
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E.2 TRAIL induced extrinsic cell death (apoptosis) model 

of Hela cells: 

Solvers ODE15S of MATLAB 
Solver Settings AbsTol = RelTol = 1e-6 

Initial Conditions: #/cell Coefficient of variation 

L 15000 0 

R 200 0.25 

L:R 0 0 

Rs 0 0 

flip 100 0.25 

Rs:flip 0 0 

C8 20000 0.25 

Rs:C8 0 0 

C8s 0 0 

Bar 1000 0.25 

C8s:Bar 0 0 

C3 10000 0.282 

C8s:C3 0 0 

C3s 0 0 

C6 10000 0.25 

C3s:C6 0 0 

C6s 0 0 

C6s:C8 0 0 

XIAP 100000 0.288 

C3s:XIAP 0 0 

PARP 1000000 0.25 

C3s:PARP 0 0 

cPARP 0 0 

Bid 40000 0.288 

C8s:Bid 0 0 

tBid 0 0 

Bcl2c 20000 0.25 

Bid:Bcl2c 0 0 

Bax 100000 0.271 

tBid:Bax 0 0 

Baxs 0 0 

Baxms 0 0 

Bcl2 20000 0.294 

Baxms:Bcl2 0 0 

Bax2 0 0 

Bax2:Bcl2 0 0 
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Bax4 0 0 

Bax4:Bcl2 0 0 

M 500000 0.25 

Bax4:M 0 0 

Ms 0 0 

CyCm 500000 0.25 

Ms:CyCm 0 0 

CyCr 0 0 

Smacm 100000 0.25 

Ms:Smacm 0 0 

Smacr 0 0 

CyC 0 0 

Apaf 100000 0.25 

CyC:Apaf 0 0 

Apafs 0 0 

C9 100000 0.25 

Apop 0 0 

Apop:C3 0 0 

Smac 0 0 

Apop:XIAP 0 0 

Smac:XIAP 0 0 

C3s:Ub 0 0 

Pseudo 1 0 

 
Rate 

Constants: 
(#/CC)-1.sec-1 

Rate 
Constants: 

sec-1 
Rate 

Constants: 
sec-1 

Kf1 4.00E-07 kr1 1.00E-03 kf2 1.00E-05 

Kf3 1.00E-06 kr3 1.00E-03 kf4 1.00E+00 

Kf5 1.00E-07 kr5 1.00E-03 kf6 1.00E+00 

Kf7 1.00E-06 kr7 1.00E-02 kf8 1.00E+00 

Kf9 1.00E-07 kr9 1.00E-03 kf10 1.00E+00 

Kf11 1.00E-07 kr11 1.00E-03 kf12 1.00E+00 

Kf13 1.00E-02 kr13 1.00E-02 kf17 1.00E+00 

Kf14 1.00E-06 kr14 1.00E-03 kf19 1.00E+01 

Kf15 1.00E-06 kr15 1.00E-03 kf22 1.00E+01 

Kf16 1.00E-06 kr16 1.00E-03 kf25 1.00E+00 

Kf18 2.00E-06 kr18 1.00E-03 kf28 1.00E+00 

Kf20 1.00E-02 kr20 1.00E-02 kf30 1.00E+00 

Kf21 2.00E-06 kr21 1.00E-03 kf32 1.00E+00 

Kf23 1.00E-02 kr23 1.00E-02 kf42 1.00E-01 

Kf24 5.00E-07 kr24 1.00E-03   

Kf26 5.00E-08 kr26 1.00E-03   

Kf27 5.00E-09 kr27 1.00E-03   

Kf29 1.00E-06 kr29 1.00E-03   

Kf31 3.00E-08 kr31 1.00E-03   
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Kf33 1.00E-06 kr33 1.00E-03   

