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Summary 

Multi-target drugs have greatly attracted the attention and interest in drug 

discovery.  Efforts that explore experimental and in-silico methods have been and 

are  being made in search for the novel multi-target agents. As part of the 

collective efforts for developing the tools to facilitate discovery multi-target 

agents, I firstly participated in the updated the Kinetics database of bio-molecular 

interactions (KDBI) and the Therapeutic targets database (TTD). The information 

in the two databases can offer informative data in multi-target drug discovery.  

 

Virtual screening (VS) is an increasingly used approach in the search for novel 

lead compounds. It is capable of providing valuable contributions in hit and lead 

compounds discovery.  It has been intensively explored and various software tools 

have been developed for the application of VS.  It would be very interesting to 

apply VS tools for the discovery of multi-target agents. However, many of the 

conventional VS tools encounter the issues of the insufficient coverage of 

compound diversity, high false positive, high false negative prediction and lower 

speed in screening large libraries. These issues would hinder the practical 

applications of conventional VS approaches in search of multi-target agents. 

Therefore, in order to identify multi-target agents that are more sparsely 

distributed in the chemical space than single-target agents, it is important to 

address these issues and develop the methods that are capable of searching large 

compound libraries at good yields and low false-hit rates.  

 



 

ix 
 

In this work, I explored a machine learning method, support vector machines 

(SVM), to develop the combinatorial SVM (COMBI-SVM) VS tool for searching 

dual-target agents for the treatment of cancers and major depression. COMBI-

SVMs models were preliminarily tested for searching dual-inhibitors of 4 

combinations (EGFR-FGFR, EGFR-Src, VEGFR-Lck, and Src-Lck) of the 5 

anticancer kinase targets (EGFR, VEGFR, Src, FGFR, Lck). COMBI-SVMs 

produced comparable dual-inhibitor yields and significantly lower false-hit rates 

for MDDR and PubChem dataset. There has been underpinning interest in 

discovery and developing selective multi-target serotonin reuptake inhibitors 

(SRIs) that can enhance antidepressant efficacy (1). The preliminary tests with the 

4 kinase dual-inhibitors showed promising results and this encouraged me to 

develop and test COMBI-SVMs for VS  multi-target serotonin reuptake inhibitors 

of 7 target pairs (serotonin transporter paired with noradrenaline transporter, H3 

receptor, 5-HT1A receptor, 5-HT1B receptor, 5-HT2C receptor, Melanocortin 4 

receptor and Neurokinin 1 receptor respectively) from large compound libraries. 

COMBI-SVMs showed moderate to good target selectivity in misidentifying 

individual-target inhibitors of the same target pair and inhibitors of the other 

target six pairs as dual-inhibitors; COMBI-SVMs also presented low dual-

inhibitor false-hit rates in screening large compound databases MDDR and 

PubChem. Compared to the other three VS methods (similarity searching, k-NN 

and PNN), it produced comparable dual-inhibitor yields, similar to or slightly 

better target selectivity, and slightly to or substantially lower false-hit rate in 

screening MDDR compounds.  
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Chapter 1 Introduction 

Considerable efforts have been put into drug design; however, the number of 

successful drugs did not increase appreciably during the past decade. Recent 

evidence suggests that the main causes of failure of compounds in the clinic are 

lack of efficacy and poor safety.  Agents that modulate multiple targets 

simultaneously have the potential to enhance efficacy or improve safety relative to 

drugs that modulate only a single target. As a result, multi-target agents have 

been gaining increasing interest of researchers and drug discovery teams. To 

assist the research of multi-target discovery, I participated in the further 

development of two pharmainformatics databases, i.e., the update of KDBI and 

BIDD. As a complementary approach to the traditional chemical and biological 

methods, virtual screening has aroused increasing attention in the 

pharmaceutical industry as a productive and cost-effective technology (2). 

Various computational screening tools, such as docking, quantitative structure 

activity relationship (QSAR), support vector machines (SVM), k-NN, PNN etc, are 

being developed and refined to effectively employ fast screening methods to yield 

potent lead hits. In my work, the combinatorial SVM (COMBI-SVM) virtual 

screening (VS) tool was developed for searching multi-target agents. This method 

was firstly tested with four anticancer kinase target pairs and then was applied to 

seven antidepressants target pairs. Compared with the other three VS methods, 

i.e., similarity searching, k-NN and PNN, COMBI-SVM produced comparable 

dual-inhibitor yields, similar to or slightly better target selectivity, and slightly to 

or substantially lower false-hit rate in screening MDDR compounds. 
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The following sections present a brief introduction to development of 

pharmainformatics databases (Section 1.1), an overview of methods in virtual 

screening (Section 1.2) and in-silico approaches to multi-target drug discovery 

(Section 1.3). In addition, the outline of this thesis (Section 1.4) is introduced. 

 

1.1 Pharmainformatics Database Development and Updates 

With the exponential increase in pharma-information, it is becoming increasingly 

necessary and important to collect and curate the information to provide 

informative sources to effectively  assist the studies of disease mechanisms and 

the discovery of new drugs. Pharmainformatics databases can provide up-to-date 

information and data that relate to disease mechanism studies, pharmaceutical 

research and drug development. They offer various types of information for a 

number of interdisciplinary areas such as bioinformatics, chemoinformatics, drug 

data, bioactive compound data, interaction and kinetics data, in- silico ADME-

Tox prediction and molecular modeling.  

 

The process of a database construction consists of two major steps. The first step 

is data collection and quality control. The quantity and quality of the data are 

decisive to the usefulness and popularity of a database. The second step involves 

database interface design and maintenance. Well-designed databases usually share 

the following qualities: informative with a clear presentation; user-friendly with 

easy manipulation; fast and accurate search within the database; Continuous 
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updates with new information, data and other features. Additional qualities 

include data download, inter links to other related databases and data processing 

functions for the personalized data.  

 

In this work, I participated in the update of the Kinetics database of  bio-

molecular interactions (KDBI) http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp (3) 

and the Therapeutic targets database (TTD) http://bidd.nus.edu.sg/group/ttd/ (4).  

 

KDBI stores the kinetic information of bio-molecular interactions. This 

information is essential for quantitative studies of the interactions between bio-

molecules of a given bio-system (3). Numerous  improvements  and  updates  

have  been  added to  KDBI,  including  new  ways  to  access  data  by pathway 

and molecule names, data file in System Biology  Markup  Language (SBML)  

format. It can accommodate the increasing data demand in quantitative system 

biology studies which play an important role in understanding the mechanisms 

underlying many complex diseases.   

 

TTD has been developed to provide comprehensive information about the known 

targets and the corresponding approved, clinical trial and investigative drugs. 

Since its last update in 2010, major improvements and updates have been made to 

TTD. These updates include a significant increase of data content, target 

validation information and quantitative structure activity relationship (QSAR) 

models.  
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1.2 Introduction to Virtual Screening in Drug Discovery 

Traditionally, the progress in drug discovery has been made by a combination of 

random screening and rational design (5). Given the mounting competiveness of 

pharmaceutical industry, high throughput screening (HTS) has become a key tool 

in many pharmaceutical companies for its ability to test vast number of 

compounds quickly and efficiently. However, HTS offers no guarantee of success 

and over-reliance on random HTS are showing apparent problems. Additionally, 

establishing a robust assay is very costly: a single HTS programme without assay 

development could still cost approximately US $75,000 (6). Moreover, collections 

of synthesized compounds or natural products can only represent a limited space 

in the entire drug-like chemical space. The typical screening collection of a large 

pharmaceutical company is of the order of a few million compounds at most. This 

is a tiny fraction of the huge chemical space (7, 8), which is many orders of 

magnitude larger than this, even if only drug-like compounds are considered (9). 

Given these caveats, it is worth evaluating other technologies that may 

complement HTS assay and synthesis. The term 'virtual screening' first came into 

being in 1997; it has been used to describe a process of computationally analyzing 

large compound collections in order to prioritize compounds for synthesis or 

assay. During the last decade, a broad range of computational techniques have 

been applied to search for novel bioactive compounds for many targets. VS 

method does not require the physically synthesized compound libraries such 

greatly recedes the cost. This also potentially extends the exploration of the 

chemical space outside the in-house compound pools. There are around 10 million 
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commercially available compounds that can be exploited with the VS approach. 

On top of it, virtual combinatorial libraries contain at least 1 million-fold larger 

libraries than those available for HTS. This adds a new dimension to the VS 

search space (Figure 1-1). 

 

Figure 1-1 Typical numbers of compounds available in the chemical space 

 

 Based on the requirement of either the structure of a target or its ligands, virtual 

screening methods can be often classified into structure-based virtual screening 

(SBVS) and ligand-based virtual screening (LBVS) (10). SBVS consists of the 

virtual docking of candidate ligands into a protein target followed by the 

estimation of the probability of the high affinity binding between them calculated 

by a scoring function (11, 12). LBVS methods, such as pharmacophore methods 

(13) and chemical similarity analysis methods (14), require the ligand structure 

information, they focus on discoverying the new drug hits by analyzing the 

physical and chemical similarities of known compound pools by computational 
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means.   

Figure 1-2 shows the general procedure used in SBVS and LBVS.  

