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Summary

Medical volume data has an important role in medical diagnosis. However, visu-

alization of large medical volume data is very challenging due to their large mem-

ory storage requirement, constrained processing time, and other issues related to

dynamic information management. In addition to using high performance visual-

ization hardware, developing appropriate data structures and effective rendering

algorithms are essential.

This dissertation addresses several issues related to the visualization of large medi-

cal volume data. Firstly, the dissertation describes an efficient compression method

for fast rendering of dynamic medical volume data. The volumes are partitioned

into a set of blocks and clustered using a BIRCH-based (Balanced Iterative Re-

ducing and Clustering using Hierarchies) algorithm, which can find a high quality

clustering with a single scan of the blocks. In each cluster of blocks, a KeyBlock is

generated to represent the cluster, leading to a significant reduction of the storage

space of the volumes. In addition, a dynamic memory management scheme is also

implemented using the lifetime of each KeyBlock to further reduce the storage

space. During rendering, each KeyBlock is rendered as a KeyImage, which can be

reused if the view transformation and transfer function are not changed. This can
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Summary

help to increase the rendering speed significantly. Experimental results showed

that the proposed method can achieve good performance in terms of both speed

optimization and space reduction.

Secondly, the dissertation describes a new coding scheme for efficient compression

of dynamic medical volume data. The scheme uses 3-D motion estimation to cre-

ate homogenous preprocessed data to be compressed by a 3-D image compression

algorithm using hierarchical vector quantization. A new block distortion measure,

called variance of residual (VOR), and three 3-D fast block matching algorithms

are used to improve the motion estimation process in terms of speed and data

fidelity. The 3-D image compression process involves the application of two differ-

ent encoding techniques based on the homogeneity of input data. The proposed

method can achieve a higher fidelity and faster decompression time compared to

other lossy compression methods producing similar compression ratios.

Thirdly, a clustering-based framework for the automatic generation of transfer

functions for the visualization of medical volume data is introduced in this disser-

tation. The system first applies mean shift clustering to oversegment the volume

boundaries according to their low-high (LH) values and their spatial coordinates,

and then uses hierarchical clustering to group similar voxels. A transfer function is

then automatically generated for each cluster such that the number of occlusions

is reduced. The framework also allows for semi-automatic operation, where the

user can vary the hierarchical clustering results or the transfer functions generated.

The system improves the efficiency and effectiveness of visualizing medical images

and is suitable for medical imaging applications.

Lastly, we describe in this dissertation a method for rendering flow particles in sim-

ulation of chemotherapy drug injection. In this method, the vessels are extracted

xiv



Summary

from clinical CT images using 3-D region growing, and skeletonized using a 3-D

thinning algorithm. The resultant skeleton is refined to be of unit pixel width by

a post processing step. The vasculature is reconstructed using cubic b-splines and

represented as generalized cylinders. The flow is modeled using Hagen-Poiseuille

Flow and rendered using the quadrilaterals which are aligned along the viewing

direction. This rendering method can be combined with a fast volume rendering

algorithm to provide more context information of the scene. Our visualization

method achieves a computational efficient and good visual approximation of the

flow of particles inside the vessels under fluoroscopic imaging.
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Chapter 1

Introduction

1.1 Medical Volume Data

Volume data are three-dimensional (3-D) entities that contain information inside

them. In medical imaging, volume data often refers to a stack of two-dimensional

(2-D) images. Each 2-D image is a 2-D grid of pixels (picture elements) represent-

ing a slice of the scanned object. Typically, the distance between two consecutive

pixels is constant in each direction and identical in both horizontal (x) and ver-

tical (y) directions for most medical image modalities. This distance is called

the pixel distance. In volume data, individual images are combined and arranged

on a 3-D grid. The data elements located on the grid points are called voxels

(volume elements). In addition to the x and y dimensions, there is a dimension

representing the depth (z). The distance between two neighboring slices, i.e., the

distance between two grid points in z direction, is called the slice distance. The

three distances in x, y, and z directions are known as the voxel spacing.

If the pixel and slice distances are identical, the volume data is classified as an

isotropic dataset; otherwise, it is an anisotropic dataset. In most cases, medical

1
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x

y

Image cell

Pixel

(a) 2-D grid

x

z

y

Volume cell

Voxel

(b) 3-D grid

Figure 1.1: Image and volume cell. (a) All pixels of a slice image are arranged
on a 2-D grid; (b) All voxels of a volume dataset are arranged on a 3-D grid.

volume data are anisotropic and the pixel distance is smaller than the slice dis-

tance. Four neighboring pixels in a slice image form an image cell and a cuboid

formed by eight neighboring voxels in the grid is called a volume cell (Figure 1.1).

Static medical volume data. In this dissertation, static medical volume data

refer to diagnostic 3-D images that are fixed in time. Different types of medical im-

ages can be made by using different type of energies and acquisition technologies.

Common modalities, i.e., modes of producing medical images, include computed

tomography (CT), magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), and single photon emission computed tomography (SPECT).

Dynamic medical volume data. With advances in medical imaging technolo-

gies, the acquisition of high spatial resolution static medical image data is possible,

allowing the assessment and analysis of the morphology of anatomic and patholog-

ical structures. However, a limitation of static image data is that they only provide

snapshots of the organs of interest, and this may not be sufficient for diagnostic

decisions and treatment planning. In contrast, dynamic or time-varying image

data, which characterize functional processes, e.g., blood flow and metabolism,

2



1.2. Compression and Visualization of Medical Volume Data

are often essential for discriminating pathologies with similar morphology and de-

tecting diseases at an early stage. Common medical imaging modalities producing

dynamic medical volume data are functional MRI (fMRI), dynamic PET (dPET),

dynamic SPECT (dSPECT), and dynamic contrast enhanced (DCE) which is a

modification of CT or MR imaging protocols.

1.2 Compression and Visualization of Medical

Volume Data

Over the last two decades, modern technological advances in both precision and

speed of medical image acquisition have led to an exploding storage requirement

for medical volume data. The size of a typical medical volume dataset can range

from hundreds of megabytes to hundreds of gigabytes. These datasets are often

stored on servers and transmitted to clients when needed. Manipulation and visu-

alization of huge datasets are challenging problems due to overwhelming data size,

insufficient memory and I/O bandwidth, and heavy computational requirements.

In addition to developing fast processing algorithms and using high performance

hardware, compression would be extremely useful in such situations. The primary

objective of medical image compression methods is to reduce the large amount of

data to be stored, transmitted, or processed while preserving important diagnos-

tic information. Compression algorithms applied to medical volume data can be

generally classified into two types: lossless and lossy. Lossless algorithms allow

exact reconstruction of the original data, while lossy algorithms introduce some

errors or loss after the decompression process.

3
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Dataset

Enhancement

Segmentation

Selection

Direct Volume 

Rendering

Indirect Volume 

Rendering

Image

Figure 1.2: Volume visualization pipeline. Dashed boxes represent optional
processes.

Since medical volume data are mainly for diagnosis, they need to be visualized to

give meaningful information. The generation of a visual representation of volume

data is termed volume visualization. Figure 1.2 shows the typical stages of a volume

visualization process. After data acquisition, the quality of the dataset may need

to be enhanced by filtering or applying other image processing techniques. Since

the volume data contain a number of different anatomical structures, segmenta-

tion may need to be performed to separate the dataset into meaningful objects

representing particular structures of interest. Subsequently, another possible step

is to select a subrange of voxels by clipping or cropping the volume data. Finally,

the voxels are rendered into an image using a volume rendering technique. There

are two main categories of volume rendering: direct volume rendering and indirect

volume rendering (otherwise known as surface rendering or geometry rendering).

In most cases, volume rendering itself can be understood as direct volume render-

ing. Direct volume rendering does not use intermediate geometric primitives while

4



1.3. Dissertation Objectives and Organization

surface rendering does.

1.3 Dissertation Objectives and Organization

The following research questions may be raised in processing medical volume data.

1. How to compress a large medical volume data that minimizes the loss of

important diagnostic information and concurrently supports a fast decom-

pression for manipulation and visualization? This is because of difficulties

in manipulation and/or visualization of large medical datasets which are

caused by the extremely large storage of the datasets, and the insufficiency

of hardware resources and computational power. In such situations, com-

pression would be useful besides other possible solutions, e.g., developing

fast processing algorithms and using high performance hardware.

2. How to combine efficient decompression closely with rendering to achieve

the best overall performance of visualization? This is because in most cases,

compressed volume data need to be visualized. However, doing decompres-

sion and rendering in succession, especially using the central processing unit

(CPU) in both processes, may not be a good solution since the interconnect

system needs to transfer a very large amount of data from the CPU to the

graphics processor.

3. In direct volume rendering of medical volume data, how to automatically

generate an appropriate mapping from data properties to optical properties

that yields the desired visual information with as little intervention as possible

from user? Such a mapping is termed a transfer function, and it is an

5
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important factor that affects the efficiency of volume rendering. However,

finding appropriate transfer functions is not a trivial task since it requires

an understanding of the transfer function domain and manually tweaking

parameters on the part of the user. Thus, developing automatic transfer

function design methods is essential.

4. How to develop a hybrid rendering method that combines advantages of the

two methods: surface and direct volume rendering? This question arises

from the fact that volume rendering is typically used for fast visualization in

an overview of the image volume. It is not suitable for emphasizing specific

objects or their parts because of difficulties in designing appropriate multi-

dimensional transfer functions and the time consuming process to visualize

small structures of interest within a large volume. In contrast, since surface

rendering uses geometric primitives to represent parts of the volume data, it

is capable of emphasizing objects using appropriate color and transparency

settings. Hence, a hybrid rendering method to provide additional informa-

tion in radiological diagnosis as well as to enable simulation and preoperative

treatment planning is desirable.

This dissertation aims to address the above questions. Chapter 2 describes an

efficient clustering method for fast compression and rendering of large dynamic

medical volume data. In this method, the rendering is integrated tightly with the

decompression process, leading to a good performance in terms of both render-

ing speed optimization and space reduction. Chapter 3 introduces a novel coding

scheme for dynamic volume data using hierarchical vector quantization and mo-

tion compensation. This new method can achieve a higher fidelity and shorter

6
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decompression time compared to other lossy compression methods producing sim-

ilar compression ratios. Chapter 4 is devoted to a clustering-based framework

for the automatic generation of transfer functions for volume data visualization.

The method uses multi-step clustering to incorporate both feature and spatial

information to identify complex material boundaries in the dataset, then auto-

matically produce transfer functions for a good visualization while preserving a

high degree of freedom for the user to adjust the rendering results. Chapter 5

discusses an application of hybrid rendering, in which surface rendering is used to

simulate the drug flow in the vascular system which has been modeled in advance,

whereas volume rendering is employed to present the anatomical context. Lastly,

the conclusions of the dissertation and future work are given in Chapter 6.

7





Chapter 2

Dynamic Medical Volume Data

Rendering

With the advances in radiological science, dynamic scanning is increasingly popu-

lar in clinical applications. Fast rendering of these time-varying data, however, is

a challenging task. With continuing improvements in spatial and temporal resolu-

tions, these data usually comprise hundreds of megabytes or even gigabytes, thus

dramatically increase the time and storage requirements for visualization. Pre-

processing such as encoding and compression are usually necessary. Traditional

encoding and compression algorithms based on spatial features applied to 3-D

data are no longer affordable for dynamic data, as they should be analyzed and

processed in joint feature-temporal space. On the other hand, we need to maintain

a balance between the compression ratio and the quality of the rendered images

to ensure that clinicians can obtain enough information for diagnostic decisions.

We introduce an efficient clustering method for fast rendering of these time-varying

volumetric medical data (Wang et al., 2010). We divide the volumes into a set

of blocks and cluster them by employing a modified BIRCH algorithm (Zhang

et al., 1996) that considers both spatial and temporal coherence. In each cluster

of blocks, a KeyBlock is generated to represent the cluster by considering the

9



Chapter 2. Dynamic Medical Volume Data Rendering

contributions of all blocks. Thus the storage space of the volumes is reduced

greatly. In addition, we assign a lifetime to every KeyBlock and implement a

dynamic memory management scheme to further reduce the storage space. During

rendering, each KeyBlock is rendered as a KeyImage, which can be reused if the

view transformation and transfer function are not changed. Extensive experiments

have been conducted to evaluate the feasibility of the proposed method, in terms

of compression speed, space savings and rendering speedup. Regression testing

is also employed to analyze the impact of the compression scheme on the visual

quality of rendering.

2.1 Related Methods

Among the relatively small number of published papers on time-varying volumetric

medical images compression, methods which treat the data as a four-dimensional

(4-D) field are dominant. In Wilhelms and Gelder (1994), a 4-D tree, which is an

extension of the octree, is used for encoding time-varying data. Other methods

often use the discrete wavelet transform (DWT), followed by quantization and/or

a coefficient partitioning technique such as the embedded zerotree wavelet (EZW)

(Shapiro, 1993) and set partitioning in hierarchical trees (SPIHT) (Said and Pearl-

man, 1996), and finally a symbol coding method. Zeng et al. (2002) used 4-D DWT

and extended EZW to 4-D to encode the echocardiographic data. SPIHT is ex-

tended to 4-D and used with 4-D DWT in Lalgudi et al. (2005a) to compress

fMRI and 4-D ultrasound images. Liu and Pearlman (2007) extended subband

block hierarchical partitioning (SBHP), another coefficient partitioning technique

originally described in Chrysafis et al. (2000), to 4-D and used it with 4-D wavelet

decomposition for enabling progressive fidelity and resolution decompression of

10



2.1. Related Methods

4-D images. Generally, a method that relies on the 4-D wavelet transform can

offer relatively high compression ratios with reasonable fidelity. However, it is not

easy to achieve a fast decompression process due to the high complexity of the 4-D

wavelet transform. In addition, a number of time steps (i.e., frames) may need to

be decoded even if only one of them is to be manipulated or rendered.

The other approaches separate time dimension from spatial dimensions. In Shen

et al. (1999), a 4-D volume rendering algorithm based on time-space partitioning

(TSP) tree is proposed, and the algorithm is improved by using new color-based

error metrics (Ellsworth et al., 2000). The TSP tree is effective in capturing spa-

tial and temporal coherence of data and rendering performance is thus improved.

However, the TSP tree is built as a supplementary data structure, and conse-

quently, results in extra memory overhead and cannot reduce the space or I/O

bandwidth effectively. Shen and Johnson (1994) proposed the differential volume

rendering method, in which only the changed pixels are re-rendered in each time

step. However, the process of determining the changed pixels may be long es-

pecially when the amount of changed pixels is large. In Liao et al. (2003) and

Liao et al. (2004), this process is improved by using a two-level differential volume

rendering method. The rendering performance of this method is improved since

the time for determining the positions of changed pixels is reduced. However,

this method cannot completely take advantage of the data coherence to further

accelerate rendering.

Wang et al. (2006) proposed the dynamic linear level octree (DLLO) data struc-

ture for 4-D volume rendering. This method effectively resolves the I/O band-

width problem and exhibits significant rendering speedup, but the employment of

the octree restricts its flexibility to exploit more extensive data coherence while

decomposing the volume data. In Schneider and Westermann (2003), high-pass
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coefficients from the Laplacian decomposition are encoded using vector quanti-

zation. During the rendering, the volume data is decompressed on-the-fly and

rendered using hardware texture-mapping. This method can be applied to time-

varying dataset since each volume frame can be encoded separately, producing

an index texture and local codebooks for every time-step. Although the decom-

pression speed is considerably fast due to the simple decoding, this approach does

not exploit the dependency among voxels in different volumes. Furthermore, for

a given resolution, the compression ratio is fixed and does not depend on the con-

tent of the volume. Several methods consider a 4-D image to be a 3-D video and

extend the motion estimation and compensation techniques in video coding to 3-D

for exploiting redundancies in all four dimensions (Kassim et al., 2005; Sanchez

et al., 2008). However, it is difficult for these methods to achieve a good rendering

performance since a number of prior frames need to be decoded before processing

and rendering an intermediate frame.

2.2 Clustering-based Volume Rendering Method

This section describes our new clustering-based volume rendering method which

consists of integrated clustering and rendering stages.

