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ii. Summary 

Arabic is one of the six most widely used languages in the world. As a Semitic 

language, it is an abjad system of writing, which means that it is written as a 

sequence of consonants without vowels and other pronunciation cues. This makes 

the language challenging for non-natives to read and for automated systems to 

process. 

Predicting the vowels, or diacritics, in Arabic text is therefore a necessary step in 

most Arabic Natural Language Processing, Automatic Speech Recognition, Text-to-

Speech systems, and other applications. In addition to the writing system, Arabic also 

possesses rich morphology and complex syntax. Case endings, the diacritics that 

relate to syntax, have particularly suffered from a higher prediction error rate than the 

rest of the text. Current research is text-based, that is, it focuses on solving the 

problem using textually inferred information alone. The state-of-the-art systems 

approach diacritization as a lattice search problem or classification problem, based 

on morphology. However, predicting the case endings remains a complex problem. 

This thesis proposes a novel approach. It explores the effects of combining speech 

input with a text-based model, to allow the linguistically insensitive information from 

speech to correct and complement the errors generated by the text model’s 

predictions. We describe an acoustic model based on Hidden Markov Models and a 

textual model based on Conditional Random Fields, and the combination of acoustic 

features with linguistic features. 

We show that introducing speech to diacritization significantly reduces error rates 

across all metrics, especially case endings. Within our combined system, we 

incorporate and compare the use of one of the established SVM-based diacritization 

systems, MADA, against our own CRF-based model, demonstrating the strengths of 

our model. We also make an important comparison between the use of two popular 
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tools in the industry, BAMA and MADA, in our system. In improving the underlying 

text-based diacritizer, we briefly study the effects of linguistic features at three 

different levels that have not previously been explored: phrase-, word- and 

morpheme-level. 

The results reported in this thesis are the most accurate reported to date in the 

literature. The diacritic and word error rates are 1.6 and 5.2 respectively, inclusive of 

case endings, and 1.0 and 3.0 without them.  
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1. Introduction 

Arab language is not merely the richest language in the world. Rather, those who 

excelled in … it are quite innumerable. 

-  Aswan Ashblinger 

 

Arabic is one of the six most widely spoken languages in the world1, and the vehicle 

of a rich cultural and religious tradition that finds its roots in 6th Century AD and 

continues to be an important influence in the world today. While it has evolved subtly 

over time and space and is expressed colloquially in a number of dialectical forms, 

the lingua franca of the Arab world remains Modern Standard Arabic (MSA), and it is 

this standardized form that will be dealt with in this thesis. Increased automation in 

daily life pulled Arabic into the field of computational linguistics in the nineteen-

eighties, but only in the past decade have widely-recognized research efforts been 

made as part of the internationalization process. One of the most fundamental 

aspects of automating processes in any language is disambiguating words in the 

script. 

1.1 Arabic Diacritization 

The Arabic alphabet consists of 28 consonants. The vast majority of nouns, 

adjectives and verbs in Arabic are generated from roots that comprise a combination 

of only three core consonants. Given the language’s highly inflective nature and 

morphological complexity, a single sequence of three consonants could easily 

represent over 100 valid words. To disambiguate the different words that could be 

represented by a single set of consonants, short vowels and other phonetic symbols 

are used. However, Arabic is an abjad system of writing, so the script is written as a 

sequence of consonants. Short vowels are included only as optional diacritics.  

                                                           
1 http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers 
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This does not pose serious problems to native readers, who are familiar enough with 

the language to contextually infer the correct pronunciation of the script; the vast 

majority of Arabic literature therefore rarely includes diacritics. However, this lack of 

diacritics does pose serious problems for learners of the language as well as most 

automated systems such as Automatic Speech Recognition (ASR), Text-to-speech 

(TTS) systems, and various Natural Language Processing (NLP) applications. Hence 

the diacritization of raw Arabic text becomes a necessary step for most applications. 

Table 1.1 lists the diacritics in Arabic. The three short vowels may appear on any 

consonant of the word. The three tanweens, or nunation diacritics are an extended, 

post-nasalized form of the short vowels, and may appear only on the final letter of a 

word. The shadda, or gemination diacritic, may appear in combination with any of the 

above diacritics. Gemination happens when a letter is pronounced longer than usual. 

This is not the same as stress, which is the relative emphasis given to a syllable.  

Finally there is the sukoon, which indicates that no vowel sound is to be vocalized on 

the consonant in question, although the sound of the consonant is vocalized.  

 
 

 

 

 

 

Table 1.1. List of Modern Standard Arabic (MSA) diacritics. 

 
 

 

 

Short vowels 

 

<Pronunciation> 

    
/a/ 

    
/i/ 

    
/u/ 

Nunation 

 

<Pronunciation> 

       
/an/ 

       
/in/ 

    
/un/ 

Syllabifacation 

 

<Name> 

     
Shadda 

    
Sukoon 
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1.1.1 Two Sub-Problems: Lexemic and Inflectional 

 

Restoring diacritics to text (diacritization) can be divided into two sub-problems. 

Lexemic diacritization disambiguates the various lexemes that may arise when a 

single sequence of consonants is marked with different combinations of diacritics. An 

example of lexemic diacritization is presented in Table 1.2. Inflectional 

diacritization disambiguates the different syntactic roles that a specific given lexeme 

may assume in a sentence, and is typically expressed on the final consonant of a 

word. Inflectional diacritics are also known as case endings. 

Word Diacritized Pronunciation Meaning 

 
     

consonants 

 k t b 

without diacritics 

        
 

/kataba/ he wrote 

        
/kattaba/ 

he made 
someone 

write 

        /kutubun/ books 

 
Table 1.2. Three of several valid diacritizations of the Arabic consonants that represent /k/, /t/ 
and /b/ 

 

Considering the last meaning above (“books”), different inflectional diacritics applied 

on the final consonant of the word could represent different syntactic roles of the 

“books” in the sentence, such as whether they are the subject of a verb, or an object, 

and so on. Inflectional diacritization is a complex grammatical problem that requires 

deeper syntactic and linguistic information of Arabic [1]. The literature on Arabic 

diacritization therefore reports two different sets of experimental results: error rates 

that include the error of predicting the case endings, and error rates that do not. Error 

rates that do not include them are naturally lower.  

However, case endings are important for accurate interpretation of texts and for 

serious learners of the language. They are particularly necessary for scholarly texts 
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that employ more linguistic knowledge than the average colloquial verbiage. The 

significance of inflectional diacritization is highlighted in Figure 1.1 below. A single 

wrongly predicted case ending has the capacity to completely reverse semantics. 

This risk is increased by the flexibility of Arabic syntax. For example, while a valid 

verbal phrase in English in arranged in the following order: SVO (Subject-Verb-

Object), any of the following arrangements would be valid in Arabic: VSO, SVO, 

VOS, SOV.  

The boy ate the lamb 

 

The lamb ate the boy 

 

Figure 1.1. The Arabic sentences corresponding to the English are both identical except for 
the diacritics on the underlined letters. In the first sentence, the arrangment is VSO, in the 
second it is VOS. This has been done by simply switching the inflectional diacritics on the 
subject and the object. 

 

Existing studies use a variety of approaches to deal with the problem of diacritization. 

The problem has been approached as an end in itself, as a sub-task of ASR [2], or as 

a by-product of another NLP task such as morphological analysis or Part-of-Speech 

(POS) tagging [3]. It has been tackled using Support Vector Machines (SVMs) [4], 

Conditional Random Fields (CRFs) [5], a Maximum Entropy framework [6], Hidden 

Markov Models (HMMs) [7, 8] and weighted finite state transducers [9]. However, 

inflectional diacritization has remained less accurate than the rest of the text, as 

Habash [1] asserts that it is a complex problem. 

1.2 Research Objectives and Contributions 

Automated methods that use textually-extracted features have not yet solved the 

inflectional diacritization problem, but the human mind is certainly capable of inferring 
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the right pronunciation. This thesis employs human intuition via speech data in an 

attempt to improve Arabic diacritization in general and inflectional diacritization in 

particular.  

The only previous coverage of speech in the field of diacritization has been in the 

context of other objectives, such as Automatic Speech Recognition. This thesis 

explores speech based on its own merits for diacritization. The claim is that acoustic 

information should be able to complement and correct existing textual methods. This 

thesis will investigate this claim and attempt to explore the extent to which acoustic 

information aids the textual process.  

The claim uses the fact that diacritization using textually-extracted linguistic features, 

such as POS and gender, generates linguistically-informed errors, especially in 

inflection; while diacritization using acoustic information generates a different class of 

errors that are based on features extracted from speech, such as energy and pitch. 

The errors generated using acoustic information should be more consistent across 

both lexemic and inflectional diacritization, since acoustic features do not differentiate 

between regular diacritics and case endings.  

To explore the above claim, we use a novel approach to diacritization that combines 

linguistically-insensitive speech data with text-based NLP methods. Our results 

demonstrate that speech could in fact be used as an important component in the 

process.  

We cover four main areas in this thesis. 

Firstly, two independent diacritization systems are built – one model based on 

acoustic information and the other on textually extracted linguistic information. The 

acoustic system models speech as HMMs. The text-based system is modelled using 

CRFs.  
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Secondly, weighted interpolations of the above systems’ results are explored, to 

arrive at an optimal combination of speech and text in a single diacritization system. 

We describe the process of combining the two mediums to predict diacritics.  

Thirdly, the combined system will be used to evaluate two established tools. Some of 

the most accurate research work in the field has relied on the following tools for 

diacritization and text-based feature extraction: MADA (Morphological Analysis and 

Disambiguation for Arabic) and BAMA (Buckwalter Arabic Morphological Analyzer). 

These two resources will be compared in light of the combined diacritization method 

presented. 

Finally, we focus on text-based diacritization. Within the framework of our combined 

system, we investigate the effects of varying the underlying text-based models: a 

model that casts the diacritization as a sequence labelling problem using CRFs, and 

one that uses a classification approach based on SVMs. Aside from the combined 

system, we then work with text-based diacritization to study the effects on case 

endings of textually-extracted features at the phrase-, word- and morpheme-levels. 

Our proposed system could be useful in various multimodal applications in Arabic, 

particularly for language learners, such as the simultaneous production of audio-

books and fully diacritized text books. The current publication of Arabic books is 

either without diacritics or with often incorrectly diacritized texts. The long term 

objective is to bridge the gap between non-natives and complex written Arabic in an 

educational environment, and this work is a step towards that objective. 
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1.3 Outline 

The rest of this thesis is organized as follows. 

Chapter 2 reviews existing work done on Arabic diacritization. The work is divided 

into those studies related to purely text-based diacritization and those that include 

acoustic information. 

Chapter 3 briefly visits the subject of Arabic orthography, as it relates to the process 

of diacritization in this thesis. 

Chapter 4 covers the theoretical framework of text-based diacritization. Special 

attention is given to SVMs and CRFs, as the two text models focused on in this 

thesis. The underlying functionality of BAMA and MADA are also described, as they 

relate to the system proposed in this thesis and are widely used by other studies 

mentioned in the literature review. 

Chapter 5 gives an overview of speech-based diacritization: the features of speech, 

HMMs, and the components and algorithm of the diacritizer proposed in this thesis. 

Chapter 6 proposes diacritization as a weighted combination of speech- and text-

based methods.  

Chapter 7 describes the datasets and the data processing used in building and 

experimenting with the combined diacritizer. The orthographic rules in Chapter 3 are 

applied as they relate to each mode of diacritization. The individual steps and 

components of the text-based and speech-based diacritizers are covered in detail, 

followed by the processing required in the combination of speech and text. 

In Chapter 8, the speech-based system’s results are combined with the optimal text-

based system’s results. Different weighted interpolations are evaluated. Two features 

are varied and compared in the combination: (1) The base solutions that are used to 
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constrain the system’s predictions; and (2) the text model’s framework is switched 

from CRFs to SVMs. N-best lists are also processed and evaluated. 

Chapter 9 describes the Text-based diacritizer and related experiments. It covers the 

extraction of text-based features at the morpheme-, word- and phrase-levels, and 

evaluates their effectiveness in light of diacritization. 

Finally, Chapter 10 concludes the thesis and proposes future directions. 
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2. State-of-the-art Diacritization Systems 

Automatic diacritization appears under a few different names in the literature – it is 

sometimes known as vocalization, romanization, vowelization, or the restoration or 

prediction of vowels or diacritics. For consistency in this thesis, we will refer to the 

subject as diacritization, or the prediction of diacritics. The diacritization problem has 

traditionally been approached from an exclusively text-based point of view. This is 

understandable, since speech technologies, especially in Arabic, have not yet 

reached the same level of maturity as text-related fields. However, the advent of the 

multimodal user interfaces (MUI) industry and projects such as Global Autonomous 

Language Exploitation (GALE)2 have pushed the development of Arabic speech 

recognition systems into the limelight. Since diacritics are necessary to disambiguate 

and realize the pronunciation of text, most work that incorporates acoustic 

information into the process has been primarily geared toward ASR. There has been 

little to no work in diacritization on studying the effects of acoustic information for its 

own merits. 

We begin the literature review with an overview of text-based systems, and then 

cover studies that include the use of speech. 

2.1 Text-based 

Automatic diacritization was initially taken as a machine translation (MT) problem, 

and solved using rule-based approaches, such as in the work of El-Sadany and 

Hashish [10], at IBM Egypt. Their system comprised a dictionary, a grammar module 

and an analyzer/generator. The grammar module consisted of several rules including 

morphophonemic and morphographemic rules. While rule-based systems have their 

advantages, such as simple testing and debugging, they are limited in their ability to 

                                                           
2 

http://www.darpa.mil/Our_Work/I2O/Programs/Global_Autonomous_Language_Exploitation_

%28GALE%29.aspx 
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deal with inconsistencies, noise or modification, without considerable human effort. 

Moreover, Arabic is both a highly agglutinative as well as a generative language. Its 

morphological structure allows for new words to be coined whenever needed, which 

instantly give birth to a towering scale of additional new words, formed from 

numerous valid combinations and permutations of existing roots and morphemes. 

Therefore, rule-based methods are only sustainable for a limited domain. 

More recent approaches have used statistical methods instead. 

In the statistical machine translation (SMT) [11] approach, a source language is 

translated into a target language with the help of statistical models such as language 

models and word counts. A Language Model (LM) is a statistical method of 

describing a language, and is used to predict the most likely word after a given string 

or sequence of strings, using conditional probability. An example-based machine-

translation (EBMT) approach was proposed by Eman and Fisher [12], in their 

development of a TTS system. The diacritization module was based on a hierarchical 

search at four different levels: sentence, phrase, word and character. Beginning at 

the sentence level, it searched for diacritized examples in the training data that could 

fit the given sentence. If not found, it broke the sentence down into phrases and 

searched for fitting diacritized phrases from the example set. If not found, it broke the 

phrases down into words, and then if needed into letters. It used n-grams (explained 

in Section 4.2) to statistically select an appropriate example for the given input. 

Schlippe [5] used a similar approach, operating first at the level of entire phrases, 

then at word-level and then at character-level, and finally using a combination of 

word and character-level translation, so that the system could derive benefit from 

both levels. 

As opposed to the above methods, the majority of approaches to diacritization have 

viewed the problem as a sequence labelling task. 
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Gal [7] and El-Shafei [8] modelled the problem using HMMs (described in detail in 

Section 5.2). In this approach, un-diacritized words were taken to be observations, 

while their diacritized solutions were taken to be the hidden states that produced 

those observations. Viterbi, a probabilistic dynamic programming algorithm, was 

used to find the best hidden states.  Gal achieved a Word Error Rate (WER) of 14%. 

El-Shafei achieved a Diacritic Error Rate (DER) of 4.1%, which was reduced to 2.5% 

by including a pre-processing stage that used trigrams to predict the most frequent 

words. Both studies were evaluated with the inclusion of case endings. But they were 

trained and tested on the text of the Quran alone, which is finite and unchanging. For 

Gale [7], this is understandable, since the Quran is the most accessible fully 

diacritized text, and very few other annotated resources were available at the time. 

However from 2003, the Linguistic Data Consortium (LDC) of the University of 

Pennsylvania began to publish large corpora of MSA text3, including Arabic 

Gigaword4 and the Penn Arabic Treebank. These corpora are fully annotated with 

diacritics, POS tags and other features, and have addressed the problem of the 

scarcity of training material for supervised learning approaches. 

