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Summary

This thesis presents development of a set of high order, high resolution numerical meth-

ods for efficient solution of inviscid and viscous compressible flows. Numerical methods

are developed by considering finite information propagation within the elements over a

give time integration step. Spatial discretization schemes of up to 5th order accuracy

have been developed and successfully tested for unstructured grids. The concept is also

extended for computing the solution gradients at the element interface, thereby providing

the framework to perform viscous computations. Numerical experiments demonstrate

that the proposed schemes can reproduce higher order characteristics in all the cases.

Based on the experience in development of these spatial discretization schemes, a higher

order adaptive time stepping algorithm is formulated. The proposed algorithm is simple,

efficient to implement and has a significant reduction in computational cost.

A preliminary investigation was conducted for influence of solution at element bound-

aries in the presence of shocks. The analysis highlighted that the onset of spurious

oscillations indeed occur at the element boundary while the internal solutions still remain

smooth. This behavior of numerical schemes was exploited to formulate a high resolution

WENO shock capturing scheme. Adaptive methods are formulated to selectively apply

the costly WENO procedure only for those elements with high solution oscillations. The

high resolution property of the new WENO scheme is demonstrated with various examples

involving inviscid shock interactions.

The entire set of numerical methods developed in this work are tested on viscous com-

pressible flow problems involving aero-acoustic sound generation. In all cases, the results

were comparable to the existing experimental results, thus demonstrating the applica-

bility of the proposed scheme in simulating complex non-linear flow problems involving

shock interactions, aerodynamic sound generation, etc..
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Chapter 1

Introduction

Fluid dynamics is governed by a set of non linear equations that admit a wide range

of physical phenomena involving multiple scales. The early work of Claude-Louis

Navier and George Gabriel Stokes on the inclusion of viscous terms led to currently

widely known equation set representing the fluid dynamics. Based on their con-

tributions, these equations were named as the Navier-Stokes (NS) equation. The

inherent complexities of these equations makes it extremely difficult for obtaining

analytical solutions for even a slightly complicated configuration. Before the inven-

tion of computers, numerical solution of NS flow problem was virtually impossible.

With the invention of computers, this enormous task of numerical computations

was allocated to computers, resulting in some of the earliest known Computational

Fluid Dynamics (CFD) simulations.

The daunting task of CFD has always been to make a compromise between

the approximations on representation of fluid flow and the available computational

power. The most accurate method to solve a fluid flow problem would be Direct

Numerical Simulation (DNS), in which, the NS equations are solved in its exact

form without any approximations. A DNS computation is accurate only if it can

capture and represent all possible scales in the fluid flow being simulated. As the

dynamics of flow intensifies, the length scales become much smaller, resulting in

higher grid resolution requirements for DNS. This makes the DNS computations

impractical for simulating real life flows. The limited computational power results
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in under-resolution of the smaller length scales. These unresolved length scales are

represented using appropriate fluid flow models. Some of them in the order of in-

creasing computational cost are: Reynold’s Averaged NS (RANS) equation models,

Detached Eddy Simulation (DES) models and Large Eddy Simulation (LES) mod-

els. In spite of RANS models having the lowest computational cost requirement,

the first 3D RANS based computation of a complete aircraft was computed only

in the year of 2007[4].

With the steady increase in computational power, the current trend is shifting

towards the application of LES and DES methods for practical flow problems that

are predominantly unsteady in nature. These schemes rely mainly on the resolution

capabilities of the numerical scheme rather than the approximation of underlying

equations as in the case of RANS simulations. Recent years has witnessed an

increasing trend in application of various numerical schemes to LES methods [5, 6,

7, 8, 9, 10, 11, 12] with applications on multi-scale problems involving turbulence,

shocks and acoustics etc. Due to the increased application of methods such as LES,

DES and DNS, the demand for numerical accuracy also increases. A quick analysis

of the trend of numerical schemes shows a great interest in the popularity of higher

order numerical schemes in recent years. However, the higher order schemes still

face the common hurdles of a CFD simulation namely stricter stability condition,

time step restriction and the handling of solution discontinuities.

There is still a huge demand for unified, efficient numerical schemes to compute

complex multi-scale solutions with acceptable accuracy. The current work is hugely

motivated by this requirement of high resolution schemes for the solution of NS

equations.
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1.1 Background

1.1.1 Historical developments in CFD

Complex flows consisting of vortex interactions, propagation of vortex structures,

acoustic sound generation etc. involve convection and interaction of the flow struc-

tures in large domains over prolonged periods of time. The numerical schemes

approximating these flows need to represent the evolution of the flow structures

with adequate accuracy. This has been the unending task of researchers in the

field of CFD. The major portion of any CFD tool comprises of techniques for

spatial and temporal approximations.

The earliest known CFD computation was accomplished using finite difference

(FD) method in early 1940s. Since then, various techniques were developed that

changed the course of applied CFD. One of the significant milestones was achieved

by Mac Cormack (1969) [13] with his development of the predictor-corrector scheme

along with the artificial viscosity term to handle flows with strong gradients. The

simplicity and effectiveness of the scheme led to wide spread application of the

scheme to CFD and has been taught to students even now. However, one of the

important problem in CFD is the handling of transonic flows. Based on the domain

of dependence of the solution at a given point, the governing equations of fluid

dynamics can exhibit elliptic, parabolic and hyperbolic characteristics depending

on whether the flow is subsonic, transonic or supersonic. Murman and Cole (1971)

[14] handled this problem by using a mixed elliptic-hyperbolic equation to describe

the fluid flow. The hyperbolic and elliptic regions are solved using different finite

difference techniques based on windward and central differencing. The significance

of the method is that it is the first method to use the physical wave propagation

characteristics to accurately model the underlying flow behaviour.

The shock capturing methods were further enhanced with the well known con-

tribution to the shock capturing methods by pioneer Jameson with the development

of Jameson Schmidt Turkel (JST) [15] scheme for the Euler equations. The JST
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scheme used Runge Kutta time stepping method and a mix of second and fourth or-

der differences to control oscillations and to provide dissipation. Jameson showed

that the scheme can consistently converge to a steady state solution for a wide

range of problems.

Application of early CFD tools to practical problems were limited by the avail-

able computational power in terms of speed and memory. In the early 1970s, the

first three dimensional computation of a hypersonic shock-boundary-layer interac-

tion was carried out using the Mac Cormack scheme. The domain was adapted

to capture only the relevant physics and resulted in a pyramidal mesh system of

(8 × 32 × 36) bounded by a flat-plate and a wedge. Though the total number

of points was a mere 9216, it consumed nearly all of the available computational

memory at that time.

As the computational power advanced to new levels, the field of CFD witnessed

significant improvement in computational techniques and application to large scale

problems. The quest for highly efficient numerical schemes was actively undertaken

by the highly creative CFD community. Various solution acceleration techniques

were developed on various fronts to reduce the computational cost. The Alternating

Direction Implicit (ADI) schemes [16] were applied to Navier Stokes equation in

1971 by Briley et. al. [17] for solution of incompressible Navier Stokes equation.

Jameson implemented the popular “Dual time stepping” method [18] in which the

intermediate equation arising from the implicit formulation is solved by introducing

a pseudo-time marching scheme using multi-grid acceleration.

During 1970s, almost all of the CFD solvers were written for structured grids.

The use of structured grids results in simplified solvers and easier optimization for

computational speed. Geometric flexibility is achieved by using multi-block grids in

which the domain is divided into simple structured blocks. Though the schemes are

computationally efficient, topological restrictions on the grids makes it increasingly

difficult to define complex geometries and often results in unnecessary points due

to clustering of grid points at a particular region. As a result, an undesirably
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large amount of time is devoted to grid generation and problem setup compared to

the actual solution time. With CFD being increasingly applied to very large scale

problems involving complex geometries, the topological restrictions of structured

grids became a huge bottle neck in arriving at solutions. As an example, the first

F-16A aircraft simulation took 11 months to generate the three-dimensional grids

while it took just 3 months to run the actual simulation. The Finite Volume (FV)

schemes are a class of numerical methods which are constructed by applying the

integral form of the NS equations on the control volume. With the application of

Gauss divergence theorem, the volume integral of the spatial terms are conveniently

represented in terms of the integrals of surface fluxes. Due to the piecewise nature

of the FV formulation, the solution states and hence their corresponding fluxes

could be discontinuous at the element boundary. With the availability of solution

states at either side of the boundary, an exact or approximate Riemann solver

[19, 20, 21, 22] is used to obtain unique solution states and fluxes at the boundary.

The resulting unique fluxes at the element boundaries are used to evaluate the

surface integrals and thus provide the closure for formulation of FV schemes. The

second order FV schemes traditionally enjoyed great popularity because of the

involvement of only immediate neighboring elements for flux reconstruction. With

its compact stencil and the conservative integral formulation, the second order FV

schemes were readily extended to unstructured meshes [23, 24, 25, 26, 27, 28] in

the early 1980s.

1.1.2 Recent developments in spatial schemes

The unstructured second order FV schemes dominated the field of CFD for over

two decades. Their small memory footprint and relative simplicity enabled various

solvers to adopt the scheme readily. The schemes are also stable and can handle

shocks with the help of suitable limiters. In spite of these advantages, they suffer

from an important property, characteristic of lower order schemes. These schemes

often require very large number of grid points to achieve grid-independent solutions.
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In other words, the convergence of the numerical solution to the actual solution is

very low for lower order schemes. This is specifically the case for Direct Numerical

Simulation (DNS), where the accuracy of the schemes play an important role in

the solution outcome.

Higher order schemes, have higher rate of convergence of the numerical solution

to the actual solution as the grid is progressively refined. This property enables

the higher order schemes to achieve an accurate solution in a relatively coarse grid.

Since the higher order schemes involve additional terms in solution/function ap-

proximation, the computational cost can be significantly larger than the lower order

counterparts for the same number of volumes or elements. However, this difference

in the computational cost is compensated by the grid-convergence property of the

higher order scheme. If we compare the accuracy of the solution with respect to

the net computational time taken, it will be obvious that the higher order schemes

indeed has significant advantages over lower order schemes.

The higher order schemes, with their obvious advantage of having lower disper-

sive and diffusive errors and a higher rate of grid convergence, have been extensively

developed and applied to various flow problems in the last decade. The initial devel-

opment of higher order schemes were focused on structured grids [29, 30, 31, 32, 33].

The difficulty in structured grid generation is circumvented to some extent by over-

set schemes [8, 34, 35] which allow non-conforming grids to overlap with each other.

Due to the interpolation involved between the overlapping grids, these methods

have difficulties in extension to high orders, especially in presence of shocks and

discontinuities in the solution.

The Finite Element (FE) community for long has adopted the unstructured

meshes. FE schemes were primarily developed to solve linear problems involved in

Structural analysis, Computational ElectroMagnetics (CEM) etc.. The fundamen-

tal equations for CFD, on other hand, are non-linear in nature. The appearance of

discontinuities in flow solutions further complicate the FE spatial discretizations,

which were initially formulated for smooth solutions. The Spectral Element (SE)
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[36, 37] method, which is similar to FE method, were applied for DNS and LES

problems due to their very high resolution property. But, similar to FE methods,

the SE methods also require the solution to be smooth. A few attempts [38, 39]

have been made to use SE method for computing solutions with discontinuities

with limited success.

The FV methods can inherently support the discontinuous solutions across the

element. In spite of their advantage over the FE methods in treating the discontin-

uous solutions, the FV schemes suffer from their difficulty when extending to higher

order schemes. Since a typical FV scheme stores only the average cell values, it be-

comes increasingly complicated to interpolate the flux and solution values to high

order of accuracy. These constraints often limit the application of unstructured

FV schemes to second order. It is due to this complexity that the unstructured FV

schemes formulated using higher order flux reconstructions (more than 3rd order)

are less common in the literature[40, 41, 42, 43].

Over the last few years, the CFD community has witnessed the development of

various methods that can be easily extended to very high orders and at the same

time have flexibility in representation of complex geometries. Schemes that have

a compact stencil (depend only on immediate neighbors), are increasingly favored

due to the ease of implementation and parallelization. The Discontinuous Galerkin

(DG) method [44, 45] is one such method, which has combined the inherent ad-

vantages of both the FV and the FE methods. Similar to the FV method, DG

schemes can support discontinuous solutions at the element interface and is con-

servative in nature. At the same time, akin to FE methods, the DG schemes can be

easily extended to higher orders by changing their basis function set to represent

the solutions. Schemes with similar properties such as Spectral Difference (SD)

method [46], Spectral Volume (SV) Method [47] etc. have also been developed for

CFD. The Spectral Difference method uses a set of solution and flux points to in-

terpolate the fluxes and solution inside an element. The Spectral Volume method

on the other hand, divides the element space into sub-cells. These sub-cells are
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used to interpolate the fluxes required for solution evolution. In both the SD and

SV methods, the fluxes at element boundaries are formulated with the appropriate

Riemann fluxes.

With their unstructured nature, schemes like DG, SD and SV automatically

support the h-adaptation, which can be achieved in a variety of ways. Also, since

these schemes depend only on the Riemann solutions at the boundaries, they can

support different orders of accuracy between the neighboring elements. This pro-

vides a mean to refine the local order of accuracy with respect to the variation of

solution, which is commonly denoted as p-refinement. Various applications of the

localized h and p adaptation methods can be found in the literature [48, 49, 50].

Due to their geometric flexibility, hp adaptivity, ease of mesh generation and simple

parallelization properties, it is expected that the higher order unstructured schemes

such as DG, SD and SV methods will eventually replace the traditional lower order

methods and schemes based on structured grids [4].

1.1.3 Efficient time stepping schemes

Even when the spatial resolution is improved, the numerical schemes for CFD face

further hurdles in terms of temporal resolution. In a spatio-temporal simulation,

the errors generated in spatial and/or temporal discretization can increase expo-

nentially and corrupt the solution. Thus, a scheme with very high spatial accuracy

can produce accurate results only when it has a temporal scheme of adequate ac-

curacy. The most common method of temporal discretization is the explicit time

discretization in which the temporal accuracy is obtained by evaluating a series

of backward Euler steps. Among many such schemes, the Runge Kutta schemes

enjoy high popularity due to their good stability conditions and ease of implemen-

tation. The conventional Runge Kutta time stepping schemes are restricted by the

stability condition given by the Courant Friedrichs Lewy (CFL) condition. The

CFL condition relates the maximum time step size for a numerical scheme to the

element size. The maximum allowable time step size is directly proportional to the
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ratio of local element size and maximum wave speed in that region.

For complex configurations, optimizing available computational resources often

involves the use of finer meshes at regions of interests while retaining a coarse mesh

in the rest of the computational field. In the case of fluid dynamics, the resolution

of flow field is of higher importance in areas such as shocks, contact discontinuities,

boundary layers, flow separation etc.. Such requirement of mesh resolution are

also present in other applications such as electromagnetics, heat conduction etc..

The presence of elements of smaller size results in increased computational cost.

This is denoted as “grid induced stiffness”. Various schemes have been developed

in the last decade to avoid the problem of grid induced stiffness. These include the

Implicit-Explicit [51, 52, 53, 54] schemes and the multi-rate schemes. The Implicit-

Explicit schemes increase the global time step size by using implicit schemes for the

computationally expensive stiff regions and use explicit schemes for other regions.

The entire solution is marched with a constant time step size. However, for a

multi-scale simulation, certain regions such as turbulent boundary layers, require

adequate temporal resolution along with the spatial resolution. For such regions, a

choice of large time step size would result in inaccurate representation of underlying

physics. The primary advantage of the implicit schemes is hence not realized for

such cases. The multi-rate schemes use adaptive time stepping methods that can

support different time steps for different elements. Since they respect the local

time step size restriction of each element, they result in an accurate representation

of the time scale at stiff regions. One of the significant advantage of the multi-

rate schemes is the ease of adaptation and parallelization due to their explicit

nature. The multi-rate schemes can be categorized into local-time stepping schemes

[55, 56, 57] and multi-time stepping schemes. The local-time stepping schemes are

devised such that each element can have its own time step, independent of its

neighbors. The Multi-Time Stepping schemes (MTS), on the other hand, divide

the computational domain into blocks based on the element sizes. Each domain is

then evolved in time with its local time step limit. Special treatment is provided
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at the block-block interfaces in order to allow for different time steps across the

interface. These schemes are particularly attractive as they require minimal change

for implementation in the existing solvers. However, as pointed out in [58], the

multi-time stepping schemes that exist in the literature are limited to 2nd order

schemes.

The MTS schemes can further be classified into two categories based on the

treatment of solution evolution at block-block interfaces. In order to support dif-

ferent time steps across the block boundaries, the schemes can either use a spe-

cialized time stepping scheme at the block boundary [59, 60, 61] or use a layer

of supporting elements at the block boundaries [62, 63]. The latter is commonly

termed as domain splitting or domain decomposition methods. Lohner et. al. [62]

initially proposed one of the earliest multi-rate scheme using a domain splitting

method for solving hyperbolic equations. In his work, he used adaptive time steps

for two different domains while using an interpolation region to perform solution

updates between each block. One of the key point mentioned in [62] is the max-

imum speed of information (or error) propagation in a hyperbolic system. The

overlapping region of the domains are chosen such that the errors at overlapping

regions do not propagate into the domain interiors. Later, van der Ven et. al.

[63] implemented a similar scheme for curvilinear grids. He named the scheme as

multi-time stepping scheme. Though these schemes have high potential in terms

of simplicity and ease of implementation, they were demonstrated only on second

order finite difference schemes. Chauviere et. al. [64] proposed an MTS scheme

for higher orders where the entire mesh is marched with the desired time step and

the unstable (fine mesh) regions are later corrected using the available solution in

the coarse mesh. The drawback of this method is the requirement to compute the

entire solution more than once for a single time step. In all the domain splitting

schemes, the influence of the boundary conditions at the overlapping regions and

their effect on stability and accuracy were not studied in detail. The applicability

of the multi-rate schemes for higher order schemes (such as DG) is an interesting
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Figure 1.1: Reconstruction stencils for FV WENO schemes on unstructured trian-
gular meshes.

topic to be explored. The primary interest arise due to its various advantages such

as ease of implementation and independence of the adaptive time stepping scheme

on the nature of spatial and temporal discretizations.

1.1.4 Accurate shock capturing schemes

A major step in formulating any numerical scheme for CFD is the handling of

discontinuities arising in the flow solution. The lower order schemes, due to their

diffusive nature, can better handle the solution discontinuities compared to the

higher order schemes. The discontinuities themselves are first order in nature

as the solution gradients across the discontinuities are undefined. However, the

discontinuities often affect the accuracy of the solution in their vicinity rather

than just at the discontinuities themselves. The higher order schemes can exhibit

unphysical oscillations similar to that of the Gibb’s phenomenon [65, 66] in the

vicinity of these discontinuities. These oscillations can be further aggravated at

element boundaries. In many cases, these oscillations can cause the solution to

become unstable and hence eventually diverge.

Various schemes have been developed to handle these discontinuities in the flow

solution. These schemes have two common tasks: (i) identification of discontinuities

(ii) processing the flow solution to handle oscillations. The earliest shock capturing

schemes were proposed by Von Neumann and Richtmyer in 1950 [67] in which an
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artificial viscous term was added to the original set of equations. In this method, the

introduction of artificial viscosity eliminates the spurious oscillations generated at

regions of high gradients. Another common technique is to use limiters at the shock

region, thereby reducing the order of accuracy at the region near discontinuities[68].

These schemes are often restricted to second order accuracy and in some cases

may reach third order accuracy. Note that the order of accuracy in this context

pertains to the accuracy near the shock rather than accuracy of the shock resolution

themselves.

In the late 1990s, a new class of shock capturing scheme started to emerge.

These schemes reconstruct a smooth solution of given order of accuracy even in the

vicinity of discontinuities. This is achieved by sampling various realizations of the

solution and selecting the smoothest solutions. The Essentially Non Oscillatory

(ENO) and Weighted ENO (WENO) [69, 70] schemes are belong to this category.

While the ENO schemes choose the smoothest solution with a set of available

stencils, the WENO schemes reconstruct the solution as a linear combination of all

the stencil solutions weighted by a normalized smoothness factor. The overall order

of accuracy of the solution is hence preserved in these shock capturing schemes.

Due to the low numerical diffusion involved in these schemes, they are suitable

for multi-scale problems such as aero-acoustics. The WENO schemes have been

developed and tested for structured/unstructured Finite Volume (FV) [70, 41] and

DG [71] schemes.

The FV WENO formulation [71, 41] derives the smooth solution by reconstruct-

ing a smooth solution polynomial from the integral solution values of the neigh-

boring cells. Fig. 1.1 shows some reconstruction stencils used in a FV WENO

scheme. The stencil sizes increase with increase in order of the scheme. Unlike

the traditional FV method which uses the average value of the solutions within

the cell, the high resolution schemes such as DG, SV, SD etc. employ higher order

functional representation for the solution within the cells. For such schemes, the

FV WENO formulation would result in loss of resolution as the higher order infor-
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mation within the cell may be lost in the process of reconstruction. This renders

the reconstruction to be more diffusive since the finer structures within the cells

can not be resolved. Rather than using only the cell average values, it is possi-

ble to utilize the higher order solution available within the cells to reconstruct a

smooth solution. Such reconstruction stencils can be formed with much fewer el-

ements compared to the FV-WENO stencils. The Hermite WENO reconstruction

[72] proposed by Luo et. al. and the hierarchical reconstruction presented by Shu.

et. al. [1] focus on utilizing the higher order solution terms within the element.

The stencils in these cases are formed with only the immediate neighbors of the

element, thus utilizing a maximum of 3+1=4 elements for higher order reconstruc-

tion over the 2D triangle elements. Since the size of the stencils does not increase

with the order of the elements, the higher order sub-cell resolution of the flow

structures are preserved. The success of these compact WENO schemes depend on

their ability to address the solution oscillation within the elements. For schemes of

very high orders (≥ 5th order), these sub-cell oscillations become more significant

and influence the stability of the scheme to a greater extent.

1.2 Motivation

Any numerical scheme used to solve a hyperbolic equation system, is concerned

with propagation of waves. A close examination of the numerical schemes can

be conducted by examining the propagation of information within the discrete

elements. This could then provide us with valuable information for further im-

provement on the numerical schemes in the context of efficiency, accuracy and

stability. One of the major motivations for this work is to explore the possibility of

developing a new numerical method by analyzing their physical wave propagation

characteristics. Some of the notable areas of interest are listed below:
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1.2.1 Influence of discontinuous solutions at element inter-

face

The behaviour of numerical schemes are best understood by analyzing their solution

evolution at each explicit time step. At each time step, the numerical schemes

evolve their internal solutions with the information within the element and the

information obtained from the neighboring elements. While the internal solution

is readily available, the neighboring solutions can be discontinuous at the element

interfaces. A Riemann solver is then used at these interfaces to obtain the solution.

This forms the basis of temporal evolution in schemes such as DG, SD, SV etc.

The Riemann solution at the interface need not match the internal solution of the

element. In such cases, this difference can be regarded as an additional information

that will be propagating from the element interface into the element interior. Due

to the finite time step size and the wave propagation speed, this information can

influence only a finite region within the element interior. This influence has not

been taken into account in the existing numerical schemes. It is possible to obtain

approximations to the influence of the Riemann solutions over the element internal

solution. It will be interesting to study the characteristics of the numerical schemes

that consider the influence of Riemann solution on the internal solution.

1.2.2 High resolution shock capturing schemes

Given a smooth initial solution, our numerical experiments suggest that the onset of

sub-cell oscillations initially occur at the element boundaries. These oscillations are

typically localized to the faces of elements, while the rest of the internal elements

solution remain relatively smooth. This phenomena is also numerically confirmed

in this work. This provides us with an alternative approach to formulate a WENO

scheme. A reconstruction technique can be formulated to suppresses the oscillatory

solutions arising at element boundary at each time step before it has the chance

to propagate into the element interior. With this reconstruction technique, the

majority of the element solution can be re-used during the reconstruction process,
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resulting in very high resolution of shocks and associated flow structures.

1.2.3 Grid induced stiffness

Depending on problem requirements, the process of discretization can result in a

mesh of varying density. For a normal Euler backward time stepping scheme, the

maximum time step size is dependent on the smallest element in the mesh. In the

context of implicit time stepping schemes, a smaller element size would result in a

denser, stiffer matrix to invert. This increase in the stiffness of the problem due to

the geometry and its corresponding discretization is called “grid induced stiffness”.

The multi-time stepping schemes as described before, allow the time step size

to vary across elements. Of the various methods developed before, one of the inter-

esting method is the one proposed y Lohner et. al. [62]. In this method, he divided

the computational domain into blocks and used a “buffer” layer for interpolating

the values from one block to another. This buffer layer is updated at a specific

time interval such that the error from it’s boundary do not reach/contaminate the

interior solution. This method, however, was restricted to second order schemes.

By extending the same physical argument that the error in the element boundary

can propagate only a finite distance within a time step, it could be possible to

formulate a similar multi-time stepping method for higher order DG like schemes.

1.3 General plan of Research

This work is aimed at developing robust higher order numerical methods for accu-

rate simulation of Navier Stokes equations. The different objectives of this work

are listed as follows:

• Formulate a numerical scheme with element flux computation method ac-

counting for the influence of the Riemann solution at the boundary on the

element interior solution

15
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• Extend the new flux formulation to represent the viscous terms in NS equa-

tions

• Develop a high order adaptive multi-time stepping scheme based on wave

propagation characteristics of hyperbolic equations

• Formulate a compact WENO scheme for reconstruction of solutions in oscil-

latory regions by studying the onset of solution oscillations in a higher order

scheme

• Demonstrate the advantages of higher order schemes with two applications

in the direct computation of acoustic noise

1.4 Outline of Thesis

The thesis commences in Chapter 2 detailing the basic theory relevant to the numer-

ical approximation of the Euler equations based on Discontinuous Galerkin (DG)

spatial approximation and Runge Kutta (RK) temporal approximation. Here, the

higher order convergence properties of the RKDG method is demonstrated for an

inviscid compressible flow problem. Chapter 3 explores a new numerical solution

evolution method by considering the influence of the Riemann solution and fluxes

on the internal solution of the element. The wave propagation characteristics of the

numerical scheme is studied in detail for the 1D schemes. The method is further ex-

tended to unstructured grids in two dimensions. Based on the proposed scheme, a

one step method is formulated in Chapter 4 for computing the gradients required in

computing viscous flows. All the proposed schemes are tested for order of accuracy.

Chapter 5 details the development of higher order adaptive time stepping schemes

based on the wave propagation characteristics of hyperbolic equations. The sta-

bility of the proposed scheme and the validity of its application is demonstrated

with application to isentropic vortex evolution and cavity tone problems. Chapter

6 deals with one of the challenging problems of higher order methods: capturing
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discontinuities arising in the flow field. A new adaptive WENO formulation is pro-

posed for resolving a shock using a compact stencil and at the same time maintain

the order of the scheme in the vicinity of the discontinuities. The scheme is also

extended to three dimensional flows to demonstrate its applicability to real world

problems. Chapter 7 demonstrates the application of the proposed higher order

schemes in computing the acoustic tones of Cavity Tones and Reed problems. The

effectiveness of the schemes are tested in terms of their ability to reproduce the

acoustic tones arising from the flow. The thesis concludes with a summary and a

list of possible future work in Chapter 8.
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Chapter 2

Theoretical Background

In this chapter, we detail the numerical discretization process involved with com-

puting solutions for scalar hyperbolic equations. We begin the discussion with

the formulation of the widely used Runge Kutta Discontinuous Galerkin (RK-DG)

schemes [44, 73, 74] with application to inviscid Euler equations. Since a major

portion of the thesis involves development of new numerical methods for compu-

tation of inviscid and viscous flows, this chapter serves as an introduction to these

numerical methods.

