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Abstract

Resource sharing on the Internet is becoming increasingly pervasive. Recently, there
is growing interest in federated systems where globally distributed and commoditized
resources are traded, such as in peer-to-peer computing, grids, and cloud computing. An
important issue in the allocation of shared resources in the context of large federated
systems, such as federated clouds, is that users are rational and attempt to maximize
their self-interest.

In this thesis, we investigate the use of resource pricing with financial incentives to
allocate shared resources when users are rational. Using mechanism design, we pro-
pose a strategy-proof, VCG-based resource pricing scheme, with provable economic
properties that include individual rationality, incentive compatibility and budget bal-

ance. We show that multiple resource types per consumer request can be allocated to
multiple resource providers with polynomial time complexity. Although we trade-off
Pareto efficiency and obtain 80% optimal economic efficiency, we achieve strategy-
proof, budget balance and computational efficiency, and at the same time increase the
number of allocations by 40% under different market conditions.

To improve scalability, we propose a distributed auction scheme that leverages on
a peer-to-peer DHT overlay network for resource lookups and distribute pricing by
resource type. Simulations and experiments on PlanetLab show that the number of
resource types in a consumer request does not affect the scalability of our distributed
scheme, and the average allocation time increases logarithmically with the number of
users. Lastly, in a federated cloud composed of four Amazon EC2 regions, we show
using traces from the Amazon cloud that rational users with dynamic pricing increased
user welfare by 10% over EC2 spot pricing. As an application of our pricing scheme,
we have prototyped SkyBoxz, a federated cloud platform designed for cloud consumers
to utilize and cloud providers to manage virtual machines across multiple public and
private clouds.



The end point of rationality is to demonstrate the limits of rationality.

— Blaise Pascal
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Chapter 1

Introduction

Recent advances in computer technology and the Internet have led to the expansion of

distributed systems. Currently, distributed systems such as in peer-to-peer computing,

grid computing, and more recently cloud computing, are converging towards federated

sharing of computing resources [39, 43, 119]. The common vision in resource sharing

pictures computing resources as commodity utilities, where user applications connect

to a global pool of resources and use the amount needed. Users of these distributed

systems can both consume and provide shared resources. Accordingly, there is grow-

ing research interest in large-scale resource sharing, and new, emerging, platforms that

enable it [19, 100, 126, 129].

A fundamental problem in the architecture of distributed systems is the allocation of

shared resources [7, 42, 95, 124, 125]. Classical resource allocation mechanisms, used

in local or cluster environments, assume that users do not deviate from the protocols im-

posed by the system designer, and thus are not suitable in federated distributed systems,

where resources from multiple providers are shared and traded [26, 81, 119]. Recent

work in distributed systems acknowledges that users consuming and providing shared

resources are self-interested parties with their own goals and objectives [26, 82, 84].

Classified as rational users, they can exercise their partial or complete autonomy in or-
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Chapter 1. Introduction

der to achieve their individual objectives and maximize their own benefit [109]. They

are able to devise strategies and manipulate the system to their advantage, even if by

doing so they break the rules of the system. For example, performance in file sharing

peer-to-peer systems is affected by free-riders, users that consume more than their fair

share [82]; in a computational grid, users compete for the same resources, which results

in increased waiting times [126]; some users of SETI@home, a popular distributed

computing project, modified the software client to report false-negatives in order to

achieve higher rankings [82].

Although rational users are not trusted to follow the deployed algorithms and pro-

tocols, it is assumed that they respond to incentives to maximize their personal gain

[82]. Accordingly, authors have proposed to study the allocation of shared resources

using mechanism design [3], a framework that helps structure incentives such that users

behave according to the designed protocols. Mechanism design is a branch of game

theory, a mathematical framework commonly used in economics to study strategic sit-

uations where the outcome of one participant depends on the behavior of other partici-

pants [84]. Generally, game theory attempts to find a set of strategies in which rational

users are unlikely to change their behavior. A rational user may represent either an

individual user, a group, or an organization, depending on the application context. In

computer science, game theory has been studied mostly in multi-agent systems and

decision-making in artificial intelligence [49]. However, recent work in peer-to-peer

networking [81, 82], grid or cluster computing [125, 129], Internet routing [44, 119],

general graph algorithms [39, 43], and resource allocation [68, 129] exploit of mecha-

nism design to create different types of incentives for rational users. When trading and

allocating shared resources, mechanism design enables the use of resource pricing to

include financial incentives in user payments. Consequently, payments for users that

share resources are based on both the cost of sharing declared by the rational user, and

the amount of financial incentive necessary for the user to declare the cost truthfully.
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When the price of the shared resource declared by the rational user is the same as the

truthful cost, the pricing mechanism is said to be strategy-proof.

1.1 Motivation

Generally, computer scientists consider users voluntary and obedient in following the

designed protocols [3]. Users that do not behave according to the system rules are

considered faulty, and thus significant research effort is directed towards effective fault

tolerance mechanisms [23, 24]. When allocating resources, the main concern of the

system designers is computational complexity, which classifies the allocation problem

according to its inherent difficulty. The allocation problem is considered difficult when

finding the solution requires significant computational resources, such as computation

time, memory, storage or communication. In this thesis, we consider that an allocation

is not computationally efficient when the allocation algorithm runs in non-polynomial

time. Thus, computer scientists focus mainly on computational efficiency, while trying

to maximize resource utilization and achieve scalability [36]. For example, in solving

the task assignment problem [131], solutions such as the Hungarian algorithm [67]

assume that users declare their resource costs truthfully, and focus on finding the task-

to-resource assignment that maximizes a global optimization function in polynomial

time. However, the allocation of shared resources in a federated system must take into

account that users, consumers and providers of resources, are rational in maximizing

their own interest, and may declare false information to improve their own optimization

function [82, 109].

In contrast to resource sharing systems used in research and academic communi-

ties, emerging platforms such as cloud computing have been put to commercial use.

According to a 2011 Forrester report [98], cloud computing market will increase from

$20 billion to more than $240 billion by 2020. Currently, in addition to voluntary and al-
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truistic sharing, computer resources and services are traded over the Internet by rational

users, with consumer payments made online using a credit card [1, 2]. In social sys-

tems, market-oriented economies have proved their advantages over alternative means

to control and manage resource allocation [15]. Accordingly, some of the success-

ful ideas of these economic models can be used for resource pricing in large, federated

computer systems, and for the study of market-oriented resource allocation mechanisms

[69]. In contrast to computer scientists, economists use mechanism design to look at

the impact of competition on rational users, and to design allocation mechanisms that

use incentives to maximize the economic efficiency, a global optimization function. Be-

sides economic efficiency, other desired economic properties are strategy-proof, budget

balance, and Pareto efficiency [29, 57, 120].

Having these two different approaches motivates us to examine the trade-offs in-

volved and investigate how resource pricing and financial incentives can be used for the

allocation of shared resources in the context of large federated systems with rational

users in a computationally efficient way. To the best of our knowledge, this thesis is the

first study of allocating consumer requests with multiple resource types per request to

multiple providers considering economic properties, such as rational individuality, in-

centive compatibility, budget balance, Pareto efficiency, and computational measures,

such as computation time and communication time. To achieve both the economic and

computational efficiencies, the two key issues are:

1. Economic Issue

According to the Myerson-Satterthwaite impossibility theorem [77], an economic

system that incentivizes rational users cannot achieve the best economic efficiency

while maintaining budget balance. In a budget-balanced system, the sum of all user

payments is zero, i.e. payments made by the consumers are equal to the payments re-

ceived by the providers. Thus, budget balance is a desired property in self-sustaining

federated systems, with no external source of currency or a central authority to allo-
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cate resources and collect payments.

2. Computational Issue

Achieving the optimal allocation is not computationally efficient when allocating

consumer requests with multiple resource types per request. Finding the providers

and consumers that maximizes the global optimization function was shown to be an

instance of the set packing problem [50], known to have an exponential complexity.

By considering both the computer science and the economic perspectives, we pro-

pose in this thesis a novel approach for pricing and allocating computer resources in

federated systems with rational users. Our primary motivation originates in the existing

trade-offs among strategy-proof and economic efficiency, on one side, and the economic

efficiency and computational efficiency, on the other side. In the context of federated

systems where rational users consume and provide resources, our approach is to trade-

off Pareto efficiency for strategy-proof, budget balance and computational efficiency.

In contrast, existing work in economic-based resource allocation focuses mainly on

achieving Pareto efficiency at the expense of one economic property and computational

efficiency. Losing the strategy-proof property results in users being untruthful, and ex-

ploiting the allocation mechanism to improve their self-interest [70, 71, 79]. Without

budget balance, the allocation system needs a third party to supply the budget deficit or

surplus, and thus is not commercially viable [27, 48]. Lastly, without computational ef-

ficiency, a practical implementation of the allocation algorithm is not feasible [88, 103].

In our work, we study the economic properties of the novel pricing scheme we propose

using the mechanism design framework, and the computational properties using theo-

retical analysis and simulations. As proof of concept, we implemented the proposed

scheme in the context of a federated cloud.
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1.2 Objectives

Resource markets have been previously proposed in distributed systems such as clus-

ters [28, 46, 108, 129] and grids [4, 40, 52, 110, 125, 126]. More recently, an active

research topic in cloud computing is its economic aspect, including the problem of

pricing cloud resources and services [14, 63, 100, 130]. An important challenge in cur-

rent market-based approaches is the pricing and allocation of consumer requests with

multiple resource types per request. For example, many of the existing cloud providers

specify a fixed price for each resource type or service they offer, with consumers having

to create separate requests for each resource type, and aggregate them manually after

allocation. In this approach, another issue is that resources in a consumer request are

allocated from a single resource provider. In this context, a crucial research question is:

In a federated computer system, where providers and consumers of re-

sources are rational in maximizing their self-interest, how can pricing be

used to incentivize user behavior when allocating a consumer requests with

multiple resource types to multiple resource providers?

The main objective of our work is to design a strategy-proof resource pricing mech-

anism for allocating consumer requests with multiple resource types per request to mul-

tiple resource providers. Strategy-proof, also known as “incentive compatibility dom-

inant strategy”, is a property achieved when rational users have no incentives to be

untruthful, since their interest is maximized by the pricing scheme. One of the chal-

lenges in achieving strategy-proof is the trade-off with the other economic properties,

namely budget balance and Pareto efficiency. To study strategy-proof, we use the the-

oretical mechanism design framework to formally define the valuation and the welfare,

or “interest”, of a rational user for the allocation result.
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Simple pricing schemes that allow the allocation of requests for only one resource

type do not deliver the highest valuations to consumers, since they need to aggregate dif-

ferent resource types manually, at the cost of welfare and economic efficiency [97, 121].

However, there are several challenges in allocating requests for multiple resource types,

such as increased computational complexity and scalability [89]. We refer to vertical

scalability, when the number of resource types in a request increases, and horizon-

tal scalability, when the number of users in the system increases. The computational

complexity is determined by the winner determination algorithm, which decides the

providers and consumers that are allocated, and by the payment computation, which

determines the total payments for the winners.

With cloud computing, the long-envisioned dream of computing as utility is achieved

[20]. Many of the current standalone providers offer resources and services using pay-

per-use fixed pricing [1, 2]. With an increasing number of cloud users, it is expected that

more providers will offer similar services. Furthermore, with interoperability among

providers, cloud consumers have a rational choice of the same service across clouds, to

improve reliability and availability [16]. In this context, the aim of federated clouds1,

a topic of recent interest, is to integrate resources from different providers such that

access is transparent for the users. Our ensuing goal is to design a federated cloud

platform that increases reliability and elasticity by trading cloud resources and services

across multiple clouds using a market-based pricing mechanism.

1The US National Institute of Standards and Technology (NIST) uses the designation hybrid cloud
for the “composition of two or more distinct cloud infrastructures (private, community, or public) that
remain unique entities, but are bound together by standardized or proprietary technology that enables
data and application portability”. In this thesis, we will be using the designation federated cloud for a
similar system.
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1.3 Contributions

Towards achieving our objectives, the key contributions of this thesis are:

1. Strategy-proof Pricing for Market-based Resource Allocation

We use pricing and financial incentives to allocate requests from rational users. We

express the problem of allocating shared resources as a mechanism design optimiza-

tion problem, and formally prove the properties achieved by our market-based re-

source pricing mechanism. In addition to individual rationality and incentive com-

patibility, which account for strategy-proof, we also study other economic properties

of the proposed mechanism that determine our trade-off, such as budget balance and

Pareto efficiency.

2. Dynamic Pricing for Multiple Resource Types per Request

Optimal allocation algorithms are often not feasible to implement due to the com-

putational complexity, and resource providers use either fixed pricing, or create sep-

arate markets for different resource types. We show that consumer requests with

multiple resource types per request can be allocated using a computational efficient

scheme that prices resources from multiple providers dynamically, based on demand

and supply, and study the benefits of dynamic pricing in large federated systems.

3. A Scalable Distributed Auction Scheme

Centralized mechanisms have proved impractical in large systems [56]. We study

how to efficiently divide resource information in large federated systems, and show,

using experiments validated on PlanetLab, that our scheme achieves vertical scala-

bility, i.e. when increasing the number of resource types in a consumer request, and

horizontal scalability, i.e. when increasing the number of users in the system. Our

approach leverages peer-to-peer overlay networks, where a distributed hash table is

used to maintain resource information.
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4. A Platform for Managing Resources in Federated Clouds

In cloud computing, globally distributed resources can be shared and traded over

the Internet, as a service, without the users having any knowledge of the underly-

ing architecture. We propose a platform where providers can add their public or

private clouds to a federated, or hybrid, cloud. By leveraging the proposed pricing

mechanism and open-source software, our federated cloud prototype is able to allo-

cate consumer requests with multiple resource types on private clouds, based on the

Eucalyptus and OpenNebula middlewares, and public clouds, such as Amazon EC2.

1.4 Thesis Organization

The structure of the thesis is the following:

Chapter 2. Related Work

We present current market-based resource allocation models. We classify the key

challenges in allocating resources using pricing, and evaluate the current work,

focusing on the pricing mechanisms they employ. Our findings are that most of

the existing solutions trade incentive compatibility or are not feasible to imple-

ment.

Chapter 3. Strategy-proof Resource Pricing

We present an overview of the process of pricing and allocation of shared re-

sources. We divide allocation into three steps, and focus in this chapter on the

pricing mechanism, which is responsible for determining the winners of the al-

location, and for computing the user payments. We identify the major design

considerations and trade-offs. Our approach is to aim for strategy-proof and bud-

get balance, which allows us to use a computationally efficient pricing algorithm.

We introduce our proposed mechanism and payment functions in the context of
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the mechanism design framework, and formally prove individual rationality, in-

centive compatibility, and budget balance. Using theoretical analysis, we study

the proposed pricing algorithm and evaluate its computational complexity and

limitations.

Chapter 4. Distributed Resource Pricing

Scalability becomes an issue when increasing the number of resource types in

a consumer request or the number of providers. Moreover, most of the pricing

schemes are centralized, with a single market-maker or auctioneer to determine

the allocation results. To address these issues, we propose the use of distributed

auctions. We look at the challenges of current distributed auctions schemes, and

propose a novel architecture that leverages the distributed hash table in a peer-to-

peer overlay to maintain resource information and perform pricing by resource

type. The role of the market-maker is divided between a resource broker and a

request broker, which are selected, for each allocation, from all the existing users

in the system. We present a distributed synchronization protocol, required for

maintaining the economic properties of our pricing scheme while avoiding con-

currency issues. We perform a theoretical analysis of our distributed algorithm to

study its scalability and identify its limitations.

Chapter 5. Federated Cloud Prototype

In this chapter, we present the implementation of our proposed pricing and allo-

cation mechanism in the context of federated clouds. We prototype a platform

for managing multiple public and private clouds, where interoperability between

providers is achieved using web services and virtual private networks. Our feder-

ated cloud prototype is designed to manage infrastructure services and to support

the development of cloud platforms that enable the use of services on top of the

infrastructure provided by our platform.
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Chapter 6. Experimental Evaluation

Our scheme sacrifices economic efficiency for strategy-proof, budget balance and

computational efficiency. In this chapter, we evaluate the economic efficiency loss

using simulations, and compare our proposed scheme with other pricing mecha-

nisms in different market scenarios. We take into consideration the economic and

computational efficiencies by measuring total welfare, individual user welfare,

successful consumer requests, allocated provider resources, and average alloca-

tion time. Scalability is studied by varying the number of resource types in a

consumer request, and the total number of users in the system. We use both

a centralized and distributed implementation of our scheme in our evaluation.

Lastly, we look at the rationality of existing cloud computing users by estimating

the consumer welfare obtained in a study of spot price traces from Amazon EC2.

Chapter 7. Conclusions

We present a summary of the thesis and the key contributions of our work. We

discuss possible directions for future work, including the extension of our scheme

to provide incentives for brokers, and the evaluation of economic efficiency when

the strategy-proof constraint is relaxed.
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Related Work

The idea of using economic-based models in the allocation of shared resources is not

new [97, 121]. Although many authors have studied the use of resource markets for

sharing computer resources [45, 61, 68, 84], there are many challenges that prevent

practical developments. One of these challenges is that users participating in resource

allocation are rational. A rational user maximizes his interest, or welfare, given his

current knowledge of the system. In contrast to the user model generally considered in

computer science, where the user is either obedient or faulty, economic-based models

take into account user rationality in the design of the resource allocation mechanism.

However, there are several issues to consider in economic market-based resource allo-

cation models, classified as microeconomic and macroeconomic [61].

• Microeconomics analyzes the individual participants in resource allocation, i.e. pro-

viders and consumers, and their interactions in the resource market. This includes,

among others, identifying the rational participants, the study of their behavior, the

alternatives that maximize their interest, and the constraints imposed by other partici-

pants. For example, some of the factors that affect the behavior of a participant, such

as resource prices, are influenced by the behavior of other participants [84]. Rational

users constitute a major issue in the development of distributed systems and are cur-
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rently an important research topic [36, 82, 109]. The microeconomic aspects in the

allocation of shared resources are an important part in the scope of this thesis.

• Macroeconomics studies the economic model as a whole, including aggregate re-

source demand and supply, collusions between participants, and the currency sys-

tem. Usually, macroeconomic studies are used for the evaluation and development of

large-scale economic policies and strategies, with less scope in computer science. For

example, the lack of widely-deployed banking and secure currency transfer technolo-

gies have led to the adoption in computer systems of sharing models such as volun-

tary participation, network of favors, and tit-for-tat, which do not employ pricing and

consequently do not allow users to request for multiple resource types [9, 25, 122].

Accordingly, users have to aggregate different resource types manually, resulting in

lower economic efficiency. In contrast, in this thesis we focus on resource pricing and

the use of a common currency that allows user requests with multiple resource types

per request.

In this chapter, we introduce important concepts in market-based resource alloca-

tion, and present several pricing models, namely fixed pricing, equilibrium price, bid-

based proportional share, bargaining, and auctions. We focus on several key economic

issues in allocating shared resources when users are rational: strategy-proof, budget bal-

ance, multiple resource types per request, and Pareto efficiency. Since finding a Pareto

efficient allocation is a NP-complete problem [50], we also consider the computational

complexity of the pricing algorithm, in addition to the above.

2.1 Market-based Resource Allocation

Definition 1 (Resource Market). A resource market refers to the environment, ex-

pressed in terms of rules and mechanisms, where resources within an economy are

exchanged.
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Different resource markets employ distinct mechanisms for trading or exchanging re-

sources. In Figure 2.1, we classify existing economic models used in the allocation of

shared resources by the exchange method used, into two broad categories: bartering

and pricing.

Dynamic pricing

Tit-for-tat
• BitTorrent (2003)

Network of favors
• OurGrid (2005)

Volunteer computing
• BOINC (2004)

Fixed pricing
• Amazon WS (2002)
• Microsoft Azure (2010)

Non-discriminated
• G-Commerce (2001)

Discriminated
• Bellagio (2004)

Pricing

Bartering

Exchange 
method

Single resource type

Multiple
resource

types

Figure 2.1: Market-based Resource Allocation Models

Volunteer computing [8], network of favors [9], and tit-for-tat [32] are examples of

economic models used for allocation of shared resources that do not use pricing. In bar-

tering, resources and services are traded directly, based on the exchange value, without

a monetary system. Users in volunteer computing contribute their resources, such as

CPU cycles or disk storage, by running a software client that polls a server for new jobs

or for reporting the results of completed jobs. To deal with incorrect results due to mal-

functions or to rational users, the server performs each job using at least two users, and

accepts results only if the results are consistent. In the network of favors model, each

user keeps track of other users that provide resources for their jobs, and rewards them
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by prioritizing their requests when their own resources are idle. In contrast, when using

the tit-for-tat strategy, users that behave selfishly and do not cooperate in sharing are

penalized by the other participants. Since bartering does not employ a common form

of currency, these models support the trading of only one resource type. For example,

BitTorrent [32] exchanges blocks from the same file, and OurGrid [9] is used for CPU

cycles. To trade different types of resources, allocation mechanisms need to use pricing

and a common type of currency in which to express the value of each resource type.

Considering a common form of currency, the price of a resource is the monetary

expression of the exchange value for that resource. Based on the concept of price, we

define pricing as follows:

Definition 2 (Pricing). Pricing represents the process of computing the economic ex-

change value of resources relative to a common currency.

Economic models for the allocation of shared resources may use fixed or dynamic pric-

ing. When using fixed pricing [5, 6, 115], the currency payment for each resource type

is the predefined fixed price, set by the provider, for all allocations. In contrast, when

using dynamic pricing, the payment for resources of the same type is computed for each

allocation according to the demand and supply, by the pricing mechanism used.

Definition 3 (Pricing Mechanism). In a resource market, the process of matching mar-

ket participants, e.g. providers and consumers, to engage in an exchange using pricing

is called pricing mechanism.

Specifically, a resource allocation system uses a discriminated pricing mechanism when

resources from different providers have a different price in an allocation and a non-

discriminated pricing mechanism when resources with the same type have the same

price for all the providers that participate in the allocation.

Recent work in distributed systems found that users sharing computing resources

are self-interested parties, with their own goals and objectives [109, 82, 126]. Usually,
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these parties can exercise their partial or complete autonomy to achieve their objectives

and to maximize their interest. They can devise strategies and manipulate the system

to their advantage, even if by doing so they break the rules of the system. Accordingly,

achieving strategy-proof has become a major issue in the context of distributed systems

where resources are shared and traded over the Internet [36, 72]. To deal with rational

users, strategy-proof models employ incentives to motivate users to behave in certain

ways. For example, volunteer computing uses moral incentives to engage new users

into sharing, while the network of favors and tit-for-tat models use coercive incentives

to make certain users behave according to the protocol. Having a common currency to

measure the welfare of market participants enables pricing mechanisms to use financial

incentives. When using financial incentives, user payments are computed considering

both the published prices, and the financial incentives given to the respective market

participants. However, achieving strategy-proof while maintaining consumer payments

equal to provider payments results in losing Pareto efficiency, and thus also the max-

imum economic efficiency [50]. Accordingly, Pareto efficiency is a key challenge for

economic models that allocate shared computing resources.

2.2 Issues in Resource Pricing

Allocating resources using pricing poses several challenges, which we have grouped as

pricing issues and allocation issues. This section introduces briefly these issues, while

the next section details the issues in the context of existing pricing models proposed for

the allocation of shared computing resources. The pricing issues we consider are :

1. Resource description refers to the public information used when publishing provider

resources and consumer requests. This may include only resource information and

price, or may contain additional constraints, such as in combinatorial auctions, where

a bidding language is used to express resource bundles and boolean constrains be-
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tween bundle resources [34, 83]. Resource description can simplify or complicate

the pricing process.

2. Resource location refers to the method in which provider resources and consumer

requests are published in the resource market [62]. This can be either a simple mes-

sage to a centralized entity, containing the resource description, or more complex,

when having a distributed resource location system [22, 58, 59]. Resource location

establishes the list of participants in the market before pricing can take place.

3. Winner determination selects the users that take part in an allocation. The winner

determination algorithm influence many other aspects as resource allocation, such

as the economic properties and the computational efficiency [34, 103].

4. Payment computation determines the payments for the users selected by the winner

determination. To achieve strategy proof for the pricing mechanism, the payment

computation method needs to take into account financial incentives for rational users

[39, 84].

The main allocation issues are:

1. Multiple resource types per request refers to consumer requests for more than one

resource type, which are more difficult to allocate. Many of the existing pricing

schemes are designed to allocate requests for only one resource type, with the users

having to aggregate resources manually [26, 68].

2. Strategy-proof is achieved when rational users are incentivized to declare accurate

information about resources when they publish or make requests. In contrast, with

pricing schemes that are not incentive compatible and thus not strategy-proof, un-

truthful users stand to gain more by declaring false information [36, 37].
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3. Pareto efficiency is achieved by maximizing the economic efficiency, which is the

sum of both providers and consumers welfare. Usually, achieving Pareto efficiency

can be done only by using an algorithm with exponential complexity [68, 103].

4. Computational efficiency takes into consideration the computation time and commu-

nication cost of the pricing and allocation algorithms, including the winner determi-

nation and payment computation algorithms [45, 84].

2.3 Resource Pricing Models

Pricing models were proposed to allocate shared resources in distributed systems such

as clusters, grids, and clouds [7, 18, 46, 52, 74, 108]. In Figure 2.2, we classify existing

work, based on the pricing mechanism used, into five categories: fixed price, equilib-

rium price, proportional share, bargaining, and auctions. In the following, we present

more details about each pricing scheme, and discuss the trade-offs in each approach

with respect to the key challenges identified in the previous section.

Auctions
• Spawn (1992)
• Bellagio (2004)
• Mirage (2004)

Bargaining
• Nimrod/G (2000)

Fixed/Offer price
• Amazon WS (2002)
• Microsoft Azure (2010)

Proportional share
• REXEC (2000)
• Tycoon (2004)

Equilibrium price
• G-Commerce (2001)

Dynamic pricing

Fixed pricing

Pricing 
scheme

Non-discriminated
pricing

Discriminated
pricing

Figure 2.2: Pricing Models for Resource Allocation
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2.3.1 Fixed Pricing

In fixed pricing, resource payments are directly determined by the offer price. The of-

fer price is set by the resource provider and represents the amount of currency that the

provider is willing to accept for the allocation to take place. Resources shared by the

same provider are traded for the same price. This pricing mechanism is currently used

by providers in cloud computing, where resources are provided over the Internet on-

demand, as a service, with the underlying infrastructure transparent to the user [10]. At

present, each resource provider maintains its own public cloud, with no interoperability

among providers. From an economic point of view, each provider creates a closed mar-

ket, e.g. the Amazon EC2 market [5], where the provider has monopoly on resources.