 

Figure 1-2 General procedure used in SBVS and LBVS (adopted from Rafael V.C. 

et al(10)). 
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1.2.1 Structure-based and ligand based virtual screening  

Structure-based virtual screening (SBVS) starts with a 3-D structure of a target 

protein and a database of the 3-D structures of ligands as the screening pool. It is 

usually applied when the 3D structure of a protein target, derived either from 

experimental data (X-ray or NMR spectroscopy) or from homology modeling, is 

available. SBVS procedure consists of docking and scoring. The docking 

algorithms (11, 12) are designed to predict the ligand conformation and 

orientation within the targeted active site of the target. The scoring methods  are  

empirically or semi-empirically derived to attempt (13) to estimate the binding 

tightness of the ligand and the protein in bound complexes.  Docking and scoring 

algorithms are combined to detect the compounds with higher affinity against a 

target by predicting their binding mode (by docking) and affinity (by scoring), and 

retrieving those with the highest scores. To date, more than 60 docking programs 

and 30 scoring functions have been reported (14, 15). The major drawback with 

SBVS is the unavailability of appropriate scoring functions to differentiate 

between correct and incorrect poses of bound ligands and identifying false 

negative and positive hits. Some of the key challenges encountered by SBVS 

include the appropriate treatment of ionization,  tautomerization  of  ligand  and  

protein  residues, target/ligand flexibility, choice of force fields, solvation effects,  

dielectric  constants,  exploration  of  multiple binding modes and, most 

importantly, the approximations in the scoring functions that lead to false-

positives and missed true-hits. Moreover, most docking algorithms and scoring 

functions are tuned towards high throughput, which requires a compromise 
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between the speed and accuracy of binding mode and energy prediction. Despite 

the successful drug discovery cases, currently there has not been a single docking 

program that outperforms all others with regard to either docking accuracy or hit 

enrichment. The hit enrichment is defined as the fraction of true active 

compounds in, for example, the upper 1% of the ranked VS hit list compared with 

the average fraction of active compounds in the search space. The performance of 

a docking program is difficult to evaluate in advance, and depends on the nature 

and quality of the target structure (14-16). Despite all optimization efforts, the 

currently available scoring functions do not provide reliable estimates of free 

binding energies, and are not able to rank compounds according to affinity (15, 

17). The published comparisons of docking programs have been critically 

reviewed (18-20).  

 

Ligand-based virtual screening (LBVS) does not require the target structure 

information. Instead, it uses the structure(s) of one or more active compounds as 

template(s) to indentify a new compound pool by chemical and physical 

similarities. In general, the application of LBVS methods employ the 

computational descriptors of molecular structure, properties, or pharmacophore 

features and analyze relationships between the active compounds and test 

compounds. Complex descriptors are designed to detect similarities in molecular 

shape and shape-related properties in order to find new hits. LBVS is 

computationally efficient and can scan very large databases in reasonably short 

time. As a result, it is often applied to sequentially filter large compound sets 
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before more complex tools are applied. A considerable number of types of 

different methods have been reported with literally thousands of different 

descriptors. These descriptors are derived from the 2D or 3D distribution of 

atomic properties of the known compounds, or from the presence of specific 

structural elements. Many methods designed for the comparison of the similarity 

of compounds based on these descriptors. Shape comparison (21) and 

pharmacophore searches are frequently-used long-established techniques (22, 23). 

Other methods apply molecular fields to define the similarity of structures (24, 

25). When large sets of active and inactive compounds are known, machine 

learning techniques, such as artificial neural nets, decision trees, support vector 

machines or Bayesian classifiers, can be used to train models that can distinguish 

active from inactive compounds based on their specific structural features. 

Comprehensive overviews of ligand-based VS have been presented in a number 

of reviews (26, 27). Table 1-2, 1-3, 1-4, 1-5 show the performances of some 

frequently applied SBVS and LBVS methods for identifying inhibitors, agonists 

and substrates of proteins of pharmaceutical relevance. 

 

1.2.2 Conventional approaches of virtual screening methods 

Conventional VS approaches such as docking have been widely studied for 

facilitating lead discovery against individual targets (28-30). Among the various  

conventional methods, molecular docking (31), pharmacophore (32), structure-

activity relationship (SAR) and quantitative structure activity relationship 
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(QSAR) (33), similarity searching (34) have been extensively used for searching 

and designing active compounds against individual targets.  

 

1.2.3 Machine learning methods for virtual screening 

Machine learning classification methods use binary, categorical or continuous 

descriptors to estimate the probability of a molecule to be active on the basis of 

learning sets. Machine learning methods can be classified as supervised or 

unsupervised. If instances are given with known labels then the learning is called 

supervised (Table 1-1) whereas instances are unlabeled in unsupervised learning.  

Data in standard descriptor format 

Case Feature 1 Feature 2 … Feature n Class 

1 Charge: 0 Benzene ring: 1   Nitrogen: 2 Active 

2 Charge:+1 Benzene ring: 2   Nitrogen: 3 Active 

3 Charge:-1 Benzene ring: 3   Nitrogen: 1 Inactive 

…         … 

  Table 1-1 Instances of supervised machine learning methods  

 

Commonly utilized supervised machine learning methods include Support Vector 

Machine (SVM), Artificial Neural Network, Decision tree learning, Inductive 

logic programming, Boosting, Gaussian process regression etc. Unsupervised 

machine learning with the unlabeled training aims at finding the internal 

organization of the data. Examples of unsupervised machine learning include 

Clustering, Adaptive Resonance Theory, and Self Organized Map.  

 

Compared to SBVS and other LBVS methods such as QSAR, pharmacophore and 

clustering methods (35-42), machine learning methods are more capable of 
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working with a more diverse spectrum of compounds and more complex 

structure-activity relationships. This is because machine learning methods apply 

complex nonlinear mappings from molecular descriptors to activity classes 

without restriction on structural frameworks, and they do not require prior 

knowledge of relevant molecular descriptors and functional form of structure-

activity relationships (43-47). Additionally, machine learning methods can 

overcome several problems that have obstructed some conventional virtual 

screening tools (28, 44). These obstacles include the extensiveness and 

discreteness natures of the chemical space, the absence of protein target structures 

(current statistics shows that the known protein sequences (~1,000,000)(48) vastly 

outnumber the available protein structures (~20,000)(49)), complexity and 

flexibility of target structures, limited diversity caused by the biased training 

molecules, and difficulties in computing binding affinity and solvation effects.  

 

The performance report of machine learning methods in screening 

pharmacodynamically active compounds from libraries of >25,000 compounds is 

summarized in Table 1-2. These reported studies (50-57) primarily focused on the 

prediction of compounds that inhibit, antagonize, block, agonize, or activate 

specific therapeutic target proteins. The majority of the reported screening tasks 

by machine learning methods are found to demonstrate good performances. The 

yields, hit rates, and enrichment factors of machine learning methods are in the 

range of 50%~94%, 10%~98%, and 30~108 respectively. 
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Tentative comparisons are presented in Table 1-3, Table 1-4 and Table 1-5 for 

the reported performances of structure-based VS methods and two classes of 

ligand-based VS methods, pharmacophore and clustering. The majority of the 

yields, hit rates, and enrichment factors lay in the range of 7%~95%, 1%~32%, 

and 5~1189 for structure-based, 11%~76%, ~0.33%, and 3~41 for 

pharmacophore, and 20%~63%, 2%~10%, and 6~54 for clustering methods 

respectively. Therefore, the general performance of machine learning methods 

appears to be comparable to or in some cases better than the reported 

performances of the conventional VS studies such as pharmacophore and 

clustering methods. In screening extremely-large libraries, the reported yields, hit-

rates and enrichment factors of machine learning VS tools are in the range of 

55%~81%, 0.2%~0.7% and 110~795 respectively, compared to those of 

62%~95%, 0.65%~35% and 20~1,200 by structure-based VS tools. The reported 

hit-rates of some machine learning VS tools are comparable to those of structure-

based VS tools in screening libraries of ~98,000 compounds, but their enrichment 

factors are substantially smaller. Therefore, while exhibiting equally good yield, 

in screening extremely-large (≥1 million) and large (130,000~400,000) libraries, 

the currently developed machine learning VS tools appear to show lower hit-rates 

and, in some cases, lower enrichment factors than the best performing structure-

based VS tools.  

