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SUMMARY

The time-between-events (TBE) control charts have shown to be very effective in
monitoring high quality manufacturing process. This thesis aims to develop more
advanced univariate control charts for more generalized TBE dada, propose effective
control charts for multivariate TBE data and study the optimal statistical design issue

of the proposed control charts.

Chapters 1 provides an introduction of the principle of the control charts
technique, the statistical design of the control charts and the TBE control charts.
Chapter 2 reviews the current research trend of TBE control charts and the multivariate

control charts technique.

In Chapter 3, an exponential weighted moving average (EWMA) chart for
Weibull-distributed time between events data is developed with the help of the Box-
Cox transformation method. The statistical design of the proposed chart is investigated

based on the consideration of average run length (ARL) property.

Charter 4 proposed two multivariate exponential weighted moving average
(MEWMA) control charts for the Gumbel’s bivariate exponential (GBE) distributed
data, one based on the raw GBE data , the other on the transformed data. The
performance of the two control charts are compared to other three control charts

schemes for monitoring simulated GBE data.

Chapter 5 and Chapter 6 concern the statistical designs of the two MEWMA

charts separately. Chapter 5 studies the optimal design for the MEWMA charts on raw

vii



GBE data and Charter 6 studies the optimal design for the MEWMA charts on
transformed GBE data. The robustness of the two control charts to the estimation

errors of the dependence parameter is also examined.

Chapter 7 concludes the whole thesis and presents some possible future research

topics that are suggested by the author.

This thesis reviews the current trend in the area of TBE control charts, develops
an advanced control chart for the more generalized Weibull-distributed TBE data, and
further more extends the univariate TBE control chart research topic to the multivariate
cases. The studies show that the proposed approaches do generalize the applications of
TBE control charts for complex TBE data, improve the effectiveness of the TBE
control charts and extend the current univariate TBE chart research topic to the

multivariate control chart technique area.
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Chapter 1: Introduction

CHAPTER 1 INTRODUCTION

Statistical process control (SPC) originated in the 1920’s when Walter A. Shewhart
developed control charts as a statistical approach to monitoring and control of
manufacturing process variation. According to Montgomery (2005), SPC is a powerful
collection of problem-solving tools useful in achieving process stability and improving
capability through the reduction of variability. It is an important branch of Statistical
Quality Control (SQC), which also included other statistical techniques, e.g. acceptance
sampling, design of experiment (DOE), process capability analysis, and process
improvement planning. Generally speaking, the purpose of implementing SPC is to
monitor the process, eliminate variances induced by assignable causes, and at the end

improve the process to meet its target value.

Technically, SPC can be applied to any process. The commonly known seven major
tools of SPC include: histogram of stem-and-leaf plot, check sheet, Pareto chart, cause-
and-effect diagram, defect concentration diagram, scatter diagram and control chart. Of
these tools, control chart is the most technically sophisticated one and has drawn the most

attention in the research area.

The organization of this chapter is as follows. Section 1.1 introduces the general

concept of control chart. The TBE control charts and multivariate control charts
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techniques are stated in Section 1.2 and Section 1.3 respectively. The research scope and

organization dissertation are given in Section 1.4.

1.1 Control charts

The most commonly used SPC tool is the control chart, which is a graphical representation
of certain descriptive statistics for specific quantitative measurements of the process.
These descriptive statistics are displayed in a run chart together with their in-control

sampling distributions so as to isolate the assignable cause from the natural variability.

Let wrepresent the quality characteristic of interest. The traditional control charts

follow the underlying Shewhart model:

UCL =y, +Lo,
CL=p, (1-1)
LCL=py, Lo,

where UCL is the upper control limit, LCL is the lower control limit, and L is the standard
deviation distance of the control limits from the center line (CL). The in-control or target

mean 4, and the standard deviation o, of different charts differ according to the

underlying distribution.

A lot of traditional control charts have been widely adopted in industries to help
monitor, control and improve the process or product quality, including the Shewhart
control charts for variables data (e.g. the X-bar and R chart, X-bar and S chart), the

Shewhart control charts for attributes data (e.g. the p chart, np chart, ¢ chart and u chart),
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the Exponentially Weighted Moving Average (EWMA) chart, the Cumulative Sum
(CUSUM) chart and so on. All of these control charts are originally developed under the
normal assumption, i.e., it assumes that the sample statistics can be approximately
modelled by a normal distribution. However, the rapid development of technology and
increasing effort on process improvement have led to so called high-quality processes, e.g.
Ye et al. 2012a,b. In high-quality process monitoring, the failure rate is so low that it is
difficult to form rational samples that the sample statistics would approximate normal and
the traditional control charts have encountered a lot of difficulties. In order to overcome
difficulties of conventional control charts in detecting process shifts in high-quality
processes, a new kind of control chart named time between events (TBE) control chart has

been developed recently.

1.2 Time-between-events chart

The time-between-event (TBE) chart is an effective approach for process monitor, control
and improve the process when the events occurrence rate is very low. Unlike the
traditional control charts which monitor the number or the proportion of events occurring
in a certain sampling interval, TBE charts monitor the time between successive
occurrences of events. The word “events” and “time” may have different interpretations
depending on particular applications. “Event” may refer to the occurrence of
nonconforming items in manufacturing process, failures in reliability analysis, accidents in
a traffic system, etc. And the word “time” is used to represent the attribute or variable data

observed between consecutive events of concern.
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The existing TBE control charts can be classified into two groups: attribute TBE
control chart and variable TBE control chart. The attribute TBE chart include, but not
limited to, the cumulative count of conforming (CCC) chart, the CCC-r chart and the
geometric CUSUM chart. Most of the attribute TBE charts are based on the geometric
distribution (e.g. the CCC chart) or negative binomial distribution (e.g. the CCC-r chart).
One typical variable TBE chart is the cumulative quantity control (CQC) chart. Since the
occurrence of the event follows a Poisson distribution, the cumulative quantity between
two events follows an exponential distribution, so CQC chart can also be called
exponential chart. A lot of TBE variable charts are set up based on the exponential
distributed TBE data, e.g. the CQC chart, the exponential CUSUM chart and the
exponential EWMA chart. However, the exponential assumption is true only when the
events occurrence rate is constant. An extension is to use Weibull distribution to simulate
various TBE situations (including exponential) with non-constant events occurrence rate

by varying its scale and shape parameters (e.g. the t chart and t, chart).

1.3 Multivariate control charts

Up to now, we have addressed control charts primarily from the univariate perspective;
that is we have assumed that there is only one process output variable or quality
characteristic of interest. In practice, however, there are many situations in which the
simultaneous monitoring or control of two or more related quality-process characteristics
is necessary. While monitoring several correlated variables, the results of using separate
univariate charts can be very misleading, and does not account for correlation between

4
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variables. The multivariate control charts which can simultaneous monitor or control two

or more related quality-process characteristics are especially suitable for such problems.

Most commonly used multivariate control charts are the natural extension of the
univariate charts, e.g. the Hotelling’s T*charts (Hotelling 1947), multivariate exponential
moving average (MEWMA) charts (Lowry 1992) and multivariate cumulative sum
(MCUSUM) charts (Crosier 1988, Pignatiello and Runger 1990). These multivariate
control charts are originally developed for multivariate normal distributed data. However,
in high-quality process monitoring, the actually distribution is usually non-normal, or even
highly skewed. Similar to the univariate case, the traditional multivariate charts also face a
lot of practical difficulties for such scenarios, some of which even totally lost their
efficiency in detecting process shift. As a result, there is a strong demand for the

researchers to develop effective multivariate control charts for high-quality process.
1.4 Performance evaluation issue

There are several popular statistics for measuring and comparing the performance of

control charts in literature.

The fisrt one is the average run lenth (ARL). The ARL is defined as the average
number of points that must be plotted before the chart issues an out-of-control signal. ARL
is a traditional performance measure for control chart design and comparison. Given Type

| error (o) and Type Il error (S) of the charting procedure, the in-control ARL ( ARL,)
and the out-of-control ARL ( ARL,) can be calculated asl/aand 1/ (1— /), respectively.

In a statistical design, the control limits are generally adjusted to achieve certain ARL, for



Chapter 1: Introduction

the charts under comparison, and the one with the smallest ARL, is considered to be the

best.

As the time spent on plotting each TBE point is usually different, a better alternative to
measure TBE chart comparing to the ARL would be the average time to signal (ATS).
ATS is usually defined as the average time taken for the chart to signal an out-of-control

point. The decition criteria for statistical design based on ATS is similar to those on ARL.

Other measurements include the average number of observations to signal (ANOI), the
avergae quantity of products inspected to signal (AQI), false detection rate (FDR), and

succesive detection rate (SDR).

Another widely studied method for designing control charts is the economic design.
An economic design is usually achieved based on an economic model of the process under
consideration. Economic models are generally formulated using a total cost function
which expressed the relationships between the control chart design parameters and the
various types of costs involved. The performance of an economic design is assessed based
on the specific economic objective. There is also the so-called economic-statistical design
which imposes some constraints on the economic models to satisfy both statistical and

economical objectives.

1.5 Research objective and scope

The purpose of this thesis is to develop advanced control charts for complex TBE data.

The reminder of the thesis is organized as follows:
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Chapter 2 reviews the current research trend of TBE control charts and the

multivariate control charts technique.

In Chapter 3, an exponential weighted moving average (EWMA) chart is proposed
for transformed Weibull-distributed TBE data. The statistical design of the proposed chart
is investigated based on ARL criteria. Finally, the guidelines for optimal statistical design

of the EWMA chart are given to promote the use of the chart in real applications.

Charter 4 proposes two multivariate exponential weighted moving average
(MEWMA) control charts for the Gumbel’s bivariate exponential (GBE) distributed data,
one based on the raw GBE data , and the other on the transformed data. The performance
of the two control charts are compared to three other control chart schemes for monitoring
simulated GBE data. The comparison results show that the proposed MEWMA charts are

superior to the other control chart schemes based on the consideration of ARL property.

Chapter 5 studies the optimal design of the MEWMA charts based on raw GBE data
and Charter 6 studies the optimal design for the MEWMA charts based on transformed
GBE data. The robustness of the two control charts to the estimation errors of the

dependence parameter is also examined.

Chapter 7 makes conclusions and suggests some potential future works.

The structure of the thesis is demonstrated by Figure 1-1.
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Figure 1-1 The structure of this thesis

This thesis reviews the current trend in the area of TBE control charts, develops an
advanced control chart for the more generalized Weibull-distributed TBE data, and further

more extends the univariate TBE control chart research topic to the multivariate case.
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CHAPTER 2 LITERATURE REVIEW

This chapter reviews some important works related to TBE control charts and multivariate

control charts.

2.1 Time-between-events control charts

2.1.1 Attribute TBE control charts

One typical attribute TBE control chart is the CCC chart (also called geometric chart or
RL chart). The CCC chart, first proposed by Calvin (1983) and further developed by Goh
(1987) and Bourke (1991), monitors the cumulative number of conforming items to obtain
a nonconforming item with probability limits. Since the occurrence of the nonconforming
item follows a binomial distribution, the cumulative counts of items inspected until a
nonconforming item is observed follows a geometric distribution. Fixing the false alarm
probability a at a desired level, the control limits UCL, CL, and LCL can be derived from
the CDF of geometric distribution. The CCC chart has been further studied by many
authors such as Kaminsky (1991), Xie and Goh (1997), and Xie et al. (1998). Xie et al.
(2000) introduced the idea of transforming geometrical data into normal distribution so
that the traditional run-rules and advanced process-monitoring techniques could also be
used. Xie et al. (2001) constructed the economic model of CCC-chart based on LV model.

9
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Zhang et al. (2004) proposed an improved design of CCC chart, which results in a nearly
ARL-unbiased design. Liu et al. (2006) applied the idea of variable sampling intervals to
the CCC-chart when 100% inspection is not available, which made the CCC-chart more

flexible.

A natural extension of the CCC chart is the CCC-r chart, for which the sample
statistic is the cumulative number of items inspected until the r-th nonconfromig item is
encountered. Consequently, the sample statistic of the CCC-r chart follows a negative
binomial distribution. Bourke (1991) and Xie et al. (1999) proposed the use of CCC-r
chart and showed its sensitivity for detecting small process shifts. Wu et al. (2001) studied
the sum-of-conforming-run-length (SCRL) chart which is similar to the CCC-r chart.
Although plotting the cumulative count of conforming items until r nonconforming items
happen increases the sensitivity of the chart to the shift, it needs to wait too long in order
to see r nonconforming items. Chan (2003) introduced a two stage CCC-chart called CCC-

1+r chart which is more flexible than the CCC-r chart.

Another useful attribute TBE chart is the geometric CUSUM chart. Xie et al. (1998)
did a comparative study of CCC and CUSUM charts and suggested the usage of geometric
CUSUM as it was shown to be more sensitive to high quality process shift. He also
mentioned the idea that combining the CCC-chart and CUSUM-chart together in order to
increase the sensitivity of the chart. Bourke (2001) further examined the properties of the
geometric CUSUM chart under both 100% inspection and sampling inspection. Chang and

Gan (2001) studied the sensitivities of the CUSUM charts based on geometric, Bernoulli,
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and binomial data. Recommendations were given on how to choose the chart under

different situations.

Some recent studies in the area of attribute TBE control charts are as follows. Albers
(2010) developed a systematic approach for how to choose r in the CCC-r chart resulting a
simple expression of the optimal r as a function of the desired false alarm rate and the
supposed degree of increase of defect rate p compared to its value during in-control
process. Later, Albert (2011) extended the CCC chart to the case of homogeneous health
care data with large dispersion. Jae et al. (2011) proposed a G-EMWAG chart which
combined a geometric chart and a EWMA chart for effectively detecting both small and
large shifts on geometric distributed data. Liu et al. (2006) studied the performance of the
CCC control charts with variable sampling intervals and Chen et al. (2011) extended Liu’s
work to the case of CCC control charts with variable sampling interval and variable

control limits.

2.1.2 Exponential TBE control charts

A common assumption for variable TBE control chart is that the sample statistic follows
an exponential distribution. Assume the event occurrence rate is constant and the
occurrence of events can be modeled by a homogeneous Poisson process, therefore, the
cumulative quantity before observing one event follows an exponential distribution. Until
now, most of the studies on variable TBE monitoring charts are based on this assumption.
The existing charts for exponential TBE data can be categorized into two types according

to their methodology: TBE charts on raw data and TBE charts on transformed data.
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“TBE charts on raw data” refers to the ones developed to directly monitor the
exponentially distributed TBE data. Lucas (1985) and Vardeman and Ray (1985) were
probably the first ones to study the exponentially distributed TBE data using CUSUM
chart. Vardeman and Ray (1985) derived an exact method to obtain the ARL values for
exponential CUSUM by solving Page’s integral equation. Gan (1992) derived exact run
length distribution for one-sided exponential CUSUM. Further, according to Gan (1994),
the Poisson CUSUM and exponential CUSUM charts were found to have similar
performances in detecting small and moderate changes in the Poisson rate. Borror et al.
(2003) studied the robustness of the exponential CUSUM when the distribution deviated
from exponential distribution. Control charting technique based on monitoring raw TBE
data has been further extended to exponential EWMA by Gan (1998). Gan discussed the
design of one-sided and two-sided EWMA chart, and provided a simple design procedure
for determining the chart parameters of an optimal exponential EWMA chart. Gan and
Chang (2000) presented the computer programs for computing ARL of exponential

EWMA.

Chan et al. (2000) introduced a so called CQC chart for monitoring exponentially
distributed quality characteristics based on probability limit method. The CQC chart is the
counterpart part of the aforementioned CCC chart. This control chart is applicable to
manufacturing process where the occurrence of defects can be modeled by a homogeneous
Poisson process, whether the process is of high quality or not. Xie et al. (2002)
investigated the use of CQC chart for monitoring the failure process of components or
systems in reliability analysis. As the process goes on, the cumulative quantity between

defects will gradually become large and eventually out of the control limits, so Chan et al.
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(2002) proposed to plot the cumulative probability against the sample number in order to

solve this problem.

Another approach of monitoring exponential TBE data is to first transform
exponential distribution into normal distribution and then monitor normal distributed data.
Nelson (1994) first proposed to transform the exponential data to normal data by using the
power of 1/3.6. Kittlitz (1999) further demonstrated why the double square root (SQRT)
transformation is recommended for transforming exponentially distributed data to normal
for SPC applications like the I chart, EWMA and CUSUM charts. Kao et al. (2006) and
Kao and Ho (2007) used the method of minimizing the sum of the squared difference to
find the optimal value as the power for transforming the exponential distribution into
normal distribution. Liu et al. (2006) used CUSUM and Liu et al. (2007) used EWMA to
monitor the transformed exponential data and compared them with the X-MR chart, CQC

chart and exponential CUSUM or EWMA chart.

All the papers cited in the above are focused on Phase Il stage of the exponentially
distributed TBE charts. Jones and Champ (2002) studied the Phase | stage of the
exponentially distributed TBE when the parameters are known and unknown. Methods for
computing the control limits were given. Zhang et al. (2006) revealed that the ARL of the
exponential control charts designed in the traditional way may increase when the process
deviates from the in-control state. In order to solve this problem, he proposed to an ARL-

unbiased design using a sequential sampling scheme which showed to work very well.
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2.1.3 Weibull TBE control charts

All of the variable TBE studies mentioned in the last section are based on the assumption
that the TBE data follow an exponential distribution which is reasonable in manufacturing
industry. However, under other circumstances, this assumption may not be true. For
example, in reliability engineering, a Weibull distribution would be more suitable to
describe the TBE data as it can take into consideration the increasing or decreasing as well

as constant event occurrence rate.

Nelson (1979) designed a set of control charts for Weibull processes with standards
given. He used the median chart, range chart, location chart and scale chart simultaneously
to monitor Weibull processes. Bai and Choi (1995) proposed the design method of X and
R chart for skewed population like exponential or Weibull distribution. Ramalhoto &
Moriais (1999) studied the Shewhart control chart for monitoring scale parameter of a

Weibull control variable with fixed and variable sampling intervals.

Xie et al. (2002) developed a charting method, named t-chart, for monitoring Weibull
distributed time between failures based on probability limit method. Furthermore, a new
procedure based on the monitoring of time between r failures, named, t,-chart, was also
proposed in order to improve the sensitivity to process shift. Here the Erlang distribution

was used to model the time until the occurrence of r failures in a Poisson process.

Chang and Bai (2001) proposed a heuristic method of constructing X , CUSUM, and
EWMA chart for skewed populations with weighted standard deviation obtained by

decomposing the standard deviation into upper and lower deviations adjusted in
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accordance with the direction and degree of skewness. Chang (2007) further proposed a
heuristic method of constructing multivariate CUSUM and EWMA control charts for

skewed populations.

Hawkins and Olwell (1998) provided the optimal design of CUSUM for Weibull
data with fixed shape parameter. Note that the proposed optimal design is limited to fixed
shape parameter and can only detect the shifts in scale parameter. Borror et al. (2003)
investigated the robustness of TBE CUSUM for Weibull-distributed. However, few
methods have been proposed using EWMA chart to monitor Weibull TBE data. Zhang
and Chen (2004) developed a lower-sided and upper sided EWMA chart for detecting
mean shift of censored Weibull lifetimes with fixed censoring rate and shape parameter.
Nichols and Padgett (2006) used a bootstrap method with pivotal quantities to monitor
Weibull percentiles. Pascual and Zhang (2011) proposed control charts for monitoring the
shape parameter of the Weibull distribution by first taking the natural logarithm of the
Weibull distribution and then setting a control chart on the range value of random

samples from the resulting smallest extreme population.

2.2  Multivariate control charts

2.2.1 Multivariate Shewhart control charts

Hotelling (1947) first applied multivariate process control methods to a bombsights
problem based on the T2 statistic. Mason and Young (2001) summarized the basic steps

for the implementation of multivariate statistical process control using T statistic. A detail
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discussion of the practical development and application of control charts based on T?
statistic can be found in Mason and Young (2002). The T? control charts were developed
for detecting the shift (or shifts) in process mean vector assuming that the observation
vector follows multivariate normal distribution and the process dispersion which is

measured by the variance-covariance matrix Y, remains the same.

However, the process dispersion may also change in practice. Hence, it is necessary
to develop control charts for monitoring process dispersion. Alt (1985) proposed a so-

called W-chart for Phase Il process dispersion monitoring which is a direct extension of

the univariate s* control chart. He also gave a proper unbiased estimator for|Z| , in order

to define a Phase | control chart for process dispersion. Alt (1985), Alt and Smith (1988)

and Aparisi et al. (1999, 2001) suggested a second chart based on the sample generalized

variance-covariance |S| which is the determinant of the sample covariance matrix.

In the literature, little work has been found dealing with multivariate attributes
process, which are very important in practical production processes. Patel (1973) first
proposed an X?-chart for the multivariate binomial or multivariate Poisson population. Lu
et al. (1998) studied a so-called MNO-chart which is a natural extension of the univariate
np-chart. Recently, Skinner et al. (2003) have developed a procedure for monitoring
discrete counts based on the likelihood ratio statistic for Poisson counts when input
variables are measurable. Chiu and Kuo (2008) developed a so-called MP chart for
monitoring the correlated multivariate Poisson count data. The control limits of the MP
chart are developed by an exact probability method based on the sum of defects or non-

conformities for each quality characteristics.
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Multivariate Shewhart-type control charts use information only from the current
sample and they are relatively insensitive to small and moderate shifts in the mean vector.

MCUSUM and MEWMA control charts have been developed to overcome this problem.

2.2.2 MEWMA charts

Lowry et al. (1992) proposed a MEWMA control chart for monitoring the mean vector of

the process as follows:
z; = R(X; —po) + I-R)z;4 (2-1)
where R = diag(r,r,,...,r,),0<r, <1lfor k=12,...,p, z, =0 and | is the identity

matrix. The MEWMA chart gives an out-of-control signal if z}Ez‘[izi > h, where £, is the

variance-covariance matrix of z;. The value k is calculated by simulation to achieve a
specified in-control ARL. Lowry pointed out that if the equality characteristics are equally
weighted, the ARL performance only depends on the non-centrality parameter, using the
proof of ARL performance of equal-weighted MCUSUM chart in Crosier (1988). They
also provided some ARL profiles using simulation. Kramer and Schmid (1997) proposed a
generalization of the MEWMA control scheme of Lowry et al. (1992) for multivariate
time-dependent observations. Hawkins (2007) proposed a general MEWMA chart in
which the smoothing matrix is full instead of one having only diagonal. The performance
of this chart appears to be better than that of the MEWMA proposed by Lowry et al.

(1992).
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Rigdon (1995a, 1995b) gave an integral and a double-integral equation for the
calculation of in-control and out-of-control ARLS, respectively. Molnau et al. (2001)
presented a program that enables the calculation of the ARL for the MEWMA when the
values of the shift in the mean vector, the control limit and the smoothing parameter are
known. Several researchers have studied the statistical design of MEWMA charts using
different measurements such as Runger and Prabhu (1996), Prabhu and Runger (1997) and
Lee and Khoo (2006), and also the economic design under different cost model (e.g.

Linderman and Love 2000 and Molnau et al. 2001).

The MEWMA chart has been promoted by various researchers for its effectiveness in
monitoring non-normal populations. Stoumbos and Sullivan (2002) and Testik et al. (2003)
independently investigated the robustness of the individuals MEWMA chart to non-
normality. Following the univariate EWMA analyses of Borror et al. (1999), both studies
considered the multivariate t distribution and the multivariate gamma distribution for
comparisons with the multivariate normal distribution. Chang (2007) proposes a simple
heuristic method of constructing MCUSUM and MEWMA control charts using the
multivariate weighted standard deviation (WSD) method suggested by Chang and Bai
(2004). The proposed charts adjust the charting statistics according to the degree and the
direction of the skewness. The proposed charts are compared with the standard MCUSUM
and MEWMA charts in terms of in-control and out-of-control ARLs for multivariate
lognormal and Weibull distributions. Simulation studies indicate that considerable
improvements over the standard method can be achieved by using the WSD method. For
recent examples, see Hawkins and Maboudou-Tchao (2007), Zou and Tsung (2008), and

Reynolds and Stoumbos (2008).
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2.2.3 MCUSUM charts

We then present MCUSUM control charts, for which we assume that the direction of the
shift (or shifts) is known. Healy (1987) used the fact that CUSUM charts can be viewed as
a series of sequential probability ratio tests and developed MCUSUM charts for shift (or
shifts) in mean vector and variance-covariance matrix. Hawkins (1991) introduced
CUSUMs and MCUSUMs for regression-adjusted variables based on the idea that the
most common situation found in practice is departures from control having some known
structure. We have been unable to find any proposal in literature for an analogous charting
procedure in the case where the mean vector and the variance-covariance matrix have to

be estimated.

On the other hand, Crosier (1988) and Pignatiello and Runger (1990) have
established MCUSUM schemes for cases where the direction of the shift is considered to
be unknown. Crosier (1988) proposed two new multivariate CUSUM schemes. The first
scheme is based on the square root of Hotelling’s T? statistic, while the second can be
derived by replacing the scalar quantities of a univariate CUSUM scheme with vectors.
Moreover, Pignatiello and Runger (1990) introduced two new MCUSUM schemes .They

referred to these MCUSUM charts as MCUSUM #1 and MCUSUM #2.

A lot of authors have developed different MCUSUM-type control charts, such as
Ngai and Zhang (2001), Chan and Zhang (2001), Qiu and Hawkins (2001, 2003). Runger
and Testik (2004) provided a comparison of the advantages and disadvantages of
MCUSUM schemes, as well as performance evaluations and a description of their

interrelationships. Jamal et al. (2007) introduced an artificial neural network (ANN) based
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model to construct residuals Multivariate CUSUM chart for multivariate Auto-Regressive
processes and show that the proposed chart performs better than the auto-correlated data
MCUSUM chart proposed by Healy (1987) and better than time series based residuals
chart for small shift values. Ben and Limam (2008) proposed to apply support vector
regression (SVR) method for construction of a residuals Multivariate Cumulative Sum

(MCUSUM) control chart, for monitoring changes in the process mean vector.

2.2.4 Recent development of multivariate statistical process control

One popular application area of the multivariate control charts is spatiotemporal
surveillance. Spatiotemporal surveillance is an important aspect of multivariate
surveillance, since several locations and time points are involved (see Sonesson and Frisén
2005). Rogerson and Yamada (2004) considered the spatiotemporal aggregated case for
which the counts in the sub-regions were correlated at each particular time. They
compared the performance of the use of multiple CUSUM charts for each region, and a
multivariate CUSUM method. Joner et al. (2008) showed that the use of a one-sided
version of the multivariate EWMA chart was a better approach to use in this case. Jiang et
al. (2011) proposed a set of MCUSUM methods based on likelihood ratio tests for
detection of outbreaks in the presence of spatial correlations, and showed the superiority
to the existing surveillance methods. Moreover, for infectious disease, standard
application of multivariate control charts could be inefficient, due to the potentially large

variation in the background multivariate time series.

Profile monitoring is another important and emerging area of multivariate statistical

process control in the latest literature. In many industrial applications, the quality of a
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process may be better characterized by the relationship between one or more response
variables and the explanatory variables. Instead of monitoring the moments of a set of
quality characteristics, profile monitoring focuses on the monitoring of relationships,
assuming a univariate or multivariate multiple linear regression model. In profile
monitoring, the collection of observed data for all the process variables is treated as a
single profile sample, and thus the profile monitoring problem naturally corresponds to
multivariate SPC problem. Most literatures in profile monitoring focus on linear profiles,
e.g. Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004) and
Mahmoud et al. (2007). Moreover, profile monitoring with polynomial regressions are
discussed by Zou et al. (2007) and Kazemzadeh et al. (2009). Multivariate statistical
process control techniques are also considered for more generalized regression models
such as nonlinear parametric and nonparametric profiles in the following references: Ding
et al. (2006), Williams et al. (2007), Qiu and Zou (2010) and Qiu et al. (2010).

Moreover, self-starting methodology has gained more and more attention in
multivariate process control to solve the problem caused by inaccurate in-control
parameter estimation in the multivariate settings. In self-starting charts, the incoming
process observations are transformed into a stream of mutually independent identically
distributed data with a known in-control distribution. Each successive observation is used
to update the mean and standard deviation of the observations up to date. And the updated
mean and standard deviation are then used in the transformation procedure of the next
process observation. Early works of self-starting multivariate control charts include
Schaffer (1998), Quesenberry (1997), Sullivan and Jones (2002). Hawkins and

Maboudou-Tchao (2007) proposed a self-starting multivariate exponentially weighted
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moving average (SSMEWMA) chart for controlling the mean of multivariate normal
distribution. Later, Maboudou-Tchao and Hawkins (2011) extends the approach to a self-
stating multivariate exponentially weighted moving average and moving covariance
matrix (SSMEWMAC) chart for monitoring both the mean and covariance matrix. Capizzi
and Masarotto (2010) presented a self-starting cumulative score (CUSCORE) control
chart for monitoring both the mean and covariance matrix of the multivariate normal

distribution.
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CHAPTER3 A STUDY ON EWMA TBE CHART ON

TRANSFORMED WEIBULL DATA

The exponentially weighted moving average (EWMA) charts, first proposed by Roberts
(1959), has shown to be very effective in detecting small process shift for exponential
TBE data and other non-normal data. However, few methods have been proposed using
EWMA chart to monitor Weibull distributed TBE data. This section proposed a EWMA
chart with transformed Weibull TBE data. The recommended Box-Cox transformation
method is employed to transform Weibull data to approximate normal distributed data.

Then a EWMA chart is set up on the transformed Weibull data.

Our design of EWMA chart is based on the consideration of ARL property using
Markov chain calculation. It is found that the in-control ARLs of the EWMA charts with
transformed Weibull data only depend on the design parameters of the control charts and
are irrelevant to the distribution parameters. This property prompted us to study the
statistical design of the proposed chart for the purpose of guiding the practical applications.
Note that formal studies have shown that the in-control ARLs or other commonly used
statistical measurements like average time to signal (ATS) of EWMA charts constructed
directly on the Weibull distributed TBE data depend not only on the design parameters of
the control charts but also on the distribution parameters, and thus it is difficult for us to

conduct statistical design for such control charts or provide any general design guidelines.
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3.1 Transform the Weibull data into Normal data using Box-Cox

transformation

Many transformation methods like the simple power transformation, exponential
transformation and Box-Cox transformation for transforming Weibull data to
approximately normal distributed data have been studied by different researchers. Among
them, the Box-Cox transformation is highly recommended in literature; see Box and Cox
(1964), Sakia (1992), Yang Z.L. et al. (2003). Pavel et al. (2006) investigated the usability
of some general types of transformations for transforming data sets with four non-normal
distributions  (logarithmic-normal, exponential, gamma, and Weibull) to normally
distributed data. They also suggested using Box-Cox transformation for transforming
Weibull data. Following these authors’ suggestion, we use Box-Cox transformation to

transform Weibull data in our study.

The probability density function (PDF) of two-parameter Weibull distribution

W (3,77) can be written as:

n-1
f(x) =2(1J e ™A x>0,8>0

B\B (3-1)

where £ is the scale parameter and 7 is the shape parameter. When 7 is equal to 1, the

Weibull distribution reduces to the exponential distribution.