This allows providers to set a fixed price on resources, and the consumers, i.e. the

public cloud users, pay the offer price for resources. However, an issue in the closed

market model is that only the monopolistic provider can add new resource types in the

system, while adjusting the offer price based on its own preferences. Accordingly, early

cloud services, such as Sun Grid Compute Utility [115], are restricted to trading only

one resource type, such as CPU time.

While simple to implement, fixed pricing is not economic efficient in a system with

multiple providers, or where users are both providers and consumers of resources [74].

With a large number of providers (sellers) and users (buyers), fixed pricing cannot adapt

to the changes in demand and supply. To address this issue, federated (hybrid) clouds,

a topic of recent interest, aim to integrate cloud resources from different providers,

to increase elasticity and reliability [10, 100]. Federated clouds use dynamic pricing

to set resource payments according to the forces of demand and supply. In addition,

dynamic pricing schemes can also facilitate consumer to request for multiple resource

types [115, 74].
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The Sun Grid Compute Utility, introduced by Sun Microsystems [115] (acquired by

Oracle), was one of the first utility computing services that provided cloud users access

to computing resources, for the fixed price of US$ 1 per CPU-hour. It used open source

technologies such as Solaris, Sun Grid Engine, and Java. Applications running in the

SUN Grid were self-contained, compatible with the Solaris OS, and had no interactive

access. Cloud users could run batch jobs, with the application and data size limited

to 10 GB. In addition, there was available a list of popular applications that could be

installed, where cloud users could also publish their own software [115]. After Amazon

started to offer a similar service for a smaller fixed price, the Grid Compute Utility was

discontinued, mainly due to the decreasing demand. As discussed previously, one of

the issues with fixed pricing is that it cannot adapt to changes in demand and supply.

To address this issue, Oracle currently promotes an open cloud initiative [21], with

interoperability between private and public clouds, where a dynamic mechanism can be

used to price resources.

Amazon Elastic Compute Cloud (EC2) [5] offers a web-based service for cloud

users to create virtual machines, on which any application can be executed on various

operating systems, including Linux, OpenSolaris, and Windows Server 2003. It uses

XEN virtualization [128] to create different types of VM instances, which approximate

different hardware configurations. For example, a large instance is the equivalent of

“a system with 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2

Compute Units each), 850 GB of instance storage, 64-bit platform”. Cloud users pay a

fixed hourly price for each virtual machine, based on the type of instance. By reserving

instances for a large period of time, the hourly fixed price can be decreased.

Amazon S3 is an online storage facility that provides cloud users with seemingly

unlimited storage in the form of a web-service. Cloud users may employ the S3 ser-

vice for web hosting, image hosting, and as a backup system. Objects stored by cloud

users can be retrieved using either the web-services API, as HTTP downloads, or the
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BitTorrent protocol [32]. To use S3, cloud users pay a fixed price for each GB of data,

plus additional costs for bandwidth usage. Currently, Amazon expanded its offer to ten

different EC2 virtual machine instance configurations with different prices, and prac-

tices tiered pricing for both storage and bandwidth. We see this as the first step towards

dynamic pricing, where users can request for custom configurations with multiple re-

source types. In addition to fixed pricing, Amazon started in December 2009 to use spot

pricing, where cloud users may bid for resources, and allocation is valid while the cloud

user bid exceeds an hourly computed “spot price”. If the cloud user maximum price be-

comes smaller than the hourly spot price, the cloud user instances are terminated. While

this pricing scheme is good for applications that have flexible start times and no con-

straints on application termination, it does not offer the cloud user any guarantee on the

duration of the service. Thus, applications that require high availability are not suitable

for this pricing model. As a standalone provider, Amazon cannot provide cloud users

the advantages of a marketplace where multiple providers compete for similar services,

including higher availability, elasticity and reliability [74].

The Azure Services Platform [2] is a platform to build and host Windows applica-

tions in the Microsoft cloud. It provides three services to users: the operating system for

scalable computing and storage, a cloud-based database server, and a middleware that

allows running applications in the cloud. Using Hyper-V virtualization [64], Microsoft

offers several instance types that approximate different hardware configurations, similar

to Amazon EC2, for a fixed hourly price. For database services, storage, and bandwidth,

Microsoft uses tiered pricing.

2.3.2 Equilibrium Price

Equilibrium price is used in market clearing price mechanisms, where resources with

the same type form a pool of equivalent choices and consumers have no advanced

knowledge about which resource provider is used for allocation. For each resource type,
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the payment is determined according to the respective supply and demand curves, thus

allocated resources of the same type have the same price, independent of the provider.

Market clearance mechanisms generally use a third party, called market-maker, to set

the price for each resource type. This payment scheme is similar to the ideal supply

and demand equilibrium [49], the concept behind the competitive free market where

the price is not influenced by either providers or consumers.

In order to reach equilibrium, both providers and consumers are queried for their

willingness to sell or to buy at different price points. However, this results in high

communication overhead. Furthermore, determining the supply and demand curves at a

specific moment in time is a computationally hard problem. Generally, strategy-proof is

not an issue with this mechanism because the price is set by the market-maker accord-

ing to the supply and demand. However, using this mechanism does not maximize user

utility. Instead, the goal of these mechanisms is to clear the market of resources, i.e.

maximize resource utilization. Thus, systems such as G-commerce [126] use different

models for each resource type, and users use specific individual functions to approxi-

mate supply and demand.

G-Commerce [124, 125, 126] defines a set of economic policies and mechanisms for

controlling resource allocation in Grid systems. To model the relations between supply,

demand, and value, G-commerce is based on the following assumptions:

1. The relative worth of a resource must be determined by supply and demand.

2. The price of a given resource is its worth relative to the value of a unit resource

called currency.

3. Relative worth is accurately measured only when market equilibrium is reached.

There are two possible types of providers in G-Commerce: CPU providers, which

sell CPU “slots” (based on CPU speed), and disk providers, which sell disk space. Each

provider type uses a different function to determine supply.
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For example, a CPU provider computes:

mean CPU price =
revenue

now
× 1

slots

where mean CPU price is the average price per time unit per slot, revenue is the total

amount of currency required by the provider, now is the current clock time, and slots is

the number of slots that the provider supports. Similarly, a disk provider calculates:

mean DISK price =
revenue

now
× 1

capacity

where capacity represents the total disk space that the provider sells. To determine the

demand at a given price point, each consumer first computes the average rate at which

it would have spent its currency with the current price. Next, it computes the maximum

amount of currency that it is able to spend until the next budget refresh.

A comparative study [126] between G-Commerce and auctions shows the superi-

ority of the former over a second-price sealed-bid auction implementation. However,

G-Commerce has a high computational overhead for each provider and consumer, and

a different model for each provider, based on the type of resources it sells. More im-

portantly, finding the equilibrium price is NP-complete, and approximation algorithms

need to be used, leading to the loss of incentive compatibility [125, 129].

2.3.3 Proportional Share

Used more for process scheduling, Proportional Share [113] gives each user a weighted

share of the available resources in a multi-user system. Proportional Share (PS) maxi-

mizes utilization, as it always provides resources to needy processes. However, PS does

not provide incentives for users to reveal their truthful values. As a result, rational users

can weight their processes unfairly, resulting in a loaded system, with low value pro-
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cesses consuming more resources than high value processes that are not making useful

progress [71]. Systems that use PS for pricing, such as Tycoon [70], use a mix between

auctions and a proportional share-based function to compute allocations, at the cost of

high communication overhead and high user interaction.

The Millennium Allocator project [28] is a system implemented at the University

of California at Berkeley (UCB) Millennium Cluster, where each node shares four ba-

sic computational resources: CPU time, physical memory, I/O bandwidth, and network

bandwidth. The cluster functions as a computational economy that optimizes user util-

ity. Each cluster node acts as an independent provider, while the consumers are com-

puter applications, purchasing resources based on the utility delivered to the users. The

architecture of the system comprises of five layers: resources, resource managers, eco-

nomic front-end, access modules, and user applications. Users assign values to their

applications and execute them on the cluster using the appropriate access module. The

economic front-end translates values, expressed by the users in a common currency,

into the appropriate resource shares. For each resource type, the appropriate resource

manager enforces the allocation of resources. The Millennium Allocator has three func-

tional requirements: means for users to express utility (currency), policies to translate

utility into resource allocation, and mechanisms to enforce allocations. In order for

the cluster users to obtain the resources they paid for, the Millennium Allocator uses a

modified OS kernel to enforce allocations. The policy used by the economic front-end

is based on the opportunity-cost. Thus, user payments are based on the value of the

opportunity to use a resource, which is being denied to other competing users. Under

high contention, users pay more to use the system. When multiple jobs are competing

for a resource r, proportional share takes place and each user i receives a weighted share

of:

share = r× bi

∑
n
j=1 b j
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The size of the share and the price are computed dynamically as jobs enter and leave

the system.

Having a modified kernel in order to enforce allocation is only possible in a cluster

pertaining to one administrative authority. Accordingly, this approach is not practical

in a distributed system that spans across multiple authorities, where providers cannot

be forced into using specific OS kernels. Furthermore, rational users are able to modify

open source kernels in order to “free-ride” [28]. Another disadvantage of the Millen-

nium economic front-end policy is that cluster users are not aware of the amount of

currency they are charged for running a job. Lastly, providers are not able to share other

resource types or limit resource usage.

Tycoon [70] is a market-based distributed resource allocation system that allows

consumers to differentiate the utility of their jobs using bid-based Proportional Share.

Furthermore, it does not impose the manual bidding overhead on consumers. The main

components of Tycoon are: the service location service (SLS), bank, auctioneer, and

agent. The auctioneers register the availability of resources to the SLS. The location

service is also queried by the client agents in order to find resources. A client selected

by an auctioneer requests the bank for a transfer of currency from his account to the

auctioneer’s account and receives a transfer receipt. The receipt is then verified by the

auctioneer and the client agent is able to execute the application. One obvious drawback

of this design is the service location service and the bank, which are centralized enti-

ties and may become a bottleneck and a central point of failure. The auctioneer collects

bids from consumers, allocates resources and accounts for resource usage. Allocation is

done using a Proportional Share-based function that considers a bidding interval speci-

fied by the consumer. The bidding interval defines the number of available seconds for

spending the budget. Thus, the PS formula employed by Tycoon is:

share = r×
bi
ti

∑
n−1
j=0

b j
t j
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To capture the consumer preference, the agent uses a linear utility function, where the

consumer specifies a positive weight wi for each machine. If the consumer is allocated

a fraction ri from machine i, then the total utility is computed as:

U =
n

∑
i=1

wiri

The agent’s goal is to maximize this utility under a given budget.

The design of Tycoon raises several issues. Firstly, the system is not incentive-

compatible, as auctioneers are able to exploit the system by charging a higher price

for resources. Furthermore, the consumer preference is expressed manually for each

machine in the system. Lastly, the communication cost in Tycoon is high, as all the

auctioneers constantly update the SLS, and the user agents query the SLS for informa-

tion about auctioneers.

2.3.4 Bargaining

The bargaining or negotiation model does not rely on a third party when mediating an

allocation, such as a market-maker or an auctioneer. The provider attempts to maximize

the price, while the consumer strives to minimize it. Overall utility is maximized, as

the consumer selects the provider with the lowest price, while a provider selects the

consumer with the highest payment, from multiple consumer offers.

One of the issues in bargaining is market dynamics, as resources are constantly be-

ing added to or removed from the market by providers, while consumers enter or with-

draw requests. Accordingly, there are difficulties in implementing a bargaining mecha-

nism that adopts a negotiation strategy that optimizes the user utility while considering

market dynamics [110]. Another issue with bargaining is the high communication cost,

as each consumer must contact all providers and manage several rounds of negotiation

in the absence of the market-maker or auctioneer.
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Nimrod/G [17] is a system that uses the Globus middleware [47] for dynamic re-

source discovery and for dispatching jobs in a computational grid. In Nimrod/G, a

parametric engine acts as a job-control agent, which is responsible for the creation

of jobs, maintenance, user interaction, scheduling, and dispatching. Various param-

eters can be used by the engine to reach an optimal scheduling policy, such as user

preferences, reliability of resources, user priorities, resource states, and capabilities or

application requirements. Nimrod/G works on the consumer’s behalf and attempts to

complete a job within a given deadline and cost. The deadline represents the time when

the consumer requires the job result.

The parametric engine adapts the list of provider machines running a job in order

to find sufficient resources for meeting the deadline. However, in doing so, the price

changes with the arrival of competing consumers. One of the drawbacks of Nimrod/G

is the lack of a contract between the provider and the consumer, where the consumer

negotiates the price of resources and discovers if a job can be performed within a given

budget. Moreover, Nimrod/G is not suitable in a distributed setting since users from

different organizations are not able to add resources to the global pool.

2.3.5 Auctions

In auctions, a third party called the auctioneer takes bids from one participant (usually

the consumer) and selects the winning bidder for the allocation [66].

Definition 4 (Auction). An auction is the exchange process where a market participant,

e.g. consumer or provider, submits a bid, and the most advantageous bid is selected by

another participant for trade.

The minimum price a provider is willing to accept and the maximum price a consumer

is willing to offer in an auction are known as reserved prices. There are many types of

auctions, with different rules for determining the winning bidders and allocation prices.
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Auction variations include time limits, price limits, knowledge of the identity or actions

of other participants, etc. A taxonomy of auction types is presented in Figure 2.3.

Auctions

Single 
dimensional

One sided

Two sided

Single 
dimensional

Multi 
dimensional

Multi 
dimensional

Open

Sealed bid

Multi good

Multi attribute

Periodic
double auction

Continuous 
double auction

Combinatorial 
auctions

Figure 2.3: A Taxonomy of Auction Types

In one-sided auctions, providers offer one resource type for sale, and consumers

submit their bids to the auctioneer. The auctioneer then selects the winning consumer

and computes the payment according to some mechanism. If the bids are public, the

auction is open, otherwise it is sealed bid. In contrast, two-sided auctions allow the auc-

tioneer to take bids from both providers and consumers simultaneously, and compute

the market-clearing price. Also called double auctions, they may take place periodi-

cally, at certain intervals of time, or continuously, while there are still resources and

requests in the market. The winners of a double auction are the consumers with prices

higher than, and the providers with prices lower than the clearing price, respectively.

However, most one-sided auctions and double auctions are single-dimensional, which

means only one resource type is allocated in an auction. A multi-dimensional type of
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auction where different types of resources can be sold as part of a bundle, i.e. multi-

good, is combinatorial auctions [34]. A user can express his preference for resources

inside a bundle using boolean operators, within the rules of a bidding language. Com-

binatorial auctions are double-sided, where the auctioneer collects the bids for different

resource bundles, and selects the winners. Due to the complexity introduced by auction-

ing multiple resource types, computing an efficient outcome for a combinatorial auction

is a NP-complete problem [79, 103]. Thus, many resource allocation systems prefer to

use single-dimensional auctions such that allocations can be computed in polynomial

time.

The English auction is one of the most common auction types, where the provider

starts with the reserved price and the consumers submit ascending bids until no con-

sumer is willing to bid further. The consumer with the highest bid wins and pays the

highest price. This auction has many disadvantages, such as the winner’s curse [66],

maximized revenues for providers, and the need for all participants to be in commu-

nication during the auction [49]. Some of these disadvantages are overcome by the

second-price sealed-bid (Vickrey) auction [73], where consumers submit their bids to

the auctioneer without knowledge of the other bids. The consumer with the highest bid

wins, and the payment is the second-highest price offered by a consumer, which has

been shown to represent the expected utility of the resource. The Vickrey auction is

strategy-proof, as participants are incentivized to bid truthfully [73, 120].

From an algorithmic point of view, single-dimensional auctions are the easiest price-

setting mechanism to implement. Early systems such as Spawn [121] and Popcorn

[97] use the Vickrey auction to allocate computational resources. However, single-

dimensional auctions are not suitable when a user needs multiple resources of different

types, e.g. in a computational grid an application needs CPU, memory and bandwidth.

In this case, the consumer must participate in multiple auctions, and it has to win all of

them. Otherwise, delays are introduced and the allocation is not feasible.
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Spawn [121] is a market-based computational system for utilizing the idle CPU time

from a computer network. It uses sealed-bid, second-price (Vickrey) auctions where

the consumers are users that wish to purchase computational time, while the providers

represent users that offer for sale unused, otherwise wasted, processing time of their

systems. Each auction is associated with a resource manager, responsible for initi-

ating and monitoring the application that uses the purchased CPU time. The resource

manager maintains a list of neighboring auctions which supply price and availability in-

formation. Each application has a manager module and a worker module. The manager

module is responsible for coordination, message-passing, and the creation of applica-

tion sub-tasks. Process managers fund their child processes, dynamically controlling

the fraction of funds allocated to each sub-task. The root manager controls the total

amount of funding in the hierarchy. At the highest level, the allocation of funding is

negotiated by human system administrators.

Reservations in Spawn are made using fixed-time CPU slices. This leads to poor

utilization when applications do not use their entire slot. Furthermore, a consumer

reservation for a resource prevents other consumers from acquiring it, even if they are

willing to pay more for it. Using a single-dimensional auction, Spawn is able to make

reservations for only one resource type. However, this does not provide flexibility in a

large system where users share many resource types. Another drawback of Spawn is

that human negotiation is not practical in a large distributed system.

Combinatorial Auctions

In combinatorial auctions, multiple goods can be auctioned simultaneously as part of a

bundle. Furthermore, a consumer may express a preference for goods inside a bundle

using boolean operators, within the rules of the bidding language used. The importance

of combinatorial auctions is best reflected by real-world applications, such as allocation

of airport landing slots [92], auctions for bandwidth spectrum licenses [60], or procur-

ing of transporting services [107].
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After the providers and consumers express their valuations using the bidding lan-

guage, the auctioneer collects the bids and computes an allocation. This step is called

the winner determination problem, as the auctioneer selects the auction winners such

that the allocation maximizes the auction social choice function. Unlike single-dimensional

auctions, where only one resource is auctioned at the time with one consumer winning

the auction, a combinatorial auction may result in more than one winner. In the last

step, the auctioneer computes the payments for the auction winners, providers and con-

sumers. In many cases, combinatorial auctions may use a Vickrey-Clarke-Groves [73]

pricing mechanism for winner payments, such that the auction is strategy-proof [83].

Despite many useful properties, computing an allocation in a combinatorial auction

requires a NP-complete algorithm. This is because the winner determination problem

is an instance of the set packing problem [50], which determines if k subsets from a list

of subsets of set S are disjoint. Furthermore, because there is an exponential number

of possible subset of goods (bundles), the bidding language in combinatorial auctions

must be very concise and expressive. Lastly, as shown by Myerson and Satterthwaite

[77], an efficient VCG payment scheme that uses combinatorial auctions is not budget

balanced, as the provider and consumer incentives are not equal.

Combinatorial auctions are used in Bellagio [12], which provides an interface for

consumers to perform resource discovery queries and construct bids. User authentica-

tion and the account balance with the user’s virtual currency are implemented using a

PostgresSQL database. Resource allocation is performed using SHARE [46], a market-

clearance combinatorial exchange system. The first step in the bidding process involves

resource discovery, which is followed by translating the discovered resources (candi-

date nodes) into a resource set. The biding language allows: multi-unit allocations (nR),

complementary resources (R1∧R2), substitutes (R1∨R2), range constraints and set of

sets allocations. The resource exchange component in Bellagio functions as follows:
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i) periodically receive new offers and bids from providers and consumers, respectively;

ii) perform resource discovery and construct node-sets in order to validate bids; iii) clear

the exchange (winner determination problem); iv) determine payments; and v) report

allocations and payments.

The winner determination problem is addressed in SHARE using a greedy approxi-

mation, which is fast but not optimal. Another drawback is that the pricing mechanism

is based on the Threshold scheme [88], a variation of the VCG mechanism that allows

budget-balance and low computational complexity at the cost of incentive compatibil-

ity. Losing incentive compatibility leads to performance loss in the presence of rational

users. Lastly, Bellagio uses a fixed budget scheme for the consumer, which does not

allow consumers to share their resources in order to gain additional currency.

Mirage [27] is a sensor network resource allocation system for sharing a sensor

network testbed among users. Each testbed user is allowed to run an application after

participating in a first-price repeated combinatorial auction. In each round of auctions,

there are multiple consumers (the testbed users), and a single provider (the testbed),

which considers all the bids submitted before the auction round started. The submission

of bids takes place in a two-phase process: resource discovery finds candidate nodes in

the sensor network, and the actual submission of bids takes place on the nodes selected

during resource discovery.

Mirage relies on a central bank to store each project’s account. Being a closed

economic system, the testbed users have no means for earning currency, which is dis-

tributed by the system as priorities. Priorities are assigned for each project individually

by a system administrator. The winner determination problem is resolved, like Bella-

gio, using a greedy approximation. As the algorithm is not strategy-proof, testbed users

reported several strategic exploits [12].
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2.4 Summary

In this chapter, we have analyzed current approaches that use pricing to allocate shared

resources in distributed systems. In concordance with the Myerson-Satterthwaite im-

possibility theorem [77], none of the above systems manages to achieve strategy-proof,

budget balance, and maximum economic efficiency, when allocating consumer requests

with multiple resource types per request in a dynamic system, where users can both

provide and consume resources. Most solutions trade incentive compatibility, assuming

users are obedient or faulty, and thus do not consider rational users that may increase

their welfare by exploiting the system, at the cost of performance degradation.

Table 2.1 shows a comparison of the pricing schemes presented in this chapter, con-

sidering the economic properties, i.e. strategy-proof, budget balance, and maximum

economic efficiency; and computational efficiency, which takes into account the com-

plexity of winner determination, payment computation, and communication cost.

Property
Fixed Equilibrium Proportional

Bargain
One-sided Combinatorial

Pricing Price Share Auctions Auctions

Strategy-proof × X × × X X

Budget Balance X X X X X ×

Economic Efficiency × × × × × X

Multiple Resource
× X X X × X

Types per Request

Computational Eff. X × X × X ×

Table 2.1: Summary of Related Works

Fixed pricing is currently used by many cloud computing providers because it is

simple to implement, computationally efficient, and does not require strategy-proof due

to the lack of interoperability between providers. However, fixed pricing is not suitable

in a federated system, with multiple providers. Equilibrium price is the ideal model
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that achieves incentive compatibility, because prices are set by the forces of supply and

demand; budget balance, because seller payments equal buyer payments; and is also

able to allocate consumer requests with multiple resource types per request. However,

computing the equilibrium price is not feasible since the algorithm is NP-complete and

thus the allocation time is high. Moreover, during the computation of the equilibrium

price, the curves of supply and demand may change. Proportional share has low algo-

rithm complexity and low communication costs, however it is not incentive compatible

and does not achieve Pareto efficiency. Similarly, bargaining is not incentive compat-

ible, and has high communication costs. One-sided auctions cannot allocate multiple

resource types, while combinatorial auctions require a NP-complete algorithm, and

thus it is not feasible to implement. Moreover, combinatorial auctions are usually not

budget-balanced, and require the auctioneer to manage the budget deficit or surplus.
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Strategy-proof Resource Pricing

In this chapter, we introduce a novel pricing mechanism that can allocate consumer re-

quests with multiple resource types per request in a resource market where providers

and consumers are rational users. Generally, computer scientists address resource allo-

cation by assuming that users are either obedient or Byzantine adversaries, and focus

on computational efficiency, i.e., how do we find an allocation? In contrast, economists

design market mechanisms considering incentives for rational users, and focus on eco-

nomic efficiency, i.e., what makes a good allocation? In our work, we consider two im-

portant aspects: i) the economic impact of competition among rational users, and ii) the

computational cost of incentivizing the behavior of rational users in order to preserve

the desired properties in the presence of competition. Accordingly, the key properties

that our mechanism focuses on are: strategy-proof, budget balance, and computational

efficiency.

To identify the major design considerations of a pricing mechanism that allocates re-

sources when users are rational, we look at the resource allocation process and identify

its main components. We discuss the desired properties from two different perspectives,

namely economic and computational. From an economic perspective, a pricing mech-

anism that allocates a consumer request with multiple resource types cannot achieve
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incentive compatibility, budget balance, and Pareto efficiency at the same time [77].

Consequently, many related works discussed in the previous chapter have traded incen-

tive compatibility in order to achieve Pareto efficiency and budget balance. However,

in a large distributed system with rational users, spanning more than one administra-

tive domain, Pareto efficiency is inherently lost when users are untruthful [37, 79, 103].

Thus, losing the incentive compatible property leads also to losing the Pareto efficiency

property. This finding motivates us to look for a different trade-off between the eco-

nomic and computational efficiencies.

From a computational perspective, a pricing mechanism should compute the alloca-

tion of requests with multiple resource types in polynomial time, while maximizing the

number of allocated resources and requests. However, an optimal allocation mechanism

for consumers requests with multiple resource types requires a NP-complete algorithm

[50]. Accordingly, many existing systems support only requests for one resource type.

From a consumer perspective, this is not efficient, since the user has to manually ag-

gregate resources of different types. In contrast, our approach is to trade Pareto effi-

ciency in order to achieve incentive compatibility, budget balance, and computational

efficiency, while being able to allocate consumer requests with multiple resource types

in polynomial time. To formally prove the achieved economic properties, we leverage

on the mechanism design framework by formulating the market-based resource alloca-

tion problem as a general mechanism design problem.

3.1 Preliminaries

The allocation of shared resources is a complex process, which can be divided into

several steps. In our approach, we divide resource allocation into three steps, shown

in Figure 3.1. Resource location provides users with ways to publish and lookup re-

sources. Next, the pricing mechanism is used to match consumers and providers, and to

36



Chapter 3. Strategy-proof Resource Pricing

Resource 
lookup

Resource 
publish

Resource 
market

Winner 
determination

Payment 
computation Inform winners

Query
request   

Available
resources

Resource
information Reserved

price

Available
resources Winners Final

payments
Reserved

prices

Receive payment

Resource use

Market 
maker

SCF

Market 
maker

Payment func.

Providers

Resource Location Pricing Mechanism Allocation Administration

Market 
maker

Providers

Consumers

Consumers

Figure 3.1: Steps in the Allocation of Shared Resources

compute payments. Lastly, allocation administration ensures allocation and payments

take place, such that a consumer may start using resources.