Kf34 1.00E-06 kr34 1.00E-03   

Kf35 1.00E-06 kr35 1.00E-03   

Kf36 1.00E-06 kr36 1.00E-03   

Kf37 1.00E-06 kr37 1.00E-03   

Kf38 1.00E-06 kr38 1.00E-03   

Kf39 7.00E-06 kr39 1.00E-03   

Kf40 2.00E-06 kr40 1.00E-03   

Kf41 2.00E-06 kr41 1.00E-03   

Ratio of mitochondrial volume to cell volume (v) is taken as 0.07 

 
Rate Equations: 

r1 = kf1*L*R - kr1*L:R 

r2 = kf2*L:R 

r3 = kf3*C8*Rs - kr3*Rs:C8 

r4 = kf4*Rs:C8 

r5 = kf5*C3*C8s - kr5*C8s:C3 

r6 = kf6*C8s:C3 

r7 = kf7*C3s*PARP - kr7*C3s:PARP 

r8 = kf8*C3s:PARP 

r9 = kf9*Bid*C8s - kr9*C8s:Bid 

r10 = kf10*C8s:Bid 

r11 = kf11*Bax*tBid - kr11*tBid:Bax 

r12 = kf12*tBid:Bax 

r13 = kf13*Baxs - kr13*Baxms 

r14 = (kf14*(Baxms*Baxms))/v - kr14*Bax2 

r15 = (kf15*(Bax2*Bax2))/v - kr15*Bax4 

r16 = (kf16*Bax4*M)/v - kr16*Bax4:M 

r17 = kf17*Bax4:M 

r18 = (kf18*CyCm*Ms)/v - kr18*Ms:CyCm 

r19 = kf19*Ms:CyCm 

r20 = kf20*CyCr - kr20*CyCc 

r21 = (kf21*Ms*Smacm)/v - kr21*Ms:Smacm 

r22 = kf22*Ms:Smacm 

r23 = kf23*Smacr - kr23*Smacc 

r24 = kf24*Apaf*CyCc - kr24*CyCc:Apaf 

r25 = kf25*CyCc:Apaf 

r26 = kf26*Apafs*C9 - kr26*Apop 

r27 = kf27*Apop*C3 - kr27*Apop:C3 

r28 = kf28*Apop:C3 

r29 = kf29*C3s*C6 - kr29*C3s:C6 

r30 = kf30*C3s:C6 

r31 = kf31*C6s*C8 - kr31*C6s:C8 
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r32 = kf32*C6s:C8 

r33 = kf33*Rs*flip - kr33*Rs:flip 

r34 = kf34*Bar*C8s - kr34*C8s:Bar 

r35 = kf35*Bcl2c*tBid - kr35*tBid:Bcl2c 

r36 = (kf36*Baxms*Bcl2)/v - kr36*Baxms:Bcl2 

r37 = (kf37*Bax2*Bcl2)/v - kr37*Bax2:Bcl2 

r38 = (kf38*Bax4*Bcl2)/v - kr38*Bax4:Bcl2 

r39 = kf39*Smacc*XIAP - kr39*Smacc:XIAP 

r40 = kf40*Apop*XIAP - kr40*Apop:XIAP 

r41 = kf41*C3s*XIAP - kr41*C3s:XIAP 

r42 = kf42*C3s:XIAP 

 
RHS Functions/Equations: 

d[L]/dt =  -r1 

d[R]/dt =  -r1 

d[L:R]/dt =  r1 -r2 

d[Rs]/dt =  r2 -r3 +r4 -r33 

d[flip]/dt =  -r33 

d[Rs:flip]/dt =  r33 

d[C8]/dt =  -r3 -r31 

d[Rs:C8]/dt =  r3 -r4 

d[C8s]/dt =  r4 -r5 +r6 -r9 +r10 +r32 -r34 

d[Bar]/dt =  -r34 

d[C8s:Bar]/dt =  r34 

d[C3]/dt =  -r5 -r27 

d[C8s:C3]/dt =  r5 -r6 

d[C3s]/dt =  r6 -r7 +r8 +r28 -r29 +r30 -r41 

d[C6]/dt =  -r29 

d[C3s:C6]/dt =  r29 -r30 

d[C6s]/dt =  r30 -r31 +r32 

d[C6s:C8]/dt =  r31 -r32 

d[XIAP]/dt =  -r39 -r40 -r41 +r42 

d[C3s:XIAP]/dt =  r41 -r42 

d[PARP]/dt =  -r7 

d[C3s:PARP]/dt =  r7 -r8 

d[cPARP]/dt =  r8 

d[Bid]/dt =  -r9 

d[C8s:Bid]/dt =  r9 -r10 

d[tBid]/dt =  r10 -r11 +r12 -r35 

d[Bcl2c]/dt =  -r35 

d[tBid:Bcl2c]/dt =  r35 

d[Bax]/dt =  -r11 
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d[tBid:Bax]/dt =  r11 -r12 