The Box-Cox transformation is described by the equation:
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r

X —
y= r
In x forr=0 (3-2)

forr=0

Hernandez and Johnson (1980) showed that the best normalizing transformation for

Weibull isr=0.26547 . So we use the following transformation function to setup the

EWMA chart:

x 02654 _1
y -

Note that a two parameter Weibull distribution W (£,77) becomes a three parameter

Weibull distribution W(Q,ﬂ—,—l) after the Box-Cox transformation with shape
rr r

n B

. 1
parameter -, scale parameter — and location parameter —. The mean and standard
r r r

deviation of the transformed Weibull data are as follows:

f=E(Y)=(0.90343°%%% _1)/0.2654x

6 =/D(Y) =1.0085°** | (3-4)

And the cumulative distribution function (CDF) changes to

02654y+1 3.7679
ﬁ0.26547

F(y)=1-e

1

P —
Y 0.2654n

(3-5)
The EWMA chart to be introduced later would be conducted on the transformed

Weibull data using Box-Cox transformation method.

3.2 Setting up EWMA chart with transformed Weibull data
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The idea of proposed EWMA chart is to use Box-Cox transformation method to convert
Weibull data to approximate normal data, and then apply conventional design methods of
EWMA chart for normal data to monitor the process. The main procedure of setting up a
EWMA chart with transformed Weibull data are as follows:

Step 1: Transform the Weibull data X, to approximately normal distributed data Y,.

The Box-Cox transformation is applied in our study:

02654 _1
Y= 026547 (3-6)
Step 2: Set up the two-sided EWMA chart with the recursive statistics:
Z,=(1-)Z,+ Y, (3-7)

where 0 < A <1is the smoothing factor. The starting value is the in-control mean value
i.e. the mean of data after transformation.

Step 3: The centre line and control limits can be calculated by

/1 2t
UCL=,uo+Lao\/(2_/1)[1—(1—;t) ]
CL =,

A 2t
LCL=uo—LaoJ(2_ﬁ)[1—(1—ﬂ) ]

(3-8)

where L is a design parameter.
Step 4: The process is considered to be out-of-control when Z, exceeds either the

UCL or LCL. The x4, and o, can be estimated from the transformed data with

S . 1 [@ _
Qo =Y=Yy,,and &, =\/—[Z(yt —y)z}
t=1 n-1 t=1

(3-9)
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3.3 Design of EWMA chart with transformed Weibull data

The proposed design method for EWMA chart with transformed Weibull data is based on
ARL consideration. An acceptable in-control ARL is specified at the beginning to
determine the probability of false alarm, and the optimal design is to find the values of

design parameters with the shortest out-of-control ARL.

3.3.1 Markov chain method for ARL calculation

The approximate method using Markov chain method for ARL calculation was first
proposed by Brook and Evans (1972), where the properties of the continuous-state
Markov chain can be approximately evaluated by discretizing the infinite-state transition
probability matrix.

Consider a two-sided EWMA chart with transformed Weibull data with design
parameters 4 and L, the interval between the LCL and UCL is divided into m
subintervals of width w. Since the control limits will change with timet , and will

approach a constant when t is large, the asymptotic a control limits are used to calculate

the ARL instead of the exact control limits. Let h; andh, be the asymptotic control limits

A A
hy =4, +Loy, | ——.h, =y, —Lo,,| ——
N V2—a't 24 (3-10)

Using the asymptotic control limits, wcan be expressed as:

that it satisfy

_hy-h. 2lo | 4

m m 2—-A (3-11)
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The EWMA control statistics Z, is said to be in transient state ( j) at time (t) if
h, +jw<Z, <h +(j+D)w for j=1,...m-1 The midpoint of subinterval
corresponding to state ( j ) can be written as

m; =h_ +(j+05w, j=01...,m-1 (3-12)

The control statistics Z, is regarded as in the absorbing state m if the point goes
outside the control limits, i.e. Z, <h, or Z, >h,.

Let p; represent the transition probability that the control statistics Z; goes from state
(i) to state (j) in one step. To approximate the probability, we assume that the control
statistics Z, is equal to m, whenever it is in state (i). This approximation is accurate
enough when the number of state m is large. Then p; is given by

py =Prih, + w<Z <h +(j+Dw|Z_ =m,}
=Prfh, + jw< Ay, +@-1)Z,, <h +(j+)Yw|Z,, =m,}
:Pr{hL + jw—(1-A)m, <y < h, +(j+D)w—(1-A)m, }

A e A
i1=01...m-1j=01..m-1 (3-13)
Pim = Pr{zt < hLoth 2 hu |Zt—l = mi}
=Pr{dy, + 01— A)Z,, <horly, + A1—=A)Z,, >h, |Z,, =m,}

:Pr{yt <%}+Pr{yt z%} 01 .m-1

Py =0,j=0L...,m-1
Pom =1
Based on the Markov chain theory, the expected first passage times from state (i) to the

absorbing state are

m-1
y7a :1+Z Pju;,1=0L...,m-1
1= (3-14)

4, is the ARL given that the process started in state (i). Let R be the matrix of

transition probabilities obtained by deleting the last row and column of P . The vector of

ARLs u can be calculated with
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u=(1-R)"1 (3-15)

where 1 is an mx1 vector with all elements equal to 1, and | is an mxm identity matrix.

The elements in the vector x are the ARL’s when the EWMA chart starts in various
states. The first element in the vector u gives the ARL for the EWMA chart starting from
zero, and the ARL given that z, = g, is just the middle entry, that is the ((m+1)/2)th

element in the vector .
3.3.2 In-control ARL

The in-control ARL (ARL,) values with different design parameters A and L are
calculated by the aforementioned Markov chain approach. It can easily be proved that the
ARL, of a EWMA chart with transformed Weibull data depends on the value of A and L,
and it is independent of the parameters of Weibull distribution W (£,7) . The prove is as

follows:

Let C=L /% . 1, =(0.90343,°%%°* _1)/0.2654n, = (C,A5™ -1)IC,n,

oo =1.00883,2%* |1y = C,8,°™ In7,, then the p; (i=0.,...m~1 j=01...m~-1) can be

expressed as:

p; = Pr{hL Al JW;(l_l)mi <Y, < h +(J +1)\;V_(1—ﬁ)mi}

_ F(hL +(j+H)w—-(21-A)m, j_ F(hL + jW—(l—l)mij
A A

1eXp[(Clnl(hL +(J ;:‘L?;N(;m(l_/l)mi)—i_lj . ]

29



Chapter 3 A Study on EWMA TBE Chart on Transformed Weibull Data

{1exp{{cml(m + iW/_g (cl,,_ A)m;) +/1J ' ]}

C, 5 m(z(?-cq} i 2$nC3 —@-2)-i +o.5)-2CC3J+ 4(1—’71J

(3-16)

3.7679

o 2 m o
=expi—

l . ﬁlcz’h

3.7679

C, B m(z[?-cq} (+1)- 2% _a-2)-(+05) ‘ZCmCKJM(p”lj

o 2 m o

l . ﬂlcz’h

We can see from the formula that when the process is in-control i.e. 5, = B,,n, =7,, the
value of p; only depends on the value of design parameters A and L and calculation
parameter m. On the other hand, when the process become out-of-control, the value of
(By.1m,)and (B,,7,) would influence the ARL, values. After study the relationship of
ARL, and calculation parameter m, we could see that the value of ARL, trends to be

more and more stable as m becomes larger and larger. We choose m =301 in our study.
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Figure 3-1 The in-control ARL contour plot of the EWMA chart
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Figures 3-1(a) and Figure 3-1(b) provide the contour plots for some commonly used
ARL, levels. For other ARL, values, the relationship of 2 and L can be achieved by
interpolation. Table 3-1 provides some numerical value of design parameters A and L

according to different ARL, levels which would be studied in the optimal design process

later.
Table 3-1 The design parameters 4 and L combinations of the EWMA chart
ARL-=100 A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
o L | 1.469 | 1.880 | 2.144 | 2.343 | 2.420 | 2.454 | 2.467 | 2.458 | 2.452
ARL-=300 A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
0~ L | 2033 | 2396 | 2.607 | 2.750 | 2.793 | 2.801 | 2.792 | 2.732 | 2.713
_ A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
ARL,=3704 L | 2136 | 2487 | 2.688 | 2.820 | 2.857 | 2.861 | 2.848 | 2.779 | 2.758
ARL-=500 A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
0~ L | 2278 | 2610 | 2.798 | 2.917 | 2.946 | 2.944 | 2.926 | 2.844 | 2.818
ARL=800 A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
0~ L | 2490 | 2793 | 2.961 | 3.062 | 3.079 | 3.067 | 3.042 | 2.940 | 2.906
ARL-=1000 A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
0 L | 2585 | 2.876 | 3.035 | 3.128 | 3.140 | 3.124 | 3.094 | 2.983 | 2.947
_ A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
ARLG=2000 L | 2862 | 3.117 | 3.253 | 3.321 | 3.318 | 3.289 | 3.249 | 3.114 | 3.067

3.3.3 Out-of-control ARL

When the process becomes out-of-control, the ARL, value is influenced by the value of
Weibull distribution parameters (5,,7,) and (f,,7,) as well as the design parameters A

and L . The optimal design scheme should have the shortest out-of control ARL at certain

ARL, length. The difficulty in the studying of out-of-control ARL is that there are two

parameters in the Weibull distribution.
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We consider the case that the shift level of shape parameter 7, /7, equals 1. This is

reasonable since in practical applications the scale parameter is more likely to change due

to assignable causes, while the shape parameter is more related to the natural properties of

the system and is rather stable. Whenn, /77, =1, we could see from both the formula (B-1)
and the calculation results that when keeping the shape parameter 7 as a constant, the
value of ARL, of the EWMA chart with transformed Weibull data only depends on the
shift level of scale parameter 3,/ f,. However, different shape parameters 7 lead to
different optimal ARL, given a certain scale shift level. In our study, we select some shift
levels of scale parameter S, / 3, and use the design parameters provided by Table 3-1 to
investigate the property of ARL,. The shortest out-of-control ARL we obtained is denoted

by ARL,, .

It can be obviously seen in Table 3-2 that the EWMA charts with smaller 4 are more
sensitive to small scale shifts (3, /S, close to 1), while those with larger 4 are more
effective in detecting larger scale shifts. For small downward shifts ( S,/ S,<1), the

EWMA charts with large 4 between 0.5 and 1.0 may have longer out-of-control ARLs
than their ARL,. The reason behind this is that data after Box-Cox transformation are not
exactly symmetric and slightly skewed to the right; meanwhile, as A approaches 1, an

EWMA will approximate to a Shewhart chart, which is sensitive to non-normality. As

indicated in bold and italic figures in Table 3-1, the optimal EWMA chart with

transformed exponential data for a certain scale shift level g5,/ f,should have shortest
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ARL, among others. Note that, when 7, /17, =1, the Weibull distribution would reduce to

as exponential distribution. The result in Table 3-2 is very similar to the numerical
example of EWMA design with transformed exponential data in Liu et al. (2007)’s paper,
which implies that the performances of the Box-Cox transformation methods and the
double SQRT transformation methods are similar for EWMA design using transformed

exponential data.

Some of the optimal design schemes of EWMA control chart with ARL,=500 are
listed in Table 3-3 according to different shape parameters n and scale shift levels
(B.1B,). Only the A4 values are listed as the corresponding L value could be easily
obtained according to Table 3-1. The ARL results in Table 3-3 show that the optimal
A increases for a certain amount of scale shift ( 4,//, ) as the shape parameter n
increases. Comparing to smaller scale shift(f,/f,), the optimal A for larger scale shift
level increases more quickly as 7 increases. However, for small scale shift ( 3,/ S, close
to 1), a smaller A is always preferred to detect the shift in scale parameter, e.g. the optimal
Afor B, 1S, =0.9is 0.02 (the smallest A selected in this study), no matter what the value
of shape parameter n is. For small shape parameter n (e.g. 7=0.2,0.5), smaller Ais
also more effective for detecting the shift in scale parameter. On the other hand, larger A
(0.5< 4 <1) is more sensitive to large scale shift level and large shape parameter, and the
according ARL, is rather stable regardless of the value of 7 and S, //, . Another
observation is that the optimal design parameters Aand L are rather stable for a range of

nand scale shift (5, / B,). Hence, it is reasonable to choose a suitable A value using Table

34



Chapter 3 A Study on EWMA TBE Chart on Transformed Weibull Data

3-3 even if the desired nand scale shift ( 5,/ /f,) is not included. The optimal design

schemes of other ARL, level are similar.

Table 3-2 The ARLs of some selected EWMA charts with transformed Weibull data.
(In-control ARL=500, 7, =17, =1)

B | A 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1
B, | L 2278 2610 2798 2917 2946 2944 2926 2.844 2818
0.1 8.52 6.74 5.71 5.12 5.21 5.84 7.24 26.66 129.22
0.2 1141 9.28 8.23 8.25 9.71 1282 1835 7162 257.95
0.3 1488 1251 1176 1351 1825 2656 39.53 13574 386.67
04 19.53 1717 1743 2327 3455 51.71  75.63 219.64 515.38
0.5 26.34 24.63 2759 4206 64.64 94.68 13242 32413 643.50
0.6 3747 3818 4771 7854 117.92 163.95 216.54 448.83 764.61
0.7 58.61 66.72 90.99 14849 208.10 269.52 333.77 583.00 84891
0.8 108.69 137.11 188.68 276.41 348.08 412.76 474.21 678.24 834.33
0.9 263.02 322.12 386.30 456.96 500.24 535.15 565.06 649.82 693.66
1 500.00 499.56 500.28 499.57 499.20 500.38 500.38 500.16 500.91
1.2 120.71 13442 155.69 183.39 199.65 209.85 21545 220.30 228.37
1.5 4180 40.01 4238 49.18 5537 60.62 6483 7414 83.79
18 2594 2293 2227 2365 2566 2768 2955 3478 40.83
2 2110 1812 1697 1720 1816 1928 2039 2391 28.32
2.5 1496 1236 1099 1033 1035 1059 1092 1235 1457
3 11.99 9.72 8.42 7.60 7.37 7.35 7.41 8.06 9.34
3.5 10.22 8.20 7.00 6.16 5.85 5.73 5.69 5.97 6.79
4 9.04 7.20 6.09 5.27 4.94 4.77 4.69 4.79 5.35
S 7.54 5.96 4.98 4.24 3.90 3.70 3.58 3.53 3.82
10 4.85 3.80 3.15 2.60 2.32 2.16 2.05 1.92 1.96
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Table 3-3 The optimal design schemes of EWMA chart with transformed Weibull data

(ARLG=500)
B, Shape parameter 7
5, 05 08 1 15 2 25 3 35 4 5
2 005 01 01 02 04 05 05 05 08 1
02 ARL. 2021 1077 823 485 344 266 219 201 178 1.10
7 002 005 005 01 01 02 02 02 03 04
05 ARL. 6082 3379 2463 1443 0982 739 578 483 407 3.14
7 002 002 002 002 002 005 005 005 005 01
08 ARL, 24885 14519 10869 6364 4416 3349 2583 2100 17.73 13.05
2 002 002 002 002 002 002 002 002 002 002
09 ARL, 41389 317.92 26302 168.94 11719 87.24 6858 56.15 17.42 36.11
7 002 002 002 002 005 005 01 01 02 02
12 ARL, 25080 159.28 12071 70.57 47.16 3345 2515 1942 1562 10.42
27 002 002 005 01 02 03 05 05 08 08
15 ARL, 10516 5615 4001 2103 1284 855 603 449 347 233
7 005 01 01 03 05 08 08 08 08 1
2 ARL, 5105 2457 1697 815 460 306 224 178 152 123
2 ol 02 04 08 08 08 1 1 1 1
3 ARL, 2497 1111 735 337 205 153 128 115 109 103
. 4 02 05 08 08 1 1 1 1 1 1

ARL .~ 13.02 5.39 3.53 1.80 131 113 106 102 101 1.00

min

Table 3-4 shows the optimal design schemes of a EWMA chart with shape parameter

n, =1, =0.5 according to different ARL, and scale shift level (S, /f,). The results imply
that the optimal A decreases as the ARL, increases. However, the optimal A is rather
stable for a range of ARL,. For example, when scale shift 8, / B, changes from 0.5 to 0.8,
the optimal A is always 0.02 for all the ARL, level we studied. Hence, when the shape

parameter 7 is fixed to be 0.5, we could also use Table 3-4 to choose the optimal A in
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application even if the desired ARL, level and the shift level (4, //,) are not included.

Studies could also be conducted for other values of 7, and the results are similar.

Table 3-4 The optimal design schemes of a EWMA chart with transformed Weibull data

(. =1,=0.5)
B In-control ARL
B, 100 300 370.4 500 800 1000 2000
A 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.2 ARL . 12.88 17.80 18.79 20.21 22.49 23.61 27.18
A 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.5 ARL, ;. 32.59 50.86 54.87 60.82 70.85 75.87 92.85
A 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.8 ARL 80.62 177.98 204.71 248.85 336.64 387.83 604.02
A 0.05 0.02 0.02 0.02 0.02 0.02 0.02
1.2 ARL .. 77.72 181.88 211.18 259.80 356.68 413.07 649.77
A 0.05 0.02 0.02 0.02 0.02 0.02 0.02
15 ARL 47.61 84.17 92.47 105.16 127,51 139.20 181.39
A 0.10 0.05 0.05 0.05 0.02 0.02 0.02
2 ARL, .. 27.37 42.55 45.96 51.05 59.02 62.73 74.84
A 0.20 0.10 0.10 0.10 0.05 0.05 0.05
3 ARL . 15.06 21.53 22.92 24.97 28.32 29.79 34.55
A 0.30 0.20 0.20 0.20 0.20 0.20 0.10
5 ARL, .. 8.49 11.51 12.12 13.02 14.54 15.31 17.38
A 0.50 0.50 0.50 0.40 0.40 0.30 0.30
10 ARL _ 4.73 6.05 6.32 6.71 7.34 7.66 8.60

min

Hence, the recommended optimal design procedure of EWMA charts with a fixed

shape parameter is described as follows:
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Stepl: Specify the desired ARL,, the fixed shape parameter and the out-of control
scale shift level ( 5,/ j,) at the beginning.

Step2: Find the approximate value of the smoothing factor A according to the
optimal design scheme tables mentioned in Section 3.3.2.

Step3: Obtain the approximate corresponding value of L according to the ARL,

contours figure mentioned in Section 3.3.1.

Step4: Achieve the more accurate ARL, and ARL, using Markov chain approach to

evaluate the performance of the designed EWMA control charts.

When the shape varies, the optimal scheme of design parameters with transformed
EWMA chart could also be achieved by choosing the shortest out-of-control ARL value
with different design parameters under certain in-control ARL level. However, different
combination of shape and scale parameters would lead to different out-of-control ARL
value using Markov chain approach, and the optimal design of EWMA should be studied

case by case.

Table 3-5 provides an example of the optimal schemes when we fix the scale

parameter S to be different value and varies the shape parameter. In this example, the
ARL, is fixed at 370.4, 7, is equal to 1 and the shape shift changes from 0.2 to 5. In this
case, the optimal A is rather stable for a range of value of g and 7, /7, . For a decrease in
shape parameter (77,/77, <1), no matter what the value of scale parameter 3 is, the

optimal design scheme would be 4 =1and L =2.758. On the other hand, for a increase in
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shape parameter (1<n, /n, <5) with a scale parameter 0.5< 8 <2, a EWMA chart with

A=0.02and L =2.136would be effective to detect the change of shape parameter.

Table 3-5 The optimal design schemes of a EWMA chart with transformed Weibull data
(ARL,=370.4, 8, =p,, 11, =1)

B Shape shift 7, /17,
05 08 15 2 3 35 4 45 5
7 1 1 005 0L 03 04 04 05 05
Ol ARL_~ 284 1754 2315 999 475 397 300 300 253
p 1 1 002 005 01 01 01 02 02
02 ARL. 342 2201 4635 2258 1105 895 7.84 688 600
7 1 1 002 002 002 002 002 002 002
05 ARL_~ 444 3203 15646 7138 3915 3362 3003 27.47 2555
p 1 1 002 002 002 002 002 002 002
09 ARL_ 535 3971 29082 157.99 89.56 77.76 70.42 6546 61.87
7 1 1 002 002 002 002 002 002 002
12 ARL. 590 4420 30955 17337 9848 84.86 7620 7021 65.79
7 1 1 002 002 002 002 002 002 002
2 ARL. 741 5367 23197 11069 5325 4282 3591 3091 27.08
2 1 1 002 002 002 005 005 01 01
3 ARL, 832 6281 15036 6402 2841 2057 1570 1204 943
7 1 1 002 002 01 02 03 04 05
° ARL, 10236 76.716 84352 34353 11522 75245 5065 3.5218 2.518
7 1 1 002 0L 05 08 08 1 1
10 ARL_~ 1360 10020 4342 1487 367 215 149 121 109
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3.4  lllustrative example

A simulation example is constructed to illustrate the use of the proposed EWMA chart
with transformed Weibull data. We assume that the time between failures of a machine

could be described by a Weibull distribution. The first 25 TBE data were generated from a
Weibull distribution with shape parameter 7, = 2and scale parameter 3, =10, and the next
15 with shape parametern, =2and scale parameter £, =5, and in-control ARL=370.4.
The design parameters of the EWMA chart are chosen as (4 =0.1,L=2.688) and the
starting value Z, is estimated from the first 25 samples. The control chart is shown in the

Figure 3-2. The procedure becomes out-of-control at the 31th.

55
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Figure 3-2 The MEWMA chart for the transformed Weibull data
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Table 3-6 An example of setting-up EWMA chart with transformed Weibull data

] Weibull Transformed EWMA
Failure NO TBE (X,) Data (Y,) (Z,) UCL LCL
0 4.06 4.06 4.06
1 15.21 6.11 4.27 4.49 3.63
2 20.41 7.45 4,58 4.64 3.48
3 8.35 3.93 452 474 3.38
4 14.24 5.83 4.65 481 3.31
5 5.96 2.98 4.48 4.86 3.26
6 6.13 3.05 4.34 4,90 3.22
7 7.11 3.45 4,25 4,93 3.19
8 6.22 3.08 413 4.96 3.16
9 7.36 3.55 4.08 4.98 3.14
10 13.63 5.65 4.23 4,99 3.13
11 8.76 4.08 422 5.00 3.12
12 2.52 1.19 3.92 5.01 3.11
13 17.81 6.81 4.20 5.02 3.10
14 7.44 3.58 4.14 5.03 3.09
15 6.07 3.02 4.03 5.03 3.09
16 4.63 2.37 3.86 5.04 3.08
17 7.31 3.53 3.83 5.04 3.08
18 11.87 512 3.96 5.04 3.08
19 5.73 2.88 3.85 5.05 3.08
20 3.59 1.83 3.65 5.05 3.07
21 6.30 3.12 3.60 5.05 3.07
22 9.83 4.45 3.68 5.05 3.07
23 5.71 2.86 3.60 5.05 3.07
24 16.64 6.50 3.89 5.05 3.07
25 11.77 5.09 4.01 5.05 3.07
26 1.20 0.19 3.63 5.05 3.07
27 5.34 2.70 3.54 5.05 3.07
28 3.39 1.72 3.35 5.05 3.07
29 8.48 3.97 3.42 5.05 3.07
30 5.52 2.78 3.35 5.05 3.07
31 2.01 0.85 3.10 5.05 3.07
32 5.01 2.55 3.05 5.05 3.07
33 3.65 1.86 2.93 5.05 3.07
34 2.48 1.17 2.75 5.05 3.07
35 3.04 1.52 2.63 5.05 3.07
36 7.51 3.61 2.73 5.05 3.07
37 2.40 1.11 2.57 5.05 3.07
38 7.55 3.62 2.67 5.05 3.07
39 4.05 2.07 2.61 5.05 3.07

40 1.62 0.55 241 5.05 3.07
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3.5 Conclusions

The proposed EWMA chart with transformed Weibull data provides a more direct and
practical way to monitor Weibull TBE data. The results show that the EWMA chart with
transformed Weibull data performs well in detecting the shift in scale parameter when the
shape parameter is fixed. And the ARL performance discussed in this chapter may provide

some guidelines for designing the proposed EWMA chart in practice.
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CHAPTER 4 TWO MEWMA CHARTS FOR GUMBEL’S

BIVARIATE EXPONENTIAL DISTRIBUTION

The TBE charts have gained popularity for their effectiveness in high quality process
monitoring (see Xie et al. 2002). However, all of the TBE charts mentioned in literature
focus on univariate cases, assuming that there is only one process characteristic of interest.
In reality, the overall quality of a system tends to depend on several quality characteristics
that are generally correlated. For example, in reliability analysis, the failure of a system
may be caused by the failure of any component within that system; hence the time
between failures of one component may be correlated with the time between failures of
other components as they are working in a similar environment. While monitoring several
correlated TBE variables, the use of separate univariate TBE charts does not account for
the correlation between variables, and the results can be very inefficient, sometimes even
misleading. Thus it is a practical necessity to develop suitable multivariate TBE control

charts that can simultaneously monitor or control two or more related TBE characteristics.

Furthermore, most multivariate control charts, e.g. Hotelling’s T charts (Hotelling
1947), the multivariate exponential weighted moving average (MEWMA) charts (Lowry
1992) and the multivariate cumulative sum (MCUSUM) charts (Crosier 1988, Pignatiello

and Runger 1990), were developed for multivariate normal data. However, multivariate
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TBE data are usually non-normal and highly skewed, as the marginal distributions are
usually based on exponential, gamma or Weibull distributions. Similar to the univariate
case, the traditional multivariate charts based on the T? statistic have been shown to be
quite sensitive to non-normality and would face practical difficulties in such a situation,

perhaps even losing their efficiency in detecting process shifts.

Various methods have been developed to construct multivariate control charts for
skewed populations, some with the help of transformations (Chang and Bai 2004, Chang
2007), while others are based on nonparametric approaches (Qiu and Hawkins 2001, Qiu
and Hawkins 2003, Qiu 2008). However, these multivariate non-parametric control charts
are usually less powerful, and more computationally intensive. Meanwhile, the MEWMA
chart was proposed by various researchers for its effectiveness in monitoring non-normal
populations. For recent results, see Hawkins and Maboudou Tchao (2008), Zou
and Tsun (2008) and Reynolds and Stoumbos (2008). In particular, Stoumbos and
Sullivan (2002) and Testik et al. (2003) showed that the MEWMA control chart with a
small smoothing constant is fairly robust to non-normality. These successful applications
of MEWMA charts for non-normal data motivate our investigation into the likely benefits

of applying MEWMA chart to monitoring of multivariate TBE data.

In this chapter, two MEWMA charts are constructed for the popular Gumbel’s
bivariate TBE model (Gumbel 1960) in reliability analysis. In the subsequent sections, the
Gumbel’s bivriate TBE model is introduced, and two MEWMA charts are proposed for
the model, one on the raw data and the other on transformed data. Both charts are

constructed for monitoring a mean vector shift (or shifts) under the assumption that the
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dependence between the two variables remains the same. For MEWMA on the
transformed data, we first transform the bivariate exponential data into approximate
bivariate normal data using the well-known double square root transformation, and then
we apply the MEWMA chart to the transformed data. A numerical example is given to
illustrate the use of the MEWMA procedures. The ARL properties of the two MEWMA
charts are investigated, and their performances are compared with those of the paired
individual t charts and the paired individual EWMA charts on both raw and transformed
data. The proposed MEWMA charts are shown to generally outperform all the other
charts under the circumstances considered. Finally, we briefly discuss the extension of our
MEWMA charts to Gumbels’s multivariate exponential distribution with more than two

variables.

41 Two MEWMA charts for Gumbel’s lifetime data

4.1.1 Gumbel’s bivariate exponential model

Gumbel (1960) first introduced the model with the following joint survival function (1.0

minus the CDF)
Fyx, (% %) = exp{=(x" +x3)""}, %, %, >0, m=1. (4-1)

A more general expression for the survival function is:
5

1

_ x ¥ (%)

Py, x, (X %,) =expq - 2l g , %,% >0, 6,6,>0, 0<5<1. (4-2)
1 2
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Here 6, and 6, are the scale parameters, o is the dependence parameter, and o6=1

corresponds to independence. In this chapter, we will refer to this as the GBE model.

Houggard (1986) further studied a bivariate Weibull extension of the GBE model

with a common shape parameter 5 having the following survival function:

Fy x, (%0 %) =exp{—(&X] +£,X)°} X, %, >0, &,8,>0, 0<a<l. (4-3)
Here ¢, and ¢, are the scale parameters, » is the shape parameter, « is the dependence

parameter, and «=1 corresponds to independence. We will refer to it as

HBW(¢,,¢,,y,a). When ay =1, the HBW model reduces to the GBE model. Hougaard

(1989) further extended the bivariate Weibull distribution to the multivariate case.
Hougaard showed that the HBW model is a meaningful physical model for failure-times
analysis derived from consideration of a random environmental stress affecting both
components. In other words, the dependence in the GBE model is explained by the
random mixing effect of an external stress. This is different from other popular
multivariate failure-times models where one could specify the source of dependence. For
example, the dependence in the Marshall-Olkin’s model (Marshall and Olkin 1967) is
explained by a common shock destroying both components, and the dependence in the

Freund’s model (Freund 1961) is due to a failure event internal to the system.

According to Lee (1979), the bivariate life time (X,, X,) of the GBE model can be

presented in terms of independent random variables X, =6U°V and X, =6,(1-U)°V ,

where U follows a uniform(0,1) distribution, V =V, +M,V,, , each V,, follows an
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exponential distribution with mean 1, M, =0or1 with probabilities 1-6 and ¢ ,
respectively. The random variables U , V,, , V, , M, are all independent. For more

statistical discussions, including the estimators of parameters, one could refer to Lu and
Bhattacharyya (1991a, 1991b). Both the GBE model and the HBW model can be easily

extended to the multivariate case.

The HBW model and the GBE model have been suggested for different applications
in the literature. The HBW model is especially suitable for family data or competing risks
data. The family data here refers to the lifetimes of two individuals or components which
share some common risk, for example twins, couples or automobile parts with dependent
lifetimes. The dependence within a family might be caused by both genetic and
environmental factors. For example, Lu and Bhattacharyya (1991a) used the GBE model
to analyze paired relief time data collected from headache patients each of whom was
given two different treatments. On the other hand, for components in a system, the
dependence could be created by the different quality of components from various batches
or by the working conditions of the system. For example, Pal and Murthy (2003) fitted the
GBE model to the age of motor cycle (in days) and the usage of motor cycle (in kilometers)

at the time of registering a warranty claim.

Another interesting type of data is that on competing risks. In competing risk models,
the observed system lifetime data can be categorized by the causes of system failure. To
analyze competing risks data, one often constructs random variables that denote the
lifetimes associated with each cause. To estimate the multivariate distribution with this

kind of data, it is necessary to introduce extra dependence assumptions which cannot be
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verified, and the estimation results depend very much on the assumptions. Due to the non-
identifiability of the dependence assumptions, multivariate lifetime distributions with a
specific physical dependence cannot be fitted to competing risks data. On the other hand,
the HBW model and the GBE model that assume the dependence caused by random
effects can easily be applied in such cases. For example, Houggard (1989) used the HBW
model to analyze the time to failure of turn, phase, and ground in 10 motors. One could
only first observe the failure of a motor, and then determine the failed motor component or
components. In this case, it is impossible to identify any physical dependence between the
motor components. It is more likely that the dependence is caused by different working

environments for each motor, which suggests a model like the HBW model.