 

The machine learning methods employed in this work are SVM, Probabilistic 

Neural Network (PNN) and k nearest neighbor (k-NN). They are explained below 



Chapter 1 Introduction                                                                                13 

 

 

 
 

in subsequent sub sections. For a comparative study, Tanimoto similarity 

searching method is also introduced. 
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Table 1-2 Performance of machine learning methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins 
of pharmaceutical relevance. The relevant literature references are given in the method column. 
Screening 

task 

Compounds screened Method 

and 

reference 

of 

reported 

study 

Molecular 

descriptors 

Compounds 

in training 

set (No of 

positives / 

No of 

negatives) 

Compounds selected Known hits selected 

No of 

compounds 

No of 

known 

hits 

included 

No of 

compounds 

selected 

Percentage 

of screened 

compounds 

selected 

No of 

hits 

selected 

Yield Hit 

rates 

Enrichment 

factor 

COX2 
inhibitors 

2.5M 22 SVM 
(58) 

Molecular 
fingerprints 

94/200K 2,500 0.1% 18 81% 
 

0.7% 795 
 

25,300 25 SVM+ 
BKD 
(59) 

DRAGON 
descriptors 

125/5035 506 2% 20 80% 
 

3.9% 39.5 
 

COX 
inhibitors 

102,514 536 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 76 14.3% 
 

1.4% 2.7 
 

98,435 536 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 232 43.4% 23.7% 43.1 

ECFP4 100/4000 984 1% 365 68.1% 37.2% 67.7 

SVM-
RBF (47)  

Pipeline pilot 100/4000 984 1% 240 44.7% 24.4% 44.5 

Thrombin 
inhibitors 

2.5M 46 SVM 
(58) 

Molecular 
fingerprints 

188/200K 11,250 0.45% 25 55% 
 

0.2% 108.7 
 

102,514 703 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 367 52,3% 
 

7.1% 10.3 
 

98,435 703 CKD 
(47)  

Pipeline pilot 100/4000 984 1% 435 61.9% 44.4% 61.7 

ECFP4 100/4000 984 1% 603 85.8% 61.5% 85.5 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 381 54.2% 38.9% 54.0 

Protease 
inhibitors 

171,726 118 SVM 
(62) 

Extended 
connectivity 
fingerprints 

228/4200 1717 1% 26 22% 
 

1.5% 21.8 
 

LMNB 19 16% 1% 14.5 
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(62)   

Chemokine 
receptor 
antagonists 

171,560 128 SVM 
(62) 

Extended 
connectivity 
fingerprints 

258/4199 1716 1% 70 55% 
 

4.1% 54.9 
 

LMNB 
(60, 63) 

68 53% 
 

3.9% 52.3 
 

5HT3 
antagonists 

102,514 652 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 236 36.3% 
 

4.6% 7.2 
 

98,435 852 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 480 56.4% 49.0% 56.3 

ECFP4 100/4000 984 1% 680 79.8% 69.4% 79.8 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 529 62.1% 54.0% 62.1 

5HT1A 
antagonists 

102,514 727 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 224 30.9% 
 

4.3% 6.1 
 

98,435 727 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 268 36.9% 27.3% 36.9 

ECFP4 100/4000 984 1% 426 58.6% 43.5% 58.7 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 319 43.9% 32.6% 44.0 

5HT reuptake 
inhibitors 

102,514 259 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 65 25% 1.2% 4.7 
 

98,435 259 CKD 
(47)  

Pipeline pilot 100/4000 984 1% 131 50.7% 13.4% 51.5 

ECFP4 100/4000 984 1% 194 75.6% 19.7% 75.9 

SVM-
RBF (47)  

Pipeline pilot 100/4000 984 1% 137 52.9% 14.0% 53.8 

D2 
antagonists 

102,514 295 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 90 30.6% 
 

1.7% 5.9 
 

98,435 295 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 132 44.7% 13.5% 44.9 

ECFP4 100/4000 984 1% 219 74.4% 22.4% 74.7 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 137 46.4% 14.0% 53.8 
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Rennin 
inhibitors 

102,514 1030 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 972 94.4% 
 

18.9% 18.9 
 

98,435 1030 CKD 
(47)  

Pipeline pilot 100/4000 984 1% 842 81.8% 86.0% 81.9 

ECFP4 100/4000 984 1% 960 93.2% 98.0% 93.3 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 710 68.9% 72.4% 69.0 

Angiotesin II 
AT1 
antagonists 

102,514 843 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 776 92.1% 
 

15.1% 18.4 
 

98,435 843 CKD 
(47)  

Pipeline pilot 100/4000 984 1% 393 46.6% 40.1% 46.6 

ECFP4 100/4000 984 1% 593 70.4% 60.6% 70.4 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 384 45.6% 39.2% 45.6 

Substance P 
antagonists 

102,514 1146 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 378 33% 
 

7.3% 6.5 
 

98,435 1146 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 705 61.5% 71.9% 61.5 

ECFP4 100/4000 984 1% 942 82.2% 96.1% 82.2 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 509 44.4% 51.9% 44.4 

HIV protease 
inhibitors 

102,514 650 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 377 58% 
 

7.3% 11.5 
 

98,435 650 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 436 67.1% 44.5% 67.4 

ECFP4 100/4000 984 1% 574 88.3% 58.6% 88.7 

SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 355 54.6% 36.2% 54.9 

Protein kinase 
C inhibitors 

102,514 353 BKD (60, 
61) 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 81 23.1% 
 

1.5% 4.4 
 

98,435 353 CKD 
(47)  

Pipeline pilot 100/4000 984 1% 238 67.3% 24.2% 67.3 

ECFP4 100/4000 984 1% 291 82.5% 29.7% 82.5 
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SVM-
RBF (47) 

Pipeline pilot 100/4000 984 1% 206 58.3% 21.0% 58.3 

MAO 
inhibitors 

101,437 1166 BKD 
(64) 

Atom pairs and 
topological 
torsions APTT 
descriptors 

1166/3834 6000 5.9% 600 51.4% 
 

10% 11.5 
 

Muscarinic 
M1 agonists 

98,435 748 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 467 62.4% 47.4% 62.4 

ECFP4 100/4000 984 1% 597 79.8% 60.7% 79.8 

NMDA 
receptor 
antagonists 

98,435 1211 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 604 49.9% 61.4% 49.9 

ECFP4 100/4000 984 1% 889 73.4% 90.3% 73.4 

Nitric oxide 
synthase 
inhibitors 

98,435 277 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 192 69.3% 19.5% 69.7 

ECFP4 100/4000 984 1% 244 88.2% 27.3% 97.6 

Aldose 
reductase 
inhibitors 

98,435 782 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 436 55.8% 44.3% 56.1 

ECFP4 100/4000 984 1% 665 85.0% 67.6% 85.5 

Reverse 
transcriptase 
inhibitors 

98,435 419 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 238 56.9% 24.2% 56.3 

ECFP4 100/4000 984 1% 337 80.4% 34.2% 79.6 

Aromatase 
inhibitors 

98,435 413 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 284 68.7% 28.8% 68.6 

ECFP4 100/4000 984 1% 389 94.1% 39.5% 94.0 

Phospholipase 
A2 inhibitors 

98,435 604 CKD 
(47) 

Pipeline pilot 100/4000 984 1% 297 49.2% 30.2% 49.5 

ECFP4 100/4000 984 1% 447 74.0% 45.4% 74.5 

CDK2 
inhibitors 

25,300 25 SVM+ 
BKD 
(59) 

DRAGON 
descriptors 

125/5035 506 2% 18 72% 
 

3.5% 35.4 
 

FXa 
inhibitors 

25,300 25 SVM+ 
BKD 
(59) 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% N/A 

PDE5 
inhibitors 

50,000 19 RO5+ DS 
(65) 

Pharmacophore 
and macroscopic 
descriptors 

130/10K 1821 3.6% 11 57.8% 
 

0.6% 15.8 
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25,300 25 SVM+ 
BKD 
(59) 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% 41.5 
 

Alpha1A AR 
antagonists 

25,300 25 SVM+ 
BKD 
(59) 

DRAGON 
descriptors 

125/5035 506 2% 20 80% 3.9% 39.5 
 

 

BKD – binary kernel discrimination; CKD – Continuous kernel discrimination; DS – decision tree; LMNB – laplacian modified naive Bayesian; SVM – support vector 
machine; DRAGON – (an application for the calculation of molecular descriptors); AR – androgen receptor; PDE 5 – phosphodiesterase type 5; FXa – factor Xa;  
CDK2 – cyclin-dependent kinase 2; MAO – mono amino oxidase; HIV – human immunodeficiency virus; COX – cycloocygenase; 
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Table 1-3  Performance of docking methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of 
pharmaceutical relevance; the relevant literature references are given in the method column. 

Screening 

task 

Compounds screened Method and 

reference of 

reported study 

No of pre-

docking 

selected 

compounds  

Docking 

cut-off 

Compounds selected Known hits selected 

No of 

compounds 

No of 

known hits 

included 

No of 

compounds 

selected 

Percentage 

of screened 

compounds 

selected 

No of 

hits 

selected 

Yield Hit 

rates 

Enrichment 

factor 

Factor Xa 
inhibitors 

2M 630 AUTODOCK + 
pre-docking RO5 
and EA screen 
(66) 

60,000 Binding 
energy <   
-10.5 
kcal/mol 

60,000 3% 392 62% 0.65
% 

20 

COX2 
inhibitors 

1.2M 355 DOCK+ pre-
docking chemical 
group screen (67)  

13,711 DOCK 
scores <    
-35 

959 0.08% for all 
7% for 
actually 
docked  

337 95% 
 

35.2
% 

1189.2 for 
all 
13.6 for 
actually 
docked 

Human casein 
kinase II 

400K >4 DOCK4 + H-
bond and hinge 
segment screen 
(68)  

<400K N/A 35 0.0087% 4 N/A 11.4
% 

N/A 

Thyroid 
hormone 
receptor 
antagonists 

250K >14 ICM VLS module 
(Molsoft) (69) + 
pre-docking RO5 

190K Selected 
75 from 
top-100 

dock 
scores 

75 0.03% for all 
0.039% for 

actually 
docked 

14 N/A 18.7
% 

N/A 

PTP1B 
inhibitors 

235K >127 DOCK3.5 + atom 
count (17~60) 
screen (70) 

165,581 Top-500 
+ Top-

500 

889 0.38% 127 N/A 14.3
% 

N/A 

141K 10 GOLD + elements 
and chemical 
group screen (71) 

