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SUMMARY 

 

The time-between-events (TBE) control charts have shown to be very effective in 

monitoring high quality manufacturing process. This thesis aims to develop more 

advanced univariate control charts for more generalized TBE dada, propose effective 

control charts for multivariate TBE data and study the optimal statistical design issue 

of the proposed control charts. 

Chapters 1 provides an introduction of the principle of the control charts 

technique, the statistical design of the control charts and the TBE control charts. 

Chapter 2 reviews the current research trend of TBE control charts and the multivariate 

control charts technique. 

In Chapter 3, an exponential weighted moving average (EWMA) chart for 

Weibull-distributed time between events data is developed with the help of the Box-

Cox transformation method. The statistical design of the proposed chart is investigated 

based on the consideration of average run length (ARL) property.  

Charter 4 proposed two multivariate exponential weighted moving average 

(MEWMA) control charts for the Gumbel’s bivariate exponential (GBE) distributed 

data, one based on the raw GBE data , the other on the transformed data. The 

performance of the two control charts are compared to other three control charts 

schemes for monitoring simulated GBE data. 

Chapter 5 and Chapter 6 concern the statistical designs of the two MEWMA 

charts separately. Chapter 5 studies the optimal design for the MEWMA charts on raw 
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GBE data and Charter 6 studies the optimal design for the MEWMA charts on 

transformed GBE data. The robustness of the two control charts to the estimation 

errors of the dependence parameter is also examined. 

Chapter 7 concludes the whole thesis and presents some possible future research 

topics that are suggested by the author. 

This thesis reviews the current trend in the area of TBE control charts, develops 

an advanced control chart for the more generalized Weibull-distributed TBE data, and 

further more extends the univariate TBE control chart research topic to the multivariate 

cases. The studies show that the proposed approaches do generalize the applications of 

TBE control charts for complex TBE data, improve the effectiveness of the TBE 

control charts and extend the current univariate TBE chart research topic to the 

multivariate control chart technique area. 
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CHAPTER 1 INTRODUCTION 

 

Statistical process control (SPC) originated in the 1920’s when Walter A. Shewhart 

developed control charts as a statistical approach to monitoring and control of 

manufacturing process variation. According to Montgomery (2005), SPC is a powerful 

collection of problem-solving tools useful in achieving process stability and improving 

capability through the reduction of variability. It is an important branch of Statistical 

Quality Control (SQC), which also included other statistical techniques, e.g. acceptance 

sampling, design of experiment (DOE), process capability analysis, and process 

improvement planning. Generally speaking, the purpose of implementing SPC is to 

monitor the process, eliminate variances induced by assignable causes, and at the end 

improve the process to meet its target value. 

      Technically, SPC can be applied to any process. The commonly known seven major 

tools of SPC include: histogram of stem-and-leaf plot, check sheet, Pareto chart, cause-

and-effect diagram, defect concentration diagram, scatter diagram and control chart. Of 

these tools, control chart is the most technically sophisticated one and has drawn the most 

attention in the research area. 

      The organization of this chapter is as follows. Section 1.1 introduces the general 

concept of control chart. The TBE control charts and multivariate control charts 
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techniques are stated in Section 1.2 and Section 1.3 respectively. The research scope and 

organization dissertation are given in Section 1.4. 

 

1.1 Control charts  

The most commonly used SPC tool is the control chart, which is a graphical representation 

of certain descriptive statistics for specific quantitative measurements of the process. 

These descriptive statistics are displayed in a run chart together with their in-control 

sampling distributions so as to isolate the assignable cause from the natural variability.  

Let w represent the quality characteristic of interest. The traditional control charts 

follow the underlying Shewhart model: 

                                                         
w w

w

w w

UCL L

CL

LCL L

 



 







 



 

,                                           (1-1) 

where UCL is the upper control limit, LCL is the lower control limit, and L is the standard 

deviation distance of the control limits from the center line ( CL ). The in-control or target 

mean w  and the standard deviation  w of different charts differ according to the 

underlying distribution.  

 A lot of traditional control charts have been widely adopted in industries to help 

monitor, control and improve the process or product quality, including the Shewhart 

control charts for variables data (e.g. the X-bar and R chart, X-bar and S chart), the 

Shewhart control charts for attributes data (e.g. the p chart, np chart, c chart and u chart), 
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the Exponentially Weighted Moving Average (EWMA) chart, the Cumulative Sum 

(CUSUM) chart and so on. All of these control charts are originally developed under the 

normal assumption, i.e., it assumes that the sample statistics can be approximately 

modelled by a normal distribution. However, the rapid development of technology and 

increasing effort on process improvement have led to so called high-quality processes, e.g. 

Ye et al. 2012a,b. In high-quality process monitoring, the failure rate is so low that it is 

difficult to form rational samples that the sample statistics would approximate normal and 

the traditional control charts have encountered a lot of difficulties. In order to overcome 

difficulties of conventional control charts in detecting process shifts in high-quality 

processes, a new kind of control chart named time between events (TBE) control chart has 

been developed recently. 

  

1.2 Time-between-events chart 

The time-between-event (TBE) chart is an effective approach for process monitor, control 

and improve the process when the events occurrence rate is very low. Unlike the 

traditional control charts which monitor the number or the proportion of events occurring 

in a certain sampling interval, TBE charts monitor the time between successive 

occurrences of events. The word “events” and “time” may have different interpretations 

depending on particular applications. “Event” may refer to the occurrence of 

nonconforming items in manufacturing process, failures in reliability analysis, accidents in 

a traffic system, etc. And the word “time” is used to represent the attribute or variable data 

observed between consecutive events of concern. 
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The existing TBE control charts can be classified into two groups: attribute TBE 

control chart and variable TBE control chart. The attribute TBE chart include, but not 

limited to, the cumulative count of conforming (CCC) chart, the CCC-r chart and the 

geometric CUSUM chart. Most of the attribute TBE charts are based on the geometric 

distribution (e.g. the CCC chart) or negative binomial distribution (e.g. the CCC-r chart). 

One typical variable TBE chart is the cumulative quantity control (CQC) chart. Since the 

occurrence of the event follows a Poisson distribution, the cumulative quantity between 

two events follows an exponential distribution, so CQC chart can also be called 

exponential chart. A lot of TBE variable charts are set up based on the exponential 

distributed TBE data, e.g. the CQC chart, the exponential CUSUM chart and the 

exponential EWMA chart. However, the exponential assumption is true only when the 

events occurrence rate is constant. An extension is to use Weibull distribution to simulate 

various TBE situations (including exponential) with non-constant events occurrence rate 

by varying its scale and shape parameters (e.g. the t chart and rt chart). 

 

1.3 Multivariate control charts 

Up to now, we have addressed control charts primarily from the univariate perspective; 

that is we have assumed that there is only one process output variable or quality 

characteristic of interest. In practice, however, there are many situations in which the 

simultaneous monitoring or control of two or more related quality-process characteristics 

is necessary. While monitoring several correlated variables, the results of using separate 

univariate charts can be very misleading, and does not account for correlation between 
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variables. The multivariate control charts which can simultaneous monitor or control two 

or more related quality-process characteristics are especially suitable for such problems.  

Most commonly used multivariate control charts are the natural extension of the 

univariate charts, e.g. the Hotelling’s T
2 

charts (Hotelling 1947), multivariate exponential 

moving average (MEWMA) charts (Lowry 1992) and multivariate cumulative sum 

(MCUSUM) charts (Crosier 1988, Pignatiello and Runger 1990). These multivariate 

control charts are originally developed for multivariate normal distributed data. However, 

in high-quality process monitoring, the actually distribution is usually non-normal, or even 

highly skewed. Similar to the univariate case, the traditional multivariate charts also face a 

lot of practical difficulties for such scenarios, some of which even totally lost their 

efficiency in detecting process shift. As a result, there is a strong demand for the 

researchers to develop effective multivariate control charts for high-quality process. 

1.4 Performance evaluation issue 

There are several popular statistics for measuring and comparing the performance of 

control charts in literature.  

The fisrt one is the average run lenth (ARL). The ARL is defined as the average 

number of points that must be plotted before the chart issues an out-of-control signal. ARL 

is a traditional performance measure for control chart design and comparison. Given Type 

I error ( ) and Type II error (  ) of the charting procedure, the in-control ARL ( 0ARL ) 

and the out-of-control ARL ( 1ARL ) can be calculated as1/ and 1/ (1 ) , respectively. 

In a statistical design, the control limits are generally adjusted to achieve certain 0ARL  for 
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the charts under comparison, and the one with the smallest 0ARL  is considered to be the 

best.  

As the time spent on plotting each TBE point is usually different, a better alternative to 

measure TBE chart comparing to the ARL would be the average time to signal (ATS). 

ATS is usually defined as the average time taken for the chart to signal an out-of-control 

point. The decition criteria for statistical design based on ATS is similar to those on ARL. 

Other measurements include the average number of observations to signal (ANOI), the 

avergae quantity of products inspected to signal (AQI), false detection rate (FDR), and 

succesive detection rate (SDR). 

Another widely studied method for designing control charts is the economic design. 

An economic design is usually achieved based on an economic model of the process under 

consideration. Economic models are generally formulated using a total cost function 

which expressed the relationships between the control chart design parameters and the 

various types of costs involved. The performance of an economic design is assessed based 

on the specific economic objective. There is also the so-called economic-statistical design 

which imposes some constraints on the economic models to satisfy both statistical and 

economical objectives.  

1.5 Research objective and scope       

The purpose of this thesis is to develop advanced control charts for complex TBE data. 

The reminder of the thesis is organized as follows: 
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Chapter 2 reviews the current research trend of TBE control charts and the 

multivariate control charts technique. 

In Chapter 3, an exponential weighted moving average (EWMA) chart is proposed 

for transformed Weibull-distributed TBE data. The statistical design of the proposed chart 

is investigated based on ARL criteria. Finally, the guidelines for optimal statistical design 

of the EWMA chart are given to promote the use of the chart in real applications.  

Charter 4 proposes two multivariate exponential weighted moving average 

(MEWMA) control charts for the Gumbel’s bivariate exponential (GBE) distributed data, 

one based on the raw GBE data , and the other on the transformed data. The performance 

of the two control charts are compared to three other control chart schemes for monitoring 

simulated GBE data. The comparison results show that the proposed MEWMA charts are 

superior to the other control chart schemes based on the consideration of ARL property.  

Chapter 5 studies the optimal design of the MEWMA charts based on raw GBE data 

and Charter 6 studies the optimal design for the MEWMA charts based on transformed 

GBE data. The robustness of the two control charts to the estimation errors of the 

dependence parameter is also examined. 

Chapter 7 makes conclusions and suggests some potential future works. 

The structure of the thesis is demonstrated by Figure 1-1. 
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This thesis reviews the current trend in the area of TBE control charts, develops an 

advanced control chart for the more generalized Weibull-distributed TBE data, and further 

more extends the univariate TBE control chart research topic to the multivariate case.      

 

Chapter 2 Literature review 

Chapter 1 Introduction 

Chapter 7 Conclusions and future works 

Chapter 3-6 Advanced 

control charts developed  

Chapter 3 EWMA 

chart for transformed 

Weibull data 

Chapter 4 Two MEWMA 

charts for GBE data 

Chapter 5 Design of 

the MEWMA chart 

for raw GBE data 

Chapter 6 Design of 

the MEWMA chart for 

transformed GBE data 

Figure 1-1 The structure of this thesis 
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CHAPTER 2  LITERATURE REVIEW 

 

This chapter reviews some important works related to TBE control charts and multivariate 

control charts.  

 

2.1 Time-between-events control charts 

2.1.1 Attribute TBE control charts 

One typical attribute TBE control chart is the CCC chart (also called geometric chart or 

RL chart). The CCC chart, first proposed by Calvin (1983) and further developed by Goh 

(1987) and Bourke (1991), monitors the cumulative number of conforming items to obtain 

a nonconforming item with probability limits. Since the occurrence of the nonconforming 

item follows a binomial distribution, the cumulative counts of items inspected until a 

nonconforming item is observed follows a geometric distribution. Fixing the false alarm 

probability α at a desired level, the control limits UCL, CL, and LCL can be derived from 

the CDF of geometric distribution. The CCC chart has been further studied by many 

authors such as Kaminsky (1991), Xie and Goh (1997), and Xie et al. (1998). Xie et al. 

(2000) introduced the idea of transforming geometrical data into normal distribution so 

that the traditional run-rules and advanced process-monitoring techniques could also be 

used. Xie et al. (2001) constructed the economic model of CCC-chart based on LV model. 
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Zhang et al. (2004) proposed an improved design of CCC chart, which results in a nearly 

ARL-unbiased design. Liu et al. (2006) applied the idea of variable sampling intervals to 

the CCC-chart when 100% inspection is not available, which made the CCC-chart more 

flexible.   

A natural extension of the CCC chart is the CCC-r chart, for which the sample 

statistic is the cumulative number of items inspected until the r-th nonconfromig item is 

encountered.  Consequently, the sample statistic of the CCC-r chart follows a negative 

binomial distribution. Bourke (1991) and Xie et al. (1999) proposed the use of CCC-r 

chart and showed its sensitivity for detecting small process shifts. Wu et al. (2001) studied 

the sum-of-conforming-run-length (SCRL) chart which is similar to the CCC-r chart. 

Although plotting the cumulative count of conforming items until r nonconforming items 

happen increases the sensitivity of the chart to the shift, it needs to wait too long in order 

to see r nonconforming items. Chan (2003) introduced a two stage CCC-chart called CCC-

1+r chart which is more flexible than the CCC-r chart. 

 Another useful attribute TBE chart is the geometric CUSUM chart. Xie et al. (1998) 

did a comparative study of CCC and CUSUM charts and suggested the usage of geometric 

CUSUM as it was shown to be more sensitive to high quality process shift. He also 

mentioned the idea that combining the CCC-chart and CUSUM-chart together in order to 

increase the sensitivity of the chart. Bourke (2001) further examined the properties of the 

geometric CUSUM chart under both 100% inspection and sampling inspection. Chang and 

Gan (2001) studied the sensitivities of the CUSUM charts based on geometric, Bernoulli, 
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and binomial data. Recommendations were given on how to choose the chart under 

different situations.    

Some recent studies in the area of attribute TBE control charts are as follows. Albers 

(2010) developed a systematic approach for how to choose r in the CCC-r chart resulting a 

simple expression of the optimal r as a function of the desired false alarm rate and the 

supposed degree of increase of defect rate p compared to its value during in-control 

process. Later, Albert (2011) extended the CCC chart to the case of homogeneous health 

care data with large dispersion. Jae et al. (2011) proposed a G-EMWAG chart which 

combined a geometric chart and a EWMA chart for effectively detecting both small and 

large shifts on geometric distributed data. Liu et al. (2006) studied the performance of the 

CCC control charts with variable sampling intervals and Chen et al. (2011) extended Liu’s 

work to the case of CCC control charts with variable sampling interval and variable 

control limits. 

 

 

2.1.2 Exponential TBE control charts 

A common assumption for variable TBE control chart is that the sample statistic follows 

an exponential distribution. Assume the event occurrence rate is constant and the 

occurrence of events can be modeled by a homogeneous Poisson process, therefore, the 

cumulative quantity before observing one event follows an exponential distribution. Until 

now, most of the studies on variable TBE monitoring charts are based on this assumption. 

The existing charts for exponential TBE data can be categorized into two types according 

to their methodology: TBE charts on raw data and TBE charts on transformed data. 
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“TBE charts on raw data” refers to the ones developed to directly monitor the 

exponentially distributed TBE data. Lucas (1985) and Vardeman and Ray (1985) were 

probably the first ones to study the exponentially distributed TBE data using CUSUM 

chart. Vardeman and Ray (1985) derived an exact method to obtain the ARL values for 

exponential CUSUM by solving Page’s integral equation. Gan (1992) derived exact run 

length distribution for one-sided exponential CUSUM. Further, according to Gan (1994), 

the Poisson CUSUM and exponential CUSUM charts were found to have similar 

performances in detecting small and moderate changes in the Poisson rate. Borror et al. 

(2003) studied the robustness of the exponential CUSUM when the distribution deviated 

from exponential distribution. Control charting technique based on monitoring raw TBE 

data has been further extended to exponential EWMA by Gan (1998). Gan discussed the 

design of one-sided and two-sided EWMA chart, and provided a simple design procedure 

for determining the chart parameters of an optimal exponential EWMA chart. Gan and 

Chang (2000) presented the computer programs for computing ARL of exponential 

EWMA.  

Chan et al. (2000) introduced a so called CQC chart for monitoring exponentially 

distributed quality characteristics based on probability limit method. The CQC chart is the 

counterpart part of the aforementioned CCC chart. This control chart is applicable to 

manufacturing process where the occurrence of defects can be modeled by a homogeneous 

Poisson process, whether the process is of high quality or not. Xie et al. (2002) 

investigated the use of CQC chart for monitoring the failure process of components or 

systems in reliability analysis. As the process goes on, the cumulative quantity between 

defects will gradually become large and eventually out of the control limits, so Chan et al. 
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(2002) proposed to plot the cumulative probability against the sample number in order to 

solve this problem.  

Another approach of monitoring exponential TBE data is to first transform 

exponential distribution into normal distribution and then monitor normal distributed data. 

Nelson (1994) first proposed to transform the exponential data to normal data by using the 

power of 1/3.6. Kittlitz (1999) further demonstrated why the double square root (SQRT) 

transformation is recommended for transforming exponentially distributed data to normal 

for SPC applications like the I chart, EWMA and CUSUM charts. Kao et al. (2006) and 

Kao and Ho (2007) used the method of minimizing the sum of the squared difference to 

find the optimal value as the power for transforming the exponential distribution into 

normal distribution. Liu et al. (2006) used CUSUM and Liu et al. (2007) used EWMA to 

monitor the transformed exponential data and compared them with the X-MR chart, CQC 

chart and exponential CUSUM or EWMA chart.  

All the papers cited in the above are focused on Phase II stage of the exponentially 

distributed TBE charts. Jones and Champ (2002) studied the Phase I stage of the 

exponentially distributed TBE when the parameters are known and unknown. Methods for 

computing the control limits were given. Zhang et al. (2006) revealed that the ARL of the 

exponential control charts designed in the traditional way may increase when the process 

deviates from the in-control state. In order to solve this problem, he proposed to an ARL-

unbiased design using a sequential sampling scheme which showed to work very well.   
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2.1.3 Weibull TBE control charts 

All of the variable TBE studies mentioned in the last section are based on the assumption 

that the TBE data follow an exponential distribution which is reasonable in manufacturing 

industry. However, under other circumstances, this assumption may not be true. For 

example, in reliability engineering, a Weibull distribution would be more suitable to 

describe the TBE data as it can take into consideration the increasing or decreasing as well 

as constant event occurrence rate.  

Nelson (1979) designed a set of control charts for Weibull processes with standards 

given. He used the median chart, range chart, location chart and scale chart simultaneously 

to monitor Weibull processes. Bai and Choi (1995) proposed the design method of X and 

R chart for skewed population like exponential or Weibull distribution. Ramalhoto & 

Moriais (1999) studied the Shewhart control chart for monitoring scale parameter of a 

Weibull control variable with fixed and variable sampling intervals. 

Xie et al. (2002) developed a charting method, named t-chart, for monitoring Weibull 

distributed time between failures based on probability limit method. Furthermore, a new 

procedure based on the monitoring of time between r failures, named, tr-chart, was also 

proposed in order to improve the sensitivity to process shift. Here the Erlang distribution 

was used to model the time until the occurrence of r failures in a Poisson process. 

Chang and Bai (2001) proposed a heuristic method of constructing X , CUSUM, and 

EWMA chart for skewed populations with weighted standard deviation obtained by 

decomposing the standard deviation into upper and lower deviations adjusted in 
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accordance with the direction and degree of skewness. Chang (2007) further proposed a 

heuristic method of constructing multivariate CUSUM and EWMA control charts for 

skewed populations. 

 Hawkins and Olwell (1998) provided the optimal design of CUSUM for Weibull 

data with fixed shape parameter. Note that the proposed optimal design is limited to fixed 

shape parameter and can only detect the shifts in scale parameter. Borror et al. (2003) 

investigated the robustness of TBE CUSUM for Weibull-distributed. However, few 

methods have been proposed using EWMA chart to monitor Weibull TBE data. Zhang 

and Chen (2004) developed a lower-sided and upper sided EWMA chart for detecting 

mean shift of censored Weibull lifetimes with fixed censoring rate and shape parameter.  

Nichols and Padgett (2006) used a bootstrap method with pivotal quantities to monitor 

Weibull percentiles. Pascual and Zhang (2011) proposed control charts for monitoring the 

shape parameter of the Weibull distribution by first taking the natural logarithm of the 

Weibull distribution and then setting a control chart on the range value of  random 

samples from the resulting smallest extreme population. 

 

2.2  Multivariate control charts 

2.2.1 Multivariate Shewhart control charts 

Hotelling (1947) first applied multivariate process control methods to a bombsights 

problem based on the T
2
 statistic. Mason and Young (2001) summarized the basic steps 

for the implementation of multivariate statistical process control using T
2
 statistic. A detail 



Chapter 2: Literature Review
 

 
 

16 

 

discussion of the practical development and application of control charts based on T
2
 

statistic can be found in Mason and Young (2002). The T
2
 control charts were developed 

for detecting the shift (or shifts) in process mean vector assuming that the observation 

vector follows multivariate normal distribution and the process dispersion which is 

measured by the variance-covariance matrix   remains the same.  

However, the process dispersion may also change in practice. Hence, it is necessary 

to develop control charts for monitoring process dispersion. Alt (1985) proposed a so-

called W-chart for Phase II process dispersion monitoring which is a direct extension of 

the univariate 2s  control chart. He also gave a proper unbiased estimator for  , in order 

to define a Phase I control chart for process dispersion. Alt (1985), Alt and Smith (1988) 

and Aparisi et al. (1999, 2001) suggested a second chart based on the sample generalized 

variance-covariance S  which is the determinant of the sample covariance matrix. 

In the literature, little work has been found dealing with multivariate attributes 

process, which are very important in practical production processes. Patel (1973) first 

proposed an X
2
-chart for the multivariate binomial or multivariate Poisson population. Lu 

et al. (1998) studied a so-called MNO-chart which is a natural extension of the univariate 

np-chart. Recently, Skinner et al. (2003) have developed a procedure for monitoring 

discrete counts based on the likelihood ratio statistic for Poisson counts when input 

variables are measurable. Chiu and Kuo (2008) developed a so-called MP chart for 

monitoring the correlated multivariate Poisson count data. The control limits of the MP 

chart are developed by an exact probability method based on the sum of defects or non-

conformities for each quality characteristics. 
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Multivariate Shewhart-type control charts use information only from the current 

sample and they are relatively insensitive to small and moderate shifts in the mean vector. 

MCUSUM and MEWMA control charts have been developed to overcome this problem. 

 

2.2.2 MEWMA charts 

 Lowry et al. (1992) proposed a MEWMA control chart for monitoring the mean vector of 

the process as follows:                              

                                                                                         (2-1) 

where R = diag( prrr ,,, 21  ), 10  kr for pk ,,2,1  ,  and I is the identity 

matrix. The MEWMA chart gives an out-of-control signal if , where  is the 

variance-covariance matrix of . The value  is calculated by simulation to achieve a 

specified in-control ARL. Lowry pointed out that if the equality characteristics are equally 

weighted, the ARL performance only depends on the non-centrality parameter, using the 

proof of ARL performance of equal-weighted MCUSUM chart in Crosier (1988). They 

also provided some ARL profiles using simulation. Kramer and Schmid (1997) proposed a 

generalization of the MEWMA control scheme of Lowry et al. (1992) for multivariate 

time-dependent observations. Hawkins (2007) proposed a general MEWMA chart in 

which the smoothing matrix is full instead of one having only diagonal. The performance 

of this chart appears to be better than that of the MEWMA proposed by Lowry et al. 

(1992). 
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Rigdon (1995a, 1995b) gave an integral and a double-integral equation for the 

calculation of in-control and out-of-control ARLs, respectively. Molnau et al. (2001) 

presented a program that enables the calculation of the ARL for the MEWMA when the 

values of the shift in the mean vector, the control limit and the smoothing parameter are 

known. Several researchers have studied the statistical design of MEWMA charts using 

different measurements such as Runger and Prabhu (1996), Prabhu and Runger (1997) and 

Lee and Khoo (2006), and also the economic design under different cost model (e.g. 

Linderman and Love 2000 
 
and Molnau et al. 2001).  

The MEWMA chart has been promoted by various researchers for its effectiveness in 

monitoring non-normal populations. Stoumbos and Sullivan (2002) and Testik et al. (2003) 

independently investigated the robustness of the individuals MEWMA chart to non-

normality. Following the univariate EWMA analyses of Borror et al. (1999), both studies 

considered the multivariate t distribution and the multivariate gamma distribution for 

comparisons with the multivariate normal distribution. Chang (2007) proposes a simple 

heuristic method of constructing MCUSUM and MEWMA control charts using the 

multivariate weighted standard deviation (WSD) method suggested by Chang and Bai 

(2004). The proposed charts adjust the charting statistics according to the degree and the 

direction of the skewness. The proposed charts are compared with the standard MCUSUM 

and MEWMA charts in terms of in-control and out-of-control ARLs for multivariate 

lognormal and Weibull distributions. Simulation studies indicate that considerable 

improvements over the standard method can be achieved by using the WSD method. For 

recent examples, see Hawkins and Maboudou-Tchao (2007), Zou and Tsung (2008), and 

Reynolds and Stoumbos (2008). 
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2.2.3 MCUSUM charts 

We then present MCUSUM control charts, for which we assume that the direction of the 

shift (or shifts) is known. Healy (1987) used the fact that CUSUM charts can be viewed as 

a series of sequential probability ratio tests and developed MCUSUM charts for shift (or 

shifts) in mean vector and variance-covariance matrix. Hawkins (1991) introduced 

CUSUMs and MCUSUMs for regression-adjusted variables based on the idea that the 

most common situation found in practice is departures from control having some known 

structure. We have been unable to find any proposal in literature for an analogous charting 

procedure in the case where the mean vector and the variance-covariance matrix have to 

be estimated. 

On the other hand, Crosier (1988) and Pignatiello and Runger (1990) have 

established MCUSUM schemes for cases where the direction of the shift is considered to 

be unknown. Crosier (1988) proposed two new multivariate CUSUM schemes. The first 

scheme is based on the square root of Hotelling’s T
2
 statistic, while the second can be 

derived by replacing the scalar quantities of a univariate CUSUM scheme with vectors. 

Moreover, Pignatiello and Runger (1990) introduced two new MCUSUM schemes .They 

referred to these MCUSUM charts as MCUSUM #1 and MCUSUM #2.  

A lot of authors have developed different MCUSUM-type control charts, such as 

Ngai and Zhang (2001), Chan and Zhang (2001), Qiu and Hawkins (2001, 2003). Runger 

and Testik (2004) provided a comparison of the advantages and disadvantages of 

MCUSUM schemes, as well as performance evaluations and a description of their 

interrelationships. Jamal et al. (2007) introduced an artificial neural network (ANN) based 
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model to construct residuals Multivariate CUSUM chart for multivariate Auto-Regressive 

processes and show that the proposed chart performs better than the auto-correlated data 

MCUSUM chart proposed by Healy (1987) and better than time series based residuals 

chart for small shift values. Ben and Limam (2008) proposed to apply support vector 

regression (SVR) method for construction of a residuals Multivariate Cumulative Sum 

(MCUSUM) control chart, for monitoring changes in the process mean vector. 

2.2.4 Recent development of multivariate statistical process control 

One popular application area of the multivariate control charts is spatiotemporal 

surveillance. Spatiotemporal surveillance is an important aspect of multivariate 

surveillance, since several locations and time points are involved (see Sonesson and Frisén 

2005). Rogerson and Yamada (2004) considered the spatiotemporal aggregated case for 

which the counts in the sub-regions were correlated at each particular time. They 

compared the performance of the use of multiple CUSUM charts for each region, and a 

multivariate CUSUM method. Joner et al. (2008) showed that the use of a one-sided 

version of the multivariate EWMA chart was a better approach to use in this case.  Jiang et 

al. (2011) proposed a set of MCUSUM methods based on likelihood ratio tests for 

detection of outbreaks in the presence of spatial correlations, and showed the superiority 

to the existing surveillance methods. Moreover, for infectious disease, standard 

application of multivariate control charts could be inefficient, due to the potentially large 

variation in the background multivariate time series. 

Profile monitoring is another important and emerging area of multivariate statistical 

process control in the latest literature. In many industrial applications, the quality of a 
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process may be better characterized by the relationship between one or more response 

variables and the explanatory variables. Instead of monitoring the moments of a set of 

quality characteristics, profile monitoring focuses on the monitoring of relationships, 

assuming a univariate or multivariate multiple linear regression model. In profile 

monitoring, the collection of observed data for all the process variables is treated as a 

single profile sample, and thus the profile monitoring problem naturally corresponds to 

multivariate SPC problem.  Most literatures in profile monitoring focus on linear profiles, 

e.g. Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004) and 

Mahmoud et al. (2007). Moreover, profile monitoring with polynomial regressions are 

discussed by Zou et al. (2007) and Kazemzadeh et al. (2009). Multivariate statistical 

process control techniques are also considered for more generalized regression models 

such as nonlinear parametric and nonparametric profiles in the following references: Ding 

et al. (2006), Williams et al. (2007), Qiu and Zou (2010) and Qiu et al. (2010). 

Moreover, self-starting methodology has gained more and more attention in 

multivariate process control to solve the problem caused by inaccurate in-control 

parameter estimation in the multivariate settings. In self-starting charts, the incoming 

process observations are transformed into a stream of mutually independent identically 

distributed data with a known in-control distribution. Each successive observation is used 

to update the mean and standard deviation of the observations up to date. And the updated 

mean and standard deviation are then used in the transformation procedure of the next 

process observation. Early works of self-starting multivariate control charts include 

Schaffer (1998), Quesenberry (1997), Sullivan and Jones (2002). Hawkins and 

Maboudou-Tchao (2007) proposed a self-starting multivariate exponentially weighted 
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moving average (SSMEWMA) chart for controlling the mean of multivariate normal 

distribution. Later, Maboudou-Tchao and Hawkins (2011) extends the approach to a self-

stating multivariate exponentially weighted moving average and moving covariance 

matrix (SSMEWMAC) chart for monitoring both the mean and covariance matrix. Capizzi 

and Masarotto (2010) presented a self-starting cumulative score (CUSCORE) control 

chart for monitoring both the mean and covariance matrix of the multivariate normal 

distribution.  
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CHAPTER 3 A STUDY ON EWMA TBE CHART ON 

TRANSFORMED WEIBULL DATA 

The exponentially weighted moving average (EWMA) charts, first proposed by Roberts 

(1959), has shown to be very effective in detecting small process shift for exponential 

TBE data and other non-normal data. However, few methods have been proposed using 

EWMA chart to monitor Weibull distributed TBE data. This section proposed a EWMA 

chart with transformed Weibull TBE data. The recommended Box-Cox transformation 

method is employed to transform Weibull data to approximate normal distributed data. 

Then a EWMA chart is set up on the transformed Weibull data.  