Nelken and Shieber [9] made use of these corpora in their approach to diacritization. 

They built three LMs: word, character and simplistic morphemes (or clitics). Nelken 

and Shieber employed these LMs in a cascade of finite state transducers (FSTs) [13] 

– machines that transition input into output using a transition function. The FSTs 

relied on the three LMs for making transitions. The first FST used the word LM to 

convert a given un-diacritized text into the most likely sequence of diacritized words 

that must have produced it. Words that could not be diacritized by the word-based 

LM were then decomposed by the second FST, which used the letter LM to break 

                                                           
3
 http://www.ldc.upenn.edu/ 

4
 http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T30 
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words down into letters. The rest of the FSTs were used for decomposing spellings 

and clitics. A simple illustration of their system is presented in Figure 2. 

 

 

 

Figure 2.1. Cascading weighted FSTs 

 

One shortcoming of this method was the independence of the FSTs. For example, 

the Clitic FST could not refer to the Word FST. This created problems for clitic 

diacritics that depended on the preceding letter in the word. However, the approach 

using weighted FST was one of the first that decomposed words into morphemes 

and diacritized at that level. This is distinct from decomposing words into letters, 

which are not meaningful sub-units of words. The Weighted FSTs system generated 

a WER of 23.61% and a DER of 12.79% when case endings were included. Without 

case endings, the results were 7.33% and 6.35% respectively. 

Zitouni et al. [6] achieved a higher accuracy when they viewed each word as being a 

sequence of characters X, whose each character was classified by a diacritic as its 

label. The objective was to restore the sequence of labels, Y, to the sequence of 

consonants, X. The Maximum Entropy framework (or MaxEnt) [14] was used to solve 

this problem. The Principle of Maximum Entropy states that, without external 

information, the probability distribution that best explains the current classification of 

data should be that with the maximum entropy, or uniformity [15]. Given a supervised 

training environment, where each training example (as a sequence of consonants) 

was provided with a vector of features, the MaxEnt framework associated a weight 

with each feature to maximize the likelihood of the data. The classification features 

that Zitnoui et al used were lexical, segment-based (or morpheme-based) and POS 

tags. The system performed at 18% WER and 5.5% DER with case endings. Without 
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case endings, the WER and DER were 7.9% and 2.5%. In their paper, Zitouni et al 

clearly defined their evaluation metrics and suggested a division of training and 

testing data from the LDC Arabic Treebank. These suggestions have been adopted 

by subsequent researchers, and will be used throughout the system in this thesis as 

well. 

With a slightly different take on the problem, Nizar and Habash [5] dealt with 

diacritization via MADA5, their multi-faceted software for Arabic morphological 

tagging, diacritization and lemmatization. MADA performs diacritization with the help 

of the BAMA, since BAMA provides fully diacritized solutions in additional to 

morphological analyses. The MADA software adds an additional feature layer to 

enhance BAMA. It employs trigrams trained on the Penn Arabic Treebank, and 14 

different taggers based on SVMs (see Section 4.5). Each SVM is trained to classify 

words according to a different linguistic feature, such as POS, gender, case or 

number. For a given word, the 14 different taggers’ classification decisions are 

combined into a collective score. Five other features, such as the trigram probabilities 

from the LM, are added into the calculation. These scores from a total of 19 features 

are then used to rank the analyses provided by BAMA, and the highest ranking 

analysis is chosen as the final diacritization solution. MADA has an accuracy of 

14.9% WER and 4.8% DER with case endings. Without case endings, it achieves 

5.5% WER and 2.2%. The software is regularly updated and has been used by 

several research groups, including those at MIT, Cambridge University, RWTH in 

Germany, National Research Center of Canada and others. It is an immensely 

valuable tool in the field, but its word-based approach to diacritization means it 

cannot capture inter-word dependencies or syntax, hence its inflectional diacritization 

suffers.  We will compare the use of the diacritized solutions from MADA versus 

those from BAMA in Section 8.1.  

                                                           
5 http://www1.ccls.columbia.edu/MADA/ 
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In 2008, Tim Schlippe [5] compared the traditional sequence labelling approach with 

Statistical Machine Translation (SMT). His SMT approach is mentioned towards the 

beginning of this literature review, in which he achieved a 21.5% WER and 4.7% 

DER with case endings, and 7.4% WER and 1.8% DER without case endings.  In his 

sequence labelling approach, Conditional Random Fields (CRFs) were used to 

predict the correct sequence of diacritics for a given sequence of un-diacritized 

consonants. The CRFs were trained on consonants, words and POS tags, and were 

used to predict the diacritic on each consonant. The best results achieved in this 

approach were WER 22% and DER 4.7%, inclusive of case endings, and WER 8.3% 

and DER 1.9% without case endings. Although the CRFs did slightly worse that the 

SMT approach, Schlippe concluded that additional training data and context would 

improve the performance of the sequence labelling approach based on CRFs. This 

thesis is in agreement with that suggestion and further explores diacritization using 

CRFs.  

The most accurate system reported in the literature to-date is the dual-mode 

Stochastic Hybrid Diacritizer of Rashwan et al. [16]. Like Eman and Fisher [12], 

Nelken and Shieber [9], and Schlippe’s SMT approach, they work on raw Arabic text 

using a combination of different levels of diacritization. They use two levels: fully 

formed words and morphemes. In the first mode, they diacritize fully formed words 

using the most likely solution from an A* lattice of diacritized words. When the search 

returns no results, the system switches to the second mode where the word is 

factorized into its morphemes, and the most likely solution is selected from a lattice of 

diacritized morphemes. They add a morphemes syntactic diacritics LM to assist in 

this mode – this adds a layer of sophistication to their work that deals with inflectional 

diacritics. Another important aspect of their work is their unique morphological word 

structure. Words are built from morphemes in a quadruple structure, where each 

structure is a composition of its prefix, root, pattern, and suffix. This hybrid system 
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produces a 12.5% WER and 3.8% DER with case endings, and 3.1% WER and 1.2% 

DER without case endings. 

While each of the above studies has been a valuable contribution to the subject, at 

12.5% word-error rate, this thesis asserts that there is still room for improvement. 

Also, despite being a distinct problem, inflectional diacritization has typically not been 

given distinct attention from lexemic diacritization. It is instead covered by methods 

that deal with the general diacritization of all Arabic text. This is a natural 

consequence of the fact that predicting case endings in Arabic is a complex problem, 

as asserted by Habash [1]. The only notable exception to this trend is the work of 

Rashwan [16]. 

We now turn our attention to approaches that have taken acoustic information into 

account. 
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2.2 Speech-based 
 

Kirchoff and Vergyri [2] covered automatic diacritization as a subtask of ASR. The 

study began with an acoustic model that incorporated morphological and contextual 

information, and ended with a purely acoustically based system that did not use 

additional linguistic information. Like Habash and Rambow [3], a tagger was used to 

score the diacritized solutions of a word from a list of solutions provided by BAMA, in 

order to incorporate textually-extracted linguistic features such POS. However, the 

tagger was trained in an unsupervised way, using Expectation Maximization (EM) 

[17], to converge at the most likely solutions from BAMA. The probability scores 

assigned by the tagger were used as transition weights for a word-pronunciation 

network. Acoustic models trained on CallHome6 data were then constrained by these 

pronunciation networks to ensure that they selected only valid sequences of 

diacritized words. The WER and character error rate achieved in this way were 

27.3% and 11.5%, with case endings. It was demonstrated that textually-extracted 

linguistic information was required to achieve reasonable diacritization accuracy, 

since acoustic models without linguistically constrained word-pronunciation networks 

generated less than satisfactory results: word and character error rates in that case 

were as high as 50% and 23.08%. Kirchoff and Vergyri did not model the gemination 

diacritic (shadda). 

Ananthakrishnan et al. [18] selected solutions generated by BAMA with the help of 

maximum likelihood estimated over word and character n-grams. They reported a 

WER of 13.5%, with case endings included. As future work for ASR, they proposed 

an iterative process where the solution generated by the text-based diacritizer above 

is used to constrain the pronunciation network for an incoming acoustic signal. The 

                                                           
6
 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97S45 
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recognizer’s output from this process may be used to iteratively re-train the existing 

acoustic model for ASR. 

While there are a large number of studies in Arabic speech technologies, to our 

knowledge the above two studies are the only notable published contributions that 

discuss diacritization in some depth. Since their objective is ASR, they are not 

concerned with the accuracy of inflectional diacritization. Outside of ASR, Habash 

and Rambow [3] only proposed the question of introducing acoustic information into 

their method. 

To briefly conclude the speech-based section of this literature review, we reiterate 

the results of Kirchoff and Vergyri [2], which demonstrated that textually-extracted 

linguistic information is required to improve speech-based diacritization. Subsequent 

work in the industry focused on purely text-based methods that achieved significantly 

higher accuracy, which we covered in 2.1. 

This thesis will depart from the above trend, taking essentially the opposite view from 

Kirchoff and Vergyri. It will explore the use of speech-based diacritization to 

complement and correct the results generated by a text-based system, with special 

attention to case endings. 
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3. Arabic Orthography 
 

This chapter briefly covers the spelling system, or orthography, of Arabic. While there 

are numerous rules and classes of rules [19], we will cover only the major ones as 

they relate to both text-based and speech-based diacritization in this thesis. 

The rules are listed below. We use the Buckwalter encoding to spell Arabic words. 

The Buckwalter code is a one-to-one mapping from Arabic graphemes to 7-bit ASCII 

characters. (See Appendix A for the mapping.) 

3.1 Definite Article “Al” 
 

Definiteness is determined by the Al article, which appears before a word, similar to 

how the word “the” in English precedes a word to mark its definiteness. However, Al 

is a proclitic which becomes a part of the orthographic form of the word it defines. 

The Arabic consonants are divided into two classes: solar letters and lunar letters. 

The following rules apply when a word is prefixed with Al: 

1. If the word begins with a solar letter, then the phonetic “l” sound of Al is 

eliminated from pronunciation, although still written, and the solar letter is 

geminated. For e.g. the consonant $ (pronounced “sh”) begins the word $ams, 

(pronounced “shams”), which means “sun”. To write “the sun”, we prefix the word 

the definite article. Taking the gemination diacritic to be “~” according to the 

Buckwalter encoding, we also geminate the solar letter:    

Al + $ams = Al$~ams 

The correct pronunciation would be “ashams”.7  

                                                           
7 The underlining has been used to represent gemination, corresponding the ~  
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2. If the word begins with a lunar letter, then affixation of Al is trivial, and the lunar 

letter retains its phonetic sound during pronunciation. 

3. If the word and its definite article are both preceded by a clitic diacritized with i, 

then the A of the Al is eliminated, both in orthography as well as phonetic 

pronunciation. e.g.: 

li + Al + kitAb = lilkitAb 

 

3.2 Alif Maksoorah 
 

Alif is the first letter of the Arabic alphabet, transliterated as A, and is also one of the 

long vowels. While there are 28 consonants and three short vowels in Arabic, three 

of the consonants (A, y, w) also function phonetically as long vowels (“aa”, “ee” and 

“oo”). This usually happens when they are diacritized by a sukoon or no diacritic, and 

are preceded by their shorter counterpart. For example, in the word fiy, (which 

means “in”), y is preceded by the short vowel i, and itself has no diacritic, hence the 

word is pronounced “fee”. This is a phonetic realization that does not create 

challenges in orthography. 

However, in the case that y is the third letter of a verbal root and is preceded by the 

short vowel a, it is called Alif Maksoorah – an alif that is represented by y. There is a 

slight different in orthographic form of the regular y and Alif Maksoorah, which is 

reflected in Buckwalter encoding: 

Arabic Buckwalter 

Y Alif Maksoorah Y Alif Maksoorah 

 Y Y ى ي

Table 3.1. Orthographic difference between y and Alif Maksoorah. 
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The only difference between the two forms in Arabic script is the two dots. These 

dots are sometimes eliminated in writing, by typographical error or simple 

inconsistency. Perhaps to reflect this, BAMA does not distinguish between words 

ending with Y or y. Therefore, given a word ElY, the morphological analyses that 

BAMA produces will include all morphological analyses of the word ElY, as well as of 

the word ElY. This adds a challenge to data processing and valid diacritization, while 

using BAMA. 

3.3 Taa Marbootah 
 

The Taa Marbootah is simply the consonant t (known as Taa) in Arabic, except in a 

new orthographic form when it is affixed as a feminine marker at the end of a word. 

This change creates two problems in diacritization.  

1. Like y and Alif Maksoorah above, it is confusable with another character, h. 

2. If a suffix is attached to a word ending in Taa Marbootah, the Taa Marbootah’s 

orthographic form transitions back to its original “Taa” form. 

 

 

 

 

Table 3.2. Orthographic difference between Taa, Taa Marbootah as a feminine marker, and h. 

 

 

 

Taa Taa Marbootah H 

Arabic 

 ه ة ت

Buckwalter 

t p h 



 
34 

3.4 Hamza 
 

Hamza is the glottal stop, and has several orthographic forms in written script, 

depending on the context and on its preceding letter. The following are different 

representations of hamza: 

 

Buckwalter > < & ‘ } 
Arabic 

 ئ ء ؤ إ أ
Table 3.3. Different orthographic forms of hamza. 

Note that the fifth form on the right is confusable with Alif Maksoorah in Table 3.1. 

This adds to the complexity of analyses that are generated by BAMA. The first two 

forms are confusable with alif (which is A in Buckwalter encoding, and ا in Arabic). 

While there is no hamza in words beginning with alif, a glottal stop is often 

phonetically realized, if the word is pronounced independently from the previous 

word. 

3.5 Alif 
 

1. The phonetic pronunciation of the long vowel alif may sometimes be varied or 

elongated. There are different orthographic forms of alif, or extended diacritics 

to represent this form of A. They are: 

Buckwalter 
` | 

Arabic 
  ٰ  آ 

Table 3.4. Elongated Alif and short vowel variants. 

2. In written script, alif is added at the end of certain verbs, such as 3rd person 

male plural verbs in the past tense, which end in uw. In this case, the 
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additional alif has no phonetic realization and no diacritic, but is only added in 

the script. 

3.6 Diphthongs 
 

There are two diphthongs in MSA, which are produced when a potential long vowel is 

preceded not by its shorter counterpart, but by a different class of short vowel. For 

e.g. if the consonant w is preceded by its own shorter counterpart u, it is transformed 

into the long vowel of the sound “oo”. However if it is preceded by the vowel a, it 

produces a diphthong. The two diphthongs are created as follows: 

1. a + w  = “aw” 

2. a + y = “ay” 

If the consonants w or y have a short vowel diacritic instead of a sukoon (no vowel 

sound), or are followed by alif (i.e. “A” in Buckwalter encoding), they do not form 

diphthongs, but are pronounced as simply as the consonants w and y in English. 

3.7 Tatweel:  the Text Elongating Glyph 
 

The Tatweel has no semantic use but is used for presentation purposes, such as text 

justification, to elongate characters. 

The table below shows an example of a word with and without tatweel. Tatweel is 

represented in Buckwalter transliteration with an underscore. 

 
Without Tatweel With Tatweel 

Buckwalter 
ktAb k_tAb 

Arabic 

  
Table 3.5. Tatweel 
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3.8 Consonant-vowel Combinations 
 

1. Two consonants with the sukoon (no-vowel) diacritic may not be appear 

adjacent to each other. 

2. A vowel may not appear without a consonant. 

3. Even in script that is often considered “fully diacritized”, not all consonants 

receive a diacritic. There are two cases for this: 

a. A consonant is included in the script but not pronounced. An example 

of this case is the alif in Section 3.5 above, which is added at the end 

of certain word formations.  

b. It is simply missed out by convention in the spelling of some words, 

and is not necessary for disambiguation. 

Having no diacritic is different from having the no-vowel, where the consonant 

is still pronounced. 

This concludes our brief overview of the main orthographic rules handled in this 

thesis.  
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4. Text-Based Diacritization 
 

We begin this chapter by covering the basic concepts and groundwork required to 

understand text-based diacritization as used in this thesis. 