2.2.1 Clustering

A time-varying volumetric medical dataset usually contains a sequence of 3-D

volumes, which are collections of voxels with density values. We first divide the

dataset into a set of blocks (cubes). Given dataset Ψ including v volumes with n

voxels in each dimension, we can uniformly divide these volumes into blocks with
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m voxels in each dimension. Thus, Ψ can be divided into v × (n/m)3 blocks. A

good choice of voxel number m can improve the quality of the clustering results.

It usually depends on the voxel number n and the characteristics of the dataset.

We adopt the BIRCH method to cluster these blocks for two reasons: (1) the

I/O cost of the BIRCH algorithm is linear with the size of the dataset; and (2)

the granularity of clusters can be adaptively adjusted by dynamically configuring

threshold values.

2.2.1.1 BIRCH-based Clustering

BIRCH-based clustering technique is used to exploit the homogeneity of time-

varying volumetric data. The blocks from all volumes are grouped into different

clusters, and each cluster is represented by its centroid and radius. We denote

block Bi as a vector: ~Bi = [xi1, x
i
2, ..., x

i
M ], where xij is the intensity value of jth

voxel and M is the number of voxels in block Bi, which equals to m3. The distance

between two blocks Bi and Bj is defined as follows:

D
(
~Bi, ~Bj

)
=

∥∥∥ ~Bi − ~Bj

∥∥∥
M

=

√
M∑
k=1

(
xik − x

j
k

)2
M

(2.1)

which is the normalized Euclidean distance of the two vectors representing the two

blocks. We define the centroid and the radius of a cluster containing N blocks as

follows:

~C =

N∑
i=1

~Bi

N
, (2.2)

R = max
i

(
D
(
~Bi, ~C

))
. (2.3)
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In our BIRCH-based implementation, all blocks are organized as a height-balanced

tree, named CF tree, with two parameters, the branching factor F and the dis-

tance threshold Dthres. One of the advantages of the BIRCH algorithm is that it

can usually find a high quality clustering with a single scan of the blocks. This

is important for large time-varying volumetric medical data. Here we simply de-

scribe our implementation with some adaptations and improvements of the original

BRICH algorithm. More details of BIRCH can be found in Zhang et al. (1996).

As a new block B is ready, we recursively descend the CF tree to compute the

distance between the block and the centroids of existing clusters and find the

cluster Xi having the smallest distance to B. This recursive operation can also be

performed iteratively. Then we compute the value of new radius R′i of Xi under

the assumption that B is inserted into it. If R′i ≤ Dthres, we add the block to Xi

and recompute its centroid C ′i. When there is no space for B, i.e., the number of

block in Xi is greater than F , we must split the leaf node by choosing the farthest

pair of blocks as seeds and redistributing the remaining blocks. If R′i > Dthres,

a new cluster is created containing only the block B. The pseudo code of our

BIRCH-based clustering algorithm is presented in Algorithm 1.

In Algorithm 1, when a new block B is inserted to into the cluster Xi on trial, the

centroid and radius of the cluster must be recomputed. The conventional method

for computing the new centroid and radius of the cluster is to apply Equations

(2.2) and (2.3). However, this method is computationally expensive since all the

existing blocks in the cluster needed to be accessed repeatedly during the block

insertion. To reduce the cost of computation, an approximate method is proposed

for the cluster radius estimation. As illustrated in Figure 2.1, an existing cluster

Xi has Ni blocks, centroid Ci and radius Ri. When a new block B is inserted into
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Algorithm 1 BIRCH-based clustering algorithm

1: /* RSet: the set of blocks, initially including all the blocks.
CF: the CF tree which is initially empty. */

2: while (RSet 6= empty) do
3: select B from RSet
4: if (CF 6= empty) then
5: /* Find the cluster with minimum distance to B */
6: select Xi: min(distance(B,Xi.centroid))
7: /* Try to insert the block into the cluster */
8: compute R′i
9: /* Judge if the insertion is appropriate */

10: if (R′i ≤ Dthres) then
11: Xi.radius⇐ R′i
12: compute Xi.centroid
13: Xi.size⇐ Xi.size+ 1
14: if (Xi.size > F ) then
15: split Xi

16: end if
17: continue
18: end if
19: end if
20: create cluster
21: cluster ⇐ B
22: CF ⇐ CF + cluster
23: RSet⇐ RSet−B
24: end while
25: return CF

Xi, the new centroid C ′i is computed as

C ′i =
Ni × Ci +B

(Ni + 1)
(2.4)

and the new radius R′i is estimated based on the following formulas:

r1 = Ri + d
Ni+1

,

r2 = d×Ni

Ni+1
,

R′i = max (r1, r2) ,

(2.5)
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r1 r2

dR

Ci C’i B

Xi

Figure 2.1: Estimation of the center and radius of a cluster for a trial insertion
of a block.

where d is the distance between the trial block B and the centroid Ri. r1 and

r2 are the two candidate radii, and the greater one will be chosen as the radius

of the updated cluster. This mathematical model mimics the linear interpolation

between two weighted points in the M -dimensional space. If a block is inserted

into a cluster, the new center of the cluster will be pulled towards the inserted

block, and the displacement is inversely proportional to the weights of the two

M -dimensional points, which are the number of blocks represented, respectively.

It is easy to prove that Equations (2.2) and (2.4) produce the same results, meaning

that there is no error introduced in the computation of the new centroid. However,

Equation (2.5) tends to produce a value greater than that of Equation (2.3), i.e.,

the radius could be over estimated. The cluster is actually denser than that implied

by the estimated radius. Therefore, this method is effective in producing clusters

strictly under the pre-defined error-tolerance Dthres. Section 2.2.1.2 will present

one technique to adjust Dthres for improving the quality of the clustering. The

proposed method is also computationally efficient as it avoids accessing blocks

that are already in the cluster. Furthermore, in contrast to Equation (2.3), the

computation of the radius in Equation (2.5) is independent of the centroid. Thus,
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only the radius is evaluated when trying to insert a block into a cluster, and

the centroid is updated only when the radius satisfies the cluster criterion. This

implementation significantly improves the performance of the clustering process.

2.2.1.2 Clustering Granularity

It is obvious that the threshold value Dthres greatly affects the size and quality

of the clustering. For example, cluster centroids can be too close or cross each

other if Dthres is too small. The number of clusters nc also increases when Dthres

decreases. On the other hand, if Dthres is too large, the intensity changes in the

data may be lost during the rendering. Fortunately, BIRCH provides mechanisms

to dynamically increase the threshold value when building the CF tree. Thus,

we can set small initial value for Dthres and adjust it based on the CF tree that

has been built. In the default implementation of BIRCH, Dthres is set as 0. In

our implementation, we usually set the initial value based on the nature of the

volumetric data, e.g., the intensity distribution of the data.

Suppose that Di
thres, the current threshold value, turns out to be too small. A

heuristic approach is used to estimate the next valueDi+1
thres. First, the total number

of clusters nc increases with the number of inserted blocks nb. By preserving a

relationship table of nc and nb during the CF tree building, we can estimate ni+1
c

using a least squares linear regression. Thus, we can approximately set

Di+1
thres = Di

thres ×
ni+1
c

ni
c

. (2.6)

Second, if we want to decrease the number of clusters in current CF tree, it is

reasonable that we increase Di
thres by adding the distance of two closest clusters
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to it so that at least these two clusters can be merged. We set the new threshold

Dthres according to

Di+1
thres = max

(
Di

thres ×
ni+1
c

ni
c

, Dmin

)
. (2.7)

2.2.1.3 Output Data

In the above descriptions, for simplicity, we assumed that each volume has n voxels

in each dimension and each block has m voxels in each dimension. In practice,

the number of voxels in each dimension of a volume can be different. For an

adaptation to the size of the volume, each block dimension can have a different

number of voxels. In addition, a dataset with a large number of time steps can

be divided into multiple groups of frames in time order in which the proposed

clustering algorithm is applied.

In our implementation, the centroid of a cluster is termed a KeyBlock. The output

of the clustering step is a binary file containing three following sections:

1. Header information stores the resolution of the 3-D volumes, number of time

steps, voxel format, data description and pointers to other sections.

2. Volume-KeyBlock table is a collection of lookup tables corresponding to all

the 3-D volumes, one table for each volume at one time step. Each table can

be considered as a 3-D array in which each element is a number representing

the link between the corresponding block in the volume and the KeyBlock of

the cluster it belongs to. This number actually is the index of the KeyBlock

in the KeyBlock data section.

3. KeyBlock data contains all KeyBlock generated.
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For efficient memory management, each KeyBlock is associated with a last-volume

number (LVN), which is the index number of the last volume which contains blocks

belonging to the cluster represented by the KeyBlock. The LVN indicates the life

period during which a KeyBlock is used to reconstruct volume(s) from time to time

and should reside in the memory. It also indicates the expiring time after which

the KeyBlock should be released. The KeyBlocks, therefore, are not released one

by one as the order they are loaded in. A dynamic memory management scheme

should be employed during the implementation. In this way, KeyBlocks are stored

so that they can be properly loaded and released as the sequence of volume being

processed.

2.2.2 Rendering

In the rendering stage, each 3-D volume is reconstructed and rendered using any of

various existing volume rendering techniques directly or with some optimizations.

For instance, a ray casting-based rendering method using the proposed clustering

algorithm can be described as follows.

Denote the index of the working volume as q. Initially, the volume at the first time

step is used as the working volume (q = 1) and the following steps are executed:

1. KeyBlocks whose LVNs are less than q are released together with their as-

sociated partial-image buffers. The final image of the current time step is

initialized.

2. KeyBlocks are read from the binary file in turn. Each KeyBlock is associ-

ated with a partial-image buffer, and KeyImage, the rendering result of each
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KeyBlock, is saved into the partial-image buffer. After all the KeyBlocks in

volume q are loaded, they are rendered according to the following two rules:

• Rule 1. If current volume is the first volume, all the KeyBlocks are

rendered.

• Rule 2. If the current model-view transformation or transfer functions

are changed as compared to that in the previous time step, all KeyBlocks

are re-rendered; otherwise, only KeyBlocks that are newly loaded are

rendered.

3. The KeyImages of the KeyBlocks are composed in 2-D space according to

the Volume-KeyBlock table of volume q and the final image is constructed

by the following rules:

• Rule 1. According to the current viewing direction, blocks in volume

q are accessed in front-to-back order. Using the information in the

Volume-KeyBlock table, KeyBlocks can be easily located.

• Rule 2. The KeyImages of the KeyBlocks are composed into the final

image at the corresponding projection area.

After all blocks of volume q are processed, the final image is produced and

displayed.

4. To proceed the volume at the next time step, q is increased by one (q = q +

1).

The above steps are repeated until the entire sequence is processed. In this algo-

rithm, once the KeyImages are produced, the final image is generated by compos-

ing their colors and opacities in front-to-back order based on the theory of partial
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ray composing. The final image can be composed from the KeyImages by using

the over operator Porter and Duff (1984). 2-D re-sampling of the KeyImages

may be required if the sampling rate of the KeyImage is different from that of

the final image or when they are not sampled along the same set of rays. The

early-ray-termination Levoy (1990) is still possible for both KeyBlock rendering

and KeyImage composition, where samples in KeyImages can be safely skipped

when pixels of the final image are already opaque.

In the rendering methods using the over operator directly (e.g., ray casting),

KeyImages are used as the intermediate results for fastening the composition step;

thus, improving the rendering speed. In other methods (e.g., texture mapping), the

KeyImage may not be used since no over operation is directly performed. However,

the rendering speed still improves in this clustering-based rendering algorithm

since the use of KeyBlocks helps reduce the I/O bandwidth effectively.

2.3 Results and Discussion

In our experiments, three time-varying volume datasets named HAND, HEART,

and ABDOMEN in DICOM format were used to evaluate the performance of the

proposed algorithm (Table 2.1). They were all acquired at the National University

Hospital, Singapore. The computing platform was a 2.52 GHz Intel Pentium IV

desktop PC equipped with 1 GB RAM and a NVIDIA Quadro 4 700 XGL graphics

card with 64 MB onboard memory.

The raw image data and their descriptions are extracted from the datasets to

form the input data of the experiments. In the encoding phase, we used the

proposed clustering algorithm with different initial distance threshold values Dthres
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Table 2.1: Dataset specifications

Dataset HAND HEART ABDOMEN
Bits allocated 8 8 8

Rows × Columns 512×512 192×156 256×256
Slices 136 27 12

Time step 5 20 39
Pixel size (mm) 0.39×0.39 1.67×1.67 1.02×1.02

Inter-slice spacing (mm) 4.0 8.0 5.0
Size (MB) 171.25 15.42 29.25
Modality MRA MRI MRU

Table 2.2: Results of encoding the HAND dataset using different distance
threshold values

Test name Block size Dthres Time (s) Size (MB) SS (%)

HAND A 16×16×17 0.10 3953 36.27 78.7
HAND B 16×16×17 0.15 3044 26.29 84.5
HAND C 16×16×17 0.20 2525 20.94 87.7

Table 2.3: Results of encoding the HEART dataset using different distance
threshold values

Test name Block size Dthres Time (s) Size (MB) SS (%)

HEART A 12×13×27 0.10 22 3.53 77.1
HEART B 12×13×27 0.15 16 2.27 85.3
HEART C 12×13×27 0.20 13 1.61 89.6

to compress each dataset. The output of this phase are binary files in the format

described in Section 2.2.1.3 with each file corresponding to a specific value ofDthres.

The computing times and the space savings were measured. The parameters used

and results of this phase are shown in Tables 2.2 to 2.4. In these tables, the space

savings (SS) is defined as follows:

SS =

(
1− Compressed file size

Uncompressed file size

)
× 100%. (2.8)
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Table 2.4: Results of encoding the ABDOMEN dataset using different distance
threshold values

Test name Block size Dthres Time (s) Size (MB) SS (%)

ABDOMEN A 16×16×12 0.10 305 20.76 29.0
ABDOMEN B 16×16×12 0.15 264 17.46 40.3
ABDOMEN C 16×16×12 0.20 236 14.93 49.0

The proposed cluster-based time-varying volume rendering algorithm was imple-

mented using two underlying rendering techniques: 2-D texture mapping and 3-D

texture mapping. If 3-D texture mapping is supported by the graphics card, the

rendering speed can be improved due to the fast hardware accelerated 3-D in-

terpolation. Otherwise, 2-D texture mapping can be used but software sampling

may be required to create the texture images for the three major orientations.

The experiments evaluate the improvement in terms of rendering speed of our al-

gorithm compared to that of the 2-D texture mapping and 3-D texture mapping

techniques.

After an encoded dataset is loaded into the system, it is rendered repeatedly

20 times with different preset viewing angles while the rendering timing of each

time step is recorded. The execution times of the last 10 running times are then

averaged and reported as the performance result of the dataset. The design of

the experiment ensures that the recorded execution times are obtained when the

system is stable and renderers can benefit from the I/O cache if possible. The

speedup ratios obtained are presented in Table 2.5.

As seen from Table 2.5, depending on the specific dataset and the underlying

rendering techniques used, the proposed algorithm yielded the rendering speedup

of 1.5 to 9.4 compared to the corresponding regular algorithm. This is due to

the fact that the data coherence in time-varying volume datasets is extensively
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Table 2.5: Speedup ratios over the regular rendering techniques obtained when
applying our method on different datasets

Test name 2-D texture mapping 3-D texture mapping

HAND A 7.14 1.56
HAND B 8.72 1.64
HAND C 9.44 1.69

HEART A 3.62 2.23
HEART B 4.71 2.39
HEART C 5.56 2.47

ABDOMEN A 3.98 1.59
ABDOMEN B 4.59 1.63
ABDOMEN C 5.14 1.74

exploited in both space and time dimensions through the employment of our clus-

tering method. A number of works analyzed in Section 2.1 also considered both

spatial and temporal coherence. However, they were mostly based on adjacent

regions in the two dimensions. In our method, blocks that are grouped into a clus-

ter may come from any portion of the dataset in both space and time dimensions,

leading to an efficient saving of storage space and I/O bandwidth. Another advan-

tage of the method is the simple decoding mechanism which is essential for fast

volume rendering algorithms. Furthermore, similar regions can be represented

by the same KeyBlock and are rendered only once if rendering parameters are

unchanged. This also significantly reduces the time cost for rendering.