1. Resource Location

A key problem when dealing with large collections of shared resources is the perfor-

mance of resource lookup [58, 59, 62]. As shown in Figure 3.1, the resource mar-

ket receives resource information from providers in a publish message, and query

requests from consumers in a lookup message. In resource location, the resource

market groups the resource information such that it can respond efficiently to query

requests. Searching for available resources to allocate is especially difficult when

the number of resources in the market is large or dynamic. Moreover, resource in-

formation and availability may vary over time as resources join, leave, or fail in the

system. The time required to perform resource lookup is a significant part in the to-

tal allocation time. To perform efficiently in these conditions, the resource location

service requires scalability and support for dynamic resources. In addition, resource

lookup requires support for the discovery of multiple resource types, such that con-
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sumers do not have to manually aggregate resources. Lastly, resource location needs

to be strategy-proof, such that truthful users achieve the best possible allocation.

2. Pricing Mechanism

The pricing mechanism is the key part in market-based resource allocation. Consid-

ering the social choice function (SCF), consumer requests, and provider available

resources, the pricing mechanism determines the users that get allocated in Win-

ner determination. Next, using the published prices and the specific payment func-

tions, the pricing mechanism computes the user payments, for both consumers and

providers, in Payment computation. The performance of the pricing mechanism de-

pends on several factors, such as the economic properties, computational efficiency,

scalability, and the number of successful consumer requests and allocated provider

resources.

3. Allocation Administration

In the last step of resource allocation, the winning users are informed about the

allocation results, and the consumer may start using the resources. Payments take

place using a scalable and secure payment system. Additional features, such as

management or monitoring of resources, can be included in this step.

In this thesis, we focus on resource location and the pricing mechanism, as the key

factors in the pricing and allocation of shared resources. In this chapter, we consider a

simple resource location scheme, with a centralized market-maker where providers and

consumers submit their requests. Our objective is to design a pricing mechanism to ad-

dress the required economic and computational properties. We discuss a more complex

resource location mechanism in the next chapter, where we consider the scalability of

our mechanism by distributing the role of the market-maker.
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3.2 Design Considerations

In a resource market with a large number of providers (sellers) and consumers (buy-

ers), the welfare obtained by both providers and consumers depends on the pricing

scheme used. For example, fixed pricing cannot reflect the current market resource

price due to changing resource demand and supply, which leads to lower provider and

consumer welfare, and to imbalanced markets, such as under-demand. Figure 3.2 shows

the provider welfare for fixed pricing (a), and dynamic pricing (b). The two pricing

schemes achieve similar provider welfare when the demand is in equilibrium with the

fixed price (shaded A). However, in the case of under-demand, the fixed price tends

to be higher than the market price and buyers may look for alternative resources. In

contrast, the dynamic scheme is able to allocate resources when the dynamic price is

higher than the underlying resource costs (shaded A + B). In the case of over-demand,

the fixed price limits the provider welfare, which is increased with a dynamic scheme

by using a higher resource price (shaded A + C).
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Figure 3.2: Provider Welfare with Fixed and Dynamic (Market) Pricing

Another issue in fixed pricing is that it does not incentivize consumers for increase

demand or providers to offer multiple resource types. For example, early cloud com-

puting markets such as Sun Grid Compute Utility [115] were restricted to one resource

type, CPU time. Recent markets, such as Amazon S3 and EC2, introduced other re-
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source types, including storage and bandwidth. Currently, Amazon has expanded its

offer to ten resource types, called instances, with different fixed price for each instance

type, and practice tiered pricing for storage and bandwidth [1]. We see this as an early

step towards dynamic pricing and multiple resource types allocations.

3.2.1 Multiple Resource Types per Request

Allocating a consumer request for multiple resource types may lead to an increase

in consumer welfare, when the consumer does not aggregate resources manually. To

model multiple resource types requests, we use in this thesis a simplified resource

model1, shown in Figure 3.3. A resource type is loosely defined, and can be a hard-

ware resource, a service, or a combination. The provider publishes a resource type by

specifying the number of available items and the cost per item. A consumer request

may consist of more than one resource types (multiple resource types), and contains the

number of requested items for each type, and the bid that represents the total price the

consumer is willing to pay for all the resources request to be allocated.

Resource_Type = Description

Publish = Provider_Id, Resource_Type, Items, Cost

Request = Consumer_Id, (Resource_Type, Items)+, Bid

Figure 3.3: Resource Description

To illustrate this simple model, consider a New York Times employee that uses 100

EC2 small instances to convert 4TB of TIFF files into PDF format [54]. The cloud user

requires multiple resource types (computational power and storage), and multiple items

(100 instances and 4TB space) to complete the job. However, since Amazon does not

support consumer requests with multiple resource types, the user had to acquire each

1in a federated system with multiple providers, lack of interoperability may result in price incom-
patibilities, determined by different measures for the same resource type. Such issues, however, are not
within the scope of this thesis, where we assume a uniform format for pricing.
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resource type, using several requests. In contrast, using the above proposed request

model, the user can submit only one request for all resource types. For computational

power, Amazon EC2 provides eight different resource types, called instances. A small

instance consists of 1 EC2 compute unit (approx. 1 GHz CPU from 2007) and 1.7 GB

memory, priced at $0.085/hour, while a quadruple extra-large instance consists of 26

EC2 compute units and 64 GB memory, priced at $2/hour. Assuming the user uses only

small instances, the first resource type in the request is ec2.m1.small, and the number

of items is 100. Amazon S3 provides storage for a monthly fee of $0.125 per GB2.

Thus, the second resource type in the request is s3.storage, and the number of items

is 4,096GB. Lastly, the bid contains the maximum price the user is willing to pay, e.g.,

$1000:

Request = [NYT, (ec2.m1.small, 100), (s3.storage, 4096), $1000]

3.2.2 Economic and Computational Properties

As discussed in the previous section, we structure the allocation of shared resources

into three main steps, namely resource location, pricing mechanism, and allocation

administration. In Figure 3.4 we present their important properties, grouped in two

categories: economic and computational. Properties such as multiple resource types

and scalability are an issue for all steps of resource allocation, whereas properties such

as budget balance and Pareto efficiency are considered only by the pricing mechanism.

The economic properties are:

1. Strategy-proof

Recent results from distributed systems show that users sharing resources are rational

and try to maximize their own interest, even if by doing so they degrade the overall

performance of the system [82, 109]. In our preliminary experiments, we compare

2Displayed prices are for the Amazon us-east region. Storage pricing is for the 50TB tier.
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Figure 3.4: Design Considerations

the number of successful requests when all users are truthful to the case of having

untruthful users, in the case of English auction. Our results included in Appendix

A show that, in the presence of untruthful users, the number of successful requests

is decreased. A strategy-proof resource allocation system is designed to incentivize

rational users to be truthful, such that the allocation efficiency and the number of

successful consumer requests are increased. Achieving the strategy-proof property

is thus essential in a federated system, where users are rational, and is one of the main

objectives of our work. One of the issues in achieving strategy-proof is the incentive

mechanism used in the payment scheme, which may lead to different payments for

consumers and providers, and budget imbalances. This is an issue because a third

party is required to balance the budget.

2. Budget Balance

In a budget-balanced system, the payments made by buyers are equal to the payments

received by sellers. Without budget-balance, currency may be lost when allocating

resources. This is an important issue in closed economic systems, which are sys-

tems with no external source of currency. Achieving budget balance when providing

financial incentives constraints the payment functions that can be used, and lowers

the economic efficiency of an allocation.
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3. Pareto Efficiency

Maximizing economic efficiency leads to a Pareto-efficient allocation. Accordingly,

most of the economic-based resource allocation system discussed in the previous

chapter focus on achieving economic efficiency, at the expense of other economic

properties. The main issue in allocating a consumer request with multiple resource

types is that maximizing efficiency requires a NP-complete pricing algorithm. More-

over, according to the Myerson-Satterthwaite theorem, maximum economic effi-

ciency cannot be achieved at the same time with other economic properties, such

as strategy-proof and budget balance.

4. Multiple Resource Types per Request

Allocating consumer requests with multiple resource types per request requires more

complex resource location mechanisms and payment functions, which is why most

distributed systems currently consider only one resource type, such as CPU [115,

9] or disk space [6, 124]. This issue determines users that require more than one

resource types to manually aggregate resources, resulting in increased waiting times

and lower economic efficiency.

5. Allocation Efficiency

In contrast to economic efficiency, which is a system-centric measure, the alloca-

tion efficiency provides user-centric measures for the performance of the allocation.

Consumer efficiency represents the percentage of successful consumer requests, and

provider efficiency represents the percentage of allocated provider resources. We

consider that an allocation is more efficient when at least one of the consumer and

provider efficiencies are increased. However, increasing consumer or provider ef-

ficiencies may lead to a decrease in the overall economic efficiency, or to a more

elaborate pricing and allocation algorithm, with greater algorithm complexity. The

design of the pricing scheme needs to find a balance or trade-off between different

performance characteristics, system-centric and user-centric.
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From a computational perspective, an efficient allocation is achieved by minimizing the

time between the user request and the resource allocation, i.e., the allocation time. The

computational properties we consider are:

1. Algorithm Complexity

Algorithm complexity is a crucial property when considering the implementation of

the pricing mechanism. Optimal allocation of consumer requests with multiple re-

source types requires exponential algorithms and is thus not feasible to implement.

To achieve computational efficiency, existing allocation mechanisms use either sim-

ple mechanisms, such as fixed pricing and auctions, or approximate more complex

mechanisms, such as the NP-complete combinatorial auction, at the expense of eco-

nomic efficiency. Our approach to design a mechanism that achieves strategy-proof

at the expense of economic efficiency allows us to develop a polynomial algorithm

to implement our proposed payment functions.

2. Communication Cost

In a system with distributed users, communication can greatly influence the compu-

tational complexity of pricing and allocation. The communication cost represents the

overhead introduced by all the messages required during allocation. For example,

in resource location, communication costs vary if the resource lookup mechanism

is centralized or distributed. Communication can also have an impact on allocation

time if the pricing mechanism is distributed.

3. Scalability

Resource allocation is scalable when overall efficiency (economic and computa-

tional) is maintained in the presence of large workloads. We consider two dimen-

sions for scalability. Vertical scalability considers the increase in the number of re-

source types in a consumer request, and horizontal scalability considers the increase

in the number of users in the system. The issue to consider is that both resource

location and the pricing mechanism must scale vertically and horizontally.
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3.2.3 Trade-offs

Considering the above properties, we summarize two important trade-offs in allocating

shared resources using pricing: the economic trade-off and the computational trade-off.

Figure 3.5 shows the relation between economic and computational properties and their

trade-offs.

Comp. 
Efficiency

Strategy 
proof

Budget 
Balance

Computational trade-off

Economic trade-off

Pareto 
Efficiency

Figure 3.5: Trade-offs in Resource Pricing

1. Economic Trade-off

According to the Myerson-Satterthwaite impossibility theorem [77], no pricing mech-

anism is strategy-proof, budget-balanced, and Pareto efficient at the same time. Most

of the related works have focused on achieving maximum economic efficiency, at the

loss of other economic properties. For example, combinatorial auctions results in an

outcome that is Pareto efficient and strategy-proof, but it is not budget balanced, and

the third-party auctioneer or market-maker has to supply the budget imbalance. This

is not desirable in a competitive market with rational users, and thus most of the ex-

isting pricing mechanisms proposed for the allocation of shared computing resources

have traded strategy-proof [3]. In contrast, we focus on achieving strategy-proof and

budget-balance, at the expense of Pareto efficiency. The motivation is that, in the

45



Chapter 3. Strategy-proof Resource Pricing

presence of rational users, losing incentive compatibility will also lead to losing

Pareto efficiency when users are not truthful.

2. Computational Trade-off

Allocating consumer requests with multiple resource types per request has been

shown to be an instance of the set-packing problem [50], which determines if k

subsets from a list of subsets of set S are disjoint. This is a well-known NP-problem,

and it results that the optimal solution, which is Pareto efficient, cannot be achieved

using a computationally-efficient algorithm. This result defines the computational

trade-off between Pareto efficiency and computational efficiency.

We propose to allocate shared resources using a strategy-proof pricing scheme. Our

mechanism is designed to achieve budget balance, at the expense of Pareto efficiency.

This trade-off allows us to implement our mechanism using a computationally-efficient

algorithm that determines the allocation winners and their payments. We formally de-

fine our pricing mechanism using the mechanism design framework, and study its eco-

nomic properties.

3.3 Mechanism Design Framework

Mechanism design [84], an area of game theory, studies methods to structure incentives

for rational agents to behave in an intended manner. An agent represents a decision-

maker entity in an economic model. For example, in a resource market, providers and

consumers are two common types of agents. In this section, we provide an overview of

the mechanism design framework, which we use in this thesis to formalize the desired

economic properties in pricing, and to study the proposed scheme. We refer to rational

agents as users, where an user may represent an individual user, a group, or an organi-

zation. Given a set of n users, each has private information (also called type) ti ∈ Ti, and
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a set ai(ti) ∈ A of alternative strategies to choose from when participating in resource

allocation. Informally, each user selects one strategy ai, and the mechanism processes

all the users selected strategies to produce an outcome o ∈ O, and a set of payments to

and from users, pi. This behavior is shown in Figure 3.6.
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Figure 3.6: Mechanism Design Framework

A mechanism design problem consists of an outcome specification and a set of user

utilities. The output specification maps each vector ai of private information ti, i.e. the

strategies, to the set of allowed outputs, O. In a mechanism design problem, the out-

put function can be optimized in different ways, according to the chosen social choice

function.

Definition 5 (Social Choice Function). A social choice function takes the preferences

of n users and chooses a single alternative output.

f : T1×T2×·· ·×Tn→ O (3.1)
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The solution to a mechanism design problem is formally defined as follows.

Definition 6 (Mechanism). A mechanism M is a pair (o, pi), where o= o(a1,a2, . . . ,an)

is the selected outcome, and pi = pi(a1,a2, . . . ,an) is the payment for each user.

The valuation for a particular outcome o of user i is denoted by vi(ti,o). The strategy

chosen by the user, ai, affects both the final outcome, o, and its payment pi. Thus, we

can derive the user overall welfare or utility as:

ui = vi(ti,o)+ pi(ai) (3.2)

When choosing a strategy ai, a user may decide not to reveal its private information, ti.

We use ai = td
i to denote the information declared by the user i, and a−i = td

−i to denote

the information declared by all the other users except i. Thus, we can express the user

welfare from Equation 3.2 as:

ui(td
i , t

d
−i) = vi(ti,o(td

i , t
d
−i))+ pi(td

i , t
d
−i) (3.3)

The rational behavior of a user is defined in a mechanism by individual rationality.

Definition 7 (Individual Rationality). In an individual-rational mechanism, rational

users gain higher utility from actively participating in the mechanism than from avoid-

ing it. This is expressed formally as:

ui ≥ 0 (3.4)

A mechanism in which the users strategies are to declare their private information is

called truthful or incentive compatible. The revelation principle [49] states that any

mechanism design problem solution with dominant strategies, i.e. the best-response

strategy no matter what strategy the other users adopt, can be converted into a truthful

mechanism.
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Theorem 1 (Revelation Principle). If there exists a mechanism that implements a given

problem with dominant strategies then there exists an incentive compatible implemen-

tation as well.

The revelation principle was introduced and proved by Gibbard [51], and later extended

by Vickrey for the second-price sealed bid auction [120].

Definition 8 (Incentive Compatibility). A mechanism M is incentive compatible or

truthful, if A = T with the following property:

∀i,∀ai ∈ T,∀a−i ∈ Tn−1, ui(ti,a−i) = vi(ti,o(ti,a−i))+ pi(ti,a−i)

≥ ui(ai,a−i) = vi(ti,o(ai,a−i))+ pi(ai,a−i) (3.5)

Informally, in an incentive compatible mechanism the dominant strategy for a user is to

declare its private information, such that ai = ti. A mechanism is strongly truthful when

truth-telling is the only dominant strategy.

Definition 9 (Strategy-proof Mechanism). A mechanism that is both incentive-compatible

and individual rational is said to be strategy-proof.

As discussed previously, the output of the mechanism is optimized according to the

social choice function used. Several well-known social choice functions that character-

ize known economic paradigms are:

i) Maximize the global social welfare (capitalism):

f (t1, . . . , t2) = maxo ∑
i

ui(ti,o) (3.6)

ii) Maximize the minimal welfare (socialism):

f (t1, . . . , t2) = maxomini(ui(ti,o)) (3.7)
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iii) Minimize the differences of welfare (communism):

f (t1, . . . , t2) = minomaxi, j(ui(ti,o)−u j(t j,o)) (3.8)

iv) Maximize the number of users with positive welfare:

f (t1, . . . , t2) = maxo#(i;ui(ti,o)> 0) (3.9)

In the model we propose3, economic efficiency is achieved by maximizing the sum of

user utilities, such as in Equation 3.6. The concept of economic efficiency is different

from the engineering approach commonly used in computer science, where allocating

resources to competing applications does not deliver the greatest value to the users given

a limited amount of resources. In contrast, economic systems measure efficiency with

respect to the user valuation for resources.

Definition 10 (Pareto Efficiency). Pareto efficiency is achieved when, given an alloca-

tion, no Pareto improvement can be performed.

Definition 11 (Pareto Improvement). Given an initial allocation, a Pareto improvement

is a shift to a new allocation that can make at least one user better off, without making

any other user worse off.

For example, providing a 20GB disk quota in a system with a 60GB disk to each of three

users, which initially have no quota, is a Pareto efficient solution. Moreover, allocating

40GB to one user, 20GB to the second, and none to the third is also a Pareto efficient

solution, as the only way to allocate space for the third user is to decrease the quota of

at least one of the other users. In contrast, allocating a 10GB share to each user, such

that half of the disk space remains unallocated, is not Pareto efficient.

3In our work, we consider ui = vi + pi, as in Equation 3.2, a model that is known as the quasilinear
utility model.
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Definition 12 (Budget Balance). In a budget-balanced mechanism, the sum of all user

payments is zero. Formally, it is expressed as:

∑
i

pi = 0 (3.10)

Budget balance ensures that allocations do not result in budget deficit or surplus.

In our work, we focus mainly on strategy-proof and budget balance in order to

allocate resources when providers and consumers are rational. Strategy-proof ensures

that payments include financial incentives for truthful users. Budget balance ensures

that, for each request, consumer payments equal provider payments. This is important

because budget balance eliminates the need of a third party, such as a market-maker

or auctioneer, to supply the incentives for the users. Our proposed mechanism uses

a social choice function that maximizes economic efficiency, given the strategy-proof

and budget-balance constrains. While this may not lead to Pareto efficiency because

of the above constraints, our trade-off ensures that the achieved economic efficiency is

determined only by truthful user valuations.

Vickrey-Clarke-Groves Mechanisms

A prevalent result of mechanism design, Vickrey-Clarke-Groves (VCG) mechanisms

[29, 57, 73, 120] are a general technique for constructing truthful mechanisms.

Definition 13 (VCG Mechanism). A mechanism M belongs to the VCG class if

o = maxo

n

∑
i=1

ui(ti,o) (3.11)

pi = ∑
j 6=i

u j(t j,o)+hi (3.12)

where hi is an arbitrary function of private information of the other agents.

VCG mechanisms have been shown to be both truthful and Pareto-efficient when pric-

ing one [120] or more resource types [29]. Informally, they are incentive compatible
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because user payments are determined independently of their declared private infor-

mation; hence there are no incentives for rational users to declare false information.

Furthermore, VCG mechanisms are efficient because the payment is a function of all

other users valuations, and individual rational because all users welfare is positive, with

the welfare of the users involved in an exchange greater than 0.

Formally, the truthful property can be expressed by the equilibrium ∀i, ai = td
i = ti,

meaning that truth-telling is the dominant strategy for all agents. The proof [29, 120] is

derived directly from the mechanism definition:

ui = vi(ti,o)+ pi(ai) = vi(ti,o)+∑
i 6= j

v j(t j,o)+hi

Agent i has no influence in determining the output of function hi. Furthermore, using

this strategy choice that affects the output o, the agent is only able to maximize the sum:

vi(ti,o)+∑
i6= j

v j(t j,o) =
n

∑
i=1

vi(ti,o)

However, this sum is also maximized by the VCG mechanism when using the social

choice function in Equation 3.11, thus the rational agent has no incentives to declare

false valuations.

The main issue of using VCG mechanisms in resource allocation is that no pricing

mechanism achieves maximum economic efficiency, truthfulness, and budget-balance

at the same time, a result known as the Myerson-Satterthwaite impossibility theorem

[77]. Indeed, VCG mechanisms are usually not budget-balanced [49] and require a

third-party, called a market-maker, to mediate between consumers and providers, and

to provide the surplus or deficit budget. Parkes et al. [88] argue that budget-balance

is possible in a Vickrey-Clarke-Groves mechanism if payments are implemented on

one side of the exchange, and that side has no aggregation. In resource allocation, an

aggregation involves a bundle containing more than one resource type. In addition, a
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practical issue in implementing a VCG mechanism for the allocation of consumer re-

quests for multiple resource types is that Pareto efficient solutions require an algorithm

with exponential computational complexity. In this context, algorithmic mechanism

design [45, 84] studies the computational aspect of mechanism design. Using a model

based on polynomial-time centralized computation, Nisan and Ronen [84] found that

both the output and payment functions must be polynomial-time computable for the

mechanism to be tractable. However, a centralized computational model is not scalable

in systems where both users and resources are distributed. Thus, Feigenbaum et al. [45]

introduce distributed algorithmic mechanism design and develop a theory for network

complexity in regard to a distributed mechanism, which considers the number of mes-

sages sent in the network, the size of the message, and the local computational done on

each distributed user. Considering these results, we analyze the proposed scheme both

for computational complexity and communication requirements.

3.4 Proposed Scheme

As discussed previously, a mechanism design problem consists of an outcome specifi-

cation and a set of user utilities. The output specification maps each vector of private

information t1, . . . tn to the set of allowed outputs, o ∈ O. We formulate the resource

allocation problem in a resource sharing system where rational users can both provide

and consume resources as a general mechanism design problem as follows.

Definition 14 (Market-based Resource Allocation Problem). Given a market with con-

sumer requests and provider resources, each market participant is modeled as a ratio-

nal user i with private information ti. The provider private information tr
s denotes the

underlying costs of the offered resource r, including fixed and operational costs. The

consumer private information tR
b denotes the maximum price the consumer is willing

to pay such that resources are allocated to satisfy its request R. User’s i valuation is
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tr
i for providers and tR

i for consumers if the resource r (request R) is allocated, and 0

otherwise. For a request R, the goal of the mechanism is to allocate resources such that

the underlying resource costs are minimized.

Accordingly:

• The possible outputs of the mechanism are all partitions x = x1 . . .xn of resources that

satisfy the request R, where xi is the set of resources that user i contributes to the

allocation.

• The objective function is g(x, t) = ∑|xi|>0 ∑ j∈xi t
j
i .

• User’s i valuation is vi(x, ti) = ∑ j∈xi t
j
i .

This is an optimization problem, since the output specification is given by a positive

real valued objective function, g(x, t), and the output o minimizes g. Moreover, it is

utilitarian4 since the objective function satisfies the relation g(o, t) = ∑i ui(ti,o). An

utilitarian optimization problem allows us to apply a VCG-based payment function to

the design problem, which we describe in the following section.

To allocate shared resources in a minimum amount of time, we propose an auction-

based mechanism, which takes into consideration all existing resources in the market

when a consumer request is received. Since it is based on auctions, our proposed pric-

ing mechanism has low computational complexity, at the expense of Pareto efficiency.

Specifically, to allocate consumer requests for multiple resource types, we propose the

use of reverse auctions, where consumer requests are auctioned and provider resources

are selected for allocation. Auctions are generally modeled as bidding games of in-

complete information. With incomplete information, the utility of each user is private

information. Thus, each user estimates the other users private information and predict

4In this thesis, we use the currency unit to measure utility (welfare) and the $ symbol to specify the
virtual currency in our system. The relationship between virtual and real currencies is outside the scope
of this thesis.

54



Chapter 3. Strategy-proof Resource Pricing

their welfare according to the utility function. The users strategies are functions that

convert their private information into a currency amount that constitutes the bid. Ac-

cordingly, our proposed pricing mechanism uses sealed bids to model user utilities, both

for the consumer reserved price, and for the provider resource information.
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Figure 3.7: Proposed Pricing Mechanism

As shown in Figure 3.7, we propose to employ a third party, namely the market-

maker or auctioneer, which: i) collects the sealed bids, ii) selects the winners, and

iii) computes the payments. Winner determination decides the providers selected for

allocation, such that the underlying resource costs are minimized. Next, Payment com-

putation determines the payments for the winning providers, according to the market

supply and not as a function of the provider published prices.

The pricing mechanism we propose has several advantages. Firstly, since it is an

online mechanism, pricing is computed on-demand, on consumer request arrivals. This

results in faster allocations, since it eliminates the waiting time of an offline mechanism.

Secondly, the allocation time is further reduced due to the low algorithm complexity of

the auction-based scheme. Lastly, using a third-party market-maker allows the com-

putation of incentives independent of the user valuations, such that the strategy-proof

property can be achieved by the pricing mechanism.
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3.4.1 Winner Determination

Given a set of provider items of different resource types, and a set of consumer requests

with multiple resource types per request, the winner determination computes a feasible

allocation of items to the consumers. More formally, the winner determination problem

finds a partition xR = x1 . . .xn of resources that satisfy the consumer request R, where xi

is the set of resources that the provider i contributes to the allocation.

In the proposed mechanism, a user, provider or consumer, sends requests to the

market-maker, containing the declared information, which represents the input for our

pricing functions. Firstly, the market-marker selects a consumer request and determines

the set of successful providers. Consumer requests are selected on a First Come First

Serve basis to minimize waiting time. We show in Section 3.4.4 that, while the First

Come First Serve policy may lead to a loss in economic efficiency, it is nevertheless

crucial in achieving the strategy-proof property. The winning providers are determined

such that all items of all resource types in the consumer request are allocated and the

underlying resource costs are minimized. By minimizing the resource costs, the total

welfare of the providers is maximized.

3.4.2 Payment Computation

After the winner determination step selects the consumer request and the provider re-

sources that will be allocated, the mechanism computes, in the second step, the pay-

ments for providers and consumers, according to the following payment functions.