<141K Top-2% <2820 <2.5% 8 80% <0.28
% 

39.4 
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BCL-2 
inhibitors 

206,876 >1 DOCK3.5 + non-
peptidic screen 
(72) 

<206,876 Top-500 35 0.017% 1 N/A 2.9% N/A 

HIV-1 protease 
inhibitors 

141K 5 GLIDE + 
elements and 
chemical group 
screen (71) 

<141K Top-5% <7050 <5% 1 20% <0.01
4% 

4.6 

HDM2 
inhibitors 

141K 14 DOCK + 
elements and 
chemical group 
screen (71) 

<141K Top-5% <7050 <5% 4 28.6
% 

<0.05
6% 

5.7 

UPA inhibitors 141K 10 GOLD + elements 
and chemical 
group screen (71) 

<141K Top-2% <2820 <2.5% 9 90% <0.32
% 

45.1 

Alpha 1A 
adrenergic 
receptor 
antagonists 

141K >38 GOLD on 
homology model 
+ pharmacophore 
screen (73) 

22,950 Top-300 300 0.21% 38 N/A N/A N/A 

Thrombin 
inhibitors 

141K 10 GLIDE + 
elements and 
chemical group 
screen (71) 

<141K Top-2% <2820 <2.5% 3 30% <0.11
% 

15.5 

133.8K 760 FlexX + 
Similarity (74) 

<133.8K Top-1% 1338 1% 231 29.3
% 

17.3
% 

30.5 

DHFR 
inhibitors 

135K 165 DOCK3.5.54 
applied to holo 
form (75) 

135K Top-1% 
of 50k 
docked 

1350 1% 47 25% 3.4% 27.8 

DOCK3.5.54 
applied to appo 
form (75) 

135K Top-1% 
of 100k 
docked 

1000 1% 16 9.7% 1.6% 13.1 

Neutral 
endopeptidase 
inhibitors 

135K 356 DOCK3.5.54 (75) 135K Top-1% 
of 

125.5K 

1255 0.74% 3 0.8% 0.24
% 

~1 
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docked 

Thrombin 
inhibitors 

135K 788 DOCK3.5.54 (75) 135K Top-1% 
of 

121.5K 
docked 

1215 0.9% 61 7.7% 5.0% 8.6 

Thymidylate 
synthase 
inhibitors 

135K 185 DOCK3.5.54 (75) 135K Top-1% 
of 54K 
docked 

540 0.4% 49 26.5
% 

9.1% 66.4 

Phospholipase 
C inhibitors 

135K 25 DOCK3.5.54 (75) 135K Top-1% 
of 123K 
docked 

1230 0.9% 5 20% 0.4% 21.6 

Adenosine 
kinase 
inhibitors 

135K 356 DOCK3.5.54 
applied to holo 
form (75) 

135K Top-5% 
of 

database 

4500 3.3% 10 2.8% 0.22
% 

~1 

DOCK3.5.54 
applied to appo 
form (75) 

135K Top-5% 
of 

database 

4500 3.3% 5 1.4% 0.11
% 

<1 

133.8K 59 FlexX + 
Similarity (74) 

<133.8K Top-1% 1338 1% 13 22% 0.97
% 

22.0 

Acetylcholines
terase 
inhibitors  

135K 637 DOCK3.5.54 
applied to holo 
form (75) 

135K Top-1% 
of 77K 
docked 

770 0.57% 49 7.7% 6.4% 13.6 

DOCK3.5.54 
applied to appo 
form (75) 

135K Top-1% 
of 37.5K 
docked 

375 0.28% 25 3.9% 6.7% 14.2 

HMG-CoA 
reductase 
inhibitors 

133.8K 1016 FlexX + 
Similarity (74) 

<133.8K Top-1% 1338 1% 35 3.4% 2.6% 3.4 
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Table 1-4 Performance of pharmacophore methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of 
pharmaceutical relevance. The relevant literature references are given in the method column. 
Screening 

task 

Compounds screened Method and 

reference of 

reported study 

Compounds selected Known hits selected 

No of 

compounds 

No of 

known 

hits 

included 

No of 

compounds 

selected 

Percentage 

of screened 

compounds 

selected 

No of 

hits 

selected 

Yield Hit rates Enrichment 

factor 

ACE 
inhibitors 

3.8M 55 Pharmacophore (76) 1M 26% 39 70.1% 
 

0.0039% 2.8 
 

3.8M 55 Structure-based 
pharmacophore (77) 

91K 2.4% 6 10.9% 0.0066% 4.6 

11β-
hydroxysteroid 
dehydrogenase 
1 inhibitors 

1.77M 144 Pharmacophore (41) 20.3K 1.15% 17 11.8% 0.084% 10.3 

Rhinovirus 3C 
protease 
inhibitors 

380K 30 Pharmacophore (42) 6,917 1.82% 23 76.7% 0.33% 41.8 
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Table 1-5 Performance of clustering methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of 
pharmaceutical relevance; the relevant literature references are given in the method column. 
Screening 

task 

Compounds screened Method and reference of 

reported study 

Compounds selected Known hits selected 

No of 

compounds 

No of 

known 

hits 

included 

No of 

compounds 

selected 

Percentage 

of screened 

compounds 

selected 

No of 

hits 

selected 

Yield Hit 

rates 

Enrichment 

factor 

ACE 
inhibitors 

344.5K 490 Hierachical k-means (40) 5590 1.6% 246 50.2% 
 

4.4% 31.2 
 

NIPALSTREE (40) 8174 2.4% 188 38.4% 2.3% 16.2 

Hierachical k-means + 
NIPALSTREE disjunction 
(40) 

12240 3.6% 306 62.4% 2.5% 17.6 

Hierachical k-means + 
NIPALSTREE conjunction 
(40) 

1662 0.48% 128 26.1% 7.7% 54 

COX 
inhibitors 

344.5K 1556 Hierachical k-means (40) 15322 4.4% 761 48.9% 5.0% 11 

NIPALSTREE (40) 22321 6.5% 625 40.2% 2.8% 6.16 

Hierachical k-means + 
NIPALSTREE disjunction 
(40) 

33793 9.8% 980 63.0% 2.9% 6.42 

Hierachical k-means + 
NIPALSTREE conjunction 
(40) 

3980 1.2% 406 26.1% 10.2% 22.6 

Adrenoceptor 
ligand 

344.5K 542 Hierachical k-means (40) 21285 6.2% 298 55.0% 1.4% 8.99 

NIPALSTREE (40) 28125 8.2% 270 49.8% 0.96% 6.14 

Hierachical k-means + 
NIPALSTREE disjunction 
(40) 

42365 12.3% 394 72.7% 0.93% 5.93 
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Hierachical k-means + 
NIPALSTREE conjunction 
(40) 

6692 1.9% 174 32.1% 2.6% 16..3 

Glucocorticoid 
receptor 
ligand 

344.5K 91 Hierachical k-means (40) 3750 1.1% 27 29.7% 0.72% 27..3 

NIPALSTREE (40) 3469 1.0% 17 18.7% 0.49% 18.7 

Hierachical k-means + 
NIPALSTREE disjunction 
(40) 

7317 2.1% 30 33.0% 0.41% 15.6 

Hierachical k-means + 
NIPALSTREE conjunction 
(40) 

538 0.16% 14 15.4% 2.6% 98 

GABA 
receptor 
ligand 

344.5K 478 Hierachical k-means (40) 10000 2.9% 110 23% 1.1% 7.97 

NIPALSTREE (40) 17143 5.0% 84 17.6% 0.49% 3.51 

Hierachical k-means + 
NIPALSTREE disjunction 
(40) 

24265 7.0% 165 34.5% 0.68% 4.86 

Hierachical k-means + 
NIPALSTREE conjunction 
(40) 

2636 0.77% 29 6.1% 1.1% 7.77 
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1.3 In-silico Approaches to Multi-target Drug Discovery 

1.3.1 Introduction  

Therapeutic agents directed at an individual target frequently show reduced 

efficacies, undesired safety profiles and drug resistances due to network 

robustness (78), redundancy (79), crosstalk (80), compensatory and neutralizing 

actions (81), anti-target and counter-target activities (82), and on-target and off-

target toxicities (83).  It is being increasingly recognized that a balanced 

modulation of several targets can provide a superior therapeutic effect and side 

effect profile compared to the modulation of a single selective ligand. It is not 

surprising that the search of multi-target agents is constantly attracting the 

attention of increasing number of drug discoverers (1, 84, 85).  

 

With the extensive exploration of in sillico tools in pharmaceutical research, these 

computational approaches can greatly assist and complement the traditional 

biological and chemical methods in the discovery of new drug hits and leads. This 

is especially helpful with the increasingly abundant pharmainformatics data being 

published and shared across the globe which offers a strong foundation for in-

sillico approaches.   