The proposed algorithm performs a lossy compression of the time-varying volume

data. It is necessary to analyze the impact of the compression scheme on the visual

quality. A regression testing method is employed for this purpose. The regression

testing compares a test image that is produced with an algorithm being evaluated

with a reference image that is assumed to be indeed correct. The comparison takes

into account dithering and anti-aliasing effects, and creates an output image rep-

resenting the difference between the test image and the reference image Schroeder
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and Martin (1998). The difference of the two images is also quantified in terms

of absolute error (EA) and thresholded error (ET ), which are calculated based on

the following equations:

Di =
|rvi −rti|+|gvi −gti|+|bvi−bti|

3
,

EA =

∑
i
Di

Lc−1 ,
(2.9)

Hi =

 Di − T if Di − T > 0

0 otherwise
,

ET =

∑
i
Hi

Lc−1

(2.10)

where (rvi , gvi , bvi ) and (rti , g
t
i , b

t
i) are the ith color pixel value (red, green and

blue) of the reference image and the test image respectively; Di is the difference

between the ith pixel of the two images; Lc is the number of color levels of each

channel; T is a threshold-tolerance for pixel differences. Thus, the absolute error

is the total error in comparing the two images, and the thresholded error is the

error for a given pixel minus the threshold and clamped at a minimum of zero.

The latter will be more effective in representing the noticeable differences between

two images.

In our implementation, all the images are generated in color with red, green and

blue channels, and each channel has 8 bits, i.e., Lc = 28 = 256 levels. In order

to avoid misinterpretation of images with the introduction of pseudo-colors, pixels

are assigned with the same value for all three channels and the images thus appear

in gray. A threshold-tolerance of 5 is used in the analysis of the image quality. It

is less than 2% of the maximum pixel difference and normally is not noticeable

by human eye. The images generated by the regular texture mapping method are

employed as the reference images, and the image quality of cluster-based rendering
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Table 2.6: Error analysis of cluster-based rendering algorithm

Test name EA ET

Inter-step 547.113 104.500
HAND A 15.796 0.009
HAND B 17.938 0.059
HAND C 30.066 0.541

Inter-step 360.980 52.322
HEART A 39.980 0.321
HEART B 54.321 1.182
HEART C 73.284 7.749

Inter-step 2761.917 1658.556
ABDOMEN A 206.086 17.966
ABDOMEN B 254.729 36.396
ABDOMEN C 343.661 70.943

is evaluated based on the following procedures.

For each dataset, the regression testing is applied to each pair of corresponding

images at each time step. The absolute error (EA) and thresholded error (ET ) of

this time step are calculated accordingly. After the regression testing is finished

for all time steps, the results are averaged and used to represent the error of the

cluster-based rendering of this dataset. Based on the images generated by the

regular texture mapping method, the regression testing is also applied between

the images at successive time steps. The results are averaged and used to indicate

the inter-step differences. It provides us an effective reference to evaluate the

rendering quality. The inter-step errors also serve as a good measurement of the

coherence of the dataset. Details of regression testing can be found in Schroeder

and Martin (1998). Table 2.6 presents the results from the error analysis. It is

clear that the cluster-based rendering algorithm achieves good rendering quality

from the negligible error. Selected images are shown in Table 2.7, Figure 2.2, and

Figure 2.3.
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Table 2.7: Comparison of the image quality at different time steps between
2-D texture-mapped rendering and cluster-based rendering of HEART dataset

(Dthres = 0.15)

Reference image Rendered image Error

EA = 118.0
ET = 11.50
Step 1

EA = 46.2
ET = 0.30
Step 7

EA = 48.5
ET = 0.18
Step 13

EA = 41.0
ET = 0.04
Step 20
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(a) (b)

Figure 2.2: Comparison of the image quality between two rendering algorithms
on the volume at the last time step in HAND dataset. (a) 2-D texture-mapped

rendering and (b) cluster-based rendering (Dthres = 0.20).

(a) (b)

Figure 2.3: Comparison of the image quality between two rendering algorithms
on the volume at the last time step in ABDOMEN dataset. (a) 2-D texture-

mapped and (b) cluster-based rendering (Dthres = 0.20).
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2.4 Summary

In this chapter, we have introduced a clustering-based volume rendering algo-

rithm, which is a new method for fast visualization of time-varying volumetric

medical images. The algorithm takes advantage of the inherent characteristics of

time-varying volume data. Data coherence is exploited in both spatial and time

dimensions through the employment of the clustering technique so that the ren-

dering performance is enhanced. Since there is no restriction on the underlying

type of renderers, the algorithm also provides flexibility for further extension. Ex-

tensive experiments were performed based on the texture-based implementations

of this algorithm. A good performance was achieved in terms of both speed accel-

eration and space reduction. Results demonstrated the superiority of this method

over regular algorithms for time-varying volume rendering. We could obtain over

89% of space savings and up to 9 times increase in rendering speed. Based on

the analytical results of regression testing, errors introduced due to clustering-

tolerance are quantitatively and visually small. Hence, high rendering fidelity can

be achieved.
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Dynamic Medical Volume Data

Compression for Visualization

In medical imaging, although static image data allow the assessment of the mor-

phology of anatomic and pathological structures, many aspects relevant to diag-

nosis and treatment planning may be missed since static image data only provide

snapshots of interested organs. This issue can be overcome by using dynamic im-

age data, which characterize functional processes. However, in addition to issues

related to dynamic information, such as motion correction, huge storage require-

ment is a major problem when visualizing dynamic image data. In this situation,

compression is extremely useful to reduce the transmission bandwidth and the

data loading time, thus fasten the rendering process. In this chapter, we describe

a new compression scheme for dynamic medical volume data that can minimize the

loss of important diagnostic information and concurrently support a fast decom-

pression for manipulation and visualization (Nguyen et al., 2011a). The method

combines 3-D motion estimation using a new block distortion measure and hierar-

chical vector quantization in an efficient way to achieve a higher fidelity and faster

decompression time compared to other lossy compression methods producing sim-

ilar compression ratios.
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3.1 Related Methods

Compression techniques can be either lossless or lossy. Lossless algorithms allow

exact reconstruction of the original data, while lossy algorithms introduce some

error or loss after the decompression process. Lossless techniques may be used

in cases where the datasets are not very large, but are not suitable for applica-

tions with limited transmission bandwidth or storage constraints, e.g., in picture

archiving and communication systems (PACS), teleradiology, and remote dataset

browsing systems. In these cases, lossy methods are more appropriate since they

offer higher compression ratios. Popular lossy compression methods for medical

images often use (1) an image transform, such as the discrete cosine transform

(DCT) (Lee et al., 1993; Mohsenian et al., 1995; Lee et al., 1995; Wu and Tai,

2001) or the wavelet transform (Pratt et al., 1996; Menegaz and Thiran, 2003;

Schelkens et al., 2003; Xiong et al., 2003; Miaou and Chen, 2004; Wu and Qiu,

2005), followed by (2) quantization and/or a coefficient partitioning techniques

such as the embedded zerotree wavelet (EZW) (Shapiro, 1993) and set partition-

ing in hierarchical trees (SPIHT) (Said and Pearlman, 1996), and finally (3) a

symbol coding method. The basic idea of applying an image transform to volume

data is to obtain a different distribution in the transform domain that can make

quantization and arithmetic coding more efficient.

In the case of manipulating or rendering time-varying medical volumetric images,

which can be considered four-dimensional (4-D) images, data compression has be-

come a very more important requirement. Among the relatively small number of

published papers on 4-D medical image compression, methods that treat the data

as a 4-D field are dominant. Wilhelms and Gelder (1994) proposed a 4-D tree,

which is an extension of the octree, for compression and rendering of time-varying
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data. Each tree node contains a model of the data represented as a fixed number

of basis functions, a measure of the modeling error, and a measure of the impor-

tance of the corresponding data. Although their method can provide flexibility in

controlling the image quality and rendering speed by using user-defined tolerances

of modeling error and data importance, the compression ratios for this method are

not as good as those for other methods. Other methods often use the 4-D discrete

wavelet transform (DWT) in a lossy compression scheme. Zeng et al. (2002) used

the 4-D DWT and extended the EZW to 4-D to encode echocardiographic data.

Although their method can handle arbitrarily sized input data and offers a wide

range of compression ratio, the fidelity of decompressed data in terms of peak

signal to noise ratio (PSNR) is rather low. Another limitation is that their exper-

iments were conducted based on only one set of small size 4-D ultrasound data;

no other image modality or large dataset was examined. In another work, Lalgudi

et al. (2005b) studied the extension of JPEG2000 to 4-D and proposed a method

to compress fMRI images using the DWT and JPEG2000. A 1-D DWT is applied

along the time dimension of 4-D data first, then followed by another 1-D DWT

along the z-axis, and finally the resulting 2-D wavelet coefficients are compressed

using JPEG2000. The experimental results showed that the method was slightly

better than other methods using 3-D JPEG2000. Another method was proposed

by the same group (Lalgudi et al., 2005a), using the 4-D EZW and 4-D SPIHT

with the 4-D DWT to compress fMRI and 4-D ultrasound images. Nevertheless,

only an insignificant improvement was achieved compared to their previous work,

i.e., the 4-D JPEG2000. Liu and Pearlman (2007) extended subband block hier-

archical partitioning (SBHP), another coefficient partitioning technique originally

described in Chrysafis et al. (2000), to 4-D and used it with 4-D wavelet decom-

position for progressive fidelity and resolution decompression of 4-D images. In
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lossless mode, this method is comparable to the 4-D JPEG2000 (Lalgudi et al.,

2005b), 4-D EZW and 4-D SPIHT (Lalgudi et al., 2005a). In lossy mode, al-

though the method outperforms two other possible 3-D SBHP coding schemes, no

comparison with other lossy methods is reported. Generally, a method that relies

on the 4-D wavelet transform can offer relatively high compression ratios with

reasonable fidelity. However, it is not easy to achieve fast decompression due to

the complexity of the 4-D wavelet transform. In addition, a number of time-steps

(i.e., frames) have to be decoded even if only one of them is to be manipulated or

rendered.

The other approaches process the time and spatial domain separately. It is ob-

viously possible to compress 3-D volumes independently but this approach does

not exploit the dependency of corresponding voxels in different volumes. A good

method should exploit the high correlation between volumes in 4-D medical im-

ages. Several methods consider a 4-D image to be a 3-D video and extend the

state-of-the-art methods in video coding to 3-D for exploiting redundancies in all

four dimensions. Kassim et al. (2005) proposed a combination of the 3-D inte-

ger wavelet transform and 3-D motion compensation is used for lossy-to-lossless

compression of 4-D medical images. Their experimental results showed that the

lossless mode of this method can reduce the coding bit rates by approximately

25% compared with a method that applies a conventional 3-D compression tech-

nique for each time step, and the drop in image quality in the lossy mode is

hardly noticeable when compared to other methods producing the same compres-

sion ratio. Sanchez et al. (2008) introduced a lossless compression method for

4-D medical images based on the most advanced features of the H.264/AVC stan-

dard, e.g., multi-frame motion compensation, variable block size and sub-pixel
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mode in motion estimation. The compression ratios obtained are superior to 3D-

JPEG2000 when encoding fMRI images but similar to other lossless compression

methods when applied to other types of medical images. This method was ex-

tended by Sanchez et al. (2009) with a new multi-frame motion compensation

process that more effectively reduces the redundancy in both spatial and temporal

dimensions by employing a 4-D search, variable-size block matching, and bidi-

rectional prediction. The outputs of the motion compensation process, i.e., the

residual and motion vector, are compressed by using a new context-based adaptive

binary arithmetic coder designed based on the probability distribution of the data.

Evaluation results showed that compared to 4-D JPEG2000 and H.264/AVC, this

method archived an average improvement on compression ratio of 13% on real

fMRI data. However, the outcome of the method when applied to other medical

imaging modalities is still unknown.

We introduce a method that uses hierarchical vector quantization and 3-D motion

compensation for the compression of 4-D medical images (Nguyen et al., 2011a).

While this approach is motivated by the encoding technique presented in Schnei-

der and Westermann (2003), we have introduced a number of modifications and

extensions and include three novel 3-D motion estimation algorithms for improv-

ing the fidelity of the decompressed data. The 3-D motion estimation process

is applied at the beginning of the compression scheme to create a homogenous

preprocessed data to be compressed by a 3-D image compression algorithm using

hierarchical vector quantization. A new block distortion measure, called variance

of residual, and three 3-D fast block matching algorithms are used to improve the

motion estimation process in terms of speed and data fidelity. The 3-D image

compression process involves the application of two different encoding techniques

based on the homogeneity of input data. Simulations confirm that we are able

35



Chapter 3. Dynamic Medical Volume Data Compression for Visualization

to obtain better fidelity and faster decompression compared to other compression

methods while achieving similar compression ratios.

3.2 Compression Scheme

Video compression concepts are applied to 4-D medical images, which consist of

sequences of 3-D image frames. Figure 3.1 provides an overview of the encoding

process. In order to encode a group of 3-D image frames, the first frame (the key

frame) F0 is separately encoded and reconstructed by using a 3-D compression

algorithm. The 3-D compression algorithm used in our work is based on HVQ,

and is presented in Section 3.3. To encode the remaining frames (i.e., the interme-

diate frames), a new 3-D motion estimation algorithm, described in Section 3.4,

is applied to produce the predicted frame Pi at time step i from the reconstructed

frame F ′i−1 so that Pi is matched with the frame at the same time step Fi as closely

as possible (according to a matching criterion). Fi is then motion-compensated by

subtracting Pi to produce a motion-compensated residual frame Ri. Ri is encoded

and transmitted with a set of motion vectors vi, which is the information required

to recreate Pi from F ′i−1. Subsequently, the encoded version of Ri is decoded to

produce R′i, which is then added to Pi to generate the reconstructed frame F ′i to

be used to encode the next frame. Optionally, the resulting bit stream can be

arithmetic coded for further compression.

In the decoding phase, the key frame and residual frames are decoded by using

the decompression process corresponding to the 3-D compression algorithm. These

frames will be used to successively reconstruct the intermediate frames. The first

predicted frame P1 is reconstructed based on the reconstructed key frame F ′0 and
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Figure 3.1: Overview of the encoding process.

the associated motion vectors v1. Then P1 is added to the decoded version of the

first residual frame, R′1, to produce the reconstructed first intermediate frame F ′1.

Subsequently, F ′1 and the decoded version of the second residual frame, R′2, with

its associated motion vectors v2 are used to reconstruct the second intermediate

frame F ′2. The process continues until all intermediate frames are reconstructed.
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3.3 Three-Dimensional Image Compression us-

ing Hierarchical Vector Quantization

Part of our 3-D compression algorithm is based on the hierarchical vector quantiza-

tion scheme proposed by Schneider and Westermann (2003), henceforth referred to

as SW. In this method, the volume data is initially partitioned into disjoint cubes

of 4 × 4 × 4 voxels. Each cube is down-sampled by a factor of two by averaging

disjoint sets of 2× 2× 2 voxels. A 64-component vector (i.e., the first level data)

is formed to store the difference between the original data samples and the re-

spective down-sampled value. By applying the same process to the down-sampled

version, a single value that represents the mean value of the entire 4× 4× 4 cube

and an 8-component vector (i.e., the second level data) carrying the residual data

is obtained. The mean of the cube is stored in a 1-component vector (i.e., the

third level data). In the next step, all the 64-component and 8-component vectors

are separately sent to two vector quantizers to produce two codebooks containing

64- and 8-component codewords. This method is mainly applied to 8-bit volume

datasets with the assumption that the length of each codebook is 256. Therefore,

each cube is represented by three 8-bit values: one value represents the mean of

the cube while the other two are indices into the respective codebooks representing

the difference information. To decode a particular cube, its mean value and the

difference information from the two codebooks are summed. The vector quantizer

uses a principal component analysis (PCA) splitting scheme to find an initial code-

book which is then refined by using the LBG algorithm (Linde et al., 1980). Some

optimizations are applied to the refinement step, including restricted searching

to a k-neighborhood of the original cell and partial searches for a speedup of the

distortion calculation. The major steps of the method are shown in Figure 3.2.
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Figure 3.2: Hierarchical decomposition and quantization of volumetric data.

