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SUMMARY 

Brittle (cleavage) fracture of the steel material often causes catastrophic failures in the 

structures operating under low temperatures. In contrast to the ductile fracture, the 

assessment of brittle fracture generally unitizes a probability-based approach, represented 

by the widely recognized Weibull stress model, which depends significantly on the 

accurate computation of near-tip singular stress field. The existing research work shows 

that the conventional mechanism-based strain gradient (CMSG) plasticity theory, which 

defines the material hardening not only on the strain but also on the gradient of strain, is 

able to capture the asymptotic stress fields near the crack tip when the non-uniform 

plastic deformation is at the intrinsic material length scale whereas the classical theory of 

plasticity is unable to. However, the CMSG plasticity theory has not been applied to the 

cleavage fracture study, thus, the purpose of this work is to study the cleavage fracture 

incorporating the strain gradient plasticity.  

For this purpose, the work adopts the CMSG plasticity theory to study the stress field near 

the crack tip and recalibrates the Weibull stress parameters for structural steels tested at 

low temperatures of o20 C, o40 C  ，and o 110 C . As the material length scale is an 

essential parameter in the CMSG plasticity theory, we also carry out the indentation tests 

on two types of structural steels (S355 and S690) under different temperatures and 

various load levels from 30 to 500 mN. The corresponding finite element simulations 

incorporating the CMSG plasticity are performed to quantify the material length scale of 

the two types of steels. Based on the value of material length scale, this thesis continues 

to study the plastic strain gradient effect on the near-tip crack opening displacement by a 

compact tension finite element model and a plane strain small scale yielding model. A 



Summary 

 iii 

fracture test is also tried to experimentally quantify the plastic strain gradient effect on the 

near-tip crack opening displacement. 

In the recalibration procedure of Weibull parameters (Weibull modulus m and the 

threshold fracture toughness minK ), the strain-gradient dependent material hardening 

described by the CMSG plasticity theory leads to significant increases in the Weibull 

stress magnitudes compared to those derived from the classical plasticity for fracture 

specimens under the same crack-opening load. The CMSG plasticity analysis generates 

slightly larger values of the Weibull modulus than those from the classical theory of 

plasticity analysis. The threshold fracture toughness values exhibit mild dependence on 

the material strain hardening properties. The magnitudes of the Weibull stress and the 

calibrated m and minK  values indicate negligible dependence on the material length scales 

of 5 and 10 m. The calibrated Weibull stress model predicts a higher probability of 

fracture from the CMSG plasticity analysis than that from the classical plasticity analysis 

for a macro-crack under the same opening load for the same or calibrated Weibull 

modulus values. 

This study also shows that the crack front constraints, characterized by the linear-elastic 

T-stress, impose a strong effect on the magnitude of the Weibull stresses, especially for 

crack fronts experiencing low plasticity constraints. Both proportional and non-

proportional loadings cause significant differences in the Weibull stress values and the 

constraint-correction function. 

The simulations of the indentation test at two different temperatures, o20 C and o300 C , 

for structural steels S355 and S690 using the CMSG plasticity theory show that the 

material length scale of the structural steel is around 7 m at the two different 
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temperatures. Finite element analyses also show that the strain gradient effect on the 

crack tip opening displacement (CTOD) is negligible based on the traditional definition of 

the CTOD as the location to determine the CTOD moves further away from the crack tip 

with the increasing loads. However, the CTOD values near the true crack tip depend 

strongly on the plastic strain gradient. These displacements computed using the CMSG 

plasticity theory are lower than those from the classical plasticity theory, indicating that 

the strain gradient stiffens the material deformation near the crack tip, thus, reduces the 

crack opening displacement. 

In conclusion, the current study of cleavage fracture based on the CMSG plasticity theory 

shows that the CMSG plasticity could strongly raise the magnitudes of Weibull stresses 

compared with those computed from the classical plasticity, while both constitutive 

models provide the similar Weibull stress parameters (Weibull modulus m and the 

threshold fracture toughness minK ). The CMSG plasticity theory provides drastically 

different estimation of the near-tip crack opening displacement, implying the plastic strain 

gradient hardens the material and limits the plastic deformation near the crack tip. In a 

practical sense, the CMSG plasticity theory provides a new insight to the study of 

cleavage fracture and helps understand the micro scale deformation mechanism of 

cleavage fracture.  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The fracture of engineering structures turns into a heated research topic since the World 

War II as fracture failures result in great economic losses and even human‟s lives. 

Though safety measures have been taken during the design stage, fracture failure may still 

occur due to various reasons such as the temperature variations and the unavoidable 

micro cracks existing in welded components. From the investigation of Chang and Lin [1], 

around 30% of the 242 storage tank accidents in the past 40 years are due to tank crack 

and rupture.  

There are two types of fracture often observed in structural steels. One type is ductile 

fracture (see Figure 1.1(a)) [2]. The ductile fracture normally starts from the nucleation of 

the micro voids and the growth of micro voids between inclusions and the matrix. When 

the load increases, these micro voids coalesce to form a macroscopic crack. The 

sufficiently high load level causes the severe plastic deformation around the large crack 

before the final rupture. 

Cleavage fracture is another type of fracture (see Figure 1.1(b)) [2]. It occurs with rapid 

crack propagation with less plastic deformation at the crack tip. The existing sharp micro 

crack and the second-phase particles in the matrix can provide sufficient local stress to 

initiate the cleavage fracture to break the bonds of grains and lead to final fracture failure.  

The ductile fracture can transform into cleavage fracture for body-centred-cubic (bcc) 

metals with the decreasing of temperature. At high temperatures (normally greater than 

100 
o
C), the steel often fails by micro void coalescence (i.e., ductile fracture mode) while 

at low temperatures (normally below 0 
o
C), the ferritic steel exhibits cleavage fracture 
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mode. At the transition temperatures (-150
 o
C-100 

o
C), both types of fractures can occur. 

The ferritic steel may initially undergo ductile fracture and finally fail by cleavage 

fracture. Therefore, at the transition temperatures, the fracture toughness data for cleavage 

fracture are normally scattering. The assessment of brittle fracture generally unitizes a 

probability-based approach, e.g., the Weibull stress model, instead of a deterministic 

method which is often used to access the ductile fracture. The widely recognized Weibull 

stress model depends significantly on the accurate computation of near-tip singular stress 

field. The existing research work [3-5] shows that the conventional mechanism-based 

strain gradient (CMSG) plasticity theory, which defines the material hardening not only 

on the strain but also on the gradient of strain, is able to capture the asymptotic stress 

fields near the crack tip when the non-uniform plastic deformation is at the intrinsic 

material length scale whereas the classical theory of plasticity is unable to. Most research 

work [6-10] studies the Weibull model based on the classical plasticity theory. As the 

CMSG plasticity theory has not been applied to the cleavage fracture study, this work is 

to study the cleavage fracture incorporating the CMSG plasticity. 

 

   (a)     (b) 

Figure 1.1 Two fracture micro mechanisms in metals (a) Ductile fracture; (b) Cleavage fracture 

1.2 Literature Review 

Cleavage fracture of steel often causes sudden catastrophic structural failures without 

extensive plastic deformations. Some examples of failures due to cleavage fracture can be 
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seen in pressure vessels after many years of exposure to radiation and in offshore 

platforms in the arctic zone under very low temperatures. In the ductile-to-brittle 

transition (DBT) region, the fracture toughness of laboratory specimens show scattered 

results. This drives a probability-based approach to assess the cleavage fracture failure.  

A three-parameter statistical model adopted in ASTM E 1921 [11] is developed from 

extensive experimental database of laboratory fracture specimens fabricated from a wide 

range of ferritic steels. The fracture toughness, JK , is directly converted from the fracture 

toughness and the energy release rate, ,J in the small scale yielding plane strain 

conditions. Thus, this Weibull statistical model applies only to the configuration with 

small scale yielding and high constraint conditions, that is, the plastic zone resides in a 

localized material around the crack tip.  However, the specimens always gradually lose 

constraint with increased plastic deformation ahead of the crack tip. In order to include 

both high and low constraint conditions that may exist at the crack tip, Beremin‟s group 

[12] propose the “Weibull stress” model to characterize the cumulative probability of 

cleavage fracture. This model uses the average stress concept to describe the fracture 

driving force instead of using the micro scale toughness concept, thus, eliminates the 

limitation from the constraints ahead of the crack tip. 

From the observation of fracture tests, the fracture failure actually does not occur if the 

stress intensity factor is below a certain value. Therefore, Bakker and Koers [13] extend 

Beremin model by introducing the threshold stress,
th

 . Zero failure probability happens 

when the stress acting on the micro crack is less than the threshold value.  

Following Bakker and Koers [13], the parameters m and th  in the Weibull stress model 

are studied [10, 14-24]. Moorman [25] also derives the probability accounting for the 
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critically sized  carbide in the fracture zone to provide the theoretical basis for the 

cleavage fracture in three-dimensional cracked structures. However, the value of 
th

  is 

difficult to determine. Gao et al. [19] propose that the threshold stress 
th

  can be the 

minimum Weibull stress 
w min




 corresponding to the minimum toughness 
min

K . The 

proposed micro scale Weibull stress model has a similar form as the macro three-

parameter statistical model employed in ASTM E 1921 [11]. The research group in the 

University of Illinois [10, 20, 23] further modify the Weibull stress model by combining 

the effects of the constraint loss, the length of the crack front and the minimum value of 

the Weibull stress. Gao et al. [19] and Petti and Dodds [10] present procedures to 

calibrate the parameters, m  and 
w min




. In the later work of Wasiluk et al. [20], the 

parameter 
u

  is shown to increase as the temperature increases, while m  is independent 

of the temperature. The method of treating scattered fracture toughness also gradually 

reaches maturity and more researchers [26-31] put effort to improve the Weibull stress 

model. Bostjan and Anuradha [32] develop the Weibull model for cleavage fracture and 

crack extension direction for graded structural steels in which the yield stress and fracture 

toughness vary spatially. Jorg et al. [33] concern the micro defect nucleation role in the 

probabilistic modeling of cleavage failure in ferritic steels and then propose [34] the 

Weibull model for the probabilistic cleavage fracture assessment of ferritic materials by 

including the nucleation and propagation of micro defects. 

On the other hand, a series of micro scale experiments show that a significant plastic flow 

exists when the cleavage cracks in the bimaterial interface of niobium and sapphire [35, 

36]. The macroscopic work for the interface fracture is 1000 times more than the atomic 

work for the separation of the two materials.  Similar phenomena are also found in other 

materials‟ system [37-39].  
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Various micromechanical experiments are adopted to study the material properties and 

the micro scale plastic deformation mechanism of materials since the 1990s. The 

experimental observations by Fleck and Hutchinson [40], Ma and Clark [41] and Nix [42] 

show that the indentation hardness of metals and ceramic increases when the indentation 

depth decreases to the micron or nanometer level. These size dependent phenomena are 

found to be caused by the dislocation of crystal planes which cannot be explained by the 

classical theory of plasticity. Ashby [43] discovers that the size effect is related to the 

presence of a large spatial gradient of strain which requires the storage of geometrically 

necessary dislocations. Fleck and Hutchinson [40] give the physical arguments for the 

size effect in the framework of continuum plasticity, and the material flow strength is 

controlled by the total density of stored dislocations, which can be described by the 

Taylor dislocation model that incorporates both the statistically stored dislocation density 

and the geometrically necessary dislocation density. The plastic strain is associated with 

the statistically stored dislocation while the strain gradient plasticity is related to the 

geometrical dislocation. Therefore, the state of the stress is observed to be a function of 

both the strain and the strain gradient only if the non-uniform plastic deformation and the 

material length scales are of the same order [44-46]. 

Gao et al. [46] and Huang et al. [47] propose a multi-scale framework based on the  

mechanism-based strain gradient (MSG) plasticity, to provide a systematic approach for 

constructing the meso-scale constitutive laws, incorporating the micro scale plasticity 

based on the Taylor‟s dislocation model.  

Huang et al. [3] find that in the mixed-mode (mode I and II), the stresses near the crack 

tip with the strain gradient is 2.5 times higher than the HRR solutions. Chen et al. [48] 

also apply the MSG theory to the near-tip stress field analysis in both mode I and II. In 
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the two modes, the maximum shear stresses are 2 and 3 times higher than the 

corresponding HRR solutions, respectively. Jiang et al. [49] implement the mechanism-

based strain gradient (MSG) plasticity in mode I fracture model. The numerical results 

demonstrate that the stress level near the crack tip from the MSG plasticity is higher than 

that from the classical plasticity, explaining the observed cleavage fracture phenomenon 

in ductile materials. Wei et al. [50] study the steady-state crack growth based on the MSG 

theory. The results show that the steady-state fracture toughness depends on the material 

length scale.  

Even though the mechanism-based strain gradient (MSG) plasticity has been applied to 

study the fracture, it involves the higher order stress in the governing equation [4]. Thus, 

much computational effort is necessary to solve the additional governing equations as 

well as the boundary conditions. Huang et al. [4] propose a conventional mechanism-

based strain gradient (CMSG) plasticity theory. The theory is based on the Taylor 

dislocation model and preserves the classical continuum plasticity requirements. The 

higher order stress appears only in the constitutive model, and no additional higher order 

stress related boundary conditions need to be satisfied. Therefore, the CMSG plasticity 

theory can be conveniently implemented in strain hardening material. Results from the 

MSG plasticity theory and the CMSG plasticity theory are consistent for most cases 

except in the region near the boundary [4].This is expected as the MSG plasticity theory 

introduces additional higher order stress in the boundary conditions while CMSG 

plasticity theory does not. As the deviation from the two approaches are due to the 

presence of higher order stress at the boundary for MSG theory and based on Saint-

Venant‟s principle, this deviation is normally confined in the region near the boundary.  
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Qu et al. [51] apply the CMSG plasticity theory to investigate the stress field of interface 

crack between niobium and sapphire by simulating the test done by Elssner et al. [35] and 

Korn et al. [36]. The opening stress is 4 times higher than that from the classical plasticity 

analysis and is enough to initiate the cleavage fracture at the interface of the bimaterials. 

Swaddiwudhipong et al. [5] apply the CMSG plasticity theory to C
0
 element and study 

the stress distribution ahead of the crack tip and the obtained results coincide with Jiang 

et al. [49] and Qiu et al. [52]. The stress ahead of the crack tip obtained from CMSG 

plasticity theory is higher than that computed from the classical plasticity theory. 

Swaddiwudhipong et al. [53, 54] implement the CMSG plasticity theory in the 0C  type 

solid, axisymmetric and plane elements to simulate the micro scale material plastic 

deformation using the classical finite element (FE) formulation. The CMSG plasticity 

theory predicts closely the material plastic deformation and the size effects observed in 

micron and submicron scale indentation experiments for a wide range of engineering 

materials [55, 56].  

As described by the Weibull stress model, the cumulative probability of cleavage fracture 

depends on the scalar Weibull stress, w , which is defined in this study as the integration 

of the maximum principal stress over the fracture process zone around the crack tip. 

Therefore, it is necessary to accurately predict the values of Weibull stress or the 

maximum principal stress ahead of the crack tip. Existing researches [5, 49, 51] find that 

the plastic strain gradient can significantly raise the stress field near the crack tip when 

the plastic deformation becomes comparable with the material length scale at micron or 

submicron level. However, the plastic strain gradient theory has not yet been applied to 

compute the Weibull stress and assess the cleavage fracture toughness data measured in 

laboratories. The calibration of the Weibull parameters for Euro steels (22-Ni-MoCr37 
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steels) is still based on the classical plasticity, which fails to explain the high stress at the 

crack tip as the constitutive model of classical plasticity does not contain the material 

intrinsic length. All these issues inspire the current work to explore the plastic strain 

gradient effect on the cleavage crack driving force, and recalibrate the Weibull stress 

parameter for the experimental data provided by the European Union project entitled 

“Fracture toughness of steel in the ductile to brittle transition regime”. 

1.3 Objective and Scope of Research  

The main objective of current work is to study the cleavage fracture by the conventional 

mechanism-based strain gradient (CMSG) plasticity theory. 

To this purpose, the current work adopts the small scale yielding (SSY) modified 

boundary layer (MBL) model to study the plastic strain gradient effect on the stress field 

near the crack tip. 

To verify the plastic strain gradient effect on the Weibull parameters, this work 

recalibrates the Weibull parameters by both the CMSG plasticity theory and the classical 

plasticity theory for 22-Ni-MoCr37 steel at various temperatures (–20 
o
C, –40 

o
C, and –

110 
o
C), at which experimental fracture toughness data were provided by the European 

Union project. 

As the magnitude of burgers vector of 22-Ni-MoCr37 steels in the European Union 

project are currently not available, it is impossible to estimate the material length scales 

for the 22-Ni-MoCr37 steels. As the offshore-structure steels, such as S355 and S690, are 

readily available, the indentation tests are carried out to investigate the material length 

scales on these two types of steels instead of 22-Ni-MoCr37 steels. Also as it has 

difficulty in the experimental set up for the indentation tests at low temperatures (–20 
o
C, 
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–40 
o
C, and –110 

o
C), the current tests are performed at other two temperatures (20 

o
C 

and 300 
o
C) to verify the temperature effect on the material length scale of the steels 

(S355 and S690). Thus, the load-displacement curves from indentation tests at 

temperatures 20 
o
C and 300 

o
C are simulated to quantify the values of material length 

scale for these types of steels by varying the material length scale values in the CMSG 

plasticity constitutive model.  The simulations of the indentation tests on the two types of 

steels at –40 
o
C are also performed though currently the indentation tests have not been 

done.  