Provider Payment Function

The payment received by a provider, ps, is determined using the following VCG-based

[39] provider payment function we propose:
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ps =



0, if provider s does not contribute

resources to satisfy the request

cM|s=∞− cM|s=0

if provider s contributes

resources to satisfy the request

(3.13)

where:

cM|s=∞ is the lowest cost to satisfy the consumer request without the resources from

provider s;

cM|s=0 is the lowest cost to satisfy the consumer request when the cost of resources

from provider s resources is 0.

This is a VCG-class payment function, where cM|s=∞ corresponds to hi(t−i), the arbi-

trary function of resource prices of the other participants, and cM|s=0 corresponds to

vs(ts,o), the valuation of provider s (see Equation 3.12). VCG payments can be ap-

plied because our market-based resource allocation problem is an utilitarian optimiza-

tion problem.

Consumer Payment Function

Given the set S of providers with resources to satisfy a request R, the price paid by the

consumer for resources, pb, is determined using the consumer payment function:

pb =−∑
s∈S

ps (3.14)

The above function defines the consumer payment function as the total sum of the

provider payments, and determines our trade-off in economic efficiency. Although the
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above function does not maximize economic efficiency such as a VCG function, it

achieves the budget balance property of our mechanism.

3.4.3 Generalized Reverse Auction Algorithm

The proposed pricing algorithm is presented in Algorithm 1 and Algorithm 2. Assume

a market consisting of consumer requests (request queue) and provider available re-

sources (resource list) published to a market-maker, together with their reserved prices,

ti (private information). Consumer requests join a request queue where each request is

scheduled for allocation based on a policy that is independent of the buyer’s valuation,

such as FCFS (line 4). First, we determine the winning providers, using the function

DetermineWinners, as shown in Algorithm 2. For each resource type (line 31), the

market-maker sorts the available resource list based on the provider reserved price, ts

(line 33). Next, it determines the winning providers by selecting the providers from

the head of the sorted list such that all items in the request may be allocated (lines

39–45). Subsequently, we determine the payments for each winning provider ps by

computing the two associated costs, cM|s=∞ and cM|s=0 (lines 8–19). Lastly, we com-

pute the consumer payment pb (lines 20–21) and inform the winners of the allocation

if their welfare is greater than 0 (lines 24–29). If the request cannot be allocated, it

will be placed back in the request queue, and will be considered for allocation when

more resources are available (line 25). The monopoly situation, which occurs when

cM|s=∞ cannot be determined, is handled using different pricing functions, as explained

in Section 3.5.

Example

Consider the market for computational resource (CPU) and storage (DISK) presented

in Figure 3.8, with three providers and two consumers. Provider S1 sells one item

(instance) of computational resource for $1/hour, S2 provides one instance of compu-
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Algorithm 1: MarketMaker

Data : request queue, resource list
Result: winners, payments

1 while request queue 6= /0 do
2 winners← /0
3 payments← /0
4 request← request queue.Dequeue ()

5 // determine winners

6 <winners, cM|s >← DetermineWinners (request, resource list)

7 foreach seller in winners do
8 // determine cM|s=∞

9 new resource list← resource list − seller.resources
10 <nil, cM|s=∞ >← DetermineWinners (request, new resource list)

11 if error then
12 // monopoly situation detected

13 // ...

14 end

15 // determine cM|s=0
16 cM|s=0← cM|s
17 foreach resource type in request do
18 cM|s=0←

cM|s=0− seller.resource type.items∗ seller.resource type.price

19 end

20 payment← cM|s=∞− cM|s=0
21 payments.Add (seller, payment)
22 end

23 // if the request cannot be allocated, put it back in the

queue

24 if request.price > payments.total then
25 request queue.Enqueue (request)
26 else
27 // allocate winners with payments
28 // ...

29 end
30 end
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Algorithm 2: DetermineWinners

Data : request, resource list
Result: winners, payments

31 foreach resource type in request do
32 resources← Filter (resource list, resource type)
33 PriceSort (resources)
34 while resource type.items > 0 do
35 if resources.Empty() then
36 return error

37 end
38 // determine sellers for each resource type

39 resource← resources.Head()
40 seller← resource.owner
41 if seller.resource type.items ≥ resource type.items then
42 items← resource type.items
43 else
44 items← seller.resource type.items
45 end
46 seller.resource type.items← seller.resource type.items − items
47 resource type.items← resource type.items − items

48 winners.Add (seller, items)
49 payments.Add (seller, items ∗ seller.resource type.price)
50 end
51 end
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Figure 3.8: Market with Two Consumers and Three Providers
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tational resource at $2/hour and 1TB of storage at $2/hour, and S3 provides 1TB of

storage for $1/hour. Consumers B1 and B2 require each one instance of computational

resource and 1TB of storage for one hour at a total of $5 and $6, respectively.

S1_Publish = [S1, (CPU, 1), $1]

S2_Publish = [S2, (CPU, 1), $2]

S2_Publish = [S2, (DISK, 1), $2]

S3_Publish = [S3, (DISK, 1), $1]

B1_Request = [B1, (CPU, 1), (DISK, 1), $5]

B2_Request = [B2, (CPU, 1), (DISK, 1), $6]

Assume request B1 arrives before request B2 and the resource list is sorted based on

the resource price. Using the FCFS policy B1 is selected by the market-maker and the

winning providers are S1 for computational resource and S3 for storage. Table 3.1 shows

the payment computation for the providers S1 and S3, and the consumer B1. From this

example, we observe both the strategy-proof and budget-balance properties achieved by

our mechanism, and the trade-off in terms of economic efficiency.

User cM|s=∞ cM|s=0 Payment ($)
S1 2 + 1 = 3 0 + 1 = 1 -3 + 1 = -2
S3 1 + 2 = 3 1 + 0 = 1 -3 + 1 = -2
B1 N/A N/A - ( -2 - 2) = 4

Table 3.1: Example of Payment Computation

To illustrate the trade-off, we present next a solution that uses VCG payments for

both providers and consumers to achieve Pareto efficiency at the expense of budget-

balance. We compute the total welfare, a measure of economic efficiency, for all possi-

Total Welfare ($) Allocation
w/o S1 6 - 2 - 1 = 3 B2 buys from S2, S3
w/o S2 6 - 1 - 1 = 4 B2 buys from S1, S3
w/o S3 6 - 1 - 2 = 3 B2 buys from S1, S2
w/o B1 6 - 1 - 1 = 4 B2 buys from S1, S3
w/o B2 5 - 1 - 1 = 3 B1 buys from S1, S3

maximum 6 - 1 - 1 = 4 B2 buys from S1, S3

Table 3.2: Total Welfare and Selected Winners
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ble exchanges in Table 3.2, where winning users are shown in bold font. To maximize

the sum of user utilities according to our social choice function, the winners selected in

our example are S1, S3 and B2, with the payments shown in Table 3.3.

User Payment ($)
S1 -1 - (4 - 3) = -2
S3 -1 - (4 - 3) = -2
B2 6 - (4 - 3) = 5

Table 3.3: VCG Payments for All Winners

From Table 3.2, VCG payments (B2 buys from S1, S3) have higher total welfare

than our proposed algorithm (B1 buys from S1, S3). However, VCG payments achieve

Pareto efficiency with a budget deficit of $1 and require an algorithm with exponential

complexity, making the trade-off in terms of both budget-balance and computational

efficiency.

3.4.4 Proofs of Economic Properties

In this section, we look at the economic properties of the proposed pricing scheme, and

prove that it achieves individual rationality, budget balance, and incentive compatibility.

Theorem 2. The proposed mechanism is individual rational.

Proof. Consider the allocation of a request R from a consumer b. The output of our

mechanism is x = x1 . . .xn, where xi is the set of resources that provider i contributes

to the allocation. Formally, the IR property is achieved when ui ≥ 0 for any winner

participant i. The users that are not winners and do not participate in the allocation have

pi = 0, thus ui = 0. The winning participants in the allocation are: b, the consumer, and

S, a set of providers such that s ∈ S ⇐⇒ |xs|> 0.

When determining the winners, our mechanism chooses the providers with the low-

est underlying costs. Let σ be the winning provider with the highest costs, and ς the

provider with the lowest costs that is not a winner. Consequently:
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vσ = max
s∈S

vs,vς = min
j/∈S

v j;vσ ≥ vς

The payment received by the provider σ is:

pσ =−cM|σ=∞ + cM|σ=0 =−(vS−σ + vς )+ vS−σ =−vς (3.15)

Thus, the utility of the provider σ is:

uσ = vσ − vς ≥ 0 (3.16)

Given the consumer payment, pb =−∑s∈S ps, consumer utility is:

ub = vb−∑
s∈S

ps (3.17)

The market-maker implements the mechanism by solving the winner determination

problem and computing user payments. From Equation 3.16, we see that provider utility

is always positive. To ensure that consumer utility is also positive, the market-maker

verifies that the result in Equation 3.17 is greater than zero. Since all participants having

positive welfare, the proposed mechanism is individual rational.

Theorem 3. The proposed mechanism is budget-balanced.

Proof. It is trivial from Equation 3.14 that the proposed mechanism uses the consumer

payment function to achieve budget balance. Indeed, given a consumer request R, and

the set of winning providers S, the sum of all user payments is:

∑
i

pi = pS + pb = ∑
s∈S

ps−∑
s∈S

ps = 0 (3.18)

Theorem 4. The proposed mechanism is incentive compatible.

Proof. We show incentive compatibility by proving that both the provider payment

function and the consumer payment function are incentive compatible.
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Lemma 1. Provider payment function is incentive compatible.

Proof. From Equation 3.13, we can see that the provider payment function is based on

VCG, and thus achieves Pareto efficiency for providers. Accordingly, given an alloca-

tion output o, no Pareto improvement can be performed to increase the utility of that

provider without decreasing the utility of some other rational user. Thus, no alternative

output o′ obtained by declaring a different value td
s can improve the utility of provider

s:

o(ts, t−i)≥ o′(td
s , t−i) (3.19)

The utility of a provider is the sum of its valuation and its payment. The valuation is

a function of its private information and the output of the mechanism, and based on the

previous equation we derive:

vs(ts,o(ts, t−i))≥ vs(ts,o′(td
s , t−i)) (3.20)

From Equation 3.12, the provider payment is a function of the valuation of the other

users and an arbitrary function of private information of the other users. Accordingly,

given the result in Equation 3.19, the provider payments for the truthful and for the

declared private information are:

∑
j 6=i

v j(t j,o(ts, t−i))+hi(t−i)≥∑
j 6=i

v j(t j,o′(td
s , t−i))+hi(t−i) (3.21)

By adding the terms in Equation 3.20 and Equation 3.21, we obtain:

vs(ts,o(ts, t−i))+∑
j 6=i

v j(t j,o(ts, t−i))+hi(t−i)≥

≥ vs(ts,o′(td
s , t−i))+∑

j 6=i
v j(t j,o′(td

s , t−i))+hi(t−i)
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where the sum of factors represent the provider utility. Accordingly, the provider pay-

ment function is incentive compatible:

us(ts, td
s , t−i)≤ us(ts, ts, t−i) (3.22)

Lemma 2. Consumer payment function is incentive compatible.

Proof. From Equation 3.12, the consumer payment function depends on the provider

payments ps, and is independent of the consumer valuation, vb. Provider payments

depend on the private information of other providers, t−s, and the provider valuation for

an outcome, vs(ts,o). Thus:

pb(td
b , t−i) = pb(tb, ts) = pb(tb, t−i) (3.23)

Given this result, to achieve incentive compatibility we only require the consumers to

have at least the same valuation independent of the outcome selected by our pricing

mechanism, vb(tb,o). This is achieved by selecting consumer requests using a strategy

that is independent of the consumer valuation, such as first-come-first-serve (FCFS).

Thus, requests are considered by a market-maker based on the time of their arrival, and

not the intrinsic value for the consumer valuation, such that:

vb(tb,o′(td
b , t−b)) = vb(tb,o(tb, t−b))

Furthermore, the market-maker does not take into consideration the valuation of providers

when computing the payment for a consumer, as long as the condition for IR is satisfied.

This allows us to rewrite the above equation as:

vb(tb,o′(td
b , t−b)) = vb(tb,o(tb, td

−b)) = vb(tb,o(tb, t−i)) (3.24)
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where t−b represents the private information of all other consumers, and t−i the private

information of all other users (providers and consumers). Adding Equation 3.24 and

Equation 3.23, we obtain the equality:

vb(tb,o′(td
b , t−b))+ pb(td

b , t−i) = vb(tb,o(tb, t−i))+ pb(tb, t−i)

that is reduced to:

ub(tb, td
b , t−i) = ub(tb, tb, t−i) (3.25)

This relation expresses the IC property of the consumer payment function.

From Lemma 1 and Lemma 2 results, the equality

td
i = ti (3.26)

shows the incentive-compatible property of the proposed mechanism.

3.5 Theoretical Analysis and Limitations

Computational efficiency is a major design criteria in the allocation of shared resources.

Optimal mechanisms such as combinatorial auctions are not feasible to implement since

the winner determination algorithm is NP-complete. The computational properties we

consider in our design include the algorithm complexity and scalability. In this sec-

tion, we study these properties by analyzing the run-time complexity of the winner

determination algorithm and of the consumer and provider payment functions. Without

considering queuing time, we define the total allocation time as:

T = Tw +Tp (3.27)
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where Tw is the time taken to determine the winners and Tp is the time taken to compute

the payment. We consider the following inputs: RT , the number of resource types in

a consumer request; IRTk , the number of items from the resource type RTk in a request;

SRTk , the number of providers with resource type RTk. We use ∑k SRTk to denote the total

number of published resources.

The winner determination algorithm in Algorithm 2 contains two loops (lines 27

and 30) for the number of resource types in the request and for the number of items of

each resource type, while the inner code (lines 31–42) takes a constant amount of time.

Finding all resources with the same type (line 28) depends on ∑k SRTk , while sorting

resources according to their price takes O(SRTk logSRTk). Thus, in the worst case, the

complexity of the winner determination algorithm is:

Tw = O(RT × (∑
k

SRTk +SRTk logSRTk + IRTk)) (3.28)

Similarly, we compute the complexity of the payment functions (Algorithm 1, lines 7–

18), which, in the worst case scenario, is Tp =O(IRTk×Tw), when each winning provider

is allocated one item. Thus, the allocation time when using the proposed scheme is:

T = Tw +O(IRTk×Tw)

= O(IRTk×Tw)

= O(IRTk×RT × (∑
k

SRTk +SRTk logSRTk + IRTk)) (3.29)

In summary, the complexity of the proposed algorithm is a polynomial function of

the number of resource types in a consumer request (RT ), the number of items requested

for each resource type (IRTk), the total number of published resources (∑k SRTk), and the

number of providers with resource type k (SRTk). While the complexity of our algorithm

is not an issue, the scalability becomes a problem when the number of resource types in

consumer requests or the number of providers increases. In addition, scalability is also
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an issue with a centralized market-maker, which may become a bottleneck. To address

scalability, we propose in the next chapter a distributed auction scheme, which elimi-

nates the centralized market-maker, and allocates different resource types in a consumer

request in parallel.

The Monopoly Situation

One of the limitations of a VCG payment scheme is the monopoly situation [91]. In a

monopoly situation, a consumer request may not get allocated even though resources are

available. This issue occurs when one or several providers gain exclusive price control

with their resources by providing a sufficiently large portion of items in the market. The

authors found that the situation occurs frequently in transient states, i.e. before the size

of the system reaches steady-state. In system where the numbers of providers fluctuate,

the monopoly situation may occur anytime.

In the proposed reverse auction-based mechanism, two main cases lead to a monopoly

situation:

• without the monopolistic provider, there are not sufficient resources to satisfy a con-

sumer request;

• without the monopolistic provider, the consumer payment is higher than the consumer

reserved price.

The occurrence rate of the monopoly situation depends on the number of users in the

market. For example, in a market with more than 80 users, the occurrence rate is less

than 3% [91]. In a monopoly situation, winner determination matches a consumer

request with provider resources, but payments cannot be computed by the payment

functions. To allocate resources when a monopoly situation occurs, we use a modified

payment scheme, which is budget-balanced but partial strategy-proof, as the provider

payment function is not incentive-compatible.
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The proposed provider payment function for monopoly situation is:

ps = f ·Vs (3.30)

Similarly, the consumer payment function is:

pb = f/E ·Vb (3.31)

where Vs,Vb represent the declared price of the allocated resources, based on nrt , the

number of items from resource type rt, and prt , the published item price of resource

type rt:

∀i,Vi = ∑
rt

nrt · prt

In the consumer payment function, E represents the ratio between the total consumer

and provider published prices:

E =
Vb

∑s∈SVs

The partial incentive compatibility is achieved using any arbitrary function f , such that

1≤ f ≤ E.

Example

Considering the same example as above, after the first allocation, a VCG mechanism

cannot allocate the second consumer request because payments cannot be computed.

Figure 3.9 shows the market after the allocation of B1, with provider S2 and consumer

B2. With a VCG-based payment scheme to allocate the request B2, winner determi-

nation finds the provider S2, however cM|s=∞ and cM|s=0 cannot be determined and

allocation cannot take place. In this market, S2 is a monopolistic provider since there

are not sufficient resources in the market to allocate the request of consumer B2 without

the participation of S2. However, an allocation is in fact possible, as the reserved price

of S2 is smaller than the reserved price of B2.

70



Chapter 3. Strategy-proof Resource Pricing

Market maker

B2 CPU 1 DISK 1 $6

Request queue

Winner determination

Consumer and provider
payments

bp ps

$6

B2

reserved
price
request

CPU+DISK

B2t

$2

1

underlying
costs CPU

CPU
items

S2t

$2 underlying
costs DISK

1 DISK
(TB)

  S2 CPU 1 $2

  S2 DISK 1 $2

Resource list

s ∈ Sb

t d
B2

[B2, (CPU, 1), (DISK, 1), $6]
Request B2

t d
S2

[S2, (CPU, 1), $2]
Publish

t d
S2

[S2, (DISK, 1), $2]
Publish

Figure 3.9: Market with Monopolistic Provider

Using the above pricing function and the arbitrary function f = (E +1)/2, we cal-

culate the following user payments:

VB2 = 6

VS2 = 1 ·2+1 ·2 = 4

E = VB2
VS2

= 1.5

f = E+1
2 = 1.25

pS2 = f ·VS2 = 5

pB2 = f/E ·VB2 = 5

Although this scheme allows the computation of user payments, it does not guarantee

incentive compatibility, and monopolistic providers can increase their welfare simply

by publishing a higher resource price.
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3.6 Summary

In this chapter, we propose a strategy-proof pricing mechanism than can be used to

allocate consumer requests with multiple resource types per request. The design of

our scheme takes into consideration economic and computational properties, such as

strategy-proof, budget-balance, Pareto efficiency, multiple resource type allocations,

computational efficiency, allocation efficiency, and scalability, both vertical and hori-

zontal. We assume a system with consumers and providers, and model a closed vir-

tual economy, where users may earn currency by sharing resources. We propose to

achieve strategy-proof, budget balance, computational efficiency, and trade-off Pareto

efficiency. The main contributions of the proposed pricing and allocation mechanism

are the following: i) formulating the market-based resource allocation problem as a

general utilitarian mechanism design optimization problem, which allows the use of a

strategy-proof VCG mechanism; ii) the design of provider and consumer payment func-

tions, with support for consumer requests with multiple resource types per request; and

iii) the analysis of the proposed pricing mechanism, with formal proofs for the achieved

economic properties.

We introduce a simple resource type model, such that sellers may provide and con-

sumers may request multiple items and multiple resource types. Resource allocation is

divided into three steps: i) resource location, which provide users with ways to publish

and search for resources; ii) the pricing mechanism, which matches providers and con-

sumers, and computes payments; and iii) allocation administration, where payments

take place and the consumer can start using the allocated resources. Our theoretical

analysis of the proposed pricing mechanism found scalability to be an issue. Specifi-

cally, the allocation time of the consumer request depends on the number of resource

types in the request and the number of providers. Thus, with a centralized market-

maker, under high load generated by consumer requests with many resource types and
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with a large number of providers, the allocation time and, consequently, the consumer

waiting time, is expected to increase. Lastly, we have presented an alternative allocation

scheme for the monopoly situation, when there are not sufficient resources to satisfy a

consumer request, or when the consumer payment is higher than its reserved price. Al-

though the alternative scheme presented allows allocations in the monopoly situation,

it does not achieves incentive compatibility, and providers may publish higher resource

prices to increase their welfare.
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Distributed Resource Pricing

The previous chapter introduced our proposed strategy-proof pricing mechanism that

can be used to allocate consumer requests with multiple resource types per request in

systems where rational users provide and consume resources. Using the mechanism de-

sign framework, we have shown that our proposed scheme achieves strategy-proof and

budget balance, while it trades Pareto efficiency to achieve computational efficiency.

However, we have found that scalability is a limitation of the proposed scheme: hori-

zontal scalability, when increasing the number of resource types, and vertical scalabil-

ity, when increasing the number of users. This might become an issue for systems such

as clouds, which are currently expanding both in breadth, i.e. the number of resource

types offered, and in depth, i.e. the number of providers. As cloud computing is becom-

ing mainstream, Software as a Service (SaaS) in addition to Infrastructure as a Service

(IaaS) offerings can be treated as resource types. Our theoretical analysis has shown

that horizontal scalability is an issue because the allocation time for a consumer request

increases proportionally with the number of resource types in the request. Vertical scal-

ability is an issue when the number of users increases, because our scheme is based on

a centralized auction model, while the users are distributed over the network. In this

chapter, we introduce a distributed pricing scheme that addresses both vertical and hor-

izontal scalability in large resource markets. The key idea is to use an overlay network
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to distribute provider resource information and consumer requests by resource type in a

distributed hash table. To address concurrency issues, we propose a three-phase commit

algorithm that uses Lamport logical clocks to synchronize pricing for different resource

types belonging to the same consumer request.

4.1 Preliminaries

Traditionally, auctions are carried out by a third party, called market-maker or auction-

eer, which collects the bids, selects the winners, and computes the payments [66, 89].

In the previous chapter, we have considered for simplicity a centralized market-maker,

to which providers publish resources, and consumers send requests. However, having

a centralized entity reduces the scalability of the system and degrades the performance

when the number of users is large and when their behavior is dynamic [56]. To ad-

dress this issue, we propose to distribute the task of the market-maker to multiple users,

providers or consumers. Accordingly, there is no dedicated market-maker, since any

existing user can be selected to play the role of the market-maker for an allocation.

The economic properties of the pricing mechanism, such as strategy-proof and bud-

get balance, need to be maintained in the distributed scheme. To perform winner deter-

mination and compute user payments according to the proposed mechanism, users that

play the role of the market-maker need accurate up-to-date information about the re-

sources in the system, provided by resource discovery. We propose the use of a peer-to-

peer overlay that provides efficient routing and object location within a network where

a peer node represents a provider or a consumer. In our proposed scheme, a globally

consistent peer-to-peer protocol maintains the structural properties of the overlay while

users dynamically join, leave or fail in the network. Resource information is shared in

the overlay network between users. Resource discovery is performed by leveraging the

distributed hash table [117] used by the overlay network protocol [116].
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Distributed hash table (DHT) is a decentralized lookup scheme that provides scal-

able object location with high result guarantee in large distributed systems [102, 114].

Similar to the traditional hash-table data structure, a DHT provides an interface, lookup,

to retrieve a key-value pair. The key is an identifier assigned to a resource, such as a

hash value associated with a resource shared by a provider. The value is an object

that is stored in the DHT, which can be the resource itself, an index to the resources,

or resource metadata. There are several important DHT concepts, responsible for its

properties:

• Structured overlay network – users are organized as a structured overlay network.

The overlay balances between the routing performance and the overhead of the pro-

tocol that maintains the routing information.

• Key-to-node mapping – DHT maps a key k to an overlay node n, where n is the node

closest to k in a shared identifier space. The relation defined by closest has different

meanings in DHT implementations, e.g. the first node in clockwise direction from

key k [114], or the node with the closest identifier to k [102]. Node n is referred to as

the node responsible for k.

• Data-item distribution – all key-value pairs with the key k are stored at the same

node n, regardless of the owner of the pair. This is done by using the store interface

provided by the DHT.

Finding a key k implies routing a request to the node that stores k. Routing in a DHT is

usually performed in O(logN) steps1, where N denotes the total number of nodes [114].

This is because each node n maintains a finger table of m entries, where each entry i

points to the node that stores the key n+2i1. When N < 2m, the finger table consists of

only O(logN) unique entries [114]. Accordingly, by utilizing the finger-tables, each key

can be located in O(logN) hops. Using a DHT as the underlying data structure in our
1with caching, lookups can be completed in several hops, instead of O(logN).
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scheme allows us to leverage the overlay network and sets the premise for a scalable,

distributed pricing mechanism.

4.2 Issues in Distributed Auctions

The allocation of resources using distributed auctions has been studied in the past

[55, 89], and overlay networks have been proposed for resource discovery in federated

clouds [96]. Two common applications for distributed auctions are the allocation of

network bandwidth [13, 127], and the task assignment problem [131]. The typical ap-

proach for distributed auctions is for several providers to auction for the same resource

type at the same time in the distributed system. With no centralized market-maker, each

consumer sends bids to different market-makers at the same time, in rounds. However,

there are several economic and computational challenges, which we discuss below.

1. Multiple Resource Types per Request

Most of the related works consider only one resource type (for example bandwidth

[13], or tasks [131], respectively), and thus the distributed auction schemes they pro-

pose are not relevant in allocating consumer requests with multiple resource types.

2. Social Choice Function

Since consumers bid directly to multiple providers, the auction process takes place

in rounds with open bids, similar to an English auction. This may be desired when

the objective is to maximize the provider welfare [35, 118]. However, the social

choice function in our pricing mechanism is to maximize the total system welfare,

which include both the provider and consumer.

3. Strategy-proof

Auctioning with open bids result in losing incentive-compatibility and strategy-

proof. This is because providers do not bid their truthful valuation since they must

take into account effects such as the winner’s curse [66], common in public auctions.
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4. Economic Efficiency

Eliminating the market-maker leads to auctions that are budget-balanced by sacrific-

ing Pareto efficiency, such that maximum economic efficiency is not achieved [34].