The vector quantization scheme of the SW method can achieve compression rates

and fidelity similar to that of wavelet based compression (Schneider and Wester-

mann, 2003). Decompression speed is extremely fast due to the simple decoding.

Furthermore, this compression scheme can perform decompression and rendering

simultaneously on a graphics processing unit (GPU) to achieve the interactive

frame rate for visualization applications. Our investigations have revealed that it

is still possible to improve on the performance of SW by making several modifi-

cations. Firstly, regardless of the sizes of the two codebooks and other additional

information, the CR for an 8-bit volume dataset using two 8-bit index codebooks

is limited by a factor of 64 ÷ 3 ≈ 21.3. The CR in vector quantization is fixed

for a given image resolution and does not depend on the content of the volume.

For a 4 × 4 × 4 cube having all voxels of the same intensity value, which is com-

monly found in medical images, this method uses 3 bytes to represent 64 bytes

of voxels. However, this cube can be encoded in a more compact form using only

one byte representing the mean value of all voxels in the cube, thus leading to an

improvement in CR. Secondly, although this method is applied to 8-bit volumes

using two codebooks of 256 bytes in length, it can be extended for encoding a

volume with other bit-width formats using two codebooks with lengths other than

256. Nowadays, most imaging modalities store image data in a 16-bit format, and

for encoding 16-bit volume data, the two codebooks should be wider for better
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Figure 3.3: Enhanced 3-D image compression scheme.

fidelity.

The SW method is used in our 3-D compression algorithm with the following

enhancements (Figure 3.3). In the first modification, we divide the partitioned

cubes into two types based on their homogeneity. Type 1 refers to cubes with

variance values smaller than a pre-defined threshold. A Type 1 cube is represented

by only its mean value, which is more compact than decomposition and vector

quantization. Type 2 cubes comprise the remaining cubes, which are encoded

using the original scheme. For a cube, its type is denoted by a type bit (or HVQ-

enabled bit) and encoded accordingly in the processing step. Since our new motion

estimation method (Section 3.4) aims to produce cubes with minimum variance

values, and due to the characteristics of 3-D medical images, there should be

numerous Type 1 cubes in a volume dataset. This leads to an increase in CR. A

second benefit is that only cubes having variance values greater than the threshold

need to be quantized, thus considerably reducing the amount of computation and

the quantization error (since the number of input vectors is decreased). This

enhancement also has the potential to improve the fidelity of the reconstructed

volume if an appropriate threshold is chosen. Furthermore, the decoding speed

should be faster since no decompression is required for all Type 1 cubes; only the
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duplication of their mean values is performed.

The second modification to the SW method is that the lengths of the two code-

books are widened from 256 (or 8-bit index) up to 1024 (or 12-bit index) for a

significant improvement in fidelity with a slight trade-off in CR. The experiments

in Section 3.6 will demonstrate the efficiency of the enhanced compression algo-

rithm.

It should be noted that the cube size of 4×4×4 voxels was chosen for the balance

between the CR, fidelity and processing time. There are possibilities of choosing

other cube size, leading to the variation in these factors. However, this chapter

does not cover analysis on the size of the partitioned cubes. In addition, although

extra bits are needed to identify the two cube types, the overhead does not really

affect the overall CR since the added storage is very small compared to the volume

size (with the ratio of 1 bit to 64 or 128 bytes in most cases).

3.4 Three-Dimensional Motion Estimation and

Compensation

In video coding, motion estimation and motion compensation are very important

since they are used to reduce the temporal redundancy information between suc-

cessive frames, thus improving CR. Among existing motion estimation methods,

block matching algorithms (BMAs) are widely used because of their simplicity

and effectiveness. Block matching aims to find, within a search window, the best-

matched block from the previous frame based on a block distortion measure or

other matching criteria. The displacement of the best-matched block is described
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as a motion vector relative to the block in the current frame. The algorithm that

can find the best-matched block is the full search (FS) method, which evaluates all

the candidate blocks within the search window. However, the high computational

cost of FS limits its application in practice. In order to reduce the computational

complexity, many fast BMAs have been proposed. Most fast BMAs are designed

on the assumption that block distortion decreases monotonically when the search

position moves toward the minimum distortion point. It is thus not necessary to

check all the search points in the search window since the best-matched position

can be found by following the changing trend of the distortion. Various search

patterns have been used in BMAs to reduce the search points when finding the

best-matched block, such as square patterns in the three-step search (TSS) (Koga

et al., 1981), new three-step search (NTSS) (Li et al., 1994), four-step search (4SS)

(Po and Ma, 1996), and block-based gradient descent search (BBGDS) (Liu and

Feig, 1996); cross patterns in the cross search algorithm (CSA) (Ghanbari, 1990)

and 2-D logarithmic search (TDLS) (Jain and Jain, 1981); diamond patterns in

diamond search (DS) (Zhu and Ma, 1997); and hexagon patterns in hexagon-based

search (HEXBS) (Zhu et al., 2002). More details of BMAs can be found in (Huang

et al., 2006).

In 4-D image compression, motion estimation and compensation have been used

for improving CR. In Guthe and Straβer (2001), the 3-D wavelet transform is

used in combination with 3-D motion estimation and compensation to achieve

high-rate compression of time-varying volumes. The 3-D extension of NTSS has

been used with the 3-D integer wavelet transformation to compress 4-D images

(Kassim et al., 2005). In Sanchez et al. (2008, 2009), 2-D motion estimation and

compensation techniques of the most recent video coding standard H.264/AVC

are adopted for the lossless compression of 4-D medical images. In this chapter, a
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new 3-D block matching motion estimation method named the cross cube search

(CCS) is introduced. In this approach, we also describe a new block distortion

measure named variance of residual (VOR) that can enhance the efficiency of the

3-D motion compensation step in our compression scheme. The experiments in

Section 3.5 show that (1) our algorithm significantly reduces the computational

complexity of the block matching motion estimation, and (2) using the proposed

measure (VOR) instead of the widely used mean squared error (MSE) results in

better peak signal to noise ratio (PSNR) performance.

3.4.1 Novel Block Distortion Measure

As implied from the compression scheme presented in Section 3.3, the distortion

of the final volume after decompressing is mainly dependent on the distortion of

the vector quantization step. Therefore, the fidelity of the final data is affected

by the residual blocks (or cubes) that are the inputs to the vector quantizer. The

residual blocks, which are the outputs of the motion estimation and compensation

steps, are, in general, obtained from the block matching algorithm and the block

distortion measure. In motion estimation for video coding, the most widely used

block distortion measure is the MSE. However, this measure may not best suitable

for the proposed system due to the fact that a small value of MSE calculated

from the block matching step does not guarantee a small distortion of the vector

quantization in the next step. We introduced a new distortion measure named the

variance of residual (VOR) which can be used to obtain a smaller distortion of the

vector quantization compared to using MSE. The proposed measure is the variance
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value of all voxel intensities in the residual cube. The VOR for an L ×M × N -

sample block is defined by

VOR =
1

LMN

L−1∑
i=0

M−1∑
j=0

N−1∑
k=0

(Pijk −Qijk)2−µ2 (3.1)

where Pijk is a sample of the current block, Qijk is a sample of the reference area,

and µ, the mean of all voxel intensities in the residual block, is calculated by

µ =
1

LMN

L−1∑
i=0

M−1∑
j=0

N−1∑
k=0

(Pijk −Qijk). (3.2)

VOR is clearly a measure of the homogeneity of the residual block. A small value

of VOR means that the corresponding residual block has small changes in voxel

intensity. This results in the nearly identical elements of the input vector of the

quantizer. Quantizing multi-dimensional vectors in which the vector elements are

nearly identical often produces a small distortion. Other widely used measures,

e.g., MSE, are not suitable for this compression scheme since they do not assure

the small changes in voxel intensity in residual blocks. This argument will be

demonstrated in Table 3.2 and Figure 3.11 in Section 3.5.

3.4.2 Novel 3-D Motion Estimation Algorithms

To study the characteristics of motion vector probability (MVP) distribution, we

applied motion estimation using FS on four 4-D medical image datasets, described

in Section 3.5, to obtain the optimal motion vectors. VOR is employed as the

block distortion measure with block size of 4 × 4 × 4 and the search window size

of 15 × 15 × 15 voxels. This means that each component of the motion vector
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ranges from −7 to +7. Figure 3.4 depicts the 3-D graphs of the MVP distribution

corresponding to difference values of the z-component, dz. The graphs associated

with |dz| > 2 are not shown since the MVPs are relatively small. As seen in

Figure 3.4, the motion vectors are center-biased. Furthermore, the probability of

the motion vector in the axis-aligned directions is larger than the other directions.

Based on this cross center-biased characteristic of the MVP distribution, the CCS

algorithm uses four search patterns: large cube search pattern (LCSP), medium

cube search pattern (MCSP), small cube search pattern (SCSP) and cross search

pattern (CSP) (Figure 3.5).

The CCS algorithm comprises the following steps:

• Step 1: Apply LCSP and CSP at the center of the search window. Evaluate

the matching distortion of all search points in these two search patterns. If

the minimum matching distortion point (MMDP) occurs at the center, the

search process stops and the motion vector is found at the center. Otherwise,

put the center of the search pattern on the current MMDP and go to Step

2a if MMDP is found in LCSP, or Step 2b if MMDP is found in CSP.

• Step 2a: Use MCSP to find the new MMDP. Move the center of the search

window to this MMDP, and then go to Step 3.

• Step 2b: Repeat using CSP to find the new MMDP until the MMDP occurs

at the center point of the search pattern. The search process stops when the

motion vector is found at the last MMDP.

• Step 3: Apply SCSP to find the new MMDP which is the position of the

motion vector.
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(a) (b)

(c) (d)

Figure 3.4: Motion vector probability distribution with different values of dz.
(a) dz = 0, (b) dz = −1, (c) dz = +1, and (d) |dz| = 2.

In addition, two well-known block-matching algorithms in video coding, DS and

HEXBS, are extended from 2-D to 3-D for comparing their performance with

the proposed method. These two algorithms are based on the MVP distribution

and are noted for their computational efficiency. The 3-D extension of the DS

algorithm, which is called octahedron search (OS), uses two search patterns (Fig-

ure 3.6). The large octahedron search pattern (LOSP) contains 19 check points

while the small octahedron search pattern (SOSP) comprises 7 check points. Dur-

ing the search process, LOSP is repeatedly used until MMDP occurs at the center
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(a) LCSP (b) MCSP

(c) SCSP (d) CSP

Figure 3.5: CCS search patterns. (a) LCSP, (b) MCSP, (c) SCSP, and (d)
CSP.

point. The search pattern is then switched from LOSP to SOSP. The motion vec-

tor is formed based on the position of the point yielding the minimum matching

distortion among the seven check points in SOSP.

3-D HEXBS, the 3-D version of HEXBS, uses the two search patterns shown in

Figure 3.7. The large search pattern (LSP) consists of 11 check points, while the

small search pattern (SSP) is actually SOSP in OS. In the first step, LSP is used to

find the MMDP. If the MMDP is not located at the center point of LSP, the search
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(a) LOSP (b) SOSP

Figure 3.6: OS search patterns. (a) LOSP and (b) SOSP.

(a) Large pattern (b) Small pattern

Figure 3.7: 3-D HEXSB search patterns. (a) large pattern and (b) small
pattern.

process is repeated by centering LSP at the position of the MMDP. Otherwise, it

goes to the last step, where SSP is applied to find the last MMDP, which is the

position of the motion vector.

48



3.5. Experiments

3.5 Experiments

In this section, we describe the experiments used to evaluate the performance of

the proposed method, which we term the enhanced Schneider and Westermann

method with motion compensation (ESW-MC). The test data comprise one mag-

netic resonance (MR) 8-bit and three 16-bit time-varying volume datasets which

were acquired at the National University Hospital, Singapore, and one 12-bit com-

puted tomography (CT) time-varying volume dataset from the University Hospital

of Geneva, Switzerland (Table 3.1).

The raw image data and their descriptions are extracted from the DICOM datasets

to form the input data of the system. In the encoding process, the number of bytes

allocated for representing a cube depends on the bit-width of the dataset, the type

of the cube and the existence of motion estimation in the corresponding frame.

The size of the search window in our experiments is 15 × 15 × 15 voxels. Each

component of a motion vector ranges from −7 to +7 and is represented as a

signed 4-bit integer, forming the 12-bit motion vector. For Type 1 cubes, their

mean values are represented by 8-, 12-, or 16-bit voxels corresponding to dataset

bit-widths of 8, 12, or 16, respectively. For Type 2 cubes, the sizes of the two

codebooks used to quantize level 1 and level 2 data depend on the dataset bit-width

and whether motion estimation is applied in the corresponding frame. Figure 3.8

summarizes the representation format of a cube. The codebook sizes and the cube

representation format are chosen so that the bits allocated to represent a cube are

byte-aligned. This leads to a fast and relatively straight forward implementation

of data decompression. Other possible configurations may lead to the variation

in CR, fidelity and decompression time of the compressed data. However, the

analysis on alternate configuration is not within the scope of this chapter.
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Figure 3.8: Bits allocated to represent a cube.

Five experiments were performed to evaluate the efficiency of the method. The

computing platform was a 2.5 GHz Intel Core 2 Duo laptop equipped with 4

GB RAM. Each test was run at least three times and the execution times aver-

aged. The fidelity of the decompressed data was measured by their PSNRs. The

refinement step in the vector quantization process was included only in the last ex-

periment so that we could evaluate its effect on algorithm performance separately

from the use of motion compensation and cube classification.

Experiment 1
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Figure 3.9: Test result on BREAST dataset. The compression ratios of the re-
spective methods are 21.33, 14.22, 16.00, and 12.80. The corresponding average

processing times per frame are 8, 9, 14, and 15 s, respectively.

The objective was to compare our method with the SW method. Since the latter

is designed for 8-bit data, we used the BREAST dataset. The dataset was encoded

using four compression schemes: (1) SW and (2) SW-CSS, which refer to the SW

method without and with motion compensation using CSS, respectively; and (3)

ESW and (4) ESW-CSS, which refer to our compression method without and with

motion compensation using CSS, respectively. In addition, the vector quantization

step in schemes (1) and (2) used two 8-bit codebooks and a 5-iteration refinement

step to encode the data. The VOR measurement is used in the motion estimation

process in schemes (2) and (4). The results of this experiment are presented in

Figures 3.9 and 3.10.

Experiment 2

The aim was to demonstrate of the effectiveness of using motion compensation in

the proposed compression scheme and the effectiveness of the new block distortion

measure, VOR. The datasets used were AORTA, ABDOMEN, THORAX, and
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(a) Rendered image of the original volume (b) SW

(c) SW-CSS (d) ESW

(e) ESW-CSS

Figure 3.10: 2-D texture mapping rendering of the second frame in BREAST
dataset encoded using different methods.
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Table 3.2: Experiment 2 results: compression ratio, processing time and av-
erage PSNR

Dataset Method Ratio Time (s) Avg. PSNR (dB)

AORTA

ESW 23.58 48 62.42
ESW-CSS 18.66 63 63.97

ESW-FS(MSE) 18.66 793 62.72
ESW-FS(VOR) 18.66 889 64.31

ABDOMEN

ESW 20.24 47 60.34
ESW-CSS 17.95 51 61.80

ESW-FS(MSE) 17.95 594 60.35
ESW-FS(VOR) 17.95 656 61.94

THORAX

ESW 22.22 49 61.17
ESW-CSS 18.25 64 62.17

ESW-FS(MSE) 18.25 643 61.03
ESW-FS(VOR) 18.25 767 62.14

HEART

ESW 26.60 62 40.68
ESW-CSS 18.97 84 44.35

ESW-FS(MSE) 18.97 907 44.14
ESW-FS(VOR) 18.97 1157 44.68

HEART. This experiment comprised four compression schemes: (1) ESW and (2)

ESW-CSS, which are the corresponding compression schemes in Experiment 1;

and (3) ESW-FS(MSE) and (4) ESW-FS(VOR), which refer to the use of motion

estimation and compensation using FS with MSE and VOR, respectively. Only

the first frame in each dataset was chosen as the key frame and no threshold

was applied in the 3-D compression phase, meaning that all the partitioned cubes

were Type 2 cubes. The results of this experiment are shown in Table 3.2 and

Figure 3.11.