The chapter begins with the description of the hyperbolic equations and the

process of discretization in space and time. Later, the spatial discretization tech-

nique using DG method is presented. A m-stage Runge Kutta time integration

technique is then applied on the DG scheme to march the solution in time. The

RK-DG scheme formulation is completed by defining the Riemann fluxes at the

cell boundaries. The property of the RK-DG method is demonstrated on standard

isentropic vortex evolution test problem and its grid convergence properties are

examined.

2.1 A general Hyperbolic equation system

A hyperbolic equation governs the propagation of information in space and time.

A general hyperbolic system is represented by
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∂Q

∂t
+∇ · ~F = 0 (2.1)

where Q is the solution and ~F is the corresponding flux vector. This equation sys-

tem represents temporal evolution of solution Q with respect to the flux quantities

~F . The hyperbolic system of equations in Eqn. (2.1) can also be written as

∂Q

∂t
+ ~a · ∇Q = 0 (2.2)

where ~a is the wave speed vector given by

~a =
∂ ~F

∂Q
(2.3)

The hyperbolic equation given in Eqn. (2.2) provides various interesting in-

sights:

1. The information travels at a finite wave speed.

2. The wave speeds can be directional. Or, in other words, the wave speeds can

have different values along different spatial coordinates.

3. For a given space, a maximum wave speed can be estimated and hence the

maximum distance a wave propagates within that space can be deduced.

The last information mentioned above is often used to fix the time step size of

the numerical schemes. The maximum distance travelled by the wave over a given

period is given by

d = a∆t (2.4)

where d is the distance of propagation and a is the magnitude of the wave speed ~a.

While solving the hyperbolic equation set, the given space is discretized into

smaller elements. Within this space, the maximum distance of wave propagation

can be estimated from Eqn. (2.4). For any numerical scheme to be physically

accurate, the information cannot bypass an element. For example, consider a one
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dimensional case with three adjacent elements of indices i−1, i and i+1 respectively.

The information from element i− 1 cannot travel to element i+1 without passing

through element i. If the size of the element is given by h, this gives us the relation

h ≥ amax∆t (2.5)

where amax corresponds to the maximum wave speed within the given space. Eqn.

(2.5) is required for ensuring continuous flow of information from one element to

another. The above relation can also be written as

Ch = amax∆t (2.6)

where C is the CFL condition.

2.2 Hyperbolic equations for inviscid flow

For the Euler equations, the conserved variables and the corresponding fluxes are

given by

Q =













ρ

ρui

ρe













Fj =













ρuj

ρuiuj + pδij

uj (ρe + p)













(2.7)

where ρ, ui, p and e are the density, velocity, pressure and internal energy of the

fluid respectively, and δij is the Kronecker delta function. The Euler equation is

closed with the equation of state given by

p = (γ − 1) ρ

(

e− 1

2
|u|2
)

(2.8)

where γ is the specific heat ratio (1.4 for air) and |u|2 is the velocity magnitude. The

wave speeds corresponding to the Euler equations are given by the corresponding

eigenvalues of the system. The eigenvalues pertaining to the Euler equations are
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{u, u+ c, u− c} where c is the speed of sound given by

c =

√

γ
p

ρ
(2.9)

2.3 Discontinuous Galerkin Method

2.3.1 Formulation of DG method

The finite difference schemes [21, 30, 31] solve Eqn. (2.1) in the difference form.

For the Finite Volume schemes [23, 15], Eqn. (2.13) is integrated over the element

Ω resulting in the following formulation:

ˆ

Ω

∂Q

∂t
dV +

ˆ

Ω

∇ · ~FdV = 0 (2.10)

which can be rewritten using the Gauss divergence theorem as

ˆ

Ω

∂Q

∂t
dV +

ˆ

∂Ω

~F · ~ndS = 0 (2.11)

where ∂Ω is the boundary of the cell Ω and ~n is the unit normal vector on the

surface respectively. The fluxes at the boundary need to be replaced with the

Riemann fluxes in order to allow distinction of solutions across the interface. This

results in the formulation as

ˆ

Ω

∂Q

∂t
dV +

ˆ

∂Ω

~H · ~ndS = 0 (2.12)

where ~H is the Riemann flux at the surface. This formulation is conservative in

nature and also can support discontinuous solutions across interface.

The DG formulation is obtained in a similar manner as that of the FV method.

An additional step is performed on the Eqn. (2.1) by multiplying the equation

with an arbitrary trial function ψ. The resulting equation set is given by

ψ
∂Q

∂t
+ ψ∇ · ~F = 0 (2.13)
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y

x

η

ξ

(0, 0) (1, 0)

(0, 1)

⇒

Figure 2.1: Transformation of a triangle element from physical (x, y) plane to
reference (ξ, η) coordinates.

Integrating over the element Ω and applying Gauss divergence theorem, we get

ˆ

Ω

ψ
∂Q

∂t
dΩ+

ˆ

∂Ω

ψ ~F · ~ndΓ−
ˆ

Ω

(∇ψ) · ~FdΩ = 0 (2.14)

Similar to the FV formulation, the flux ~F at the surface ∂Ω are replaced with the

Riemann flux ~H resulting in the DG formulation:

ˆ

Ω

ψ
∂Q

∂t
dΩ+

ˆ

∂Ω

ψ ~H · ~ndΓ−
ˆ

Ω

(∇ψ) · ~FdΩ = 0 (2.15)

2.3.2 Transformation from physical to reference element

Though the DG scheme in Eqn. (2.15) can be applied to elements of arbitrary

shape, in this work, we shall restrict ourselves to linear triangular type elements.

The DG formulation (Eqn. 2.15) is applied on the reference triangle defined in

terms of a reference coordinate system (ξ, η). The relation between the reference

coordinates (ξ, η) and the physical coordinates (x, y) is given by

x = x1 + (x2 − x1)ξ + (x3 − x1)η

y = y1 + (y2 − y1)ξ + (y3 − y1)η
(2.16)
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where (xi, yi) represent the physical coordinate of ith vertex of the triangle. Fig. 2.1

illustrates the transformation of a triangle from a physical (x, y) plane to a reference

(ξ, η) plane. The solution polynomial Q and flux polynomial ~F are defined in the

reference coordinate system. Appropriate transformations are applied to transform

Eqn. (2.15) from physical to reference plane. The solution Q may be represented

in polynomial form as

Q =

Nb
∑

i=1

αiφi = [α][φ] (2.17)

where αi is the coefficient corresponding to the polynomial spatial basis function

φi(ξ, η) and Nb is the number of basis functions used in representing the solution

Q. For convenience, we represent Eqn. (2.17) as

Q = [α][φ] (2.18)

where [α] = [α1, α2, α3, ...] and [φ] = [φ1, φ2, φ3, ...]. It should be noted that the

basis functions φi are functions of spatial coordinates while their coefficients αi are

functions of time t.

The minimum number of basis functions required for a pth degree polynomial

in two dimensions is given by

Nb =
(p+ 1)(p+ 2)

2
(2.19)

Note that p is the degree of solution polynomial Q while p denotes the pressure in

Eqn. (2.7).

The DG formulation is obtained by using the Nb basis functions φi as the trial

functions (ψ) in Eqn. (2.15). For simplicity, the resulting equation is expressed

using tensor notation, implying the summation of index appearing twice. On re-

placing the trial functions with the basis functions, the Eqn. (2.15) becomes

ˆ

Ω

φjφidΩ ·
dαi

dt
+

ˆ

Γ

φj
~H · ~ndΓ−

ˆ

Ω

(∇φj) · ~FdΩ = 0 (2.20)
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The solution states required in evaluation of Riemann fluxes are recovered from

Eqn. 2.18.

2.4 Temporal discretization

The order of temporal discretization should match the order of spatial discretization

for a scheme to be formally higher order accurate. Since the DG scheme can have an

arbitrary order of accuracy in space, here we use a temporal discretization scheme

that can be formulated to any higher order accuracy if required. For this work, a

low storage m-stage mth order Strong Stability Preserving Runge Kutta (SSP-RK)

[75, 76] scheme is used to march the Eqn. (2.20) in time. Consider a function

Ψ for which the first order time derivative is known. The m-stage SSP-RK time

integration scheme is given by

Ψ(0) = Ψn

Ψ(i) = Ψ(i−1) +∆t d
dt
Ψ(i−1)

Ψn+1 =
∑m

k=0Cm,kΨ
(k)

(2.21)

where Ψ(k) is the intermediate values of Ψ at kth RK stage and the coefficients Cm,k

of the m stage RK scheme are obtained as [75]

C1,0 = 1

Cm,k =
1
k
Cm−1,k−1, k = 1, . . . , m− 2

Cm,m = 1
m!

Cm,m−1 = 0

Cm,0 = 1−∑m−1
k−1 Cm,k

(2.22)

As previously mentioned, in order to maintain the overall order of accuracy, the

order of time integrator is matched with the spatial order of representation of the

solution Q in Eqn. (2.17).
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2.5 Interface Fluxes

The RK-DG scheme formulated above requires an exact or approximate Riemann

solver for computing the interface fluxes H . It is known that the Riemann solvers

have a significant influence in the resolution of the discontinuities [77]. The sen-

sitivity of the schemes to the interface fluxes become more significant for higher

orders (p > 2). Here, we consider two formulations for the Riemann fluxes: LLF

(Local Lax Friedrich) or Rusanov fluxes and the HLLC (Harten, Lax and van Leer

with Contact wave resolution) flux. These fluxes are chosen for their different

properties in the vicinity of strong shocks.

The formulation of HLLC flux [78] is given by

HHLLC =















































FL 0 ≤ sL

FL + sL (Q∗L −QL) sL ≤ 0 ≤ s∗

FR + sR (Q∗R −QR) s∗ ≤ 0 ≤ sR

FR 0 ≥ sR

(2.23)

where s is the wave speed estimate and the subscripts L, ∗ and R represent left,

intermediate and right states respectively. It is observed that for HLLC fluxes, the

choice of wave speed estimates sL, sR and s∗ plays a significant role in achieving

numerical stability and oscillation free solution. We use the wave speed estimates

as given by E.F. Toro [78]:

sL =Min(uL − cL, ū− c̄), s∗ = u∗ sR =Max(uR + cR, ū+ c̄) (2.24)

where, c is the speed of sound. The intermediate velocity u∗ is given by

u∗ = ū− 1

2

pR − pL

ρ̄c̄
(2.25)

where ρ̄, ū and c̄ are the averaged density, velocity and sound speed across the

interface
(

[̄] = 1
2
([]L + []R)

)

. For the computation of intermediate variables Q∗, the
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reader is referred to chapter 10 in [78]. The more diffusive LLF fluxes are computed

as

FLLF =
1

2
(FL + FR) +

s+

2
(QL −QR) (2.26)

where s+ is the maximum wave speed given by

s+ =Max(|uL|+ cL, |uR|+ cR) (2.27)

Compared to LLF flux, the HLLC flux can resolve the contact discontinuities more

sharply, thus resulting in a more accurate solution. Here, unless mentioned, the

HLLC flux is used for the formulation of interface flux ~H.

2.6 Order of error convergence

The order of convergence represents the rate of convergence of errors in the nu-

merical solution with respect to the resolution of the domain. Higher order of

(error) convergence is obtained by using higher order approximations for the so-

lutions and their fluxes along with higher order temporal discretization. The rate

of error reduction with respect to the element size is called the “grid convergence”.

This property can be explained by representing a numerical approximation in the

form of an one dimensional Taylor Series expansion. For a given function f(x), the

numerical approximation can be written as

f(x)h = f(x)exact + g1h+ g2h
2 + g3h

3 +O(h4) (2.28)

where f(x)exact is the exact value of the function, f(x)h is the approximated func-

tion on a grid with average spacing of h, gi is the ith error coefficient and O(hk) is

the error of order k. A scheme of order (p + 1) can represent the solution up to a

degree of p. Hence, the error coefficients g1, g2, g3, ...gp becomes zero in Eqn. (2.28).

Neglecting the errors of order higher than (p+ 1), Eqn. (2.28) can be generalized
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as

f(x)h,p = f(x)exact + gp+1h
p+1 (2.29)

where f(x)h,p is the function f(x)h approximated to a degree of p. The error in

numerical approximation ǫh,p is defined as the deviation of approximated function

f(x)h,p from the exact function f(x)exact. This error is related to the grid spacing

and the degree of approximation as

ǫh,p = ‖f(x)h,p − f(x)exact‖

or,

ǫh,p ∝ hp+1 (2.30)

The error term decreases at the rate of (p+ 1) with respect to decrease in h. This

rate of convergence of error term is taken to be the order of the underlying numerical

scheme. As it can be seen in Eqn. (2.30), the rate of error convergence increases

with increase in order of scheme. This property of higher order schemes enables it

to obtain a highly accurate solution on a coarse grid compared to the second order

schemes. While the error decreases at the rate of (p + 1), the computational cost

of the numerical scheme increases in a relatively slower rate.

The order of convergence for a numerical scheme can be estimated numerically

using the formula given in Eqn. (2.30). The actual order of accuracy of the

numerical schemes can be obtained by rewriting Eqn. (2.30) as

Op =
log
(

ǫh1,p

ǫh2,p

)

log
(

h1

h2

) (2.31)

or,

Op =
log (ǫh1,p)− log (ǫh2,p)

log (h1)− log(h2)
(2.32)

where Op is the numerical order of scheme which approximates the solution to

pth degree. Thus the order of (grid) convergence of the numerical scheme can be
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extracted by performing computations on a mesh with different element sizes (h)

and plotting the results in a log-log scale. This technique will often be used in this

work to test the convergence characteristics of the numerical schemes.

The actual order of convergence of the numerical scheme can be estimated by

performing two or more computations with different values of h. The numerical

order of accuracy of the function approximation is given by

(p+ 1)app =
ln
(

ǫh1,p

ǫh2,p

)

ln
(

h1

h2

) (2.33)

where (p + 1)app is the approximate order of the numerical scheme and ǫh,p is the

error corresponding to a solution obtained using a (p+1)th order scheme on a grid

with element size h. The numerical error norm can be maximum absolute error in

the domain (L∞ error) or the average of absolute value (L1 error) or the root mean

square value (L2 error).

Though the numerical scheme is designed to be formally (p+1)th order accurate,

it is often difficult to numerically reproduce the designed order. The non-linearity

in the equation set and the limitation of the numerical accuracy of the computers

can affect the numerical order of accuracy of the underlying discretization schemes.

This makes it imperative to estimate the actual order of the scheme compared to

the designed order of scheme. For this purpose, we use a time evolving solution to

obtain the numerical order of accuracy.

2.7 Numerical validation for RK-DG scheme

An isentropic vortex evolution is commonly used for Euler equations since the exact

analytical solution is known at all time. An isentropic vortex at a point (0,0) is

initialized by the following equations

ρ =

(

1− (γ − 1)β2exp (1− r2)
8γπ2

)
1

γ−1

(2.34)
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Order h L1 err. L∞ err. O(L1) O(L∞)

2 1 3.67e-3 1.42e-3
1
2

9.27e-4 2.93e-4 1.98 2.28
1
4

1.88e-4 6.87e-5 2.3 2.09

3 1 8.24e-4 4.06e-4
1
2

7.86e-5 2.08e-5 3.39 4.29
1
4

6.85e-6 3.75e-6 3.52 2.47

4 1 1.51e-4 3.75e-5
1
2

8.79e-6 4.75e-6 4.1 2.98
1
4

4.75e-7 3.15e-7 4.21 3.91

5 1 3.15e-5 1.09e-5
1
2

1.18e-6 4.18e-7 4.74 4.7

Table 2.1: Solution errors at t = 10 for convection of isentropic vortex

u = 1− βy

2π
exp

(

1− r2
2

)

(2.35)

v =
βx

2π
exp

(

1− r2
2

)

(2.36)

p = ργ (2.37)

where β is the strength of the vortex and r =
√

x2 + y2 is the distance from the

center of the vortex. A β = 3 is used in the present simulation. The computation is

performed in a periodic domain of size 10x10. The unstructured mesh is generated

using the open source mesh generator GMSH [79] with frontal algorithm. The

refined grids are obtained by splitting each triangle into four smaller triangles,

thereby reducing the grid size by 50%.

The numerical solutions obtained at time t = 10 are compared against the ana-

lytical solutions. The resulting solution errors obtained using the RK-DG method

are listed in Table 2.1. As described in Section 2.6, the rate of error reduction with

grid refinement increases with increase in order of the scheme. Thus, the higher

order schemes are able to attain very high accuracy in a relatively coarse grid com-

pared to the lower order schemes. As expected, the numerical order of convergence

differs slightly from the expected order of accuracy. However, the deviation from
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the designed order of the scheme decreases with mesh refinement. The numerical

schemes, however, are also constrained by the machine accuracy, thereby restricting

the reduction in solution error beyond a certain level of tolerance.

2.8 Summary

In this chapter the basic foundation for numerical methods is presented. The spatial

and temporal discretization methods are detailed along with the definition of inter-

face fluxes. The Discontinuous Galerkin method is chosen for spatial discretization

while Runge Kutta method is chosen for temporal discretization. Theory of error

reduction in numerical scheme is also presented along with numerical examples

illustrating the convergence characteristics of RKDG schemes on an isentropic vor-

tex evolution problem. Grid convergence tests show that the scheme indeed can

achieve the designed order of accuracy in all cases. The various components of the

numerical method described in this chapter will provide the building blocks of the

numerical schemes developed later in this work.
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Riemann solvers on Extended

Domains

It is known that the physical phenomenon represented by hyperbolic equations are

governed by propagation of waves within the medium. Very little consideration has

been given for analyzing the wave propagation characteristics within the element.

Most of the numerical methods intrinsically assume that the boundary Riemann

flux has an immediate influence on the internal solution. But, even within the

elements, for an explicit scheme, the information propagation (and hence the influ-

ence of the boundary) is restricted by the limited size of time step. In such cases,

only a part of the element in the vicinity of its boundary would be affected by

the Riemann solution, while the interior region away from the element boundary

remains unaffected.

In this chapter, we propose a new generalized method of flux approximation

for higher-order solution of hyperbolic conservation laws in which the Riemann

solution at the element boundary is represented as a correction to the internal

solution evolution process. The influence of this correction term on the inter-

nal solution is approximated based on the wave propagation characteristics of the

scheme. The numerical schemes are constructed by computing the fluxes based on

this approximated solution. The class of schemes formulated using the modified

31



Chapter 3. Riemann solvers on Extended Domains

a∆t

a

Figure 3.1: Region influenced by a perturbation traveling at a wave speed of a over
a time period of ∆t.

flux approximation is named as the Extended Riemann (ExRi) schemes. Optimally

stable schemes of up to 7th order accuracy are formulated in 1D and up to 5th or-

der accuracy are formulated for 2D triangular elements. The influence of Riemann

corrections on the wave propagation characteristics of the schemes are analyzed

by studying their dispersive and diffusive characteristics. Numerical tests show

that all the 1D and 2D schemes proposed here achieve the desired convergence

characteristics.

3.1 Theoretical Formulation

3.1.1 Wave Propagation Characteristics

A general hyperbolic equation is represented in conservative form as in Eqn. (2.1).

Here, we shall first consider the equation in one dimension to explain the proposed

concept. The hyperbolic equation in one dimension is given by

∂Q

∂t
+
∂F (Q)

∂x
= 0 (3.1)

where Q is the solution variable (in conserved form) and F (Q) is the corresponding

flux. Here, the source term is neglected for simplicity. The equation can also be

32



Chapter 3. Riemann solvers on Extended Domains

Qi

Qi+1

Si+ 1

2

Figure 3.2: Discontinuous solution at an interface.

expressed as a wave equation as

∂Q

∂t
+ a

∂Q

∂x
= 0 (3.2)

where the speed of wave propagation a is given by the Flux Jacobian

a =
∂F (Q)

∂Q
(3.3)

In equations Eqn. (3.2) and Eqn. (3.3), the characteristics of the hyperbolic equa-

tion Eqn. (3.1) is governed by the wave speed a, as this represents the propagation

of information from one point to another. For a one dimensional system with a con-

stant wave speed a, the region influenced by an arbitrary point over a time period

of ∆t is the region within a distance of a∆t along the direction of wave propaga-

tion. Fig. 3.1 illustrates the domain of influence for a linear hyperbolic equation

for a perturbation traveling from left to right over a time period ∆t. For non-linear

equations, an approximate estimate of the wave speed can be obtained for a very

small time step (∆t→ 0) by linearizing the equation at that time instance.
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3.1.2 Influence of Riemann Solution in a discrete element

Consider a discrete element over which the solution Q is approximated by Qi where

the subscript i represents the element index. The flux Fi with respect to element i

can be calculated from the solution Qi. At any given time instance, the solution at

an element interface is influenced by the internal solution of the element and the

corresponding neighbor sharing that interface. Hence, the flux Fi computed only

from the internal solution Qi is not sufficient to march the solution Qi as it lacks

the additional information from the neighbors. Due to the piecewise representation

of Qi, the neighboring solution information can be discontinuous at interfaces.

The discontinuous solutions represented by Qi and Qi+1 at the interface Si+ 1
2

is

illustrated in Figure 3.2. A Riemann solver is then used to obtain a solution across

such discontinuities. Assuming that we know an exact or approximate Riemann

solver for the given hyperbolic equation, the Riemann flux F̂ S at the interface S is

expressed as

F̂ S = H
(

QL, QR
)

(3.4)

where H(QL, QR) is the Riemann solver for the left and right states QL and QR.

To march the solution in time, an approximate flux F̃i should be calculated from

the internal flux Fi and the Riemann fluxes F̂ S
i . Note that the Riemann fluxes are

defined only at the element boundaries. The characteristics of the approximate flux

F̃i can be determined by analyzing the effect of Riemann solution on the element

interior. Let ∆t be the time period through which we need to evolve the solution Qi.

For an element with wave speed a, the region influenced by the Riemann solution

over a time period of ∆t is the region at a distance of a∆t from the interface. This

width of this region can be represented in terms of a non-dimensional number C

and the element width h as

C = a

h
∆t (3.5)

The formulation is synonymous with the definition of CFL number. However,

here, we allow the value of C to differ from the actual CFL number as will be
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Riemann Flux
Interior Flux

Approximated Flux

Interior RegionLeft Boundary Regionξ = 0 ξ = 0.5ξ = C

Figure 3.3: Illustration of modified flux for a 1D element. (the Riemann flux is
illustrated as a higher order flux)

explained later in the following sections. The width of the region influenced by

the Riemann solution at time instance t + ∆t can now be defined as Ch. Hence,

at time t +∆t, the Riemann interface flux F̂ S does not have any influence on the

interior solution Qi beyond a distance of Ch from the interface. This forms the

basis of the current formulation. The proposed formulation is firstly detailed for

one dimensional hyperbolic systems, and will be extended to multi-dimensional

systems further on.

We consider an element Ω bounded by its boundary given by ∂Ω. This boundary

consists of various interfaces denoted by S. Each interface is shared either with the

neighboring element, or, the computational boundary. Figure 3.3 illustrates the

availability of information across the left interface. For clarity, the local variable

ξ of the element is used and only the left half of the element is shown in the

figure. As illustrated in the figure, the approximate flux F̃i should respect the

Riemann solution F̂i at the corresponding interface. As one moves towards the

element interior, the approximate flux F̃i should gradually blend into the internal

flux Fi. The region where the influence of the Riemann solution at the interface

S is felt, is denoted as the boundary region ΩS and the region not influenced by
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the Riemann solution is denoted as the internal region Ωin. The nature of the

blending of approximate flux F̃i in the region ΩS cannot be defined exactly due

to the discontinuity at the interface. However, an approximate form of F̃i can be

derived based on the boundary conditions at the interface and the element interior.

To define the properties of the approximate flux F̃i, we expand the approximate

flux F̃i in terms of the internal flux Fi and a correction term Fi arising due to

Riemann fluxes at the element boundary. The approximate flux for an element is

expressed as

F̃i (ξ) = Fi (ξ) +

NS
∑

j=1

F j
i (ξ) (3.6)

where ξ is the local coordinate of the element, NS is the number of interfaces

(NS = 2 for 1D element) and FS
i is the Riemann correction corresponding to

interface S of ith element. By nature of definition, the Riemann flux correction FS
i

takes the form:

FS
i (ξ) = ω (ζS (ξ))

(

F̂S (ξS)− Fi (ξS)
)

(3.7)

where ω is an arbitrary blending function, ζS (ξ) is the coordinate transformation of

ξ in the region ΩS corresponding to the interface S. The transformed coordinate ζS

takes the value of 1 at the interface and decreases to zero towards the interior. As

an example, for a one dimensional element, the ζS coordinates can be represented

by the following formulations:

ζL (ξ) =

(

1− ξ

C

)

ζR (ξ) =

(

1− 1− ξ
C

) (3.8)

where ζL and ζR are the transformed coordinates corresponding the left and right

interfaces.

The flux correction term presented in this work [80] (Eqn. 3.7) is similar to

the generic “correction flux polynomial” detailed in the lifting collocation penalty

formulation by Wang. et. al. [81]. In the lifting collocation formulation a correc-

tion field is computed using polynomial interpolation techniques such as lagrangian
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interpolation. However, the current work, we emphasise on utilization of physical

wave propagation characteristics to model the flux correction and limiting the influ-

ence of flux correction to a localized region inside the element space. The resulting

scheme would be based on an analytical formulation that is computationally effi-

cient as compared to the lifting collocation method [81].

3.1.3 Properties of the blending function ω

To derive the properties of the blending function ω, we represent the solution

evolution in terms of the contributions from within the element and its neighbors.

For an arbitrary element, the solution evolution can be represented as

∂Qi (ξ)

∂t
=

∂Q∗
i (ξ)

∂t
+

Ns
∑

j=1

∂εji (ξ)

∂t
(3.9)

where ∂Qi/∂t and ∂Q∗
i /∂t are the solution evolution with respect to approximate

flux F̃i and internal flux Fi respectively using Eqn. (3.6). Note that the internal

flux Fi is computed using the original element solution Qi. The correction term

∂ε/∂t is represented in terms of the Riemann flux correction F as

∂εji
∂t

+
∂F j

i

∂x
= 0 (3.10)

It is important to note that while evolving the internal solution Qi, the corrected

time derivative ∂Qi/∂t (Eqn. 3.9) is used instead of the internal solution evolution

term given by ∂Q∗
i /∂t. It is possible to represent any higher order scheme in

the form of Eqn. (3.9). In the conventional methods, the correction term ε is

not explicitly decoupled as in Eqn. (3.9). In this work, we aim at modeling the

correction term in an explicit manner so that a uniform flux function is used for

solution evolution.