Finally, the finite element CMSG plasticity analyses are performed using the material 

length scale that predicted by the indentation tests analyses for S355 to study the plastic 

strain gradient effect on the near-tip crack opening displacement.  

1.4 Organization of Thesis 

The research background and literature review are presented in Chapter 1.  

Chapter 2 introduces the fundamental knowledge of the cleavage fracture model and the 

conventional mechanism-based strain gradient (CMSG) plasticity. It also presents the 

method of treating the scattered fracture toughness data at low temperatures spanning 

over the ductile to brittle transition region.  

Chapter 3 describes the stress field near the crack tip by the finite element analyses of a 

small scale yielding model. Two types of meshes (model with sharp crack and model with 

initial root at the crack tip) are used in modeling the crack tip. The stress distributions 

along the crack surface are studied and compared by the classical plasticity theory and the 

CMSG plasticity theory.  
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In Chapter 4, both the classical plasticity and the CMSG plasticity analyses are performed 

to assess the fracture toughness of European material at low temperatures (–20 
o
C, –40 

o
C, 

–110 
o
C). The two parameters in Weibull stress model, Weibull modulus m and the 

threshold fracture toughness 
minK  are calibrated through the classical plasticity and the 

CMSG plasticity analyses.  

Chapter 5 presents both the uni-axial tensile tests at different temperatures (20 
o
C, 300 

o
C 

and -40 
o
C ), and the indentation tests for two grades of steels (S355 and S690) at 20 

o
C 

and 300 
o
C as currently it has difficulties in instrumental setting up for indentation tests at 

-40 
o
C. The basic material parameters ( E , y , and N ) are obtained through fitting the 

uni-axial stress strain curves by the plastic hardening law. The three material parameters 

and assumed material length scales are introduced to the CMSG plasticity constitutive 

model to simulate the indentation tests. The value of material length scale is estimated 

through fitting the load-displacement curves of the indentation tests at temperatures 20 
o
C 

and 300 
o
C. The simulations for indentation test on the two types of steel at –40 

o
C are 

also performed for the reference of future indentation tests at this temperature. 

Chapter 6 involves the plastic strain gradient effect on the near-tip crack opening 

displacement by a compact tension model with the thickness of half an inch and a plane 

strain small scale yielding model with/without T-stress.  

Lastly, the conclusions and recommendation for future work are presented in chapter 7. 
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CHAPTER 2 THEORETICAL BACKGROUND  

2.1 Weibull Stress Framework  

2.1.1 Weakest-Link Based Model  

The cleavage fracture is a highly localized phenomenon [57]. It is very sensitive to the 

material characteristics, the structural geometry, the loading history and the temperature 

variation that spans over the ductile-to-brittle (DBT) region. The inhomogeneity in the 

local material causes the scatter in the measured fracture toughness data from the 

laboratory tests. Thus, a probability-based approach is needed to assess the cleavage 

fracture toughness data rather than a deterministic approach for the ductile fracture.  

In ASTM E 1921 [11], the weakest link concept is applied to the DBT region of ferritic 

steels. This concept simplifies the crack front loading condition to a uniform distribution 

of the J-integral along the crack front and a small scale yielding condition prevailing at 

the fracture failures. Based on these, a three-parameter statistical model as shown in 

Equation (2.1) is used to predict the cumulative fracture probability at each DBT 

temperature [6]. 

 
4

0

1 exp JC min

f JC

min

K K
P K

K K


  



  
  
   

                                      (2.1) 

where 
JC

K  is the fracture toughness, which can be derived from 2/(1 )
JC

K EJ    

under the conditions of plane strain and small scale yielding. 
min

K  is the threshold 

fracture toughness, which denotes the vanishing of the fracture cumulative probability 

when the stress intensity  factor 
JC

K  is less than or equal the threshold toughness 
min

K . In 

ASTM E 1921 [11], 
min

K  is 20 MPa m . 
0

K  is the temperature dependent toughness and 
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its corresponding cumulative fracture probability, 
f

P  is 63.2%. 
0

K  is determined through 

the maximum likelihood method as shown in Equation (2.2) [11].  

 
1/4

4

)

0

1

(

* 0.3068

tN
min

min

i

JC iK K
K K

r

 
  
 
 

                                              (2.2) 

where 
t

N  is the total number of the specimens in a dataset, 
*

r  is the number of validate 

specimens.  

Since the statistical fracture model is applicable only to the small scale yielding high 

constraint specimens, Beremin‟s group [12] propose a mechanical Weibull stresss model 

to predict the fracture probability of both high plastic constraint and low plastic constraint 

fracture specimens. 

2.1.2 Weibull Stress Model 

The Weibull stress model assumes that the fracture process zone consists of a number of 

non-overlapping and uniformly stressed small volumes of material. Each volume of 

material contains a series of randomly distributed micro cracks. The distribution of the 

size ( sl ) of micro cracks follows from the probability density function [12] 

 s

s

q l
l



 
  
 

                                                                                  (2.3) 

where   and   characterize the distribution of micro cracks ahead of the crack tip. By 

the Griffith-type fracture criterion, the fracture probability, fp  within a single volume of 

material is a function that relies on the stress field near the micro cracks [12].  

 
m

eff

f eff c

u

p


 


 
   

 
                                                                  (2.4) 
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where eff  is the effective stress component such as the maximum principal stress. c  is 

the critical stress for occurrence of cleavage fracture. m  is the material parameter, which 

derives from   and  , and depends on the size distribution of micro cracks; and u  is 

scale parameter and represents the aggregate fracture toughness of micro cracks. For a 

large number of volumes of material in the fracture process zone, the Weibull stress 

model adopts the weakest link hypothesis to compute the cumulative fracture probability 

(see Equation (2.5)).  The weakest link hypothesis assumes that failure happens once the 

cleavage fracture occurs in any volumes of the material [12].  

  1 exp

m

w
f w

u

P





  
    
   

                                                         (2.5) 

where the Weibull stress w  is equal the normalized integral of the effective stress, eff  

over the volume of the fracture process zone [12]: 

1/

0

1

V

m

m

w eff dV
V

 
 

  
 
                                                                     (2.6) 

The parameter 0V  is a reference volume and is arbitrarily chosen to equal 1 mm
3
 in the 

current study. The effective stress is taken as the maximum principal stress, 1 . The 

fracture process zone is defined by the region 1 y  . The stress cutting parameter,   , 

is taken as 2.0 in this study following Wasiluk et al. [24], who have calibrated the Euro 

steel fracture toughness data using the classical plasticity theory. This typical value of 

 has been generally accepted to include the highly stressed material surrounding the 

crack tip in computing the Weibull stress values. 

In plane strain and small scale yielding conditions, the macroscopic and microscopic 

fracture models are connected by [19], 
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2CBJm

w   or 
4

J
m
w BKC



                                                        (2.7) 

where C


 equals  
2

21 /C E  
and B is the thickness of the fracture specimen.  

Since the small scale yielding condition can be violated by the increased plastic 

deformation ahead of the crack tip, Gao et al. [58] propose a non-dimensional )(Mg  

function to characterize the constraint differences between the plane strain small scale 

yielding conditions and the actual fracture specimens as follows, 

)(2 MgCBJavg
m
w   or )(4

)( MgBKC avgJ
m
w



                             (2.8) 

where M  is the non-dimensional loading parameter and /yM b J ; b  is the remaining 

ligament length of the fracture specimen; the constraint function, ( )g M  equals 1 in small 

scale yielding condition; and the constant C  is derived from relations between the 

Weibull stress w  and the J  values from a MBL model under remote IK  loading and 

zero T-stress. 

Petti and Dodds [23] argue that the microscopic Weibull stress model shall reflect the 

cumulative probability of cleavage fracture observed on the macroscopic level computed 

from Equation (2.1). Therefore, Equation (2.8) is substituted into Equation (2.1) to cancel 

the effect of the reference volume 0V  on the estimated probability of fracture, and the 

following is obtained by Petti and Dodds [23]: 

 
4

/4 /4

/4 /4
1 exp

m m

w w min
f w m m

u w min

P
 


 





  
    

   

  for w w min                    (2.9) 

  0f wP      for w w min                  (2.10) 

where the threshold Weibull stress w min   and the Weibull scaling parameter u  equals 

the Weibull stress value corresponding to minK  and 0K , respectively. Petti and Dodds [1] 
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prove that the Weibull scaling parameter u  depends on the fracture toughness
0K , which 

is described by the Master Curve [11] at temperature   and corresponds to the fracture 

failure probability of 63.2%: 

 0 031 77exp 0.019K T                                                                    (2.11)  

where 0T  refers to the reference temperature at which the median fracture toughness 

measured from 1T (1 inch thick) fracture specimens equals 100 MPa m . ASTM E 1921 

[11] provides the standard experimental procedure to determine the 0T  value. 

2.1.3 Calibration of Weibull Parameters 

As the value of u  follows the temperature dependence described by the Master Curve, 

the cumulative fracture probability in Equation (2.9) relies on two parameters, the 

Weibull modulus m  and the threshold Weibull stress w min  . Wasiluk et al. [24] outline 

the detailed procedures for calibrating the two Weibull parameters based on the fracture 

toughness data measured from two sets of specimens with different crack front constraint 

conditions at the same transition temperature.  

The calibration procedure first sets the high constraint (HC) data obtained from the 

fracture specimens with high crack front constraint condition and low constraint (LC) 

data obtained from specimens with low crack front constraint conditions. The fracture 

probability is calculated as follows [59], 

0.3

0.4
f

xC

i
P

n





                                                                (2.12) 

where i  is the rank number, and xCn  is the total number of the specimens in the high 

constraint data set ( HCn ) or the total number of the specimens in the low constraint 

dataset ( LCn ). With the material stress-strain data measured at the same temperature, the 
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relations between  the Weibull stress 
w  and the macroscopic crack driven force J  of 

the modified boundary layer (MBL) model can be obtained from the finite element 

analysis. The ( )g M function equals 1 for the MBL model when the plane strain, IK  

displacement field is imposed on its outer radius. The constant C  in Equation (2.8) then 

can be determined by the relations of J and w  in the MBL model. The J and w  

relations obtained from the finite element (FE) analysis for fracture specimens can 

determine the constraint correction function, ( )g M  in Equation (2.8) with the constant 

C  obtained from MBL model. With the trial pairs of Weibull parameters ( m and minK ), 

the constraint correction function ( )g M  scales the original toughness data of the 

fracture specimens which are either high constraint or low constraint specimens to the 

1T small scale yielding condition [24].  

       
1/4

1/4 1/4
(1 )

1

xT xT xTSSY T xT
JC min JC min min

T

B
K K g M K g M K

B

          
          (2.13) 

At each fracture probability, Equation (2.14) sums the errors between the scaled fracture 

toughness data of high constraint and the low constraint specimens, and also the errors 

between the scaled fracture toughness data of high/low constraint specimens and 

toughness data of the 1T plane strain SSY model [24].  

     

 ,min

1 1 1 1

( ) ( ) ( ) ( )

1 1

, | | | |
LC HCLC HC

n nn n
xC TSSY TSSY HC TSSY LC TSSY

min JC i JC i JC i JC ii i
i i

Error m K K K WF K K WF


  

 

           (2.14) 

where WF  is the weight factor  1WF  . The calibrated parameters m  and minK  will 

give the minimum error in Equation (2.14).  In the current study, m  is tested from 1 to 30 

with the step of 1m   and minK  value is tested from 1 to 80 MPa m  with the step of 

min 1MPa mK   to calibrate the m  and minK  in the Weibull model.  
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2.2 Concept of T-Stress  

For a crack in an isotropic elastic material subjected to plane strain Mode I loading, if the 

origin of the coordinate system is defined at the crack tip, and the x  axis locates along the 

crack plane, the stress terms of the Williams solution [2] can be written as Equation 

(2.15): 

 

0 0

0 0 0 H.O.T.
2

0 0

I
ij ij

T
K

f
r

T

 




 
 

  
 
  

                         (2.15) 

where H.O.T.  denotes the „higher order terms‟. The above equation shows that the stress 

field surrounding the crack tip consists of a singular term, a constant term and the higher 

order terms. At the position very close to the crack tip ( 0x  ), the higher order terms are 

negligible. The constant term, T  is called T-stress, which acts parallel with the crack 

plane. The zero T-stress refers to the small scale yielding condition. The non-zero T-stress 

has profound effect on the stress distribution ahead of the crack tip (Figures 2.1 and 2.2) 

and the shape of the plastic zone (Figure 2.3). The positive T-stress increases the crack 

opening stress. The crack tip is under high plastic constraint condition and the plastic 

zone concentrates behind the crack tip (see Figure 2.3(a)). The negative T-stress decreases 

the crack opening stress and the crack tip is under low plastic constraint condition. The 

yield zone is concentrated ahead of the crack tip (see Figure 2.3(b)), which may sustain a 

higher load at the fracture failure.  

For elastic plane strain problems, the strain components accounting for T-stress can be 

written according to Hooke‟s law as follows, 

 
21 1

1x x y T
E E

 
   

 
                                               (2.16) 

 
1 (1 )

1y y x T
E E

  
   

 
                                          (2.17) 
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0
G

xy

xy


                                                                                 (2.18) 

Note that 

x

u
x




 ; 

y

v
y




 ; 

x

v

y

u
xy









                                               (2.19) 

the displacement can be obtained by integrating Equation (2.19),  

jiijij xTu                                                                                   (2.20) 

where 
21

iT T
E


   for jx x  or 

 1
T

E

 
  for jx y . 

Equation (2.20) implies that displacements due to T-stress effect are proportional to the 

distance from the crack tip. 

The total elastic displacement fields including T-stress effects for the plane strain 

condition are  

 
2(1 ) 1

( , ) cos 3 4 cos cos
2 2

IK r
u r Tr

E E

  
   



  
    

 
              (2.21) 

 
(1 ) (1 )

( , ) sin 3 4 cos sin
2 2

IK r
v r Tr

E E

   
   



  
    

 
            (2.22) 

The in-plane stress components around the crack tip are  

3
cos 1 sin sin H.O.T

2 2 22

I
x

K
T

r

  




 
    

 
                                        (2.23) 

3
cos 1 sin sin H.O.T

2 2 22

I
y

K

r

  




 
   

 
                                             (2.24) 

3
cos sin cos H.O.T

2 2 22

I
xy

K

r

  



                                                       (2.25)  

Near the crack tip, the higher order terms of the stress can be ignored, the principal stress 

components in the elastic field are,  
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2

3
sinsin

2
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22

1

2

1
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cos

2

22
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1


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
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






r

TK
T

r

K
T

r

K III           (2.26)  

2

3
sinsin

2

2
sin

22

1

2

1

2
cos

2

2
0

2
2

2














r

TK

r

K
T

r

K I
x

II          (2.27) 

3

2
cos

22

I

z

K
T

r


  


  

 
 
 

                                                         (2.28) 

By the von Mises equation, 

     
2 2 2

1 2 2 3 1 3

1

2
e

            
 

                                    (2.29) 

the von Mises equation including the T-stress effect can be written as 

 
22

2 2 21 3 3 1
sin sin sin 2 1 2 cos

2 2 2 2 2 22 2

I I I
e

K K T K
T T

r r r

 
    

  

    
          

   

  (2.30) 

Neglecting the effect of T-stress and the stress redistribution at the crack tip, the radius of 

the plastic zone is [2], 

     

2

2 21 3
1 2 1 cos sin

4 2

I
y

y

K
r    

 

   
          

                                    (2.31) 

Let the ratio of T-stress and material yield stress to be a constant n  ( / yn T  ), the 

von Mises stress at 
o

0   equals 

   
2

21 3
1 2

2 42

I
e y y

K
n n

r
    



    
       

    

                                      (2.32) 
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Figure 2.1 The maximum principal stress distribution along the symmetric crack plane at 
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2.3 Conventional Mechanism-based Stain Gradient Plasticity (CMSG) 

Theory 

2.3.1 Constitutive Model in CMSG Plasticity Theory 

Gao et al. [46] and Huang et al. [47] propose a multi-scale constitutive model to account 

for micro scale plasticity based on the Taylor dislocation theory. The proposed 

mechanism-based strain gradient (MSG) plasticity involves higher-order stress terms that 

require significantly computational efforts. Huang et al. [4] later develop the conventional 

mechanism-based strain gradient (CMSG) plasticity theory containing the higher-order 

stress only in the constitutive model and no additional higher order terms are required in 

the analysis. Therefore, the CMSG plasticity theory is substantially more convenient to be 

implemented than the MSG theory and provides results that are sufficiently accurate in 

most part of the domain except those in the vicinity of the boundary [5, 60].  