Experiment 3

This experiment aimed to compare the three proposed 3-D motion estimation al-

gorithms, CCS, OS, and 3-D HEXBS, with FS and the 3-D NTSS method (Kassim

et al., 2005) in terms of speed and fidelity of the decompressed data. The new
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(a) AORTA (b) ABDOMEN

(c) THORAX (d) HEART

Figure 3.11: Variation in PSNR versus time step when applying the four
compression schemes on various datasets. (a) AORTA, (b) ABDOMEN, (c)

THORAX, and (d) HEART.

block distortion measure, VOR, was used in all these motion estimation methods.

The results of this experiment on our 12- and 16-bit datasets are presented in

Table 3.3.

Experiment 4

Our 3-D compression algorithm uses a threshold to classify a partitioned cube into

two types associated with two different coding processes. This experiment analyzes

the effect of this threshold value on the processing speed, the CR, and the fidelity

of the compressed data using our 12- and 16-bit datasets. Since the homogeneity

of a key frame may be different from that of an intermediate frame, there should
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Table 3.3: Comparison of motion estimation methods

Dataset Method Avg. number of search points Speed-up Avg. PSNR (dB)

AORTA

FS 3194.89 1 64.31
3-D NTSS 60.67 52.66 63.94

3-D HEXBS 19.57 163.29 63.59
OS 31.57 101.19 63.74

CCS 43.42 73.58 63.97

ABDOMEN

FS 3158.16 1 61.94
3-D NTSS 59.18 53.36 61.75

3-D HEXBS 18.59 169.88 61.56
OS 29.83 105.86 61.61

CCS 40.76 77.49 61.80

THORAX

FS 3175.44 1 62.14
3-D NTSS 60.06 52.87 62.12

3-D HEXBS 19.10 166.29 62.05
OS 30.69 103.46 62.14

CCS 42.47 74.77 62.17

HEART

FS 3211.29 1 44.68
3-D NTSS 59.08 54.35 44.32

3-D HEXBS 18.58 172.84 44.07
OS 29.37 109.34 44.10

CCS 41.41 77.55 44.35

be two different threshold values, θ1 for key frames and θ2 for intermediate frames;

thus, two tests were executed. In the first test, for each value of θ1, the first four

frames of each dataset were encoded using our 3-D compression algorithm without

motion estimation (ESW) and the average PSNR was calculated. The results of

this test are shown in Figure 3.12. The value of θ1 yielding the highest average

PSNR was chosen for the second test when compressing the first frame as a key

frame and the next three frames as intermediate frames. These intermediate frames

were encoded using CCS motion estimation with the varying threshold value θ2.

The processing time, CR and PSNR of these three frames were accumulated and

averaged. Figure 3.13 presents the results of the second test.

Experiment 5
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(a) (b)

(c)

Figure 3.12: Effect of threshold value θ1 on the average of: (a) percentage of
type 1-cubes, (b) compression ratio, and (c) average PSNR of the first 4 key

frames in our 12-bit and 16-bit datasets.

The last experiment was performed to evaluate the use of the refinement step in

vector quantization in our method. Several tests without refinement and with the

number of refinement iterations ranging from 1 to 3 were executed. In these tests,

θ1 and θ2 were set at 100 and 300, respectively. The results of this experiment are

shown in Figure 3.14.

3.6 Results and Discussion

Experiment 1
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(a) (b)

(c)

Figure 3.13: Effect of threshold value θ2 on the average of: (a) percentage
of type 2-cubes, (b) compression ratio, and (c) average PSNR of the first 3
intermediate frames in our 12-bit and 16-bit datasets. The threshold for the

first (key) frame was set at 100 for all the datasets.

In the first experiment, the first frame was selected as a key frame for compression

schemes using motion estimation. Figure 3.9 shows the line graph of the PSNR

values between the encoded frame and the corresponding original raw frame. Due

to the relatively small size of the BREAST dataset, the compressed file size used

to calculate CR in this experiment did not include the sizes of the two codebooks

and other information in the file header. The results show that widening the bit-

width of the codebook index from 8 bits in SW to 12 bits in ESW significantly

improved the fidelity of the encoded frame (by 6.1–8.2 dB) with a slight trade-off

in processing speed and CR. Furthermore, the motion compensation process also
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(a) AORTA (b) ABDOMEN

(c) THORAX (d) HEART

Figure 3.14: Variation in PSNR versus time step when applying the different
number of refinement iterations on: (a) AORTA, (b) ABDOMEN, (c) THO-
RAX, and (d) HEART dataset. The average encoding times per frame are

indicated in the legend.

appreciably contributed to the quality improvement of each compressed frame (an

increase of up to 1.5 dB for SW and 1.3 dB for ESW), as can be clearly seen

in Figure 3.10, which presents the rendered images of the second frame in the

BREAST dataset with different compression schemes.

Experiment 2

From Figure 3.11, it is clear that using motion estimation and compensation with

the new block distortion measure, VOR, can significantly improve the fidelity of

the encoded frame. Using VOR with FS, the improvement in PSNR ranged from
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0.97 dB to 4.00 dB, depending on the dataset (Table 3.2). However, using FS

dramatically slowed down the processing speed (from about 14 to 18 times). It

took about 8–19 minutes to encode a frame using motion estimation with FS. In

this case, replacing FS with CSS was a better choice since it still produced a large

improvement in fidelity (1.00–3.67 dB) with a slight trade-off in speed (only 1.08–

1.35 times slower). Using MSE as the block distortion measure was not suitable

for the proposed compression scheme since fidelity was not improved even though

the FS algorithm was used.

Experiment 3

It can be seen from Table 3.3 that the proposed 3-D motion estimation algorithm

CCS produced a fidelity almost equivalent to FS. However, CSS ran faster than

FS by a factor of almost 80. CSS was approximately 1.5 times faster while still

maintaining a higher PSNR than 3-D NTSS. In addition, OS and 3-D HEXBS,

our extensions of the DS and HEXBS algorithms, are good choices for fast mo-

tion estimation process since they could run from 2 to 3 times faster with hardly

noticeable fidelity loss compared to 3-D NTSS.

Experiment 4

As shown in Figure 3.12, when the threshold value θ1 increased, the average CR

noticeably increased due to the increase of Type 1 cubes in each dataset. The

average PSNR was almost unchanged for θ1 ≤ 500 before decreasing. This trend is

also observed in Figure 3.13 with the variation of θ2. When the threshold increased,

in addition to the improvement of CR, the encoding and decoding process should

be faster since the number of Type 1 cubes increased (and processing Type 1

cubes is faster than processing Type 2). Particularly, when θ1 = 100, the encoding

process for key frames was 12.06–24.64% faster, the CR increased with the largest
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increment from 19.65:1 to 23.36:1 while the PSNR remained at the same level, as

compared to the setting with no threshold. When θ2 was set at 300, the fidelity

was still optimal, but the encoding speed increased by up to 22.82% and CR

also increased with the largest change from 17.39:1 to 19.34:1. Ignoring the time

taken for loading data to the memory and storing data, it took about 770 ms for

decompressing one key frame of AORTA, our largest 16-bit dataset, when θ1 was

0. When θ1 was set at 200 and 500, the average decoding time was 670 and 630

ms, respectively. Decompressing intermediate frames was approximately 1.6 times

slower since motion compensation needed to be executed. This is significantly

faster than that of other compression methods.

Experiment 5

From Figure 3.14, we see that the fidelity of the encoded data increased con-

siderably when the refinement step was included. The most significant increase

in fidelity occurred after the first refinement iteration, with average PSNR in-

creasing from about 0.24 dB to 0.80 dB. From the second iteration onwards, the

increment sharply decreased and stabilized after several iterations. The average

refinement processing times for one frame in the AORTA, ABDOMEN, THORAX,

and HEART datasets were 128, 135, 136, and 260 s, respectively. It took from

2 to 3 times longer than the time spent to encode one frame. The number of

iterations to be used with the refinement step is based on the dataset size and the

expected processing time. In most cases, encoding a dataset using the 1-iteration

refinement step is a good choice.

Discussion

Since level 3 data can be considered shrank representation of the original volume,

redundancy would be found in the resulting bit stream. Therefore, an extra gain
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to CR can be achieved by applying any lossless data compression method to the

resulting bit stream. In order to analyze this, all the compressed frames using

ESW-CSS in Experiment 2 were encoded using the arithmetic coding method

introduced in Said (2003). The new average CR obtained for the AORTA, AB-

DOMEN, THORAX, and HEART datasets were 23.33, 22.26, 22.37, and 23.65,

respectively. The average of extra compression and decompression time due to the

arithmetic coding step ranged from 100 to 200 ms per frame, depending on the

dataset. These overheads are relatively small.

Table 3.4 lists a cursory comparison of the proposed scheme with existing 4-D

lossy compression methods. It should be noted that CR, image fidelity and pro-

cessing time are not measured under the same conditions. However, based on the

experimental results and the information from Table 3.4, it is seen that good im-

age fidelity and fast decompression are two advantages of the proposed method.

While the CR of our method is not the best compared to that of methods based on

wavelet transform, e.g., 3-D JPEG2000, it can be considered to be at a high level.

At the same level of CR, our method may achieve a comparable or even better

PSNR. Especially, the method offers a very fast decompression speed thanks to

the simple decoding. Therefore, the proposed method is suitable for numerous

applications, particularly time-critical applications dealing with massive data.

The proposed method has two other interesting features. First, the classification

of the partitioned cubes into two types can increase CR and the encoding and

decoding speed with a slight loss in fidelity. Currently, this process is automatically

done using the two thresholds θ1 and θ2. However, we can manually classify the

cubes based on their homogeneity and input regions of interest (ROIs). Cubes with

low homogeneity belonging to ROIs should be encoded using HVQ. Each of the

remaining cubes containing less important information or having high homogeneity
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is represented by the mean value of the its voxels. This strategy can significantly

improve CR and processing speed while preserving information of interest. Second,

this method is a block-based coding method. In order to decode one block, we

only need the two codebooks of the corresponding frame and the content of one

block in the previous frame together with a motion vector in the event that the

corresponding frame is an intermediate frame, and that the previous frame has

already been decoded. Therefore, we can decompress any slice or any block in one

frame without decoding the frame. This will be useful when we wish to obtain an

overview of an encoded dataset.

The proposed method has two disadvantages. First, due to the complexity of

vector quantization based methods, the proposed scheme may require a relatively

long time for compressing a large dataset. Nevertheless, this drawback should

not be an issue since the encoding phase is to be done only once, and using a

powerful computer will help to hasten the process. Second, although using motion

compensation in the proposed method can significantly improve the fidelity of the

encoded data, it slows down the decoding process in the random frame access

mode. This is due to the fact that to decompress one frame, a number of previous

frames from the nearest key frame have to be decoded if their contents are not

ready. However, this drawback does not appear in the data browsing mode. This

limitation can also be reduced by setting a small number of intermediate frames

to be encoded in one group and using cache memory to store neighboring frames

which have already been decoded. Another possible solution is to use parallel

processing to concurrentize the data preparation and data decompression processes

(Nagayasu et al., 2008).
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3.7. Summary

3.7 Summary

In this chapter, we have introduced an efficient compression scheme, which can

be applied to numerous applications, particularly the compression of 4-D medical

images. The scheme uses 3-D motion estimation to create a homogenous prepro-

cessed data to be effectively compressed by a 3-D image compression algorithm

using hierarchical vector quantization. A new block distortion measure, the vari-

ance of residual, and three 3-D fast block matching algorithms are developed for

improving the motion estimation process in terms of speed and homogeneity of the

preprocessed data. The 3-D image compression algorithm is designed to be suit-

able with the input data by using two different encoding techniques: representing

high homogeneity partitioned cubes by the mean values of their voxels, and using

hierarchical vector quantization to compress homogenous cubes. These two tech-

niques can increase the processing speed and CR while maintaining the fidelity

of the compressed data. The experimental results on typical 4-D medical images

showed that our method can achieve a higher fidelity and faster decompression

time compared to other lossy compression methods producing similar CRs. The

combination of motion compensation and hierarchical vector quantization is the

key factor for the good performance.
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Chapter 4

Transfer Function Design for

Medical Visualization

Direct volume rendering is a powerful technique in scientific visualization, espe-

cially in diagnostic imaging where images are volumetric data generated by CT

and MR scanners. Volume rendering is a method that could overcome the lack of

spatial perception in the traditional 2D slice-by-slice viewing. However, the effi-

ciency of volume rendering strongly depends on the transfer function (TF), which

is a mapping from data properties (e.g., scalar value and gradient magnitude) to

optical properties (e.g., opacity and color). Although a good TF can reveal the

important structures in the data, finding an appropriate mapping that yields the

desired visual appearance is not a trivial task. It requires an understanding of the

TF domain and manually tweaking parameters on the part of the user.

LH space, which describes voxels based on the two materials forming the bound-

ary, has recently been proposed as a feature domain in TF design (Šereda et al.,

2006a,b). Compared to the more conventional TF domains of scalar value and

its derivatives, the LH histogram, a 2-D representation of the LH space, repre-

sents boundaries more compactly and robustly. Moreover, LH space can provide

an unambiguous classification of boundaries with distinct LH values. Therefore,
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applying a clustering technique to the LH space is more suitable than the tradi-

tional intensity-gradient space in which boundaries appear as arches that tend to

overlap.

The system introduced in this chapter incorporates multiple clustering steps to

automatically identify the material boundaries in volumetric data (Nguyen et al.,

2011b, 2012). TFs can then be applied to each material boundary using an au-

tomated TF design module. The system allows users to interactively select the

number of clusters and to modify the TFs assigned to each cluster. Further changes

to the visualization output can also be achieved by changing the clustering param-

eters. The proposed system can significantly reduce the time and effort required

to obtain good TFs for volume rendering and enable visualizations with quality

approaching that of existing methods to be automatically generated.

4.1 Related Methods

Interactive TF design has been addressed through many different studies. Due to

the ease of implementation and parallelization, most approaches employ deriva-

tives to design TFs. Kindlmann and Durkin (1998) used the first derivative (i.e.,

gradient) as an attribute to generate multi-dimensional TFs. In the 2-D TF do-

main, which incorporates the intensity and gradient magnitude, material bound-

aries can be interpreted as arches. Thus, they can be selected and visualized

by manipulating certain TF widgets to approximate the arches. However, these

arches often overlap, which prevents proper isolation of a material from others.

One possible approach to overcome this drawback is to include the second di-

rectional derivative along with the gradient direction (Kniss et al., 2001, 2002).
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Nevertheless, these methods cannot fully solve the blur effect in the intensity-

derivative histogram which is caused by noise. Lum and Ma (2004) used the two

intensity values on both sides of the border to set up a TF with the assumption

that the width of the border represented by the distance between these two sam-

ple positions varies with the amount of blur in the volume. Šereda et al. (2006a)

proposed another method to represent boundaries by searching for low and high

intensity values in both the negative and positive gradient directions of the voxels

in a boundary. The representation of those low and high values in a 2-D plane is

called the LH histogram. An important advantage of LH histograms over the 2-D

intensity-gradient magnitude TF is that boundaries appear as blobs rather than

arches. Blobs are easier to parameterize for clustering and are less likely to overlap

in complicated datasets than arches; thus LH histograms allow for boundaries to

be more easily separated either manually or automatically through clustering. An-

other advantage is that LH histograms have greater robustness to noise, bias and

partial volume effects than intensity-gradient magnitude histograms. Recently, a

semi-automatic generation of LH TFs using a fast generation of LH values has

been introduced by Praßni et al. (2009).