Formulation of the Riemann correction term F requires appropriate boundary

condition. Following the wave propagation characteristics within a given element,

it can be deduced that the Riemann flux correction F and its corresponding con-
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tribution to solution evolution ε should vanish as one moves a distance of Ch away

from the boundary. This gives us the resultant form of F as

∂nF
∂ξn

= 0 ξ ∈ Ωin, n = 0 . . . . (p+ 1) (3.11)

where p is the degree of solution representation and Ωin is the internal region not

influenced by the Riemann flux correction. At the interface itself, the Riemann

correction is given by

F j
i (ξ) = F̂S (ξ)− Fi (ξ) when ζ (ξ) = 1 (3.12)

Based on the equation Eqn. (3.7) and constraints given by Eqns. (3.11-3.12), the

conditions for the blending function ω are

ω (ζ = 1) = 1 (3.13)

∂nω

∂ζn
= 0 n = 0 . . . (p + 1), ζ 6 0 (3.14)

The influence of the Riemann solution always increases as one moves towards the

interface (ζ → 1 ). Hence, an additional constraint can be posed as

∂ω

∂ζ
> 0 0 6 ζ 6 1 (3.15)

The conditions given by Eqns. (3.13)-(3.15) can be satisfied by any suitable choice

of blending function. While a variety of choices are possible, in this work we restrict

to simple polynomial based blending functions. The formulations for 1D and 2D

schemes are detailed later in Sec. 3.2.2 and Sec. 3.3.1. With the definition of ω,

the Riemann correction F is now valid over a region ΩS rather than only at the

interface S. Equation 3.7 can be viewed as an approximate Riemann solver for the

boundary region ΩS .
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3.2 Implementation in 1D Schemes

In this section, the proposed method is formulated for a 1D element. Two different

solution evolution schemes based on Spectral-Difference like co-location scheme and

Discontinuous Galerkin schemes are tested. The current formulation is dependent

on the blending function ω and the resulting Riemann flux correction F . The wave

propagation characteristics and stability of the schemes are studied in detail using

dispersion-relation analysis [82, 83]. The formulated schemes are then tested for

accuracy and robustness on different problems.

3.2.1 Numerical approximation using Basis functions

For a higher order element, the internal solution Qi within the element can be

expanded with the help of basis function φ as

Qi = =

p+1
∑

j=1

φjα
i
j = [φ]T

[

αi
]

(3.16)

where αi
j is the coefficient of the basis function φj for element of index i. Note that

for the basis coefficient αi, the element index is in super-script while for the solution

Qi the element index is denoted in the subscript. The vectors are of length (p+1)

where p is the degree of approximated solution. The approximate numerical flux

F̃i for an element is given by the Eqn. (3.6). The fluxes can be treated explicitly

as two individual terms (Fi and Fi) or they can be treated as a single polynomial.

If the flux is approximated as a single polynomial, the Eqn. (3.1) becomes

∂Qi

∂t
+
∂F̃i

∂x
= 0 (3.17)

where ∂Qi/∂t is the modified time evolution with respect to the modified flux F̃i.

This will be used to advance the solution of element i at a given time step. If the

modified flux is treated explicitly in terms of Riemann correction F , the equation
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can be expanded as
∂Qi

∂t
+
∂Fi

∂x
+

NS
∑

j=1

∂

∂x

(

F j
i (ξ)

)

= 0 (3.18)

A scheme can be optimized to deal with the third term (in Eqn. 3.18), efficiently

while the second term can be handled by an exact or approximate method. Numer-

ical experiments suggest that the stability of the schemes are relatively insensitive

to the choice of approximation of the internal flux Fi and its corresponding solution

evolution term ∂Q∗
i /∂t.

3.2.2 Formulation of blending functions in 1D

The Riemann correction F can be defined by a suitable choice of blending function.

The blending function should satisfy the conditions given by Eqns. (3.13-3.15).

Many different choices of the blending function formulation can be established. For

example, trigonometric functions can be used to represent the smooth variation of

the function from 1 to 0. In this work, we adopt a polynomial function given by

ω (ζ) =











ζpω 1 > ζ > 0

0 ζ 6 0
(3.19)

where pω is the degree of the blending function. The degree of the blending func-

tions are taken to be equal to that of the flux reconstruction. The form of the

blending function ω results in simpler formulation of the derivative terms and sat-

isfies the constraints posed for formulating the blending function. An example of

the proposed blending function ω corresponding to the left and right interfaces in

a 1D element is illustrated in Figure 3.4.

With the formulation of the blending function, the modified/approximated flux

term F̃ can be formulated as a continuous function. Once the flux F̃ is available,

for any point within the element, we can write the equation Eqn. (3.17) as

[φ]T
[

dαi

dt

]

+
∂F̃i

∂x
= 0 (3.20)
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Figure 3.4: Illustrative plot of blending function ω for C = 0.35 and p = 4.

Riemann fluxes are used for the solution of the discontinuous states at the boundary.

For a 1D scalar wave equation with unit wave speed
(

∂Q

∂t
+ ∂Q

∂x
= 0
)

, the Riemann

fluxes for the left (F̂L) and right (F̂R) interfaces are given by

F̂L
i = Fi−1 (1)

F̂R
i = Fi (1)

(3.21)

Substituting 3.21 in 3.6, we get the full form of the flux as

F̃i (ξ) = FL
i (ξ) + Fi(ξ) + FR

i (ξ) (3.22)

where

FL
i (ξ) = ω (ζL (ξ)) (F̂

L
i − Fi(0)) (3.23)

and

FR
i (ξ) = ω (ζR (ξ)) (F̂R

i − Fi(1)) (3.24)
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Note that the flux corrections depends only on the correction term at the boundary

and decay towards the interior.

In the case of a scalar wave equation with unit wave speed, the internal flux is

given by

Fi = Qi = [φ]T [αi] (3.25)

3.2.3 Implementation in Numerical Schemes

There are different methods of spatial discretization for obtaining higher order

solution of hyperbolic conservation laws. Here we choose co-location and Galerkin

methods for demonstrating the proposed ExRi formulation in one dimension. The

standard blending function formulation given in Eqn. (3.19) is used throughout.

3.2.3.1 Method of Co-location

In the method of co-location, the quantities are sampled and evaluated at specific

co-location points. The solution is still represented in the basis expansion form.

However the polynomial approximation of a given function is achieved by minimiz-

ing the errors at the co-location points. An exact matrix inversion is used in cases

where the number of points are same as that of the number of coefficients in the

polynomial approximation. The resulting scheme is simular to using a lagrangian

interpolant. In situations of over-constrained system as in the current work (de-

tailed at the later part of this section), a least squares approach is used to minimize

the errors at co-location points.

In order to maintain the order of accuracy over all the terms in the equation,

the order of approximation of first order spatial derivative of flux should match

the order of approximation of solution state. To ensure this condition, the flux

functions should be reconstructed to at least one order higher than the order of

spatial approximation of solutions (and hence it’s time derivatives). In this work,

unless mentioned, we use NQ = p + 1 co-location points for the state variable Qi

and NF = p + 2 co-location points for reconstructing the flux F̃i. The co-location
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points are derived from a modified version of Chebyshev nodes given by

xj = cos
(

bjλ
1−|bj |

)

(3.26)

where λ is the scaling factor for the points and

bj =

(

2j

N − 1

)

− 1 (3.27)

with N as the number of points (NQ for solutions and NF for fluxes). The value of

λ affects the distribution of co-location points. The points are pushed towards the

extreme (0, 1) as λ increases. The original Chebyshev [7] nodes can be recovered

by setting λ = 1. This modification of the point distribution may be required to

make the scheme stable.

The fluxes can be expanded in terms of the flux basis function φF as

F̃i =
[

φF
]T [

βi
]

(3.28)

where βi is the basis coefficients corresponding to the flux basis function φF for

ith element. Note that the degree of reconstruction for the flux is (p+ 2). The

process of flux reconstruction includes the information from the neighbors through

the Riemann solution at the interfaces. For simple cases, the fluxes can also be

treated in an alternative form given by Eqn. (3.18). Here, we represent the flux as

in Eqn. (3.28). The flux coefficients β can be obtained by evaluating the flux at

the co-location points.

Once the reconstructed flux F̃i is available, the time derivatives can be computed

by solving the linear system of equations (Eqn. 3.20) at the co-location points. The

resulting equation will be

[φ]T
[

∂αi

∂t

]

+

[

∂φF

∂x

]T
[

βi
]

= 0 (3.29)
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The conservation is enforced by applying the Gauss divergence theorem given by

ˆ

Ω

∂Qi

∂t
dV = −

ˆ

∂Ω

F̂i · ~ndS (3.30)

where Ω is the element and S is the boundary with normal ~n. Constrained least

squares can be used to enforce the above condition. But, the computation can be

simplified by choosing the appropriate basis functions with the properties below

ˆ

Ω

φjdV = 0 j > 1 (3.31)

and

φ1 = 1 (3.32)

The properties of the basis functions remain unaffected as Eqn. (3.31) results in

addition of a constant value to the functions. In this work, we adopt a simple

polynomial basis function given by

[φ] =

(

1, ξ − 1
2
, ξ2 − 1

3
, ξ3 − 1

4
, ξ5 − 1

5
, ...

)

(3.33)

which satisfies the conditions given in Eqn (3.31) and (3.32). With this formulation

of basis functions, the conservation law in Eqn. (3.30) is given by

∂αi
1

∂t
= − 1

V

ˆ

S

F̂i · ~ndS (3.34)

The coefficients of the rest of basis functions are obtained as

p+1
∑

r=2

∂αi
r

∂t
φr = −∂F̃i

∂x
− ∂αi

1

∂t
(3.35)

where V is the volume of element Ω. Equation 3.34 can be evaluated as a con-

ventional finite volume method. Equation 3.35 can be evaluated at NQ co-location

points and the resulting linear system of equations can be solved to estimate the
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evolution of the state coefficients. However, in this case, a least square approxi-

mation is needed as the the system of Eqns. (3.35) would result in a rectangular

coefficient matrix of size (p+ 1)× p.

3.2.3.2 Obtaining matrix form of numerical scheme for scalar hyper-

bolic equation

The matrix form of the equations are required to perform the stability analysis

of the numerical schemes. In order to form the matrix equivalent of the original

hyperbolic equation, the fluxes and the solutions are expanded in terms of basis

functions. For clarity, we present the original hyperbolic equation as

∂Q

∂t
+
∂F

∂x
= 0 (3.36)

Upon discretization, the solution Q and the flux F are replaced by the discretized

solution Qi and the approximate flux Fi respectively as in Eqn (3.17). Here, we

consider a scalar hyperbolic equation with unit wave speed and assume that the

elements are of uniform size. For a scalar hyperbolic equation with unit wave

speed, the internal flux Fi is same as the solution Qi. Hence, the approximate flux

can be conveniently expressed as a linear combination of solutions Qi−1, Qi and

Qi+1. Considering wave propagation from left to right, the approximate flux (Eqn.

3.22-3.24) for the current case can be written as

F̃i (ξ) = ω (ζL (ξ)) (Qi−1(1)−Qi(0)) +Qi(ξ) + ω (ζR (ξ)) (Qi(1)−Qi(1)) (3.37)

or

F̃i (ξ) = ω (ζL (ξ)) (Qi−1(1)−Qi(0)) +Qi(ξ) (3.38)

The flux coefficients βi corresponding to the approximate flux F̂i is calculated by

evaluating the value of approximate flux F̃i (Eqn. 3.38) at each flux co-location
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point. The resulting matrix form is given by

[

βi
]

=
[

N−1
F

] [

αi−1
]

+
[

N 0
F

] [

αi
]

+
[

N+1
F

] [

αi+1
]

(3.39)

where N−1
F , N 0

F and N+1
F are the coefficient matrices corresponding to the (i−1)th,

ith and (i + 1)th elements. As the elements are of equal size, these coefficients do

not vary between elements.

With the solution and flux coefficients available, we can rewrite Eqn. (3.36) in

matrix form as

[φ]T
[

∂αi

∂t

]

+

[

∂φF

∂x

]

βi = 0 (3.40)

Evaluating the above equation at each solution point results in a matrix equation:

[NQ]

[

∂αi

∂t

]

+ [N∂F ]
[

βi
]

= 0 (3.41)

where NQ and N∂F are matrices created by evaluating the basis functions φ and
(

∂φF/∂x
)

respectively at the co-location points. These can be written as

(NQ)j,k = φk (ξj) k = 1 . . . (p+ 1)

(N∂F )j,k =
∂φF

k

∂x

∣

∣

∣

ξj

k = 1 . . . (p+ 2)
(3.42)

where the index j = 1...NQ represents the jth solution point and k is the index of

the basis function. The coefficient matrix NQ is of dimensions (NQ× (p+1)). The

coefficient matrix N∂F is of dimensions (NQ × (p+ 2)).

The complete matrix form is obtained by substituting 3.39 in equation Eqn.

(3.41) resulting in a matrix system given by

[NQ]

[

∂αi

∂t

]

+ [N∂F ]
([

N−1
F

] [

αi−1
]

+
[

N 0
F

] [

αi
]

+
[

N+1
F

] [

αi+1
])

= 0 (3.43)

Depending on the number of solution points considered, the inversion of the matrix

NQ might require a least squares inversion process. A least squares inversion of
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NQ would result in:

[

∂αi

∂t

]

+
[

N T
QNQ

]−1
[NQ]

T [N∂F ]
([

N−1
F

] [

αi−1
]

+
[

N 0
F

] [

αi
]

+
[

N+1
F

] [

αi+1
])

= 0

(3.44)

This can be rearranged in terms of the solution coefficients α as

[

∂αi

∂t

]

+
[

N T
QNQ

]−1
[NQ]

T [N∂F ]













[

N−1
F

]

[N 0
F ]

[

N+1
F

]













T 











[αi−1]

[αi]

[αi+1]













= 0 (3.45)

or,

[

∂αi

∂t

]

+













[

M−1
R

]

[M0
R]

[

M+1
R

]













T 











[αi−1]

[αi]

[αi+1]













= 0 (3.46)

In the case of uniform element size, the coefficient matrices MR is constant for

all the elements. This coefficient matrix will be used later for performing Fourier

stability analysis of the numerical schemes.

3.2.3.3 Galerkin Method

Here, we detail the implementation of Extended Riemann flux approximation in the

DG formulation. The Galerkin method is obtained by multiplying the governing

equations by an arbitrary trial function ψ and integrating over the element. The

conservation equation Eqn. (3.18) becomes

ˆ

Ω

ψ
∂Qi

∂t
dV +

ˆ

Ω

ψ
∂F̃i

∂x
dV = 0 (3.47)

47



Chapter 3. Riemann solvers on Extended Domains

By expanding Q̃i in terms of basis functions φ and applying Gauss divergence rule,

we get the classical Discontinuous Galerkin method as

ˆ

Ω

[

φφT
]

dV

[

∂αi

∂t

]

+

ˆ

S

[φ] F̃idV −
ˆ

Ω

[

∂φ

∂x

]

F̃idV = 0 (3.48)

The flux F̃i is expanded in terms of the internal flux F̃i and the Riemann Correction

F . This results in

ˆ

Ω

[

φφT
]

dV

[

∂αi

∂t

]

+

ˆ

S

[φ] F̂idV −
ˆ

Ω

[

∂φ

∂x

]

(Fi + Fi) dV = 0 (3.49)

The final equation in matrix form is obtained as

ˆ

Ω

[

φφT
]

dV

[

∂αi

∂t

]

+

ˆ

S

[φ] F̂idV −
ˆ

Ω

[

∂φ

∂x

]

FidV −
ˆ

Ω

[

∂φ

∂x

]

FidV = 0 (3.50)

Note that if the correction term (last LHS term) is removed, Eqn. (3.50) is reduced

to the classical DG formulation. The matrix form can further simplified as in Eqn.

(3.41) and eventually derived to a more generalized form as given in Eqn. (3.46).

3.2.4 Time Integration

Equation 3.46 provides us with the first order time derivative of appropriate accu-

racy of the scheme. To maintain the accuracy of the scheme, the order of accuracy

of the temporal scheme should match that of the spatial scheme. Higher order time

integrators should hence be used to yield a stable and accurate result. From Eqn.

(3.46), the global operator for the scheme can be expressed in a generalized from

as
d [ψ]

dt
= − [R] [ψ] (3.51)

where [R] is the global coefficient matrix obtained by assembling the coefficient

matrix [MR] and ψ is any arbitrary set of coefficients. Equation 3.51 is marched

using a low storage m-stage mth order Strong Stability Preserving Runge Kutta

(SSP-RK) [75, 76] scheme as detailed in Chapter 2. For a Linear hyperbolic equa-
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tion, since R is a constant, the time marching schemes represented by equation

2.21 can be combined as

[ψ]n+1 = [G] [ψ]n (3.52)

where [G] is called the amplification matrix. The Von Neumann condition states

that for a stable scheme the eigenvalues of G should lie within a circle of unit

radius (|G| < 1). However, this is only a necessary condition. For the scheme to be

completely stable, the the eigenvalues of R should not lie in the positive real axis.

3.2.5 Numerical Dispersion Relation

3.2.5.1 Dispersion relation of a numerical scheme

The wave propagation characteristics of the scheme is analyzed by establishing the

dispersion relation of the underlying numerical formulation. Here, we follow the

methodology adopted by Abeele et al. [82] and Hu et al [83]. The linear advection

of a wave is governed by the 1D scalar hyperbolic equation given by Eqn. (3.2) with

a constant wave speed a. The element solution in the proposed numerical scheme

depends only on its immediate neighbors. Now, consider a numerical scheme in

which the solution is expanded in terms of the basis functions and its corresponding

coefficients as

Qi = [φ]T
[

αi
]

(3.53)

The corresponding spatial derivative is approximated as

∂Qi

∂x
=

1
∑

r=−1

[Dr]
[

αi+r
]

(3.54)

where D−1, D+1 and D0 are the spatial operators acting on the left and right

neighbors and the current element respectively. The form of Dr is considered to be

arbitrary. Substituting Eqn. (3.53) and Eqn.(3.54) in the basic hyperbolic equation
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given in Eqn. (3.2) with unit wave speed, we get

[φ]T
[

∂αi

∂t

]

+
1
∑

r=−1

[Dr]
[

αi+r
]

= 0 (3.55)

Based on the numerical scheme employed, Eqn. (3.55) can be rewritten as

dαi

dt
+

1
∑

r=−1

Mrα
i+r = 0 (3.56)

Here, the brackets are omitted for clarity. The solution coefficients are assumed to

be harmonic of the form:

αi
l = qle

j(kxi−ωt) (3.57)

Substituting this harmonic solution in Eqn. (3.56), we get

p+1
∑

l=1

(

−jω +
1
∑

r=−1

Mre
j(krh)

)

φl = 0 (3.58)

or,

[φl]
T

[

−jω +

1
∑

r=−1

Mre
j(krh)

]

= 0 (3.59)

The solution of 3.59 is non trivial only when the determinant of the matrix is

zero. With this condition, the dispersion relation can be written as an eigenvalue

problem as

det

(

−jω +
1
∑

r=−1

Mre
j(krh)

)

= 0 (3.60)

The formulation of dispersion relation does not assume any solution approximation

and is valid for any numerical scheme. To apply this formulation for a given

numerical scheme, one needs to provide the matrix coefficient set Mr in Eqn. (3.56).

For an exact solution, the dimensions of Mr is infinite as the solution can represent

all wave numbers. However, in the numerical scheme, we have a finite set of basis

functions and corresponding coefficients required for approximating the solution in

Eqn. (3.53). This results in a finite form of coefficient matrix Mr. On comparison

with Eqn. (3.46), we can see that this coefficient matrix Mr is synonymous with
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the coefficient matrixMr
R.

The dispersion relation of the numerical scheme is obtained by comparing the

numerical wave number (Eqn. 3.60 ) with the analytical wave number (ω/a). For

a stable scheme, the real part of the Fourier foot print −jω should be negative for

all real values of k. The solution of 3.59 would have (p+ 1) values of jω, where p

is the degree of solution representation. These solutions are then mapped [84] to

the numerical wave number as

k = 2πi+ kii = 0, 1, . . . , p

where ki is the ith solution of 3.59. The real part of k represents the dispersion

and the imaginary part represents the diffusion. For a scheme to be stable, the

imaginary part should not be greater than zero. For numerical formulation, we

take the number of solution and flux reconstruction points as NQ = p + 1 and

NF = p+ 2 respectively.

3.2.5.2 Wave propagation characteristics of 1D ExRi schemes

The influence of the maximum extent of wave propagation C on the wave propa-

gation characteristics of a 5th order (p = 4) scheme is shown in Figure 3.5. The

scheme has similar dispersion characteristics for different values of C. However, a

significant change is observed in the diffusion characteristics. With increase in C,

the scheme becomes less diffusive and the Fourier footprint (−jω) becomes smaller,

resulting in an increase in CFL condition. A plot of C and the corresponding CFL

limit for different orders of the scheme is shown in Figure 3.6. The CFL limit has

almost a linear relationship with C for different orders of the scheme. Various nu-

merical experiments suggest that the numerical schemes have a optimal accuracy

and stability for a value of C given by

C = 1

p+ 1
(3.61)
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Figure 3.5: Influence of C on wave propagation characteristics of a 5th order ERC
scheme (λ = 1).
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Figure 3.6: Relation of C and CFL for ERC schemes.

p 1 2 3 4 5 6 7 8
λ 1.00 1.00 1.00 1.00 1.00 1.2683 1.2514 1.1013

Table 3.1: Values of λ for stable 1D ERC schemes

This value corresponds to the maximum CFL limit of a numerical scheme with

(p+ 1) degrees of freedom and backward Euler time integration.

The stability of the ERC scheme is dictated by the parameter λ introduced in

Eqn. (3.26). A minimum value of the λ is estimated for which the scheme is stable.

Figure 3.7 shows the effect of the point distribution on the stability of the ERG

scheme. The values of λ obtained for different orders are listed in Table 3.1. The

unmodified Chebyshev points (λ = 1) results in a stable scheme for orders up to 6

(p = 5). For higher orders, the points are clustered towards the element boundary

(by varying λ) to make the scheme stable.

The dispersion relation of a fourth order scheme (p = 3) is shown in Figure 3.8.

Due to symmetry, only half of the actual representable wave space is presented.

The ERC scheme seems to have a lower dispersion error than the ERG and DG

schemes. The ERG and DG schemes tend to be more diffusive for larger wave

numbers. It can be inferred that the noise due to the unresolved (larger) wave
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Figure 3.7: Effect of λ on stability of a seventh order scheme.

numbers are filtered out more efficiently in the Galerkin schemes. However, it is

also observed that these schemes have a lower CFL limit compared to the ERC

schemes.

p ERC ERG DG
1 0.500 0.378 0.333
2 0.347 0.231 0.210
3 0.234 0.164 0.145
4 0.197 0.133 0.118
5 0.169 0.106 0.094

Table 3.2: CFL condition for higher order schemes

The dispersion and diffusion characteristics of ERC schemes of different orders

are plotted in Figure 3.9. The increase in resolution of the higher order scheme in

terms of wave numbers is obvious in Figure 3.9. To estimate the corresponding CFL

condition, the properties of the amplification matrix G in Eqn. (3.52) is analyzed.

For a stable spatio-temporal scheme, the eigenvalues of G should lie within a unit

circle (|G| 6 1). A plot of G in eigen space is shown in Figure 3.10. We also

compare the matrix CFL |R| with the exact roots of the time integrator. The
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Figure 3.8: Comparison of dispersive and diffusive properties for fourth order
schemes.
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eigenvalues of the ERC scheme lies within that of the time integrator itself. The

maximum CFL limit is chosen in obtaining the plot in Figure 3.10. The optimal

CFL conditions obtained for different schemes are tabulated in Table 3.2.

It is known that the DG schemes have a stricter stability criteria of CFL =

1/ (2p+ 1) [85] for schemes of order (p+1). The CFL limit of ERG schemes reported

in Table 3.2 is around 10% higher than the DG schemes. The ERC schemes seem

to have a more relaxed stability limit close to CFL = 1/ (p+ 1).

3.2.6 Numerical Tests

Numerical tests are conducted for two classical problems of linear advection and

non-linear advection. The order of accuracy (grid convergence) is numerically

tested for both the test cases. To reduce the error due to temporal discretiza-

tion, we choose a very small CFL number of 0.1/ (2p+ 1). Since ERC scheme

has better stability characteristics than the ERG scheme, we study only the ERC

scheme in detail.

For the linear advection equation we take a unit wave speed (a = 1). The

solution is initialized with a Gaussian pulse of half width 0.1. The errors and

orders of convergence for the linear advection problem at time t = 1 are given

in Table 3.3. The results confirm that the scheme exhibits the designed order of

accuracy of (p + 1) and converge to machine accuracy. The decrease in order of

accuracy in case of 6th and 7th order schemes is due to the limit of machine accuracy.