The CMSG plasticity model obeys the Taylor hardening theory. The shear flow stress is 

[61] 

_

T
b                                                                      (2.33) 

where
_

b  is the magnitude of Burgers vector;   is the shear modulus;   is the empirical 

constant, ranging from 0.2-0.5 depending on the material property; and the total 

dislocation density 
T

  is the sum of density of statistically stored dislocation
S

  and 

geometrically necessary dislocation 
G

 . 

The tensile flow stress can be related to the shear flow stress by Taylor factor M (M = 

3.06 [62] for face-centered material and 3  for isotropic solids based on von-Mises rule 

[63]) as, 

f
M                                                                           (2.34) 
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Under the uni-axial tension, only uniform plastic deformation exists. Thus, the strain 

gradient is absent. The geometrically necessary dislocation density therefore vanishes. 

Hence, under the uni-axial tension condition, the flow stress follows the macroscale 

stress-strain relationship as,  

 
_

p

S y
M M b f                                        (2.35) 

where 
y

  denotes the yield stress and the  pf   function is the material‟s constitutive 

relation in uni-axial tension.  It follows that, 

  1

N
p

p

y

f





 
   
 

                                                        (2.36) 

where 
p  is the effective plastic strain, 

y
  is the yield strain and equals /

y
E , and N  is 

strain hardening exponent. This constitutive model is suitable for ductile materials.  

According to Equation (2.35), the statistically stored dislocation density can be written as 

 
2

p

y

S

f

M b

 






 
 
  

                                                         (2.37) 

The geometrically necessary dislocations density is proposed by Ashby [2] as, 

p

G

b

r





                                                                      (2.38) 

where r


 is the Nye factor [64] ( r


=1.85 for bending or 1.93 for torsion), and 
p

  is the 

effective plastic strain gradient.  

Combining Equation (2.33)-(2.38), the flow stress of Taylor dislocation model is obtained 

in Equation (2.39).  

2 ( )p p

f y
f l                                                    (2.39) 
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where l  is the material length scale, and  

2

y

M
l r b





   
 
 
 

                                                            (2.40) 

Usually, M=3.06 and r


=1.90, so the length scale is simplified to 

2

18
y

l b 


  
  

 
. For 

typical steel materials, the length scale l  is in the order of micron [65]. 

The effective plastic strain gradient tensor is given by Gao et al. [3] as, 

/ 2
p p p

ijk jki
                                                                           (2.41) 

where 
p

ijk
  is the plastic strain gradient tensor and equals 

, , ,

p p p p

ijk ik j jk i ij k
      , 

i

p p
j ij dt    is the plastic strain tensor, and the super-dot denotes the differentiation with 

respect to time. The effective plastic strain rate can be derived from the effective strain 

rate: 

 2

n

p e

p p
y f l


 

  

 
 
   

                                                         (2.42) 

where n  is the rate-sensitive coefficient and e  refers to the effective stress. The 

effective strain rate is derived from the deviatoric strain tensor as follows, 

3 ' '

2

iij j 
                                                                                   (2.43) 

The deviatoric strain tensor equals, 

' 3
' '

2 2
i i

p
ij

j j

e

 
 

 
                                                                         (2.44) 

The total strain rate thus becomes, 

 2

' '3 3
' '

9 2 2 9 2 2

i i

i i i ij i
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n
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j jkk kk e

j j j j
p p
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K K f l

 
    

  
      

 
 
 
  

     


                (2.45) 
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where K defines the bulk modulus. Therefore, the constitutive relationship including the 

strain gradient effect is calculated as follows [4], 

 2

3
' 2 ' '

2

n

e
ij ijkk j j p p

e y

K i i
f l


     

   

  
  
  
    

  


                                (2.46) 

The above derivation has been implemented as a user subroutine [53] in the general 

purpose finite element software ABAQUS [66]. 

2.3.2 FEM Formulation 

For  
0

C solid elements with n  nodes, the displacements u , v , w , and coordinates x , 

y , z can be expressed as [5],  

1

( , , )
n

i i

i

u N g h r u


   
1

( , , )
n

i i

i

v N g h r v


   
1

( , , )
n

i i

i

w N g h r w


                   (2.47) 

1

( , , )
n

i i

i

x N g h r x


   
1

( , , )
n

i i

i

y N g h r y


   
1

( , , )
n

i i

i

z N g h r z


                    (2.48) 

where g , h  , and r  are the natural coordinates, and iN  is the shape function.  

The Jacobian matrix is  

, , ,

, , ,

, , ,

( , , )

( , , )

g h r

g h r

g h r

x x x
x y z

J y y y
g h r

z z z

 
  

   
 
 

                                                    (2.49) 

The inverse of Jacobian matrix is,  

, , ,

1

, , ,

, , ,

( , , )

( , , )

x y z

x y z

x y z

g g g
g h r

J h h h
x y z

r r r



 
  

   
 
 

                                                  (2.50) 

The strain matrix is, 
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    
T

u v w u v v w w u
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 

         
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The derivative of the strain vector with respect to x  can be written as,  
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According to the chain rule of derivatives, 
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                                                  (2.59) 

For a plane isoparametric element with n  nodes, the variables in above equations along 

z direction diminish. The strain gradient matrices based on the above equations have been 

implemented in the finite element package, ABAQUS as user subroutines by 

Swaddiwudhipong et al. [53] The subroutines compute the effective plastic strain gradient 

for each Gauss point at each increment in the formulation of the stiffness equations. More 

details on the finite element formulations and implementation were reported earlier in 

[53]. 
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CHAPTER 3 STRESS ANALYSIS FOR A CRACK IN PLANE 

STRAIN MODE I LOADING 

3.1 Introduction  

Fracture specimens can be idealized as plane stress or plane strain problems. The 

difference is that plane strain condition constrains the displacement in the out-of-plane 

direction while the stress vanishes on the free surface for a plane stress condition. Under 

the plane strain condition, the triaxial stress state limits the plastic deformation around the 

crack tip so that the material is prone to brittle failure. Therefore, the crack under plane 

strain conditions causes more concern.  

This chapter uses a modified boundary layer (MBL) model to study the stress field of a 

crack under plane strain, mode I loadings by imposing a remote IK  loading 

( 1/ 2/ 20I yK l  ) on the boundary of MBL model. The material properties follow the 

parameters reported by Swaddiwudhipong et al. [5], with the Young‟s modulus, 

205E  GPa; yield stress and Young‟s modulus ratio, / 0.002
y

E  ; the plastic work 

hardening exponent, 2N   (see Equation (2.36)); Poisson ratio 0.3  , and the material 

length scale, 3l   m. As the load, IK  satisfying the equation 1/ 2/ 20I yK l   is about 

14.2 MPa m and not enough to cause the failure of steel specimen, small strain 

formulation is applied to all numerical analyses reported in this chapter. 

3.2 Finite Element Modeling  

3.2.1 Modified Boundary Layer Model 

The MBL model as shown in Figure 3.1 is for modeling the crack that locates on the 

symmetric plane of the cracked-body. The outer circumference of the MBL model 

experiences a plane strain IK  displacement field [2]: 
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The plane perpendicular to the y -axis (at 0y  ) plane in Figure 3.1 is the symmetric 

plane. The outer radius of the finite element model is more than 20 times the radius of the 

plastic zone at the maximum load to ensure that the small scale yielding condition 

prevails at the crack tip [24]. 

 

 

Figure 3.1 Modified boundary layer model 
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3.2.2 Crack Tip Modeling  

To simulate the deformation and the stress field near the crack tip correctly under both 

low and high load levels, this section adopts two types of crack tip modeling. One is to 

model the crack tip as a sharp crack by using two elements at the crack tip, as shown in 

Figure 3.2(a). The two elements sharing the crack tip node initially locate on the 

symmetric plane (Figure 3.2(a)); after loading, the tip element on the free surface is 

pulled to leave the crack plane, another tip element which locates ahead of the crack tip 

deforms along the symmetric plane. With the increasing of loading, the two elements at 

the crack tip are severely distorted (Figure 3.2(b)). This type of modeling normally 

encounters the convergence problems during the numerical computation when the load 

increases to certain levels. In order to solve the convergence problem, a modified crack-

tip modeling that contains an initial root radius at the crack tip as depicted in Figure 3.3 is 

used. At large load level, the elements on the symmetric plane of the crack are elongated 

in the opening stress direction, and shortened along the horizontal direction. The 

numerical performance of the latter model affected by the deformation of the elements 

around the crack tip is significantly healthier compared to that of the model shown in 

Figure 3.2.  

  

(a) (b) 

Figure 3.2 Crack model with sharp crack tip mesh (a) Before loading; (b) After loading 

Crack tip 
Crack tip 
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(a) (b) 

Figure 3.3 Crack model with initial root (a) Before loading; (b) After loading 

3.2.3 Small Scale Yielding Model with Zero T-Stress 

In the linear elastic solution of the crack tip stress, the first term (see Equation (2.15)) 

approaches an infinite value when the distance r  from the crack tip approaches to zero. 

The second constant term „T-stress‟ and the other higher order terms can be ignored 

compared to the first term. This results in a single-parameter ( IK  or G ) controlled crack 

tip stress field. This section presents the single-parameter, IK  controlled stress field by 

using the MBL model. 

3.2.3.1 Comparison of Normalized Von Mises Stress Distribution by the 

Classical Plasticity and the CMSG Plasticity Analyses 

In the small scale yielding model as shown in Figure 3.1, the magnitude of the non-

dimensional loading IK  satisfies the equation 
1/ 2/ 20I yK l   and is about 14.2 MPa m . 

The outer radius of the model is 3 mm which is 20 times greater than the plastic zone size 

( 0 / 10r l  ) with the maximum load of IK =14.2 MPa m . In finite element model, the 

crack tip is modeled as a mathematically sharp crack.  Along the radius direction, bias 

mesh has been taken. The detail of mesh is listed in table 3.1. The total number of the 

CPE8 elements in the FE model is around 2280 and the minimum element size near the 

crack tip is around 2 nm. At various nodes along the circular boundary of the model, the 

R0 
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displacements obtained from Equations (3.1) and (3.2) are imposed on the finite element 

model as shown in Figure 3.1. 

Table 3.1 Mesh design for SSY model with R=3 mm and R0=0  

Radial distance (m) Bias ratio Number of elements 

0~2 1 7 

2~30 10 22 

30~300 10 17 

300~3000 10 17 

Number of seeds along 

circular edge 24 

Minimum element size 

(nm) 2 

Total Number of 

elements 2280 

The current work adopts the plastic strain gradient user subroutine written by 

Swaddiwudhipong et al. [53]. Figure 3.4 compares the normalized von Mises stress 

distribution along the path at 
o

1.014   direction incline to the crack plane (see Figure 

3.1) between the current study and Swaddiwudhipong et al. [5]. The normalized von 

Mises stress distribution curve in the current study coincides with Swaddiwudhipong et al. 

[5] results.  Figure 3.4 also shows that the plastic strain gradient introduced by the CMSG 

plasticity theory does not change the plastic zone size. Both the CMSG plasticity analysis 

and the classical plasticity analysis show the same size of plastic zone ( 0 / 10r l  ). 

However, at the distance 0.09 0.3 r  m ahead of the crack tip, the magnitude of von 

Mises stress obtained from the CMSG plasticity analysis is more than 3 times that from 

the classical plasticity analysis. This is due to the fact that the CMSG plasticity theory 

includes the high plastic strain gradient at the crack tip.  

3.2.3.2 Comparison of Normalized Von Mises Stress Distribution by Different 

Elements 

Both 2-D model with 8-node (CPE8) plane selements and 3D model with 20-node 

(C3D20) elements are used in the simulation of the crack under plane strain condition. 
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The two models have the same in-plane mesh design. In the 3D model, there is one layer 

of elements along the thickness direction. In order to simulate the stress and strain fields 

for plane stain condition by 3D model, all the nodes‟ out-of-plane displacements are 

constrained. The total number of elements is 2280. The minimum element size is 2 nm. 

The symmetric boundary condition is applied to the crack plane. The elastic, plane strain 

displacement field with 1/ 2/ 20I yK l   is applied to the outer radius of the MBL model. 

The material properties follow those presented in Swaddiwudhipong et al. [5]. The 

current work uses the plastic strain gradient program and validates it. 

Figure 3.5 plots the normalized von Mises stress distribution along 
o

0  (measured from 

the horizontal x  axis in Figure 3.1) by models with CPE8 elements and C3D20 elements. 

Apparently, the two types of modeling show the same von Mises stress distribution in 

either the classical plasticity analysis or the CMSG plasticity analysis. This verifies that 

the C3D20 elements can also simulate the stress field near a crack tip under the plane 

strain condition provided that all the nodes‟ out-of-plane displacements are constrained.  
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Figure 3.4 Normalized von Mises stress distribution along 
o

1.014   
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Figure 3.5 Normalized von Mises stress distribution along 
o

0 
 

3.2.3.3 Material Length Scales Effect on the Normalized Maximum Principal 

Stress Distribution along the Crack Plane by SSY Model 

Figure 3.6 illustrates the effect of the values of the material length scale ( 3,l   5, 7, and 

10 m) on the normalized principal stress distribution along the crack plane by the small 

scale yielding (SSY) model with the crack tip mesh in Figure 3.2. The 20-node brick 

elements are used in the analyses, and the applied load is 14.2IK   MPa m . 

The values of maximum principal stress at the crack tip region ( 0.01 / 1
y

x J  ) for 

material length scales of 3,l   5, 7, and 10 m are significantly higher than that 

computed from the classical plasticity analysis. The magnitude of the maximum principal 

stress curves computed from 5,l   7, and 10 m do not show significant differences. 

This implies that maximum principal stress is not so sensitive to the material length scale 

value when the length is in the range of 5-10 m.  
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Figure 3.6 Comparison of normalized maximum principal stress distribution along = 0
o 
by two 

crack tip modeling (
0

0 and 0.1R  ) 

3.2.3.4 Comparison of Stress Distribution by Different Crack Tip Modeling 

Two types of crack tip modeling shown in Figures 3.2 and 3.3 are used in the FE 

computations. Both models use the C3D20 elements, and the applied load is 

1/ 2/ 20I yK l  .  

Figure 3.7 shows the opening stress distribution along the 
o

0   (measured from the 

horizontal x  axis in Figure 3.1) by MBL models with different radius of initial root under 

classical plasticity. The mathematically sharp crack tip modeling ( 0 / 0R l  ) captures the 

singular stress at the crack tip, while with the increasing of the initial root radius 

( 0/ 0.01,0.1R l  , and 1), the stress singularity at the crack tip is gradually removed and 

the opening stresses along the crack plane redistribute. According to Wasiluk et al. [24], 

the size of initial root radius is acceptable if the deformed root radius exceeds 3 times the 
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undeformed root radius. At the load of 1/ 2/ 20I yK l  , the deformed radius for 

0/ 0.01,0.1R l  , and 1 are around 7.5, 2, and 1 times of undeformed radii, respectively. 

Therefore, the model with initial root of 0/ 0.01R l   is acceptable to simulate the stress 

field of the crack.  

Figure 3.8 compares the normalized maximum principal stress distribution of the models 

with different radii of initial root ( 0/ 0 and 0.01R l  ) under both classical plasticity and 

the CMSG plasticity analyses. In the results of classical plasticity analyses, the initial root 

radius removes the stress singularity at the crack tip. Therefore, crack tip stress computed 

by the models with the initial root radius of 0/ 0.01R l   is lower than that from 0/ 0R l  . 

However, under the CMSG plasticity analyses, the initial root radius does not show 

significant effect on the magnitude of the stress at the crack tip due to the high plastic 

strain gradient at the crack tip. 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

 

 


y
y
/

y

x
y
/J

 Mathematically sharp crack R
0
=0 

  Initial root radius R
0
/l=0.01 

 Initial root radius R
0
/l=0.1 

 Initial root radius R
0
/l=1 

Plane strain 

K
I
/

y
l
1/2

=20 

T/
y
=0

Classical plasticity

 

Figure 3.7 Comparison of Normalized opening stress distribution along = 0
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Figure 3.8 Comparison of normalized von Mises distribution along 
o

0   by  two crack tip 

modeling (
0

0 and 0.1/R l  ) 

3.2.4 Small Scale Yielding Model with Nonzero T-Stresses 

This section uses the MBL model with zero root radius 0
0

R   to model the crack under 

small scale yielding and non-zero T-stresses conditions. The model contains 2280 20-

node brick elements with 161513 nodes. Only one layer of elements locates in the 

thickness direction of the model. The smallest element near the crack tip is 2 nm. The 

material properties follow those reported by Swaddiwudhipong et al. [5]. 

The numerical procedure imposes the IK  controlled displacement field (see Equations 

(3.1) and (3.2)) together with the displacement field caused by T-stress loading (see 

Equations (3.3)) and (3.4)) to the circumference of the semi-circle boundary,  

21
( , ) cosu r T r

E


 


                                                   (3.3) 

(1 )
( , ) sinv r T r

E

 
 


                                                (3.4) 
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The out-of-plane displacement at all nodes are constrained. The
IK  loading satisfies with 

the equation 1/ 2/ 20I yK l  and the T-stress equals / 0,  0.5  or 0.9
y

T    ， . 

