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Summary 

In this study, neural correlates of figure-ground segregation, and in particular, 

the correlation between neuronal synchrony and visual grouping were investigated. 

To perform this, electrophysiological recordings were conducted in the primary visual 

cortex of macaque monkeys, while they were engaged in a contour detection task.  It 

has been shown that changing the saliency of figure can affect perception, and, as a 

result, the performance of the subjects in figure-ground segregation. So, the visual 

saliency of the contour was changed throughout the experiment, and the aim of the 

study was to discover if the neuronal responses were modulated as a function of 

visual saliency. Frequency domain analysis techniques were applied to the local field 

potentials either recorded on single electrodes or simultaneously on pairs of 

electrodes. Oscillation in gamma band of local field potentials is thought to be due to 

the synchronous oscillatory activity of a large population of neurons, so we assessed 

the power responses in gamma band of local field potentials on single channels. We 

found when the receptive field of a neuron was part of the contour (figure condition) 

the power responses were significantly different compared to when the receptive field 

was part of the background (background condition) for 29.69% of the recording sites 

(106 out of 357). For the sites with significant differences between the responses in 

the figure and background conditions, we examined the changes in the responses as a 

result of changes in visual saliency. We found 52 (49.05%) sites out of the 106 

significant sites exhibited significant modulations as a function of visual saliency. We 

then directly examined the synchrony of the gamma band responses on pairs of 

simultaneously recorded electrodes. The synchrony of the simultaneously recorded 
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responses elicited significant differences between the figure and background 

conditions for 48.74% (97 out of 199) of the pairs. This is while 68.04% (66 out of 

97) of these pairs also exhibited significant modulations as a function of visual 

saliency.   

We were also interested in the time course of these observed modulations. 

Although the time resolutions of both single channel and multi-channel analyses were 

very low, we observed modulations in both early and late components of the 

responses. We speculated that, potentially, the earlier modulations represented the 

contribution of V1 in figure-ground segregation in the feedforward sweep, while the 

later modulations represented the effect of feedback from extra-striate cortex to V1.  

Overall, these results may add to the evidence supporting binding-by-synchrony 

hypothesis as the mechanism underlying visual grouping in the primary visual cortex. 

Also, these findings indicate that primary visual cortex may contribute to figure-

ground segregation very early in vision. 
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Chapter 1  
 

Introduction 

One of the early processing steps that seems to precede pattern recognition in 

the visual system is scene segmentation. Scene segmentation, also called figure-

ground segregation, is the process through which individual components of the 

objects in a scene are grouped together and form distinct objects, segregated from 

both the background and each other. While the neuronal correlates of scene 

segmentation in the brain have been widely studied, our knowledge of how and where 

in the brain this process occurs is still very limited. However, as scene segmentation 

is performed very rapidly (Zipser et al., 1996; Fabre-Thorpe et al., 2001; Maldonado 

et al., 2008; Uhlhaas et al., 2009), early cortical areas, such as primary visual cortex, 

could be the potential regions of the brain associated with this process.  

In this study, we investigated a potential mechanism for binding and scene 

segmentation proposed by Milner (1974) and von der Malsburg (1981; 1985), i.e. 

binding-by-synchrony. This hypothesis, which has been supported by experimental 

evidence (for reviews, please see Singer, 1995; Gray, 1999), suggests that the neurons 

that represent different features of an object in a scene fire synchronously to convey 

the coherent percept of the object. The role of neuronal synchrony extends beyond 

binding neuronal responses in one region, and has been shown to be involved in 

binding responses in different regions and even different modalities in a large body of 

studies. It is also believed to be the mechanism underlying several cognitive processes 
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(Uhlhaas et al., 2009). However, the role of synchrony in binding visual features in 

the primary visual cortex is still poorly understood. This necessitates further 

investigation into synchrony and its association with binding visual features in this 

area. 

To perform this, we conducted a contour detection experiment in macaque 

monkeys. It has been shown that the performance of subjects in a scene segmentation 

task can be correlated with the saliency of the individual objects composing the scene 

(Supèr et al., 2001; Lee et al., 2002), which suggests that investigating the 

representation of visual saliency could shed light on the physiological substrates of 

scene segmentation process. Thus, in our experiment, we manipulated the saliency of 

visual stimuli. Then, we examined the modulation of synchrony as a function of 

visual saliency using local field potentials (LFP). LFPs, instead of spikes or at least in 

conjunction with spikes, have been shown to be more suitable for investigating 

synchrony (Frien et al., 1994; Bedenbaugh and Gerstein, 1997; Brosch et al., 1997).  

In the next chapter, we elaborate on the binding-by-synchrony hypothesis, and 

the evidence found in the primary visual cortex related to perceptual grouping. Next, 

in Chapter 3 and Chapter 4, we describe how we assessed the correlation between 

changes in gamma band power and synchrony, respectively, with changes in visual 

saliency. Finally, in Chapter 5, we conclude with the potential contributions of the 

results found in this study to the understanding of the neuronal basis of scene 

segmentation.  
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Chapter 2  

Literature Review  

The binding problem relates to the question of how the brain integrates the 

different components and features of an object together into a unified whole. For 

example, how the color and shape of a red square defines and distinguishes a red 

square from a blue circle. This integration, referred to as perceptual binding or 

perceptual grouping, may be encountered in different forms: from binding the visual 

features of an object in a scene, to binding sensory and motor information, and 

binding cross-modal features (Roskies, 1999). Binding and scene segmentation are 

key steps in the sensory pathway that are believed to be precursors of pattern 

recognition in the brain. The Gestalt psychologists in the 1920s proposed that we 

perceive individual components in a scene as unified objects, and segregate them 

from other objects, based on some common characteristics: proximity, similarity, 

continuity, closure, and common fate (Köhler, 1930; Wertheimer, 1955; Koffka, 

1935, 1969; Kanizsa, 1979) Other studies added some other characteristics to the list, 

such as size (Bergen and Adelson, 1988), texture (Julesz, 1975), binocular disparity 

(Nakayama and Silverman, 1986), and coincidence in time, which means that in a 

dynamic scene, the elements that change together tend to be bound together (Alais et 

al., 1998; Usher and Donnelly, 1998; Kandil and Fahle, 2001; Lee and Blake, 1999, 

2001; Sekuler and Bennett, 2001; Suzuki and Grabowecky, 2002; Guttman et al., 
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2005). Mostly, it is believed that grouping based on Gestalt cues is performed 

preattentively (Treisman and Gelade, 1980; Gray, 1999), and provides subsequent 

processes that require attention with the most salient objects to process. However, 

there are some studies that have proposed that attention may be required for this type 

of grouping in certain tasks (Joseph et al., 1997), or may improve performance 

Theeuwes et al., 1999).  

This chapter elaborates on one of the potential mechanisms underlying 

grouping, explains why the primary visual cortex should be considered in studying 

scene segmentation, and concludes with a detailed review of the literature on local 

field potentials and its contribution to studying visual grouping. 

 

2.1. Synchrony - a putative mechanism underlying 

grouping 

Based on the hierarchical or convergent model, neurons in the lower levels of 

the visual hierarchy tend to respond to the primary features of individual components 

of each object, like orientation, color, and contrast. As one ascends the hierarchy, 

neurons tend to respond to more complex features that are the combinations of the 

features extracted in earlier areas. Finally, the highest ranked regions are responsible 

for recognizing combinations of features as integrated objects. For example, based on 

this model, a closed contour can be identified only in extra-striate areas, as the 

receptive fields of the neurons in striate cortex are small, and are not able to respond 

to the whole contour. Although it is true that the receptive fields of the neurons 

become larger, and cells respond to more complex features from lower to higher 
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regions in the visual hierarchy, this model demands a very large number of neurons 

selective for all possible combinations of features, and potentially a large number of 

synaptic connections between the cells contributing to the representation of these 

feature combinations (Singer, 1995). In addition to these reasons, an interesting study 

recently showed that even if the middle level regions in visual cortex (V2 and V4) are 

impaired, everyday visual tasks could still be performed with no difficulty, thus 

raising doubts on the validity of the convergent model (Gilaie-Dotan et al., 2009). As 

a result, although some groups of neurons are specialized in responding to feature 

combinations that are very frequent, including some as complex and as specific as 

individual faces (Page 2000; Gross, 2002; Kiani et al., 2007; Quiroga et al., 2008), a 

more efficient model seems to be required to explain the general mechanism 

underlying grouping and scene segmentation in the brain.  

An alternative hypothesis for binding is based on population coding. 

According to this model, in contrast to the convergent model mentioned above, the 

neurons responding to individual elements of an object are grouped together to 

distinguish that object from other objects. This model demands less resources 

compared to convergent model, because each cell can be part of different 

combinations. As a result, population coding seems more promising in coding the 

objects of a scene, but in return, a mechanism needs to be proposed for binding the 

cells of the population representing an integrated perceptual entity. One of the models 

proposed to fulfill this purpose is the binding-by-synchrony or temporal correlation 

hypothesis (Singer, 1995). According to this model, the discharges of the neurons that 

respond to an object can be distinguished from the non-relevant responses, because 

their discharges are synchronous with each other and asynchronous with non-relevant 

discharges. The theoretical model of binding-by-synchrony was first proposed by 
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Milner (1974) and von der Malsburg (1981, 1985), and it is shown that this concept 

can easily be extended from synchrony in one region to synchrony between regions, 

and even modalities, providing a communication mechanism that seems essential for 

answering broader questions such as cognition and awareness (Uhlhaas et al., 2009).  

Interestingly, these studies (Milner, 1974; von der Malsburg, 1981; 1985) proposed 

physiological substrates for their model, although there was little or no evidence for 

some of these proposed mechanisms at the time. The physiological evidence for some 

of these proposed mechanisms were only discovered later. For instance, von der 

Malsburg (1981) proposed that as the components of an object are not confined to the 

classical receptive field of the neurons, some connections should exist to connect the 

cells sensitive to similar features. These connections, called horizontal connections, 

were discovered later in cortex (Ts’o et al., 1986; Gilbert and Wiesel, 1983, 1989; 

Gilbert, 1992; Malach et al., 1993; Bosking et al., 1997). 

 Wolf Singer’s lab was the first lab to find experimental evidence that 

supported this model (Gray and Singer, 1987 Soc. Neurosci., abstract; Gray and 

Singer, 1989; Gray et al., 1989). Similar studies in the visual cortex of cats (Eckhorn 

et al., 1988; Gray and Singer, 1989; Gray et al., 1989, 1990; Engel et al., 1991a,b), as 

well as monkeys (Eckhorn et al., 1993; Frien et al., 1994; Kreiter and Singer, 1992, 

1996), later provided more evidence supporting this hypothesis.  

Despite these findings, some objections were raised about the binding-by-

synchrony hypothesis, based on biological limitations (Shadlen et al., 1999). Shadlen 

et al. (1999) mainly argued that as a cell receives a large number of excitatory inputs 

from nearby neurons, which are activated simultaneously in response to a stimulus, 

i.e. the high input regime, it is probably impossible for the cell to distinguish between 

synchronous and asynchronous inputs, and it is very likely that synchronous inputs 
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happen merely by accident due to this large number of spikes received by each cell 

without any functional relevance. In other words, they believed that cells act as 

integrators and cannot be sensitive to the timing of the inputs they receive. An 

abundant number of studies have shown that this is not true, and neurons are 

influenced by the timing of their inputs (König et al., 1996; Alonso et al., 1996; Usrey 

et al., 1998; Azouz and Gray 2003; Bruno and Sakmann, 2006; also see Gray 1999). 

At the same time some studies initially failed to even observe oscillations in brain 

areas that could potentially be involved in feature binding, e.g. the primary visual 

cortex of monkeys (Tovee and Rolls, 1992; Young et al., 1992). However, this could 

potentially be due to the high heterogeneity of the neurons in V1 (Gray, 1999), or 

could be because the activity of single units or multi units recorded in these studies 

were dissociated from the activity of the population (Young et al., 1992; Gray, 1999). 

Considering the large number of studies that reported oscillations and synchrony in 

several areas, and in the context of various tasks (Bragin et al., 1995; Fries et al., 

2001b; Brosch et al., 2002; Pesaran et al., 2002; Lakatos et al., 2005; Schoffelen et al., 

2005; Buzsáki, 2006; Hoogenboom et al., 2006; Buschman and Miller, 2007), it 

seems that the consensus is that these oscillations exist in the brain, and the focus of 

attention has shifted from spotting these oscillations to the functional relevance of 

neuronal oscillations and synchrony to perception. Synchrony in the gamma 

frequency band (20-80 Hz) has been the most prominent synchrony reported, so in 

this study we focused on this frequency band, but the evidence for perceptual 

correlates of other frequency bands is also abundant (Buzsáki 2002; Jensen et al., 

2002; Pogosyan et al., 2009). 

Synchrony between cell discharges is thought to increase the effectiveness of 

spikes in the receiving regions and also to influence plasticity (Alonso et al., 1996; 
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König et al., 1996; Usrey et al., 1998; Azouz and Gray 2003; Perez-Orive et al., 2004; 

Bruno and Sakmann, 2006), and has been suggested to be the result of the interactions 

of a network of inhibitory interneurons (Csicsvari et al., 2003; Hasenstaub et al., 

2005; Vida et al., 2006; Buzsáki, 2006; Bartos et al., 2007; Morita et al., 2008). 

Nonetheless, some other studies have found cells with intrinsic gamma oscillatory 

membrane potentials, and proposed that these neurons may serve as pacemakers 

(Llinás et al., 1991; Gray and McCormick 1996; Steriade et al., 1998).  

As the main focus of this study is the functional role of synchrony in visual 

cortex, we will take a closer look at studies in the visual cortex, and in particular 

studies on scene segmentation and visual binding in the next section. 

 

2.2. Visual binding and binding-by-synchrony 

Although the binding-by-synchrony hypothesis was proposed initially as the 

mechanism underlying visual grouping and scene segmentation, the number of studies 

that directly assessed the potential of this hypothesis in explaining the experimental 

results pertaining to scene segmentation is relatively small.  

Most pioneering studies used simple bar stimuli to assess neuronal oscillations 

and synchrony, shedding light on some aspects of the putative role of synchrony in 

grouping. Gray and Singer (1989) showed that when cells were stimulated by a light 

bar with their preferred orientation, they oscillated at a frequency close to 40 Hz. 

Gray et al. (1989) stimulated cells with non-overlapping receptive fields in area 17 

and 18 of anesthetized cats using a single bar that stimulated both receptive fields 

simultaneously, and two bars that moved in opposite directions stimulating the 
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receptive fields independently. They showed that in the former case, the synchrony 

between the multi-unit recordings from the two sites was higher compared to the 

second case, or even compared to an intermediate case in which the receptive fields 

were stimulated by two separate bars with the same direction of movement. Engel et 

al. (1990) confirmed these results by further investigating the same phenomena using 

spikes and local field potentials. The synchronous cells were recorded on electrodes 

with up to 7 mm separation and with both overlapping and non-overlapping receptive 

fields. In accordance with Gray et al. (1989) they reported that even cells with non-

overlapping receptive fields fired synchronously, if the stimuli inside their receptive 

fields had the same orientation. They also reported that phase locking between the 

cells was correlated with stimulus properties. These results later were replicated by 

Freiwald et al. (1995). After these initial findings were found in anesthetized cats, 

Gray and Viana Di Prisco (1997) were able to show similar oscillatory responses to 

bar stimuli in alert cats engaged in a fixation task, and as a result, showed that the 

observed effect was not due to anesthesia. This was a significant finding, as it has 

been shown that anesthesia can affect the neuronal responses in several ways (Bour et 

al., 1984; Lamme et al., 1998; van der Togt et al., 1998; Fiser et al., 2004). These 

findings contradicted those reported in Ghose and Freeman (1992), who reported that 

the oscillations in cat striate cortex were not stimulus dependent, and were even 

stronger during periods of spontaneous activity. Gray and Viana Di Prisco (1997) 

replicated the method used in Ghose and Freeman (1992), and discovered that the 

method could introduce spurious high oscillations, potentially contributing to the 

results found in this study. Later, to extend Gray et al. (1989) study, Brosch et al. 

(1997) recorded multi-unit activity and local field potentials in areas 17 and 18 of cats 

using the same paradigm as Gray et al. (1989), but added one more condition in which 
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some part of the stimulus was occluded, and showed that the synchrony in this case 

was also higher compared to the condition in which two separate bars stimulated the 

receptive fields. This was consistent with the hypothesis that synchrony emerged 

because the stimuli inside the receptive fields were grouped together as one object. 

However, this result may need to be reevaluated, as Palanca et al. (2005) showed later 

that, in a similar experiment, the cells showed high synchrony even in the absence of 

the components of the illusory contours, and solely because some sections of the 

mask were located inside their receptive fields.  