As mentioned above, the GBE model is a typical lifetime model in the reliability
applications, and many authors have investigated its properties both theoretically and
practically. Thus, it is meaningful and important to develop statistical process control tools
for the GBE model. In the following section, two MEWMA charts are proposed for

lifetime data with a GBE model.

4.1.2 Construction of a MEWMA chart based on the raw GBE data
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Let X, and X,denote the TBE data of interests. We assume that the joint distribution of
(X,, X,) follows GBE (4,,6,,5) with the survival function as Equation (4-2). It is clear

that the marginal distributions of X,, X, are exp(&,) andexp(6,), respectively. The mean

6,
H

Lu and Bhattacharyya (1991a) showed that

vector of X, and X, is given by

elklgzkzl"(klé' +DI(k,0 +DI(k, +k, +1) , k., k, >0,

E(X X)) = 4-5
(X7%27) L' (kS +k,5+1) (4-5)
where I'(-) is the gamma function.
Thus, the correlation coefficient of X, and X, is given by
2% (5 +1
p =204 (@-6)
I'(26 +1)

which ranges from 0 to 1 and is monotone decreasing in ¢ . Let p, denote the correlation
coefficient matrix. According to Equation (4-6), p, is dictated by the dependence
parameter &, and is not affected by the value of &, or 6,. The covariance matrix of

(X;, X,) becomes

, -
, 912 [w - 1} 6,0,
s _ { % Oy ,91,92} _ r'(25+1) 47)
X :
Py 60, '922 212 (0+1) _1la0 02
\T@s+y) )7 ’ |
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First introduced by Lowry et al. (1992), the MEWMA chart is originally constructed
for detecting the mean shift (or shifts) for the multivariate normal distribution with an in-

control mean vector p, and a constant variance covariance matrix X, . Let the i-th
(i=12,...) observation vector of the process be denoted by X, with a vector length of p.

According to Lowry et al. (1992), the MEWMA statistic is defined as:

z. =R(X. —p,)+(1-R)z, , = Zijle(l ~R)7I(X, — ), (4-8)
where R=diag(r,r,,...,r,;) for some user chosen EWMA parameters 0<r, <1 for
k=12,...,p, Z,=0and I is the identity matrix. The MEWMA chart signals if the
charted statistic 7 =z X'z, >h, where I, is the variance-covariance matrix of z;, and h

is the UCL.

When =1, =---=r =, with a constant X, it can be easily shown that

s _@-a-nMr

r .
Z; ot 0 ;Zo,for I — +00 (4'9)

As we have introduced, one important assumption for the traditional MEWMA chart
is that the variance-covariance matrix of the underlying multivariate normal distribution
remains constant after the process experiences a mean shift. However, obviously, this
assumption does not hold for most multivariate exponential distributions which have
exponential-type marginal distributions as a shift in the mean also implies a shift in the

covariance.
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On the other hand, the MEWMA chart based on an asymptotic covariance matrix
with a small smoothing factor can be designed to be quite robust to non-normal
distributions, (see, e.g., Stoumbos and Sullivan, 2002, Testik et al., 2003). In order to

employ the robustness feature of the MEWMA chart, we apply the Lowry’s MEWMA

charting statistic E” to the GBE data. Assuming the TBE data (X,, X,) follows GBE
(6,,6,,0) and the dependence parameter & remains constant, the proposed new MEWMA

chart for monitoring the mean vector (6, 6,) is constructed as the following:

Step 1: Calculate the following recursive statistics:
z, =r(X —px0)+(l— Nz, ,, i=12,.., (4-10)
where x; =[X;, X,;]", 0<r<1is the smoothing factor and p, is the in-control mean
vector of the raw GBE data. The starting value z,equals to 0. Note that when r=1, the

MEWMA chart reduces to the T2 chart.

Step 2:  Set up the MEWMA chart using the following statistics:
E =——Z X, 2, (4-11)
where X, is the in-control variance-covariance matrix of the raw GBE data. Here, we

L ) . . r
use the asymptotic in-control variance-covariance matrix X, :Z—ZXO and the later

comparison study results will show that this implementation is reasonable.
Step 3: The process is considered to be out-of-control when E? exceeds the decision

interval h.
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In practice, the in-control p, and X, can be estimated from the in-control

historical data using the grand mean vector and sample variance-covariance matrix:

N
fi, =X==2 X, (4-12)
N
- 13 - -
Ty, = > (%, — X)X —X)" . (4-13)
L k=1

Another way to estimate the p, and X, s to first estimate the in-control
parameters 6,,6,,6 of the GBE model, and then calculate p, and X, according to

Equation (4-4) to Equation (4-7).

The design parameters r and h are determined by Monte Carlo simulation so that the

ARL, approximately equals to the desired level. Here we use simulation to calculate the

ARL values since we encountered difficulties with the published analytical approaches
based on the multivariate normal distribution such as the bivariate Markov chain method,
the probability limit method, and the integral equation approach. In our study, we first
program a subroutine to get the run length for a single charting realization using simulated
GBE data. The run length is defined as the number of the plotted points until the charts
first signal. Then, 10,000 trials of the run length subroutine are executed and the average
of these 10,000 run length values is used to estimate the ARL value. Several commonly
used smoothing factor r values are selected in this study: r=0.01, 0.02, 0.05, 0.1, 0.3, 0.5,

0.8, 1. For each r value, the corresponding h value is determined so that ARL, is the

desired value. These r and h combinations are further used for control chart construction
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and performance comparison. The ARL property of the MEWMA chart on raw data will

be further analyzed in the later sections.

4.1.3 Construction of a MEWMA chart based on the transformed GBE data

In the literature, there are numerous studies concerning transforming skewed data into
approximate normal data before applying control charts. Hence, we investigate the

possibility of constructing a multivariate TBE chart based on transformed GBE data.

Again, we assume the joint distribution of TBE data (X,, X,) is GBE( ,,6,,5) with
the survival function (4-2). We use the double square root transformation on X, and X,

marginally, because the double square root transformation has been recommended by
many authors for transforming exponential data to approximately normal; see Kittlitz et al.

(1999), Liu et al. (2006), and Liu et al. ( 2007). Let Y, and Y, denote the variables after

transformation, i.e.

Y, = X% andY, = X%, (4-14)
The joint survival function of (,,Y,) becomes

1 o

_ AV 4\
R, (V1) V) = €xp4— [jlj {%} YV Y,>0, 6,6,>0, 0<5<1, (4-15)
1 2

which follows HBW(1/ 8" 1/16y° , 4165, &).
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The marginal distributions of Y, (i =1,2) follow Weibull distributions W (6°*,4). The

mean and standard deviation can be calculated as

p, = E(Y,) =6°*T(1+0.25) = 0.90646"* (4-16)

and

&, =+[D(Y,) = &I (1+0.5) ~T*(1+0.25) = 0.25434". (4-17)
According to Equation (4-5),

O0%62%°T(0.255 +1)T(0.255 +1)I'(0.25+0.25+1)

E(Y,Y,) = E(X)®X)?) = 4-18
(WY2) = EOGTXT) '(0.255 +0.255 +1) (4-18)
So the covariance of Y,and Y, is
I’(0.256+)res 0.25 )0.25
cov(Y,Y,) =E(YY,)— = -I°@.25) |676,", 4-19
(.Y>) (.Y>) Hy Ky, |: T(0.55 +1) 1.25) |66, ( )

and the correlation coefficient between Y, and Y, is

Y

_cov(Y,Y,) [I?(0.256+1)['(1.5)
B B '(0.55 +1)

—I? (1.25)} /[r(1.5)—r2(1.25)]. (4-20)

O-YIO-YZ
Let the correlation coefficient matrix be p, . According to Equation (4-17) and Equation
(4-20), p, is determined by the dependence parameter o, and does not depend on the

value of 6, or 6,. So the covariance matrix of (Y,,Y,) becomes

2

Oy, Py Oy, Oy,

X, = ) . (4-21)
Py Oy, Oy, Oy,

In Figure 4-1, some plots are shown for the joint density function of the original

distribution, the transformed distribution and the corresponding normal distributions with
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the same pand X. We can see that the transformed bivariate exponential distribution is

quite close to the corresponding bivariate normal distribution but with larger kurtosis.

GBE((1.X2)

(b) Normal distribution with the same p and X of the raw data
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(c) Joint distribution of the transformed data

(d) Normal distribution with the same p and X of the transformed data

Figure 4-1 Joint density function plots (4,=6,=1, 5=0.5)

Let the i-th (i =1,2,...) transformed data vector of the process be denoted by Y, . The

proposed MEWMA chart is constructed below:

Step 1:  Calculate the following recursion statistics:
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Z =r(y,—m, )+ A=)z =D r@-n)"(y;-m,), i=12,.., (4-22)
where y; =[Y,;,Y;]', 0<r<1is the smoothing factor and p,, is the in-control mean

vector of the transformed GBE data. The starting value z equals 0. Note that when r=1,
the MEWMA chart reduces to the T2 chart.

Step 2:  Set up the MEWMA chart on the following statistics:

£ - 2—;r 2'E2,, (4-23)

where X, is the in-control variance-covariance matrix of the transformed GBE data.

Again, we directly use the asymptotic in-control variance-covariance matrix

Step 3: The process is considered to be out-of-control when E* exceeds the decision

interval h.

In practice, the in-control p, and X, can be estimated from the in-control historical

data using the grand mean vector and sample variance-covariance matrix:

« 1
Ry, =Y ==2Ye (4-24)
’ n'a
A 1 & _ B
= 2 0NN (4-25)
T+ k=l

Similarly, the design parameters r and h of the MEWMA chart on the transformed

data are also determined by Monte Carlo simulation so that the ARL, approximately

equals the desired level. We first program a subroutine to get the run length for a single
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charting realization using simulated GBE data. After that, 10,000 trials of the run length
subroutine are executed, and the average of these 10,000 run length values is used to
estimate the ARL value. The ARL property of the MEWMA chart on transformed data is

analyzed in later sections.

4.1.4 Numerical example

A simulation example is constructed to illustrate the implementation procedure of the
proposed MEWMA chart with raw or transformed GBE data. We use the relief time
example from Lu and Bhattacharyya (1991a) as the defined in-control process. Each of 10
patients was given two different treatments for headache on separate occasions. The paired
data of relief time (in minutes) are: (8.4, 6.9), (7.7, 6.8), (10.1, 10.3), (9.6, 9.4), (9.3, 8.0),
(9.1, 8.8) (9.0, 6.1), (7.7, 7.4), (8.1, 8.0) and (5.3, 5.1). These data are transformed by
subtracting 5.0 from each point, and then fitting a GBE model. Note that 10 observations
are not enough to accurately estimate the parameters, and we only use these numbers as an
illustration. We further assume that a new medicine was recently invented and has been
used in combination with the two treatments in medical experiments. Due to the
effectiveness of the new medicine, the average transformed relief time of the two
treatments has been shortened to 20% and 50% of the defined ones, respectively. We use

the two proposed MEWMA charts to monitor the transformed patients relief times.

The first 10 paired data in Table 4-1 are the 10 transformed patients relief times

mentioned above. The estimated parameters are 6,=3.43, 6,=2.68, 6=0.25. According
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to the shift assumption we made, the next 15 points are generated with scale parameters

(6/=0.26,,6,=0.56, ) and the dependence parameters 6 =0.25. The design parameters of
the MEWMA chart on the raw GBE data are obtained by simulation (r =0.02,h =5.41) to
achieve an in-control ARL=200. The control chart is shown in Figure 4-2. The MEWMA
chart on the raw GBE data showed an out of control signal at the 20th point. Similarly, the
design parameters of the MEWMA chart on the transformed GBE data are obtained by
simulation ( 2=0.02,h=5.27 ) and the control chart is shown in Figure 4-3. The
MEWMA chart on the transformed GBE data showed an out of control signal at the 18th

point.

10 T
+h

9_ E2

8-

6-

B

0 5 10 15 20 25

Figure 4-2 An example of constructing MEWMA chart based on raw GBE data
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Table 4-1 An example of setting-up MEWMA chart based on raw or transformed

GBE data
MEWM MEWM
NO A?aw ) Afrans ,
Zi Ei yi Zi Ei
0 0 0 0.00 0 0 0.00
1 34 1.9 -0.001 -0.031 0.05 1.358 1.174 0.002 -0.001 0.01
2 2.7 1.8 -0.015 -0.063 0.14 1.282 1.158 0.003 -0.003 0.02
3 51 5.3 0.019 -0.024 0.07 1.503 1517 0.009 0.003 0.07
4 4.6 4.4 0.042 -0.004 0.07 1.465 1.448 0.013 0.007 0.18
5 4.3 3 0.058 -0.013 0.16 1440 1.316 0.017 0.009 0.30
6 4.1 3.8 0.070 -0.005 0.18 1423 1396 0.020 0.012 0.45
7 4 1.1 0.080 -0.051 0.61 1414 1.024 0.024 0.007 0.50
8 2.7 2.4 0.064 -0.071 0.69 1.282 1.245 0.024 0.008 0.52
9 3.1 3 0.056 -0.078 0.70 1.327 1.316 0.026 0.009 0.59
10 0.3 0.1 -0.007 -0.143 0.97 0.740 0562 0.015 -0.005 0.22
11 0.168 0.186 -0.073 -0.205 1.29 0.640 0.656 0.003 -0.016 0.25
12 0.603 0.810 -0.128 -0.254 1.57 0.881 0.949 -0.004 -0.021 043
13 0.096 0.094 -0.192 -0.315 2.09 0.556 0.553 -0.018 -0.035 1.31
14 0.026 0.018 -0.256 -0.377 2.71 0.403 0.366 -0.034 -0.051 3.23
15 1509 2535 -0.289 -0.387 2.62 1.108 1.262 -0.036 -0.050 3.18
16 1.038 1555 -0.331 -0.417 2.88 1.009 1.117 -0.039 -0.051 3.52
17 0.746 1.061 -0.378 -0.456 3.31 0.930 1.015 -0.045 -0.054 4.17
18 0.237 0.258 -0.435 -0.511 4.06 0.698 0.713 -0.055 -0.064 5.91
19 0.013 0.007 -0.494 -0.569 4.96 0.338 0.285 -0.071 -0.081 9.83
20 0.153 0.164 -0.550 -0.623 5.87 0.625 0.636 -0.082 -0.092 12.69
21 1.024 1519 -0.587 -0.649 6.25 1.006 1.110 -0.085 -0.092 13.17
22 0.664 1011 -0.631 -0.684 6.86 0.903 1.003 -0.090 -0.095 14.30
23 0.851 1.232 -0.670 -0.714 7.41 0.960 1.054 -0.094 -0.097 15.11
24 0.629 0.948 -0.712 -0.750 8.09 0.890 0.987 -0.099 -0.100 16.37
25 0.127 0.130 -0.764 -0.801 9.21 0597 0.600 -0.109 -0.110 20.10
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25

201

15+

10}

Figure 4-3 An example of constructing MEWMA chart based on transformed GBE

4.2  Average run length and some properties

The ARL is a traditional performance measure for control chart design and comparison.
Generally, the ARL is defined as the average number of points that must be plotted before
the chart issues an out-of-control signal. For the charts under comparison, the design

parameters and control limits are adjusted to achieve a certain ARL,, and the one with the

smallest ARL, is considered to be the best.
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In this study, we assume the mean vector shift (or shifts) starts (or start) from the
very beginning (i=1), i.e. we study the “zero state” ARL performance. The in-control

process is modeled by GBE (6,,6,,d ), and the out-of-control process modeled by
GBE(¥,,6,,0). We now show that the ARL performance of the two proposed MEWMA
charts on x, and y, only depends on the marginal mean shift vector (6,/6,,6,/6,) when
the smoothing parameter r and the dependency parameter J are constant. Let x; denote
the i-th observed sample data which follows GBE( 4, 6;,0 ) and y, denote the i-th
transformed sample data while the in-control distribution is denoted by GBE(4,,6,,0).

The MEWMA charts are constructed according to Section 4-1 and the out-of-control shift

starts from the very beginning that the chart is constructed.

Lemma 1. When the dependency parameter & remains constant, the initial state ARL

performance of the MEWMA chart on X, only depends on the marginal mean shift vector
(6/16,,6,186,) and the design parameters r and h.

Proof: According to Section 4.1.2, the charting statistic of the MEWMA chart on X; is

= tax ]z
=$'[Zii=1r(1‘ ) (% - g H'Z_xlo [ 2 Lr@=n7 (x-m)] (4-26)
- ?[Z:ﬂr(l— r)H v J‘[P;lo]'[zij:lr(l— r)ifj vi}

62



Chapter 4 Two MEWMA Chart for Gumbel’s Bivariate Exponential Distribution

L — X, —
where viz[xl' 'ux“’, z ﬂx?"} is the standardized raw sample data and
Oy O

m, :Zijzlr(l—r)i’j v, . The chart issues an out-of-control signal when E/ exceeds the

UCL (or h) of the MEWMA chart.

The ARL of the MEWMA chart could be written in the following form

ARL=Y"(i-DPr(E’ >h,E,....E?, <h). (4-27)
i=1

Since ( X,, X, ) follows the following joint distribution

1 o
o

+(§J X, %, >0,8,6,>0,0<5<1,

1
_ s
Fxl,xz(xi’xz):eXp - [ﬁ,j 0

2

G
and

-0 x,-06 X
S SACRES
1 2 1 2

v follows the joint distribution

IE\/1,v2 (V17V2) = IExl,x2 (01(\/1 +1)192 (Vz +1))

5
=expy— ((Vl+1)%J +((v2+1)%

1 2

5 (4-28)
VLV, >0,8,0.>0,0<5 <1,

Hence, the joint distribution of v only depends on the mean shift vector (6//6,,6,16,)

and the dependency parameter 5 . As m, =Zij=1r(1—r)i‘j v,(i=12..), m, is also

decided by the mean shift vector (6,//6,,6,16,).
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From Equation 4-6, it is known that the correlation coefficient matrix p, only depends

on the dependency parameter & . Thus, when the dependency parameter & remains as a

constant, the distribution of the E? statistic on x; only depends on the marginal mean shift
vector (6'/6,,6,186,). Therefore, the ARL performance of the MEWMA chart on x;only

depends on marginal mean shift vector (&//6,, 6,/ 6,) and the design parameters r and h.

Lemma 2. When the dependency parameter o remains as a constant, the ARL
performance of the MEWMA chart on y, only depends on the marginal mean shift vector
(6/16,,6,186,) and the design parameters r and h.
Proof: According to section 4.1.3, the charting statistic of the MEWMA charton v, is
E’=27/%,'z, = ?zr Xz,
= ?.[Zzﬂr (1- r)i_j (yj —n, )T } I [zijzlr (1- r)i'j (yj —p, )}
SIS e W o] [ w] (4-28)

where n, :Zij:lr(l—r)i*j w, and w, z(yﬂ A : Y —ﬂva is the standardized

Oy, vy

transformed sample data. The chart issues an out-of-control signal when E’ exceeds the h

value.

The ARL of the MEWMA chart could be written in the following form

ARL=3(i-1)Pr(E? > h,EZ,..., E%, <h).

i-1 —
i=1
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Since (Y,,Y,) follows the joint distribution

o
_ AVENGVAY:
F . (Y, Y,) =exps— [—ﬁj +(—fj Y, Y, >0,8,6,>0,0<5 <],
o 0) \
and
_ 025 __n0.25
=)= [90-25{1/r il 5 F(;Z Ei)25 | 9°~25yj/r ?25 r(;zi)% j
1 ()_ ( ) 2 ()_ ( ) ’ (4_29)
Y1 Y>
=| ——1—-—-3.5643, ——=~——--3.5643
(0.25436?10'25 0.25430)% J
we have that w follows the joint distribution
Fow, (Wi, W,) = F, , (0.25436]% (w, +3.5643),0.25430, (w, +3.5643))
5
4 4 ‘91 s 4 4 ‘92 g
=expq—|| 0.2543"(w, +3.5643) o +[ 0.2543"(w, + 3.5643) o : (4-30)
1 2

w,w, >0,6,6,>0,0<5<1.
Hence, the joint distribution of w only depends on the marginal mean shift vector
(6/16,,6,10,) and the dependency parametero . As n, :Zij:lr(l—r)i’j w; , n, is also
decided by mean shift vector (6//6,,6,/86,).

Referring to Equation 4-20, we can see that the correlation coefficient matrix g, only

depends on the dependency parameter 6 . Thus, when the dependency parameter o

remains as a constant, the distribution of the E? statistic on y, only depends on the mean
shift vector (6,/6,,6,/86,). Therefore, the ARL performance of the MEWMA chart on

y; only depends on the mean shift vector (8,/6,,6, /6,) and the design parameters r and h.
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Thus, when the process is in control, i.e. & =6, 6,=6,, the ARL, of the two

MEWMA charts only depends on the design parameters r and h. Hence, without loss of

generality, we could study the ARL,performance of GBE (1, 1, ) to determine the r and

h combinations. The r and h values we get could be applied to any GBE distribution with

the same & . Given the design parameter r and h, the ARL, of the two charting processes
only depends on mean shift vector (6//6,,6,/6,). Thus, to decide the most efficient chart

or parameter combination, we only need to identify the mean shift (or shifts) level.

Figure 4-4(a) and 4-4(b) illustrate the ARL, curves of MEWMA charts when ¢ =0.5
with the following r values: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. The curves are plotted
with an increasing h step of 0.25, and are located from left to right as the r value increases
from 0.01 to 1. Once the r and & values are determined, one could easily obtain the
approximate h value to achieve a desired ARL, with the help of interpolation. The exact h
values can be achieved by the following steps: 1) specify the ARL,, r; 2) find the
approximate range of h values from the ARL, plots; 3) calculate the ARL,values against
the h values within that range with an increasing step of 0.01; 4) find the h value which
gives an ARL,value closest to the target one; 5) if the closest ARL,value deviates by
more than +2% or —2% from the target value, decrease or increase the obtained h value

by 0.005 accordingly. The simulation results show such an h value would provide an

ARL, within the range of target ARL=+2%, which is accurate enough in most applications.
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Figure 4-4(a) The in-control ARL for the MEWMA chart based on raw data when
5=0.5
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Figure 4-4 (b) The in-control ARL for the MEWMA chart based on transformed data when
5=0.5
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4.3  Comparison studies

The effectiveness of five control charts (the MEWMA chart based on raw data, the
MEWMA chart based on transformed data, the paired individual t charts, the paired
individual EWMA charts based on raw data, and the paired individual EWMA charts

based on transformed data) are compared in this section. An acceptable ARL, is specified

at the beginning to determine the probability of false alarm, and the chart that provides the

shortest ARL, is considered to be the best. Three types of shifts are considered: the
downside-downside (D-D) shift (&'/6,<1,6,/6,<1), the upside-upside (U-U) shift
(6/16,>1,6,186,>1) and the downside-upside (D-U) shift (&'/6, <1,6,16, >1). We first

introduce the paired individual t charts, and then compare its performance to the two

MEWMA charts we have proposed earlier.

4.3.1 Paired individual t charts

The paired individual t charts run two t charts simultaneously, one for X, and the other
for X, . The t chart was first introduced by Xie et al. (2002) which directly monitors the

TBE data based on the probability limit method. Assume the TBE data follow an

exponential distribution, with survival function
F. (X) =exp(-x/8),x>0. (4-31)

Given the Type | error of a one-sided t chart («, ), the UCL and the LCL are
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UCL, =-0In(a,),

(4-32)
LCL, =—6In(l-a,).

Again, the in-control process (X,, X,) is assumed to follow the GBE( 4,,6,,5)
model and the out-of-control process is modeled by the GBE(4,,6,,6 ) model. Let UCL,
and LCL; (i=1,2) be the control limits for the two t charts. In this study, we equally

allocate the Type | error for the two t charts, i.e. o, =, = ¢, .

To detect the D-D shift (6//6, <1,6, /6, <1), the paired individual t charts use two
lower-side t charts. It produces an out of control signal if X, falls below LCL, and/or X,
falls below LCL,. To detect the U-U shift (6//6, >1, 6,/6,>1), the paired individual t
charts use two upper-side t charts. It produces an out of control signal if X, goes above
UCL, and/or X, goes aboveUCL,. To detect the D-U shift (6//6 <1, 6,/6,>1), the

paired individual t charts use one lower-side t chart and one upper-side t chart. It produces

an out of control signal if X, falls below LCL and/or X, goes above UCL,. The

calculation of the control limits and ARL values is discussed next.

For detecting the D-D shift (6//6, <1,6,/6, <1), the paired individual t charts use
two lower-side t charts. It produces an out of control signal if X, falls below LCL
and/or X, falls below LCL,. Thus, the total ARL of the paired individual t charts is

calculated as

ARL =1/Pr[( x, < LCL)U(x, < LCL,)], (4-33)

where
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Pr( X, < LCL) U (x, < LCL,)]
=1-Pr[( x, > LCL)N(x, > LCL,)]
=1- IExl,x2 (LCL,, LCL,) (4-34)

LC s LcL s )°
=1-—exps— H'Llj J{sz }
1 2

0 18 0 s
=1-expq— —j-ln(l—at)J +[_9_2"|n(1_at)] ]
1 2

S5

Thus, the ARL, of the paired individual t charts is

ARL, =1/ {1—(1—at)2"'} “la, (4-35)
where « is the total Type | error of the paired individual t charts. Specifying ARL, and
o, one could solve Equation 4-35 to get ¢, , and further calculate the control limits

according to Equation 4-32. The ARL, value could be obtained using Equation 4-33 and

Equation 4-34.

For detecting the U-U shift (6//6, >1,60, /6, >1), the individual t chart pair uses two
upper-side t charts. It produces an out of control signal if X, goes above UCL, and/or X,

goes aboveUCL, . Thus, the total ARL of the paired individual t charts is calculated as

ARL =1/Pr[( x, >UCL,)U(x, >UCL,)], (4-36)

where
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Pr{( x, >UCL,)U(x, >UCL,)]
=Pr( x, >UCL,) +Pr(x, >UCL,)—Pr[( x, >UCL,) N (x, >UCL,)]
= F, (UCL)+F, (UCL,)-F, , (UCL,UCL,) (4-37)

uc ucL ucL V¥ (uc VT
=exp| — L +exp| ———2 |—exp— L +| —2
& o, o &,

:at[2]+at[zz]—exp K%-In(at)jw (i-ln(at)]lm]

1

The ARL, of the paired individual t charts becomes

ARL, =1/ {Zat —(at)?-‘"} -1/ a, (4-38)
where ¢ is the total Type | error of the paired individual t charts. Specifying ARL, and &,
one could solve Equation 4-38 to get ¢, , and further calculate the control limits according

to Equation 4-27. The ARL, value could be obtained using Equation 4-36 and Equation 4-
37.

For detecting the D-U shift (6//6,<1,6,/6, >1), the paired individual t charts use
one lower-side t chart and one upper-side t chart. It produces an out of control signal if X,

falls below LCL, and/or X, goes aboveUCL,. Thus, the total ARL of the individual t

charts is calculated as
ARL =1/Pr[( x, < LCL)U(x, >UCL,)], (4-39)

where
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Pr[( x, < LCL)U(x, >UCL,)]
=Pr( x, <LCL))+Pr[( x,>LCL)N(x, >UCL,)]
=1-F, (LCL)+Fy 4, (LCL,UCL,) (4-40)

LC el Vo fuel VT
:1—exp[— lL1]+exp - ( ,Lij +[—,2j
o, o, o,

[ﬁ] { s P s 7°
=1-(1-a,)'* +exp{ - ——-In(1—at)J +(—9—f~ln(at)]

S

o 2
The ARL, of the paired individual t charts becomes
ARL, :]/ {at +exp{{(-In(L-,))"* +(~In at)w]ff}} -1/ a, (4-41)
where « is the total Type | error of the t & t chart. Specifying ARL, and ¢ , one could solve

Equation 4-41 to get «,, and further calculate the control limits according to Equation 4-

27. The ARL, value could be obtained using Equation 4-39 and Equation 4-40.

4.3.2 Paired individual EWMA charts

The paired individual EWMA charts on the raw data run two two-sided EWMA charts for

X, and X, simultaneously, while the paired individual EWMA charts on the transformed
data run two two-sided EWMA charts for Y, and Y,. Similar to the paired individual t

charts, we equally allocate the Type | error between the two EWMA charts. Let the paired

individual EWMA charts on raw data be denoted by EWMA,  and the paired individual
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EWMA charts on transformed data be denoted by EWMA, . The steady state control limits

rans

are used:

UCL gy, = b1, + Loy JTTET)
LCLauy, = 1, + Lo NTT@-T)
UCLeyma,,, =ty + Loy, m
LCLeyn,. =t + Loy Jr/(2=1)

where r is the smoothing factor and L is the width of the control limits. 10000 runs of

EWMA,,,, : {
(4-42)
EWMArrans . {

simulation are used to calculate the ARL value of the paired individual EWMA charts.

4.3.3 Detection of the D-D shifts

When both X, and X, experience a downward shift (6//6, <1,6,/6,<1), it is called a

D-D shift. The D-D shift is critical when the events we are interested in are negative ones,

e.g. the failure of an engine, the collapse of a computer, or the breakout of an infection.

Let the MEWMA chart based on raw data be denoted by MEWMA,_ and the MEWMA

chart based on transformed data be denoted by MEWMA, _ .. Without loss of generality, the

rans *

comparison is conducted with the following condition:
6,=16,=15=0.5 ARL, =200.

Four commonly used smoothing factor r values are selected in this study for the
MEWMA charts and the paired individual EWMA charts: r=0.02, 0.1, 0.5, 1. Note that the
MEWMA chart reduces to the traditional T2 chart and the EWMA charts pair reduces to

X charts pair when r=1.
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Table 4-2 shows the numerical values of ARL, for the five charts under selected D-
D shift levels including the case in which only 6, shifts and the case in which both &, and
6, shift. For each pair of shift levels, the numbers of the first row are the ARL, values of

the MEWMA charts and the paired individual t charts, while the numbers of the second

row are the ARL, values of the paired individual EWMA charts. The values in bold are

the optimal ARL, of the MEWMA,_ , MEWMA, __,EWMA_ _ and EWMA . under specific

aw ! rans ! rans rans

shift (or shifts) setting. The control limits or design parameters for the five charts are listed

in the first three rows of the table. We can observe that:

(1) The MEWMA,,, MEWMA EWMA. 6 and EWMA___ with a small smoothing

aw ! rans ! rans

factor (e.g. r=0.02) outperform the paired individual t charts across the whole shift

domain. Note that the control limit h for the MEWMA, = when r=0.02 is quite close

to that of the MEWMA, _ ., which shows the robustness of MEWMA chart to non-

rans !

normality.

(2) The T? based on transformed data (the MEWMA, __ with r=1) is only effective for

rans

detecting large downward shifts, i.e. the shifts that are far away from 1, while the
T2 based on raw data (the MEWMA,,, with r=1) totally loses its effectiveness. This

shows the sensitivity of T2 to non-normality.