5. Communication Time

In a distributed scheme, an overhead of additional messages is required in the winner

determination process [55]. For example, each consumer sends bids to multiple

providers several times, depending on the number of auction rounds. In addition,

the influence of network delay in the auction process is another issue in distributed

auctions due to the increased communication overhead [84].

6. Concurrency

In distributed auctions with no market-maker, concurrency issues arise from bidding

to multiple providers for the same resource type. If the role of the market-maker

is distributed among multiple participants, concurrency issues can severely decrease

the performance of pricing and allocation [84].

The pricing mechanism proposed in the previous chapter addresses the economic is-

sues outlined above. Our reverse auction-based scheme can allocate consumer requests

with multiple resource types, the social choice function maximizes the total welfare, and

achieves strategy-proof. Thus, the key issue is distributing the role of the market-maker,

while preserving the economic properties, with low overhead from communication and

concurrency. We propose a distributed scheme where users are part of a peer-to-peer

overlay network, such that any user can be assigned the role of the market-maker in

an allocation. To maintain the economic properties of our pricing scheme, the main

challenge is to distribute the resource information, such that it is available when deter-

mining the winners and computing payments. Our approach is to leverage the DHT for

resource lookup and distributed pricing by resource type. The next section presents in

detail our scheme, while the subsequent section analyses its communication and con-

currency overhead.
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4.3 Proposed Scheme

We consider the problem of allocating shared resources in a distributed market context.

Rational users, providers and consumers, are organized as nodes in a peer-to-peer over-

lay network, where each user has limited information about the other users. Providers

publish resource information using the DHT store interface, where the key is the hash

of the resource type, and the value is the resource metadata, such as provider informa-

tion, number of items, and price per item. The node responsible for a resource type in

the overlay is the resource broker. We use the hash of the resource type as the key for

resource data distribution such that all information about that resource type is stored at

the same resource broker. Thus, each resource broker will be able to compute payments

for consumer requests containing the respective resource type, for which the broker is

the node responsible.

A consumer request is sent by the user using the DHT store interface. We use an

arbitrary key, such that the request is routed in the overlay to a random peer, which we

refer to as the request broker. By routing the request to a random peer, we achieve the

incentive compatibility property for consumers similar to the way we select requests us-

ing the first-come-first-serve strategy in the centralized scheme. The role of the request

broker is to use the lookup interface provided by the DHT to find resource informa-

tion about all the resource types in the request. Accordingly, lookup requests for each

resource type in the request are routed by the overlay, from the request broker to the

resource brokers that are responsible for the respective resource type keys. Having all

information about a resource type allows resource brokers to compute payments using

the proposed scheme and to send them to the request broker. After receiving all pay-

ments from the resource brokers, the request broker decides if the allocation is possible,

i.e. the sum of all provider payments is less or equal to the consumer price.
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Provider P
Computational resource (CPU)

Storage (DISK TB)

Resource Broker
Storage

Resource Broker
Computational resource
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Hash(CPU)
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(a) Provider and Resource Brokers

Consumer C
Computational resource (CPU)

Storage (DISK TB)
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Lookup Message
DISK

(b) Consumer and Request Broker

Figure 4.1: Distributed Resource Pricing Scheme
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Figure 4.1 shows the provider publish operation and the consumer request operation

where the hash of the resource type shared is used as the key, and the resource meta-

data, i.e. owner information, number of items, and the price per item, is used as the

value in the DHT store and lookup operations. There are two resource types, computa-

tional resource and storage, published at two resource brokers, the peers in the overlay

responsible for the keys representing the hash of each resource type, respectively.

The provider in Figure 4.1(a) publishes two resource types, namely computational

resource and storage, to the respective resource brokers using the DHT interface:

store(hash(resource type), resource metadata)

The resource metadata stored by the resource broker contains the provider identifier,

the number of items for that resource type, and the price per item. This is similar to the

information stored by the centralized market-maker in the scheme proposed in Chapter

3. We use dotted lines to represent messages routed by the overlay network, with a

routing complexity of O(logN), where N is the number of peers in the overlay.

The consumer in Figure 4.1(b) sends a request for two resource types, computa-

tional resource and storage, using the DHT interface:

store(hash(random key), request metadata)

where the request metadata contains all the resource types, the number of items for each

resource type, and the total price the buyer is willing to pay. The request is routed by the

overlay to a random user that becomes the request broker. The request broker enqueues

the request and, for each resource type, uses the DHT interface:

lookup(resource type)

to find the resource brokers and request the number of items for the respective resource

types. When receiving a request, the resource brokers use the pricing mechanism de-

scribed in Chapter 3 to determine the winning providers and to compute their payments.
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The payments are then sent back to the request broker. In Figure 4.1, we use a continu-

ous line to represent a message exchanged directly between peers, without being routed

by the overlay. After the payments for each resource type are received, the request bro-

ker performs the allocation, informs the consumer, and continues with the next request

from the queue.

4.3.1 User Roles

In contrast to the centralized scheme, where a user could be either a provider or a

consumer, in the proposed distributed scheme a user additionally can be a request broker

or a resource broker. In this section, we present in more detail the user roles in the peer-

to-peer overlay.

Provider

Providers join the overlay network to share resources in exchange for currency in the

system. The published resources are available as long as the provider is part of the over-

lay; when the provider leaves the overlay, its published resources become unavailable.

A publish message is sent for each resource type and is received by the user with the

node identifier “closest” to the hash of the respective resource type, i.e. the resource

broker. A provider may update the published information for a resource type, such

as the number of available items and price per item, by sending another publish mes-

sage. Providers are not aware of the node identifiers of the resource brokers, and thus

use the hash of the resource type to send messages to the resource brokers, which are

routed by the overlay network. An example of creating a publish message is shown in

Algorithm 3.

When the allocation is performed, the resource broker informs a provider about

the payments and the consumer node identifier, such that direct communication can be

established between provider and consumer.
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Algorithm 3: SendPublish Example

resource type← “Computational resource”
items← 2
itemPrice← 2
resource← createResource (resource type, items, itemPrice)

key← hash (resource type)
metadata← resource

store (key, metadata) // store operation provided by the DHT

Consumer

Consumers join the overlay network to find resources that match their requests. In

the proposed scheme, a consumer request may contain multiple types of resources. The

request message sent by a consumer contains all the resource types, the number of items

for each resource type, and the total price the consumer is willing to pay. An example

of creating and sending a consumer request is shown in Algorithm 4.

Algorithm 4: SendRequest Example

resource type A← “Computational resource”
items A← 1
resource type B← “Storage”
items B← 1
request← CreateRequest (resource type A, items A)
request.Add (resource type B, items B)
request.SetReservedPrice (5)

key← hash (random (resource type A + resource type B))
metadata← request

store (key, metadata) // store operation provided by the DHT

The message is received by the user with the node identifier “closest” to a random key

generated by the consumer, which becomes the request broker. If the request is allo-

cated, the request broker responds with a list of payments and provider node identifiers,

such that direct communication can be established between provider and consumer.
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Resource Broker

A peer in the overlay becomes a resource broker when it is responsible for a resource

type, i.e. the user node identifier is “closest” to the hash of a resource type. The relation

“closest” is defined by the specific overlay implementation, e.g. can be numerically

closest in the case of Pastry [102], the first node in clockwise direction in the case of

Chord [114], etc. Thus, a user becomes a resource broker when: i) receives a publish

message from a provider, and ii) receives a lookup request from a request broker.

Resource brokers maintain a list of published resources for each resource type they

are responsible for. When receiving a lookup request, the resource broker determines

the winners and computes the provider payments according to the provider payment

function in Equation 3.13. The result is returned to the request broker directly, without

being routed in the overlay network. After a successful allocation, the resource broker

removes the allocated resources from its list and informs the winning providers about

the allocation and payments.

Request Broker

A peer in the overlay is a request broker when it becomes responsible for the random

key generated by a consumer making a request, i.e. the user node identifier is “closest”

to the request key. The request broker sends a lookup request for each resource type

in the consumer request and waits for payments from resource brokers. Initially, since

the request broker does not know the node identifier of the resource brokers, lookups

are routed by the overlay using the resource type identifier. If allocation is possible,

i.e. the total provider payments are less than the consumer price, the request broker

sends a commit message directly to the resource brokers, using their node identifiers. In

addition, the request broker informs the consumer about the payments and allocation.
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4.3.2 Achieved Properties

The distributed auction mechanism outlined above is, in fact, a two-phase commit pro-

tocol. As shown in Figure 4.2, the request broker lookup corresponds to the commit-

request phase, and the resource broker response containing payments is the agreement

message. If the allocation is possible, the request broker sends the commit message

to the resource brokers and informs the consumer. By using a blocking protocol, such

as two-phase commit, the economic properties of the pricing mechanism are preserved

in the distributed setting, because lookup requests are serialized at the resource bro-

kers. Informally, incentive compatibility for providers is maintained because resource

brokers do not compute payments for other requests while waiting for a commit mes-

sage. Thus, the consumer requests are serialized and performed according to the first-

come-first-serve strategy by the request broker. Incentive compatibility for consumers

is maintained by using a random key for the consumer request. Allocation of requests

for multiple resource types is achieved by sending multiple lookup requests to resource

brokers. Lastly, individual rationality and budget balance is achieved by the request

broker by checking that the providers payments are less than the consumer reserved

price.

Consumer

publish

Resource BrokerRequest Broker Provider

request

lookup

commit

payment
compute payment  ●

●  wait all payments
●  determine commit

Figure 4.2: Two-Phase Commit Protocol
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There are two key advantages in the proposed distributed auction mechanism. Firstly,

the payment computation for a consumer request is parallelized. Thus, a request bro-

ker divides the consumer request into several lookup messages, one for each resource

type. Each lookup is received by different resource brokers, which compute provider

payments at the same time, such that the computation time for the entire allocation is

reduced to the computation time for only one resource type. Accordingly, we have ad-

dressed the issue of horizontal scalability, since the allocation time of a consumer is not

proportional to the number of resource types requested. Secondly, requests for differ-

ent resource types are also processed in parallel. In contrast to the centralized model,

where all consumer requests are processed by the market-maker sequentially, having

a distributed scheme allows different resource brokers to make concurrent allocations.

This solves the issue of vertical scalability, since in the distributed scheme the allocation

times will not increase linearly with the number of users in the system. An experimen-

tal analysis of the horizontal and vertical scalability is presented in Chapter 6. Using

the peer-to-peer model, where any user can be a provider, consumer, resource broker

and request broker, not only adds scalability to the our market-based resource allocation

solution, but also eliminates the need for a dedicated centralized market-maker.

4.3.3 Generalized Distributed Auction Algorithm

When serializing consumer requests, concurrency is an issue when simultaneous re-

quests with multiple resource types arrive at the resource brokers in different order.

Figure 4.3 shows an example where deadlock occurs. Two consumer requests with

common resource types, i.e. computational resource and storage, are routed by the

DHT overlay to different request brokers, i.e. Request Broker 1 and Request Broker

2. Each request broker searches for resources using the hash of the respective resource

type as lookup key, and finds the resource brokers responsible for the respective resource

types: Computational Resource Broker and Storage Broker, respectively. However, due
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Figure 4.3: Deadlock in Distributed Auctions

to network delays, the lookups arrive out-of-order, i.e. Computational Resource Broker

receives the lookup request from Request Broker 1 first, then the request from Request

Broker 2, while Storage Broker receives the request from Request Broker 2 first, and

from Request Broker 1 second. Computational Resource Broker sends the provider

payments for Request B1 computational resource to Request Broker 1 and blocks wait-

ing for the commit message. Similarly, Storage Broker sends the provider payments for

Request B2 storage to Request Broker 2 and blocks waiting for the commit message.

However, no resource broker receives the commit message since the request brokers are

waiting for the provider payments for all resource types before committing.
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Figure 4.4: Deadlock-free Protocol

In order to prevent deadlock, we propose an algorithm which makes use of a three-

phase commit protocol in conjunction with Lamport’s logical clocks, as shown in Fig-

ure 4.4. The algorithm uses the Lamport timestamps, referred to as tickets, to determine

the partial order of requests and subsequently sort the pricing of each resource type at

the resource brokers. The algorithm contains three steps, detailed below.

Step 1. In the first phase, the request broker receives a request from the consumer,

and makes lookup requests for each resource type in the consumer request (see

Algorithm 5).

The resource broker responds to the lookup message with a ticket number, which

is a Lamport logical timestamp with the number of the next request in the resource

broker queue, as in Algorithm 6.
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Algorithm 5: Request Broker: ReceiveRequest

Input: request
Data : request queue

1 request queue.Enqueue (request)
2 foreach resource type in request do
3 key← hash (resource type)
4 value← request.resource type
5 SendLookup (key, value)
6 end

Algorithm 6: Resource Broker: ReceiveLookup

Input: resource type
Data : lookup priority queue, next ticket

1 lookup priority queue.Enqueue (resource type, next ticket)
2 SendTicket (resource type.source, next ticket)
3 next ticket = next ticket + 1

Step 2. The request broker waits for all ticket numbers, corresponding to each resource

type in the consumer request. In phase two, shown in Algorithm 7, after all ticket

numbers are collected, the request broker sends a message with the maximum

ticket number to all resource brokers, which rearrange the resource type requests

in the queue accordingly. If one of the resource brokers fails, the request broker

will send an abort message to the other resource brokers.

Algorithm 7: Request Broker: ReceiveTicket

Input: ticket
Data : request queue, request, ticket list

1 ticket list.Add (ticket)
2 if ticket list.size = request.size then
3 position← max (ticket list)
4 foreach ticket in ticket list do
5 SendPosition (ticket.source, position)
6 end
7 end
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Next, the resource brokers compute the provider payments using our pricing func-

tion in Algorithm 8, and send back the total payment for the consumer to the

request broker from the top of the lookup requests queue.

Algorithm 8: Resource Broker: ReceivePosition

Input: position
Data : lookup priority queue, ticket, resource type, resource list

1 lookup priority queue.Remove (resource type)
2 lookup priority queue.Add (resource type, position)
3 if lookup priority queue.head = position then
4 winner list← DetermineWinners (resource type, resource list)
5 end
6 SendPayment (position.source, TotalPayments (winner list))
7 ticket = position + 1

Step 3. In phase three, after all payments are received by the request broker, a commit

message is sent as in Algorithm 9 to the resource brokers if the allocation can be

performed. If the allocation is not possible or a timeout occurs, it will send an

abort message to the other resource brokers.

Algorithm 9: Request Broker: ReceivePayment

Input: payment
Data : request queue, request, ticket list, payment list

1 payment list.Add (payment)
2 if payment list.size = request.size then
3 if payment list.total ≤ request.price then
4 commit← YES
5 else
6 commit← NO
7 end
8 foreach payment in payment list do
9 SendCommit (payment.source, commit)

10 end
11 SendAllocation (request.source, payment list.total)
12 request queue.Remove (request)
13 end
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The resource broker responds with the provider node identifiers, and the individ-

ual payment for each provider. Finally, the resource broker informs the providers,

and the request broker the consumer about the allocation (see Algorithm 10). The

providers and consumer communicate directly to allocate and use the resources.

Algorithm 10: Resource Broker: ReceiveCommit

Input: commit
Data : lookup priority queue, resource type, resource list, winner list

1 if commit then
2 foreach provider in winner list do
3 resource list.Remove (provider, resource type.items)
4 SendAllocation (provider, resource type.items)
5 end
6 end
7 lookup priority queue.Remove (resource type)

4.4 Theoretical Analysis and Limitations

Our distributed scheme addresses scalability issues in federated systems with a large

number of users and resource types, by distributing resource information and payment

computation among users organized in a peer-to-peer overlay network. However, our

distributed scheme introduces a communication and synchronization overhead. In this

section, we analyze the factors that influence the average allocation time and identify

the limitations of the proposed distributed auctions scheme.

Figure 4.5 shows a diagram of the proposed three-phase commit distributed auc-

tion protocol. We define the average allocation time, Talloc, as the total time taken

since a consumer submits a request, sendRequest, until it receives the allocation results,

receiveAllocation, averaged for all successful consumer requests. We identify three

components that determine the total allocation time: i) communication time, Tn, which

represents the time taken to transmit messages in the network; ii) queue time, Tq, which
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Figure 4.5: Distributed Allocation Diagram
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is the delay since a position message is received by the resource broker until payments

can be computed; and iii) computational time, Tc, which is the time taken by the pricing

algorithm to determine the payments.

Talloc = Tn +Tq +Tc (4.1)

Communication Time

The communication cost incurred to allocate a consumer request is determined by the

number of messages exchanged between the consumer, request broker, and resource

broker. These messages are the request message, lookup message, ticket message, po-

sition message, payments message, and commit message. We consider a stable overlay

network, where routing takes at most logN steps, where N is the total number of users

in the overlay. Thus, the request message is routed from the consumer to the request

broker in at most logN hops. Similarly, the lookup message is routed from the request

broker to the resource broker in at most logN steps. After the resource broker receives

the lookup message, it can use the sender address to reply with the ticket number in one

hop. Similarly, the position, payments and allocation messages are forwarded in one

hop. Considering an average network delay time, d, the total communication time is

thus:

Tn = d(logN + logN +1+1+1+1) = 2d(logN +2) (4.2)

Queue Time and Computational Time

To determine the queue time and the computational time, we assume Poisson arrivals

for the consumer requests and use queuing theory by considering the resource broker

a M/M/1 system [80]. The service time, which consists of the queue time and the

computational time, is determined in a M/M/1 system as:

Ts = Tq +Tc =
1

µ−λ
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where µ is the average service rate of the resource broker, and λ is the average lookup

arrival rate for a resource type. Since the resource broker serializes the requests, the ser-

vice rate is given by the time since the computation starts, until the commit message is

received, when a new lookup can be processed. Accordingly, the service time includes

the computation time (Tc), sending the payment message (d), and receiving the commit

message (d). Thus, the service rate is:

µ =
1

Tc +2d

Accordingly, the total service time is:

Ts =
Tc +2d

1− (Tc +2d)λ
(4.3)

In the previous chapter, we have determined the runtime complexity of our pricing

function is, for a request for one resource type, a polynomial function of the number

of items requested and the number of providers. For simplicity, we consider that the

computation time Tc is negligible, compared to the average network delay time d, which

in the Internet is ranging from several milliseconds to several hundreds of milliseconds.

Thus, ignoring the computation time, we can express the total allocation time for a

buyer request as:

Talloc = 2d(logN +2)+
2d

1−2dλ
−2d = 2d(logN +1+

1
1−2dλ

) (4.4)

From Equation 4.4, the factors that affect the allocation time in the proposed distributed

scheme are: i) logN, where N is the size of the overlay network; ii) d, the network de-

lay; and iii) λ , the arrival rate of requests for a resource type. Since the allocation time

is not linear with the number of users, the distributed scheme achieves vertical scala-

bility. Similarly, the allocation time does not depend on the number of resource types
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in the request. This means that the distributed scheme achieves horizontal scalability.

However, the network delay is a factor that influences the allocation time because of

the synchronization used by the proposed three-phase commit protocol. This overhead

can degrade the performance of the allocation system especially when the arrival rate

of requests for a resource type is very high. We study the limitations due to this over-

head using an experimental analysis of the performance degradation with large network

delays and under high arrival rates in Chapter 6.

In summary, the main limitation of the distributed scheme is due to network delay.

In our distributed pricing scheme, all consumer requests are routed to the request bro-

ker, which then routes requests for resource types to the resource brokers. For consumer

requests containing multiple resource types, this allows the winner determination and

payment computation for each resource type in parallel, resulting in lower allocation

time. However, for requests containing a small number of resource types, the allocation

time may increase when compared to a centralized market-maker. This is because of

the time needed to route the request in the overlay network. Moreover, the synchroniza-

tion mechanism used for concurrency and to ensure the strategy-proof property of our

scheme adds an overhead to pricing. In our experimental evaluation, presented in Chap-

ter 6, we look more closely at the size of the overhead and the impact on the allocation

time for consumer requests for a small number of resource types.

4.5 Summary

In this chapter we have introduced a distributed auctions mechanism that eliminates the

centralized market-maker or auctioneer by distributing resource information and pricing

computation among users, organized in a peer-to-peer network. Having a distributed

resource market allows for greater scalability, both when having a large number of users,

i.e. horizontal scalability, and when having consumer requests with multiple resource
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types, i.e. vertical scalability. To solve concurrency issues that may lead to deadlocks,

we propose a three-phase commit protocol that makes use of Lamport’s logical clocks

for synchronization. The main limitation of this approach is the overhead added to the

allocation by the synchronization mechanism used to preserve the economic properties

of the pricing scheme, which introduces delays due to the network speed.

Our main contribution is an auction mechanism that leverages the distributed hash

table in a peer-to-peer overlay network to store resource information, which is dis-

covered using the peer-to-peer lookup mechanism, when computing payments for an

allocation. Providers publish resource information in the DHT using the hash of the

resource type as the key. Similarly, consumers send requests to a user in the overlay

using a random key. In addition to being a provider and consumer, any user in the

overlay network can play two additional roles to help perform allocations in the system.

Resource brokers are users responsible for a resource type, i.e. the user node identifier

is “closest” to the hash of a resource type identifier. They receive publish messages

and maintain the list of available resources for the respective resource type. Request

brokers are the users with the node identifier “closest” to a request key. They send

parallel lookup messages for each resource type and receive provider payments from

resource brokers. Request brokers inform the consumers and resource brokers inform

the providers about payments and allocation.
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Federated Cloud Prototype

Cloud computing is an emerging platform that promises to achieve the long-envisioned

dream of computing as utility. Currently, cloud consumers can use resources and ser-

vices from public clouds over the Internet at pay-per-use price rates. On the other hand,

private clouds are built to offer similar resources and services as public clouds, in an

enterprise. Having the means for a private cloud to temporarily use resource from a

public cloud as a part of an elastic resource capacity strategy can be critical in scal-

ing enterprise cloud resources [10, 11, 53]. This is achieved by federated clouds, a

recent paradigm that aims to integrate private and public clouds to increase elasticity

and reliability [74, 85, 100]. In a federated cloud market, dynamic pricing sets resource

payments according to the forces of demand and supply. However, cloud providers

and consumers are rational, self-interested parties, trying to maximize their own ben-

efit [14]. Accordingly, both providers and consumers should not be trusted to reveal

their truthful valuations for the allocation of cloud resources [123]. Current federated

clouds, similar to standalone cloud providers, use fixed pricing, which does not take

into account user rationality [74]. In this chapter we present SkyBoxz, an integrated

platform for the management of multiple public and private clouds that uses our pro-

posed dynamic pricing mechanism to allocate cloud consumer requests with multiple

resource types across different clouds.
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5.1 Issues and Objectives

Cloud computing is a platform that provides users with elastic capacity without upfront

costs. Federated clouds are formed by combining private and public clouds to provide

users with resizable and elastic resource capacities [10]. Public clouds are available to

all users, while private clouds use a similar infrastructure to provide services for users

within an organization. Cloud infrastructure services, also known as Infrastructure as a

Service (IaaS), deliver computer infrastructure using a virtualized environment to cloud

consumers over the Internet. In IaaS, providers typically use fixed pricing, such that

strategic user behavior is limited. Examples of major IaaS providers include Amazon

and Microsoft, which provide several types of resource types through their services,

Elastic Compute Cloud (EC2) [1], and Windows Azure Compute [2], respectively. A

resource type, called an instance type, is a virtualized environment that approximates

a certain hardware configuration. Currently, cloud computing usage is increasing both

in breadth, i.e. the number of resource types offered, and in depth, i.e. the number

of providers [20]. With an increasing number of cloud users, it is expected that more

providers will offer similar services. Important issues when providing resources and

services across clouds are:

1. Interoperability. With interoperability, a federated cloud give users a choice of the

same service across clouds to improve reliability and elasticity [65]. Federated

clouds need to integrate resources from different cloud providers such that access

is transparent to the users.

2. User rationality. In a federated cloud with many consumers and providers, rational-

ity is an essential issue as both consumers and providers can strategize to improve

their welfare [14, 94, 31]. A federated cloud needs to provide incentives such that

both providers and consumers declare their truthful valuations for the resources.
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3. Multiple instance types per request. A federated cloud needs to provide resources

from different clouds without the consumer having to manually integrate the re-

sources. Although there are efforts towards interoperability of different cloud com-

puting middleware [76, 75, 106], existing federated clouds such as SpotCloud [112],

ComputeNext [33], and ScaleUp [104] allow consumer requests for only one re-

source type.

4. Dynamic pricing. Fixed pricing, currently used by many cloud providers, is not ef-

ficient as it does not adapt to the changes in demand and supply [74]. For example,

when demand becomes lower than supply, providers can decrease the price to in-

centivize consumers to use more resources. This issue becomes more critical in a

federated cloud, where demand and supply are more unpredictable due to a larger

number of providers and consumers.

In contrast to resource sharing systems used in research and academic communities

where users are voluntary, cloud computing has been put into commercial use and its

economic model is based on pricing. Previous unsuccessful cloud computing attempts

such as Intel Computing Services required users to negotiate written contracts and pric-

ing. Currently, online banking and currency transfer technologies allow cloud providers

to use fixed pricing, with consumer payments made online using a credit-card. To ad-

dress dynamic pricing, Amazon introduced spot pricing, an allocation scheme that sets

the resource price according to consumer demand. Spot pricing is similar to the uni-

form price auction, where consumers bid the maximum price they are willing to pay for

the resource, also called the reserved price, but pay the spot price, usually determined

as the lowest winning bid. If the supply can be adjusted, such as the case of a single

provider, it was shown that this type of auction is truthful and can prevent consumer

collusion [35]. However, in a federated cloud, supply is distributed among multiple re-

source providers, and spot pricing is not incentive-compatible. Thus, a federated cloud

where users are rational needs a strategy-proof pricing scheme to allocate resources.
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We address these issues in SkyBoxz, a federated cloud platform that provides inter-

operability between different public and private clouds, and allocates consumer requests

with multiple resource types using our proposed strategy-proof, dynamic pricing mech-

anism. Our objective is to provide cloud infrastructure resources to consumers in a

federated cloud where users are rational. A user can be an individual, a group, or an

organization, depending on the application context. The next section presents the archi-

tecture of SkyBoxz, while the subsequent section details our prototype implementation.

5.2 Proposed Federated Cloud Architecture

SkyBoxz [111] is a platform for managing resources in a federated cloud with multiple

use cases. For cloud providers and consumers, SkyBoxz provides a holistic approach

to managing and monitoring instances on multiple clouds (Infrastructure as a Service).