In addition to these intra-area effects, Engel et al. (1991a) were able to show 

that multi-unit recordings as distant as those from two different hemispheres exhibited 

the same synchrony effect when the stimulus extended to both hemifields. The 

significant finding in this study was that when the corpus callosum was severed, the 

synchrony vanished. This ruled out the possibility that the observed synchrony was 

due to common subcortical inputs, and showed that the synchrony was likely elicited 

through cortico-cortical connections. This, once more, was at odds with Ghose and 

Freeman’s (1992) claim that the observed oscillations in striate cortex were the result 

of oscillations in LGN, and also demonstrated that zero phase lag synchrony was 

possible even with large conduction delays, 4 to 6 ms, as could be the case when cells 

are located in different hemispheres. While these findings were all reported in cat 

striate cortex, Livingstone (1996) reported similar results in the primary visual cortex 

of anesthetized monkey, while Kreiter and Singer (1992, 1996) observed the same 

effects in area MT of awake macaques, showing that the role of synchrony in binding 

was not specific to cats. Nonetheless, Kreiter and Singer (1992, 1996) found some 

differences, such as the synchrony was more transient and also more variable in terms 

of the frequency of oscillation for monkeys compared to cats. Eckhorn et al. (1993) 
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and Frien et al. (1994), also reported the presence of gamma oscillatory signals in V1 

and phase-locking between gamma band responses in V1 and V2, and again 

supported the binding-by-synchrony hypothesis in awake monkeys. Later, Maldonado 

et al. (2000) characterized the correlation between synchrony and the properties of the 

stimuli and receptive fields, and showed that synchrony can be modulated by stimulus 

properties.  

The experiments mentioned above were mostly performed using simple bar 

stimuli. One of the first studies that used a more complex stimulus to directly 

investigate correlation between scene segmentation and synchrony was Lamme and 

Spekreijse (1998), and they failed to find such correlations in their multi-unit 

recordings. In this experiment, the figure was a patch of texture that could be 

differentiated from the background by the difference in orientation or motion 

direction with respect to the background. However, Gail et al. (2000) performed a 

similar experiment in V1 of awake monkeys, performing a fixation task, and 

succeeded in showing that gamma band coherence between the LFPs recorded from 

the cells inside and outside the figure was very low. The coherence was the highest 

when both receptive fields were inside one segment (both object or both background), 

followed by when both receptive fields were on the border, and then when one 

receptive field was on the border and the other receptive field on the figure or 

background. So, in other words, while the components of the same object were 

coupled, the components of different objects were decoupled (Eckhorn et al., 2001). 

This discrepancy could be due to the differences in the recordings, as Gail et al. 

(2000) used LFPs to assess synchrony, and LFPs are thought to be more sensitive 

measures of synchrony compared to the action potentials (Frien et al., 1994; Brosch et 

al., 1997). 
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Later, Castelo-Branco et al. (2000) used plaid stimuli to stimulate neurons in 

area 18 and posteromedial lateral suprasylvian area (PMLS) of anesthetized cats. This 

type of stimulus, which has also used in Thiele and Stoner (2003) and Lima et al. 

(2010), potentially provides a mechanism to generate stimuli with varying degrees of 

perceived motion coherence by changing the transparency of the bars and the color of 

the intersections. Consistent with the binding-by-synchrony hypothesis, they 

succeeded in demonstrating that the synchrony between neuronal responses was 

higher in response to a single perceptual surface, i.e. coherent plaid, compared to two 

individual surfaces, i.e. two non-coherent gratings. However, they later failed to find 

similar results in V1 of alert monkeys (Lima et al., 2010). Thiele and Stoner (2003) 

also reported that they could not replicate the results in area MT of alert monkeys. 

The main difference between the first study and the subsequent studies could be that 

in the first experiment, the cats were under anesthesia, while in the other two 

experiments, the monkeys were awake. However, considering that other groups have 

observed synchrony associated with binding in both anesthetized (Gray et al., 1989; 

Freiwald et al., 1995) and awake cats (Gray and Viana Di Prisco, 1997), as well as 

anesthetized (Livingstone, 1996) and awake monkeys (Eckhorn et al., 1993; Frien et 

al., 1994; Kreiter and Singer 1992, 1996; Maldonado et al., 2000), this seems 

unlikely. This reasoning would also be at odds with other findings that mostly found 

enhancement in figure-ground segregation effects in alert compared to anesthetized 

animals (Lamme et al., 1998; van der Togt et al., 1998; Li et al., 2008). In this study, 

only the late component of the response was considered, i.e. either 200 ms or 100 ms 

after stimulus onset, so most likely the responses were due to feedback from other 

areas. Consequently, the discrepancy could possibly be due to the different roles of 

recurrent connections in cats and monkeys. What should also be noted about the Lima 
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et al. (2010) study is that they observed significant high LFP-LFP coherence for both 

single grating and coherent plaid stimuli, but they failed to detect high coherence 

between LFP and multiunit activity. In our view, these results do not necessarily 

oppose binding-by-synchrony hypothesis, although they do not support the putative 

functionality for synchrony proposed by Womelsdorf et al. (2007). According to this 

model, for synchrony to be effective, the output of the region (i.e. multi-unit activity 

(MUA)) should be synchronized with the gamma oscillations (LFP). At the same 

time, it has been shown that coherence may miss short episodes of synchrony between 

two signals in the presence of non-stationarity (Lachaux et al., 2002), and this needs 

to be taken into account when one is concerned with the synchrony between MUA 

and other signals, as this type of synchrony probably is very transient. This may need 

to be emphasized considering that Kreiter and Singer (1992, 1996) found that 

synchrony was more transient in monkeys compared to cats. As a result, it is possible 

that using techniques used in other studies (Le Van Quyen et al., 2010; Denker et al., 

2011) to assess the synchrony between spikes and LFPs could result in revealing 

synchrony between MUA and LFPs. 

Most of these studies suffered from the common drawback that the stimuli 

inside the receptive fields varied across conditions, which made the comparison of the 

synchrony between conditions slightly problematic. Palanca et al. (2005) addressed 

this issue and designed their stimuli in a manner that stimuli inside the receptive fields 

were fixed. In the literature, this paper has mostly been referred to as an experiment 

that found evidence against binding-by-synchrony, while in fact, they found, using 

Fourier coherence, higher coherence in the gamma band of LFPs of pairs of cells 

when they were parts of one figure compared to when they were parts of individual 

figures. This difference was small, but significant. They also observed significantly 
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higher synchrony in response to two bars when they were parts of a closed contour 

compared to when they were independent from one another. They also found effects 

consistent with Kreiter and Singer’s (1996) study, but the difference between the 

synchrony of the two conditions was smaller than those reported in Kreiter and Singer 

(1996). It seems that the authors were concerned that the differences, although 

significant, were small for all the experiments, and the effect often was not observed 

in lower frequency bands (0-30 Hz). While these results seemed consistent with 

binding-by-synchrony, after pooling all coherence values from different sites together, 

and performing an ROC analysis for one object versus two objects conditions, it was 

observed that due to the high variability of the coherence measures across sites, it was 

not possible to distinguish between the two conditions using the ROC analysis. So it 

was concluded that sysnchrony may not be robust enough to subserve grouping. 

However, in our view, these results could be expected due to the heterogeneity of the 

neuronal populations. Moreover, the Fourier coherence measure is affected by 

correlation between the envelopes, and does not solely represent phase locking or 

synchrony between two signals (Lachaux et al., 2002). The high variability in the 

coherence measure could be due to the variation in the correlation between the 

envelopes of the LFP signals across sites, and not due to variation in the level of 

phase-locking. So, using other methods that are less sensitive to amplitude covariation 

(Lachaux et al., 1999), not only could, to some extent, address this issue, but also 

could be a better option in investigating the modulation of synchrony across 

conditions. In support of this conjecture, we refer to Gysels et al. (2005), which 

showed that phase-locking value could be superior to Fourier coherence in 

discriminating between two conditions in their experiment.   

In spite of these studies, which failed to find evidence in favor of binding-by-
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synchrony hypothesis, recently, some studies again reported results in the primary 

visual cortex that seem to support correlation between synchrony and visual grouping. 

Samonds et al. (2006) showed an increase in the synchrony between cells with 

cocircular receptive fields, in addition to the cells with similar orientation preference, 

when they were stimulated by gratings. This was especially interesting, as according 

to Samonds et al. (2006), cells with cocircular receptive fields were proposed to play 

a critical role in contour integration (Field et al., 1993). Zhou et al. (2008), in an 

attempt to separate the effect of temporal and spatial integrity on synchrony, found 

that when the neurons with overlapping receptive fields in the primary visual cortex 

of cats under anesthesia were stimulated by a drifting sinusoidal grating, their 

responses (spikes) were coherent in gamma band and this coherency decreased when 

the spatial integrity of the grating was diminished by superimposing noise on the 

grating. This study was similar to Engel et al. (1998), which used a moving-random 

dot pattern as stimulus. They showed that although the synchrony between neuronal 

responses was weaker compared to continuous contours, they still existed, and 

decreased when motion coherence was impaired by adding noise to the pattern. 

Recently, Meirovithz et al. (2010) found another piece of evidence supporting 

a correlation between increase in neuronal synchrony and colinearity. Performing 

voltage-sensitive dye imaging (VSDI) in the primary visual cortex of awake fixating 

monkeys, they found an increase in synchrony between the responses of neurons that 

responded to a low contrast Gabor patch (target) and its two flanking Gabor patches 

when the flankers were located colinear with the target patch compared to when they 

were located orthogonal. They reported better discrimination between the two 

conditions using onset synchrony compared to amplitude. 

Finally, another study that indirectly supported binding-by-synchrony (Fries et 
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al., 1997) showed that in the presence of competition in a binocular rivalry 

experiment, the perceived stimulus was the one with higher synchrony in its 

respective neuronal population responses. This is while the spike rates of both 

populations responding to the two stimuli were nearly the same. They proposed that 

because this is similar to perceptual grouping, in which the neuronal population that is 

“functionally more relevant” should be selected, the same mechanism could probably 

subserve grouping as well (but see Gail et al. (2004)). 

Here, another slightly different study (Roelfsema et al., 2004) needs to be 

mentioned that provided evidence against binding-by-synchrony. The main difference 

between this study and the ones mentioned earlier is that in their experiment, the 

monkeys had to trace a curve to accomplish the task, which demands shifting of 

spatial attention in a relatively long time interval. This type of grouping is 

fundamentally different from the pre-attentive binding, and is out of the scope of this 

study. However, accepting that attention merely is reflected in the enhancement of the 

firing rates and does not affect synchrony, these results certainly cast some doubt on 

generality of binding-by-synchrony hypothesis. Nevertheless, it should be mentioned 

that in contrast to their study that did not find increases in synchrony as a result of 

attention, other studies have reported significant enhancement in synchrony with 

increases in attention level in several different cortical areas (Fries et al., 2001b; 

Womelsdorf et al., 2006; Buschman and Miller, 2007; Fries et al., 2008; Siegel et al., 

2008).  

It is worth noting that in addition to studies using depth electrode recordings, 

other studies have also assessed the relationship between synchrony, visual grouping, 

and object recognition using recording methods like Electroencephalography (EEG) 

and Magnetoencephalography (MEG). Müller (1996, 1997) used the same stimuli as 
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Gray and Singer (1989) while recording EEG signals from human and monkeys, and 

observed higher gamma power for the single bar condition. Tallon-Baudry et al. 

(1996) found higher gamma band activity in human EEG recordings when the 

subjects responded to real triangles or Kanizsa triangles compared to no triangles on 

C1 and C4 electrodes. Interestingly, Csibra et al. (2000) found patterns in the gamma 

band activity similar to those reported by Tallon-Baudry et al. (1996) in the frontal 

cortex of 8-months old infants, while the pattern was different for younger subjects 

(6-months old infants). Siegel et al. (2007) observed increases in gamma power with 

increases in motion coherence in the MEG signals in area MT. Also other studies 

assessed the responses when subjects recognized an object in the scene compared to 

when they failed to recognize the object. These studies mostly investigated the 

modulation of gamma band activity in large-scale cognitive integration tasks. 

Rodriguez et al. (1999) found higher synchrony in gamma power for upright 

compared to upside-down Mooney faces in human EEG. Grice (2001) replicated the 

results, but in addition, found that the gamma-oscillation pattern was different in 

normal subjects and subjects that suffered from autism and Williams syndrome. In 

both groups of patients, object recognition ability is usually impaired. For the autistic 

patients, the gamma-burst was not different across conditions, while for the patients 

with Williams syndrome, it was entirely absent. Keil et al. (1999) found higher 

gamma power in human EEG on occipital electrodes for upright, bistable figures 

compared to upside-down figures. Schadow et al. (2009) observed that a contour 

stimulus, composed of circularly aligned Gabor patches, elicited significantly higher 

synchrony in gamma band compared to randomly oriented Gabor patches in a visual 

stimulus when they performed EEG recordings in healthy subjects. In contrast, in 

EEG recording performed in patients with homonymous hemianopia, synchrony in 
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the gamma band was impaired in the intact hemisphere of the patients. These patients 

suffer from deficits in vision in one hemifield, but it has been shown that they have 

difficulties in contour integration in their intact hemifield as well Schadow et al. 

(2009).   

These findings support the correlation between gamma band activity and 

figure-ground segregation, but in most of these studies it is difficult to separate the 

neural correlates of bottom-up scene segmentation from the neural correlates of 

matching the target with the stored representation of the target in memory. As a result, 

the observed increase in gamma band activity or synchrony in some of these studies 

may be due to this matching  and not visual binding, as speculated by Tallon-Baudry 

et al. (1996). Increase in gamma band activity due to this matching was suggested by 

Herrmann (2004) in their “match-and-utilization” model. Also, the relatively low time 

resolution of MEG and low spatial resolution of EEG introduce some uncertainties in 

terms of the exact location and time course of the effects reported. So, in these studies 

it was difficult to identify the exact area that the activity originated from or when the 

effect emerged. Also, the studies often found enhancements in the gamma band 

activity, which they assumed showed that a large ensemble of neurons synchronized 

their activity in the gamma band, but a direct measure of synchrony was rare. 

Moreover, a recent study Yuval-Greenberg et al. (2008) linked the enhancement in 

gamma band activity in EEG recordings and the muscular artifacts resulted from 

microsaccades, and warned that the observed enhancement in gamma band needs to 

be reevaluated in the experiments done earlier. However, as the result of this study 

was correlational and not causal, it does not necessarily invalidates the results 

obtained relevant to gamma band activity, as it is possible that both microsaccades 

and induced gamma were correlates of the same cognitive process, and as a result, 
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they just happened to appear simultaneously (see Martinovic and Busch (2011) for 

further discussion).    

In summary, the debate between the advocates and the critics of binding-by-

synchrony is still in progress. Some discrepancies could be due to the techniques that 

were used. For example, some of the analyses were performed using conventional 

correlation techniques, which have been found to exhibit sensitivity to rate 

covariations and variability. It has also been shown that the synchrony associated with 

grouping may be very difficult to detect, as it is probably very transient and may last 

only for few tens of milliseconds (Oram and Perrett, 1992; Thorpe et al., 1996). So, 

new techniques like the Unitary Event Analysis (Grün et al., 2002a,b) or 

Neuroxidence (Pipa et al., 2008) can be applied instead to make the results more 

reliable. Also, other methods like phase-locking statistics (PLS) (Lachaux et al., 1999) 

could be more reliable in examining phase-locking between LFP responses, as well as 

some new methods used in Le Van Quyen et al. (2010) and Denker et al. (2011) in 

examining phase-locking between action potentials and LFPs, compared to the 

traditional Fourier coherence. As a result, applying new techniques that were 

introduced to the field in recent years could resolve some of the discrepancies, or at 

least could increase the certainty in the interpretation of the results.  

The other issue that might have affected the results was that some of these 

studies could have obscured the potential effects because they used population 

analysis by averaging or pooling across recording sites. Considering the heterogeneity 

of the neurons in the brain, this might have also led to some discrepancies in the 

results. Some issues can also be raised about the stimuli and the tasks used. As 

mentioned earlier, in some of the experiments, the stimuli within the receptive fields 

were changed across conditions. Also, in most of these experiments, the animals did 

http://www.ncbi.nlm.nih.gov/pubmed/8632824
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not perform any tasks, or a task that may be affected by the coherence of the percept. 

So, it was difficult to investigate the correlation between the level of synchrony and 

the perception of the animal.  

In conclusion, it seems that recordings using depth electrodes need to be 

carried out in animals performing a task in which the perception of a coherent object 

can be modulated and behaviorally measured. The stimulus should be designed in a 

way such that the stimuli inside the receptive fields of the neurons remain constant, 

while modifying other elements changes the saliency of the object. 

The next question would be to decide where the recordings should be 

performed. In the next section, we discuss why the primary visual cortex could be a 

good candidate. 