d[Baxs]/dt =  r12 -r13 

d[Baxms]/dt =  r13 -2*r14 -r36 

d[Bcl2]/dt =  -r36 -r37 -r38 

d[Baxms:Bcl2]/dt =  r36 

d[Bax2]/dt =  r14 -2*r15 -r37 

d[Bax2:Bcl2]/dt =  r37 

d[Bax4]/dt =  r15 -r16 -r38 

d[Bax4:Bcl2]/dt =  r38 

d[M]/dt =  -r16 

d[Bax4:M]/dt =  r16 -r17 

d[Ms]/dt =  r17 -r18 +r19 -r21 +r22 

d[CyCm]/dt =  -r18 

d[Ms:CyCm]/dt =  r18 -r19 

d[CyCr]/dt =  r19 -r20 

d[Smacm]/dt =  -r21 

d[Ms:Smacm]/dt =  r21 -r22 

d[Smacr]/dt =  r22 -r23 

d[CyCc]/dt =  r20 -r24 +r25 

d[Apaf]/dt =  -r24 

d[CyCc:Apaf]/dt =  r24 -r25 

d[Apafs]/dt =  r25 -r26 

d[C9]/dt =  -r26 

d[Apop]/dt =  r26 -r27 +r28 -r40 

d[Apop:C3]/dt =  r27 -r28 

d[Smacc]/dt =  r23 -r39 

d[Apop:XIAP]/dt =  r40 

d[Smacc:XIAP]/dt =  r39 

d[C3s:Ub]/dt =  r42 

d[Pseudo:Variable]/dt =  0 

 

E.3 GFM analysis of TRAIL induced apoptosis 

Time lapsed GFM coefficients of cPARP levels with respect to perturbations in all the 
molecules (rows of GFM matrix) are given in the attached video EV.1. The heat maps 
are arranged in the order of their infinite matrix norms at a given perturbation and 
output time. The activation of cPARP, whose mechanistic insight is at query, is given 
in the first row and first column as a reference. A careful observation of these 
coefficients paints the following dynamic picture in cPARP activation: (i) Ligand-
Receptor complex formation followed by pro-caspase-8 cleavage (to caspase-8) and 
XIAP inhibition of active caspase-3 are found to be the most important molecules 
regulating cPARP activation during early phase of pre-MOMP (till 1 hours), (ii) Later 
transiently (1-2.57 hours), caspase-6 feedback and Bar inhibition of caspase-8 are also 
found to be important, but not as significant as type-I apoptotic molecules and C3 
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inhibition-degradation of XIAP, (iii) during MOMP (2.57-2.89 hours), caspase-8 
activation of Bid (to tBid) and its competitive inhibition by Bcl2 (both in cytosol and 
mitochondria), followed by activation of Bax (to Bax*) are found to gain importance 
than type-I apoptotic molecules, and (iv) finally in post-MOMP (after 2.89 hours), 
there is no appreciable change in the molecular rankings, mitochondria dependent 
(type-II) apoptotic molecules, especially competitive tBid activation-inhibition, are 
found to be the regulatory molecules. 
 
 

E.4 iPSA analysis of TRAIL induced apoptosis 

Impulse Parametric Sensitivity Analysis (iPSA) is applied to the extrinsic cell death 
model. As in GFM analysis, iPSA also uses sensitivity metrics, to reveal the dynamic 
information about the actively participating reactions that gives rise to the output 
behavior. Simulation conditions remain the same as that of GFM analysis. The model 
simulates an apoptotic cell, and the purpose of the analysis is to elucidate the key 
reactions in the regulation of cPARP activation during extrinsic cell death. By 
choosing cPARP activation as the output of interest, the iPSA sensitivities of cPARP 
level to perturbations on different parameters of the network at different perturbation 
times ( ) are illustrated in the video EV.2. Each subplot here represents an element in 
the row of iPSA matrix, corresponding to the active cPARP.  The heat maps are 
arranged in the order of their infinite matrix norms over a given perturbation and 
output time. As in GFM analysis, even iPSA analysis is split into two phases: pre-
MOMP (before 2.57 hours) and post-MOMP (after 2.57 hours). A careful observation 
of iPSA coefficients reveals the following dynamic picture in cPARP activation: (i) 
Activation of receptor, pro-caspase-8 (to C8*), and pro-caspase-3 (to C3*) followed 
by the inhibition of C3* by XIAP and C8* by Bar are found to be the important 
reactions in pre-MOMP (till 2.57 hours), (ii) other than most of the reactions of pre-
MOMP, post-MOMP is characterized by the activation of Bid (to tBid), Bax (to 
Bax*) and the Bcl2 inhibition of tBid, (iii) in both the phases, C6 feed-back loop is 
found to be insignificant. The major difference between GFM and iPSA analysis lies 
in the proteasome mediated degradation of XIAP, which cannot be inferred from 
GFM coefficients but found not so important from the iPSA coefficients. Hence the 
XIAP inhibition and not the degradation of C3* which controls the pre-MOMP phase. 
 