Our design of EWMA chart is based on the consideration of ARL property using 

Markov chain calculation. It is found that the in-control ARLs of the EWMA charts with 

transformed Weibull data only depend on the design parameters of the control charts and 

are irrelevant to the distribution parameters. This property prompted us to study the 

statistical design of the proposed chart for the purpose of guiding the practical applications. 

Note that formal studies have shown that the in-control ARLs or other commonly used 

statistical measurements like average time to signal (ATS) of EWMA charts constructed 

directly on the Weibull distributed TBE data depend not only on the design parameters of 

the control charts but also on the distribution parameters, and thus it is difficult for us to 

conduct statistical design for such control charts or provide any general design guidelines. 
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3.1 Transform the Weibull data into Normal data using Box-Cox 

transformation 

Many transformation methods like the simple power transformation, exponential 

transformation and Box-Cox transformation for transforming Weibull data to 

approximately normal distributed data have been studied by different researchers. Among 

them, the Box-Cox transformation is highly recommended in literature; see Box and Cox 

(1964), Sakia (1992), Yang Z.L. et al. (2003). Pavel et al. (2006) investigated the usability 

of some general types of transformations for transforming data sets with four non-normal 

distributions (logarithmic-normal, exponential, gamma, and Weibull) to normally 

distributed data. They also suggested using Box-Cox transformation for transforming 

Weibull data. Following these authors’ suggestion, we use Box-Cox transformation to 

transform Weibull data in our study. 

The probability density function (PDF) of two-parameter Weibull distribution 

( , )W   can be written as: 
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where   is the scale parameter and  is the shape parameter. When   is equal to 1, the 

Weibull distribution reduces to the exponential distribution.  

 The Box-Cox transformation is described by the equation: 
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Hernandez and Johnson (1980) showed that the best normalizing transformation for 

Weibull is 2654.0r . So we use the following transformation function to setup the 

EWMA chart: 
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Note that a two parameter Weibull distribution ),( W  becomes a three parameter 

Weibull distribution )
1

,,(
rrr

W
r



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.  The mean and standard 

deviation of the transformed Weibull data are as follows: 
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And the cumulative distribution function (CDF) changes to 
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The EWMA chart to be introduced later would be conducted on the transformed 

Weibull data using Box-Cox transformation method.  

 

3.2 Setting up EWMA chart with transformed Weibull data  
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The idea of proposed EWMA chart is to use Box-Cox transformation method to convert 

Weibull data to approximate normal data, and then apply conventional design methods of 

EWMA chart for normal data to monitor the process. The main procedure of setting up a 

EWMA chart with transformed Weibull data are as follows: 

Step 1: Transform the Weibull data tX  to approximately normal distributed data tY . 

The Box-Cox transformation is applied in our study: 

                                                    
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Step 2: Set up the two-sided EWMA chart with the recursive statistics: 

                                                ttt YZZ   1)1(
                                          (3-7)

 

where 0 1  is the smoothing factor. The starting value is the in-control mean value 0 , 

i.e. the mean of data after transformation. 

Step 3: The centre line and control limits can be calculated by 
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where L is a design parameter. 

Step 4: The process is considered to be out-of-control when tZ  exceeds either the 

UCL or LCL. The 0  and 0  can be estimated from the transformed data with 
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3.3 Design of EWMA chart with transformed Weibull data  

The proposed design method for EWMA chart with transformed Weibull data is based on 

ARL consideration. An acceptable in-control ARL is specified at the beginning to 

determine the probability of false alarm, and the optimal design is to find the values of 

design parameters with the shortest out-of-control ARL.  

 

3.3.1 Markov chain method for ARL calculation 

The approximate method using Markov chain method for ARL calculation was first 

proposed by Brook and Evans (1972), where the properties of the continuous-state 

Markov chain can be approximately evaluated by discretizing the infinite-state transition 

probability matrix.  

Consider a two-sided EWMA chart with transformed Weibull data with design 

parameters   and L , the interval between the LCL and UCL is divided into m  

subintervals of width w. Since the control limits will change with time t , and will 

approach a constant when t  is large, the asymptotic a control limits are used to calculate 

the ARL instead of the exact control limits. Let Uh  and Lh be the asymptotic control limits 

that it satisfy  
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Using the asymptotic control limits, w can be expressed as: 
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The EWMA control statistics tZ  is said to be in transient state ( j ) at time ( t ) if 

wjhZjwh LtL )1(   for 1,,1  mj   The midpoint of subinterval 

corresponding to state ( j ) can be written as 

                                  
1,,1,0,)5.0(  mjwjhm Lj 

                             (3-12)
 

The control statistics tZ  is regarded as in the absorbing state m  if the point goes 

outside the control limits, i.e. lt hZ   or ut hZ  . 

Let ijp  represent the transition probability that the control statistics iZ  goes from state 

( i ) to state ( j ) in one step. To approximate the probability, we assume that the control 

statistics tZ  is equal to im  whenever it is in state ( i ). This approximation is accurate 

enough when the number of state m  is large. Then ijp  is given by 
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Based on the Markov chain theory, the expected first passage times from state ( i ) to the 

absorbing state are 
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i  is the ARL given that the process started in state ( i ). Let R be the matrix of 

transition probabilities obtained by deleting the last row and column of P . The vector of 

ARLs    can be calculated with 
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                                                       1)( 1 RI                                                    (3-15) 

where 1 is an 1m  vector with all elements equal to 1, and I  is an mm  identity matrix. 

The elements in the vector   are the ARL’s when the EWMA chart starts in various 

states. The first element in the vector   gives the ARL for the EWMA chart starting from 

zero, and the ARL given that 0 0z   is just the middle entry, that is the ( ( 1) / 2m )th 

element in the vector .  

3.3.2 In-control ARL 

The in-control ARL (ARL0) values with different design parameters   and L  are 

calculated by the aforementioned Markov chain approach. It can easily be proved that the 

0ARL  of a EWMA chart with transformed Weibull data depends on the value of   and L , 

and it is independent of the parameters of Weibull distribution ),( W . The prove is as 

follows: 
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We can see from the formula that when the process is in-control i.e. 1010 ,   , the 

value of ijp  only depends on the value of design parameters   and L and calculation 

parameter m . On the other hand, when the process become out-of-control, the value of 

),( 00  and ),( 11   would influence the 1ARL  values. After study the relationship of 

0ARL  and calculation parameter m , we could see that the value of 0ARL  trends to be 

more and more stable as m becomes larger and larger. We choose 301m  in our study.  
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(a) ( 0 0.1  ) 

Figure 3-1 The in-control ARL contour plot of the EWMA chart 

 (b) ( 0.1 1  ) 
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Figures 3-1(a) and Figure 3-1(b) provide the contour plots for some commonly used 

0ARL  levels. For other 0ARL  values, the relationship of   and L can be achieved by 

interpolation. Table 3-1 provides some numerical value of design parameters   and L  

according to different 0ARL  levels which would be studied in the optimal design process 

later. 

 

ARL0=100 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 1.469 1.880 2.144 2.343 2.420 2.454 2.467 2.458 2.452 

ARL0=300 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.033 2.396 2.607 2.750 2.793 2.801 2.792 2.732 2.713 

ARL0=370.4 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.136 2.487 2.688 2.820 2.857 2.861 2.848 2.779 2.758 

ARL0=500 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.278 2.610 2.798 2.917 2.946 2.944 2.926 2.844 2.818 

ARL0=800 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.490 2.793 2.961 3.062 3.079 3.067 3.042 2.940 2.906 

ARL0=1000 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.585 2.876 3.035 3.128 3.140 3.124 3.094 2.983 2.947 

ARL0=2000 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L 2.862 3.117 3.253 3.321 3.318 3.289 3.249 3.114 3.067 

 

 

 

3.3.3 Out-of-control ARL 

When the process becomes out-of-control, the 1ARL  value is influenced by the value of 

Weibull distribution parameters ),( 00   and ),( 11   as well as the design parameters   

and L . The optimal design scheme should have the shortest out-of control ARL at certain 

0ARL  length. The difficulty in the studying of out-of-control ARL is that there are two 

parameters in the Weibull distribution. 

Table 3-1 The design parameters   and L  combinations of the EWMA chart  
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We consider the case that the shift level of shape parameter 1 0/   equals 1. This is 

reasonable since in practical applications the scale parameter is more likely to change due 

to assignable causes, while the shape parameter is more related to the natural properties of 

the system and is rather stable. When 1/ 01  , we could see from both the formula (B-1) 

and the calculation results that when keeping the shape parameter   as a constant, the 

value of 1ARL  of the EWMA chart with transformed Weibull data only depends on the 

shift level of scale parameter 01 /  . However, different shape parameters   lead to 

different optimal 1ARL  given a certain scale shift level. In our study, we select some shift 

levels of scale parameter 01 /   and use the design parameters provided by Table 3-1 to 

investigate the property of 1ARL . The shortest out-of-control ARL we obtained is denoted 

by minARL .  

It can be obviously seen in Table 3-2 that the EWMA charts with smaller   are more 

sensitive to small scale shifts ( 01 /   close to 1), while those with larger   are more 

effective in detecting larger scale shifts. For small downward shifts ( 01 /  <1), the 

EWMA charts with large   between 0.5 and 1.0 may have longer out-of-control ARLs 

than their 0ARL . The reason behind this is that data after Box-Cox transformation are not 

exactly symmetric and slightly skewed to the right; meanwhile, as   approaches 1, an 

EWMA will approximate to a Shewhart chart, which is sensitive to non-normality. As 

indicated in bold and italic figures in Table 3-1, the optimal EWMA chart with 

transformed exponential data for a certain scale shift level 01 /  should have shortest 
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1ARL  among others. Note that, when 1/ 01  , the Weibull distribution would reduce to 

as exponential distribution. The result in Table 3-2 is very similar to the numerical 

example of EWMA design with transformed exponential data in Liu et al. (2007)’s paper, 

which implies that the performances of the Box-Cox transformation methods and the 

double SQRT transformation methods are similar for EWMA design using transformed 

exponential data. 

Some of the optimal design schemes of EWMA control chart with 0ARL =500 are 

listed in Table 3-3 according to different shape parameters   and scale shift levels 

( 01 /  ). Only the   values are listed as the corresponding L value could be easily 

obtained according to Table 3-1. The ARL results in Table 3-3 show that the optimal 

 increases for a certain amount of scale shift ( 01 /   ) as the shape parameter   

increases. Comparing to smaller scale shift 1 0( / )  , the optimal  for larger scale shift 

level increases more quickly as   increases. However, for small scale shift ( 01 /   close 

to 1), a smaller  is always preferred to detect the shift in scale parameter, e.g. the optimal 

 for 9.0/ 01  is 0.02 (the smallest  selected in this study), no matter what the value 

of shape parameter   is.  For small shape parameter   (e.g. 5.0,2.0 ), smaller  is 

also more effective for detecting the shift in scale parameter. On the other hand, larger   

( 15.0   ) is more sensitive to large scale shift level and large shape parameter, and the 

according 1ARL  is rather stable regardless of the value of   and 01 /  . Another 

observation is that the optimal design parameters  and L  are rather stable for a range of 

 and scale shift ( 01 /  ). Hence, it is reasonable to choose a suitable  value using Table 
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3-3 even if the desired  and scale shift ( 01 /  ) is not included. The optimal design 

schemes of other 0ARL  level are similar. 

 

1

0




 

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

L  2.278 2.610 2.798 2.917 2.946 2.944 2.926 2.844 2.818 

0.1  8.52 6.74 5.71 5.12 5.21 5.84 7.24 26.66 129.22 

0.2  11.41 9.28 8.23 8.25 9.71 12.82 18.35 71.62 257.95 

0.3  14.88 12.51 11.76 13.51 18.25 26.56 39.53 135.74 386.67 

0.4  19.53 17.17 17.43 23.27 34.55 51.71 75.63 219.64 515.38 

0.5  26.34 24.63 27.59 42.06 64.64 94.68 132.42 324.13 643.50 

0.6  37.47 38.18 47.71 78.54 117.92 163.95 216.54 448.83 764.61 

0.7  58.61 66.72 90.99 148.49 208.10 269.52 333.77 583.00 848.91 

0.8  108.69 137.11 188.68 276.41 348.08 412.76 474.21 678.24 834.33 

0.9  263.02 322.12 386.30 456.96 500.24 535.15 565.06 649.82 693.66 

1  500.00 499.56 500.28 499.57 499.20 500.38 500.38 500.16 500.91 

1.2  120.71 134.42 155.69 183.39 199.65 209.85 215.45 220.30 228.37 

1.5  41.80 40.01 42.38 49.18 55.37 60.62 64.83 74.14 83.79 

1.8  25.94 22.93 22.27 23.65 25.66 27.68 29.55 34.78 40.83 

2  21.10 18.12 16.97 17.20 18.16 19.28 20.39 23.91 28.32 

2.5  14.96 12.36 10.99 10.33 10.35 10.59 10.92 12.35 14.57 

3  11.99 9.72 8.42 7.60 7.37 7.35 7.41 8.06 9.34 

3.5  10.22 8.20 7.00 6.16 5.85 5.73 5.69 5.97 6.79 

4  9.04 7.20 6.09 5.27 4.94 4.77 4.69 4.79 5.35 

5  7.54 5.96 4.98 4.24 3.90 3.70 3.58 3.53 3.82 

10  4.85 3.80 3.15 2.60 2.32 2.16 2.05 1.92 1.96 

 

 

 

 

 

  

Table 3-2 The ARLs of some selected EWMA charts with transformed Weibull data. 

(In-control ARL=500, 1 0 1   ) 
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Table 3-4 shows the optimal design schemes of a EWMA chart with shape parameter 

5.001   according to different 0ARL  and scale shift level ( 01 /  ). The results imply 

that the optimal  decreases as the 0ARL  increases. However, the optimal  is rather 

stable for a range of 0ARL . For example, when scale shift 01 /   changes from 0.5 to 0.8, 

the optimal  is always 0.02 for all the 0ARL  level we studied.  Hence, when the shape 

parameter   is fixed to be 0.5, we could also use Table 3-4 to choose the optimal  in 

1

0




 

 Shape parameter   

 0.5 0.8 1 1.5 2 2.5 3 3.5 4 5 

0.2 
  0.05 0.1 0.1 0.2 0.4 0.5 0.5 0.5 0.8 1 

min
ARL  20.21 10.77 8.23 4.85 3.44 2.66 2.19 2.01 1.78 1.10 

0.5 
  0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.2 0.3 0.4 

min
ARL  60.82 33.79 24.63 14.43 9.82 7.39 5.78 4.83 4.07 3.14 

0.8 
  0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 

min
ARL  248.85 145.19 108.69 63.64 44.16 33.49 25.83 21.00 17.73 13.05 

0.9 
  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  413.89 317.92 263.02 168.94 117.19 87.24 68.58 56.15 17.42 36.11 

1.2 
  0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 

min
ARL  259.80 159.28 120.71 70.57 47.16 33.45 25.15 19.42 15.62 10.42 

1.5 
  0.02 0.02 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 

min
ARL  105.16 56.15 40.01 21.03 12.84 8.55 6.03 4.49 3.47 2.33 

2 
  0.05 0.1 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 

min
ARL  51.05 24.57 16.97 8.15 4.69 3.06 2.24 1.78 1.52 1.23 

3 
  0.1 0.2 0.4 0.8 0.8 0.8 1 1 1 1 

min
ARL  24.97 11.11 7.35 3.37 2.05 1.53 1.28 1.15 1.09 1.03 

5 
  0.2 0.5 0.8 0.8 1 1 1 1 1 1 

min
ARL  13.02 5.39 3.53 1.80 1.31 1.13 1.06 1.02 1.01 1.00 

Table 3-3   The optimal design schemes of EWMA chart with transformed Weibull data 

(ARL0=500) 
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application even if the desired 0ARL  level and the shift level ( 01 /  ) are not included. 

Studies could also be conducted for other values of , and the results are similar. 

 

 

 

Hence, the recommended optimal design procedure of EWMA charts with a fixed 

shape parameter is described as follows: 

1

0




 

 In-control ARL  

 100 300 370.4 500 800 1000 2000 

0.2 
  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

min
ARL  12.88 17.80 18.79 20.21 22.49 23.61 27.18 

0.5 
  0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  32.59 50.86 54.87 60.82 70.85 75.87 92.85 

0.8 
  0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  80.62 177.98 204.71 248.85 336.64 387.83 604.02 

1.2 
  0.05 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  77.72 181.88 211.18 259.80 356.68 413.07 649.77 

1.5 
  0.05 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  47.61 84.17 92.47 105.16 127.51 139.20 181.39 

2 
  0.10 0.05 0.05 0.05 0.02 0.02 0.02 

min
ARL  27.37 42.55 45.96 51.05 59.02 62.73 74.84 

3 
  0.20 0.10 0.10 0.10 0.05 0.05 0.05 

min
ARL  15.06 21.53 22.92 24.97 28.32 29.79 34.55 

5 
  0.30 0.20 0.20 0.20 0.20 0.20 0.10 

min
ARL  8.49 11.51 12.12 13.02 14.54 15.31 17.38 

10 
  0.50 0.50 0.50 0.40 0.40 0.30 0.30 

min
ARL  4.73 6.05 6.32 6.71 7.34 7.66 8.60 

Table 3-4   The optimal design schemes of a EWMA chart with transformed Weibull data 

( 1 0 0.5   ) 
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Step1:  Specify the desired 0ARL , the fixed shape parameter and the out-of control 

scale shift level ( 01 /  ) at the beginning. 

Step2:  Find the approximate value of the smoothing factor  according to the 

optimal design scheme tables mentioned in Section 3.3.2.  

Step3: Obtain the approximate corresponding value of L according to the 0ARL  

contours figure mentioned in Section 3.3.1. 

Step4: Achieve the more accurate 0ARL  and 1ARL  using Markov chain approach to 

evaluate the performance of the designed EWMA control charts. 

When the shape varies, the optimal scheme of design parameters with transformed 

EWMA chart could also be achieved by choosing the shortest out-of-control ARL value 

with different design parameters under certain in-control ARL level. However, different 

combination of shape and scale parameters would lead to different out-of-control ARL 

value using Markov chain approach, and the optimal design of EWMA should be studied 

case by case. 

Table 3-5 provides an example of the optimal schemes when we fix the scale 

parameter   to be different value and varies the shape parameter. In this example, the 

0ARL  is fixed at 370.4, 0 is equal to 1 and the shape shift changes from 0.2 to 5. In this 

case, the optimal  is rather stable for a range of value of   and 01 / . For a decrease in 

shape parameter ( 1/ 01  ), no matter what the value of scale parameter   is, the 

optimal design scheme would be 1 and 758.2L . On the other hand, for a increase in 
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shape parameter ( 5/1 01   ) with a scale parameter 25.0   , a EWMA chart with 

02.0 and 136.2L would be effective to detect the change of shape parameter. 

 

 

 

 

 

 

 

  
 Shape shift 

1 0
/   

 0.5 0.8 1.5 2 3 3.5 4 4.5 5 

0.1 
  1 1 0.05 0.1 0.3 0.4 0.4 0.5 0.5 

min
ARL  2.84 17.54 23.15 9.99 4.75 3.97 3.00 3.00 2.53 

0.2 
  1 1 0.02 0.05 0.1 0.1 0.1 0.2 0.2 

min
ARL  3.42 22.91 46.35 22.58 11.05 8.95 7.84 6.88 6.00 

0.5 
  1 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  4.44 32.03 156.46 71.38 39.15 33.62 30.03 27.47 25.55 

0.9 
  1 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  5.35 39.71 290.82 157.99 89.56 77.76 70.42 65.46 61.87 

1.2 
  1 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  5.90 44.20 309.55 173.37 98.48 84.86 76.20 70.21 65.79 

2 
  1 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

min
ARL  7.11 53.67 231.97 110.69 53.25 42.82 35.91 30.91 27.08 

3 
  1 1 0.02 0.02 0.02 0.05 0.05 0.1 0.1 

min
ARL  8.32 62.81 150.36 64.02 28.41 20.57 15.70 12.04 9.43 

5 
  1 1 0.02 0.02 0.1 0.2 0.3 0.4 0.5 

min
ARL  10.236 76.716 84.352 34.353 11.522 7.5245 5.065 3.5218 2.518 

10 
  1 1 0.02 0.1 0.5 0.8 0.8 1 1 

min
ARL  13.60 100.20 43.42 14.87 3.67 2.15 1.49 1.21 1.09 

Table 3-5 The optimal design schemes of a EWMA chart with transformed Weibull data 

( 0ARL =370.4, 1 0  , 0 1  ) 
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3.4 Illustrative example 

A simulation example is constructed to illustrate the use of the proposed EWMA chart 

with transformed Weibull data. We assume that the time between failures of a machine 

could be described by a Weibull distribution. The first 25 TBE data were generated from a 

Weibull distribution with shape parameter 20  and scale parameter 100  , and the next 

15 with shape parameter 21  and scale parameter 51  , and in-control ARL=370.4. 

The design parameters of the EWMA chart are chosen as ( 688.2,1.0  L ) and the 

starting value 0Z  is estimated from the first 25 samples. The control chart is shown in the 

Figure 3-2. The procedure becomes out-of-control at the 31th. 

 

 

 
 

 

 

 

 

Figure 3-2 The MEWMA chart for the transformed Weibull data 
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Table 3-6 An example of setting-up EWMA chart with transformed Weibull data  

 

Failure NO 
Weibull 

TBE ( tX ) 

Transformed 

Data ( tY ) 

EWMA 

( tZ ) 
UCL LCL 

0   4.06 4.06 4.06 

1 15.21 6.11 4.27 4.49 3.63 

2 20.41 7.45 4.58 4.64 3.48 

3 8.35 3.93 4.52 4.74 3.38 

4 14.24 5.83 4.65 4.81 3.31 

5 5.96 2.98 4.48 4.86 3.26 

6 6.13 3.05 4.34 4.90 3.22 

7 7.11 3.45 4.25 4.93 3.19 

8 6.22 3.08 4.13 4.96 3.16 

9 7.36 3.55 4.08 4.98 3.14 

10 13.63 5.65 4.23 4.99 3.13 

11 8.76 4.08 4.22 5.00 3.12 

12 2.52 1.19 3.92 5.01 3.11 

13 17.81 6.81 4.20 5.02 3.10 

14 7.44 3.58 4.14 5.03 3.09 

15 6.07 3.02 4.03 5.03 3.09 

16 4.63 2.37 3.86 5.04 3.08 

17 7.31 3.53 3.83 5.04 3.08 

18 11.87 5.12 3.96 5.04 3.08 

19 5.73 2.88 3.85 5.05 3.08 

20 3.59 1.83 3.65 5.05 3.07 

21 6.30 3.12 3.60 5.05 3.07 

22 9.83 4.45 3.68 5.05 3.07 

23 5.71 2.86 3.60 5.05 3.07 

24 16.64 6.50 3.89 5.05 3.07 

25 11.77 5.09 4.01 5.05 3.07 

26 1.20 0.19 3.63 5.05 3.07 

27 5.34 2.70 3.54 5.05 3.07 

28 3.39 1.72 3.35 5.05 3.07 

29 8.48 3.97 3.42 5.05 3.07 

30 5.52 2.78 3.35 5.05 3.07 

31 2.01 0.85 3.10 5.05 3.07 

32 5.01 2.55 3.05 5.05 3.07 

33 3.65 1.86 2.93 5.05 3.07 

34 2.48 1.17 2.75 5.05 3.07 

35 3.04 1.52 2.63 5.05 3.07 

36 7.51 3.61 2.73 5.05 3.07 

37 2.40 1.11 2.57 5.05 3.07 

38 7.55 3.62 2.67 5.05 3.07 

39 4.05 2.07 2.61 5.05 3.07 

40 1.62 0.55 2.41 5.05 3.07 
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3.5 Conclusions 

The proposed EWMA chart with transformed Weibull data provides a more direct and 

practical way to monitor Weibull TBE data. The results show that the EWMA chart with 

transformed Weibull data performs well in detecting the shift in scale parameter when the 

shape parameter is fixed. And the ARL performance discussed in this chapter may provide 

some guidelines for designing the proposed EWMA chart in practice. 
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CHAPTER 4 TWO MEWMA CHARTS FOR GUMBEL’S 

BIVARIATE EXPONENTIAL DISTRIBUTION 

 

The TBE charts have gained popularity for their effectiveness in high quality process 

monitoring (see Xie et al. 2002). However, all of the TBE charts mentioned in literature 

focus on univariate cases, assuming that there is only one process characteristic of interest. 

In reality, the overall quality of a system tends to depend on several quality characteristics 

that are generally correlated.  For example, in reliability analysis, the failure of a system 

may be caused by the failure of any component within that system; hence the time 

between failures of one component may be correlated with the time between failures of 

other components as they are working in a similar environment. While monitoring several 

correlated TBE variables, the use of separate univariate TBE charts does not account for 

the correlation between variables, and the results can be very inefficient, sometimes even 

misleading.  Thus it is a practical necessity to develop suitable multivariate TBE control 

charts that can simultaneously monitor or control two or more related TBE characteristics. 

Furthermore, most multivariate control charts, e.g. Hotelling’s T
2
 charts (Hotelling 

1947), the multivariate exponential weighted moving average (MEWMA) charts (Lowry 

1992) and the multivariate cumulative sum (MCUSUM) charts (Crosier 1988, Pignatiello 

and Runger 1990), were developed for multivariate normal data.  However, multivariate 
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TBE data are usually non-normal and highly skewed, as the marginal distributions are 

usually based on exponential, gamma or Weibull distributions. Similar to the univariate 

case, the traditional multivariate charts based on the T
2
 statistic have been shown to be 

quite sensitive to non-normality and would face practical difficulties in such a situation, 

perhaps even losing their efficiency in detecting process shifts.  

Various methods have been developed to construct multivariate control charts for 

skewed populations, some with the help of transformations (Chang and Bai 2004, Chang 

2007), while others are based on nonparametric approaches (Qiu and Hawkins 2001, Qiu 

and Hawkins 2003, Qiu 2008). However, these multivariate non-parametric control charts 

are usually less powerful, and more computationally intensive. Meanwhile, the MEWMA 

chart was proposed by various researchers for its effectiveness in monitoring non-normal 

populations. For recent results, see Hawkins and Maboudou Tchao (2008), Zou 

and Tsun (2008) and Reynolds and Stoumbos (2008). In particular, Stoumbos and 

Sullivan (2002) and Testik et al. (2003) showed that the MEWMA control chart with a 

small smoothing constant is fairly robust to non-normality. These successful applications 

of MEWMA charts for non-normal data motivate our investigation into the likely benefits 

of applying MEWMA chart to monitoring of multivariate TBE data.    

In this chapter, two MEWMA charts are constructed for the popular Gumbel’s   

bivariate TBE model (Gumbel 1960) in reliability analysis. In the subsequent sections, the 

Gumbel’s bivriate TBE model is introduced, and two MEWMA charts are proposed for 

the model, one on the raw data and the other on transformed data. Both charts are 

constructed for monitoring a mean vector shift (or shifts) under the assumption that the 
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dependence between the two variables remains the same. For MEWMA on the 

transformed data, we first transform the bivariate exponential data into approximate 

bivariate normal data using the well-known double square root transformation, and then 

we apply the MEWMA chart to the transformed data. A numerical example is given to 

illustrate the use of the MEWMA procedures. The ARL properties of the two MEWMA 

charts are investigated, and their performances are compared with those of the paired 

individual t charts and the paired individual EWMA charts on both raw and transformed 

data.  The proposed MEWMA charts are shown to generally outperform all the other 

charts under the circumstances considered. Finally, we briefly discuss the extension of our 

MEWMA charts to Gumbels’s multivariate exponential distribution with more than two 

variables. 

 

4.1 Two MEWMA charts for Gumbel’s lifetime data 

4.1.1 Gumbel’s bivariate exponential model 

Gumbel (1960) first introduced the model with the following joint survival function (1.0 

minus the CDF)       

                              
1 2

1/

, 1 2 1 2 1 2( , ) exp{ ( ) },  , 0,  1.m m m

X XF x x x x x x m                             (4-1) 

A more general expression for the survival function is: 

  
1 2

1 1

1 2
, 1 2 1 2 1 2

1 2

.( , ) exp ,  , 0,  , 0,  0 1X X

x x
F x x x x



 

  
 

  
                
       

              (4-2) 
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 Here 1  and 2  are the scale parameters,    is the dependence parameter, and =1  

corresponds to independence. In this chapter, we will refer to this as the GBE model. 

Houggard (1986) further studied a bivariate Weibull extension of the GBE model 

with a common shape parameter   having the following survival function: 

         
1 2, 1 2 1 1 2 2 1 2 1 2( , ) exp{ ( ) },  , 0,  , 0,  0 1.X XF x x x x x x                               (4-3) 

Here 1  
and 2  

are the scale parameters,   is the shape parameter,  is the dependence 

parameter, and 1   corresponds to independence. We will refer to it as 

HBW( 1 , 2 , , ). When 1  , the HBW model reduces to the GBE model. Hougaard 

(1989) further extended the bivariate Weibull distribution to the multivariate case. 

Hougaard showed that the HBW model is a meaningful physical model for failure-times 

analysis derived from consideration of a random environmental stress affecting both 

components. In other words, the dependence in the GBE model is explained by the 

random mixing effect of an external stress. This is different from other popular 

multivariate failure-times models where one could specify the source of dependence. For 

example, the dependence in the Marshall-Olkin’s model (Marshall and Olkin 1967) is 

explained by a common shock destroying both components, and the dependence in the 

Freund’s model (Freund 1961) is due to a failure event internal to the system.  

According to Lee (1979), the bivariate life time 1 2( , )X X  of the GBE model can be 

presented in terms of independent random variables 1 1X U V and 2 2(1 )X U V  , 

where U  follows a uniform(0,1) distribution, 11 12V V M V  , each 1iV  follows an 
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exponential distribution with mean 1, 0 or 1M   with probabilities 1   and
 
 , 

respectively. The random variables U , 11V  , 
12V  , M are all independent. For more 

statistical discussions, including the estimators of parameters, one could refer to Lu and 

Bhattacharyya (1991a, 1991b). Both the GBE model and the HBW model can be easily 

extended to the multivariate case.  

The HBW model and the GBE model have been suggested for different applications 

in the literature. The HBW model is especially suitable for family data or competing risks 

data. The family data here refers to the lifetimes of two individuals or components which 

share some common risk, for example twins, couples or automobile parts with dependent 

lifetimes. The dependence within a family might be caused by both genetic and 

environmental factors. For example, Lu and Bhattacharyya (1991a) used the GBE model 

to analyze paired relief time data collected from headache patients each of whom was 

given two different treatments. On the other hand, for components in a system, the 

dependence could be created by the different quality of components from various batches 

or by the working conditions of the system. For example, Pal and Murthy (2003) fitted the 

GBE model to the age of motor cycle (in days) and the usage of motor cycle (in kilometers) 

at the time of registering a warranty claim.  

Another interesting type of data is that on competing risks. In competing risk models, 

the observed system lifetime data can be categorized by the causes of system failure. To 

analyze competing risks data, one often constructs random variables that denote the 

lifetimes associated with each cause. To estimate the multivariate distribution with this 

kind of data, it is necessary to introduce extra dependence assumptions which cannot be 
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verified, and the estimation results depend very much on the assumptions.  Due to the non-

identifiability of the dependence assumptions, multivariate lifetime distributions with a 

specific physical dependence cannot be fitted to competing risks data. On the other hand, 

the HBW model and the GBE model that assume the dependence caused by random 

effects can easily be applied in such cases. For example, Houggard (1989) used the HBW 

model to analyze the time to failure of turn, phase, and ground in 10 motors. One could 

only first observe the failure of a motor, and then determine the failed motor component or 

components. In this case, it is impossible to identify any physical dependence between the 

motor components. It is more likely that the dependence is caused by different working 

environments for each motor, which suggests a model like the HBW model. 