4.1 Text-based Linguistic Features 
 

Various linguistic features may be extracted from an annotated text corpus, or using 

tools such as stemmers, or morphological analyzers such as BAMA. The features 

include, but are not limited to: 

 POS. For examples: noun, proper noun, verb, adjective, adverb, conjunction. 

 Gender. Arabic words have one of two genders: male or female. 

 Number. Arabic words have one of three number values: singular, dual or plural. 

 Voice. Active or Passive, such as in “he did”, or “it was done”. 

 Clitic. This may be used to specify whether a word has a clitic8 concatenated to 

it. 

 BPC. Base Phrase Chunk (BPC) features determine the base phrase that a word 

belongs to in a sentence, for examples a verbal phrase (VP), a nominal phrase 

(NP), an adverbial phrase (ADVP), and so on. 

 Case. This feature applies to nouns. It can be genitive, nominative, or accusative.  

 Mood. This feature applies to verbs. It may be subjunctive, jussive or indicative 

or imperative. 

 Lemma. The morphological root of a word, excluding affixes. 

 Pattern. Arabic morphology consists of patterns, each pattern carrying its own 

semantics. Patterns are templates of operations that are applied to a root to 

transform it to a different form that implies different meanings related to the 

essence of the root meaning. Operations include adding a specific character at 

                                                           
8
 http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/WhatIsACliticGrammar.htm 
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the beginning of the root, substituting a vowel, eliminating a character from the 

final position and so on. There are ten patterns. For example, the word kataba 

means, “he wrote”. Using Pattern II which geminates the middle letter results in 

what is pronounced as kattaba, which means “he forced someone to write”. 

Figure 4.1 illustrates an example of the kind of features generated in the 

morphological analysis of the same word, using two different tools. 

  

 

 

Figure 4.1. Features extracted for the word jndyAF. The first analysis shows a lexeme and 
detailed POS tag. The second shows lexeme, Buckwalter analysis, glossary, simple POS, 
third, second, first, zeroth proclitic, person and gender. 

 

Other textually extracted features that are used in various NLP tasks, including 

diacritization, are statistical features such as word counts or probabilities. Such 

features are often combined to create a language model. 

4.2 Language Model 
  

A language model is used to describe the statistical characteristics and probabilities 

of a language for each word within it. An n-gram [20] is a type of language model that 

computes the conditional probability of a word given a sequence of previous words. 

We briefly review a few concepts in probability theory to explain n-grams. 

The simple probability of an event A is the frequency of its occurrence, or its count 

(denoted by the function C), divided by the number of total events, say N: 

P (A) = C (A) / N         (1) 

 (junodiy~AF) [junodiy~_1] junodiy~/NOUN+AF/CASE_INDEF_ACC 

 

diac:junodiy~AF   lex:junodiy~_1   bw:+junodiy~/NOUN+AF/CASE_INDEF_ACC 

gloss:soldier   pos:noun   prc3:0    prc2:0    prc1:0   prc0:0    per:na … gen:m 
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So if the word “cat” were to appear 5 times in a dataset of 70 words, then P(cat) = 

5/70.  

Conditional Probability defines the probability of an event A, on the condition that 

event B has already occurred, as P (A | B): 

    P (A | B) = P (A   B) / P (B)    (2) 
 
 
In finding the probability of a word given a sequence of previous words, the 

expression is extended to P (wi | wi-I, wi-2, … w1). In the case of languages, it is 

usually impossible to compute the probabilities of all words given all possible 

sequences, since not every one of them can appear in a language. Therefore an 

underlying concept of independence for many probabilistic models is the Markov 

principle, which states that the probability of an event depends only on the previous 

event. In this case, rather than finding the probability of a word given sequences of all 

the possible previous words, we approximate this probability by relying on only one 

or two previous words. N-grams are used to predict the occurrence of a word, say xi, 

given n-1 preceding words, i.e. P (wi | wi-(n-1) ,…, wi-1). Unigrams (where n=1) assume 

that the probability of every word is completely independent. The most common n-

grams that are used are bigrams and trigrams. Bigrams are n-grams where n=2, so 

the conditional probability of each word depends on the probability of one previous 

word (2-1=1). For trigrams, n=3, and the conditional probability of a word depends on 

two previous words (3-1=2). 

 

Since language models predict only the most likely words, they also function as 

constraints, keeping the generation or decoding of a language within the confines of 

valid possibilities.  
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4.3 BAMA 
 

Tim Buckwalter’s BAMA [21] was released in 2002, and is used widely for Arabic 

NLP tasks. It is used for several NLP applications, including diacritization, since the 

morphological analyses that it generates for an input word are fully diacritized. 

BAMA has three components, described below [23]: 

1. Lexicon. An Arabic word is stored as a concatenation of its stem, and its 

prefix and suffix, if any. Lexicon entries include all possible stems, prefixes, 

and suffixes. Each entry is given a morphological compatibility category, 

which ensures that only morphologically cross-compatible combinations may 

be made. Entries are also encoded with their fully diacritized forms and their 

lemma. (While a stem is used to segment a word, such as “unchanging”, into 

“un”, “chang”, and “ing”, a lemma works at a more semantic level, so the 

lemma of “unchanging” is the word “change”.) 

2. Compatibility tables. Three tables are used to list all the categories that may 

be concatenated with a given category. An example of a compatibility 

category may be Pref-wa, which specifies the prefix conjunction wa, (i.e. “and” 

in English). All morphological categories that may be concatenated with this 

conjunction will be listed under this category. In the Pref-wa category, all noun 

stem categories are listed. 

3. Analysis engine. The engine segments an input word into all of the possible 

combinations of its prefix, stem and suffix. (There may be several valid 

segmentations possible since the lack of diacritics causes ambiguity). It then 

fetches all possible matches of the segments in the lexicon, and checks 

against the compatibility tables to construct valid combinations as output. The 

output is then a list of solutions, where each solution is provided with its 

diacritized form, its lemma, its morphological analysis and its POS tag. If an 
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input word is not three-way-compatible with the tables, BAMA returns “NO 

SOLUTION”.  

This thesis uses BAMA version 2.0. Version 3.1 is known as SAMA, and gives a 

slightly higher accuracy in terms of diacritization, but was not available to us at the 

time of this research. 

4.4 ALMORGEANA 
 

MADA is a software suite that morphologically analyzes, disambiguates, lemmatizes 

and diacritizes Arabic text, in one fell swoop. [22] Almorgeana (ALMOR) is MADA’s 

morphological analysis and generation system. It is built on top of the databases 

provided by BAMA [23]. While BAMA operates on the surface form of words, ALMOR 

adds another layer that deals with the lexeme and feature form, so BAMA entries are 

extended with two more keys, lexeme and feature. The analysis engine of ALMOR 

does not break down words into their prefix, stem and suffix segments, but into their 

lexeme and feature keys. Compatibility is then matched across the three tables using 

these keys, and all compositions that match are converted back into their prefix-

stem-suffix forms and returned as output. 

Since most complexity is hard-coded into the tables, BAMA uses a simple analysis 

engine to provide all possible solutions to a word. MADA goes a step further and 

processes its solutions to narrow down the list to the most likely solution. This is done 

using SVMs. 

4.5 Support Vector Machines 
 

A basic SVM is a linear, binary, non-probabilistic classifier that maximizes the margin 

between two classes, i.e. it finds a line (or decision boundary) that leaves the 

greatest distance between the points in each class. Given an input data point, it then 
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assigns the point to one of the two classes, depending on which side of the boundary 

the data point falls. 

Figure 4.2. Decision boundary lines separating data points with the greatest margin in SVMs. 

It is often difficult to find a single line that separates the training data points cleanly, 

so the input points are mapped onto higher dimensional space feature space. Then 

instead of a simple two-dimensional line, (p-1)-dimensional hyperplanes are found 

that maximize the margin between the classes. Data points are input as p-

dimensional vectors, and since training is supervised, the class of each data point is 

known.  

Formally, given training data T, a set of n data points, where each point xi is 

described by a p-dimensional coordinate vector and a binary variable (-1,1), 

classifying which class xi belongs to, T can be described as: 

T = { (xi, yi) | xi ∈ Rp, yi ∈ {-1,1}} ni=1    (3) 

A hyperplane that divides points with y = 1 from those points with y = -1 can be 

described as the set of points x that satisfy the following equation: 

w . x – b = 0      (4) 

where w is the normal vector to the hyperplane, b is constant, and . denotes the dot 

product.  

w and b are chosen such that the margin between the two classes is maximized. In 

other words, the distance between two hyper-planes that mark the boundaries of the 

small margin 
large margin 
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classes is maximized. This is done using constraints and quadratic programming, 

and becomes an optimization problem based on a kernel function. Explaining these 

techniques is outside the scope of this thesis, but they can be referred to in [24]. 

In the context of diacritization, MADA uses several different SVM classifiers, each 

trained on a different morphological feature extracted from the Penn Arabic Treebank 

(ATB3) dataset. [25] Each SVM is trained to classify and predict, for each word, a 

specific morphological feature. The 14 features are listed below in Table 4.1 [26]. 

Table 4.1. The fourteen features used by MADA to classify words. 

Each SVM classifier is assigned a weight via a tuning dataset. For a given word, the 

classifiers’ predictions are collected and compared against the potential 

morphological analyses provided by ALMOR, and the comparisons are scored. The 

more the taggers that classify a specific analysis of a word, the higher the score of 

that analysis. In addition to the 14 SVMs above, five other weighted features are 

included in the scores, listed in Table 4.2. 

 

 

 

Feature Name Explanation 

POS Simple part-of-speech 

CNJ  Presence of a conjunction clitic 

PRT  Presence of a particle clitic 

PRO  Presence of a pronominal clitic 

DET  Presence of the definite determiner 

GEN  Gender 

NUM  Number 

PER Person 

VOX  Voice 

ASP  Aspect 

MOD Mood 

NUN  Presence of nunation (indefiniteness marker) 

CON  Construct state (head of a genitive construction) 

CAS  Case 
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Feature Name Explanation 

Spellmatch Confirms whether the generated analysis, with its diacritics 
stripped, matches with the undiacritized word that was given as 
input. 

Isdefault Determines whether the generated analysis is what is labelled as 
“default” by BAMA, i.e. the same as the input. This is less likely to 
be the correct analysis. 

UnigramDiac A unigram language model of the diacritics of full form words. 

UnigramLex A unigram of lexemes. 

N-gram A 4-gram lexeme model. 
Table 4.2. Five features used to score MADA analyses in addition to the 14 SVM features. 

The analysis that has the highest collective score of these 19 features is selected as 

the final solution. 

4.6 Conditional Random Fields 
 

As opposed to the binary classification of SVMs, CRFs are a probabilistic framework 

oriented towards segmenting and labelling sequence data. While some models, such 

as HMMs (see Section 5.2) model the joint probability between random variables, 

CRFs have the ability to define conditional relationships between observations and 

labels. This relaxes the independence assumption inherent in many models, such as 

HMMs, that operate on the Markov principle. Operating outside the Markov principle 

means that CRFs are powerful at capturing long range dependencies across 

characters, words and word features. The training is discriminative, during which the 

conditional likelihood of the classes are maximized. 

If we take X to be a sequence of observations, and Y to be its corresponding 

sequence of labels, then the conditional distribution p (X|Y) can be modelled as an 

undirected graph, where X and Y are disjoint sets of nodes. Formally, Lafferty et al. 

[28] defined CRFs as follows: 

Let G = (V,E) be a graph such that Y = (Yv)v∈V, so that Y is indexed by the vertices of 

G. Then (X,Y) is a conditional random field in case, when conditioned on X, the 

random variables Yv obey the Markov property with respect to the graph:  
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p (Yv  | X, Yw, w ≠ v ) = p (Yv  | X, Yw, w   v )    (5) 

where w ∼ v means that w and v are neighbors in G. 

An example of a simple chain-structured CRF is illustrated in Figure 4.3 below, where 

Y is conditioned on X. 

Yi-1       Yi      Yi+1 

 

Xi-1       Xi      Xi+1 

Figure 4.3. Disjoint sets Y and X 

In the context of Arabic diacritization, the observed sequence X is the set of 

consonants given as textual input, and Y is the sequence of diacritics applied to it. 

Given a feature function fi that helps determine the likelihood of Y, and Xj and Yj are 

sub-sequences of X and Y, then: 

log p (X|Y,  θ)  = ∑ θi fi (Xj, Yj)     (6) 

           
i 

     

where θi is a numerical weight that is assigned to fi. A function fi over Xi and Yi could 

be a fixed Boolean function, which returns true if, for example, X was a word-final 

consonant and Y was a nunation case ending. The weights θi, or parameters, need 

to be estimated during training, so they are maximized over the training data T, using 

the following equation: 

θ* = argmax ∑ log p (Y | X, θ)     (7) 

                                                 θ       (X,Y) ∈T 

   
Testing consists of decoding the sequence of observations X into the most likely 

sequence of labels, Y*, given the parameters θ* found above: 

   Y* = argmax p (X | Y, θ*)     (8) 

Y 
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Figure 6 shows the CRFs for an Arabic word. 

 

  

 

Figure 4.4. CRFs for the sequence of consonants and the sequence of diacritics 

CRFs can learn various features and varying contexts to model the training data and 

predict the set of diacritics, Y*. Features may include POS, case, and clitic 

information. Contexts refer to current, previous and next consonants, POS tags, 

diacritics or other features. 

The marginal probability of a single label may also be found, using the formula: 

              
              

     
     (9) 

where Zθ(X) is a normalization function of the observance of X, and α and β are the 

forward and backward probabilities used in forward-backward algorithms. Forward-

backward algorithms are a class of dynamic programming inference algorithms that 

compute a set of probabilities going forward in one direction from one set of states to 

another, and another set of probabilities while going backward. To refer to the 

forward-backward inference used by CRFs, refer to [27]. 

With the necessary background covered, we now discuss the text-based diacritizer 

built in this thesis. 
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4.7 Components of a Text-based Diacritizer 
 

The text-based diacritizer consists of the following five components: 

1. Text Normalizer. The input stream consists of raw text, sometimes partially 

diacritized. If the input is in Arabic, it needs to be converted to Buckwalter 

encoding. Once it is in Buckwalter, a number of normalizing steps are needed 

to ensure orthographic consistency (See Chapter 3). Text normalization is 

discussed in Data Processing (Chapter 7), where spellings are converted to a 

string of consonants that can each receive a diacritic. An example of input 

text ready for diacritization is shown in Figure 4.5. 

 

 

 

Figure 4.5. Raw text in Buckwalter encoding. 

2. Feature Extractor. Depending on the features used to predict diacritics, the 

feature extraction layer may employ different tools. In this thesis, the following 

features were required prior to predicting the diacritics on the test data: 

1. Consonants. Each consonant from a word is taken as a feature.  

2. Words. Words are taken as independent features. 

3. POS tags. These could be extracted using the BAMA engine and the 

MADA SVM-based analyzer. 

4. Base Phrase Chunk (BPC) tags. These were extracted using non-

recursive SVM-based base phrase chunking. 

For the main diacritizer in this thesis, only POS were required. The BPC tags 

were used in experiments, described in Chapter 8. 

w*krt An Aby rA$d lA yntmy AlY Ay tnZym Aw Hzb. 
wr>t An nql syArth AlY brytAl fy AlbqAE kAn bqSd Altmwyh. 
wfhm Anh yjry AlEml ElY Edd mn AlAtSAlAt AlAxyrp… 
… 
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After feature extraction, the annotated text is converted to input for the CRFs 

model. This is described in Section 7.3 Processing: Text-Based Diacritizer. 

3. Text Model. The CRFs that model the training data use a character bigram 

for the labels, V. The features used in this thesis are:  

1.       current consonant 

2-4. The current, previous and next word 

5-7. The POS of the current, previous and next word. 

In addition, the context of learning is +-4, i.e. it spans a window of 9 

consonants. In other words, if the current consonant is ci, then the following 9 

consonants are also learnt: 

ci-4, ci-3, ci-2, ci-1, ci, ci+1, ci+2, ci+3, ci+4 

4. Language Model. Although the text-based diacritizer does not use a regular 

statistical language model, it relies on morphological analyses (generated by 

BAMA) as a look-up dictionary to restrict the predictions of the diacritizer to 

valid words only. 