Figures 3.9(a) and 3.9(b) show the normalized opening stress along the crack plane, 

o
0  direction (measured from the horizontal x  axis in Figure 3.1) under five different 

levels of T-stresses by the classical plasticity and the CMSG plasticity analyses. At the 

position close to the crack tip (0 / 10),
y

x J   the opening stresses with positive T-

stress ( / 0.5 and 0.9
y

T   ) are higher than those in the small scale yielding limit (zero 

T-stress) as the crack plane undergoes high constraint. However, the negative T-stress 

significantly decreases the opening stress ahead of the crack tip as the crack plane 

experiences low constraint.  

Figures 3.10(a) and 3.10(b) compare the normalized opening stress distribution along the 

crack plane between the CMSG plasticity and classical plasticity analyses for five 

different levels of T-stress ( / 0,  0.5  or 0.9
y

T    ， ) conditions. By using the strain 

gradient plasticity, the opening stress within 6 m ahead of the crack tip ( 0 / 3
y

x J  ) 

decreases compared with that using the classical plasticity theory. This illustrates that the 

plastic strain gradient hardens the material at the crack front and causes the lost of the 

plastic constraint in the material. 

Figures 3.11(a) and 3.11(b) plot the normalized von Mises stress distribution at five levels 

of T-stresses ( / 0,  0.5  or 0.9
y

T    ， ) by the classical plasticity and the CMSG 

plasticity analyses. The results based on both theories show that the T-stress has lower 

effect on the magnitude of von Mises stress near the crack tip ( 0 / 3
y

x J  ) than the 

region far away from the crack tip ( / 60
y

x J  ).  
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(b) 

Figure 3.9  Normalized opening stress distribution along symmetric plane at various T-stresses 

( / 0, 0.5 and 0.9
y

T     ) (a) Classical plasticity; (b) CMSG plasticity 
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Figure 3.11 Normalized von Mises stress distribution under five levels of T-stresses 

/ 0,  0.5 and 0.9
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T      (a) Classical plasticity; (b) CMSG plasticity 
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3.2.5 Weibull Stress Calculations 

The modified boundary layer model as shown in Figure 3.2 is used for modeling the crack 

under plane strain and small scale yielding conditions. The material properties reported 

by Swaddiwudhipong et al. [5] are as follows: E = 205 GPa; y  = 410 GPa; plastic strain 

hardening exponent, 2.0N ; 1/ 2/ 20I yK l  . The Weibull-stress values are computed 

according to the numerical solutions of the classical and the CMSG plasticity theories. 

The reference volume 0V =1 mm
3
. 

3.2.5.1 Plastic Strain Gradient Effect on Weibull Stress Values 

In this study, the size of fracture process zone is defined as the region that the maximum 

principal stress is greater than twice of the yield strength 1 2 y   [24]. 

Figure 3.12 plots the normalized maximum principal stress distribution along the crack 

plane. At the distance around 0.3 m ( / 0.13yx J  ) ahead of the crack tip, the 

maximum principal stress from the CMSG plasticity analysis is more than 2 times of that 

from the  classical plasticity analysis. As the Weibull stress is the maximum principal 

stress integrating over the fracture process zone, the magnitude of Weibull stress from the 

CMSG plasticity analysis is also higher than that from the classical plasticity analysis as 

shown in Figure 3.13. The value of Weibull stress at the maximum load obtained from the 

CMSG plasticity analysis is about 10 times higher than that obtained from the classical 

plasticity analysis for m=10.  
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Figure 3.12 Comparison of normalized maximum principal stress distribution along the crack 

plane at load 
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3.2.5.2 Initial Root Radius Effect on Weibull Stress Values 

Figures 3.14(a) and 3.14(b) present the Weibull stress curves from the models with 

different initial root radius
0

/ 0R l   and 0.01 by the classical plasticity and the CMSG 

plasticity analyses. Under both analyses, the Weibull stress values computed from the 

model with initial root radius of  
0

/ 0.01R l   is lower than that without initial root. The 

reason is that the introducing of initial root removes the stress singularity at the crack tip 

in the loading history. In the results of classical plasticity analysis (see Figure 3.14(a)), 

the difference of Weibull stress values between initial root radius
0

/ 0.01R l  and 

0
/ 0R l   is around 7% at the load of 14.2 MPa m  while in the CMSG plasticity 

analysis, the difference is around 56% (see Figure 3.14(b)). However, this load level is 

less than the threshold fracture toughness 20 MPa m  of the steels [11]. Hence the 

current maximum load is not sufficient to initiate the fracture failure. Dodds et al. [67] 

find that at a large load level, the size of the initial root radius does not have profound 

effect on the crack tip field. Therefore, the initial root will not significantly affect the 

magnitude of Weibull stress at high loads which will be illustrated in Chapter 4. 

3.2.5.3 The Size of Fracture Process Zone Effect on Weibull Stress Values 

The stress cutting parameter,   defines the size of fracture process zone. High value of 

   means that more elements are included in the fracture process zone (FPZ), and 

Weibull stress value is averaged over more elements at certain load levels. Therefore, the 

Weibull stress curve downshifts with the increasing of .  This can be seen from Figure 

3.15(a) which is plotted based on the classical plasticity analysis. 
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After including the plastic strain gradient effect, the stress field near the crack tip is 

significantly elevates. The value of   does not affect the Weibull stress values as shown 

in Figure 3.15(b).  

 3.2.5.4 Weibull Modulus Effect on Weibull Stress Values 

The magnitude of Weibull stress is also affected by the parameter, m . The higher values 

of m  induce higher values of Weibull stress (see Equation (2.6)). Figures 3.16(a) and 

3.16(b) plot the Weibull stress curves with Weibull modulus m  at 5, 10 and 15 from both 

the classical plasticity and the CMSG ( 3l   m) plasticity analyses. Based on classical 

plasticity analyses, the Weibull stress values at m=10 and m=15 are around 6 and 15 times 

that at 5m   under the maximum load IK =14.2 MPa m . However, after including the 

plastic strain gradient effect,  the Weibull stress values at 10m  and 15m   are around 

18 and 65 times that at 5m   under the maximum load IK =14.2 MPa m . 

3.2.5.5 T-Stresses Effect on Weibull Stress Values 

From the classical plasticity analyses, as shown in Figure 3.17(a), the positive T-stress 

increases the opening stress. Therefore, the Weibull stress value is higher. On the contrary, 

the negative T-stress decreases the opening stress, the crack plane undergoes low 

constraint, and therefore, the Weibull stress is lower. The results from the CMSG 

plasticity analysis also show that the positive T-stresses generate higher Weibull stress 

value than that by the negative T-stresses (see Figure 3.17(b)). However, these differences 

in Weibull stress values induced by T-stresses are less from the CMSG plasticity analysis 

than that from the classical plasticity analyses. 
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Figure 3.14 The effect of initial root radius on the magnitude of Weibull stress (
1/2

/ 20
I

K l  ) 

(a) Classical plasticity; (b) CMSG plasticity  
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Figure 3.15 The cutting parameter,  effect on the magnitude of Weibull stress (
1/2

/ 20
I

K l  ) 

(a) Classical plasticity; (b) CMSG plasticity  
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Figure 3.16 The Weibull modulus, m  effect on the magnitude of Weibull stress (
1/2

/ 20
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K l  ) 

(a) Classical plasticity (b) CMSG plasticity  
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Figure 3.17 The T-stress ( / 0,  0.5,  and 0.9
y

T     ) effect on the magnitude of Weibull 

stress (a) Classical plasticity; (b) CMSG plasticity  

3.3 Summary 

This chapter discusses the stress field near the crack tip in plane strain small scale 

yielding model. The numerical results indicate that the CMSG plasticity theory is able to 
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predict the significantly high stress values at the crack tip compared with these from the 

classical plasticity analysis as it includes the plastic strain gradient. 

In the crack tip modeling, two types of models are introduced. The mathematically sharp 

tip modeling is suitable for small deformation computation. For crack tip under finite 

deformation, the introducing of the initial root radius in the FE model helps convergence 

in the numerical computation. 

This chapter also discusses the T-stress effect on the crack tip stress field. The crack with 

the positive T-stress experiencing high constraint and the opening stress is higher than 

that of the small scale yielding limit. Negative T-stress decreases the opening stress along 

the crack plane, and the crack experiences low plastic constraint condition. 

In this chapter, the Weibull stress is also computed based on the classical plasticity and 

CMSG plasticity theories by a small scale yielding model. The effect of plastic strain 

gradient in the crack tip gives high Weibull stress values. The initial root removes the 

stress singularity at the crack tip, thus, decreases the magnitude of the Weibull stress at 

the low load levels. The variation of the values of   does not affect the Weibull stress 

values computed by the CMSG plasticity theory.  The high value of the Weibull modulus 

m  generates large magnitude of Weibull stress and indicates that m  is a sensitive factor 

for the computation of the Weibull stress. The T-stress also has effect on the Weibull 

stress, positive T-stress gives higher values of Weibull stress than that of negative T-stress. 

The high Weibull stress values computed from the CMSG plasticity theory motivates the 

necessity to re-calibrate the Weibull stress material parameters using the CMSG plasticity 

theory for the experimental fracture toughness data of 22-Ni-MoCr steels developed in 

the Euro project. 
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CHAPTER 4 CALIBRATION OF WEIBULL  PARAMETERS 

BASED ON CLASSICAL PLASTICITY AND CMSG 

PLASTICITY THEORY 

4.1 Introduction 

Chapter 3 has demonstrated that plastic strain gradient plasticity can significantly raise 

the near-tip stress field. This chapter including the work of Qian et al. [68] further 

examines the impact of the plastic strain gradient effect on the Weibull parameters 

(Weibull modulus, m, and the threshold fracture toughness, 
min

K ) in the  three-parameter 

Weibull stress model for the Euro steels (22-Ni-MoCr37). The fracture toughness data for 

the 22-Ni-MoCr37 steels at three different temperatures ( 
o

20 C,     
o

40 C,   and 

o
110 C  ) reported in European Union project [8] are used in the calibration. The 

calibration follows the procedure proposed by Wasiluk et al. [24]. Besides the calibration, 

the numerical procedure ascertains the effect of plastic strain gradient on the magnitude of 

the Weibull stress and the constraint-correction function, under various 
I

K T  loads. 

4.2 Finite Element Modeling 

The finite element modeling uses the 
0

C solid element formulation with strain gradient 

model described by the CMSG plasticity theory [5] to study the stress field around the 

crack tip. Figure 4.1 shows the typical finite element models used in the current study for 

the compact tension, C(T) specimen, single-edge-notched bend, SE(B) specimen with a 

side groove, and the modified boundary layer (MBL) model. All the C(T) specimens in 

Figure 4.1(a) follow geometrically similar dimensions, with / 2W B   and / 0.56a W  . 

The SE(B) specimen in Figure 4.1(b) has a crack size of / 0.5a W  . 
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Figure 4.1 Typical FE meshes (a) A quarter-symmetric C(T) specimen; (b) A quarter-symmetric 

SE(B) specimen; (c) A half-symmetric MBL model with an initial root radius and an outer radius 

2 mR  ; and (d) The close-up view of the crack-tip showing the initial root radius and the 

minimum element size 
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number of elements in the range of 600-2900, 5700-6600, 3700-11000, and 7800-8900 

for the four respective models.  

The mathematically sharp crack-tip models for these specimens fail to converge at a very 

small load level, much lower than the specified 
min

K  value ( 20 MPa m
min

K  ) in 

ASTM E 1921 [11]. To facilitate numerical convergence at large deformations, the FE 

models include an initial root radius, 
0

R , at the crack tip, as shown in Figure 4.1(d). The 

Weibull stress for a single specimen thus computes from multiple FE models with the 
0

R  

varying from 0.05 m to 15 m. The C3D20 elements shown in Figure 4.1 employ a 

reduced integration scheme. The element response follows the finite deformation theory. 

The strain hardening exponent, N , that describes the material true stress versus plastic 

strain relationship is obtained from a regression analysis of the experimentally measured 

data at three different temperatures (
o

20 C,     
o

40 C,   and 
o

91 C   ) as shown in 

Figure 4.2. The hardening exponent for all three temperatures, derived from the curve 

fitting of the experimental stress-strain data, equals about 0.13, while the material yield 

stress follows the fitted constant in the regressed reference stress in the power-law 

hardening rule.  
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Figure 4.2 Uniaxial true stress-strain curves for the 22-Ni-MoCr37 steels measured at three 

temperatures over the ductile-to-brittle transition 
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Figure 4.3 The rank probability of the fracture toughness data (a) 2T and 1T C(T) specimens at 
o20 C  ; (b) 2T and 1T C(T) specimens at o40 C  ; and (c) 0.5T C(T) and 0.4T SE(B) 

specimens at o110 C   
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Figures 4.3(a)-(c) show the fracture probability of the experimentally measured fracture 

toughness data at 
o

20 C,     
o

40 C,   and 
o

110 C  , respectively. At each test 

temperature, the fracture toughness data shown in Figures 4.3(a)-(c) include two sets of 

specimens with contrast differences in the crack front constraints. At 
o

20 C     and 

o
40 C,   the high constraint toughness data refer to the experimental results measured 

from the thicker 2T C(T) specimens, while at a lower temperature, 
o

110 C,     the thin 

0.5T C(T) specimens experience small scale yielding, high constraint conditions near the 

crack front. Since the stress-strain data at 
o

110 C     is not available, the numerical 

procedure employs the stress-strain data at 
o

91 C     which is most close to 

o
110 C     reported by Heerens and Hellmann [69] to calibrate the Weibull parameters 

at 
o

110 C    .  

Figure 4.4(a) illustrates the effect of the initial root radius, 
0

R , and the minimum element 

size, minL , near the crack tip, on the Weibull stress values, integrated over the fracture 

process zone around the crack tip of the modified boundary layer model shown in Figure 

4.1(c). The Weibull stress values ( 10m  ) in Figure 4.4(a) are computed from multiple 

MBL models with the same initial root radius, 
0

R , but five different minimum element 

sizes, minL , ranging from 50 nm to 10 m. The material properties follow the true stress-

strain data measured at 
o

40 C    , with the strain-gradient hardening described by the 

CMSG plasticity theory using 5l  m. This value of material length scale is assumed 

according to that the material length scale of steel should be greater than that of the 

copper which is around 3 m [45, 70] comparing the diameter of the atoms of the two 

metals (steel and copper). The integration of the maximum principal stresses over the 

fracture process zone demonstrates hardly any dependence on the mesh sizes near the 
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crack tip for the range of element sizes considered. Figure 4.4(b) shows the Weibull stress 

values computed from MBL models with a varying initial root radius, 
0

R , which ranges 

from 0 to 2 m. The initial root radius alleviates the singular stress field near the crack tip, 

and varies the stress distribution/redistribution within a small volume of material ahead of 

the crack tip. The change in the initial root radius leads to marginal differences in the 

computed Weibull stress magnitude only at very small load levels, as shown in Figure 

4.4(b).   
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Figure 4.4 Effect of the minimum element size and the initial root radius on the  valuesw  

computed from the MBL model at o40 C   (a) Minimum element size minL ; (b) Initial root 

radius 0R  

4.3 Effect of CMSG Plasticity on the Weibull Stress Model 

The strain-gradient dependent material hardening elevates the near-tip stresses compared 

to the stress values computed using the classical plasticity theory, which prescribes the 

dependence of the material hardening on strains only. This section examines the effect of 

the CMSG plasticity on both the Weibull stress values and the crack front constraints, 

exemplified by the numerical computation for the 22-Ni-MoCr37 Euro steel at 
o

20 C  , 

o
40 C  , and 

o
110 C  . 
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Figure 4.5 The evolution of w and the constraint-correction function computed using the 

classical plasticity and the CMSG plasticity (a) w  for MBL models ;(b) w  for 1T C(T) ; and (c) 

Constraint-correction  g M  for 1T C(T) at 
o

20 C    

Figure 4.5(a) compares the Weibull stress values with respect to the remotely applied J  

loading for the plane strain, MBL model computed using the Euro steel material 

properties at 
o

20 C   under both the CMSG plasticity and the classical plasticity analyses, 

for a Weibull modulus, 10m  . The Weibull stress values computed from the CMSG 

plasticity theory with the material length scale of 5l  m and 10 m, show about 10-

11% increase compared to the w  values calculated from the classical theory of plasticity. 

The 3D C(T) model demonstrates a similar increase in the Weibull stress values 

computed from the CMSG plasticity theory in contrast to those calculated from the 

classical plasticity theory as shown in Figure 4.5(b). Figure 4.5(c) illustrates the ( )g M  

function with respect to the nondimensional loading parameter, /
y

M b J , at 

10m  for the C(T) specimens. The inclusion of the CMSG plasticity theory in the 

numerical procedure apparently increases the contribution to the Weibull stress from the 
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very high stresses in the immediate vicinity of the crack tip. Consequently, the constraint-

correction ( )g M  function based on the CMSG plasticity theory becomes higher than the 

( )g M  function based on the classical theory of plasticity (see Figure 4.5(c)). This implies 

that the strong hardening triggered by plastic deformations at the material length scale 

level elevates the crack front constraints.  
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Figure 4.6 The evolution of w and the constraint-correction function computed using the 

classical plasticity and the CMSG plasticity (a) w  for MBL models; (b) w  for 1T C(T); and (c) 

Constraint-correction  g M  for 1T C(T) at 
o

40 C    

Figure 4.6(a) compares the Weibull stress, w  vs. load, J  curves of the plane strain small 

scale yielding (SSY) model by using the Euro steel material properties at 
o

40 C   under 

both the CMSG plasticity and the classical plasticity analyses, with the Weibull modulus 

of 10m  . The Weibull stress values computed from the CMSG plasticity theory also 

show about 10-15% higher than those calculated from the classical plasticity theory. 