As mentioned above, the GBE model is a typical lifetime model in the reliability 

applications, and many authors have investigated its properties both theoretically and 

practically. Thus, it is meaningful and important to develop statistical process control tools 

for the GBE model. In the following section, two MEWMA charts are proposed for 

lifetime data with a GBE model. 

 

 

 

4.1.2  Construction of a MEWMA chart based on the raw GBE data 
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Let 
1X  and 

2X denote the TBE data of interests. We assume that the joint distribution of 

1 2( , )X X  follows GBE (
1 2, ,   ) with the survival function as Equation (4-2). It is clear 

that the marginal distributions of
1X , 

2X  are 
1exp( )  and 2exp( ) , respectively. The mean 

vector of 
1X  and 

2X is given by 

                                                  
1 1

2 2

.
 

 

   
   

   
μ                                                         (4-4) 

Lu and Bhattacharyya (1991a) showed that  

                     
1 2

1 2 1 2 1 2 1 2
1 2 1 2

1 2

( 1) ( 1) ( 1)
( ) ,  , 0,

( 1)

k k
k k k k k k

E X X k k
k k

   

 

      
 

  
            (4-5) 

where ( )  is the gamma function. 

Thus, the correlation coefficient of 1X  and 2X is given by 

                                                  
22 ( 1)

1,
(2 1)

X






 
 
 

                                                        (4-6) 

which ranges from 0 to 1 and is monotone decreasing in  . Let Xρ  
denote the correlation 

coefficient matrix. According to Equation (4-6), Xρ  is dictated by the dependence 

parameter  , and  is not affected by the value of  1  or 2 . The covariance matrix of 

( 1X , 2X ) becomes 

  

2
2

1 1 22

1 1 2

2 2
1 2 2 2

1 2 2

2 ( 1)
1

(2 1)

2 ( 1)
1

(2 1)

.X

X

X


  

   

    
  



   
  

               
    

Σ               (4-7) 
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First introduced by Lowry et al. (1992), the MEWMA chart is originally constructed 

for detecting the mean shift (or shifts) for the multivariate normal distribution with an in-

control mean vector 
0μ  and a constant variance covariance matrix 

0Σ . Let the i-th 

( 1,2,...i  ) observation vector of the process be denoted by iX with a vector length of p .  

According to Lowry et al. (1992), the MEWMA statistic is defined as:  

                    
0 1 01

( ) ( ) ( ) ( )
i i j

i i i jj



 
      z R x μ I R z R I R x μ ,                          (4-8) 

where 1 2( , ,..., )pdiag r r rR =  for some user chosen EWMA parameters 10  kr  
for 

pk ,,2,1  , 0 0z and I  is the identity matrix. The MEWMA chart signals if the 

charted statistic 2 1T

i i Z ii
E


 z Σ z >h, where Zi

Σ  is the variance-covariance matrix of iz , and h 

is the UCL. 

When 1 2 pr r r r    , with a constant 0Σ ,  it can be easily shown that    

                             
2

0 0

(1 (1 ) )
  

2 2

i

Zi

r r r

r r

 
 

 
Σ Σ Σ ,for i  .                              (4-9) 

As we have introduced, one important assumption for the traditional MEWMA chart 

is that the variance-covariance matrix of the underlying multivariate normal distribution 

remains constant after the process experiences a mean shift. However, obviously, this 

assumption does not hold for most multivariate exponential distributions which have 

exponential-type marginal distributions as a shift in the mean also implies a shift in the 

covariance.   
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 On the other hand, the MEWMA chart based on an asymptotic covariance matrix 

with a small smoothing factor can be designed to be quite robust to non-normal 

distributions, (see, e.g., Stoumbos and Sullivan, 2002, Testik et al., 2003). In order to 

employ the robustness feature of the MEWMA chart, we apply the Lowry’s MEWMA 

charting statistic 2

iE  to the GBE data. Assuming the TBE data
 
( 1X , 2X ) follows GBE 

( 1 2, ,   ) and the dependence parameter   remains constant, the proposed new MEWMA 

chart for monitoring the mean vector 1 2( , )  is constructed as the following: 

Step 1: Calculate the following recursive statistics: 

                                     
0 1( ) (1 ) 1,2,...,,  i i X ir r i    z x μ z                                       (4-10)            

where 
1 2[ , ]T

i ii X Xx , 0 1r   is the smoothing factor and 
0Xμ is the in-control mean 

vector of the raw GBE data. The starting value 0z equals to 0. Note that when r=1, the 

MEWMA chart reduces to the T
2
 chart.  

Step 2: Set up the MEWMA chart using the following statistics: 

                                               
0

2 12
,T

i i X iE
r

r





z Σ z                                                           (4-11) 

where 
0XΣ  

is the in-control variance-covariance matrix of the raw GBE data. Here, we 

use the asymptotic in-control variance-covariance matrix 
02

Z X

r

r



Σ Σ  and the later 

comparison study results will show that this implementation is reasonable.  

Step 3: The process is considered to be out-of-control when 2

iE  exceeds the decision 

interval h.   
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In practice, the in-control 
0Xμ  and 

0XΣ  can be estimated from the in-control 

historical data using the grand mean vector and sample variance-covariance matrix: 

                                                         
0

1

1
ˆ ,

n

X k

kn 

  μ x x                                                  (4-12) 

                                            
0

1

1ˆ ( )( )
1

.
n

k k

k

T
X

n 

  

Σ x x x x                                         (4-13) 

Another way to estimate the 
0Xμ  and 

0XΣ  is to first estimate the in-control 

parameters 1 2, ,   of the GBE model, and then calculate 
0Xμ  and 

0XΣ according to 

Equation (4-4) to Equation (4-7). 

The design parameters r and h are determined by Monte Carlo simulation so that the 

0ARL  approximately equals to the desired level. Here we use simulation to calculate the 

ARL values since we encountered difficulties with the published analytical approaches 

based on the multivariate normal distribution such as the bivariate Markov chain method, 

the probability limit method, and the integral equation approach. In our study, we first 

program a subroutine to get the run length for a single charting realization using simulated 

GBE data.  The run length is defined as the number of the plotted points until the charts 

first signal. Then, 10,000 trials of the run length subroutine are executed and the average 

of these 10,000 run length values is used to estimate the ARL value. Several commonly 

used smoothing factor r values are selected in this study: r=0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 

0.8, 1. For each r value, the corresponding h value is determined so that 0ARL  is the 

desired value. These r and h combinations are further used for control chart construction 
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and performance comparison. The ARL property of the MEWMA chart on raw data will 

be further analyzed in the later sections. 

 

4.1.3 Construction of a MEWMA chart based on the transformed GBE data 

In the literature, there are numerous studies concerning transforming skewed data into 

approximate normal data before applying control charts. Hence, we investigate the 

possibility of constructing a multivariate TBE chart based on transformed GBE data.  

Again, we assume the joint distribution of TBE data 1 2( , )X X  is GBE( 1 2, ,   ) with 

the survival function (4-2). We use the double square root transformation on 1X and 2X  

marginally, because the double square root transformation has been recommended by 

many authors for transforming exponential data to approximately normal; see Kittlitz et al. 

(1999), Liu et al. (2006), and Liu et al. ( 2007). Let 1Y
 
and 2Y  denote the variables after 

transformation, i.e. 

                                                  
0.25

1 1Y X  and
0.25

2 2Y X .                                               (4-14)  

The joint survival function of ( 1Y , 2Y ) becomes 

      
1 2

1 1
4 4

1 2
, 1 2 1 2 1 2

1 2

( , ) exp ,  , 0,  , 0,  0 1,Y Y

y y
F y y y y



 

  
 

  
                
       

           (4-15)                                                                                                                         

which follows HBW(
1/

11/  ,
1/

21/  , 4 / ,  ). 
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The marginal distributions of ( 1,2)iY i   follow Weibull distributions 
0.25( ,4)iW  . The 

mean and standard deviation can be calculated as  

                                    
0.25 0.25( ) (1 0.25) 0.9064

iY i i iE Y                                  (4-16) 

and 

                    
0.25 2 0.25( ) (1 0.5) (1 0.25) 0.2543 .

iY i i iD Y                              (4-17)   

According to Equation (4-5),  

    
0.25 0.25

0.25 0.25 1 2
1 2 1 2

(0.25 1) (0.25 1) (0.25 0.25 1)
( ) ( ) .

(0.25 0.25 1)
E YY E X X

   

 

      
 

  
         (4-18) 

So the covariance of 1Y and 2Y is  

            
1 2

2
2 0.25 0.25

1 2 1 2 1 2

(0.25 1) (1.5)
cov( ) ( ) (1.25) ,

(0.5 1)
Y YYY E YY


   



   
    

  
         (4-19)                                                                                                                    

and the correlation coefficient between 1Y   and 2Y  is 

        

1 2

2
2 21 2cov( , ) (0.25 1) (1.5)
(1.25) (1.5) (1.25) .

(0.5 1)
Y

Y Y

Y Y 


 

   
          

           (4-20) 

Let the correlation coefficient matrix be Yρ . According to Equation (4-17) and Equation 

(4-20), Yρ  is determined by the dependence parameter , and does not depend on the 

value of  1  or 2 . So the covariance matrix of ( 1Y , 2Y ) becomes 

                                           
1 1 2

1 2 2

2

2
.

Y Y Y Y

Y

Y Y Y Y

   

   

 
  
  

Σ                                                (4-21) 

In Figure 4-1, some plots are shown for the joint density function of the original 

distribution, the transformed distribution and the corresponding normal distributions with 
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the same μ and Σ . We can see that the transformed bivariate exponential distribution is 

quite close to the corresponding bivariate normal distribution but with larger kurtosis. 

 

   (b) Normal distribution with the same μ  andΣ  of the raw data 

(a) Joint distribution of raw data 
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Let the i-th ( 1,2,...i  ) transformed data vector of the process be denoted by iY . The 

proposed MEWMA chart is constructed below: 

Step 1: Calculate the following recursion statistics: 

 (d) Normal distribution with the same μ  andΣ   of the transformed data 

 

Figure 4-1 Joint density function plots (
1 2
= =1,  =0.5   ) 

(c) Joint distribution of the transformed data  
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0 01 1

( ) (1 ) (1 ) ( ),   1,2,...,
i i j

i i Y i j Yj
r r r r i

 
       z y μ z y μ                      (4-22)            

where 
1 2[ , ]T

i ii Y Yy , 0 1r   is the smoothing factor and 
0Yμ is the in-control mean 

vector of the transformed GBE data. The starting value 0z equals 0. Note that when r=1, 

the MEWMA chart reduces to the T
2
 chart.  

Step 2: Set up the MEWMA chart on the following statistics: 

                                                 
0

2 12
,T

i i Y iE
r

r





z Σ z                                                          (4-23) 

where 
0YΣ  

is the in-control variance-covariance matrix of the transformed GBE data. 

Again, we directly use the asymptotic in-control variance-covariance matrix 

02
Z Y

r

r



Σ Σ . 

Step 3: The process is considered to be out-of-control when 2

iE  exceeds the decision 

interval h.   

In practice, the in-control 
0Yμ  and 

0YΣ  can be estimated from the in-control historical 

data using the grand mean vector and sample variance-covariance matrix: 

                                                        
0

1

1
ˆ ,

n

X k

kn 

  μ y y                                                   (4-24) 

                                              
0

1

1ˆ ( )( )
1

.
n

k k

k

T
Y

n 

  

Σ y y y y                                        (4-25)   

Similarly, the design parameters r and h of the MEWMA chart on the transformed 

data are also determined by Monte Carlo simulation so that the 0ARL  approximately 

equals the desired level. We first program a subroutine to get the run length for a single 
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charting realization using simulated GBE data.  After that, 10,000 trials of the run length 

subroutine are executed, and the average of these 10,000 run length values is used to 

estimate the ARL value. The ARL property of the MEWMA chart on transformed data is 

analyzed in later sections. 

 

4.1.4 Numerical example 

A simulation example is constructed to illustrate the implementation procedure of the 

proposed MEWMA chart with raw or transformed GBE data. We use the relief time 

example from Lu and Bhattacharyya (1991a) as the defined in-control process. Each of 10 

patients was given two different treatments for headache on separate occasions. The paired 

data of relief time (in minutes) are: (8.4, 6.9), (7.7, 6.8), (10.1, 10.3), (9.6, 9.4), (9.3, 8.0), 

(9.1, 8.8) (9.0, 6.1), (7.7, 7.4), (8.1, 8.0) and (5.3, 5.1). These data are transformed by 

subtracting 5.0 from each point, and then fitting a GBE model. Note that 10 observations 

are not enough to accurately estimate the parameters, and we only use these numbers as an 

illustration. We further assume that a new medicine was recently invented and has been 

used in combination with the two treatments in medical experiments. Due to the 

effectiveness of the new medicine, the average transformed relief time of the two 

treatments has been shortened to 20% and 50% of the defined ones, respectively. We use 

the two proposed MEWMA charts to monitor the transformed patients relief times. 

The first 10 paired data in Table 4-1 are the 10 transformed patients relief times 

mentioned above. The estimated parameters are 1 2=3.43 =2.68 =0.25  ， ， . According 
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to the shift assumption we made, the next 15 points are generated with scale parameters 

( 1 1=0.2  , 2 2=0.5  ) and the dependence parameters  =0.25.  The design parameters of 

the MEWMA chart on the raw GBE data are obtained by simulation ( 0.02, 5.41r h  ) to 

achieve an in-control ARL=200. The control chart is shown in Figure 4-2. The MEWMA 

chart on the raw GBE data showed an out of control signal at the 20th point. Similarly, the 

design parameters of the MEWMA chart on the transformed GBE data are obtained by 

simulation ( 0.02, 5.27h   ) and the control chart is shown in Figure 4-3. The 

MEWMA chart on the transformed GBE data showed an out of control signal at the 18th 

point. 

 

 

Figure 4-2 An example of constructing MEWMA chart based on raw GBE data  
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NO 
Raw

MEWMA
 Trans

MEWMA
 

ix  iz  2

iE  
iy  iz  2

iE  

0     0 0 0.00     0 0 0.00 

1 3.4 1.9 -0.001 -0.031 0.05 1.358 1.174 0.002 -0.001 0.01 

2 2.7 1.8 -0.015 -0.063 0.14 1.282 1.158 0.003 -0.003 0.02 

3 5.1 5.3 0.019 -0.024 0.07 1.503 1.517 0.009 0.003 0.07 

4 4.6 4.4 0.042 -0.004 0.07 1.465 1.448 0.013 0.007 0.18 

5 4.3 3 0.058 -0.013 0.16 1.440 1.316 0.017 0.009 0.30 

6 4.1 3.8 0.070 -0.005 0.18 1.423 1.396 0.020 0.012 0.45 

7 4 1.1 0.080 -0.051 0.61 1.414 1.024 0.024 0.007 0.50 

8 2.7 2.4 0.064 -0.071 0.69 1.282 1.245 0.024 0.008 0.52 

9 3.1 3 0.056 -0.078 0.70 1.327 1.316 0.026 0.009 0.59 

10 0.3 0.1 -0.007 -0.143 0.97 0.740 0.562 0.015 -0.005 0.22 

11 0.168 0.186 -0.073 -0.205 1.29 0.640 0.656 0.003 -0.016 0.25 

12 0.603 0.810 -0.128 -0.254 1.57 0.881 0.949 -0.004 -0.021 0.43 

13 0.096 0.094 -0.192 -0.315 2.09 0.556 0.553 -0.018 -0.035 1.31 

14 0.026 0.018 -0.256 -0.377 2.71 0.403 0.366 -0.034 -0.051 3.23 

15 1.509 2.535 -0.289 -0.387 2.62 1.108 1.262 -0.036 -0.050 3.18 

16 1.038 1.555 -0.331 -0.417 2.88 1.009 1.117 -0.039 -0.051 3.52 

17 0.746 1.061 -0.378 -0.456 3.31 0.930 1.015 -0.045 -0.054 4.17 

18 0.237 0.258 -0.435 -0.511 4.06 0.698 0.713 -0.055 -0.064 5.91 

19 0.013 0.007 -0.494 -0.569 4.96 0.338 0.285 -0.071 -0.081 9.83 

20 0.153 0.164 -0.550 -0.623 5.87 0.625 0.636 -0.082 -0.092 12.69 

21 1.024 1.519 -0.587 -0.649 6.25 1.006 1.110 -0.085 -0.092 13.17 

22 0.664 1.011 -0.631 -0.684 6.86 0.903 1.003 -0.090 -0.095 14.30 

23 0.851 1.232 -0.670 -0.714 7.41 0.960 1.054 -0.094 -0.097 15.11 

24 0.629 0.948 -0.712 -0.750 8.09 0.890 0.987 -0.099 -0.100 16.37 

25 0.127 0.130 -0.764 -0.801 9.21 0.597 0.600 -0.109 -0.110 20.10 

 

 

Table 4-1 An example of setting-up MEWMA chart based on raw or transformed 

GBE data 
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4.2  Average run length and some properties 

The ARL is a traditional performance measure for control chart design and comparison. 

Generally, the ARL is defined as the average number of points that must be plotted before 

the chart issues an out-of-control signal. For the charts under comparison, the design 

parameters and control limits are adjusted to achieve a certain 0ARL , and the one with the 

smallest 1ARL  is considered to be the best.  

Figure 4-3 An example of constructing MEWMA chart based on transformed GBE 

data 
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In this study, we assume the mean vector shift (or shifts) starts (or start) from the 

very beginning (i=1), i.e. we study the “zero state” ARL performance. The in-control 

process is modeled by GBE (
1 ,

2 ,  ), and the out-of-control process modeled by 

GBE(
1  , 2  , ). We now show that the ARL performance of the two proposed MEWMA 

charts on ix  and iy
 
only depends on the marginal mean shift vector ( 1 1/  ,

2 2/  ) when 

the smoothing parameter r and the dependency parameter   are constant. Let ix
 
denote 

the i-th observed sample data which follows GBE( 1  , 2  ,  ) and iy
 
denote the i-th 

transformed sample data while the in-control distribution is denoted by GBE( 1 , 2 , ). 

The MEWMA charts are constructed according to Section 4-1 and the out-of-control shift 

starts from the very beginning that the chart is constructed. 

 

Lemma 1. When the dependency parameter   remains constant, the initial state ARL 

performance of the MEWMA chart on ix
 
only depends on the marginal mean shift vector 

( 1 1/  , 2 2/  ) and the design parameters r and h. 

Proof:  According to Section 4.1.2, the charting statistic of the MEWMA chart on iX
 
is 
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(4-26) 
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 where 10 20

10 20

1 2
,

i X i X

i

X X

x x 

 

  
  
 
 

v  is the standardized raw sample data and 

 
1

1
i

i ij

i j
r r




  vm . The chart issues an out-of-control signal when 2

iE  exceeds the 

UCL (or h ) of the MEWMA chart.  

The ARL of the MEWMA chart could be written in the following form 

                         2 2 2

0 1

1

( 1)Pr( , , , )i i

i

ARL i E h E E h






    .                                        (4-27) 

 Since ( 1X , 2X ) follows the following joint distribution 

1 2

1 1

1 2
, 1 2 1 2 1 2

1 2

( , ) exp , , 0, , 0,0 1,X X

x x
F x x x x



 
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 

  
                          

 

and 

                       1 1 2 2 1 2
1 2

1 2 1 2

( , ) , 1, 1
x x x x
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 

   

    
       

   
v                                       

v  follows the joint distribution 

1 2 1 2, 1 2 , 1 1 2 2

1 1

1 2
1 2 1 2 1 2

1 2

( , ) ( ( 1), ( 1))

                  exp ( 1) ( 1) , , 0, , 0,0 1.

V V X XF v v F v v

v v v v



 

 

 
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 

  

  
                            

(4-28) 

Hence, the joint distribution of v  only depends on the mean shift vector ( 1 1/  , 2 2/  ) 

and the dependency parameter  . As  
1

( 1,2,...)1
i

j

i

i

j

ir ir



 m v , im  is also 

decided by the mean shift vector ( 1 1/  , 2 2/  ). 
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From Equation 4-6, it is known that the correlation coefficient matrix Xρ  only depends 

on the dependency parameter . Thus, when the dependency parameter   remains as a 

constant, the distribution of the E
2
 statistic on ix  only depends on the marginal mean shift 

vector ( 1 1/  , 2 2/  ). Therefore, the ARL performance of the MEWMA chart on ix only 

depends on marginal mean shift vector ( 1 1/  , 2 2/  ) and the design parameters r and h.  

 

Lemma 2. When the dependency parameter  remains as a constant, the ARL 

performance of the MEWMA chart on iy  only depends on the marginal mean shift vector 

( 1 1/  , 2 2/  ) and the design parameters r and h. 

Proof: According to section 4.1.3, the charting statistic of the MEWMA chart on iy is 
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      (4-28)        
 

where  
1

1
i

i ij

i j
r r




n w  and 10 20

10 20

1 2
,

i Y i Y

i

Y Y

y y 

 

  
  
 
 

w is the standardized 

transformed sample data. The chart issues an out-of-control signal when 
2

iE  exceeds the h 

value.  

The ARL of the MEWMA chart could be written in the following form 

                         2 2 2

0 1

1

( 1)Pr( , , , )i i

i

ARL i E h E E h

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

    .                                         
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Since ( 1Y , 2Y )  follows the joint distribution 
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,           (4-29) 

we have that w  follows the joint distribution 
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    

      (4-30) 

Hence, the joint distribution of w  only depends on the marginal mean shift vector 

( 1 1/  , 2 2/  ) and the dependency parameter . As  
1

1
i

i ij

i j
r r




n w , in  is also 

decided by mean shift vector ( 1 1/  , 2 2/  ). 

Referring to Equation 4-20, we can see that the correlation coefficient matrix Y only 

depends on the dependency parameter  . Thus, when the dependency parameter   

remains as a constant, the distribution of the E
2
 statistic on iy  only depends on the mean 

shift vector ( 1 1/  , 2 2/  ). Therefore, the ARL performance of the MEWMA chart on 

iy only depends on the mean shift vector ( 1 1/  , 2 2/  ) and the design parameters r and h.  
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Thus, when the process is in control, i.e. 1 1   , 2 2   , the 0ARL  of the two 

MEWMA charts only depends on the design parameters r and h. Hence, without loss of 

generality, we could study the 0ARL performance of GBE (1, 1, ) to determine the r and 

h combinations. The r and h values we get could be applied to any GBE distribution with 

the same . Given the design parameter r and h, the 1ARL  of the two charting processes 

only depends on mean shift vector ( 1 1/  , 2 2/  ). Thus, to decide the most efficient chart 

or parameter combination, we only need to identify the mean shift (or shifts) level. 

Figure 4-4(a) and 4-4(b) illustrate the 0ARL
 
curves of MEWMA charts when  =0.5 

with the following r values: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. The curves are plotted 

with an increasing h step of 0.25, and are located from left to right as the r value increases 

from 0.01 to 1. Once the r and   values are determined, one could easily obtain the 

approximate h value to achieve a desired 0ARL
 
with the help of interpolation. The exact h 

values can be achieved by the following steps: 1) specify the 0ARL , r; 2) find the 

approximate range of h values from the 0ARL
 
plots; 3) calculate the 0ARL values against 

the h values within that range with an increasing step of 0.01; 4) find the h value which 

gives an 0ARL value closest to the target one; 5) if the closest 0ARL value deviates by 

more than +2% or －2% from the target value, decrease or increase the obtained h value 

by 0.005 accordingly. The simulation results show such an h value would provide an 

0ARL  within the range of target ARL±2%, which is accurate enough in most applications.   

 

 



Chapter 4  Two MEWMA Chart for Gumbel’s Bivariate Exponential Distribution
 

 
 

67 

 

 

 

 

Figure 4-4(a) The in-control ARL for the MEWMA chart based on raw data when 

 =0.5                    

Figure 4-4 (b) The in-control ARL for the MEWMA chart based on transformed data when 

 =0.5 
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4.3 Comparison studies 

The effectiveness of five control charts (the MEWMA chart based on raw data, the 

MEWMA chart based on transformed data, the paired individual t charts, the paired 

individual EWMA charts based on raw data, and the paired individual EWMA charts 

based on transformed data) are compared in this section. An acceptable 0ARL  is specified 

at the beginning to determine the probability of false alarm, and the chart that provides the 

shortest 1ARL  is considered to be the best. Three types of shifts are considered: the 

downside-downside (D-D) shift ( 1 1/ 1   , 2 2/ 1   ), the upside-upside (U-U) shift 

( 1 1/ 1   , 2 2/ 1   ) and the downside-upside (D-U) shift ( 1 1/ 1   , 2 2/ 1   ). We first 

introduce the paired individual t charts, and then compare its performance to the two 

MEWMA charts we have proposed earlier. 

 

4.3.1 Paired individual t charts 

The paired individual t charts run two t charts simultaneously, one for 1X  and the other 

for 2X . The t chart was first introduced by Xie et al. (2002) which directly monitors the 

TBE data based on the probability limit method. Assume the TBE data follow an 

exponential distribution, with survival function 

                                                      ( ) exp( / ), 0XF x x x   .                                       (4-31) 

Given the Type I error of a one-sided t chart ( t ), the UCL and the LCL are 
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ln( ),

ln(1 ).

t t

t t

UCL

LCL

 

 

 

  
                                                (4-32) 

Again, the in-control process 
1 2( , )X X  is assumed to follow the GBE( 

1 2, ,   ) 

model and the out-of-control process is modeled by the GBE(
1  , 2  , ) model. Let iUCL  

and iLCL  ( 1,2i  ) be the control limits for the two t charts. In this study, we equally 

allocate the Type I error for the two t charts, i.e. 1 2 t    .  

To detect the D-D shift ( 1 1/ 1   , 2 2/ 1   ), the paired individual t charts use two 

lower-side t charts. It produces an out of control signal if 1X  falls below 1LCL  and/or 2X  

falls below 2LCL . To detect the U-U shift ( 1 1/ 1   , 2 2/ 1   ), the paired individual t 

charts use two upper-side t charts. It produces an out of control signal if 1X  goes above 

1UCL  and/or 2X  goes above 2UCL . To detect the D-U shift ( 1 1/ 1   , 2 2/ 1   ), the 

paired individual t charts use one lower-side t chart and one upper-side t chart. It produces 

an out of control signal if 1X  falls below 1LCL  and/or 2X  goes above 2UCL . The 

calculation of the control limits and ARL values is discussed next. 

For detecting the D-D shift ( 1 1/ 1   , 2 2/ 1   ), the paired individual t charts use 

two lower-side t charts. It produces an out of control signal if 1X  falls below 1LCL  

and/or 2X  falls below 2LCL . Thus, the total ARL of the paired individual t charts is 

calculated as 

                                       1 1 2 21/ Pr[( ) ( )],ARL x LCL x LCL                            (4-33) 

where  
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1 2

1 1 2 2

1 1 2 2

, 1 2

1/ 1/

1 2

1 2

1/ 1/

1 2

1 2

Pr[( ) ( )]

1 Pr[( ) ( )]

1 ( , )

1 exp

1 exp ln(1 ) ln(1 )

X X

t t

x LCL x LCL

x LCL x LCL

F LCL LCL

LCL LCL


 

 

 

 
 

 

 

   

 

      
        

        

     
              

       

.







                           (4-34) 

Thus, the 0ARL  of the paired individual t charts is 

                                       2

0 1 1 (1 ) 1/tARL


      ,                                        (4-35) 

where   is the total Type I error of the paired individual t charts. Specifying 0ARL
 
 and 

 , one could solve Equation 4-35 to get t , and further calculate the control limits 

according to Equation 4-32. The 1ARL  value could be obtained using Equation 4-33 and 

Equation 4-34. 

For detecting the U-U shift ( 1 1/ 1   , 2 2/ 1   ), the individual t chart pair uses two 

upper-side t charts. It produces an out of control signal if 1X  goes above 1UCL  and/or 2X  

goes above 2UCL . Thus, the total ARL of the paired individual t charts is calculated as 

                                       1 1 2 21/ Pr[( ) ( )],ARL x UCL x UCL                            (4-36) 

where  
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1 2 1 2

1 1 2 2

1 1 2 2 1 1 2 2

1 2 , 1 2

1/ 1/

1 2 1 2

1 2 1 2

Pr[( ) ( )]

Pr( ) Pr( Pr[( ) ( )]

( ) ( ) ( , )

exp exp exp

X X X X

x UCL x UCL

x UCL x UCL x UCL x UCL

F UCL F UCL F UCL UCL

UCL UCL UCL UCL


 

   

 

      

  

         
              

             

）

1 2

1 2

1/ 1/

1 2

1 2

exp ln( ) ln( ) .t t t t

  

   
   

 

   
   

    







      
             

        

            (4-37) 

The 0ARL  of the paired individual t charts becomes 

                                           2

0 1 2 ( ) 1/ ,t tARL


                                          (4-38) 

where is the total Type I error of the paired individual t charts. Specifying 0ARL  and  , 

one could solve Equation 4-38 to get t , and further calculate the control limits according 

to Equation 4-27. The 1ARL  value could be obtained using Equation 4-36 and Equation 4-

37. 

For detecting the D-U shift ( 1 1/ 1   , 2 2/ 1   ), the paired individual t charts use 

one lower-side t chart and one upper-side t chart. It produces an out of control signal if 1X  

falls below 1LCL  and/or 2X  goes above 2UCL . Thus, the total ARL of the individual t 

charts is calculated as 

                                       1 1 2 21/ Pr[( ) ( )],ARL x LCL x UCL                            (4-39) 

where  
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x LCL x UCL

x LCL x LCL x UCL

F LCL F LCL UCL

LCL LCL UCL


 





  






 
 

 

 

    

  

        
            

           

     


1/ 1/

2

2

ln(1 ) ln( )t t

 


 



      
         

       

         (4-40) 

The 0ARL  of the paired individual t charts becomes 

                1/ 1/

0 1 exp [( ln(1 )) ( ln ) ] 1/ ,t t tARL                                (4-41) 

where is the total Type I error of the t & t chart. Specifying 0ARL  and , one could solve 

Equation 4-41 to get t , and further calculate the control limits according to Equation 4-

27. The 1ARL  value could be obtained using Equation 4-39 and Equation 4-40. 

 

 

4.3.2 Paired individual EWMA charts 

The paired individual EWMA charts on the raw data  run two two-sided EWMA charts for 

1X  and 2X  simultaneously, while the paired individual EWMA charts on the transformed 

data  run two two-sided EWMA charts for 1Y  and 2Y . Similar to the paired individual t 

charts, we equally allocate the Type I error between the two EWMA charts. Let the paired 

individual EWMA charts on raw data be denoted by
Raw

EWMA and the paired individual 
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EWMA charts on transformed data be denoted by
Trans

EWMA .The steady state control limits 

are used: 

                                      

0 0

0 0

0 0

0 0

/ (2 )
:

/ (2 )

/ (2 )
:

/ (2 )

Raw

Raw

Trans

Trans

EWMA X X

Raw

EWMA X X

EWMA Y Y

Trans

EWMA Y Y

UCL L r r
EWMA

LCL L r r

UCL L r r
EWMA

LCL L r r

 

 

 

 

   


  

   


  

                   (4-42) 

where r is the smoothing factor and L is the width of the control limits. 10000 runs of 

simulation are used to calculate the ARL value of the paired individual EWMA charts. 