The non-linear Burger’s equation can be obtained by setting the wave speed to

a = Q and hence, the flux becomes F = Q2/2. The solution is initialized with

Q(0, x) =
1

4
+

1

2
sin(2πx) (3.62)

The equation is solved in a periodic domain of 0 6 x 6 1. Due to the different

wave speeds, the solution eventually develops a shock at t = 1/π. We compare the

solutions with the analytical solution at time t = 0.15 when there is no occurrence
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Figure 3.10: Plot of |G| in complex plane for 4th order ERC schemes.
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p NCells L1 error L1order L∞ error L∞order

1

10
20
40
80
160
320

1.06e-01
7.15e-02
3.63e-02
1.12e-02
2.05e-03
3.03e-04

0.56
0.98
1.70
2.45
2.76

2.96e-01
3.03e-01
2.50e-01
1.06e-01
2.37e-02
3.81e-03

-0.03
0.27
1.25
2.15
2.64

2

10
20
40
80
160
320

8.93e-02
4.73e-02
1.52e-02
2.53e-03
3.21e-04
3.97e-05

0.92
1.64
2.58
2.98
3.02

2.70e-01
1.95e-01
1.13e-01
2.73e-02
3.83e-03
4.78e-04

0.47
0.78
2.05
2.84
3.00

3

10
20
40
80
160
320

5.38e-02
1.34e-02
8.69e-04
3.04e-05
1.46e-06
8.35e-08

2.01
3.95
4.84
4.38
4.13

1.92e-01
6.02e-02
7.38e-03
3.32e-04
1.68e-05
9.58e-07

1.67
3.03
4.47
4.31
4.13

4

10
20
40
80
160
320

6.07e-02
1.28e-02
2.43e-04
4.11e-06
1.61e-07
5.29e-09

2.24
5.72
5.89
4.68
4.93

1.87e-01
4.73e-02
1.81e-03
4.41e-05
1.92e-06
6.42e-08

1.98
4.71
5.36
4.52
4.90

5

10
20
40
80
160
320

2.42e-02
8.96e-04
1.46e-05
1.80e-07
2.38e-09
3.57e-11

4.76
5.94
6.34
6.24
6.06

6.50e-02
2.94e-03
1.17e-04
2.02e-06
2.63e-08
4.18e-10

4.47
4.65
5.86
6.26
5.97

6

10
20
40
80
160
320

1.58e-02
5.77e-04
6.34e-06
3.82e-08
2.26e-10
2.65e-11

4.78
6.51
7.37
7.40
3.09

5.04e-02
3.29e-03
5.06e-05
4.39e-07
2.62e-09
2.47e-10

3.94
6.02
6.85
7.39
3.41

Table 3.3: Linear advection of Gaussian pulse
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p NCells L1 error L1order L∞ error L∞order

1

10
20
40
80
160
320

6.92e-03
1.86e-03
4.54e-04
1.11e-04
2.71e-05
6.72e-06

1.89
2.04
2.04
2.03
2.01

1.44e-02
4.07e-03
1.10e-03
2.88e-04
7.33e-05
1.84e-05

1.82
1.89
1.93
1.97
1.99

2

10
20
40
80
160
320

1.90e-03
2.20e-04
2.48e-05
2.85e-06
3.36e-07
4.08e-08

3.11
3.15
3.12
3.08
3.04

8.15e-03
1.19e-03
1.60e-04
1.92e-05
2.38e-06
2.94e-07

2.77
2.90
3.05
3.01
3.02

3

10
20
40
80
160
320

2.38e-04
2.10e-05
1.33e-06
8.24e-08
4.98e-09
3.04e-10

3.50
3.98
4.01
4.05
4.03

9.97e-04
1.40e-04
9.97e-06
6.87e-07
4.40e-08
2.71e-09

2.84
3.81
3.86
3.96
4.02

4

10
20
40
80
160
320

2.39e-04
9.13e-06
2.85e-07
8.50e-09
2.43e-10
7.05e-12

4.71
5.00
5.07
5.13
5.11

1.27e-03
7.76e-05
3.37e-06
1.14e-07
3.28e-09
9.42e-11

4.04
4.52
4.89
5.12
5.12

5

10
20
40
80
160
320

2.76e-05
6.72e-07
1.30e-08
2.34e-10
3.72e-12
3.45e-13

5.36
5.70
5.79
5.98
3.43

1.62e-04
5.53e-06
1.72e-07
3.01e-09
4.86e-11
9.65e-13

4.87
5.01
5.83
5.95
5.65

6

10
20
40
80
160
320

1.69e-05
2.74e-07
2.63e-09
3.83e-11
9.19e-12
5.63e-12

5.95
6.70
6.10
2.06
0.71

1.23e-04
2.13e-06
3.83e-08
3.69e-10
2.00e-11
1.06e-11

5.85
5.80
6.70
4.21
0.92

Table 3.4: Burger’s Equation at t = 0.15
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Figure 3.11: Numerical solution of Burger’s equation at t = 1/π for a 4th order
scheme with 10 cells. (+: Internal points, ◦: Boundary points, – : Exact Solution).

of shock in the entire region. The errors and order of convergence are given in

Table 3.4. It can be seen that the scheme performs well and the designed order of

accuracy is achieved.

For the given initial condition in Eqn. (3.62), the Burger’s equation develop

a shock at time t = 1/π. We compare the numerical solution with the analytical

solution at t = 1/π. The simulation is performed for a 4th order scheme with 10 cells

and the results are plotted in Figure 3.11. In smooth regions, the numerical solution

match the exact solution very well. The solution near the shock exhibits slight

oscillations as the entire shock is resolved by just two cells. No shock capturing
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schemes are used for current computations.

3.3 Implementation in a generic 2D triangle ele-

ment

The proposed Extended Riemann solver is applied on 2D triangular elements.

We adopt the same notation as in the one dimensional formulation. The multi-

dimensional conservation law can be written as

∂Q

∂t
+∇ · ~F = 0 (3.63)

where Q is the solution and ~F = (F x(Q), F y(Q)) is the flux vector. Eqn. (3.63)

can be expanded in an explicit form as

∂Q

∂t
+ ax

∂Q

∂x
+ ay

∂Q

∂y
= 0 (3.64)

where ax and ay are given by

ax =
∂F x

∂Q

ay =
∂F y

∂Q

(3.65)

The quantities ax and ay provide the direction and magnitude of wave propagation

at a given time instance.

For an element i, the solution is represented in an discretized form using the

polynomial expansion Qi given by

Qi =
∑

j

αjφj = [φ]T [α] (3.66)

where αj is the coefficient of the basis function φj(ξ, η). The conservation property

is enforced similar to the 1D formulation by applying the constraints Eqn. (3.31-
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3.32). Here, we choose a simple set of basis functions given by

[φ] =

[

1, ξ − 1
6
, η − 1

6
, ξ2 − 1

12
, ξη − 1

24
, η2 − 1

24
, ξ3 − 1

20
, ...

]

(3.67)

The evolution of solution Qi of element i is influenced by the internal flux and the

flux contributions from the boundaries. The temporal evolution of the solution Qi

can be expressed as
∂Qi(ξ, η)

∂t
+∇ · F̃i(ξ, η) = 0 (3.68)

where ∂Qi/∂t is the solution evolution of element i, and F̃i is the approximate flux

given by

F̃i (ξ, η) = ~Fi (ξ, η) +

3
∑

j=1

~F j
i (ξ, η) (3.69)

where ~Fi is the internal flux and ~FS
i is the boundary contributions corresponding

to boundary S of the triangle. Eqn. (3.68) and Eqn. (3.69) can be expressed

explicitly in terms of internal and boundary contributions as

∂Qi (ξ, η)

∂t
=
∂Q∗

i (ξ, η)

∂t
+

3
∑

j=1

∂εji (ξ, η)

∂t
(3.70)

where
∂Q∗

i (ξ, η)

∂t
+∇ · ~Fi(ξ, η) = 0 (3.71)

∂ǫji (ξ, η)

∂t
+∇ · ~F j

i (ξ, η) = 0 (3.72)

Since the internal flux information ~Fi is readily available, Eqn. (3.71) can be solved

by a standard Galerkin method which is exact if Eqn. (3.63) is linear. For the

boundary contributions given by Eqn. (3.72), the approximate flux ~Fi is required.

The formulation of ~Fi is given in following section.
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Figure 3.12: Reference Coordinates of Triangle element.

3.3.1 Representation of Boundary flux contributions

Similar to the 1D formulation, the distance of propagation of an information from

the interface S into the element interior over a time period of ∆t is given by

Ch where h is the size of the element. In the case of triangles, the elements are

mapped to a reference element (h = 1) as shown in Figure 3.12. The interior of

the reference element can now be divided into two regions: Boundary region ΩS

influenced by the boundary interfaces S and the interior regions Ωin not influenced

by the interfaces. The boundary flux corrections ~F should vanish for the interior

regions. For simplicity, we neglect the vector notation ~[] for the correction term

F and it is considered to be a vector implicitly. The properties of the boundary

correction is now given by

∂nF
∂ξn−i∂ηi

= 0 (ξ, η) ∈ Ωin, i = 0...n, n = 0... (p+ 1) (3.73)

F = F̂S (ξ, η) ∈ S, i = 0...n, n = 0... (p+ 1) (3.74)

where F̂ is the Riemann flux at the interface. For an exact representation of F in

Eqn. (3.74), multi-dimensional Riemann solutions need to be evaluated at bound-

ary integration/interpolation points. In the current work, we consider only the
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corrections normal to the face, thereby avoiding additional computational cost of

2D Riemann solvers. A simplified formulation similar to one dimensional formula-

tion is used for the flux correction F . Here, we introduce a coordinate ϑS(ξ, η) as

the local coordinate along the interface S. The representation of ϑS(ξ, η) is shown

in Figure 3.12. The Riemann fluxes at an interface S can now be represented as

F̂S(ϑS(ξ, η)). The flux correction FS due to the Riemann problem at the interface

S is now given by

FS
i (ξ, η) = ω (ζS)

(

F̂S (ϑS)− Fi (ξS, ηS)
)

(3.75)

where ω is a function for satisfying the condition 3.73 and (ξS, ηS) are the coordi-

nates corresponding to ϑS on the interface S. The coordinates ϑ and (ξS, ηS) are

used to restrict the flux computations to the element interface S. This is required

as the number of interior points required to solve Eqn. (3.72) can be large for higher

order schemes. Solving a Riemann problem at each point will result in increase in

computational cost. The blending function ω is formulated such that at a distance

of C from the boundary S, the corresponding flux quantity FS vanishes. Though

various choices exist for formulation of ω, here we use a simple polynomial form

similar to that of a 1D formulation. The blending function is given by

ω (ζ) =











ζpω 1 > ζ > 0

0 ζ 6 0
(3.76)

where the local coordinates of the interface are given by
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ζ1 = 1− η

C
ζ2 = 1− γ

C
ζ3 = 1− ξ

C
ϑ1 =

ξ

1− η
ϑ2 =

η

1− γ
ϑ3 =

η

1− ξ

(3.77)

Though the definition of the coordinates ζ and ϑ in Eqn. (3.77) do not align with

the corresponding face normals in physical space, these approximations result in

desired stability and grid convergence characteristics. Also, since we use only the

non-dimensionalized quantity C, there is no requirement of transformation of wave

speeds from physical to reference plane.

In Eqn. (3.75), approximation of FS
i requires evaluation of the Riemann cor-

rection for each internal point. To avoid the costly computation of Riemann fluxes,

this quantity is approximated with an interpolating polynomial fS representing

the Riemann corrections FS
i on the interface S. The polynomial is constructed

using the available boundary integration/interpolation points. The rest of the val-

ues are interpolated using fS. With this formulation, no additional computation

is required in solution evolution process as it requires flux evaluations only at the

integration/interpolation points. To maintain the order of accuracy of the scheme,

the degree of polynomial fS should be consistent with the degree of approximation

of flux quantities. Since the current formulation is based on the reference element,

the maximum distance of propagation can still be represented as CFLh where h

is the element size.

66



Chapter 3. Riemann solvers on Extended Domains

3.3.2 Evolution of boundary contributions

The internal flux contributions in Eqn. (3.71) are solved using a standard Galerkin

method. For a linear hyperbolic equation, this result in an exact solution of Eqn.

(3.71). But, in the case of boundary flux contributions in Eqn. (3.72), approxi-

mations are required to represent the correction flux F . The characteristics of the

proposed 2D scheme depends on this approximation. Different methods of approx-

imations can be adopted. Here, we choose the sub-domain method (ExRi-SD) as

it results in a more stable scheme.

The sub-domain method is similar to co-location and least-squares method

where the equations are evaluated at co-location points, except that here, the equa-

tions are evaluated at a finite non-overlapping region. This method is chosen due

its improved stability characteristics and ease of implementation. The sub-domain

method is given by
1

Vk

ˆ

Vk

∂ǫSi
∂t

+
1

Vk

ˆ

Vk

∇ · ~FS
i = 0 (3.78)

where Vk is the kth sub-domain of the element V . For a triangle, these domains

are defined by sub-dividing the element into three quadrilaterals, and further sub-

dividing them according to the boundary points specifications as shown in Figure

3.13. To ensure the correct order of convergence, the number of sub-regions at the

boundary should be at least same as the order of the scheme. For odd orders, we

divide the region similar to the next order. If the total number of sub-domains

is larger than the number of coefficients used to represent the solution Qi, the

equation set is solved by least squares method.

For the third order scheme, the element is divided in the same way as that

of fourth order scheme. With the representation of the correction flux ~F j
i with

the interpolation polynomial fS and the blending function given by Eqn. (3.76),

the correction quantity ǫSi will depend only on the boundary flux evaluations on

interface S. After simplifications, only the coefficients of fS is required. While

solving the equation, only the coefficients of polynomial fS need to be computed.

With the current formulation, no additional computational cost is incurred with
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Boundary points

Sub−Domains

Figure 3.13: Dividing triangles into Sub-Domains with respect to boundary point
distribution.

(a) O2 (b) O3, O4

(c) O5

Figure 3.14: Sub domains of a triangle for different orders.
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p 2 3 4
λ 1.19 1.3 1.3

Table 3.5: Values of λ for a stable scheme based on Sub-Domain method

the increase in number of sub domains.

As mentioned before, the stability of the scheme depends on the distribution of

the sub-domains within the element. The element subdivision algorithm adopted in

Figure 3.14 is dependent on the boundary point distribution defined by a modified

version of Chebyshev nodes given by

xj = cos
(

bjλ
1−|bj |

)

(3.79)

where λ is the scaling factor for the points similar to the 1D formulation and

bj =

(

2j

N − 1

)

− 1 (3.80)

where N is the total number of points on the boundary. As the value of λ in-

creases, the boundary points are clustered towards the corners. This modification

is found to make the scheme more diffusive. The optimal value of the parameter λ

is obtained from the matrix stability analysis detailed in Section 3.3.3.

3.3.3 Matrix Stability Analysis

A matrix stability analysis is performed by formulating the numerical scheme for a

linear advection problem. The final equation set is represented in a matrix form as

given in Eqn. (3.52). An unstructured grid of 8× 8× 2 triangular elements is used

for this analysis. The procedure is similar to that of one-dimensional case and is

not detailed here for brevity. The stability of the schemes are analyzed from the

eigenvalues of the spatial operator R in Eqn. (3.51) and amplification matrix G in

Eqn. (3.52). Unlike one dimensional analysis, the stability of the two dimensional

numerical schemes depend on the direction of wave propagation as well. If θ is the
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(b) 5th order

Figure 3.15: Representation of spatial operator R in eigen space for ExRi-SD
schemes (θ = π/6).
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p ExRi-SD DG % improvement
2 0.192 0.151 27.2
3 0.138 0.095 45.3
4 0.122 0.084 45.2
5 0.098 0.063 55.5

Table 3.6: Maximum CFL condition for 2D schemes

direction of wave propagation, the quantities ax and ay in Eqn. (3.64) are given as

(ax, ay) = (cos(θ), sin(θ)) (3.81)

For a scheme to be stable, the stability condition (Real(R) = 0) should be satisfied

for all values of θ. the choice of parameter λ dictates the stability of the proposed

Sub-Domain method. The optimal values of λ for different orders are listed in Table

3.5. The plot of spatial operator R in eigen space for 3rd and 5th order schemes are

shown in Figure 3.15. The 4th and 5th order ExRi-SD schemes are weakly unstable

with some of the eigenvalues of R lying on the positive real axis. However, both

the schemes produce the desired order of convergence.

The maximum CFL limit of the schemes after application of SSP-RK time

integrator is listed in Table 3.6. The reported CFL conditions are obtained by

taking into consideration all values of θ. It is observed that the ExRi-SD method

has an improved stability limit of greater than 40% for p = 3, 4, 5 compared to the

standard Discontinuous Galerkin method of respective orders.

3.3.4 Numerical Validation

The proposed scheme is validated using the linear advection problem and 2D non

linear Euler equations. A pure unstructured grid is used for all the cases. The

mesh is generated by the open source grid generator GMSH using the “frontal”

mesh generation algorithm. The refined grids are obtained by successively dividing

each triangle into four elements.
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(a) Linear Advection

(b) Isentropic vortex evolution

Figure 3.16: Unstructured meshes used for numerical validation.
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p NCells L1 error L∞ error L1 order L∞ order

2
200 2.13e-3 3.62e-2
800 2.46e-4 8.25e-3 3.11 2.13
3200 2.80e-5 1.10e-3 3.13 2.91

3
200 2.77e-4 5.08e-3
800 1.93e-5 5.44e-4 3.84 3.22
3200 1.45e-6 4.79e-5 3.74 3.5

4
200 1.24e-4 3.04e-3
800 4.18e-6 1.44e-4 4.9 4.4
3200 1.30e-7 5.78e-6 5 4.64

Table 3.7: Solution errors in computation of advection of Gaussian pulse over a
time period t = 1

3.3.4.1 2D Linear Advection

The linear advection of a wave is simulated in a periodic domain of size 1x1. The

equation is given by
∂Q

∂t
+
∂Q

∂x
+
∂Q

∂y
= 0 (3.82)

The solution is initialized with a Gaussian pulse given by

Q(x, y, 0) = exp

(

−(x− 0.5)2 + (y − 0.5)2

g2

)

(3.83)

where g is the half width of the curve. The exact solution at a given time t can be

expressed as

Q(x, y, t) = exp

(

−(x− 0.5− t)2 + (y − 0.5− t)2
g2

)

(3.84)

A pure unstructured mesh of 200 elements (Figure 3.16(a)) is used for coarsest

mesh. The computed solution errors and the corresponding order of convergence

for advection of a Gaussian pulse are plotted in Table 3.7. It is observed that the

scheme produces the expected order of convergence for all the orders.

3.3.4.2 Inviscid Euler Equations

The non-linear Euler equations can be expressed as a 2D hyperbolic equation Eqn.

(3.63) as detailed in Sec. 2.2. HLLC[86] Riemann Flux is used as the approxi-
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p NCells L1 error L∞ error L1 order L∞ order

2
550 1.90e-1 7.17e-2
2200 2.75e-2 7.50e-3 2.79 3.26
8800 3.27e-3 1.15e-3 3.07 2.7

3
550 5.11e-2 1.27e-2
2200 4.08e-3 5.42e-4 3.65 4.55
8800 2.27e-4 3.69e-5 4.17 3.88

4
550 1.47e-2 2.96e-3
2200 5.37e-4 1.16e-4 4.78 4.67
8800 3.05e-5 5.68e-6 4.14 4.36

Table 3.8: Solution (density) errors for evolution of isentropic vortex over a time
period t = 1

mate Riemann solver at element interfaces. For the inviscid flow computation, the

problem is initialized with an isentropic vortex. The initial solution is defined by

Eqns. (2.34-2.37). For a system of equations, the wave speed “a” is taken to be

the maximum eigen value of the system. In this case, it would be (|u|+ c ) where

c is the speed of sound propagation and |u| is the velocity magnitude.

The computational domain is taken large enough such that the influence of vor-

tex becomes negligible at the domain boundaries. In this aspect, a square domain

extending from (-8,-8) to (8,8) is considered for simulation. Figure 3.16(b) shows

the coarsest mesh used for the computation. The simulation is run for a non dimen-

sional time period of t = 16 at which the analytical solution exactly corresponds

to that of the initial solution. The errors in density and the corresponding order

of convergence for 3rd, 4th and 5th order ExRi-SD schemes are listed in Table 3.8.

Expected order of convergence is obtained in all the cases.

3.4 Summary

A new way of flux approximation using Extended Riemann solvers is proposed

for higher order schemes. The flux is now explicitly modeled as a continuous flux

from the element boundary towards the interior. To illustrate the method, a co-

location (ERC) and Galerkin (ERG) formulation are implemented in the case of

one dimensional elements and a Sub-Domain method (ExRi-SD) is implemented
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for 2D triangular elements.

For one dimensional schemes, the Fourier analysis of the schemes show that

the ERC scheme has a better wave propagation characteristics and improved sta-

bility compared to the ERG scheme. The proposed ERC method enjoys a more

relaxed CFL stability limit compared to the standard DG schemes, thus allowing

a larger time step and a more efficient scheme. A similar trend is observed in two

dimensional formulations as well. For both the 1D and 2D formulations, grid con-

vergence tests are carried out for linear and non-linear hyperbolic equations. In all

cases considered, the schemes exhibit the desired convergence characteristics.
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Extension of ExRi method to

viscous flows

The ExRi method developed in Chapter 3 provides a way to construct smooth fluxes

that vary from Riemann fluxes at the boundary to the internal fluxes at the element

interior. In this chapter, the ExRi concept is applied to construct an approximate

smooth solution at the element interface. With this, a new one-step method of

gradient approximation for the viscous fluxes is proposed for higher order schemes.

An approximate analytical solution is constructed across the Riemann interface and

the resulting gradient information is used to formulate the corresponding diffusion

terms in computing the viscous fluxes. The proposed formulation for viscous fluxes

does not require any auxiliary variables and has no additional computational cost in

approximating the solution gradients at element interface. Detailed numerical tests

show that the scheme can reproduce expected order of convergence and exhibits

higher order characteristics in both steady and transient viscous flow simulations.

4.1 Background

The higher order methods such as DG, SV, SD and the previously developed ExRi

methods can inherently support discontinuous solutions at the element boundary.

In the case of convection equations such as inviscid Euler equations, an exact or

76



Chapter 4. Extension of ExRi method to viscous flows

approximate Riemann solver is used to obtain the fluxes at the interface. However,

for the diffusion equations, the approximation of diffusion fluxes at the interface

require the solution gradient information across the interface. Various schemes

were proposed to model the diffusion fluxes for second order diffusion equations. A

detailed comparison of different schemes was performed by Arnold et. al. [87]. Two

of the most commonly used methods to address diffusion terms are the Bassi-Rebay

scheme [88] and the Local Discontinuous Galerkin (LDG) [89] scheme. Compared

to the LDG schemes, the Bassi-Rebay schemes require only individual gradient

computations for each element interface. This results in a more localized scheme

compared to LDG scheme. The Bassi-Rebay scheme is also computationally more

efficient than the LDG schemes as they do not require storage of additional auxiliary

variables to compute the gradient information.

In this work, we propose a new direct method of approximating the solution

gradients at the interface for solution of Navier Stokes equation by applying the

ExRi method to compute the solution gradient information. The solution gradients

are estimated by analytically constructing a local approximate solution satisfying

the Riemann state at the interface. The resulting formulation involves no additional

computational cost (matrix operations) and can be implemented into the existing

DG like schemes with ease. Various numerical tests are conducted to establish the

order of convergence and to test the influence of different parameters.

4.2 Navier-Stokes Equations

The Navier Stokes equation can be expressed as a general hyperbolic system given

by

∂Q

∂t
+∇ · (~FC + ~F V ) = 0 (4.1)
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The solution Q , convective flux FC and viscous flux F V are expanded as

Q =













ρ

ρui

ρe













FC
j =













ρuj

ρuiuj + pδij

uj (ρe+ p)













F V
j =













0

−τji
−uiτji − k ∂T

∂xj













(4.2)

where ρ, ui p and e are the density, velocity, pressure and internal energy of the

fluid respectively, δij is the Kronecker delta function, k is the thermal conductivity

and τij is the viscous stress tensor given by

τii = −
2

3
µ(∇ · U) + 2µ

∂ui
∂xi

(4.3)

τij = 2µ

(

∂ui
∂xj

+
∂uj
∂xi

)

i 6= j (4.4)

where µ is the molecular viscosity coefficient. The compressible Navier Stokes

equation Eqn. (4.2) is closed with the equation of state given by

p = (γ − 1) ρ

(

e− 1

2
U2

)

(4.5)

where γ is the specific heat ratio (1.4 for air) and U is the velocity magnitude.

To solve the governing equation set given in Eqn. (4.1), the standard RK-DG

method described in Chapter 2 or the proposed ExRi method formulated in 3 can

be employed. Here we use the previously developed ExRi method for discretizing

Eqn. (4.1).

4.3 Gradient approximation at interface

4.3.1 Gradient corrections from Riemann solutions

Due to it’s piecewise continuous nature, the solution can be discontinuous at the

element-element interface. The solution of these discontinuous states can be ob-

tained by application of an exact or approximate Riemann solver. Here, we use the
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QL

QR

S

Q̂

Figure 4.1: Schematic representation of solution Q across element interface S.

HLL Riemann state as the approximate Riemann state, given by

Q̂HLL =























QL if sL > 0

Q∗
HLL if sL ≤ 0 ≤ sR

QR if sR < 0

(4.6)

where QL and QR are the solutions corresponding to left and right states, sL and

sR are the left and right wave speeds and the intermediate state Q∗
HLL is given by

Q∗
HLL =

sRQR − sLQL − (FR − FL)

sR − sL
(4.7)

where FR and FL are the fluxes corresponding to the states QR and QL respectively.

The discontinuous solution across the interface is illustrated in Figure 4.1. The

Riemann solutions are only first order accurate and can not be used to compute the

gradient information as such. If an approximate solution Q̃S is constructed such

that it satisfies the Riemann solution at the interface S and the internal solution

at the element interior, the corrected gradient information (at the interface) can be

obtained from this solution approximation. A weighted residual based reconstruc-

tion like least squares or Galerkin methods would consume huge computational

resources in terms of memory and computational cost. Here, we propose a method

of analytical formulation of the approximate solution Q̃S such that it satisfies the

Riemann solution at the interface S and retains the internal solution away from
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the given interface. The resulting approximation is given by

Q̃S = Qi + ωS(Q̂S − Qi|S) (4.8)

where Qi|S is the internal solution at the interface S and ωS is a blending function

that enables a smooth variation of the solution fromQi in the interior of the element

to the Riemann solution Q̂S at the element interface S.

4.3.2 Construction of blending function ω

Similar to the ExRi formulation described in Chapter 3, the construction of the

blending function ω is one of the key factors in the formulation given in Eqn. (4.8).

From the distance of propagation of information is given by Ch. If the length of

the element is taken to be 1 unit, the non-dimensional distance of propagation of

information is given by the desired CFL number C. Thus, for a given element, the

region is divided into two parts: (i) region ΩS influenced by the element boundary S

(ii) internal region Ωin not influenced by element boundary. Outside the boundary

region, we have the condition

∂Q̃m
S (ξ, η)

∂ξm−k∂ηk
=
∂Qm

S (ξ, η)

∂ξm−k∂ηk
, (ξ, η) /∈ ΩS (4.9)

At the boundary, the solution satisfies the Riemann solution, resulting in the con-

dition

Q̃S(ξ, η) = Q̂(ξ, η), (ξ, η) ∈ S (4.10)

To satisfy the above conditions, the general shape of the blending function is taken

as

ωS =











ζpS 1 > ζS > 0

0 ζS ≤ 0
(4.11)

where ζS is the local coordinate of the interface S having a value of 1 at the

boundary S and decreases to zero towards the element interior and p is the degree
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V in

ζS = 0

V S

ζS = 1
(a) Regions of approximation

3 2

1

γ = 0

ξ = 0

η = 0

(b) Reference coordinates and face numbering

Figure 4.2: Schematic representation of reference triangle and regions of approxi-
mation.
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of solution approximation. The local coordinate has a positive value only in the

region ΩS illustrated in Figure 4.3.2. Many choices exists for the formulation of ζ .

Here we define this coordinate in a reference coordinate system (ξ, η), similar to

the definitions used in ExRi-SD method (Eqn. 3.77). The equations are repeated

here for clarity. The formulation for ζ is given by

ζ1 = 1− η

C (4.12)

ζ2 = 1− γ

C (4.13)

ζ3 = 1− ξ

C (4.14)

The corresponding gradient terms at the faces can now be written from Eqn. (4.8)

as
∂Q̃S

∂ξ
=
∂Qi

∂ξ
+
∂ωS

∂ξ
(Q̂− Q|S) (4.15)

∂Q̃S

∂η
=
∂Qi

∂η
+
∂ωS

∂η
(Q̂− Q|S) (4.16)

These corrected gradients are used to approximate the viscous fluxes at the inter-

face.

4.3.3 Corrected gradients for viscous flux discretization

The formulation of solution gradients in Eqn. (4.15) still results in two different

solution gradients. Here we denote the corrected gradients as ∇Q̃L
S and ∇Q̃R

S

corresponding to the left and right elements sharing the interface S. If an averaged

state is used in place of the Riemann state Q̂, the second term in RHS of Eqns.