Similarly, the Weibull stress vs. J  curves from the CMSG plasticity analysis of the 1T 

C(T)  is 10-15% higher than that calculated from the classical plasticity theory (see Figure 

4.6(b)). Figure 4.6(c) shows that the ( )g M  function at 
o

40 C   and 10m   for the C(T) 

specimens with including the plastic strain gradient effect is around 8% higher than the 

( )g M  function based on the classical plasticity implying that the plastic deformations at 

the material length scale level elevates the crack front constraints.  
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Figure 4.7 The evolution of w and the constraint-correction function computed using the 

classical plasticity and the CMSG plasticity (a) w  for MBL models (b) w  for 0.5T C(T) (c) w  

for 0.4SE(B) (d) Constraint-correction  g M  for 1T C(T); and (e) constraint-correction function 

 g M  for  0.4T SE(B) specimens at 
o

110 C    

Figures 4.7(a)-(c) plot the Weibull stress vs. J  curves of the small scale yielding (SSY) 

model, 0.5T C(T) model and the 0.4T SE(B) models by using the Euro steel material 

properties at 
o

110 C   under both the CMSG plasticity and the classical plasticity 

analyses, with the Weibull modulus of 10m  . The Weibull stress values for the three 

models computed from the CMSG plasticity theory show around 22%, 24%, and 15% 

increase compared to the w  values calculated from the classical theory of plasticity, 

respectively. Both Figures 4.7(d) and 4.7(e) show that the ( )g M  function at 10m   for 

the C(T) model and SE(B) model with the plastic strain gradient effect is higher than the 

( )g M  function based on the classical theory of plasticity further implying that the plastic 

strain gradient raises the crack front constraints.  
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4.4 Effect of T-Stress 

The elastic T-stress refers to the second term in the classical Williams‟ solution [71] for 

the crack-tip stress field derived from small-displacement assumptions. The T-stress 

represents a stress field parallel to the crack plane, imposing a strong effect on the stress 

triaxiality very near the crack tip [72]. The direction and magnitude of the T-stress, 

therefore, characterizes the plasticity constraints experienced by the crack tip. A crack tip 

under a compressive (negative) T-stress often experiences very low plasticity constraints, 

while a crack tip with a zero or positive T-stress represents a high constraint condition.   
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Figure 4.8 The variation of the  valuesw  in MBL models subjected to different T-stresses (a) 

Proportional loading; (b) Non-proportional loading 
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Figure 4.9 The variation of the constraint-correction function in MBL models (a) Proportional 

loading; (b) Non-proportional loading 

Figure 4.8 illustrates the effect of crack front constraints, quantified the linear-elastic T-

stresses, on the w  values and the constraint-correction function, g , in Equation (2.8), 

for a plane strain MBL model with the CMSG plasticity hardening ( 5l  m). The 

numerical procedure imposes the displacement-controlled loading caused the elastic T-

stress, together with the IK  loading described in Equations (3.1) and (3.2), to the 

circumference of the semi-circular MBL model. The MBL model here has an outer radius 

of 2R  m and an initial root radius of 
0

2R  m. 

The numerical procedure examines two types of applications of the I TK   loading, 

namely the proportional loading and the non-proportional loading. The proportional 

loading applies the IK  displacements in Equations (3.1) and (3.2) simultaneously with 

the T-stress displacements in Equations (3.3) and (3.4) on the plane strain MBL model. 
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The non-proportional loading, in contrast, separates the loading procedure into two steps, 

with the T-stress applied in the first step followed by the IK  loading in the second step. 

Figures 4.8(a) and 4.8(b) compare the w  values computed from Equation (2.6) with 

10m   for these two loading cases under five different levels of T-stresses, / -0.9yT   , 

-0.5, 0, 0.5, and 0.9. A positive T-stress leads to slightly higher 
w  values  than the 

Weibull stresses at a zero T-stress, while a negative T-stress generates more severe 

reductions in the 
w  values compared to the Weibull stress corresponding to a zero T-

stress. O‟Dowd and Shih [72] demonstrate that the negative T-stress causes significantly 

lower maximum principal stresses within the plastic zone around the crack tip than does 

the zero T-stress condition, while a positive T-stress leads to slightly higher maximum 

principal stress values around the crack tip. The application of T-stresses prior to the IK  

in the non-proportional loading initiates a more severe deviation in the w  values with 

nonzero T-stresses from those with a zero T-stress at a low loading, J , compared to the 

proportional loading. Figures 4.9(a) and 4.9(b) show the constraint-correction function g 

in Equation (2.8) for 10m  , computed from the ratio of the Weibull stress with a 

nonzero T-stress over the w  values with a zero T-stress, both corresponding to the same 

crack-opening load, J , 

( 0)

( 0)

m

w

w

T
g

T
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

 
  
  

                                                          (4.1) 

The T-stress increases from 0 to the designated value in the proportional loading case, 

which shows a g  value of 1.0 at 0J   with a continuously increasing g  value for the 

positive T-stresses and a continuously decreasing g-value for the negative T-stresses. In 



Chapter 4 Calibration of Weibull Parameters Based on Classical Plasticity and CMSG Theory 

 70 

contrast, the non-proportional loading reflects the effect of the non-zero T-stress by 

showing a very large g value for the positive T-stress and a very small g  value for the 

negative T-stress, even at a small load level. The g value in the non-proportional loading 

condition maintains an approximately constant magnitude with the increasing load, 

implying that the constraint change is primarily driven by the constant T-stress. 

The results in Figures 4.8 and 4.9 prove that the correct estimation of the Weibull stress 

magnitudes, requires accurately evaluating the ratio of the T-stress with respect to the 

crack-opening load IK  (often measured by the biaxiality ratio, IT aK  ).  

4.5 Calibration at –20 
o
C 

The calibration procedure in the current study scans through m value from 1 to 30 at a 

step of 1m   and the 
min

K  value from 1 to 80 MPa m  at a step of 1
min

K   MPa m . 

Tables 4.1 list the calibrated m and minK  values at three different temperatures 

(
o

20 C,     
o

40 C,   and 
o

110 C  ), based on the minimum calibration error computed 

in Equation (2.14). At 
o

110 C  , two material curves (  at 
o

91 C   and 
o

110 C  ),  

are used to calibrate the Weibull parameters. 

For all three temperatures, the numerical procedure examines three types of strain-

hardening behavior: the classical plasticity, the CMSG plasticity with the material length 

scale of 5 m and the CMSG plasticity with the material length scale of 10 m.  These 

material length scales correspond to an   value from 0.2 to 0.3, assuming the Burgers 

vector lies in the range from 0.1 nm to 0.2 nm. At 
o

20 C,     the calibrated m  equals 

17 for the classical plasticity theory and 19 for the CMSG plasticity theory with 5l  m 

and 10 m, while the minK  value equals 47 MPa m  for all three strain-hardening 

properties. 
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Table 4.1 Calibrated m and 
minK  for the Weibull stress model for 22-Ni-MoCr37 steels at three 

different temperatures 

Θ (
o
C) Material Hardening 

Calibrated Weibull Stress Parameters 

m minK ( MPa m ) 

o20 C  

Classical plasticity 17 47 

CMSG l = 5 µm 19 47 

CMSG l = 10 µm 19 47 

o40 C  

Classical plasticity 17 48 

CMSG l = 5 µm 19 47 

CMSG l = 10 µm 19 47 

o110 C  

o(  at -91 C)   

Classical plasticity 15 20 

CMSG l = 5 µm 19 20 

CMSG l = 10 µm 19 20 

o110 C  

o(  at -110 C)   

Classical plasticity 15 23 

CMSG l = 5 µm 19 23 

CMSG l = 10 µm 19 23 

 

 

Table 4.2 Weibull stresses based on the classical plasticity theory and the CMSG plasticity theory 

at the calibrated m values for o20 C  , computed from an MBL model under zero T-

stress 

J 

(kJ/m
2
) 

/w y    /CMSG classical
w w   

Classical plasticity 

 (m = 17) 

CMSG  

(l = 5 µm, m = 19)  

CMSG 

 (l = 10 µm, m = 19) 

10 1.67 1.20 1.20 

100 2.20 1.20 1.20 

300 2.51 1.15 1.15 

500 2.66 1.15 1.15 

1000 2.89 1.14 1.14 
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Table 4.2 shows the ratio between Weibull stress and yield stress, and the Weibull stress 

ratio between the classical plasticity and the CMSG plasticity analyses at -20 
o
C. The 

ratio from the classical plasticity analysis implies that the Weibull stress increases with 

the load J. The difference in the Weibull stress values computed from the CMSG 

plasticity and the classical plasticity is around 14%-20% and at small load level the 

difference is bigger, and then keeps constant at higher load levels. Figure 4.8(a) shows the 

evolution of the normalized calibration error with respect to the m  value corresponding 

to 47 MPa m
min

K   for the three types of hardening behavior. The normalized error 

refers to the ratio of the error in Equation (2.14) computed for a given m value over the 

maximum error computed for all m  values, for each series of calibration. The change in 

the material length scale in the CMSG plasticity causes insignificant variation in the error 

function, as shown in Figure 4.10. The calibrations based on both the classical plasticity 

and the CMSG plasticity theories indicate distinctive minimum errors with respect to the 

m  value, as shown in Figure 4.10(a). In contrast, Figure 4.8(b) shows a plateau near the 

minimum errors ( 47 MPa m
min

K  ) for both the classical plasticity and the CMSG 

plasticity theory. This implies that the minimum error remains much less sensitive to the 

selection of the minK  value than to the choice of an m value. The minK  value represents a 

threshold below which the cleavage fracture failure does not take place. The minK  value 

introduces a less significant effect on the constraint scaling, implemented in Equation 

(2.13), than the constraint-correction function,  g M , especially for fracture toughness 

data with JC minK K . The  g M  function depends directly on the Weibull modulus, m , 

as shown in Equation (2.8). 
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Figure 4.10 The variation of the normalized calibration error with respect to the m values and the 

minK  values for fracture toughness data measured at o20 C  (a) m values; (b) minK  values 

Figure 4.11 compares the fracture toughness data scaled to the 1T SSY condition based 

on Equation (2.13) with the probability of fracture predicted by the Weibull stress model 
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in Equation (2.9) using the calibrated m  and minK  value. The calibrated Weibull 

parameters based on the CMSG plasticity hardening properties yield slightly better 

predictions of the scaled experimental data, than do the Weibull parameters calibrated 

using the classical theory of plasticity. 
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Figure 4.11 The comparison between the constraint-scaled fracture toughness data at o20 C   

and the probability prediction by the Weibull stress model (a) Classical plasticity; (b) CMSG 

plasticity theory with 5μml  ; and (c) CMSG plasticity theory with 10μml   

4.6 Calibration at –40 
o
C 

At 
o

40 C,     the calibration procedure yields an m value of 17 at the minimum error 

for the classical theory of plasticity and an m value of 19 for the CMSG plasticity theory. 

The calibrated minK  value equals 48  MPa m  for the classical theory of plasticity and 47 

 MPa m  for the CMSG plasticity theory.  Table 4.3 shows the ratio between Weibull 

stress and yield stress, and the Weibull stress ratio between the CMSG plasticity and the 

classical plasticity analyses at 40 
o
C. The difference in the Weibull stress values 

computed from the CMSG plasticity and the classical plasticity is around 24%-25% at 

small load level the difference, and then keeps 18%-19% at higher load levels. 

Figure 4.12 illustrates the variation of the normalized calibration error with respect to the 

m  value and minK  value. Similar to the calibration for 
o

20 C,     the calibration error 
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shows a distinctive minimum value with respect to the variation of the m value, and a 

plateau near 47 MPa m
min

K   for the calibration based on the CMSG plasticity theory 

and near 48 MPa m
min

K   for the calibration based on the classical plasticity. For the 

calibration with respect to the m  value, the normalized error based on the CMSG 

plasticity theory shows a slightly more gentle variation near the minimum value than the 

normalized error based on the classical plasticity theory.  

Figure 4.13 compares the cumulative probability of fracture predicted by the Weibull 

stress model using Equation (2.9) and the fracture toughness at 
o

40 C   scaled to the 1T 

SSY condition. Both predictions based on the CMSG plasticity and the classical plasticity 

theories demonstrate close agreement with the experimental data. 

Table 4.3 Weibull stresses based on the classical plasticity theory and the CMSG plasticity theory 

at the calibrated m values for o40 C  , computed from an MBL model under zero T-stress 

J 

(kJ/m
2
) 

/w y    /CMSG classical
w w   

Classical plasticity 

 (m = 17) 

CMSG  

(l = 5 µm, m = 19)  

CMSG 

 (l = 10 µm, m = 19) 

10 1.61 1.24 1.25 

100 2.11 1.21 1.21 

300 2.41 1.19 1.20 

500 2.56 1.19 1.19 

1000 2.77 1.18 1.18 
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Figure 4.12 The variation of the normalized calibration error with respect to the m values and the 

 valuesminK  for fracture toughness data measured at 
o40 C   (a) m values; (b)  valuesminK  
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Figure 4.13 The comparison between the constraint-scaled fracture toughness data at o40 C   

and the probability prediction by the Weibull stress model (a) classical plasticity; (b) CMSG 

plasticity theory with 5μml  ; and (c) CMSG plasticity theory with 10μml   

4.7 Calibration at –110 
o
C 

The calibration of the Weibull parameters at  
o

110 C   initially uses the material property 

at 
o

91 C   as Wasiluk et al. [24] due to the material property for 
o

91 C   is currently 

unavailable. 

4.7.1 Calibration using material property at -91 
o
C 

The calibrated m value equals 15 based on the classical plasticity and 19 based on the 

CMSG plasticity theory for the fracture toughness data measured at 
o

110 C  . The minK  

value calibrates to be 20 MPa m  for both the classical plasticity and the CMSG 

plasticity theory. Table 4.4 shows the ratio between Weibull stress and yield stress, and 

the Weibull stress ratio between the CMSG plasticity and the classical plasticity analysis 

at 110 
o
C. The difference in the Weibull stress values computed from the CMSG 
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plasticity and the classical plasticity is around 49% at small load level the difference, and 

then keeps 28%-31% at higher load levels. 