(3) With the same smoothing factor, the MEWMA, . (or the EWMA_ _ ) iS more

rans rans

effective than MEWMA,_ (or the EWMA,__ ) in all cases. With the same smoothing
factor, the performances of the MEWMA charts and the paired individual EWMA

charts are similar. An interesting finding is that the MEWMA, = (or the MEWMA,, )

rans
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seems to be slightly more effective for detecting single mean shifts while the

EWMA, . (or the EWMA, ) works better when both of the means shifted. The

rans

possible reason is that when 5=0.5, the correlation coefficient between X, and X,

is 0.8541 which is a positive value close to 1. As the MEWMA chart takes the
correlation between variables into account, on one hand, it is more sensitive when

616, departs from 6,/ 6,, as the effect of the mean shift (shifts) is opposite to the

effect of positive correlation in this case. On the other hand, it is less sensitive

when 6/ 6, is close to 6, /6,, as the effect of the mean shift (shifts) is confounded

with the effect of positive correlation in this case.

(4) For specific shift (or shifts) settings, the relative difference between the optimal

ARL, of the MEWMA, . (or the MEWMA, ) and the EWMA . (or the EWMA,,,)

rans rans

Min(ARL,euma) — MIN(ARLgya)

3 x100% . The average of
Min(ARLqy,)

are calculated as Diff =

the 16 Diff values is -9.72% which may indicate that the overall performance of the

MEWMA charts are better than the paired individual EWMA charts.

75



Chapter 4 Two MEWMA Chart for Gumbel’s Bivariate Exponential Distribution

Table 4-2 The out-of-control ARLs for D-D shifts when §=0.5and ARL, =200

MEWMA,,, (EWMA_, ) MEWMA_. (EWMA__ ) t&t
[91’ 92'] r 002 01 05 1 002 01 05 1 |LCL 0.0035
6,6,)| h 529 1035 2358 2956 542 87 10.71 10.99 | LCL, 0.0035
L 2072 2901 4431 4962 207 266 284 2756
(1,1) | ARL 200 200 200 200 200 200 200 200 200
(ARL) 200 200 200 200 200 200 200 200
(0.4,1) | ARL 9.98 889 77.83 14576 401 194 125 7.98 28.58
(ARL) 11.48 11.10 * * 566 333 414 50.23
(02,1) | ARL 1154 11.29 10205 177.76 590 339 4.23 23.25 55.83
(ARL) 1340 1496 * * 826 561 11.80 94.79
(051) | ARL 20.83 38.06 * * 15.12 1229 39.74 112.19 126.68
(ARL) 24.64 8459  * * 21.05 2142 76.16 191.66
(081) | ARL 6653 17856 * * 55.89 7556 16422 * 176.75
(ARL) 77.61  * * * 75.83 111.29 18847 *
(0101) | ARL 11.27 10.84 * * 589 337 58  * 20.45
(ARL) 11.33 10.98  * * 534 300 308 3813
(02,02) | ARL 1313 1462  * * 848 568 1889 * 40.40
(ARL) 13.06 14.35  * * 770 497 880 7731
(0505) | ARL 24.24 11155 * * 21.35 2149 14219 * 100.25
(ARL) 22.79 79.16  * * 18.78 17.83 56.86 194.16
(0.8,0.8) | ARL 8110 * * * 78.82 11747  * * 160.10
(ARL) 71.25 = * * 69.11 9541 183.99 *

* The ARL values are larger than 200 and are not listed here.

4.3.4 Detection of the U-U shifts

When both X, and X, experience an upward shift (6//6,>1,6,/6, >1), it is called a U-

U shift. The U-U shift is critical when the events we are interested in are positive ones, e.g.

the purchase order of a product, the arrival of a scarce service, or the completion of a

maintenance project.
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For U-U shift, the comparison is conducted under the same specification: 6, =1,
6,=1,0=0.5, ARL, =200, r=0.02, 0.1, 0.5, 1. Table 4-3 shows the numerical values of

the ARL, for the five charts under selected U-U shift levels. We can find that:

(1) The MEWMA,,, MEWMA, _ ,EWMA_ and EWMA, . with a small smoothing factor

aw ! rans ! ans

(e.g. r=0.02) outperform the paired individual t charts across the whole shift
domain.

(2) The T2 based on transformed data (MEWMA, __ with r=1) and the T* based on raw

rans

data (MEWMA,  with r=1) are quite effective for detecting upward shifts. The

difference between the results for U-U shift and D-D shift is due to the factors that
the MEWMA charts including the T? cases are not directional invariant to skewed
populations like the exponential distribution, and the double square root
transformation is not an accurate transformation method.

(3) With the same smoothing factor, the MEWMA, . is slightly more effective than

rans

MEWMA,_ in all of the cases.
(4) With the same smoothing factor, the performances of the MEWMA charts and the

paired individual EWMA charts are similar. But the MEWMA, _ . (or the MEWMA, )

rans

seems to be slightly more effective for detecting single mean shifts, while the

EWMA, . (or the EWMA, ) works better when both of the means shift.

rans

(5) The average of the relative difference between the MEWMA chart and the
corresponding EWMA charts pair is -6.48% which also indicates the superiority of

the MEWMA charts.
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Table 4-3 The out-of-control ARLs for U-U shifts when §=0.5 and ARL, =200

MEWMA,, (EWMA__ ) MEWMA___ (EWMA__ ) t &t

(.91' 6\| R 002 01 05 1 002 01 05 1 |UCL 50948

el'ezj h 529 1035 2358 2956 542 87 1071 10.99 |UCL,5.948
L 2072 2901 4431 4962 207 266 284 2756

(11) | ARL 200 200 200 200 200 200 200 200 200
(ARL) 200 200 200 200 200 200 200 200

(151) | ARL 21.77 2022 3472 4459 2445 2218 3961 6573 48.11
(ARL) 2517 2328 37.05 46.62 3352 33.07 5050 67.03

1) | ARL 986 7.62 1149 1593 1233 872 11.78 2252 19.08
(ARL) 1142 903 1293 17.10 16.88 1342 1641 24.07

(1) | ARL 1.70 101 1.03 133 349 162 088 139 3.28
(ARL) 201 129 130 155 501 280 167 196

(101) | ARL 047 025 023 028 166 048 014 021 1.81
(ARL) 059 034 031 036 256 110 043 046

(1515) | ARL 2117 1731 2390 2871 31.87 29.34 4523 63.20 29.19
(ARL) 1961 1563 2217 27.74 29.03 2572 32.35 40.59

(22) | ARL 955 6.80 815 1026 1634 1219 1471 25.07 11.46
(ARL) 873 616 7.80 956 1459 10.63 1040 13.97

(55) | ARL 149 082 071 084 488 248 136 186 2.37
(ARL) 137 074 068 078 430 215 100 1.03

(10,10) | ARL 039 020 016 017 251 094 030 037 1.49
(ARL) 034 017 014 016 215 077 022 0.0

4.3.5 Detection of the D-U shifts

When one of X, and X, experiences a downward shift and the other one experiences an

upward shift (&'/6, <1,6,16, >1), it is called a D-U shift. The D-U shift is critical when

one of the events we are interested in is positive and the other one is negative.

For D-U shift, the comparison is conducted under the same specification: 8, =1,

6,=1,6=05, ARL, =200, r=0.02, 0.1, 0.5, 1. Table 4-4 shows the numerical values of
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ARL, for the five charts under selected D-U shift levels. We have the following

observations:

(1) The MEWMA,, , MEWMA EWMA. and EWMA . with a small smoothing

aw ! rans ! rans

factor (e.g. r=0.02) outperform the paired individual t charts across the whole shift

domain.

(2) The T2 based on transformed data (MEWMA, __ with r=1) and the T* based on raw

rans

data ( MEWMA_ with r=1) are also effective for detecting downward-upward

shifts. These are the combination results of the shift directions, i.e. one downward

and one upward.

(3) With the same smoothing factor, it is difficult to decide which one of MEWMA,

rans

and MEWMA,__ is more effective. The reason is the same as (2).

(4) With the same smoothing factor, the performances of the MEWMA charts are
significantly better than the paired individual EWMA charts. This large

improvement may be due to the fact that &'/ 6, always shifts in the opposite direction
of &, /6, in the D-U shifts setting.
(5) After checking the relative difference between the optimal ARL, of the

MEWMA, . (or the MEWMA, ) and the EWMA . (or the EWMA, ), we found

rans rans

that the smallest percentage of improvement of MEWMA chart is —-32.53%. The
average of the relative difference between MEWMA charts and EWMA charts is —

58.12% which shows a strong evidence of the superiority of the MEWMA charts.
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Table 4-4 The out-of-control ARLs for D-U shifts when §=0.5 and ARL, =200

MEWMA_ (EWMA_) MEWMA __ (EWMA__) t&t

(9' e'J R 002 01 05 1 002 01 05 1 |[LCL 00025

h 529 1035 2358 2956 542 87 10.71 10.99 |UCL,5.9915
L 2072 2901 4.431 4962 207 266 284 2.756

(1,1) | ARL 200 200 200 200 200 200 200 200 200
(ARL) 200 200 200 200 200 200 200 200
(0.8,1.5)| ARL 16.33 1577 31.61 43.64 16.18 13.01 24.09 49.70 46.42
(ARL) 23.38 23.68 40.11 4932 28.14 27.79 47.86 68.26
(052) | ARL 6.66 4.89 851 1319 6.22 367 371 914 18.18
(ARL) 10.72 8.96 1299 17.48 1295 926 13.81 23.98
(0.25) | ARL 133 0.76 081 107 165 044 008 0.20 3.18
(ARL) 198 1.26 127 162 451 229 123 199
(0.1,10) | ARL 041 0.20 018 026 061 0.05 000 0.01 1.74

(ARL) 0.62 0.34 031 037 243 093 024 042

4.4  Extension to Gumbel’s multivariate exponential distribution

The GBE distribution can be easily extended to the multivariate setting with the following

survival function.

S5

X, us « us X us
F, Kooy X ) =€XP—| | 22|+ 22| 4| 2 :
il 8T o2 Th

X, X000 X, >0, 6,6,,...,0,>0, 0<5 <1.
Here 6. (i=1,..., p) are the scale parameters, ¢ is the dependence parameter, and 6=1
corresponds to independence. The marginal distributions of X,,..., X, are

exp(&), ...,exp(d,) respectively.
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The distribution is symmetrical in X,,..., X, and the correlation coefficient of any

combination of (X;, X;), i# j,i, je{L..., p} is independent of i and j:

2P+

P = T@s+1) (430

Apparently, the proposed MEWMA charts for the GBE model can be directly applied
to the Gumbel’s multivariate exponential distribution. It is also not difficult to generalize
Lemma 1 and 2 in Section 4.2. Thus the ARL performance of the MEWMA charts only

depends on the marginal mean shift vector (&//6,, ... ,6,/6,) while the smoothing
parameter r and the dependency parameter & are constant. In practice, the in-control p,

can be estimated using Equation (4-12) or (4-24), and X, can be estimated using Equation

(4-13) or (4-25).

However, with the increased complexity of the GBE model, large sample sizes
would be required to accurately estimate the in-control parameters. In addition,
significant computational effort is required to provide design suggestions, as
simulation is the only way to calculate statistical measurements of the control chart,
e.g. the ARL. Moreover, the dependence parameter may not be stable, due to the
nature of specific applications, and thus robustness of the performance, with respect

to the dependence parameter, should be investigated further.

45 Conclusions
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In this chapter, we proposed two MEWMA TBE charts for monitoring the mean shift (or
shifts) of a process that can be modeled by the well-known GBE model. For the MEWMA
chart applied to the transformed data, the bivariate exponential data values are first
transformed into approximate bivariate normal data using the double square root
transformation, and then monitored by the MEWMA chart. The proposed methodologies

could easily be extended to higher dimensions.

We further compared the zero-state ARL performance of the two MEWMA charts,
the paired individual t charts, and the paired individual EWMA charts. The results showed
that the MEWMA charts with a small smoothing factor are more favorable than the paired
individual t charts. As a special case of the MEWMA charts, the T charts are effective for
detecting upward shifts, but totally lose their effectiveness for detecting downward shifts.
Considering the whole shift domain, the performances of the MEWMA charts are better
than the paired individual EWMA charts especially for detecting mean shifts with

opposite shift directions.

This chapter demonstrates the potential use of the MEWMA charts for the GBE TBE
model. Multivariate control chart techniques are required as various existing multivariate
TBE models lack efficient monitoring in applications such as manufacturing system
monitoring, spatiotemporal healthcare management and service system evaluation. It is
hoped that this illustration of the MEWMA chart’s benefits would encourage researchers

and practitioners to pay more attention to the chart’s usage.
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CHAPTER 5 DESIGN OF THE MEWMA CHART FOR RAW

GUMBEL’S BIVARIATE EXPONENTIAL DATA

In this chapter, the statistical design of the aforementioned MEWMA chart based
on raw GBE data is investigated. The properties of both in-control and out-of-control ARL
are studied using simulation. Some general guidelines are provided for designing the
optimal MEWMA chart to monitor the GBE TBE data. A simulation study is conducted to
examine the robustness of the chart to the estimation errors of the dependent parameter.

Finally, a numerical example is given to illustrate the effectiveness of the proposed chart.

5.1Preliminaries

In this section, we summarize the procedure to construct a MEWMA chart based on raw

GBE data according to Chapter 4. The concept of ARL is also briefly introduced.

5.1.1 The GBE distribution

In a two-component system, we assume the time between failures of each component can

be described by an exponential distribution. Let X; and X, denote the time between failures
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of component 1 and component 2, respectively, and the joint distribution of component

lifetimes (X1, X2) follows the underlying survival function:

,f()&’xz):exp{_[(mel)w +(x2/92)1/5}5} 1

where 61, 8, > 0 are scale parameters and 0 <9 <1 js the dependence parameter which is
usually determined by the environmental stress level. Since it is first introduced by
Gumbel (1960), we will call it the Gumbel’s biveriate exponential (GBE) distribution. The

marginal distributions of X; and X, are EXP(6;) and EXP(6-), respectively, and the mean

o]
u= =
#] 18] (5-2)

According to Lu and Bhattacharyya (1991a), the correlation coefficient is given by

vector of X; and X; is given by

2r% (5 +1)
p="r7—""1
F(25 +1) ) (5_3)

The physical justification of this model was given by Hougaard (1986). Some
applications of this model in failure time data analysis can be found in Pal and Murthy

(2003).

5.1.2 Setting up a MEWMA chart with raw GBE data
The procedure to set up such a MEWMA chart is proposed in Chapter 4 as follows:

Attimet, t=1, 2, ..., observe X; = (X1, Xz). Calculate the following recursive
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statistics:

Z, = r(xt —,uXO)Jr(l—r)zi_1 (5-7)

Where 0 <r <1 is the smoothing factor and g, is the in-control mean vector of the raw

data. The starting value of zo equals 0.
Set up the MEWMA chart using the following statistics:

E2- 2t an s, (59

where xz, is the in-control variance-covariance matrix of the raw data.

The process is considered to be out-of-control when E’ exceeds the decision

interval h.

5.1.3 Average run length

In evaluating multivariate control charts, the ARL has been the most commonly used one
in literature. For the MEWMA chart based on raw GBE data, we have proved in Section
4.2 that given the constant dependence parameter ¢, the ARL value depends only on the

design parameters (r and h), and the mean shift ratio (6//6,, 6,/6,), whered, and 9, are
the scale parameters of the in-control process and &/ and &, are the scale parameters of the

out-of-control process.

In this study, we calculate the zero-state ARL values using simulation. 10,000
trials of the subroutine for run length are run to obtain each ARL value. The general
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design parameter combinations could be obtained by calculating the ARL value of any in-

control processes.

5.2 Optimal design of the MEWMA charts

In this section, we use simulation to compute the ARL, for some typical combinations of
(&, r). Given a pre-specified ARL,, the optimal combinations of (r, h) that results in the
shortest ARL, can then be identified. Based on these results, a procedure is suggested to

guide the optimal design.
5.2.1 In-control ARL

Assuming the dependence parameter & is constant, the ARL, only depends on the two
design parameters r and h. Without loss of generality, we evaluate the ARL, of the

MEWMA chart for GBE(1,1, &) against the combination of r and h with the following &
values: 6 = 0.1, 0.3, 0.5, 0.8, 1. The following commonly used r values are chosen for
this study: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. Under each combination (5, r), the ARL,
for each h value is obtained through simulation. The ARL, plot curves are depicted in
Figure 5-1 to Figure 5-5. We can see that the ARL, plot curves lie from left to right as r

value increases from 0.01 to 1.
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Figure 5-2 The ARL, curve for the MEWMA,,, chart when 6 =0.3
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Figure 5-5 The ARL, curve for the MEWMA,,, chart when o =1

Some observations can be made from these figures:
(1) There are some fluctuations in these curves. This is because for each combination of
r and h, the ARL, is obtained through simulation.

(2) When r is small, say r < 0.05, the ARL; is fairly insensitive to the dependence

parameter o. Nevertheless, the effect of 6 becomes more and more significant when r

gets larger.
(3) Given a desired ARL, value, the h value under the selected combination of r and ¢

can be obtained directly from the ARL, curves. The h values for other combinations

of r and ¢ can be achieved by interpolation.

89



Chapter 5 Design of the MEWMA Chart for Raw Gumbel’s Bivariate Exponential Data

Table 5-1 provides some numerical values of combinations of r and h according to

different ARL, levels. These combinations of r and h are used in the following optimal

statistical design study.

Table 5-1 The design parameter combinations for of MEWMA,,, chart

ARLo=100 r 001 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 2.37 3.6 5.5 7.8 15.08 20.28 25.16 26
6=03 h 238 365 555 763 1437 18.95 22.99 23.78
6=05 h 241 366 554 7.5 1356 17.58 21.12 22
6=038 h 2.43 3.7 556 7.26 12.61 16.38 19.6 20.27

o=1 h 242  3.66  5.55 7.3 1234 15.96 18.95 19.5

ARLo=200 r 001 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 372 522 772 1131 2145 29.1 35.77 36.79
6=03 h 3.78 529 7.63 1087 19.67 25.86 31.63 32.65
6=05 h 381 529 753 1035 1833 2358 28.77 29.56
6=038 h 383 532 749 1003 17.05 21.68 25.99 26.72

o=1 h 382 532 744 983 16.63 21.14 25.1 26.13

ARLo=370 r 001 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 5225 693 1031 1484 2817 381 46.9 48.6
6=03 h 525 6.92 995 1394 2516 33.12 40.52  41.98
6=05 h 526 693 967 133 23.05 29.89 36.25  37.55
6=038 h 5.3 6.89 952 1277 2122 27.12 32.49 33.74

o=1 h 5.27 6.9 9.5 126 20.74 26.43 31.58 32.58

ARLo=500 r 001 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 6 782 1167 16.75 31.77 43.05 53.1 55.25
6=03 h 6.03 776 1123 15.63 28.02 37.03 4534  46.96
6=05 h 6.04 7.76 1091 14.84 2554 33.28 39.99  41.44
6=038 h 6.04 7.75 1065 14.16 23.39 29.98 36.06 37.21

6=1 h 6.05 772 1054 1397 2281 29.27 35.07 36.07
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5.2.2 Out-of-control ARL

The ARL, is influenced by the value of mean shift vector (8//6, 6,/6,)as well as the
design parameters r and h. The optimal statistical design scheme should have the shortest
ARL, at certain ARL, value. After we specify an in-control ARL (ARLg), possible
combinations of the design parameters (r, h) can be read from Figure 5-2 to Figure 5-5 or
Table 5-1. The optimal design combination is the one yields the shortest ARL, which is

denoted by ARLpt.

In our study, the listed combinations of r and h in Table 5-1 were used to calculate the
ARL, values. Different shift vectors (6/6,, 6,/ 6,) lead to different optimal settings of the
design parameters. Table 5-2 to Table 5-4 show the optimal design schemes for the
MEWMA,, charts with 6 = 0.5 and ARL, = 100, 200, 370.4, 500. (The optimal design
schemes for 6 =0.1, 0.3, 0.8, 1 are given in Appendix B.) In these tables, we consider the
cases of the downward-downward shift (D-D shift), the upward-upward shift (U-U shift)
and the downward-upward shifts (D-U shift). Then, to further examine the effects of 6 on
the optimal design, we fix ARLy = 200 and depict the optimal design schemes under ¢ =0.1,
0.3, 0.5, 0.8, 1, as are given in Table 5-5. Only the values of smoothing factor r and the

optimal ARL, values are listed in the tables as we could easily get the corresponding UCL

h values according to Table 5-1.
e Detection of the D-D Shift

A D-D shift denotes the situation that both X; and X, are shifting

downward (6/ 6, <1, 6,/0,<1).
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Table 5-2 shows the optimal design schemes of MEWMA,,, chart under selected D-

D shift levels. Some interesting conclusions can be made from Table 5-2:

1)

2)

3)

4)

The optimal r value ranges from 0.02 to 0.1. These r values are comparatively

small indicating that the raw GBE data are highly skewed data.

The optimal r values are rather stable for a wide range of ARL, specifications.
Hence, it is reasonable to choose a suitable r value using Table 5-2 even if the

desired ARL, and mean shift (&//6,,6,16,) is not included.

To detect a small shift, i.e. 6//6, close to 1, it is preferable to use a small value of r.
For example, the optimal r for detecting (6//6,,6,/6,)= (0.8, 1) or (0.9, 1) is 0.01
no matter what the dependence parameter & is. Nevertheless, a large r is more
effective in detecting large shifts. This is similar to the univariate cases as the

EWMA chart with a small smoothing factor has long been considered highly

effective for detecting small sustained shifts.

Comparing the single shift and double shifts situation, we can see that the optimal
ARL values for detecting double shifts is larger than the one for detecting the
single shift with the same shift value. It is due to the confounding effect of the

mean shift (shifts) and the positive correlation between variables.
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Table 5-2 The optimal design schemes of MEWMA,_, chart for D-D shifts when 6= 0.5

(6,16,6,16,) ARL, 100 200 370 500
(0.1,1) R 0.1 0.05 0.05 0.05
ARLpt 6.38 8.27 10.09 11.10
(0.2,1) R 0.05 0.05 0.05 0.05
ARLgpt 7.69 9.79 12.10 13.34
(0.3,1) R 0.05 0.05 0.05 0.05
ARLgpt 9.40 12.03 14.94 16.76
(0.4,1) R 0.05 0.05 0.05 0.02
ARLgpt 11.73 15.31 19.36 21.57
(0.51) R 0.05 0.05 0.02 0.02
ARLgpt 15.22 20.55 2541 27.54
(0.6, 1) R 0.02 0.02 0.02 0.02
ARLgpt 21.05 27.92 34.09 37.35
(0.7,1) R 0.02 0.02 0.02 0.02
ARLgpt 29.48 39.80 50.78 56.63
(0.8,1) R 0.01 0.01 0.01 0.01
ARLgpt 45.07 64.86 83.91 94.95
(0.9,1) R 0.01 0.01 0.01 0.01
ARLgpt 75.02 124.59 184.34 216.75
(0.1,0.1) R 0.5 0.05 0.05 0.05
ARLgpt 7.52 9.54 11.63 12.85
(0.2,0.2) R 0.05 0.05 0.05 0.05
ARL gt 9.06 11.51 14.12 15.70
(0.5,0.5) R 0.02 0.02 0.02 0.02
ARL gt 18.85 24.21 29.39 31.91
(0.8,0.8) R 0.01 0.01 0.01 0.01
ARL gt 52.08 74.69 98.08 111.23

e Detection of the U-U Shift

A U-U shift denotes the situation that both X; and X, are shifting

upward(&'/6, >1, 6,/6,>1).
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Table 5-3 shows the optimal design schemes under selected U-U shift levels. Some

interesting conclusions can be made from Table 5-3:

1)

2)

3)

4)

The optimal r value ranges from 0.02 to 0.3.

The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different ARL, specifications.

A small value of r is preferred for detecting a small shift and vice versa.

Same to the case of D-D shifts, the confounding effect caused the optimal ARL

values of double shifts larger than the ones of single shift with the same shift value.

Detection of the D-U Shift

A D-U shift denotes the situation that one of X; and X; is shifting upward and the other

one is shifting downward (6//6,<1, 6,/6, >1).

Table 5-4 shows the optimal design schemes under selected D-U shift levels. Some

interesting conclusions can be made from Table 5-4:

1)

2)

3)

4)

The optimal r value ranges from 0.05 to 0.3.

The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different ARL, specifications.

A small value of r is preferred for detecting a small shift and vice versa.

Comparing the double shifts values in Table 5-2 to Table 5-4, we can see that the

MEWMA chart is most effective for detecting D-U shifts. For example, the
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optimal ARL values for mean shifts (0.5, 0.5), (0.5, 1), (0.5, 2), (2, 1), (2, 2) are
24.21, 20.55, 5.02, 7.62, and 6.81 when ARL,=200. The MEWMA chart has the
smallest optimal ARL value for mean shifts (0.5, 2). The optimal ARL value
decreases when 6//6, departs from 6,/6, due to the confounding effect of the

mean shift direction and the positive correlation between variables.

Table 5-3 The optimal design schemes of MEWMA,_, chart for U-U shifts when 6= 0.5

(6/16,6.16,) ARL, 100 200 370 500
(1.2,1) r 0.05 0.05 0.02 0.02
ARL oot 40.53 57.68 78.12 87.93

(1.5,1) r 0.1 0.05 0.05 0.05
ARL oot 14.84 19.19 23.86 26.34

(1.8,1) r 0.1 0.1 0.05 0.05
ARLgpt 8.08 10.58 12.75 13.78

(2,1) r 0.1 0.1 0.1 0.1
ARL ot 5.97 7.62 9.37 10.17

(2.5,1) r 0.1 0.1 0.1 0.1
ARL ot 3.49 432 5.24 5.67

(3, 1) r 0.1 0.1 0.1 0.1
ARL ot 2.31 2.94 3.44 3.76

(4,1) r 0.3 0.3 0.3 0.3
ARL ot 1.24 151 1.85 2.01

(5.1) r 0.3 03 0.3 0.3
ARL ot 0.72 0.97 1.13 1.21

(10,1) r 0.3 05 0.3 0.3
ARL ot 0.18 0.23 0.26 0.29

(1.5,1.5) r 0.1 0.1 0.05 0.05
ARL ot 12.40 17.12 22.02 24.92

(2,2) r 0.1 0.1 0.1 0.1
ARL ot 5.17 6.81 8.36 9.02

(5,5) r 05 03 0.3 0.3
ARL ot 0.53 0.71 0.85 0.96

(10,10) r 05 03 0.3 0.3

ARL gt 0.11 0.16 0.18 0.21
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Table 5-4 The optimal design schemes of MEWMA,,, chart for D-U shifts when 6= 0.5

(6/16,6,16,) ARL, 100 200 370 500
(0.8,1.5) r 0.05 0.05 0.05 0.05
ARLop: 11.43 14.56 17.55 19.79

(0.5,2) r 0.1 0.1 0.1 0.1
ARLop 3.90 5.02 6.05 6.62

(0.2,5) r 0.3 0.3 0.3 0.3
ARLop: 0.55 0.69 0.90 0.96

(0.1,10) r 0.3 0.3 0.3 0.3
ARLop: 0.13 0.18 0.23 0.25

e Optimal Design under Different 6 Value

Table 5-5 shows the optimal design schemes under 6=0.1, 0.3, 0.5, 0.8, 1 when ARL, =

200. We can find the following observations from Table 5-5:

1) The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different correlation parameter ¢.
2) A small value of r is preferred for detecting a small shift and vice versa.

3) Another interesting feature observed from Table 5-5 is that the optimal design
parameters r and h are also stable for a range of o values. Thus, it is also
reasonable to find an r value with good performance using Table 5-2 to Table 5-5

even if the desired ¢ is not listed.
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Table 5-5 The optimal design schemes for MEWMA,,,, chart when ARL, = 200

(0/10,0.10,) P 0.1 0.3 0.5 0.8 1

0.2,1) r 0.1 0.05 0.05 0.05 0.05
ARLop: 1.62 6.46 9.79 12.44 12.76

(0.4,1) r 0.1 0.05 0.05 0.05 0.05
ARLop: 2.54 9.81 15.31 19.94 20.25

(0.6, 1) r 0.1 0.05 0.02 0.02 0.02
ARLop: 4.93 18.00 27.92 34.41 35.16

(0.8,1) r 0.5 0.02 0.01 0.01 0.01
ARLop: 13.16 44.72 64.86 77.80 78.66

(1.5,1) r 0.1 0.05 0.05 0.05 0.05
ARLop: 3.64 13.28 19.19 23.19 23.55

,1) r 0.1 0.1 0.1 0.1 0.1
ARLop: 1.23 5.18 7.62 9.25 9.29

3, 1) r 0.3 0.1 0.1 0.1 0.3
ARLop: 0.35 1.79 2.94 3.58 3.58

(5,1) r 0.3 0.3 0.3 0.3 0.3
ARLop: 0.10 0.55 0.97 1.22 1.21

(0.2,0.2) r 0.05 0.05 0.05 0.05 0.05
ARLop: 14.14 13.03 11.51 9.36 8.01

(0.8,0.8) r 0.01 0.01 0.01 0.01 0.01
ARLop: 83.30 80.30 74.69 64.70 56.78

2,2) r 0.1 0.1 0.1 0.1 0.1
ARLop: 8.59 7.76 6.81 5.49 473

(5,5) r 0.3 0.3 0.3 05 0.3
ARLop: 1.10 0.90 0.71 0.45 0.31

(0.2, 5) r 0.3 0.3 0.3 0.3 0.3
ARLop: 0.07 0.37 0.69 1.04 1.17

(0.8,1.5) r 0.1 0.05 0.05 0.05 0.05
ARL 2.10 8.98 14.56 20.47 22.74

5.2.3 Procedure for optimal design of the MEWMA chart

Based on the aforementioned results, we recommend the following procedure for the

optimal design of the MEWMA chart based on the raw GBE TBE data:

Step 1: Specify the desired ARL, value, the constant dependence parameter J and the
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out-of control mean shift vector (6//6,,6,16,) at the beginning.

Step 2: Find the approximate value of the smoothing factor r according to the optimal

design schemes in Tables 5-2 to 5-5.
Step 3: Locate the corresponding h value according to the ARL; contour plots in
Figure 5-1 to Figure 5-5.

Step 4: Use simulation to achieve the more accurate in-control and ARL, to evaluate

the performance of the designed MEWMA,,, chart.

5.3Robustness study

In the former study, we have used the dependence parameter 5 as if it is known and
remains constant through the whole monitoring process. In practice, this dependence
parameter & is estimated from past data, or from expert opinion, and thus is subject to
estimation errors and biases. Moreover, in real applications, it is very possible for § to
experience small random drifts due to the fluctuations of circumstance stress level. In
order to account for the estimation deviations and the possible natural instability, we need

to examine the sensitivity of this chart to the departure of 5 from the estimated value.

For each combination (//6,, 6,/6,) in the first column of Table 5-6, we use the
estimated J,, = 0.5 to derive the ‘estimated’ optimal settings given the pre-specified ARL,
= 200. Assume that this estimated optimal setting is used but the true values of 6 is &, =

0.3, 0.8, respectively. The actual values of ARLy and ARL;, denoted as ARL{™ and

ARL{"™ | are then computed via simulation. For comparison purpose, the optimal settings
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ARL derived from the true values of &, given the pre-specified ARLo = 200, are also

given in the table.