5. Lexical Scorer. Each of the candidate solutions is assigned a score, and the 

highest scoring analysis is selected as the diacritized solution. The scoring is 

explained in the next section. 
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4.8 Algorithm for Text-based Diacritization 
 

Given a set Dw that consists of n possible diacritized solutions for a word w, we are 

interested in selecting the best solution. We may do this by scoring each solution dw,I  

∈ Dw, and choosing the highest scorer. 

The text model will be used to assign the scores, producing a set of n tuples, Tw: 

   Tw = { x | x = (dw,i,tw,i), dw,i ∈ Dw , w ∈ W }              (10) 

We will reference the score of a selected tuple in Tw as Tw[dw,i]. The scores are 

assigned through the following process: 

For each input word w, the diacritizer takes it in as a sequence of raw Arabic 

consonants, C. Each consonant c in this sequence may be assigned fifteen possible 

labels: the three individual short vowels, the three tanweens, the sukoon, 

combinations of the gemination diacritic with the short vowels and tanweens, and no 

diacritic (represented as epsilon). Let V be this set of fifteen labels: 

V={            ε } 

The dotted circles are placeholders for consonants. 

The diacritizer then operates as follows: 

1. Using formula (9) in (Section 4.6) above, the CRF model is used to compute 

the marginal probability pv of each diacritic possibility v ∈ V, for each 

consonant c ∈ C. In this case, C is the sequence of observations, and V is the 

sequence of labels: 

            
              

     
                    (11) 
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2. Given our set Dw of possible solutions for w, we calculate the score of a single 

solution dw,i ∈ Dw as the sum of the log of pv:
 

Tw [dw,i] = ∑ log x , x = {
                         
             

                    (12)      

    v ∈ V 

 

 We choose a low value, 0.00001 for pv = 0 in place of log 0. 

3. The best diacritization solution for this word, dt
w*, is then simply the one that 

maximizes this sum. 

dtw* = argmax Tw[dw,i]                                    (13) 
                                                                       d

w,i
 ∈ D

w
   

 

If the input string W consists of M words, then the diacritizer produces M sets of 

scored tuples. 
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5. Speech-Based Diacritization 
 

5.1 Speech-based Acoustic Features 
 

Speech attributes – such as energy and pitch – are used to compute and extract 

features from speech waveforms. A number of useful features may be extracted, 

such as Linear Prediction Coefficients (LPC), Perceptual Linear Prediction 

Coefficients (PLP), or Mel Frequency Cepstral Coefficients (MFCC). MFCCs are 

used widely in speech technologies and have been chosen for the acoustic model in 

this thesis. MFCCs are derived from the Mel scale. This is a scale of pitches 

perceived by humans to be equal in distance from one another, although they may 

not be equidistant in the true frequency scale of sound. Mel frequency can be derived 

from true frequency f using the following calculation [28]: 

     fmel = 2595 x log10(1 + f/700)               (14)    

Filter bank coefficients are used to represent the spectral magnitude of waveforms in 

a compact way, where each coefficient represents the sum of data points that pass a 

band-pass filter (a wave filter that accepts frequencies within a given range). 

MFCCs are computed by performing truncated Discrete Cosine Transforms (DCT) on 

the logs of the Mel filter bank coefficients [29]. 

Speech waveforms can then be represented using feature vectors of MFCCs.  

In addition to the MFCCs, the following are features that may be extracted and that 

are used in this thesis: 

 Energy term. The energy is computed as the log of the speech signal 

energy: 

E = log ∑
N 

sn
2           (15)     

            n =1 
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where sn is one out of N speech signals [30]. 

 Zero mean. Utterance-based normalization is applied on the spectral 

mean. 

 Time derivatives. Describing speech in relation to its correlations with 

time greatly enhances speech recognition. The delta coefficients of time 

derivatives are computed as follows: 

       
∑               
   

 ∑    
   

                           (16) 

where ct-Θ to ct+Θ.are corresponding static coefficients, and Θ is  the parameter 

window length. [30]  

 

The above features may form the feature vectors that are needed to build an acoustic 

model for the representation and characterization of speech. The most widely used 

statistical models used for this purpose are Hidden Markov Models (HMMs). 

5.2 Hidden Markov Models 
 

HMMs are sequences of finite-state transducers that accept feature vectors of 

speech and transduce them into sequences of states that model units of sound. Units 

of sound may be phones, words, or syllables, or whatever is suitable for the 

application. The basic underlying model of HMMs is a statistical Markov model, 

where all states and transition probabilities are visible, or observed [31]. A HMM adds 

an additional hidden layer of states, which is said to cause the observed states, 

based on emission probabilities. In an acoustic model for speech, the observed 

states represent the speech feature vectors, while the hidden states represent the 

units of sound, such as individual phone utterances, which caused the observed 

states. Figure 5.1 illustrates an example of HMMs. 
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Figure 5.1. HMMs. Transition and emission probabilities are denoted by a and b respectively. 

 

A HMM θ can be described as follows: 

- Q = the set of HMM states 

- O = the set of observed states 

- A = set of transition probabilities 

- B(o) = set of emission probabilities 

We refer to a state o ∈ O at time T, as ot ∈ OT, and likewise qt ∈ QT. 

The Baum-Welch, Viterbi and Forward Recursion algorithms are commonly used in 

ASR operations on HMMs. In this thesis, we are concerned with the following 

operations: 

1. Estimation. Baum-Welch [32] [43], an Expectation Maximization algorithm, is 

used to estimate the parameters of the HMMs, given the observed state sequences. 

This is the training of the acoustic model. The maximum likelihood estimation of the 

parameters is achieved by maximizing the log likelihood function [33]: 

 

L(θ) = log p (OT1 | θ ) = log ∑ p (OT1, Q0T+1 | θ)             (17) 

                                                           Q1T+1 
 
2. Evaluation: In this process, the best alignment between the HMMs and the 

speech feature vectors is computed. This is done using the Viterbi dynamic 

programming algorithm. Evaluation is expressed as follows [34]: 

 

p (OT1|QT1, θ) = ∏Tt=1 p (ot, qt, θ)              (18) 

Q1 Q2 Q3 Q4 

O1 O2 O3 O4 

a1 a2 a3 

b1 b2 b3 b4 



 
54 

When alignment is unknown, the expected likelihood is computed instead, which 

makes use of the transition probabilities A, and the forward-backward algorithm. (For 

details, refer to [31], [35]). Forced alignment may also be used, where output labels 

constrain the evaluation algorithm so that it simply computes the likelihood of a given 

sequence of labels. 

5.3 Components of a Speech-Based Diacritizer 

The speech-based diacritizer in this thesis comprises the following components: 

1 Feature Extractor. The features extracted from speech in this system are 

MFCCs energy, utterance-based mean normalization, and the first, second 

and third time derivatives. 

2 Acoustic model. The acoustic model is built on HMMs. Each HMM models 

the pronunciation of a single phone, which may be either a consonant or a 

vowel. However, we know that most Arabic transcriptions do not include 

vowels, although they are necessary for realizing word pronunciations. The 

question then arises: how are they modelled? There are two types of systems 

that solve this problem in ASR [36]: 

a. Phonetic system. In this case, diacritics are explicitly modelled in the 

dictionary. This requires a lexicon to be ready before speech 

recognition. However, the generative power of Arabic morphology, its 

agglutinative nature and the ambiguity produced by an abjad system 

makes such an option problematic – the dictionary grows very large 

very quickly. Therefore a phone-level dictionary is preferred over a 

word-level dictionary. 

b. Graphemic system. Diacritics are implicitly learned in the acoustic 

model. This is the system employed in this thesis. Graphemes in the 

orthographic representation of a word are mapped to phonetic 

transcriptions via a grapheme-to-phoneme (G2P) processing layer. 
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The acoustic model then uses a phone-level multi-pronunciation 

dictionary to predict implicitly modelled diacritics such as short-vowels. 

3 Grapheme-to-phoneme (G2P) layer. Arabic orthographic rules are applied 

to convert word graphemes into phonetic transcriptions. The G2P layer used 

in this thesis is rule-based. The underlying rules that this G2P layer will follow 

have been covered in Chapter 3. 

4 Language model. In ASR systems, a language model is often represented 

by a grammar structure or word network, which is used to constrain the 

recognizer to generate sequences of words within the valid confines of a 

language. The language model assigns probabilities to sequences of words, 

with the help of a probability distribution of the n-grams found in the training 

data. Hence a word that appears often will have a higher probability of being 

predicted than other words. In this speech-based diacritizer, the language 

model comprises the solutions proposed by BAMA, i.e. the set Dw for each 

word w. The language model scores are not assigned using n-grams but 

using an acoustic scorer. 

5 Acoustic Scorer. Using forced alignment, the scorer assigns acoustic log-

likelihoods to the elements of set of the diacritized possibilities, Dw, in the 

language model. 

The implementation of the above components is described in detail in Chapter 7, 

Data Processing. 

5.4 Algorithm for Speech-based diacritization 

Given speech input with its features extracted, then for each un-diacritized input word 

w, speech-based diacritization is a four-step process: 

(1) Obtain the possible diacritized solutions. The set Dw is obtained by taking the 

unique solutions provided by BAMA. 
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(2) Convert solutions to phonetic transcriptions. Each of the diacritized solutions 

dw,i ∈ Dw provided by BAMA are converted through the G2P layer to their 

phonetic transcriptions. 

(3) Force alignment to extraction word boundaries from speech data. The 

acoustic model is used to apply a forced alignment (employing the Viterbi 

algorithm) between the speech input and the phonetic transcriptions obtained 

from the G2P layer above. This is done in order to identify w in the speech input. 

Given an un-diacritized word w, its corresponding utterance is identified in the 

speech input by extracting its word boundaries in time, generated during 

alignment. 

(4) Scoring: Estimating maximum log likelihood. The word boundaries from Step 

(3) are used to identify words in the speech input and force align them with each 

phonetic transcription obtained in Step (2). The acoustic model assigns the 

maximum log likelihood score to each solution during forced alignment, 

generating tuples of the form (dw,i,sw,i).  The acoustic log likelihood is:  

 

p (OT1 | θ) = max  p (OT1 | QT1 , θ)              (19) 

 

The acoustic scores are normalized for the utterance, and the most likely solution, 

ds
w*, selected from Dw is then simply the solution with the maximum log likelihood: 

   dsw* = argmax [Sw]                           (20) 

                 dw,i ∈ D 

 

We now have an acoustically-scored set of diacritized solutions, Sw: 

Sw = { x | x = (dw,i,sw,i), dw,i ∈ Dw , w ∈ W }                       (21) 

 

The process is repeated for each word w ∈ W. Speech-based diacritization for each 

word w is summarized in Figure 5.2 below. 
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BAMA solutions for w 

Extract word boundaries 
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phonetic 

transcriptions 

 

 

 

align with w 

align with w 
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Sw,3 
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during  
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Figure 5.2. Obtaining acoustic scores for combined diacritization using the speech-based 

diacritizer. 

Speech input 
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6. Combined Diacritization 

This thesis takes the human ability to infer the correct pronunciation of a text, and 

interpolates it via acoustic data with a text-based diacritizer. Having understood the 

individual diacritizers, we now turn to the question of their interpolation. We are 

interested in how well their strengths combine to produce a multi-modal diacritizer. 

We begin with a theoretical overview of the combination. 

6.1 Overview 

The proposed system accepts two streams of data as input: (1) raw Arabic text, and 

(2) an acoustic signal of correctly vocalized speech corresponding to that text. The 

objective is to predict the correct diacritics for each consonant in the text. 

The text is encoded in Buckwalter transliteration [37]. An example of Buckwalter 

transliterated text is shown in Figure 6.1, along with its correctly diacritized version 

below. The diacritics have been printed in bold. (See Appendix A for a complete 

mapping of Arabic graphemes to Buckwalter). 

 

 

      

Figure 6.1. Diacritized and undiacritized Buckwalter transliterated text. 

The correct pronunciation of the text is inferred by a human and recorded as an 

acoustic signal.  

Two independent diacritizers are employed: (1) one that is based on text input and 

modeled by Conditional Random Fields (CRFs); and (2) one that is based on speech 

input and modeled by Hidden Markov Models (HMMs).  

Figure 6.2 summarizes the system’s architecture. 

 

ATlE AlnA}b AlEAm Altmyyzy EdnAn EDwm  

AiT~alaEa Aln~A}ibu AlEAm~u Alt~amoyiyziy~u EadonAn EaD~uwm 
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Figure 6.2. Combined diacritization architecture. 

We consult BAMA to produce a list of morphological analyses with fully diacritized 

solutions for a given word.  

Let W be the sequence of input words. Then for each word w ∈ W, BAMA generates 

a set of potential diacritized solutions, Dw. Since our task is diacritization, we are only 

concerned with the unique sequence of diacritics on a string of consonants, and not 

with its morphological analyses. Therefore if BAMA produces several different 

morphological possibilities for a word, all with the same sequence of diacritics, then 

the word is counted as having a single solution. Figure 6.3 illustrates a list of 

solutions proposed by BAMA for a given input word. 
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Figure 6.3. Buckwalter-generated solutions for the word “Alywm”. The diacritized solutions 
that we are interested have been printed in bold. 

 
 
If a particular word w has n unique solutions, then Dw can be expressed as: 
 

  Dw = { dw,1, dw,2, …, dw,n }                               (22) 

These solutions may be ranked by their likelihood, so that we have two sets of 

scored potential solutions, for w ∈ W. Revisiting the scored output of the text-based 

and speech-based diacritizers (4.8 and 5.4), we have two sets for w: 

     Tw = { t | t = (dw,i,tw,i), dw,i ∈ Dw, w ∈ W }             (10) 

     Sw = { t | t = (dw,i,sw,i), dw,i ∈ Dw, w ∈ W }             (21) 

Where Sw is the set of scored solutions from the acoustic model, and Tw is from the 

text model. 

As before, we reference the score of a selected tuple in these sets by Sw[dw,i] and 

Tw[dw,i]. A weighted combination is then applied to the tuples in each set, and the final 

diacritized solution dw* is that which maximizes the combination. This is expressed in 

the formula below: 

INPUT STRING: يوم   ال

LOOK-UP WORD: Alywm 

     Comment:  

       INDEX: P1W7 

  SOLUTION 1: (Alyawom) [yawom_1] Al/DET+yawom/NOUN 

     (GLOSS): the + today 

  SOLUTION 2: (Alyawomu) [yawom_1] 

Al/DET+yawom/NOUN+u/CASE_DEF_NOM 

     (GLOSS): the + today + [def.nom.] 

  SOLUTION 3: (Alyawoma) [yawom_1] 

Al/DET+yawom/NOUN+a/CASE_DEF_ACC 

     (GLOSS): the + today + [def.acc.] 

* SOLUTION 4: (Alyawomi) [yawom_1] 

Al/DET+yawom/NOUN+i/CASE_DEF_GEN 

     (GLOSS): the + today + [def.gen.] 

  SOLUTION 5: (Alyawom) [yawom_1] Al/DET+yawom/NOUN 
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           dw* = argmax (α.Sw[dw,i]  +  β.Tw[dw,i])                  (23) 
             dw,i ∈ Dw 

 

We now discuss the method of combination in detail.  

6.2 Algorithm for Weighted Interpolations 

Text and speech cannot be directly interpolated. They are different classes of 

information, represented in different mediums. 

The stream that the text-based diacritizer operates on is in the form of Buckwalter-

encoded text. The text-based diacritizer predicts a vowel for each consonant. The 

text can therefore be said to comprise consonant-vowel pairs. This is pairing is 

necessary in order to with CRFs, which operate on a one-to-one mapping between 

observations and labels. 

An important challenge that arises in combining the input text with the phonetic 

transcriptions of the speech is the fact that orthographic phonetic transcriptions 

cannot be converted into consonant-vowel pairs.  

To illustrate this, we take an English word as example. The word “phone” in English 

consists of five letters, and it can be split into the following consonant-vowel pairs: (p, 

no-vowel), (h, o), (n, e). However, its phonetic transcription consists of only three 

phones with no direct way to map this into recognizable consonant-vowel pairs: 

     [  f  oh  n  ] 

Therefore, while the scores assigned by the text-diacritizer in Section 4.8 are 

summed over each character, the acoustic model’s scores are computed over 

phones. 