For consumers, SkyBoxz provides a service platform to deliver a consumer request with

multiple resource types - virtual machine instances or services - in a federated or hybrid

cloud (Platform as a Service). SkyBoxz uses open-source software components and

can aggregate cloud instances managed by several private cloud middleware, such as

Eucalyptus [76] and OpenNebula [75], and public cloud providers, such as Amazon

EC2 [5].

An overview of the SkyBoxz architecture is shown in Figure 5.1. The main compo-

nents of the proposed platform are: the management interface, the pricing mechanism,

the persistent database, and the cloud library. Virtual private networking (VPN) and

shared storage offers interoperability, while consumer application platforms can run on

top of SkyBoxz using the infrastructure provided. SkyBoxz uses web services to con-

nect to public clouds, and to existing cloud middleware. Both cloud resource providers

and consumers interact with SkyBoxz using a web-based management interface, which

provide two advantages: i) is platform independent, and ii) it allows consumers ac-
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Private Cloud 
Infrastructure

Public Cloud 
Infrastructure

Multi-Cloud Library
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Proposed 
Pricing Sch.

Management Interface
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Services API

SkyBoxz

Cloud Users Cloud Providers

Virtualization Management

Infrastructure
as a Service

Platform
as a Service

Figure 5.1: SkyBoxz Architecture

cess to multiple clouds without having to install additional software components on

their system. Using the management interface, resource providers can add new clouds

to SkyBoxz, and configure, for each cloud, the resource types, number of items pro-

vided, and the price per item. Resource types in SkyBoxz represent different virtual

machine instance configurations, where the cloud provider can specify the number of

cores available, the memory size, and the disk space for the instance. For consumers,

the web interface allows the creation, monitoring, and termination of a request with

multiple resource types. A consumer specifies the number of resource types in the re-

quest, the total price and, for each resource type, the virtual machine configuration with

the number of cores, the amount of memory, and disk space required.
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SkyBoxz uses the persistent database to store its information, such as user accounts,

cloud credentials, and resource type details. Both consumer and provider information is

stored in the database, including the total amount of virtual currency available. Provider

information contains the cloud accounts and credentials, such as connection strings and

certificates, the available resource types, and the virtual images available to consumers.

Using permissions set by the providers, the database stores a map between the SkyBoxz

consumer accounts and the cloud resources available for each cloud. Moreover, Sky-

Boxz allows providers to configure the access to their public or private clouds using

permissions that can be shared by a group of SkyBoxz consumers. By using differ-

ent account security certificates, SkyBoxz consumers are uniquely identified to each

cloud provider, even when using shared cloud accounts. The persistent database also

stores monitoring information from the running instances, which can be provided to

consumers or providers.

The information in the database is periodically updated using the multi-cloud library

component, which is responsible for the communication protocols with different cloud

middleware from private and public clouds. Currently, SkyBoxz supports Eucalyptus

[41] and OpenNebula [86], two widely-used cloud middleware, and the Amazon EC2

public cloud. However, the cloud library is designed to be modular, such that other

types of cloud middleware or public clouds can be added in the future with ease.

Pricing and allocation is done in SkyBoxz using our proposed strategy-proof pric-

ing scheme. Using the declared information about each resource type submitted by

providers, SkyBoxz allocates each consumer request using a first-come-first-serve strat-

egy, and computes the payments using the provider and consumer payment functions

introduced in Chapter 3. Since the pricing scheme is strategy-proof, both providers

and consumers are incentivized to declare reserved prices according to their valuation.

Currently, SkyBoxz runs a centralized implementation of the pricing algorithm, which

is more efficient when the number of resource types in a consumer request is small.
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SkyBoxz is used internally in School of Computing, and by collaborators from the Fac-

ulty of Computer Science and Engineering, Ho Chi Minh University of Technology,

and the Shanghai Advanced Research Institute. As the number of users and resource

types provided is increased, we will consider a distributed implementation of the pricing

scheme.

One of the issues in a federated cloud infrastructure is interoperability. With inter-

operability, our dynamic pricing scheme can allocate a consumer request on any cloud,

based on demand and supply. SkyBoxz achieves interoperability by using compati-

ble virtual machine images with the same base software stack across all clouds. The

user persistent storage module is decoupled from the virtual machine storage, such that

instances from all providers offer the same capabilities when acquired with the same

virtual machine image. In addition, SkyBoxz allows instances from the same request to

be allocated to different clouds. To handle communication between clouds with differ-

ent network configurations, SkyBoxz creates a virtual private network (VPN) between

the instances acquired by the same user.

5.3 Prototype Implementation

SkyBoxz is a platform that offers infrastructure services by allowing consumers to ac-

quire and use cloud virtual machine instances directly, and platform services by al-

lowing the development of custom applications or frameworks that access SkyBoxz to

acquire resources without the user interaction. In this section, we present the implemen-

tation of the prototype platform and an example application built on top of SkyBoxz.

5.3.1 SkyBoxz Modules

The SkyBoxz management interface is a web application built on top of Drupal v.6.16

[38], an open-source content management system and application framework. Drupal
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allows an extensible back-end and has built-in user registration and management, web

layout customization, forums, statistics, logging, and administration. Information about

the federated cloud is stored in a MySQL v.5.1 database, which is updated using shell

scripts executed periodically by a time-based job scheduler. The cloud library and pric-

ing algorithm are implemented in PHP, a scripting language that allows execution both

from the job scheduler shell scripts, and from Drupal scripts. The cloud library consists

of framework components that implement different API calls for the middleware and

public clouds accessible from SkyBoxz. Currently, communication with clouds using

the Eucalyptus middleware is done using the restricted EC2 API set published by the

SkyBoxz Modules

Eucalyptus v.1.6.2
(soc-nimbus, 
cloud-of-sari)

OpenNebula v.2.0
(soc-stratus)

Amazon EC2
(amazon-us-east)

EC2 API (restricted) 
+ econe serverEC2 API (restricted) EC2 API

Amazon EC2 
module

OpenNebula 
module

Eucalyptus 
module

Other clouds 
modules...

Multi-Cloud Library

Proposed 
Pricing Sch.

MySQL
v.5.1

database

collectd v.5.0 n2n v.1.3.2 FUSE v.2.8.6

DRUPAL v.6.16
Source Content Management System PHP API

Virtual Machine Image

Figure 5.2: SkyBoxz Implementation

104



Chapter 5. Federated Cloud Prototype

Eucalyptus controller node. Similarly, clouds using the OpenNebula middleware are

accessed using the EC2 restricted EC2 API, which is interpreted by an additional server

which runs in the OpenNebula cloud. The Amazon EC2 public cloud is accessed using

the full set of EC2 API calls. A diagram containing the implementation modules is

presented in Figure 5.2.

There are currently seven cloud providers available in SkyBoxz, both public and

private. The SkyBoxz public clouds are four Amazon EC2 regions: us-east in Virginia,

USA; us-west in California, USA; eu-west in Ireland; and ap-southeast in Singapore.

Private clouds are soc-nimbus, from School of Computing, NUS, using the Eucalyptus

v.1.6.2 middleware; soc-stratus from School of Computing, NUS, using OpenNebula

v.2.0.b1; and cloud-of-sari from Shanghai Advanced Research Institute, China, using

Eucalyptus v.2.0. Details about the configuration of Eucalyptus and OpenNebula mid-

dleware are available in Appendix C.

The communication between SkyBoxz and existing providers is using HTTPS re-

quests according to a set of APIs, provided by Amazon EC2. Eucalyptus implements

a subset of the EC2 APIs, while interaction with OpenNebula is done using an access

point provided by an addition server, econe, which translates a subset of the EC2 API

to OpenNebula. The EC2 API actions are similar to remote procedure calls, with re-

quest and response message pairs. Requests are signed by the cloud consumer using a

secret authentication key. A sample request for a small instance type and the response

is presented in Figure 5.3. Using the EC2 restricted API, SkyBoxz can create and ter-

minate instances, and query the available images. Additional functionality, available in

Eucalyptus clouds, allows the providers to configure five instance types, by setting the

number of cores, memory and disk space.

The information in the SkyBoxz database is described by the schema in Figure 5.4.

The providers table stores the connection strings and administrator credentials, if

available, for the different cloud providers.
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Example SkyBoxz POST Request:

request=1&user=marianmi&ntypes=1&type=ec2.m1.small&items=1&image=linux&

price=10&pricing=dynamic

EC2 API Request:

https://ec2.amazonaws.com/?Action=RunInstances&ImageId=ami-60a54009&

InstanceType=m1.small&MaxCount=1&MinCount=1&

Placement.AvailabilityZone=us-east-1b&Monitoring.Enabled=true&AuthParams

EC2 Response:

<RunInstancesResponse xmlns="http://ec2.amazonaws.com/doc/2009-08-15/">

<reservationId>r-47a5402e</reservationId>

<ownerId>AIDADH4IGTRXXKCD</ownerId>

<groupSet>

<item>

<groupId>default</groupId>

</item>

</groupSet>

<instancesSet>

<item>

<instanceId>i-2ba64342</instanceId>

<imageId>ami-60a54009</imageId>

<instanceState>

<code>0</code>

<name>pending</name>

</instanceState>

<privateDnsName></privateDnsName>

<dnsName></dnsName>

<keyName>example-key-name</keyName>

<amiLaunchIndex>0</amiLaunchIndex>

<instanceType>m1.small</instanceType>

<launchTime>2011-08-07T11:51:50.000Z</launchTime>

<placement>

<availabilityZone>us-east-1b</availabilityZone>

</placement>

<monitoring>

<enabled>true</enabled>

</monitoring>

</item>

</instancesSet>

</RunInstancesResponse>

Figure 5.3: Example EC2 API Request and Response
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Each cloud added to SkyBoxz is described by the following information: name, de-

scription, middleware (where the list of supported middleware is available in the table

supported clouds), query protocol (which can be http or https), IP address of the

cloud controller or access point, access port (usually the http or https port), path

to the middleware scripts. Optionally, when using the Eucalyptus middleware, cloud

providers can specify the access id and encryption key for administrator access, which

gives the cloud providers the possibility of remotely configuring resource types though

SkyBoxz. Cloud accounts are added to SkyBoxz to the table accounts, by speci-

fying the user access id and the encryption key. The cloud accounts can be shared

between multiple SkyBoxz users. Each cloud has different resource types, which are

stored in the table instance types. This table contains information such as number of

cores, size of memory, disk space, etc. Lastly, images available for each cloud provider

are stored in the table images. Each image is described by the platform it runs, e.g.

Linux or Windows, the architecture, 32 bit or 64 bit, path to the image, kernel and

ramdisk used, etc. The current requests submitted to SkyBoxz are stored in the table

current requests, which is linked to the table running instances that contains the

information about the instance type, image, state and the cloud on which each instance

in the request is allocated to. The relationship between the cloud accounts, configured

by the cloud providers, and the SkyBoxz accounts, is determined by several tables in

the database, user accounts, keypairs, and security groups, as follows. Each

SkyBoxz account is added to a security group defined by the cloud provider, and has a

unique private key, linked together using the table user accounts. This table is linked

to the table users, which stores the amount of currency for a SkyBoxz user. The user

id is the same as the Drupal id, to ease the user management process by integrating an

existing Drupal module.

108



Chapter 5. Federated Cloud Prototype

Virtual machines images available through SkyBoxz have, for each platform and

architecture, a similar software stack installed to allow interoperability across different

providers. To facilitate monitoring, the collectd v.5.0.1 daemon runs on each instance

and transfers information periodically about the instance load to Drupal, where it can

be accessed by the users. In addition, all instances allocated to a consumer request are

added to a n2n v.1.3.2 virtual private network (VPN) which is set up for each consumer.

n2n [78] is an open-source VPN application that uses a peer-to-peer architecture for

VPN membership and routing. SkyBoxz manages the n2n supernode, while the n2n

client is installed in all images and available when instances are run. The role of the

supernode is to register clients and route packages for instances that are not able to

communicate directly. Each SkyBoxz user has his own VPN network, such that all their

running instances can access each-other. Lastly, the FUSE v.2.8.6 daemon is installed

in all virtual machine images, to allow users to attach several types of network storage.

FUSE (Filesystem in User Space) is a kernel module that allows virtual file systems, and

currently supports, among others, Amazon S3, WebDAV and SFTP.

5.3.2 Service Platform

SkyBoxz is built as an extensible framework that can be used by other platforms and ap-

plications. Currently, other Drupal modules and web applications can be configured to

run on top of SkyBoxz, and access resources from the federated cloud. As an example

application that uses SkyBoxz, we present in this section SNAP (Snapshots of Program

Execution on Different Computation Platforms), a project jointly developed by Mas-

sachusetts Institute of Technology and National University of Singapore, funded by the

Singapore-MIT Alliance for Research and Technology (SMART) Innovation Grant.

SNAP is a program testing platform for numerical instability, where developers can

automate the testing and verification of numerical applications across a wide range of

hardware and software platforms. Application developers can use SNAP to acceler-
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ate the manual task of program testing when they develop, migrate, or evaluate new

or existing applications. Tests can be created to run on different hardware and soft-

ware platforms. The applications that have been tested with SNAP include sequential

and parallel programs, executed in virtual machines. Currently, SNAP offers several

software platforms, such as gcc and Scilab for sequential programs, and OpenMP and

MPI for parallel programs. Program testing is performed by uploading the application

code, selecting the hardware and software configuration, and submitting the test from

SNAP. Comparison of the program results on different configurations can be performed

to determine whether the tested program suffers from numerical instability.

Figure 5.5 shows the architecture of SNAP. Using the PHP API exported by our

implementation, SNAP is able to send requests for IaaS resources to SkyBoxz. Hard-

ware platforms selected in SNAP are requests to SkyBoxz, which maps them to different

cloud providers. When starting a test, the application developer may choose from differ-

ent sequential or parallel configurations. These configurations are matched by SkyBoxz

Public/Private 
Clouds

Multi-Cloud Library

SkyBoxz
Database

Proposed 
Pricing Sch.

PHP API

SkyBoxz

 SNAP UserCloud Provider

SNAP

SNAP
Database

SNAP Drupal Interface

File Storage

Parallel 
module

Sequential 
module

Figure 5.5: SNAP Architecture
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to the corresponding instance types and virtual machine images from the database. The

files required are uploaded to SNAP, which is responsible to distribute them to the ma-

chine instances. SNAP maintains its own database for user, results, and logging, using

a relationship table to map SNAP accounts with existing SkyBoxz accounts. Pricing

and allocation is handled by SkyBoxz, which allocates SNAP requests using our dy-

namic pricing scheme. Payments for resources used when testing programs in SNAP

are managed by SkyBoxz using the account associated with the SNAP user.

5.4 Summary

Cloud computing is an emerging platform that provides resources on-demand, as a ser-

vice, over the Internet. The aim of federated clouds is to integrate resources from dif-

ferent cloud providers such that access is transparent to the users. Towards this, we

have implemented SkyBoxz, a platform for managing resources in federated clouds

where users are rational. In SkyBoxz, cloud providers can add their private or pub-

lic cloud to a hybrid cloud, and configure the resource types they share. Consumers

can submit a request with multiple resource types, with allocations determined using

our proposed strategy-proof pricing scheme. Interoperability between different cloud

providers is achieved by using virtual machine images with the same software stack,

together with virtual private networking and shared storage. SkyBoxz is built as an

extensible framework that can be used by other applications. To this extent, we have

presented SNAP, a program testing platform for numerical instability that can run on

different hardware and software platforms provided by SkyBoxz. Currently, SNAP can

access several cloud providers, both public and private, and is used by consumers from

Singapore, Vietnam, and China.
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Chapter 6

Experimental Evaluation

We have formally proven using mechanism design the economic properties of the pro-

posed pricing mechanism: individual rationality, incentive compatibility, and budget

balance. Furthermore, we have theoretically analyzed the computational complexity

of the proposed algorithm. In this chapter, we further the study of our pricing mech-

anism using experimental evaluation. We analyze the trade-off between the economic

and computational efficiency, and the impact of allocating multiple resource types in

different market conditions, such as under-demand and over-demand. Our theoretical

analysis found that the allocation time when using the proposed pricing scheme is not

scalable with the number of resource types in a consumer request, and with the num-

ber of users. The distributed scheme we proposed tries to address this issue, however

the synchronization mechanism and network delays add an additional overhead. In this

chapter, we analyze the scalability and determine the overhead cost of the distributed

scheme, using an implementation on top of the FreePastry overlay network. Lastly, we

study the rationality of the users in a federated cloud composed of several Amazon EC2

regions.
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6.1 Experimental Setup

Traditionally, efficiency in computer science is measured using system-centric perfor-

mance metrics such as the number of completed jobs, and average system utilization.

All user applications are equally important and optimizations ignore the user’s valua-

tion for resources. Thus, resource allocation is unlikely to deliver the greatest value to

the users, especially when resources are limited. In contrast, economic systems mea-

sure efficiency with respect to user’s valuations for resources (utility). For example,

in a Pareto efficient system where economic efficiency is maximized, a user’s utility

cannot improve without decreasing the utility of another user. In our work, we evaluate

the performance of our scheme using several performance metrics, both system-centric

and user-centric. Table 6.1 shows an overview of our evaluation and the performance

metrics and tools used in our study.

We first study the trade-off between the economic and computational efficiencies

by measuring the total user welfare, and the allocation time, respectively. The total

Experiment Measures Tools

trade-off analysis
• total welfare

• jCase v.0.2
• allocation time

economic efficiency
• succ. consumer requests • auctions simulator
• user welfare • FreePastry v.2.1 simulator

multiple resource types
• succ. consumer requests

• FreePastry v.2.1 simulator
per request

• alloc. provider resources
• user welfare

scalability • allocation time
• FreePastry v.2.1 simulator
• PlanetLab prototype

user rationality
• resource price

• MATLAB v.7.12
• user welfare

Table 6.1: Experiments and Tools
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user welfare is the sum of the provider and consumer welfare, where the welfare is

determined as the difference between the user valuation for that resource and the pay-

ment received. Pareto efficiency is achieved by maximizing the total user welfare. The

allocation time is measured by the wallclock time taken to complete a request. To de-

termine the trade-off, we compare the economic and computational efficiencies with

combinatorial auctions, a pricing mechanism that is known to be Pareto efficient. We

consider in our evaluation two types of combinatorial auctions. The first combinatorial

auction we consider uses a VCG payment scheme to achieve strategy-proof at the cost

of budget-balance. The second combinatorial auction is based on the Threshold scheme

proposed by Parkes et al. [88], which tries to achieve budget-balance at the cost of

incentive compatibility.

We further the study of the economic efficiency by analyzing the consumer and

provider efficiencies. The consumer efficiency is given by the successful consumer re-

quests, while the provider efficiency is given by the allocated provider resources. To

better understand our findings, we compare our results with other pricing schemes,

namely one-sided auctions and fixed pricing. We selected for comparison traditional

one-sided auctions and fixed pricing because they are widely used due to their simplic-

ity and relatively good outcomes. Fixed pricing, for example, is widely used currently

by cloud providers such as Amazon [5] and Microsoft [2]. In addition to provider and

consumer efficiencies, we also determine the individual user welfare. The user welfare

allows us to understand how the economic trade-off is achieved, since it measures indi-

vidual rationality and the impact of financial incentives over the payments. We are con-

sidering three market conditions: balanced market, over-demand, and under-demand,

where demand equals supply, demand is higher than supply, and demand is lower than

supply, respectively. Lastly, we consider the case of consumer requests with multiple

resource types per request under different market conditions.
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To evaluate the scalability of our proposed distributed scheme, we study the compu-

tational efficiency and determine the average allocation time. As our theoretical evalu-

ation has shown, scalability in a centralized pricing scheme is limited when increasing

the number of resource types (vertical scalability) and when increasing the number of

users (horizontal scalability). Thus, in our evaluation we compare the vertical and the

horizontal scalability of the centralized and the distributed scheme. In addition, we look

at the impact of network delay and request arrival rate, which our theoretical analysis

found to add an overhead to the allocation. Lastly, we investigate the rationality of ex-

isting cloud computing users by comparing the user welfare obtained by the Amazon

spot pricing scheme with our scheme. We consider that different region in Amazon EC2

constitute a federated cloud.

Our experimental analysis makes use of several software tools, both open-source

and our own implementation. To analyze the trade-off between economic and com-

putational efficiencies, we use the open-source combinatorial auctions simulator jCase

v.0.2 [105]. jCase is an open-source combinatorial auctions simulator developed in Java

that uses an XML-based input to define simulation scenarios. jCase already has imple-

mented several pricing schemes, such as a VCG-based combinatorial auction, and the

Threshold [88] algorithm. To compare with the proposed scheme, we extended jCase

to implement the centralized algorithm of our scheme.

To compare the economic efficiency and evaluate the impact of multiple resource

types in traditional auctions, we developed a simple discrete-event simulator, which can

allocate requests given in an XML file using English auctions and the proposed scheme.

This simple auctions simulator was also used to measure the impact of user rationality

in English auctions, results which are included in Appendix A.

The majority of our experiments have been performed using an application built

on top of FreePastry v.2.1 [90], an open-source DHT overlay network environment.

FreePastry offers a discrete-event simulator that is able to run FreePastry applications.
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Thus, we were able to both simulate large systems, and validate the results in a proto-

type deployment on the research network PlanetLab [93]. Our FreePastry application

can operate in two different modes. In the centralized mode, the node that starts the

FreePastry overlay network has the role of a centralized market-maker, by maintain-

ing the list of provider resources and the queue of consumer requests. All the other

nodes in the overlay act as provider or consumers, and exchange messages only with

the market-maker. In the distributed mode, any node can become a resource broker or

request broker. The workload for the FreePastry application is defined in an XML file.

We implemented two pricing schemes for comparison: fixed pricing, and our proposed

scheme, both centralized and distributed.

Our study on user rationality uses spot price traces for different instance types in

four EC2 regions, over a period of one month. We use MATLAB v.7.12 scripts to

analyze the traces and determine the consumer requests and consumer welfare for spot

pricing and our proposed scheme.

6.2 Strategy-proof Pricing

In this section, we study the performance of our proposed pricing mechanism. We

analyze the computational end economic trade-off by comparing our scheme with com-

binatorial auctions. Next, evaluate the economic efficiency, namely the number of suc-

cessful requests of our scheme, and compare to traditional one-sided auctions and fixed

pricing. Lastly, we evaluate the economic efficiency with consumer requests with mul-

tiple resource types per request in different market conditions. For simplicity, we used

a centralized implementation of our pricing mechanism.
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6.2.1 Trade-off Analysis

The main objective of our trade-off analysis is to study the economic efficiency lost

by achieving strategy-proof and budget balance. To this extent, we measure the to-

tal welfare (Welfare) obtained by our scheme, and compare to combinatorial auctions,

a pricing scheme known to be Pareto-efficient, at the cost of computational efficiency.

Thus, in addition to the loss in economic efficiency, we also measure the allocation time

(Alloc. Time) obtained by the two pricing schemes. We use jCase [105] to compare our

scheme with two combinatorial auctions implementations: a pure VCG scheme, and

the Threshold algorithm proposed by Parkes et al. [88]. We measure the economic

efficiency as the sum of user welfare, consumers and providers. The classical combina-

torial auction that uses VCG-based pricing functions for both providers and consumers

is not budget-balanced. For completeness, we also measure budget-balance (BB), given

by the sum of provider and consumer payments. The second combinatorial auctions

scheme, based on the Threshold scheme [88], achieves budget balance, but loses the

strategy-proof property.

Pricing Mechanism Users IC BB ($) Welfare ($) Alloc. Time

Combinatorial/VCG

20 3 -1,402 2,470 9.6m
40 3 -1,544 6,321 2.5h
80 3 -1,557 14,567 67.4h

Combinatorial/Threshold

20 – 5 2,491 9.8m
40 – 9 6,223 2.5h
80 – 6 14,384 49.5h

Proposed Scheme

20 3 0 1,871 1s
40 3 0 5,483 3s
80 3 0 11,561 5s

100 3 0 14,369 7s
200 3 0 28,564 20s
500 3 0 65,948 1.9m

1,000 3 0 132,729 7.7m

Table 6.2: Comparison of Proposed Scheme with Combinatorial Auctions
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In our experiments, we assume a balanced market where demand equals supply,

modeled using an equal number of providers and consumers Users 1. A user is both

a provider and a consumer. Each provider publishes multiple resource types, sampled

from a uniform distribution between 1 and 10. Similarly, the number of resource types

in a consumer request was sampled from a similar distribution. In each simulation run,

we perform 50 allocation rounds and generate a total of 50∗Users consumer requests.

We vary the number of users from 20 to 80 for the combinatorial auctions, and up to

1,000 for our proposed scheme. Our results are shown in Table 6.2, where IC column

is used to show the schemes that are incentive compatible. Alloc. Time shows the av-

erage allocation time for a request in hours (h), minutes (m), and seconds (s). We can

see from the results that our pricing scheme achieves lower economic efficiency. For

example, for 80 users, the total welfare is $11,561 for our scheme, while combinatorial

1although it is not expected for a balanced market to have an equal number of providers and con-
sumers, this model is sufficient for the measurement of total welfare and allocation time.
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Figure 6.1: Economic Efficiency Loss
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Figure 6.2: Computational Efficiency Gain

auctions achieve $14,567 for the VCG scheme, and $14,384 for the Threshold scheme.