1)

2)

3)

From Table 5-6, we find the following observations:

For a range of mean shift values, the ARL is not sensitive to the dependent

parameter 6 . Hence, it is reasonable for us to use the optimal design results in
Section 5.2 as guidelines in real applications.

When 616, «1, and, i=1, 2, ARL™ is quite close to ARLSY” and ARL\™ is
quite close to 200 except for the only case of (&//6,,6,10,)= (0.8, 0.8). This
means that the effect of estimation error tends to be quite small when we are
interested in shifts with downside shifts. In the special case of (6,/6,,6,/6,)= (0.8,
0.8), the ARL{"® deviates from 200. This may due to the fact that with such small
shifts, the optimal r value becomes very small (r=0.01) and has a comparatively

steeper ARL, curve which causes the ARL\™ to deviate from 200.

When €//6, > 1 and, i=1, 2, ARL"™ is inclined to be further away from 200.

This result prompts us to give more attention to the estimation accuracy of 6 when

we would like to detect upside shifts.
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Table 5-6 Estimated ARL, of MEWMA,_, chartbasedon ¢, =0.5and ¢,,=0.3,0.8
0, 0,
(01, / 91’ 02, / 02 ) ARL((:;JS:) (true) - _(tr(l;)e.)3 (true) (true) - _(tge)8 (true)
ARL ARL, ARL,," ARL ARLy ARL,,
(0.1,1) 8.27 5.43 194.24 5.49 10.45 202.40 10.38
0.2,1) 9.79 6.39 194.24 6.46 12.54 202.40 12.44
(0.3,1) 12.03 7.81 194.24 7.85 15.50 202.40 15.47
0.4,1) 15.31 9.71 194.24 9.81 19.96 202.40 19.94
(0.5,1) 20.55 12.57 194.24 12.89 27.37 202.40 25.87
(0.6,1) 27.92 18.79 199.96 18.00 34.25 201.18 3441
(0.7,2) 39.8 26.78 199.96 26.80 49.39 201.18 49.65
(0.8,1) 64.84 45.73 202.86 44.72 76.98 198.15 77.80
0.9,1) 124.59 94.35 202.86 94.41 139.78 198.15 139.21
(1.2,1) 57.68 41.76 194.24 42.82 67.55 202.40 67.02
(151 19.19 12.97 194.24 13.28 23.28 202.40 23.19
(1.8,1) 10.58 6.86 183.35 7.14 12.85 215.75 12.61
(2,1) 7.62 4.93 183.35 5.18 9.44 215.75 9.25
(2.5,1) 4.32 2.72 183.35 2.84 5.50 215.75 5.26
(3,1) 2.94 1.81 183.35 1.79 3.74 215.75 3.58
(4,1) 151 0.86 164.73 0.93 2.04 24461 1.89
(5,1) 0.97 0.51 164.73 0.55 1.26 244,61 1.22
(10,1) 0.23 0.11 159.99 0.11 0.32 245.02 0.30
(0.1,0.1) 9.54 10.65 194.24 10.76 7.87 202.40 7.84
(0.2,0.2) 1151 12.89 194.24 13.03 9.38 202.40 9.36
(0.5,0.5) 24.21 26.61 199.96 26.44 20.36 201.18 19.99
(0.8,0.8) 74.69 80.55 202.86 80.30 63.99 198.15 64.70
(1.51.5) 17.12 18.78 183.35 19.35 15.52 215.75 14.41
(2,2) 6.81 7.50 183.35 7.76 5.67 215.75 5.49
(5,5) 0.71 0.87 164.73 0.90 0.48 244,61 0.45
(10,10) 0.16 0.21 164.73 0.22 0.08 24461 0.07
(0.2,0.2) 14.56 8.77 194.24 8.98 20.48 202.40 20.47
(0.8,0.8) 5.02 2.74 183.35 2.87 7.57 215.75 7.44
(0.8,1.5) 0.69 0.35 164.73 0.37 1.12 24461 1.04

(0.5,2) 0.18 0.08 164.73 0.09 0.29 24461 0.25
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5.4 lllustrative example

A simulation example is constructed to illustrate the use of the proposed MEWMA chart
with raw GBE data from the model. The first 15 TBE data are generated from a GBE

distribution with scale parameters ¢, =6, =1 and the dependence parameter 6 =0.5, and
the next 15points with scale parameters ¢, =1, 6, =0.5and the dependence parameter
6=0.5.

Under ARL, =370.4, the design parameters of the MEWMA chart on the GBE data are
chosen following the design procedures above (r =0.02,h =6.93) and the control chart is

shown in the Figure 5-6. The MEWMA chart on the GBE data becomes out of control at
the 21% point which is the 6™ point after the process has shifted. We could see that the

performance of the proposed MEWMA chart is pretty good even though the optimal ARL,
values from our optimal design table are not so small (25.41 for optimal initial state
ARL,). It is due to the fact that our optimal designs are based on the assumption that the

process becomes out of control from the very beginning. The performances of the

proposed charts will be much better if it is allowed to warm up for a few points.

12

10

== E"2

Figure 5-6 A MEWMA TBE chart based on raw GBE data
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Table 5-7 An example of setting-up MEWMA chart with raw GBE data

Failure NO X, E’
0 0.00 0.00 0.00
1 2.05 3.40 0.02 0.05 0.23
2 0.56 2.37 0.01 0.07 0.68
3 1.90 0.65 0.03 0.07 0.44
4 1.99 1.60 0.05 0.08 0.58
5 1.91 3.25 0.07 0.12 1.42
6 2.00 0.97 0.08 0.12 1.40
7 2.66 0.97 0.12 0.11 1.67
8 0.94 2.18 0.11 0.14 1.99
9 0.21 1.14 0.09 0.14 1.85
10 0.66 1.18 0.09 0.14 1.84
11 0.94 0.63 0.08 0.13 1.59
12 0.19 0.20 0.07 0.11 1.15
13 0.76 1.15 0.06 0.11 1.16
14 0.15 0.09 0.04 0.09 0.78
15 2.07 2.02 0.06 0.11 1.13
16 0.22 0.80 0.04 0.10 1.02
17 0.19 2.72 0.03 0.13 2.09
18 0.17 1.86 0.01 0.15 2.95
19 0.23 0.27 0.00 0.13 2.59
20 2.10 3.21 0.02 0.17 3.87
21 0.80 5.31 0.01 0.25 8.98
22 0.13 0.30 0.00 0.24 8.32
23 0.14 0.79 -0.02 0.23 8.42
24 1.37 2.68 -0.01 0.26 10.20
25 0.47 1.33 -0.02 0.26 10.83
26 0.22 0.18 -0.04 0.24 9.93
27 0.16 0.52 -0.06 0.22 9.70
28 0.09 0.38 -0.07 0.20 9.39
29 0.07 0.06 -0.09 0.18 8.74
30 0.29 1.06 -0.10 0.18 9.30
31 0.65 0.86 -0.11 0.17 9.16
32 0.15 0.08 -0.12 0.15 8.60
33 2.57 2.00 -0.09 0.17 7.75
34 0.12 0.20 -0.10 0.15 7.40
35 0.33 0.14 -0.12 0.13 6.84
36 0.40 0.78 -0.13 0.12 6.99
37 0.02 0.41 -0.14 0.11 7.19
38 0.78 1.37 -0.14 0.11 7.58
39 181 2.46 -0.12 0.14 8.02
40 0.73 244 -0.13 0.16 9.91
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5.5Conclusions

This chapter explores the optimal design issue of the MEWMA chart based on raw GBE
data for monitoring mean shift(s). An optimal design procedure was provided to guide the
real applications. To facilitate the potential users, we give the optimal design schemes in
Appendix B for the MEWMA charts with 6 = 0.1, 0.3, 0.5, 0.8, 1, and ARL, = 100, 200,
370.4, 500. A rough estimate of the optimal schemes for scenarios not included in these

tables could be obtained from extrapolation.

Robustness of the chart to the estimation errors of the dependence parameter 6 was
examined. We found that the effect of estimation errors was small when we were
interested in detecting moderately small shifts or large downward shifts. On the other hand,
when we are interested in large upward shifts, we should look to the estimation accuracy

since the ARL, tends to be sensitive to the estimation errors.
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CHAPTER 6 DESIGN OF THE MEWMA CHART FOR

TRANSFORMED GUMBEL’S BIVARIATE EXPONENTIAL

DATA

In this chapter, an optimal design procedure is provided for the MEWMA chart
based on the transformed GBE data proposed in Chapter 4. The optimal design is based on
the ARL statistic. The robustness of the optimal design is conducted to examine the effect
of estimation errors of the correlation parameter . The remainder of the chapter is as
follows. Section 6-1 briefly introduces the GBE distribution, the data transformation
technique and the procedure to set up the MEWMA chart. Section 6-2 investigates
properties of the ARL, and ARL, via simulation, after which the optimal design procedure
is proposed. In section 6-3, a simulation study is conducted to examine the robustness of
the chart to the estimation errors of the dependent parameter. A numerical example is
shown in Section 6-4 to illustrate the optimal design procedure of the chart. Finally, we

give the conclusion in Section 6-5.

104



Chapter 6 Design of the MEWMA Chart for Transformed Gumbel’s Bivariate Exponential
Data

6.1Preliminaries

In this section, we summarize the procedure to construct a MEWMA chart based on

transformed data according to Xie et al. (2002).
6.1.1 The GBE distribution

In a two-component system, let X; and X, denote the time between failures of component 1
and component 2, respectively. We assume the joint distribution of component lifetimes
(X1, Xz) can be described by the Gumbel’s bivariate exponential distribution with the
underlying survival function:

lf()(i’xz):exp{—[(xl/el)l/ﬁ +(X2/92)1/5]5} 61

where 6y, 6, > 0 are scale parameters and 0< 6 <1 is the dependence parameter which is

usually determined by the environmental stress level.

6.1.2 Transform the GBE data into approximately normal

The double square root transformation (SQRT) method has been recommended in
literature for transforming exponential distributed data to approximately normal (e.g. Liu
et al. 2007). We apply the double SQRT method to the marginal distributions of X; and X.

Let Y; and Y, denote the variables after transformation, then

Yl — X10.25 andY2 — XS.ZS .

(6-2)
The joint survival function of (Y1, Y2) becomes
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G(yl,yz)=exp{—[(yf/6’1)”6+(y;‘/92)”5} }
(6-3)

This is a bivariate Weibull extension to the GBE model proposed by Hougaard [24]. The
marginal distributions of Y; and Y, follow the Weibull distribution. Let z and X, denote

the mean vector and the variance-covariance matrix of (Y1, Y2). According to Hougaard

(1986), the covariance of Y; and Y3 is

I2(0.256 +1)T(1.5)
r(0.55+1)

cov(Y,,Y,) = E(V,Y, )~ pa at,, = ~I?(1.25) |g0%60%

(6-4)

Goodness of the normal approximation was examined in Chapter 4.

6.1.3 Setting up a MEWMA chart with transformed GBE data

The MEWMA chart was originally introduced by Lowry et al. (1992) for detecting the
mean shift or shifts of the multivariate normal distribution. According to Chapter 4, we
first transform the GBE data to be approximately normal, and then construct a MEWMA
chart based on the transformed data. The procedure to set up such a MEWMA chart is as

follows.

Attimet, t=1,2, ..., observe X; = (Xy, Xz) and transform Xy; and X, with the double
SQRT method to obtain Y; = (Y1, Yz)'.

Calculate the following recursion statistics:

z=r(Yo—py, ) +(1-1) 2 (6-5)
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where 0<r <1 is the smoothing factor and 4, is the in-control mean vector of the

transformed data. The starting value of z equals 0.
Set up the MEWMA chart based on the following statistics:

2—1r ¢

2 -1
Ef = — Z, Xy 7,

, (6-6)

where X, is the in-control variance-covariance matrix of the transformed data.

The process is considered to be out-of-control when E’ exceeds the decision interval h.

6.1.4 ARL

For the MEWMA chart based on transformed GBE data, in section 4.2 we had shown that
given the constant dependence parameter J, the ARL value depends only on the design

parameters (r and h), and the mean shift ratio (8//6, 6,/6,), where 6, and 8, are the
scale parameters of the in-control process and 6, and@, are the scale parameters of the

out-of-control process.

We calculate the zero-state ARL values using simulation. 10,000 trials of the
subroutine for run length are run to obtain each ARL value and the average of these run
length values are calculated to estimate the ARL. According to Section 4.2, the design
parameter combinations obtained by calculating the ARL value of any in-control

processes would be the same.
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6.2 Optimal design of the MEWMA charts

In this section, we use simulation to compute the ARL, of the MEWMA chart based on

transformed GBE data for some typical combinations of (&, r). Given a pre-specified

ARL,, the optimal combinations of (r, h) that results in the shortest ARL, can then be

identified. The optimal statistical design procedure is suggested to guide future practice.

6.2.1 In-control ARL

Again, the dependence parameter o is assumed to be constant. The ARL, only depends
on the two design parameters r and h. Without loss of generality, we evaluate the ARL, of
the MEWMA,,, chart for GBE(1,1, ¢ ) against the combination of r and h with the

following & values: & = 0.1, 0.3, 0.5, 0.8, 1. The following r values are chosen in this

study: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. Under each combination (&, r), the ARL, for

each h value is obtained through simulation. The ARL, plot curves are depicted in Figure

6-1 to Figure 6-5.
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Figure 6-2 The ARL, curve for the MEWMA,, . chart when 6 = 0.3
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Figure 6-4 The ARL, curve for the MEWMA,, . chart when 6 = 0.8
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Figure 6-5 The ARL, curve for the MEWMA, . chart whend =1

Some observations are discovered after carefully examining these figures:
(1) There are some fluctuations in these curves. This is because for each combination
of rand h, the ARL, is obtained through simulation.

(2) When ¢ is large, say ¢ > 0.5, the ARL, is first increasing and then decreasing in r,

as can be observed from Figure 6-4 and Figure 6-5.

(3) When r is small, say r < 0.05, the ARL, is fairly insensitive to the dependence

parameter ¢. Nevertheless, the effect of & becomes more and more significant when

r gets larger.
(4) Given a desired ARL, value, the h value under the selected combination of r and &

can be obtained directly from the ARL, curves. The h values for other
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combinations of r and ¢ can be achieved by interpolation.

Table 6-1 provides some numerical values of combinations of r and h according to

different ARL, levels. These combinations of r and h are used in the following optimal

statistical design study.

Table 6-1 The design parameter combinations for MEWMA, . chart

ARL,=100 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 2.47 3.78 5.72 7.11 9.15 10.12 10.92 11.11
0=03 h 2.47 3.78 5.72 7.08 8.85 9.56 10.03 10.12
0=05 h 2.49 3.79 5.69 6.74 8.68 9.15 9.38 9.38
6=038 h 2.49 3.8 5.73 7.08 8.53 8.84 8.93 8.93

o=1 h 2.49 3.8 5.68 6.99 8.39 8.59 8.46 8.41

ARL,=200 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1
0=01 h 3.87 541 7.41 8.84 11.08 1241 13.66 13.96
0=0.3 h 3.88 541 7.39 8.72 10.57 11.38 12.12 12.26
6=05 h 3.9 5.42 7.41 8.7 10.24 10.71 10.94 10.99
0=038 h 3.89 5.43 7.41 8.65 9.96 10.19 10.18 10.17

o=1 h 3.89 5.43 7.37 8.61 9.76 9.71 9.49 9.39

ARL,=370 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 5.34 6.94 8.98 1043 1295 14.68 16.48 16.87
6=0.3 h 5.34 6.94 8.92 10.26 12.17  13.17 142 14.43
0=05 h 5.35 6.94 8.91 10.13 1161 12.09 12.45 12.52
0=0.38 h 5.36 6.94 8.89 10.09 1123 11.38 11.28 11.23

o=1 h 5.36 6.95 884 10.08 11.23 11.36 11.28 11.22

ARL,=500 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1
6=01 h 6.11 7.69 9.73 11.19 1396 15.92 17.89 18.37
0=0.3 h 6.09 7.71 9.67 10.98 1294 14.08 15.29 15.55
0=05 h 6.11 7.71 9.67 10.87 1229 1282 13.23 13.31
6=038 h 6.12 7.71 9.61 10.74 1186 11.94 11.79 11.77

o=1 h 6.11 7.69 9.57 10.7 1154 11.35 10.81 10.66
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6.2.2 Out-of-control ARL

Under the constant dependence parameter assumption, the ARL, of the MEWMA,,,. chart
is influenced by the value of mean shift vector (6//6,,6,/6,) as well as the design
parameters r and h. The optimal statistical design scheme should have the shortest ARL,
at certain in-control ARL value. After we specify an ARL,, possible combinations of the

design parameters (r, h) can be read from Figure 6-1 to Figure 6-5 or Table 6-1. The

optimal design combination is the one yields the shortest ARL, which is denoted by

The listed combination of r and h in Table 6-1 were used to calculate the out-of-
control ARL values. Different shift vectors lead to different optimal settings of the design
parameters. Table 6-2 to 6-4 show the optimal design schemes for the MEWMA charts on
transformed GBE data with ¢ = 0.5 and ARL, = 100, 200, 370.4, 500. (The optimal design
schemes for ¢ =0.1, 0.3, 0.8, 1 with ARL, = 100, 200, 370.4, 500 are listed in Appendix C.)
In these tables, we consider the cases of the downward-downward shift (D-D shift), the
upward-upward shift (U-U shift) and the downward-upward shifts (D-U shift). Then, to
further examine the effects of ¢ on the optimal design, we fix ARL, = 200 and the optimal
design schemes under ¢ =0.1, 0.3, 0.5, 0.8, 1, as are given in Table 6-5. Only the values of

smoothing factor r and the optimal ARL, values are listed in the tables since we could

easily get the corresponding UCL h values according to Table 6-1.
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e Detection of the D-D Shift

A D-D shift denotes the situation that both X; and X, are shifting downward

(6/16,<1,0,16,<1). The D-D shift is of interests when we are facing negative effect

events which would cause social and economic loss and the decreasing TBE indicates the
deterioration. Some of these negative events are of high severity and closely monitoring
may create great benefit in human life. Such examples include the occurrence of a traffic

accident, the collapse of a computer network, and the recrudescing of a disease.
Table 6-2 shows the optimal design schemes of MEWMA,, . chart under selected
D-D shift levels. Some interesting conclusions can be made from Table 6-2:

1) The optimal r value ranges from 0.01 to 0.3. These r values are comparatively
small indicating that the size of the D-D shift of the transformed data is not so
large, i.e. the effect of D-D shift has been reduced after the double SQRT
transformation.

2) The optimal r values are rather stable for different ARL, specifications especially
when the shift level is large. Hence, it is reasonable to choose a suitable r value
using Table 6-2 even if the desired ARL,and mean shift (6//6,,6,/6,) is not

included.

3) To detect a small shift, i.e. 8//6, close to 1, it is preferable to use a small value of r.

For example, the optimal r for detecting (&//6,,0,16,)= (0.8, 1) is 0.01, 0.02, or

0.05 no matter what the dependence parameter o is. Nevertheless, a large r is

more effective in detecting large shifts. This is similar to the univariate cases as the
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EWMA chart with a small smoothing factor has long been considered highly

effective for detecting small sustained shifts.

4) Comparing the single shift and double shifts situation, we can see that the optimal

ARL values for detecting double shifts is larger than the one for detecting the

single shift with the same shift value. It is due to the confounding effect of the

mean shift (shifts) and the positive correlation between variables.

Table 6-2 The optimal design schemes of MEWMA,,, chart for D-D shifts when §=0.5

(«91' 16, 492' /92) ARL, 100 200 370 500

(0.1,1) R 0.3 0.3 0.3 0.3

ARL o 0.79 1.12 1.43 1.58

(0.2,1) R 0.3 0.3 0.3 0.3

ARL o 2.09 2.77 3.45 3.81

(0.3,1) R 0.1 0.1 0.1 0.1
ARL o 4.12 5.18 6.00 6.44

(0.4,1) R 0.1 0.1 0.1 0.1
ARL o 6.10 7.90 9.17 9.94

(0.5,1) R 0.1 0.1 0.1 0.05
ARL o 9.29 12.29 14.56 16.08

(0.6, 1) R 0.1 0.05 0.05 0.05
ARL o 14.64 19.19 23.02 25.01

(0.7,1) R 0.05 0.05 0.02 0.02
ARL o 23.51 32.13 39.41 43.13

(0.8,1) R 0.02 0.02 0.02 0.02
ARL o 39.72 55.89 71.04 80.48

(0.9,1) R 0.01 0.01 0.01 0.01
ARL o 70.99 114.27 164.18 193.90

(0.1,0.1) R 0.3 0.3 0.3 0.3

ARL o 2.28 2.99 3.75 4.17

(0.2,0.2) R 0.1 0.1 0.1 0.1

ARL o 4.46 5.65 6.54 6.97

(0.5,0.5) R 0.05 0.05 0.05 0.05
ARL o 15.47 19.75 23.68 25.68

(0.8,0.8) R 0.01 0.01 0.01 0.01
ARLop 52.88 77.37 101.41 114.67
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e Detection of the U-U Shift
A U-U shift denotes the situation that both X; and X, are shifting upward
6/16,>1,6,16,>1). The U-U shift is interested when the events occurring have positive

effects in human life and the increasing TBE indicates the deterioration. The example
events include the failure of an engine, the collapse of a computer, and the breakout of an

infection.

Table 6-3 shows the optimal design schemes under selected U-U shift levels. Some

interesting conclusions can be made from Table 6-3:

1) The optimal r value ranges from 0.1 to 0.8. These r values are located throughout
the range of 0 to 1 indicating that the effect of U-U shift has not been reduced after

the double SQRT transformation.

2) The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different ARL, specifications.

3) A small value of r is preferred for detecting a small shift and vice versa.

4) Same to the case of D-D shifts, the confounding effect caused the optimal ARL

values of double shifts larger than the ones of single shift with the same shift value.
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Table 6-3 The optimal design schemes of MEWMA,,, . chart for U-U shifts when §=0.5

(616,0.16,) ARL, 100 200 370 500
(1.2,1) R 0.1 0.02 0.02 0.02
ARLqp: 43.23 63.82 83.82 94.56

(1.5,1) R 0.1 0.05 0.05 0.05
ARL oy 16.04 22.01 26.53 28.87

(1.8,1) R 0.1 0.1 0.1 0.1
ARLqp: 9.00 11.72 13.73 14.82

2,1) R 0.1 0.1 0.1 0.1
ARLqp: 6.95 8.72 10.30 11.00

(2.5,1) R 0.3 0.3 0.3 0.3
ARL o 3.77 4.78 5.74 6.27

(3, 1) R 0.3 0.3 0.3 0.3
ARL o 2.43 2.93 3.60 3.83

(4,1) R 0.5 05 0.5 0.3
ARLqp: 1.17 153 1.87 1.97

(5,1) R 0.5 05 0.5 0.5
ARLqp: 0.66 0.88 1.07 1.22

(10,1) R 0.5 05 0.5 0.5
ARL o 0.10 0.14 0.19 0.21

(1.5,1.5) R 0.1 0.05 0.05 0.05
ARL o 20.17 29.59 36.80 40.04

(2,2) R 0.1 0.1 0.1 0.1
ARLqp: 9.09 12.05 14.39 15.51

(5,5) R 0.5 05 0.5 0.5
ARLqp: 1.03 1.37 1.69 1.87

(10,10) R 0.8 0.8 0.5 0.5
ARL o 0.23 0.30 0.40 0.44

e Detection of the D-U Shift

A D-U shift denotes the situation that one of X; and X; is shifting upward and the other

one is shifting downward (6// 6, <1,6, /6, >1). The D-U shift is interested when one of

the event occurring has positive effect and the other one has negative effect in human life.
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Table 6-4 shows the optimal design schemes under selected D-U shift levels. Some

interesting conclusions can be made from Table 6-4:

1)

2)

3)

4)

The optimal r value ranges from 0.1 to 0.5. The range of r values indicates that the
effect of downside shift and upside shift after the double SQRT transformation has

been confounded.

The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different ARL, specifications.

A small value of r is preferred for detecting a small shift and vice versa.

Comparing the double shifts values in Table 6-2 to Table 6-4, we can see that the
MEWMA chart is most effective for detecting D-U shifts. For example, the
optimal ARL values for mean shifts (0.5, 0.5), (0.5, 1), (0.5, 2), (2, 1), (2, 2) are
19.75, 12.29, 3.02, 8.72, and 12.05. The MEWMA chart has the smallest optimal

ARL value for mean shifts (0.5, 2). The optimal ARL value decreases when 6,/6,

departs from 6,/6, due to the confounding effect of the mean shift direction and

the positive correlation between variables.

Table 6-4 The optimal design schemes of MEWMA,, . chart for D-U shifts when 6= 0.5

(616,0.16,) ARL, 100 200 370 500
(0.8,1.5) r 0.1 0.1 0.3 0.1
ARL o 9.88 12.96 15.48 17.06

(0.5,2) r 0.3 0.3 0.5 0.3
ARLqp: 2.30 3.02 3.62 3.98

(0.2,5) r 0.5 05 0.5 0.5
ARLqp: 0.05 0.08 0.12 0.14

(0.1,10) r 0.5 05 0.5 0.5
ARL 0.00 0.00 0.00 0.01
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e Optimal Design under Different 6 Value

Table 6-5 shows the optimal design schemes under 6=0.1, 0.3, 0.5, 0.8, 1 when ARL, =

200.

Table 6-5 The optimal design schemes of MEWMA,,. chart when ARL, = 200

(6/16,6,16,) yi| 0.1 0.3 0.5 0.8 1

0.2,2) r 0.3 0.3 0.3 0.1 0.1
ARLopt 0.00 0.72 2.77 5.63 6.12

0.4,1) r 0.5 0.3 0.1 0.1 0.1
ARLgpt 0.01 3.42 7.90 13.26 14.40
0.6, 1) r 0.3 0.1 0.05 0.05 0.05
ARLgpt 0.79 9.60 19.19 29.89 32.28
(0.8,1) r 0.1 0.05 0.02 0.01 0.01
ARLgpt 6.43 32.92 55.89 76.27 80.21
(1.5,1) r 0.3 0.1 0.05 0.05 0.05
ARLopt 1.29 11.38 22.01 31.80 34.92

(2,1) r 0.3 0.3 0.1 0.1 0.1
ARL gt 0.08 3.97 8.72 13.67 14.57

(3,1) r 0.5 0.3 0.3 0.3 0.3
ARL gt 0.00 1.04 2.93 5.17 5.91

(5,1) r 0.1 0.5 0.5 0.5 0.5
ARLgpt 0.00 0.15 0.88 1.80 1.83

(0.2,0.2) r 0.1 0.1 0.1 0.1 0.3
ARL gt 6.57 6.24 5.65 4.46 2.78
(0.8,0.8) r 0.01 0.01 0.01 0.01 0.02
ARLgpt 82.33 80.70 77.37 66.93 57.05

(2,2) r 0.1 0.1 0.1 0.3 0.3
ARL gt 13.88 12.96 12.05 9.82 7.43

(5,5) r 0.3 0.5 0.5 0.5 0.8
ARLopt 2.15 1.76 1.37 0.84 0.48

0.2,5) r >0.05 0.5 0.5 0.5 0.5
ARLpt 0.00 0.00 0.08 0.68 1.17
(0.8,1.5) r 0.3 0.1 0.1 0.1 0.05
ARLopt 0.23 6.03 12.96 24.10 30.39

We can find the following observations from Table 6-5:

1) The optimal design parameters r and h are rather stable for a range of mean vector

shifts according to different correlation parameter ¢.
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2) A small value of r is preferred for detecting a small shift and vice versa.

3) Another interesting feature observed from Table 6-5 is that the optimal design
parameters r and h are also stable for a range of o values. Thus, it is also
reasonable to find an r value with good performance using Table 6-2 to Table 6-5

even if the desired ¢ is not listed.

6.2.3 Procedure for optimal design of the MEWMA chart

Based on the aforementioned results, we recommend the following procedure for the

optimal design of the MEWMA chart based on the transformed GBE TBE data:

Step 1: Specify the desired ARL, value, the constant dependence parameter J and the

out-of control mean shift vector (6//6,,6,/6,) at the beginning.

Step 2: Find the approximate value of the smoothing factor r according to the optimal

design schemes in Tables 6-2 to 6-5.
Step 3: Locate the corresponding h value according to the ARL, contour plots in
Figure 6-1 to Figure 6-5.

Step 4: Use simulation to achieve the more accurate ARL, and ARL, to evaluate the

performance of the designed MEWMA, ., chart.

6.3Robustness study

In Section 6.2, we assume the dependence parameter s is known and remains constant
through the whole monitoring process. In practice, this dependence parameter & is subject

to estimation errors and moreover faces small random drifts. In order to account for the
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estimation deviations and the possible natural instability, we need to examine the

sensitivity of the MEWMA, . chart to the departure of & from the estimated value.

For each combination (6,/6,,6,/6,) in the first column of Table 6-6, we use the
estimated J,, = 0.5 to derive the ‘estimated’ optimal settings given the pre-specified ARL
= 200. Assume that this estimated optimal setting is used but the true values of ¢ is &, =
0.3, 0.8, respectively. The actual values of ARL, and ARL;, denoted as ARL{™ and
ARL{"™ | are then computed via simulation. For comparison purpose, the optimal settings
ARL" derived from the true values of ¢, given the pre-specified ARL, = 200, are also

opt

given in the table.

From Table 6-6, we observe the following phenomenon:

1) For a range of mean shift values, the ARL, is not sensitive to the dependent

parameter 6 . Hence, it is reasonable for us to use the optimal design results in

Section 6.2 as guidelines in real applications.
2) When the shift is not too large, say 0.3 < 6//6, <2, i=1, 2, (ARL!™, ARL"™) is

quite close to (200, ARL(;fe)). This means that the effect of estimation error tends to

be quite small when we are interested in shifts with small size.

3) When 8//6, > 1 and 616, «1, i=1, 2, ARL!™ is inclined to be far removed

from 200. This result prompts us to give more attention to the estimation accuracy

of 6 when we would like to detect extremely large shifts.

121



Chapter 6 Design of the MEWMA Chart for Transformed Gumbel’s Bivariate Exponential
Data

Table 6-6 Estimated ARL; s of MEWMA,,, chart based on 6., =0.5ando,,, =0.3,0.8
Oy — Oprue —
(91,/01’ 92' /02) ARL(Oe::) (true) t _(tr?e.)3 (true) (true) t _(tg;:)S (true)
ARL! ARL ARLy,”  ARL! ARLY™  ARLy,
0.1,1) 0.40 0.10 173.94 0.09 2.89 226.37 2.76
(0.2,1) 1.12 0.67 173.94 0.72 6.60 226.37 5.61
(0.3,1) 2.77 2.42 198.23 1.71 8.67 205.92 8.65
(0.51) 7.90 5.85 198.23 5.87 20.79 205.92 19.54
(0.7,1) 19.19 17.03 204.75 17.01 48.65 203.25 46.44
(0.9.1) 55.89 79.47 206.08 76.70 139.82 199.12 139.12
(1.2,1) 197.73 39.31 201.59 39.09 85.72 200.04 85.02
(1.51) 63.82 12.30 204.75 11.38 32.76 203.25 32.31
(1.8,1) 22.01 5.97 198.23 5.96 18.33 205.92 18.02
(2,1) 11.72 4.46 198.23 3.97 13.63 205.92 13.63
(3,1) 4.78 0.99 173.94 1.04 5.42 226.37 5.20
(5,1) 0.88 0.14 159.09 0.15 1.96 261.17 1.79
(2,2) 12.05 12.95 198.23 12.96 10.14 205.92 9.82
(5,5) 1.37 1.57 159.09 1.76 0.92 261.17 0.84
(0.2,0.2) 5.65 6.19 198.23 6.24 4.46 205.92 4.46
(0.8,0.8) 77.37 80.25 206.08 80.70 67.30 199.12 66.93
(0.8,1.5) 12.96 6.06 198.23 6.03 24.94 205.92 24.10
(0.5,2) 3.02 0.73 173.94 0.76 8.08 226.37 7.33

6.4 lllustrative example

We assume that, in a two-component system, the time between failures of each component
follows exponential distribution and the joint distribution of the time between failures for
the two components follows GBE model. A simulation example is constructed to illustrate
the optimal design of the MEWMA chart based on transformed data and use it to detect
the mean shifts of the time between failures. The generated data are listed in Table 6-7.
The first 15 pairs of TBE data follow a GBE (1, 1, 0.5), and the next 15 pairs follow a

GBE (1, 0.5, 0.5).