Figure 4.14 shows the variation of the normalized error with respect to the m value and 

the minK  value. The calibration error based on the CMSG plasticity theory shows a more 

gentle variation near the minimum value around 19m   than the calibration error around 

15m   based on the classical plasticity theory. For both the classical plasticity and the 

CMSG plasticity theory, the calibration error shows a plateau near the minimum value 

where 20 MPa m
min

K  . Figure 4.15 demonstrates the close agreement between the 

cumulative probabilities of fracture predicted using Equation (2.9) and the constraint-

scaled fracture toughness for 
o

110 C    . 

Table 4.4 Weibull stresses based on the classical plasticity theory and the CMSG plasticity theory 

at the calibrated m values for o110 C  , computed from an MBL model under  zero T-stress 

J (kJ/m
2
) 

/w y    /CMSG classical
w w   

Classical plasticity 

 (m = 15) 

CMSG  

(l = 5 µm, m = 19)  

CMSG 

 (l = 10 µm, m = 19) 

10 1.43 1.49 1.49 

100 2.0 1.38 1.38 

300 2.34 1.33 1.33 

500 2.51 1.31 1.31 

1000 2.76 1.28 1.28 
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Figure 4.14 The variation of the normalized calibration error with respect to m values and the 

 valuesminK  for fracture toughness data measured at o110 C   (a) m values; (b)  valuesminK  
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(c) 

Figure 4.15 The comparison between the constraint-scaled fracture toughness data at 
o110 C   and the probability prediction by the Weibull stress model (a) Classical plasticity; (b) 

CMSG plasticity theory with 5μml  ; and (c) CMSG plasticity theory with 10μml   

4.7.2 Calibration using interpolated material property at -110 
o
C 

The available stress-strain data for Euro steels (22 Ni-MoCr37) from [73] covers the DBT 

transition temperature from 
o

20 C   to 
o

154 C   and now is plotted in Figure 4.16. The  
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Figure 4.16 Euro-steel true stress-strain curves at different temperatures 

yield stress at 
o

110 C   is computed from the yield stress vs. temperature function 

reported by Walllin [74], 
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 450 1294 exp 0.0147 ( )
y

K                                              (4.2) 

 According to this equation, the yield stress at 
o

110 C   is about 567 MPa and 5% higher 

than that at 
o

91 C  . The hardening exponent interpolated between the values of the 

hardening exponent at 
o

91 C   and 
o

154 C   is around 0.16. Based on the hardening 

power law in Equation (2.36), the true stress-strain curve for Euro steels (22 Ni-MoCr37) 

at 
o

110 C   can be estimated as shown in Figure 4.16. In this section, the estimated 

material property is used to re-calibrate the Weibull parameters at 
o

110 C  .   

Figures 4.17 (a) and (b) compare the Weibull stress computed based on material curves at 

o
110 C   and 

o
91 C   for 1T SSY model and 0.5T C(T) model. The Weibull stress curve 

computed from 
o

110 C     is around 2%-5% higher than that from 
o

91 C    , while 

the load-constraint function as shown in Figure 4.17 (c)  from both temperature are 

slightly different, therefore produce the similar  Weibull parameters. 
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Figure 4.17 The evolution of w and the constraint-correction function computed using the 

CMSG plasticity (a) w  for MBL models; (b) w  for 0.5T C(T); and (c) Constraint-correction 

 g M  for C(T) at 
o o

91 C and 110 C     

Figures 4.18 (a) and (b) show the error distribution curves computed using the 

interpolated stress-strain curve at 
o

110 C    . We also find the calibrated Weibull 

modulus and minK  are also similar as that using stress-strain curve at 
o

91 C    . The 
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two parameters computed from classical plasticity are around 15 for m  and 23 MPa m  

for minK . Weibull moduls m equal 19 and minK equal 23 MPa m  from the CMSG 

plasticity analyses using the interpolated stress-strain curve for 
o

110 C    . 
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(b) 

Figure 4.18 The variation of the normalized calibration error with respect to the m values and the 

minK  values for fracture toughness data measured at o110 C  (a) m values; (b) minK  values 

using the interpolated material curve for o110 C   
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Figures 4.19 (a-c) plot both the fracture probability curves using the material curve at 

o
110 C     and 

o
91 C    , the fracture probability curves from both temperatures 

are also slightly different. Therefore, using the material stress-strain curve at  

o
91 C    to calibrate the Weibull parameters does not affect the calibrated results 

significantly. 
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Figure 4.19 The comparison between the constraint-scaled fracture toughness data at 
o110 C   and the probability prediction by the Weibull stress model using the material curves 

from o o91 C and 110 C    (a) Classical plasticity; (b) CMSG plasticity theory with 5μml  ; 

and (c) CMSG plasticity theory with 10μml   

 

4.8 Discussions  

The Weibull stress model, described by Equation (2.9), provides a unified approach to 

predict the cumulative probability of cleavage fracture for crack fronts under both high 

plasticity constraints and low plasticity constraints. The CMSG plasticity theory provides 

the much-needed description of the micro scale hardening of the material well within the 

plastic zone around the crack tip. The inclusion of the CMSG plasticity in the material 

constitutive description predicts increased 
w

  values, and varies subsequently the 

calibrated Weibull material parameters, m and minK  compared to the conventional 

approach based on the classical theory of plasticity. These variations lead consequently to 

a different estimate of the cumulative probability of fracture, based on the microscopic 

crack driving force 
w

 . 
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This section compares the probability of fracture estimated using the Weibull stress 

model based on the classical theory of plasticity and that based on the CMSG plasticity 

theory for two realistic situations: 1) an assumed m  value, and 2) the calibrated m values, 

both utilizing the calibrated minK  values. The first case corresponds to a practical 

situation where insufficient experimental data is available to support the calibration of the 

Weibull parameters m , while the second case exemplifies a situation where extensive 

experimental data are available to calibrate the m value using both the CMSG plasticity 

and the classical plasticity theories. 
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Figure 4.20 The cumulative probability of fracture and the ratio of /CMSG Classical

w w    (a) Fracture 

probability by the classical plasticity and the CMSG plasticity theories using m =10; (b) Ratio of 

/CMSG Classical

w w    corresponding to the same fP  in (a) 

Figure 4.16(a) shows the cumulative probability of fracture, 
f

P , with respect to the 

microscopic crack driving force, 
w

 , computed from Equation (2.9) using the 
u

  and 

w
 values determined from the classical plasticity and the CMSG plasticity theory at 

o
40 C     for a common Weibull modulus, 10m  . The 

f
P  values for the CMSG 

plasticity with two material length scales, 5l   m and 10 m, show very close 

predictions, but considerable differences compared to the 
f

P  value based on the classical 

plasticity theory. Figure 4.16(a) implies that the classical plasticity theory yields a higher 

probability of fracture than the CMSG plasticity for the same microscopic crack driving 

force, 
w

 . However, the CMSG plasticity often leads to a more than 10% higher estimate 

on the Weibull stress values than does the classical theory of plasticity, at the same 
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macroscopic crack driving force ( J ), as shown in Figure 4.5. Figure 4.16(b) illustrates 

the ratio of the 
w

  value computed from the CMSG plasticity theory over the 
w

  value 

calculated using the classical plasticity to predict the same cumulative probability of 

fracture, 
f

P . The same probability of cleavage fracture failure requires the 
w

  value 

computed by the CMSG plasticity theory to exceed the 
w

  value based on the classical 

plasticity by 2-4%. However, the CMSG plasticity theory leads to an increased Weibull 

stress magnitude by more than 10% compared to the classical theory of plasticity under 

the same crack-opening loading, J , for 10m  , as shown in Figure 4.5. The Weibull 

stress model based on the CMSG plasticity theory, therefore, leads to an increased 

probability of fracture compared to that based on the classical plasticity with the same 

Weibull modulus, m, for fracture specimens subjected to the same macroscopic crack-

opening load, J .   
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Figure 4.21  The cumulative probability of fracture and the ratio of  /CMSG Classical

w w   (a) Fracture 

probability by the classical plasticity and the CMSG plasticity theories using the calibrated m 

values; (b) Ratio of  /CMSG Classical

w w   corresponding to the same fP  in (a) 

Figure 4.17(a) shows the predicted cumulative probability of cleavage fracture using 

Equation (2.9) based on the calibrated m  values for the classical plasticity ( 17m  ) and 

the CMSG plasticity theory ( 19m  ) at 
o

40 C    . Equal probabilities of failure 

require the 
w

  values computed using the CMSG plasticity theory (with 19m  ) to 

exceed those calculated from the classical plasticity (with 17m  ) by 7-10%, as shown in 

Figure 4.17(b). The material hardening following the CMSG plasticity constitutive model 

description ( 19m  ), however, leads to an 18-25% increase in the 
w

  values compared 

to the 
w

  values based on the classical plasticity ( 17m  ), computed from an MBL 

model under a zero T-stress (see Table 4.3). These pronounced increases in the 
w

  values 

caused by the strain-gradient dependent material hardening lead to a considerably higher 

cumulative probability of fracture than the 
f

P  value predicted based on the classical 
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plasticity, when implemented in the 
f

P -
w

  curve with a very sharp slope as shown in 

Figure 4.17(a). At temperature 
o

20 C     and 
o

110 C    , we also obtain the similar 

trends that the Weibull stress computed from CMSG plasticity (with 19m  ) is around 

7%-10% higher than that computed from classical plasticity (with 19m  ) at the same 

fracture probability as shown in Figure 4.18 (a) and (b). However, the Weibull stress 

based on CMSG plasticity is almost 14%-20% (for 
o

20 C    ) and 28%-50% (for 

o
110 C    ) higher than that computed from classical plasticity based on the calibrated 

m value at the same load. Therefore, if we consider the strain gradient effect, a higher 

fracture probability can be achieved.  
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Figure 4.22  The cumulative probability of fracture and the ratio of  /CMSG Classical

w w   using the 

calibrated m values; (a)  =-20 
o 
C (b) =-110 

o 
C 

4.9 Summary and Conclusion 

This study recalibrates the Weibull modulus m and the threshold fracture toughness minK  

in a three-parameter Weibull stress model for the 22-Ni-MoCr37 steel tested in a five-

year European Union project involving 11 countries [8]. The calibration exercise utilizes 

more than 220 fracture toughness data measured at three temperatures over the ductile-to-

brittle transition regime: 
o

20 C,     
o

40 C,   and 
o

110 C  . The calibration procedure, 

following a similar approach presented by Wasiluk et al. [24], examines the effect of 

strain hardening caused by the plastic deformations at microscopic levels through the 

CMSG plasticity theory, implemented in the 
0

C solid element formulation [5]. The results 

presented above support the following conclusions: 
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(1)  The strain-gradient dependent material hardening described by the CMSG 

plasticity theory leads to significant increases in the Weibull stress magnitudes compared 

to the predictions based on the classical plasticity for fracture specimens under the same 

macroscopic crack-opening load, J . The implementation of the CMSG plasticity theory 

in the calibration procedure generates slightly larger values of the Weibull modulus, m , 

than the values calculated using the classical theory of plasticity. The threshold fracture 

toughness value, minK , which generates a very small plastic zone around the crack tip, in 

contrast, exhibits very little dependence on the material strain hardening properties.  

(2)  This study assumes two typical values of the material length scales, 5l   m and 

10l   m, in the CMSG plasticity theory for the calibration of Weibull stress parameters. 

Both the magnitudes of the Weibull stress and the calibrated m  and minK values indicate 

hardly noticeable dependence on these two values of the material length scales. Hence, it 

can be deduced that any material length scales that between 5l   m and 10l   m, e.g., 

7l   m should produce the similar magnitudes of Weibull stress, Weibull modulus and 

minimum fracture toughness minK . 

(3)  The crack front constraints, characterized by the elastic T-stresses impose a strong 

effect on the magnitude of the Weibull stresses, especially for crack fronts experiencing 

low plasticity constraints. The non-proportional loading and proportional loading cause 

significant differences in both the Weibull stress values and the constraint-correction 

function. An accurate estimation of the Weibull stress, based on the MBL model, thus 

requires an accurate evaluation of the biaxiality ratio ( IT aK  ) near the crack tip. 

(4)  The calibrated Weibull modulus, m, based on the CMSG plasticity theory, shows 

the same value 19m   for all three temperatures considered. The temperature 
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independence of the m-value asserts that the magnitude of m characterizes the distribution 

of the micro crack sizes in the material, which should not rely on the environmental 

temperature. This study also confirms the temperature dependence of the threshold 

fracture toughness, minK , which shows a substantially lower calibrated value at 

110 C   
o

 than the minK value calibrated at 
o

40 C     or 
o

20 C    . 

(5)  The calibrated Weibull stress model, shown in Equation (2.9), predicts a higher 

probability of fracture for materials exhibiting strain-gradient dependent material 

hardening than the 
f

P  value for materials following the classical plasticity theory for a 

macro crack under the same opening load measured by the domain integral, J , if the 

same Weibull modulus m  is assumed or if the calibrated m values are used. 

 

The values of material length scale are assumed to be 5 and 10 m in this chapter. They 

are common values of the materials length scale for the metallic materials. The more 

accurate values of the material length scale for the structural steel studied in this thesis 

will be quantified through the indentation tests described in Chapter 5. 
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CHAPTER 5 MATERIAL CHARACTERIZATION OF 

STRUCTURAL STEELS 

5.1 Introduction  

 By assuming the values of the material length scale for the structural steels, Chapter 4 

has demonstrated that the plastic strain gradient can significantly increase the magnitudes 

of the Weibull stress curves and predict high fracture probability. As the material length 

scale for the structural steels is currently not available, it is necessary to find the material 

length scale of the structural steels through the indentation tests which have been 

popularly used for characterizing the material properties of the metals and metallic alloys 

[70, 75-79]. This chapter attempts to evaluate the appropriate values of the material 

length scale of two commonly used structural steels for offshore structures (S355 and 

S690) at different temperatures through the indentation tests and the corresponding 

simulations by the CMSG plasticity theory. As the indentation test at temperatures below 

the room temperature is not feasible in Singapore due to the constraint in the experimental 

setting up. Therefore, the indentation tests are performed at two different temperatures 

(20
 o

C and 300 
o
C) to examine the effect of temperature on the variation of the material 

length scales. In the simulations of indentation tests by the CMSG plasticity theory, three 

mechanical properties parameters, the Young‟s modulus E , the hardening exponent N  

and the yield stress 
y

  are determined from the uni-axial tensile tests at the two 

temperatures (20
 o

C and 300 
o
C). The uni-axial tensile test at –40 

o
C and corresponding 

simulations of indentation test are also performed for future study.  
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5.2 Uniaxial Tensile Test for S355 and S690 at Three Temperatures  

5.2.1 Sample Preparation 

In the uni-axial tensile tests, the S355 coupon specimens are fabricated from a circular 

hollow section member with an outer diameter of 406 mm and wall thickness of 12.5 mm. 

The specimens for S690 are cut from a plate with the thickness of 12 mm. At each 

temperature, three specimens are prepared for each types of steel. The gauge length (60 

mm) of all the specimens are in accordance with ASTM E8 [80] as shown in Figure 5.1. 

At temperature 300 
o
C, the specimens are designed as shown in Figure 5.1(b) longer than 

those for room temperature (20
 o
C) tests in Figure 5.1(a) for heating the specimen by the 

high temperature Instron Severn-Furnace-Limited (SFL) furnace presented in Figure 5.2. 

Due to space limitation between the two legs of the clevis, the thickness of the specimen 

is kept as 12 mm.  The strain gauges are used to measure the engineering strain for tests at 

room temperature while the extensometer with the gauge length of 25 mm is used to 

measure the elongation of the materials at 300 
o
C since most of the strain gauges are 

unable to measure the strain at 300 
o
C, only the extensometer with the gauge length of 25 

mm is used to measure the elongation of the materials at 300 
o
C. In the heating process, 

the heating rate is set to 1 
o
C / min to heat the specimens to 300 

o
C and the temperature is 

held at 300
 o
C for 1 hour before conducting the tensile test.  

The specimens for the tensile test at –40 
o
C are much shorter than those for 20 

o
C and 300 

o
C tensile tests (see Figure 5.1 (c)) due to the limitation in the height of the cold chamber 

which is around 56 cm high (see Figure 5.3) and the height of clevises which are totally 

around 24 cm high. The gauge length is also designed as the specimens for testing at 

room temperature. Also due to most of the strain gauges are unable to measure the strain 

at below –20 
o
C, only the extensometer with the gauge length of 50 mm is used to 

measure the elongation of the materials at –40 
o
C. In the cooling process, the cooling rate 
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is set to 1 
o
C / min to cool the specimens to –40 

o
C and the temperature is held at –40

 o
C  

for 1 hour before conducting the tensile test. All the tensile tests are performed by the 

displacement rate of 0.1 mm/min. 

S355 S690

 

(a)  

S355 S690

 (b)  

S355 S690

 

(c)  

Figure 5.1 Samples S355 and S690 for uniaxial-tension test (a) 20 
oC; (b) 300 o

C; and (c) -40 o
C 



Chapter 5 Material Characterization of Structural Steels 

 100 

 

Figure 5.2 Instron SFL high temperature furnace for high temperature tensile test 

 

 

Figure 5.3 Environmental chamber for low temperature tensile test 

 

5.2.2 Stress-Strain Curves from Coupon Tests  

We use the average slope of the linear-elastic portion of the recorded engineering stress-

strain curves to determine the Young‟s modulus and adopt the 0.2% offset method to 

determine the yield stress [80].  

Figures 5.4(a) and 5.4(b) present the engineering stress-strain curves for S355 and S690 

(20 
o
C, 300 

o
C, and –40 

o
C). The true stress-strain data are converted from engineering 

SFL 

temperature 

furnace 

Coupon 

specimen 

Extensometer 
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specimen  

Environmental  
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stress-strain data. The power law (Equation 2.36) is used to fit the hardening exponent N  

of the stress-strain data. Table 5.1 compiles the values of Young‟s modulus E , yield 

stress 
y

 , and hardening exponent N  for steel S355 and S690 at two different 

temperatures (20
 o

C and 300 
o
C). Apparently, the Young‟s modulus and yield stress 

decrease as the temperature escalates from –40
 o
C to 300 

o
C for both S355 and S690.  

0.00 0.02 0.04 0.06 0.08 0.10
0

100

200

300

400

500

600

700

 

 

E
n

g
in

ee
ri

n
g

 s
tr

es
s 

(M
P

a)

Engineering strain 

20 
o
C

300 
o
C

-40 
o
C

S355

 

(a)  



Chapter 5 Material Characterization of Structural Steels 

 102 

0.00 0.02 0.04 0.06 0.08 0.10
0

200

400

600

800

1000

1200

 

 

E
n

g
in

ee
ri

n
g

 s
tr

es
s 

(M
P

a)

Engineering strain

20 
o
C

300 
o
C

-40 
o
C

S690

 

(b)  

Figure 5.4 Uniaxial stress-strain curves for structural steels at temperatures –40
 o
C, 20 

o
C, and 

300 
o
C (a) S355; (b) S690  

Table 5.1 Material properties for S355 and S690 steels 

Material Temperature 

(
o
C) 

Young's modulus 

E  (GPa) 

Yield stress 

y
  (MPa) 

Hardening exponent N  

S355 
–40 218 368 0.1 

20 203 345 0.1 

300 153 300 0.15 

S690 
–40 231 830 0.06 

20 200 760 0.07 

300 184 600 0.07 
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5.3 Indentation Tests for S355 and S690 at Temperatures 20 
o
C and 300 

o
C 

5.3.1 Test Preparation 

For the indentation tests, one sample is required for each type of steels S355 and S690. 