(4.15-4.16) resembles the jump operator used in the Bassi-Rebay [88] scheme. The

viscous flux at the interface is then approximated with the average of viscous fluxes

corresponding to the neighboring elements. The corresponding viscous interface
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flux ~HV
S corresponding to interface S is now given by

~HV
S =

1

2

(

~F V (QL,∇Q̃L
S) + ~F V (QR,∇Q̃R

S )
)

(4.17)

where QL and QR are the left and right states across the interface S. Note that the

viscous flux ~HV
S is now unique for a given interface S. The proposed formulation is

applied only on the gradient values and does not change approximation of solution

states. Due to this decoupling of gradient approximation, the proposed scheme

can be applied on top of any higher order scheme such as ExRi, Discontinuous

Galerkin, Spectral Volume, Spectral Difference methods etc.

4.4 Absorbing Boundary Regions

Any practical simulation of a flow would require application of artificial boundary

conditions. A computational boundary too far away from the region of interest

results in increase in computational cost while a computational boundary that is

very near to the region of interest would have an influence on the solution. It

is necessary to choose a boundary condition such that it can be applicable in the

near field region with a very minimum influence on the computed solution. Absorb-

ing boundary conditions (ABCs) are frequently employed in the wave propagation

problems such as acoustics, electromagnetics etc. Recently, the absorbing bound-

ary conditions based on perfectly matched layers were developed for non-linear

equations [90]. Here, we implement a simplified form of the set of equations for

the absorbing region based on the formulations given in [90]. Assuming a steady

uniform mean flow, the simplified equations are given by

∂Q

∂t
+∇ · ~F + ~σ · ~q = 0 (4.18)

where σ is the absorption coefficient and the vector ~q = (qx, qy) is given by
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∂qx
∂t

+ σxqx +
∂F x

∂x
= 0 (4.19)

∂qy
∂t

+ σyqy +
∂F y

∂y
= 0 (4.20)

No additional modifications are introduced for the viscous terms. The absorption

coefficient is taken as

σx = σmax

∣

∣

∣

∣

DAB

WAB

∣

∣

∣

∣

α

(4.21)

where WAB is the width of the absorption region, DAB is the shortest distance to

the boundary of interior domain (which is same as the starting of absorbing bound-

ary). The constants σmax and α are taken to be 5 and 4 respectively. For higher

order methods, it is observed that the variables qx and qy can be computed with

only the internal fluxes without compromising the performance of the absorbing

region. Thus, the scheme becomes more compact and the ABC can be easily im-

plemented in the existing codes. Numerical experiments suggest that higher order

implementations can absorb the fluctuations with a few number of elements, while

the lower order implementations require more elements for effective absorption of

the fluctuations.

4.5 Numerical Analysis

4.5.1 Order of Convergence

The proposed scheme is tested for numerical convergence using the vortex diffusion

case. The dynamic viscosity is taken as 0.01. The solution is initialized with an

isentropic vortex defined by Eqns. (2.34-2.37). The magnitude of vortex strength

β is taken as 5 units. A periodic domain of width 14x14, centered at (0,0) is

considered for simulation. The coarsest mesh corresponding to the simulation is

shown in Figure 4.3. To test the accuracy of the schemes in a viscous flows of

various regimes, two different sets of equations are simulated. For the first case,

the full Navier Stokes equation is solved for a 16 time periods. In the second case,
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Full Navier Stokes Diffusion Equation
p L1 error L∞ error L1 order L∞ order L1 error L∞ error L1 order L∞ order
1 9.61e-3 7.24e-1 2.81e-3 3.37e-1

2.97e-3 2.79e-1 1.69 1.37 7.49e-4 8.20e-2 1.91 2.04
5.05e-4 5.81e-2 2.56 2.26 1.95e-4 1.18e-2 1.94 2.8

2 2.84e-3 1.73e-1 6.76e-4 8.44e-2
2.84e-4 1.95e-2 3.32 3.15 1.11e-4 1.41e-2 2.61 2.58
2.48e-5 3.12e-3 3.52 2.65 1.63e-5 1.44e-3 2.77 3.29

3 9.89e-4 5.97e-2 1.96e-4 2.53e-2
3.33e-5 6.31e-3 4.89 3.24 1.51e-5 1.37e-3 3.7 4.2
1.31e-6 2.38e-4 4.67 4.73 9.76e-7 1.03e-4 3.95 3.74

4 1.95e-4 2.49e-2 4.03e-5 3.83e-3
4.24e-6 4.93e-4 5.52 5.66 1.76e-6 2.21e-4 4.51 4.11
7.85e-8 1.32e-5 5.76 5.23 6.70e-8 9.27e-6 4.72 4.58

Table 4.1: Solution (internal energy) errors and experimental order of convergence
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Figure 4.3: Coarsest mesh used for vortex diffusion test case.

the convective fluxes are set to zero, resulting in pure diffusion equation. In this

case, the solution is computed for 5 time periods. In both the cases, we use the

fine grid solution as the reference solution. The solution errors and the numerical

order of convergence for schemes of up to 5th order are listed in Table 4.1. The

scheme achieves expected order of convergence in both the cases. For the Navier

Stokes equation, the experimental order of convergence is in general higher than

the designed order of accuracy. This could be due to the non-linearity involved in

the NS equations.

4.5.2 Laminar boundary layer over a flat plate

The flat plate boundary layer is a common test problem to test the capability of the

scheme to effectively capture the boundary layer profile. The accuracy of the wall

boundary condition in implementation of no-slip condition can also be evaluated

with this method. Here we compute the laminar boundary layer profile over a

flat plate of width 1 unit length. The parameters are set such that the Reynolds

number based on the plate width is 106. A low mach number of 0.1 is chosen for

the free stream flow. The solution is converged to machine accuracy using the ILU
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Figure 4.4: Unstructured mesh used for simulation of laminar boundary layer flow
over a flat plate.

preconditioned GMRES implicit method. To illustrate the advantages of the higher

order discretization, a very coarse mesh is employed for all the computations. A

pure unstructured mesh of 179 elements is constructed for a domain extending

from (-0.5,0) to (1, 0.0045). Appropriate clustering is applied at the leading edge

(0,0) and at wall region. The constructed mesh is shown in Figure 4.4. Symmetry

boundary condition is applied for the computational boundary upstream of the

plate. No absorbing boundaries are used for the computations.

All the results are obtained by direct interpolation of the solution data from

the mesh elements. The results are compared with the numerical solution [91] of

the Blasius’s problem. Figure 4.5 shows the velocity profile at x = 0.7. The entire

velocity profile is resolved with only 4 elements. The velocity profiles corresponding

to the 3rd and 4th order schemes closely follow the Blasius’s solution. The 2nd order

solution is approximated by a piecewise linear solution as compared to quadratic

and cubic solution approximation of 3rd and 4th order schemes. This is evident

from the expanded view of the velocity profile as shown in Figure 4.5(b). The

advantages of the higher order schemes are further illustrated in the plot of skin

friction coefficient in Figure 4.6. The results suggest that the solution resolution

is greatly enhanced with increase in the order of the schemes. The skin friction

87



Chapter 4. Extension of ExRi method to viscous flows

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

U
/U

∞

η

Blasius

p=1

p=2

p=3

(a) Velocity Profile

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

3 3.5 4 4.5 5 5.5 6

U
/U

∞

η

Blasius

p=1

p=2

p=3

(b) Zoomed

Figure 4.5: Laminar flat plate boundary layer velocity profile at x/c = 0.7 (Dimen-

sionless coordinate η is given by η = y
√

ρ∞U∞

µx
).
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Figure 4.6: Laminar flat plate boundary layer skin friction.
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Figure 4.7: Computational domain used for simulating flow past a circular cylinder.

coefficient computed with the 4th order scheme is almost identical to the Blasius

solution even near the leading edge of the plate where the solution has a singularity.

The results also show that the proposed viscous flux discretization method works

relatively well on severely skewed meshes as well.

4.5.3 Vortex shedding in flow over a circular cylinder

A low Reynolds number flow over a circular cylinder is a standard test case to

estimate the accuracy of the viscous schemes in a transient flow condition. A flow

of Mach number 0.2 over a cylinder of unit diameter is considered for simulation.

The Reynolds number corresponding to the flow is taken to be 100 at which the

flow develops instability and an alternating vortex shedding is observed in the

wake of the cylinder. Burbeau et. al. [92] conducted a detailed numerical study on

the convergence properties of higher order DG schemes in capturing the transient

vortex shedding phenomenon.

A schematic representation of computational domain is given in Figure 4.7.

The meshes are generated using GMSH [79] using the “frontal” mesh generation

algorithm. Four different meshes are chosen to illustrate the grid independence

characteristics of the higher order schemes. The size of the mesh and the total
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Mesh ∆xcylinder ∆xfarfield Wall Elements Total Elements
1 0.12 3 24 1166
2 0.08 2 36 2517
3 0.04 1.5 74 5406
4 0.03 1.3 98 7583

Table 4.2: Details of mesh used in simulation of flow past a circular cylinder.

number of nodes are given in Table 4.2. Absorbing boundaries of width 3 length

units are employed on all the external computational boundaries. The simulation

is started with a mean flow of Mach number 0.2. For ease of representation, we

denote a solution as Mp,l where p is the degree of solution approximation, l is the

level of refinement of mesh. For example, a 2nd order solution on the finest level

mesh (4th refinement) denoted as M1,4.

The time history of the drag and lift values and are plotted in Figure 4.8. A

Fast Fourier Transform (FFT) of the lift coefficient shows a distinct peak in the

frequency spectrum. The corresponding Strouhal number of the flow is estimated

as St = fD/U where D is the diameter of the cylinder and U is the free stream

velocity. The values of Strouhal number, average drag coefficient and lift coefficient

for different orders of scheme are listed in Table 4.3. The results show that the third

and fourth order schemes achieve grid independence much faster than the second

order scheme. The 4th order schemes produce acceptable results in the coarsest

grids, especially when comparing the average CD values. The coarsest 4th order

solution (M3,1) has better characteristics than the finest 2nd order solution (M1,4),

clearly illustrating the effectiveness of higher order schemes in capturing complex

flow phenomena in much coarser grids.

The vorticity contour of a single time period of vortex shedding for an M3,2

solution is plotted in Figure 4.9. The fluctuating vorticity field may be seen to

be dissipated by the (downstream) absorbing boundary region. The vortices decay

completely before reaching the computational boundary. In generating the contours

in Figure 4.9, high resolution contours are computed by subdividing the triangle

element into smaller elements depending on the order of the scheme.
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Figure 4.8: Time history of drag and lift values for a 4th order simulation of flow
over circular cylinder (Mesh = 2).
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(a) t = 302

(b) t = 303

(c) t = 304

Figure 4.9: Vorticity contours over a single time period of vortex shedding.
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(d) t = 305

(e) t = 306

(f) t = 307

Figure 4.9: Vorticity contours over a single time period of vortex shedding (contd.).
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Mp,Mesh Average CD Peak-to-peak CL Time Period Strouhal Number
M1,1 1.299 0.604 6.383 0.157
M1,2 1.328 0.646 6.125 0.163
M1,3 1.343 0.671 5.986 0.167
M1,4 1.352 0.675 5.973 0.167
M2,1 1.377 0.688 5.975 0.167
M2,2 1.379 0.687 5.963 0.168
M2,3 1.391 0.688 5.963 0.168
M3,1 1.392 0.691 5.960 0.168
M3,2 1.393 0.690 5.959 0.168
M3,3 1.394 0.688 5.954 0.168

Table 4.3: Higher order solutions of vortex shedding at wake of cylinder.

4.6 Summary

An efficient method of higher order viscous flux approximation at the element

interface is formulated based on wave propagation characteristics of the elements.

The proposed method is simple and computationally effective as it does not require

any additional computation or auxiliary variables. As mentioned in Sec. 4.3.3,

since the proposed method is applied only on the gradient approximation at the

boundary while leaving the solution state untouched, the proposed method can

be easily extended to other higher order methods such as Discontinuous Galerkin,

Spectral Volume, Spectral Difference, etc..

The numerical order of convergence is tested for both Navier Stokes equations

and a diffusion equation involving only the viscous fluxes of NS equations. The

scheme is found to reproduce expected order of convergence up to 5th order. The

scheme is validated for the standard steady state laminar boundary layer over a flat

plate and the transient vortex shedding of flow past a circular cylinder. For both

the cases, the mesh is refined near the boundary in order to capture the viscous

effects accurately. The grid convergence study clearly demonstrate the advantages

of higher order schemes in representing complex flow structures in a much coarser

grid compared to lower order schemes.

95



Chapter 5

A generic higher order multi-level

time stepping scheme

The ExRi method developed in Chapter 3 demonstrated that the information prop-

agation within the elements can be exploited to construct schemes with improved

stability. In this chapter, the wave propagation characteristics within the element

is used to formulate a high order adaptive time stepping method in which solutions

in different mesh regions can be evolved with different time steps. In this method,

the given grid is decomposed into regions according to their time-step restrictions.

A recursive time stepping method is employed to march each region with their re-

spective local time-steps. Since the scheme can work with any spatial and temporal

schemes, only minimal modifications are required for implementation in existing

solvers. Numerical experiments show that the scheme indeed preserves the formal

order of accuracy while having a significant reduction in the computational cost.

To illustrate the simplicity, the details of implementation of the scheme in an ex-

isting RK-DG solver is presented. While the adaptive time stepping algorithm can

be applied to any spatial discretizations, in this work, the RK-DG scheme is chosen

due to its well established stability characteristics. The computational results using

the adaptive time stepping schemes show good agreement with the pure RK-DG

computations.
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The current work is organized as follows: Sec. 5.1 details the wave propagation

characteristics of a scheme and the dependency of the solution on its neighboring

solution over a time period. The MTS algorithm is detailed in Sec. 5.2.1 with

illustrations in 1D and 2D unstructured elements. In Sec. 5.3, a 1D stability

analysis is conducted for the MTS scheme to study the effect of increasing the time

step size of the solution exchange between mesh blocks. Finally, in Sec. 5.4, the

effectiveness and speedup of MTS scheme is demonstrated on Euler equations for

isentropic vortex evolution problem and direct computation of acoustics for flow

over an open cavity.

5.1 Propagation of perturbations and CFL condi-

tion

For a physical system represented by the hyperbolic equation Eqn. (3.1) with the

maximum wave speed a, the corresponding maximum distance any disturbance can

travel is given by

r = a∆t (5.1)

where r is the distance of propagation and ∆t is a finite time step. From Eqn.

(5.1), it is understood that, over a time period of ∆t, the solution at a given

point can influence the neighborhood within a distance of r length units. Any

solution beyond this region is independent of the solution at the given point. This

is illustrated in Figure 5.1 for a 2D hyperbolic equation.

In the case of explicit time stepping schemes, for a given time step of size ∆t, the

equation Eqn. (5.1) can be used to identify the neighboring elements influencing or

influenced by the solution of the current element. With the definition of the CFL

condition, the distance r can also be represented as

r = Ch (5.2)
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Origin of Perturbation at time t

Region influenced at time t + ∆t

r = a∆t

Figure 5.1: Extent of wave propagation at a wave speed a over a time period ∆t
for a 2D hyperbolic equation.

where C is the CFL number, and h is the size of the element. A solution evolution

of an element over a period of ∆t requires the neighboring solution to be defined

within a distance of r length units from the element.

5.2 Algorithm formulation

5.2.1 Generic Multi-Time stepping schemes

In a generic multi-time stepping scheme, the mesh is divided into a series of non-

overlapping blocks depending on the element sizes. For each of these blocks, the

maximum time step size is limited by the local CFL condition of the elements

within the block. With suitable representation of solution evolution at the block

boundaries, the solution at the block interior can be marched in an adaptive manner

with varying time step sizes for each blocks.

The evolution of solution in a typical MTS scheme is illustrated in Fig. 5.2 where

each rectangle represents a single explicit time marching step and each column

labeled Bf and Bc represent the fine and coarse mesh blocks with local time step

limits ∆t
4

and ∆t
2

respectively. For clarity, we use the term “multi-step” to denote

a series of N time integration steps performed in the current block for a single

time integration step of the next coarser block. To maintain simplicity and ease

of implementation, the value of N is kept constant for all fine block - coarse block
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Figure 5.2: Illustration of a 2 level MTS with time step ratio of 2.

combination. For the case illustrated in Fig. 5.2, a single multi-step of block Bf

would contain two explicit (RK) time marching steps.

5.2.2 Solution evolution at block interfaces

The main component of a MTS scheme is the treatment of solution evolution at

the block-block interfaces such that it can allow different time step sizes across the

interfaces. During a multi-step, suitable support need to be provided to evolve the

solution at the block boundary. In the current formulation, we use a layer of ghost

cells to provide the required data for evolving the solution at the block boundary.

This layer is denoted as the “synchronization layer” since it is responsible for the

block-block synchronization of the solution data.

To explain the solution evolution process at the block boundaries, we categorize

the synchronization layer depending on the neighboring block from which it obtains

the fresh solution. The layer of elements that obtains the new solution from the
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fine block interior is called as “fine-layer” while the layer of elements that obtains

the new solution from the coarse block interior is called as “coarse-layer”. A two

block mesh is considered for explaining the MTS algorithm. The fine block Bf

has an allowable local time step of ∆tf while the coarse block Bc has a maximum

allowable time step of ∆tc.

Fig. 5.3 shows an illustration of the different components of the current MTS

algorithm. The block interfaces, synchronization layers and the associated solution

updates for a 1D grid is shown in Fig. 5.3(a). An example of block division in

an unstructured grid is also presented in Fig. 5.3(b). In Fig. 5.3, Bcf is the the

fine-layer of the block Bc and receives solution updates from Bf . Similarly, Bfc

is the coarse-layer of block Bf and receives solution updates from Bc. With these

definitions, the MTS procedure of a 2-block mesh for a single time step of is detailed

below:

Algorithm MTS2B

(∗ demonstrates MTS scheme for a 2 block mesh ∗)

1. Update ghost cells in Bcf with solutions from Bf at time t

2. Update ghost cells in Bfc with solutions from Bc at time t

3. March block Bc and Bcf to time t+∆tc

4. for i← 1 to N

5. do March block Bf and Bfc to time t + i∆tc
N

The ghost cells in the synchronization layers are updated at the start of the time

step. The solutions in these layers are then used to march the entire mesh solution

by a time of ∆tc. For each global time step, N local time steps are performed on

the fine block Bf while only one local time step is performed on coarse block Bc.

For the case of N = 2 and ∆tc = ∆t/2, the MTS scheme would look similar to the

illustration in Fig. 5.2. The updation of ghost cells are straight forward as they

involve copying the values from the internal element of one mesh to the ghost cells

of neighboring mesh.
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Interior Element

Block Interface

Syncr. Layer made of ghost cells

Bc Bf
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Solution Transfer (Bf to Bcf)

Extrapolation Boundary

Solution Transfer (Bc to Bfc)

(a) 1D mesh

Block Interface

Bfc Bcf

BfBc

(b) Unstructured 2D mesh

Figure 5.3: Illustration of various components of the MTS algorithm (Bf : fine-
block, Bc: coarse-block, Bcf : fine layer of block Bc, Bfc: coarse layer of block Bf).
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Figure 5.4: Solution evolution of synchronization layers.
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The stability of the MTS scheme depends on the local stability limits of the

blocks. Note that the local time marching scheme (Steps 3 and 5 of Alg. MTS2B)

involve solution evolution at both the block interior and its corresponding ghost

cells. The maximum local time step size of the block is thus limited by the stability

limit of both the interior cells of the block and the ghost cells in its synchronization

layers.

The solution evolution process at the synchronization layer is detailed in Fig.

5.4. The truncation of data beyond the synchronization layers results in creation

of an artificial boundary. Here, an extrapolation boundary condition is applied for

treating this artificial boundary. As the solution evolves in time, the error from

these boundaries would propagate towards the block interior as illustrated in Fig.

5.4. The extent of error propagation in the synchronization layer depends on the

thickness of the layer and the time interval between the solution updates at the

synchronization layers. For a scheme with very low CFL limits, this time interval

can be much lower compared to the thickness of the layers. Hence, we perform S

time integration steps at each local time marching step, resulting in the following

algorithm:

Algorithm MTS2BU

(∗ MTS scheme with deferred updation of a 2 block mesh ∗)

1. Update ghost cells in Bcf with solutions from Bf at time t

2. Update ghost cells in Bfc with solutions from Bc at time t

3. for i← 1 to S

4. do March block Bc and Bcf to time t+ i∆tc

5. for i← 1 to SN

6. do March block Bf and Bfc to time of t + i∆tc
N

The MTS algorithm MTS2BU now marches the solution by a time step of S∆tc
compared to ∆tc of MTS2B algorithm. The value of S can be viewed as a scaling

applied to the CFL number at the synchronization layers. Its value is chosen such

that the errors from the artificial boundary do not propagate into the block interior.
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A larger value of S results in more independent time evolution of blocks, which

can be exploited to improve the computational performance of the schemes. In this

work, the introduction of S is chiefly used as a way to increase the time step size

of multi-step for analyzing the overall stability of the MTS schemes (Section 5.3).

5.2.3 A generic recursive MTS scheme

Practical computations often involve a large number of elements with highly varying

element sizes. For such meshes, the MTS scheme can be generalized to handle

multiple blocks with the help of a recursive algorithm. The mesh is sub-divided

into multiple regions based on the element size. Each region is then associated with

a block Bl where the coarseness l increases with increase in element size. The local

time step size of the block Bl is taken to be ∆tl. The values of N and S are kept

constant for all the coarse block - fine block combinations. With these definitions,

the recursive MTS algorithm MTS2BU is written as:

Algorithm MTSRecursive(l, t)

(∗ demonstrates a recursive MTS scheme ∗)

1. if (l + 1) exists

2. then

3. Update ghost cells in coarse layer of Bl with solutions from Bl+1 at

time t

4. for i← 0 to N − 1

5. do

6. if (l + 1) exists

7. then

8. Update ghost cells in fine layer of block Bl with solutions from

Bl−1 at time t + iS∆tl
9. MTSRecursive(l − 1, t+ iS∆tl)

10. March block Bl and its sync. layers to time t + (i+ 1)S∆tl
11. return
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Periodic Boundary Periodic Boundary

BcBfBc

Figure 5.5: Schematic setup for 1D stability analysis of MTS scheme.

The effective time step size of the multi-step algorithm MTSRecursive(l, t) of

block Bl is S∆tl. During computation, the recursive algorithm is initialized with

MTSRecursive(lmax, t
n) where lmax corresponds to the coarsest block and tn is

the current global time. The actual computation, however, is performed starting

from the finest mesh block. At the end of the algorithm, the entire mesh solution

is marched to a time of tn+1 = tn + S∆tlmax
. In all the algorithms, the time

marching steps (steps starting with “March block”) can be performed using any

time stepping scheme. This is one of the primary advantage of the proposed MTS

scheme, as it inherently supports higher order time integration as well as the hybrid

implicit-explicit time stepping schemes [51]. In this work, only the explicit RK-DG

schemes are used for all cases.

5.3 1D Stability Analysis

The theoretical limits of the proposed MTS algorithm is examined by analyzing

the effective CFL of a single multi-step stage. A periodic domain of unit width is

divided in to two blocks Bf and Bc representing the fine and coarse grids. The mesh

in this case, however, is constructed using elements of uniform size for realizing the

CFL condition across the block interface. A schematic setup of the problem is

shown in Fig. 5.5.

In order to perform a matrix stability analysis, the entire process of solution

evolution using MTS algorithm MTS2BU should be represented in matrix form.

The initial step in the MTS algorithm involves refreshing the ghost cell solution
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in the synchronization layers with the internal solution of the neighboring blocks.

Since the cells are of uniform width, the coarse block - fine block ratio N is set to

a value of 1. The initial solution update process of MTS algorithm MTS2BU is

written in matrix form as







c∗

f ∗






= [T ]







cn

fn






(5.3)

where T is the transfer operator used to transfer the solutions between the two

blocks and c∗, f ∗ are the resulting updated values obtained from cn, fn. With

the fresh solution available at the layers, the blocks Bc and Bf can be marched

independently in time. For a linear hyperbolic equation, the time stepping schemes

in the individual blocks are simplified as

cn+1 = Gcc
∗ (5.4)

fn+1 = Gff
∗ (5.5)

where cn+1 and fn+1 are the solutions obtained after one multi-step and Gc, Gf are

the amplification matrices obtained as a result of applying NS time integration

steps on the spatial operator. Here the 1D RKDG scheme [44] is used for deriving

the amplification matrices Gc and Gf . The derivation of the amplification matrices

are not listed here for brevity. Substituting Eqns. (5.4) and (5.5) in Eqn. (5.3),

we get







cn+1

fn+1






= Gcf







cn

fn






(5.6)

where

Gcf =







Gc 0

0 Gf






[T ] (5.7)

106



Chapter 5. A generic higher order multi-level time stepping scheme

The matrix Gcf is the so called amplification matrix for the current MTS system






c

f






. The stability of the proposed MTS scheme is determined by analyzing

the eigenvalues of the matrix Gcf . For the current system, the effective CFL is

given by SC. Since the synchronization layer is of unit cell width, an effective

CFL larger than unit value would result in propagation of error into the block

boundaries. We perform series of experiments with different S and a RKDG CFL

limit of C = 1/(2p+ 1). The influence of effective CFL SC on the overall stability

of the MTS scheme is analyzed by studying the eigenvalues of the matrix Gcf in

Eqn. (5.6).

For performing the matrix stability analysis, we use a computational domain of

unit length, represented by a grid of 40 elements. The mesh blocks are constructed

with 20 elements each. The maximum eigenvalues of the matrix Gcf for various

values of SC is plotted in Fig. 5.6. The scheme becomes unstable when the

effective CFL number is greater than unit value. This is expected as the errors

from the synchronization layer begin to influence the internal solution of the blocks

with increase in SC. Fig. 5.7 shows the plot of the amplification matrix Gcf in

eigen space. When S = 1, only a single RK time step is performed between

each successive synchronization step. The amplification matrix in this case closely

resembles to the pure RK-DG scheme. However, when S = 1/C, which corresponds

to an effective CFL of 1, the eigen modes are pushed towards the maximum limit

represented by the circle of unit radius. The eigen modes in all cases (SC ≤ 1)

remain within the unit circle.

5.4 Results and Discussion

The proposed MTS algorithm is applied to an existing solver based on the basic

unstructured RK-DG solver [44]. The reader is referred to [44] for detailed formu-

lation of the RK-DG scheme. An additional extrapolation boundary condition is

required for treatment of the free faces in the synchronization layer. Since each
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Figure 5.6: Stability analysis of the MTS scheme based on a 3rd order RKDG
scheme (values ≤ 0 are not included while plotting in log scale).
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Figure 5.7: Plot of amplification matrix Gcf corresponding to 4th order RKDG
scheme for different values of N for MTS algorithm (CFL C = 1/7).
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block is treated as an individual mesh, all the components of the basic RK-DG

solver are retained without any modifications.