 

Some of these methods have recently been applied for searching and designing 

multi-target agents that are more sparsely distributed in the chemical space than 

agents against a single target. Figure 1-3, Figure 1-4, Figure 1-5, and Figure 1-6 

summarize the schemes of using molecular docking, combined molecular docking 
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and pharmacophore, framework combination, and fragment-based approaches for 

multi-target drug discovery using dual-inhibitor discovery as examples. These 

methods can be categorized into combinatorial approaches and fragment–based 

approaches. Combinatorial approaches (Figure 1-3 and Figure 1-4) are firstly 

straightforwardly conducted as parallel search against each individual targets and 

then the virtual hits that interact with individual multiple targets are detected as 

multi-target agents. Combinatorial approaches are practically useful when the 

retrieval rates against individual targets are sufficiently high and the false-hit rates 

are sufficiently low. High retrieval rates can compensate for the reduced 

collective retrieval rates (if the retrieval rate against individual target is 

50%~70%, the collective retrieval rate for multi-target agents against two targets 

may be statistically reduced to 25%~49%). Low false-hit rates are needed for high 

enrichment in searching multi-target agents that are significantly fewer in 

numbers and more sparsely distributed in the chemical space than agents against a 

single  target.  
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Figure 1-3 Molecular docking strategy for multi-target inhibitor discovery 

    

Figure 1-4 Combined pharmacophore and molecular docking strategy of multi-
target inhibitor discovery 
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Figure 1-5 Illustration of framework combination approach to multi-target drug 
discovery 
 
 
 
 
 

                   

Figure 1-6 Illustration of fragment-based approach to multi-target drug discovery 
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Fragment-based approaches (Figure 1-5 and Figure 1-6) are designed to combine 

multiple elements of structural frameworks or multiple fragments that bind to 

each individual target to produce compounds that bind to multiple targets. They 

have been introduced as tools for the design of multi-target agents (86). In one 

approach, molecular fragment libraries are searched to find the fragments with 

certain level of activities against selected multiple targets, and the identified 

fragments are further optimized into more potent bigger-sized multi-target active 

agents (86). The other approach aims at the analysis of the structure-activity 

relationships against individual targets  for the search of molecular fragments and 

essential binding features which are either combined or incorporated into active 

agents against selected multiple targets (86). However, fragment combinations 

often produce larger and non-drug like molecules with more complex structures. 

Drug-like features may be retained if the degree of framework overlap is 

maximized and the size of the selected fragments is minimized. Targets sharing a 

conserved binding makes it relatively more  easily for the optimizing fragments 

with weak multiple activities into potent multi-target drug-like agents (87). But 

with the increased similarities among binding sites, it is becoming more difficult 

to improve and adequately balance the high binding affinities for acceptable in-

vivo efficacy and safety. One way to resolve this problem relies on synergistic 

targets for their modest activities at one or more of the relevant targets. This may 

still produce similar or better in-vivo effects compared with higher-affinity target-

selective compounds (88). 
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Multi-target QSAR models for identification of multi-target agents (89) and active 

agents against multiple bacterial (90), fungal (91, 92), and viral (90), species have 

been developed. These models incorporate multi-target or species variations of 

binding-site features into the multi-target dependent molecular descriptors or 

species-dependent molecular descriptors, and stochastic Markov drug-binding 

process models. They can achieve high retrieval rates of 72%~85% and 

moderately low false-hit rates of 15%~28%. However, the application of multi-

target QSAR models may be limited by the inadequate number of drug data for 

some of the targets or species. Moreover, the molecular size of the testing drugs is 

limited within a certain range for accurate computation of multi-target dependent 

or species-dependent molecular descriptors. This in some cases may also affect 

the development of multi-target QSAR models (92). 

 

1.3.2 Machine learning methods for searching multi-target agents 

Cancer is known to be a fatal disorder which has been threatening lives of 

millions of people per year. In the last decades , untangling the molecular 

mechanisms underlying malignant transformation have been the center of efforts 

in basic and clinical cancer research to discover molecules that play a crucial and 

specific role in tumor progression (93).  Protein kinases play important roles in 

regulating most cellular functions: proliferation/cell cycle, cell metabolism, 

survival/apoptosis, DNA damage repair, cell motility, response to the 

microenvironment. Therefore, it is no surprise that they are often themselves 

oncogenes. Kinases take the second most popular drug target class in the 
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pharmaceutical and biotech industries, after G-protein-coupled receptors (94). 

However, clinical experience confronts us with the fact that many tumors are 

multi-factorial  and  interlinked by more  than  one  signaling  pathway which 

makes  the  inhibition  of  a  single  molecule  not  sufficient to interfere 

efficiently with disease progression. For these reasons, monotherapy by means of 

single-target drugs  may  need  to  be  reassessed  in  favor  of  a  multi- target 

approach. In this work, I examined a SVM based combinatorial machine learning 

method COMBI-SVM for its performance for detecting multi-target kinase 

inhibitors for 4 kinase target pairs, i.e., EGFR-FGFR,VEGFR-Lck, and Src-Lck. 

This is a preliminary test for the performances of COMBI-SVM in searching 

multi-target agents. 

 

Major depression is an enervating and recurrent disorder. It has become prevailing 

due to the fastened pace and enhanced stress levels in the modern societies. It 

affects patients with a substantial lifetime risk. A primary anti-depression strategy 

is to inhibit monoamine oxidase; Second-generation drugs launched in the 1980s 

and 1990s, such as the selective serotonin reuptake inhibitors (SSRI) and the 

mixed serotonin/noradrenaline reuptake inhibitors (SNRI). They present the 

dominant treatment strategy for major depression (95). However, single-target 

drugs (78, 85) frequently encounter the drug resistance problems caused by the 

network robustness (78), redundancy (79), crosstalk (80), compensatory and 

neutralizing actions (81), anti-target and counter-target activities (82), and on-

target and off-target toxicities (83). Multi-target drugs are particularly useful for 
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solving these drug resistance problems. After the previous performance tests of 

COMBI-SVM in dual kinase inhibitors, I applied this approach to study the dual 

inhibitor SSRIs: SNRIs, dual serotonin reuptake inhibitor (SRI) / 5-HT1A receptor 

antagonists, dual SRI/ 5HT1B receptor antagonists, dual SRI/ H3 histamine 

receptor antagonists, dual SRI/5-HT2C receptor antagonists, dual 

SRI/Melanocortin 4 receptor antagonists, dual SRI/neurokinin 1 receptor 

antagonists.  Figure 1-7 shows the work flow for detecting multi-target agents by 

machine learning (ML) methods. 

 

 Figure 1-7 Work flow for detecting multi-target agents by machine learning (ML) 

methods; Structure-activity data are collected by literature mining. Then the ML 

method is applied to build a screening model which will be used to scan the 

compound database (e.g. PubChem); After the screening, positive dual-inhibitors 

will be selected for further synthesis and test. If they prove to have promising 
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pharmacological profiles, they can be used into the training data for new 

predictions.  

1.4 Objectives and Outline  

Over all, I want to achieve four major objectives. 

1. To update and construct pharmainformatics databases to provide resourceful 

and informative platforms for researchers in various bio-and chemo-informatics. 

2. To test combinatorial machine learning methods for virtual screening of multi-

target agents for cancer treatment involving kinase targets EGFR, FGFR, Src, Lck 

and VEGFR. 

3. To apply combinatorial machine learning methods for virtual screening of 

Selective multi-target serotonin reuptake inhibitors. 

4. To compare the virtual screening performances of the machine learning 

methods SVM, k-NN, PNN and similarity searching in search of multi-target 

agents. 

 

In summary, this work aims at contributing to the current multi-target strategy in 

novel drug hits and leads discovery. This study employs two approaches to reach 

this goal. The first approach targets at optimizing the benefit of the increasingly 

abundant pharmaceutical data information. Pharmainformatics database is an 

efficient and resourceful means to achieve this goal. They dramatically accelerate 

the accumulation of data thus enhance the opportunity in new discoveries. A 

collective pharmaceutical data and discoveries have been presented online in the 
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past ten years. These valuable data would benefit the discovery of multi-target 

agents. Additionally, combinatorial virtual screening methods can also assist the 

discovery of novel multi-target anticancer and antidepressant agents.  

This work is presented in the following manner. Chapter 1 firstly introduces the 

development of pharmainformatic databases and the different approaches in 

virtual screening. Secondly, it describes the ML approaches for multi-target 

discovery.  

 

In Chapter 2, methods used in this work are described. It introduces the data 

collection and processing before the application of VS tools. Theoretical 

backgrounds of machine learning methods discussed in the work are provided. VS 

model validation and performance measurements are described in details. 

 

Chapter 3 elaborates the updates and development work of two 

pharmainformatics databases, i.e. Kinetic database of bio-molecular interactions 

(KDBI) and Therapeutic targets database (TTD). 

 

Chapter 4 describes the preliminary tests with 4 kinase target pairs of 

combinatorial SVM (COMB-SVM) and Chapter 5 elaborates the studies and 

application of COMBI-SVM as virtual screening tools for multi-target 

antidepressants agents. 
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At last, Chapter 6 summarizes the findings of this work and discusses the 

limitations. 
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Chapter 2 Methods 

Virtual screening for multi-target agents by combinatorial machine learning 

methods is usually consisted of the following 4 components: (I) data collection, 

analysis and processing from pharmaceutical datasets and chemical compound 

libraries of known single and multi-target agents (section 2.1), (II) 

physicochemical and structural descriptions of the compounds in the dataset 

(section 2.2) and (III) a statistical learning method (section 2.3 and 2.4) to 

analyze the pharmaceutical datasets (component (I)) in the form of descriptors 

(component (II)), and (IV)the evaluation of the virtual screening models. This 

chapter describes in details the four components and elaborates all the methods 

used in this work for developing combinatorial virtual screening tools and their 

evaluation measurements. 