E.5 eFAST analysis of TRAIL induced apoptosis (Whole 

population) 

Time lapsed first and total order eFAST sensitivity coefficients of cPARP activation 
levels to the eighteen non-zero initial conditions and a pseudo variable are given in 
the attached video EV.3. Bar graphs (a-b) and (c-d) are arranged in the decreasing 
order of eFAST sensitivities at a given time and integrated till the given time, 
respectively, where the given time is specified in the top of the chart. Investigation of 
these bar graphs paints the following dynamic picture in cPARP activation: (i) first 
order and total contributions of pro-caspase-8 activation to caspase-8 by receptor and 
caspase-3 activation by caspase-8 and its subsequent inhibition by XIAP are the 
important molecules which contributes to the output variability during pre-MOMP 
(till 1.77 hours), (ii) Later transiently during MOMP (1.77 hours to 4.23 hours), total 
order sensitivities of bid activation to tbid and its subsequent inhibition by Bcl2 and 
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Bax are found to be important, (iii) finally post-MOMP (after 4.23 hours), XIAP and 
membrane bound Smac are found to be important for the cells to avoid apoptosis. 
There is no appreciable change in the eFAST sensitivities of pro-caspse-6 and hence 
the corresponding feedback loop renders no appreciable change to the output 
variability. 
 

E.6 eFAST analysis of TRAIL induced apoptosis 

(apoptotic and non-apoptotic cell population) 

Similar to eFAST analysis of the whole population, a comparative eFAST analysis 
was performed for a segregated apoptotic and non-apoptotic cell population. Time 
lapsed first and total order eFAST sensitivity coefficients of cPARP activation levels 
to the eighteen non-zero initial conditions and a pseudo variable are given in the 
attached video EV.4. Bar graphs (a-b) and (c-d) indicates the apoptotic and non-
apoptotic cell sensitivities respectively. Investigation of these bar graphs gives the 
following dynamic picture in cPARP activation: pre-MOMP contributions remained 
the same in both the cells. Whereas post-MOMP in non-apoptotic cells are 
characterized by a significant change in XIAP and membrane bound Smac. 
 

E.7 MDP analysis of TRAIL induced apoptosis (Whole 

population) 

Like GFM and iPSA analysis, time lapse heat maps of MDP coefficients of cPARP 
with respect to 10% (mean increase) perturbation in all the molecules (rows of MDP 
matrix) are given in the attached video EV.5. The heat maps are normalized using 
their absolute maximum over perturbation and observation time. They are arranged in 
the order of decreasing importance. The activation dynamics of cPARP (i.e., 1% and 
99%) in the Hela cell population, whose mechanistic insight is at query, is given in 
the first row and first column as a reference. The analysis is divided into three major 
dynamic regions: (i) pre-MOMP (till 1.77 hours), which is characterized by at least 
1% of mitochondrial pore opening, (ii) MOMP (from 1.77 hours to 4.28 hours), from 
1% pore opening till 99% of CyC/Smac release, and (iii) post-MOMP (from 4.28 
hours to steady state). A careful observation of these coefficients paints the following 
dynamic picture in cPARP activation in Hela cells population: (i) Pre-MOMP period 
is characterized by ligand-receptor complex formation followed by pro-caspase-8 
cleavage (to caspase-8) and XIAP inhibition of active caspase-3, of which XIAP 
inhibition is found to be most important, (ii) Later transiently, for a very short period, 
caspase-6 feedback and Bar inhibition of caspase-8 are also found to be important, but 
not as significant as type-I apoptotic molecules and C3 inhibition-degradation of 
XIAP, (iii) during MOMP (1.77-4.23 hours), mitochondrial pore opening and the 
subsequent release of cytochrome-c and Smac into cytosol are found to gain 
importance than type-I apoptotic molecules, and (iv) finally in post-MOMP (after 
4.23 hours), there is no appreciable change in the molecular ranking. Therefore, MDP 
analysis points to mitochondrial pore opening and subsequent downstream events to 
be highly important in cPARP activation. 
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E.8 MDP analysis of TRAIL induced apoptosis (apoptotic 

and non-apoptotic cells) 