 

2.3. Role of the primary visual cortex 

In addition to the question of how neurons bind together, the other question is 

where this binding starts, or in other words, when is the earliest time that the visual 

system is aware of segregated objects in the scene. As it is believed that perceptual 

binding and scene segmentation occur very rapidly (Maldonado et al., 2008; Uhlhaas 

et al., 2009), the primary visual cortex seems like a good candidate for performing 

these tasks, as it receives direct projections from LGN and the responses to a visual 

stimulus can be recorded in the primary visual cortex as early as 40 ms after stimulus 

onset. Also, it has been shown that even though the classical receptive fields of the 

neurons in this region are rather small, the responses of these neurons can be affected 

by contextual modulation (Polat et al., 1998; Fitzpatrick, 2000; Kapadia et al., 1995, 
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2000). Some studies have reported modulation in the responses of primary visual 

cortex correlated with scene segmentation (Lamme, 1995; Lamme et al., 1999; Gail et 

al., 2000; Kapadia et al., 2000; McManus et al., 2011). Zipser et al. (1996) reported 

enhancement in the responses of the single units in V1 of behaving monkeys when the 

cells responded to a texture perceived as figure compared to when it was perceived as 

background. This enhancement was correlated with the behavior of the monkeys. Lee 

et al. (2002) also showed similar enhancements in the responses of single units in V1 

when they responded to an element with a disparate shape (figure) compared to the 

other elements of the scene (background) in an oddball experiment. Moreover, Supèr 

et al. (2001) and Li et al. (2006) showed correlations between the firing rate and 

saliency of the figure in the primary visual cortex. It should be noted that, it is 

possible that the results reported in some of these studies, e.g. Lamme (1995), Zipser 

et al. (1996), were not due to pop-out or the figure segregation capability of V1 

neurons, but merely due to center-surround discontinuity (Hegdé and Felleman, 

2003), although the results still could be indicative of contextual modulation in the 

primary visual cortex (Smith et al., 2007). 

The models proposed for the role of V1 in visual awareness can be mainly 

divided into two categories of hierarchical and interactive models (Tong, 2003). In the 

hierarchical model, primary visual cortex merely serves as a feature extractor and a 

channel for relaying extracted features to higher areas in the visual hierarchy. This 

model does not seem like the most appealing model, as it has been shown that V1 

neurons can respond to complex stimuli like illusory contours (Grosof et al., 1993), 

and also are sensitive to occlusion (Sugita, 1999). The results of the studies mentioned 

earlier, which reported the contextual modulation of responses in primary visual 

cortex (Polat et al., 1998; Fitzpatrick, 2000; Kapadia et al., 1995, 2000), impose 
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restrictions on this model as well. In the interactive model, in addition to providing 

information about the visual stimulus to other visual areas in a feed-forward manner, 

V1 interacts with downstream visual areas by receiving feedback from those areas. 

Several studies have proposed different possible functionalities for these feedback 

connections received by the primary visual cortex (Lee et al., 1998; Rao and Ballard, 

1999; Gilbert et al., 2000; Lee et al., 2002; McManus et al., 2011). This model 

extends the role of the primary visual cortex beyond a pure feature extractor, but does 

not specify when and to what extent the primary visual cortex is aware of the feature 

combinations that are not confined to the classical receptive fields of its neurons.  

Most of the studies mentioned above (Lamme, 1995; Zipser et al., 1996; 

Lamme et al., 1999; Gail et al., 2000; Supèr et al., 2001; Lee et al., 2002; Li et al., 

2006) observed significant differences between the responses to figure and 

background in the late response, which presented a potential role of feedback and 

recurrent connections from extra-striate cortex, as well as lateral connections in the 

primary visual cortex. This was supported by Lamme et al. (1998) and later by Li et 

al. (2008), who explicitly showed that the effect of contour integration diminished in 

V1 under anesthesia, and also by  Supèr and Lamme (2007) who showed the effect 

reduced by lesions in the dorsal extra-striate cortex. In other words, these studies did 

not find evidence supporting the direct role of primary visual cortex in bottom-up 

scene segmentation. However, considering that preattentive binding occurs very 

rapidly, it is possible that the primary visual cortex has a more critical role in this 

process, and these studies failed to confirm this due to some issues in the methods 

used. For example, these studies often performed population analysis, which might 

have obscured the subtle effects that could have been detected by analyzing individual 

recording sites and even single trials separately, considering the presence of high 
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heterogeneity in neuronal populations (Shamir and Sompolinsky, 2006; Yen et al., 

2007; Chelaru and Dragoi, 2008). These experiments often involved a delayed 

saccade task as compared to a task that demands a faster reaction to the stimulus, 

which may have recruited other processes  after the initial binding of the scene has 

been completed. Moreover, these studies mainly investigated the modulation in spike 

rates in the primary visual cortex. As mentioned in Section 2.1, another possibility is 

that binding happens by synchrony, and one may observe an earlier effect by 

assessing the synchrony instead of spike rates. Recently, Maldonado et al. (2008) 

reported an increase in synchrony between the spikes only 30 ms after fixation onset, 

when subjects were engaged in a natural scene free viewing task. This is in contrast to 

an enhancement in firing rates much later than this, peaked at 90 ms after fixation 

onset. These results could support this conjecture along with other studies that showed 

modulation in synchrony independent of significant changes in the firing rate (Vaadia 

et al., 1995; Hatsopoulos et al., 1998; Riehle et al., 1997, 2000; Grammont and Riehle 

2003; Heinzle et al., 2007). In this regard, using local field potentials, which represent 

the activity of a larger population of neurons, instead of single-unit or multi-unit 

activity may be useful in investigating the role of primary visual cortex in binding, as 

local field potentials could be more sensitive to synchrony (Frien et al., 1994; Brosch 

et al., 1997). In the next section, we review the literature on local field potentials. 

 

2.4. Local field potential 

The recorded signals in an electrophysiological recording can be divided into 

two parts. One part, which is found in the high frequency components of the signal, 

represents spikes. Spikes reflect the activity of an individual (single-unit activity, 
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SUA) or a group of neurons (multi-unit activity, MUA). The other part, which is 

found mostly in frequencies lower than 300 Hz, represents the local field potentials 

(LFP). The contribution of LFP signals to various processes in the brain has been 

widely investigated in neuroscience. Despite its popularity, the exact origin of LFP 

signals has remained elusive, and as a result, the interpretation of LFPs has remained 

controversial. While the exact origin of the LFP has not been completely understood, 

the current consensus is that it represents the aggregate synaptic input to a region, as 

well as the synaptic activity of a large population of neurons (constituting of 

thousands of neurons) within the region, also it correlates well with subthreshold 

fluctuations of membrane potentials of these neurons. This is in contrast to action 

potentials that mostly represent the output of pyramidal cells and the output of the 

region (Caesar et al., 2003; Kayser et al., 2003; Logothetis, 2003; Henrie and Shapley, 

2005; Rainer, 2008; Belitski et al., 2008). 

The area surrounding the electrode that is reflected in the recorded LFP has 

not been accurately determined yet. While some studies have reported areas of several 

millimeters  (Mitzdorf, 1985; Logothetis et al., 2001; Kreiman et al., 2006; Nauhaus 

et al., 2009), some other studies have estimated the area to be hundreds of 

micrometres (Engel et al., 1990; Liu and Newsome, 2006; Berens et al., 2008) 

surrounding the electrode. Recently, Katzner et al. (2009) combined 

electrophysiological recordings and voltage-sensitive dye imaging (VSDI) techniques, 

and concluded that based on the correlation of orientation tuning between these 

signals, the LFP is probably an aggregated signal from an area of 250 microns with 

respect to the electrode, although Jia et al. (2011) suggested that this may be valid 

only for evoked LFP and not for induced gamma responses. At the same time, while 

Logothetis et al. (2007) has claimed that all the frequency components of the LFP 
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propagate equally well through brain tissue (resistive model), other groups have 

claimed that the brain tissue attenuates the higher frequencies faster than the lower 

frequencies according to a model based on electric polarization and ionic diffusion of 

the medium (Bédard et al., 2006; Bédard and Destexhe, 2009), or capacitive model 

(Liu and Newsome, 2006). As a result, they proposed that the lower frequency 

components of the recorded LFP are the result of aggregation of a larger area 

surrounding the electrode compared to the higher frequency components (Bédard et 

al., 2004). However, Liu and Newsome (2006) came up with this explanation as they 

observed that LFPs were more highly tuned at higher frequencies compared to lower 

frequencies, and as a result, concluded that lower frequencies were the result of the 

aggregation of neuronal responses in a larger area compared to higher frequencies. 

Results of Jia et al. (2011) cast doubts on this conclusion, as they showed that high 

selectivity does not necessarily mean spatial concentration. They observed that LFPs 

could be highly tuned with similar selectivity across a span of several millimeters of 

cortex depending on the stimulus.  

Despite all these controversies, LFPs have been widely used to investigate 

different aspects of the sensory system. LFPs have been shown to be modulated by 

different features of the stimuli. For instance, Gail et al. (2004) found correlations 

between the LFPs and perception in binocular rivalry, Montemurro et al. (2008) 

reported modulation of the phase of the LFP with natural movies, Kayser et al. (2003) 

showed differences in the LFPs when responding to natural movies and drifting 

gratings, and Roux et al. (2006) found correlations between expectancy and LFP 

responses in a motor task. Other groups have reported selectivity of LFPs for 

orientation, contrast, spatial and temporal frequency in the cat and monkey primary 

visual cortex (Eckhorn et al., 1988; Frien et al., 2000; Kayser et al., 2004; Henrie and 
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Shapley, 2005), as well as speed in the macaque area MT (Liu and Newsome, 2006), 

and sound frequency in the rhesus monkey auditory cortex (Kayser et al., 2007). 

In addition to the evidence that LFPs may be responsive to sensory 

stimulation, and correlated with the cognitive state of the brain, it has also been 

shown that, in some cases, it can be used in place of spikes (Andersen et al., 2004). 

Mehring et al. (2003) showed explicit increases in decoding performance when 

combining LFPs and single unit activities (SUA) compared to using only SUAs in the 

motor cortex of rhesus monkeys performing center-out arm movements. They also 

observed more information in the LFP response for predicting the time course of the 

hand speed, and also predicting the arm that was moved, showing that LFP responses 

carry information potentially different from that contained in spikes. Belitski et al. 

(2008) also showed that the low frequency components of LFPs (< 40 Hz) recorded in 

the primary visual cortex of anesthetized macaques showed small signal and noise 

correlations with spikes in response to natural movies. As a result, they concluded that 

these frequencies were potentially generated using a mechanism independent of spike 

activity, and carried information different from that contained in spikes. Henrie and 

Shapley (2005) observed that modulation of the LFP with visual contrast continued 

even when the spike rates were saturated, providing evidence for a difference in the 

source of these two responses. Also, Pesaran et al. (2002) found that LFPs in lateral 

intraparietal cortex (LIP) of awake macaques were more informative when decoding 

the time course of a planned movement. Finally, Wilke et al. (2006) showed that the 

perceptual visibility of a target in a scene (the target in some trials of their experiment 

vanished perceptually from the scene) was reflected in low frequencies of LFP (9-30 

Hz) in V1 and V2 of monkeys, while it was absent in spiking activity. In contrast to 

these findings, another study has showed that LFP signals can be predicted using the 
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spikes from a large area around the electrode (Nauhaus et al., 2009). As a result, it is 

possible that the differences observed between LFPs and spikes reported in other 

studies were due to the dissociation of the activity of single neurons from the activity 

of a large population of neurons represented by LFPs (Nir et al., 2007). Moreover, the 

discrepancies between unit activity and LFP could be because a large portion of the 

LFP activity probably originates in the activity of inhibitory interneurons, which are 

typically missed by single-unit recordings due to their small size and small spike 

amplitudes (Nir et al., 2007).  

Even considering these results, it appears that local field potentials may 

capture information that may not be present in spike trains. Therefore, using local 

field potentials instead of spikes, or in conjunction with spikes, may potentially be 

useful in investigating perception, and particularly binding-by-synchrony as a 

mechanism underlying pre-attentive visual binding in the primary visual cortex, 

because LFPs are thought to reveal synchrony between neurons better compared to 

the spiking activity as mentioned earlier.  

 

2.5 Aims and significance of the study 

While the mechanism underlying scene segmentation has been widely studied 

in the field of neuroscience, it seems: 

• the controversy surrounding the binding-by-synchrony 

hypothesis as a mechanism underlying visual binding has not yet been 

resolved 
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• the studies conducted on scene segmentation to date mostly 

have failed to detect an early effect in the primary visual cortex potentially due 

to the techniques and experimental paradigms used  

The general aim of this study was to address some of the issues that probably 

contributed to these. The specific objective in this research was to find evidence for 

the binding-by-synchrony hypothesis in primary visual cortex. To perform this, we 

needed to 

• use a stimulus and task that meets all the criteria essential for 

studying pre-attentive visual binding (Gray, 1999), 

• use the activity from populations of neurons, as revealed by 

local field potentials, instead of single- or multi-unit activity, and 

• use methods suitable for investigating synchrony in very short 

time windows. 

The results of this study may shed some light on the correlation between 

visual saliency and neuronal responses in the primary visual cortex. If it can be shown 

that the neuronal responses in the primary visual cortex of monkeys can be modulated 

as a function of visual saliency, this may 

• contribute to a better understanding of the mechanisms 

underlying scene segmentation in the primary visual cortex of primates, 

• provide evidence that scene segmentation is initiated in this 

area of the brain. 

In the subsequent chapters we will describe the experimental paradigm, 

followed by the methods applied to assess oscillation and synchrony.  
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Chapter 3  

Single-Channel Analysis 

An increase in power in the local field potentials in a particular frequency 

band may imply synchronous oscillatory activity in a large population of neurons in 

that frequency band (Gail et al., 2004; Beshel et al., 2007). In this chapter, we 

assessed the oscillatory power in different frequency bands to investigate the 

correlation between increases or decreases in power and the different stimulus 

conditions.  

 

3.1. Experimental setup 

3.1.1. Subjects and Surgical Procedures  

The subjects were three adult, female rhesus monkeys (Macaca mulatta). The 

animals underwent two sterile surgical procedures to prepare them for training and 

recording. In the first procedure, a pair of scleral search coils for monitoring eye 

position (Judge, et al., 1980) and a stainless steel post for head restraint (Gray & 

Viana Di Prisco, 1997) were implanted. Following the behavioral training described 

below, the animals underwent a second surgical procedure, in which a hard plastic 

recording chamber was mounted over the opercular surface of striate cortex and 

secured to the skull with orthopedic screws and dental acrylic. A craniotomy was 

made in the bone overlying one hemisphere. The animals were given approximately 
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20 days to recover from each surgical procedure before behavioral training or 

recording was initiated. Surgical and experimental techniques were in accordance 

with institutional and NIH guidelines.   

 

3.1.2. Behavioral Training  

The animals were trained to maintain their gaze within 1.0° of a fixation spot, 

in the presence of moving or stationary visual stimuli, for a period of up to 3s. 

Successful trials were rewarded with a drop of apple juice. During behavioral training 

and recording, the animals’ access to water was restricted. On days the animals were 

working, they were given a minimum of 30 ml/kg/day of water or juice in the form of 

fixation rewards or supplemental water. In practice, the animals earned an average of 

50–80ml/kg/day. On Fridays and Saturdays, the animals received 80ml/kg/day of 

water. The animals were given supplemental water if any of the routinely monitored 

physiological parameters (i.e. plasma osmolality, urine specific gravity, body weight) 

became unacceptable.  

 

3.1.3. Recording Techniques  

Neuronal signals were recorded with multiple (2 to 8), tungsten micro-

electrodes (1–2 MΩ resistance) from Microprobe (Gaithersburg, MD). The electrodes 

were mounted inside a multi-channel micro-manipulator and coupled to a recording 

chamber with a grid of 64 (8x8) guide holes (Gray et al., 2007). Each grid position 

was separated by 800 µm from the next grid position in the same row or column. 

Electrodes were loaded into grid positions that were separated by at least 3 grid 

positions, resulting in minimum separations of 2.4 mm. The electrodes were advanced 
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under computer control to a depth at which neural activity was first encountered. To 

further confirm the recording depth, the electrodes were retracted and the depth at 

which the last neural activity was encountered was recorded.  

The signals were amplified (4000x), bandpass filtered (0.6 kHz–6 kHz), 

digitized (30kHz/channel) and stored for off-line analysis. After a recording was 

completed at a given site, the electrodes were always moved at least 200 µm before 

another recording was obtained. This sampling procedure was continued until activity 

could no longer be measured at a given guide tube location, at which time the 

recording locations were changed. Sometimes the sampling procedure across sessions 

involved recording from a second layer of V1 in the head of the Calcarine sulcus. 

This was confirmed by changes in receptive field position. 

 

3.1.4. Visual Stimuli 

The visual stimuli consisted of a perceptually salient contour embedded in a 

background pattern. Both contour and background were constructed from 

monochromatic Gabor patches presented on a gray screen of equal mean luminance. 

Each patch drifted within a stationary window in a direction orthogonal to its 

orientation. The background pattern consisted of a two-dimensional array of randomly 

oriented patches, having a uniform spatial density, and random positional jitter to 

avoid alignment cues (Bradley and Petry, 1977). The contours were formed by 

aligning a subset of the patches along a closed path and assigning them a common 

direction of movement. This configuration resulted in a perceptually salient contour 

that popped out from the background (Figure 3.1) and appeared to continually 

contract or expand. A movie example of the stimulus is available at 

http://cortex.nus.edu/Research/Contour.html. 
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Each contour was designed on-line during an experiment to optimally 

stimulate the non-overlapping receptive fields of two or more neurons under study. 