The performance of the MTS algorithm is quantified in terms of the computa-

tional cost. For a given mesh, the total computational cost per unit time period

for a global time stepping scheme (such as Runge Kutta schemes) is given by

CERK = NitNE (5.8)

where Nit is the number of iterations per unit time period (t = 1), NE is the number

of elements in the mesh. The computational cost is expressed in units of the cost

of evaluation of a single element per global time integration step. The number of

iterations per unit time period (t = 1) is related to the cell size as

Nit =
1

∆t
=

Tfinal

Cmin
Ω∈M

(

h
a

) (5.9)

where C is the maximum CFL number of the global time stepping scheme, h is the

element size and a is the maximum wave speed inside the element Ω andM is the

global mesh. The computational cost of the explicit RK scheme is now computed

as

CERK =
1

C

NE

min
Ω∈M

(

h
a

) (5.10)

An ideal explicit scheme utilizes the maximum local time step of all the ele-

ments independent of other elements. If the additional costs of local time step-

ping schemes are neglected, the minimum possible computational cost for a time

marching scheme is given by

Cmin =

NE
∑

i=1

1

C
h
a

(5.11)

The MTS schemes, on the other hand, apply the maximum possible time step for

the mesh blocks. The mesh is divided into NB blocks based on the element sizes.
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Figure 5.8: Mesh used for isentropic vortex evolution problem.

The associated theoretical computational cost is given by

CMTS =

NB
∑

i=1

1

C

ni

min
Ω∈Bi

(

h
a

) (5.12)

where ni is the number of elements in block Bi and NB is the number of blocks. The

contributions of communication costs and cost of evolving the solution at the syn-

chronization layers is omitted in this approximate analogies of total computational

cost.

5.4.1 Isentropic vortex evolution

To test the influence of the MTS scheme on the solution errors, the MTS scheme is

applied on a standard case of isentropic vortex evolution. Since the analytical solu-

tion is readily available for this case, comparison of the solution errors for different

schemes is straight forward. To maintain brevity, the formulation of the isentropic

vortex evolution problem is not listed here. The reader is recommended to refer
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Figure 5.9: Allocation of blocks for the MTS scheme with NB = 3 and N = 3.

ERK MTS (N = 3)
Order NE L1 error Cost (sec) L1 error Cost (sec) Speedup

2 484 4.83E-2 1.77 4.83E-2 0.95 1.86
1936 1.20E-2 16.01 1.20E-2 6.98 2.29
7744 2.88E-3 130.83 2.88E-3 52.72 2.48
30976 7.00E-4 961.37 7.00E-4 407.17 2.36

3 484 8.79E-3 5.59 8.78E-3 3.06 1.83
1936 1.47E-3 46.89 1.47E-3 21.94 2.14
7744 2.24E-4 376.25 2.24E-4 164.43 2.29
30976 3.15E-5 3036.39 3.16E-5 1243.3 2.44

4 484 1.42E-3 20.32 1.42E-3 10.54 1.93
1936 9.1747e-05 161.62 9.18083e-05 77.94 2.07
7744 5.62983e-06 1288.87 5.69726e-06 569.09 2.26
30976 3.72098e-07 10202.81 4.13309e-07 4312.99 2.37

Table 5.1: Solution errors and computational time for explicit RK and MTS
schemes (CERK/CMTS = 2.42, NE : Number of elements).
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[93] for the formulation of isentropic vortex evolution test case. For the discon-

tinuous solutions at the faces of the DG elements, Riemann fluxes are required to

obtain the solution at the cell interfaces. In this work, the HLLC [86] approximate

Riemann fluxes are used as the interface fluxes.

A large periodic domain extending from (−15, 15) to (15, 15) is considered for

simulation. The smallest element size is taken to be 0.06 at the center and progres-

sively increasing to a maximum size of 1.5 length units at a distance of 8 length

units from the center. The refined meshes are generated by dividing the triangle

in to 4 smaller triangles. The coarsest mesh used for current computation is shown

in Fig. 5.8.

The formulation of Euler equations and the HLLC fluxes are not detailed here

to maintain brevity. The solution is initialized with an isentropic vortex (please see

[93] for formulation) of strength 5 and a free-stream velocity of 1 unit along x axis.

The computations are performed with the basic explicit Runge Kutta method and

the proposed MTS method with N = 3. The solution is evolved over a period of

1 time unit. The errors in the computed solution and the computational cost are

compared between the ERK and the MTS scheme.

The solution results are tabulated in Table 5.1. For the mesh employed in

obtaining the solution in Table 5.1, the maximum theoretical speed up that can be

achieved (CERK/Cmin) is around 4.8. For the MTS scheme with three mesh blocks

(based on N = 3) as shown in Fig. 5.9, the theoretical speedup (CERK/CMTS) that

can be achieved by the MTS scheme is calculated as 2.42. From Table 5.1, it can

be seen that the schemes achieve the required speedup without significant increase

in solution errors. It is observed that the speed-up in computation is improved

with increase in mesh density. This trend is expected, since the additional cost of

synchronization layers relative to the total computational cost will decrease with

increase in mesh density.
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5.5 Summary

An efficient multi-time stepping scheme is developed for higher order methods on

unstructured meshes. Speed up of computational time is achieved by dividing the

mesh into blocks and utilizing the local CFL (time step) limit for time march-

ing. The proposed algorithm is tested and validated for higher order Runge Kutta

Discontinuous Galerkin method on unstructured meshes in 2D problems. The com-

puted solution is indistinguishable from the original solution and has a speed-up

factor of up to 2.5 compared to the original RK-DG scheme. A speed-up factor

of 5.2 is achieved in a 6-block (5 recursion levels) configuration with N = 2 in an

acoustic wave propagation problem presented in Chapter 7. This shows that the

gain in computational cost is dependent on the nature of domain discretization.

A more uniform mesh would have lesser gains compared to the mesh with locally

refined regions.

The current formulation of the MTS algorithm provides greater solution inde-

pendence between the blocks of meshes and enables one to use the existing solvers

without much change in the source code. Furthermore, the mesh blocks can have

independent time stepping schemes. This feature can be exploited by applying

Implicit-Explicit schemes as required.
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Chapter 6

A new high resolution high order

unstructured WENO scheme

The spatial discretization methods such as Discontinuous Galerkin (DG) and Ex-

tended Riemann solver (ExRi) are well suited for smooth solutions. In the pres-

ence of solution discontinuities, these methods, however tend to produce unphysical

oscillations. These oscillations, if not treated, can result in instabilities and cor-

ruption of the original solution. Various methods exist to treat these spurious

oscillations near the discontinuous solutions. The Weighted Essentially Oscillatory

(WENO) schemes are of particular interest since they preserve the formal order of

accuracy even near the discontinuous solutions.

An interesting discovery was made in the current work during the analysis

of onset of instabilities within an element. When a discontinuity develops in a

smooth solution, it was found that the onset of oscillations initially occur only at

the element boundaries. These oscillations are typically localized to one face of

the element, while the rest of the element solution remains relatively smooth. This

phenomena is numerically confirmed and presented in the later part of the chapter

(Section 6.3.1). Based on this finding, a reconstruction technique is formulated that

suppresses the oscillatory solutions arising at element boundary. Due to the re-use

of interior solution, it is possible to restrict the stencil size to just the immediate
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neighbors as opposed to the group of neighborhood elements in FV-WENO schemes

[70]. These type of schemes with a small stencil size are denoted as compact schemes

and hence, here we denote such WENO schemes as compact WENO schemes.

One of the aim of the current work is to extend the compact WENO scheme

to very high orders without compromising the overall order of accuracy of the

solution and to study the resolution of discontinuities by the higher order schemes.

Due to the compact nature of the scheme, higher order reconstructions tend to be

highly sensitive to solution oscillations. A constant biasing of the central stencil

in the ENO and WENO schemes would therefore result in the corruption of the

reconstructed solution by the original oscillatory solution. To prevent this, an

adaptive formulation of the WENO stencil weights is proposed here, in which,

the central bias is determined based on the relative oscillation of the neighboring

solution data. With this formulation, reconstructed solution with accuracy up to

5th order have been achieved, while simultaneously maintaining a high degree of

robustness and stability. Efficiency in terms of computational speed and memory is

enhanced via the introduction of a oscillation detector and the use of a generalized

reconstruction stencil constructed on a reference element. The formulation has also

been extended to a three dimensions with suitable applications demonstrating the

capability of the scheme to produce oscillation free solution.

6.1 HLLC-LLF Flux formulation

The basic RKDG scheme is same as detailed in Chapter 2 and is not detailed here.

The formulation of interface Riemann flux is slightly improved to maintain stability

in the vicinity of shocks and to maintain the resolution properties of HLLC scheme.

Compared to LLF flux, the HLLC flux can resolve the contact discontinuities thus

resulting in a more accurate solution. But, since the HLLC flux is less diffusive, it

exhibits a more oscillatory behavior in the vicinity of a strong shock in comparison

to the LLF fluxes for the same physical conditions. The oscillations become more

severe in the case of higher order schemes (p > 2). To make use of the favorable
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properties of the HLLC and LLF schemes, a hybrid HLLC-LLF flux is formulated

such that the scheme switches to LLF flux in the presence of strong shocks and

retains the HLLC flux in other regions. Following the hybrid scheme by Kim et.

al. [94], we formulate the HLLC-LLF as

FHLLC−LLF =















FHLLC if fF ≥ 5

FLLF otherwise

(6.1)

where the switch F is given by

fF =
Min(pL,pR)

|pL − pR|
(6.2)

As pressure is continuous across contact discontinuities, the scheme naturally uses

the HLLC flux. In the presence of shocks with high pressure gradients, the more

stable LLF scheme is selected.

6.2 Conventional WENO reconstruction of oscilla-

tory solution

The weak solution computed by the RK-DG schemes generate unphysical oscil-

lations in solution near discontinuities. These oscillations need to be suppressed

with the help of artificial diffusion or by suitable solution reconstruction. While

the artificial dissipation schemes are formulated as additional terms in the physical

equation set, the reconstruction techniques are performed as a post-processing step

after each backward Euler step. In the case of RK-DG schemes, this reconstruction

process need to be done at each RK stage.

A generic Weighted Essentially Non Oscillatory (WENO) reconstruction pro-

cedure can be described as follows:

1. For a given element, construct additional solutions UK by including support-

ing solution data from element neighborhood
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2. Estimate the oscillation O(UK) of the solutions UK

3. Calculate the weights wK of the solution UK such that when oscillation de-

creases, the corresponding weight increases

4. Provide additional bias to the original solution such that at smooth regions

the reconstructed solution reverts back to original solution

5. Compute the WENO solution Qw as the weighted sum of solutions UK

6. Replace the original solution Q with the reconstructed solution Qw

The solutions UK are computed by sampling the solution data over the given stencils

K. These stencils include part of the original element solution along with some

of the neighborhood solution data. The first stencil (K = 1) is taken to be the

original solution of the element. The oscillation of the solution Q is calculated [41]

as

O(Q) = 1

V

ˆ

Ω

p
∑

i=1

i
∑

j=0

(

1

i!

∂ifw(Q)

∂ξi−j∂ηj

)2

dΩ (6.3)

where fw(Q) is a function used to extract the oscillation information, V is the

volume of the element Ω, p is the degree of solution reconstruction and (ξ, η) is

the local coordinates of the element. For a component-wise WENO reconstruction,

the function fw(Q) is taken to be the solution Q itself (fw(Q) = Q). For a system

of equations, this results in individual estimates of oscillation (and hence WENO

weights) for each solution variable. With the available oscillation information of

the solutions, the solution weights are computed as

wK =
10λK (O(UK) + ǫ)−nw

∑NK

i=1 10
λi (O(Ui) + ǫ)−nw

(6.4)

where wK is the weight of solution UK , nw is the exponent to scale the oscillation,

ǫ is a small value of 10−5 to avoid division by zero and λK is the stencil bias with

the property (λ1 ≥ 0 and λi = 0, ∀i > 1). The WENO reconstructed solution Qw

can now be obtained as a linear combination of these solutions as

118



Chapter 6. A new high resolution high order unstructured WENO scheme

Qw =

NK
∑

i=1

wKUK (6.5)

where NK is the number of stencils. For higher order WENO schemes, a larger

value of λ1 is critical for preserving the accuracy and order of convergence of error.

6.3 A new WENO reconstruction scheme for high

order schemes

The basic WENO scheme described in Section 6.2 requires

1. Suitable set of stencils K

2. A method to reconstruct the solution UK from the stencil data

3. Measure of oscillation of the solution UK , from which the stencil weights are

computed

4. Definition of the bias factor λ1 for central stencil.

5. A suitable oscillation indicator to determine if WENO reconstruction need

to be applied for current element

In the following sections, we detail each of the component of the proposed WENO

scheme along with several modifications to make the scheme stable at high orders.

6.3.1 Analysis of onset of oscillation for a pure RK-DG scheme

To reconstruct an oscillation free solution, it is important to analyze the generation

of spurious oscillations. For this purpose, a simple Sod shock tube[31] problem is

used to test the behavior of the pure RK-DG schemes (without any shock capturing

method) in the vicinity of shocks. A Sod shock tube problem is setup with fluids at

two different states separated by a thin diaphragm. At the start of the experiment,

the diaphragm is removed and the transient flow characteristics are recorded. For
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the current experiment, as no shock capturing methods are employed, the higher

order RK-DG schemes might become unstable in the first few time steps of solution

evolution. To avoid this, the initial solution is smoothed at the diaphragm (x = 0)

so that the shocks can gradually evolve rather than a sharp initial discontinuity.

The initial solution for the diffused Sod shock tube problem is given by

(ρ,p) = (1− df)(ρ1,p1) + df(ρ2,p2) (6.6)

u = 0 (6.7)

where (ρ1,p1) is the left side density and pressure given by values (1, 1), (ρ2,p2) is

the right side density and pressure given by values (0.125, 0.1) and df is a smearing

function defined as

df(x) =































0 x < −Wint

2

(x+1)
2

−Wint

2
≤ x ≤ Wint

2

1 x > Wint

2

(6.8)

where Wint is the width of the interface region describing the change in the states

of fluid from left to right. For the current analysis, the width of this region is

taken to be Wint = 0.1. The computational domain is taken to be a rectangular

box extending from (-0.5,-0.1) to (0.5,0.1). The solution evolution is carried out

till the RK-DG scheme becomes unstable. The plot of density oscillation for 3rd,

4th and 5th order schemes are shown in Fig. 6.1. The solution is extracted at one

explicit time step before the onset of instability. The quantity |∇ρ|2 is used to

visualize the oscillation in the cells. As expected, the higher order schemes fail at

an earlier time as they are more sensitive to shocks. A key observation is that,

while the solution within the interior of elements is generally smooth, the solution

near some nodes and faces of the element exhibit large oscillations. The same

phenomena was also observed in other numerical experiments with different initial
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(a) p=2, t=0.23

(b) p=3, t=0.176

(c) p=4, t=0.168

Figure 6.1: High resolution plots of oscillation in density (|∇ρ|2) for RK-DG
schemes at one time step before the solution becomes unstable. Note that the
instability occurs at earlier time for higher order schemes (color scales vary with
order of scheme).
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conditions and meshes. This association suggests that boundary nodal regions may

be a source of spurious oscillations; and that to enhance computational stability,

a special treatment or consideration may be needed to suppress these spurious

oscillations and to prevent them from infecting the solution at the element interior.

This is the subject of the new reconstruction scheme described below.

6.3.2 A new reconstruction method for treating oscillatory

data

The WENO scheme described in Sec. 6.2 require sufficient number of stencil so-

lutions UK to extract the smoothest available data in the vicinity of the element.

For a Finite Volume (FV) WENO reconstruction, the solution polynomial is recon-

structed by matching the element integral values (or averages) using least squares

based technique. Since only the integral values are used, the number of elements in

the reconstruction stencil should at least be equal to the number of basis functions.

For unstructured grids, in order to avoid singularity problems during coefficient ma-

trix inversion, the number of elements are chosen to be around 50% more than the

minimum required [41], resulting in a highly overdetermined system of equations

and strong numerical damping, both of which are undesirable.

The DG like schemes can support higher order solutions within the elements.

Considering only the integral value of such solution would result in reduction of

resolution. It should be noted that, for a reconstruction process, the effective size

of the element would be the size of the reconstruction stencil. With the available

higher order solution resolution in DG schemes, it is possible to use fewer number of

elements for solution reconstruction and yet result in a over determined system of

equations. However, reducing the size of the stencil results in a less stable scheme

since only solutions near the oscillatory region is considered. Careful treatment of

the solution oscillations is therefore vital for computational stability.

In this work, a Weighted Residual (WR) solution reconstruction method is

formulated to recover a smooth higher order solution from the available oscillatory
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solution data. A simple Galerkin polynomial reconstruction using the element

neighbors is given by

nK
∑

k=1

ˆ

Ωj(k)

ψUKdΩ =

nK
∑

k=1

ˆ

Ωj(k)

ψQj(k)dΩ (6.9)

where ψ is a trial function, nK is the number of elements in the stencilK, and j(k) is

the mapping of index of the stencil elements to the local index k. The element under

consideration corresponds to the first element in the stencil (k = 1). In order to

ensure the order of accuracy of reconstruction, the set of trial functions (ψ) should

be capable of representing all the derivatives of the reconstructed solution U . In

this work, we ensure the this condition by choosing the trial function to be same

as that of the basis functions used to represent U . With the pre-condition on the

trial function (ψ) satisfied, Eqn. 6.9 is now a pure higher order reconstruction of

solution states Q. The lack of any stabilization terms in the reconstruction process

indicate that no artificial viscosity is introduced in the course of reconstruction.

The preliminary analysis in Sec. 6.3.1 show that the oscillations tend to occur

at the element boundaries, while the solution in the element interior is relatively

smooth. Thus, when constructing a WENO stencil (for re-sampling the data solu-

tion in the element neighborhood), we would like to be able to selectively suppress

or remove the oscillations from these regions, so as to produce relatively smoother

solution over the whole stencil. To this end, we introduce a filtering operator F

for extracting the oscillation free data from the given element solution. This op-

erator is designed such that the oscillatory solutions near the element boundary

are suppressed while the rest of the internal solution is used for reconstruction. In

Weighted Residual reconstruction technique based on Galerkin method, the oper-

ator F is introduced via

ˆ

Ωj(1)

ψFUKdΩ+

nK
∑

k=2

ˆ

Ωj(k)

ψUKdΩ =

ˆ

Ωj(1)

ψFQj(1)dΩ+

nK
∑

k=2

ˆ

Ωj(k)

ψQj(k)dΩ (6.10)

where Ωj(k) represents the kth stencil element and Ωj(1) is the current element
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for which the solution is being reconstructed. In the current reconstruction, the

solution oscillations are removed only in the central element for which the recon-

struction is performed. Hence, the filter operator F is not applied on neighboring

element solutions. Eqn. (6.10) is used to reconstruct the corresponding stencil so-

lution UK from the available neighboring element solution Qj(k). Here, we describe

three different types of reconstructions based on different choices of F:

Method of WR by regional weighting (WWR-WENO) In this method, a

linear weight function is used for suppressing the oscillatory region near the face or

node. The operator for the suppression of Q near the face defined by nodes (i, j)

is given by

Fi,j = ζk (6.11)

where ζi is the barycentric coordinate having a value of 1 at the ith node and a

value of zero at the opposite face defined by nodes (i, j).

The construction of WWR-WENO stencils based on the operator F with respect

to a single face of the element is illustrated in Fig. 6.2. When the solution near the

face is suppressed, both the neighboring elements sharing the face are included in

the WENO stencil. This is required to avoid solution overshoots at the face region

due to lack of solution data and to enhance the resolution of the discontinuity across

the face. Three different solution reconstructions are possible for a given face, thus

amounting to a total of 9 stencils. Similar filter operator can be formulated to

suppress the regions near the node. Though only the face based operator is used

in the current work, we also list the node based operator for completion. The filter

operator for the suppression of solution near node i is given by

Fi = (1− ζi) (6.12)

The introduction of the filter operator F in Eqn. (6.10) could potentially result in

loss of accuracy of the solution fit. Nevertheless, it will be later tested with numer-

124



Chapter 6. A new high resolution high order unstructured WENO scheme
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(a) nK=2
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1
f12

2
f12

1 2

3

(b) nK=3

Figure 6.2: Illustration of operator F corresponding to face f12 for WWR-WENO
stencils (Black: F = 0, White: F = 1).
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ical experiments to show that the scheme achieves the desired order of accuracy

for all orders.

Method of WR by Galerkin method (GWR-WENO) This method can be

derived by using a step function for the filter operator. In this filtering scheme,

a region near the element boundary is completely neglected (F = 0) while the

rest of the region is considered without any modifications (F = 1). This results

in reduction of the effective region of the element as shown in Fig. 6.3. The

formulation in this case, can be simplified to the standard Galerkin method as

ˆ

Ω̃j(1)

ψUKdΩ+

nK
∑

k=2

ˆ

Ωj(k)

ψUKdΩ =

ˆ

Ω̃j(1)

ψQj(1)dΩ +

nK
∑

k=2

ˆ

Ωj(k)

ψQj(k)dΩ (6.13)

where Ω̃j(1) is the shrunk element obtained from Ωj(1) by scaling the element Ωj(1)

with a scaling factor of l0 with respect to the node opposite to the oscillatory face.

A factor of l0 = 1
3

is used in Fig. 6.3. A value of ℓ0 is set to 1
2

in the computations

reported in this paper

Method of WR by uniform suppression of solution (QWR-WENO) For

this method, the entire element solution Qj(1) is suppressed by a constant weighting

function. For this configuration, the operator in Eqn. (6.10) is defined as

F =
1

4
(6.14)

As illustrated in Fig. 6.4, this configuration does not differentiate the oscillatory

regions within the element. Thus only a maximum of 6 stencils (three 2 element

stencils and three 3 element stencils) can be formulated for WENO reconstruction.

All the above configurations can be easily extended to higher order schemes

without any change in formulation.
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(b) nK=3

Figure 6.3: Illustration of operator F corresponding to face f12 for GWR-WENO
stencils (Black: F(1) = 0, White: F(1) = 1).
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f12
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(b) nK=3

Figure 6.4: Illustration of operator F for QWR-WENO stencils (Black: F(1) = 0,
White: F(1) = 1).
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6.3.3 Enforcing conservation of variables

The WENO reconstructions formulated above is not conservative unless the con-

servation condition is imposed while reconstructing the stencil solutions UK . If

exact matrix inversion is used, this conservation property is strictly enforced while

computing UK as in [72]. In the case of least squares technique, an additional

constraint needs to be solved for enforcing the conservation property [41]. Here

we enforce the conservation by imposing a simple condition on the basis function,

that, for all the basis functions except the unit function φ1, the integrals should

vanish. This results in the condition

ˆ

Ω

φidΩ = 0 ∀i > 1 (6.15)

where φi is the ith basis function. Since φ1 = 1, the conservation condition now

reduces to

α1 =
1

V

ˆ

Ω

QdΩ (6.16)

where αi is the coefficient corresponding to φi. Any set of hierarchical basis func-

tions can be modified to the above form with no additional computational complex-

ity. Since the first basis function α1 remains unchanged to maintain conservation,

it is not included in the reconstruction process.

6.3.4 Generalization of WENO stencils for large scale prob-

lems

The WENO reconstructions involve costly matrix inversions (Eqn. 6.10) for sam-

pling the solution polynomial in the stencil. To avoid this inversion at each time

step, the coefficient matrices are pre-computed and stored in memory for a given

grid. The size of this coefficient matrix increases with the number of basis func-

tions used in expansion of solution polynomial. Also, a larger number of stencils is

preferred to perform a smooth WENO reconstruction. Storage of large coefficient
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matrices for a large number of stencils for each element will be computationally

costly and in some cases might be impractical.

For a mesh of adequate quality, the adjacent element do not differ much in

shape and size. In such cases, it is possible to construct the WENO stencils in the

reference plane (ξ, η), thereby reducing the memory requirement significantly. Fig.

6.5 shows the schematic setup of the WENO stencils in the reference plane. The

original element corresponds to element Ωj(1) in the figure and the three neighbors

are numbered consequently from j(2) to j(4). In an isotropic mesh, the neighboring

stencil elements would be of same size as that of Ωj(1). But, when the mesh is

distorted, the nodes of the stencil element could lie outside the actual neighboring

element, resulting in extrapolation of the neighboring solution from the actual

neighboring element to the stencil element. To avoid this, the stencil elements are

scaled down by a factor ℓn ≤ 1
2

along the normal direction of the face fi. However,

for a highly distorted element, this method would still require extrapolation of

neighboring solutions. For such elements, we construct the stencils with the actual

neighboring elements rather than the reference element.

The generalized WENO stencils constructed in reference plane requires evalu-

ation of the solution values at the integration/interpolation points for each stencil

element. This additional cost is negligible compared to the total cost of WENO

reconstruction. Besides, if we employ the oscillation detectors (Section 6.3.6), the

WENO reconstruction is performed only on the troubled cells. A small increase

in computational cost of WENO reconstruction is thus justified compared to the

savings in the memory requirement. A value of ℓn = 1
2

is set as the default value

as it results in a stable scheme with reasonable resolution.

6.3.5 A new adaptive WENO weight computation for higher

order schemes

Computation of non-linear stencil weights (Eqn. 6.4) is a key component of under-

lying WENO scheme. A common way to construct a WENO solution is to compute
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Ωj(1)

Ωj(2)Ωj(4)

Ωj(3)

(a) ℓn = 1

Ωj(1)

Ωj(3)

Ωj(2)Ωj(4)

(b) ℓn = 1

2

Figure 6.5: WENO stencil in reference plane with different scaling of neighboring
elements.
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Figure 6.6: Levels of element neighbors used to compute relative oscillation R
(Solid line: first level; Dashed line: second level).

the weights individually for each solution variable (fw(Q) = Q). Rather than using

individual weights for each solution variable, here we use a common stencil weight-

ing for all the solution variables. This is equivalent of applying a constant stencil

weight for the entire solution state. The choice of this function fw(Q) is critical, as

it needs to address the oscillation of all the solution variables. For Euler equations,

the function K(Q) is calculated as

fw(Q) = c =

√

γp

ρ
(6.17)

where c is the speed of sound. It is observed that the use of a common oscillation

function results in a more stable reconstruction compared to the component-wise

reconstruction, particularly at regions where negative density can occur.