 

2.1 Data Collection and Processing 

Sufficient, good quality data are critical for drug discovery and especially 

essential for in-silico approaches which rely on the quantity and quality of the 

available data.  Enormous amount of data about small molecules and their related 

information have been accumulated in various scientific literatures and databases. 

Table 2-1 lists some of the important small molecule databases. 

 

The datasets used in this work mainly come from the following two types of 

sources. We collected data from credible journals such as Bioorganic & Medicinal 
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Chemistry Letters, Bioorganic & Medicinal Chemistry, European Journal of 

Medicinal Chemistry, European Journal of Organic Chemistry and Journal of 

Medicinal Chemistry, etc. Additionally, I use databases that contain accurate and 

reliable data such as PubChem and ChEMBL (96). 

 

Table 2-1 Examples of small molecule databases available online 
 

Database 

Name 

URL 

BindingDB http://www.bindingdb.org/bind/index.jsp 

MDDR http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp 

PubChem  http://nihroadmap.nih.gov 

ZINC  http://zinc.docking.org/  

ChEMBL http://www.ebi.ac.uk/chembl/  

DrugBank  http://www.drugbank.ca/  

eMolecules  http://www.emolecules.com/  

WOMBAT http://www.sunsetmolecular.com 
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 2.1.1 Analysis of data quality and diversity 

The reliability of in-silico approaches of pharmacological properties classification 

depends on the availability of high quality pharmacological data with low 

experimental errors (97). Ideally, the measurements of pharmacological data 

properties should be conducted with a same protocol so that there is a common 

ground to compare different compounds with each other. However, some 

pharmacological properties measurements have been used only for a limited 

number of compounds and most pharmacological properties measurements are 

rarely determined by the same protocol. Thus the collected data consist of 

compound data measured by different protocols and the incorporation of 

additional experimental information. To maintain the stability of data quality, in 

this work, several methods are adopted to ensure that inter-laboratory variations 

caused by different experimental protocols do not significantly affect the quality 

of the training sets. The pharmacological property measurements for data were 

investigated and the ones that contain large variations in experimental protocols 

compared to the majority of the data are filtered out. It is estimated that the most 

common range of the pharmacological properties measurements for the 

compounds investigated in more than one source was used to select compounds 

for the different classes (98).  

 

Diversity Index (DI) is employed to evaluate the structural diversity of a 

collection of compounds. It is defined as the average value of the similarity 

between pairs of compounds in a dataset (99), 
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where k  is the number of molecular descriptors calculated for the compounds in 

the datasets.  The concept of molecular descriptors will be introduced in chapter 

2.2. 
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2.1.2 Redundancy within the datasets 

In this study, the data were collected from varied sources. This approach can 

enrich the diversity in the datasets and reduce the potential bias that may arise 

from a monotonic due to the preferences of the researchers. However, since the 

data are presented by independent researchers who don’t share pre-existing 

agreement on their individual data collection. It is likely that there is a certain 

level of redundancy between the datasets from different sources. The redundancy 

could contrarily deduce diversity in the datasets. Therefore, compounds are 

checked for redundancy by comparing exact match of chemical descriptors. In 

this work, scripts are written in Perl to find exact match of chemical descriptors to 

remove redundancy from dataset. 
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2.2 Molecular descriptors  

Molecular descriptors are generated by a logic and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a 

molecule into a useful number or the result of some standardized experiment. 

They quantitatively represent structural and physicochemical features of 

molecules, and have been extensively used in deriving structure-activity 

relationships (100), quantitative structure activity relationships (101) and VS tools 

(102, 103) (104) including the multi-target VS tools (105). They represent 

compounds in the form of mathematical vectors. This transformation enables the 

statistical analysis of chemical compounds.  

 

2.2.1 Definition and calculation of molecular descriptors 

A number of programs e.g. PaDEL-descriptor (106), DRAGON (107), Molconn-

Z (108), MODEL (109), Chemistry Development Kit (CDK) (110, 111), JOELib 

(112) and Xue descriptor set (113), are available to calculate chemical descriptors. 

These methods can be applied to derive >3,000 molecular descriptors. These 

descriptors include constitutional descriptors, topological descriptors, RDF 

descriptors (114), molecular walk counts (115), 3D-MoRSE descriptors (116), 

BCUT descriptors (117), WHIM descriptors (118), Galvez topological charge 

indices and charge descriptors (119), GETAWAY descriptors (120), 2D 

autocorrelations, functional groups, atom-centred descriptors, aromaticity indices 

(121), Randic molecular profiles (122), electrotopological state descriptors (123), 
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linear solvation energy relationship descriptors (124), and other empirical and 

molecular properties. However, not all of the available descriptors are needed to 

fully represent the features of a particular class of compounds. Contrarily, without 

appropriate descriptors, the performance of a developed ML VS tool may be 

affected to some degrees. This is caused by the noise arising from the high 

redundancy and overlapping of the available descriptors. In this work, the Xue 

descriptor set and 98 1D and 2D descriptors were used. These 98 descriptors were 

selected from the descriptors derived from MODEL program by discarding those 

that were redundant and unrelated to the problem studied here. The Xue 

descriptor set and these 98 descriptors are listed in Table 2-2 and Table 2-3. 

Table 2-2 Xue descriptor set 
 

Descriptor Class  Number of 

descriptor in 

class  

Descriptors 

Simple molecular 

properties  

18  Molecular weight, Number of rings, rotatable bonds, H-

bond donors, and H-bond acceptors, Element counts 

Molecular connectivity 

and shape  

28  Molecular connectivity indices, Valence molecular 

connectivity indices, Molecular shape Kappa indices, 

Kappa alpha indices, flexibility index 

Electro-topological 

state  

97  Electrotopological state indices, and Atom type 

electrotopological state indices, Weiner Index, Centric 

Index, Altenburg Index, Balaban Index, Harary Number, 

Schultz Index, PetitJohn R2 Index, PetitJohn D2 Index, 

Mean Distance Index, PetitJohn I2 Index, Information 

Weiner, Balaban RMSD Index, Graph Distance Index  
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Quantum chemical 

properties  

31  Polarizability index, Hydrogen bond acceptor basicity 

(covalent HBAB), Hydrogen bond donor acidity (covalent 

HBDA), Molecular dipole moment, Absolute hardness, 

Softness, Ionization potential, Electron affinity, Chemical 

potential, Electronegativity index, Electrophilicity index, 

Most positive charge on H, C, N, O atoms, Most negative 

charge on H, C, N, O atoms, Most positive and negative 

charge in a molecule, Sum of squares of charges on 

H,C,N,O and all atoms, Mean of positive charges, Mean of 

negative charges, Mean absolute charge, Relative positive 

charge, Relative negative charge  

Geometrical properties 25 Length vectors (longest distance, longest third atom, 4th 

atom), Molecular van der Waals volume, Solvent 

accessible surface area, Molecular surface area, van der 

Waals surface area, Polar molecular surface area, Sum of 

solvent accessible surface areas of positively charged 

atoms, Sum of solvent accessible surface areas of 

negatively charged atoms, Sum of charge weighted solvent 

accessible surface areas of positively charged atoms, Sum 

of charge weighted solvent accessible surface areas of 

negatively charged atoms, Sum of van der Waals surface 

areas of positively charged atoms, Sum of van der Waals 

surface areas of negatively charged atoms, Sum of charge 

weighted van der Waals surface areas of positively 

charged atoms, Sum of charge weighted van der Waals 

surface areas of negatively charged atoms, Molecular 

rugosity, Molecular globularity, Hydrophilic region, 

Hydrophobic region, Capacity factor, Hydrophilic-

Hydrophobic balance, Hydrophilic Entry Moment, 

Hydrophobic Intery Moment, Amphiphilic Moment 
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Table 2-3 98 molecular descriptors used in this work 
 

Descriptor 

Class 

No of 

Descriptors 

in Class 

Descriptors 

Simple 

molecular 

properties 

18 Number of C,N,O,P,S, Number of total atoms, Number of  rings, Number 

of bonds, Number of non-H bonds, Molecular weight,, Number of 

rotatable bonds, number of H-bond donors, number of H-bond acceptors, 

Number of 5-member aromatic rings, Number of 6-member aromatic 

rings, Number of N heterocyclic rings, Number of O heterocyclic rings, 

Number of S heterocyclic rings. 

Chemical 

properties 

3 Sanderson electronegativity, Molecular polarizability, ALogp 

Molecular 

Connectivity 

and shape 

35 Schultz molecular topological index, Gutman molecular topological 

index, Wiener index, Harary index, Gravitational topological index, 

Molecular path count of length 1-6, Total path count, Balaban Index J, 0-

2th valence connectivity index, 0-2th order delta chi index, Pogliani 

index, 0-2th Solvation connectivity index, 1-3th order Kier shape index, 

1-3th order Kappa alpha shape index, Kier Molecular Flexibility Index, 

Topological radius, Graph-theoretical shape coefficient, Eccentricity, 

Centralization, Logp from connectivity. 