This was done using Hermite interpolation (Farin, 1990) during the experiment after 

the position, preferred orientation, and the direction of motion of each receptive field 

was characterized using mouse-controlled orientated bars and/or sinewave gratings. 

Given a pair of points (the centers of the receptive fields) and their tangents (the 

orientations of the receptive fields), this algorithm allowed us to generate intermediate 

points, with corresponding tangents, so that they formed a contour segment from the 

first receptive field to the second that was continuous in its first derivative. By 

reversing the order of the pair of receptive fields and repeating the interpolation, we 

were able to create a second contour segment going from the second receptive field to 

the first, thus creating a closed contour. In order to generate a contour that exhibited 

inter-patch distances equivalent to the patches in the background, we performed an 

initial interpolation with 10 patches for each contour segment. This allowed us to add 

the inter-patch Euclidean distances together to obtain an estimate of the segment 

length. This length was then divided by the inter-patch distance in the background to 

obtain the appropriate number of intermediate patches. Using this information, we 

then performed a second interpolation to obtain the positions and orientations of the 

intermediate patches.  

This condition served as our high-salience condition, while two additional 

salience conditions were generated by adding orientation jitter (e.g. ±15˚ and ±30˚) to 

the Gabor patches that were not stimulating the receptive fields of the recorded cells. 

The stimulus within the classical receptive field was the same in all conditions. In this 

study, these saliency conditions, in which the receptive fields of the recorded neurons 

were part of the figure, are referred to as high-, intermediate- and low-salience figure 
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conditions respectively. In the remainder of this study, when we refer to the “figure” 

condition, we mean the high-salience figure condition unless otherwise stated.  

These contours, at all three salience conditions, also appeared with equal 

probability at an alternative "control" location, at which the center of gravity of the 

contour was equidistant from the fixation point. This prevented the animals from 

developing a bias to the figure location. In addition, to prevent the animals from using 

small differences in the density of patches to perform the task, all the patches at the 

figure and control locations were present in every single trial, and the orientations of 

the patches at the control location were randomized for the figure conditions and vice 

versa. The only exceptions were the patches stimulating the receptive fields, as these 

remained constant across all conditions. The corresponding patches at the control 

location were also held constant, so the animal would not be able to key in on the 

patches stimulating the receptive fields and become unduly biased towards the 

contour location. In this study, the high-salience control condition is simply referred 

to as the “background” condition, as in this condition the receptive field of the 

recorded neurons were part of the background. The intermediate- and low-salience 

control conditions are referred to as intermediate- and low-salience background 

conditions.  

Figures 3.1A to 3.1D show the high-, intermediate-, low-salience figure, and 

background conditions used for one recording. The receptive fields of the two 

simultaneously recorded neurons are highlighted using black rectangles. It can be 

seen that the Gabor patches in the receptive fields of the neurons were fixed across all 

conditions.  

In each recording session, we typically generated 24 unique stimuli for each 

figure and background saliency condition, and repeated each of them twice for a total 
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of 6*24*2 = 288 trials. A small portion of “catch” trials were also included, in which 

no contour was present, i.e. the orientation of the patches at both the figure and 

control locations were randomized, but we continued to monitor one of the locations 

as the “correct” window. The animal’s performance in these catch trials allowed us to 

estimate the chance performance of the animal. We typically generated 24 of these 

stimuli, half were figure trials and the other half were background trials, and repeated 

them twice as well, for a grand total of 288 + 2 * 24 = 336 trials in each recording 

session. 

In this study, we particularly analyzed the data from high-, intermediate-, low- 

salience figure conditions, and the high-salience background condition. For these 

conditions, the stimulus in the receptive field was always the same and optimal for the 

recorded neuron. In the remaining conditions, i.e. intermediate- and low-salience 

background conditions, as well as in the catch trials, we varied the orientation and 

direction of the Gabor patch in the receptive field in order to obtain the direction-

tuning curve of the neuron. We typically measured the responses at 4 directions on 

either side of the preferred direction with steps of 15˚. This meant that 18 (144 trials/ 

8 directions) measurements were performed at each direction within the range of ±60˚ 

from the preferred direction.  

All stimuli were presented on a 21” monitor, at a viewing distance of 57 cm, 

with a resolution of 1280 x 1024, and a refresh rate of 85 Hz. 

 

3.1.5. Experimental paradigm  

After an initial fixation of 500 ms, the stimulus was presented and the animals 

were free to saccade to the target as soon as it was detected. The animals received a 

juice reward if they made a saccade within 300 ms to the correct target window and 
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remained there for an additional 300 ms. If the animals failed to satisfy both criteria 

within a total of 600 ms, the trial was considered incorrect. In some cases, the animals 

performed multiple saccades, first to one window and then switching to the other 

window. If any of the saccades were to a location outside the target window, we 

considered the trial incorrect.  

The eye positions were tracked from stimulus onset to the start of the saccade 

for all the trials in the selected recordings. Instead of measuring the eye positions with 

respect to the location of the fixation cross, we calculated the mean eye position for 

each session and used the deviation from this mean value for all the trials in each 

session. We did this because we found that the animal often exhibited small, but 

systematic, gaze deviations from the fixation target location. By computing eye 

positions in this manner, we were able to impose much stricter limits (±0.25˚ for two 

monkeys and ±0.5 for one monkey) to detect fixations.  

The reaction time was computed by first separating the eye movements of the 

animal into saccades and fixations. The onset of the first saccade after stimulus onset 

was used as the reaction time.  

 

3.1.6. Behavior 

The distributions of the reaction times and performance for all 4 stimulus 

conditions (background, high-salience, intermediate-salience, and low-salience) are 

shown for all subjects (Figure 3.2A and Figure 3.2B), and for individual subjects 

(Figures 3.2C to 3.2H). It can be seen that, as expected, the reaction time 

systematically increased while the performance decreased as the saliency of the figure 

decreased. The reaction times and performance of the high-salience figure and 

background conditions, which contained an equivalent high-salience figure at the 
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control location, did not deviate significantly from each other (2-sample Kolmogorov-

Smirnov test, p < 0.01). 

 

 

Figure 3.1. The visual stimuli consisted of an array of oriented, drifting Gabor patches, with a subset 
aligned to form a contour. The receptive fields of the neuronal populations under study are highlighted 
with two black rectangles. The location of the target contour for each condition is shown using a blue 
rectangle. The stimulus conditions depicted are: A) high-, B) intermediate-, C) low-salience figure 
conditions, and D) background condition.  
 

3.2. Neuronal responses 

3.2.1. Local field potentials 

All raw waveforms were down-sampled to 5 KHz and filtered between 10 and 

600 Hz using a Chebyshev Type II filter, which provided us with a steep roll-off and 

ripples in the stopband instead of the passband. These characteristics were useful for 

our analysis in Chapter 4, in which we needed to separate the signal into narrow band 

signals, so we decided to use the same type of filter for the initial filtering of the local 

field potentials as well. We used 10 Hz as the lower cut-off frequency for the filter 
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because this removed the DC component from the signal, and at the same time 

enabled us to use a filter of a smaller order compared to a filter with a lower cut off 

frequency of 1 Hz. This filtering was computationally less expensive, while the result 

of the analysis using this method was not different from using 1 Hz as the lower cut-

off frequency. This was because the frequency resolution of our method was 

relatively low and we did not analyze frequency components lower than 10 Hz. 

 

Figure 3.2. Distributions of the reaction times and performance of the subjects. A, B) All subjects. C - 
H) For 3 individual subjects. (BG: Background, H: High-, I: Intermediate-, and L: Low-salience 
figure). 
 

To prevent the lower frequency components in the spikes from contaminating 

the local field potentials (Zanos et al., 2011), the spikes were removed from the raw 

data before filtering by applying a method similar to the method used in (Manning et 

al., 2009; Le Van Quyen et al., 2010). To perform this, each spike, consisting of 32 

data points, identified using the steps described in Yen et al., (2007), was replaced 

with a linear interpolation between the point immediately preceding the spike and the 

point immediately following the spike (Figure 3.3). The resulting local field 

potentials, recorded on the electrodes with the receptive fields highlighted in Figure 
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3.1, are shown in Figure 3.4.  

The filter was applied both in the forward and backward directions, to correct 

for the phase distortion that results from the nonlinear phase response of the filter. 

However, to prevent the neural response in the time window of interest (i.e. typically 

the time window from the stimulus onset to the time of the shortest reaction time 

across trials) from being contaminated by responses outside the time window due to 

the forward or backward filtering, we cropped the signal at the smallest reaction time 

before applying the filter, to ensure that changes in the neuronal response due to eye 

movements were not smeared into the time window preceding the reaction time as a 

result of backward filtering. Similarly, we also separated the baseline spontaneous 

activity period from the evoked response period before performing any analysis using 

the baseline to minimize contamination from the evoked response due to filtering.  

We included both the transient and sustained responses into the analyses. This 

was necessary, because in our experiment the reaction times were very short (153.23 ± 

28.39), and if there were any differences between the responses leading up to the 

reaction time of the animal, they presumably happened very early and close to the 

stimulus onset. These were the differences we were particularly interested in. 

We only analyzed the trials with reaction times of at least 100 ms, because this 

gave us an acceptable amount of data for processing, and also because the trials with 

very small reaction times were most likely the trials in which the monkeys planned a 

saccade before inspecting the visual stimuli. The trials with large eye movements 

(defined as eye positions that exceeded a threshold of 0.25˚ from the fixation point for 

two subjects, and 0.5˚ from the fixation for the third subject) in the time window of 

interest, were also discarded because in these trials, the eye movements may have 
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caused the stimulus to drift out of the receptive fields of the recorded neurons, and thus 

cause changes in the neural response that were not due to the stimulus condition. 

 

 

Figure 3.3. Local field potentials (band-passed filtered between 10 and 600 Hz) recorded 
simultaneously on two electrodes for the high-salience figure condition, aligned to stimulus onset (t = 0 
ms). The responses are sorted with respect to reaction times (blue vertical lines), and separated into 
correct (black) and incorrect trials (red).  
 

Finally, we discarded the sites in which one of the stimulus conditions 

contained fewer than 20 trials after the preprocessing steps. For the remaining data, if 

we were left with different numbers of trials in different stimulus conditions, we 

subsampled the trials across conditions to equalize the number of trials to avoid 

spurious differences that could be introduced due to differences in the number of trials. 
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3.2.2. Single-units and multi-units 

For extraction and sorting of the single-units, any local minima that exceeded 

6 times the standard deviation of the noise level were identified, and then 32 data 

points around each minima were stored to extract the spikes. The single units were 

isolated using the spike sorting method described in Yen et al. (2007). 

To obtain the multi-unit activity at each site, we re-extracted the spike 

waveforms from the raw signals using three times the standard deviation of the noise 

level, instead of six times the standard deviation used for extracting the single unit 

spikes. Then we eliminated the spikes with the same time stamps as those in the sorted 

single units from the newly extracted spikes. 

 

3.3. Single channel analysis 

3.3.1. Fourier domain analysis 

We applied the Fourier Transform to the filtered waveforms to perform 

frequency domain analysis of the signals. We used overlapping Hanning windows 

that were 50 ms in lengths, with steps of 1 ms. We chose window lengths of 50 ms 

because the reaction times of the animals were quite short, as mentioned above and 

shown in Figure 3.2, and because were interested in investigating the time course of 

the evoked response. However, due to the very short window lengths, it was not 

possible to use the multi-taper method (Jarvis and Mitra, 2001), which otherwise 

could have provided better energy concentration and lower variance.  
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Figure 3.4. Waveform Extraction. A) A short segment of the high-pass filtered data is shown here. 
Three local minima that exceeded the extraction threshold (dashed line) are highlighted by arrows. The 
extracted waveforms are indicated by thin broken lines. Regions of overlap between the extracted 
waveforms are indicated by the thick broken lines. B) The three extracted waveforms corresponding to 
the three trigger points shown in A. The trigger points appear as data point 11 in each of the extracted 
waveforms. The first and second numbers in the parentheses indicate the data point number and the 
voltage respectively. 

 

Response windows 

Spontaneous activity: Each trial started with a 500 ms fixation duration. We 

used a portion of the data in this time window (i.e. 200 ms to 300 ms from the start of 

the trial) to characterize the spontaneous activity. This allowed us to discard the first 

200 ms of each recording to avoid the effects of fixation cross onset (Mathewson, 

2009), as well as anticipatory effects before the stimulus onset (Supèr et al., 2003; 

Lima et al., 2011). 

Evoked activity: For each recording session, we found the earliest reaction time 

across trials and stimulus conditions, and made that the end of the evoked response in 

each trial. The beginning of the evoked response was defined by the smallest response 
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onset in the two high-salience conditions, i.e. figure and background. The response 

onset for each condition was determined by first computing the distribution of power 

at each frequency in the spontaneous period defined above and then comparing the 

distribution of power across trials in each window in the evoked response to those 

found in the spontaneous period using a one sided t-test (p < 0.001). Once we found 10 

consecutive windows that exhibited significant differences with the spontaneous 

activity, we considered the beginning of the first window as the response onset.  

In a small number of sites, we were not able to compute a response onset for 

either of the high-salience conditions. These sites were considered nonresponsive and 

were discarded from the rest of the analyses. We also discarded the sites with response 

onsets that exceeded the 75th percentile of the response onset distribution for all the 

sites, i.e. 23 ms after stimulus onset, because for these sites, the time interval between 

the response onset and the smallest reaction time was very short and resulted in only a 

few windows to analyze. After this preprocessing step, the total number of sites used 

for the rest of the analysis was 357 sites (Annie: 172, Clark: 99, and Disco: 86). Figure 

3.5 shows the power spectra for all the stimulus conditions for one site. For this site, 

the power peaked at 40 Hz, and increased as the salience of the figure decreased.  

Figure 3.6A shows the power distributions for one site computed across trials 

for different points in time for the evoked response across all stimulus conditions. The 

high-salience figure condition is shown in red, while the background condition is 

shown in black. Finally, for each trial, we normalized the power in each time window 

and at each frequency by subtracting out the averaged power in the corresponding 

frequency in the spontaneous period and summed the power computed at each 

frequency for the evoked response, and considered this the neuronal response for each 
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trial. We refer to this accumulated power value as the power response, or simply the 

response throughout the rest of this study.  

 

 

Figure 3.5. The log-normal power spectra for the A) high-, B) intermediate-, C) low-salience figure, 
and D) background conditions, averaged across trials for one site. The values shown are the logarithm 
of the Z-scores computed for each frequency by subtracting the mean of the baseline from the power 
values and dividing the results by the standard deviation of the baseline. Only frequencies below 150 
Hz are shown in this figure for clarity although the signals were filtered below 600 Hz.  
 

3.3.2. High-salience figure versus background condition 

The first question we were interested in answering was whether we would be 

able to find differences in the LFP in the high-salience figure and background 

conditions. To perform this, we generated a receiver operating characteristic (ROC) 

curve for each site to compare the responses in the high-salience figure condition with 

the responses for the high-salience background condition. These responses were the 

power responses, as defined earlier. We then computed the area under the ROC curve 

(AUC). An AUC value significantly larger than 0.5 indicates that the two 



	

	 44

distributions can be discriminated from each other. For instance, for the distributions 

shown in Figure 3.6A, the AUC value was 0.28. This means that, in this case, the 

power in the background condition was higher than those in the figure condition. In 

order to see if we could have gotten this AUC value by chance, we computed the 

AUC values for 1000 surrogates using a non-parametric permutation test (with p < 

0.05). This means that we pooled all the trials from the figure and background 

conditions, and for each surrogate, randomly assigned, with replacement, subsets of 

these trials to each condition. This allowed us to test the null hypothesis that the 

responses to the figure and background conditions were not significantly different 

from each other. The sizes of the subsets were equal to the initial number of trials in 

each condition. We then computed an AUC value for each surrogate, and repeated 

this 1000 times, generating a distribution of AUC values. If the AUC value computed 

for the original data was outside the 95% confidence interval of the surrogate 

distribution, this suggested that the AUC value was unlikely to have been obtained by 

chance, and the response difference between the conditions was considered 

significant. The neuronal responses in the figure condition could be larger than those 

in the background condition, i.e. larger than 97.5th percentile of the AUC distribution, 

or they could be smaller, i.e. smaller than 2.5th percentile of the AUC distribution. 

Figure 3.6C shows the original AUC value computed for the original dataset, along 

with the distribution of the AUC values obtained by performing the permutation test. 

In this case, the original AUC value was smaller than the 2.5th percentile of the 

distribution, so the difference between the power responses for the figure and 

background conditions (Figures 3.6B and 3.6D) was significant for this site.  
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Figure 3.6. A) The medians of the power distributions of the high-salience figure (red) and background 
(black) conditions at 40 Hz for one site. The shaded regions represent the 95% confidence intervals of 
the medians  computed using the equation described in McGill et al. (1978). The dashed vertical lines 
indicate the response onsets of the figure (red) and background (black) conditions. B) The power 
responses in the figure (red) and background conditions (black). C) The AUC value computed for the 
original data (dashed vertical black line) along with the distribution of the AUC values computed for 
the permutation test, as described in section 3.3.2. The 5th and 95th percentiles of the distribution are 
highlighted by red vertical lines. D) The distributions of the power responses of figure (red) and 
background conditions (black). The dashed horizontal line in (B) and the dashed vertical line in (D) 
indicate a sample threshold setting that returns a 70% hit rate for the figure responses.  
 