 

4.3.3 Detection of the D-D shifts 

When both 1X  and 2X  experience a downward shift ( 1 1/ 1   , 2 2/ 1   ), it is called a 

D-D shift. The D-D shift is critical when the events we are interested in are negative ones, 

e.g. the failure of an engine, the collapse of a computer, or the breakout of an infection.  

 Let the MEWMA chart based on raw data be denoted by
Raw

MEWMA and the MEWMA 

chart based on transformed data be denoted by
Trans

MEWMA . Without loss of generality, the 

comparison is conducted with the following condition: 

1 2 01, 1, 0.5, 200ARL      . 

Four commonly used smoothing factor r values are selected in this study for the 

MEWMA charts and the paired individual EWMA charts: r=0.02, 0.1, 0.5, 1. Note that the 

MEWMA chart reduces to the traditional T
2
 chart and the EWMA charts pair reduces to 

X  charts pair when r=1.  



Chapter 4  Two MEWMA Chart for Gumbel’s Bivariate Exponential Distribution
 

 
 

74 

 

 Table 4-2 shows the numerical values of 
1ARL  for the five charts under selected D-

D shift levels including the case in which only 
1  shifts and the case in which both 

1  and 

2 shift. For each pair of shift levels, the numbers of the first row are the 
1ARL
 
 values of 

the MEWMA charts and the paired individual t charts, while the numbers of the second 

row are the 
1ARL
 
 values of the paired individual EWMA charts. The values in bold are 

the optimal 1ARL
 
of the 

Raw
MEWMA ,

Trans
MEWMA ,

Trans
EWMA and 

Trans
EWMA  under specific 

shift (or shifts) setting. The control limits or design parameters for the five charts are listed 

in the first three rows of the table. We can observe that: 

(1) The 
Raw

MEWMA , 
Trans

MEWMA , 
Raw

EWMA
 
and 

Trans
EWMA

 
with a small smoothing 

factor (e.g. r=0.02) outperform the paired individual t charts across the whole shift 

domain. Note that the control limit h for the 
Raw

MEWMA  when r=0.02 is quite close 

to that of the 
Trans

MEWMA , which shows the robustness of MEWMA chart to non-

normality. 

(2) The T
2
 based on transformed data (the 

Trans
MEWMA  with r=1) is only effective for 

detecting large downward shifts, i.e. the shifts that are far away from 1, while the 

T
2
 based on raw data (the 

Raw
MEWMA

 
with r=1) totally loses its effectiveness. This 

shows the sensitivity of T
2
 to non-normality. 

(3) With the same smoothing factor, the 
Trans

MEWMA
 
(or the 

Trans
EWMA ) is more 

effective than
 Raw
MEWMA

 
(or the 

Raw
EWMA ) in all cases. With the same smoothing 

factor, the performances of the MEWMA charts and the paired individual EWMA 

charts are similar. An interesting finding is that the
 Trans
MEWMA  (or the 

Raw
MEWMA ) 
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seems to be slightly more effective
 
for detecting single mean shifts while the

 

Trans
EWMA  (or the 

Raw
EWMA ) works better when both of the means shifted. The 

possible reason is that when  =0.5, the correlation coefficient between
 1X  and

 2X  

is 0.8541 which is a positive value close to 1. As the MEWMA chart takes the 

correlation between variables into account, on one hand, it is more sensitive when
 

1 1/   departs from
 2 2/  , as the effect of the mean shift (shifts) is opposite to the 

effect of positive correlation in this case.  On the other hand, it is less sensitive 

when
 1 1/   is close to

 2 2/  , as the effect of the mean shift (shifts) is confounded 

with the effect of positive correlation in this case. 

(4) For specific shift (or shifts) settings, the relative difference between the optimal 

1ARL  of the 
Trans

MEWMA  (or the 
Raw

MEWMA ) and the 
Trans

EWMA  (or the 
Raw

EWMA ) 

are calculated as 
( ) ( )

100%
( )

MEWMA EWMA

EWMA

Min ARL Min ARL
Diff

Min ARL


  . The average of 

the 16 Diff values is -9.72% which may indicate that the overall performance of the 

MEWMA charts are better than the paired individual EWMA charts. 
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  Raw
MEWMA

Raw
EWMA（ ） 

Trans
MEWMA

Trans
EWMA（ ） t & t 

1 2

1 2

,
 

 

  
 
 

 
r 0.02 0.1 0.5 1  0.02 0.1 0.5 1 1LCL  0.0035 

h  5.29 10.35 23.58 29.56  5.42 8.7 10.71 10.99 2LCL  0.0035 

 L  2.072 2.901 4.431 4.962  2.07 2.66 2.84 2.756   

(1,1) ARL  200 200 200 200  200 200 200 200  200 

 ( )ARL  200 200 200 200  200 200 200 200   

(0.1,1) ARL  9.98 8.89 77.83 145.76  4.01 1.94 1.25 7.98  28.58 

 ( )ARL  11.48 11.10 * *  5.66 3.33 4.14 50.23   

(0.2,1) ARL  11.54 11.29 102.05 177.76  5.90 3.39 4.23 23.25  55.83 

 ( )ARL  13.40 14.96 * *  8.26 5.61 11.80 94.79   

(0.5,1) ARL  20.83 38.06 * *  15.12 12.29 39.74 112.19  126.68 

 ( )ARL  24.64 84.59 * *  21.05 21.42 76.16 191.66   

(0.8,1) ARL  66.53 178.56 * *  55.89 75.56 164.22 *  176.75 

 ( )ARL  77.61 * * *  75.83 111.29 188.47 *   

(0.1,0.1) ARL  11.27 10.84 * *  5.89 3.37 5.85 *  20.45 

 ( )ARL  11.33 10.98 * *  5.34 3.00 3.08 38.13   

(0.2,0.2) ARL  13.13 14.62 * *  8.48 5.68 18.89 *  40.40 

 ( )ARL  13.06 14.35 * *  7.70 4.97 8.80 77.31   

(0.5,0.5) ARL  24.24 111.55 * *  21.35 21.49 142.19 *  100.25 

 ( )ARL  22.79 79.16 * *  18.78 17.83 56.86 194.16   

(0.8,0.8) ARL  81.10 * * *  78.82 117.47 * *  160.10 

 ( )ARL  71.25 * * *  69.11 95.41 183.99 *   

* The ARL values are larger than 200 and are not listed here.  

 

4.3.4 Detection of the U-U shifts 

When both 1X  and 2X  experience an upward shift ( 1 1/ 1   , 2 2/ 1   ), it is called a U-

U shift. The U-U shift is critical when the events we are interested in are positive ones, e.g. 

the purchase order of a product, the arrival of a scarce service, or the completion of a 

maintenance project. 

Table 4-2 The out-of-control ARLs for D-D shifts when  =0.5 and 
0 200ARL   
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For U-U shift, the comparison is conducted under the same specification: 1 1  , 

2 1  , 0.5  , 
0 200ARL  , r=0.02, 0.1, 0.5, 1. Table 4-3 shows the numerical values of 

the 
1ARL  for the five charts under selected U-U shift levels. We can find that: 

(1) The
Raw

MEWMA ,
Trans

MEWMA ,
Raw

EWMA and 
Trans

EWMA
 
with a small smoothing factor 

(e.g. r=0.02) outperform the paired individual t charts across the whole shift 

domain.  

(2) The T
2
 based on transformed data (

Trans
MEWMA  with r=1) and the T

2
 based on raw 

data (
Raw

MEWMA with r=1) are quite effective for detecting upward shifts. The 

difference between the results for U-U shift and D-D shift is due to the factors that 

the MEWMA charts including the T
2 

cases are not directional invariant to skewed 

populations like the exponential distribution, and the double square root 

transformation is not an accurate transformation method. 

(3) With the same smoothing factor, the 
Trans

MEWMA
 
is slightly more effective than

 

Raw
MEWMA

 
in all of the cases. 

(4)  With the same smoothing factor, the performances of the MEWMA charts and the 

paired individual EWMA charts are similar. But the
 Trans
MEWMA  (or the

Raw
MEWMA ) 

seems to be slightly more effective
 
for detecting single mean shifts, while the

 

Trans
EWMA  (or the

Raw
EWMA ) works better when both of the means shift.  

(5) The average of the relative difference between the MEWMA chart and the 

corresponding EWMA charts pair is -6.48% which also indicates the superiority of 

the MEWMA charts. 



Chapter 4  Two MEWMA Chart for Gumbel’s Bivariate Exponential Distribution
 

 
 

78 

 

 

  Raw
MEWMA

Raw
EWMA（ ） 

Trans
MEWMA

Trans
EWMA（ ） t & t 

1 2

1 2

,
 

 

  
 
 

 
R 0.02 0.1 0.5 1  0.02 0.1 0.5 1 1UCL  5.948 

h  5.29 10.35 23.58 29.56  5.42 8.7 10.71 10.99 2UCL  5.948 

 L  2.072 2.901 4.431 4.962  2.07 2.66 2.84 2.756   

(1,1) ARL  200 200 200 200  200 200 200 200  200 

 ( )ARL  200 200 200 200  200 200 200 200   

(1.5,1) ARL  21.77 20.22 34.72 44.59   24.45 22.18 39.61 65.73   48.11 

 ( )ARL  25.17 23.28 37.05 46.62   33.52 33.07 50.50 67.03    

(2,1) ARL  9.86 7.62 11.49 15.93  12.33 8.72 11.78 22.52  19.08 

 ( )ARL  11.42 9.03 12.93 17.10   16.88 13.42 16.41 24.07    

(5,1) ARL  1.70 1.01 1.03 1.33  3.49 1.62 0.88 1.39  3.28 

 ( )ARL  2.01 1.29 1.30 1.55   5.01 2.80 1.67 1.96    

(10,1) ARL  0.47 0.25 0.23 0.28  1.66 0.48 0.14 0.21  1.81 

 ( )ARL  0.59 0.34 0.31 0.36   2.56 1.10 0.43 0.46    

(1.5,1.5) ARL  21.17 17.31 23.90 28.71  31.87 29.34 45.23 63.20  29.19 

 ( )ARL  19.61 15.63 22.17 27.74   29.03 25.72 32.35 40.59    

(2,2) ARL  9.55 6.80 8.15 10.26  16.34 12.19 14.71 25.07  11.46 

 ( )ARL  8.73 6.16 7.80 9.56   14.59 10.63 10.40 13.97    

(5,5) ARL  1.49 0.82 0.71 0.84  4.88 2.48 1.36 1.86  2.37 

 ( )ARL  1.37 0.74 0.68 0.78   4.30 2.15 1.00 1.03    

(10,10) ARL  0.39 0.20 0.16 0.17  2.51 0.94 0.30 0.37  1.49 

 ( )ARL  0.34 0.17 0.14 0.16   2.15 0.77 0.22 0.20    

 

4.3.5 Detection of the D-U shifts  

When one of 1X  and 2X  experiences a downward shift and the other one experiences an 

upward shift ( 1 1/ 1   , 2 2/ 1   ), it is called a D-U shift. The D-U shift is critical when 

one of the events we are interested in is positive and the other one is negative. 

For D-U shift, the comparison is conducted under the same specification: 1 1  , 

2 1  , 0.5  , 0 200ARL  , r=0.02, 0.1, 0.5, 1. Table 4-4 shows the numerical values of 

Table 4-3 The out-of-control ARLs for U-U shifts when  =0.5 and 
0 200ARL   
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1ARL  for the five charts under selected D-U shift levels. We have the following 

observations: 

(1) The
Raw

MEWMA , 
Trans

MEWMA , 
Raw

EWMA
 
and 

Trans
EWMA

 
with a small smoothing 

factor (e.g. r=0.02) outperform the paired individual t charts across the whole shift 

domain.  

(2) The T
2
 based on transformed data (

Trans
MEWMA  with r=1) and the T

2
 based on raw 

data (
Raw

MEWMA
 
with r=1) are also effective for detecting downward-upward 

shifts. These are the combination results of the shift directions, i.e. one downward 

and one upward. 

(3) With the same smoothing factor, it is difficult to decide which one of 
Trans

MEWMA
 

and 
Raw

MEWMA  is more effective. The reason is the same as (2).  

(4) With the same smoothing factor, the performances of the MEWMA charts are 

significantly better than the paired individual EWMA charts. This large 

improvement may be due to the fact that 1 1/   always shifts in the opposite direction 

of 2 2/   in the D-U shifts setting.  

(5) After checking the relative difference between the optimal 1ARL  of the 

Trans
MEWMA  (or the 

Raw
MEWMA ) and the 

Trans
EWMA  (or the 

Raw
EWMA ), we found 

that the smallest percentage of improvement of MEWMA chart is  –32.53%. The 

average of the relative difference between MEWMA charts and EWMA charts is –

58.12% which shows a strong evidence of the superiority of the MEWMA charts. 
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  Raw
MEWMA

Raw
EWMA（ ） 

Trans
MEWMA

Trans
EWMA（ ） t & t 

1 2

1 2

,
 

 

  
 
 

 
R 0.02 0.1 0.5 1  0.02 0.1 0.5 1 1LCL  0.0025 

h  5.29 10.35 23.58 29.56  5.42 8.7 10.71 10.99 2UCL  5.9915 

 L  2.072 2.901 4.431 4.962  2.07 2.66 2.84 2.756   

(1,1) ARL  200 200 200 200  200 200 200 200  200 

 ( )ARL  200 200 200 200  200 200 200 200   

(0.8,1.5) ARL  16.33 15.77 31.61 43.64  16.18 13.01 24.09 49.70  46.42 

 ( )ARL  23.38 23.68 40.11 49.32  28.14 27.79 47.86 68.26   

(0.5,2) ARL  6.66 4.89 8.51 13.19  6.22 3.67 3.71 9.14  18.18 

 ( )ARL  10.72 8.96 12.99 17.48  12.95 9.26 13.81 23.98   

(0.2,5) ARL  1.33 0.76 0.81 1.07  1.65 0.44 0.08 0.20  3.18 

 ( )ARL  1.98 1.26 1.27 1.62  4.51 2.29 1.23 1.99   

(0.1,10) ARL  0.41 0.20 0.18 0.26  0.61 0.05 0.00 0.01  1.74 

 ( )ARL  0.62 0.34 0.31 0.37  2.43 0.93 0.24 0.42   

 

4.4  Extension to Gumbel’s multivariate exponential distribution 

The GBE distribution can be easily extended to the multivariate setting with the following 

survival function.  

             1 2

1/1/ 1/

1 2
, , , 1 2

1 2

1 2 1 2

( , , , ) exp ,

, , , 0,  , , , 0,  0 1.

p

p

X X X p

p

p p

xx x
F x x x

x x x


 

  

   

                            

   

     (4-29)   

Here ( 1, , )i i p   are the scale parameters,    is the dependence parameter, and =1  

corresponds to independence.  The marginal distributions of 1, , pX X  are 

1exp( ),
 
..., exp( )p  respectively.  

Table 4-4 The out-of-control ARLs for D-U shifts when  =0.5 and 
0 200ARL   
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The distribution is symmetrical in 1, , pX X , and the correlation coefficient of any 

combination of ( , ),i jX X  , , {1,..., }i j i j p   is independent of i and j: 

                                                           
22 ( 1)

1.
(2 1)ijX






 
 
 

                                           (4-30) 

Apparently, the proposed MEWMA charts for the GBE model can be directly applied 

to the Gumbel’s multivariate exponential distribution. It is also not difficult to generalize 

Lemma 1 and 2 in Section 4.2. Thus the ARL performance of the MEWMA charts only 

depends on the marginal mean shift vector ( 1 1/  , … , /p p  ) while the smoothing 

parameter r and the dependency parameter   are constant. In practice, the in-control 
0μ  

can be estimated using Equation (4-12) or (4-24), and 
0Σ  can be estimated using Equation 

(4-13) or (4-25).   

However, with the increased complexity of the GBE model, large sample sizes 

would be required to accurately estimate the in-control parameters. In addition, 

significant computational effort is required to provide design suggestions, as 

simulation is the only way to calculate statistical measurements of the control chart, 

e.g. the ARL.  Moreover, the dependence parameter may not be stable, due to the 

nature of specific applications, and thus robustness of the performance, with respect 

to the dependence parameter, should be investigated further.             

     

4.5  Conclusions 
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In this chapter, we proposed two MEWMA TBE charts for monitoring the mean shift (or 

shifts) of a process that can be modeled by the well-known GBE model. For the MEWMA 

chart applied to the transformed data, the bivariate exponential data values are first 

transformed into approximate bivariate normal data using the double square root 

transformation, and then monitored by the MEWMA chart. The proposed methodologies 

could easily be extended to higher dimensions. 

We further compared the zero-state ARL performance of the two MEWMA charts, 

the paired individual t charts, and the paired individual EWMA charts. The results showed 

that the MEWMA charts with a small smoothing factor are more favorable than the paired 

individual t charts. As a special case of the MEWMA charts, the T
2
 charts are effective for 

detecting upward shifts, but totally lose their effectiveness for detecting downward shifts. 

Considering the whole shift domain, the performances of the MEWMA charts are better 

than the paired individual EWMA charts especially for detecting mean shifts with 

opposite shift directions.  

This chapter demonstrates the potential use of the MEWMA charts for the GBE TBE 

model. Multivariate control chart techniques are required as various existing multivariate 

TBE models lack efficient monitoring in applications such as manufacturing system 

monitoring, spatiotemporal healthcare management and service system evaluation. It is 

hoped that this illustration of the MEWMA chart’s benefits would encourage researchers 

and practitioners to pay more attention to the chart’s usage. 
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CHAPTER 5 DESIGN OF THE MEWMA CHART FOR RAW 

GUMBEL’S BIVARIATE EXPONENTIAL DATA 

 

 In this chapter, the statistical design of the aforementioned MEWMA chart based 

on raw GBE data is investigated. The properties of both in-control and out-of-control ARL 

are studied using simulation. Some general guidelines are provided for designing the 

optimal MEWMA chart to monitor the GBE TBE data. A simulation study is conducted to 

examine the robustness of the chart to the estimation errors of the dependent parameter. 

Finally, a numerical example is given to illustrate the effectiveness of the proposed chart. 

 

5.1 Preliminaries 

In this section, we summarize the procedure to construct a MEWMA chart based on raw 

GBE data according to Chapter 4. The concept of ARL is also briefly introduced. 

 

5.1.1 The GBE distribution 

In a two-component system, we assume the time between failures of each component can 

be described by an exponential distribution. Let X1 and X2 denote the time between failures 
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of component 1 and component 2, respectively, and the joint distribution of component 

lifetimes (X1, X2) follows the underlying survival function: 

   
      1/ 1/

1 2 1 1 2 2, exp / /F x x x x
 

    
 

                              (5-1) 

where θ1, θ2 > 0 are scale parameters and 0 1   is the dependence parameter which is 

usually determined by the environmental stress level. Since it is first introduced by 

Gumbel (1960), we will call it the Gumbel’s biveriate exponential (GBE) distribution. The 

marginal distributions of X1 and X2 are EXP(θ1) and EXP(θ2), respectively, and the mean 

vector of X1 and X2 is given by 

     

1 1

2 2

 

 


   
   
   

 

.                                                   (5-2) 

According to Lu and Bhattacharyya (1991a), the correlation coefficient is given by 

     

2
2 ( 1)

1
(2 1)






 
 
  .                                                  (5-3) 

The physical justification of this model was given by Hougaard (1986). Some 

applications of this model in failure time data analysis can be found in Pal and Murthy 

(2003). 

 

5.1.2 Setting up a MEWMA chart with raw GBE data 

The procedure to set up such a MEWMA chart is proposed in Chapter 4 as follows: 

 At time t, t = 1, 2, … , observe Xt = (X1t, X2t). Calculate the following recursive 
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statistics: 

              
   

0 11Xt t iXr r    z μ z
                                             (5-7) 

Where 0 1r   is the smoothing factor and 
0X is the in-control mean vector of the raw 

data. The starting value of z0 equals 0. 

Set up the MEWMA chart using the following statistics: 

                
0

2 12
X

T
t t t

r
E

r





z z ,                               (5-8) 

where 
0X is the in-control variance-covariance matrix of the raw data. 

The process is considered to be out-of-control when 
2

t
E  exceeds the decision 

interval h. 

 

5.1.3 Average run length 

In evaluating multivariate control charts, the ARL has been the most commonly used one 

in literature. For the MEWMA chart based on raw GBE data, we have proved in Section 

4.2 that given the constant dependence parameter δ, the ARL value depends only on the 

design parameters (r and h), and the mean shift ratio 1 1 2 2    （ / , / ）, where 1  and 2  are 

the scale parameters of the in-control process and 1   and 2   are the scale parameters of the 

out-of-control process. 

 In this study, we calculate the zero-state ARL values using simulation. 10,000 

trials of the subroutine for run length are run to obtain each ARL value. The general 
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design parameter combinations could be obtained by calculating the ARL value of any in-

control processes. 

 

5.2  Optimal design of the MEWMA charts 

In this section, we use simulation to compute the 0ARL  for some typical combinations of 

( , r). Given a pre-specified 0ARL , the optimal combinations of (r, h) that results in the 

shortest 1ARL can then be identified. Based on these results, a procedure is suggested to 

guide the optimal design. 

5.2.1 In-control ARL 

Assuming the dependence parameter  is constant, the 0ARL  only depends on the two 

design parameters r and h. Without loss of generality, we evaluate the 0ARL  of the 

MEWMA chart for GBE(1,1,  ) against the combination of r and h with the following   

values:   = 0.1, 0.3, 0.5, 0.8, 1. The following commonly used r values are chosen for 

this study: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. Under each combination ( , r), the 0ARL  

for each h value is obtained through simulation. The ARL0 plot curves are depicted in 

Figure 5-1 to Figure 5-5. We can see that the ARL0 plot curves lie from left to right as r 

value increases from 0.01 to 1. 
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Figure 5-1 The 0ARL  curve for the RawMEWMA  chart when δ = 0.1 

 

Figure 5-2 The 0ARL  curve for the RawMEWMA  chart when δ = 0.3  
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Figure 5-3 The 0ARL  curve for the RawMEWMA  chart when δ = 0.5  

 

Figure 5-4 The 0ARL  curve for the RawMEWMA  chart when δ = 0.8 
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Figure 5-5 The 0ARL  curve for the RawMEWMA  chart when δ = 1 

 

Some observations can be made from these figures: 

(1) There are some fluctuations in these curves. This is because for each combination of 

r and h, the 0ARL  is obtained through simulation. 

(2) When r is small, say r ≤ 0.05, the 0ARL  is fairly insensitive to the dependence 

parameter δ. Nevertheless, the effect of δ becomes more and more significant when r 

gets larger. 

(3) Given a desired 0ARL  value, the h value under the selected combination of r and δ 

can be obtained directly from the 0ARL  curves. The h values for other combinations 

of r and δ can be achieved by interpolation.  
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Table 5-1 provides some numerical values of combinations of r and h according to 

different 0ARL   levels. These combinations of r and h are used in the following optimal 

statistical design study. 

 

 

ARL0=100 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 2.37 3.6 5.5 7.8 15.08 20.28 25.16 26 

0.3   h 2.38 3.65 5.55 7.63 14.37 18.95 22.99 23.78 

0.5   h 2.41 3.66 5.54 7.5 13.56 17.58 21.12 22 

0.8   h 2.43 3.7 5.56 7.26 12.61 16.38 19.6 20.27 

1   h 2.42 3.66 5.55 7.3 12.34 15.96 18.95 19.5 

ARL0=200 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 

h 

h 

h 

h 

3.72 5.22 7.72 11.31 21.45 29.1 35.77 36.79 

0.3   3.78 5.29 7.63 10.87 19.67 25.86 31.63 32.65 

0.5   3.81 5.29 7.53 10.35 18.33 23.58 28.77 29.56 

0.8   3.83 5.32 7.49 10.03 17.05 21.68 25.99 26.72 

1   3.82 5.32 7.44 9.83 16.63 21.14 25.1 26.13 

ARL0=370 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 5.225 6.93 10.31 14.84 28.17 38.1 46.9 48.6 

0.3   h 5.25 6.92 9.95 13.94 25.16 33.12 40.52 41.98 

0.5   h 5.26 6.93 9.67 13.3 23.05 29.89 36.25 37.55 

0.8   h 5.3 6.89 9.52 12.77 21.22 27.12 32.49 33.74 

1   h 5.27 6.9 9.5 12.6 20.74 26.43 31.58 32.58 

ARL0=500 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 6 7.82 11.67 16.75 31.77 43.05 53.1 55.25 

0.3   h 6.03 7.76 11.23 15.63 28.02 37.03 45.34 46.96 

0.5   h 6.04 7.76 10.91 14.84 25.54 33.28 39.99 41.44 

0.8   h 6.04 7.75 10.65 14.16 23.39 29.98 36.06 37.21 

1   h 6.05 7.72 10.54 13.97 22.81 29.27 35.07 36.07 

 

 

 

 

 

Table 5-1 The design parameter combinations for of RawMEWMA chart  
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5.2.2 Out-of-control ARL 

The 
1ARL  is influenced by the value of mean shift vector 1 1 2 2    （ / , / ）as well as the 

design parameters r and h. The optimal statistical design scheme should have the shortest 

1ARL  at certain 0ARL value. After we specify an in-control ARL (ARL0), possible 

combinations of the design parameters (r, h) can be read from Figure 5-2 to Figure 5-5 or 

Table 5-1. The optimal design combination  is the one yields the shortest 1ARL which is 

denoted by ARLopt.  

In our study, the listed combinations of r and h in Table 5-1 were used to calculate the 

1ARL values. Different shift vectors 1 1 2 2    （ / , / ）lead to different optimal settings of the 

design parameters. Table 5-2 to Table 5-4 show the optimal design schemes for the 

RawMEWMA  charts with δ = 0.5 and ARL0 = 100, 200, 370.4, 500. (The optimal design 

schemes for δ =0.1, 0.3, 0.8, 1 are given in Appendix B.) In these tables, we consider the 

cases of the downward-downward shift (D-D shift), the upward-upward shift (U-U shift) 

and the downward-upward shifts (D-U shift). Then, to further examine the effects of δ on 

the optimal design, we fix ARL0 = 200 and depict the optimal design schemes under δ =0.1, 

0.3, 0.5, 0.8, 1, as are given in Table 5-5. Only the values of smoothing factor r and the 

optimal 1ARL  values are listed in the tables as we could easily get the corresponding UCL 

h values according to Table 5-1. 

 Detection of the D-D Shift  

A D-D shift denotes the situation that both X1 and X2 are shifting 

downward 1 1 2 2     （ / 1, / 1）.  
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Table 5-2 shows the optimal design schemes of RawMEWMA  chart under selected D-

D shift levels. Some interesting conclusions can be made from Table 5-2: 

1) The optimal r value ranges from 0.02 to 0.1. These r values are comparatively 

small indicating that the raw GBE data are highly skewed data. 

2) The optimal r values are rather stable for a wide range of 0ARL  specifications. 

Hence, it is reasonable to choose a suitable r value using Table 5-2 even if the 

desired 0ARL  and mean shift  1 1 2 2,/ /      is not included. 

3) To detect a small shift, i.e. /i i   close to 1, it is preferable to use a small value of r. 

For example, the optimal r for detecting  1 1 2 2,/ /     = (0.8, 1) or (0.9, 1) is 0.01 

no matter what the dependence parameter   is. Nevertheless, a large r is more 

effective in detecting large shifts. This is similar to the univariate cases as the 

EWMA chart with a small smoothing factor has long been considered highly 

effective for detecting small sustained shifts.  

4) Comparing the single shift and double shifts situation, we can see that the optimal 

ARL values for detecting double shifts is larger than the one for detecting the 

single shift with the same shift value. It is due to the confounding effect of the 

mean shift (shifts) and the positive correlation between variables.   
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Table 5-2 The optimal design schemes of RawMEWMA chart for D-D shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(0.1,1) R 0.1 0.05 0.05 0.05 

 ARLopt
 6.38 8.27 10.09 11.10 

(0.2,1) R 0.05 0.05 0.05 0.05 

 ARLopt
 7.69 9.79 12.10 13.34 

(0.3,1) R 0.05 0.05 0.05 0.05 

 ARLopt
 9.40 12.03 14.94 16.76 

(0.4,1) R 0.05 0.05 0.05 0.02 

 ARLopt
 11.73 15.31 19.36 21.57 

(0.5,1) R 0.05 0.05 0.02 0.02 

 ARLopt
 15.22 20.55 25.41 27.54 

(0.6, 1) R 0.02 0.02 0.02 0.02 

 ARLopt
 21.05 27.92 34.09 37.35 

(0.7,1) R 0.02 0.02 0.02 0.02 

 ARLopt
 29.48 39.80 50.78 56.63 

(0.8,1) R 0.01 0.01 0.01 0.01 

 ARLopt
 45.07 64.86 83.91 94.95 

(0.9,1) R 0.01 0.01 0.01 0.01 

 ARLopt
 75.02 124.59 184.34 216.75 

(0.1,0.1) R 0.5 0.05 0.05 0.05 

 ARLopt
 7.52 9.54 11.63 12.85 

(0.2,0.2) R 0.05 0.05 0.05 0.05 

 ARLopt
 9.06 11.51 14.12 15.70 

(0.5,0.5) R 0.02 0.02 0.02 0.02 

 ARLopt
 18.85 24.21 29.39 31.91 

(0.8,0.8) R 0.01 0.01 0.01 0.01 

 ARLopt
 52.08 74.69 98.08 111.23 

 

 

 Detection of the U-U Shift  

A U-U shift denotes the situation that both X1 and X2 are shifting 

upward 1 1 2 2     （ / 1, / 1）. 
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Table 5-3 shows the optimal design schemes under selected U-U shift levels. Some 

interesting conclusions can be made from Table 5-3: 

1) The optimal r value ranges from 0.02 to 0.3.  

2) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different 0ARL   specifications.  

3) A small value of r is preferred for detecting a small shift and vice versa. 

4) Same to the case of D-D shifts, the confounding effect caused the optimal ARL 

values of double shifts larger than the ones of single shift with the same shift value. 

 

 Detection of the D-U Shift  

A D-U shift denotes the situation that one of X1 and X2 is shifting upward and the other 

one is shifting downward 1 1 2 2     （ / <1, / 1）. 

 Table 5-4 shows the optimal design schemes under selected D-U shift levels. Some 

interesting conclusions can be made from Table 5-4: 

1) The optimal r value ranges from 0.05 to 0.3.  

2) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different 0ARL  specifications.  

3) A small value of r is preferred for detecting a small shift and vice versa.  

4) Comparing the double shifts values in Table 5-2 to Table 5-4, we can see that the 

MEWMA chart is most effective for detecting D-U shifts. For example, the 
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optimal ARL values for mean shifts (0.5, 0.5), (0.5, 1), (0.5, 2), (2, 1), (2, 2) are 

24.21, 20.55, 5.02, 7.62, and 6.81 when 0ARL =200. The MEWMA chart has the 

smallest optimal ARL value for mean shifts (0.5, 2). The optimal ARL value 

decreases when 1 1   departs from 2 2  due to the confounding effect of the 

mean shift direction and the positive correlation between variables. 