122



Chapter 6 Design of the MEWMA Chart for Transformed Gumbel’s Bivariate Exponential

Data

Table 6-7 An example of setting-up MEWMA chart with transformed GBE data

No Xi Vi Zi Ei2
0 0 0
1 2.05 3.40 1.20 1.36 0.03 0.05 0.60
2 0.56 2.37 0.87 1.24 0.02 0.07 2.14
3 1.90 0.65 1.17 0.90 0.05 0.07 1.27
4 1.99 1.60 1.19 1.12 0.07 0.08 2.03
5 1.91 3.25 1.18 1.34 0.09 0.12 4.03
6 2.00 0.97 1.19 0.99 0.11 0.11 4.29
7 2.66 0.97 1.28 0.99 0.14 0.11 5.52
8 0.94 2.18 0.98 1.22 0.13 0.13 5.84
9 0.21 1.14 0.68 1.03 0.09 0.13 4.98
10 0.66 1.18 0.90 1.04 0.08 0.13 5.06
11 0.94 0.63 0.98 0.89 0.08 0.12 3.96
12 0.19 0.20 0.66 0.67 0.05 0.08 1.94
13 0.76 1.15 0.93 1.04 0.05 0.09 2.24
14 0.15 0.09 0.62 0.55 0.01 0.04 0.62
15 2.07 2.02 1.20 1.19 0.04 0.07 1.27
16 0.22 0.80 0.68 0.95 0.02 0.06 1.63
17 0.19 2.72 0.66 1.28 -0.01 0.09 6.05
18 0.17 1.86 0.64 1.17 -0.04 0.11 11.19
19 0.23 0.27 0.69 0.72 -0.05 0.08 9.11
20 2.10 3.21 1.20 1.34 -0.02 0.12 9.87
21 0.80 531 0.95 1.52 -0.01 0.17 17.89
22 0.13 0.30 0.60 0.74 -0.04 0.13 15.89
23 0.14 0.79 0.61 0.94 -0.07 0.12 18.28
24 1.37 2.68 1.08 1.28 -0.04 0.15 19.11
25 0.47 1.33 0.83 1.07 -0.05 0.15 20.14
26 0.22 0.18 0.68 0.65 -0.06 0.11 15.16
27 0.16 0.52 0.63 0.85 -0.08 0.09 15.74
28 0.09 0.38 0.55 0.79 -0.11 0.07 16.95
29 0.07 0.06 0.51 0.49 -0.14 0.02 14.47
30 0.29 1.06 0.73 1.01 -0.14 0.03 16.35

Given a pre-specified ARL, =370.4 , the optimal design parameters can be

obtained from Table 6-2, which are given by (r, h) = (0.1, 10.13). A MEWMA chart based
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on the transformed data can be constructed by following the set-up procedure described in

Section 6.2. We can see from Figure 6-6 that the MEWMA chart signals the out of control
situation at the 18™ point which is the third point after the underlying process has been

shifted. Thus, the proposed MEWMA chart is quite effective according to the simulation

example.
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Figure 6-6 A MEWMA TBE chart based on transformed GBE data

6.5Conclusions

In this chapter we investigated the optimal design problem of the MEWMA chart based on

transformed GBE data for monitoring mean shift(s). The optimal design procedure was
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provided and the optimal design schemes are given in Appendix C to guide the future
study. A rough estimate of the optimal schemes for scenarios not included in these tables
could be obtained from extrapolation. Robustness study of the MEWMA, .. charts to the
estimation errors of the dependence parameter & showed that the effect of estimation
errors was small when we were interested in detecting moderately small shifts. However,
we should pay attention to the estimation accuracy if the circumstances of large upward

shifts or extremely large downward shifts of the dependence parameter 6 existed.
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CHAPTER 7 CONCLUSIONS AND FUTURE WORKS

The results and contributions of the research works included in this dissertation are
summarized in this chapter. The limitations of current works are discussed and some

future works are suggested.

7.1. Summary

TBE charts were shown to be highly effective in both industry system improvement and
human management. The example areas of applications of the TBE charts include the
manufacturing systems, the reliability and maintenance monitoring problem, the human
health surveillance, the service improvement. Despite its effectiveness and generality of
applications, the current TBE chart techniques are facing more and more challenges as the
implementing circumstance become more complex and the needs for multivariate charting
techniques become greater. This thesis expanded the application area of the TBE charts by
developing an EWMA TBE control chart based on the more generalized Weibull

distribution and proposing two MEWMA chart for the multivariate GBE distribution.

Chapter 3 develops an EWMA chart for transformed Weibull-distributed TBE data.
The Weibull distribution is a more reasonable assumption for lifetime data as it can
describe not only the circumstances with a constant failure rate but also the ones with an

increasing failure rate or a decreasing failure rate. The Box-Cox transformation method is
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adopted to transform the Weibull-distributed data into approximately normal. Then an
EWMA chart is constructed based on the transformed data. The statistical design of the
proposed chart is using ARL criteria applying Markov chain calculation. It is proved that
the in-control ARLs of the EWMA charts with transformed Weibull data only depend on
the design parameters of the control charts and are irrelevant to the distribution parameters.
The guidelines for optimal statistical design of the EWMA chart are given to promote the

use of the chart in real applications.

Charter 4 proposed two MEWMA control charts for the Gumbel’s bivariate
exponential (GBE) distributed data, one based on the raw GBE data, the other based on
the transformed data. Both charts are constructed for monitoring a mean vector shift (or
shifts) under the assumption that the dependence between the two variables remains the
same. For MEWMA on the transformed data, we first transform the bivariate exponential
data into approximate bivariate normal data using the well-known double square root
transformation, and then we apply the MEWMA chart to the transformed data. The ARL
performance of the two MEWMA charts are compared with those of the paired individual
t charts and the paired individual EWMA charts on both raw and transformed data. The
results showed that the proposed MEWMA charts generally outperform all the other
charts under all the circumstances considered. This prompts us to explore the potential

applications of multivariate TBE charts in the future.

Chapter 5 and Chapter 6 study the optimal design for the MEWMA charts based on
raw GBE data and on transformed GBE data, separately. The optimal design procedure
was provided and the optimal design schemes were examined. Results showed that the

optimal design parameters are quite constant for a range of mean shift or shifts. Thus a
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rough estimate of the optimal schemes for scenarios not included in these tables could be
obtained from extrapolation. Another general guideline is that a smaller smoothing factor r
is more preferred for small shift or shifts levels and vice versa which is quite similar to the
case of design of the EWMA chart for univariate distributed data. The robustness of the
two control charts to the estimation errors of the dependence parameter was also examined.

Robustness study of the MEWMA,,, and MEWMA,, . charts to the estimation errors of

the dependence parameter & showed that the effect of estimation errors is small when we
are interested in detecting moderately small shifts. However, we should pay attention to
the estimation accuracy if the circumstances of large upward shifts or extremely large

downward shifts of the dependence parameter ¢ existed.

Results from each chapter showed that the control charts proposed in this thesis did
improve the effectiveness of the TBE charting technique and make it more practical for
complex TBE data monitoring. However, this thesis also has its limitations which along with

future research direction are discussed in the next section.

7.2. Future works

In Chapter 3, it was assumed that the shape parameter of the Weibull distribution is known.
However, in practice, the shape parameter is subject to estimation error and random drifts.
It would be interesting to examine the robustness of the EWMA chart to the estimation
error of the shape parameter. Moreover, Chapter 3 mainly dealt with the statistical design
of the EWMA charts. Another widely studied method for designing control charts is the

economic approach. The pioneering work done in this area was due to Duncan (1956) and
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Lorenzen and Vance (1986). In the recent years, considerable research has been devoted to
the economic design for univariate TBE charts e.g. Zhang et al. (2008). it would be
interesting to investigate the economic design of the proposed EWMA chart based on

transformed Weibull data.

In Chapter 4, 5 and 6, it was assumed that the dependence parameter of the GBE
distribution was known and remained constant through the whole monitoring process. It
would be a challenging problem to develop charting techniques for monitoring both the
dependence parameter and the mean vector. Another thing is that the ARL values that
calculated are zero-state ARLs. Further studies might examine the performance of the

proposed charts for stable-state ARLS.

Chapter 5 and Chapter 6 discussed about the statistical design of the proposed
MEWMA charts based on raw and transformed GBE data. As we know, economic design
is another important design approach of control charts. Although its complexity
methodology and the lack of general accepted multivariate cost function limited its
application in the multivariate control charting research area, people are still paying
attention to this area. For example, Linderman and Love (2000) extended the economic
design to the MEWMA chart under multivariate normal assumption. We may further
investigate the performance of the proposed charts under economic consideration. The
comparison of the economic design and the statistical design of the MEWMA charts may
provide us some insight in designing a TBE chart for different purposes. The computation

complexity of different methods could be compared.
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Moreover, there were lots of other multivariate attribute or variable TBE models with
important applications in literature. As mentioned before, multivariate TBE charts for
monitoring several TBE quantities at the same time have been rarely studied. Although
some authors have developed various non-parametric control charts for multivariate data,
the performance of such charts are usually poor comparing to distribution-based control
charts. To improve the effectiveness of the control charts and overcome the weakness of
univariate TBE charts for correlated quantities, it would be beneficial to extend the
univariate TBE charts for some common multivariate TBE data, e.g. the famous Marshall-
Olkin’s multivariate exponential distribution, the Freund’s multivariate exponential model

and so on.
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APPENDIX A: OPTIMAL DESIGN SCHEMES OF EWMA CHART

WITH TRANSFORMED WEIBULL DATA

Table A-1 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=100, S, =1

SS?]ail:‘f Shape shift 7, / 7,
(B15,) 0.2 0.5 0.8 1 15 2 2.5 3 3.5 4 4.5 5
A 0.02 0.1 0.2 0.3 0.5 0.8 1 1 1 0.8 0.8 0.5
0.1 L 1.469 | 2144 | 2.343 | 2.42 | 2.467 | 2.458 | 2.452 | 2.452 | 2.452 | 2.458 | 2.458 | 2.467
ARL, .. | 24.201 | 8.3741 | 4.789 | 3.6895 | 2.3728 | 1.7758 | 1.2409 | 1.0056 | 1 1 1 1
A 0.02 | 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 1 1 1
0.2 L 1469 | 1.88 | 2.144 | 2.343 | 2.42 | 2.454 | 2.467 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452
ARL,;, | 35.177 | 12.883 | 7.3937 | 5.6084 | 3.4969 | 2.5509 | 2.0767 | 1.6557 | 1.3069 | 1.0408 | 1.0007 | 1
A 0.02 | 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1
0.3 L 1469 | 1.88 | 2.144 | 2144 | 2.343 | 2.42 | 2.454 | 2.467 | 2.467 | 2.458 | 2.458 | 2.452
ARL,. |46.931 | 17.845 | 10.321 | 7.9623 | 4.8974 | 3.507 | 2.7345 | 2.269 | 2.0201 | 1.6619 | 1.4022 | 1.1344
A 0.02 | 002 | 005 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.8
0.4 L 1469 | 1469 | 1.88 | 2.144 | 2343 | 2.343 | 242 | 2.454 | 2.454 | 2.467 | 2.467 | 2.458
ARL, . | 59.523 | 24.332 | 14.279 | 10.965 | 6.8501 | 4.817 | 3.7116 | 3.0289 | 2.5603 | 2.2381 | 2.0448 | 1.7898
A 0.02 | 002 | 005 | 0.05 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5
05 L 1469 | 1469 | 1.88 | 1.88 | 2144 | 2.343 | 2343 | 242 | 242 | 2454 | 2.454 | 2.467
ARL, . |72.161 | 32.586 | 19.621 | 15.201 | 9.422 | 6.7732 | 5.136 | 4.1703 | 3.478 | 2.9985 | 2.6337 | 2.3644
A 0.02 | 0.02 | 002 | 005 | 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.3
0.6 L 1.469 | 1.469 | 1.469 | 1.88 | 1.88 | 2.144 | 2144 | 2343 | 2.343 | 242 | 242 | 242
ARL, .. | 83.564 | 44.362 | 27.427 | 21.587 | 13.595 | 9.619 | 7.46 | 59573 | 4.9539 | 4.2632 | 3.6967 | 3.2895
A 0.02 | 0.02 | 0.02 | 0.02 | 005 | 0.05 0.1 0.1 0.1 0.2 0.2 0.2
0.7 L 1.469 | 1.469 | 1.469 | 1.469 | 1.88 | 1.88 | 2144 | 2.144 | 2.144 | 2.343 | 2.343 | 2.343
ARL,.. | 92.46 | 60.799 | 39.769 | 31.625 | 20.454 | 14.719 | 11.338 | 9.1102 | 7.6485 | 6.5243 | 5.6271 | 4.9683
0.8 A 0.02 | 0.02 | 0.02 | 0.02 | 002 | 002 | 005 | 005 | 005 | 0.1 0.1 0.1
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L 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.88 | 1.88 | 1.88 | 2.144 | 2.144 | 2.144

ARL,,, | 98.084 | 80.623 | 60.753 | 50.354 | 33.785 | 25.009 | 19.485 | 15.81 | 13.312 | 11.324 | 9.8183 | 8.6799

A 002 | 002 | 002 | 002 | 002 | 0.02 | 002 | 002 | 002 | 002 | 002 | 0.5

0.9 L 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.469 | 1.88
ARL, .. |100.41 | 96.678 | 88.929 | 82.57 | 66.386 | 52.989 | 43.052 | 35.842 | 30.543 | 26.556 | 23.477 | 20.826

1.2 A 002 | 0.05 | 005 | 0.05 | 0.5 0.1 0.1 0.2 0.2 0.3 0.3 0.4
L 1469 | 1.88 | 1.88 | 1.88 1.88 | 2.144 | 2.144 | 2.343 | 2343 | 242 | 242 | 2.454

ARL,. | 9235 | 77.724 | 61.31 | 52.072 | 35.619 | 25.72 | 19.37 | 15.152 | 12.095 | 9.9019 | 8.2404 | 6.9501

1.5 A 0.05 | 0.05 | 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8 0.8
L 1.88 | 1.88 | 1.88 | 2144 | 2343 | 2.42 | 2467 | 2.467 | 2.458 | 2.458 | 2.458 | 2.458

ARL,;, |80.883 | 47.61 | 29.582 | 22.515 | 12.977 | 8.3911 | 5.8366 | 4.3297 | 3.3815 | 2.7216 | 2.2793 | 1.9706

1.8 A 0.05 | 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8 1
L 1.88 | 1.88 | 2.144 | 2.343 | 2.454 | 2.467 | 2.458 | 2.458 | 2.458 | 2.458 | 2.458 | 2.452

ARL;, |69.524 | 32.985 | 18.6 | 13.642 | 7.3375 | 4.574 | 3.1905 | 2.3959 | 1.9332 | 1.6443 | 1.4547 | 1.3256

2 A 0.05 0.1 0.2 0.2 0.5 0.8 0.8 0.8 0.8 0.8 1 1
L 1.88 | 2.144 | 2.343 | 2.343 | 2.467 | 2.458 | 2.458 | 2.458 | 2.458 | 2.458 | 2.452 | 2.452

ARL ;. | 63.33 | 27.372 | 14.852 | 10.715 | 5.5948 | 3.518 | 2.4589 | 1.9065 | 1.5885 | 1.3929 | 1.2654 | 1.1811

2.5 A 0.05 0.1 0.3 0.4 0.8 0.8 0.8 0.8 1 1 1 1
L 1.88 | 2144 | 2.42 | 2454 | 2.458 | 2.458 | 2.458 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452

ARL,;, |51.856 | 19.241 | 9.8229 | 6.8926 | 3.5698 | 2.265 | 1.6938 | 1.4036 | 1.2406 | 1.1461 | 1.0901 | 1.0561

3 A 0.05 0.2 0.4 0.5 0.8 0.8 0.8 1 1 1 1 1
L 1.88 | 2.343 | 2.454 | 2.467 | 2.458 | 2.458 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452

ARL,,, | 44.266 | 15.058 | 7.3755 | 5.1077 | 2.6548 | 1.7796 | 1.4047 | 1.2181 | 1.1207 | 1.068 | 1.0387 | 1.0222

3.5 A 0.05 0.2 0.5 0.5 0.8 0.8 1 1 1 1 1 1
L 1.88 | 2.343 | 2.467 | 2.467 | 2.458 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452

ARL,,, |38.978 | 12.429 | 5.9485 | 4.1311 | 2.1855 | 1.5353 | 1.2617 | 1.1323 | 1.0687 | 1.0361 | 1.0192 | 1.0102

4 A 0.05 0.2 0.5 0.8 0.8 0.8 1 1 1 1 1 1
L 1.88 | 2.343 | 2.467 | 2.458 | 2.458 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452

ARL, .. |35.108 | 10.715 | 5.0291 | 3.518 | 1.9065 | 1.3929 | 1.1811 | 1.0868 | 1.0425 | 1.021 | 1.0105 | 1.0052

5 A 0.05 0.3 0.5 0.8 0.8 1 1 1 1 1 1 1
L 1.88 | 242 | 2.467 | 2.458 | 2.458 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452 | 2.452

ARL,;, |29.838 | 8.492 | 3.9562 | 2.7546 | 1.5969 | 1.2375 | 1.1 | 1.0435 | 1.0192 | 1.0086 | 1.0038 | 1.0017

10 A 0.1 0.5 0.8 0.8 1 1 1 1 1 1 1 1
L 2.144 | 2467 | 2.458 | 2.458 | 2452 | 2.452 | 2452 | 2.452 | 2452 | 2.452 | 2.452 | 2.452

ARL,;, |19.113 | 47313 | 2.2483 | 1.6837 | 1.1835 | 1.0547 | 1.017 | 1.0053 | 1.0017 | 1.0005 | 1.0002 | 1.0001
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Table A-2 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=300, S, =1

Scale Shape shift 7, /7,
Shift

(B.1S,) 0.2 0.5 0.8 1 1.5 2 2.5 3 35 4 4.5 5
A 0.02 0.1 0.2 0.3 0.4 0.5 0.8 1 1 1 1 0.8
0.1 L 2.033 | 2607 | 275 | 2.793 | 2.801 | 2.792 | 2732 | 2.713 | 2.713 | 2.713 | 2.713 | 2.732

ARL;, |36.291 | 11.127 | 6.1167 | 4.693 | 2.8951 | 2.1479 | 1.7768 | 1.2924 | 1.0092 | 1 1 1

A 0.02 | 005 | 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 1
0.2 L 2.033 | 2.396 | 2607 | 275 | 2.793 | 2.801 | 2792 | 2.792 | 2.732 | 2.732 | 2.713 | 2.713
ARL, .. |55.622 | 17.796 | 9.6696 | 7.3457 | 4.4071 | 3.1363 | 2.4442 | 2.0798 | 1.8224 | 1.5552 | 1.1433 | 1.0097

A 0.02 | 005 | 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.5 0.8 0.8
0.3 L 2.033 | 2.396 | 2.607 | 2.607 | 2.75 | 2.793 | 2.801 | 2.801 | 2.792 | 2.792 | 2.732 | 2.732
ARL, .. | 79.114 | 25792 | 14.147 | 10.51 | 6.2762 | 4.4219 | 3.4073 | 2.7607 | 2.3279 | 2.083 | 1.9141 | 1.6893

A 0.02 | 002 | 005 | 01 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5
0.4 L 2.033 | 2.033 | 2.396 | 2.607 | 2.607 | 2.75 | 2.75 | 2.793 | 2.801 | 2.801 | 2.792 | 2.792
ARL, . |108.98 | 36.51 | 19.979 | 15.184 | 8.9407 | 6.1577 | 4.7195 | 3.7628 | 3.1501 | 2.7194 | 2.3807 | 2.1566

A 0.02 | 002 | 005 | 005 | 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4
05 L 2.033 | 2.033 | 2.396 | 2.396 | 2.607 | 2.607 | 2.75 | 275 | 2.793 | 2.793 | 2.801 | 2.801
ARL, .. | 146.46 | 50.863 | 28.81 | 21.45 | 12.732 | 8.8507 | 6.6307 | 5.267 | 4.3792 | 3.7264 | 3.2579 | 2.8843

A 002 | 002 | 002 | 002 | 005 | 01 0.1 0.2 0.2 0.2 0.2 0.3
0.6 L 2.033 | 2.033 | 2.033 | 2.033 | 2.396 | 2.607 | 2.607 | 275 | 275 | 275 | 275 | 2.793
ARL,;, | 190.63 | 73.677 | 41.758 | 32.201 | 18.902 | 13.039 | 9.7668 | 7.8852 | 6.3598 | 5.3776 | 4.7017 | 4.1043

A 002 | 002 | 002 | 002 | 005 | 005 | 005 | 0.1 0.1 0.1 0.2 0.2

0.7 L 2.033 | 2.033 | 2.033 | 2.033 | 2.396 | 2.396 | 2.396 | 2.607 | 2.607 | 2.607 | 2.75 | 2.75
ARL,;, | 236.58 | 112.37 | 64.399 | 49.132 | 30.255 | 20.678 | 15.733 | 12.25 | 10.044 | 8.5591 | 7.3744 | 6.381

A 0.02 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 005 | 005 | 01 0.1
0.8 L 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2396 | 2.396 | 2.396 | 2.396 | 2.607 | 2.607
ARL;, | 275.22 | 177.98 | 112.24 | 86.668 | 53.049 | 37.645 | 28.576 | 22.433 | 18.461 | 15.715 | 13.352 | 11.59

A 0.02 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 005
0.9 L 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.396
ARL ;. |297.39 | 264.44 | 216.7 | 186.24 | 128.17 | 92.75 | 70.977 | 56.864 | 47.202 | 40.265 | 35.085 | 30.904

1.2 A 0.02 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.2 0.2 0.3
L 2.033 | 2.033 | 2.033 | 2.033 | 2.033 | 2.396 | 2.396 | 2.607 | 2.607 | 2.75 | 275 | 2.793
ARL .. | 265.14 | 181.88 | 121.13 | 95.154 | 58.568 | 39.577 | 28.809 | 21.68 | 17.043 | 13.638 | 11.141 | 9.2668

15 A 0.02 | 002 | 005 | 005 | 01 0.2 0.4 0.5 0.5 0.8 0.8 0.8
L 2.033 | 2.033 | 2.396 | 2.396 | 2.607 | 2.75 | 2.801 | 2.792 | 2.792 | 2.732 | 2.732 | 2.732
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ARL,;, | 196.33 | 84.174 | 46.756 | 34.018 | 18.359 | 11.364 | 7.6659 | 5.455 | 4.1296 | 3.2257 | 2.6223 | 2.2133
1.8 A 0.02 0.02 | 0.05 0.1 0.3 0.5 0.8 0.8 0.8 0.8 0.8 0.8

L 2.033 | 2.033 | 2.396 | 2.607 | 2.793 | 2.792 | 2.732 | 2.732 | 2.732 | 2732 | 2.732 | 2.732
ARL, ., | 148.8 | 53.563 | 27.568 | 19.362 | 9.8452 | 5.8158 | 3.8862 | 2.7794 | 2.1645 | 1.7928 | 1.5543 | 1.3947

2 A 0.02 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 1 1
L 2.033 | 2396 | 2.607 | 2.75 | 2.801 | 2.792 | 2.732 | 2.732 | 2.732 | 2732 | 2.713 | 2.713
ARL,,, | 127.49 | 42,552 | 21.216 | 14.906 | 7.3109 | 4.3028 | 2.865 | 2.1298 | 1.7221 | 1.4774 | 1.3204 | 1.2172

2.5 A 0.02 0.05 0.2 0.3 0.5 0.8 0.8 0.8 1 1 1 1
L 2033 | 2396 | 275 | 2.793 | 2.792 | 2732 | 2.732 | 2.732 | 2.713 | 2.713 | 2.713 | 2.713
ARL,,, | 94.602 | 28.601 | 13.517 | 9.1815 | 4.3687 | 2.6031 | 1.8558 | 1.4907 | 1.2899 | 1.1747 | 1.1072 | 1.0665

3 A 0.02 0.1 0.3 0.4 0.8 0.8 0.8 1 1 1 1 1
L 2.033 | 2.607 | 2.793 | 2.801 | 2.732 | 2.732 | 2732 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713
ARL,,, | 76.507 | 21.534 | 9.9022 | 6.6047 | 3.1334 | 1.9657 | 1.4921 | 1.2623 | 1.1439 | 1.0807 | 1.0458 | 1.0262

3.5 A 0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 2.033 | 2.607 | 2793 | 2.792 | 2732 | 2.732 | 2713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713
ARL,,, | 65.242 | 17.539 | 7.8285 | 5.1652 | 2.4969 | 1.6551 | 1.3157 | 1.158 | 1.0816 | 1.0428 | 1.0227 | 1.012

4 A 0.02 0.2 0.4 0.5 0.8 0.8 1 1 1 1 1 1
L 2033 | 275 | 2801 | 2.792 | 2732 | 2.732 | 2713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713
ARL, ;. |57.582 | 14.906 | 6.4919 | 4.3028 | 2.1298 | 1.4774 | 1.2172 | 1.1033 | 1.0504 | 1.0249 | 1.0124 | 1.0062

5 A 0.05 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1
L 2396 | 275 | 2792 | 2.732 | 2732 | 2713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713
ARL, ., |47.269 | 11.513 | 49125 | 3.2716 | 1.7328 | 1.286 | 1.1191 | 1.0516 | 1.0228 | 1.0101 | 1.0045 | 1.002

10 A 0.05 0.5 0.8 0.8 1 1 1 1 1 1 1 1
L 2396 | 2792 | 2.732 | 2.732 | 2713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713 | 2.713
ARL,;, | 28.393 | 6.0504 | 2.5807 | 1.843 | 1.22 | 1.0649 | 1.0201 | 1.0063 | 1.002 | 1.0006 | 1.0002 | 1.0001
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Table A-3 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=370.4, 5, =1

Scale Shape shift 7, /7,
Shift

(B.1S,) 0.2 0.5 0.8 1 1.5 2 2.5 3 35 4 4.5 5
A 0.02 0.1 0.2 0.2 0.4 0.5 0.8 1 1 1 1 0.8

0.1 L 2.136 | 2.688 | 2.82 | 2.82 | 2.861 | 2.848 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.779
ARL,;, |38.814 | 11.688 | 6.3839 | 4.867 | 3.0006 | 2.2008 | 1.865 | 1.4696 | 1.0279 | 1 1 1

A 0.02 | 0.05 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 1

0.2 L 2.136 | 2.487 | 2.688 | 2.82 | 2.857 | 2.861 | 2.848 | 2.848 | 2.779 | 2.779 | 2.758 | 2.758
ARL,;, | 60.16 | 18.789 | 10.124 | 7.7071 | 4.5923 | 3.258 | 2.5295 | 2.1183 | 1.9137 | 1.6541 | 1.2548 | 1.0291

A 0.02 | 0.05 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.8

0.3 L 2.136 | 2.487 | 2.688 | 2.688 | 2.82 | 2.857 | 2.857 | 2.861 | 2.848 | 2.848 | 2.848 | 2.779
ARL,;, |86.651 | 27.498 | 14.96 | 11.024 | 6.555 | 4.6082 | 3.5288 | 2.8583 | 2.4029 | 2.1222 | 2.013 | 1.7766

A 0.02 | 002 | 005 | 0.05 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5
0.4 L 2.136 | 2.136 | 2.487 | 2.487 | 2.688 | 2.82 | 2.82 | 2.857 | 2.861 | 2.861 | 2.848 | 2.848
ARL,;, | 121.16 | 39.053 | 21.151 | 16.037 | 9.3449 | 6.4279 | 4.895 | 3.9031 | 3.2727 | 2.8148 | 2.4606 | 2.2109

A 0.02 | 002 | 005 | 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

05 L 2.136 | 2.136 | 2.487 | 2.487 | 2.688 | 2.688 | 2.82 | 282 | 2.857 | 2.857 | 2.861 | 2.861
ARL,;, | 165.84 | 54.865 | 30.821 | 22.749 | 13.422 | 9.2489 | 6.9358 | 5.4764 | 4.5624 | 3.8643 | 3.3882 | 2.9892

A 002 | 002 | 002 | 002 | 0.05 0.1 0.1 0.1 0.2 0.2 0.2 0.3

0.6 L 2.136 | 2.136 | 2.136 | 2.136 | 2.487 | 2.688 | 2.688 | 2.688 | 282 | 282 | 282 | 2.857
ARL,;, | 220.67 | 80.469 | 44.807 | 34.354 | 19.985 | 13.755 | 10.228 | 8.2278 | 6.6446 | 5.5942 | 4.8761 | 4.2678

A 0.02 | 002 | 002 | 002 | 005 | 005 | 0.05 0.1 0.1 0.1 0.2 0.2

0.7 L 2.136 | 2.136 | 2.136 | 2.136 | 2.487 | 2.487 | 2.487 | 2.688 | 2.688 | 2.688 | 2.82 | 2.82
ARL;, |280.57 | 125.13 | 69.99 | 52.945 | 32.419 | 21.91 | 16.568 | 12.899 | 10.525 | 8.9382 | 7.7381 | 6.6675

A 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 005 | 0.05 0.1 0.1

0.8 L 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.487 | 2.487 | 2.487 | 2.487 | 2.688 | 2.688
ARL,,, | 333.65 | 204.71 | 124.99 | 95.292 | 57.294 | 40.294 | 30.563 | 23.821 | 19.508 | 16.548 | 14.094 | 12.187

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0.5

0.9 L 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.487
ARL, ., | 365.72 | 318.55 | 254.26 | 215.1 | 143.84 | 102.29 | 77.41 | 61.546 | 50.809 | 43.166 | 37.496 | 33.139

1.2 A 002 | 002 | 002 | 002 | 002 | 005 | 0.05 0.1 0.1 0.2 0.2 0.3
L 2.136 | 2.136 | 2.136 | 2.136 | 2.136 | 2.487 | 2.487 | 2.688 | 2.688 | 2.82 | 282 | 2.857
ARL,;, |322.02 | 211.18 | 135.93 | 105.2 | 63.387 | 42.625 | 30.7 | 23.08 | 18.01 | 14.429 | 11.715 | 9.7414