 
MDP analysis of both the apoptotic and non-apoptotic cell population is performed 
separately and compared. Time lapse comparison of the infinite norms of MDP 
coefficients of cPARP activation with respect to 10% (mean increase-decrease) 
perturbation in all the molecules (rows of MDP matrix) are given in the attached 
video EV.6. They are arranged in the order of decreasing importance. Since 95% of 
the whole population has undergone apoptosis, MDP analysis of apoptotic cell 
population is same as that of the whole population. Whereas, MDP analysis of non-
apoptotic cell population paints a different picture with respect to cPAPR activation. 
Pre-MOMP regimen of non-apoptotic cells are characterized by the same molecules 
as that of apoptotic cells, which is also evident from their rank order correlation. On 
the other hand, MOMP is significantly delayed in non-apoptotic cell population. This 
is due to the differential regulation of XIAP, Smac and Apaf, as seen in EV.6.  

 



 

Appendix F 

Table F.1: Low Temperature Alkane Pyrolysis [188] 

Methods* 
Species 

Remaining 
Reactions 
Remaining 

% Error 
Pareto Optimal 

Distance 
Whole Model 38 98 0.000 - 

(a): Based on Pareto Distance (Parameter vs Error) 
iPSA-GFM (SQ) 14 16 15.820 0.227 
PSA-GFM (SQ) 15 22 8.203 0.239 

iPSA 15 23 11.860 0.263 
iPSA-GFM (BU) 15 23 11.860 0.263 
iPSA-GFM (TD) 15 23 11.860 0.263 

PSA 18 33 7.558 0.345 
PSA-GFM (BU) 18 33 7.558 0.345 
PSA-GFM (TD) 16 29 17.867 0.346 

GFM 29 63 10.822 0.652 
(b): Fixed Reactions (38) 

iPSA 19 35 1.613 0.358 
iPSA-GFM (BU) 19 35 1.613 0.358 
iPSA-GFM (TD) 19 36 1.777 0.368 

PSA 21 38 3.181 0.389 
PSA-GFM (BU) 21 38 3.181 0.389 
iPSA-GFM (SQ) 17 37 10.160 0.391 
PSA-GFM (SQ) 17 38 6.934 0.394 
PSA-GFM (TD) 21 38 7.063 0.394 

GFM 24 34 76.940 0.844 
(c): Fixed Error (0.5%) 

iPSA 21 43 0.381 0.439 
iPSA-GFM (BU) 21 43 0.381 0.439 
iPSA-GFM (TD) 21 43 0.381 0.439 
iPSA-GFM (SQ) 20 54 0.402 0.551 
PSA-GFM (TD) 24 55 0.273 0.561 
PSA-GFM (SQ) 20 55 0.406 0.561 

PSA 24 55 0.469 0.561 
PSA-GFM (BU) 24 55 0.469 0.561 

GFM 30 81 0.175 0.827 
(d): Fixed States (34) 

GFM 31 87 0.000 0.888 
PSA 34 92 0.000 0.939 
iPSA 34 92 0.000 0.939 

PSA-GFM (BU) 34 92 0.000 0.939 
PSA-GFM (TD) 34 92 0.000 0.939 
iPSA-GFM (BU) 34 92 0.000 0.939 
iPSA-GFM (TD) 34 92 0.000 0.939 
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PSA-GFM (SQ) 34 94 9.131 0.964 
iPSA-GFM (SQ) 34 94 9.131 0.964 
* Sorted based on the optimal Pareto distance 
 

Table F.2: Natural Gas Combustion - GRI Mech 3.0 [189] 