 

Table 5-3 The optimal design schemes of RawMEWMA chart for U-U shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(1.2,1) r 0.05 0.05 0.02 0.02 

 ARLopt
 40.53 57.68 78.12 87.93 

(1.5,1) r 0.1 0.05 0.05 0.05 

 ARLopt
 14.84 19.19 23.86 26.34 

(1.8,1) r 0.1 0.1 0.05 0.05 

 ARLopt
 8.08 10.58 12.75 13.78 

(2,1) r 0.1 0.1 0.1 0.1 

 ARLopt
 5.97 7.62 9.37 10.17 

(2.5,1) r 0.1 0.1 0.1 0.1 

 ARLopt
 3.49 4.32 5.24 5.67 

(3, 1) r 0.1 0.1 0.1 0.1 

 ARLopt
 2.31 2.94 3.44 3.76 

(4,1) r 0.3 0.3 0.3 0.3 

 ARLopt
 1.24 1.51 1.85 2.01 

(5,1) r 0.3 0.3 0.3 0.3 

 ARLopt
 0.72 0.97 1.13 1.21 

(10,1) r 0.3 0.5 0.3 0.3 

 ARLopt
 0.18 0.23 0.26 0.29 

(1.5,1.5) r 0.1 0.1 0.05 0.05 

 ARLopt
 12.40 17.12 22.02 24.92 

(2,2) r 0.1 0.1 0.1 0.1 

 ARLopt
 5.17 6.81 8.36 9.02 

(5,5) r 0.5 0.3 0.3 0.3 

 ARLopt
 0.53 0.71 0.85 0.96 

(10,10) r 0.5 0.3 0.3 0.3 

 ARLopt
 0.11 0.16 0.18 0.21 
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Table 5-4 The optimal design schemes of RawMEWMA chart for D-U shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(0.8,1.5) r 0.05 0.05 0.05 0.05 

 ARLopt
 11.43 14.56 17.55 19.79 

(0.5,2) r 0.1 0.1 0.1 0.1 

 ARLopt
 3.90 5.02 6.05 6.62 

(0.2,5) r 0.3 0.3 0.3 0.3 

 ARLopt
 0.55 0.69 0.90 0.96 

(0.1,10) r 0.3 0.3 0.3 0.3 

 ARLopt
 0.13 0.18 0.23 0.25 

 

 Optimal Design under Different δ Value 

Table 5-5 shows the optimal design schemes under δ=0.1, 0.3, 0.5, 0.8, 1 when ARL0 = 

200. We can find the following observations from Table 5-5: 

1) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different correlation parameter δ.  

2) A small value of r is preferred for detecting a small shift and vice versa.  

3) Another interesting feature observed from Table 5-5 is that the optimal design 

parameters r and h are also stable for a range of δ values. Thus, it is also 

reasonable to find an r value with good performance using Table 5-2 to Table 5-5 

even if the desired δ is not listed. 
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Table 5-5 The optimal design schemes for RawMEWMA  chart when ARL0 = 200 

 
1 1 2 2

,/ /    
 

δ 0.1 0.3 0.5 0.8 1 

(0.2,1) r 0.1 0.05 0.05 0.05 0.05 

 ARLopt
 1.62 6.46 9.79 12.44 12.76 

(0.4,1) r 0.1 0.05 0.05 0.05 0.05 

 ARLopt
 2.54 9.81 15.31 19.94 20.25 

(0.6, 1) r 0.1 0.05 0.02 0.02 0.02 

 ARLopt
 4.93 18.00 27.92 34.41 35.16 

(0.8,1) r 0.5 0.02 0.01 0.01 0.01 

 ARLopt
 13.16 44.72 64.86 77.80 78.66 

(1.5,1) r 0.1 0.05 0.05 0.05 0.05 

 ARLopt
 3.64 13.28 19.19 23.19 23.55 

(2,1) r 0.1 0.1 0.1 0.1 0.1 

 ARLopt
 1.23 5.18 7.62 9.25 9.29 

(3, 1) r 0.3 0.1 0.1 0.1 0.3 

 ARLopt
 0.35 1.79 2.94 3.58 3.58 

(5,1) r 0.3 0.3 0.3 0.3 0.3 

 ARLopt
 0.10 0.55 0.97 1.22 1.21 

(0.2,0.2) r 0.05 0.05 0.05 0.05 0.05 

 ARLopt
 14.14 13.03 11.51 9.36 8.01 

(0.8,0.8) r 0.01 0.01 0.01 0.01 0.01 

 ARLopt
 83.30 80.30 74.69 64.70 56.78 

(2,2) r 0.1 0.1 0.1 0.1 0.1 

 ARLopt
 8.59 7.76 6.81 5.49 4.73 

(5,5) r 0.3 0.3 0.3 0.5 0.3 

 ARLopt
 1.10 0.90 0.71 0.45 0.31 

(0.2, 5) r 0.3 0.3 0.3 0.3 0.3 

 ARLopt
 0.07 0.37 0.69 1.04 1.17 

(0.8,1.5) r 0.1 0.05 0.05 0.05 0.05 

 ARLopt
 2.10 8.98 14.56 20.47 22.74 

 

 

5.2.3 Procedure for optimal design of the MEWMA chart 

Based on the aforementioned results, we recommend the following procedure for the 

optimal design of the MEWMA chart based on the raw GBE TBE data: 

Step 1: Specify the desired 0ARL  value, the constant dependence parameter δ and the 
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out-of control mean shift vector  1 1 2 2,/ /      at the beginning. 

Step 2: Find the approximate value of the smoothing factor r according to the optimal 

design schemes in Tables 5-2 to 5-5.  

Step 3: Locate the corresponding h value according to the 0ARL  contour plots in 

Figure 5-1 to Figure 5-5. 

Step 4: Use simulation to achieve the more accurate in-control and 0ARL  to evaluate 

the performance of the designed RawMEWMA chart. 

5.3 Robustness study 

In the former study, we have used the dependence parameter   as if it is known and 

remains constant through the whole monitoring process. In practice, this dependence 

parameter  is estimated from past data, or from expert opinion, and thus is subject to 

estimation errors and biases. Moreover, in real applications, it is very possible for   to 

experience small random drifts due to the fluctuations of circumstance stress level. In 

order to account for the estimation deviations and the possible natural instability, we need 

to examine the sensitivity of this chart to the departure of   from the estimated value. 

 For each combination 1 1 2 2    （ / , / ） in the first column of Table 5-6, we use the 

estimated est = 0.5 to derive the ‘estimated’ optimal settings given the pre-specified ARL0 

= 200. Assume that this estimated optimal setting is used but the true values of δ is true = 

0.3, 0.8, respectively. The actual values of ARL0 and ARL1, denoted as (true)

0ARL  and 

(true)

1ARL , are then computed via simulation. For comparison purpose, the optimal settings 



Chapter 5  Design of the MEWMA Chart for  Raw Gumbel’s Bivariate Exponential Data 
 

99 

 

(true)

optARL  derived from the true values of δ, given the pre-specified ARL0 = 200, are also 

given in the table.  

 From Table 5-6, we find the following observations: 

1) For a range of mean shift values, the 1ARL  is not sensitive to the dependent 

parameter . Hence, it is reasonable for us to use the optimal design results in 

Section 5.2 as guidelines in real applications. 

2) When /i i   ≪1, and, i =1, 2, 
 true

1ARL  is quite close to 
(true)

optARL  and 
 true

0ARL  is 

quite close to 200 except for the only case of  1 1 2 2,/ /     = (0.8, 0.8). This 

means that the effect of estimation error tends to be quite small when we are 

interested in shifts with downside shifts. In the special case of  1 1 2 2,/ /     = (0.8, 

0.8), the 
 true

0ARL deviates from 200. This may due to the fact that with such small 

shifts, the optimal r value becomes very small (r=0.01) and has a comparatively 

steeper 0ARL  curve which causes the 
 true

0ARL  to deviate from 200.  

3) When /i i   ≫ 1 and, i =1, 2, 
 true

0ARL  is inclined to be further away from 200. 

This result prompts us to give more attention to the estimation accuracy of δ when 

we would like to detect upside shifts. 
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Table 5-6 Estimated 1ARL  of RawMEWMA   chart based on est   = 0.5 and true = 0.3, 0.8 

 

 

 
1 1 2 2

,/ /    
 

 
opt

est
ARL

 

true


 = 0.3 true


= 0.8 
 true

1ARL
 

 true

0ARL
 

 true

optARL
 

 true

1ARL
 

 true

0ARL
 

 true

optARL
 

(0.1,1) 8.27 5.43 194.24 5.49 10.45 202.40 10.38 

(0.2,1) 9.79 6.39 194.24 6.46 12.54 202.40 12.44 

(0.3,1) 12.03 7.81 194.24 7.85 15.50 202.40 15.47 

(0.4,1) 15.31 9.71 194.24 9.81 19.96 202.40 19.94 

(0.5,1) 20.55 12.57 194.24 12.89 27.37 202.40 25.87 

(0.6,1) 27.92 18.79 199.96 18.00 34.25 201.18 34.41 

(0.7,1) 39.8 26.78 199.96 26.80 49.39 201.18 49.65 

(0.8,1) 64.84 45.73 202.86 44.72 76.98 198.15 77.80 

(0.9,1) 124.59 94.35 202.86 94.41 139.78 198.15 139.21 

(1.2,1) 57.68 41.76 194.24 42.82 67.55 202.40 67.02 

(1.5, 1) 19.19 12.97 194.24 13.28 23.28 202.40 23.19 

(1.8,1) 10.58 6.86 183.35 7.14 12.85 215.75 12.61 

(2,1) 7.62 4.93 183.35 5.18 9.44 215.75 9.25 

(2.5,1) 4.32 2.72 183.35 2.84 5.50 215.75 5.26 

(3,1) 2.94 1.81 183.35 1.79 3.74 215.75 3.58 

(4,1) 1.51 0.86 164.73 0.93 2.04 244.61 1.89 

(5,1) 0.97 0.51 164.73 0.55 1.26 244.61 1.22 

(10,1) 0.23 0.11 159.99 0.11 0.32 245.02 0.30 

(0.1,0.1) 9.54 10.65 194.24 10.76 7.87 202.40 7.84 

(0.2,0.2) 11.51 12.89 194.24 13.03 9.38 202.40 9.36 

(0.5,0.5) 24.21 26.61 199.96 26.44 20.36 201.18 19.99 

(0.8,0.8) 74.69 80.55 202.86 80.30 63.99 198.15 64.70 

(1.5,1.5) 17.12 18.78 183.35 19.35 15.52 215.75 14.41 

(2,2) 6.81 7.50 183.35 7.76 5.67 215.75 5.49 

(5,5) 0.71 0.87 164.73 0.90 0.48 244.61 0.45 

(10,10) 0.16 0.21 164.73 0.22 0.08 244.61 0.07 

(0.2,0.2) 14.56 8.77 194.24 8.98 20.48 202.40 20.47 

(0.8,0.8) 5.02 2.74 183.35 2.87 7.57 215.75 7.44 

(0.8,1.5) 0.69 0.35 164.73 0.37 1.12 244.61 1.04 

(0.5,2) 0.18 0.08 164.73 0.09 0.29 244.61 0.25 
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5.4  Illustrative example 

A simulation example is constructed to illustrate the use of the proposed MEWMA chart 

with raw GBE data from the model. The first 15 TBE data are generated from a GBE 

distribution with scale parameters 1 2 1    and the dependence parameter 0.5  , and 

the next 15points with scale parameters 1 1  , 2 0.5  and the dependence parameter 

0.5  .  

 Under 0ARL  =370.4, the design parameters of the MEWMA chart on the GBE data are 

chosen following the design procedures above ( 0.02, 6.93r h  ) and the control chart is 

shown in the Figure 5-6. The MEWMA chart on the GBE data becomes out of control at 

the 21
st
 point which is the 6

th
 point after the process has shifted. We could see that the 

performance of the proposed MEWMA chart is pretty good even though the optimal 1ARL   

values from our optimal design table are not so small (25.41 for optimal initial state 

1ARL ). It is due to the fact that our optimal designs are based on the assumption that the 

process becomes out of control from the very beginning. The performances of the 

proposed charts will be much better if it is allowed to warm up for a few points. 

  

Figure 5-6 A MEWMA TBE chart based on raw GBE data 
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Table 5-7 An example of setting-up MEWMA chart with raw GBE data 

 

Failure NO 
tX  

t
Z  

2

i
E

 

0 
  

0.00 0.00 0.00 

1 2.05 3.40 0.02 0.05 0.23 

2 0.56 2.37 0.01 0.07 0.68 

3 1.90 0.65 0.03 0.07 0.44 

4 1.99 1.60 0.05 0.08 0.58 

5 1.91 3.25 0.07 0.12 1.42 

6 2.00 0.97 0.08 0.12 1.40 

7 2.66 0.97 0.12 0.11 1.67 

8 0.94 2.18 0.11 0.14 1.99 

9 0.21 1.14 0.09 0.14 1.85 

10 0.66 1.18 0.09 0.14 1.84 

11 0.94 0.63 0.08 0.13 1.59 

12 0.19 0.20 0.07 0.11 1.15 

13 0.76 1.15 0.06 0.11 1.16 

14 0.15 0.09 0.04 0.09 0.78 

15 2.07 2.02 0.06 0.11 1.13 

16 0.22 0.80 0.04 0.10 1.02 

17 0.19 2.72 0.03 0.13 2.09 

18 0.17 1.86 0.01 0.15 2.95 

19 0.23 0.27 0.00 0.13 2.59 

20 2.10 3.21 0.02 0.17 3.87 

21 0.80 5.31 0.01 0.25 8.98 

22 0.13 0.30 0.00 0.24 8.32 

23 0.14 0.79 -0.02 0.23 8.42 

24 1.37 2.68 -0.01 0.26 10.20 

25 0.47 1.33 -0.02 0.26 10.83 

26 0.22 0.18 -0.04 0.24 9.93 

27 0.16 0.52 -0.06 0.22 9.70 

28 0.09 0.38 -0.07 0.20 9.39 

29 0.07 0.06 -0.09 0.18 8.74 

30 0.29 1.06 -0.10 0.18 9.30 

31 0.65 0.86 -0.11 0.17 9.16 

32 0.15 0.08 -0.12 0.15 8.60 

33 2.57 2.00 -0.09 0.17 7.75 

34 0.12 0.20 -0.10 0.15 7.40 

35 0.33 0.14 -0.12 0.13 6.84 

36 0.40 0.78 -0.13 0.12 6.99 

37 0.02 0.41 -0.14 0.11 7.19 

38 0.78 1.37 -0.14 0.11 7.58 

39 1.81 2.46 -0.12 0.14 8.02 

40 0.73 2.44 -0.13 0.16 9.91 
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5.5 Conclusions 

This chapter explores the optimal design issue of the MEWMA chart based on raw GBE 

data for monitoring mean shift(s). An optimal design procedure was provided to guide the 

real applications. To facilitate the potential users, we give the optimal design schemes in 

Appendix B for the MEWMA charts with   = 0.1, 0.3, 0.5, 0.8, 1, and ARL0 = 100, 200, 

370.4, 500. A rough estimate of the optimal schemes for scenarios not included in these 

tables could be obtained from extrapolation.  

Robustness of the chart to the estimation errors of the dependence parameter   was 

examined. We found that the effect of estimation errors was small when we were 

interested in detecting moderately small shifts or large downward shifts. On the other hand, 

when we are interested in large upward shifts, we should look to the estimation accuracy 

since the 0ARL  tends to be sensitive to the estimation errors. 
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CHAPTER 6 DESIGN OF THE MEWMA CHART FOR 

TRANSFORMED GUMBEL’S BIVARIATE EXPONENTIAL 

DATA 

 

 In this chapter, an optimal design procedure is provided for the MEWMA chart 

based on the transformed GBE data proposed in Chapter 4. The optimal design is based on 

the ARL statistic. The robustness of the optimal design is conducted to examine the effect 

of estimation errors of the correlation parameter δ. The remainder of the chapter is as 

follows. Section 6-1 briefly introduces the GBE distribution, the data transformation 

technique and the procedure to set up the MEWMA chart. Section 6-2 investigates 

properties of the 0ARL  and 1ARL  via simulation, after which the optimal design procedure 

is proposed. In section 6-3, a simulation study is conducted to examine the robustness of 

the chart to the estimation errors of the dependent parameter. A numerical example is 

shown in Section 6-4 to illustrate the optimal design procedure of the chart. Finally, we 

give the conclusion in Section 6-5. 
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6.1 Preliminaries 

In this section, we summarize the procedure to construct a MEWMA chart based on 

transformed data according to Xie et al. (2002).  

6.1.1 The GBE distribution 

In a two-component system, let X1 and X2 denote the time between failures of component 1 

and component 2, respectively. We assume the joint distribution of component lifetimes 

(X1, X2) can be described by the Gumbel’s bivariate exponential distribution with the 

underlying survival function: 

   
      1/ 1/

1 2 1 1 2 2, exp / /F x x x x
 

    
 

,                             (6-1) 

where θ1, θ2 > 0 are scale parameters and 0 1   is the dependence parameter which is 

usually determined by the environmental stress level. 

 

6.1.2 Transform the GBE data into approximately normal 

The double square root transformation (SQRT) method has been recommended in 

literature for transforming exponential distributed data to approximately normal (e.g. Liu 

et al. 2007). We apply the double SQRT method to the marginal distributions of X1 and X2. 

Let Y1 and Y2 denote the variables after transformation, then 

        
0.25

1 1Y X
 and

0.25

2 2Y X
.                                              (6-2) 

The joint survival function of (Y1, Y2) becomes 
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     
1/ 1/

4 4
1 2 1 1 2 2, exp / /G y y y y


 

 
   
     

  

                       (6-3) 

This is a bivariate Weibull extension to the GBE model proposed by Hougaard [24]. The 

marginal distributions of Y1 and Y2 follow the Weibull distribution. Let 
Y  and 

Y denote 

the mean vector and the variance-covariance matrix of (Y1, Y2). According to Hougaard 

(1986), the covariance of Y1 and Y2 is  

   

   
   

 
 

1 2

2

2 0.25 0.25

1 2 1 2 1 2

0.25 1 1.5
cov , 1.25

0.5 1
Y YY Y E YY


   



   
    

                (6-4) 

Goodness of the normal approximation was examined in Chapter 4. 

 

6.1.3 Setting up a MEWMA chart with transformed GBE data 

The MEWMA chart was originally introduced by Lowry et al. (1992) for detecting the 

mean shift or shifts of the multivariate normal distribution. According to Chapter 4, we 

first transform the GBE data to be approximately normal, and then construct a MEWMA 

chart based on the transformed data. The procedure to set up such a MEWMA chart is as 

follows. 

At time t, t = 1, 2, … , observe Xt = (X1t, X2t) and transform X1t and X2t with the double 

SQRT method to obtain Yt = (Y1t, Y2t)
T. 

Calculate the following recursion statistics: 

         
   

0 11t t ir r    Yz Y μ z
                                (6-5) 
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where 0 1r   is the smoothing factor and
0Y  is the in-control mean vector of the 

transformed data. The starting value of z0 equals 0. 

Set up the MEWMA chart based on the following statistics: 

                
0

2 12 T
t t t

r
E

r





Yz z
,                               (6-6) 

where 
0Y is the in-control variance-covariance matrix of the transformed data. 

The process is considered to be out-of-control when 
2

t
E  exceeds the decision interval h. 

 

6.1.4 ARL 

For the MEWMA chart based on transformed GBE data, in section 4.2 we had shown that 

given the constant dependence parameter δ, the ARL value depends only on the design 

parameters (r and h), and the mean shift ratio 1 1 2 2    （ / , / ）, where 1  and 2  are the 

scale parameters of the in-control process and 1   and 2   are the scale parameters of the 

out-of-control process.  

We calculate the zero-state ARL values using simulation. 10,000 trials of the 

subroutine for run length are run to obtain each ARL value and the average of these run 

length values are calculated to estimate the ARL. According to Section 4.2, the design 

parameter combinations obtained by calculating the ARL value of any in-control 

processes would be the same. 
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6.2  Optimal design of the MEWMA charts 

In this section, we use simulation to compute the 0ARL  of the MEWMA chart based on 

transformed GBE data for some typical combinations of ( , r). Given a pre-specified 

0ARL , the optimal combinations of (r, h) that results in the shortest 1ARL  can then be 

identified. The optimal statistical design procedure is suggested to guide future practice. 

 

6.2.1 In-control ARL 

Again, the dependence parameter   is assumed to be constant. The 0ARL  only depends 

on the two design parameters r and h. Without loss of generality, we evaluate the 0ARL  of 

the TransMEWMA chart for GBE(1,1,  ) against the combination of r and h with the 

following   values:   = 0.1, 0.3, 0.5, 0.8, 1. The following r values are chosen in this 

study: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, 1. Under each combination ( , r), the 0ARL  for 

each h value is obtained through simulation. The ARL0 plot curves are depicted in Figure 

6-1 to Figure 6-5. 
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Figure 6-1 The 0ARL  curve for the TransMEWMA chart when δ = 0.1 

 

Figure 6-2 The 0ARL  curve for the TransMEWMA  chart when δ = 0.3 
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Figure 6-3 The 0ARL  curve for the TransMEWMA  chart when δ = 0.5 

 

 

 
Figure 6-4 The 0ARL  curve for the TransMEWMA  chart when δ = 0.8 
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Figure 6-5 The 0ARL  curve for the TransMEWMA  chart when δ = 1 

   

Some observations are discovered after carefully examining these figures: 

(1) There are some fluctuations in these curves. This is because for each combination 

of r and h, the 0ARL   is obtained through simulation. 

(2) When δ is large, say δ > 0.5, the 0ARL  is first increasing and then decreasing in r, 

as can be observed from Figure 6-4 and Figure 6-5.  

(3) When r is small, say r ≤ 0.05, the 0ARL  is fairly insensitive to the dependence 

parameter δ. Nevertheless, the effect of δ becomes more and more significant when 

r gets larger. 

(4) Given a desired 0ARL  value, the h value under the selected combination of r and δ 

can be obtained directly from the 0ARL curves. The h values for other 
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combinations of r and δ can be achieved by interpolation.  

Table 6-1 provides some numerical values of combinations of r and h according to 

different 0ARL   levels. These combinations of r and h are used in the following optimal 

statistical design study. 

 

Table 6-1 The design parameter combinations for TransMEWMA chart 

ARL0=100 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 2.47 3.78 5.72 7.11 9.15 10.12 10.92 11.11 

0.3   h 2.47 3.78 5.72 7.08 8.85 9.56 10.03 10.12 

0.5   h 2.49 3.79 5.69 6.74 8.68 9.15 9.38 9.38 

0.8   h 2.49 3.8 5.73 7.08 8.53 8.84 8.93 8.93 

1   h 2.49 3.8 5.68 6.99 8.39 8.59 8.46 8.41 

ARL0=200 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 

h 

h 

h 

h 

3.87 5.41 7.41 8.84 11.08 12.41 13.66 13.96 

0.3   3.88 5.41 7.39 8.72 10.57 11.38 12.12 12.26 

0.5   3.9 5.42 7.41 8.7 10.24 10.71 10.94 10.99 

0.8   3.89 5.43 7.41 8.65 9.96 10.19 10.18 10.17 

1   3.89 5.43 7.37 8.61 9.76 9.71 9.49 9.39 

ARL0=370 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 5.34 6.94 8.98 10.43 12.95 14.68 16.48 16.87 

0.3   h 5.34 6.94 8.92 10.26 12.17 13.17 14.2 14.43 

0.5   h 5.35 6.94 8.91 10.13 11.61 12.09 12.45 12.52 

0.8   h 5.36 6.94 8.89 10.09 11.23 11.38 11.28 11.23 

1   h 5.36 6.95 8.84 10.08 11.23 11.36 11.28 11.22 

ARL0=500 r 0.01 0.02 0.05 0.1 0.3 0.5 0.8 1 

0.1   h 6.11 7.69 9.73 11.19 13.96 15.92 17.89 18.37 

0.3   h 6.09 7.71 9.67 10.98 12.94 14.08 15.29 15.55 

0.5   h 6.11 7.71 9.67 10.87 12.29 12.82 13.23 13.31 

0.8   h 6.12 7.71 9.61 10.74 11.86 11.94 11.79 11.77 

1   h 6.11 7.69 9.57 10.7 11.54 11.35 10.81 10.66 
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6.2.2 Out-of-control ARL 

Under the constant dependence parameter assumption, the 
1ARL  of the 

TransMEWMA  chart 

is influenced by the value of mean shift vector 
1 1 2 2( / , / )     as well as the design 

parameters r and h. The optimal statistical design scheme should have the shortest 
1ARL  

at certain in-control ARL value. After we specify an 0ARL , possible combinations of the 

design parameters (r, h) can be read from Figure 6-1 to Figure 6-5 or Table 6-1. The 

optimal design combination is the one yields the shortest 1ARL  which is denoted by 

ARLopt.  

The listed combination of r and h in Table 6-1 were used to calculate the out-of-

control ARL values. Different shift vectors lead to different optimal settings of the design 

parameters. Table 6-2 to 6-4 show the optimal design schemes for the MEWMA charts on 

transformed GBE data with δ = 0.5 and ARL0 = 100, 200, 370.4, 500. (The optimal design 

schemes for δ =0.1, 0.3, 0.8, 1 with ARL0 = 100, 200, 370.4, 500 are listed in Appendix C.) 

In these tables, we consider the cases of the downward-downward shift (D-D shift), the 

upward-upward shift (U-U shift) and the downward-upward shifts (D-U shift). Then, to 

further examine the effects of δ on the optimal design, we fix ARL0 = 200 and the optimal 

design schemes under δ =0.1, 0.3, 0.5, 0.8, 1, as are given in Table 6-5. Only the values of 

smoothing factor r and the optimal 1ARL values are listed in the tables since we could 

easily get the corresponding UCL h values according to Table 6-1. 
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 Detection of the D-D Shift  

A D-D shift denotes the situation that both X1 and X2 are shifting downward 

 1 1 2 2,/ 1 / 1      . The D-D shift is of interests when we are facing negative effect 

events which would cause social and economic loss and the decreasing TBE indicates the 

deterioration. Some of these negative events are of high severity and closely monitoring 

may create great benefit in human life. Such examples include the occurrence of a traffic 

accident, the collapse of a computer network, and the recrudescing of a disease. 

 Table 6-2 shows the optimal design schemes of TransMEWMA  chart under selected 

D-D shift levels. Some interesting conclusions can be made from Table 6-2: 

1) The optimal r value ranges from 0.01 to 0.3. These r values are comparatively 

small indicating that the size of the D-D shift of the transformed data is not so 

large, i.e. the effect of D-D shift has been reduced after the double SQRT 

transformation.  

2) The optimal r values are rather stable for different 0ARL   specifications especially 

when the shift level is large. Hence, it is reasonable to choose a suitable r value 

using Table 6-2 even if the desired 0ARL and mean shift  1 1 2 2,/ /      is not 

included. 

3) To detect a small shift, i.e. /i i   close to 1, it is preferable to use a small value of r. 

For example, the optimal r for detecting  1 1 2 2,/ /     = (0.8, 1) is 0.01, 0.02, or 

0.05 no matter what the dependence parameter   is. Nevertheless, a large r is 

more effective in detecting large shifts. This is similar to the univariate cases as the 



Chapter 6 Design of the MEWMA Chart for Transformed Gumbel’s Bivariate Exponential 

Data 

 

115 

 

EWMA chart with a small smoothing factor has long been considered highly 

effective for detecting small sustained shifts.  

4) Comparing the single shift and double shifts situation, we can see that the optimal 

ARL values for detecting double shifts is larger than the one for detecting the 

single shift with the same shift value. It is due to the confounding effect of the 

mean shift (shifts) and the positive correlation between variables.   

 

Table 6-2 The optimal design schemes of TransMEWMA chart for D-D shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(0.1,1) R 0.3 0.3 0.3 0.3 

 ARLopt
 0.79 1.12 1.43 1.58 

(0.2,1) R 0.3 0.3 0.3 0.3 

 ARLopt
 2.09 2.77 3.45 3.81 

(0.3,1) R 0.1 0.1 0.1 0.1 

 ARLopt
 4.12 5.18 6.00 6.44 

(0.4,1) R 0.1 0.1 0.1 0.1 

 ARLopt
 6.10 7.90 9.17 9.94 

(0.5,1) R 0.1 0.1 0.1 0.05 

 ARLopt
 9.29 12.29 14.56 16.08 

(0.6, 1) R 0.1 0.05 0.05 0.05 

 ARLopt
 14.64 19.19 23.02 25.01 

(0.7,1) R 0.05 0.05 0.02 0.02 

 ARLopt
 23.51 32.13 39.41 43.13 

(0.8,1) R 0.02 0.02 0.02 0.02 

 ARLopt
 39.72 55.89 71.04 80.48 

(0.9,1) R 0.01 0.01 0.01 0.01 

 ARLopt
 70.99 114.27 164.18 193.90 

(0.1,0.1) R 0.3 0.3 0.3 0.3 

 ARLopt
 2.28 2.99 3.75 4.17 

(0.2,0.2) R 0.1 0.1 0.1 0.1 

 ARLopt
 4.46 5.65 6.54 6.97 

(0.5,0.5) R 0.05 0.05 0.05 0.05 

 ARLopt
 15.47 19.75 23.68 25.68 

(0.8,0.8) R 0.01 0.01 0.01 0.01 

 ARLopt
 52.88 77.37 101.41 114.67 
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 Detection of the U-U Shift  

A U-U shift denotes the situation that both X1 and X2 are shifting upward 

1 1 2 2( / 1, / 1)      . The U-U shift is interested when the events occurring have positive 

effects in human life and the increasing TBE indicates the deterioration. The example 

events include the failure of an engine, the collapse of a computer, and the breakout of an 

infection. 

Table 6-3 shows the optimal design schemes under selected U-U shift levels. Some 

interesting conclusions can be made from Table 6-3: 

1) The optimal r value ranges from 0.1 to 0.8. These r values are located throughout 

the range of 0 to 1 indicating that the effect of U-U shift has not been reduced after 

the double SQRT transformation. 

2) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different 0ARL  specifications.  

3) A small value of r is preferred for detecting a small shift and vice versa. 