Apart from gradient-based methods, another popular approach to designing TFs

is to employ curvature-based information. Bajaj et al. (1997) introduced the con-

tour spectrum which consists of a variety of scalar data and contour attributes to

describe isosurfaces. They also provided an interactive user inferface for the selec-

tion of relevant isovalues. Another method for isosurface visualization that uses a

cumulative Laplacian-weighted intensity histogram was proposed by Pekar et al.

(2001). Inspired by the work of Hladuvka et al. (2000), Kindlmann et al. (2003)

proposed a methodology for computing high quality curvature measurements, and

the application of curvature-based TFs in volume rendering.
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Since derivatives or curvature measurements only represent local information, a

number of methods have attempted to extend the traditional 1-D or 2-D his-

tograms with spatial information. Lundström et al. (2005, 2006a) introduced local

histograms, which utilize the distribution of intensity values in a given neigh-

borhood to differentiate between different tissues. They also introduced another

method to incorporate spatial coherence into an enhanced histogram, the α-

histogram (Lundström et al., 2006b). The local histograms of disjoint local regions

are calculated, and then raised to the power of α > 1 before being summed and

normalized to produce the global histogram. Thus, spatially concentrated value

ranges are amplified to enlarge peaks corresponding to different materials in the

global histogram. Röttger et al. (2005) also applied the idea of using spatial fea-

tures of the dataset for TF design. They compute the mean and variance values

of all voxels belonging to one single bin in the 2-D histogram, and then use these

measures with a maximum feature radius to classify the histogram. Tappenbeck

et al. (2006) employed a distance-based TF, which allows the optical properties of

structures to be modified based on their distance to a reference structure.

Recently, feature size has been used in several approaches as a parameter to de-

sign TFs for separating structures with similar intensity values. Correa and Ma

(2008) used scale fields for continuous representation of feature size then assigned

to each voxel an additional parameter depending on the local scale of the fea-

ture containing the voxel. Size-based TFs then map the opacity and color based

on the relative size of features. Hadwiger et al. (2008) used region growing to

derive feature size information. Instead of using region growing, in Wesarg and

Kirschner (2009); Wesarg et al. (2010), information of structure size is estimated

by searching voxels with intensity satisfying an user specified tolerance value along

26 directions connecting each voxel with its neighbors. The image generated from
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the structure size data is used as the second property of a structure size enhanced

(SSE) histogram. In our method, we also use the size of regions, estimated using

a new method, to automatically assign visual parameters to minimize occlusions.

One difficulty of the TF design is the lack of a measure to quantify the quality

of TFs. Research works by Correa and Ma (2009b, 2011) use visibility, the con-

tribution of a sample in terms of opacity to the final image, as a primitive to

guide TF design in both manual and automatic modes. With the help of visibil-

ity histograms, which is a multi-dimensional representations of the distribution of

visibility in a rendered image, users can produce TFs that maximize the visibility

of the intervals of interest. In the automatic mode, TFs are generated in order

to minimize the mismatch between the opacity TF defined by the user and the

computed one, and maximize the visibility of important structures. Visibility was

also used in Chan et al. (2009) together with shape and transparency to evalu-

ate and enhance the perceptual quality of transparent structures in the rendered

image. Correa and Ma (2009a) introduced the occlusion spectrum, which is the

distribution of weighted averages of the intensities in a spherical neighborhood of

each voxel. With this spectrum, better 2-D TFs that can help classify complex

datasets in terms of the spatial relationships among features can be produced.

In addition to finding new presentations of features, algorithms to separate dif-

ferent regions in the feature domain have been investigated as well. Tzeng and

Ma (2004) presented a method to create TFs based on material classes extracted

from the cluster space using the ISODATA technique. Šereda et al. (2006b) ap-

plied hierarchical clustering to LH space to group voxels based on their LH values.

Maciejewski et al. (2009) used non-parametric clustering to extract patterns from

TF feature space and guide the generation of TFs. Zhou et al. (2010) developed

a parallel mean shift technique to assign visual parameters to different regions of
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the volume by clustering voxels based on their scalar values and spatial locations.

In our work, we apply a multi-stage clustering process including mean shift and

hierarchical clustering that incorporates LH and spatial information to cluster

and identify complex material boundaries. This multi-stage clustering is non-

parametric, robust, and preserves a large degree of freedom for user manipulation

of results.

4.2 Transfer Function Design System

Volumetric data consists of multiple material boundaries where the boundary vox-

els have similar LH values and spatial location. Our system offers three modes of

operation, two automatic and one semi-automatic, to visualize volumetric data.

Figure 4.1 presents an overview of our system. The brief descriptions on the three

operational modes are given below.

4.2.1 Automatic TF Design using Two-step Clustering

Mean shift clustering (Fukunaga and Larry, 1975) is used to oversegment the

LH space into multiple groups. Hierarchical clustering using a similarity measure

based on neighborhood relations (Šereda et al., 2006b) then merges these groups

into clusters. An automatic TF design module is then used to assign colors and

opacities to each cluster such that the number of occlusions is reduced. If the re-

sulting visualization is unsatisfactory, the user can modify the visualization results

using the bounding polygon widget in the user interaction module. The mean shift

algorithm in our system is implemented in CUDA and uses the GPU (graphics

processing unit) to reduce the clustering time.
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Figure 4.1: Overview of the system. Dotted boxes represent optional modes.

4.2.2 Automatic TF Design using Three-step Clustering

The automatic mode with three-step clustering uses a more complex clustering

scheme that incorporates spatial information, and is more suitable for complex

data compared to that of the automatic mode described above. The automatic

TF design module is responsible for generating the boundary voxel clusters, and for

the assignment of TFs to each cluster. To generate the boundary voxel clusters, a
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three-stage clustering process is performed. First, mean shift clustering is applied

twice in series. The first mean shift clustering is performed to segment the LH

space into multiple LH clusters, while the second mean shift clustering further

segments voxels in each LH cluster based on their spatial proximity. A third

clustering step using hierarchical clustering then generates a cluster hierarchy.

The cluster hierarchy is used to obtain a final set of voxel clusters, each of which

represents a single material-material boundary in the volume. All clusters are then

automatically assigned colors and opacities based on the distribution of voxels in

each cluster so that this minimizes the occlusion and maximizes the discrimination

of the boundaries. If the rendering result is not satisfactory, the user can adjust

the visualization results using the user interaction module.

4.2.3 Semi-automatic User Interaction

The user interaction module operates in parallel with the automatic TF design

module and allows the user to adjust the system parameters to obtain more de-

sirable visualizations. The user can influence the result at various stages in the

system to achieve varying effects on the visualization output. First, the linking

threshold can be interactively modified to vary the number of material bound-

aries. Second, the automatically generated transfer function assigned to a cluster

can also be interactively adjusted to change the opacity or color of the target clus-

ter. Third, if a greater degree of adjustment is desired, the mean shift bandwidths

for the LH and spatial clustering steps can be changed to refine the boundaries, or

the results of the LH clustering step can be adjusted using an interaction widget;

however these changes are more extensive and may require more time to compute.
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4.3 Transfer Function Design Processes

This section illustrates the important processes of our TF design system.

4.3.1 Pre-processing

In all the operating modes, the gradient vector and LH values corresponding to

each voxel are first computed in a pre-processing step. To calculate the gradients,

the method proposed by Hong et al. (2003) is used to determine a second-degree

polynomial function to approximate the density function in a local neighborhood.

The coefficients of the polynomial function can be solved by minimizing the error of

the approximation. Once these coefficients are known, the first partial derivatives,

i.e., the gradient, and the second directional derivatives corresponding to each

voxel can be determined from its intensity and its position. The advantages of this

approximation method are (1) we can take into account the difference between the

pixel spacing and the spacing between slices which often exists in medical datasets;

(2) we do not have to use any computationally expensive interpolation method to

estimate the gradient vector of an arbitrary sampling point between voxels; (3) this

method is robust to noise since it does not interpolate the curve passing through

all the given data points.

Based on the computed gradients, the lower (L) intensity and higher (H) intensity

values of each voxel can be determined by tracking the boundary path using gra-

dient integration in both directions. We use Heun’s method, which is a modified

Euler’s method, to integrate the gradient field:

ui+1 = ui +
1

2
d (∇f (ui) +∇f (ui + d∇f (ui))) , (4.1)

75



Chapter 4. Transfer Function Design for Medical Visualization

where ui and ui+1 are positions of the current and the next sampling voxels, re-

spectively, ∇f denotes normalized gradient vector when tracking H or the inverse

one when tracking L, and d is the step size of the integration. In our experiments,

a step size of one voxel is chosen as a good balance between accuracy and compu-

tation speed. The integration stops when a local extremum or an inflexion point

is reached. In order to emphasize voxels on the boundary or near the middle layer

between two materials, each pair [L, H] is weighted by a factor w when being

accumulated to create the LH histogram. The weight w is determined from

w = 1− |dL − dH |
dL + dH

, (4.2)

where dL and dH are the accumulated distances along the boundary path from

the current voxel to the sampling voxels corresponding to L and H, respectively.

Preliminary experiments suggest that the new interpolation method based on ap-

proximation is superior to conventional gradient estimation methods. Combined

with the distance weighting factor, it can reduce the noise in the LH histogram

and improve the resulting visual quality.

The LH histogram in our method is represented as an image of N ×N pixels. To

balance between the memory needed and the visual quality, N is chosen as 512

pixels. The image is constructed by determining the correct bin for each [L, H]

pair, scaling the sum of all corresponding weight factors taking the logarithm, and

then mapping the resulting value to a color band, e.g., the cold-to-hot spectrum

(Figure 4.2). At the end of this pre-processing step, all the gradient vectors, the

LH values, and the histogram image are stored in an intermediate data file for

further processing.
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Figure 4.2: Cold-to-hot color ramp.

4.3.2 Mean Shift Clustering in LH Space

Mean shift is a popular non-parametric clustering algorithm that seeks the modes

of the given sample space. Mean shift clustering offers two main advantages over

other clustering methods: (1) no limitations or assumptions on the structure or

distribution of the data are made, (2) and the number of clusters does not need to

be specified a priori. For the first clustering step, each voxel is clustered according

to its LH value. A bandwidth parameter BLH controls the sensitivity of the

mean shift clustering. From our experiments, a good BLH lies between 7–9% of

the maximum LH value, maxLH = max(maxL,maxH). As a further performance

optimization, mean shift clustering is computed over discrete values in the LH

histogram, and each LH point is weighted during the mean computation step by

the number of times it occurs in the volume. Since all voxels can only have discrete

LH values and the LH histogram is relatively sparse, this reduces the time and

memory required for mean shift clustering. The procedure of mean shift clustering

is summarized in the following algorithm:

1. Define a clustering parameter, window bandwidth BLH .

2. For a point in the LH histogram, find all points that have LH values within

the bandwidth BLH .
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3. Find the mean µn of the set of neighboring points, with each point weighted

by its voxel frequency.

4. Shift the window center to the new mean, and continue steps 2-4 until con-

vergence. A cluster is deemed to have converged if the distance between

successive means is less than ρBLH where ρ is a threshold preset as 0.001 in

our experiments.

5. Repeat steps 2-4 for each point in the LH histogram.

6. Points that converge to the same modes (the converged cluster mean) are

grouped as a single cluster, and clusters that have modes within BLH/2 of

each other are also grouped as one cluster.

After this clustering step, the data will be grouped into a few hundred clusters,

each containing a large number of voxels with similar LH values.

In our implementation of mean shift clustering using CUDA, we use two 1-D

textures to store the LH points and their corresponding weights. The cache mech-

anism of texture memory can recur memory traffic when the LH points and their

weights are read by the kernel. The kernel in each thread is programmed to process

a set of LH points by finding their means according to the algorithm above. After

all the means are determined, the LH points are grouped into different clusters

depending on the distance between their means. This GPU-based implementation

is about 10 times faster than the CPU-based version in our previous work (Nguyen

et al., 2011c), making the proposed multi-stage clustering algorithm more practi-

cal.
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4.3.3 Mean Shift Clustering on Spatial Domain

At the end of previous step, each cluster contains voxels with similar LH values.

However, it cannot be assumed that these voxels belong to the same boundary,

unless they are also located close together. In this step, mean shift clustering is

applied to cluster each LH cluster based on their spatial coordinates. As a non-

parametric clustering method, mean shift clustering is particularly suitable for

this task because the material boundaries may have complex shapes. A spatial

bandwidth parameter BXY Z controls the sensitivity of the clustering process. After

all clusters have been processed, the volume voxels will be grouped into clusters,

where each group has similar LH values and are spatially close.

The mean shift clustering algorithm used to cluster the voxels is the same algorithm

used in the previous step, with the appropriate change of feature domain and

bandwidth parameter.

4.3.4 Hierarchical Clustering of All Clusters

Hierarchical clustering is a clustering method which builds a hierarchy of clus-

ters by incrementally merging pairs of clusters together (Duda et al., 2001). By

stopping the merging based on some external criteria, for example a threshold

distance between two clusters, the number of final clusters can be controlled as

desired. Here, hierarchical clustering is initialized using each output cluster from

the previous step. Then, the two clusters with the lowest pairwise distance are

merged together, and this merging process continues until all voxels are grouped

under one single cluster. The user is then able to vary the number of boundary

clusters by reversing the agglomerative process and breaking clusters in the reverse
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merge order. The agglomerative hierarchical clustering algorithm is summarized

below:

1. Begin with a set of clusters from the previous clustering step.

2. Compute the pairwise distance between all pairs of clusters in C.

3. Let the pair of clusters with the lowest pairwise distance be Ca, Cb. Merge

Ca, Cb. Also record the clusters that have been merged, the order of merging,

and the distance between Ca and Cb.

4. Update the pairwise distance between the newly merged cluster and all other

clusters.

5. Repeat steps 3 and 4 until only one cluster remains.

6. Cluster links are repeatedly cut from the top of the hierarchy until NC clus-

ters remain. NC is an input parameter defined by the user.

For the pairwise distance between clusters, the metric is based on the volume

similarity measure introduced by Šereda et al. (2006b). This volume similarity

measure evaluates the number of neighborhood relations between the two clusters.

First, for each cluster Ci, the number of neighborhood relations is

NR(Ci) =
∑
j

NR(Ci, Cj), (4.3)

whereas the neighborbood relations between Ci and Cj is computed by counting

the number of 26-neighbors belong to Cj for each voxel vi in Ci:

NR(Ci, Cj) =
∑
vi∈Ci

∑
vj∈Cj

N26(vi, vj);Ci 6= Cj. (4.4)
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The similarity measure is then computed by taking the maximum of the normalized

sum of neighborhood relations between the two clusters:

s(Ci, Cj) = max

{
NR(Ci, Cj)

NR(Ci)
,
NR(Ci, Cj)

NR(Cj)

}
. (4.5)

This similarity measure is updated after each merging of clusters. The number of

relations in the merged cluster Ci∪j is updated with the following approximation:

NR(Ci∪j) = NR(Ci) + NR(Cj)− 2NR(Ci, Cj) (4.6)

while the number of relations and the similarity measure with all other clusters

Ck are respectively recalculated as

NR(Ci∪j, Ck) = NR(Ci, Ck) + NR(Cj, Ck) (4.7)

s(Ci∪j, Ck) = max

{
NR(Ci∪j, Ck)

NR(Ci∪j)
,
NR(Ci∪j, Ck)

NR(Ck)

}
. (4.8)

4.3.5 Assignment of Visual Parameters

The TF design module is built to satisfy four objectives that describe good visual-

izations. First, each cluster and material boundary must be visually distinct from

all other clusters and material boundaries. Second, within each individual cluster

and material boundary, voxels closer to the boundary interface are more important

than voxels farther away from the boundary interface. Third, within each indi-

vidual cluster and material boundary, voxels with different scalar values should

have slightly different visual appearances. Fourth, internal structures should not

be occluded by larger or outer structures. Therefore, the TF design module first
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assigns a different opacity and color to each separate cluster, depending on how

much the cluster occludes other clusters. Each voxel in a cluster then inherits

visual properties from its cluster, modulated by a scaling factor dependent on the

voxel’s gradient magnitude relative to the gradient magnitude of other voxels in

the cluster.