Since we cannot map phonetic transcriptions to orthography, we use the acoustic log 

likelihood of the entire utterance w to derive the speech-based diacritizer’s scores.  
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Given that the length of the input text, || W || = M, we now have two sets of tuples, 

{Tw,…,TM}, which we denote by T, and {Sw…SM}, denoted by S.  

We are interested in interpolating them and selecting the highest scoring solution. 

We follow the five steps below: 

1. List BAMA solutions. Solutions must conform to the consonant-vowel 

consistency mentioned above.  

2. Gather T and S together and sort tuples first by ID and then by the text-based 

scores in T. This is necessary in order to manage n-best experiments (in 

Section 0) and to extract solutions. 

3. Apply a weighted interpolation, using Equation (23).  

This is done as follows: 

 

 

 

 

 

Figure 6.4. Algorithm for weighted interpolations. 

If we are interested in selecting the n-best and computing oracle error rates, we 

interpolate only the top n. 

4. Select Aw* that has the maximum score, from Aw, for each w ∈ W. 

5. Given the IDs of the best solutions, we refer back to our list of BAMA’s 

solutions and find the best analysis Aw*. This is the combined diacritizer’s 

solution. 

Figure 6.5 summarizes these steps.  

 
    foreach w ∈ W do 
 
 foreach  dw,i ∈ Dw do 
 
  Aw = α.Sw[dw,i]  +  β.Tw[dw,i] 
 
 end 
    end 
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Figure 6.5. Combining speech-based and text-based scores brings out the best of both. 

The solution with the highest score (indicated by max {}) may vary according to 

interpolation weights. 
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7. Data Processing 

This thesis makes use of corpora developed by LDC [38], which provides large 

resources for researchers in many languages. 

7.1 Training Data 

For Arabic diacritization, Zitouni et al. [6] suggested a division of datasets from the 

Penn Arabic Treebank corpus, Part 3, v1.0: catalog number LDC2004T11 and ISBN 

1-58563-298-8 [25]. This corpus is commonly known as ATB3. It consists of fully 

diacritized news stories from An-Nahar News9, a leading Arabic daily newspaper in 

Lebanon. The corpus consists of Arabic articles and corresponding documents where 

each word in the source text is accompanied with its BAMA-provided solutions. Each 

of these solutions is annotated with all of its possible diacritics and morphological 

analyses. The corpus consists of 600 documents. 

The division suggested by Zitouni et al. [6] is 85% for training and 15% for testing, 

where training data consists of approximately 288,000 tokens, and testing data of 

approximately 52,000 tokens.  

Speech 

The speech-based diacritizer was trained on selections of the above training dataset 

suggested by Zitouni et al. [6]. Approximately 3 hours of human speech was 

recorded, based on native knowledge of diacritization, from documents 1 through 49 

of January 2002. 

Text 

The An-Nahar Arabic source articles in ATB3 are also present in another corpus 

provided by LDC, Arabic Gigaword Fourth Edition, LDC Catalog No. LDC2009T30, 

ISBN: 1-58563-532-4, from the GALE project [39] [40]. For training CRFs and 

                                                           
9
 www.annahar.com 
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replicating the results of Schlippe [5], we needed more data than the division 

suggested by Zitouni et al [6], so we used the An-Nahar documents from Arabic 

Gigaword Fourth Edition, for a total of approximately 471000 words. 

7.2 Testing Data 

The same testing data was taken from the division suggested by Zitouni et al. [6] was 

used throughout all of the experiments used in this thesis, for both speech and text. 

This dataset consists of 1886 sentences. However, 282 sentences were eliminated 

from this thesis, because they contained one or more words that were annotated with 

“NO SOLUTION” in the corpus. The final dataset was 1604 sentences. This made 

about 35350 words (excluding non-word tokens such as digits and punctuation). 

7.3 Processing: Text-Based Diacritizer 

Referring to the components of a text-based diacritizer (Section 4.7), the following 

steps are needed to build our diacritizer before we can diacritize an input text:  

1. Extract the POS features from the training data. 

2. Normalize the text. 

3. Ensure consonant-vowel consistency. 

4. Prepare data for the training of the CRFs. 

5. Train the CRF model. 

We now discuss the procedure in detail.  

Step 1. Feature Extraction. 

We use CRF++ to work with our model. In reproducing the work of Schlippe [5], more 

data required was required than the training dataset suggested by Zitouni [6], so the 

POS tags presented in the ATB3 corpus were not used. The Stanford POS tagger 

was instead used to tag all the training data [41]. The 31 tags used by the Stanford 

POS tagger are listed in Appendix D. 
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The Arabic text was tagged by the POS tagger per sentence. The figure below shows 

the text before and after tagging: 

Figure 7.1. POS-tagging on Arabic text.  

Before training the CRFs, we also need the labels (or diacritics) of the given text, so 

that the CRFs can learn the dependencies. However, the Arabic Gigaword corpus 

[39] consists only of raw Arabic documents; it is not annotated with diacritized 

solutions. To generate the diacritics, we used MADA 3.1 (Section 4.4), which can 

take in UTF-8 Arabic and reproduce it in Buckwalter encoding, with diacritics 

included. This means that our own system incorporates an element of the 

diacritization error generated by MADA. Nonetheless, it was the best available 

option. MADA also tags text with its own set of POS tags, but since we intended to 

work with Schlippe’s system we chose the Stanford tag set.  

The training data is now tagged and diacritized in Buckwalter transliteration. Figure 

17 below shows a sample of our data at this stage: 

 

 

 

 
 

Figure 7.2. Training data sorted and tagged. 
 

<word_id>    <undiacritized>   <diacritized>   <POS> 
ANN20030103_0001.2_1 yjb    yajibu   VBP 
ANN20030103_0001.2_2 >n    >an   IN 
ANN20030103_0001.2_3 tkwn   takuwna   VBP 
ANN20030103_0001.2_4 AlmkAn    AlmakAni   DTNN 
ANN20030103_0001.2_5 AlmnAsb    AlmunAsibi   DTJJ 
ANN20030103_0001.2_6 fy    fiy   IN 
ANN20030103_0001.2_7 Alwqt    Alwaqoti   DTNN 
... 
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Step 2. Text Normalization. 

 

Text normalization relies partly on some of the orthographic rules mentioned in 

Chapter 3. We apply the following rules: 

 All the representations of hamza were mapped onto one character, ( ‘ ). 

 The variant forms of alif (A and | ) are mapped onto the single character A. 

 The Taa marbootah, denoted by p in Buckwalter transliteration, was converted 

to the consonant t when it was diacritized, and to “h” otherwise. 

 The glyph ` is taken as the short vowel a, (fatha). 

 For conflicts between the diacritized and un-diacritized versions of text, such 

as between h and p, and between y and Y (alif maksoorah), the un-diacritized 

reference was given preference. This is because the un-diacritized 

Buckwalter mapped directly from the Arabic text is more reliable as being 

closer to the intended source than the processed output of a diacritizer. 

 Some conflicts consisted of additional consonants that were not found in the 

original text. Again, within the scope of this thesis, we assume that the input 

text is reliable and eliminate such conflicting options. This is reasonable since 

they we found that they comprise less than 1% of the data. 

Step 3. Consonant-Vowel consistency 

The diacritized solutions must be arranged into consonant-vowel pairs, so that the 

length of each sequence of vowels vw,i for solution dw,i is equal to the that of its 

corresponding sequence of consonants, which we denote cw,i. This is in keeping with 

the CRF model of two disjoint sets, X and Y, which are a corresponding mapping of 

observations to labels. 

This means that each consonant must be labelled by a diacritic.  
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This raises two questions, what is the best to deal with consonants that have no 

diacritic, or those that have more than one? 

Even in fully diacritized text, not every consonant is given a diacritic, some 

consonants conventionally have none, such as the alif in the definite article “al”. This 

is distinct from the sukoon diacritic, which requires that no vowel sound be 

pronounced on the consonant in question, but the consonant is still vocalized. In 

most cases where there is no diacritic, the letter is either a conventional typographic 

practice, understood to always have a particular diacritic, or silent. Therefore in such 

a situation, if a consonant is not found to have a vowel after it, its diacritic was taken 

as <empty> [5]. 

The gemination diacritic (shadda) may appear in combination with other diacritics. In 

this case, as per the evaluation metrics of the research community, a geminated 

consonant in with another diacritic is taken to be a single, combined diacritic [6], [16]. 

The total number of diacritics is then fifteen labels. The Arabic diacritics in Section 

4.8 are mapped onto:  

 

 

 

Figure 7.3. Arabic diacritics in Buckwalter Transliteration. 

 

The table below shows consistency being maintained in mapping from un-diacritized 

and diacritized words. 

 

 

   a      i       u       o     ~      F      K     N    ~a   ~i    ~u   ~F   ~K  ~N 
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Table 7.1. Consonant-Vowel consistency. 

 

Named Entity Recognition is beyond the scope of this thesis. Hence where there 

were conflicts in proper names, i.e. where the diacritized solution introduced new 

vowels or consonants into the word, no changes were allowed that were in conflict 

with the un-diacritized reference. 

Step 4. Prepare data for the training of the CRFs. 

 

From our training data, we build feature files that conform to the input format required 

for CRF++. The feature files arrange our data and POS tags in columns, with a single 

observation, its features, and its label on each line. Figure 19 gives an example of 

training data converted into feature files for CRF++ [53]. We enforce word boundaries 

with the inclusion of the symbol <space>. 

 

 

 

 

 

 

 

 

 

Figure 7.4. Training data prepared for the training of CRFs. 

Un-diacritized Alwaqt 

Diacritized Alwaqoti 

Consont-Vowel pairs (A,<empty>)       (l,<empty>)      (w,a)      (q,o)      (t,i) 

<consonant> <current POS> <previous word> <previous POS> <next word> <next POS> <label> 

y VBP ykwn DTNN Al>SdqA' NN lk a 
k VBP ykwn DTNN Al>SdqA' NN lk u 
w VBP ykwn DTNN Al>SdqA' NN lk <empty> 
n VBP ykwn DTNN Al>SdqA' NN lk u 
space <space> <space> <space> <space> <space> <space> <empty> 
l NN lk VBP ykwn DTNN AlmsAEd a 
k NN lk VBP ykwn DTNN AlmsAEd a 
space <space> <space> <space> <space> <space> <space> <empty> 
A DTNN AlmsAEd NN lk DTJJ AlfEAl <empty> 
l DTNN AlmsAEd NN lk DTJJ AlfEAl <empty> 
m DTNN AlmsAEd NN lk DTJJ AlfEAl u 
s DTNN AlmsAEd NN lk DTJJ AlfEAl <empty> 
A DTNN AlmsAEd NN lk DTJJ AlfEAl <empty> 
E DTNN AlmsAEd NN lk DTJJ AlfEAl i 
d DTNN AlmsAEd NN lk DTJJ AlfEAl a 
... 
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Step 5. Train the CRF model. 

CRF++ uses templates to further process the input training data. The template we 

built incorporates a bigram of vowels and a context of ±4, so that if the current 

consonant is ci, then the above seven features are learnt for each of the 9 

consonants in {ci-4,…, ci, …, ci+4}. As an example, Figure 7.5 illustrates the context 

that is captured by the template command of U23:%x[-1,0]/%x[0,0]/%x[1,0]/%x[2,0]. 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 7.5. Sample template for CRF++. 

 

The complete template used is listed in Appendix B. 

CRF++ converts the input feature file according to the template, and the crf_test 

command is used to decode it. The figure below shows a sample of the output 

generated by CRF++ after testing. 

 

 

 

 

 

y VBP ykwn DTNN Al>SdqA' NN lk a 

k VBP ykwn DTNN Al>SdqA' NN lk u 

w VBP ykwn DTNN Al>SdqA' NN lk <empty> 

n VBP ykwn DTNN Al>SdqA' NN lk u 

space <space> <space> <space> <space> <space> 

l NN lk VBP ykwn DTNN AlmsAEd a 

k NN lk VBP ykwn DTNN AlmsAEd a 

 

 

 

U23:%x[-1,0]/%x[0,0]/%x[1,0]/%x[2,0] 

current consonant 
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Figure 7.6. CRF++ output. Each diacritic is listed with its marginal probability. 

 

There are several columns, of which a few are shown. The first column shown 

represents the consonant c whose diacritic we need to predict. The current word is 

then shown, followed by the diacritic that the model predicted. After this, the marginal 

probability for each of the fifteen possible diacritics is given, of which a few are 

shown. The lexical scorer uses these probabilities to calculate the score of the 

current word, as given in formula (12) in Section 4.8. We store this score with dw,i to 

build tuples sw,i and the set Sw. A sample of the final output of the lexical scorer is 

presented in the figure below. 

 

 

 
 

Figure 7.7. Different diacritization solutions with their scores, tw,i. 

 

The first column represents the ID of the solution (which is a concatenation of the 

word ID and its solution number i), the second column is the un-diacritized 

Buckwalter transliteration of the word, and the third represents the sequence of 

vowels of this solution. The last column gives the text-based diacritized score. 

 

# 0.087053 
A...  ATlE....  i    i/0.913122    a/0.085395    i/0.913122    o/0.000000  u/0.001355...     
T...  ATlE.....~a   ~a/0.993586    a/0.000815    i/0.000144   o/0.004988  u/0.000003 ... 
l  ... ATlE....   a    a/0.994231    a/0.994231    i/0.004455    o/0.000284    u/0.000306   
E ... ATlE....   a    a/0.958163    a/0.958163    i/0.016923    o/0.008431    u/0.015059   
space    .... <empty>/1. a/0.000000    i/0.000000    o/0.000000    u/0.000000    ~/0.000000     
A ...AlnA}b    <empty>    <empty>/0.999972    <empty>/0.999972    /0.000015    i/0.000008... 
l ... AlnA}b   <empty>    <empty>/0.999727    <empty>/0.999727    a/0.000168    i/0.000011....       
n....AlnA}b   ~    ~/0.999754    a/0.000000    i/0.000000    o/0.000000    u/0.000000    .. 
A... AlnA}b    <empty>    <empty>/0.999974    <empty>/0.999974    a/0.000000    i/0.000000...     
} ... AlnA}b       i    i/0.999950    a/0.000019    i/0.999950    o/0.000002    u/0.000028    ~/0.000000... 
b... AlnA}b       u   u/0.927505    a/0.022317    i/0.050107    o/0.000005    u/0.927505    ~/0.000... 

ANN20021015_0101_XML_1_1 ATlE a o a a -7.809711053 
ANN20021015_0101_XML_1_2 ATlE i ~a a a -0.145843514 
ANN20021015_0101_XML_1_3 ATlE a o u u -20.04889289 
ANN20021015_0101_XML_1_4 ATlE a o u a -15.8958508 
…. 
ANN20021015_0101_XML_2_1 ATlE <empty> <empty> <empty> <empty>  -35.72480241 
ANN20021015_0101_XML_2_2 AlnA}b <empty> <empty> ~ <empty> i <empty>  -10.15257198 
... 
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7.4 Processing: Speech-Based Diacritizer 
 

The speech required for building the speech model was personally recorded in a 

clean environment for this thesis. Three hours were recorded by a human using 

native knowledge of Arabic diacritization from selections of the training data 

mentioned in 7.1, to build a single-speaker model. A sampling rate of 48 kHz was 

used, at 16 bits per sample. 

To build the speech model prior to speech-based diacritization, we explain the 

processing required in the components discussed in 5.3. 

1. Feature Extractor 

 

We use HTK [42] as our toolkit for speech processing and recognition. The HCopy 

command is our feature extractor. Extracting the features is accomplished by the 

HCopy command as follows: 

HCopy -T 1 -C lib/cfgs/wave2mfcc.cfg -S lib/flists/train3hr_dataset.mfcc.scp 

where wave2mfcc.cfg converts the .wav sound files into feature vectors, using the 

configuration parameters below: 

 

 

 

 

 

 

Figure 7.8. Configuration file for the acoustic model. 

SOURCEFORMAT=WAV 

TARGETKIND=MFCC_E_D_A_T_Z 

TARGETRATE=100000.00 

SAVECOMPRESSED=T 

SAVEWITHCRC=T 

WINDOWSIZE=256000 

USEHAMMING=T 

PREEMCOEF=0.97 

NUMCHANS=26 

CEPLIFTER=22 

NUMCEPS=12 

ENORMALISE=T 
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The main features extracted are listed in TARGETKIND, as MFCC_E_D_A_T_Z, i.e. 