3.3.3. Modulation as a function of saliency 

The second question we wanted to investigate was whether we would be able 

to observe differences in the LFP as the salience of the stimulus changed. As the 

performance of the monkeys dropped systematically with decreases in saliency 

(Figure 3.2), we expected that, if the LFP was influencing behavior in any way, the 

response differences in the LFP should also change as a function of visual saliency. 

So, for the sites in which the responses for the figure condition were significantly 

different from the responses for the background condition, we checked to see if the 

neuronal responses changed as a function of saliency, and if this modulation was 

correlated with behavior. To perform this, we computed an AUC value for each 
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possible pair of figure saliency conditions, i.e. high-salience versus intermediate-

salience, high-salience versus low-salience, and intermediate-salience versus low-

salience figure conditions. If the AUC value was significantly above the chance level 

(using the same non-parametric permutation test as above, with p < 0.05) for one pair, 

it showed that the distribution of the responses for one saliency condition could be 

distinguished from the distribution of the responses of another figure saliency 

condition. Figure 3.7 shows the power distribution for different pairs of figure 

saliency conditions (Figures 3.7A to 3.7C) and the AUC values computed for 

individual pairs, along with the 2.5th and 97.5th  percentile of the distributions 

obtained by performing the permutation test for each pair (Figures 3.7D to 3.7F).  

In this particular example, the differences between the power for all figure 

saliency pairs were significantly different from each other, as the original AUC values 

for these pairs were all larger than the 97.5th percentile of their surrogate distributions. 

For this particular site, the AUC value that represented the discrimination between 

high- and low-salience figure conditions (Figures 3.7A and 3.7D) was clearly larger 

than that for high- and intermediate-salience figures (Figures 3.7B and 3.7E). 

Subsequently, for the sites that showed modulation as a function of saliency, 

we studied the correlation between the neuronal responses and the behavior of the 

monkeys. For each figure salience condition, we computed the AUC value that 

represented the discrimination between the responses of that figure condition and the 

background condition and used this AUC value as the neurometric measure. These 

three AUC values formed the neurometric curve, while the performance of the 

monkey at each of the three salience conditions composed the psychometric curve. 

Then, we computed the correlation coefficient between the neurometric and 

psychometric curves. 
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Figure 3.7. A - C) Power distributions for all pairs of figure saliency conditions at 40 Hz for one site. D 
- F) The AUC value of the original data along with the distribution of the AUC values computed using 
the permutation test. A, D) high- versus intermediate-salience. B, E) high- versus low-salience. C, F) 
intermediate- versus low-salience conditions. The conventions are as in Figure 3.6. The vertical lines in 
A - C represent the smallest response onset of the high-salience figure and the background conditions. 
The asterisks in D – F indicate that the differences between salience conditions were statistically 
significant.  

 

Figure 3.8 shows the distributions of the power at 40 Hz for various salience 

conditions, and the psychometric and neurometric curves for one site. For this site, the 

neuronal responses and the behavior of the monkey were highly correlated (r = -0.90). 

We found 106 (29.69%) sites out of 357 recordings exhibited significant differences in 

the gamma power for high-salience figure and background conditions. Among these 

sites, 48 (45.28%) sites exhibited higher power for the figure condition compared to 

the background condition, while more sites 58 (54.71%) exhibited lower power for the 

figure condition compared to the background condition. The numbers of these sites at 

individual frequencies are shown in Figure 3.9 for individual subjects and frequencies.  
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Figure 3.8. A – D) The distributions of the power responses for all figure salience conditions and the 
background condition at 40 Hz for one site. The vertical red line indicates the mean of the distribution. 
E) The neurometric (cross) and psychometric (circle) curves. The neurometric measure was the AUC 
value that represented the difference in the distributions between each salience condition and the 
background condition. The error bars for the neurometric curve indicate the 95% confidence intervals 
of the AUC distributions computed by bootstrapping (1000 samples), while the error bars for the 
psychometric curve indicate the standard errors computed using the assumption that the correct and 
incorrect responses were from a Bernoulli distribution. (High: high-, Int: intermediate-, and Low: low-
salience figure; r: the correlation coefficient between the curves)  
 

Figure 3.10 shows a comparison between the mean power of the figure and 

background conditions for different frequencies in the gamma band at sites that 

showed significant differences across all subjects. 

For the sites with significant differences between the figure and background 

conditions, we examined the variation of the responses with saliency. We found 52 

(49.05%) sites out of the 106 significant sites exhibited significant variation as a 

function of visual saliency. 26 of these sites were among the sites in which the power 

in the figure condition was higher than that for the background condition (54.16%), 

and 26 of these sites belonged to the reverse case (44.82%). These measures are shown 

in Table 3.1 for individual subjects.  
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Figure 3.9. The number of sites that showed significant differences between the figure and background 
conditions for different frequencies. The blue sections of the bars represent the number of the sites that 
also showed modulation as a function of figure saliency. “Higher” indicates that the power of the figure 
condition was higher than the power of the background condition, and “Lower” indicates the reverse. 
A, B) For all three monkeys. C – H) For individual subjects. 
 

For the sites that exhibited modulation with figure saliency, we computed an 

AUC value for each salience condition, which represented the discrimination between 

the responses in the figure condition and the responses in the background condition. 

These AUC values constituted the neurometric curve. Then, we computed the 

correlation coefficient between the neurometric and the psychometric curves.	Figure 

3.11 shows the distributions of these correlation coefficients for all subjects and 

individual subjects. We found that the neurometric measure was inversely correlated 

with performance when the power in the figure condition was smaller than that in the 

background condition, while it was directly correlated with performance for the 

reverse case. This was consistent with the hypothesis that with the decrease in 

saliency, the responses in the figure condition became more similar to the responses in 

the background condition.  
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Figure 3.10. Comparison of the power in the figure condition with the power in the background 
condition at A) 20 Hz, B) 40 Hz, C) 60 Hz, and D) 80 Hz. Each axis represents the power response, i.e. 
sum of the power in the evoked response, averaged across trials. The error bars are the standard errors 
of the means 
 

Table 3.1. The number of sites that showed significant differences in power between the figure and 
background conditions. “Higher” indicates that the power in the figure condition was higher than the 
background condition, and “Lower” indicates the reverse. The sites that also exhibited modulation in 
power as a function of contour saliency are shown in parentheses. 
 

 Annie (172) Clark (99) Disco (86) 

Higher 22 (14) 12 (4) 14 (8) 

Lower 34 (17) 16 (7) 8 (2) 

 

3.3.4. Time course 

For the recordings sites that exhibited significant differences in the responses to the 

figure and background conditions, we observed that for some sites, the deviation 

between the responses started earlier, whereas for others it started later (e.g. the sites 

shown in Figure 3.12). 
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Figure 3.11. The distributions of the correlation coefficients computed between the neurometric and 
psychometric curves for the sites that showed significant modulation with figure saliency. A, B) For all 
three monkeys. C – H) For individual subjects. “Higher” indicates that the power in the figure 
condition was higher than the power in the background condition, and “Lower” indicates the reverse. 

 

We were interested to see if there was a clear distinction between these early 

and late responses, as early responses could be indicative of feed-forward activity 

while late responses could be indicative of feedback from extra-striate areas. We 

examined the time course of the response differences, using the Kolmogorov-Smirnov 

test (p < 0.05), to compare the distributions of power in the figure and background 

conditions in individual 50 ms windows. Once we found 10 consecutive windows that 

showed significant differences between the two conditions, we marked the start of the 

first window as the point at which the responses in the figure and background 

conditions started to deviate from one another. In Figure 3.12, two sites with two 

different time courses can be seen. For one site (Figure 3.12A), the responses deviated 

from each other very early (10 ms after stimulus onset), while for the other site 

(Figure 3.12B), the deviations emerged later (28 ms after stimulus onset).  
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We first computed the distributions of all the bins that exhibited significant 

differences between the two conditions in the different frequency bands under study, 

because if we could observe bimodality in these distributions, this could suggest 

separation between the early (feed-forward) response and the late response 

(feedback). Unfortunately, we did not observe any bimodality in the distributions for 

any of the frequencies under study (Figure 3.13).  

 

 

Figure 3.12. Different time courses of the deviation of the responses of the figure condition form the 
responses of the background condition. A) Early modulation. B) Late modulation. The vertical solid 
lines are the windows that exhibited significant differences between figure and background conditions. 
The bold line indicates the first window after the response onset that exhibited significant differences 
between the two conditions. The vertical dotted line represents the smallest response onset of the high-
salience figure and the background conditions.  
 

 We also assessed the distribution of the first significant bin, mentioned above 

(Figure 3.14). It can be seen that these distributions also appeared unimodal.  
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Figure 3.13. The distributions of significant windows for all significant sites at A) 20 Hz, B) 40 HZ, C) 
60 Hz, and D) 80 Hz. 
 

 

Figure 3.14. The distributions of the first significant window (of at least 10 consecutive significant 
windows) for all significant sites at A) 20 Hz, B) 40 HZ, C) 60 Hz, and D) 80 Hz. 
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However, the fact that some of the deviations started earlier than others, and 

ended earlier (Figure 3.12A), suggested that the responses in the figure and 

background conditions, i.e. figure-ground segregation, started to deviate in the feed-

forward sweep for some sites. These results need to be interpreted cautiously, because 

the power at each bin was computed over an interval of 50 ms, so it is difficult to 

determine the exact timing of each event. However, for example, for the site shown in 

Figure 3.12A, the fact that the differences vanished 25 ms after stimulus onset could 

indicate that the differences observed from 10 ms to 25 ms after stimulus onset were 

not due to the contamination of the differences from the late response to the early 

response. 

 

3.3.5. Dependence on experimental variables 

As we found a fairly heterogeneous set of results, we checked to see if we 

could identify a relationship between the type of response difference, the depths of the 

recordings, and the tuning preferences of the neurons.  

In order to investigate why the response in the figure condition was larger at 

some of the sites, smaller at other sites, and not significantly different at yet other sites, 

we grouped the sites that exhibited the different effects together to see if there were 

any differences in the depth (i.e. cortical layer) of the recording. The depth of each 

recording was obtained by computing the difference between the depth at which we 

performed the recording and the depth at which the last activity was recorded when the 

electrode was retracted (refer to section 3.1.3 for further details). 

The recording depths for the different groups for all subjects are shown in 

Figure 3.15. We did not find any significant differences between the depth of the 

recording for the sites that exhibited significant differences between figure and 
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background conditions, and for the sites that did not (Table 3.2), as shown in Figures 

3.15A to 3.15C. We found this using the two-sample Kolmogorov-Smirnov test 

(Annie2: p > 0.68, Clark: p > 0.59 and Disco: p > 0.53).  

 

Figure 3.15. Comparison between the depth of the recording for A) “Significant” and “Non-
significant” and B) “Lower” and “Higher” sites. “Significant” indicates that at least in one frequency, 
the power in the figure condition was significantly different from the power in the background 
condition. “Non-significant” indicates that the power in the figure condition was not significantly 
different from the power in the background condition in any of the frequencies. (Sig: Significant, Non-
Sig: Non-significant). “Higher” indicates that the power in the figure condition was higher than the 
power in the background condition, and “Lower” indicates the reverse.  

 

This was also the case when we compared the depth of the recording for the 

sites that showed higher power, and the ones that showed lower power in the figure 

condition compared to the background condition (Table 3.3), as shown in Figures 

3.15D to 3.15F. Again we found this using the two-sample Kolmogorov-Smirnov test 

(Annie2: p > 0.49, Clark: p > 0.99 and Disco: p > 0.76). We also assessed the 

relationship between the depth of the recordings and the latency to the emergence of 

significant differences between the responses in the figure and background conditions 

(Figure 3.16, Annie2: 16, Clark: 5, Disco: 13 sites). Although there seemed to be a 
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positive correlation between these measures (Pearson correlation), the correlation was 

not significant (correlation coefficients and their corresponding p-values are reported 

in the figure captions). 

Table 3-2. The depth of the recording for the sites that exhibited significant differences between figure 
and background conditions (“Significant”) and for the sites that did not (“Non-Significant”). 
 

  Annie Clark Disco 

Site 
Significant 

57 17 21 

Mean  std 1619.39  757.30 1755.41   631.15 965.52  537.64 

Site 
Non-Significant 

69 26 57 

Mean  std 1636.63  798.68 2295.30  1781.99 1035.10  555.83 

	

Table 3-3. The depth of the recording for the sites that showed higher power (“Higher”), and the ones 
that showed lower  power (“Lower”) in the figure condition compared to the background condition. 

  Annie Clark Disco 

Site 
Higher 

22 7 14 

Mean  std 1634.52  727.29 1986.14  2283.36 929.78  444.95 

Site 
Lower 

36 10 7 

Mean  std 1603.72  774.80 1593.9  1088.04 1037  725 

 

Next, we examined the orientation tuning of the local field potentials. In this analysis, 

we considered all the recordings, including the recordings that were discarded for our 

other analyses because of the response onset constraint or the number of trials based 

on the criteria described in Section 3.2.1. As mentioned in the “Visual stimuli” 

section, Section 3.1.4, we varied the orientations of the Gabor patches in the receptive 

fields of the neurons to obtain the orientation tuning of the cells. To compute the 

tuning curves for the local field potentials, we summed the power responses from 20 

to 80 Hz, and then used the averaged value across trials to generate the tuning curve. 

For single units and multi units, we used the spike count to generate the orientation 
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tuning curves. Examples of these tuning curves for three example sites are shown in 

Figure 3.17. We applied a balanced one-way ANOVA test (p < 0.01) to identify 

recording sites that exhibited orientation tuning, and then fitted the responses with a 

circular Gaussian. We also used the Gaussian fit to quantify the differences between 

the preferred orientations computed using the local field potentials and those 

computed from the activity of single units. For the sake of simplicity, we refer to this 

deviation of the preferred orientation from the stimulus orientation as preferred 

orientation deviation in the rest of this study. The Gaussian provided us with the 

tuning width (2 times the standard deviation) and the strength of the orientation tuning 

(described below).  

 

Figure 3.16. Correlation between the depth of the recording and the latency of the response modulation 
for individual subjects A – C, and all subjects D. (r:  correlation coefficient). 

 

To compute the tuning strength we found the data point on the tuning curve 

that was the closest to the baseline of the fitted Gaussian, and divided the peak value 

of the Gaussian fit by the standard deviation of the tuning curve at this point. This 
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method takes into account the fact that the variability in local field potentials is much 

larger than single unit and multi unit activity, which can be observed in Figure 3.17. 

This was necessary because otherwise the tuning strength of local field potentials may 

spuriously seem higher than single unit and multi unit activities as stated by Berens et 

al. (2008). We also examined other measures such as peak to baseline ratio and the p-

value returned by ANOVA test, but the results were very similar, so we only reported 

the results obtained using the first method. 

 

 

Figure 3.17. Example tuning curves for three different sites. A) LFP (preferred orientation deviation = 
18.31, width = 97.73, strength = 7.24), B) SU (preferred orientation deviation = 18.51, width = 59.34, 
strength = 19.09) and C) MU (preferred orientation deviation = 17.41, width = 78.58, strength = 10.35). 
The dashed vertical line indicates the orientation of the hand-mapped receptive fields, while the dashed 
horizontal line indicates the baseline activity. 

 

The strength and width of the orientation tuning of the local field potentials and 

the preferred orientation deviation of the LFPs are shown in Figure 3.18. We found 56 

sites in which the local field potentials exhibited clear orientation tuning preferences. 

This was consistent with other studies that reported the tuning of local field 

potentials with orientation (Eckhorn et al., 1988; Frien et al., 2000; Kayser et al., 

2004), although this constituted a small percentage (11.55%) of all the recordings (485 

sites). This was probably because the LFP represents the activity of a large population 

of neurons with different orientation tuning preferences. This may have caused some 

of the responses to cancel each other out, and lead to a much weaker overall response. 
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Figure 3.18. Characteristics of the orientation tuning found in the local field potentials. A) Tuning 
width. B) Preferred orientation deviation. This orientation is the preferred orientation of the LFP 
relative to the stimulus orientation. C) Tuning strength. 

 

In comparison, we generated tuning curves using the multi-unit and single-unit 

activity (MUA and SUA, respectively) for sites in which they were available. The 

percentage of tuned multi-units and single-units was 56.13% (270 out of 481), and 

49.10% (164 out of 334), respectively. In investigating the relationship between unit 

and LFP tuning, we found 15 occurrences in which both the LFPs and SUAs were 

tuned, and 39 occurrences in which both LFPS and the MUAs were tuned. Figure 3.19 

shows the comparison between the width and the strength of the orientation tuning, 

and the preferred orientation deviations in the SUA and MUA versus the LFPs. The 

same data is shown for 115 MUAs versus SUAs as a reference. The strength of the 

tuning in the SUAs and MUAs were significantly larger compared to the LFPs, the 

strength of tuning in SUAs were significantly larger compared to MUAs, and the 

width of the tuning in the MUAs were significantly larger compared to the SUAs (sign 
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test, p < 0.05). However, there were no significant differences between the other 

tuning characteristics (sign test, for tuning width, LFP vs. SUA: p > 0.3, LFP vs. 