A larger bias towards original solution (central stencil) improves solution ac-

curacy. However, in the case of an oscillatory solution, a larger value of λ1 will

result in corruption of the reconstructed solution by the original oscillatory so-
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lution, thereby prevent the WENO reconstruction from effectively removing the

oscillations. Numerical experiments suggest that the WENO reconstruction be-

comes more sensitive to the choice of λ1 and nw in Eqn. (6.4) for schemes of

order ≥ 4. To avoid this, we choose an adaptive central weight λ1 and exponent

nw. When the element solution is less oscillatory than the neighboring solutions,

the value of λ1is increased and nw is decreased. This increases the bias towards

the original solution. If the solution is more oscillatory, this bias is decreased by

decreasing λ1 and increasing nw. To enable this, we introduce a measure of the

relative oscillation R of the element with respect to its neighbor as

R =
Min

(

O
(

Qj(1)

)

...O
(

Qj(NN )

))

+ ǫ

O
(

Qj(1)

)

+ ǫ
(6.18)

where Qj(1) is the element solution before reconstruction and NN is the number of

neighbors chosen recursively for computing R. We limit the number of neighbors

to two levels of von Neumann neighbors as shown in Fig. 6.6. The value of R as

formulated in Eqn. (6.18) decreases towards zero if the element solution is more

oscillatory than the neighboring solutions and increases to 1 if the element solution

is smoother compared to the neighboring solution. With the value of R known,

the values of λ1 and nw are computed in an adaptive manner as

λ1 = Rp (6.19)

nw = (1−R) p (6.20)

From Eqn. (6.19) and Eqn. (6.20), the bias towards the original solution will be

decreased if an oscillatory solution exists in the neighborhood. This enables one

to effectively use the WENO reconstruction technique on a very high order scheme

without any instability problems. This technique requires no free parameter, and

the formulation is fixed for all WENO schemes listed here.
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6.3.6 Oscillation detectors

For large scale problems, it is often desirable to perform the expensive WENO

reconstructions as and when it is required. The need to carry out a WENO re-

construction for an element is determined by analyzing the variation of solution

oscillation O(Q) in the element neighborhood. The oscillation detector χ used for

determining the relative level of oscillation in the element neighborhood is given

by

χ =

(

Min(O(Q1)...O(QNN
)) + ǫ

Max(O(Q1)...O(QNN
)) + ǫ

)p

(6.21)

The WENO reconstruction is performed only when the following conditions are

met:

χ < 0.3 (6.22)

O(Q1) > Min(O(Q1)...O(QNN
)) (6.23)

With these conditions, the reconstruction is now enabled only in the cells that

have large oscillations in the element neighborhood. The performance of oscillation

detectors is demonstrated on the Double-Mach reflection test case in Sec. 6.4.6.

6.3.7 Extension of WWR-WENO scheme to 3D

The stencil formulations detailed above have been formulated for 2D triangle ele-

ments. It is straight forward to extend the same formulation to 3D elements. Much

of the formulations of the WENO scheme such as oscillation detection, non-linear

weight computation, adaptive biasing etc. are similar to that of the 2D formulations

and are not detailed here to avoid repetition.

The WWR-WENO scheme is used for the tetrahedral elements. The solution

near the faces are suppressed with the formulation given in Eqn. (6.11). The

corresponding solution reconstructions are performed based on Eqn. (6.10). Similar

to the 2D reconstruction, while generating the WENO stencils, both the elements

sharing the face near the oscillatory region are included. In order to limit the
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1

2

(a) 2 element stencil

1

2

3

(b) 3 element stencil

Figure 6.7: Illustration of stencils for 3D tetrahedral elements for face shared by
elements 0,1.

number of stencils, a maximum of two neighboring elements are used to construct

the stencils. This results in a set of 4 stencils for each face, thus resulting in a

total of 16 stencils for a given element. Fig. 6.7 illustrates the 3D stencils for a

tetrahedral element. Only one of the 3-element stencils is shown for illustration.

6.4 Results and Discussion

The proposed WENO reconstruction technique is applied for various benchmark

problems. The order of accuracy is established with the isentropic vortex evolution

problem. The performance of the schemes in the presence of discontinuities are

then analyzed with the standard Sod shock tube problem on a 2D mesh. Numerical

solutions are compared with the analytical solutions for both the isentropic vortex

and the Sod shock tube problem. A more complex simulation is then performed

with the 2D Riemann problem and the shock-bubble interaction problem. The

effect of h and p refinement on the shock resolution is studied in detail by simulating

a double mach reflection. The capability of method in computing three dimensional

flows is demonstrated with the a spherical explosion problem and a 3D shock-bubble

interaction problem.
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Since the current simulations are conducted with inviscid fluid models, the

shock interactions can result in much finer structures. A diffusive scheme like the

FV WENO reconstruction scheme would diffuse these small structures even if the

scheme has high order of accuracy. Hence, the resolution of these flow structures

and discontinuities are used as a qualitative measure of the resolution of the WENO

schemes. Both h and p refinement strategies are used to compare the resolution

characteristics of the schemes and better understand their applicability for problems

involving shocks and contact discontinuities.

The computational domain is discretized with the “frontal” algorithm in the

open-source grid generator GMSH [79]. For normal plotting, only the cell average

values are used. The high resolution plots are obtained by sub-dividing the ele-

ments into smaller elements depending on the order of the scheme. The solution

visualization using high resolution (refined elements) plots tend to be more oscilla-

tory as the solutions are discontinuous across the elements. “Visit”, a VTK based

viewer [95] is used for plotting the solution using cell centered VTK data. The

solver is parallelized using Message Passing Interface (MPI) and is run on Rocks

cluster with AMD Opteron processors.

6.4.1 Numerical accuracy test using isentropic vortex evo-

lution

The problem consists of an isentropic vortex convecting at a constant speed in

the free stream. This is in general used as a test case for estimating the order

of accuracy of a scheme since the solution is smooth and analytical results are

readily available. An isentropic vortex at a point (0,0) is initialized by the following

equations

ρ =

(

1− (γ − 1)β2exp (1− r2)
8γπ2

)
1

γ−1

(6.24)

u = 1− βy

2π
exp

(

1− r2
2

)

(6.25)

136



Chapter 6. A new high resolution high order unstructured WENO scheme

RK-DG WWR-WENO

Order h L1 err. L∞ err. O(L1) O(L∞) L1 err. L∞ err. O(L1) O(L∞)

2 1 3.67e-3 1.42e-3 6.58e-3 2.92e-3
1
2

9.27e-4 2.93e-4 1.98 2.28 2.02e-3 9.27e-4 1.7 1.66
1
4

1.88e-4 6.87e-5 2.3 2.09 4.86e-4 1.68e-4 2.06 2.47

3 1 8.24e-4 4.06e-4 1.50e-3 5.80e-4
1
2

7.86e-5 2.08e-5 3.39 4.29 1.34e-4 3.68e-5 3.48 3.98
1
4

6.85e-6 3.75e-6 3.52 2.47 9.32e-6 4.17e-6 3.85 3.14

4 1 1.51e-4 3.75e-5 6.63e-4 1.39e-4
1
2

8.79e-6 4.75e-6 4.1 2.98 1.40e-5 3.67e-6 5.56 5.25
1
4

4.75e-7 3.15e-7 4.21 3.91 6.98e-7 3.64e-7 4.33 3.33

5 1 3.15e-5 1.09e-5 5.94e-5 1.32e-5
1
2

1.18e-6 4.18e-7 4.74 4.7 1.68e-6 4.21e-7 5.15 4.97
1
4

1.11e-7 2.45e-8 3.41 4.09 1.19e-7 2.43e-8 3.81 4.11

GWR-WENO QWR-WENO

2 1 6.53e-3 2.82e-3 6.35e-3 2.80e-3
1
2

1.99e-3 8.85e-4 1.71 1.67 1.84e-3 8.46e-4 1.79 1.73
1
4

4.78e-4 1.58e-4 2.06 2.49 4.16e-4 1.43e-4 2.15 2.57

3 1 1.67e-3 5.99e-4 1.24e-3 5.07e-4
1
2

1.34e-4 3.58e-5 3.64 4.06 1.12e-4 3.09e-5 3.46 4.04
1
4

9.44e-6 4.24e-6 3.83 3.08 8.29e-6 3.85e-6 3.76 3

4 1 5.63e-4 1.39e-4 4.23e-4 1.06e-4
1
2

1.10e-5 3.35e-6 5.68 5.38 1.08e-5 3.35e-6 5.29 4.99
1
4

5.20e-7 3.58e-7 4.4 3.23 5.23e-7 3.37e-7 4.36 3.31

5 1 5.19e-5 1.33e-5 3.89e-5 1.20e-5
1
2

1.35e-6 3.93e-7 5.26 5.08 1.24e-6 4.31e-7 4.97 4.8
1
4

1.16e-7 2.44e-8 3.55 4.01 1.16e-7 2.47e-8 3.42 4.13

Table 6.1: Grid convergence analysis of WENO schemes for solution of isentropic
vortex evolution at t = 5.
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Figure 6.8: Comparison of convergence characteristics of WWR-WENO scheme
with respect to pure DG scheme for isentropic vortex evolution problem.

v =
βx

2π
exp

(

1− r2
2

)

(6.26)

p = ργ (6.27)

where β = 3 is the strength of the vortex and r =
√

x2 + y2 is the distance from

the center of the vortex. The computation is performed in a periodic of size 10x10.

For numerical analysis, we compare the numerical results at t = 10 at which the

exact solution coincides with the initial solution. The CFL condition is chosen

such that the error due to the time stepping is negligible. Successive refinements

are performed by dividing each triangle into four smaller triangles. For the current

computation, the WENO scheme is applied on all the cells, irrespective of the

relative solution oscillation.

The solution errors and grid convergence characteristics for the WENO schemes

are tabulated in Table 6.1. The QWR-WENO scheme has the least solution error.

This could be due to the utilization of the original solution without any modifica-
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p Density Error Velocity Error Pressure Error
1 0.0101 0.0208 0.0084
2 0.0056 0.0110 0.0046
3 0.0051 0.0090 0.0042
4 0.0048 0.0081 0.0040

Table 6.2: Solution errors (L1) computed using WWR-WENO schemes for shock
tube problem at time t = 0.25.

tion. However, it will be shown Sec. 6.4.2 that the scheme tends to be unstable

for higher orders. The WWR and GWR scheme have similar performance char-

acteristics. All the schemes exhibit the designed order of accuracy. As grid size

reduces, the local solution of an element becomes smoother in comparison to coarse

grids. This results in an increase in λ1 thereby reducing the influence of the WENO

reconstruction. As a result, the errors seem to converge faster than the designed

order of accuracy. This trend can be observed in the order of convergence listed in

in Table 6.1. For all the orders up to 4, the observed order of accuracy in coarser

grids is higher than the designed order. In the case of 5th order schemes, the order

of convergence tend to decrease with mesh refinement as the error is now limited

by the machine accuracy. However, with mesh refinement, the solution errors of

the WENO scheme converge to that of unmodified RK-DG scheme, which is the

minimum error possible for a smooth solution. This is also confirmed in the plot

of solution errors in Fig. 6.8.

6.4.2 1D Riemann problem

The Sod shock tube problem detailed in Section 6.3.1 is used with the width Wint

set to 0, resulting in exact initial condition at time t = 0. All the computations are

run till a physical time of t = 0.25 on a mesh with average cell size of around 0.03.

The density oscillation (|∇ρ|2) for various schemes are plotted in the vicinity of

the shock in Fig. 6.9. For all the orders of the scheme, the WWR-WENO scheme

results in the smoothest solution, while the QWR-WENO scheme results in the

most oscillatory solution. The GWR-WENO scheme is more oscillatory relative to
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(a) p = 2, WWR (b) p = 2, GWR (c) p = 2, QWR

(d) p = 3, WWR (e) p = 3, GWR (f) p = 3, QWR

(g) p = 4, WWR (h) p = 4, GWR (i) p = 4, QWR

Figure 6.9: Oscillations in density (|∇ρ|2) at time t = 0.25 for the modified Sod
shock tube problem: note that the shocks become narrower and passes cleanly
through the elements with increase in p (color scales adapted to order of scheme
for visualization purpose, with maximum values of |∇ρ|2 taken as 80, 280, 450 for
p = 2, 3, 4 respectively).
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Figure 6.10: Comparison of computed solution averaged along y axis at time t =
0.25 for shock tube problem. Errors computed as deviation of computed solution
from exact solution (L1 error).
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the WWR-WENO scheme. In general, the schemes that suppress the oscillatory

regions near the face perform better. Due to the improved reconstruction properties

of the WWR-WENO schemes and its relative simplicity in implementation, we

adopt the WWR-WENO scheme as the default scheme for the rest of the work.

To demonstrate the improved resolution of the discontinuities, we compare the

solution of the shock tube problem with the exact analytical solution at time t =

0.25. The 2nd, 3rd and 4th order solutions obtained with the WWR-WENO scheme

are compared with the exact solution in Fig. 6.10. The 1D solution is extracted

by averaging the 2D data at a given x location. The solution errors with respect

to the exact solution are also plotted in Fig. 6.10 to illustrate the behaviour of

schemes at various orders.

As expected, the 4th order schemes match the exact solution better than the

lower order schemes. Near the discontinuities, the solutions exhibit oscillations

similar to the Gibb’s phenomena[65, 66]. These oscillations, however are localized

to almost a single cell width (see Fig. 6.9). For the 2nd order scheme, however, the

solution away from the discontinuity is also considerably affected in-spite of having

a smooth solution. The deviation of the solution from the exact solution is clearly

visible in the error plots in Fig. 6.10. The area under the curves decrease as the

order of the scheme increases. The quantitative L1 solution errors with respect to

the exact solution are listed in Table 6.2. The higher order schemes clearly have

an advantage in terms of error magnitude.

6.4.3 Shock Bubble interaction

In this test problem, a shock wave interacts with a cylindrical gas bubble of different

density. The interaction produces intricate flow structures evolving with time. The

problem is initialized as shown in Fig. 6.11. Reflecting wall boundary condition is

specified at the top and bottom surfaces. For the initialization of the gas bubble,

a Galerkin fit is applied over the elements bordering the contact discontinuity

representing the bubble-fluid interface. The solution at t = 0.2 is plotted in Fig.
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Figure 6.11: Schematic setup of shock-Bubble interaction problem.

6.12. At this time instance, the shock has fully traversed the bubble. Due to

the difference in the density, the propagation of shock inside the bubble is faster

compared to the outer regions, resulting in complicated flow structures behind the

shock wave.

The coarse grid 3rd order solutions are compared with a coarse grid 4th order

solution and a fine grid 3rd order solution representing the p and h refinements

respectively. For a grid size of h = 1/160, the 4th order scheme reproduces finer

shock structures and has a better resolution of shocks relative to the 3rd order

scheme. Though the 4th order solution has similar shock structure as the fine

grid (h = 1/320) 3rd order solution, the latter has relatively less oscillation. For

the current simulation, the total computational time of the 4th order coarse grid

solution is around 75% of the computational time of 3rdorder fine grid solution. As

with the higher order schemes, the improvement in resolution with grid refinement

would be higher for higher orders. Thus, with the increase in resolution of flow
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(a) O3, h = 1/160 (b) O3, h = 1/160, Expanded view

(c) O3, h = 1/320 (d) O3, h = 1/320, Expanded view

(e) O4, h = 1/160 (f) O4, h = 1/160, Expanded view

Figure 6.12: Density contours for shock-Bubble interaction problem at t = 0.2
computed with WWR-WENO scheme.
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(a) GWR-WENO (b) QWR-WENO

Figure 6.13: Comparison of 3rd order GWR and QWR WENO schemes applied to
shock-bubble interaction (t = 0.2, h = 1/160).

structures, the computational cost of 4th order schemes relative to the 3rd order

schemes would decrease.

In all the three cases, the overall shock structure remains the same at t = 0.2.

The resolution of the discontinuities in Fig. 6.12(d) is comparable to the existing

solution in the literature [96] obtained on a fine grid (h = 1/1000) using a 3rd

order limiter function. For comparison purpose, the 3rd order coarse grid solutions

obtained using GWR and QWR WENO schemes are plotted in Fig. 6.13. The basic

structure of the shock remains the same. The QWR-WENO scheme reproduces

more structures compared to the other two schemes. This is expected as the QWR

scheme is less diffusive. The solution obtained using GWR is comparable to the

solution of WWR-WENO scheme.

6.4.4 2D Riemann Problem

Two dimensional Riemann problems are used to analyze the effectiveness of higher

order WENO schemes in resolving the discontinuities and/or shocks and their re-

sulting interactions. While many different configurations of the Riemann problem

are possible, here we consider a configuration involving both shocks and contact

discontinuities. The computational domain of size 1x1 is divided into four quad-

145



Chapter 6. A new high resolution high order unstructured WENO scheme

Left Right

Top

ρ = 2

u = 0

v = 0.3
p = 1

ρ = 1

u = 0

v = −0.3
p = 1

Bottom

ρ = 1.0625

u = 0

v = 0.8145

p = 0.4

ρ = 0.5313

u = 0

v = 0.4276

p = 0.4

Table 6.3: Initial configuration of quadrants for 2D Riemann Problem.

(a) LLF flux

Figure 6.14: 2D Riemann problem computed using LLF Flux (3rd order solution)

rants with discontinuous data across each quadrant at time t = 0. The mesh is

generated such that in the initial setup, all the discontinuities are confined only to

the element faces. The parameters for initializing the data for all four quadrants

are given in Table 6.3. The problem is initialized with two contact discontinu-

ities (between top and bottom quadrants) and two shock waves (between left and

right quadrants). A slip flow is prescribed at the contact discontinuity between

the left and right quadrants. Such difference in velocities across the discontinuity

can trigger an inertia-dominated Kelvin-Helmholtz (KH) like flow instabilities. In

the absence of viscosity, the KH instability can result in the generation of wave

instability along the surface with velocity discontinuity at all length scales.

The solution obtained using the (Local Lax Friedrich) LLF flux is plotted in

Fig. 6.14. All the other simulations (Figures 6.15 and 6.16) use HLLC-LLF flux.
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(a) O3 (b) O4

(c) O3, Expanded view (d) O4, Expanded view

Figure 6.15: 2D Riemann Problem, t = 0.3, h = 1/160 (20 equally spaced contours
of density).

The LLF flux can not resolve the contact discontinuities and perturb the interface

representing the contact discontinuities. With the HLLC-LLF flux, the scheme

switches to HLLC flux across a contact discontinuity, thus enabling the scheme to

capture the discontinuity accurately. A comparison of Fig. 6.14 with Fig. 6.15(a)

shows that the LLF scheme tends to artificially smear the contact discontinuities

as it does not distinguish the contact discontinuity from a shock. A contact dis-

continuity with a slip-stream condition (varying velocity across discontinuity) is

very sensitive to any fluctuations present in the vicinity and often results in Kelvin

Helmholtz kind of instability. The increased instability characteristics at the con-
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(a) O3, h = 1/320 (b) O5, h = 1/160

(c) O3, h = 1/320, Expanded view (d) O5, h = 1/160, Expanded view

Figure 6.16: 2D Riemann Problem, High Resolution Computations, t = 0.3 (20
equally spaced contours of density).

tact discontinuity in Fig. 6.14 could be caused by the inability of the LLF scheme

to capture the contact discontinuity.

Detailed computations are performed for 3rd, 4th and 5th order schemes with

additional 3rd order computation on a refined grid (h refinement). The results

are plotted in Figures 6.15 and 6.16. It is observed that the 3rd order solution

reproduces a smooth contour and the overall solution agrees well with the literature.

The contact discontinuity is well resolved with the HLLC-LLF fluxes. In the 3rd

order solution, the instability at the contact discontinuities are just starting to

appear above the vortex structure. The 4th order scheme performs better than the
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(a) O3 (b) O4 (c) O5

Figure 6.17: Solution of the shock-vortex interaction problem (30 equally spaced
contours of density).

3rd order scheme in terms of resolution of discontinuities and finer shock structures.

Due to the increased resolution of the 4th order scheme, the finer structures at the

contact discontinuity are clearly visible at the region above the vortex like structure.

Both the coarse (h = 1/160, Fig. 6.15(a)) and fine grid (h = 1/320, Fig.

6.16(a)) 3rd order solution have a kink in the contour in top left quadrant. The

appearance of this kink in the contour could be due the initialization of the shock

discontinuity at t = 0. However, this feature is less visible in the 4th and 5th

order solutions. The fine grid 3rd order solution contains small structures along

the contact discontinuities which were not observed in the coarse grid (h = 1/160)

solution. The flow/vortex structures in a 5th order coarse grid (h = 1/160) solution

in Fig. 6.16 are comparable to those present in 3rd order fine grid (h = 1/320)

solution. The 5th order coarse grid solution has a similar shock resolution as that

of 3rd order fine grid solution, thus demonstrating the improvement in the sub-cell

resolution of the discontinuities with increase in order of scheme.

6.4.5 Shock Vortex interaction

This is a standard test problem to test the interaction of a vortex with a shock

wave. The left half of the computational domain (x < 0.5) is initialized with the

solution (1, 1.1
√
γ, 0, 1). A stationary shock wave of mach number 1.1 is setup at

x = 0.5. The solution state at the right side of the shock (x > 0.5) can be evaluated
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Figure 6.18: Identification of troubled cells using shock detectors (h = 1/100,
t = 0.2, 3rd order).

from the solution of the Rankine-Hugoniot jump condition. An isentropic vortex

is setup at (0.25, 0.5) as a perturbation over the free stream quantities. These

perturbations are given by

δρ =
(

1− γ−1
2
β2e2θ(1−r2v)

)
1

γ−1

δu = y

r
βrve

θ(1−r2v)

δv = −x
r
βrve

θ(1−r2v)

δp =
(

1− γ−1
2
β2e2θ(1−r2v)

)
γ

γ−1

(6.28)

where r =
√

x2 + y2 and rv = r
0.05

. The constants β and θ are set to 0.3 and 0.204

respectively. The average element size h is set to 1/100 while generating the mesh.

The solution is evolved till a time t = 0.35 during which, the vortex has passed

through the stationary shock. The solution obtained using 3rd, 4th and 5th order

schemes are shown in Fig. 6.17. All the schemes produce non-oscillatory solution

and the results are comparable with the existing results in literature [1].

6.4.6 Double Mach Reflection

The double Mach reflection of a strong shock wave is a commonly used to evaluate

the performance of shock capturing schemes in the presence of strong shocks. This

problem is of special interest as it involves both steady and unsteady flow structures.

The problem is setup with a Mach 10 shock contacting the wall surface at x = 0,

making an angle of 600 with the wall. The reflecting wall is modeled along the

x-axis for x ≥ 0. For the boundary x < 0, exact post-shock condition is applied.
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(a) O3

(b) O4

(c) O5

Figure 6.19: Double Mach Reflection of Mach 10 shock: Grid size: h = 1/100,
t = 0.2 (30 equally spaced contours of density).

151



Chapter 6. A new high resolution high order unstructured WENO scheme

(a) O3

(b) O4

(c) O5

Figure 6.20: Mach stems in Double Mach Reflection of Mach 10 shock: Grid size:
h = 1/100, t = 0.2 (30 equally spaced contours of density).
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(a) Normal Contour

(b) Expanded view

Figure 6.21: Double Mach reflection using 3rd order WENO: h = 1/200, t = 0.2
(30 equally spaced contours of density).

The simulation is carried out till time t = 0.2. Computations are performed in grid

of size h = 1/100 for different orders of scheme. A fine-grid computation with 3rd

order scheme is carried out on a grid of size h = 1/200 to compare the results of

higher order schemes. The regions of oscillatory solutions are effectively identified

using oscillation indicators as detailed in Section 6.3.6. The troubled cells that

require WENO reconstruction for a 3rd order WENO scheme applied on a mesh of

size h = 1/100 is shown Fig. 6.18. This case corresponds to WENO reconstruction

applied to 10.9% of the total number of elements in the computational domain.

The ratio of number of troubled cells to the total number of elements in the mesh

reduces with grid refinement. Fig. 6.19 shows the computed solution for the double

Mach reflection obtained on a grid size of h = 1/100. In all the cases, the overall

structure of the flow field agrees well with the literature [97, 1].
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Figure 6.22: Solution of double mach reflection obtained using 3rd order hierarchical
reconstruction a:h = 1/250 b: h = 1/500 (image obtained from Fig. 15 in [1]).

As the order of the scheme increases, the spurious oscillations generated at the

shock becomes more visible. However, the finer structures arising due to the shock

interactions are captured effectively with the higher order schemes. Similar to the

2D Riemann problem in Sec 6.4.4, a KH like instability is observed across the slip-

stream at the triple shock region (see Sec. 7.1.2 in [98] for detailed description of

Double Mach reflection problem). A WENO scheme with larger diffusion would

diffuse these smaller structures with length scales smaller than the element size.

Similarly, the detailed structures of the high density jet at the end of the slip-

stream is also well represented by higher order schemes. This is similar to the trend

observed in the previous computations where the higher order methods result in

more accurate representation of flow field in the vicinity of discontinuities.

The results of fine grid simulation are shown in Fig. 6.21. The flow structures

at the contact discontinuity and the high density jet can be seen clearly. The higher

order solutions in Fig. 6.19 obtained with grid size 1/100 and the 3rd order solu-

tions obtained with grid size 1/200 are comparable to the solutions obtained using

hierarchical reconstruction method presented in [1]. For the purpose of compari-

son, we have also reproduced the plot of the solutions obtained using hierarchical

reconstruction [1] method in Fig. 6.22. The coarse grid 3rd order solution can

reproduce the major flow structures such as the shocks, contact discontinuities and

the high density jet at the end of contact discontinuity. However, the length scales

of the structures at the slip-stream contact discontinuity are larger compared to
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the fine grid solution. Similar to previous cases, as the order of scheme increases,

the resolution of the shock within the cell increase. This is evident from the high

resolution contours at the double shock region plotted in Fig. 6.23. The resolution

of the shock and contact discontinuity in a 5th order solution is comparable to that

of the 3rd order fine grid solution computed with half the grid size. Comparing the

solution oscillations for different grids in Fig. 6.23, it can be derived that the solu-

tion oscillations near the shock is of the order of cell size. This is further confirmed

with the fine grid solution in Fig. 6.23(d), where the length scale of the solution

oscillation is nearly half of the length scale of oscillations in a coarse grid solution.

An interesting feature of the current method is its ability to represent a disconti-

nuity across the cell interfaces resulting in a nearly grid-independent resolution of

discontinuities. For all the computations, the overall structure of the shock remains

unaffected by element size.

Though the default value of ℓn = 1
2

produces results with adequate resolution,

here we also compute a solution with ℓn = 1
3

to illustrate its effect on solution

resolution. Depending on the physical problem simulated, this parameter can be

modified, if required, to produce a high resolution solution. A 3rd order solution is

computed with ℓn = 1
3

while retaining all the other parameters same. Due to the

reduction of stencil size, the resulting solution (Fig. 6.24) is more oscillatory than

the original 3rd order solution. However, the resolution of the flow structures is

enhanced compared to the earlier computation (Fig. 6.20(a)). A similar effect was

reported by Xu et. al. [1] when partial neighboring cells are considered for WENO

reconstruction. A lower value of ℓn would however make the schemes unstable,

especially for higher orders. Hence, it is advised to use the default value of ℓn = 1
2

for the proposed WENO reconstruction.

6.4.7 3D Spherical Explosion

Similar to the shock-tube problem in Sec. 6.4.2 the 3D explosion problem can be

used to analyze the resolution of discontinuities by higher order WENO reconstruc-
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tion in three dimensions. The problem is initialized with the following solution:

(ρ,p) =















(1, 1), r ≤ 0.4

(0.125, 0.1), r > 0.4

, u = v = w = 0 (6.29)

where r =
√

x2 + y2 + z2. The computational domain is taken to be a box defined

by two corners (0,0,0) and (1,1,1). The corresponding mesh (h = 1/10) is plotted

in Fig. 6.25. Symmetry boundary condition is used at all the boundaries of the

computational domain.