Methods* 
Species 

Remaining 
Reactions 
Remaining 

% Error 
Pareto Optimal 

Distance 
Whole Model 53 650 0.000 - 

(a): Based on Pareto Distance (Parameter vs Error) 
iPSA-GFM (SQ) 39 129 22.462 0.300 
PSA-GFM (SQ) 45 206 20.804 0.379 

iPSA 49 253 20.074 0.438 
iPSA-GFM (BU) 49 253 20.074 0.438 
iPSA-GFM (TD) 49 253 20.074 0.438 

PSA 51 329 18.332 0.538 
PSA-GFM (BU) 51 330 21.062 0.550 
PSA-GFM (TD) 51 330 21.062 0.550 

GFM 3 1 74.161 0.742 
(b): Fixed Reactions (450) 

iPSA-GFM (SQ) 43 233 16.462 0.394 
iPSA-GFM (BU) 52 321 15.426 0.517 
iPSA-GFM (TD) 52 325 15.406 0.523 

iPSA 52 329 15.417 0.529 
PSA-GFM (SQ) 49 360 11.061 0.565 
PSA-GFM (TD) 52 444 0.244 0.683 

PSA 52 449 0.979 0.691 
PSA-GFM (BU) 52 449 0.979 0.691 

GFM 18 19 74.159 0.742 
(c): Fixed Error (0.5%) 

PSA-GFM (TD) 52 444 0.244 0.683 
PSA 52 447 0.980 0.688 

PSA-GFM (BU) 52 447 0.980 0.688 
iPSA 52 453 0.736 0.697 

iPSA-GFM (BU) 52 453 0.736 0.697 
iPSA-GFM (TD) 52 453 0.736 0.697 
PSA-GFM (SQ) 52 638 0.512 0.982 
iPSA-GFM (SQ) 52 638 0.512 0.982 

GFM 53 650 0.000 1.000 
* Sorted based on the optimal Pareto distance 

 
Table F.3: Ethane Pyrolysis Model [60] 

Reaction Number Reactions 
Status in Reduced 

Model 
Radical recombination and scission reactions 

1 ·CH3 + ·CH3  C2H6 Retained 
2 C2H6  ·CH3 + ·CH3 Retained 
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3 ·C2H5 + ·C2H5  C4H10 Retained 
4 C4H10  ·C2H5 + ·C2H5 Removed 
5 ·CH3 + ·C2H5  C3H8 Retained 
6 C3H8  ·CH3 + ·C2H5 Removed 
7 ·C2H5 + ·H  C2H6 Retained 
8 C2H6  ·C2H5 + ·H Retained 
9 ·H + ·C2H3  C2H4 Removed 
10 C2H4  ·H + ·C2H3 Retained 
11 ·C3H5 + ·H  C3H6 Retained 
12 C3H6  ·C3H5 + ·H Retained 
13 ·H + ·C3H7  C3H8 Removed 
14 C3H8  ·H + ·C3H7 Removed 
15 ·CH3 + ·C2H3  C3H6 Removed 
16 C3H6  ·CH3 + ·C2H3 Retained 
17 ·H + ·H + M  H2 + M Removed 
18 H2  ·H + ·H Removed 
19 ·C2H3 + ·C2H3  C4H6 Removed 
20 C4H6  ·C2H3 + ·C2H3 Removed 
21 ·C2H3 + ·C2H5  C4H8 Retained 
22 C4H8  ·C2H3 + ·C2H5 Removed 
23 ·CH3 + ·H  CH4 Retained 
24 CH4  ·CH3 + ·H Removed 
25 ·H + ·C4H9  C4H10 Removed 
26 C4H10  ·H + ·C4H9 Removed 
27 ·H + ·2-C4H9  C4H10 Removed 
28 C4H10  ·H + ·2-C4H9 Removed 
29 ·H + ·2-C3H7  C3H8 Removed 
30 C3H8  ·H + ·2-C3H7 Removed 
31 ·H + ·C4H7  C4H8 Removed 
32 C4H8  ·H + ·C4H7 Removed 
33 ·CH3 + ·C3H7 + C4H10 Removed 
34 C4H10  ·CH3 + ·C3H7 Removed 
35 ·CH3 + ·C3H5  C4H8 Retained 
36 C4H8  ·CH3 + ·C3H5 Retained 