Electro-

topological state 

42 Sum of E-state of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH, 

dssC, aasC, aaaC, sssC, sNH3, sNH2, ssNH2, dNH, ssNH, aaNH, dsN, 

aaN, sssN, ddsN, aOH, sOH, ssO, sSH; Sum of E-state of all heavy atoms, 

all C atoms, all hetero atoms, Sum of E-state of H-bond acceptors, Sum of 

H E-state of atom type HsOH, HdNH, HsSH, HsNH2, HssNH, HaaNH, 

HtCH, HdCH2, HdsCH, HaaCH, HCsats, HCsatu, Havin, Sum of H E-

state of H-bond donors 

 
 

 

In my work, the 2D structure of each of the compounds was generated by using 

ChemDraw or downloaded from databases such as  PubChem and BindingDB 

(125). Then they were subsequently converted into 3D structure by using 

CORINA (126). The 3D structure of each compound was manually inspected to 
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ensure the proper chirality of each chiral agent. All salts and elements, such as 

sodium or calcium, were removed prior to descriptor calculation. The 

optimization of generated geometries was conducted without symmetry 

restrictions.  The 3D structures of the compounds then were used to compute the 

molecular descriptors by the in-house programs and scripts. 

 

 

 

2.2.2 Scaling of molecular descriptors 

The scaling of molecular descriptors is normally required before they can be used 

in machine learning method. The scaling process of molecular  descriptors 

ensures the unbiased contribution of each descriptor in constructing the prediction 

models (127). There are various types of scaling methods e.g. auto-scaling, range 

scaling, Pareto scaling (128), and feature weighting (127). In this work, range 

scaling is applied to scale the molecular descriptors. Range scaling is conducted 

by dividing the difference between the descriptor value and the minimum value of 

that descriptor with the range of that descriptor:  

���
�����	 =

��� − ��,
��

��,
�� − ��,
��
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2.3 Introduction to Machine Learning Methods 

A machine learning (ML) method takes a training set of objects that have 

previously been classified into two or more classes as input. In the 

pharmainformatics context, it is a set of molecules that had previously been tested 

and shown to be either active or inactive. The training samples are represented by 

vectors which can be  binary, categorical or continuous and then they are analyzed 

to develop a decision rule that can be used to classify new  molecules  (the  test 

set)  into  one  of  the  two  classes (129). Machine learning can be divided into 

supervised and unsupervised categories. Supervised machine learning labels the 

training data as a predefined class (130). Example of supervised machine learning 

includes Support Vector Machine, Artificial Neural Network, Decision tree 

learning, Inductive logic programming, Boosting, Gaussian process regression 

etc. Unsupervised machine learning methods use unlabeled training data and the 

learning task involves finding the organization of data (131). Clustering, Adaptive 

Resonance Theory, and Self Organized Map are some of the commonly applied 

unsupervised machine learning methods. In this work, I used SVM, Probabilistic 

Neural Network (PNN) and k nearest neighbor (k-NN). The theories behind these 

methods are described below in subsequent sections. For a comparative study, 

Tanimoto similarity searching method was also introduced.  
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2.3.1 Support vector machine (SVM) method  

Support vector machine (SVM) is designed on the basis of the structural risk 

minimization principle of statistical learning theory (132, 133). It consistently 

shows outstanding classification performance and is less penalized by sample 

redundancy. SVM also has lower risk for over-fitting problem (134, 135). 

 

In linearly separable cases, SVM constructs a hyper-plane to separate active and 

inactive classes of compounds with a maximum margin. A compound is 

represented by a vector xi composed of its molecular descriptors. The hyper-plane 

is constructed by finding another vector w and a parameter b that minimizes
2

w  

and satisfies the following conditions: 

 
1, for 1iiby⋅+≥+=+wx

 Class 1 (active)   (1) 

 
1, for 1iiby⋅+≤−=−wx

 Class 2 (inactive)   (2) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  is the 

perpendicular distance from the hyperplane to the origin and 
2

w  is the 

Euclidean norm of w. Based on w and b, a given vector x can be classified by f(x) 

=
[()]signb⋅+wx

. A positive or negative f(x) value indicates that the vector x 

belongs to the active or inactive class respectively. Linear SVM can then be 

applied to this feature space based on the following decision function: 

0

1

( ) ( ( , ) )
l

i i i

i

f sign y K bα
=

= +∑x x x , where the coefficients αi
0 and b are determined 
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by maximizing the following Lagrangian expression: 

1 1 1

1
( , )

2

l l l

i i j i j i j

i i j

y y Kα α α
= = =

−∑ ∑∑ x x  under the conditions  0≥iα      and     

∑
=

=
l

i

ii y
1

0α . A positive or negative f(x) value indicates that the vector x belongs 

to the active or inactive class respectively. However, in classifying compounds of 

diverse structures, nonlinearly separable situation is frequently found to occur (59, 

60, 62, 136-139). In this case, SVM maps the input vectors into a higher 

dimensional feature space by using a kernel function K(xi, xj). We used RBF 

kernel  
2 2/ 2

( , ) j i

i jK e
σ− −

=
x x

x x
   

where σ is the kernel parameter. RBF kernel has 

been extensively used and consistently shown better performance than other 

kernel functions (35, 140, 141).  For a given training set of instance-label pairs (xi, 

yi), i=1, …,l where xi ∈R
n and yi ∈ { 1, − 1 }inl , in SVM, the task of finding the 

hyper-plane which is able to separate active and inactive classes with a maximum 

margin ,in essence, is to look for the solution of the following optimization 

problem: 

, ,
1

1
min

2

l
T

i
w b

i

w w C
ξ

ξ
=

+ ∑
 

 

C>0 is the penalty parameter of the error term. The process of training and using a 

SVM VS model for screening compounds based on their molecular descriptors is 

schematically illustrated in Figure 2-1. 
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Figure 2-1 Schematic diagram illustrating the process of the training a prediction 
model and using it for predicting active compounds of a compound class from 
their structurally-derived properties (molecular descriptors) by using support 
vector machines; A, B, E, F and (hj, pj, vj,…) represents such structural and 
physicochemical properties as hydrophobicity, volume, polarizability, etc. 
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2.3.2 K-nearest neighbor method (k-NN) 

k-NN measures the Euclidean distance 
2

iD = −x x  between a compound x 

and each individual compound xi in the training set(142, 143). A total of k number 

of vectors nearest to the vector x are used to determine the decision function f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i

i

f v fδ∈
=

← ∑x x                                                        (6) 

where ( , ) 1 if  and ( , ) 0 if a b a b a b a bδ δ= = = ≠  , arg max refers to the maximum 

value of the function, V is a finite set of vectors {v1,...,vs}  and ˆ ( )f x  is an 

estimate of f(x). Here estimate refers to the class of the majority compound group 

(i.e. inhibitors or non-inhibitors) of the k nearest neighbors. The procedure of k-

NN is illustrated in Figure 2-2. 
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Figure 2-2 Schematic diagram illustrating the process of the prediction of 
compounds of a particular property from their structure by using a machine 
learning method – k-nearest neighbors (k-NN). A, B: feature vectors of agents 
with the property; E, F: feature vectors of agents without the property; feature 
vector (hj, pj, vj,…) represents such structural and physicochemical properties as 
hydrophobicity, volume, polarizability, etc. 
 



Chapter 2 Methods                                                                               52 

 

 

 
 

2.3.3 Probabilistic neural network method 

Probabilistic Neural Network (PNN) belongs to the neural network methods. It is 

designed for classification through the use of Bayes’ optimal decision rule (98):

( ) ( )i i i j j jh c f h c f>x x , where hi and hj are the prior probabilities, ci and cj are the 

costs of misclassification and fi(x) and fj(x) are the probability density function for 

class i and j respectively. An unclassified vector x is classified into population i if 

the product of all the three terms is greater for class i than for any other class j 

(not equal to i). In most applications, the prior probabilities and costs of 

misclassifications are treated as being equal. The probability density function for 

each class for a univariate case can be estimated by using the Parzen’s 

nonparametric estimator(144), 

           
1

1
( ) ( )

n
i

i

g W
nσ σ=

−
= ∑

x x
x                  (7)  

where n is the sample size, σ is a scaling parameter which defines the width of the 

bell curve that surrounds each sample point, W(d) is a weight function which has 

its largest value at d = 0 and (x – xi) is the distance between the unknown vector 

and a vector in the training set. The Parzen’s nonparametric estimator was later 

expanded by Cacoullos for the multivariate case. 

          
,1 1,

1

11 1

1
( , , ) ( , , )

n
p p ii

p

ip p

x xx x
g x x W

nσ σ σ σ=

−−
= ∑K K

K
              (8) 

The Gaussian function is frequently used as the weight function because it is well 

behaved, easily calculated and satisfies the conditions required by Parzen’s 

estimator. Thus the probability density function for the multivariate case becomes 
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∑ ∑x                (9)  

The network architectures of PNN are determined by the number of compounds 

and descriptors in the training set. PNN are constituted of four layers, the input 

layer, the pattern layer, the summation layer and the output layer. The input layer 

provides input values to all neurons in the pattern layer and has as many neurons 

as the number of descriptors in the training set. The number of pattern neurons is 

determined by the total number of compounds in the training set. Each pattern 

neuron computes a distance measure between the input and the training case 

represented by that neuron and then subjects the distance measure to the Parzen’s 

nonparametric estimator. The summation layer has a neuron for each class and the 

neurons sum all the pattern neurons’ output corresponding to members of that 

summation neuron’s class to obtain the estimated probability density function for 

that class. Finally, the single neuron in the output layer then estimates the class of 

the unknown vector x by comparing all the probability density function from the 

summation neurons and choosing the class with the highest probability density 

function.  Figure 2-3 illustrates the procedure of PNN method. 
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Figure 2-3 Schematic diagram illustrating the process of the prediction of the 

prediction of compounds of a particular property from their structure by using a 

machine learning method –probabilistic neural networks (PNN). A, B: feature 

vectors of agents with the property; E, F: feature vectors of agents without the 
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property; feature vector (hj, pj, vj,…) represents such structural and 

physicochemical properties as hydrophobicity, volume, polarizability, etc. 