4) Same to the case of D-D shifts, the confounding effect caused the optimal ARL 

values of double shifts larger than the ones of single shift with the same shift value. 
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Table 6-3 The optimal design schemes of TransMEWMA chart for U-U shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(1.2,1) R 0.1 0.02 0.02 0.02 

 ARLopt
 43.23 63.82 83.82 94.56 

(1.5,1) R 0.1 0.05 0.05 0.05 

 ARLopt
 16.04 22.01 26.53 28.87 

(1.8,1) R 0.1 0.1 0.1 0.1 

 ARLopt
 9.00 11.72 13.73 14.82 

(2,1) R 0.1 0.1 0.1 0.1 

 ARLopt
 6.95 8.72 10.30 11.00 

(2.5,1) R 0.3 0.3 0.3 0.3 

 ARLopt
 3.77 4.78 5.74 6.27 

(3, 1) R 0.3 0.3 0.3 0.3 

 ARLopt
 2.43 2.93 3.60 3.83 

(4,1) R 0.5 0.5 0.5 0.3 

 ARLopt
 1.17 1.53 1.87 1.97 

(5,1) R 0.5 0.5 0.5 0.5 

 ARLopt
 0.66 0.88 1.07 1.22 

(10,1) R 0.5 0.5 0.5 0.5 

 ARLopt
 0.10 0.14 0.19 0.21 

(1.5,1.5) R 0.1 0.05 0.05 0.05 

 ARLopt
 20.17 29.59 36.80 40.04 

(2,2) R 0.1 0.1 0.1 0.1 

 ARLopt
 9.09 12.05 14.39 15.51 

(5,5) R 0.5 0.5 0.5 0.5 

 ARLopt
 1.03 1.37 1.69 1.87 

(10,10) R 0.8 0.8 0.5 0.5 

 ARLopt
 0.23 0.30 0.40 0.44 

 

 Detection of the D-U Shift  

A D-U shift denotes the situation that one of X1 and X2 is shifting upward and the other 

one is shifting downward 1 1 2 2( / 1, / 1)      . The D-U shift is interested when one of 

the event occurring has positive effect and the other one has negative effect in human life. 
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 Table 6-4 shows the optimal design schemes under selected D-U shift levels. Some 

interesting conclusions can be made from Table 6-4: 

1) The optimal r value ranges from 0.1 to 0.5. The range of r values indicates that the 

effect of downside shift and upside shift after the double SQRT transformation has 

been confounded. 

2) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different 0ARL   specifications.  

3) A small value of r is preferred for detecting a small shift and vice versa.  

4) Comparing the double shifts values in Table 6-2 to Table 6-4, we can see that the 

MEWMA chart is most effective for detecting D-U shifts. For example, the 

optimal ARL values for mean shifts (0.5, 0.5), (0.5, 1), (0.5, 2), (2, 1), (2, 2) are 

19.75, 12.29, 3.02, 8.72, and 12.05. The MEWMA chart has the smallest optimal 

ARL value for mean shifts (0.5, 2). The optimal ARL value decreases when 1 1   

departs from 2 2  due to the confounding effect of the mean shift direction and 

the positive correlation between variables. 

 

Table 6-4 The optimal design schemes of TransMEWMA chart for D-U shifts when δ = 0.5 

 
1 1 2 2

,/ /    
 

ARL0
 100 200 370 500 

(0.8,1.5) r 0.1 0.1 0.3 0.1 

 ARLopt
 9.88 12.96 15.48 17.06 

(0.5,2) r 0.3 0.3 0.5 0.3 

 ARLopt
 2.30 3.02 3.62 3.98 

(0.2,5) r 0.5 0.5 0.5 0.5 

 ARLopt
 0.05 0.08 0.12 0.14 

(0.1,10) r 0.5 0.5 0.5 0.5 

 ARLopt
 0.00 0.00 0.00 0.01 
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 Optimal Design under Different δ Value 

Table 6-5 shows the optimal design schemes under δ=0.1, 0.3, 0.5, 0.8, 1 when ARL0 = 

200.  

Table 6-5 The optimal design schemes of TransMEWMA chart when ARL0 = 200 

 
1 1 2 2

,/ /    
 

Δ 0.1 0.3 0.5 0.8 1 

(0.2,1) r 0.3 0.3 0.3 0.1 0.1 

 ARLopt
 0.00 0.72 2.77 5.63 6.12 

(0.4,1) r 0.5 0.3 0.1 0.1 0.1 

 ARLopt
 0.01 3.42 7.90 13.26 14.40 

(0.6, 1) r 0.3 0.1 0.05 0.05 0.05 

 ARLopt
 0.79 9.60 19.19 29.89 32.28 

(0.8,1) r 0.1 0.05 0.02 0.01 0.01 

 ARLopt
 6.43 32.92 55.89 76.27 80.21 

(1.5,1) r 0.3 0.1 0.05 0.05 0.05 

 ARLopt
 1.29 11.38 22.01 31.80 34.92 

(2,1) r 0.3 0.3 0.1 0.1 0.1 

 ARLopt
 0.08 3.97 8.72 13.67 14.57 

(3, 1) r 0.5 0.3 0.3 0.3 0.3 

 ARLopt
 0.00 1.04 2.93 5.17 5.51 

(5,1) r 0.1 0.5 0.5 0.5 0.5 

 ARLopt
 0.00 0.15 0.88 1.80 1.83 

(0.2,0.2) r 0.1 0.1 0.1 0.1 0.3 

 ARLopt
 6.57 6.24 5.65 4.46 2.78 

(0.8,0.8) r 0.01 0.01 0.01 0.01 0.02 

 ARLopt
 82.33 80.70 77.37 66.93 57.05 

(2,2) r 0.1 0.1 0.1 0.3 0.3 

 ARLopt
 13.88 12.96 12.05 9.82 7.43 

(5,5) r 0.3 0.5 0.5 0.5 0.8 

 ARLopt
 2.15 1.76 1.37 0.84 0.48 

(0.2, 5) r ≥0.05 0.5 0.5 0.5 0.5 

 ARLopt
 0.00 0.00 0.08 0.68 1.17 

(0.8,1.5) r 0.3 0.1 0.1 0.1 0.05 

 ARLopt
 0.23 6.03 12.96 24.10 30.39 

 

We can find the following observations from Table 6-5: 

1) The optimal design parameters r and h are rather stable for a range of mean vector 

shifts according to different correlation parameter δ.  
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2) A small value of r is preferred for detecting a small shift and vice versa.  

3) Another interesting feature observed from Table 6-5 is that the optimal design 

parameters r and h are also stable for a range of δ values. Thus, it is also 

reasonable to find an r value with good performance using Table 6-2 to Table 6-5 

even if the desired δ is not listed. 

6.2.3 Procedure for optimal design of the MEWMA chart 

Based on the aforementioned results, we recommend the following procedure for the 

optimal design of the MEWMA chart based on the transformed GBE TBE data: 

Step 1: Specify the desired 0ARL   value, the constant dependence parameter δ and the 

out-of control mean shift vector  1 1 2 2,/ /      at the beginning. 

Step 2: Find the approximate value of the smoothing factor r according to the optimal 

design schemes in Tables 6-2 to 6-5.  

Step 3: Locate the corresponding h value according to the 0ARL  contour plots in 

Figure 6-1 to Figure 6-5. 

Step 4: Use simulation to achieve the more accurate 0ARL  and 1ARL  to evaluate the 

performance of the designed TransMEWMA  chart. 

6.3 Robustness study 

In Section 6.2, we assume the dependence parameter  is known and remains constant 

through the whole monitoring process. In practice, this dependence parameter   is subject 

to estimation errors and moreover faces small random drifts.  In order to account for the 
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estimation deviations and the possible natural instability, we need to examine the 

sensitivity of the 
TransMEWMA  chart to the departure of  from the estimated value. 

For each combination
1 1 2 2( / , / )      in the first column of Table 6-6, we use the 

estimated est = 0.5 to derive the ‘estimated’ optimal settings given the pre-specified ARL0 

= 200. Assume that this estimated optimal setting is used but the true values of δ is 
true = 

0.3, 0.8, respectively. The actual values of ARL0 and ARL1, denoted as ( )

0

trueARL  and 

( )

1

trueARL , are then computed via simulation. For comparison purpose, the optimal settings  

( )true

optARL derived from the true values of δ, given the pre-specified ARL0 = 200, are also 

given in the table.  

 From Table 6-6, we observe the following phenomenon: 

1) For a range of mean shift values, the 1ARL  is not sensitive to the dependent 

parameter . Hence, it is reasonable for us to use the optimal design results in 

Section 6.2 as guidelines in real applications. 

2) When the shift is not too large, say 0.3 ≤ /i i   ≤ 2, i =1, 2, (
 true

0ARL ,
 true

1ARL ) is 

quite close to (200,
 true

optARL ). This means that the effect of estimation error tends to 

be quite small when we are interested in shifts with small size.  

3) When /i i   ≫ 1 and /i i   ≪1, i =1, 2, 
 true

0ARL  is inclined to be far removed 

from 200. This result prompts us to give more attention to the estimation accuracy 

of δ when we would like to detect extremely large shifts. 
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Table 6-6 Estimated 1ARL s of TransMEWMA chart based on est  = 0.5 and true  = 0.3, 0.8 

 
1 1 2 2

,/ /    
 

 
opt

est
ARL

 

true


 = 0.3 true


= 0.8 
 true

1ARL
 

 true

0ARL
 

 true

optARL
 

 true

1ARL
 

 true

0ARL
 

 true

optARL
 

(0.1,1) 0.40 0.10 173.94 0.09 2.89 226.37 2.76 

(0.2,1) 1.12 0.67 173.94 0.72 6.60 226.37 5.61 

(0.3,1) 2.77 2.42 198.23 1.71 8.67 205.92 8.65 

(0.5,1) 7.90 5.85 198.23 5.87 20.79 205.92 19.54 

(0.7,1) 19.19 17.03 204.75 17.01 48.65 203.25 46.44 

(0.9,1) 55.89 79.47 206.08 76.70 139.82 199.12 139.12 

(1.2,1) 197.73 39.31 201.59 39.09 85.72 200.04 85.02 

(1.5,1) 63.82 12.30 204.75 11.38 32.76 203.25 32.31 

(1.8,1) 22.01 5.97 198.23 5.96 18.33 205.92 18.02 

(2,1) 11.72 4.46 198.23 3.97 13.63 205.92 13.63 

(3, 1) 4.78 0.99 173.94 1.04 5.42 226.37 5.20 

(5,1) 0.88 0.14 159.09 0.15 1.96 261.17 1.79 

(2,2) 12.05 12.95 198.23 12.96 10.14 205.92 9.82 

(5,5) 1.37 1.57 159.09 1.76 0.92 261.17 0.84 

(0.2,0.2) 5.65 6.19 198.23 6.24 4.46 205.92 4.46 

(0.8,0.8) 77.37 80.25 206.08 80.70 67.30 199.12 66.93 

(0.8,1.5) 12.96 6.06 198.23 6.03 24.94 205.92 24.10 

(0.5,2) 3.02 0.73 173.94 0.76 8.08 226.37 7.33 

 

6.4 Illustrative example 

We assume that, in a two-component system, the time between failures of each component 

follows exponential distribution and the joint distribution of the time between failures for 

the two components follows GBE model. A simulation example is constructed to illustrate 

the optimal design of the MEWMA chart based on transformed data and use it to detect 

the mean shifts of the time between failures. The generated data are listed in Table 6-7. 

The first 15 pairs of TBE data follow a GBE (1, 1, 0.5), and the next 15 pairs follow a 

GBE (1, 0.5, 0.5).  
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Table 6-7 An example of setting-up MEWMA chart with transformed GBE data 

No xi yi zi 
2

iE
 

     
0 0 0 

1 2.05 3.40 1.20 1.36 0.03 0.05 0.60 

2 0.56 2.37 0.87 1.24 0.02 0.07 2.14 

3 1.90 0.65 1.17 0.90 0.05 0.07 1.27 

4 1.99 1.60 1.19 1.12 0.07 0.08 2.03 

5 1.91 3.25 1.18 1.34 0.09 0.12 4.03 

6 2.00 0.97 1.19 0.99 0.11 0.11 4.29 

7 2.66 0.97 1.28 0.99 0.14 0.11 5.52 

8 0.94 2.18 0.98 1.22 0.13 0.13 5.84 

9 0.21 1.14 0.68 1.03 0.09 0.13 4.98 

10 0.66 1.18 0.90 1.04 0.08 0.13 5.06 

11 0.94 0.63 0.98 0.89 0.08 0.12 3.96 

12 0.19 0.20 0.66 0.67 0.05 0.08 1.94 

13 0.76 1.15 0.93 1.04 0.05 0.09 2.24 

14 0.15 0.09 0.62 0.55 0.01 0.04 0.62 

15 2.07 2.02 1.20 1.19 0.04 0.07 1.27 

16 0.22 0.80 0.68 0.95 0.02 0.06 1.63 

17 0.19 2.72 0.66 1.28 -0.01 0.09 6.05 

18 0.17 1.86 0.64 1.17 -0.04 0.11 11.19 

19 0.23 0.27 0.69 0.72 -0.05 0.08 9.11 

20 2.10 3.21 1.20 1.34 -0.02 0.12 9.87 

21 0.80 5.31 0.95 1.52 -0.01 0.17 17.89 

22 0.13 0.30 0.60 0.74 -0.04 0.13 15.89 

23 0.14 0.79 0.61 0.94 -0.07 0.12 18.28 

24 1.37 2.68 1.08 1.28 -0.04 0.15 19.11 

25 0.47 1.33 0.83 1.07 -0.05 0.15 20.14 

26 0.22 0.18 0.68 0.65 -0.06 0.11 15.16 

27 0.16 0.52 0.63 0.85 -0.08 0.09 15.74 

28 0.09 0.38 0.55 0.79 -0.11 0.07 16.95 

29 0.07 0.06 0.51 0.49 -0.14 0.02 14.47 

30 0.29 1.06 0.73 1.01 -0.14 0.03 16.35 

 

 Given a pre-specified 0 370.4ARL  , the optimal design parameters can be 

obtained from Table 6-2, which are given by (r, h) = (0.1, 10.13). A MEWMA chart based 
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on the transformed data can be constructed by following the set-up procedure described in 

Section 6.2. We can see from Figure 6-6 that the MEWMA chart signals the out of control 

situation at the 18
th

 point which is the third point after the underlying process has been 

shifted. Thus, the proposed MEWMA chart is quite effective according to the simulation 

example. 

 

Figure 6-6 A MEWMA TBE chart based on transformed GBE data 

 

6.5 Conclusions 

In this chapter we investigated the optimal design problem of the MEWMA chart based on 

transformed GBE data for monitoring mean shift(s). The optimal design procedure was 
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provided and the optimal design schemes are given in Appendix C to guide the future 

study.  A rough estimate of the optimal schemes for scenarios not included in these tables 

could be obtained from extrapolation.  Robustness study of the 
TransMEWMA  charts to the 

estimation errors of the dependence parameter   showed that the effect of estimation 

errors was small when we were interested in detecting moderately small shifts. However, 

we should pay attention to the estimation accuracy if the circumstances of large upward 

shifts or extremely large downward shifts of the dependence parameter existed. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 

The results and contributions of the research works included in this dissertation are 

summarized in this chapter. The limitations of current works are discussed and some 

future works are suggested. 

7.1. Summary 

TBE charts were shown to be highly effective in both industry system improvement and 

human management. The example areas of applications of the TBE charts include the 

manufacturing systems, the reliability and maintenance monitoring problem, the human 

health surveillance, the service improvement. Despite its effectiveness and generality of 

applications, the current TBE chart techniques are facing more and more challenges as the 

implementing circumstance become more complex and the needs for multivariate charting 

techniques become greater. This thesis expanded the application area of the TBE charts by 

developing an EWMA TBE control chart based on the more generalized Weibull 

distribution and proposing two MEWMA chart for the multivariate GBE distribution.  

Chapter 3 develops an EWMA chart for transformed Weibull-distributed TBE data. 

The Weibull distribution is a more reasonable assumption for lifetime data as it can 

describe not only the circumstances with a constant failure rate but also the ones with an 

increasing failure rate or a decreasing failure rate. The Box-Cox transformation method is 
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adopted to transform the Weibull-distributed data into approximately normal. Then an 

EWMA chart is constructed based on the transformed data. The statistical design of the 

proposed chart is using ARL criteria applying Markov chain calculation. It is proved that 

the in-control ARLs of the EWMA charts with transformed Weibull data only depend on 

the design parameters of the control charts and are irrelevant to the distribution parameters. 

The guidelines for optimal statistical design of the EWMA chart are given to promote the 

use of the chart in real applications.  

Charter 4 proposed two MEWMA control charts for the Gumbel’s bivariate 

exponential (GBE) distributed data, one based on the raw GBE data, the other based on 

the transformed data. Both charts are constructed for monitoring a mean vector shift (or 

shifts) under the assumption that the dependence between the two variables remains the 

same. For MEWMA on the transformed data, we first transform the bivariate exponential 

data into approximate bivariate normal data using the well-known double square root 

transformation, and then we apply the MEWMA chart to the transformed data. The ARL 

performance of the two MEWMA charts are compared with those of the paired individual 

t charts and the paired individual EWMA charts on both raw and transformed data.  The 

results showed that the proposed MEWMA charts generally outperform all the other 

charts under all the circumstances considered. This prompts us to explore the potential 

applications of multivariate TBE charts in the future.  

Chapter 5 and Chapter 6 study the optimal design for the MEWMA charts based on 

raw GBE data and on transformed GBE data, separately. The optimal design procedure 

was provided and the optimal design schemes were examined. Results showed that the 

optimal design parameters are quite constant for a range of mean shift or shifts. Thus a 
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rough estimate of the optimal schemes for scenarios not included in these tables could be 

obtained from extrapolation. Another general guideline is that a smaller smoothing factor r 

is more preferred for small shift or shifts levels and vice versa which is quite similar to the 

case of design of the EWMA chart for univariate distributed data. The robustness of the 

two control charts to the estimation errors of the dependence parameter was also examined.  

Robustness study of the RawMEWMA  and  TransMEWMA  charts to the estimation errors of 

the dependence parameter  showed that the effect of estimation errors is small when we 

are interested in detecting moderately small shifts. However, we should pay attention to 

the estimation accuracy if the circumstances of large upward shifts or extremely large 

downward shifts of the dependence parameter existed. 

Results from each chapter showed that the control charts proposed in this thesis did 

improve the effectiveness of the TBE charting technique and make it more practical for 

complex TBE data monitoring. However, this thesis also has its limitations which along with 

future research direction are discussed in the next section. 

 

7.2. Future works 

In Chapter 3, it was assumed that the shape parameter of the Weibull distribution is known. 

However, in practice, the shape parameter is subject to estimation error and random drifts. 

It would be interesting to examine the robustness of the EWMA chart to the estimation 

error of the shape parameter. Moreover, Chapter 3 mainly dealt with the statistical design 

of the EWMA charts. Another widely studied method for designing control charts is the 

economic approach. The pioneering work done in this area was due to Duncan (1956) and 
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Lorenzen and Vance (1986). In the recent years, considerable research has been devoted to 

the economic design for univariate TBE charts e.g. Zhang et al. (2008). it would be 

interesting to investigate the economic design of the proposed EWMA chart based on 

transformed Weibull data. 

   In Chapter 4, 5 and 6, it was assumed that the dependence parameter of the GBE 

distribution was known and remained constant through the whole monitoring process. It 

would be a challenging problem to develop charting techniques for monitoring both the 

dependence parameter and the mean vector. Another thing is that the ARL values that 

calculated are zero-state ARLs. Further studies might examine the performance of the 

proposed charts for stable-state ARLs. 

 Chapter 5 and Chapter 6 discussed about the statistical design of the proposed 

MEWMA charts based on raw and transformed GBE data. As we know, economic design 

is another important design approach of control charts. Although its complexity 

methodology and the lack of general accepted multivariate cost function limited its 

application in the multivariate control charting research area, people are still paying 

attention to this area. For example, Linderman and Love (2000) extended the economic 

design to the MEWMA chart under multivariate normal assumption. We may further 

investigate the performance of the proposed charts under economic consideration. The 

comparison of the economic design and the statistical design of the MEWMA charts may 

provide us some insight in designing a TBE chart for different purposes. The computation 

complexity of different methods could be compared. 
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Moreover, there were lots of other multivariate attribute or variable TBE models with 

important applications in literature. As mentioned before, multivariate TBE charts for 

monitoring several TBE quantities at the same time have been rarely studied. Although 

some authors have developed various non-parametric control charts for multivariate data, 

the performance of such charts are usually poor comparing to distribution-based control 

charts. To improve the effectiveness of the control charts and overcome the weakness of 

univariate TBE charts for correlated quantities, it would be beneficial to extend the 

univariate TBE charts for some common multivariate TBE data, e.g. the famous Marshall-

Olkin’s multivariate exponential distribution, the Freund’s multivariate exponential model 

and so on. 
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APPENDIX A: OPTIMAL DESIGN SCHEMES OF EWMA CHART 

WITH TRANSFORMED WEIBULL DATA  

 

 

Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.3 0.5 0.8 1 1 1 0.8 0.8 0.5 

L  1.469 2.144 2.343 2.42 2.467 2.458 2.452 2.452 2.452 2.458 2.458 2.467 

minARL  24.201 8.3741 4.789 3.6895 2.3728 1.7758 1.2409 1.0056 1 1 1 1 

0.2 

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 1 1 1 

L  1.469 1.88 2.144 2.343 2.42 2.454 2.467 2.458 2.452 2.452 2.452 2.452 

minARL  35.177 12.883 7.3937 5.6084 3.4969 2.5509 2.0767 1.6557 1.3069 1.0408 1.0007 1 

0.3 

  0.02 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 

L  1.469 1.88 2.144 2.144 2.343 2.42 2.454 2.467 2.467 2.458 2.458 2.452 

minARL  46.931 17.845 10.321 7.9623 4.8974 3.507 2.7345 2.269 2.0201 1.6619 1.4022 1.1344 

0.4 

  0.02 0.02 0.05 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.8 

L  1.469 1.469 1.88 2.144 2.343 2.343 2.42 2.454 2.454 2.467 2.467 2.458 

minARL  59.523 24.332 14.279 10.965 6.8501 4.817 3.7116 3.0289 2.5603 2.2381 2.0448 1.7898 

0.5 

  0.02 0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 

L  1.469 1.469 1.88 1.88 2.144 2.343 2.343 2.42 2.42 2.454 2.454 2.467 

minARL  72.161 32.586 19.621 15.201 9.422 6.7732 5.136 4.1703 3.478 2.9985 2.6337 2.3644 

0.6 

  0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.3 

L  1.469 1.469 1.469 1.88 1.88 2.144 2.144 2.343 2.343 2.42 2.42 2.42 

minARL  83.564 44.362 27.427 21.587 13.595 9.619 7.46 5.9573 4.9539 4.2632 3.6967 3.2895 

0.7 

  0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.2 0.2 0.2 

L  1.469 1.469 1.469 1.469 1.88 1.88 2.144 2.144 2.144 2.343 2.343 2.343 

minARL  92.46 60.799 39.769 31.625 20.454 14.719 11.338 9.1102 7.6485 6.5243 5.6271 4.9683 

0.8   0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.1 0.1 0.1 

Table A-1   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=100, 0 1   
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L  1.469 1.469 1.469 1.469 1.469 1.469 1.88 1.88 1.88 2.144 2.144 2.144 

minARL  98.084 80.623 60.753 50.354 33.785 25.009 19.485 15.81 13.312 11.324 9.8183 8.6799 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 

L  1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.88 

minARL  100.41 96.678 88.929 82.57 66.386 52.989 43.052 35.842 30.543 26.556 23.477 20.826 

1.2   0.02 0.05 0.05 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 

L  1.469 1.88 1.88 1.88 1.88 2.144 2.144 2.343 2.343 2.42 2.42 2.454 

minARL  92.35 77.724 61.31 52.072 35.619 25.72 19.37 15.152 12.095 9.9019 8.2404 6.9501 

1.5   0.05 0.05 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8 0.8 

L  1.88 1.88 1.88 2.144 2.343 2.42 2.467 2.467 2.458 2.458 2.458 2.458 

minARL  80.883 47.61 29.582 22.515 12.977 8.3911 5.8366 4.3297 3.3815 2.7216 2.2793 1.9706 

1.8   0.05 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8 1 

L  1.88 1.88 2.144 2.343 2.454 2.467 2.458 2.458 2.458 2.458 2.458 2.452 

minARL  69.524 32.985 18.6 13.642 7.3375 4.574 3.1905 2.3959 1.9332 1.6443 1.4547 1.3256 

2   0.05 0.1 0.2 0.2 0.5 0.8 0.8 0.8 0.8 0.8 1 1 

L  1.88 2.144 2.343 2.343 2.467 2.458 2.458 2.458 2.458 2.458 2.452 2.452 

minARL  63.33 27.372 14.852 10.715 5.5948 3.518 2.4589 1.9065 1.5885 1.3929 1.2654 1.1811 

2.5   0.05 0.1 0.3 0.4 0.8 0.8 0.8 0.8 1 1 1 1 

L  1.88 2.144 2.42 2.454 2.458 2.458 2.458 2.458 2.452 2.452 2.452 2.452 

minARL  51.856 19.241 9.8229 6.8926 3.5698 2.265 1.6938 1.4036 1.2406 1.1461 1.0901 1.0561 

3   0.05 0.2 0.4 0.5 0.8 0.8 0.8 1 1 1 1 1 

L  1.88 2.343 2.454 2.467 2.458 2.458 2.458 2.452 2.452 2.452 2.452 2.452 

minARL  44.266 15.058 7.3755 5.1077 2.6548 1.7796 1.4047 1.2181 1.1207 1.068 1.0387 1.0222 

3.5   0.05 0.2 0.5 0.5 0.8 0.8 1 1 1 1 1 1 

L  1.88 2.343 2.467 2.467 2.458 2.458 2.452 2.452 2.452 2.452 2.452 2.452 

minARL  38.978 12.429 5.9485 4.1311 2.1855 1.5353 1.2617 1.1323 1.0687 1.0361 1.0192 1.0102 

4   0.05 0.2 0.5 0.8 0.8 0.8 1 1 1 1 1 1 

L  1.88 2.343 2.467 2.458 2.458 2.458 2.452 2.452 2.452 2.452 2.452 2.452 

minARL  35.108 10.715 5.0291 3.518 1.9065 1.3929 1.1811 1.0868 1.0425 1.021 1.0105 1.0052 

5   0.05 0.3 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  1.88 2.42 2.467 2.458 2.458 2.452 2.452 2.452 2.452 2.452 2.452 2.452 

minARL  29.838 8.492 3.9562 2.7546 1.5969 1.2375 1.1 1.0435 1.0192 1.0086 1.0038 1.0017 

10   0.1 0.5 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.144 2.467 2.458 2.458 2.452 2.452 2.452 2.452 2.452 2.452 2.452 2.452 

minARL  19.113 4.7313 2.2483 1.6837 1.1835 1.0547 1.017 1.0053 1.0017 1.0005 1.0002 1.0001 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.3 0.4 0.5 0.8 1 1 1 1 0.8 

L  2.033 2.607 2.75 2.793 2.801 2.792 2.732 2.713 2.713 2.713 2.713 2.732 

minARL  36.291 11.127 6.1167 4.693 2.8951 2.1479 1.7768 1.2924 1.0092 1 1 1 

0.2 

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 1 

L  2.033 2.396 2.607 2.75 2.793 2.801 2.792 2.792 2.732 2.732 2.713 2.713 

minARL  55.622 17.796 9.6696 7.3457 4.4071 3.1363 2.4442 2.0798 1.8224 1.5552 1.1433 1.0097 

0.3 

  0.02 0.05 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.5 0.8 0.8 

L  2.033 2.396 2.607 2.607 2.75 2.793 2.801 2.801 2.792 2.792 2.732 2.732 

minARL  79.114 25.792 14.147 10.51 6.2762 4.4219 3.4073 2.7607 2.3279 2.083 1.9141 1.6893 

0.4 

  0.02 0.02 0.05 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 

L  2.033 2.033 2.396 2.607 2.607 2.75 2.75 2.793 2.801 2.801 2.792 2.792 

minARL  108.98 36.51 19.979 15.184 8.9407 6.1577 4.7195 3.7628 3.1501 2.7194 2.3807 2.1566 

0.5 

  0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 

L  2.033 2.033 2.396 2.396 2.607 2.607 2.75 2.75 2.793 2.793 2.801 2.801 

minARL  146.46 50.863 28.81 21.45 12.732 8.8507 6.6307 5.267 4.3792 3.7264 3.2579 2.8843 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.1 0.1 0.2 0.2 0.2 0.2 0.3 

L  2.033 2.033 2.033 2.033 2.396 2.607 2.607 2.75 2.75 2.75 2.75 2.793 

minARL  190.63 73.677 41.758 32.201 18.902 13.039 9.7668 7.8852 6.3598 5.3776 4.7017 4.1043 

0.7 

  0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.1 0.1 0.1 0.2 0.2 

L  2.033 2.033 2.033 2.033 2.396 2.396 2.396 2.607 2.607 2.607 2.75 2.75 

minARL  236.58 112.37 64.399 49.132 30.255 20.678 15.733 12.25 10.044 8.5591 7.3744 6.381 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 0.1 

L  2.033 2.033 2.033 2.033 2.033 2.033 2.396 2.396 2.396 2.396 2.607 2.607 

minARL  275.22 177.98 112.24 86.668 53.049 37.645 28.576 22.433 18.461 15.715 13.352 11.59 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 

L  2.033 2.033 2.033 2.033 2.033 2.033 2.033 2.033 2.033 2.033 2.033 2.396 

minARL  297.39 264.44 216.7 186.24 128.17 92.75 70.977 56.864 47.202 40.265 35.085 30.904 

1.2   0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 

L  2.033 2.033 2.033 2.033 2.033 2.396 2.396 2.607 2.607 2.75 2.75 2.793 

minARL  265.14 181.88 121.13 95.154 58.568 39.577 28.809 21.68 17.043 13.638 11.141 9.2668 

1.5   0.02 0.02 0.05 0.05 0.1 0.2 0.4 0.5 0.5 0.8 0.8 0.8 

L  2.033 2.033 2.396 2.396 2.607 2.75 2.801 2.792 2.792 2.732 2.732 2.732 

Table A-2   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=300, 0 1   
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minARL  196.33 84.174 46.756 34.018 18.359 11.364 7.6659 5.455 4.1296 3.2257 2.6223 2.2133 

1.8   0.02 0.02 0.05 0.1 0.3 0.5 0.8 0.8 0.8 0.8 0.8 0.8 

L  2.033 2.033 2.396 2.607 2.793 2.792 2.732 2.732 2.732 2.732 2.732 2.732 

minARL  148.8 53.563 27.568 19.362 9.8452 5.8158 3.8862 2.7794 2.1645 1.7928 1.5543 1.3947 

2   0.02 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.033 2.396 2.607 2.75 2.801 2.792 2.732 2.732 2.732 2.732 2.713 2.713 

minARL  127.49 42.552 21.216 14.906 7.3109 4.3028 2.865 2.1298 1.7221 1.4774 1.3204 1.2172 

2.5   0.02 0.05 0.2 0.3 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.033 2.396 2.75 2.793 2.792 2.732 2.732 2.732 2.713 2.713 2.713 2.713 

minARL  94.602 28.601 13.517 9.1815 4.3687 2.6031 1.8558 1.4907 1.2899 1.1747 1.1072 1.0665 

3   0.02 0.1 0.3 0.4 0.8 0.8 0.8 1 1 1 1 1 

L  2.033 2.607 2.793 2.801 2.732 2.732 2.732 2.713 2.713 2.713 2.713 2.713 

minARL  76.507 21.534 9.9022 6.6047 3.1334 1.9657 1.4921 1.2623 1.1439 1.0807 1.0458 1.0262 

3.5   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.033 2.607 2.793 2.792 2.732 2.732 2.713 2.713 2.713 2.713 2.713 2.713 

minARL  65.242 17.539 7.8285 5.1652 2.4969 1.6551 1.3157 1.158 1.0816 1.0428 1.0227 1.012 