1.5 A 002 | 002 | 005 | 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8
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L 2.136 | 2.136 | 2.487 | 2.487 | 2.688 | 2.82 | 2.857 | 2.848 | 2.848 | 2.779 | 2.779 | 2.779
ARL,;, | 229.79 | 92.473 | 50.686 | 36.442 | 19.442 | 11.956 | 8.0243 | 5.6862 | 4.2743 | 3.3266 | 2.6897 | 2.2604

1.8 A 0.02 | 0.02 | 0.05 0.1 0.2 0.5 0.5 0.8 0.8 0.8 0.8 0.8
L 2136 | 2.136 | 2.487 | 2.688 | 2.82 | 2.848 | 2.848 | 2.779 | 2.779 | 2.779 | 2.779 | 2.779

ARL,;, | 169.61 | 57.798 | 29.34 | 20.538 | 10.348 | 6.0728 | 4.0182 | 2.8552 | 2.2092 | 1.8211 | 1.5731 | 1.4076

2 A 0.02 | 0.05 0.1 0.1 0.4 0.5 0.8 0.8 0.8 0.8 1 1
L 2.136 | 2.487 | 2.688 | 2.688 | 2.861 | 2.848 | 2.779 | 2.779 | 2.779 | 2.779 | 2.758 | 2.758

ARL,;, | 143.58 | 45.956 | 22.57 | 15.814 | 7.6641 | 4.458 | 2.9454 | 2.1729 | 1.7475 | 1.4933 | 1.3308 | 1.2239

2.5 A 0.02 | 0.05 0.2 0.3 0.5 0.8 0.8 0.8 1 1 1 1
L 2136 | 2.487 | 2.82 | 2.857 | 2.848 | 2.779 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758

ARL,,, | 104.56 | 30.472 | 14.297 | 9.6492 | 4.5279 | 2.6695 | 1.8868 | 1.5071 | 1.2992 | 1.18 | 1.1104 | 1.0685

3 A 0.02 0.1 0.2 0.4 0.8 0.8 0.8 1 1 1 1 1
L 2.136 | 2.688 | 2.82 | 2.861 | 2.779 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758

ARL,,, | 83.676 | 22.92 | 10.405 | 6.9041 | 3.2289 | 2.0015 | 1.5085 | 1.2706 | 1.1483 | 1.0831 | 1.0472 | 1.027

3.5 A 0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 2.136 | 2.688 | 2.857 | 2.848 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758

ARL,,, | 70.887 | 18.549 | 8.19 | 5.3763 | 2.5579 | 1.6778 | 1.326 | 1.1628 | 1.084 | 1.044 | 1.0233 | 1.0124

4 A 0.02 0.1 0.4 0.5 0.8 0.8 1 1 1 1 1 1
L 2.136 | 2.688 | 2.861 | 2.848 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758

ARL,, | 62.283 | 15.814 | 6.783 | 4.458 | 2.1729 | 1.4933 | 1.2239 | 1.1063 | 1.0518 | 1.0256 | 1.0127 | 1.0063

5 A 0.05 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1
L 2487 | 282 | 2848 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758

ARL,;, |51.266 | 12.118 | 5.1066 | 3.3752 | 1.7586 | 1.2952 | 1.1226 | 1.0531 | 1.0234 | 1.0104 | 1.0046 | 1.0021

10 A 0.05 0.5 0.8 0.8 1 1 1 1 1 1 1 1
L 2.487 | 2.848 | 2.779 | 2.779 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758 | 2.758

ARL,;, |30.244 | 6.3247 | 2.646 | 1.8734 | 1.2269 | 1.0668 | 1.0207 | 1.0065 | 1.002 | 1.0006 | 1.0002 | 1.0001
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Table A-4 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=500, £, =1

Scale Shape shift 7, /7,
Shift
(B.1B,) 0.2 0.5 0.8 1 1.5 2 25 3 35 4 4.5 5
A 0.02 0.1 0.2 0.2 0.4 0.5 0.8 0.8 1 1 1 1
0.1 L 2.278 | 2798 | 2917 | 2.917 | 2.944 | 2,926 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818
ARL,, | 4249 | 1250 | 678 | 512 | 3.16 | 229 | 1.99 | 166 | 1.09 | 1.00 | 1.00 | 1.00
A 002 | 005 | 0.1 0.1 0.2 0.4 0.5 0.5 0.5 0.8 1 1
0.2 L 2.278 | 2,610 | 2.798 | 2.798 | 2.917 | 2.944 | 2.926 | 2.926 | 2.926 | 2.844 | 2.818 | 2.818
ARL,,, | 66.97 | 2021 | 10.77 | 823 | 4.85 | 344 | 266 | 219 | 201 | 178 | 151 | 110
A 002 | 005 | 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
0.3 L 2.278 | 2610 | 2.798 | 2.798 | 2917 | 2917 | 2.946 | 2.944 | 2.926 | 2.926 | 2.926 | 2.926
ARL,,, | 98.27 | 29.99 | 16.15 | 11.76 | 6.97 | 487 | 370 | 3.00 | 252 | 219 | 203 | 200
A 002 | 002 | 005 | 005 | 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5
0.4 L 2.278 | 2278 | 2,610 | 2.610 | 2.798 | 2.917 | 2.917 | 2.946 | 2.944 | 2.944 | 2.926 | 2.926
ARL,,, |140.43 | 42.76 | 2283 | 17.17 | 992 | 683 | 515 | 411 | 345 | 295 | 258 | 230
A 002 | 002 | 005 | 005 | 01 0.1 0.2 0.2 0.2 0.3 0.3 0.4
05 L 2.278 | 2278 | 2,610 | 2.610 | 2.798 | 2.798 | 2.917 | 2.917 | 2.917 | 2.946 | 2.946 | 2.944
ARL,, |197.25 | 60.82 | 33.79 | 2463 | 14.43 | 982 | 739 | 578 | 483 | 407 | 356 | 3.14
A 0.02 | 002 | 002 | 002 | 005 | 0.2 0.1 0.1 0.2 0.2 0.2 0.3
0.6 L 2.278 | 2278 | 2.278 | 2.278 | 2.610 | 2.798 | 2.798 | 2.798 | 2.917 | 2.917 | 2.917 | 2.946
ARL,;, |270.67 | 90.88 | 49.28 | 37.47 | 2153 | 1480 | 1088 | 870 | 7.07 | 591 | 513 | 451
A 0.02 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.1 0.1 0.2
0.7 L 2278 | 2278 | 2.278 | 2.278 | 2278 | 2,610 | 2.610 | 2.798 | 2.798 | 2.798 | 2.798 | 2.917
ARL,;, |356.24 | 145.38 | 78.47 | 58.61 | 35.46 | 23.68 | 17.75 | 13.84 | 1121 | 948 | 825 | 7.09
A 002 | 002 | 002 | 002 | 002 | 002 [ 005 | 005 | 005 | 005 | 0.1 0.1
0.8 L 2.278 | 2.278 | 2278 | 2.278 | 2.278 | 2.278 | 2,610 | 2.610 | 2.610 | 2.610 | 2.798 | 2.798
ARL, ., |437.69 | 248.85 | 145.19 | 108.69 | 63.64 | 44.16 | 33.49 | 25.83 | 21.00 | 17.73 | 15.18 | 13.05
A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0.2
0.9 L 2.278 | 2.278 | 2278 | 2.278 | 2.278 | 2.278 | 2278 | 2.278 | 2.278 | 2.278 | 2.278 | 2.278
ARL,;, | 490.51 | 413.89 | 317.92 | 263.02 | 168.94 | 117.19 | 87.24 | 68.58 | 56.15 | 17.42 | 41.00 | 36.11
1.2 A 002 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.2 0.2 0.2
L 2.278 | 2.278 | 2278 | 2.278 | 2.278 | 2,610 | 2.610 | 2.798 | 2.798 | 2.917 | 2.917 | 2.917
ARL,,, | 423.70 | 259.80 | 159.28 | 120.71 | 70.57 | 47.16 | 33.45 | 25.15 | 19.42 | 15.62 | 1257 | 10.42
15 A 002 | 002 | 002 | 005 | 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8
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L 2.278 | 2.278 | 2278 | 2.261 | 2.798 | 2.917 | 2.946 | 2.926 | 2.926 | 2.844 | 2.844 | 2.844
ARL, . |286.01 | 105.16 | 56.15 | 40.01 | 21.03 | 12.84 | 855 | 6.03 | 449 | 347 | 279 | 233
1.8 A 0.02 | 002 | 005 | 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8

L 2.278 | 2278 | 2,610 | 2.798 | 2.917 | 2.944 | 293 | 2.844 | 2.844 | 2.844 | 2.844 | 2.844
ARL . |20321 | 64.07 | 31.91 | 2227 | 11.05 | 645 | 421 | 297 | 227 | 186 | 160 | 143

2 A 0.02 | 005 | 0.1 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1
L 2.278 | 2.610 | 2.798 | 2.798 | 2.946 | 2.926 | 2.844 | 2.844 | 2.844 | 2.844 | 2.818 | 2.818
ARL . |169.11 | 51.05 | 2457 | 1697 | 815 | 469 | 306 | 224 | 178 | 152 | 135 | 123

2.5 A 0.02 | 005 | 0.2 0.2 0.5 0.8 0.8 0.8 1 1 1 1
L 2.278 | 2.610 | 2.917 | 2.917 | 2.926 | 2.844 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818
ARL;, |119.92 | 3320 | 1547 | 1033 | 476 | 277 | 193 | 153 | 131 | 119 | 111 | 1.07

3 A 0.02 0.1 0.2 0.4 0.8 0.8 0.8 1 1 1 1 1
L 2.278 | 2.798 | 2917 | 2.944 | 2.844 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818
ARL ;. | 9456 | 2497 | 1111 | 735 | 337 | 205 | 153 | 1.28 | 115 | 1.09 | 1.05 | 1.03

3.5 A 002 | 01 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 2.278 | 2.798 | 2.946 | 2.926 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818
ARL ;. | 79.26 | 2003 | 873 | 569 | 265 | 171 | 134 | 1.17 | 1.09 | 105 | 1.02 | 1.01

4 A 0.02 0.1 0.4 0.5 0.8 0.8 1 1 1 1 1 1
L 2.278 | 2.798 | 2.944 | 2.926 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818
ARL, | 69.28 | 16.97 | 721 | 469 | 224 | 152 | 123 | 111 | 1.05 | 103 | 1.01 | 1.01

5 A 0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1
L 2.278 | 2917 | 2926 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818
ARL,. | 56.73 | 13.02 | 539 | 353 | 1.80 | 1.31 | 113 | 106 | 1.02 | 1.01 | 1.00 | 100

10 A 0.05 | 04 0.8 0.8 1 1 1 1 1 1 1 1
L 2.610 | 2.944 | 2.844 | 2.844 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818 | 2.818
ARL,. | 3294 | 671 | 274 | 192 | 124 | 107 | 1.02 | 101 | 1.00 | 1.00 | 1.00 | 1.00
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Table A-5 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=800, 4, =1

Scale Shape shift 7, /7,
Shift

(B.1B,) 0.2 0.5 0.8 1 1.5 2 25 3 35 4 4.5 5

A 0.02 0.1 0.2 0.2 0.4 0.5 0.5 0.8 1 1 1 1
0.1 L 249 | 2961 | 3.062 | 3.062 | 3.067 | 3.042 | 3.042 | 2.94 | 2.906 | 2.906 | 2.906 | 2.906

ARL,;, | 48.448 | 13.811 | 7.4264 | 5.5225 | 3.4049 | 2.4542 | 2.0287 | 1.8439 | 1.3807 | 1.0173 | 1 1

A 002 | 005 | 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1
0.2 L 249 | 2793 | 2.961 | 2.961 | 3.062 | 3.079 | 3.067 | 3.042 | 3.042 | 294 | 294 | 2.906
ARL,,, | 78.536 | 22.49 | 11.812 | 8.9163 | 5.224 | 3.6903 | 2.8781 | 2.331 | 2.0466 | 1.9361 | 1.7835 | 1.3888

A 002 | 005 | 005 | 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
0.3 L 249 | 2793 | 2793 | 2.961 | 3.062 | 3.062 | 3.079 | 3.067 | 3.042 | 3.042 | 3.042 | 3.042
ARL,,, | 118.97 | 34.182 | 17.807 | 12.957 | 7.6465 | 5.2395 | 3.9767 | 3.2276 | 2.72 | 2.3374 | 2.0941 | 2.008

A 002 | 002 | 005 | 005 | 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5
0.4 L 249 | 249 | 2793 | 2.793 | 2.961 | 3.062 | 3.062 | 3.079 | 3.079 | 3.067 | 3.042 | 3.042
ARL,,, | 176.25 | 48.772 | 25.583 | 18.964 | 10.834 | 7.4828 | 5.5568 | 4.4447 | 3.7049 | 3.1742 | 2.794 | 2.4683

A 002 | 002 | 002 | 005 | 01 0.1 0.2 0.2 0.2 0.3 0.3 0.4
05 L 249 | 249 | 249 | 2.793 | 2.961 | 2.961 | 3.062 | 3.062 | 3.062 | 3.079 | 3.079 | 3.067
ARL,,, | 257.97 | 70.853 | 38.37 | 27.71 | 16.082 | 10.715 | 8.1405 | 6.2768 | 5.1948 | 4.3958 | 3.8189 | 3.3905

A 0.02 | 002 | 002 | 002 | 005 | 0.1 0.1 0.1 0.2 0.2 0.2 0.2
0.6 L 249 | 249 | 249 | 249 | 2793 | 2.961 | 2.961 | 2.961 | 3.062 | 3.062 | 3.062 | 3.062
ARL, ., | 371.26 | 109.25 | 56.653 | 42.47 | 24.049 | 16.525 | 11.943 | 9.453 | 7.7623 | 6.4243 | 5.5336 | 4.9046

A 0.02 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.1 0.1 0.2
0.7 L 249 | 249 | 249 | 249 | 249 | 2793 | 2793 | 2.961 | 2.961 | 2.961 | 2.961 | 3.062
ARL,,, | 51551 | 183.16 | 93.162 | 68.102 | 40.096 | 26.59 | 19.638 | 15.392 | 12.32 | 10.328 | 8.9451 | 7.7919

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 0.05 | 005 0.1
0.8 L 249 | 249 | 249 | 249 | 249 | 249 | 249 | 2793 | 2.793 | 2.793 | 2.793 | 2.961
ARL,;, | 667.88 | 336.64 | 182.91 | 132.84 | 74.361 | 50.457 | 38.089 | 29.151 | 23.425 | 19.612 | 16.914 | 14.459

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0.2

0.9 L 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249
ARL .. | 777.62 | 621.59 | 449.13 | 359.03 | 216.62 | 144.31 | 104.5 | 80.571 | 65.064 | 54.388 | 46.671 | 40.871

1.2 A 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.2 0.2
L 249 | 249 | 249 | 249 | 249 | 249 | 2793 | 2.793 | 2.961 | 2.961 | 3.062 | 3.062
ARL,,, | 649.93 | 356.68 | 202.52 | 148.47 | 82.682 | 54.971 | 38.046 | 28.505 | 21.749 | 17.296 | 14.005 | 11.476

15 A 002 | 002 | 002 | 005 | 0.1 0.2 0.3 0.4 0.5 0.8 0.8 0.8
L 249 | 249 | 249 | 2793 | 2.961 | 3.062 | 3.079 | 3.067 | 3.042 | 294 | 294 | 294
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ARL,;, | 400.04 | 127.51 | 64.791 | 46.074 | 23.673 | 14.324 | 9.407 | 6.5777 | 4.8301 | 3.7117 | 2.9433 | 2.4354

1.8 A 0.02 0.02 | 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 1
L 2.49 249 | 2793 | 2961 | 3.062 | 3.067 | 3.042 | 2.94 | 294 | 294 | 294 | 2.906
ARL, ., | 267.53 | 74.563 | 36.183 | 25.161 | 12.213 | 7.0388 | 4.5168 | 3.1413 | 2.3755 | 1.9252 | 1.6416 | 1.4541

2 A 0.02 0.02 | 0.05 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1
L 2.49 249 | 2793 | 2961 | 3.079 | 3.042 | 294 | 294 | 294 | 294 | 2.906 | 2.906
ARL,,, | 216.75 | 59.019 | 27.906 | 18.85 | 8.9495 | 5.0562 | 3.2498 | 2.3331 | 1.8407 | 1.5512 | 1.3671 | 1.2474

2.5 A 0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1
L 249 | 2793 | 2961 | 3.062 | 3.042 | 294 | 294 | 294 | 2906 | 2.906 | 2.906 | 2.906
ARL,,, | 147.39 | 37.732 | 17.147 | 11.368 | 5.1425 | 2.9193 | 2.0008 | 1.5669 | 1.3316 | 1.1986 | 1.1214 | 1.0751

3 A 0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1
L 249 | 2793 | 3.062 | 3.079 | 294 | 294 | 294 | 2906 | 2.906 | 2.906 | 2.906 | 2.906
ARL,,, | 1135 | 28.317 | 12.286 | 8.0471 | 3.5928 | 2.1335 | 1.5684 | 1.2996 | 1.1633 | 1.0913 | 1.0517 | 1.0295

3.5 A 0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 249 | 2961 | 3.079 | 3.042 | 294 | 294 | 2906 | 2906 | 2.906 | 2.906 | 2.906 | 2.906
ARL,,, | 93.831 | 22.471 | 9.621 | 6.2033 | 2.7865 | 1.761 | 1.3617 | 1.1794 | 1.0922 | 1.0483 | 1.0255 | 1.0136

4 A 0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 249 | 2961 | 3.079 | 3.042 | 294 | 294 | 2906 | 2906 | 2.906 | 2.906 | 2.906 | 2.906
ARL, ., |81.066 | 18.85 | 7.9039 | 5.0562 | 2.3331 | 1.5512 | 1.2474 | 1.1169 | 1.0568 | 1.028 | 1.0139 | 1.0069

5 A 0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1
L 249 | 3.062 | 3.042 | 294 | 294 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906
ARL,, | 655 | 1454 | 58636 | 3.771 | 1.8535 | 1.3271 | 1.1349 | 1.0582 | 1.0256 | 1.0114 | 1.0051 | 1.0023

10 A 0.05 0.4 0.8 0.8 1 1 1 1 1 1 1 1
L 2793 | 3.067 | 294 | 294 | 2906 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906 | 2.906
ARL,;, |37.419 | 7.3405 | 2.8912 | 1.9854 | 1.2507 | 1.0733 | 1.0226 | 1.0071 | 1.0022 | 1.0007 | 1.0002 | 1.0001
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Table A-6 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=1000, S, =1

Scale Shape shift 7, /7,
Shift

(B.1S,) 0.2 0.5 0.8 1 1.5 2 2.5 3 35 4 4.5 5
A 0.02 0.1 0.2 0.2 0.4 0.5 0.5 0.8 1 1 1 1

0.1 L 2.585 | 3.035 | 3.128 | 3.128 | 3.124 | 3.094 | 3.094 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947
ARL,;, |51.331 | 14.46 | 7.7487 | 5.7178 | 3.5303 | 2.5379 | 2.0511 | 1.9068 | 1.6692 | 1.0588 | 1.0001 | 1

A 0.02 | 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.8 1

0.2 L 2.585 | 2.876 | 3.035 | 3.035 | 3.128 | 3.14 | 3.124 | 3.094 | 3.094 | 3.094 | 2.983 | 2.947
ARL,;, |84.384 | 23.606 | 12.318 | 9.245 | 5.4022 | 3.8083 | 2.9698 | 2.4075 | 2.0771 | 2.0014 | 1.8594 | 1.6814

A 0.02 | 0.05 | 0.05 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
0.3 L 2.585 | 2.876 | 2.876 | 3.035 | 3.128 | 3.128 | 3.14 | 3.124 | 3.094 | 3.094 | 3.094 | 3.094
ARL,;, | 129.89 | 36.306 | 18.598 | 13.542 | 7.9853 | 5.4186 | 4.1125 | 3.3405 | 2.8192 | 2.4144 | 2.1398 | 2.0172

A 0.02 | 002 | 005 | 0.05 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5
0.4 L 2,585 | 2.585 | 2.876 | 2.876 | 3.035 | 3.128 | 3.128 | 3.14 | 3.14 | 3.124 | 3.094 | 3.094
ARL,;, | 19592 | 51.682 | 26.94 | 19.83 | 11.276 | 7.8093 | 5.7543 | 4.6114 | 3.8238 | 3.2835 | 2.8983 | 2.5528

A 002 | 002 | 002 | 005 | 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4
05 L 2.585 | 2.585 | 2.585 | 2.876 | 2.876 | 3.035 | 3.035 | 3.128 | 3.128 | 3.14 | 3.14 | 3.124
ARL;, | 29252 | 75.87 | 40.451 | 29.243 | 16.905 | 11.149 | 8.4809 | 6.519 | 5.3713 | 4.5592 | 3.9448 | 3.5149

A 0.02 | 002 | 002 | 002 | 005 | 0.05 0.1 0.1 0.2 0.2 0.2 0.2
0.6 L 2.585 | 2.585 | 2.585 | 2.585 | 2.876 | 2.876 | 3.035 | 3.035 | 3.128 | 3.128 | 3.128 | 3.128
ARL,,, | 430.45 | 118.86 | 60.264 | 44.865 | 25.283 | 17.274 | 12.458 | 9.8119 | 8.11 | 6.6762 | 5.7297 | 5.0652

A 0.02 | 002 | 002 | 002 | 002 | 005 | 0.05 0.1 0.1 0.1 0.1 0.2

0.7 L 2585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.876 | 2.876 | 3.035 | 3.035 | 3.035 | 3.035 | 3.128
ARL,,, | 612.67 | 203.99 | 100.72 | 72.832 | 42.307 | 28.029 | 20.55 | 16.164 | 12.861 | 10.739 | 9.2754 | 8.1418

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 0.05 | 005 0.1
0.8 L 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.876 | 2.876 | 2.876 | 2.876 | 3.035
ARL,,, | 813.93 | 387.83 | 203.69 | 145.73 | 79.751 | 53.511 | 40.149 | 30.809 | 24.612 | 20.523 | 17.648 | 15.157

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0.2
0.9 L 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585
ARL, ., | 965.81 | 751.75 | 527.87 | 415.34 | 243.33 | 158.9 | 113.49 | 86.648 | 69.486 | 57.791 | 49.405 | 43.141

1.2 A 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 0.1 0.1 0.2 0.2
L 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.585 | 2.876 | 2.876 | 3.035 | 3.035 | 3.128 | 3.128
ARL,;, | 794.08 | 413.07 | 226.18 | 163.21 | 88.765 | 58.32 | 40.355 | 29.995 | 22.916 | 18.111 | 14.727 | 12.001

1.5 A 002 | 002 | 002 | 0.05 0.1 0.2 0.3 0.4 0.5 0.8 0.8 0.8
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L 2585 | 2,585 | 2.585 | 2.876 | 3.035 | 3.128 | 3.14 | 3.124 | 3.094 | 2.983 | 2.983 | 2.983
ARL,;, |467.38 | 139.2 | 69.037 | 49.173 | 25.005 | 15.073 | 9.8404 | 6.8428 | 4.9952 | 3.8261 | 3.0176 | 2.4862

1.8 A 0.02 | 0.02 | 0.5 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8
L 2585 | 2,585 | 2.876 | 3.035 | 3.128 | 3.124 | 3.094 | 2.983 | 2.983 | 2.983 | 2.983 | 2.983

ARL,;, |303.76 | 79.78 | 38.322 | 26.626 | 12.793 | 7.3351 | 4.6642 | 3.2255 | 2.4236 | 1.9549 | 1.6611 | 1.4676

2 A 0.02 | 0.02 | 0.5 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1
L 2585 | 2585 | 2.876 | 3.035 | 3.14 | 3.094 | 2.983 | 2.983 | 2.983 | 2.983 | 2.947 | 2.947

ARL,;, | 243 |62.728 | 29.349 | 19.783 | 9.3492 | 5.2346 | 3.3395 | 2.3794 | 1.8674 | 1.5676 | 1.3777 | 1.2543

2.5 A 0.02 | 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1
L 2585 | 2.876 | 3.035 | 3.128 | 3.094 | 2.983 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947

ARL,,. | 161.96 | 40.013 | 17.952 | 11.885 | 5.326 | 2.9924 | 2.0335 | 1.5838 | 1.3411 | 1.204 | 1.1246 | 1.0771

3 A 0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1
L 2585 | 2.876 | 3.128 | 3.14 | 2.983 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947

ARL,.. | 123.29 | 29.792 | 12.871 | 8.3831 | 3.7006 | 2.1715 | 1.5854 | 1.308 | 1.1677 | 1.0936 | 1.053 | 1.0303

35 A 0.02 0.1 0.2 0.4 0.8 0.8 1 1 1 1 1 1
L 2585 | 3.035 | 3.128 | 3.124 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947

ARL,.. | 101.18 | 23.698 | 10.06 | 6.4507 | 2.8533 | 1.7847 | 1.3721 | 1.1842 | 1.0946 | 1.0495 | 1.0262 | 1.0139

4 A 0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
L 2585 | 3.035 | 3.14 | 3.094 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947

ARL,,, | 86.972 | 19.783 | 8.2302 | 5.2346 | 2.3794 | 1.5676 | 1.2543 | 1.12 | 1.0583 | 1.0287 | 1.0143 | 1.0071

5 A 0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1
L 2585 | 3.128 | 3.094 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947

ARL,;, |69.814 | 15.306 | 6.0919 | 3.8886 | 1.8806 | 1.3365 | 1.1385 | 1.0597 | 1.0263 | 1.0117 | 1.0052 | 1.0023

10 A 0.05 0.3 0.8 0.8 1 1 1 1 1 1 1 1
L 2876 | 3.14 | 2.983 | 2.983 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947 | 2.947

ARL,;, | 39.67 | 7.6578 | 2.963 | 2.0175 | 1.2577 | 1.0752 | 1.0232 | 1.0073 | 1.0023 | 1.0007 | 1.0002 | 1.0001
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Table A-7 The optimal design schemes of EWMA chart with transformed Weibull data
In control ARL=2000, 4, =1

zﬁf Shape shift 7, /7,

(BB, 0.2 05 0.8 1 15 2 25 3 35 4 45 5

) 002 | 01 0.1 0.2 0.3 05 05 05 0.8 1 1 1
0.1 L 2.862 | 3.253 | 3.253 | 3.321 | 3.318 | 3.249 | 3249 | 3.249 | 3.114 | 3.067 | 3.067 | 3.067
ARL,. | 60.629 | 16.598 | 8.7378 | 6.3382 | 3.8619 | 2.8159 | 2.1927 | 2.0015 | 1.9515 | 1.7569 | 1.075 | 1.0002

A 002 | 005 | 01 0.1 0.2 0.3 0.4 05 05 05 05 0.8
0.2 L 2.862 | 3117 | 3.253 | 3.253 | 3.321 | 3.318 | 3.289 | 3.249 | 3.249 | 3.249 | 3.249 | 3.114
ARL, . |104.47 | 27.18 | 13.956 | 10.28 | 5.9646 | 4.1839 | 3.2519 | 2.6673 | 2.2447 | 2.023 | 2.0001 | 1.9521

) 002 | 002 | 005 | 0.1 0.1 0.2 0.3 03 04 05 05 05
0.3 L 2.862 | 2.862 | 3.117 | 3.253 | 3.253 | 3.321 | 3.318 | 3.318 | 3.289 | 3.249 | 3.249 | 3.249
ARL, . | 169.81 | 42.245 | 21.071 | 15.459 | 8.94 |5.9839 | 45482 | 3.6843 | 3.1004 | 2.675 | 2.3457 | 2.1019

) 002 | 002 | 005 | 005 | o1 0.1 0.2 0.2 0.3 0.3 0.4 05
0.4 L 2.862 | 2.862 | 3.117 | 3.117 | 3253 | 3253 | 3321 | 3.321 | 3.318 | 3.318 | 3.289 | 3.249
ARL, . |272.13 | 61.076 | 31.35 | 22.557 | 12.695 | 8.7898 | 6.3815 | 5.1211 | 4.2024 | 3.6302 | 3.1689 | 2.8331

) 002 | 002 | 002 | 005 | 005 | 01 0.1 0.2 0.2 0.2 0.3 0.3
0.5 L 2.862 | 2.862 | 2.862 | 3.117 | 3117 | 3253 | 3.253 | 3.321 | 3.321 | 3.321 | 3.318 | 3.318
ARL,. | 43357 | 92.848 | 47.008 | 34.279 | 19.051 | 12.542 | 9.3869 | 7.2996 | 5.9282 | 5.0732 | 4.347 | 3.8476

) 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.1 0.2 0.2 0.2
0.6 L 2.862 | 2.862 | 2.862 | 2.862 | 3.117 | 3.117 | 3.253 | 3.253 | 3.253 | 3.321 | 3.321 | 3.321
ARL, . |683.62 | 153.51 | 72.127 | 52.482 | 29.268 | 19.489 | 14.127 | 10.948 | 9.0456 | 7.4903 | 6.3523 | 5.5688

A 002 | 002 | 002 | 002 | 002 | 005 | 005 | 005 | 0.1 0.1 0.1 0.1
0.7 L 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 3.117 | 3.117 | 3.117 | 3.253 | 3.253 | 3.253 | 3.253
ARL,. | 1048.2 | 285.13 | 127.34 | 88.755 | 49.301 | 32.731 | 23.43 | 18.362 | 14.62 | 12.05 | 10.315 | 9.0725

) 002 | 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 005 | 005 | 0.05
0.8 L 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 3.117 | 3.17 | 3.117 | 3.117 | 3.117
ARL, . | 1503.1 | 604.02 | 284.65 | 193.63 | 98.12 | 63.411 | 46.637 | 36.29 | 28.429 | 23.397 | 19.935 | 17.421

A 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0.02
0.9 L 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862
ARL,. | 18953 | 1355.9 | 8735 | 655.17 | 349.82 | 213.82 | 145.68 | 107.6 | 84.278 | 68.916 | 58.187 | 50.336

A 002 | 002 | 002 | 002 | 002 | 002 | 005 | 005 | 0.1 0.1 0.1 0.2
1.2 L 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 2.862 | 3.117 | 3.117 | 3.253 | 3.253 | 3.253 | 3.321
ARL . | 1477.7 | 649.77 | 317.43 | 217.56 | 109.46 | 69.169 | 48.056 | 34.806 | 26.832 | 20.786 | 16.793 | 13.722

) 002 | 002 | 002 | 002 | 005 | 01 0.2 03 05 0.8 0.8 0.8
15 L 2.862 | 2.862 | 2.862 | 2.862 | 3.117 | 3.253 | 3.321 | 3.318 | 3.249 | 3.114 | 3.114 | 3.114
ARL, . | 755.55 | 181.39 | 83.048 | 58.877 | 29.121 | 17.144 | 11.095 | 7.6907 | 5535 | 4.2092 | 3.2633 | 2.6523
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0.02 0.02 0.05 0.05 0.2 0.3 0.5 0.8 0.8 0.8 0.8 1
1.8 2.862 | 2.862 | 3.117 | 3.117 | 3.321 | 3.318 | 3.249 | 3.114 | 3.114 | 3.114 | 3.114 | 3.067
449.25 | 97.298 | 45.412 | 30.818 | 14.706 | 8.2367 | 5.1437 | 3.5047 | 2.581 | 2.0514 | 1.7238 | 1.5097