MUA: p > 0.25, for preferred orientation deviation, LFP vs. SUA: p = 1, LFP vs. 

MUA: p > 0.19, MUA vs. SUA: p > 0.35). We were especially surprised to find that 

the tuning widths for the LFPs were not significantly wider than the MUAs, given 

previous reports that higher orientation sensitivity was reported for MUAs compared 

to LFPs (Frien et al, 2000; Berens et al, 2008). This discrepancy may potentially be 

due to the fact that in our data, the number of sites with both tuned LFP and tuned 

SUA was relatively small. 

 

 

Figure 3.19. Comparison of the orientation tuning characteristics of A) LFPs and SUAs, B) LFPs and 
MUAs, and C) SUAs and MUAs. The sites that showed significant differences between figure and 
background conditions are shown in red (higher power in figure compared to background conditions) 
and blue (lower power in figure compared to background conditions). The black dots represent non-
significant sites. 
 

For the sites that showed both orientation tuning and a significant difference 

between the figure and background conditions (n = 18), we compared the strength and 
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width of the tuning, as well as the preferred orientation deviation, with sites that did 

not show significant differences (n = 35). We did not find any significant differences 

between the tuning characteristics of these groups. We examined this using the two-

sample Kolmogorov-Smirnov test for tuning width (p > 0.88) and tuning strength (p > 

0.44) and the Kuiper’s test for preferred orientation deviation (p > 0.1). This was also 

the case when we performed the same comparison in sites in which the figure response 

was larger (n = 8 tuned sites) and sites in which it was smaller (n = 11 tuned sites). 

This was also examined using the two-sample Kolmogorov-Smirnov test for tuning 

width (p > 0.85), tuning strength (p > 0.23), and the Kuiper’s test for preferred 

orientation deviation (p > 0.1). The means and standard deviations for tuning width, 

tuning strength, and preferred orientation deviation of all these cases are shown in 

Tables 3.4 and 3.5. 

Table 3-4. The means and standard deviations of the orientation tuning characteristics in the LFPs for 
sites that exhibited significant differences between figure and background conditions (“Significant”) 
and the ones that did not (“Non-significant”). 
 

 
Width 

Preferred orientation 

deviation 
Strength 

Significant 43.95 ± 23.91 -3.73 ± 34.44 6.91 ± 2.50 

Non-significant  42.25 ± 27.06 3.37 ± 34.43 6.28 ± 2.97 

 

Table 3-5. The means and standard deviations of the orientation tuning characteristics of local field 
potentials for sites in which the power response in the figure condition was higher than the power 
response in the background condition (“Higher”), and the sites in which the response in the figure 
condition was lower (“Lower”). 
 

 
Width 

Preferred orientation 

deviation 
Strength 

Higher 39.17 ± 21.38 -12.06± 31.01 6.12 ± 2.45 

Lower 50.47 ± 26.45 7.49 ± 35.89 7.40 ± 2.46 

  

For two of the monkeys, we also found significant differences between the 

figure and background conditions, as well as across saliency conditions using single 
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unit and multi unit activities (Bong et al., 2012). We were interested to see if there was 

a correlation between those sites and the ones that showed significant differences using 

LFPs. Out of 21 significant single units in one subject, 10 sites also showed significant 

differences between LFPs. In the other subject, 1 out of 3 single units showed 

significant differences in the LFPs. 60 local field potentials for one subject and 26 for 

the other subject showed significant differences even though the single units were not 

significant. We also performed the same analysis using the multiunit activity. Out of 

15 significant multi units in one monkey, 3 sites also showed significant differences 

using LFPs, and in the other monkey, this was 2 out of 3. 67 LFPs for one subject and 

25 for the other subject showed significant differences, while the multi unit activities 

were not significantly different from each other. This implies that LFPs and spikes 

may carry different information about the stimulus in accordance with Pesaran et al. 

(2002), Mehring et al. (2003), and Belitski et al. (2008). 
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Chapter 4  

Multi-Channel Analysis 

In the previous chapter, we described changes in the oscillatory power of the LFPs at 

individual recording sites that reflected figure-ground segmentation, as well as 

changes that reflected stimulus saliency. In this chapter, we investigated the 

relationship between the stimulus conditions described previously and the LFPs at 

paired recording sites.  

 

4.1. Synchrony analysis using phase-locking value 

As described in Chapter 3, we typically recorded simultaneously from two or 

more electrodes in each experiment. The receptive fields of the neurons recorded on 

these electrodes were either all part of the figure, or all part of the background. To 

investigate the relationship between these populations of neurons, we measured the 

phase-locking (i.e. synchronous oscillations) between pairs of simultaneously 

recorded LFPs, and compared the degree of synchrony across conditions. We also 

recorded simultaneously from more than two electrodes in a few cases. In those cases, 

we computed the phase-locking between all possible pairs of LFPs. For simplicity, 

throughout the rest of this chapter, we refer to each of these pairs of simultaneously 

recorded activities as “a pair”, and to each of the members of a pair as an “electrode”.  
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The LFPs were obtained using the method explained in Chapter 3. One 

example of a LFP recording is shown in Figure 4.1A. All the preprocessing steps 

were the same as those described in Section 3.2.1. The only exception was that we did 

not equalize the number of trials, but instead used other methods to compensate for 

the differences in the number of trials of the conditions. These methods will be 

explained in each section correspondingly.  

To measure synchrony, we applied the Hilbert transform to the filtered 

waveforms in order to compute the analytical form of the waveforms, and to obtain 

both the instantaneous phase and instantaneous amplitude. The analytical form of a 

waveform can be defined as follows. 

 

      (4.1) 

 

in which S(t) is the Hilbert transform of the signal, A(t) is the amplitude 

envelope, and (t) is the instantaneous phase. The Hilbert transform can be defined as 

the convolution of a signal with 1/t
 
as follows. 

 

s(t) 
1


P.V .
s(t)
t  



 d
      (4.2) 

 

In this integral, s(t) is the signal and s(t) is the Hilbert transform of the 

signal, while P.V. is the Cauchy principal value of the ill-defined integral. The 

instantaneous phase of this analytical form, i.e. (t), is physiologically meaningful 

only if the bandwidth of the waveform, i.e. S(t), is narrow (Le Van Quyen et al., 

2001). Thus, we filtered the LFPs in relatively narrow frequency bands using a 
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Chebyshev Type II filter. When assessing the Fourier power spectra, we found that 

most of the trials were oscillating in the frequency range of 20 Hz to 80 Hz (Figure 

3.4). This was important because although phase-locking can be defined for two non-

oscillating signals as well, in the context of a biological explanation, it may not be 

very easy to justify. So we plotted the histogram of the z-scores computed for the 

power spectra for both electrodes for the figure condition, and ensured that the 

histogram was bimodal, showing that there was a clear modulation in gamma band 

power. We band-passed filtered the LFPs in consecutive frequency bands centered at 

frequencies from 20 to 80 Hz (gamma band) in steps of 10 Hz, and in the range of [-5 

5] Hz around each central frequency (e.g. 15 – 25 Hz, 25 – 35 Hz, 35 – 45 Hz, etc.).  

 

 

Figure 4.1. A) A sample LFP. B) The waveform in (A) after it was band-passed filtered in the 25 – 35 
Hz frequency band. The amplitude envelope of the waveform is shown in red. C, D) Band-passed 
filtered waveforms in the 25 – 35 Hz frequency band for a pair of simultaneously recorded LFPs 
(groups 7 and 8). E, F) The amplitude envelopes of the waveforms in C and D, respectively. 
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Figure 4.1B shows the waveform in Figure 4.1A after it was band-passed 

filtered in the 25 – 35 Hz frequency band along with its amplitude envelope. All the 

waveforms that were recorded simultaneously on the two electrodes of one pair, are 

shown in Figures 4.1C and 4.1D after they had been band-passed filtered in the 25 – 

35 Hz frequency band, while their amplitude envelopes are shown in Figures 4.1E and 

4.1F. 

This method does not impose any constraints regarding the stationarity of the 

signal (Le Van Quyen et al., 2001). It should be noted that, in contrast to the short-

time Fourier Transform analysis, this method does not explicitly require processing 

data in short windows, which restricts the frequency resolution of the method. 

However, the time-frequency uncertainty principle (Gabor, 1946) applies to this 

method, and due to the filtering of the signal into narrow frequency bands, the time 

resolution of the analysis is limited. 

After computing the analytical form of the waveforms, we quantified the 

phase-locking between the waveforms recorded simultaneously on two different 

electrodes using the phase-locking value (PLV) measure (Lachaux et al., 1999): 

 

PLV ( f , t) 
1

Ntrial

. exp( j(y,trial ( f ,t) x,trial ( f , t)))
trial1

Ntrial


  (4.3) 

 

in which  

 

exp( j(y ( f , ) x ( f , ))) 
sax ( , f )say

*( , f )
sax ( , f ) say( , f )    (4.4) 
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and y(f,)- x(f,) is the difference between the instantaneous phases of the 

recorded waveforms on electrodes x and y at time , after they were band-passed 

filtered in frequency band f, while Sax and Say are the analytical forms of the 

waveforms. The PLV represents the circular variance of the phase differences (Young 

and Eggermont, 2009), and varies between 0 and 1, with 1 indicating perfect phase-

locking between the waveforms, and 0 indicating no phase-locking.  

To compute this measure, averaging across trials is essential, as the PLV 

measures the consistency of the phase difference across repetitions assuming the 

stationarity of phase shifts across trials. It should be noted that while a large PLV 

indicates a consistency of phase-shifts across trials, it does not necessarily imply 

synchrony (0 phase shift). In order to look at synchrony, we would need to verify that 

the PLV was also associated with a small phase shift.  Figure 4.2 shows the PLVs 

computed for different stimulus conditions during spontaneous (as defined in Chapter 

3, -300 ms to -200 ms from the start of the trial) and evoked activity for the pair 

shown in Figure 4.1. It can be seen that the PLVs during the evoked response (from 

the stimulus onset to the smallest reaction time, across all stimulus conditions) were 

typically very high, probably due to the large transient response. The PLV is not 

sensitive to the amplitude of the signals, and measures phase-locking independent of 

the amplitude correlation (Lachaux et al., 1999), but stimulating the neurons 

simultaneously apparently introduces a very large stimulus locked component that is 

reflected in the PLVs. However, we assumed that this component was present in all 

the trials across all conditions, and were interested in identifying differences between 

stimulus conditions that may be present in spite of this large underlying similarity. 

We will discuss how we achieved this in a later section. 
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We studied these differences in intervals in which at least one of the PLVs 

exceeded the mean of the PLVs in the baseline period by 3 times the standard 

deviation of the PLVs in the baseline (Figure 4.2). If some pairs exhibited a decrease 

in synchrony compared to the baseline, imposing this constraint would have 

eliminated those pairs from our analysis. However, as we did not observe any pairs 

with a significant decrease in synchrony, we considered this constraint valid. 

 

 

Figure 4.2. Phase-locking values (PLV) for the high-salience (red), intermediate-salience (green), and 
low-salience (blue) figure, and background (black) conditions. A) The window in the spontaneous 
activity used to compute the threshold. B) Evoked response period. The horizontal dashed line 
represents the mean plus 3 times the standard deviation in the baseline period. High: high-salience 
figure; Int: intermediate-salience figure; Low: low-salience figure. 

 

4.2. Figure versus background condition 

First, we were interested in detecting the differences between the responses in 

the high-salience figure and background conditions. We assessed these differences in 
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the different frequency bands described earlier. We computed the PLVs in each 

frequency band for the figure and background conditions, and then found the time 

intervals in which the PLVs in the figure condition were significantly different from 

the PLVs in the background condition. To test the significance of the differences 

between the PLVs in these two conditions, we bootstrapped the trials in each 

condition to assess the variability around each of the two PLVs. In each bootstrap 

sample, we computed the PLVs for the figure and background condition, and 

performed a point-wise subtraction of the resulting PLVs. By repeating this for 1000 

times, we obtained a distribution of the differences between the PLVs in these two 

conditions at each time point. Due to the elimination of some trials because of 

excessive eye movements, and the reaction time constraints described in Section 

3.2.1, we often ended up with different numbers of trials in the two conditions. To 

account for the variations that could have occurred because of this difference, we used 

the smaller number in the two conditions to perform the bootstrap. We used the 

criterion that 95% of the bootstrapped differences had to lie outside 0 in order for the 

difference in PLV for a particular pair to be significant. If the PLVs of background 

and figure conditions were significantly different from each other for at least 20 ms in 

the evoked response, we considered the differences in synchrony between the figure 

and background conditions significant in that frequency band. Figure 4.3 shows the 

PLVs for the figure and background conditions for the same pair as Figure 4.1, i.e. for 

the waveforms filtered in the 25 – 35 Hz frequency band. It also shows the differences 

between the PLVs of these conditions. The bins that exhibited significant differences 

are highlighted in red. As the differences were observed for more than 20 ms for this 

pair, i.e. from 13 ms to 72 ms after stimulus onset, this pair was considered a 
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significant pair in this frequency band. This pair did not exhibit significant differences 

between the two conditions in other frequency bands.  

 

 

Figure 4.3. A, B) The phase-locking values for the figure and background conditions in the 25 – 35 Hz 
frequency band during the baseline (A) and evoked periods (B). The horizontal dashed line indicates 
the same threshold explained in Figure 4.2. C, D) The mean of the differences between the PLVs of the 
figure and background conditions obtained from 1000 bootstrapped samples. The error bars are the 
95% confidence intervals of the differences. The red bars indicate the time points in which 95% of the 
bootstrapped distribution laid outside 0. Zero time represents stimulus onset.  

 

To illustrate significant differences in the PLV in an alternative manner, 

Figure 4.4 plots the troughs of the LFPs for the pair shown in Figure 4.3. The troughs 

of the filtered waveforms on one electrode were first aligned independently at two 

time points. This is shown as the two black lines. The phase shift between the two 

filtered waveforms is then used to plot the trough on the other electrode in red. From 

the figure, we can see that in the figure condition, the troughs of the filtered LFPs 

were much closer to each other (and sometimes even coincident) for many of the 

trials compared to the background stimulus condition.   
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Figure 4.4. The troughs of two simultaneously recorded LFPs (filtered in 25 – 35 Hz frequency band) 
that exhibited PLVs that were significantly different for figure (A) and background (B) stimulus 
conditions. The first local minimum on electrode 1 (found around 20 ms) was first aligned across trials 
to form the first vertical black line. The phase shift between the two filtered waveforms at the point of 
the local minimum on electrode 1 was then used to plot the trough on the other electrode in red. This 
was repeated for the second local minimum on electrode 1 (found around 50 ms). This means that the 
two local minima in electrode 1 were aligned independently for illustration purposes, and were not as 
precise and regular in reality.  

 

As mentioned earlier, phase-locking does not necessarily mean synchrony, so 

after we found significant differences in the phase-locking across trials in the two 

stimulus conditions, we examined the phase shift values between the trials to ensure 

that the phase shifts were small. Figure 4.5 shows the phase shift values between the 

simultaneously recorded waveforms for all the trials in the pair shown in Figure 4.3 

for the figure and background conditions. The distributions of these phase-shifts for 

all the trials in the time windows in which the difference between the PLVs was 

significant (60 bins) are also shown (Figure 4.5C and 4.5D).  
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Next, we computed the circular mean of these phase shifts, using the Circular 

Statistics Toolbox Berens (2009). Circular mean can be computed using the following 

formula, in which j
 is a phase shift value: 

 

      (4.5) 

 

In Figure 4.5 (C and D), these values were 9.91  13.58 for the figure and 

10.91  24.44 for the background conditions. The distributions of these mean values 

for all pairs in the figure and background conditions are also shown in Figure 4.5E 

and 4.5F. It can be seen that although the mean phase-shifts of the pairs were not zero, 

they were relatively small.  

 

4.3. Modulation as a function of saliency 

After we found pairs that exhibited significant differences in LFP synchrony 

in the figure and background conditions, we examined if the LFP synchrony was also 

modulated as a function of visual saliency, and if this modulation was correlated with 

behavior. So, for pairs that showed significant differences between the figure and 

background conditions, we also compared the PLVs for all pairs of figure saliency 

conditions: high-salience versus intermediate-salience, high-salience versus low-

salience, intermediate-salience versus low-salience. Pairs in which the PLV for at 

least one figure saliency condition was significantly different from the PLVs of 

another figure saliency condition were then considered to exhibit modulation as a 

function of visual saliency. We adopted the same technique used earlier to assess the 
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significance of the differences between the figure and the background stimulus 

conditions to examine the significance of the differences in the PLVs between pairs of 

figure saliency conditions. 