MFCCs; energy; first, second and third time differentials; and the zero mean. For 

other features, refer to the HTK Book. [42] 

Likewise, features are extracted from the speech files corresponding to the test data. 

The test data was read out and recorded personally for this thesis, producing 11 

hours and 40 minutes of speech. 

2. Acoustic Model 

To model speech using HMMs, we begin by using the HCompV tool of HTK to create 

prototype definitions for each phone to be modelled. We create prototypes for 3-state 

left-to-right HMMs, where each state is represented by one Gaussian distribution, 

such that each distribution has the same mean and variance of the feature vectors of 

the training data. We duplicate the prototype for each phone that we plan to model 

for our speech. 

In this thesis, we train the following 62 non-silent phones: 

 The 28 Arabic consonants. 

 28 geminated variations of the above. 

 The three short vowels (/a/, /i/, /u/). 

 The two diphthongs (/ay/ and /aw/). 

 An additional phone for the emphasized “L”. This is a pharyngealized form of the 

alveodental alveolar ل (/l/), and is used uniquely in the pronunciation of the Arabic 

name for God, Allah. It is modelled as a separate phone since its pronunciation is 

notably different from the regular vocalization of ل (/l/). 

To train the model, the HERest tool is then used to run the models through Baum-

Welch re-estimation [32], [43].  

Silence (sil) was also modelled and then tied with the short pause (sp) to make the 

model more robust [44]. 
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The phones were converted into tied-state context-dependent triphones. The HLEd 

tool, which edits transcription files, was used to convert the monophone 

transcriptions to triphone transcriptions. An example of this conversion is shown in 

the figure below. 

 

 

 
 

 
 

Figure 7.9. Monophone to triphone transcriptions. 

 

Modeling speech as triphones improves robustness since more context is included in 

the training. The models were then cloned and the transition matrices tied (i.e. the 

parameters shared) in each triphone set, by the HHED tool.  

Decision tree clustering is then applied to tie states together. Decision tree clustering 

[46] begins with the assumption that all states are equal in a single node, and by 

testing different classification questions, it uses decision tree algorithms to split the 

node such that the likelihood of diagonal covariance Gaussian of each child node is 

maximized [47]. The decision questions were based on Elshefai’s classification of 

Arabic consonants [45]. 

However, a single Gaussian distribution is often not enough to represent a state, so 

to more precisely model the data, HHED was used to iteratively increase the number 

of Gaussian components per state. This process is called “mixing up”. It is done by 

splitting the Gaussian distribution (with the highest prior) into two, and then 

perturbing the identical mean vectors by adding 0.2 standard deviations to one and 

subtracting them from the other [48]. The final number of components per state that 

yielded the highest accuracy was 24 components. 

Four Baum-Welch iterations were carried out in between each iterative increase. 

e  e+i+tt2 
i  i+tt2+a 
tt2  tt2+a+l 
a  a+l+a 
l  l+a+E 
E  a+E+a 
a  E+a 
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The accuracy was found by evaluating the test data using the HVite command to run 

the Viterbi algorithm for finding the best alignment between the transcript and the 

states of the model. In this step, the model was aligned against the reference 

transcript, ref_cns_sp_am.mlf, which was processed using the G2P layer (discussed 

below) to represent the test data’s phonetic pronunciation, and the vowels alone 

were allowed in it, as displayed in the figure below. 

 

 

 

 

 

 

 

Figure 7.10. Vowel reference transcript. 

 

During this step we also retrieved the word boundaries of each word, as covered in 

Section 5.4. 

The accuracy results of the evaluation (produced by the HResults tool) were:  

 

  

 

 

 

Figure 7.11. Accuracy results of the acoustic model. 

 

6.52 was the best error rate obtained, down from 10.09 before mixing up the 

Gaussian components to 24. 

#!MLF!# 
"test_dataset_prompts_ANN20021015_0101_XML_1.lab" 
i 
a 
a 
. 
"test_dataset_prompts_ANN20021015_0101_XML_2.lab" 
a 
a 
i 
u 
. 

 

    ,-------------------------------------------------------------. 

    | HTK Results Analysis at Tue Nov 15 00:57:57 2011            | 

    | Ref: lib/mlabs/shadd/ref_vwl_sp_am.mlf                      | 

    | Rec: res_24.mlf                                             | 

    |=============================================================| 

    |           # Snt |  Corr    Sub    Del    Ins    Err  S. Err | 

    |-------------------------------------------------------------| 

    | Sum/Avg | 1604  |  93.68   6.12   0.20   0.20   6.52  94.01 | 

    `-------------------------------------------------------------' 
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3. G2P Layer 

Similar to text normalization required for text processing, the G2P layer relies on 

some of the rules mentioned in Chapter 3. Given a fully diacritized word, the G2P 

rules that convert Buckwalter transliteration to phonetic transcriptions based on the 

62 modelled phones are as follows [45]: 

 Gemination of solar letters following the definite article ال (/al/), and elimination of 

the ل consonant from the phonetic pronunciation. 

 Appending the consonant ن (/n/) for nunation. 

 Conversion of an undiacritized ة (/t/), or the taa’ marbootah, to ه (/h/). 

 Normalization of alif maqsoorah (ى) to the long vowel alif (/aa/). 

 Normalization of the glottal stop, or hamza (ء); variant orthographic forms of the 

glottal stop were mapped to a single phone. 

 Eliminating alif of the definite article ال (/al/) if it is preceded by a prefixed 

consonant. 

 Eliminating alif if it is the last letter of a word and is preceded by an undiacritized 

 .و

 Words beginning with alif had the alif replaced by a glottal stop, since this more 

closely resembles the phonemic pronunciation of the text. 

Additionally, the following constraints were added: 

 Two consonants diacritized with a sukoon may not follow one another. 

 No diacritic can appear independently, without a consonant. 

 The two letters و (/w/) and ي (/y/) generally function as consonants, but are 

converted into diphthongs when preceded by the short vowel (/a/), while 

themselves being diacritized with a sukoon, or with no diacritic, and not followed 

by alif. However, since diphthongs are represented by the symbols (/aw/) and 

(/ay/) respectively, it was necessary to distinguish between words where a and w 
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were naturally juxtaposed and pronounced as consonants and when they 

represented a diphthong. To solve this problem, every phone in the phonetic 

transcription is separated by a space. Therefore l a w becomes distinct from l aw. 

4. Language Model 

 

The solutions provided by BAMA are phonetically transcribed and used as a 

language model to constrain the speech recognizer’s final recognition results from 

the acoustic model. 

5. Scorer 

The acoustic scorer is the final component of the speech-based diacritized, which 

actually scores the solutions provided by BAMA.  We cover the four-step processing 

of the scorer below.  

Step 1. Obtain all possible diacritized solutions. The solutions provided by BAMA 

can be obtained from the ATB3 corpus. All unique solutions have to be extracted. 

Step 2. Convert solutions into their phonetic transcriptions. This is done using 

the G2P layer mentioned above. Each solution dw,i ∈ Dw from BAMA is run through 

the G2P layer to obtain a phonetically transcribed version for alignment with the 

speech input. Figure 27 shows a few words after being phonetically transcribed. 

 

 

 

Figure 7.12. Diacritized words before and after G2P processing 

Step 3. Force alignment from speech data to identify word boundaries.  

Incoming text is diacritized with the help of incoming speech. We need to identify the 

words in the speech data so that they may be aligned with the text. Using the HVite 

command, the speech data is aligned with the reference file, as used above in 

Al$amsi       → a sh2 a m s i 
AlmunAsib     → a l m u n a s i b i 
fiy     → f i 
Altarobiy~api    → a t2 a r b i y2 a t i 
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building the acoustic model. This time however, the segment times of alignment are 

also displayed the resulting output file. The times appear as in the figure below. 

 

 

 

 

 

 

 
 

 
 
 
 

Figure 7.13. HVite output transcriptions, vowels predicted with time boundaries. 

 

The first two columns in the output file represent the beginning and ending time of the 

pronunciation of the vowel. The second column consists of the vowel pronounced 

(the consonant is implicitly included). We deduce from the given figure that the time 

window for the first word (i.e. from the beginning to the first “sp”) is 0 – 11900000 

milliseconds. Since we exclude short pauses, the next word is pronounced from 

12000000 to 2120000 milliseconds. We do this for each word w in the reference file, 

until we have all the time boundaries for each word. We generate an ID for each 

word from the filenames provided, and we store the word boundaries. 

Step 4 Scoring: Estimating maximum log likelihood. Given the word boundaries 

extracted in step 1, we may identify the specific time frame against which we want to 

align each word solution w to obtain an acoustic score. The figure below shows a 

sample of the alignment script for the three solutions to DANN20021115_0034_XML_2.  

 

#!MLF!# 
"test_dataset_prompts_ANN20021015_0101_XML_1.rec" 
0 5500000 i  
5500000 8600000 2a  
8600000 9800000 a  
9800000 11900000 a  
11900000 12000000 sp 
12000000 14000000 a  
14000000 17700000 2a 
17700000 19000000 i 
19000000 21200000 u  
21200000 21300000 sp 
... 
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Figure 7.14. Each solution in the MFCC feature file aligned against its word boundaries. 

The phonetic transcriptions of dANN20021115_0034_XML_2,1,dANN20021115_0034_XML_2,2 and 

dANN20021115_0034_XML_2,3 are prepared as follows (only two are shown): 

 

 

 

 

 

 

Figure 7.15. Phonetic transcriptions of solutions ready to be aligned. 

Scoring is done using the HVite command of the HTK.  

The acoustic scores are normalized for the utterance, and the most likely solution 

selected by the acoustic model is then simply the solution with the maximum log 

likelihood. Note that the alignment of valid diacritization sequences is constrained by 

the dictionary.  

The final output format of the acoustic scorer is identical to that in of the lexical 

scorer.  

6. Dictionary 

In addition to the above components, we also mention the building of the dictionary 

as part of the data processing. 

...ANN20021115_0034_XML_2_20_1.mfcc=…/ANN20021115_0034_XML_2.mfcc[1482,1551] 
…ANN20021115_0034_XML_2_20_1.mfcc=…/ANN20021115_0034_XML_2.mfcc[1482,1551] 
…ANN20021115_0034_XML_2_20_1.mfcc=…/ANN20021115_0034_XML_2.mfcc[1482,1551] 
... 

"*/test_dataset_prompts_ANN20021115_0034_XML_2_20_1.lab" 
e 
a 
l2 
a 
t 
i 
y 
. 
"*/test_dataset_prompts_ANN20021115_0034_XML_2_20_2.lab" 
e 
a 
l 
a 
t 
a 
y 
... 
.. 
… 
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We built two dictionaries, one for deriving acoustic scores, sw,i, and one for the first 

the alignment that extracted word boundaries. Deriving the scores was based on a 

simple one-to-one mapping between phones, since we were given the labels against 

which we wanted to align the model.  

However the initial alignment in extracting word boundaries required more 

processing. For this, our dictionary was a monophone, multi-pronunciation dictionary 

built to model regular consonants and case endings separately. Case endings were 

distinguished with an underscore. Given 28 consonants, 28 geminated versions of 

the same consonants, and the additional emphasized (/l/) consonant, this meant that 

the number of entries in the lexicon was doubled from 57 to 114. 

Since this is a multi-pronunciation dictionary, each entry is repeated with its different 

pronunciations. We take the output of vowels as the different pronunciations. There 

are three short vowels, and a sukoon, for a total of 4 pronunciations for each entry. 

Therefore from 114 entries we have 114 x 4 = 456. However, 57 of the consonants 

are case endings, to which an additional three pronunciations, (the three tanweens, 

or nunation diacritics) may apply. Therefore, we add 57x3 = 171 more entries.  

Diphthongs and long vowels also have to be accommodated. As mentioned above, 

the two letters و (/w/) and ي (/y/) function as diphthongs in some cases if preceded by 

(/a/), but they also function as long vowels when preceded by the short vowels (/u/) 

and (/i/) respectively. To deal with this, for every consonant, two more entries were 

added, one that was concatenated to (/w/) and one to (/y/). Each of these can have 

two possible pronunciations, as shown in the image below. We therefore now add 

these additional four entries for each of the initial 114 entries.  

Finally, we add the silence and short pause entries, sp and sil, for a total of 1085 

entries. Figure 7.16 lists samples of dictionary entries representing the different 

phones modelled in the system. 
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Figure 7.16. Regular consonants, geminated consonants, diphthongs, and case endings. 

This dictionary ensures that case endings are the only ones allowed to be diacritized 

by the tanweens. 

 

  

b    [o]    b 
b    [a]    b a 
b    [i]     b i 
b    [u]    b u 
t     [o]    t 
t     [a]    t a 
t     [i]     t i 
t    [u]    t u 

b2    [2o]    b2 
b2    [2a]    b2 a 
b2    [2i]     b2 i 
b2    [2u]    b2 u 
t2     [2o]    t2 
t2     [2a]    t2 a 
t2     [2i]     t2 i 
t2     [2u]    t2 u 

b2w    [2u]    b2 u w 
b2w    [2aw]    b2 a w 
b2y     [2i]    b2 i y 
b2y     [2ay]    b2 a y 
t2w     [2u]    t2 u w 
t2w     [2aw]    t2 a w 
t2y      [2i]    t2 i y 
t2y      [2ay]    t2 a y 

_bw    [u]    b u w 
_bw    [aw]    b a w 
_by    [i]    b i y 
_bw    [ay]    b a y 
_tw    [u]    t u w 
_tw    [aw]    t a w 
_ty    [i]    t i y 
_ty    [ay]    t a y 
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7.5 Processing: Weighted Interpolation 
 

Given Sw and Tw, we are interested in interpolating them, and finding the optimal 

values of the interpolation weights. 

We begin by associating both sets of scores, Sw and Tw, with each solution, as listed 

below: 

 

 

 

 

Figure 7.17. Sw and Tw 

 

All entries were sorted by solution ID and then by the scores in Tw. Interpolation can 

now be applied using equation (23). 

From the complete set of interpolated results, we select for each word w, the solution 

producing the maximum interpolated score. This is the best solution for w. We take 

this solution and refer back to the list of BAMA solutions, Dw, to extract its vowel 

transcriptions, which we can evaluate against our reference. 

In the case of selecting the n-best solutions and finding oracle error, we keep the 

solutions sorted by Tw scores, as we are interested in seeing the effects of speech on 

text-based diacritization, and not vice versa. 

   

ANN20021015_0101_XML_1.1_1   ATlE a o a a -7.809711053 -63.3859 
ANN20021015_0101_XML_1.1_2   ATlE i ~a a a -0.145843514 -65.3133 
ANN20021015_0101_XML_1.1_3   ATlE a o u u -20.04889289 -64.5849 
ANN20021015_0101_XML_1.1_4   ATlE a o u a -15.8958508 -63.9714 
ANN20021015_0101_XML_1.1_5   ATlE a o u o -20.62895333 -64.4178 
ANN20021015_0101_XML_1.1_6   ATlE a ~a i u -12.07641006 -67.6933 
... 
ANN20021015_0101_XML_1.2_1   AlnA}b <empty> <empty> ~ <empty> i <empty> ...  
... 
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8. Experiments: Weighted Combinations 

All experiments in this chapter are tested using the same dataset proposed by Zitouni 

et al. [6].  The evaluation metrics are also the same, with two points to note. 

1. Firstly, current literature on diacritization uses all tokens from the established 

datasets in calculating error, but we exclude numbers and punctuation. This is 

because there is no variation in learning these tokens’ diacritics; they all have 

“no diacritic”. Hence including them in evaluation portrays a slightly optimistic 

measure of the true diacritization accuracy of Arabic words. 

2. In the case of computing error without case endings, calculations are usually 

made after removing the diacritics on the final consonant of a word, but letting 

the final consonant remain. For the same reason as above, we suggest a new 

metric: DERabs no CE– this is the absolute diacritization error rate that 

excludes the final consonant  

The results of the interpolation are listed in the table below. 