4   0.02 0.2 0.4 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.033 2.75 2.801 2.792 2.732 2.732 2.713 2.713 2.713 2.713 2.713 2.713 

minARL  57.582 14.906 6.4919 4.3028 2.1298 1.4774 1.2172 1.1033 1.0504 1.0249 1.0124 1.0062 

5   0.05 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  2.396 2.75 2.792 2.732 2.732 2.713 2.713 2.713 2.713 2.713 2.713 2.713 

minARL  47.269 11.513 4.9125 3.2716 1.7328 1.286 1.1191 1.0516 1.0228 1.0101 1.0045 1.002 

10   0.05 0.5 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.396 2.792 2.732 2.732 2.713 2.713 2.713 2.713 2.713 2.713 2.713 2.713 

minARL  28.393 6.0504 2.5807 1.843 1.22 1.0649 1.0201 1.0063 1.002 1.0006 1.0002 1.0001 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.2 0.4 0.5 0.8 1 1 1 1 0.8 

L  2.136 2.688 2.82 2.82 2.861 2.848 2.779 2.758 2.758 2.758 2.758 2.779 

minARL  38.814 11.688 6.3839 4.867 3.0006 2.2008 1.865 1.4696 1.0279 1 1 1 

0.2 

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 1 

L  2.136 2.487 2.688 2.82 2.857 2.861 2.848 2.848 2.779 2.779 2.758 2.758 

minARL  60.16 18.789 10.124 7.7071 4.5923 3.258 2.5295 2.1183 1.9137 1.6541 1.2548 1.0291 

0.3 

  0.02 0.05 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.8 

L  2.136 2.487 2.688 2.688 2.82 2.857 2.857 2.861 2.848 2.848 2.848 2.779 

minARL  86.651 27.498 14.96 11.024 6.555 4.6082 3.5288 2.8583 2.4029 2.1222 2.013 1.7766 

0.4 

  0.02 0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 

L  2.136 2.136 2.487 2.487 2.688 2.82 2.82 2.857 2.861 2.861 2.848 2.848 

minARL  121.16 39.053 21.151 16.037 9.3449 6.4279 4.895 3.9031 3.2727 2.8148 2.4606 2.2109 

0.5 

  0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 

L  2.136 2.136 2.487 2.487 2.688 2.688 2.82 2.82 2.857 2.857 2.861 2.861 

minARL  165.84 54.865 30.821 22.749 13.422 9.2489 6.9358 5.4764 4.5624 3.8643 3.3882 2.9892 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.1 0.1 0.1 0.2 0.2 0.2 0.3 

L  2.136 2.136 2.136 2.136 2.487 2.688 2.688 2.688 2.82 2.82 2.82 2.857 

minARL  220.67 80.469 44.807 34.354 19.985 13.755 10.228 8.2278 6.6446 5.5942 4.8761 4.2678 

0.7 

  0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.1 0.1 0.1 0.2 0.2 

L  2.136 2.136 2.136 2.136 2.487 2.487 2.487 2.688 2.688 2.688 2.82 2.82 

minARL  280.57 125.13 69.99 52.945 32.419 21.91 16.568 12.899 10.525 8.9382 7.7381 6.6675 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 0.1 

L  2.136 2.136 2.136 2.136 2.136 2.136 2.487 2.487 2.487 2.487 2.688 2.688 

minARL  333.65 204.71 124.99 95.292 57.294 40.294 30.563 23.821 19.508 16.548 14.094 12.187 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 

L  2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.487 

minARL  365.72 318.55 254.26 215.1 143.84 102.29 77.41 61.546 50.809 43.166 37.496 33.139 

1.2   0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 

L  2.136 2.136 2.136 2.136 2.136 2.487 2.487 2.688 2.688 2.82 2.82 2.857 

minARL  322.02 211.18 135.93 105.2 63.387 42.625 30.7 23.08 18.01 14.429 11.715 9.7414 

1.5   0.02 0.02 0.05 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8 

Table A-3   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=370.4, 0 1    
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L  2.136 2.136 2.487 2.487 2.688 2.82 2.857 2.848 2.848 2.779 2.779 2.779 

minARL  229.79 92.473 50.686 36.442 19.442 11.956 8.0243 5.6862 4.2743 3.3266 2.6897 2.2604 

1.8   0.02 0.02 0.05 0.1 0.2 0.5 0.5 0.8 0.8 0.8 0.8 0.8 

L  2.136 2.136 2.487 2.688 2.82 2.848 2.848 2.779 2.779 2.779 2.779 2.779 

minARL  169.61 57.798 29.34 20.538 10.348 6.0728 4.0182 2.8552 2.2092 1.8211 1.5731 1.4076 

2   0.02 0.05 0.1 0.1 0.4 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.136 2.487 2.688 2.688 2.861 2.848 2.779 2.779 2.779 2.779 2.758 2.758 

minARL  143.58 45.956 22.57 15.814 7.6641 4.458 2.9454 2.1729 1.7475 1.4933 1.3308 1.2239 

2.5   0.02 0.05 0.2 0.3 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.136 2.487 2.82 2.857 2.848 2.779 2.779 2.779 2.758 2.758 2.758 2.758 

minARL  104.56 30.472 14.297 9.6492 4.5279 2.6695 1.8868 1.5071 1.2992 1.18 1.1104 1.0685 

3   0.02 0.1 0.2 0.4 0.8 0.8 0.8 1 1 1 1 1 

L  2.136 2.688 2.82 2.861 2.779 2.779 2.779 2.758 2.758 2.758 2.758 2.758 

minARL  83.676 22.92 10.405 6.9041 3.2289 2.0015 1.5085 1.2706 1.1483 1.0831 1.0472 1.027 

3.5   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.136 2.688 2.857 2.848 2.779 2.779 2.758 2.758 2.758 2.758 2.758 2.758 

minARL  70.887 18.549 8.19 5.3763 2.5579 1.6778 1.326 1.1628 1.084 1.044 1.0233 1.0124 

4   0.02 0.1 0.4 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.136 2.688 2.861 2.848 2.779 2.779 2.758 2.758 2.758 2.758 2.758 2.758 

minARL  62.283 15.814 6.783 4.458 2.1729 1.4933 1.2239 1.1063 1.0518 1.0256 1.0127 1.0063 

5   0.05 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  2.487 2.82 2.848 2.779 2.779 2.758 2.758 2.758 2.758 2.758 2.758 2.758 

minARL  51.266 12.118 5.1066 3.3752 1.7586 1.2952 1.1226 1.0531 1.0234 1.0104 1.0046 1.0021 

10   0.05 0.5 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.487 2.848 2.779 2.779 2.758 2.758 2.758 2.758 2.758 2.758 2.758 2.758 

minARL  30.244 6.3247 2.646 1.8734 1.2269 1.0668 1.0207 1.0065 1.002 1.0006 1.0002 1.0001 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.2 0.4 0.5 0.8 0.8 1 1 1 1 

L  2.278 2.798 2.917 2.917 2.944 2.926 2.844 2.844 2.818 2.818 2.818 2.818 

minARL  42.49 12.50 6.78 5.12 3.16 2.29 1.99 1.66 1.09 1.00 1.00 1.00 

0.2 

  0.02 0.05 0.1 0.1 0.2 0.4 0.5 0.5 0.5 0.8 1 1 

L  2.278 2.610 2.798 2.798 2.917 2.944 2.926 2.926 2.926 2.844 2.818 2.818 

minARL  66.97 20.21 10.77 8.23 4.85 3.44 2.66 2.19 2.01 1.78 1.51 1.10 

0.3 

  0.02 0.05 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5 

L  2.278 2.610 2.798 2.798 2.917 2.917 2.946 2.944 2.926 2.926 2.926 2.926 

minARL  98.27 29.99 16.15 11.76 6.97 4.87 3.70 3.00 2.52 2.19 2.03 2.00 

0.4 

  0.02 0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 

L  2.278 2.278 2.610 2.610 2.798 2.917 2.917 2.946 2.944 2.944 2.926 2.926 

minARL  140.43 42.76 22.83 17.17 9.92 6.83 5.15 4.11 3.45 2.95 2.58 2.30 

0.5 

  0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 

L  2.278 2.278 2.610 2.610 2.798 2.798 2.917 2.917 2.917 2.946 2.946 2.944 

minARL  197.25 60.82 33.79 24.63 14.43 9.82 7.39 5.78 4.83 4.07 3.56 3.14 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.2 0.1 0.1 0.2 0.2 0.2 0.3 

L  2.278 2.278 2.278 2.278 2.610 2.798 2.798 2.798 2.917 2.917 2.917 2.946 

minARL  270.67 90.88 49.28 37.47 21.53 14.80 10.88 8.70 7.07 5.91 5.13 4.51 

0.7 

  0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.1 0.2 

L  2.278 2.278 2.278 2.278 2.278 2.610 2.610 2.798 2.798 2.798 2.798 2.917 

minARL  356.24 145.38 78.47 58.61 35.46 23.68 17.75 13.84 11.21 9.48 8.25 7.09 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 0.1 

L  2.278 2.278 2.278 2.278 2.278 2.278 2.610 2.610 2.610 2.610 2.798 2.798 

minARL  437.69 248.85 145.19 108.69 63.64 44.16 33.49 25.83 21.00 17.73 15.18 13.05 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

L  2.278 2.278 2.278 2.278 2.278 2.278 2.278 2.278 2.278 2.278 2.278 2.278 

minARL  490.51 413.89 317.92 263.02 168.94 117.19 87.24 68.58 56.15 17.42 41.00 36.11 

1.2   0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.2 

L  2.278 2.278 2.278 2.278 2.278 2.610 2.610 2.798 2.798 2.917 2.917 2.917 

minARL  423.70 259.80 159.28 120.71 70.57 47.16 33.45 25.15 19.42 15.62 12.57 10.42 

1.5   0.02 0.02 0.02 0.05 0.1 0.2 0.3 0.5 0.5 0.8 0.8 0.8 

Table A-4   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=500,
0 1    
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L  2.278 2.278 2.278 2.261 2.798 2.917 2.946 2.926 2.926 2.844 2.844 2.844 

minARL  286.01 105.16 56.15 40.01 21.03 12.84 8.55 6.03 4.49 3.47 2.79 2.33 

1.8   0.02 0.02 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8 

L  2.278 2.278 2.610 2.798 2.917 2.944 2.93 2.844 2.844 2.844 2.844 2.844 

minARL  203.21 64.07 31.91 22.27 11.05 6.45 4.21 2.97 2.27 1.86 1.60 1.43 

2   0.02 0.05 0.1 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.278 2.610 2.798 2.798 2.946 2.926 2.844 2.844 2.844 2.844 2.818 2.818 

minARL  169.11 51.05 24.57 16.97 8.15 4.69 3.06 2.24 1.78 1.52 1.35 1.23 

2.5   0.02 0.05 0.2 0.2 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.278 2.610 2.917 2.917 2.926 2.844 2.844 2.844 2.818 2.818 2.818 2.818 

minARL  119.92 33.20 15.47 10.33 4.76 2.77 1.93 1.53 1.31 1.19 1.11 1.07 

3   0.02 0.1 0.2 0.4 0.8 0.8 0.8 1 1 1 1 1 

L  2.278 2.798 2.917 2.944 2.844 2.844 2.844 2.818 2.818 2.818 2.818 2.818 

minARL  94.56 24.97 11.11 7.35 3.37 2.05 1.53 1.28 1.15 1.09 1.05 1.03 

3.5   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.278 2.798 2.946 2.926 2.844 2.844 2.818 2.818 2.818 2.818 2.818 2.818 

minARL  79.26 20.03 8.73 5.69 2.65 1.71 1.34 1.17 1.09 1.05 1.02 1.01 

4   0.02 0.1 0.4 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.278 2.798 2.944 2.926 2.844 2.844 2.818 2.818 2.818 2.818 2.818 2.818 

minARL  69.28 16.97 7.21 4.69 2.24 1.52 1.23 1.11 1.05 1.03 1.01 1.01 

5   0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  2.278 2.917 2.926 2.844 2.844 2.818 2.818 2.818 2.818 2.818 2.818 2.818 

minARL  56.73 13.02 5.39 3.53 1.80 1.31 1.13 1.06 1.02 1.01 1.00 1.00 

10   0.05 0.4 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.610 2.944 2.844 2.844 2.818 2.818 2.818 2.818 2.818 2.818 2.818 2.818 

minARL  32.94 6.71 2.74 1.92 1.24 1.07 1.02 1.01 1.00 1.00 1.00 1.00 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.2 0.4 0.5 0.5 0.8 1 1 1 1 

L  2.49 2.961 3.062 3.062 3.067 3.042 3.042 2.94 2.906 2.906 2.906 2.906 

minARL  48.448 13.811 7.4264 5.5225 3.4049 2.4542 2.0287 1.8439 1.3807 1.0173 1 1 

0.2 

  0.02 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.8 0.8 1 

L  2.49 2.793 2.961 2.961 3.062 3.079 3.067 3.042 3.042 2.94 2.94 2.906 

minARL  78.536 22.49 11.812 8.9163 5.224 3.6903 2.8781 2.331 2.0466 1.9361 1.7835 1.3888 

0.3 

  0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5 

L  2.49 2.793 2.793 2.961 3.062 3.062 3.079 3.067 3.042 3.042 3.042 3.042 

minARL  118.97 34.182 17.807 12.957 7.6465 5.2395 3.9767 3.2276 2.72 2.3374 2.0941 2.008 

0.4 

  0.02 0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 

L  2.49 2.49 2.793 2.793 2.961 3.062 3.062 3.079 3.079 3.067 3.042 3.042 

minARL  176.25 48.772 25.583 18.964 10.834 7.4828 5.5568 4.4447 3.7049 3.1742 2.794 2.4683 

0.5 

  0.02 0.02 0.02 0.05 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 

L  2.49 2.49 2.49 2.793 2.961 2.961 3.062 3.062 3.062 3.079 3.079 3.067 

minARL  257.97 70.853 38.37 27.71 16.082 10.715 8.1405 6.2768 5.1948 4.3958 3.8189 3.3905 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.1 0.1 0.1 0.2 0.2 0.2 0.2 

L  2.49 2.49 2.49 2.49 2.793 2.961 2.961 2.961 3.062 3.062 3.062 3.062 

minARL  371.26 109.25 56.653 42.47 24.049 16.525 11.943 9.453 7.7623 6.4243 5.5336 4.9046 

0.7 

  0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.1 0.2 

L  2.49 2.49 2.49 2.49 2.49 2.793 2.793 2.961 2.961 2.961 2.961 3.062 

minARL  515.51 183.16 93.162 68.102 40.096 26.59 19.638 15.392 12.32 10.328 8.9451 7.7919 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 

L  2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.793 2.793 2.793 2.793 2.961 

minARL  667.88 336.64 182.91 132.84 74.361 50.457 38.089 29.151 23.425 19.612 16.914 14.459 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

L  2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 

minARL  777.62 621.59 449.13 359.03 216.62 144.31 104.5 80.571 65.064 54.388 46.671 40.871 

1.2   0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 

L  2.49 2.49 2.49 2.49 2.49 2.49 2.793 2.793 2.961 2.961 3.062 3.062 

minARL  649.93 356.68 202.52 148.47 82.682 54.971 38.046 28.505 21.749 17.296 14.005 11.476 

1.5   0.02 0.02 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 0.8 0.8 

L  2.49 2.49 2.49 2.793 2.961 3.062 3.079 3.067 3.042 2.94 2.94 2.94 

Table A-5   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=800, 0 1    
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minARL  400.04 127.51 64.791 46.074 23.673 14.324 9.407 6.5777 4.8301 3.7117 2.9433 2.4354 

1.8   0.02 0.02 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 1 

L  2.49 2.49 2.793 2.961 3.062 3.067 3.042 2.94 2.94 2.94 2.94 2.906 

minARL  267.53 74.563 36.183 25.161 12.213 7.0388 4.5168 3.1413 2.3755 1.9252 1.6416 1.4541 

2   0.02 0.02 0.05 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.49 2.49 2.793 2.961 3.079 3.042 2.94 2.94 2.94 2.94 2.906 2.906 

minARL  216.75 59.019 27.906 18.85 8.9495 5.0562 3.2498 2.3331 1.8407 1.5512 1.3671 1.2474 

2.5   0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.49 2.793 2.961 3.062 3.042 2.94 2.94 2.94 2.906 2.906 2.906 2.906 

minARL  147.39 37.732 17.147 11.368 5.1425 2.9193 2.0008 1.5669 1.3316 1.1986 1.1214 1.0751 

3   0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1 

L  2.49 2.793 3.062 3.079 2.94 2.94 2.94 2.906 2.906 2.906 2.906 2.906 

minARL  113.5 28.317 12.286 8.0471 3.5928 2.1335 1.5684 1.2996 1.1633 1.0913 1.0517 1.0295 

3.5   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.49 2.961 3.079 3.042 2.94 2.94 2.906 2.906 2.906 2.906 2.906 2.906 

minARL  93.831 22.471 9.621 6.2033 2.7865 1.761 1.3617 1.1794 1.0922 1.0483 1.0255 1.0136 

4   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.49 2.961 3.079 3.042 2.94 2.94 2.906 2.906 2.906 2.906 2.906 2.906 

minARL  81.066 18.85 7.9039 5.0562 2.3331 1.5512 1.2474 1.1169 1.0568 1.028 1.0139 1.0069 

5   0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  2.49 3.062 3.042 2.94 2.94 2.906 2.906 2.906 2.906 2.906 2.906 2.906 

minARL  65.5 14.54 5.8636 3.771 1.8535 1.3271 1.1349 1.0582 1.0256 1.0114 1.0051 1.0023 

10   0.05 0.4 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.793 3.067 2.94 2.94 2.906 2.906 2.906 2.906 2.906 2.906 2.906 2.906 

minARL  37.419 7.3405 2.8912 1.9854 1.2507 1.0733 1.0226 1.0071 1.0022 1.0007 1.0002 1.0001 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.2 0.2 0.4 0.5 0.5 0.8 1 1 1 1 

L  2.585 3.035 3.128 3.128 3.124 3.094 3.094 2.983 2.947 2.947 2.947 2.947 

minARL  51.331 14.46 7.7487 5.7178 3.5303 2.5379 2.0511 1.9068 1.6692 1.0588 1.0001 1 

0.2 

  0.02 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.8 1 

L  2.585 2.876 3.035 3.035 3.128 3.14 3.124 3.094 3.094 3.094 2.983 2.947 

minARL  84.384 23.606 12.318 9.245 5.4022 3.8083 2.9698 2.4075 2.0771 2.0014 1.8594 1.6814 

0.3 

  0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5 

L  2.585 2.876 2.876 3.035 3.128 3.128 3.14 3.124 3.094 3.094 3.094 3.094 

minARL  129.89 36.306 18.598 13.542 7.9853 5.4186 4.1125 3.3405 2.8192 2.4144 2.1398 2.0172 

0.4 

  0.02 0.02 0.05 0.05 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 

L  2.585 2.585 2.876 2.876 3.035 3.128 3.128 3.14 3.14 3.124 3.094 3.094 

minARL  195.92 51.682 26.94 19.83 11.276 7.8093 5.7543 4.6114 3.8238 3.2835 2.8983 2.5528 

0.5 

  0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 

L  2.585 2.585 2.585 2.876 2.876 3.035 3.035 3.128 3.128 3.14 3.14 3.124 

minARL  292.52 75.87 40.451 29.243 16.905 11.149 8.4809 6.519 5.3713 4.5592 3.9448 3.5149 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.2 0.2 

L  2.585 2.585 2.585 2.585 2.876 2.876 3.035 3.035 3.128 3.128 3.128 3.128 

minARL  430.45 118.86 60.264 44.865 25.283 17.274 12.458 9.8119 8.11 6.6762 5.7297 5.0652 

0.7 

  0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.1 0.2 

L  2.585 2.585 2.585 2.585 2.585 2.876 2.876 3.035 3.035 3.035 3.035 3.128 

minARL  612.67 203.99 100.72 72.832 42.307 28.029 20.55 16.164 12.861 10.739 9.2754 8.1418 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.1 

L  2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.876 2.876 2.876 2.876 3.035 

minARL  813.93 387.83 203.69 145.73 79.751 53.511 40.149 30.809 24.612 20.523 17.648 15.157 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

L  2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.585 2.585 

minARL  965.81 751.75 527.87 415.34 243.33 158.9 113.49 86.648 69.486 57.791 49.405 43.141 

1.2   0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 

L  2.585 2.585 2.585 2.585 2.585 2.585 2.876 2.876 3.035 3.035 3.128 3.128 

minARL  794.08 413.07 226.18 163.21 88.765 58.32 40.355 29.995 22.916 18.111 14.727 12.001 

1.5   0.02 0.02 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 0.8 0.8 

Table A-6   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=1000, 
0 1    
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L  2.585 2.585 2.585 2.876 3.035 3.128 3.14 3.124 3.094 2.983 2.983 2.983 

minARL  467.38 139.2 69.037 49.173 25.005 15.073 9.8404 6.8428 4.9952 3.8261 3.0176 2.4862 

1.8   0.02 0.02 0.05 0.1 0.2 0.4 0.5 0.8 0.8 0.8 0.8 0.8 

L  2.585 2.585 2.876 3.035 3.128 3.124 3.094 2.983 2.983 2.983 2.983 2.983 

minARL  303.76 79.78 38.322 26.626 12.793 7.3351 4.6642 3.2255 2.4236 1.9549 1.6611 1.4676 

2   0.02 0.02 0.05 0.1 0.3 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.585 2.585 2.876 3.035 3.14 3.094 2.983 2.983 2.983 2.983 2.947 2.947 

minARL  243 62.728 29.349 19.783 9.3492 5.2346 3.3395 2.3794 1.8674 1.5676 1.3777 1.2543 

2.5   0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.585 2.876 3.035 3.128 3.094 2.983 2.983 2.983 2.947 2.947 2.947 2.947 

minARL  161.96 40.013 17.952 11.885 5.326 2.9924 2.0335 1.5838 1.3411 1.204 1.1246 1.0771 

3   0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1 

L  2.585 2.876 3.128 3.14 2.983 2.983 2.983 2.947 2.947 2.947 2.947 2.947 

minARL  123.29 29.792 12.871 8.3831 3.7006 2.1715 1.5854 1.308 1.1677 1.0936 1.053 1.0303 

3.5   0.02 0.1 0.2 0.4 0.8 0.8 1 1 1 1 1 1 

L  2.585 3.035 3.128 3.124 2.983 2.983 2.947 2.947 2.947 2.947 2.947 2.947 

minARL  101.18 23.698 10.06 6.4507 2.8533 1.7847 1.3721 1.1842 1.0946 1.0495 1.0262 1.0139 

4   0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.585 3.035 3.14 3.094 2.983 2.983 2.947 2.947 2.947 2.947 2.947 2.947 

minARL  86.972 19.783 8.2302 5.2346 2.3794 1.5676 1.2543 1.12 1.0583 1.0287 1.0143 1.0071 

5   0.02 0.2 0.5 0.8 0.8 1 1 1 1 1 1 1 

L  2.585 3.128 3.094 2.983 2.983 2.947 2.947 2.947 2.947 2.947 2.947 2.947 

minARL  69.814 15.306 6.0919 3.8886 1.8806 1.3365 1.1385 1.0597 1.0263 1.0117 1.0052 1.0023 

10   0.05 0.3 0.8 0.8 1 1 1 1 1 1 1 1 

L  2.876 3.14 2.983 2.983 2.947 2.947 2.947 2.947 2.947 2.947 2.947 2.947 

minARL  39.67 7.6578 2.963 2.0175 1.2577 1.0752 1.0232 1.0073 1.0023 1.0007 1.0002 1.0001 
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Scale 

Shift 

( 1 0/  ) 

 Shape shift 1 0/   

 0.2 0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 

0.1 

  0.02 0.1 0.1 0.2 0.3 0.5 0.5 0.5 0.8 1 1 1 

L  2.862 3.253 3.253 3.321 3.318 3.249 3.249 3.249 3.114 3.067 3.067 3.067 

minARL  60.629 16.598 8.7378 6.3382 3.8619 2.8159 2.1927 2.0015 1.9515 1.7569 1.075 1.0002 

0.2 

  0.02 0.05 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.8 

L  2.862 3.117 3.253 3.253 3.321 3.318 3.289 3.249 3.249 3.249 3.249 3.114 

minARL  104.47 27.18 13.956 10.28 5.9646 4.1839 3.2519 2.6673 2.2447 2.023 2.0001 1.9521 

0.3 

  0.02 0.02 0.05 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.5 

L  2.862 2.862 3.117 3.253 3.253 3.321 3.318 3.318 3.289 3.249 3.249 3.249 

minARL  169.81 42.245 21.071 15.459 8.94 5.9839 4.5482 3.6843 3.1004 2.675 2.3457 2.1019 

0.4 

  0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.5 

L  2.862 2.862 3.117 3.117 3.253 3.253 3.321 3.321 3.318 3.318 3.289 3.249 

minARL  272.13 61.076 31.35 22.557 12.695 8.7898 6.3815 5.1211 4.2024 3.6302 3.1689 2.8331 

0.5 

  0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.2 0.2 0.2 0.3 0.3 

L  2.862 2.862 2.862 3.117 3.117 3.253 3.253 3.321 3.321 3.321 3.318 3.318 

minARL  433.57 92.848 47.008 34.279 19.051 12.542 9.3869 7.2996 5.9282 5.0732 4.347 3.8476 

0.6 

  0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.2 0.2 0.2 

L  2.862 2.862 2.862 2.862 3.117 3.117 3.253 3.253 3.253 3.321 3.321 3.321 

minARL  683.62 153.51 72.127 52.482 29.268 19.489 14.127 10.948 9.0456 7.4903 6.3523 5.5688 

0.7 

  0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.1 0.1 0.1 0.1 

L  2.862 2.862 2.862 2.862 2.862 3.117 3.117 3.117 3.253 3.253 3.253 3.253 

minARL  1048.2 285.13 127.34 88.755 49.301 32.731 23.43 18.362 14.62 12.05 10.315 9.0725 

0.8 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.05 

L  2.862 2.862 2.862 2.862 2.862 2.862 2.862 3.117 3.117 3.117 3.117 3.117 

minARL  1503.1 604.02 284.65 193.63 98.12 63.411 46.637 36.29 28.429 23.397 19.935 17.421 

0.9 

  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

L  2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 

minARL  1895.3 1355.9 873.5 655.17 349.82 213.82 145.68 107.6 84.278 68.916 58.187 50.336 

1.2 

  0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.1 0.1 0.1 0.2 

L  2.862 2.862 2.862 2.862 2.862 2.862 3.117 3.117 3.253 3.253 3.253 3.321 

minARL  1477.7 649.77 317.43 217.56 109.46 69.169 48.056 34.806 26.832 20.786 16.793 13.722 

1.5 

  0.02 0.02 0.02 0.02 0.05 0.1 0.2 0.3 0.5 0.8 0.8 0.8 

L  2.862 2.862 2.862 2.862 3.117 3.253 3.321 3.318 3.249 3.114 3.114 3.114 

minARL  755.55 181.39 83.048 58.877 29.121 17.144 11.095 7.6907 5.535 4.2092 3.2633 2.6523 

Table A-7   The optimal design schemes of EWMA chart with transformed Weibull data 

In control ARL=2000, 
0 1    
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1.8 

  0.02 0.02 0.05 0.05 0.2 0.3 0.5 0.8 0.8 0.8 0.8 1 

L  2.862 2.862 3.117 3.117 3.321 3.318 3.249 3.114 3.114 3.114 3.114 3.067 

minARL  449.25 97.298 45.412 30.818 14.706 8.2367 5.1437 3.5047 2.581 2.0514 1.7238 1.5097 

2 

  0.02 0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 0.8 1 1 

L  2.862 2.862 3.117 3.253 3.321 3.249 3.114 3.114 3.114 3.114 3.067 3.067 

minARL  345.23 74.836 34 22.868 10.563 5.8194 3.6377 2.5307 1.9534 1.6203 1.4105 1.2753 

2.5 

  0.02 0.05 0.1 0.2 0.5 0.8 0.8 0.8 1 1 1 1 

L  2.862 3.117 3.253 3.321 3.249 3.114 3.114 3.114 3.067 3.067 3.067 3.067 

minARL  215.66 47.609 20.589 13.578 5.9285 3.2341 2.1396 1.6382 1.3703 1.2205 1.1343 1.083 

3 

  0.02 0.05 0.2 0.3 0.8 0.8 0.8 1 1 1 1 1 

L  2.862 3.117 3.321 3.318 3.114 3.114 3.114 3.067 3.067 3.067 3.067 3.067 

minARL  158.08 34.552 14.804 9.4746 4.0612 2.295 1.64 1.3341 1.1811 1.1009 1.057 1.0325 

3.5 

  0.02 0.05 0.2 0.4 0.8 0.8 1 1 1 1 1 1 

L  2.862 3.117 3.321 3.289 3.114 3.114 3.067 3.067 3.067 3.067 3.067 3.067 

minARL  126.61 27.748 11.344 7.222 3.0734 1.8611 1.4044 1.199 1.1019 1.0532 1.0281 1.0149 

4 

  0.02 0.1 0.3 0.5 0.8 0.8 1 1 1 1 1 1 

L  2.862 3.253 3.318 3.249 3.114 3.114 3.067 3.067 3.067 3.067 3.067 3.067 

minARL  107.02 22.868 9.2884 5.8194 2.5307 1.6203 1.2753 1.1293 1.0627 1.0309 1.0153 1.0076 

5 

  0.02 0.1 0.4 0.5 0.8 1 1 1 1 1 1 1 

L  2.862 3.253 3.289 3.249 3.114 3.067 3.067 3.067 3.067 3.067 3.067 3.067 

minARL  84.068 17.379 6.8149 4.2794 1.9681 1.3652 1.1494 1.0642 1.0282 1.0125 1.0056 1.0025 

10 

  0.05 0.3 0.8 0.8 1 1 1 1 1 1 1 1 

L  3.117 3.318 3.114 3.114 3.067 3.067 3.067 3.067 3.067 3.067 3.067 3.067 

minARL  47.164 8.5951 3.2001 2.1216 1.279 1.0809 1.0249 1.0078 1.0025 1.0008 1.0002 1.0001 
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APPENDIX B: OPTIMAL DESIGN SCHEMES OF THE MEWMA 

CHART WITH RAW GBE DATA  

 

1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.1 0.1 0.1 0.1 (1.2,1) r 0.05 0.05 0.05 0.05 

 optARL  0.95 1.33 1.66 1.84  optARL  10.34 13.27 16.76 18.68 

(0.2,1) r 0.1 0.1 0.1 0.1 (1.5,1) r 0.1 0.1 0.1 0.1 

 optARL  1.18 1.62 2.04 2.28  optARL  2.82 3.64 4.52 4.97 

(0.3,1) r 0.1 0.1 0.1 0.1 (1.8,1) r 0.1 0.1 0.1 0.1 

 optARL  1.48 2.00 2.51 2.76  optARL  1.30 1.74 2.18 2.40 

(0.4,1) r 0.1 0.1 0.1 0.1 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  1.87 2.54 3.23 3.57  optARL  0.90 1.23 1.51 1.71 