 

 

Figure 4.5. The magnitude of the phase-shifts. A, B) The phase shifts between simultaneously recorded 
LFPs for individual trials, in degrees. Time zero indicates stimulus onset. C, D) The distributions of 
phase shifts in a window (13 ms to 72 ms after stimulus onset) that exhibited significant differences 
between the PLVs in the figure and background conditions across trials. The red vertical line indicates 
the circular mean of the phase shifts. E, F) The distribution of the mean phase shifts for all the pairs. A, 
C, E) The figure condition. B, D, F) The background condition.  

 

Figure 4.6 shows the PLVs for different pairs of figure saliency conditions, in 

the 25 – 35 Hz frequency band, for the same pair of LFPs discussed in the previous 

figures. It can be seen that for this LFP pair, the difference between the PLVs for 

high-salience and intermediate-salience figures, as well as for high-salience and low-

salience figures, was significant, while it was not significant for intermediate-salience 

and low-salience figures. 
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Figure 4.6. The differences in the phase-locking values obtained from 1000 bootstrapped samples for 
different pairs of figure saliency conditions. A) High-salience minus intermediate-salience. B) High-
salience minus low-salience. C) Intermediate-salience minus low-salience. The conventions are as in 
Figure 4.3C. The difference was significant for (A) from 18 ms to 47 ms, and for (B) from 14 ms to 83 
ms after stimulus onset. 

 

Subsequently, for the pairs that showed modulation as a function of saliency, 

we computed the mean PLVs in a time window encompassing all the bins in which 

the figure saliency conditions exhibited significant differences with each other, and 

used this as the neurometric measure for the high-, intermediate-, and low-salience 

figure conditions. This measure could be interpreted as the level of synchrony for 

each condition. For example, for the pair in Figure 4.6 we computed the mean PLVs 

for all the conditions from 14 ms to 83 ms after stimulus onset as shown in Figure 4.7. 

Figure	4.7	shows	the	PLV	curves	for	the	three	figure	salience	conditions	for	the	

same	 pair	 discussed	 earlier,	 along	 with	 the	 PLV	 curve	 for	 the	 background	

condition. 
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Figure 4.7. Correlation between synchrony and behavior. A, B, C, D) The averaged PLVs for different 
conditions computed by bootstrapping the trials in each condition for 1000 times. A) High- B) 
Intermediate- C) Low-salience figure D) Background condition. E) The phase-locking values (PLVs) 
for the high-, intermediate- and low-salience figure conditions. The PLV curve for the background 
condition is also shown using a dashed line. F) The neurometric (green) and psychometric (blue) 
curves. The error bars for the neurometric curve indicate the standard errors of the mean, while the 
error bars for the psychometric curve indicate the standard errors computed using the assumption that 
the correct and incorrect responses were from a Bernoulli distribution. (r: correlation coefficient for the 
neurometric and psychometric curves; H: high-salience figure; I: intermediate-salience figure; L: low-
salience figure; BG: background). 

	

The distributions of the PLVs computed at each time point in this interval and their 

mean values (i.e. the neurometric measure) are shown in Figure 4.7A to 4.7D. The 

neurometric and psychometric curves (i.e. performance of the monkey for different 

figure saliency conditions) are also shown (Figure 4.7F). We computed the correlation 

coefficient between the neurometric and psychometric curves to examine the 

correlation between the level of synchrony and behavior. For the pair shown in this 

figure, the neurometric and psychometric curves were highly correlated (r = 0.98). 
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4.4. Stimulus-locked versus stimulus-induced 

After we found significant differences between the figure and background 

conditions, we were also interested in examining if these differences in synchrony 

were stimulus-locked or stimulus-induced. In other words we wanted to investigate if 

the observed differences in synchrony were solely due to common input from the 

stimulus, or due to processing that happened inside the region (Engel and Singer, 

2001; Lachaux et al., 2000). Consequently, for both the figure and background 

conditions, we shuffled the trials on one electrode while maintaining the order of the 

trials on the other electrode. We repeated this for 1000 times, computed the PLVs 

each time, and obtained the distribution of the differences between the PLV traces. If 

0 was outside the 95% confidence interval of these differences at a particular time 

point, we considered the difference between the PLVs significant at that time point. If 

the significant bins of the shuffled data set intersected with the significant bins that 

we found earlier for the original data, we considered the differences between figure 

and background stimulus-locked. Otherwise, we considered them stimulus-induced. 

This was because we assumed that, if after shuffling, we found the same synchrony as 

in the original data, the synchrony was probably solely due to the onset of the 

stimulus (Perkel et al., 1967). 

 

4.5. Dependence on tuning and depth 

In order to make sense of any heterogeneity in the results, we looked at the 

relationship between our results and the tuning properties of the underlying neurons, 

although it has been shown that the synchrony of LFPs were not dependent on the 

orientation preferences of the cells when the cells had non-overlapping receptive 
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fields in cats (Engel et al., 1990). Since our PLV analysis was performed 

independently in different frequency bands, we also performed our analysis of the 

orientation tuning in individual frequency bands. This way, we were able to more 

directly compare the PLV and orientation tuning results. We used the average of the 

amplitude envelope of the waveforms across time and across trials to compute the 

tuning curves in that frequency band. If the synchrony in the figure condition was 

significantly different from the synchrony in the background condition in a particular 

frequency band, we computed the correlation coefficient between the tuning curves of 

the two electrodes in that frequency band, to assess the correlation between these 

differences in synchrony and the similarity of the orientation tuning in the two 

electrodes of that pair. In other words, we examined if the similarity or dissimilarity 

between the tuning of the responses might have resulted in higher or lower synchrony 

for one condition compared to the other condition. We used this method instead of 

comparing tuning characteristics such as tuning width and preferred orientation 

because using the measure discussed in section 3.3.5 for determining the tuning of a 

neuronal response, only 3 pairs showed orientation tuning for both electrodes in the 

narrow frequency bands we were interested in.  

We also assessed the potential effect of differences in the depth of the 

recordings (i.e. cortical layer) on differences in synchrony of the figure and 

background conditions, as it has been shown that synchrony in the gamma band could 

vary as a function of cortical depth (Buffalo et al., 2011). The depth of each recording 

was obtained by computing the difference between the depth at which we performed 

the recording, and the depth at which the last activity was recorded when the electrode 

was retracted (refer to section 3.1.3 for further details). 
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4.6. Results 

When we assessed the differences in synchrony for the figure and background 

conditions, we observed pairs with higher and lower synchrony in the figure condition 

compared to the background condition. While an example of a pair with higher 

synchrony in the figure condition is shown in Figure 4.3, Figure 4.8 shows another 

example pair with lower synchrony in the figure condition. 

.  

 

Figure 4.8. A, B) The phase-locking values for the figure and background conditions in the 35 – 45 Hz 
frequency band during the baseline (A) and evoked periods (B). The horizontal dashed line indicates 
the same threshold that was used in Figure 4.2. C, D) The mean of the differences between the PLVs in 
the figure and background conditions obtained from 1000 bootstrapped samples. The error bars are the 
95% confidence intervals of the differences. The black bars indicate the time points in which 95% of 
the bootstrapped distribution laid outside 0. Zero time represents stimulus onset. 

 

For the pair in Figure 4.3, the PLVs in the figure condition in the 25 to 35 Hz 

frequency band were significantly larger than the PLVs in the background condition 
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within the interval highlighted in red, while for the pair in Figure 4.8, the PLVs in the 

figure condition in the 35 to 45 Hz frequency band were significantly smaller than the 

PLVs in the background condition within the interval highlighted in black. 

The pair showed in these two figures exhibited significant differences between 

the figure and background condition only in one frequency band, while some other 

pairs exhibited significant differences in several frequency bands 

Figure 4.9 shows the distribution of the frequency bands in which the 

synchrony in the figure condition was significantly different from the synchrony in 

the background condition for each pair. 

 

 

Figure 4.9. Pairs that exhibited significant differences in synchrony in the figure and background 
conditions across frequency bands for all subjects. From left to right, the pairs that exhibited significant 
differences in one (red), two (blue), three (green), and four (yellow) frequency bands. The bar plot on 
the right represents the number of pairs that showed significant differences in each frequency band. 

	

As described in Section 4.3, for pairs that exhibited significant differences in 

synchrony when comparing the figure and background condition, we also compared 



	 80

the distributions of PLVs for all possible pairs of saliency conditions to see if the 

synchrony varied as a function of saliency. While Figure 4.4 shows these distributions 

for a pair with significantly higher synchrony in the high-salience figure condition 

compared to the intermediate- and low-salience conditions, Figure 4.10 shows the 

same distributions for a pair (shown also in Figure 4.8) with significantly lower 

synchrony in the high-salience figure condition compared to the low-salience 

condition, and lower synchrony in the intermediate-salience condition compared to 

the low-salience condition.   

Table 4.1 shows the number of pairs that exhibited significant differences 

between the figure and background conditions, separated into pairs in which the 

synchrony between the simultaneously recorded electrodes was higher for the figure 

condition compared to the background condition, and pairs in which it was lower. The 

pairs that exhibited significant differences across multiple frequency bands were 

counted only once. The distributions of these significant pairs in the different 

frequency bands are shown in Figure 4.11, for all subjects (A and B), and for 

individual subjects (C to H). As shown in this figure, and also in Figure 4.9, there was 

surprisingly little frequency preference, with pairs showing significant differences 

over a fairly large range of frequencies. The numbers of pairs that exhibited a 

significant modulation of synchrony as a function of saliency are also shown in Figure 

4.11 and Table 4.1. If the synchrony in the figure condition was significantly different 

from the background condition in multiple frequency bands, that pair was counted 

only once in the results shown in Table 4.1. Overall 97 (48.74%) of the pairs showed 

significant differences between figure and background conditions in at least one 

frequency band, and 66 out of these 97 pairs (68.04%) also exhibited significant 

differences as a function of visual saliency.   
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Figure 4.10. The differences in the phase-locking values obtained from 1000 bootstrapped samples for 
different pairs of figure saliency conditions. A) High-salience minus intermediate-salience. B) High-
salience minus low-salience. C) Intermediate-salience minus low-salience. The conventions are as in 
Figure 4.9C. The difference was significant for (B) from 61 ms to 92 ms, and for (C) from 78 ms to 
116 ms after stimulus onset. 

 

As mentioned earlier, we averaged the PLVs in selected windows for the high-

, intermediate- and low-salience figure conditions to generate the neurometric curve. 

We then computed the correlation coefficient between the neurometric and 

psychometric curves. Figure 4.12 shows the histograms of these correlation 

coefficients, collapsed across subjects, as well as for individual subjects, for the pairs 

that exhibited higher synchrony in the figure condition with respect to the background 

condition, and for the reverse. As we analyzed the different frequency bands 

separately, there might be multiple correlation coefficients for a pair corresponding to 

different frequency bands. We found that 29% of the correlation coefficients (23 out 

of 79) were larger than 0.5 or smaller than -0.5. This suggested that for these pairs, 

the synchrony may be directly related to the behavior of the subjects. The fact that 
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other pairs did not exhibit such large correlations may be due to the high 

heterogeneity present in neuronal populations (Shamir and Sompolinsky, 2006; Yen 

et al., 2007; Chelaru and Dragoi, 2008).  

 

 

Figure 4.11. The number of pairs that showed significant differences between the figure and the 
background conditions for different frequency bands under study. The blue sections of the bars 
represent the number of pairs that also showed modulation as a function of figure saliency. “Higher” 
indicates that the synchrony in the figure condition was higher than the synchrony in the background 
condition, and “Lower” indicates the reverse. A, B) Results from all three subjects. C – H) Results 
from individual subjects. Each number on the x-axis represents the center frequency for the frequency 
band used in the analysis. For example, 20 Hz represents the frequency band of 25 to 35 Hz. 

 

Table 4.1. The number of pairs that showed significant differences in synchrony between the figure and 
background conditions. “Higher” indicates that the synchrony in the figure condition was higher than 
the synchrony in the background condition, and “Lower” indicates the reverse. The pairs that also 
exhibited modulations in synchrony as a function of contour saliency are shown in parentheses. 

 

 Annie (137) Clark (28) Disco (34) 

Higher 43 (30) 3 (2) 6 (6) 

Lower 49 (28) 2 (1) 4 (2) 
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Figure 4.12. The distributions of the correlation coefficients computed between the neurometric and the 
psychometric curves for pairs that showed significant modulation with contour saliency. A, B) Results 
for all three subjects. C –H) Results for individual subjects. “Higher” indicates that the synchrony for 
the figure condition was higher than the synchrony for the background condition, and “Lower” 
indicates the reverse. The vertical dashed lines are -0.5 and 0.5.  

 

Interestingly, we observed that for many of the pairs (64%, 27 out of 42 

correlation coefficients) that exhibited higher synchrony in the figure condition 

compared to the background condition, the correlation coefficients were positive, i.e. 

direct correlation between performance and level of synchrony, while for the pairs 

that exhibited lower synchrony in the figure condition compared to the background 

condition most of the correlation coefficients were negative (65%, 24 out of 37 

correlation coefficients), i.e. inverse correlation between performance and level of 

synchrony. Examples of both these trends can be seen in Figure 4.7 and Figure 4.13 

respectively. Figure 4.7 shows the correlation between performance and level of 

synchrony for a pair with higher synchrony in the figure condition (also shown in 

Figure 4.3) with a positive correlation between the neurometric and psychometric 

curves. On the other hand, Figure 4.13 shows this correlation for a pair with lower 
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synchrony in the figure condition (also shown in Figure 4.10), with a negative 

correlation between the neurometric and psychometric curves. We observed the same 

trend for the correlation coefficients in our single channel analysis (Chapter 3) as 

well. As mentioned in that Chapter, this was consistent with the hypothesis that the 

responses in the figure condition converge to the responses in the background 

condition as the visual saliency decreases. 

 

 

Figure 4.13. Inverse correlation between synchrony and behavior for a pair with lower synchrony in the 
figure condition compared to the background condition. A, B, C, D) The averaged PLVs for different 
conditions computed by bootstrapping the trials in each condition 1000 times. A) High-, B) 
Intermediate-, C) Low-salience figure, D) Background condition. E) The phase-locking values (PLVs) 
for the high-, intermediate- and low-salience figure conditions. The PLV curve for the background 
condition is also shown using a dashed line. F) The neurometric (green) and psychometric (blue) 
curves. The error bars for the neurometric curve indicate the standard errors of the mean, while the 
error bars for the psychometric curve indicate the standard errors computed using the assumption that 
the correct and incorrect responses were from a Bernoulli distribution. (r: correlation coefficient for the 
neurometric and psychometric curves; H: high-salience figure; I: intermediate-salience figure; L: low-
salience figure; BG: background). 

 

 As described in Section 4.4, we also used trial shuffling to identify pairs in 

which significant differences between figure and background were stimulus-induced 
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and not stimulus-locked (i.e. due to common input from the stimulus). Table 4.2 

shows the numbers for these pairs. 

The numbers in the parentheses indicate the number of these pairs that also 

exhibited significant variations with visual saliency. It can be seen that for a 

substantial number of pairs, the differences were stimulus-induced, which means for 

these pairs, the differences in synchrony in the figure and background conditions 

vanished when we shuffled the trials. Thus, in these pairs, the differences cannot be 

attributed to common input originating from the stimulus.  

 

Table 4.2. The number of pairs that showed significant differences in synchrony between the figure and 
background conditions that were likely stimulus-induced and not stimulus-locked. The conventions are 
as in Table 4.1. 

 

 Annie (137) Clark (28) Disco (34) 

Higher 26 (18) 3 (2) 5 (5) 

Lower 28 (14) 1 (0) 3 (1) 

 

In order to investigate why some pairs exhibited higher synchrony in the 

figure condition, while others exhibited lower synchrony in the background condition, 

and yet others did not exhibit significantly different results, we investigated how 

orientation tuning and recording depth  (Section 4.5) affected the results. Figure 4.14 

shows examples of the tuning curves computed using the LFP power in the 25 – 35 

Hz frequency band. Figure 4.14A shows the tuning curve for the same pair discussed 

in Figures 4.3, 4.6, and 4.7.  As this pair exhibited significant differences in the 25-35 

Hz frequency band, we assessed the tuning curve of the LFPs in this frequency band.  
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Figure 4.14. The effect of orientation tuning on differences in synchrony in the figure and background 

conditions. A, B) Examples of the orientation tuning curves obtained from each of the two electrodes 

in: A) a pair that exhibited higher synchrony in the figure condition with respect to the background 

condition in the 25-35 Hz frequency band; B) a pair that exhibited the reverse in the 25-35 Hz 

frequency band. (Thick line: the orientation tuning curve of electrode 1; Thin line: the orientation 

tuning curve of electrode 2). Zero represents the stimulus orientation, which was determined using 

hand mapping during the experiment. C) The distribution of correlation coefficients between the 

orientation tuning curves of the two electrodes for all the frequency bands under study, and across all 

subjects. “Higher” indicates that the synchrony for the figure condition was higher than the synchrony 

for the background condition, and “Lower” indicates the reverse. 

 

Figure 4.14B shows the tuning curves for another pair that exhibited lower 

synchrony for the figure condition with respect to the background condition in the 

frequency band 25-35 Hz. It can be seen that for both pairs, the correlation between 

the tuning curves was high, indicating that the orientation tuning was fairly similar in 

both cases.  