 

The error rates of the individual text-based and speech-based diacritizers are listed in 

the TEXT and SPEECH columns in Table 8.1 above. For both columns, DER CE is 

comparable. However, within the TEXT column, DERabs differs from DER CE by 

47.7%, while there is no significant reduction to DERabs in SPEECH. This confirms 

the hypothesis that text features contribute to systematic inflectional errors, while 

acoustic features generate regular errors throughout the text. For the same reason, 

 T 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 S 
DER CE 4.4 3.9 3.5 3.1 2.6 2.2 1.9 1.6 1.6 2.3 4.7 

DERabs no CE 2.1 2.0 1.8 1.7 1.6 1.5 1.4 1.3 1.4 2.0 4.4 
DER no CE 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.1 1.6 3.5 

WER CE 17.1 14.8 13.1 11.2 9.4 7.5 6.2 5.2 5.2 7.0 12.0 
WER no CE 5.2 4.8 4.5 4.2 3.9 3.5 3.2 3.0 3.4 5.0 9.4 

 
Table 8.1. Weighted interpolations of text and speech, using TEXT:SPEECH ratios. “CE” 
and “no CE” refer to Error Rates with and without Case Endings. (T: Text, S: Speech.) 
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we note that WER CE for SPEECH is significantly better than it is for TEXT, although 

in other evaluation metrics, SPEECH is worse than TEXT. 

We further found that while the text-based diacritizer incorrectly predicted 13.6% of 

all case endings, the speech-based diacritizer only did so for 6.1%. This can be seen 

in Table 8.2, where we include the prediction accuracy of case endings only. 

 

 

Table 8.2 Prediction error of “CE only”: case endings alone; “Non-CE”: all other characters; 

“Overall”: both of the above. “Best” refers to the best TEXT:SPEECH ratio; i.e. 3:7. 

We experimentally derived the optimal values of the interpolation weights, α for TEXT 

and β for SPEECH. The results in Table 8.1 show that the interpolation improves 

diacritization across all metrics consistently, until it peaks at α = 0.3 and β = 0.7. 

Most importantly, the “Best” column in Table 8.2 indicates that acoustic information 

plays a significant role in lowering the error rates of inflectional diacritics. 

We found instances where the speech-based results were corrected by the text-

based results, and vice versa. We illustrate an example of the latter. Figure 8.1 

presents two tuples from sets T109839 and S109839. The set of solutions for word 

109839 is D109839, which consists of 17 solutions, each with an ID, the sequence of 

consonants of word w (whm in this case), and a sequence of vowels. The vowel 

sequence for Solution 6 is aoi, shown in the example. A solution is stored with its 

text-based score to form the top tuple, (d109839,6, t109839,6) ∈ T109839, and with its 

acoustic score to form the bottom tuple, (d109839,6, s109839,6) ∈ S109839. 

 

109839_6       w h m   a o i  -19.86843 

109839_6       w h m   a o i  -52.45680 

 
Figure 8.1. Sample tuples from the scored sets. 

 

      Text Speech Best 

CE only 13.6 6.1 2.8 

Non-CE 2.1 4.6 1.3 

Overall 4.4 4.7 1.6 
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The scores are combined as in Equation (22) to produce a new score, a109839,6. 

Likewise, the scores from other solutions are combined, producing a set of 17 

scores, a109839,1, …, a109839,17, from which the best solution may be selected.      

Figure 8.2 shows the different solutions of the word whm chosen by the two 

diacritizers: 

(a) 109839_6         w h m   a o i     

(b) 109839_9         w h m   a u <empty>           

Figure 8.2. Textually scored solution corrected by combination with acoustic score. 

The text-diacritizer initially selected (a), which is the sixth solution, d109839,6 ∈ D109839. 

Later, combined with the acoustic score, the speech-based diacritizer’s choice, (b) 

d109839,9, was finally selected. The correctly diacritized word is in fact wahum. 

(<empty> corresponds to “no diacritic”). 

Overall, we can conclude from our experiments that while text and speech do 

complement each other, acoustic information is a crucial factor in “canceling out” the 

text-based errors.  

 

8.1 Varying base solutions 

 

BAMA generates morphological analyses for words using linguistic rules hard-coded 

in three tables: prefixes, stems and suffixes. Words are segmented into prefix-stem-

affix triples before they are analyzed against the corresponding tables. 

As described in Section 4.4 above, in contrast to the surface form of words used 

above, MADA [4] operates on their functional form, extending BAMA with a lexicon of 

lexeme and feature keys. When a word is input, it is analyzed not by its triples, but by 

its lexeme and feature keys [23]. 
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On average, MADA produces 2 less solutions for a word than BAMA10. As a 

diacritizer, it produces close to the most accurate results in the literature. We 

therefore investigate its use in our combined system. 

We are interested in the effect of varying base solutions in our combined diacritizer. 

We evaluate our diacritizer on three different sets of base solutions from which we 

select dw
*: BWT, MADA, ALL.  

BWT is the set of solutions generated by BAMA, MADA is the set generated by 

MADA (version 3.1) [49], and ALL is the union of BWT and MADA. The results are 

shown in Figure 8.3. 

Despite the superiority of MADA for diacritization and morphological analysis, using 

its analyses as the base solutions in a combined diacritizer causes a reduction in 

accuracy. This suggests that BAMA’s less rigorous analysis produces solutions that 

more closely resemble the linguistic insensitivity of speech. 

 

 

 

 

 

 

 
Figure 8.3. Comparing error from three sets of base analyses in combined diacritization. 

 

 

This gives the speech-based diacritizer the flexibility to choose solutions differently 

from the text-based diacritizer. This disparity in the choice of each diacritizer is what 

combines the advantages of the text model’s morphological sensitivity with the 

                                                           
10

 Calculated from the solutions provided by BAMA and MADA for the test dataset. 



 
87 

syntactic accuracy of the speech model. Note that inclusion of MADA’s solutions in 

ALL slightly confuses the diacritizer’s choices as well. 

 

8.2 N-Best 
 

We have concluded that the solutions generated by BAMA produce the best results 

in our system. From an efficiency and implementation point of view, we are interested 

to know how many solutions are actually necessary for this. We generate N-best lists 

and find the oracle error.  

Using the existing setup, we select the N best solutions, scored by the text-based 

diacritizer, and interpolate them with speech. We vary N from 1 to 20, and plot the 

results in the graph below. 

 

Figure 8.4. N-best solutions’ error. 

The error improves quickly until approximately N=5, after which there is little change 

in any metric, suggesting that the top 5 textually diacritized solutions are sufficient to 

achieve the best error rates.  
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8.3 Varying the Text-based model 
 

As opposed to the probabilistic framework of CRFs, Support Vector Machines 

(SVMs) are non-probabilistic linear classifiers, explained above in Section 4.5. We 

compare the accuracy of SVM-based diacritization with our CRF-based method. We 

keep in mind that the SVMs of MADA, which are trained on 14 different features 

linguistic features, are used to tag possible solutions, while the CRFs are trained on 

one linguistic feature (POS), but a combination of other features extracted from the 

consonants alone. (Section 4.7) 

To compare the performance of the SVM-based MADA approach with the CRF-

based approach in our system, we used two models, Tcrf and Tsvm, both of which 

selected solutions provided by MADA (in place of BAMA). We choose MADA 

solutions for compatibility, since MADA’s model operates on the solutions produced 

by MADA’s analysis engine, ALMORGEANA. We trained CRFs to build Tcrf, with the same 

configurations in Chapter 7.3 (Step 5. Train the CRF model.), on the training data 

described by Zitouni et al. [6]. Tsvm is already available in MADA. The models were 

used to score the solutions for each w to produce the sets Tw
crf and Tw

svm. The best 

diacritized solutions were selected according to formulas (7) and (8). Table 8.3 lists 

the results. 

      SVMs CRFs 

DER CE 5.4 4.8 

DERabs no CE 2.6 2.2 

DER no CE 2.1 1.7 

WER CE 20.1 18.4 

WER no CE 6.4 5.3 

Table 8.3. Text-based diacritization using CRFs vs. SVMs, before combining speech. 

The individual scored sets, Tw
crf and Tw

svm, were then interpolated with speech for 

each word w. The optimal combined values are reported in Table 8.4.  
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      SVMs CRFs 

DER CE 2.8 2.0 

DERabs no CE 2.2 1.5 

DER no CE 1.8 1.2 

WER CE 8.7 6.5 

WER no CE 5.5 3.6 

Table 8.4. Text-based diacritization using CRFs vs. SVMs, after combining speech. 

 

Both Tables 8.3 and 8.4 above suggest that CRFs are superior to SVMs at modeling 

Arabic diacritic patterns. This is especially so given that SVMs were trained on 

several linguistic features, while the only linguistic feature explicitly learned by the 

CRFs is POS. This can be understood through the long context and consonant-vowel 

conditional dependencies across words that are captured by CRFs. We further 

explored the power of CRFs by testing a model that did not explicitly learn any 

linguistic features. Using a reduced subset of the training data (~200K words), two 

models were built, With_pos and Without_pos, and tested them on the same test 

dataset used throughout this thesis. 

The configuration of With_pos and Without_pos was identical to our text model in 

Chapter 7 (Step 5. Train the CRF model.). The one difference was that the training of 

Without_pos excluded morphological information; the current, previous and next POS 

features were removed. The two models were allowed to freely diacritize text, without 

being constrained by BAMA’s solutions. 

Surprisingly, the results in Table 8.5 show that with the exception of WER CE, POS 

features offer little to no significant reduction in error, confirming the strength of CRFs 

in modelling diacritics without excessive information. However, the 20% reduction in 

WER CE from 21.4 to 17.1 shows that POS does offer some useful cues in predicting 

case endings. 
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      Without_POS With_POS 

DER CE 5.4 5.4 

DER no CE 3.5 3.4 

WER CE 21.4 17.1 

WER no CE 7.5 7.4 

Table 8.5. CRF-based diacritization with and without learning linguistic features. 

 

This invites the question, what other linguistic features are useful specifically for 

predicting case endings? We experiment with some options in the next chapter. 
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9. Experiments: Text-based Diacritization 

9.1 Linguistic Features at Three Different Levels 
 

Following the results from the previous chapter, we are interested in finding those 

features that contribute the most to improving diacritization, particularly case endings. 

Previous studies such as Rashwan et al. [16], Nelken and Scheiber [9] have 

combined diacritization techniques at various levels, such as character and word, or 

morpheme and word. Schlippe [5] compared diacritization at three different levels: 

phrase, word and character. However, Schlippe’s study was in SMT rather than 

CRFs, which he concluded were likely to perform better than SMT approaches. 

Furthermore, these different levels that have been compared have been in terms of 

content, but not in terms of explicit features representative of the underlying syntax of 

the said level. 

We propose here to study the diacritizing potential of features at different structural 

levels. That is, rather than only using training text in chunks of phrases, words and 

characters, we employ features that capture information from those levels of 

structure. 

We will use BPC tags to capture phrase-level features, POS tags to capture word-

level features, and proclitic information to capture morpheme-level features.  

BPC 

 

We obtain the BPC tags from AMIRA 2.0 [50] [51], a non-recursive base-phrase 

chunker, which tags words based on their base phrase chunks. The BPC tags 

produced by AMIRA 2.0 are listed in Appendix D. 

Base Phrase Chunking has not been previously explored for diacritization purposes. 

Revisiting the flexible syntax of Arabic mentioned in the Chapter 1, we recall that all 
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of the following arrangements of Verb Subject and Object are valid in an Arabic 

sentence: VSO, SVO, VOS, SOV.  

Recall also that the function of an Arabic word, such as whether it is the subject or 

object of a word, directly affects its case. This effect may often be extended from 

words to phrases, such as from a verb to an entire verbal phrase. The previous two 

facts, coupled with a flexible phrasal structure, mean that phrase-level tags may carry 

important information that spans across multiple words and helps in predicting the 

diacritics of individual words. The question is: whether or not the captured information 

is the same as that which is captured by other tags, such as POS. The hypothesis is 

that to some level, BPC must be able to improve inflectional diacritization. 

POS  

The POS feature is first discussed in detail in Chapter 4, Section 4.1. The tags for the 

experiments in this section are obtained from MADA 3.1, and are listed in Appendix 

D.  

PRC1 

The proclitic feature, PRC1, indicates what the first proclitic of a word is, and whether 

one is attached to the word or not. The values that PRC1 may assume are listed in 

Appendix E. Among the values are the different prepositional clitics in Arabic, which 

directly affect the inflectional diacritics of a majority class of nouns. 

To illustrate a case of PRC1, consider the word AlkitAbu (meaning “the book”) in 

Arabic. If AlkitAbu (          ) is prefixed by the proclitic bi (   ), meaning “by”, then the 

word becomes bilkitAbi (           ). (For the orthographic rules that eliminated the letter 

A, see Chapter 3.) For this word, the PRC1 feature is “bi_prep”. If the word had no 

proclitic, then PRC1 = 0. 
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The tags from each of the above three levels may be used to tag each word w from 

the test set.  

Our experimental setup is as follows.  

The training and testing data is the same subset of approximately 200K words used 

in Section 8.3, in our With_POS and Without_POS text models. We carry forward 

those two models, and for ease of comparison in the following experiments, we 

rename them to consonants and consonants+POS. 

We train models on joint features and on multiple independent features. We denote 

joint features by concatenating them with &, and independent features with +. For 

example, a model that is trained on POS and PRC1 as two different features will be 

referred to using POS+PRC1. A model trained on POS and PRC1 as a single, joint 

feature will be referred to as POS&PRC1. For each feature added, the models are 

trained after incorporating the same features for the previous, current and next 

words. 

Our results are as follows: 

Features DER DERabs no CE WER WER no CE 

Consonants 5.4 3.51 21.41 7.53 
     

consonants+POS 5.39 3.42 17.06 7.39 

consonants+PRC1 5.94 3.54 18.93 7.73 

consonants+POS+PRC1 5.8 3.38 19.05 7.42 

consonants+POS&PRC1 7.47 3.34 26.28 7.29 

consonants+POS+PRC1+POS&PRC1 6.21 3.38 20.74 7.38 
     

consonants+BPC 6.26 3.66 19.99 7.96 

consonants+POS+BPC 6.77 3.56 22.76 7.67 

consonants+POS&BPC 6.53 3.5 21.83 7.56 

consonants+POS+BPC+POS&BPC 6.81 3.53 22.97 7.59 
 

    

Table 9.1 Comparing features at three levels: CRFs. 

The first section of the table focuses on POS and PRC1; the second section focuses 

on POS and BPC. Consistent with the results in Section 8.3, consonants alone are 



 
94 

sufficient to diacritize with reasonable accuracy. However, comparing the WER and 

WER no CE columns, we see that the other two features do improve inflectional 

diacritization. While BPC mostly reduces accuracy, our hypothesis of BPC being able 

to diacritize case endings is not incorrect, since it still gives 6.6% improvement of 

WER no CE over consonants. However, comparing the performance of 

consonants+BPC and consonants+PRC1, BPC is less effective than the 

morpheme-level PRC1. Also, the word-level POS feature is still the highest 

contributor to inflectional diacritization accuracy.  

A possible justification for the phrase-level results may be that there are fewer BPC 

tags in comparison to the number of POS tags; therefore the information provided by 

BPC is not discriminative enough. It would be interesting to see if the errors decrease 

with more training data. However, given these findings, phrase-levels features do not 

appear to be useful in comparison to word-level features. 

POS and BPC (word and phrase level) features, when used together as independent 

features, increase consonants’ WER by 6.3%, but relating them as a joint feature 

brings them closer to the performance of consonants, with only 2.0% increase. These 

results are indicative of the dependency between word and phrase level features. 

After all, a phrase’s “verbal phrase” tag requires the presence of a word that has 

“verb” as its POS tag. The drop in accuracy when POS and BPC appear together 

may also be the result of giving unique treatment to two features that are inherently 

dependent – to the point that one of them is almost subsumed by the other. 

The POS and PRC1 (word and morpheme level) features show the opposite 

behaviour. PRC1 performs next to POS in predicting case endings, and better than 

phrase-level BPC when used as an independent feature with POS. But when 

connected with POS as a joint feature, it brings the greatest increase (22.7%) in the 

WER from that of consonants. This can be further seen in the fact that POS&PRC1 
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creates the highest increase in DER as well (38.3%). On the other hand, it generates 

the highest decrease in error without case endings (DER no CE and WER no CE). 