0.02 0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 0.8 1 1
2 2862 | 2.862 | 3.117 | 3.253 | 3.321 | 3.249 | 3.114 | 3.114 | 3.114 | 3.114 | 3.067 | 3.067
345.23 | 74.836 34 22.868 | 10.563 | 5.8194 | 3.6377 | 2.5307 | 1.9534 | 1.6203 | 1.4105 | 1.2753

0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1
25 2.862 | 3.117 | 3.253 | 3.321 | 3.249 | 3.114 | 3.114 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067
215.66 | 47.609 | 20.589 | 13.578 | 5.9285 | 3.2341 | 2.1396 | 1.6382 | 1.3703 | 1.2205 | 1.1343 | 1.083

0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1
3 2862 | 3.117 | 3.321 | 3.318 | 3.114 | 3.114 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067
158.08 | 34.552 | 14.804 | 9.4746 | 4.0612 | 2.295 1.64 | 13341 | 1.1811 | 1.1009 | 1.057 | 1.0325

0.02 0.05 0.2 0.4 0.8 0.8 1 1 1 1 1 1
35 2.862 | 3.117 | 3.321 | 3.289 | 3.114 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067
126.61 | 27.748 | 11.344 | 7.222 | 3.0734 | 1.8611 | 1.4044 | 1.199 | 1.1019 | 1.0532 | 1.0281 | 1.0149

0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1
4 2862 | 3.253 | 3.318 | 3.249 | 3.114 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067
107.02 | 22.868 | 9.2884 | 5.8194 | 2.5307 | 1.6203 | 1.2753 | 1.1293 | 1.0627 | 1.0309 | 1.0153 | 1.0076

0.02 0.1 0.4 0.5 0.8 1 1 1 1 1 1 1
5 2.862 | 3.253 | 3.289 | 3.249 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067
84.068 | 17.379 | 6.8149 | 4.2794 | 1.9681 | 1.3652 | 1.1494 | 1.0642 | 1.0282 | 1.0125 | 1.0056 | 1.0025

0.05 0.3 0.8 0.8 1 1 1 1 1 1 1 1
10 3.117 | 3.318 | 3.114 | 3.114 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067
47.164 | 8.5951 | 3.2001 | 2.1216 | 1.279 | 1.0809 | 1.0249 | 1.0078 | 1.0025 | 1.0008 | 1.0002 | 1.0001
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APPENDIX B: OPTIMAL DESIGN SCHEMES OF THE MEWMA

CHART WITH RAW GBE DATA

TableB-1 The optimal design scheme when §=0.1

(ﬂ,g—;j ARL, 100 200 370 500 (ﬂﬂ_ﬁ} ARL, 100 200 370 500
0, 0, 0, 0,
(0.1,1) r 01 01 01 01 | (1.2) r 0.05 0.05 0.05 0.05
ARL,, 095 133 166 184 ARL,, 10.34 13.27 16.76 18.68
(0.2,1) r 01 01 01 01 | (1.51) r 01 01 01 01
ARL,, 1.18 162 204 228 ARL,, 282 3.64 452 497
(0.3,1) r 01 01 01 01 | (1.81) r 01 01 01 01
ARL,, 148 200 251 276 ARL,, 130 1.74 218 240
(0.4,1) r 01 01 01 01 (2,1) r 01 01 01 01
ARL,, 187 254 323 357 ARL,, 090 123 151 1.71
(0.5,1) r 01 01 01 01 | (251) r 03 03 03 03
ARL,, 254 342 433 476 ARL,, 044 060 078 0.86
(0.6, 1) r 01 01 005 005 /| (31) r 03 03 03 03
ARL,, 365 493 610 6.71 ARL,, 024 035 044 050
(0.7,1) r 0.05 0.05 0.05 005 | (41) r 03 03 03 03
ARL,, 578 743 918 10.17 ARL,, 011 016 021 0.23
(0.8,1) r 005 05 0.05 005 | (51) r 03 03 03 03
ARL,, 10.06 13.16 16.65 18.71 ARL,, 007 010 0.12 0.14
(0.9,1) r 0.02 0.02 0.02 002 | (10,) r 03 03 05 03
ARL,, 25.22 33.41 41.64 46.44 ARL,, 001 0.02 002 0.03
(0.1,0.1) r 0.05 0.05 0.05 0.02 |(1515) r 0.1 005 0.05 0.05
ARL,, 895 11.66 14.83 16.54 ARL,, 15.16 20.67 26.85 30.40
(0.2,0.2) r 0.05 0.05 0.02 0.02 (2,2) r 01 01 01 0.05
ARL,, 10.73 14.14 18.19 19.75 ARL,, 6.55 859 10.86 11.98
(0.5,0.5) r 0.02 0.02 0.02 0.02 (5,5) r 03 03 03 01
ARL,, 2155 28.02 3450 37.91 ARL,, 086 1.10 145 1.62
(0.8,0.8) r 001 001 0.01 001 | (10,10) r 03 03 03 03
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ARL,, 56.99 83.30 114.73 131.30 ARL,, 021 029 036 0.40
0815 r 01 01 01 01 | (025) r 03 03 03 03
ARL,, 161 210 269 296 ARL,, 004 007 008 0.10

(0.5,2) r 01 03 03 01 |(©1100 r 03 03 03 03
ARL,, 041 057 075 0.85 ARL,, 001 001 002 0.02
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Table B-2 The optimal design scheme when §=0.3

[ﬂ,ij ARL, 100 200 370 500 (ﬂ,e—éj ARL, 100 200 370 500
6, 6, 0, 6,
(0.1,1) r 01 01 005 005 | (1.21) r 0.05 0.02 0.02 0.02
ARL,, 395 549 664 7.36 ARL,, 31.11 42.82 53.98 60.45
(0.2,1) r 01 005 005 005 | (151) r 0.1 0.05 0.05 0.05
ARL,, 482 646 7.85 8.66 ARL,, 10.30 13.28 16.40 17.80
(0.3,1) r 01 005 005 005 | (181) r 01 005 01 0.05
ARL,, 6.04 7.85 959 10.48 ARL,, 546 7.14 856 927
(0.4,1) r 0.05 0.05 0.05 0.05 (2,1) r 01 01 01 01
ARL,, 7.63 981 12.09 1341 ARL,, 3.92 518 6.24 6.82
(0.5,1) r 0.05 0.05 005 005 | (25,1) r 01 01 01 01
ARL,, 9.92 12.89 16.06 17.86 ARL,, 217 284 3.38 3.68
(0.6, 1) r 0.05 0.05 002 002 | (31) r 01 01 01 01
ARL,, 13.60 18.00 22.64 24.50 ARL,, 141 179 221 240
(0.7,1) r 0.05 0.02 0.02 0.02 (4,1) r 03 03 03 03
ARL,, 20.48 26.80 32.58 35.76 ARL,, 071 093 116 1.24
(0.8,1) r 0.02 0.02 002 0.01 (5,1) r 03 03 03 03
ARL,, 32.69 44.72 57.34 63.80 ARL,, 043 055 067 0.73
(0.9,1) r 001 001 001 001 | (10,1) r 03 03 03 03
ARL,, 60.79 94.41 129.08 151.28 ARL,, 009 0.11 0.14 0.16
(0.1,0.1) r 0.05 0.05 0.05 0.5 | (15,1.5) r 0.1 0.05 0.05 0.05
ARL,, 837 10.76 13.34 14.78 ARL,, 13.64 19.35 24.33 27.27
(0.2,0.2) r 0.05 0.05 0.05 0.05 (2,2) r 01 01 01 01
ARL,, 10.09 13.03 16.34 18.24 ARL,, 5.83 7.76 9.44 1061
(0.5,0.5) r 0.02 0.02 002 0.02 (5,5) r 03 03 03 03
ARL,, 20.48 2644 32.11 35.18 ARL,, 070 090 1.12 1.23
(0.8,0.8) r 001 001 001 001 | (10,10) r 03 03 03 03
ARL,, 54.82 80.30 107.61 123.11 ARL,, 017 022 027 0.29
(0.8,1.5) r 01 005 0.05 0.05 | (0.25) r 03 03 03 03
ARL,, 6.98 898 10.74 11.79 ARL,, 027 037 049 051
(0.5,2) r 01 01 01 01 | (01,10 r 03 03 05 03
ARL,, 219 287 345 3.73 ARL,, 0.7 0.09 012 0.13
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Table B-3 The optimal design scheme when 6 =0.5

(ﬂ,'g—;j ARL, 100 200 370 500 [ﬂ,e—;j ARL, 100 200 370 500
6, 6, 0, 6,
(0.1,1) r 0.1 005 005 005 | (1.21) r 0.05 0.05 0.02 0.02
ARL,, 6.38 827 10.09 11.10 ARL,,, 40.53 57.68 78.12 87.93
(0.2,1) r 005 0.05 0.05 0.05 | (151 r 0.1 0.05 0.05 0.05
ARL,, 769 979 1210 13.34 ARL,, 14.84 19.19 23.86 26.34
(0.3,1) r 005 0.05 0.05 0.05 | (1.81) r 01 01 0.05 0.05
ARL,, 9.40 12.03 14.94 16.76 ARL,, 8.08 10.58 12.75 13.78
(0.4,1) r 005 0.05 005 002 | (21) r 01 01 01 01
ARL,, 1173 1531 19.36 21.57 ARL,, 597 7.62 9.37 10.17
(0.5,1) r 005 0.05 0.02 0.02 | (251 r 01 01 01 01
ARL,, 1522 20.55 2541 27.54 ARL,, 349 432 524 567
(0.6, 1) r 002 0.02 002 002 (31 r 01 01 01 01
ARL,, 21.05 27.92 34.09 37.35 ARL,, 231 294 3.44 376
(0.7,1) r 002 0.02 002 002 | (41 r 03 03 03 03
ARL,, 29.48 39.80 50.78 56.63 ARL,, 124 151 185 201
(0.8,1) r 001 001 001 001 | (51 r 03 03 03 03
ARL,, 45.07 64.86 83.91 94.95 ARL,, 072 097 113 121
(0.9,1) r 001 001 001 001 | (102) r 03 05 03 03
ARL,, 75.02 124.59 184.34 216.75 ARL,, 018 0.23 0.26 0.29
(0.1,0.1) r 05 005 005 005 |(1515) r 01 01 0.05 0.05
ARL,, 752 954 1163 1285 ARL,, 12.40 17.12 22.02 24.92
(0.2,0.2) r 005 005 005 005 | (22 r 01 01 01 01
ARL,, 9.06 1151 1412 1570 ARL,, 517 6.81 836 9.02
(0.5,0.5) r 002 0.02 002 002 ]| (55 r 05 03 03 03
ARL,, 18.85 24.21 29.39 31.91 ARL,, 053 0.71 0.85 0.96
(0.8,0.8) r 001 0.01 0.01 0.01 | (10,10) r 05 03 03 03
ARL,, 52.08 74.69 98.08 111.23 ARL,, 0.11 0.6 0.18 0.21
(0.8,1.5) r 005 0.05 005 0.05 | (0.25) r 03 03 03 03
ARL,, 11.43 1456 1755 19.79 ARL,, 055 0.69 0.90 0.96
(0.5,2) r 01 01 01 01 | (01,10 r 03 03 03 03
ARL,, 390 502 6.05 6.62 ARL,, 013 0.8 0.23 0.25
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Table B-4 The optimal design scheme when §=0.8

(ﬂ,e—éj ARL, 100 200 370 500 [ﬂﬁ_ﬁj ARL, 100 200 370 500
0, 6, 6, 6,
(0.1,1) r 005 005 005 005/ (1.21) r 0.1 0.05 0.2 0.02
ARL,, 8.13 10.38 12.67 13.99 ARL,,, 42.94 67.02 91.16 106.37
(0.2,1) r 005 005 005 005/ (151) r 0.1 0.05 0.05 0.05
ARL,, 9.63 12.44 1542 17.11 ARL,, 17.13 23.19 28.76 32.00
(0.3,1) r 005 005 005 005/ (181) r 01 01 01 005
ARL,, 11.87 1547 19.33 21.78 ARL,, 9.62 12.61 15.47 16.83
(0.4,1) r 005 005 002 002]| (21 r 01 01 01 01
ARL,, 14.89 19.94 24.72 26.98 ARL,, 7.32 925 11.43 1250
(0.5,1) r 005 002 002 002]| (251) r 01 01 01 01
ARL,, 19.62 2587 31.43 34.58 ARL,, 421 526 627 6.81
(0.6, 1) r 002 002 002 002]| (31 r 03 01 01 01
ARL,, 25.64 34.41 42.46 47.33 ARL,, 273 358 4.40 4.62
(0.7,1) r 001 002 001 001 | (41 r 03 03 03 03
ARL,, 3598 49.65 63.26 70.69 ARL,, 148 189 230 254
(0.8,1) r 001 001 001 001| (51 r 03 03 03 03
ARL,, 52.97 77.80 103.91 118.18 ARL,, 095 122 141 155
(0.9,1) r 001 001 001 001 | (101) r 03 03 03 03
ARL,, 82.50 139.21 218.83 262.67 ARL,, 024 030 035 0.39
(0.1,0.1) r 01 005 0.05 0.05 |(1.51.5) r 01 01 0.05 0.05
ARL,, 580 7.84 934 10.23 ARL,, 10.71 14.41 18.71 20.78
(0.2,0.2) r 01 005 0.05 005 (22 r 03 01 01 01
ARL,, 727 936 11.29 12.36 ARL,, 4.14 549 681 750
(0.5,0.5) r 005 0.05 002 002]| (55 r 03 05 05 03
ARL,, 1528 19.99 24.34 26.53 ARL,, 033 045 055 061
(0.8,0.8) r 0.01 001 001 001 | (10,10) r 05 05 05 03
ARL,, 45.48 64.70 84.19 92.56 ARL,, 005 0.07 0.09 0.10
(0.8,1.5) r 01 005 0.05 005/ (0.25) r 03 03 03 03
ARL,, 1598 20.47 25.12 27.76 ARL,, 083 1.04 1.28 137
(0.5,2) r 01 01 01 01 |(0.1,10) r 05 03 03 03
ARL,, 572 744 910 9.89 ARL,, 021 025 032 035
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Table B-5 The optimal design scheme when & =1

[ﬁ',ﬁj ARL, 100 200 370 500 (ﬂ,e—éj ARL, 100 200 370 500
6, 6, 0, 6,
(0.1,1) r 005 005 005 005]| (1.2,1) r 01 0.05 0.2 0.02
ARL,, 836 10.62 13.09 14.33 ARL,, 43.40 67.00 93.40 107.21
(0.2,1) r 005 005 005 0.05] (151) r 0.1 0.05 0.05 0.05
ARL,, 9.94 1276 1591 17.53 ARL,, 17.69 23.55 29.75 32.49
(0.3,1) r 005 005 005 0.05] (1.81) r 01 01 01 0.05
ARL,, 12.08 15.82 20.05 22.42 ARL,, 9.73 12.66 15.76 17.16
(0.4,1) r 005 005 002 002]| (21 r 01 01 01 01
ARL,, 1528 20.25 25.34 27.58 ARL,, 7.48 929 1155 1245
(0.5,1) r 005 002 002 002]| (251) r 01 01 01 01
ARL,, 20.15 26.61 32.27 35.48 ARL,, 437 546 6.46 7.13
(0.6, 1) r 002 002 002 002]| (31) r 03 03 01 01
ARL,, 2594 3516 43.97 48.28 ARL,, 282 358 432 465
(0.7,1) r 002 001 001 001 ]| (41 r 03 03 03 03
ARL,, 36.03 50.74 65.37 72.03 ARL,, 151 192 226 248
(0.8,1) r 001 001 001 001]| (51) r 03 03 03 03
ARL,, 53.23 78.66 106.57 120.93 ARL,, 097 121 143 157
(0.9,1) r 001 001 001 001] (101) r 03 03 03 03
ARL,, 81.41 142.16 220.42 274.48 ARL,, 024 030 034 040
(0.1,0.1) r 01 01 005 005 |(1.51.5) r 01 01 01 005
ARL,, 493 635 808 877 ARL,, 9.67 12.82 16.40 18.42
(0.2,0.2) r 01 005 0.05 005 (22 r 03 01 01 01
ARL,, 6.05 801 9.69 10.49 ARL,, 357 473 591 6.45
(0.5,0.5) r 005 005 005 002]| (55 r 03 03 03 03
ARL,, 13.05 16.72 21.11 23.09 ARL,, 022 031 040 0.42
(0.8,0.8) r 001 001 0.01 001 | (10,10) r 03 05 05 05
ARL,, 4127 56.78 73.05 81.43 ARL,, 0.03 0.04 0.04 005
(0.8,1.5) r 01 005 0.05 005 ]| (0.25) r 03 03 03 03
ARL,, 17.74 22.74 28.14 31.34 ARL,, 090 1.17 145 150
(0.5,2) r 01 01 01 0.05 | (0.1,10) r 05 05 05 03
ARL,, 6.66 845 10.36 11.25 ARL,, 024 030 036 037
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APPENDIX C: OPTIMAL DESIGN SCHEMES OF THE MEWMA

CHART WITH TRANSFORMED GBE DATA

Table C-1 The optimal design scheme when ¢ =0.1

{ﬂﬁ_ﬁ} ARL, 100 200 370 500 (ﬁ,e—;j ARL, 100 200 370 500
0, 0, 0, 0,
(0.1,1) r 01 01 03 03 | (1.21) r 01 01 01 01
ARL,, 0.00 0.00 0.0 0.0 ARL,, 6.73 831 9.68 10.53
(0.2,1) r 01 03 03 05 | (1.51) r 03 03 03 03
ARL,, 0.00 0.00 0.0 0.0 ARL,, 093 1.29 1.64 183
(0.3,1) r 05 05 03 03 | (1.81) r 05 03 03 03
ARL,, 0.00 0.0 000 0.00 ARL,, 0.4 027 039 045
(0.4,1) r 05 05 05 03 (2,1) r 05 03 03 03
ARL,, 000 001 004 0.06 ARL,, 004 008 0.15 0.18
(0.5,1) r 05 05 03 03 | (251) r 05 03 05 03
ARL,, 009 019 032 0.38 ARL,, 0.0 0.0 0.01 0.2
(0.6, 1) r 03 03 03 03 (3, 1) r 03 05 05 05
ARL,, 053 079 108 1.22 ARL,, 0.00 0.00 0.00 0.00
(0.7,1) r 03 03 03 03 (4,1) r 03 03 03 03
ARL,, 176 238 310 341 ARL,, 0.00 0.00 0.00 0.00
(0.8,1) r 01 01 01 01 (5,1) r 01 01 03 03
ARL,, 525 643 753 801 ARL,, 0.00 0.00 0.00 0.00
(0.9,1) r 002 005 0.05 0.5 | (10,1) r 002 005 01 01
ARL,, 14.50 21.05 25.59 27.93 ARL,, 0.0 0.00 0.00 0.00
(0.1,0.1) r 03 01 01 01 |(15.15) r 0.1 0.05 0.05 0.05
ARL,, 3.18 398 461 4.95 ARL,, 2357 32.29 41.12 45.86
(0.2,0.2) r 01 01 01 01 (2,2) r 01 01 01 01
ARL,, 536 657 7.70 8.32 ARL,, 10.74 13.88 16.96 18.04
(0.5,0.5) r 0.05 0.05 0.05 0.05 (5,5) r 05 03 03 03
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ARL,, 17.48 22.11 27.06 29.29 ARL,, 158 215 265 2.97
(0808 r 001 00l 001 001 | (10,10) r 05 05 05 03
ARL,, 55.89 82.33 110.63 126.50 ARL,, 042 059 0.80 0.90
(0815 r 05 03 03 03 | (025 r all  0.05+ 0.05+ 0.05+
ARL, 013 023 035 041 ARL,, 000 0.00 0.00 0.00
(0.5,2) r 03 03 03 03|01 r all  0.02+ 0.02+ 0.05+
ARL,, 000 0.00 000 0.0 ARL,, 0.00 0.00 0.0 0.00

opt

opt
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Table C-2 The optimal design scheme when §=0.3

(ﬂ,e—éj ARL, 100 200 370 500 (ﬂﬂ_ﬁj ARL, 100 200 370 500
0, 6, 0, 6,
(0.1,1) r 05 05 05 05 | (1.21) r 0.05 0.02 0.02 0.02
ARL,, 004 009 0.18 0.24 ARL,, 28.72 39.09 48.51 53.77
(0.2,1) r 05 03 03 03 | (151) r 01 01 01 01
ARL,, 045 072 094 107 ARL,, 9.22 11.38 1354 14.64
(0.3,1) r 03 03 03 03 | (181 r 03 01 01 01
ARL,, 126 171 214 245 ARL,, 461 596 6.95 7.47
(0.4,1) r 03 03 03 01 (2,1) r 03 03 03 03
ARL,, 258 342 438 467 ARL,, 317 3.97 490 537
(0.5,1) r 01 01 01 01 | (251) r 03 03 03 03
ARL,, 485 587 6.83 7.29 ARL,, 145 1.87 228 252
(0.6, 1) r 01 01 01 01 (3,1) r 05 03 03 03
ARL,, 7.68 960 11.44 12.18 ARL,, 076 1.04 1.30 1.43
(0.7,1) r 01 005 005 005 ]| (41 r 05 05 05 05
ARL,, 13.34 17.01 20.17 21.80 ARL,, 025 0.37 051 0.59
(0.8,1) r 0.05 0.05 002 002 | (51) r 05 05 05 05
ARL,, 24.72 32.92 40.99 44.42 ARL,, 009 0.15 0.22 0.25
(0.9,1) r 0.02 0.01 001 001 | (10,1) r 05 05 05 05
ARL,, 52.69 76.70 103.68 117.38 ARL,, 000 001 0.01 0.01
(0.1,0.1) r 03 01 01 01 | (151.5) r 01 01 005 0.05
ARL,, 273 372 435 463 ARL,, 23.07 31.23 39.24 43.57
(0.2,0.2) r 01 01 01 01 (2,2) r 03 01 01 01
ARL,, 513 624 727 7.79 ARL,, 9.95 12.96 15.69 17.31
(0.5,0.5) r 0.05 0.05 005 005 | (55) r 05 05 03 03
ARL,, 16.82 21.06 25.60 27.74 ARL,, 130 176 221 244
(0.8,0.8) r 001 001 001 0.01 | (10,10) r 05 05 05 05
ARL,, 54.62 80.70 106.53 120.56 ARL,, 031 045 057 0.66
(0.8,1.5) r 03 01 01 01 | (0.25) r 05 05 05 05
ARL,, 487 603 7.13 748 ARL,, 0.00 0.00 0.00 0.00
(0.5,2) r 05 03 03 03 | (0.1,10) r 0.1+ 0.3+ 0.3+ 0.3+
ARL,, 055 076 099 1.09 ARL,, 0.00 0.00 0.00 0.00
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Table C-3 The optimal design scheme when & =0.5

(ﬁ’,@_;j ARL, 100 200 370 500 [ﬂ,ij ARL, 100 200 370 500
6, 6, 0, 6,
(0.1,1) r 03 03 03 03 | (121 r 0.1 0.02 0.02 0.02
ARL,, 079 112 143 158 ARL,,, 43.23 63.82 83.82 94.56
(0.2,1) r 03 03 03 03 | (151 r 0.1 0.05 0.05 0.05
ARL,, 209 277 345 381 ARL,, 16.04 22.01 26.53 28.87
(0.3,1) r 01 01 01 01 | (181) r 01 01 01 o1
ARL,, 412 518 6.00 6.44 ARL,; 9.00 11.72 13.73 14.82
(0.4,1) r 010 01 01 01 (2,1) r 01 01 01 o1
ARL,, 610 790 9.17 9.94 ARL,, 6.95 8.72 10.30 11.00
(0.5,1) r 01 01 01 005 ] (251) r 03 03 03 03
ARL,, 929 1229 1456 16.08 ARL,, 377 4.78 574 6.27
(0.6, 1) r 01 005 005 005 ]| (31 r 03 03 03 03
ARL,, 14.64 19.19 23.02 25.01 ARL,, 243 293 360 3.83
(0.7,1) r 005 005 002 002 | (41) r 05 05 05 03
ARL,, 2351 32.13 3941 43.3 ARL,, 117 153 1.87 1.97
(0.8,1) r 002 002 002 002/ (51) r 05 05 05 05
ARL,, 39.72 55.89 71.04 80.48 ARL,, 066 0.88 1.07 122
(0.9,1) r 001 001 001 001 | (10,) r 05 05 05 05
ARL,, 70.99 114.27 164.18 193.90 ARL,, 010 0.14 0.19 021
(0.1,0.1) r 03 03 03 03 |[(1515) r 0.1 0.05 0.05 0.05
ARL,, 228 299 375 4.17 ARL,, 20.17 29.59 36.80 40.04
(0.2,0.2) r 010 01 01 01 (2,2) r 01 01 05 01
ARL,, 4.46 565 6.54 6.97 ARL,, 9.09 12.05 14.39 15.51
(0.5,0.5) r 005 005 005 005]| (55) r 05 05 05 05
ARL,, 1547 19.75 23.68 25.68 ARL,, 1.03 1.37 169 1.87
(0.8,0.8) r 001 001 001 001 | (10,10) r 08 08 01 05
ARL,, 52.88 77.37 101.41 114.67 ARL,, 023 030 040 044
(0.8,1.5) r 01 01 03 01 | (0.25) r 05 05 05 05
ARL,, 988 1296 1548 17.06 ARL,, 005 0.08 012 0.4
(0.5,2) r 03 03 05 03 | (0.1,10) r 05 05 05 05
ARL,, 230 302 362 3.98 ARL,, 0.0 0.00 0.00 0.01
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Table C-4 The optimal design scheme when §=0.8

(ﬂ,e—;j ARL, 100 200 370 500 [ﬂ,e—;j ARL, 100 200 370 500
0, 6, 6, 6,
(0.1,1) r 03 03 03 03 | (122 r 002 002 0.02 001
ARL,, 2.09 276 342 376 ARL,,, 55.55 85.73 117.08 133.87
(0.2,1) r 01 01 01 01 | (151 r 0.1 0.05 0.05 0.05
ARL,, 464 563 654 6.90 ARL,, 24.56 31.80 40.97 44.76
(0.3,1) r 01 01 01 01 | (181) r 01 01 01 01
ARL,, 7.03 867 10.16 10.80 ARL,, 14.2117.75 21.76 23.89
(0.4,1) r 01 01 005 005/ (21) r 01 01 01 01
ARL,, 10.47 13.26 15.87 16.92 ARL,, 10.88 13.67 16.14 17.40
(0.5,1) r 005 005 005 005]| (251) r 03 03 01 01
ARL,, 1549 19.63 23.48 25.44 ARL,, 6.24 804 977 10.45
(0.6, 1) r 005 005 002 002]| (31 r 03 03 03 03
ARL,, 22.81 29.89 36.69 40.43 ARL,, 423 517 624 6.78
(0.7,1) r 002 0.02 002 002]| (41 r 05 05 03 03
ARL,, 34.22 46.20 57.98 64.58 ARL,, 225 284 341 371
(0.8,1) r 002 001 001 001| (51 r 05 05 05 05
ARL,, 52.71 76.27 101.39 114.85 ARL,, 141 180 216 237
(0.9,1) r 001 001 001 001 | (10,1) r 05 05 05 05
ARL,, 82.03 139.73 213.48 259.65 ARL,, 036 044 055 0.58
(0.1,0.1) r 03 03 03 03 |(1515) r 01 01 0.05 0.05
ARL,, 141 186 228 250 ARL,, 18.79 24.91 30.55 33.50
(0.2,0.2) r 03 01 01 01 (2,2) r 03 03 03 01
ARL,, 338 446 515 542 ARL,, 7.38 9.82 11.81 1263
(0.5,0.5) r 005 005 005 005]| (55) r 08 05 05 05
ARL,, 12.88 16.06 18.93 20.31 ARL,, 0.63 084 106 115
(0.8,0.8) r 0.01 001 001 001 | (10,10) r 08 08 08 08
ARL,, 47.20 66.93 86.57 96.66 ARL,, 011 0.14 0.8 0.8
(0.8,1.5) r 005 01 005 005/ (0.25) r 05 05 05 05
ARL,, 18.68 24.10 29.31 32.22 ARL,, 049 068 0.84 0.94
(0.5,2) r 03 01 01 01 | (01,0 r 05 05 05 05
ARL,, 586 7.33 841 913 ARL,, 006 0.0 013 0.15
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Table C-5 The optimal design scheme when & =1

(ﬂ,e—;j ARL, 100 200 370 500 (ﬁ’,@_;j ARL, 100 200 370 500
0, 6, 0, 6,
(0.1,1) r 03 03 03 03 | (1.21) r 005 002 0.01 001
ARL,, 239 311 406 4.27 ARL,, 57.50 90.15 123.71 142.89
(0.2,1) r 010 01 01 01 | (151 r 0.1 0.05 0.05 0.05
ARL,, 511 6.12 722 764 ARL,, 2554 34.92 43.57 48.11
(0.3,1) r 010 01 01 01 | (181 r 01 01 005 005
ARL,, 756 942 11.30 12.10 ARL,, 15.04 19.32 23.75 25.96
(0.4,1) r 01 01 005 005 (21) r 01 01 01 01
ARL,, 11.25 14.40 17.06 18.46 ARL,, 1157 14.57 17.58 19.13
(0.5,1) r 005 0.05 005 005] (251) r 03 03 01 01
ARL,, 1657 21.09 25.16 27.76 ARL,, 6.73 832 10.62 11.09
(0.6, 1) r 005 0.05 002 002 (31 r 05 03 03 03
ARL,, 23.89 32.28 39.78 43.24 ARL,, 445 551 6.84 7.11
(0.7,1) r 002 0.02 002 002]| (41 r 05 05 03 03
ARL,, 36.01 49.35 62.41 69.01 ARL,, 236 297 382 388
(0.8,1) r 002 001 001 001]| (51 r 05 05 05 05
ARL,, 54.65 80.21 108.00 122.06 ARL,, 147 183 238 239
(0.9,1) r 001 001 001 001 | (10,) r 08 08 08 08
ARL,, 82.35 143.41 223.00 274.01 ARL,, 038 046 065 0.61
(0.1,0.1) r 05 05 05 05 [(1515) r 01 0.1 0.05 0.05
ARL,, 073 1.06 141 147 ARL,, 15.47 20.18 25.15 27.27
(0.2,0.2) r 03 03 03 03 (2,2) r 03 03 01 03
ARL,, 218 278 356 3.68 ARL,, 584 743 952 10.11
(0.5,0.5) r 01 01 01 01 (5,5) r 08 08 05 08
ARL,, 10.08 12.66 15.07 16.34 ARL,, 037 048 0.69 0.68
(0.8,0.8) r 002 0.02 002 001 | (10,10) r 08 08 08 08
ARL,, 40.45 57.05 72.60 81.68 ARL,, 0.04 0.05 0.09 0.07
(0.8,1.5) r 005 005 0.05 005/ (0.25) r 05 05 03 05
ARL,, 23.01 30.39 36.84 41.38 ARL,, 095 1.17 159 158
(0.5,2) r 01 01 01 01 |(0.1,10) r 05 05 05 05
ARL,, 807 992 11.86 1255 ARL,, 019 024 034 032
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