Hydrogen abstraction reactions 
37 C2H6 + ·CH3  ·C2H5 + CH4 Retained 
38 CH4 + ·C2H5  C2H6 + ·CH3 Removed 
39 CH4 + ·C2H3  C2H4 + ·CH3 Removed 
40 ·CH3 + C2H4  CH4 + ·C2H3 Retained 
41 C2H6 + ·H  ·C2H5 + H2 Retained 
42 ·C2H5 + H2  C2H6 + ·H Retained 
43 ·C2H3 + H2  C2H4 + ·H Retained 
44 C2H4 + ·H  H2 + ·C2H3 Retained 
45 ·CH3 + H2  CH4 + ·H Retained 
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46 CH4 + ·H  ·CH3 + H2 Removed 
47 C4H10 + ·H  H2 + ·C4H9 Removed 
48 ·C4H9 + H2  C4H10 + ·H Removed 
49 C4H10 + ·H  H2 + ·2-C4H9 Retained 
50 ·2-C4H9 + H2  C4H10 + ·H Removed 
51 C3H8 + ·H  H2 + ·C3H7 Removed 
52 ·C3H7 + H2  C3H8 + ·H Removed 
53 C3H8 + ·H  H2 + ·2-C3H7 Retained 
54 ·2-C3H7 + H2  C3H8 + ·H Removed 
55 C3H6 + ·H  H2 + ·C3H5 Retained 
56 ·C3H5 + H2  C3H6 + ·H Retained 
57 C4H8 + ·H  H2 + ·C4H7 Removed 
58 ·C4H7 + H2  C4H8 + ·H Removed 
59 ·CH3 + C4H10  CH4 + ·C4H9 Removed 
60 CH4 + ·C4H9  C4H10 + ·CH3 Removed 
61 ·CH3 + C4H10  CH4 + ·2-C4H9 Removed 
62 CH4 + ·2-C4H9  C4H10 + ·CH3 Removed 
63 ·CH3 + C3H8  CH4 + ·C3H7 Removed 
64 CH4 + ·C3H7  C3H8 + ·CH3 Removed 
65 ·CH3 + C3H8  CH4 + ·2-C3H7 Removed 
66 CH4 + ·2-C3H7  C3H8 + ·CH3 Removed 
67 ·CH3 + C3H6  CH4 + ·C3H5 Retained 
68 CH4 + ·C3H5  C3H6 + ·CH3 Removed 
69 ·CH3 + C4H8  CH4 + ·C4H7 Removed 
70 CH4 + ·C4H7  C4H8 + ·CH3 Removed 
71 C2H6 + ·C2H3  C2H4 + ·C2H5 Retained 
72 C2H4 + ·C2H5  C2H6 + ·C2H3 Retained 
73 C2H6 + ·C4H9  C4H10 + ·C2H5 Removed 
74 C4H10 + ·C2H5  C2H6 + ·C4H9 Removed 
75 C4H10 + ·C2H5  C2H6 + ·2-C4H9 Removed 
76 C2H6 + ·2-C4H9  C4H10 + ·C2H5 Retained 
77 C2H6 + ·C3H7  C3H8 + ·C2H5 Retained 
78 C3H8 + ·C2H5  C2H6 + ·C3H7 Removed 
79 C3H8 + ·C2H5  C2H6 + ·2-C3H7 Retained 
80 C2H6 + ·2-C3H7  C3H8 + ·C2H5 Removed 
81 C3H6 + ·C2H5  C2H6 + ·C3H5 Retained 
82 C2H6 + ·C3H5  C3H6 + ·C2H5 Retained 
83 C2H6 + ·C4H7  C4H8 + ·C2H5 Retained 
84 C4H8 + ·C2H5  C2H6 + ·C4H7 Removed 
85 C4H10 + ·C2H3  C2H4 + ·C4H9 Removed 
86 C2H4 + ·C4H9  C4H10 + ·C2H3 Removed 
87 C4H10 + ·C2H3  C2H4 + ·2-C4H9 Removed 
88 C2H4 + ·2-C4H9  C4H10 + ·C2H3 Retained 
89 C3H8 + ·C2H3  C2H4 + ·C3H7 Removed 
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90 C2H4 + ·C3H7  C3H8 + ·C2H3 Retained 
91 C3H8 + ·C2H3  C2H4 + ·2-C3H7 Removed 
92 C2H4 + ·2-C3H7  C3H8 + ·C2H3 Retained 
93 C3H6 + ·C2H3  C2H4 + ·C3H5 Retained 
94 2H4 + ·C3H5  C3H6 + ·C2H3 Retained 
95 C4H8 + ·C2H3  C2H4 + ·C4H7 Removed 
96 C2H4 + ·C4H7  C4H8 + ·C2H3 Removed 
97 C4H10 + ·C3H7  C3H8 + ·C4H9 Removed 
98 C3H8 + ·C4H9  C4H10 + ·C3H7 Removed 
99 C4H10 + ·2-C3H7  C3H8 + ·C4H9 Removed 
100 C3H8 + ·C4H9  C4H10 + ·2-C3H7 Removed 
101 C3H6 + ·C4H9  C4H10 + ·C3H5 Removed 
102 C4H10 + ·C3H5  C3H6 + ·C4H9 Removed 
103 C4H10 + ·C4H7  C4H8 + ·C4H9 Removed 
104 C4H8 + ·C4H9  C4H10 + ·C4H7 Removed 
105 C4H10 + ·C3H7  C3H8 + ·2-C4H9 Removed 
106 C3H8 + ·2-C4H9  C4H10 + ·C3H7 Removed 
107 C4H10 + ·2-C3H7  C3H8 + ·2-C4H9 Removed 
108 C3H8 + ·2-C4H9  C4H10 + ·2-C3H7 Removed 
109 C3H6 + ·2-C4H9  C4H10 + ·C3H5 Retained 
110 C4H10 + ·C3H5  C3H6 + ·2-C4H9 Removed 
111 C4H10 + ·C4H7  C4H8 + ·2-C4H9 Removed 
112 C4H8 + ·2-C4H9  C4H10 + ·C4H7 Removed 
113 C3H6 + ·C3H7  C3H8 + ·C3H5 Removed 
114 C3H8 + ·C3H5  C3H6 + ·C3H7 Removed 
115 C3H8 + ·C4H7  C4H8 + ·C3H7 Removed 
116 C4H8 + ·C3H7  C3H8 + ·C4H7 Removed 
117 C3H6 + ·2-C3H7  C3H8 + ·C3H5 Retained 
118 C3H8 + ·C3H5  C3H6 + ·2-C3H7 Removed 
119 C3H6 + ·C4H7  C4H8 + ·C3H5 Retained 
120 C4H8 + ·C3H5  C3H6 + ·C4H7 Removed 
121 C3H8 + ·C4H7  C4H8 + ·2-C3H7 Removed 
122 C4H8 + ·2-C3H7  C3H8 + ·C4H7 Removed 