This appears to be in confirmation with the results of Rashwan et al. [16], who show 

that diacritization at the level of morphemes may have advantages over word-level. 

When word and morpheme-level features are used together independently as well as 

in joint features (consonants+POS+PRC1+POS&PRC1), they offer small 

improvement across all metrics except DER.  

When the same is done with word and phrase-level features, they appear only to add 

noise. 

Overall, the findings show that the word-level POS feature remains the most effective 

for diacritization, and in particular for case endings, followed by PRC1. 

In order to examine how strongly these conclusions correspond to the nature of the 

features chosen versus how much they are influenced by the learning model, we 

perform one more experiment. We attempt to examine similar features while using 

SVMs in the learning model instead of CRFs.  

MADA is employed once again, to take advantage of its SVM-based model. 

However, incorporating features that are not already available in MADA’s 

implementation is complex, so our experiment excludes BPC and joint features, and 

offers only a partial comparison to the CRF-based results of this section. 

The baseline model of MADA consists of 19 features, as discussed in Section 4.5 

(Tables 4.1 and 4.2). For this experiment, unit weights were assigned to all feature 

classifiers. In this way, the effect of individual features could easily be “turned on or 

off” by assigning them weights of 1 or 0.  

The results obtained on the test data are listed in Table 9.2 below 
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Table 9.2 Comparing POS, PRC1 and POS+PRC1 using SVMs 

 

In general, these results appear more accurate than those of our CRF-based model 

in Table 9.1. This does not mean that SVMs provide a better model for diacritization 

than CRFs, as we recall that the results in Table 9.1 were derived from a sub-optimal 

CRF-model that was stripped of its next and previous words’ context.  

The results in Table 9.2 do suggest that some of the feature behaviour we observed 

in Table 9.1 may be partially attributed to the learning model. In particular, we note 

that the baseline is improved by the addition of other features in almost all cases, and 

that the best case is always that with the most features turned on. In contrast, the 

baseline CRF model was already performing at an almost optimal level, before the 

inclusion of additional features. We also note that the differences in error rates of 

Table 9.2 are not as varied as they were in the CRF-based model. 

While we do not have the results for joint features, we can see that the independent 

combination of POS and PRC1 does not increase error. We also see that similar to 

the results in the CRF model, the POS feature improves the results across all 

metrics. With the exception of DER, it offers greater improvement than PRC1. In fact, 

when POS and PRC1 are combined, we note that the improvement of 

Baseline+POS+PRC1 over Baseline+POS is either minimal, and where case endings 

are not included, (in the DERabs no CE and WER no CE columns) it is non-existent. 

This also means that the PRC1 feature offers some insight into case endings. 

From the feature trends of this short SVM-based experiment, we arrive at the same 

conclusion regarding POS and PRC1 that we did while using CRFs. That is, word-

Features DER DERabs no CE WER WER no CE 

Baseline 5.25 1.93 19.44 5.84 
     

Baseline+POS 5.23 1.90 19.34 5.74 

Baseline+PRC1 5.20 1.93 19.35 5.82 

Baseline+POS+PRC1 5.19 1.90 19.28 5.74 
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level features are the most useful for improving diacritization accuracy. The only 

exception is in DER, where POS decreases the baseline from 5.25 to 5.23, while 

PRC1 pulls it down to 5.20. Their independent combination brings it to 5.19. In the 

DERabs no CE column, we note than any improvement is brought about only by POS, 

with the PRC1 offering no error reduction on its own or in combination with POS.  

To the WER baseline of 19.44, POS brings a 0.1 reduction in error, PRC1 brings 0.9, 

and their independent combination brings a reduction of 0.16. To WER no CE, POS 

brings a reduction of 0.1 to the baseline again, while PRC1 brings only 0.02. 

Together their induced reduction is 0.1. 

Combining the results from the above two experiments, we conclude that word and 

morpheme-level features are independent and that word-level features are most 

useful in improving diacritization. From Table 9.1 we also deduced that phrase-level 

features are the least useful in inflectional diacritization. 

Considering the fact that our experiments have shown PRC1 to be next to POS in 

increasing accuracy, that PRC1 may carry information relevant to case endings, and 

that Rashwan et al. [16] achieve superior results using diacritization at morpheme-

level in one of the modes of their diacritizer, we are interested to see how far we can 

take advantage of morpheme-level diacritization using CRFs.  

9.2 Token-Level Diacritization 
 

We use TOKAN [49], MADA’s companion tokenizing tool, to tokenize the training 

data. We tokenize all clitics11, both proclitics and enclitics. To take an example of 

clitic tokenization, we consider the word AlkitAbu (“the book”) once again. Al is a 

clitic, it is the definite article in Arabic (meaning “the”), and is prefixed to the word it 

defines. In tokenized form, AlkitAbu will appear as follows: Al+ kitAbu.  

                                                           
11

 This is done using the D3 scheme. Details can be found in the user manual available with 
the MADA+TOKAN download from [49]. 



 
98 

The training text was tokenized and used to train the CRFs. However, distinct from 

Rashwan [16] and Neilken and Sheiber [9], we retained the word level information 

during training, as shown in the figure below, via the word boundaries. 

 

 

 

 

 

Figure 9.1 Tokenized words for CRF training. 

The format of training our CRFs is: 

<consonant> <current_pos> <current_token> <current_word> <previous_pos> … 

12
<previous_token> <current_word> <next_pos> <next_token> <next_word> 

The results for the above experiment are given in the table below. The error rates 

improve across all metrics except WER. 

Features DER DERabs no CE WER WER no CE 

consonants+POS (words) 5.39 3.42 17.06 7.39 

consonants+POS (tokens) 4.95 2.6 19.06 7 

Table 9.3 Tokenized words versus full words 

 

No previous studies have discussed diacritization at token level using CRFs. Our 

results are in agreement with Rashwan et al [16] that morphemes are more useful 

units from which to predict diacritics than words. Different templates, training formats, 

and feature combinations could be experimented with in future. Although further 

investigation is required to discover which features besides POS, if any, are most 

useful for inflectional diacritization, we have found promising results in tokenizing 

before diacritization. In combination with the speech-based diacritizer, we expect that 

                                                           
12

 The format of features is in one line, broken here due to lack of space. 

A noun Al AlnA}b verb ATlE ATlE noun nA}b AlnA}b 
l noun Al AlnA}b verb ATlE ATlE noun nA}b AlnA}b 
n noun nA}b AlnA}b noun Al AlnA}b adj Al AlEAm 
A noun nA}b AlnA}b noun Al AlnA}b adj Al AlEAm 
} noun nA}b AlnA}b noun Al AlnA}b adj Al AlEAm 
b noun nA}b AlnA}b noun Al AlnA}b adj Al AlEAm 
<space><space><space><space><space><space><space><space><space><space> 
A adj Al AlEAm noun nA}b AlnA}b adj EAm AlEAm  
l adj Al AlEAm noun nA}b AlnA}b adj EAm AlEAm  
…. 
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using tokenized words in training for the text-based diacritizer will help the overall 

combined diacritization to generate more accurate results. 
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10. Conclusions and Future Work 
 

Many studies have dealt with diacritization of Arabic in a text-based environment, but 

have not been able to predict case endings with reliable accuracy. 

This thesis explores the possibility of bringing speech into the process. No previous 

work on diacritization has been done that studies the effects of speech for its own 

merits, rather than as a sub-task of a broader objective. 

The main contribution of this thesis is to propose and demonstrate a system which 

validates the hypothesis that speech input has advantages that can be used to build 

successful diacritization systems. The results reported are promising, and the 

diacritization of the speech-and-text combined system has lower error rates than the 

best systems reported in the literature. The most significant contribution is the 

improvement of the diacritization of case endings. Other sub-areas have been 

investigated, and are summarized below with the overall conclusions to the thesis’ 

contributions. 

10.1 Conclusions 

1. Combining speech with text-based diacritization. Individual speech and text-

based diacritizers were built and evaluated. A weighted combination of the systems 

was proposed and described. Interpolating text and speech poses some challenges 

since the processing of phonetic information for speech recognition and orthographic 

information for linguistic methods are different. The method of combination proposed 

consists of a weighted interpolation of the scoring of all possible diacritization 

solutions. Acoustic scores are generated by a HMM-model of speech, and textually 

derived scores by modelling the consonant and diacritic dependencies using CRFs. 

For interpolation, the acoustic scores were generated at word-level and the textually-

derived scores were generated at diacritic-level. 
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N-best lists for the system were explored, and it was found that N=5 is sufficient for 

the system’s performance. 

Within the combined framework, the use of different base solutions was studied. The 

solutions provided by MADA, a SVM-based morphological analyzer, and BAMA, a 

rule-based analyzer, were compared. It was found that BAMA produces the solutions 

that best allow the advantages of acoustic information to be used. The disparity 

between the speech-based and text-based diacritizers is what allows their strengths 

to be combined. 

We also varied the text-based model of the combined framework. CRFs and SVMs 

were compared in this context. The comparison revealed that a CRF-based model 

without being trained on morphological information did almost as well as a model with 

that training. CRFs were found to have strengths over SVMs that can be utilized for 

diacritization even in the absence of sophisticated annotated corpora. The 

advantages stem from the very structure of the probabilistic, contextual model of 

CRFs, compared to the linear classification technique of SVMs. 

2. Varying features at different levels for text-based diacritization in CRFs. 

The above comparison between CRFs and SVMs led to a study of features that are 

most suitable for predicting diacritics. Phrase-level, word-level and morpheme-level 

features were compared, using CRFs. Previous studies [5], [9], [12], [16] have 

studied diacritization at various levels but typically in the context of chunks of text, 

rather than features. 

It was hypothesized that phrase-level features would carry long syntactic context 

across words and aid in inflectional diacritics. The initial experiments showed that 

phrasal information is in fact not significantly helpful in predicting case endings. The 

morpheme-level information carried by the proclitic feature was found to be more 
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useful than phrase-level BPC tags. Word-level POS tags and morpheme-level PRC1 

tags were most useful for inflectional diacritization. These results were concluded 

after experimenting with various combinations of the three features on a CRF-based 

model as well as a SVM-based one. 

A model was also built on data in which all clitics were tokenized, while retaining 

word information. The results obtained were better than any of the other feature 

combinations. 

10.2 Future work 

The experiments in Chapter 9 only explored a few features. Further research is 

needed into features that prove useful for predicting case endings, using CRFs. 

Although the features studied do not improve diacritic error rates at character level, it 

may be possible to incorporate a model of the optimal features into the prediction of 

case endings specifically. This may be done using factored language models (FLMs) 

[52]. 

Based on features that are discovered to be useful, it is planned to involve LMs in the 

system. They will be incorporated into the solutions-scoring layer of weighted 

interpolations. Vowel LMs are currently being experimented with. The improved 

system results can be further used to train a new and more accurate CRF model.  

Inflectional diacritics are difficult to predict even for lay humans, and consequently, 

fully diacritized books for educational purposes tend to have high error rates. Pure 

text-based diacritization systems, while accurate in lexemic diacritization, do not 

produce the best results in case endings either. The current system has an accuracy 

rate of inflectional diacritization better than typically available in existing reading texts 

for non-natives, and since it uses speech, it may be found to be a more natural and 

efficient way to diacritize text. It could therefore be used to complement the 

production of fully diacritized texts, which are necessary for learners of the language. 
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Moreover, since combined diacritization is a general framework, more sophisticated 

underlying speech and text models are likely to lead to greater reduction in error. 

However, in the interest of efficiency and limited expert knowledge, an interesting 

side question that arises is how much speech is necessary for an accurate 

diacritization system. To begin with, the vocalization of case endings alone may 

prove to be sufficient. 
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Appendix A 

Buckwalter Arabic Transliteration. 
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Appendix B 

Template used for CRF++ training: 
 
U00:%x[-4,0] 

U01:%x[-3,0] 

U02:%x[-2,0] 
U03:%x[-1,0] 

U04:%x[0,0] 

U05:%x[1,0] 
U06:%x[2,0] 

U07:%x[3,0] 

U08:%x[4,0] 
 

U09:%x[-1,0]/%x[0,0] 

U10:%x[0,0]/%x[1,0] 
U11:%x[-2,0]/%x[-1,0] 

U12:%x[1,0]/%x[2,0] 

U13:%x[-3,0]/%x[-2,0] 
U14:%x[2,0]/%x[3,0] 

U15:%x[-3,0]/%x[0,0] 

U16:%x[0,0]/%x[3,0] 
U17:%x[-2,0]/%x[0,0] 

U18:%x[0,0]/%x[2,0] 

U19:%x[-4,0]/%x[-3,0] 
U20:%x[3,0]/%x[4,0] 

U21:%x[-4,0]/%x[0,0] 

U22:%x[0,0]/%x[4,0] 
 

U23:%x[-1,0]/%x[0,0]/%x[1,0] 

U24:%x[-2,0]/%x[-1,0]/%x[0,0] 
U25:%x[0,0]/%x[1,0]/%x[2,0] 

U26:%x[1,0]/%x[2,0]/%x[3,0] 

U27:%x[-3,0]/%x[-2,0]/%x[-1,0] 
U28:%x[2,0]/%x[3,0]/%x[4,0] 

U29:%x[-4,0]/%x[-3,0]/%x[-2,0] 

 
U30:%x[-1,0]/%x[0,0]/%x[1,0]/%x[2,0] 

U31:%x[-2,0]/%x[-1,0]/%x[0,0]/%x[1,0] 

U32:%x[0,0]/%x[1,0]/%x[2,0]/%x[3,0] 
U33:%x[-3,0]/%x[-2,0]/%x[-1,0]/%x[0,0] 

 

U37:%x[-3,0]/%x[-2,0]/%x[-1,0]/%x[0,0]/%x[1,0] 
U38:%x[-2,0]/%x[-1,0]/%x[0,0]/%x[1,0]/%x[2,0] 

U39:%x[-1,0]/%x[0,0]/%x[1,0]/%x[2,0]/%x[3,0] 

U100:%x[0,1] 
U200:%x[0,2] 

U300:%x[0,3] 

U400:%x[0,4] 

U500:%x[0,5] 

U600:%x[0,6] 

B  
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Appendix C 
 

Classification of Arabic consonants by M. Elshefai, 1989. 
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Appendix D 
 

Tag Lists. 

 

MADA: 

verb, noun, adj, noun_prop, prep, noun_num, punc, conj_sub, pron_rel, part_verb, 

part_neg, conj, abbrev, part_interrog, pron_dem, pron, adv_rel, adv, part_restrict, 

part_det, part_fut, part, part_focus, interj 

 

Stanford POS Tagger: 

VBD, DTNN, VBP, NN, DTJJ, IN, WP, NNP, RP, JJ, NNS, NOUN, DTNNS, RB, 

DTNNP, PRP, CD, CC, VBG, DT, VN, ADJ, VBN, WRB, PRP$, JJR, DTJJR, PUNC, 

VB, DTNNPS, UH 

 

AMIRA 2.0 BPC: 

VP, NP, PP, PUNC, SBAR, WHNP, ADJP, WHADVP, PRN, CONJP, ADVP, NAC, S, 

WHPP, LST 
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Appendix E 
 

Values of PRC1, taken from MADA+TOKAN user manual, v3.1.13  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

                                                           
13 Available at  http://www1.ccls.columbia.edu/MADA/. 

 

LABEL  prc1  part  
No proclitic  0  NO  
Not applicable  na  NA  
Particle bi  bi_part  YES  
Preposition bi  bi_prep  YES  
Preposition ka  ka_prep  YES  
Emphatic Particle la  la_emph  YES  
Preposition la  la_prep  YES  
Response conditional la  la_rc  YES  
Jussive li  li_jus  YES  
Preposition li  li_prep  YES  
Future marker sa  sa_fut  YES  
Preposition ta  ta_prep  YES  
Particle wa  wa_part  YES  
Preposition wa  wa_prep  YES  
Preposition fy  fy_prep  YES  
Negative particle lA  lA_neg  YES  
Negative particle mA  mA_neg  YES  
Vocative yA  yA  YES  
Vocative wA  wA  YES  
Vocative hA  hA  YES  

 

http://www1.ccls.columbia.edu/MADA/