Thus, this suggested that similarities or differences in orientation tuning may 

not be able to predict whether one pair will exhibit higher or lower synchrony in the 
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figure condition. A comparison between the correlation coefficients that were 

computed for pairs that exhibited higher synchrony in the figure condition, and pairs 

that exhibited lower synchrony seemed to agree with this conclusion, as these two 

distributions (Figure 4.14C) were not significantly different from each other 

(Kolmogorov-Smirnov test, p > 0.42). 

The distributions shown in Figure 4.14C were the correlation coefficients 

computed between the tuning curves of all significant pairs across all the frequency 

bands under study. As mentioned earlier in Section 4.5, if a pair exhibited significant 

differences in a certain frequency band, the tuning curve for that pair was computed in 

that particular frequency band for our analysis. 

The other factor that could likely affect the difference in the synchrony in the 

figure and background conditions was the difference between the depths of the 

recordings of the two electrodes .This was because the larger the distance, the more 

likely that the responses were recorded from different layers of the cortex. Figure 4.15 

shows a comparison between the depth of the recordings of the two electrodes for the 

pairs that exhibited higher synchrony in the figure condition and for the reverse 

(Figure 4.15A), as well as the differences between these depths (Figure 4.15A) for all 

subjects. Again, there was no clear grouping for pairs with higher or lower synchrony 

in the depth of the electrodes (Figure 4.15A), (the 95% confidence interval of the 

slopes of the linear fits are reported in the figure caption) or in the differences in 

depth between the electrodes (Kolmogorov-Smirnov test, p > 0.18) as shown in 

Figure 4.15B.  

 



	 88

 

Figure 4.15. The effect of recording depths on synchrony.  A) The depth of the recording for electrode 
1 versus electrode 2 in each pair, and B) the distribution of the depth differences between the two 
electrodes, separated into pairs in which the LFPs were more synchronous in the figure condition, and 
pairs in which they were more synchronous in the background condition. In (A) electrode 1 was the 
electrode with the shallower recording depth. The depth measurement for the outlying point was 
probably inaccurate, which led to its very large deviation from the rest of the data. The solid red line 
represents the linear fit to the data points in the “Higher” condition (slope, lower bound and upper 
bound of the 95% confidence interval of the slope were 0.91, 0.74 and 1.08). The solid blue line 
represents the same fit for the “Lower” condition (slope, lower bound and upper bound of the 95% 
confidence interval of the slope were 1.08, 0.87 and 1.30). “Higher” indicates that the synchrony for 
the figure condition was higher than the synchrony for the background condition, and “Lower” 
indicates the reverse. 

  

For two of the monkeys, we also found significant differences between the 

figure and background conditions, as well as across saliency conditions using single 

unit and multi unit activities (Bong et al., 2012). Although these differences were 

observed in the firing rates of the neurons and not their synchrony, we were interested 

to see if the pairs that contained single units that exhibited significant differences in 

their firing rates were more likely to also exhibit significant differences in the 

synchrony using LFP. Out of 92 pairs in which we found significant differences 

between the synchrony in the figure and background conditions, we found 1 pair in 
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which the single units recorded on the two electrodes also showed significant 

differences in their firing rates, and 13 pairs where only one of the single units 

showed significant differences. For 13 pairs (3 of these pairs were common with the 

pairs mentioned for single unit activity) out of 92 pairs, one of the multi-unit 

recording sites exhibited significant differences in their firing rates between the figure 

and background conditions. This suggested that for the majority of the pairs in our 

recordings, the variation in synchrony observed in the LFPs were not related to 

significant changes in the firing rate in the single-unit or multi-unit activity.  

 

 

Figure 4.16. Different time courses of the deviation of the responses in the figure condition from the 
responses in the background condition. A and B) Early modulation. C and D) Late modulation. The 
interval in which the PLVs in the figure condition were significantly different (lower) from the 
background condition (lower) are highlighted in black. 

 

Finally, one question that we were particularly interested in was whether the 

primary visual cortex was able to detect a contour, or figure, in the feedforward sweep 

without the contribution of feedback from extrastriate areas. The feedforward 
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influence would have been reflected in the differences between the neuronal 

responses shortly after stimulus onset, while the later would have been reflected in the 

late response. We found pairs in which the difference in synchrony in the figure and 

backgrounds condition appeared very early, and pairs in which these differences 

appeared late. Figure 4.16A shows one pair in which the significant differences in the 

figure and background conditions occurred relatively early, 18 to 69 ms after stimulus 

onset. In contrast, the pair in Figure 4.17B exhibited differences that occurred much 

later, 75 to 103 ms after stimulus onset.  

 

 

Figure 4.17. The distributions of significant windows for all significant pairs at 20 to 80 Hz (A – G). 
Each value on the horizontal axis represents the center frequency for the frequency band used in the 
analysis. For example, 20 Hz represents the frequency band of 25 to 35 Hz. 

 

However, when we plotted the histograms of the time points in which 

significant differences were observed (Figure 4.17), we did not observe any 

bimodality in these distributions. However, if we, instead, used only the first window 
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in which the PLVs were significantly different from each other for each pair, some of 

the histograms appeared bimodal (Figure 4.18). This could suggest a distinction 

between the pairs that contributed to contour detection in the feed-forward sweep and 

the ones that were sensitive to feedback from extra-striate areas.  

Unfortunately, these results may not be very conclusive, because the time 

resolution of the method we used to assess synchrony was poor and the application of 

filters to separate the signal into narrow frequency bands led to smearing of 

differences into neighboring time windows. This could be seen in the histograms 

shown in Figures 4.17 and 4.18, because some of the differences were detected right 

after stimulus onset. This is highly suspicious, given the fact the initial responses to a 

visual stimulus can be recorded in striate cortex only nearly 40 ms after stimulus 

onset. 

	

 

Figure 4.18. The distributions of the first significant window (of at least 20 consecutive significant 
windows) for all the significant pairs at 20 to 80 Hz (A - G). Each value on the x-axis represents the 
center frequency for the frequency band used for the analysis. For example, 20 Hz represents the 
frequency band of 25 to 35 Hz. 
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Chapter 5  

Discussions and future work 

5.1. Discussions 

The aim of this study was to investigate the role of oscillations and synchrony 

in visual grouping.  

To perform this, we used the stimuli and the experimental paradigm that met 

some of the criteria that seemed essential for investigating the binding-by-synchrony 

hypothesis (Gray, 1999), but were absent in most previous experiments. The stimuli 

inside the receptive fields of the recorded neurons were kept constant, while the 

saliency of the figure was changed only by contextual variation. Also, the animals 

were awake and were involved in a figure-ground segregation task that demanded a 

fast reaction time. This increased the likelihood that the grouping occurred bottom-up. 

The difficulty of the task could be changed by changing the saliency of the figure 

providing the opportunity to investigate correlation between neuronal responses that 

were probably associated with visual grouping and the performance of the subjects in 

the task.  

After analyzing the power of gamma oscillations in local field potentials on 

single electrodes, and synchrony between local field potentials in the gamma 

frequency band in pairs of electrodes, we found that at the level of single electrodes, 

the gamma power responses in some sites were significantly different in the figure 
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condition when compared to the background condition. High gamma power might 

imply that a large population of neurons at the recording site was oscillating in the 

gamma band, as local field potentials are considered to be the synaptic aggregate of a 

large population of neurons surrounding the tip of the electrode. Also we found that 

the gamma power response was modulated as a function of figure saliency. This 

variation in the power across conditions probably showed that these oscillations could 

be correlated with visual grouping.  

At the level of pairs of electrodes, when we directly measured the synchrony 

between the neuronal responses recorded simultaneously, we observed differences in 

the level of synchrony between these responses when both groups responded to the 

figure compared to when they responded to the background. Similar to the power in 

the gamma band, we observed that the level of synchrony between these groups 

changed when we varied the saliency of the figure. This again could imply a 

correlation between synchrony and visual grouping.  

According to the binding-by-synchrony hypothesis, we expected to observe 

higher synchrony in response to the figure condition compared to the background 

condition. In addition, we expected that the synchrony would decline as we decreased 

the saliency of the figure. However, in addition to pairs of responses that exhibited 

responses that were consistent with our expectation, we also found some pairs with 

lower synchrony in the figure condition compared to the background condition.  

We could not find any correlation between this effect and the similarity in the 

orientation tuning of the individual LFPs or the difference between their recording 

depths. This could be because the cells are also selective for other stimulus properties 

like spatial frequency, disparity, etc., and our characterization of the recoded neurons 
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using only a limited range of orientations was insufficient to identify cells that were 

optimally stimulated (and thus presumably exhibited increased synchrony in the 

figure condition), and those that were not (and thus exhibited decreased synchrony in 

the figure condition). We speculate that the cells that were more optimally stimulated 

would increase their synchrony, and inhibit or suppress the synchrony in the cells that 

were less optimally stimulated, thus leading to an amplification of the output signal to 

extra-striate cortex. In addition, our measurements of the depths of the recordings 

were not very accurate, as there was typically some dimpling of the brain when the 

electrode first started to penetrate the brain tissue. This dimpling continued until the 

electrode finally penetrated into the tissue. However, by this time, it would not be 

clear how deep the electrode was. Perhaps with more accurate information regarding 

the cortical layers of the neurons we recorded from, it might be possible to observe 

some differences in the pairs that exhibited increased synchrony and pairs that 

exhibited decreased synchrony in the figure condition.  

More experiments will be required to investigate these speculations. However, 

our current data suggests that changes in synchrony were highly correlated with 

changes in the saliency of the figure, and as a result, potentially responsible for the 

performance of the subjects. In our view, the significant finding in our study was that 

visual grouping affected the synchrony of the responses.  

The other question we tried to answer was the time course of the modulation 

of the responses of the V1 neurons with visual grouping, as this could contribute to 

the understanding the role of V1 in grouping. In this regard, we assessed the time 

course of the emergence of the differences between the responses to figure and 

background and observed some early modulations in the responses. We concluded 

that the responses in V1 could potentially be modulated shortly after stimulus onset 
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due to visual grouping. This could support the hypothesis that V1 may be the first 

region in visual cortex that represents pre-attentive grouping based on Gestalt cues, 

independent of the feedback from higher visual areas. Although this conclusion seems 

at odds with the other studies that failed to find early representations of visual 

grouping in primary visual cortex (Lamme, 1995; Zipser et al., 1996; Gail et al., 

2000), we suggest that some of the techniques used in the current study might have 

contributed to revealing this early modulation. The timing of the experiment could be 

the main factor, as in contrast to other studies (Gail et al., 2000; Limma et al., 2010), 

our subjects were required to respond rapidly to the stimulus. Also, in this study we 

used LFPs that were probably more sensitive in reflecting synchrony. We also applied 

a technique to measure synchrony that could quantify phase-locking independent of 

the correlation in the amplitude of the responses, which probably helped in revealing 

subtle modulations of synchrony in the presence of large amplitude correlation in the 

transient responses. It should be noted that because of the low time resolution, 

primarily due to the large time windows needed to perform frequency analysis and the 

short reaction times in our subjects, it was not possible to determine the exact time of 

the emergence of this modulation. This finding will have to be confirmed using 

single-unit and multi-unit recordings.  

Finally, it is worth mentioning that although the main focus of this study was 

to investigate the potential role of synchrony in binding, several other neural codes 

could be assumed to mediate binding, such as rate codes (Roelfsema, 2006), latency 

codes (Fries et al., 2001a, Meirovithz et al., 2010), and, phase-of-firing coding 

(Montemurro et al., 2008; Kayser et al., 2009). Experimental evidence may support 

these hypotheses as well, but these may not contradict each other, and it is possible 

that all these are in fact different manifestations of the same phenomena. As an 
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example, a proposed communication mechanism based on gamma band oscillations 

and phase-of-firing coding (Fries et al., 2007) suggests that spikes that fired in certain 

phases of the gamma cycle, i.e. the troughs, could be more effective when they reach 

the target neuronal populations, consistent with binding by synchrony hypothesis. 

They propose that this is because the gamma oscillations in the source and target 

populations could be phase-locked, and as a result these spikes reach their targets 

when the post-synaptic neurons are also in their most depolarized state. They also 

later extended their model by providing experimental evidence that neurons with 

higher firing rates tended to fire earlier in the gamma cycle (Vinck et al., 2010). 

Assuming such a mechanism was involved in binding, it can be seen that depending 

on the methods used in a particular study, different neuronal correlates may be 

identified to be responsible for binding, as the cells that are grouped together may 

exhibit higher firing rates, higher synchrony, and shorter latencies compared to the 

ones that are not grouped together. This may not be compatible with the view that 

synchrony should exist in conjunction with rate codes to distinguish between neuronal 

responses to different features, as cells may respond to different features with similar 

spike rates (Singer 1995; but see Roelfsema 2007). It is also possible that each one of 

these schemas comes into play based on the task, and for instance, the level of 

difficulty of the task. For example, Stopfer et al. (1997) showed that in the olfactory 

bulb of the honeybee, disruption in synchrony impaired the odorant discrimination 

only when the odorants were very similar. Although, behavioral assessments and 

electrophysiological recordings were not simultaneously done in this study, later 

Beshel et al. (2007) performed electrophysiological recordings in intact behaving rats 

and provided more evidence supporting this.  



 97 

In conclusion, we found evidence supporting the binding-by-synchrony 

hypothesis, and the role of primary visual cortex in visual grouping in the feedforward 

sweep of the scene segmentation process.  

 

5.2. Future work 

As mentioned earlier we found pairs in which the synchrony in the figure 

condition was lower compared to the synchrony in the background condition, which is 

not consistent with the binding-by-synchrony hypothesis. We speculated that this 

could be because the neurons were not optimally stimulated by the Gabor patches in 

their receptive fields. So, in future experiments, either the stimulus should be more 

carefully customized to the preferences of the neurons, or more information should be 

collected about the tuning characteristics of the neurons to contribute towards 

explaining the results. 

We assessed the transient response, which has been often overlooked in 

previous studies in favor of the sustained response (Palanca et al., 2005, Lima et al., 

2010). Some detailed analytical work may help to ensure that the observed differences 

are real and not due to the large stimulus-locked response.  

Simultaneous recording from more than two neuronal groups can be useful. 

For example, by simultaneously recording from the figure and background one may 

perform the synchrony analysis at the level of single trials, which was not possible in 

our recordings.  

Although we found differences in synchrony in the figure and background 

conditions, supporting the binding-by-synchrony hypothesis, in the current visual 
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stimulus, only one object, the figure, is present in the scene. To investigate the ability 

of this hypothesis to address the binding problem, the hypothesis needs to be tested 

when multiple objects are present, and when multiple features define which 

components belong to which object.  

We postulated that primary visual cortex may play a role in a feedforward 

manner in visual binding independent of the feedback from extra-striate regions. The 

short reaction times of our subjects, and the requirement of relatively large time 

windows necessary to perform frequency analysis limits our ability to determine the 

exact time course of the modulation due to the time-frequency uncertainty principle 

(Gabor, 1946). A more reliable method in testing this idea could be to use a method 

like transcranial magnetic stimulation (TMS) to diminish the responses of extra-striate 

regions shortly after stimulus onset in order to assess their effects on grouping. 

While TMS may be used to investigate the role of primary visual cortex in 

visual grouping, some further investigations may be performed to shed light on the 

causal role of synchrony in binding. This type of assessment of the binding-by-

synchrony hypothesis would be the most convincing. Almost all the experimental 

evidence provided so far in support of this hypothesis were correlative, so it is 

possible that all the observed oscillation and synchrony were just epiphenomena of 

some other type of cognitive processing. Some studies have provided support for a 

causal role for synchrony in odor discrimination in the olfactory bulb of insects 

(Stopfer, 1997) and the role of interneurons in generating gamma oscillations in barrel 

cortex of mice using optogenetic techniques (Cardin et al., 2009). However, to the 

best of our knowledge, in visual cortex, only Kiper and Gegenfurtner (1996) 

attempted to directly assess the causal effect of synchrony on visual grouping. In a 

psychophysical experiment, they tried to manipulate the synchrony of neurons using 
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flickering bars, and argued that as neurons have been shown to oscillate at the 

frequency of the flickering bars, and phase-lock to the bars, they can use these bars to 

disrupt the synchrony between cells. They showed that this disruption of synchrony 

did not affect the perception of the subjects. Although these results seem solid, other 

studies have shown that brain may ignore temporal features in the presence of 

dominant spatial features (Fahle and Koch, 1995; Leonards et al., 1996; Usher and 

Donnelly, 1998). So, a plausible explanation for the observed results could be that in 

this experiment the grouping actually was performed based on common orientation, 

i.e. the dominant spatial feature, and not based on temporal frequency, which was 

disrupted. In fact it seems that this study demonstrated the ability of the brain in 

ignoring non-relevant features in scene segmentation, rather than presenting evidence 

for rejecting the causal role of synchrony. As a result it seems that rigorous studies 

still need to be carried out to investigate the causal role of synchrony in visual 

grouping, and novel methods such as optogenetics (Deisseroth et al., 2006) seem very 

appealing in performing this type of analysis. 
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