We show the economic efficiency loss in Figure 6.1. According to our results, the pro-

posed scheme achieves around 80% from the maximum economic efficiency. However,

since winner determination in combinatorial auctions is a NP-complete problem, each

experiment with 80 users takes more than 60 hours to execute on a 8-core Intel Xeon,

1.86 GHz machine with 4GB RAM. In contrast, our scheme takes just 5 seconds. Fig-

ure 6.2 shows the normalized gain in allocation time of our scheme in a logarithmic

scale when having up to 80 users in the simulator. The complete picture of our trade-off

can be seen in Figure 6.3. Our scheme sacrifices 20% economic efficiency, however it

achieves substantially lower allocation times. In addition, our scheme is strategy-proof

and budget-balance. In contrast, the VCG-based combinatorial auctions scheme has

a negative budget-balance, which means the market-maker has to supply to additional

currency required for payments. On the other hand, the Threshold scheme achieves

budget-balance, however it loses the strategy-proof property. Nevertheless, both com-
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binatorial auctions schemes are not feasible to implement due to the large allocation

times required.
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Figure 6.3: Economic Efficiency vs Computational Efficiency

6.2.2 Economic Efficiency

In the previous section, we studied the economic efficiency achieved by our scheme

as the total provider and consumer welfare. In this section, our objective is to have

a more detailed analysis of the economic efficiency by looking at each element that

determines the total welfare, namely the consumer and provider welfare, the number

of successful consumer requests (consumer efficiency), and the number of allocated

provider resources (provider efficiency). Informally, the total welfare is increased when

any of its elements is increased. We use for comparison two pricing schemes that are

widely used when allocating consumer requests for one resource type, namely one-sided

auctions and fixed pricing.
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1. Comparison with One-sided Auctions

Comparison with traditional one-sided (English) auctions is performed using the

discrete-event auctions simulator we developed. The simulator has two queues or-

dered using the First-Come-First-Serve strategy: one for consumer requests and the

second for provider published resources. One-sided auctions take place by matching

a provider resource with all available requests in the consumer queue. In contrast,

our scheme matches a consumer request with all available resources in the provider

resource queue. As in a real market, we model three market conditions: balanced

where resource demand matches supply, under-demand where resource demand is

less than supply, and over-demand where resource demand exceeds supply. Mar-

ket conditions are modeled by varying the arrival rates of consumer requests and

provider published resources. In a balanced market, both rates are equal and are

sampled from an exponential distribution with a mean of one arrival/minute. For

under-demand and over-demand markets, we set the mean consumer request arrival

rate at 0.5 and 2 arrivals per minute, respectively. Table 6.3 compares the results

of 10,000 consumer requests under different market scenarios and with different

Price Succ. Consumer Requests
Variation(%) Auctions Proposed Increase(%)

Balanced Market
10 5,475 6,918 26.4
20 5,454 6,933 27.1
40 5,452 6,903 26.6

Under-Demand
10 6,637 7,894 18.9
20 6,645 7,904 19.0
40 6,637 7,909 19.2

Over-Demand
10 3,348 3,906 16.7
20 3,380 3,906 15.6
40 3,364 3,912 16.3

Table 6.3: Price Variation under Different Market Scenarios
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price variation. For simplicity, each consumer request consists of one resource type

and one item. The standard deviation between the providers and consumers pri-

vate information is captured in the Price Variation column. Accordingly, the pri-

vate information is generated in the simulator using a uniform distribution between

(100−PriceVariation) and (100+PriceVariation). A greater price variation means

that the difference between consumer reserved prices and provider costs is higher on

the average, which in turn leads to a smaller number of possible allocations due to

individual rationality.
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Figure 6.4: Comparison with One-sided Auctions

Figure 6.4 shows that our scheme achieves an overall improvement of 16% in terms

of the total number of successful consumer requests over traditional auctions when

the demand exceeds supply, and over 25% in a balanced market.
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2. Comparison with Fixed Pricing

In this experiment, we compare the individual user welfare achieved by our scheme

with the welfare achieved by the fixed pricing scheme, currently used by many cloud

providers. The user welfare is determined by the difference between the user utility

and payment. In the proposed scheme, the user utility is the same as the published

price, since both providers and consumers are shown to be truthful, and thus ti =

td
i . In the case of fixed pricing, we similarly consider a truthful consumer, i.e. the

published request price represents the consumer utility. However, we do not make

the same assumption about providers, which have a fixed resource price that may

differ from the provider utility. Thus, in our evaluation, we compare only the average

consumer welfare when using fixed and dynamic pricing, respectively.

We consider a balanced market, where demand and supply are equal. In the FreePas-

try simulator, the centralized market-maker receives consumer requests and provider

resource publish events with equal probability, and with an inter-arrival time of one

second. These events are uniformly distributed among 10,000 FreePastry nodes,

and contain a number of resource types uniformly distributed between 1 and 3, cho-

sen randomly from a total of 5 resource types. The number of items for each re-

source type is generated according to an exponential distribution with a mean of 10.

Providers have the fixed price of 100 per item. When using our pricing scheme,

Metric Price Pricing Scheme
Variation (%) Fixed Proposed

Consumer Welfare ($)
10 3.5 4.6
20 7.4 9.3
50 18.8 23.3

Succ. Consumer Requests (%)
10 47.7 62.5
20 48.8 62.2
50 49.5 62.1

Table 6.4: Comparison with Fixed Pricing
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we vary the provider price from 100 by a maximum of 10%, 20% and 50%, i.e.

the price is generated according to a uniform distribution between 90 and 110, 80

and 120, and 50 and 150, respectively. Consumer reserved price is varied accord-

ing to the same percentage, shown in Table 6.4 in the column Price Variation. The

simulation runs for 600,000 events, which, for an arrival rate of one second, give

a total simulation time of approximately seven days. To reduce sampling error, we

run our experiments three times and compute the average. Our results show that our

proposed dynamic scheme increases both the consumer welfare and the percentage

of successful consumer requests, shown in the Succ. Consumer Requests column.

Given that the mean consumer utility is 100, and a theoretical2 maximum welfare

for an item is achieved with the minimum payment, i.e. (100−PriceVariation), we

consider that the maximum welfare equals the price variation. Accordingly, using

the proposed dynamic pricing scheme in a balanced market, the consumer welfare is

increased by approximately 10%, while at the same time the number of successful

consumer requests is also increased by more than 25%.

We summarize the results for both one-sided auctions and fixed pricing in Fig-

ure 6.5, where we include the case of under-demand and over-demand for fixed-pricing.

Our scheme performs consistently better than one-sided auctions, and achieves a bet-

ter consumer efficiency than fixed pricing in the case of under-demand and balanced

market. When demand is higher than supply, our dynamic scheme will compute higher

provider payments according to the market price, and thus the number of successful

requests will be lower than when using fixed pricing.

2The actual maximum welfare can be computed using a NP-complete algorithm, and is smaller than
the theoretical welfare.
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Figure 6.5: Successful Consumer Requests in Different Market Conditions

6.2.3 Multiple Resource Types per Request

In contrast to one-sided auctions and fixed pricing, where users have to manually ag-

gregate resources, our proposed pricing scheme can allocate a consumer request with

multiple resource types. In the next experiments, our objective is to study the economic

efficiency when having requests with multiple resource types under different market

conditions, and compare our results with one-sided auctions and fixed pricing.

In the first experiment, we study the impact of the multiple resource types on the

number of successful consumer requests. For this, we compare our scheme with one-

sided (English) auctions, where we consider a request successfully allocated only when

the consumer wins all the one-sided auctions for all of the resource types in the request

at the same time. We are using a similar setup and the same discrete-event auctions

simulator as in the previous section, where we vary the number of resource types in both

consumer requests and provider publish between 1 and 16. Figure 6.6 shows that when
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Figure 6.6: Varying the Number of Resource Types

performing allocations for requests with multiple resource types, our scheme performs

much better than traditional auctions as the number of resource types increases.

In the next experiment, we compare our scheme with fixed pricing. We vary the

number of resource types in a request from 5 to 20 with a price variation of 20%.

We also consider different market conditions. In the case of a balanced market, the

probability for a consumer request is set to 50%, while for under-demand is 33%, and

for over-demand is 66%, respectively. Event arrival rate is set to 1s, where an event

can be a consumer request or provider publish. We measure the average consumer

welfare, the percent of successful consumer requests (Succ. Consumer) and the percent

of allocated provider resources (Alloc. Provider). Table 6.5 presents our results. In the

case of fixed pricing, the percentage of successful consumer requests is close to 50% for
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Resource Succ. Consumer (%) Alloc. Provider (%) Consumer Welfare ($)
Types Fixed Proposed Fixed Proposed Fixed Proposed

Under-Demand
5 48.4 82.3 24.1 41.8 6.2 10.9

10 47.4 86.3 23.4 44.1 4.7 9.4
20 46.5 89.7 22.1 46.4 3.3 8.1

Balanced Market
5 48.2 62.4 47.5 61.0 6.2 7.9

10 47.1 62.9 46.5 62.5 4.7 6.3
20 46.2 63.3 46.0 64.0 3.4 4.9

Over-Demand
5 48.2 42.1 95.4 75.5 6.2 6.1

10 47.4 41.4 93.1 74.2 4.7 4.8
20 46.2 40.4 91.7 73.0 3.4 3.7

Table 6.5: Economic Efficiency with Multiple Resource Types

all market conditions, since the consumer item price is uniformly distributed with the

mean equal to the provider item price. However, the percentage of successful consumer

requests decreases when the number of resource types increases, since the number of

providers that are allocated to satisfy a request also increases.

In contrast, in the case of our proposed dynamic scheme, the percentage of success-

ful consumer requests varies under different market conditions, according to the forces

of demand and supply. As in Figure 6.7, when demand is lower than supply, the per-

centage of successful consumer requests is higher than in the case of a balanced market,

while for over-demand the percentage decreases further. Using the proposed auction

scheme achieves a higher percentage of successful consumer requests and provider al-

located resources, in the case of under-demand and balanced market. When demand

is higher than supply and the number of resource types in a request increases, there

is premise for monopolistic providers [91] when there are not enough providers in the

market to compute payments using the VCG-based payment function. In this case, the

proposed scheme cannot allocate provider resources while maintaining the strategy-

proof property, and an alternative pricing function for the monopoly situation needs to
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Figure 6.7: Successful Consumer Requests with Multiple Resource Types
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be used, which is not strategy-proof.

Similarly to the above, using fixed pricing results in the same mean consumer wel-

fare when varying market conditions, and welfare decreases when increasing the num-

ber of resource types. Figure 6.8 shows that, for our proposed pricing scheme, the

consumer welfare is higher when compared to fixed pricing, and varies according to

demand and supply: consumer welfare increases when demand is lower than supply,

and decreases when demand is higher.

Figure 6.9 shows the number of allocated provider resources normalized, for fixed

pricing (shaded red area) and the proposed scheme (shaded blue area), under different

market conditions when the number of resource types varies from 5 to 20. In the case

of under demand and balanced market, our scheme is able to allocate a larger number

of provider resources, and performs worse only in the case of over-demand. This is be-
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cause when is over-demand, our pricing mechanism will compute higher provider pay-

ments, according the current the market price. Similarly, in the case of under-demand,

the dynamic scheme is able to adapt by using a lower resource price and it achieves a

larger number of allocated resources. In the case of a balanced market, the economic

efficiency is increased by approximately 15%.

6.3 Distributed Pricing

In this section, our main objective is to analyze the scalability of our distributed pricing

scheme and determine the overhead introduced by the synchronization protocol. Our

study uses the FreePastry overlay network in two different environments: the FreePastry

simulator, where we can simulate a large distributed market, and PlanetLab [93], where

we deployed a prototype of our scheme and use it to validate the simulator results on

a smaller number of distributed nodes. As shown in Figure 6.10, FreePastry simulator
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Figure 6.10: FreePastry Simulator Bootstrap Time
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supports close to 35,000 peers before running into scalability issues of its own. The

bootstrap time in the simulator represents the time taken by a node to join the overlay.

When increasing the number of users in the simulator, the boot time is also increased

because of the stabilization protocol employed by FreePastry. In order for the overlay

to reach steady-state, we feed the workload to the simulator in two steps. In the first

step, the workload consists only of user join requests, with inter-arrival times of one

second. In the second step, after the network stabilizes, we input the second workload

that contains the consumer requests and provider resource publish.

6.3.1 Vertical Scalability

To study vertical scalability, with respect to the number of resource types in a consumer

request, we compare the average allocation time obtained by the distributed scheme

with the centralized scheme. Both the distributed and the centralized scheme are im-

plemented in FreePastry. In the latter, the first peer in the overlay is delegated to be the

market-maker, while the other peers are either consumers or providers.

In our experiments, we use 5, 10, 20 and 40 resource types in a consumer request for

both the centralized and distributed implementation. We run the distributed application

on both the simulator, and on the PlanetLab prototype. We create an overlay network

containing 50 peers, where each peer generates 100 events. The total inter-arrival rate

of the events is exponentially distributed with the mean of one second. We consider

a balanced market, where demand equals supply. Accordingly, each user event has

an equal probability for a publish or a request message. Additionally, the number of

items for each resource type is generated from an exponential distribution with mean

10, and the price for a resource item is uniformly distributed between 80 and 120 (price

variation is set to 20%).
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Figure 6.11: Increasing the Number of Resource Types in a Request

Our results, shown in Figure 6.11, show that in the distributed market, the auction

protocol imposes a greater overhead and, when having a small number of resource types

in a request, the average allocation time is higher than the centralized implementation.

For example, when having requests for 10 resource types, the allocation time is 0.1s

for the centralized scheme, while for the distributed scheme is 0.7s. However, as the

number of resource types increases, the distributed scheme proves to be scalable and

maintains a consistent allocation time of less than one second. For example, when

having consumer requests for 25 resource types, the average allocation time for the

centralized scheme is 5s, while for the distributed scheme on the PlanetLab prototype it

is 1.1s. It can be seen that the average allocation time obtained in simulations is higher

than the measured time on PlanetLab. This is because in the simulator we used a fixed

network delay between peers of 100ms, which is higher than the actual delay between

PlanetLab nodes.
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6.3.2 Horizontal Scalability

To study the horizontal scalability, with respect to the number of users, we use only

the FreePastry simulator because PlanetLab is not able to provide the necessary number

of nodes for this scalability study. In this experiment, we vary the network size from

1,000 to 30,000 users. We use similar settings as in the previous study: one second

event inter-arrival rate, balanced market, number of items from an exponential distribu-

tion with mean 10, price uniformly distributed between 80 and 120, and 100ms fixed

network delay. The number of resource types in a consumer request is sampled from

a uniform distribution between 1 and 10. We run the simulations for 600,000 events,

which represent one simulation week.
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Figure 6.12: Increasing the Number of Users

Figure 6.12 presents our results. As can be seen, the proposed distributed pricing

scheme is horizontally scalable, as the average allocation time increases logarithmic

with the number of users. For example, the average allocation time when having 1,000
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users is 0.91s, and for 30,000 users is 1.1s. Additionally, we measured the average

number of hops for all messages required by the proposed distributed protocol and

found that both curves have the same gradient. Thus, we conclude that our scheme

adopts the horizontal scalability of the underlying overlay network.

6.3.3 Impact of Network Delay

Computational efficiency is a major design criterion in the allocation of shared re-

sources. In addition to vertical and horizontal scalability, our theoretical analysis in

Chapter 4 shows that network delay is one of the factors that influences the alloca-

tion time in the proposed distributed scheme. To evaluate the impact of network delay,

we simulated an overlay network of 10,000 peers, with an event inter-arrival rate of

one second in a balanced market. We simulated 600,000 events for different values of

network delay, ranging from 100ms to 900ms. An event is a consumer request or a
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Figure 6.13: Impact of Network Delay
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provider resource publish. For comparison, we plotted average allocation time for the

simulations together with the theoretical worst-case scenario in Figure 6.13. Although

the network delay from the PlanetLab nodes was much lower (∼ 0.04s) than the values

used in our simulation, we found that a large network delay can result in increased user

waiting times. For example, when the network delay is 0.9s, the average allocation time

increases to more than 15s.

6.3.4 Impact of Arrival Rate

In addition to network delay, out theoretical evaluation of the distributed scheme has

found that the consumer request arrival rate influences the allocation time. In our dis-

tributed scheme, each consumer request is routed by the overlay network to a random

peer that becomes the request broker. Thus, in a large network, the consumer request

rate is not an issue for scalability. However, each request broker sends lookup requests

to the resource brokers for each resource type in the consumer request. Thus, the issue

is the arrival rate of resource type lookups at the resource broker, which synchronizes

with the request broker using the protocol described in Chapter 4.

To study the impact of arrival rate, we vary the request inter-arrival rate between 0.15s

and 1s in the FreePastry simulator. We use consumer requests for one resource type

and a fixed network delay of 100ms, to achieve a similar inter-arrival lookup rate at the

resource broker. The FreePastry overlay has 10,000 peers and we generate consumer

request events and provider publish events with equal probability, for a balanced market.

We run the simulator for 600,000 events. As can be seen in Figure 6.14, having the inter-

arrival time lower than 0.25s leads to an exponential increase in allocation time. For

example, the allocation time for an inter-arrival time of 0.15s is more than 2s, almost

double than the allocation time obtained for an inter-arrival time of 0.2s. The knee

value depends on the network delay because of the synchronization mechanism, with

the curve in Figure 6.14 specific for the 100ms delay.
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Figure 6.14: Impact of Arrival Rate

6.4 User Rationality in Federated Clouds

Cloud infrastructure services, also known as Infrastructure as a Service (IaaS), deliver

computer infrastructure using a virtualized environment to cloud consumers over the

Internet. In IaaS, providers typically use fixed pricing, such that strategic user behavior

is limited. Lately, Amazon EC2 has started to offer resources using a dynamic pricing

scheme, spot pricing. In contrast to our scheme, in spot pricing the resource price is

set only by the demand. Cloud consumers specify bids that represent their reserved

price, i.e. the maximum hourly price they are willing to pay for the resource type

(where the resource type is the required instance type). A spot request may contain

several instances, all of the same instance type. In contrast to our scheme, consumers

cannot request for multiple resource types. The spot price is determined by Amazon

dynamically, based on the current queue of spot requests. When the current spot price is
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lower than the consumer bid, the respective spot request is dequeued and allocated, and

the instances are started. After each hour, the spot price is updated, and, if the current

spot price becomes higher than the consumer bid price, the instances allocated for the

consumer spot request are terminated. The cloud consumer can specify a persistent flag

for the spot request, such that after termination the request will be put back in the queue

and restarted when the spot price becomes lower than the consumer bid price.

In this section, our objective is to study the user rationality in a federated cloud

by comparing the consumer welfare of spot pricing and our proposed strategy-proof

scheme in different Amazon EC2 regions. We use the EC2 spot price traces available at

CloudExchange [30] in four regions: us-east-1 (Northern Virginia), us-west-1 (North-

ern California), eu-west-1 (Ireland), and ap-southeast-1 (Singapore). When using the

spot pricing scheme, requests are allocated to the region geographically closest to the

consumer, whereas in the case of our strategy-proof pricing scheme, requests are allo-

cated dynamically to any EC2 region. We focus in our study on computational-intensive

instance types (c1.medium, c1.xlarge), with the assumption that data availability and the

latency of instances allocated in other regions are not an issue for the consumers.

6.4.1 Methodology

According to Amazon, the spot price is determined periodically by the load of EC2

[5]. In the absence of any other public information provided by Amazon about the

infrastructure or workload in EC2, we propose a bottom-up approach to predict the

consume welfare. Our approach, shown in Figure 6.15, contains three steps. In the

first step, we use a pricing model to predict the hourly load of an EC2 region, using the

spot price history. In the second step, we use a workload model to generate consumer

spot requests that produce the load predicted in the first step. In the last step, we create

a request queue for all the EC2 regions, and measure the consumer welfare obtained

when allocating using the spot pricing scheme, and the strategy-proof scheme.
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Figure 6.15: Determining User Welfare on EC2

Pricing Model

The pricing model is based on three observations we determined after the examination

of the EC2 spot prices.

1. Figure 6.16(a) shows the spot prices of the same instance type, c1.xlarge, across dif-

ferent EC2 regions in the first weeks of June 2010. As can be seen from the figure,

spot prices have spikes when the demand increases. However, these spikes are not

correlated between different regions. Our statistical tests found 10%–20% correla-

tions in a one year time period. For example, on June 6, there is a steep increase in

the spot price in the eu-west-1 region, but a decrease in the region us-east-1. Accord-

ingly, our first observation is that each region computes spot prices independently,

based on the respective region load. Thus, we can consider in our evaluation that

each EC2 region is acting as a different resource provider in a federated cloud.

2. In Figure 6.16(b), we plot the spot prices for different resource types within the

same EC2 region, us-east-1, for the same period of time as above. An examination

of the data shows that, within the same region, there are spikes in the spot price for

different instance types, according to the demand for the respective resource type.
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Figure 6.16: Amazon EC2 Spot Prices
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However, the spikes are not correlated among different resource types, with a 10%–

20% correlation found in one year time of traces. For example, on June 4, there is a

steep increase in the spot price of the m1.large instance type, and at the same time a

steep decrease for the m1.small instance type. Accordingly, our second observation

is that each region has a different pool of resources for each instance type. Based on

this observation, we can analyze different instance types independently.

3. The plots in Figure 6.16 shows us that spot prices are usually within a small range,

with spikes when the demand increases. Our last observation is that each instance

type in each region has a minimum reserved price (r), and a maximum spot price

(p f ). Although spot prices can increase for short periods of time to values higher

than the fixed instance price, we use, for simplicity, the fixed price as the maximum

spot price.

Based on the above observations and assumptions, we propose to use a power function

to estimate the load of each EC2 region from the trace data. Accordingly, our model

uses the following function for spot pricing:

spot price = r+(p f − r)∗ loadk (6.1)

where k is a parameter that determines the gradient of the increase in spot price relative

to load.

Workload Model

Using the pricing model outlined above, we can use the spot prices to predict the load

of the EC2 regions, for each instance type. In this section, we present our workload

model, which determines the consumer requests that generate the respective load. We

need to address two issues. The first issue is determining the size of the EC2 region

instance pool, for each instance type. The size of the instance pool is used to compute

140



Chapter 6. Experimental Evaluation

the total number of instances running in an EC2 region. The second issue is, given the

total number of instances running, how to determine the number of consumer requests

and the number of instances in a request.

Amazon does not provide any historical information about the number of instances

running in EC2. However, it has been found that the unique identifier assigned to an

EC2 instance at the time it starts running can be used to determine the total number of

virtual machines started in the Amazon cloud until that point in time [101]. Accord-

ingly, using the identifiers of instances started at different dates is possible to estimate

the number of instances started in that interval of time. In our experiments, we look at

the spot prices from June 2010, for which there are available the traces with the spot

prices [30], the number of instances started daily, and the distribution of instance types

in the us-east region [99]. We consider the distribution of instance types in the other

EC2 regions similar to us-east, and the size of the regions proportional to the number

of public IP addresses from each region, published by Amazon.

Using the number of instances started daily from each instance type, our workload

model determines the number of consumer spot requests, the number of instances for

each request, and the request arrival time, as follows. Firstly, we determine the num-

ber of instances in a request, which we assume it follows an exponential distribution.

The distribution mean is computed by fitting the number of CPUs requested in paral-

lel workload traces from production systems. Specifically, in our experiments, we use

the traces of jobs that run on HPC clusters, available at the Parallel Workload Archive

[87]. Secondly, we start to generate requests for each instance type in an EC2 region,

containing a number of instances according to the exponential distribution determined

above. We consider all the consumer requests with the total number of instances simi-

lar to the number of instances started hourly in the Amazon region from the EC2 trace.

Lastly, we generate the request inter-arrival time, using a Poisson distribution with the

mean of (3600−N) seconds, where N is the number of hourly requests determined in
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the previous step.

Validation

Spot prices are expressed by discrete values, in cents (¢), with maximum one decimal

point. Accordingly, each discrete spot price corresponds to a range load values, with

the same spot price for each range. For example, for the m1.small instance type in the

us-east-1 EC2 region, the minimum price is r = 2.5¢, and the fixed price is p f = 8.5¢.

Using the parameter k = 4, we determine the spot price p = 2.5¢ for the load range

0−36%, p= 2.8¢ for the range 47−51%, etc. As the load increases, the ranges become

smaller and there is a steeper increase of the spot price, similar to the spikes observed in

the trace data. The value for the parameter k was determined experimentally, using trial

and error. We validated our model by comparing the spot prices from the EC2 trace with

the spot prices generated using Equation 6.1. Figure 6.17 shows the spot price for the
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c1.xlarge instance type from the trace using a dotted line, and the spot price generated

using our model using a continuous line. For the figure to be clear, we plotted only the

us-east-1 and eu-west-1 regions, between June 5–8.

6.4.2 Results

From the trace data, we can observe that the us-west, eu-west and ap-southeast regions

are similar with respect to both the reserved price, r, and the fixed price, p f . For ex-

ample, for the instance type c1.xlarge, the reserved price is 30.4¢ and the fixed price is

76¢ in all three regions. However, for the us-east region, both the reserved price and the

fixed price are different than in the other regions, for all instance types. For example,

the reserved price for the c1.xlarge instance type is 22.8¢ and the fixed price is 60¢.

Using r, p f , and the spot prices from the traces, spot price, we determine the hourly

load ranges using the function in Equation 6.1, as follows:

loadmin = k

√
spot price− r

p f − r
∗100 (6.2)

loadmax = k

√
spot price+0.1− p0

p f − r
∗100 (6.3)

Next, we estimate the number of instances of each instance type running each hour,

based on the total number of hourly running instances, the load range, (loadmin −

loadmax), and the distribution between the instance types. According to [99], in June

2010, there were 9% c1.medium instances and 28% c1.xlarge instances from the total

number of virtual machines started on EC2. Lastly, we generate consumer requests

for a number of instances according to an exponential distribution with the mean 42.2,

determined by the fitting function from the parallel workload trace. We used the LLNL-

Thunder log, which contains several months of records from the #2 machine in the 2004

Top500 list, installed at Lawrence Livermore National Lab [87].
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Our implementation uses MATLAB scripts to predict the consumer requests as de-

tailed above, and to order the requests in all the EC2 regions into one queue, sorted

by the request arrival time. We allocate the consumer requests using the two pricing

schemes using the First-Come-First-Serve policy. Consumer welfare when using spot

pricing, wspot , and the strategy-proof pricing scheme, wdyn, is determined using the

following functions:

wspot = ∑(p f − pspot) (6.4)

wdyn = ∑(p f − pdyn) (6.5)

where pspot is the instance price determined in a region when using spot pricing, and

pdyn is the price determined across regions by the strategy-proof scheme.

Figure 6.18 shows our results for the c1.medium instance type. In Figure 6.18(a),

the black line represents the dynamic price determined using the strategy-proof scheme,

with requests being allocated to any EC2 region. The thin lines represent the spot prices

determined using the proposed spot pricing function, from Equation 6.1, in all of the

EC2 regions, with a request being allocated only in the region where it was generated.

It can be seen from the figure that the instance prices computed using the strategy-proof

scheme are not lower than the reserved price of the three similar EC2 regions, due to

the financial incentives required to achieve strategy-proof. When allocating consumer

requests for one instance type, the strategy-proof scheme is similar to a Vickrey auction

[120], where the payment is equal to the second provider price. In the case of Amazon

EC2 regions, the lowest second price that can be found is the same reserved price for

the three regions, us-west-1, eu-west-1, and ap-southeast-1.