Each sample has to be polished before testing as the roughness of the surface can affect 

significantly the accuracy of the test results. The surfaces of the samples are firstly 

ground by sandpaper with the grit number of 500, 2400 and 4000, and then mechanically 

polished by 6 m, 3 m, and 1 m diamond suspensions. Finally, 0.1 m silica solution is 

used for final polishing. Figure 5.5(a) shows the samples for S355 and S690. Figure (b) is 

the indentation machine. Figure 5.5(c) illustrates the indented surface of the sample S355 

obtained from the scanning electron microscope (SEM) machine. As the surface of steel 

sample can be oxide easily, the sample has to be re-polished just before the testing if it is 

left untested for a few weeks. 

The MTS Nano-XP system with maximum loading capacity of 500 mN is used to indent 

S355 and S690 samples at room temperature (20
 o
C), while the compatible  Agilent Nano 

Indenter G200 system is used for 300
 o

C test. For both systems, we use the standard 

Berkovich indenter with the tips of total angle of 142.3
o
 as shown in Figure 5.6(a) for all 

indentation tests. The corresponding finite element is depicted in Figure 5.6(b).  

Each specimen is tested with five sets of indentation load rages (30 mN, 100 mN, 200 mN, 

350 mN, and 500 mN) repeating ten times for each load level. The operation is carried out 

automatically once the first indentation location and spaces between two indentation 

positions are specified.  
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(a)  

 
 

(b)  

 

(c)  

Figure 5.5 Indentation test samples and machine (a) Samples S355 and S690; (b) Indentation 

machine; (c) Indented surface of S355 
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(a) 

 
(b) 

Figure 5.6 Schematics of  Berkovich indenter and FE model (a) Geometry of  indenter; (b) FE 

model for indentation test 
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5.3.2 Indentation Experimental Results and Simulations at 20 
o
C 

The indentation load-displacement curves scatter as the indenter presses randomly either 

on the grain or its boundary and the indentation machine is incapable of identifying the 

surface property during the indentation. Simultaneously, as indentation depth is very 

small at micron level, variation of test results is unavoidable. A few curves in a set are 

normally deviated substantially from the majority of the curves at each lead level of 

indentation tests as shown in Figures 5.7 (a)-5.11(a) for S355 and Figures 5.12 (a)-5.16(a) 

for S690. In each set of data, we discard the outliners with maximum indentation depths 

deviating from the average value by two-standard-deviation method (i.e., only the data 

with 95% confidence interval are kept for further analyses). Only the remaining curves 

(about 10% of 10 sets of tested data) are presented as shown in Figures 5.7(b)-5.11(b) for 

S355 and 5.12(b)-5.16(b) for S690.  

5.3.3 Numerical Analysis of Indentation Tests at Temperature 20 
o
C 

As Berkovich indenter tip is a three-sided symmetric pyramid, only one-sixth of the 

problem is modelled and a rigid surface (one-sixth of the indenter tip) is adopted for the 

rigid indenter as illustrated in Figure 5.6. The angle between the rigid surface and the 

contacted surface of the material is 
o

13 . The analysis assumes no friction between the 

indenter and the target material during the indentation process. The material properties for 

S355 and S690 as tabulated in Table 5.1 are used in numerical simulations. The Young‟s 

modulus for the indenter is 1100 GPa, and the effect of temperature variation on the 

Young‟s modulus of the indenter is neglected. The finite element model as shown in 

Figure 5.6 contains 7600 20-node brick elements. The total number of the nodes is 33822. 

The minimum size of element in the contact region is around 2 nm. The finite 

deformation formulations are used in the simulations of the indentation tests. 
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At each load level, the finite element model is displacement-controlled load up to the 

average values of the maximum indentation depth of each set of test data. The maximum 

indentation depths for S355 are around 0.69, 1.4, 1.97, 2.69, and 3.26 m at above five 

load levels.  

The finite element simulated results based on both classical plasticity and CMSG 

plasticity theories with material length scales of 5l  , 7 and 10 m at five different load 

levels are included in Figure 5.7(b)-5.11(b) . The CMSG simulations with the compare 

the material length scale of 7l   m seems to produce the load-displacement curves that 

are in close agreement with the experimental observations for S355 at all load levels 

under room temperature of 20 
o
C. Apparently, the classical plasticity theory 

underestimates the value of applied loads, especially at the indentation depths of micron 

or submicron level. This implies that classical plasticity is unable to capture the size 

effect of material hardening for indentation at micron level when finite elements 

incorporating strain gradient plasticity have to be adopted. It is observed that with the 

increasing of the indent depth, the difference between the CMSG plasticity results and the 

classical plasticity values decreases, implying that the size effect diminishes with the 

increasing indentation depth.  

In the simulation of indentation tests on steel S690 at room temperature of 20 
o
C, the 

maximum indentation depth imposed on the finite element model are around 0.52, 1.03, 

1.48, 2.04, and 2.45 m at the five load levels, respectively. Figures 12(b)-16(b) also 

shows that the load-displacement curves from the CMSG plasticity analyses with the 

material length scale of 7l   m seems to match the experimental curves at almost all 

load levels..   



Chapter 5 Material Characterization of Structural Steels 

 108 

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

 

 

L
o

a
d

 (
m

N
)

Displacement (nm)

 Test 1

 Test 2

 Test 3

 Test 4

 Test 5

 Test 6

 Test 7

 Test 8

 Test 9

 Test 10

S355

=20 
o
C

 

(a) 

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

Classical plasticity

  l=5 m

  l=7 m

 

 

L
o

a
d

 (
m

N
)

Displacement (nm)

 Test 2

 Test 4

 Test 5

 Test 6

 Test 7

 Test 9

 Test 10

 CMSG l=10 m

 CMSG l=7 m

 CMSG l=5 m

 Classical plasticity

CMSG  l=10 m

S355

=20 
o
C

 

(b) 

Figure 5.7 Load-displacement indentation curves for S355 with maximum load of 30 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.8 Load-displacement indentation curves for S355 with maximum load of 100 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.9 Load-displacement indentation curves for S355 with maximum load of 200 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.10 Load-displacement indentation curves for S355 with maximum load of 350 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.11 Load-displacement indentation curves for S355 with maximum load of 500 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.12 Load-displacement indentation curves for S690 with maximum load of 30 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.13 Load-displacement indentation curves for S690 with maximum load of 100 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.14 Load-displacement indentation curves for S690 with maximum load of 200 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.15 Load-displacement indentation curves for S690 with maximum load of 350 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure  5.16 Load-displacement indentation curves for S690 with maximum load of 500 mN at 20 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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5.3.4 Numerical Analysis of Indentation Tests at Temperature 300 
o
C 

In the simulations of the tests at 300 
o
C, we adopt the same method as that used at 20 

o
C. 

The displacements applied to the finite element model for S355at each load level (30 mN, 

100 mN, 200 mN, 350 mN, and 500 mN) are about 0.66, 1.34, 1.97, 2.68, and 3.22 μ m, 

while for S690, the displacements imposed are around 0.6, 1.1, 1.65, 2.17, and 2.64 μ m 

at the five load levels. Figures 17(a)-21(a) and Figures 22(a)-26(a) presenting the tested 

curves for S355 and S690. .Figures 17(b)-21(b) and Figures 22(b)-26(b) present the 

screened tested curves for S355 and S690 and the corresponding finite element simulation 

results from the classical plasticity and the CMSG plasticity analyses with material length 

scales of 5l  , 7, and 10 m at each load level. The material length scale of 7l   m 

still produces the similar load-indentation curves as the experimental curves for S355 and 

S690 at temperature 300 
o
C.  The load-displacement curves computed from the classical 

plasticity theory are lower than those computed by the CMSG theory as the constitutive 

model of the classical plasticity does not contain the material length scale. 
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(b) 

Figure 5.17 Load-displacement indentation curves for S355 with maximum load of 30 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.18 Load-displacement indentation curves for S355 with maximum load of 100 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.19 Load-displacement indentation curves for S355 with maximum load of 200 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.20 Load-displacement indentation curves for S355 with maximum load of 350 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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 (b)  

Figure 5.21 Load-displacement indentation curves for S355 with maximum load of 500 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.22 Load-displacement indentation curves for S690 with maximum load of 30 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.23 Load-displacement indentation curves for S690 with maximum load of 100 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.24 Load-displacement indentation curves for S690 with maximum load of 200 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and test results 
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(b) 

Figure 5.25 Load-displacement indentation curves for S690 with maximum load of 350 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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(b) 

Figure 5.26 Load-displacement indentation curves for S690 with maximum load of  500 mN at 300 
o
C 

(a) Test results; (b) Comparison between FE and screened test results 
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5.4 Simulations of Indentation Tests for S355 and S690 at Temperature 

–40 
o
C  

As currently, it has difficulty in the experimental setting up for the low temperature 

indentation tests in Singapore. In this section, the simulations for the low temperature 

indentation are performed for the references of future experiments at –40
 o

C. The finite 

element model is the same as that used for 20
 o
C and 300

 o
C, which has contains 7600 20-

node brick elements with the minimum element size of 2 nm in the contact region. The 

material properties for S355 and S690 adopt the stress-strain curve at –40
 o

C in Figure 5.4. 

The material length scale in the simulations uses 7 m which is obtained from the 

indentation tests at temperature 20
 o
C and 300

 o
C.  

Figures 5.27(a)-(e) show the numerical results of the indentation test for S355 at –40
 o

C 

with various load levels based on classical plasticity and CMSG plasticity theories with 

three different values of material length scale, 5l  , 7 and 10 µm. The simulations of the 

indentation tests use the displacement-controlled method to apply the load. The five 

levels reaction forces are about 30, 100, 200, 350, and 500 mN, and the corresponding 

imposed of displacements at are around 0.6, 1.3, 1.95, 2.6, and 3.3 m for each load level. 

Comparing the load-displacement curves with the same displacement-imposed, the 

differences of the maximum reaction force between material length scale of 10l   µm 

and 7l   µm and between material length scale 10l   µm and 7l   µm are around 

3.3% at load of 30 mN, and decreases to 2% for load case of 500 mN. The differences 

between the load-displacement curves from the CMSG plasticity analyses and the 

classical plasticity analyses also decrease with the load increasing, implying the 

diminishing of the material size effect at the higher load levels. 
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(e) 

Figure 5.27 FE simulations of load-displacement indentation curves for S355 with maximum load of 

350 mN at –40 
o
C at load levels (a) 30 mN; (b) 100 mN; (c) 200 mN; (d) 350 mN; (e) 500 mN 

Compared with the indentation load-displacement curve for S355 at temperature 20
 o

C 

(see Figures 5.7-5.11) and 300
 o
C (see Figure 5.17-5.21), at the same maximum load, the 

maximum displacement at –40
 o

C is less than that at 20
 o

C and 300
 o

C. At the maximum 

load levels of 30 mN, 100 mN, 200 mN, 350 mN, and 500 mN, the maximum 

displacement at –40
 o

C is around 0.3% less than that at 20
 o

C and 300
 o

C for each load 

levels. This difference is not much, but very significant for steel S690. 

Figures 5.28(a)-(e) show the simulations of the indentation test for S690 at –40
 o

C with 

various load levels (30 mN, 100 mN, 200 mN, 350 mN, and 500 mN). The imposed 

displacements at each load level are around 0.49, 0.96, 1.34, 1.89, and 2.3 m at the five 

load levels, respectively. Comparing the load-displacement curves with the same 

displacement-imposed, the differences of the maximum reaction force between material 

length scale of 10l   µm and 7l   µm and between material length scale 10l   µm and 

7l   µm are around 3.3% at load of 30 mN, and gradually decrease to 2% for load case 
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of 500 mN. The differences between the load-displacement curves from the CMSG 

plasticity analyses and the classical plasticity analyses also decrease with the load 

increasing, implying the diminishing of the material size effect in the higher load levels. 

Compared with the indentation load-displacement curve for S690 at temperature 20
 o

C 

(see Figure 5.7-5.11) and 300
 o
C (see Figures 5.17-5.21), at the same maximum load, the 

maximum displacement at –40
 o
C is less than that at 20

 o
C and 300

 o
C. If the curves with 

material length scale of 7l   µm for –40
 o

C are used for comparison, at the maximum 

load level of 30,100, 200, 350, and 500 mN, the maximum displacement is 4-6% less than 

that the tested curves at 20
 o

C and 12-14% less than those at 300
 o

C, respectively. The 

smaller indent displacement at 20
 o
C reflects that the steel is harder than 20

 o
C and 300

 o
C. 
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Figure 5.28 FE simulations of load-displacement indentation curves for S690 with maximum load 

of 350 mN at -40 
o
C at load levels (a) 30 mN; (b) 100 mN; (c) 200 mN; (d) 350 mN; (e) 500 mN 

5.5 Summary 

This chapter quantifies the material length scale of the steels (S355 and S690) at two 

temperatures (20
 o

C and 300 
o
C) by comparison of the indentation load-displacement 
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curves and the numerical results from CMSG plasticity analyses. The results show that 

the material length scale for steel S355 and S690 is around 7 m. Through the evaluation 

of the material length scale at two distinct temperatures (20
 o

C and 300 
o
C), this study 

shows that values of the material length of the structural steels at the two temperatures do 

not vary, implying that the material length scale is independent of the temperature in the 

range of 20
 o
C ~ 300 

o
C. 

This chapter also shows that even at the maximum loading capacity of the indentation 

machine, the maximum indent depth is still lower than 3.5 m for both types of steels, 

and is also lower than the intrinsic material length scale as the steel is very hard. 

Therefore, at the maximum loading level, 500 mN, the difference between the CMSG 

plasticity and the classical plasticity curves is still large. We may infer that the load-

displacement curve from the classical plasticity and the CMSG plasticity will converge to 

one curve at the load level higher than 500 mN, that is, when the indentation size effect 

diminishes.  

The current results of the indentation test for S355 and S690 at –40
 o

C based on the 

classical plasticity and the CMSG plasticity analyses with material length scale of 5l  , 

7 and 10 µm show that the maximum displacement at this low temperature is less than 

that at temperatures 20
 o

C and 300
 o
C with the same maximum displacement load applied, 

implying the two types of steel at –40
 o

C  are harder than at 20
 o

C and 300
 o

C. The 

simulations results for S355 and S690 at –40
 o

C will be used for justifying the indentation 

tests at –40
 o

C in the future. The material length scale obtained from this chapter will be 

continuously used in Chapter 6 to study the plastic strain gradient effect on the crack 

opening displacement which is an important parameter for describe the crack tip 

conditions.  
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CHAPTER 6 EFFECT OF PLASTIC STRAIN GRADIENT 

ON THE NEAR-TIP DISPLACEMENT 

6.1 Introduction 

The crack tip opening displacement (CTOD) is one of the parameters that can be used to 

describe the crack tip conditions for elastic-plastic materials. The most common 

definition of CTOD is the displacement at the 90
o
 intersection vertex with crack flanks [2] 

(see Figure 6.1). According to this definition, the location for measuring the CTOD 

moves further away from the original crack tip with the crack opening up. As the plastic 

strain gradient acts on the crack-tip stress field when the plastic deformation is in micron 

or submicron level, thus, this chapter numerically studies the effect of the strain gradient 

plasticity on the near-tip opening displacement by selecting the positions which are 

around tens of micron behind the crack tip to measure the near-tip crack opening 

displacement. The compact tension with thickness of half inch, 0.5T C(T)  model is used 

to verify the effect of the plastic strain gradient on the CTOD values and its influence 

range behind the crack tip. Then, this chapter adopts the plane strain small scale yield 

model (SSY) and further studies the effect of the plastic strain gradient on the near-tip 

opening displacement.  

6.2 Effect of the Plastic Strain Gradient on the Near-tip Displacement  

The near-tip locations of 2.5, 10, and 50 m behind the crack tip are used in the 0.5T C(T) 

models to quantify the plastic strain gradient effect on the near-tip crack opening 

displacement and all the analyses in this chapter are based on the finite deformation 

formulations. 

 



Chapter 6 Effect of Plastic Strain Gradient Plasticity on the Near-tip Opening Displacement 

 138 

6.2.1 Effect of Plastic Strain Gradient on the Near-tip opening Displacement 

for the C(T) model  

Figure 6.2(a) presents the full FE model of a 0.5T C(T) model specimen as the crack is 

not exactly on the symmetric plane of the specimen. This specimen is from one of 

fracture tests performed in current research. The dimensions are also shown in Figure 6.2 

(a). The initial crack length is around 19 mm. It is supposed to have a crack length ratio of 

/ 0.5a W   after the precrack process. After precracking, monotonic load is applied on 

the specimen until it fails. In the FE modeling, the crack front follows the extended crack 

front measured in the post-test examination, which connects 9 uniformly distributed upper 

triangular as shown in Figure 6.2(b). In the FE model, along the thickness direction there 

locates 8 layers of 20-node elements (C3D20). The total number of elements is 13952. 

The total number of nodes is 64367. This model also contains an initial root radius of 2.5 

m to help the convergence in the numerical computation. The material properties follow 

the S355 at room temperature (20 
o
C). Young‟s modulus is 203 GPa, yield stress is 345 

MPa and the plastic hardening exponent is 0.1. In the CMSG plasticity analyses, the 

material length scale is adopted as 7 m. 