Radical addition and -scission reactions 
123 C2H4 + ·H  ·C2H5 Retained 
124 ·C2H5  C2H4 + ·H Retained 
125 ·C2H5 + C2H4  ·C4H9 Retained 
126 ·C4H9  ·C2H5 + C2H4 Retained 
127 ·CH3 + C2H4  ·C3H7 Removed 
128 ·C3H7  ·CH3 + C2H4 Retained 
129 ·C2H3 + C2H4  ·C4H7 Retained 
130 ·C4H7  ·C2H3 + C2H4 Retained 
131 C2H2 + ·H  ·C2H3 Retained 
132 ·C2H3  C2H2 + ·H Retained 
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133 ·CH3 + C2H2  ·C3H5 Retained 
134 ·C3H5  C2H2 + ·CH3 Retained 
135 C3H6 + ·H  ·C3H7 Retained 
136 ·C3H7  C3H6 + ·H Retained 
137 C4H6 + ·H  ·C4H7 Retained 
138 ·C4H7  C4H6 + ·H Retained 
139 C4H8 + ·H  ·C4H9 Removed 
140 ·C4H9  C4H8 + ·H Retained 
141 C3H6 + ·H  ·2-C3H7 Retained 
142 ·2-C3H7  C3H6 + ·H Retained 
143 C4H8 + ·H  ·2-C4H9 Removed 
144 ·2-C4H9  C4H8 + ·H Retained 
145 CH3 + C3H6  ·2-C4H9 Retained 
146 ·2-C4H9  C3H6 + ·CH3 Retained 

Isomerization reactions 
147 ·C3H7  ·2-C3H7 Retained 
148 ·2-C3H7  ·C3H7 Retained 
149 ·C4H9  ·2-C4H9 Retained 
150 2-C4H9  ·C4H9 Retained 
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