A region is more likely to occlude other regions when it is large and has several close

neighboring regions. Hence, the degree by which a region occludes other regions

can be estimated by the size of the region in the volume and the relative distance

between that region and its neighbors. The size of the region Ri corresponding to

the cluster Ci is coarsely estimated by the standard deviation σi of the positions

of all the voxels vj =
(
vjx, v

j
y, v

j
z

)
∈ Ri

σi =

√
1

Ni

∑
vj∈Ri

(vj − µi)
2, (4.9)

where Ni is the number of voxels in Ri, and µi is the mean of the positions of all

voxels in Ri:

µi =
1

Ni

∑
vj∈Ri

vj. (4.10)

The distance between two regions Ri and Rj is defined as the Euclidean distance

between the two corresponding mean values:

D (Ri, Rj) =

√(
µi
x − µ

j
x

)2
+
(
µi
y − µ

j
y

)2
+
(
µi
z − µ

j
z

)2
(4.11)

A region Ri occludes region Rj if

 σi > σj

σi > kdD (Ri, Rj)
, (4.12)
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where kd ≥ 1 is a pre-defined value. The opacity αi assigned to region Ri is

calculated by

αi =
α∗i

ks (Si + 1)
, (4.13)

where ks is an adjustable factor, Si is the number of regions occluded by Ri, and

α∗i is the value corresponding to σi in the linear mapping of

[
min
j
σj,max

j
σj

]
to a

predefined opacity range [αmin, αmax]:

α∗i =
max

j
σj − σi

max
j
σj −min

j
σj

(αmax − αmin) + αmin. (4.14)

Each voxel in a cluster inherits the cluster opacity scaled to the enhance voxels

nearer to the boundaries. The voxel opacity αi
v corresponding to the voxel v in

the region Ri is individually modulated by the ratio of its gradient magnitude and

the maximum gradient magnitude of all the voxels in the region:

αi
v = αi

‖∇v‖
max
u∈Ri

‖∇u‖
. (4.15)

The true colors of the materials cannot be determined from the data volumes alone,

hence colors in TFs are typically assigned according to some external criteria or

with external knowledge. Here, the color of each region is assigned according to

the relative size of the structure, mapped onto a cold-to-hot spectrum (Figure 4.2).

Hence, small structures will be mapped to hot colors (red) while large regions will

be mapped to cool colors (blue). Alternatively, a pre-defined color array can be

applied for the color mapping as the number of regions tends be small. The color

civ of each voxel within a region Ri is further modulated by the ratio of its intensity
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value fv and the maximum intensity of all voxels in the region:

civ = ci
fv

max
u∈Ri

fu
. (4.16)

This scaling is only applied to the brightness value of the corresponding color in the

HSV color space, which means that voxels within the same region have the same

hue and saturation values and can hence be differentiated from voxels belonging

to other regions.

4.3.6 Interaction Widget for Modifying LH Clusters

While mean-shift clustering automatically assigns labels to each voxel in the vol-

ume, the results may not be immediately satisfactory to the user. Minor adjust-

ments made by the user will improve the quality and relevance of the visualization.

To facilitate easy modification of the automatically extracted clusters, the voxel

cluster labels are used to generate a set of cluster-bounding polygons. The ad-

vantage of cluster polygons is that they are easy to manipulate and modify via

polygon and vertex operations. Entire clusters or individual vertices can thus be

edited on the LH histogram.

Ideally, each cluster polygon should only contain all voxels assigned to that cluster,

but this requires computing concave bounding polygons which is computationally

expensive. Furthermore, concave polygons tend to be more complicated than

convex polygons. To simplify the computation we assume that the bounding

polygons are convex polygons. Then, the bounding polygon can be computed in

Ω(n log(n)) time by fast convex hull algorithms such as Andrew’s monotone chain

algorithm (Andrew, 1979). To resolve overlaps between bounding polygons we
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Figure 4.3: Two demonstrations of the overlap disambiguation scheme.

perform collision detection for each pair of polygons. For each overlap, there are

two intersections. A dividing line is drawn between the two intersections and each

partitioned area is assigned to the cluster it is nearest to.

The regions along the main diagonal of the LH histogram belong to voxels ly-

ing within the same material, i.e., material not lying on the material interfaces

(Šereda et al., 2006a). These clusters may not be important for visualization and

can be discarded or rendered with a low opacity value. After the cluster bound-

ing polygons are generated, a simple check is rendered to detect and discard such

clusters. All polygons with at least one vertex within a diagonal window of the

main diagonal of the LH histogram are treated as clusters of non-boundary mate-

rial. The diagonal window is experimentally defined to have a width of 2% of the

range of LH values. The procedure for computing the cluster bounding polygons

is summarized in the following algorithm:

1. For each cluster Ci obtained from the mean shift algorithm, obtain the set

of points Pi and compute a convex hull Hi containing all the points in Pi.

2. Construct a convex polygon Hdiag using the following 6 coordinates: [0, 0],

[0, 0.01×maxH ], [0.99×maxL,maxH ], [maxL,maxH ], [maxL, 0.99×maxH ],

[0.01×maxL,maxH ], where maxL and maxH are the maximum values in the
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Non-boundary clusters

Figure 4.4: Demonstration of non-boundary cluster removal.

LH histogram. For each convex hull Hi, if any vertex in Hi lies in Hdiag, the

cluster Ci is treated as a non-boundary cluster and is removed or rendered

with low opacity.

3. For each pair of remaining convex hulls Ha and Hb, compute the intersection,

if any, between each combination of hull segments. If there are intersections

denote them as Ia and Ib. Add both Ia and Ib to both hulls Ha and Hb, and

remove all hull points interior to the line segment created by Ha and Hb.

Cluster bounding polygons are a tool to facilitate the manipulation of clusters gen-

erated in LH space. This functionality was retained in our system as an interaction

widget in the user interaction module. If the user wishes to modify the results of

the LH clustering, a convex hull algorithm is first applied to each LH cluster gen-

erated using the clustering algorithm to obtain a bounding polygon that describes
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Figure 4.5: Demonstration of cluster bounding polygons.

each cluster. Then, a disambiguation scheme is run on the bounding polygons

to resolve any overlaps between pairs of bounding polygons. Each automatically

generated cluster is now represented as a convex polygon, and the user can manip-

ulate the clusters by performing vertex or polygon operations. Figure 4.5 shows

the cluster bounding polygons for a sample dataset.

4.4 Results and Discussion

Three 16-bit CT volumes were used in our experiments: the Feet (256×256×125),

Head (128×256×156), and Pig (256×256×128) datasets. The Feet dataset is from

University Hospital of Geneva, Switzerland, and the Head dataset is from National

Library of Medicine, National Institutes of Health, USA. The Pig dataset is from
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Table 4.1: Evaluation parameters

Figure Dataset Method BLH Clusters

4.6(b) Feet Two-step 9% 15
4.6(c) Feet Two-step 8% 18
4.7(b) Head Two-step 9% 17
4.7(c) Head Two-step 9% 6

4.8 Pig Three-step 7% 32

our own surgical planning experiments. Results were obtained on a 2.66 GHz Intel

i5-750 system equipped with 4 GB RAM and a NVIDIA Quadro FX 3800 graphics

card using C++ and CUDA. The preprocessing time was less than 3 minutes for

all datasets used. A GPU-based renderer employing ray marching through a 3-D

texture was used for rendering the results and achieved real-time frame rates for

all datasets used. The parameter kd controlling the effect of occlusions in the

automatic TF design algorithm was set to 1 in all our trials.

Table 4.1 contains the system parameters used to generate Figures 4.6 to 4.8. The

“Method” column describes the clustering process (two-step or three-step) used

for each trial. All figures were generated using the automatic mode with the stated

BLH parameters for the LH clustering step and the stated number of clusters for

the hierarchical clustering step.

For the Feet dataset (Figure 4.6), the automatic mode was run with two-step

clustering and a BLH of 9% of maxLH to generate the initial LH clusters (Fig-

ure 4.6(a)). The number of clusters generated with hierarchical clustering was

varied to obtain Figure 4.6(b) (15 clusters) and Figure 4.6(c) (18 clusters). The

clustering process took around 10 s to complete, with the majority of the time

(90%) being spent on the hierarchical clustering operation. All colors and opac-

ities were automatically assigned using the automatic TF design module. The

visualizations clearly show the bones within the feet, with the metatarsal bones
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(a) (b) (c)

Figure 4.6: Volume rendering of the Feet dataset. (a) LH histogram, (b)
Rendered image with 15 clusters, and (c) Rendered image with 18 clusters.

(a) (b) (c)

Figure 4.7: Volume rendering of the Head dataset. (a) LH histogram, (b)
Rendered image with 17 clusters, and (c) Rendered image with 6 clusters with

a different viewing angle.

(a) (b) (c)

Figure 4.8: Volume rendering of the Pig dataset. (a) LH histogram, (b) and
(c) Rendered image with 32 clusters from two different viewing angles.
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being colored differently from the other tarsal bones. The results demonstrates

the potential of the TF design system for identifying and visualizing structures

with medical volumes.

For the Head dataset (Figure 4.7), two-step clustering was used again with a BLH

of 9% to generate the initial LH clusters (Figure 4.7(a). Figures 4.7(b) and 4.7(c)

were generated using hierarchical clustering with 17 and 6 clusters respectively.

The clustering time was also around 10s. The results show that adjustment of

the number of clusters influences the number of distinct structures visible in the

region. By setting the system to output more clusters, more objects are visible

in Figure 4.7(b). Conversely, the number of unique structures can be reduced by

lowering the cluster number, such as in Figure 4.7(c) where the main focus was on

capturing the crack in the skull region.

The Pig dataset (Figure 4.8) is a complex volume with a number of similar struc-

tures within the volume. The CT scans were obtained from a robot assisted surgi-

cal experiment conducted on a live pig. It is difficult to select, whether manually

or automatically using clustering algorithms, the clusters from the LH histogram.

Furthermore, it is not possible to separating the structures from the LH values

alone. Figures 4.8(b) and 4.8(c) were generated using the automatic mode with

three-step clustering. The system was capable of producing a visualization that

differentiates between the surgically important structures (surgical markers, bones,

major blood vessels) within the volume. With minor operator intervention to fur-

ther improve the visualization, the TF design system is useful for medical and

surgical visualization, and it enables the surgeon to accurately and easily plan the

surgical intervention during operations.
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4.5 Summary

We have developed a system for the automatic and semi-automatic generation

of TFs for medical volume visualization. The multi-step clustering process in-

corporates LH and spatial information to cluster and identify complex material

boundaries, while the automatic TF design module is able to assign good TFs such

that boundaries are not occluded. The proposed system automatically generates

good visualizations while preserving a high degree of freedom for the user to adjust

the rendering results. The visualizations generated by the proposed method are

comparable to existing state-of-the-art approaches.
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Chapter 5

Vasculature and Flow Rendering

for Medical Simulation

Visualization of vasculature and flow is essential in medical simulation. This chap-

ter introduces a physics-based hybrid rendering method for interactive simulation

of drug injection into vasculature (Nguyen et al., 2009). The method is moti-

vated by the mechanism of chemoembolization, which is an important therapeutic

method to treat cancer, most often of the liver.

Chemoembolization is a combination of local delivery of chemotherapy and a pro-

cedure called embolization. In chemoembolization, a catheter is used as a conduit

to inject anti-cancer drugs directly into a cancerous tumor to place thrombotic

agents inside the vessels that supply blood to the tumor. While the liver contin-

ues to receive blood from the portal vein, oxygenated blood is no longer supplied

to the tumor since the artery is blocked. This also traps the anti-cancer drugs in

the tumor, allowing the drugs to stay within the tumor for a longer period of time.

Real-time X-ray fluoroscopy is used in chemoembolization to monitor the passage

of catheter through the artery, as well as the injection of drugs into the tumor.

Several groups have been working on interactive simulation systems on catheter

navigation for training and surgical planning (Chui et al., 2002; Alderliesten et al.,
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2004). The injection of chemotherapy drugs is just as important compared to the

manipulation of catheter since it is a complex image guided procedure that re-

quires a high degree of hand-eye coordination skills on the part of the physician.

In addition, there is always a risk that the thrombotic agents can lodge in the

wrong place and deprive normal tissue of its blood supply.

In order to simulate the flow of particles in vasculature, the method firstly re-

constructs the vessels from medical images, and then models the movement of

the particles using fluid dynamics. Subsequently, a computationally efficient ren-

dering method is applied to produce good visual approximation of the flow of

particles inside the blood vessels. This rendering method can be combined with

a fast volume rendering algorithm to show the vasculature within other organs.

Although the proposed method can be used to visualize the flow in the vessels

of an arbitrary organ, we use chemoembolization as an example to illustrate the

simulation method. In this simulation, we assume that the catheter has already

been inserted and navigated to the artery that feeds the tumor. Details of the

method are described as below.

5.1 Vascular Reconstruction

We hypothesize that a hepatic vessel can be represented by one or more finite

element beam elements. Such an element has a circular cross section and can

be visualized as a generalized cylinder. This is a valid assumption of the hepatic

vessels since they are typically small vessels. When filled with blood, they generally

have a circular cross section. In order to obtain a geometric model of hepatic

vascular, a 3-D region growing algorithm is first applied to extract the raw regions
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(a) (b) (c)

Figure 5.1: Hepatic vessels reconstruction. (a) The maximum-intensity pro-
jection images for all slides, (b) The raw regions of interest, and (c) The skeleton

of the vessel tree.

of interest from a 3-D volume constructed based on CT images of patient’s liver

organ (Figure 5.1). Next, a 3-D thinning algorithm is used to generate the hepatic

vasculature skeleton from the raw regions. The number of voxels in the skeleton is

reduced in a post-processing step; the vessel skeleton thus becomes a unit-width

curve. After that, each branch in the vessel trees is approximated by a cubic

b-spline. Finally, a set of control points forming the splines and the branching

structure of the trees will be used in modeling the hepatic vasculature. Details of

the method are presented below.

5.1.1 3-D Region Growing

Before processing, the user defines the intensity range for valid seeds and the

allowed intensity for voxels in resultant regions. The 3-D region growing algorithm

involves the following steps:

1. Find the first unvisited seed which is in the allowed intensity range. Assign

the next available region number to this voxel and push it into a waiting

queue.

95



Chapter 5. Vasculature and Flow Rendering for Medical Simulation

2. Pop a voxel (x, y, z) from the queue and examine all its unvisited neigh-

bors. Assign the current region number to the neighbor (x′, y′, z′) and push

(x′, y′, z′) into a queue if and only if: both (x, y, z) and (x′, y′, z′) are valid

seeds, or (x′, y′, z′) is in the allowed intensity range and the intensity dif-

ference between it and (x, y, z) is small enough. Repeat this step until the

queue is empty.

3. Return to step (1) if more seeds in the volume still need to be examined.

4. Remove all extracted regions which have the total number of voxels and/or

the total number of seeds less than the pre-specified numbers.

5.1.2 Thinning and Skeletonization

An efficient 3-D thinning algorithm (Palágyi and Kuba, 1999) is applied to all

the remaining regions from 3D region growing to extract their skeletons. This

algorithm preserves the topology of each region and guarantees that the skeleton

will be close to the medial axis of the region (Figure 5.1(c)). However, like most

of other 3-D thinning algorithms, this algorithm cannot be guaranteed to generate

unit-width curve skeletons in some cases. In order to improve the accuracy of

subsequent processing steps, a post-processing procedure is applied to reduce the

number of voxels in the skeleton, thus causing it to be a unit-width curve.

We define the degree of a voxel as the number of object voxels in its 26 neighbors.

We also define a crowded joint voxel as a voxel that has degree > 2 and at least

one of its neighbors has degree > 2. A crowded region is a region formed by

26-connected crowded joint voxels.
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The post-processing step begins with finding all the crowded regions. Next, all

object voxels having degree > 2 and 26-adjacent to each crowded region are located

and marked as entry voxels. Then an object voxel in a crowded region which is

closest to the region centroid is determined and marked as a target voxel. In each

crowded region, the Dijkstra algorithm is applied to find the shortest path between

each entry voxels and the target voxel. Finally, all crowded voxels that are not on

any of the shortest paths are removed. As the result, the skeleton becomes one

unit wide because all the crowded regions are eliminated.