Figure 6.3 shows the load–CTOD curves from the classical plasticity and the CMSG 

plasticity analyses. The values of CTOD are obtained according to the common definition 

of the CTOD, that is, measured at various locations of 90
o
 intersect vertex during the 

process of the crack opening. Apparently, the two curves are coincided and show that the 

plastic strain gradient does not affect the CTOD values. However, if the locations behind 

the crack tip for measuring the CTOD values are fixed, the plastic strain gradient can be 

seen. Figure 6.4(a) plots load–CTOD curves, in which the CTOD values are measured at 

the mid-thickness of the specimen and 2.5 m behind the crack tip ( / 0.5Z B  ). The 

difference of the CTOD values computed from the classical plasticity and the CMSG 
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plasticity analyses is around 46% at the load of 25 kN (i.e., 91 MPa m ). The difference 

increases to 63.6% at the load of 30 kN (i.e., 109 MPa m ). Figure 6.4(b) shows the 

difference of the CTOD values between the classical plasticity and the CMSG plasticity 

analyses is around 10% at 25 kN when the CTOD values are measured at the location of 

10 m behind the original crack tip ( / 0.5Z B  ), which is smaller compared to the 

difference measured at the location of 2.5 m. At the location of 50 m behind the crack 

tip, the CTOD curve from classical plasticity agrees with that from the CMSG plasticity 

results. This verifies that the plastic strain gradient affects the values of CTOD only at the 

locations very near the crack tip. Beyond certain distance away from the crack tip, the 

effect of the plastic strain gradient on the near-tip opening displacement fades away. The 

CTOD values computed from the CMSG plasticity theory are much lower than those 

from the classical plasticity at the distance very near to the crack tip ( 50 m), implying 

that the plastic strain gradient hardens the material and reduces the materials‟ plastic flow 

so that the values of CTOD are smaller. At the distance further away from the crack tip, 

the CTOD values are not influenced by the plastic strain gradient. 
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Figure 6.2 0.5TC(T) specimen (a) FE model; (b) The crack front measurement 
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Figure 6.3 The load vs. CTOD curves from classical plasticity and CMSG plasticity analyses 
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Figure 6.4 Load-near-tip opening displacement from classical plasticity and CMSG plasticity analyses 

for 0.5T C(T) model at different locations behind the crack tip (a) 2.5 m; (b) 10 m; (c) 50 m  
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6.2.2 Effect of Plastic Strain Gradient on the Near-tip Opening Displacement 

for the SSY Model with Zero T-stress 

The above section quantifies the distance behind the crack tip that the plastic strain 

gradient can affect on the near-tip opening displacement of the 0.5T C(T) model which is 

less than 50 m away from the crack tip. This section adopts a plane strain SSY model 

and further studies the plastic strain gradient effect on the near-tip opening displacement. 

The CTOD values are determined at 2.5 m behind the crack tip. The mesh of the SSY 

model is the same as presented in Figure 4.1(c) of Chapter 4. The total numbers of 

elements and nodes are 2839 and 20681, respectively. The initial root and the minimum 

element size are both 2.5 m. The material properties are the same as the steel S355 at the 

room temperature (20 
o
C). Young‟s modulus is 203 GPa, yield stress is 345 MPa and the 

plastic hardening exponent is 0.1. The material length scale is 7 m.  

Originally only the plane strain, IK

 

loading

 

with zero T-stress is imposed on the outer 

radius of the SSY model. Figures 6.5(a) and 6.5(b) compare the normalized von Mises 

stress and strain distribution along the crack plane by the classical plasticity and the 

CMSG plasticity analyses for the SSY model. At load of 300IK  MPa m , the 

normalized von Mises stress computed from the CMSG plasticity analysis is higher than 

that from the classical plasticity analysis in the range of / 0.08
y

x J  , which is around 

of 10 m ahead of the crack tip while the strain is lower than that from the classical 

plasticity analysis. This implies that the plastic strain gradient stiffens the material so that 

the strain at the crack tip is lower while the stress is significantly higher. 

Figure 6.6 presents the load IK

 

versus the opening displacement at a location, 2.5 m 

behind the crack tip. Initially, the initial root affects the stress field near the crack tip, and 

removes the stress singularity ahead of the crack tip. Thus, the plastic strain gradient 
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effect on the near-tip opening displacement is insignificant. As the load and the plastic 

deformation of the crack tip increase, the effect of the initial root radius on the 

deformation of the crack tip gradually diminishes and the plastic strain gradient on the 

near-tip opening displacement can be observed. At the load of 300 MPa mIK  , the 

near-tip opening displacement at 2.5x    m computed from the CMSG plasticity 

analysis is 8% lower than that computed from the classical plasticity. The plastic strain 

gradient hardens the material and reduces the near-tip opening displacement 

simultaneously. 
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Figure 6.5 The comparison of normalized von Mises stress and strain 
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  distribution along the 

crack plane for plane strain SSY model by the classical plasticity and CMSG plasticity analyses (a) 
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Figure 6.6 Load-opening displacement at location of 2.5 m behind the crack tip from classical 

plasticity and CMSG plasticity analyses for SSY model with zero T-stress 
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6.2.3 Effect of Plastic Strain Gradient on the Near-tip Opening Displacement 

for the SSY model with Non-zero T-stress 

In this section, the SSY model with non-zero T-stress is used to study the plastic strain 

gradient effect on the near-tip opening displacement. The mesh of the SSY model is the 

same as section 6.2.3 and contains 2.5 m root radius at the crack tip.  The location for 

measuring the opening displacement is defined at 2.5 m behind the crack tip. The plane 

strain, IK  with different levels of T-stress, / 0.5, 0.9
y

T      displacement fields are 

applied on the SSY model.  

Two different methods, proportional loading and non-proportional loading are used for 

applying the T-stress. Proportional loading applies the load IK T  proportionally on the 

outer radius of the SSY model in one step while the non-proportional loading applies the 

T-stress in the first step followed by IK  loading in the second step.  Figures 6.7(a) and 

6.7(b) show that under proportional IK T  loading with two different positive T-stresses, 

/ 0.5, 0.9
y

T   . The differences of the opening displacement between the CMSG 

plasticity results and classical plasticity results are trivial at small load for both cases as 

the initial root removes the stress singularity at the crack tip. As the load increases, the 

initial root presents less significant effect on the stress field near the crack tip and the 

plastic strain gradient gradually shows the effect on the CTOD values. At the load of 

300 MPa mIK  , the near-tip opening displacement at 2.5x    m computed from the 

CMSG plasticity analysis is around 17% and 18% lower than that computed from the 

classical plasticity for / 0.5 and 0.9
y

T   , respectively. For the two different levels of 

positive T-stress, the CMSG plasticity reduces the opening displacement compared with 

the classical plasticity.  
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Figure 6.7 Load-opening displacement at location of 2.5 m behind the crack tip from classical 

plasticity and CMSG plasticity analyses for SSY model with different level of  T-stress (a) 

/ 0.5
y

T   ; (b) / 0.9
y

T   ; (c) / 0.5
y

T    ; (d) / 0.9
y

T     

Figures 6.7(c) and 6.7(d) also present that under proportional IK T  loading with the 

negative T-stresses, / 0.5, and 0.9
y

T     , the near-tip opening displacement with 
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including plastic strain gradient effect has less opening displacement compared with that 

computed from the classical plasticity. At the load of 300 MPa mIK  , the near-tip 

opening displacement at 2.5x    m computed from the CMSG plasticity analysis is 

around 15% and 16% lower than that computed from the classical plasticity for 

/ 0.5 and 0.9
y

T     , respectively. For the two different levels of negative T-stress, the 

CMSG plasticity reduces the CTOD values compared with the classical plasticity.   

Figure 6.8(a) plots load 
IK

  

versus the near-tip opening displacement curves at different 

of T-stress / 0.5 and 0.9
y

T      from the CMSG plasticity analysis. The load-near-tip 

opening displacement for positive T-stress ( 0T  ) is slightly higher than that for negative 

T-stress ( 0T  ). Initially, the T-stress does not affect the crack opening displacement. As 

the load increases, crack tip with positive T-stress keeps the small scale yield and high 

constraint conditions, while the negative T-stresses ( / 0.5 and 0.9
y

T     ) relax the 

material constraint ahead of the crack tip, therefore, generate large opening displacement. 

The results of the classical plasticity analyses (see Figure 6.8(b)) also provide the same 

conclusions that the crack tip with the negative T-stress induces less near-tip opening 

displacement than positive T-stress, and the higher T-stress has less opening displacement. 

This phenomenon agree well with Hancock et al. [81] in the condition of non-extension 

crack. If the crack extends, negative T-stress can relax more material constraint and 

causes larger CTOD. 
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Figure 6.8 Load-opening displacements at location of 2.5 m behind the crack tip for SSY model 

with proportional loading ( / 0,  0.5  and 0.9
y

T    ， ) (a) CMSG plasticity; (b) Classical 

plasticity 
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Under the non-proportional IK T  loading, the model is applied T  in the first step, and 

followed by 
IK  in the second step. The first step load, T-stress has slight effect on the 

CTOD value. Figures 6.9(a) and 6.9(b) show that under the load of 300 MPa mIK  , 

the CTOD value at 2.5x    m computed from the CMSG plasticity is 18% and 17% 

lower than that computed from the classical plasticity for / 0.5 and 0.9
y

T   , 

respectively. For negative T-stresses (see Figures 6.9(c) and (d), / 0.5 and 0.9
y

T     ), 

at the load of 300 MPa mIK  , the CTOD values from the CMSG plasticity analysis 

are also around 18% and 17% lower than those from the classical plasticity.   

Comparing the load-CTOD curves computed from non-proportional load, IK T , 

/ 0.5, 0.9, 0.5, and 0.9
y

T      by the CMSG plasticity and the classical plasticity 

analyses (see Figures 6.10(a) and 6.10(b)),  the CTOD values at 2.5x    m behind the 

crack tip for positive T-stress ( 0T  ) are slightly higher than that for negative T-stress 

( 0T  ). The crack tip with positive T-stress keeps the small scale yielding, high 

constraint conditions as the load increases. However, the negative T-stresses 

( / 0.5 and 0.9
y

T     ) relax the material constraint ahead of the crack tip, therefore, 

has slightly larger opening displacements. The results of the classical plasticity analyses 

(see Figure 6.8(b)) also can conclude that the crack tip with high T-stress experiencing 

high plastic constraint has less opening displacement and the negative T-stress induces 

less near-tip opening displacement. 
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Figure 6.9 Load-opening displacement at location of 2.5 m behind the crack tip from classical 

plasticity and CMSG plasticity analyses for SSY model under non-proportional loadings (a) 

/ 0.5 
y

T   ; (b) / 0.9 
y

T   ; (c) / 0.5 – 
y

T   ; (d) / 0.9 – 
y

T    
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Figure 6.10 Load-opening displacements at location of 2.5 m behind the crack tip for SSY 

model with nonproportional loadings ( / 0, 0.5  and 0.9
y

T    ， )  (a) CMSG plasticity; (b) 

Classical plasticity  

6.3 Summary 

This chapter numerically investigates the plastic strain gradient effect on the near-tip 

opening displacement by the 0.5T C(T) model and the SSY model. The results from the 
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0.5T C(T) model show that the incorporation of the plastic strain gradient reduces the 

near-tip opening displacement compared with that from classical plasticity if the location 

of the measured CTOD is less than 10 m behind the crack tip. The effect of plastic strain 

gradient on the opening displacement diminishes as the position moves gradually away 

from the crack tip,  

In the study of plane strain SSY model, we find that the CMSG plasticity effect also 

reduces the near-tip opening displacement under the proportional and non-proportional 

IK T  loading. The crack tip with low T-stress ( 0T  ) experiencing the low constraint 

has slightly larger crack tip opening displacements than the crack tip subjected to positive 

T-stresses from both the CMSG plasticity and the classical plasticity analyses under the 

condition of no crack extension.  

Practically, the SEM (scanning electron microscope) technique has been popularly used 

for measuring crack opening displacement for several types of metals [82-85]. In the 

current work, due to lack of the necessary equipment, the fracture tests for verifying the 

plastic strain gradient effect on the near-tip opening displacement has not been done and 

is suggested to be done in the future. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The study involves the cleavage fracture by incorporating the conventional mechanism-

based strain gradient (CMSG) plasticity theory. The detailed work includes the 

investigation of  the plastic strain gradient effect on the crack tip stress field by the small 

yielding model, and the recalibration of the Weibull parameters, the Weibull modulus m 

and the threshold fracture toughness Kmin, in a three-parameter Weibull stress model for 

the 22-Ni-MoCr37 steel at three temperatures over the ductile-to-brittle transition under 

three different temperature: o o o
20 C, 40 C and 110 C     . As the material length 

scale is the most important parameter in the CMSG plasticity theory, this work also 

quantifies the material length scales of the two types of structural steels ( S355 and S690) 

through the indentation tests and the corresponding simulations at the two temperatures 

20 oC and 300 oC. The simulations for indentation test on the two types of steel at –40 oC 

are also performed for the reference of the future indentation tests at this temperature. The 

plastic strain gradient effect on the crack tip opening displacement by the 0.5T C(T) 

model and the plane strain small scale yielding model is studied as well.  

Based on the above work done, the following conclusions are made. 

1. The results from the study of fracture model by small scale yielding model show 

that the CMSG plasticity can capture the asymptotic stress fields near the crack tip 

more accurately than the classical plasticity because the CMSG plasticity theory 

defines the material hardening not only on the strain but also on the gradient of 

strain. The result agrees well with previous research work [5, 49].   
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2. The calibration results of the Weibull modulus m  and the threshold fracture 

toughness
min

K for the 22-Ni-MoCr37 steel at three temperatures 

o
20 C,  

o
40 C, and 

o
110 C  over the ductile-to-brittle transition regime 

show that  the CMSG plasticity theory significantly increases the Weibull stress 

magnitudes compared to those obtained from the classical plasticity for fracture 

specimens under the same macroscopic crack-opening load. The CMSG plasticity 

theory generates slightly larger values of the Weibull modulus than those from the 

classical plasticity theory. The threshold fracture toughness values exhibit less 

dependence on the material strain hardening properties. By assuming two typical 

values of the material length scales, 5l   m and 10l   m, in the CMSG 

plasticity theory for the calibration of Weibull stress parameters, the magnitudes 

of the Weibull stress and the calibrated m  and minK values indicate negligible 

dependence on these two values of the material length scales. The calibrated 

Weibull stress model predicts a higher probability of the fracture for the plastic 

strain-gradient dependent hardening material than that for the materials following 

the classical plasticity theory for a macro-crack under the same opening load, if 

the same Weibull modulus m  is assumed or if the calibrated m  values are used in 

the Weibull stress model. The study from the small scale yielding model also 

shows that the crack front constraints, characterized by the linear-elastic T-stress, 

impose a strong effect on the magnitude of the Weibull stresses, especially when 

the crack front experiences low plasticity constraints. Both proportional and non-

proportional loads cause significant differences in the Weibull stress values and 

the constraint-correction function. 

3. The simulations of the indentation test for structural steels S355 and S690 using 

the CMSG plasticity theory with the trial values of the material length scale show 
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that the material length scale of the structural steel is around 7 m under the two 

temperatures (20 
o
C and 300 

o
C).   

4. Finite element analyses from the 0.5T C(T) model show that the plastic strain 

gradient effect on the crack tip opening displacement, CTOD is negligible since 

the location to determine the CTOD moves further away from the crack tip with 

increasing loads. However, the crack opening displacement measured near (less 

than 10 m) the true crack tip depends strongly on the plastic strain gradient. The 

values of near-tip crack opening displacement computed using the CMSG 

plasticity behind the crack tip are lower than using the classical plasticity, 

indicating that the strain gradient stiffens the material deformation near the crack 

tip and hence reduces the values of near-tip crack opening displacement. The SSY 

model imposed with different T-stresses shows that the negative T-stress can relax 

the material constraint and induce slightly higher values of near-tip crack opening 

displacement while the positive T-stress constrains the crack tip material and 

induces slightly lower values of near-tip crack opening displacement. 

7.2 Future Work 

The current research numerically shows the plastic strain gradient is very important to 

capture the crack tip stress field and also can affect the values of near-tip crack opening 

displacement. Therefore, it is necessary to determine the important parameter, the 

material length scale, which induces the plastic strain gradient into the CMSG plasticity 

constitutive model. For the steels, S355 and S690, the material length scale currently is 

quantified as 7 m through the simulation of indentation tests at two temperatures of 

o20 C  and 
o

300 C . The indentation tests at 
o

40 C  have not been done. It is necessary 

to carry out the indentation test at low temperature to verify the effect of the temperatures 
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on the material length scale for the steels which may undergo the tremendously cold 

environment in the arctic zone.  

The current finite element results show that the CMSG plasticity affects on the crack 

opening displacement only at the position very close to the crack tip. In the future work, 

the SEM method is recommended to measure the near-tip crack opening displacement 

and verify the plastic strain gradient effect on the magnitude of near-tip opening 

displacement in the near-tip field. 
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