A comparison of the normalized consumer welfare achieved by the two pricing

schemes is shown in Figure 6.18(b). It can be seen that using the strategy-proof scheme

results in higher consumer welfare by more than 10% during the entire period. This is
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mostly because the strategy-proof scheme can allocate instances to different providers,

according to the market price set by demand and supply. Thus, requests that generated

in a region with high demand can be allocated by our scheme in a different region, such

that consumer welfare is increased.

Similar to the above, we evaluated the c1.xlarge instance type. Figure 6.19(a) shows

the different prices obtained by the spot pricing scheme and the strategy-proof scheme.

For the c1.xlarge instance type, the price determined by our strategy-proof scheme is

not less than 0.075¢, the second-best reserved price. We plotted the consumer welfare

in Figure 6.19(b). Our results show that, for the c1.xlarge instance type, the average

consumer welfare obtained using the strategy-proof scheme is higher by 4% in the first

days and in the last week of the observed period. However, for the rest of the period, the

average consumer welfare obtained using the strategy-proof scheme is only marginally

higher, by 1%, to the welfare obtained using the spot pricing scheme. By correlating the

welfare with the demand and prices from Figure 6.19(a), we can observe that the perfor-

mance of the strategy-proof scheme starts to degrade beginning with day 6, when there

is a high demand in the eu-west-1 region, until day 23, when the demand decreases.

Moreover, in day 18, our strategy-proof scheme performs similar to spot pricing, due

to a sudden spike in demand in the us-east-1 region. Similar to our previous findings

[74], the consumer welfare achieved by the strategy-proof scheme varies according to

demand and supply. Thus, the consumer welfare increases when demand is lower than

supply and decreases when demand is higher.

By analyzing the EC2 traces and computing the consumer welfare, we try to deter-

mine the rationality of cloud computing users. While users have found methods to de-

crease their costs when running instances on EC2, no strategy uses the pricing schemes

available in EC2. In this context, rational behavior may include, for example, reselling

reserved instances for profit, or bidding on instances in regions with lower demand and

prices. Our evaluation shows that consumer welfare can be increased when users be-
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have rational by more than 10%, even when having payments larger than the minimum

spot price. We regard this as a sign that rationality is currently not a significant issue

in cloud computing, with standalone providers that can adjust their supply to influence

the resource market. For example, constraining supply to be lower than demand leads

to a lower consumer welfare, and a better outcome for the provider. However, cloud

computing usage is currently increasing both in breadth, i.e. the number of instance

types and services offered, and in depth, i.e. the number of providers. With an increas-

ing number of cloud consumers, it is expected that more providers will offer similar

services. With interoperability among providers, consumers will have a choice of the

same service across different clouds to improve reliability and elasticity, and rationality

can become an important issue as consumers and providers strategize to improve their

welfare.

6.5 Summary

In this chapter, we evaluated the performance of the proposed pricing mechanism in

different conditions. Our experimental evaluation complements the theoretical anal-

ysis of the economic properties and the scalability of our scheme. We evaluate the

trade-off between the economic and computational efficiencies by measuring the total

welfare and the request allocation time. Compared to combinatorial auctions, which

maximizes total welfare, our scheme sacrifices 20% economic efficiency. However, the

running time of our algorithm is greatly reduces, from hours in combinatorial auctions,

to seconds. Our in-depth study of the economic efficiency showed that our scheme can

allocate 25% more consumer requests than one-sided auctions, and 35% more requests

than fixed pricing, while increasing the consumer welfare by 10%. In the case of re-

quests with multiple resource types, the number of allocated consumer requests can be

increased by up to 40% when there is low resource demand.
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We evaluated the scalability of our distributed auctions scheme using simulations

validated by a prototype implementation on PlanetLab. Our results showed that our

scheme is scalable when increasing the number of resource types in a consumer re-

quest, and the number of users in the system. However, due to the overhead of the

synchronization mechanism, the allocation time for consumer requests with less than

25 resource types is higher than a centralized implementation, and increases exponen-

tially with the network delay.

Lastly, we studied the rationality of consumers in a federated cloud composed of

four Amazon EC2 regions, using real traces of EC2 spot prices. Our evaluation shows

that, in the case of spot pricing, rational users can increase their welfare by more than

10% by bidding on resources in regions with lower demand. Thus, strategy-proof pric-

ing is required in federated clouds to incentivize rational users to bid truthfully.
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Conclusions

Currently, there is growing interest in federated sharing of computing resources, with

emerging architectures such as cloud computing, where commoditized resources are

shared and traded over the network. However, several challenges remain when allocat-

ing shared resources, such as incentivizing rational users, which can be untruthful in

order to increase their welfare, and supporting multiple resource types per request, such

that consumers do not integrate resources manually. In this thesis, we have designed

a strategy-proof resource pricing mechanism that can be used to allocate consumer re-

quests with multiple resource types, and prototype a federated cloud platform that uses

our mechanism to integrate resources from multiple cloud providers. We have con-

sidered the allocation of shared resources from two perspectives. From the economic

perspective, we achieve strategy-proof by providing incentives for truthful users, and

budget balance by having equal consumer and provider payments. From a compu-

tational perspective, our pricing and allocation algorithm computes user payments in

linear time, and our distributed auctions mechanism is scalable when increasing the

number of users and the number of resource types in a consumer request.
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7.1 Thesis Summary

The major contributions of this thesis are: i) strategy-proof pricing for market-based

resource allocation, ii) a dynamic pricing for multiple resource types per request, iii)

a scalable distributed auctions scheme, and iv) a platform for managing resources in

federated clouds. These contributions are detailed below.

1. Strategy-proof Pricing for Market-based Resource Allocation

While there is a consensus on the benefits of market-based approaches for the allo-

cation of shared resources, there is no common view on the appropriate economic

mechanism that should be used. A study of related works has shown several ap-

proaches that have been considered, such as bartering, fixed pricing, market-clearing

equilibrium price, proportional share, bargaining, and single or multi-dimensional

auctions. However, most of the authors have a single view when allocating shared

resources: either purely economic, with their primary goal economic efficiency,

or purely computational, with their main objective computational efficiency. In

contrast, our work considers both the economic and computational aspects, using

the mechanism design framework, which combines utility maximization from eco-

nomics, rationality and Nash equilibrium from game theory, and algorithm design

and complexity from computer science. From an economic point of view, there

is a trade-off among individual rationality, which defines the rational users, incen-

tive compatibility, which rewards truthful behavior, budget balance, which means

that provider and consumer payments are equal, and maximum economic efficiency.

From a computational point of view, there is a trade-off between Pareto efficiency

and computational efficiency. We have shown how a computationally efficient pric-

ing scheme can be used to allocate resources in a federated system with rational

users by using financial incentives.
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(a) Formal Approach to Market-based Resource Allocation

We formulate the market-based resource allocation problem as an utilitarian op-

timization mechanism design problem, with the output specification given by a

positive real valued objective function, such that our problem is compatible

with the classic economic mechanism, the Vickrey-Clarke-Groves auction. We

propose to trade-off Pareto efficiency, which allows us to achieve the other eco-

nomic properties, namely individual rationality, incentive compatibility, and

budget balance, while using a computational efficient algorithm. We define

the economic properties in the mechanism design framework, and express our

solution using a VCG-based function for providers, and a budget balance func-

tion for consumers. We formally prove that our solution achieves the economic

properties, and show in our theoretical analysis of the pricing algorithm its lin-

ear complexity.

(b) Economic and Computational Efficiency Trade-off

We have evaluated our trade-off both theoretical and experimental. Our experi-

mental study compares our scheme with two different implementations of com-

binatorial auctions, a scheme that is Pareto efficient. The VCG combinatorial

auction scheme is not budget balanced, while the Treshhold combinatorial auc-

tion scheme is not strategy-proof. We measure the total welfare for providers

and consumers, as an indicator of economic efficiency, and the average alloca-

tion time, as an indicator of computational efficiency. Although our mechanism

has close to 20% loss in terms of total welfare, the allocation time has been

reduces by several orders of magnitude, from hours to seconds. Our theoretical

analysis showed that our pricing scheme allocates resources in linear time. This

makes our mechanism feasible to implement in several systems where pricing

is used, such as cloud computing, online auctions and exchanges, or online ad-

vertising.
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(c) Pricing in the Monopoly Situation

One of the limitations of our scheme, similar to other VCG mechanisms, is

the monopoly situation, when consumer requests may not be allocated even

if resources are available, because one or several providers gain control of the

market by providing a sufficiently large portion from the total resources. For the

monopoly situation, we propose alternative pricing functions, which are partial

strategy-proof. This is because the monopolistic provider can adjust the supply

to influence the market price.

2. Dynamic Pricing for Multiple Resource Types per Request

The pricing mechanism involves matching market participants, namely consumers

and providers, to engage in an exchange using a common type of currency. Often,

consumers require multiple resource types, which may be allocated from different

providers. In such cases, optimal allocation algorithms are often infeasible to imple-

ment, and resource providers either use fixed tiered pricing, or create separate mar-

kets for each resource type. The users have to request resources from each provider,

and integrate them manually, leading to a loss in economic efficiency, among others.

The pricing and allocation mechanism we propose addresses this issue by leveraging

reverse auctions.

(a) Reverse Auction Scheme

In traditional auctions, a third party, designated as the market-maker or auction-

eer, receives bids from the consumers and determines the allocation winners.

Accordingly, this results in consumers having to bid manually for each resource

type. In contrast, in our mechanism the providers submit the reserved price for

each resource type as a bid to the market-maker, which auctions consumers re-

quests sequentially, using the First-Come-First-Serve policy. We compute the

payments for the winning providers for each resource type in the consumer re-

quest, and perform the allocation when the request reserved price is higher than
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the total seller payment. Our proposed reverse auction mechanism is very ef-

fective in allocating consumer requests. Our experimental evaluation has shown

that, even in the case of requests for one resource type, our scheme is able to

allocate over 25% more requests than traditional auctions. However, our mech-

anism greatly out-performs traditional auctions in the case of consumer requests

with multiple resource types, when it achieves a number of successful requests

several orders of magnitude higher than the consumer bidding individually on

each resource type and winning all auctions at the same time.

(b) Dynamic Pricing in Different Market Conditions

Our pricing scheme computes payments dynamically, based on demand and

supply. In contrast to fixed pricing, our scheme can incentivize consumers when

demand is low with lower payments and providers when demand is high with

higher payments. We have studied the cases of under-demand and over-demand,

and found that our scheme can allocate 15-20% more requests for requests with

one resource type. We have achieved good results with multiple resource types

per request. Compared to fixed pricing, currently used by many cloud providers,

our scheme allocated up to 30% more consumer requests in a balanced market.

However, the advantage of our scheme over fixed pricing can be seen when

demand and supply fluctuates. For example, in the case of under-demand, our

scheme allocated up to 80% more consumer requests and 65% more provider

resources, with increasingly better results as the number of resource types in a

consumer requests is higher. The economic efficiency is also improved, as the

user welfare is also increased by our scheme by close to 30% when demand is

low. However, in contrast to the previous results, the user welfare decreases as

the number of resource types in a consumer request increases. Our results show

that both the allocation efficiency, and the economic efficiency is increased by

our scheme over simple pricing mechanisms that are currently in use.
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3. A Scalable Distributed Auctions Scheme

The scalability of the pricing and allocation mechanism is of great importance in

large federated systems. Our theoretical analysis has shown that our pricing algo-

rithm is a function of the number of resource types in a consumer request, and the

number of providers in the market. Moreover, auctions mechanisms are inherently

centralized due to the market-maker, which is responsible for receiving resource in-

formation from providers, and requests from consumers. To address these issues, we

proposed a distributed auctions framework, which leverages the distributed hash ta-

ble in a peer-to-peer overlay to maintain resource information based on the resource

type.

(a) Distribute Resources by Resource Type

In our distributed scheme, the role of the centralized market-maker is divided

between multiple users in the system. Thus, the proposed distributed auction

mechanism creates a peer-to-peer overlay containing both providers and con-

sumers, where the node closest to the identifier of a resource type, called a

resource broker, is responsible for maintaining the information and comput-

ing payments for the providers of the respective resource type. Similarly, a

consumer request with multiple resource types is sent to a peer in the overlay,

known as the request broker, responsible of allocating each resource type, and

computing the consumer payment. Providers publish resources using the P2P

store operation, while consumers submit requests using the P2P lookup opera-

tion.

(b) Three-phase Commit Pricing Protocol

We proposed a three-phase distributed protocol that makes use of Lamport’s

logical clocks to synchronize pricing of a request between request broker and

resource brokers, such that the economic properties of our scheme are main-
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tained. Our experiments using an implementation on top of FreePastry, an open-

source peer-to-peer overlay, have shown that our distributed auction mechanism

achieves vertical scalability when the number of resource types is increase, and

horizontal scalability, when the number of users is increased. Our simulations

with up to 30,000 peers have shown a logarithmic increase in the allocation time

for a consumer request with up to 40 resource types. The main limitation of our

approach is the overhead added to the allocation by the synchronization mech-

anism, which results in larger allocation times in the case of consumer requests

for a small number of resource types. Our theoretical and experimental analysis

focused on the network delay and the request arrival rates as the main limiting

factors.

4. A Platform for Managing Resources in Federated Clouds

There are several practical applications of our pricing and allocation mechanism,

such as in cloud computing, online auctions, online advertising or search page rank-

ing systems. In this thesis, we have proposed SkyBoxz, a federated cloud prototype

that integrates cloud infrastructure services from multiple providers, transparent to

the users.

(a) SkyBoxz Federated Cloud

Cloud computing provides users with seemingly infinite capacity without up-

front costs. Federated clouds integrate private and public clouds to increase

elasticity and reliability. SkyBoxz, our proposed federated cloud platform, al-

lows consumers to request different types of virtual machine instances, which

can be allocated to any provider in SkyBoxz. Interoperability among providers

is achieved using similar virtual machine images, which the same software

stack, in each cloud. All instances created by the same user are added to a vir-

tual private network. In addition to Infrastructure-as-a-Service, SkyBoxz can
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be used to create service platforms that leverage the federated cloud. Our pro-

totype currently provides resources from seven providers to consumers from

Singapore, Vietnam, and China.

(b) User Rationality in Federated Clouds

Cloud providers and consumers are rational, self-interested parties that maxi-

mize their own interest. Accordingly, both providers and consumers are not be

trusted to reveal their truthful valuations in the allocation of cloud resources.

Current federated clouds, similar to standalone cloud providers, use fixed pric-

ing, which does not take into account user rationality. Spot pricing, recently

introduced by Amazon, takes into account the market demand. In contrast, our

scheme prices resources based on both market demand and supply. We study

the user rationality using spot price traces in a federated cloud composed of four

Amazon EC2 regions. Our results show that, with spot pricing, currently used

in EC2, rational users can improve their welfare by more than 10% when being

untruthful. In contrast, our strategy-proof pricing scheme incentivizes users to

be truthful.

7.2 Further Directions

The strategy-proof pricing mechanism presented in this thesis offers several future re-

search directions, including: i) pricing with incomplete information, ii) partial strategy-

proof allocations, iii) pricing mechanism with SLA extensions, and iv) incentive mech-

anism for resource brokers.

1. Pricing with Incomplete Information

When pricing a consumer request, our mechanism requires complete information

about all the providers that offer each resource type in the respective request. With-

out complete information, strategy-proof is no longer achieved, and economic ef-
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ficiency decreases as users become untruthful. Maintaining complete information

is not difficult with a centralized resource location system, where both providers

and consumers submit their publish and resource requests to a centralized market-

maker. However, in a distributed scheme, resource location becomes an issue due to

the synchronization mechanisms required to maintain up-to-date information about

all providers with the same resource types. In our distributed auction scheme, we

use the lookup operation in the peer-to-peer overlay to discover providers, and the

three-phase-commit protocol to ensure all resource brokers have up-to-date resource

information. However, this approach leads to increased allocation times when the

network delay or the request arrival rates are high. A pricing scheme that achieves a

reasonable trade-off between the amount of provider resource information required

for pricing and the economic properties will facilitate a reduction of the request allo-

cation time. This scheme can be employed, for example, when there is high demand

for a resource type, which can influence the allocation times for all consumer re-

quests for that resource type. Moreover, having the possibility of using different

pricing schemes for each resource types in a request allows the flexibility of achiev-

ing different trade-offs between scalability and the economic properties.

2. Partial Strategy-proof Allocations

There are several cases when achieving strategy-proof may produce the same, or

worse, allocation results as more efficient, but only partial strategy-proof, pricing

schemes. For example, in the monopoly situation, a strategy-proof pricing scheme

cannot allocate resources, since the state of the system is not incentive-compatible.

In this case, only consumers can be incentivized to bid truthfully. Identifying in-

stances where a strategy-proof pricing scheme can be substituted with other schemes

can improve the allocation results and reduce the overall allocation time.
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3. Pricing with SLA Extensions

Our work focused on the trade-offs between the economic and computational effi-

ciencies that influence pricing. However, there may be other requirements, in addi-

tion to the economic and computational properties, that may decide the best resource

allocation. One of the user requirements when using shared resources is achieving

a specific Service Level Agreement (SLA), that is, an agreement between two or

more parties to share and use resources under specified limits and penalties. Thus,

provisioning the allocation mechanism with methods to perform pricing based on

different service levels is desirable for both providers and consumers.

4. Incentive Mechanism for Resource Brokers

The key property in our pricing scheme is strategy-proof. This is because federated

systems involve distributed users that are rational in maximizing their own interest.

We have considered that users are either providers or consumers of shared resources,

and designed our provider and consumer payment schemes to include financial in-

centives. We have moved further in this direction with an application that has large

potential for commercial exploitation: a federated cloud platform that can be used

to manage resources from multiple clouds. However, having a platform that can ad-

minister resources belonging to other users defines a new type of market participant,

namely a resource broker. Similar to the provider and consumer, the resource bro-

ker is a rational user interested in maximizing his own benefit. In this context, the

allocation of cloud resources requires a payment scheme that is designed to include

incentives not only for providers and consumers, but also for resource brokers.
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Appendix A

Impact of Rationality in English

Auctions

One-sided auctions are preferred by many providers because they are easy to imple-

ment and may increase their payments due to the winner’s curse, which results in the

consumer payment being higher than the resource value [89]. Winner’s curse occurs in

one-sided auctions that have no incentives for users to declare their truthful valuations,

such as the English auction. In this section, we study the impact of untruthfulness in the

case of English auction by looking at the variation of the number of successful requests

in different scenarios. We use our simple auctions simulator in a balanced market,

where an event has equal probability to be a provider resource publish or a consumer

request. For simplicity, we consider one item from one resource types. The simulator

runs with a number of 1,000 users, where a user is both provider and consumer. We

vary the number of untruthful users from 10% to 30%, indicated by untruthful. An

untruthful user declares a false reserved price, which differs from the truthful price ac-

cording to a uniform distribution with the mean given by price change. The truthful

price is sampled from an exponential distribution. Figure A.1 shows our results, with

a price change of 10% and 20% for each number of untruthful users, 10% and 30%
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respectively. We contrast these results with the number of allocations obtained by a

strategy-proof auction, given by truthful. We can see that the number of successful re-

quests degrades proportionally with the number of untruthful users in the system. For

example, the number of successful consumer requests is similar when 10% of users are

untruthful, both when the price change was 10% and 20%, and close to 90% of the num-

ber of successful requests performed by the strategy-proof scheme. Similarly, for 30%

untruthful users, the number of successful requests was close to 70% of the ideal case.

Our experiment shows that there is a direct relation between the number of successful

requests and the degree of untruthful users in the system. This result motivates the need

of a strategy-proof mechanism where participants are incentivized to be truthful.
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Appendix B

Prototyping Using FreePastry

FreePastry [90] is an open-source Java implementation of the Pastry protocol that can

be deployed over the Internet. We have implemented a prototype of our pricing mecha-

nism as a FreePastry application, and tested the deployment on PlanetLab. In addition,

FreePastry allows running applications in a simulator with minimum code change. Fig-

ure B.1 shows the minimum code to start an overlay network. This is achieved by

setting up the factory that generates the peer node identifiers (nidFactory), which is

used then to create a factory that generates the nodes (factory). Finally, a node can

be created using the factory, and booted. If the application is running in the simulator,

which is indicated by the flag SIMULATOR, a simulator object is created which is used

by the node factory instead of the public port used for communication. After the node

is booted, the application can be started on the node. FreePastry applications are cre-

ated by implementing the Application interface in the commonapi package. All the

classical peer-to-peer operations are made available by FreePastry to the application.

For example, a message from an application on the current node can be routed by the

overlay to the node responsible by an identifier id using the method node.route(Id,

Message, null). The last parameter represents a node handle, thus the route method

can be used to send a direct message to a node in the overlay. We make use of the
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// set-up random NodeIds

NodeIdFactory nidFactory = new RandomNodeIdFactory(env);

// construct the PastryNodeFactory

PastryNodeFactory factory;

if (SIMULATOR) {

NetworkSimulator simulator = new EuclideanNetwork(env);

simulator.setMaxSpeed(1.0f);

factory = new DirectPastryNodeFactory(nidFactory, simulator, env);

} else {

factory = new SocketPastryNodeFactory(nidFactory, bindport, env);

}

// construct a node using the factory

PastryNode node = factory.newNode();

// boot node, start ring with NULL bootaddress

if (SIMULATOR) {

bootaddress = node.getLocalHandle();

}

node.boot(bootaddress);

if (SIMULATOR) {

simulator.setFullSpeed();

}

Figure B.1: Initializing a FreePastry Overlay

overlay routing when publishing resources and requests, and when performing resource

lookups, while the subsequent communication between nodes is using direct messages.

When running our FreePastry application, the user is presented with a prompt,

where he can type several commands, including:

1. load <file>, to load and execute an input file

2. pause, in the simulator, to pause the execution

3. resume, in the simulator, to resume the execution

4. dynamic, to enable dynamic pricing

5. fixed, to enable fixed pricing
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6. statistics, on the root node, to show the number of peers in the overlay, the num-

ber of provider publish events, the number of allocated provider resources, the total

and successful number of consumer requests, the total welfare, and total allocation

time

7. loglevel <N>, to set the desired level of verbosity for the log messages displayed

on the console

8. exit, to quit the application

The input to the application is given in an XML file, which is interpreted using the

simple-xml v.1.6.2 and stax v.1.2 Java libraries. An example of an input file is given

below in Figure B.2. The types tag defines the total number of resources in the system.

The bundle tag is used to specify the number of resource types in a consumer, and

the number of resource types published by a provider, respectively. For example, in

Figure B.2, each consumer request or provider publish will have a number of resource

types generated randomly between 1 and 5. The items tag represents the number of

items for each type in the consumer request or provider publish. Next, the price tag

represents the price per item. For a consumer request, the total price is computed as

the sum of all the items of each resource type in the request. The publish and request

events are generated using the events tag, which specifies the number of events, the

interarrival time, and the probability for the event to be a user join, user leave, provider

publish or consumer request. In addition to generated events, we allow the user to

manually add specific events using the event tag, with the simulator time when the

event will run, the type of the event, such as publish or request, the node id that will

trigger the event, and the list of resources.
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<workload simulator="DynamicPricing" version="2.0">

<resource>

<types class="nus.soc.cslab.FixedValue">

<value>10</value>

</types>

<bundle class="nus.soc.cslab.UniformDistribution" seed="2010">

<low>1</low>

<high>5</high>

</bundle>

<items class="nus.soc.cslab.ExponentialDistribution" seed="2010">

<mean>10</mean>

</items>

<price class="nus.soc.cslab.UniformDistribution" seed="2010">

<low>80</low>

<high>120</high>

</price>

</resource>

<events number="10000" interarrival="100">

<join>100</join>

<leave>0</leave>

<publish>0</publish>

<request>0</request>

</events>

<events number="600000" interarrival="100">

<join>0</join>

<leave>0</leave>

<publish>50</publish>

<request>50</request>

</events>

<event time="5000">

<publish uid="1">

<resource type="1" items="3" price="95"/>

<resource type="2" items="3" price="90"/>

</publish>

</event>

<event time="5500">

<request uid="2">

<resource type="1" items="2" price="100"/>

<resource type="2" items="2" price="100"/>

</request>

</event>

</workload>

Figure B.2: Input File for the FreePastry Prototype
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Appendix C

SkyBoxz Organization

Each SkyBoxz [111] account is assigned to a user role, which can be consumer, provider,

or developer. The consumer role has the basic functions of creating requests, running

jobs and monitoring the state. In addition to the above, a provider can add new clouds,

administer the virtual machine images, and modify the instance types available for each

cloud, such as the number of cores, memory, disk, and price. Lastly, the developer can

modify the implementation of SkyBoxz and add new application platforms that connect

using the PHP API.

1. Consumer

(a) Jobs – shows the status of the latest jobs started by the consumer. If there are

no active jobs, it presents the user to start a new job

(b) Resources – shows a list with the current request and, for each request, the

running instance details, such as instance type, image, IP address, and cloud

provider (as in Figure C.1). Allows the user to inspect monitoring information

for each instance type (example in Figure C.2)

(c) Clouds – displays the list with the clouds accessible to the user, together with

the instance types in each cloud (see Figure C.3)
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(d) Terminal Login – displays a list with the running instances, and allows the user

to start a remote shell on the selected instance

(e) Acquire Resources – the user selects the number of instance types in the re-

quest, the cloud (by default it can allocate on all clouds), the pricing policy

(fixed pricing or dynamic pricing), the reserved price, and, for each instance

type, the number of cores, size of memory and storage, VM image, and number

of items (see Figure C.4)

(f) Projects – presents the list with the user projects and the status of the latest

jobs. If resources have been acquired, the user can start a job by selecting the

allocated request identifier (Figure C.5)

(g) Add Project – The user can create new projects by uploading source files and

specifying the commands of the job

2. Provider

(a) Add Cloud – the provider adds a new cloud by specifying the cloud access

point IP address and protocol, and access credentials for the users (under devel-

opment)

(b) VM Images – allows the provider to define define virtual machine images

(c) VM Settings – displays a list with the instance type for each cloud, where the

provider can modify the number of cores, memory size, storage, number of

items available, and the price per item

3. Developer

(a) Add Content – the developer can modify existing pages, add new pages and

new applications (example of SNAP test results in Figure C.6)
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Figure C.2: Monitoring on SkyBoxz
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