(0.5,1) r 0.1 0.1 0.1 0.1 (2.5,1) r 0.3 0.3 0.3 0.3 

 optARL  2.54 3.42 4.33 4.76  optARL  0.44 0.60 0.78 0.86 

(0.6, 1) r 0.1 0.1 0.05 0.05 (3, 1) r 0.3 0.3 0.3 0.3 

 optARL  3.65 4.93 6.10 6.71  optARL  0.24 0.35 0.44 0.50 

(0.7,1) r 0.05 0.05 0.05 0.05 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  5.78 7.43 9.18 10.17  optARL  0.11 0.16 0.21 0.23 

(0.8,1) r 0.05 0.5 0.05 0.05 (5,1) r 0.3 0.3 0.3 0.3 

 optARL  10.06 13.16 16.65 18.71  optARL  0.07 0.10 0.12 0.14 

(0.9,1) r 0.02 0.02 0.02 0.02 (10,1) r 0.3 0.3 0.5 0.3 

 optARL  25.22 33.41 41.64 46.44  optARL  0.01 0.02 0.02 0.03 

(0.1,0.1) r 0.05 0.05 0.05 0.02 (1.5,1.5) r 0.1 0.05 0.05 0.05 

 optARL  8.95 11.66 14.83 16.54  optARL  15.16 20.67 26.85 30.40 

(0.2,0.2) r 0.05 0.05 0.02 0.02 (2,2) r 0.1 0.1 0.1 0.05 

 optARL  10.73 14.14 18.19 19.75  optARL  6.55 8.59 10.86 11.98 

(0.5,0.5) r 0.02 0.02 0.02 0.02 (5,5) r 0.3 0.3 0.3 0.1 

 optARL  21.55 28.02 34.50 37.91  optARL  0.86 1.10 1.45 1.62 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.3 0.3 0.3 0.3 

TableB-1 The optimal design scheme when  =0.1  
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 optARL  56.99 83.30 114.73 131.30  optARL  0.21 0.29 0.36 0.40 

(0.8,1.5) r 0.1 0.1 0.1 0.1 (0.2,5) r 0.3 0.3 0.3 0.3 

 optARL  1.61 2.10 2.69 2.96  optARL  0.04 0.07 0.08 0.10 

(0.5,2) r 0.1 0.3 0.3 0.1 (0.1,10) r 0.3 0.3 0.3 0.3 

 optARL  0.41 0.57 0.75 0.85  optARL  0.01 0.01 0.02 0.02 
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.1 0.1 0.05 0.05 (1.2,1) r 0.05 0.02 0.02 0.02 

 optARL  3.95 5.49 6.64 7.36  optARL  31.11 42.82 53.98 60.45 

(0.2,1) r 0.1 0.05 0.05 0.05 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  4.82 6.46 7.85 8.66  optARL  10.30 13.28 16.40 17.80 

(0.3,1) r 0.1 0.05 0.05 0.05 (1.8,1) r 0.1 0.05 0.1 0.05 

 optARL  6.04 7.85 9.59 10.48  optARL  5.46 7.14 8.56 9.27 

(0.4,1) r 0.05 0.05 0.05 0.05 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  7.63 9.81 12.09 13.41  optARL  3.92 5.18 6.24 6.82 

(0.5,1) r 0.05 0.05 0.05 0.05 (2.5,1) r 0.1 0.1 0.1 0.1 

 optARL  9.92 12.89 16.06 17.86  optARL  2.17 2.84 3.38 3.68 

(0.6, 1) r 0.05 0.05 0.02 0.02 (3, 1) r 0.1 0.1 0.1 0.1 

 optARL  13.60 18.00 22.64 24.50  optARL  1.41 1.79 2.21 2.40 

(0.7,1) r 0.05 0.02 0.02 0.02 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  20.48 26.80 32.58 35.76  optARL  0.71 0.93 1.16 1.24 

(0.8,1) r 0.02 0.02 0.02 0.01 (5,1) r 0.3 0.3 0.3 0.3 

 optARL  32.69 44.72 57.34 63.80  optARL  0.43 0.55 0.67 0.73 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.3 0.3 0.3 0.3 

 optARL  60.79 94.41 129.08 151.28  optARL  0.09 0.11 0.14 0.16 

(0.1,0.1) r 0.05 0.05 0.05 0.05 (1.5,1.5) r 0.1 0.05 0.05 0.05 

 optARL  8.37 10.76 13.34 14.78  optARL  13.64 19.35 24.33 27.27 

(0.2,0.2) r 0.05 0.05 0.05 0.05 (2,2) r 0.1 0.1 0.1 0.1 

 optARL  10.09 13.03 16.34 18.24  optARL  5.83 7.76 9.44 10.61 

(0.5,0.5) r 0.02 0.02 0.02 0.02 (5,5) r 0.3 0.3 0.3 0.3 

 optARL  20.48 26.44 32.11 35.18  optARL  0.70 0.90 1.12 1.23 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.3 0.3 0.3 0.3 

 optARL  54.82 80.30 107.61 123.11  optARL  0.17 0.22 0.27 0.29 

(0.8,1.5) r 0.1 0.05 0.05 0.05 (0.2,5) r 0.3 0.3 0.3 0.3 

 optARL  6.98 8.98 10.74 11.79  optARL  0.27 0.37 0.49 0.51 

(0.5,2) r 0.1 0.1 0.1 0.1 (0.1,10) r 0.3 0.3 0.5 0.3 

 optARL  2.19 2.87 3.45 3.73  optARL  0.07 0.09 0.12 0.13 

 

 

Table B-2 The optimal design scheme when  =0.3  



Appendix B 
 

 
 

162 

 

 

1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.1 0.05 0.05 0.05 (1.2,1) r 0.05 0.05 0.02 0.02 

 optARL  6.38 8.27 10.09 11.10  optARL  40.53 57.68 78.12 87.93 

(0.2,1) r 0.05 0.05 0.05 0.05 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  7.69 9.79 12.10 13.34  optARL  14.84 19.19 23.86 26.34 

(0.3,1) r 0.05 0.05 0.05 0.05 (1.8,1) r 0.1 0.1 0.05 0.05 

 optARL  9.40 12.03 14.94 16.76  optARL  8.08 10.58 12.75 13.78 

(0.4,1) r 0.05 0.05 0.05 0.02 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  11.73 15.31 19.36 21.57  optARL  5.97 7.62 9.37 10.17 

(0.5,1) r 0.05 0.05 0.02 0.02 (2.5,1) r 0.1 0.1 0.1 0.1 

 optARL  15.22 20.55 25.41 27.54  optARL  3.49 4.32 5.24 5.67 

(0.6, 1) r 0.02 0.02 0.02 0.02 (3, 1) r 0.1 0.1 0.1 0.1 

 optARL  21.05 27.92 34.09 37.35  optARL  2.31 2.94 3.44 3.76 

(0.7,1) r 0.02 0.02 0.02 0.02 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  29.48 39.80 50.78 56.63  optARL  1.24 1.51 1.85 2.01 

(0.8,1) r 0.01 0.01 0.01 0.01 (5,1) r 0.3 0.3 0.3 0.3 

 optARL  45.07 64.86 83.91 94.95  optARL  0.72 0.97 1.13 1.21 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.3 0.5 0.3 0.3 

 optARL  75.02 124.59 184.34 216.75  optARL  0.18 0.23 0.26 0.29 

(0.1,0.1) r 0.5 0.05 0.05 0.05 (1.5,1.5) r 0.1 0.1 0.05 0.05 

 optARL  7.52 9.54 11.63 12.85  optARL  12.40 17.12 22.02 24.92 

(0.2,0.2) r 0.05 0.05 0.05 0.05 (2,2) r 0.1 0.1 0.1 0.1 

 optARL  9.06 11.51 14.12 15.70  optARL  5.17 6.81 8.36 9.02 

(0.5,0.5) r 0.02 0.02 0.02 0.02 (5,5) r 0.5 0.3 0.3 0.3 

 optARL  18.85 24.21 29.39 31.91  optARL  0.53 0.71 0.85 0.96 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.5 0.3 0.3 0.3 

 optARL  52.08 74.69 98.08 111.23  optARL  0.11 0.16 0.18 0.21 

(0.8,1.5) r 0.05 0.05 0.05 0.05 (0.2,5) r 0.3 0.3 0.3 0.3 

 optARL  11.43 14.56 17.55 19.79  optARL  0.55 0.69 0.90 0.96 

(0.5,2) r 0.1 0.1 0.1 0.1 (0.1,10) r 0.3 0.3 0.3 0.3 

 optARL  3.90 5.02 6.05 6.62  optARL  0.13 0.18 0.23 0.25 

 

 

Table B-3 The optimal design scheme when  =0.5  
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.05 0.05 0.05 0.05 (1.2,1) r 0.1 0.05 0.02 0.02 

 optARL  8.13 10.38 12.67 13.99  optARL  42.94 67.02 91.16 106.37 

(0.2,1) r 0.05 0.05 0.05 0.05 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  9.63 12.44 15.42 17.11  optARL  17.13 23.19 28.76 32.00 

(0.3,1) r 0.05 0.05 0.05 0.05 (1.8,1) r 0.1 0.1 0.1 0.05 

 optARL  11.87 15.47 19.33 21.78  optARL  9.62 12.61 15.47 16.83 

(0.4,1) r 0.05 0.05 0.02 0.02 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  14.89 19.94 24.72 26.98  optARL  7.32 9.25 11.43 12.50 

(0.5,1) r 0.05 0.02 0.02 0.02 (2.5,1) r 0.1 0.1 0.1 0.1 

 optARL  19.62 25.87 31.43 34.58  optARL  4.21 5.26 6.27 6.81 

(0.6, 1) r 0.02 0.02 0.02 0.02 (3, 1) r 0.3 0.1 0.1 0.1 

 optARL  25.64 34.41 42.46 47.33  optARL  2.73 3.58 4.40 4.62 

(0.7,1) r 0.01 0.02 0.01 0.01 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  35.98 49.65 63.26 70.69  optARL  1.48 1.89 2.30 2.54 

(0.8,1) r 0.01 0.01 0.01 0.01 (5,1) r 0.3 0.3 0.3 0.3 

 optARL  52.97 77.80 103.91 118.18  optARL  0.95 1.22 1.41 1.55 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.3 0.3 0.3 0.3 

 optARL  82.50 139.21 218.83 262.67  optARL  0.24 0.30 0.35 0.39 

(0.1,0.1) r 0.1 0.05 0.05 0.05 (1.5,1.5) r 0.1 0.1 0.05 0.05 

 optARL  5.80 7.84 9.34 10.23  optARL  10.71 14.41 18.71 20.78 

(0.2,0.2) r 0.1 0.05 0.05 0.05 (2,2) r 0.3 0.1 0.1 0.1 

 optARL  7.27 9.36 11.29 12.36  optARL  4.14 5.49 6.81 7.50 

(0.5,0.5) r 0.05 0.05 0.02 0.02 (5,5) r 0.3 0.5 0.5 0.3 

 optARL  15.28 19.99 24.34 26.53  optARL  0.33 0.45 0.55 0.61 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.5 0.5 0.5 0.3 

 optARL  45.48 64.70 84.19 92.56  optARL  0.05 0.07 0.09 0.10 

(0.8,1.5) r 0.1 0.05 0.05 0.05 (0.2,5) r 0.3 0.3 0.3 0.3 

 optARL  15.98 20.47 25.12 27.76  optARL  0.83 1.04 1.28 1.37 

(0.5,2) r 0.1 0.1 0.1 0.1 (0.1,10) r 0.5 0.3 0.3 0.3 

 optARL  5.72 7.44 9.10 9.89  optARL  0.21 0.25 0.32 0.35 

 

 

Table B-4 The optimal design scheme when  =0.8  
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.05 0.05 0.05 0.05 (1.2,1) r 0.1 0.05 0.02 0.02 

 optARL  8.36 10.62 13.09 14.33  optARL  43.40 67.00 93.40 107.21 

(0.2,1) r 0.05 0.05 0.05 0.05 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  9.94 12.76 15.91 17.53  optARL  17.69 23.55 29.75 32.49 

(0.3,1) r 0.05 0.05 0.05 0.05 (1.8,1) r 0.1 0.1 0.1 0.05 

 optARL  12.08 15.82 20.05 22.42  optARL  9.73 12.66 15.76 17.16 

(0.4,1) r 0.05 0.05 0.02 0.02 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  15.28 20.25 25.34 27.58  optARL  7.48 9.29 11.55 12.45 

(0.5,1) r 0.05 0.02 0.02 0.02 (2.5,1) r 0.1 0.1 0.1 0.1 

 optARL  20.15 26.61 32.27 35.48  optARL  4.37 5.46 6.46 7.13 

(0.6, 1) r 0.02 0.02 0.02 0.02 (3, 1) r 0.3 0.3 0.1 0.1 

 optARL  25.94 35.16 43.97 48.28  optARL  2.82 3.58 4.32 4.65 

(0.7,1) r 0.02 0.01 0.01 0.01 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  36.03 50.74 65.37 72.03  optARL  1.51 1.92 2.26 2.48 

(0.8,1) r 0.01 0.01 0.01 0.01 (5,1) r 0.3 0.3 0.3 0.3 

 optARL  53.23 78.66 106.57 120.93  optARL  0.97 1.21 1.43 1.57 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.3 0.3 0.3 0.3 

 optARL  81.41 142.16 220.42 274.48  optARL  0.24 0.30 0.34 0.40 

(0.1,0.1) r 0.1 0.1 0.05 0.05 (1.5,1.5) r 0.1 0.1 0.1 0.05 

 optARL  4.93 6.35 8.08 8.77  optARL  9.67 12.82 16.40 18.42 

(0.2,0.2) r 0.1 0.05 0.05 0.05 (2,2) r 0.3 0.1 0.1 0.1 

 optARL  6.05 8.01 9.69 10.49  optARL  3.57 4.73 5.91 6.45 

(0.5,0.5) r 0.05 0.05 0.05 0.02 (5,5) r 0.3 0.3 0.3 0.3 

 optARL  13.05 16.72 21.11 23.09  optARL  0.22 0.31 0.40 0.42 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.3 0.5 0.5 0.5 

 optARL  41.27 56.78 73.05 81.43  optARL  0.03 0.04 0.04 0.05 

(0.8,1.5) r 0.1 0.05 0.05 0.05 (0.2,5) r 0.3 0.3 0.3 0.3 

 optARL  17.74 22.74 28.14 31.34  optARL  0.90 1.17 1.45 1.50 

(0.5,2) r 0.1 0.1 0.1 0.05 (0.1,10) r 0.5 0.5 0.5 0.3 

 optARL  6.66 8.45 10.36 11.25  optARL  0.24 0.30 0.36 0.37 

 

 

Table B-5 The optimal design scheme when  =1  
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APPENDIX C: OPTIMAL DESIGN SCHEMES OF THE MEWMA 

CHART WITH TRANSFORMED GBE DATA  

 

 

1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.1 0.1 0.3 0.3 (1.2,1) r 0.1 0.1 0.1 0.1 

 optARL  0.00 0.00 0.00 0.00  optARL  6.73 8.31 9.68 10.53 

(0.2,1) r 0.1 0.3 0.3 0.5 (1.5,1) r 0.3 0.3 0.3 0.3 

 optARL  0.00 0.00 0.00 0.00  optARL  0.93 1.29 1.64 1.83 

(0.3,1) r 0.5 0.5 0.3 0.3 (1.8,1) r 0.5 0.3 0.3 0.3 

 optARL  0.00 0.00 0.00 0.00  optARL  0.14 0.27 0.39 0.45 

(0.4,1) r 0.5 0.5 0.5 0.3 (2,1) r 0.5 0.3 0.3 0.3 

 optARL  0.00 0.01 0.04 0.06  optARL  0.04 0.08 0.15 0.18 

(0.5,1) r 0.5 0.5 0.3 0.3 (2.5,1) r 0.5 0.3 0.5 0.3 

 optARL  0.09 0.19 0.32 0.38  optARL  0.00 0.00 0.01 0.02 

(0.6, 1) r 0.3 0.3 0.3 0.3 (3, 1) r 0.3 0.5 0.5 0.5 

 optARL  0.53 0.79 1.08 1.22  optARL  0.00 0.00 0.00 0.00 

(0.7,1) r 0.3 0.3 0.3 0.3 (4,1) r 0.3 0.3 0.3 0.3 

 optARL  1.76 2.38 3.10 3.41  optARL  0.00 0.00 0.00 0.00 

(0.8,1) r 0.1 0.1 0.1 0.1 (5,1) r 0.1 0.1 0.3 0.3 

 optARL  5.25 6.43 7.53 8.01  optARL  0.00 0.00 0.00 0.00 

(0.9,1) r 0.02 0.05 0.05 0.05 (10,1) r 0.02 0.05 0.1 0.1 

 optARL  14.50 21.05 25.59 27.93  optARL  0.00 0.00 0.00 0.00 

(0.1,0.1) r 0.3 0.1 0.1 0.1 (1.5,1.5) r 0.1 0.05 0.05 0.05 

 optARL  3.18 3.98 4.61 4.95  optARL  23.57 32.29 41.12 45.86 

(0.2,0.2) r 0.1 0.1 0.1 0.1 (2,2) r 0.1 0.1 0.1 0.1 

 optARL  5.36 6.57 7.70 8.32  optARL  10.74 13.88 16.96 18.04 

(0.5,0.5) r 0.05 0.05 0.05 0.05 (5,5) r 0.5 0.3 0.3 0.3 

Table C-1 The optimal design scheme when  =0.1  
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 optARL  17.48 22.11 27.06 29.29  optARL  1.58 2.15 2.65 2.97 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.5 0.5 0.5 0.3 

 optARL  55.89 82.33 110.63 126.50  optARL  0.42 0.59 0.80 0.90 

(0.8,1.5) r 0.5 0.3 0.3 0.3 (0.2,5) r all 0.05+ 0.05+ 0.05+ 

 optARL  0.13 0.23 0.35 0.41  optARL  0.00 0.00 0.00 0.00 

(0.5,2) r 0.3 0.3 0.3 0.3 (0.1,10) r all 0.02+ 0.02+ 0.05+ 

 optARL  0.00 0.00 0.00 0.00  optARL  0.00 0.00 0.00 0.00 
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.5 0.5 0.5 0.5 (1.2,1) r 0.05 0.02 0.02 0.02 

 optARL  0.04 0.09 0.18 0.24  optARL  28.72 39.09 48.51 53.77 

(0.2,1) r 0.5 0.3 0.3 0.3 (1.5,1) r 0.1 0.1 0.1 0.1 

 optARL  0.45 0.72 0.94 1.07  optARL  9.22 11.38 13.54 14.64 

(0.3,1) r 0.3 0.3 0.3 0.3 (1.8,1) r 0.3 0.1 0.1 0.1 

 optARL  1.26 1.71 2.14 2.45  optARL  4.61 5.96 6.95 7.47 

(0.4,1) r 0.3 0.3 0.3 0.1 (2,1) r 0.3 0.3 0.3 0.3 

 optARL  2.58 3.42 4.38 4.67  optARL  3.17 3.97 4.90 5.37 

(0.5,1) r 0.1 0.1 0.1 0.1 (2.5,1) r 0.3 0.3 0.3 0.3 

 optARL  4.85 5.87 6.83 7.29  optARL  1.45 1.87 2.28 2.52 

(0.6, 1) r 0.1 0.1 0.1 0.1 (3, 1) r 0.5 0.3 0.3 0.3 

 optARL  7.68 9.60 11.44 12.18  optARL  0.76 1.04 1.30 1.43 

(0.7,1) r 0.1 0.05 0.05 0.05 (4,1) r 0.5 0.5 0.5 0.5 

 optARL  13.34 17.01 20.17 21.80  optARL  0.25 0.37 0.51 0.59 

(0.8,1) r 0.05 0.05 0.02 0.02 (5,1) r 0.5 0.5 0.5 0.5 

 optARL  24.72 32.92 40.99 44.42  optARL  0.09 0.15 0.22 0.25 

(0.9,1) r 0.02 0.01 0.01 0.01 (10,1) r 0.5 0.5 0.5 0.5 

 optARL  52.69 76.70 103.68 117.38  optARL  0.00 0.01 0.01 0.01 

(0.1,0.1) r 0.3 0.1 0.1 0.1 (1.5,1.5) r 0.1 0.1 0.05 0.05 

 optARL  2.73 3.72 4.35 4.63  optARL  23.07 31.23 39.24 43.57 

(0.2,0.2) r 0.1 0.1 0.1 0.1 (2,2) r 0.3 0.1 0.1 0.1 

 optARL  5.13 6.24 7.27 7.79  optARL  9.95 12.96 15.69 17.31 

(0.5,0.5) r 0.05 0.05 0.05 0.05 (5,5) r 0.5 0.5 0.3 0.3 

 optARL  16.82 21.06 25.60 27.74  optARL  1.30 1.76 2.21 2.44 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.5 0.5 0.5 0.5 

 optARL  54.62 80.70 106.53 120.56  optARL  0.31 0.45 0.57 0.66 

(0.8,1.5) r 0.3 0.1 0.1 0.1 (0.2,5) r 0.5 0.5 0.5 0.5 

 optARL  4.87 6.03 7.13 7.48  optARL  0.00 0.00 0.00 0.00 

(0.5,2) r 0.5 0.3 0.3 0.3 (0.1,10) r 0.1+ 0.3+ 0.3+ 0.3+ 

 optARL  0.55 0.76 0.99 1.09  optARL  0.00 0.00 0.00 0.00 

 

 

Table C-2 The optimal design scheme when  =0.3  



Appendix C 
 

 
 

168 

 

 

1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.3 0.3 0.3 0.3 (1.2,1) r 0.1 0.02 0.02 0.02 

 optARL  0.79 1.12 1.43 1.58  optARL  43.23 63.82 83.82 94.56 

(0.2,1) r 0.3 0.3 0.3 0.3 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  2.09 2.77 3.45 3.81  optARL  16.04 22.01 26.53 28.87 

(0.3,1) r 0.1 0.1 0.1 0.1 (1.8,1) r 0.1 0.1 0.1 0.1 

 optARL  4.12 5.18 6.00 6.44  optARL  9.00 11.72 13.73 14.82 

(0.4,1) r 0.1 0.1 0.1 0.1 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  6.10 7.90 9.17 9.94  optARL  6.95 8.72 10.30 11.00 

(0.5,1) r 0.1 0.1 0.1 0.05 (2.5,1) r 0.3 0.3 0.3 0.3 

 optARL  9.29 12.29 14.56 16.08  optARL  3.77 4.78 5.74 6.27 

(0.6, 1) r 0.1 0.05 0.05 0.05 (3, 1) r 0.3 0.3 0.3 0.3 

 optARL  14.64 19.19 23.02 25.01  optARL  2.43 2.93 3.60 3.83 

(0.7,1) r 0.05 0.05 0.02 0.02 (4,1) r 0.5 0.5 0.5 0.3 

 optARL  23.51 32.13 39.41 43.13  optARL  1.17 1.53 1.87 1.97 

(0.8,1) r 0.02 0.02 0.02 0.02 (5,1) r 0.5 0.5 0.5 0.5 

 optARL  39.72 55.89 71.04 80.48  optARL  0.66 0.88 1.07 1.22 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.5 0.5 0.5 0.5 

 optARL  70.99 114.27 164.18 193.90  optARL  0.10 0.14 0.19 0.21 

(0.1,0.1) r 0.3 0.3 0.3 0.3 (1.5,1.5) r 0.1 0.05 0.05 0.05 

 optARL  2.28 2.99 3.75 4.17  optARL  20.17 29.59 36.80 40.04 

(0.2,0.2) r 0.1 0.1 0.1 0.1 (2,2) r 0.1 0.1 0.5 0.1 

 optARL  4.46 5.65 6.54 6.97  optARL  9.09 12.05 14.39 15.51 

(0.5,0.5) r 0.05 0.05 0.05 0.05 (5,5) r 0.5 0.5 0.5 0.5 

 optARL  15.47 19.75 23.68 25.68  optARL  1.03 1.37 1.69 1.87 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.8 0.8 0.1 0.5 

 optARL  52.88 77.37 101.41 114.67  optARL  0.23 0.30 0.40 0.44 

(0.8,1.5) r 0.1 0.1 0.3 0.1 (0.2,5) r 0.5 0.5 0.5 0.5 

 optARL  9.88 12.96 15.48 17.06  optARL  0.05 0.08 0.12 0.14 

(0.5,2) r 0.3 0.3 0.5 0.3 (0.1,10) r 0.5 0.5 0.5 0.5 

 optARL  2.30 3.02 3.62 3.98  optARL  0.00 0.00 0.00 0.01 

 

 

Table C-3 The optimal design scheme when  =0.5  
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.3 0.3 0.3 0.3 (1.2,1) r 0.02 0.02 0.02 0.01 

 optARL  2.09 2.76 3.42 3.76  optARL  55.55 85.73 117.08 133.87 

(0.2,1) r 0.1 0.1 0.1 0.1 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  4.64 5.63 6.54 6.90  optARL  24.56 31.80 40.97 44.76 

(0.3,1) r 0.1 0.1 0.1 0.1 (1.8,1) r 0.1 0.1 0.1 0.1 

 optARL  7.03 8.67 10.16 10.80  optARL  14.21 17.75 21.76 23.89 

(0.4,1) r 0.1 0.1 0.05 0.05 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  10.47 13.26 15.87 16.92  optARL  10.88 13.67 16.14 17.40 

(0.5,1) r 0.05 0.05 0.05 0.05 (2.5,1) r 0.3 0.3 0.1 0.1 

 optARL  15.49 19.63 23.48 25.44  optARL  6.24 8.04 9.77 10.45 

(0.6, 1) r 0.05 0.05 0.02 0.02 (3, 1) r 0.3 0.3 0.3 0.3 

 optARL  22.81 29.89 36.69 40.43  optARL  4.23 5.17 6.24 6.78 

(0.7,1) r 0.02 0.02 0.02 0.02 (4,1) r 0.5 0.5 0.3 0.3 

 optARL  34.22 46.20 57.98 64.58  optARL  2.25 2.84 3.41 3.71 

(0.8,1) r 0.02 0.01 0.01 0.01 (5,1) r 0.5 0.5 0.5 0.5 

 optARL  52.71 76.27 101.39 114.85  optARL  1.41 1.80 2.16 2.37 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.5 0.5 0.5 0.5 

 optARL  82.03 139.73 213.48 259.65  optARL  0.36 0.44 0.55 0.58 

(0.1,0.1) r 0.3 0.3 0.3 0.3 (1.5,1.5) r 0.1 0.1 0.05 0.05 

 optARL  1.41 1.86 2.28 2.50  optARL  18.79 24.91 30.55 33.50 

(0.2,0.2) r 0.3 0.1 0.1 0.1 (2,2) r 0.3 0.3 0.3 0.1 

 optARL  3.38 4.46 5.15 5.42  optARL  7.38 9.82 11.81 12.63 

(0.5,0.5) r 0.05 0.05 0.05 0.05 (5,5) r 0.8 0.5 0.5 0.5 

 optARL  12.88 16.06 18.93 20.31  optARL  0.63 0.84 1.06 1.15 

(0.8,0.8) r 0.01 0.01 0.01 0.01 (10,10) r 0.8 0.8 0.8 0.8 

 optARL  47.20 66.93 86.57 96.66  optARL  0.11 0.14 0.18 0.18 

(0.8,1.5) r 0.05 0.1 0.05 0.05 (0.2,5) r 0.5 0.5 0.5 0.5 

 optARL  18.68 24.10 29.31 32.22  optARL  0.49 0.68 0.84 0.94 

(0.5,2) r 0.3 0.1 0.1 0.1 (0.1,10) r 0.5 0.5 0.5 0.5 

 optARL  5.86 7.33 8.41 9.13  optARL  0.06 0.10 0.13 0.15 

 

 

Table C-4 The optimal design scheme when  =0.8  
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1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 
1 2

1 2

,
 

 

  
 
 

 0ARL  100 200 370 500 

(0.1,1) r 0.3 0.3 0.3 0.3 (1.2,1) r 0.05 0.02 0.01 0.01 

 optARL  2.39 3.11 4.06 4.27  optARL  57.50 90.15 123.71 142.89 

(0.2,1) r 0.1 0.1 0.1 0.1 (1.5,1) r 0.1 0.05 0.05 0.05 

 optARL  5.11 6.12 7.22 7.64  optARL  25.54 34.92 43.57 48.11 

(0.3,1) r 0.1 0.1 0.1 0.1 (1.8,1) r 0.1 0.1 0.05 0.05 

 optARL  7.56 9.42 11.30 12.10  optARL  15.04 19.32 23.75 25.96 

(0.4,1) r 0.1 0.1 0.05 0.05 (2,1) r 0.1 0.1 0.1 0.1 

 optARL  11.25 14.40 17.06 18.46  optARL  11.57 14.57 17.58 19.13 

(0.5,1) r 0.05 0.05 0.05 0.05 (2.5,1) r 0.3 0.3 0.1 0.1 

 optARL  16.57 21.09 25.16 27.76  optARL  6.73 8.32 10.62 11.09 

(0.6, 1) r 0.05 0.05 0.02 0.02 (3, 1) r 0.5 0.3 0.3 0.3 

 optARL  23.89 32.28 39.78 43.24  optARL  4.45 5.51 6.84 7.11 

(0.7,1) r 0.02 0.02 0.02 0.02 (4,1) r 0.5 0.5 0.3 0.3 

 optARL  36.01 49.35 62.41 69.01  optARL  2.36 2.97 3.82 3.88 

(0.8,1) r 0.02 0.01 0.01 0.01 (5,1) r 0.5 0.5 0.5 0.5 

 optARL  54.65 80.21 108.00 122.06  optARL  1.47 1.83 2.38 2.39 

(0.9,1) r 0.01 0.01 0.01 0.01 (10,1) r 0.8 0.8 0.8 0.8 

 optARL  82.35 143.41 223.00 274.01  optARL  0.38 0.46 0.65 0.61 

(0.1,0.1) r 0.5 0.5 0.5 0.5 (1.5,1.5) r 0.1 0.1 0.05 0.05 

 optARL  0.73 1.06 1.41 1.47  optARL  15.47 20.18 25.15 27.27 

(0.2,0.2) r 0.3 0.3 0.3 0.3 (2,2) r 0.3 0.3 0.1 0.3 

 optARL  2.18 2.78 3.56 3.68  optARL  5.84 7.43 9.52 10.11 

(0.5,0.5) r 0.1 0.1 0.1 0.1 (5,5) r 0.8 0.8 0.5 0.8 

 optARL  10.08 12.66 15.07 16.34  optARL  0.37 0.48 0.69 0.68 

(0.8,0.8) r 0.02 0.02 0.02 0.01 (10,10) r 0.8 0.8 0.8 0.8 

 optARL  40.45 57.05 72.60 81.68  optARL  0.04 0.05 0.09 0.07 

(0.8,1.5) r 0.05 0.05 0.05 0.05 (0.2,5) r 0.5 0.5 0.3 0.5 

 optARL  23.01 30.39 36.84 41.38  optARL  0.95 1.17 1.59 1.58 

(0.5,2) r 0.1 0.1 0.1 0.1 (0.1,10) r 0.5 0.5 0.5 0.5 

 optARL  8.07 9.92 11.86 12.55  optARL  0.19 0.24 0.34 0.32 

 

 

Table C-5 The optimal design scheme when  =1  