The reference solution is computed by reducing the axi-symmetric problem to

a 1D hyperbolic equation given by

∂Q

∂t
+∇ · ~F = SSph (6.30)

where Q and F are given in Eqn. (2.7) and the source term is given by

SSph = −2
r













ρu

ρu2

(ρe+ p)u













(6.31)

The reference solution is computed by solving Eqn. (6.30) on a a very fine mesh

with the LLF Riemann flux. Three different computations are performed for orders

2 to 4. The solution along the diagonal of the computational domain is used to

compare the accuracy of the scheme with respect to the exact solution. The com-

puted solutions of orders 2-4 and the reference 1D solution are plotted in Fig. 6.26.

All the schemes can capture the shock and contact discontinuity. The resolution

of discontinuities is improved with increase in the order of scheme. The fine grid

solution (h = 1/50) obtained in [2] using the FV-WENO scheme is reproduced in

Fig. 6.27 for reference. For the given discretization, the resolution of the discon-

tinuities using the current RKDG-WENO scheme is better than the existing 3D

solutions based on FV WENO schemes[2].
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6.4.8 Shock interaction with 3D bubble

This test case is similar to the 2D test case, except that the bubble is now defined as

a 3D sphere instead of a 2D cylinder. The computational domain is defined by a box

with a width of 1.8 length units, depth of 1 length unit and height of 1 length unit.

The solution is setup with initial conditions similar to the 2D shock-bubble problem

as defined in Fig. 6.11. The mesh is formed with an approximate element size of

h = 1/50 and consist of 1.35 million tetrahedral cells. The evolution of the shock

bubble interaction computed using a 3rd order WWR-WENO scheme is plotted in

Fig. 6.28 in terms of iso-surfaces of the density. The oscillation free nature of the

solution is clearly demonstrated in this simulation with the flow features in the

post-shock solution (Fig. 6.28(c)-6.28(e)) being captured without any significant

oscillation in solution. This demonstrates the capability of the proposed scheme in

three dimensions.

6.5 Summary

A compact, high resolution WENO reconstruction method is proposed for un-

structured grids. Various improvements in numerical flux computation, solution

reconstruction, oscillation detection and adaptive weights of stencils are proposed

to enable the extension of the scheme to very high orders. The improvement in

resolution of the higher order schemes are realized with the application of suitable

filters to selectively remove the oscillatory solutions from the reconstruction pro-

cess. The spatial resolution of the reconstruction process is preserved by using a

compact stencil comprising of only the immediate element neighbors. With these

formulation, for the first time an unstructured, high resolution, compact WENO

scheme has been extended to 5th order accuracy and to three dimensions.

Computational efficiency of the proposed scheme is improved in two ways.

Firstly, the stencils are constructed on a reference plane, thus avoiding computation

and storage of the huge coefficient matrices for stencil reconstruction. Secondly,
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the expensive WENO reconstruction is performed only in the cells identified by

the oscillation detector χ described in Section 6.3.6, leading to greater computa-

tional efficiency. The difference for solution with those in which reconstruction is

performed on all elements is negligible.

The performance of the WENO schemes are tested on the inviscid Euler equa-

tions for various benchmark problems. Since no artificial dissipation is used, the

4th and 5th order schemes exhibit slight oscillatory behavior compared to 3rd order

schemes. Although the higher order schemes (> 3rd) seem to be more oscillatory

than the lower order schemes, it is evident from the numerical experiments that

they have high sub-cell resolution of discontinuities and their interactions. The

h and p refinement studies conducted in this work confirm that the proposed re-

construction method can reproduce a highly resolved smooth solution within the

element even in the presence of discontinuities. It has been demonstrated with

numerical experiments that the solutions obtained with the current WENO recon-

struction on a coarse grid is comparable to the fine grid solutions available in the

literature. The proposed WENO reconstruction method has also been extended to

three dimensions and tested for problems involving three dimensional shocks and

contact discontinuities.
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(a) O3, h = 1/100

(b) O4, h = 1/100

Figure 6.23: Sub-element resolution at double-shock region for Double Mach Re-
flection (background mesh corresponding to h = 1/100).
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(c) O5, h = 1/100

(d) O3, h = 1/200

Figure 6.23: Sub-element resolution at double-shock region for Double Mach Re-
flection (background mesh corresponding to h = 1/100) contd.
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(a) Normal Contour

(b) High resolution contour

Figure 6.24: Double Mach Reflection: 3rd order solution with h = 1/100 and ℓn = 1
3

(30 equally spaced contours of density).
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Figure 6.25: Mesh used for 3D explosion problem.
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Figure 6.26: Plot of density for a Spherical explosion problem using 2nd, 3rd and
4th order WENO schemes (h = 1/20).
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Figure 6.27: Plot of density for a Spherical explosion problem using FV-WENO
schemes (h = 1/50) (image reproduced from Fig.11 in [2]).
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(a) t = 0.117

(b) t = 0.153

Figure 6.28: Iso-surfaces of density for a 3rd order solution of a 3D shock bubble
interaction.
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(c) t = 0.225

(d) t = 0.0.320

Figure 6.28: Iso-surfaces of density for a 3rd order solution of a 3D shock bubble
interaction. (cont.)
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(e) t = 0.4

Figure 6.28: Iso-surfaces of density for a 3rd order solution of a 3D shock bubble
interaction. (cont.)
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Chapter 7

Applications to direct computation

of sound

The primary aim of this chapter is to apply the previously developed methods to

perform coarse DNS simulations of problems involving aero-acoustic sound gener-

ation. For the computed solutions, the mechanism of sound generation is analyzed

in detail. The aerodynamic sound generated as a result of the flow are recorded

at specified locations and a Fast Fourier Transform (FFT) is performed on the

acoustic signal to extract the harmonics. Two problems are chosen for the current

test: (i) cavity tones generated in a flow over a rectangular cavity (ii) aerodynamic

sound generated in a reed-like instrument. In all the cases, absorbing boundary

condition (see Sec. 4.4) is used to prevent the spurious reflection of acoustic waves

at the computational boundary.

7.1 Cavity tones generated in a open cavity

The cavity tone problems been a topic of active research for the last several decades.

The applications of the cavity tone problem are widespread in the aerospace and

automobile sectors. The landing gears and the weapons bay of the aircraft, the

gaps in doors in the cars, windows of a high rise building etc. are all examples

of flow over an open cavity. In all these cases, a periodic pressure fluctuation is
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observed in the cavity region. Krishnamurty et. al. [99] did a series of experiments

on 2D cavity oscillations. He observed that these oscillations occurred not just in a

specific flow regime, but, in a wide range of flows ranging from subsonic to transonic

flows. In additional to the pressure fluctuations in the cavity, it was also observed

that specific acoustic tones were generated characterized by the geometry of the

cavity and the nature of fluid flow. Later, Rossieter et. al. [100] proposed a model

to explain the generation of acoustic tones. He proposed that the acoustic tones

generated in the cavity propagate upstream to influence the vortex generation in

the shear layer. He suggested an empirical formula relating the Strouhal number

to the flow property as:

St =
m− ϑ

M + 1/Kc

, m = 1, 2, 3, ... (7.1)

where m is an integer representing the acoustic modes, M is the free-stream Mach

number, ϑ is the empirical phase number between the vortices and pressure waves,

Kc is the ratio of convection speed of the vortices to the free-stream velocity and

St is the Strouhal number defined as

St =
fL

U∞
(7.2)

where f is the resonant frequency, L is the length of the cavity and U∞ is the free

stream velocity. The values of ϑ and Kc are taken to be 0.25 and 0.57 for a range

of Mach number from 0.4 to 1.2.

In this work, we aim at simulating the flow around the rectangular cavity with

length to depth ratio (L/D) of 2. The generated acoustic tones are extracted in the

near-field region at a point located at (0, 8D) from the trailing edge of cavity. A Fast

Fourier Transform (FFT) is then performed on the pressure signal to determine the

corresponding acoustic modes. The problem setup is shown in Fig. 7.1. The far-

field boundary is located at a distance of 20 units away from the center of the cavity.

Absorbing boundary condition is applied at all the far-field boundaries to prevent
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Figure 7.1: Problem setup for flow over open cavity.

Figure 7.2: Mesh for computation of acoustics for open cavity problem.
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Figure 7.3: Snapshot of contour of velocity magnitude for Re 2500 flow over an
open cavity.

spurious reflection of waves. For all the cases, the Reynolds number based on cavity

depth is taken to be 2500. A fourth order ExRi-SD method in combination with

the proposed WWR-WENO scheme is used to compute the viscous flow over the

open cavity. The discretization of the viscous fluxes is performed using the one-

step method based on ExRi scheme as proposed in Chapter 4. The computational

mesh is generated with the minimum element size taken to be D/8 at the edges

of the cavity and gradually increasing to 3D/2 at the far-field. The corresponding

mesh used is shown in Fig. 7.2. The free-stream density is set to 1Kg/m3 and

the coefficient of viscosity is taken to be µ = 0.01(Pa s). The free stream velocity

U∞ is set to 25m/s and the free stream pressure is set according to the free-stream

Mach number of the flow by using the formula

p∞ =
ρ∞
γ

(

U∞

M∞

)2

(7.3)

where the subscript ∞ represents free-stream quantities.

7.1.1 Subsonic case with Mach No. 0.5

The velocity contour corresponding to the Mach 0.5 flow over the open cavity is

shown in Figure 7.3. The corresponding density contour is shown in Figure 7.4.

The generation and propagation of acoustic waves from the shear layer over the

cavity is clearly observed from the contour plots. For the case with Mach number
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Figure 7.4: Density fluctuations for Re 2500 flow over an open cavity.
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Figure 7.5: Frequency spectrum of the pressure signal for a Re 2500, Mach 0.5 flow
over an open cavity with L/D = 2. (Rossieter modes correspond to empirically
fitted data).
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0.5, the flow is fully subsonic with no shocks in the flow field. Figure 7.5 shows the

frequency spectrum of the measured acoustic signal for a free-stream flow of Mach

number 0.5. Distinct peaks observed correspond to the harmonics of the acoustic

tones generated by the cavity. The reference acoustic modes are obtained using

the Rossieter’s empirical formula [100] corresponding to the flow over open cavity.

In Figure 7.5, the Strouhal number for the first two dominant modes match well

with values obtained the Rossieter’s formula. The acoustic spectrum show that the

mode corresponding to m = 2 is most dominant. A similar observation was also

reported in [101] for free stream Mach number of 0.65.

7.1.2 Transonic computations

As the free stream Mach number is increased, weak shock structures (local regions

with mach number range 0.95 < M < 1.05) are observed in the the flow field. These

shock structures occur only at specific intervals during the course of vortex roll-up

near the downstream edge of the cavity. The evolution of the vortex structure and

the occurrence of shocks are highlighted in the contour plots shown in Figure 7.6.

The presence of the vortex structure near the downstream edge of the cavity results

in a large density and pressure gradient. Since the flow is deviated due to the shear

layer instability, there is a relative increase in the velocity magnitude and hence the

local Mach number. This results in formation of shock at this region. This process

is found to be periodic occurring at each vortex shedding cycle. Fig. 7.7 shows

the density, pressure and velocity near the cavity region during the occurrence of

shock in the flow field. The frequency spectrum of the acoustic signal for the Mach

0.8 case (Figure 7.8) shows the occurrence of additional weaker modes along with

the dominant modes. This could be due to the intermittent occurrence of shocks

during the vortex evolution near the leading edge of cavity.

Additional computations were performed for free-stream Mach numbers 0.6

and 0.7. Figure 7.9 shows the plot of first two dominant modes with respect to

the Mach number. The computed modes have a similar trend in comparison with
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(a) T=0.61

(b) T=0.71

(c) T=0.8

(d) T=0.9

Figure 7.6: Snapshot of vorticity contours for Re 2500, Mach 0.8 flow over an open
cavity with L/D = 2 (the black marker denotes the occurrence of weak shock in
the flow field).
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(a) Density

(b) Pressure

(c) Velocity Magnitude

Figure 7.7: Snapshot of flow field during occurrence of intermittent shock in a
Mach 0.8 flow over an open cavity.
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Figure 7.8: Frequency spectrum of the pressure signal for a Re 2500, Mach 0.8 flow
over an open cavity with L/D = 2 (Rossieter modes are empirically fitted data).
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Figure 7.9: Dominant modes of acoustic tones generated by a Re 2500 flow over a
open cavity: M1,M2 are the first two modes computed; R1 and R2 are the empirical
Rossieter modes).

the Rossieter modes. The computations clearly demonstrate the capability of the

proposed schemes to accurately and efficiently simulate the complex non-linear

mechanism of acoustic sound generation even in presence of shocks.

7.1.3 Application of adaptive time stepping scheme

The flow around open cavity often requires fine meshes near the leading and trail-

ing edges. This results in anisotropic meshes having smaller elements near the

edges and larger elements as one moves towards the far-field, making it a suitable

candidate to test the adaptive time stepping algorithm proposed in Chapter 5. To

demonstrate the effectiveness of the adaptive time stepping scheme, we choose a

more resolved mesh with very fine grids at the edges of cavities. For this case, the

minimum element size is taken to be D/40 at the edge. The corresponding mesh is

shown in Figure 7.2. For the MTS algorithm, the value of N is set to 2, resulting

in 6 block mesh (5 levels of mesh sizes) as shown in Fig. 7.10. The free stream
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Figure 7.10: Levels of mesh used for computation of acoustics for open cavity
problem (6-blocks, 5 recursion levels, N = 2).
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Figure 7.11: Comparison of computed acoustic modes with and without the appli-
cation of MTS scheme (Rossieter modes are empirically fitted data).
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Mach number is chosen to be 0.5 and the Reynolds number based on cavity length

is set to 2500. Two computations are performed with and without the MTS algo-

rithm applied on the basic scheme. With the application of the MTS algorithm,

a speedup of 5.2 over the basic scheme is achieved. The improved computational

efficiency is achieved without sacrificing the solution accuracy. The harmonics of

the measured acoustic tones for the two cases are plotted in Figure 7.11. The

acoustic spectrum obtained using the MTS scheme is nearly indistinguishable from

that obtained using the basic scheme without the MTS scheme.

7.2 Acoustic tones generated in a reed-like instru-

ment

The reed instruments are instruments that generate acoustic tones when the player

blows air against a sharp edge or the reed. These instruments generate acoustic

tones without use of any mechanical parts. The flow mechanism involved in the reed

instruments is equivalent to the classical “edge-tone problem” in which the plane

jet oscillates over a wedge shaped object. The oscillations result in generation and

shedding of interacting vortices that get convected downstream. The entire phe-

nomenon of acoustic tone generation is highly non-linear and is extremely difficult

to capture various modes corresponding to the tones generated by the oscillating

flow.

In this work, we consider a particular case of acoustic tone generation by a

reed-like instrument. The motivation of this study is more towards analyzing the

effectiveness of higher-order schemes in capturing the various harmonics of the

generated acoustic tones. Hence, we restrict the current scope of study to a single

problem configuration.

The schematic setup of the reed problem is shown in Fig. 7.12. The jet inlet is

constructed using a channel of length 10mm. A wedge of angle 20◦ and thickness

of 3mm is placed at a distance of 6mm from the exit of mouthpiece. No-slip

178



Chapter 7. Applications to direct computation of sound

1.0 6 50
320

2.5 22.5

O
ut

le
t

O
ut

le
t

Inlet

10

Figure 7.12: Schematic setup for simulating acoustic tones generated in reed-like
instrument (units in mm, figure not to scale).

179



Chapter 7. Applications to direct computation of sound

Figure 7.13: Mesh used for simulation of acoustic tones generated in reed-like
instruments.
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boundary conditions are applied at all the boundaries other than the inlet and

outlet. The fluid is taken to be air with properties: density ρ0 = 1.184(kg/m3),

pressure p0 = 101325(Pa), coefficient of viscosity µ = 1.71 × 10−5(Pa s), specific

heat ratio γ = 1.4 and gas constant R = 8.31451. The inlet jet velocity is set as

5m/s.

The corresponding mesh generated is shown in Figure 7.13. To capture the

complex interactions of jet and the vortices, a finer mesh is used for the region

between the inlet and the reed resulting in a total of 6852 elements defining the

entire computational domain. Absorbing boundaries are used at the outlets and

no-slip boundary condition is applied for all the surrounding walls.

Figure 7.14 shows the initial transient stage when the impinging jet becomes

unstable. The smaller vortices generated at either side of the edge roll-up and get

pulled in by the primary jet. These vortices later interact with the jet itself, thereby

resulting in a more complicated flow pattern. The oscillation of the jet results in

periodic shedding of the vortices. Figure 7.15 shows the snapshots at different time

instances in the process of vortex shedding. It is inferred from the figure that the

vortex shedding takes place approximately at every 3 snap-shot interval. With

a time step size of 9.05 × 10−4 seconds between the snapshots, the frequency of

vortex shedding is calculated (approximately) as 368 Hz. Note that the vortex

shedding occurs on either side of the reed. Figure 7.15 also shows the formation

of larger vortical structure arising from the smaller vortices being shed at the reed

edge. In order to visualize the larger structures, the contour ranges for vorticity

are adjusted to lower levels and the resulting snapshots are presented in Figure

7.16. It is observed that the vortices are reintroduced into the vorticity jet stream

near the tip of the reed. This provides a feedback mechanism that is eventually

synchronized with the oscillation of the jet. On closer observation of the vortex

structures, it was observed that the time taken for a vortex to circulate and re-join

the jet stream before the reed is roughly around 0.0281 seconds, which corresponds

to a frequency of 35.6 Hz. This suggest that there should be 5 vortices on each
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Figure 7.14: Jet impinging on a reed: initial onset of instability on jet (Snapshots from T = 0.0027 to T = 0.0124).
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Figure 7.14: Jet impinging on a reed: onset of instability on jet (Snapshots from T = 0.0027 to T = 0.0124). contd.
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Figure 7.14: Jet impinging on a reed: onset of instability on jet (Snapshots from T = 0.0027 to T = 0.0124). contd.
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Figure 7.15: Periodic shedding of vortices near the edge of reed structure (Time step between snapshots=9.05 × 10−4).
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Figure 7.15: Periodic shedding of vortices near the edge of reed structure (Time step between snapshots=9.05 × 10−4). contd.
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side of the reeds at a given point in time or 10 vortices in total. These vortices are

periodically re-ingested into the vorticity jet approaching the reed, giving rise to

a frequency of 356 (=10 × 35.6) Hz, which agrees well with the estimated vortex

shedding frequency of 368 Hz (mentioned earlier).

During the computation, the absolute pressure is recorded at a point located at

(9,15) mm from the reed edge. The acoustic signal and the corresponding Fourier

Transform of the signal is given in Figure 7.17. Distinct peaks are observed in

the spectral plot, illustrating the harmonics (acoustic modes) corresponding to the

signal. As discussed before, the first peak corresponds to a frequency of 33.3 Hz.

This coincides with the rough estimate of 35.6 Hz which was obtained by computing

the time taken for the vortex to be shed from the jet and to get re-introduced

(feedback) in the jet flow. The second peak corresponding to a frequency of 333.3

Hz also coincides with the previous study where the frequency of vortex shedding

was roughly estimated as 368 Hz. For the acoustic modes obtained in an edge tone

problem, Brown [3] proposed a formulation based on experimental observations.

The frequency of the edge tone as per his experiments [3] is given by

f = 0.466j(100Ujet − 40)

{

1

100l
− 0.07

}

j = 1.0, 2.3, 3.8, 5.4 (7.4)

where f is the frequency of the edge tone in Hertz, Ujet (m/s) is the velocity of

the jet impinging on the reed edge at a distance of l (m) from the jet nozzle. The

harmonics with frequencies 333.3Hz and 800Hz obtained from the pressure signal

coincide well with the empirical formula in Eqn. (7.4) which yields to 342.3Hz

(j=1) and 787.2Hz (j=2.3).

7.3 Summary

The numerical methods developed in this work are applied to direct computation

of aerodynamic sound for two different test cases. For the computation of acous-

tic tones generated in an open cavity, the measured acoustic spectrum matched
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Figure 7.16: Evolution of larger vortical structures and their interaction with the jet (Time step between snapshot: 1.811× 10−3).
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Figure 7.16: Evolution of larger vortical structures and their interaction with the jet (Time step between snapshot: 1.811× 10−3). contd.
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Figure 7.16: Evolution of larger vortical structures and their interaction with the jet (Time step between snapshot: 1.811× 10−3). contd.
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Figure 7.17: Acoustic spectrum of the edge tone (T = 0.02 − 0.08) generated by
a jet impinging on a reed (Dotted lines denote the edge tone frequencies obtained
using Brown’s [3] formulation).
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well with that of the empirical values obtained using Rossieter’s formulation. No

corruption of acoustic signals were observed in the subsonic computation with free

stream Mach number of 0.5. As the flow becomes transonic, the shock structures

occur at a specific interval during the roll-up of vortex at the downstream edge

of cavity. Shock capturing is facilitated with the high resolution WENO scheme

developed in Chapter 6. For the transonic cases, the additional peaks observed in

the acoustic spectrum (Mach 0.8) could be due to the intermittent occurrence of

shocks in the flow field. The effectiveness of the WENO shock capturing scheme

and the multi-time stepping schemes are demonstrated in the open-cavity prob-

lem. The second test case corresponding to a jet impinging on a reed has been

successfully computed. The mechanisms of sound generation are qualitatively and

quantitatively analyzed with appropriate correlations to the observed edge tones.

The computed tones match very well with that of the first two harmonics of Brown’s

empirical equation. The application of the numerical schemes to the aero-acoustic

problems clearly demonstrate the capability of the schemes to accurately compute

the complex process of aerodynamic sound generation.
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Chapter 8

Conclusions and Outlook

8.1 Summary and Conclusion

This thesis details research towards developing efficient, high resolution, high accu-

racy numerical methods for computing complex non-linear interactions occurring

in viscous compressible fluid flows which may contain shocks. The primary contri-

butions in this work are the formulation of a continuous flux function, alternative

one-step formulation for obtaining gradients at element interface for viscous flow

computation, a simple and efficient multi-time stepping scheme and high resolution

compact WENO schemes for shock capturing.

• The Extended Riemann method developed in Chapter 3 is found to have

an improved stability and hence support a larger time step compared to the

standard DG schemes. The same trend is observed when the scheme was

successfully extended to triangle elements. It is observed that the stability

of a given numerical scheme depends to a greater extent on the method of

blending the Riemann flux corrections with the solution at the interior of

the element. Explicit modeling of this influence has direct implications on

numerical stability and wave propagation characteristics of the scheme. An

interesting observation was made in which, specifying the extent of influence

of Riemann corrections through the desired CFL number (C) resulted in direct
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influence on the actual/measured CFL number of the numerical scheme. The

various theoretical and numerical experiments confirmed that the proposed

ExRi schemes can achieve higher-order accuracy while supporting a relatively

larger time step.

• The ExRi technique was used to obtain an approximation for the solution

inside an element. This approximate solution can now vary smoothly from

the element interface to the element interior. This smooth variation of the

solution at the interface facilitates the approximation of field gradients at

the interface and hence offer a natural extension of the method to viscous

compressible flows. Application in viscous compressible flows show that the

proposed scheme can achieve higher order accuracy for steady and unsteady

flow computations.

• The fundamental understanding of wave propagation within a discrete ele-

ment is extended to formulate adaptive multi-time stepping schemes. Im-

proved algorithms were formulated for schemes that support higher order

solution representation within the element. The developed time stepping al-

gorithm is independent of the nature of spatial and temporal discretization

and hence can attain very high orders without any change in the formulation.

Numerical tests show that the schemes can significantly reduce the compu-

tational cost (up to 80% demonstrated in current work) while maintaining

the solution errors in the same level as the original schemes without adaptive

time stepping.

• Compressible flows can have solution discontinuities in form of shocks. Fol-

lowing the ExRi concept of the Riemann solution influencing the interior

solution evolution, a new method of WENO reconstruction is formulated. It

is demonstrated that the onset of spurious oscillations occur predominantly

at the element boundaries while the interior element solution remain rela-

tively smooth. This behavior of the numerical schemes is exploited while
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reconstructing a smooth solution in the vicinity of shocks. In addition to

the reconstruction procedure, improvements on adaptive stencil weight com-

putation are also suggested for the existing WENO schemes. The resulting

numerical scheme is found to have high resolution even in the vicinity of

shocks. Numerical experiments show that the scheme can resolve a shock

within one cell width. The captured shock structure remains smooth and is

unaffected by the mesh discretization. The shock resolution in the solution

obtained with the proposed WENO scheme is comparable with the existing

solution obtained using the state of the art shock capturing schemes on finer

grids. A formulation of an oscillation indicator is presented with which we can

estimate the extent of solution oscillation in an element and the applicability

of WENO numerical scheme to improve the oscillatory solution. The use of

this oscillation indicator results in selective application of WENO procedure

to less than 10% of the computational domain, thereby achieving significant

savings in computational cost.

• The complete set of numerical schemes developed in this research is applied

to direct computation of aerodynamic sound. For the flow over open cavity,

the computed acoustic tones match closely with the empirical formulation

as suggested by Rossieter. Subsonic and transonic computations were per-

formed. It is shown that at high Mach numbers, the flow field has intermittent

occurrence of shock structures. The adaptive multi-time stepping algorithm

yielded a speed-up of 5.2 when applied to the cavity tones problem, while

the results were almost identical to that of the original solution obtained us-

ing the plain Runge Kutta time stepping algorithm. The numerical methods

were also applied to the acoustic tone generation on a reed instrument. The

instability of the jet impinging on a reed edge and the generation of complex

vortex interactions are demonstrated. The feed-back mechanism involved in

the reed instrument is clearly demonstrated by analyzing the circulation of

vortex structures within the reed instrument. The frequencies of the tones
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extracted from the computed solution agree very well with the experiments

conducted by Brown et. al.[3].

8.2 Future Work

The work represented in the present thesis can be further extended in several

directions:

8.2.1 Improvements in ExRi approximation in multi-dimensions

While the 1D ExRi formulation is straight forward and simple, the 2D formula-

tion of the Riemann correction F involves complications and result in a stringent

stability condition. Different methods of approximation of F can be considered.

Further improvements can be made by considering a higher order Riemann solver

[102] at the interface and utilizing the resulting solution to construct a more ac-

curate representation of the approximate flux. It will be interesting to study the

influence of the ExRi method on such schemes. In addition to the original ExRi

scheme, the viscous ExRi formulation can also be applied to a more computation

intensive problem such as LES and DES. The savings in terms of computational

cost can be significant in such problems.

8.2.2 Application of multi-time stepping algorithm

The MTS algorithm can theoretically support different spatial and temporal schemes

between mesh regions. Currently, only the MTS algorithm is applied only on a

standard RK-DG method and the ExRi method. The MTS algorithm can be used

to construct semi-implicit schemes where each mesh region is marched using an

implicit scheme with different time step sizes. The algorithm can also be used to

formulate implicit-explicit methods by selectively using implicit methods at stiff

regions. In future, the algorithm can also be extended to 3D viscous flow compu-

tations involving shock capturing.
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8.2.3 Adaptive WENO formulation

The WENO formulation proposed in this work can be used for applications such

as detonations where resolution of the shock structure is more critical. Since the

scheme can be applied to unstructured grids and does not require any stencil com-

putation, the proposed WENO scheme is a suitable candidate for adaptive refine-

ments and schemes involving moving mesh problems.
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