5.1.3 Generalized Cylinder Vessel Modeling

A tree-like branching structure is dynamically established by a recursive traverse

procedure through all unit-width vessel skeletons. In order to reduce the compu-

tational load and for ease of representing the skeleton in the form of a vessel, a

finite number of control points and a knot sequence are assigned to each branch of

the skeleton. Subsequently, the new branch is obtained by finding a cubic b-spline

curve passing through all those control points (Farin, 1999). Each b-spline can be

sampled by specifying a number of points between two successive control points.

Therefore, each branch is represented by the set of lines connecting the sample

points in the corresponding b-spline. These lines will be the central lines of the

generalized cylinders representing the vessel branch. The radius of each cylinder

can be derived from the raw region of interest and the corresponding skeleton

of each vessel branch obtained after previous step. A circle in the plane of the

cross-section is continuously grown until it reaches a relevant local maximum of

the allowed intensity, thus giving estimated radius along the central lines. The
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use of control points in this process is computationally faster compared to con-

ventional methods and hence more suitable for interactive simulation, particularly

augmented reality applications.

5.2 Flow Model

In fluid dynamics, the Hagen-Poiseuille equation is a physical law that describes

slow viscous incompressible flow through a constant circular cross-section. Ne-

glecting effect of gravity, the differential equation of fluid flow is given by:

µ
du

dr
=
r

2

dp

dx
. (5.1)

Assuming the viscosity is constant and the flow is steady, we can derive the fol-

lowing formula (Sutera and Skalak, 1993):

−∆P =
8µL

πR4
Q. (5.2)

In the above equations, µ is the dynamic fluid viscosity, u(r) is the axial velocity

at radial distance r from the tube centre line, x is a distance in direction of the

flow, Q denotes the volumetric flow rate, L is the length of the tube, R is the

radius of the tube, and ∆P is the pressure drop across the tube.

The standard Hagen-Poiseuille Equation (5.2) applies for a tube section with con-

stant radius. However, it can be modified to apply to a conical tube with a linearly

varying radius. Obviously, a conical tube with radii R1 and R2 at its ends can be

obtained by rotating a line segment 360◦ about the x-axis (Figure 5.2). Hence, it
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R

x

L0

R1

R2

Figure 5.2: A line segment can be rotated 360◦ about the x-axis to generate
a conical pipe.

can be considered as being made up of numerous thin sections. Each of the sections

can be approximated as a constant radius tube section where the Hagen-Poiseuille

relations apply. As a result, we can derive the pressure difference between the two

ends as follows:

−∆P =

L∫
0

(
8µQ

πR4

)
dx. (5.3)

The equation of the line segment can be represented as a function R(x):

R =
R2 −R1

L
x+R1. (5.4)

From (5.4), we have:

dx =
L

R2 −R1

dR. (5.5)

Substituting (5.5) into (5.3) and changing the limits of integration accordingly,

−∆P =

R2∫
R1

8µQL

πR4 (R2 −R1)
dR =

8µQL

π

[
1

3 (R2 −R1)

(
1

R3
1

− 1

R3
2

)]
. (5.6)
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Hence, we can derive the following formula for ∆P :

−∆P =
8µLQ

π

[
1

3

(
1

R1R3
2

+
1

R2
1R

2
2

+
1

R3
1R2

)]
. (5.7)

For a tube subjected to a flow rate Q and pressure drop −∆P , the conductance

to flow is

C =
Q

−∆P
. (5.8)

Assuming that L and µ are similar for all subsidiary branches at points of branch-

ing, the minimum conductance of a filled subsidiary branch is essentially propor-

tional to the fourth power of its minimum radius, i.e., R4
min. For a partially filled

subsidiary branch, Rmin is given by the minimum radius of cross sections where

the fluid has flowed past. This will be updated as branch filling continues. This

dynamic update of network conductance to alter the flow distribution is clearly

more realistical as the network is filled progressively. Hence, at a branching point

with N subsidiary branches and a total input flow rate of Q0, the flow rate through

a subsidiary branch i, with corresponding Rmin = Ri, is given by

Qi =
R4

i

N∑
j=1

R4
j

Q0. (5.9)

The above branching distribution relation also ensures continuity is maintained

because

Q0 =
N∑
i=1

Qi. (5.10)
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Similarity, the distribution of injected volume V0 through a subsidiary branch i is

given by

Vi =
R4

i

N∑
j=1

R4
j

V0. (5.11)

After vascular reconstruction step, the two radii of each tube and its length are

known. Therefore, with the input values of injected volume V0 and flow rate Q0,

based on these above equations, we can calculate the partial length of each segment

that is filled by fluid at each time step for rendering purposes.

5.3 Rendering Method

There is a variety of methods for three-dimensional flow visualization, for example

the “virtual tubelets” (Schirski et al., 2004). This method is based on cylindrical

billboards. They are basically quadrilaterals, which are aligned to face the viewer,

and which are drawn or textured appropriately to create tubes. The head of the

list of quadrilaterals is positioned at the current position of the corresponding

particle with its tails passing through the particle’s recent positions (Figure 5.3).

Preliminary investigation on visualization of flow particles in chemoembolization

reported in (Chui et al., 2005) was also based upon cylindrical billboards. An

ellipse was briefly considered in place of quadrilateral. However, the quadrilateral

has advantages over ellipse in terms of rendering speed.

In order to simulate the fluoroscopy, we rendered the flow as overlaying and semi-

transparent quadrilaterals representing the particles’ trails. The quadrilaterals

might be drawn in decreasing grayness from the head to the last quadrilateral to

depict the washing out effect during injection. This method is efficient in terms of

101



Chapter 5. Vasculature and Flow Rendering for Medical Simulation

Figure 5.3: Anatomy of a virtual tubelet (Schirski et al., 2004).

speed since for each tube segment, there are only one or two quadrilaterals drawn

instead of numerous polygons.

This rendering of the flow can be combined with a fast volume rendering algo-

rithm, e.g., the maximum-intensity projection (MIP), to provide more context

information of the scene. With a specific viewing direction, the volume rendering

is employed first to provide the anatomic context (Figure 5.1(a)). Subsequently,

the quadrilaterals are rendered to simulate the flow.

5.4 Results and Discussion

We implemented the reconstruction method of hepatic vessels, and physics-based

visualization of particles flow on an Intel Core 2 Duo based notebook computer.

Figure 5.4 is a snap shot of the rendered flow in various discrete time steps. Fig-

ure 5.5 shows a region of fluoroscopy image of a hepatic artery and the correspond-

ing simulation image generated. The vessel in this test consists of 384 conical tube

segments created from 75 control points. The number of tube segments can be

changed by changing the point density, i.e., the number of interpolated points be-

tween 2 consecutive control points, leading to the trade-off between image quality
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(a) (b) (c) (d)

Figure 5.4: Visualization of drug injection into a vessel during 4 consecutive
time-frames with difference viewing angles. (a) t, (b) t + 1, (c) t + 2, and (d)

t+ 3.

and speed. The average rendering time including the calculation when the viewing

angle is changed approximately is 47 ms, meaning a frame rate of 21 frames per

second. It takes approximately 3 s for modeling the vascular tree from a volume

dataset of 256 × 256 × 120 voxels. The timings are measured on a 2.5 GHz Intel

Core 2 Duo notebook. This un-optimized simulation program uses only Graphics

Device Interface (GDI) functions to render the image. Although the frame rate

in this test can be considered as an interactive frame rate, it may be significantly

improved by shifting computational load to the GPU on an accelerated graphics

card. Modern programmable graphics hardware has mechanisms to execute a small

assembly program for every vertex which is sent to the graphics system. Hence,

several procedures, e.g., computing the orientation of the billboards, can be moved

from the CPU to the GPU for increasing the responsiveness of the visualization

system.

The quadrilaterals which are aligned along the viewing direction are rendered to vi-

sualize the movement of particles through the flow modeled using Hagen-Poiseuille

Flow. The physics-based flow model is unique and is important for an accurate

simulation of drug flow. While a prior work by Wu et al. (2007) assumes that
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(a) (b)

Figure 5.5: Fluoroscopic imaging of a hepatic vessel. (a) A part of the image
in reality, (b) Corresponding generated image based on the proposed method.

the vascular resistance is invariant in time and the vessel’s radius in one segment

generally is a constant, the Hagen-Poiseuille equation in this chapter is modified

to apply to a conical tube with a linearly varying radius. This approach has ca-

pability to create simple but realistic motions of blood flow. Our visualization

method is computationally efficient and has achieved good visual approximation

of the flow of particles inside the vessels under fluoroscopic imaging. This method

is applicable to simulation of chemotherapy drug injection as well as contrast dye

injection for angiography.

The quadrilaterals may eventually be replaced with ellipses. Although the quadri-

laterals can be rendered faster than that of ellipses, the later may be a realistic

representation. This realism will be important when we have a close up view of

the flow of particles within the tumor. The flow model has to be improved to more

accurately represent the flow within the tumor. The representation of a hepatic

vessel using one or more finite element beam elements is important. It provides

means to simulate the deformation of the small vessels due to the injection of

104



5.5. Summary

the particles. The liver organ which is just below the heart is also subjected to

periodic deformation from regular heart beats.

Realistic rendering of the tissues including tumor surrounding the vessels can be

done by a volume rendering method. Combined with the proposed physics-based

geometrical rendering of particles flow, we have a hybrid rendering method that

exploits the advantages of both surface and volume rendering.

5.5 Summary

We have described a physics-based method for rendering the flow particles in the

simulation of chemotherapy drug injection. A 3-D region growing technique is

used to extract hepatic vessels from clinical CT images. These vessels are skele-

tonized using a 3-D thinning algorithm. An additional post processing step is

introduced to ensure that the resultant skeleton is of unit pixel width. The vascu-

lar geometries are reconstructed using cubic b-splines. The cubic b-splines method

enhances the smoothness of the rendered vessels and is more computational effi-

cient compared to conventional methods. Quadrilaterals which are aligned along

the viewing direction are rendered to visualize the movement of particles through

the flow modeled using Hagen-Poiseuille Flow. This rendering method can be

combined with a fast volume rendering algorithm to provide more context infor-

mation of the scene. Our visualization method achieves a computational efficient

and good visual approximation of the flow of particles inside the vessels under

fluoroscopic imaging.
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Chapter 6

Conclusions and Future Work

Medical volume data, both static and dynamic types, are playing important roles

in medicine. However, a typical characteristic that may limit the use of medical

volume datasets in practice is their very large storage requirements. This dis-

sertation has addressed several challenging issues related to visualization of large

medical volume data.

6.1 Compression for Visualization of Large Med-

ical Volume Data

In Chapter 2, we proposed an efficient compression method for fast rendering of

large dynamic volume data. The algorithm deeply exploits the inherent charac-

teristics of dynamic volume data in both spatial and time dimensions through the

employment of a fast and efficient clustering technique. By maintaining a KeyIm-

age corresponding to each KeyBlock, the rendering process is integrated with the

decompression, leading to a significant increase of the rendering speed. To further

validate the method, more experiments on larger datasets should be performed.
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Importance analysis techniques can be integrated into our clustering method to en-

sure dynamic features of the time-varying volumetric medical data to be correctly

visualized after compression. The relationship between some parameters, such as

the initial threshold values and the characteristics of the data, is important, and

can be studied in depth in future.

Since there is no restriction on the underlying renderer, the algorithm in Chapter 2

provides flexibilities for further extensions. The rendering technique described in

the method can be implemented using a graphics processing unit (GPU) for further

improvement in terms of rendering speed. In this case, the Volume-KeyBlock table

and the KeyBlocks are loaded into the GPU’s texture memory instead of the main

memory. Since GPU is capable of traversing data stored in the texture memory

in parallel by using fragment shader, the rendering time is significantly reduced

compared to other CPU-based implementations.

The compression scheme described in Chapter 3 is highly appropriate when com-

pressing large volume datasets in which fidelity and decompression time are criti-

cal. The key feature of the method is the novel block distortion measure, variance

of residual (VOR), which successfully links the hierarchical vector quantization

and the motion compensation modules together so that the distortion of the de-

compressed data is significantly reduced. Due to the simple decompression, the

proposed compression scheme is suitable for visualization of large volume data.

The compressed data can be loaded to the GPU’s memory, and then decom-

pressed and rendered using a GPU-based volume rendering algorithm. Since this

is a block-based compression scheme, applying a rendering method that exploits

the pre-rendered images corresponding to the partitioned cubes, which is similar

to that of Chapter 2, is also possible.
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Using GPU to improve the compression speed for the method in Chapter 3 is

another direction for future work. Currently, on a low-end computing platform, it

takes about 1 minute to compress a typical medical volume without refinement,

and about 3 minutes in the case a 1-step refinement is used. Although this is gener-

ally acceptable, the compression speed can be significantly improved by performing

the vector quantization using the LBG algorithm, the most time-consuming step

in the scheme, using GPU. In addition, implementing the 3-D motion estimation

module using GPU is possible due to the high parallelism in data access.

6.2 Transfer Function Design for Visualization

of Medical Volume Data

Although being a powerful technique in medical diagnosis, the efficiency of di-

rect volume rendering strongly depends on the transfer function. Finding ap-

propriate transfer functions that yields the desired visual information is difficult,

non-intuitive, and time-consuming. The clustering-based framework introduced

in Chapter 4 is suitable for medical imaging applications since it supports both

automatic and semi-automatic generation of transfer functions with the compa-

rable visualization results to existing state-of-the-art approaches. The use of LH

values in this method provides an unambiguous classification of boundaries. The

multi-step clustering process incorporates LH and spatial information to cluster

and identify complex material boundaries, while the automatic transfer function

design module is able to assign good transfer functions such that boundaries are

not occluded. The proposed system also preserves a high degree of freedom for
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the user to adjust the rendering results; thus, it is suitable for both experienced

and non-experienced users.

The visual quality of the proposed system can be improved if we introduce an

importance value to each cluster and enhance the rendering process so that im-

portant parts are emphasized or focused in the image space. The assignment of

importance values is done manually only once for each given medical task and can

be reused in future. By using importance values, the optical properties can be

locally manipulated, leading to possibilities to render important parts with more

details and higher contrast than the rest. This manipulation can be done by re-

ducing the opacities of sample points having low importance values, darkening the

outline of more important parts, and using no shading for unimportant parts and

more complex shading models for important parts, respectively.

The application of LH values is not limited to static medical volume data. A

research topic that may be interesting is the application of the LH feature domain

in automatic design of transfer functions for visualization of dynamic medical

volume data. This may be helpful in diagnostic of chemotherapy drugs injection,

in which the blood vessels and the organs of interested are captured through

multiple time-steps. Since LH values can represent the material boundaries well,

the movement of the drugs flow can be modeled by examining the changes of the

LH histogram along the time.
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6.3 Vasculature and Flow Rendering for Medical

Simulation

In Chapter 5, we proposed a physics-based method for rendering the flow particles

in the simulation of chemotherapy drugs injection. The hepatic vessels are ex-

tracted from clinical CT images using 3-D region growing, and skeletonized using

a 3-D thinning algorithm. The resultant skeleton is refined to be of unit pixel width

by a post processing step. The vasculature are reconstructed using cubic b-splines

and represented as generalized cylinders. The cubic b-splines method enhances

the smoothness of the rendered vessels and is more computational efficient com-

pared to conventional methods. The flow is modeled using Hagen-Poiseuille Flow

and simulated by rendering the quadrilaterals which are aligned along the viewing

direction. This approach has capability to create simple but realistic motions of

blood flow. It can also be combined with a fast volume rendering algorithm to

provide more context information of the scene.

Three-D region growing algorithm is used in our method due to its simplicity and

computational efficiency. However, it requires a number of pre-defined parameters

and the segmentation result may be sensitive to these parameters, especially in

noisy datasets. More advanced image segmentation algorithms, for example level

set methods (Li et al., 2012), could be used to improve the segmentation result.

In addition, blood flow dynamics is highly complex. In future, we will integrate a

more accurate blood flow model in our simulation system.
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