 

 

2.3.4 Tanimoto similarity searching method  

Determining if two compounds are similar to each other or not in a training 

dataset can be conducted by using the Tanimoto coefficient sim(i,j) (34) 

                            (10)

 

where l is the number of molecular descriptors. A compound i is considered to be 

similar to a known active j in the active dataset if the corresponding sim(i,j) value 

is greater than a cut-off value. In this work, in computing sim(i,j), the molecular 

descriptor vectors xis were scaled with respect to all of the MDDR. The cut-off 

values for similarity compounds are typically in the range of 0.8 to 0.9 (145, 146). 

A stricter cut-off value of 0.9 was used in this work. 

 

2.3.5 Generation of putative inactive compounds  

The construction of machine learning prediction models requires both positive 

data (e.g. active compounds) and negative data (e.g. inactive compounds). Apart 

from the use of known inactive compounds and active compounds of other 

biological target classes as putative inactive compounds (47, 58-60, 62-64, 136), a 

new approach extensively used for generating inactive proteins in ML 

1

2 2

1 1 1

( , )

( ) ( )

l

di dj
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l l l

di dj di dj

d d d
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classification of various classes of proteins (147-149) is considered to be used for 

generating putative inactive compounds. An advantage of this approach lies in its 

independence on the knowledge of known inactive compounds and active 

compounds of other biological target classes, which can expend the coverage of 

the “inactive” chemical space when only limited knowledge of inactive 

compounds and compounds of other biological classes can be found. A drawback 

of this approach is the possible inclusion of some undiscovered active compounds 

in the “inactive” class, which may affect the capability of ML methods for 

identifying novel active compounds. Such an adverse effect is expected to be 

relatively small for many biological target classes as explained below. 

 

In applying this approach to proteins, all known proteins are clustered into ~8,900 

protein families based on the clustering of their amino acid sequences (112), and a 

set of putative inactive proteins can be tentatively extracted from a few 

representative proteins in those families without a single known active protein. 

Undiscovered active proteins of a specific functional class typically cover no 

more than a few hundred families, which gives a maximum possible “wrong” 

family representation rate of <10% even when all of the undiscovered active 

proteins are misplaced into the inactive class (150). Importantly, the inclusion of 

the representative of a “wrong” family into the inactive class does not preclude 

other active family members from being classified as active. Statistically, a 

substantial percentage of active members can be classified by ML methods as 

active even if its family representative is in the inactive class (150). Therefore, in 
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principle, a reasonably good ML model can be derived from these putative 

inactive samples, which has been confirmed by a number of studies (147-150). 

 

In a similar manner, known compounds can be grouped into compound families 

by clustering them in the chemical space defined by their molecular descriptors 

(40, 151). As ML methods predict compound activities based on their molecular 

descriptors, it is reasonable to represent compounds in terms of molecular 

descriptors and cluster them in the similar manner. We applied K-means 

classification method (40, 151) and used molecular descriptors computed from 

our own software to represent the compounds (152). Then 7,990 cluster families 

were generated from the available compounds in PubChem database, which is 

consistent with the 12,800 compound-occupying neurons (regions of 

topologically close structures) for 26.4 million compounds of up to 11 atoms (8), 

and the 2,851 clusters for 171,045 natural products (153). Analogue groups such 

as steroids and catecholamines are distributed in a few families. Active 

compounds in extensively studied target classes such as those of HIV-1 protease 

inhibitors, DHFR inhibitors, and dopamine antagonists are distributed in 770, 135, 

and 799 families respectively.  The number of undiscovered “active” families in 

PubChem database is expected to be relatively small after then extensive effort in 

searching the known compound libraries for identifying active compounds in 

these target classes, most likely no more than several hundred families. The ratio 

of the undiscovered “active” families (hundreds on less) and the families that 

contain no known active compound (6,000~7,000 based on current version of 
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PubChem) for these and possibly many other target classes is expected to be 

<15%. Therefore, it is reasonable to generate putative inactive compounds by 

extracting a few representative compounds of those families that contain no 

known active compound, with a maximum possible “wrong” family 

representation rate of <15% even when all of the undiscovered active compounds 

are misplaced into the inactive class.  

 

CNS active agents are distributed in numerous biological target classes such as 

agonists, antagonists, regulators of G-protein coupled receptors and nuclear 

receptors, blockers and regulators of ion channels, substrates, inhibitors, 

activators, and regulators of transporters, and inhibitors and regulators of enzymes 

involved in the synthesis and metabolism of signaling molecules in the CNS 

system (154). Therefore, agents in this multi-target class are expected to cover a 

significantly larger portion of the chemical space than those of a single target 

class, leading to a possibly higher “wrong” family representation rate because of 

the possibility of higher number of undiscovered active families in the limited 

chemical space covered by the currently available compounds in existing 

databases. As a result, the quality of the putative non-CNS active compounds 

generated by the new approach may be affected to some extent. The new 

approach is expected to become more and more useful for multi-target classes 

when the coverage of chemical space can be significantly expanded as a result of 

increasing volume of the chemical databases. 
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There are 7,220, 7,855, 7,191, 3,440 families that contain no known HIV-1 

protease inhibitor, DHFR inhibitor, dopamine antagonist, and CNS active agent 

respectively. Thus datasets of 41,254 putative non- HIV-1 protease inhibitors, 

44,856 putative non-DHFR inhibitors, 42,804 putative non-dopamine antagonists, 

and 20,465 putative non-CAN active compounds were generated by random 

selection of 5~6 representative compounds from each of these families 

respectively.  

 

2.4 Virtual Screening Model Validation and Performance 

Measurements 

 

2.4.1 Model validation 

In-silico modeling offers the prediction of the pharmacological properties of 

compounds which have not been clinically or biologically tested. Therefore it is 

important to estimate and validate the predicting ability of the pharmacological-

data-derived models by their performances with the compounds that are not 

present in the training set. In this work, I used 5-fold cross-validation and 

independent validation datasets for this purpose. In 5-fold cross-validation, 

compounds are randomly divided into five subsets of approximately equal size. 

Four subsets are used as the training set for developing a model; the remaining 

one is used as a testing set for evaluating the prediction performance of the model. 

This procedure is repeated five times such that every subset is used as a testing set 
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once. The average accuracy of the five time models is seen as the accuracy 

predicting capability of the model constructed with the machine learning method. 

5-fold cross-validation can reflect the average performance of a model, however, 

it has the tendency of underestimating the prediction capability of a classification 

model, especially if important molecular features happen to be contained only in a 

minority of the compounds in the training set (155, 156). Hence if a model has 

relatively low cross-validation accuracy, it can still be predictive (155). Therefore, 

cross-validation alone is not decisive to the performance of a model. To 

complement cross-validation, independent validation datasets are used. They may 

provide a more reliable estimation of the prediction capability of a 

pharmacological property prediction model (157, 158). The independent 

validation dataset should be strictly independent from the training.  

 

2.4.2 Performance evaluation  

Measurements such as sensitivity, specificity and the overall prediction accuracy 

are employed to quantitatively assess the performance of virtual screening 

models. They are defined in terms of true positives TP (pharmaceutical agents 

possessing a specific pharmacological property), true negatives TN 

(pharmaceutical agents not possessing a specific pharmacological property), false 

positives FP (pharmaceutical agents not possessing a specific pharmacological 

property but predicted as agents possessing the specific pharmacological property) 

and false negatives FN (pharmaceutical agents possessing a specific 

pharmacological property but predicted as agents not possessing the specific 
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pharmacological property). Sensitivity and specificity are the measurement of 

prediction accuracy for pharmaceutical agents possessing a specific 

pharmacological property and agents not possessing that pharmacological 

property respectively. The overall prediction accuracy (Q) and Matthews 

correlation coefficient (MCC) (159) are used to measure the overall prediction 

performance. They are defined as follows: 

=SE FNTP

TP

+                                                                                   (11) 

=SP FPTN

TN

+                                                                                   (12) 

                                                                    (13) 

                            (14) 

The typical measurements of a model performance in screening large libraries 

include (44) yield (percentage of known positives predicted as virtual hits), hit-

rate (percentage of virtual hits that are known positives), false hit-rate (percentage 

of virtual hits that are known negatives) and enrichment factor EF (magnitude of 

hit-rate improvement over random selection):  

 
Yield = SE                                                                                                  (15) 

Hit-rate = TP/(TP+FP)                                                                              (16) 

False hit-rate = FP/(TP+FP)                                                                     (17) 

Enrichment factor EF = hit-rate / (TP+FN)/(TP+FN+TN+FP)               (18) 

 

FNFPTNTP
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2.4.3 Overfitting problem and its detection 

Overfitting is a major concern in machine learning classification methods. It 

happens when a model that agrees well with the observed data but has no 

predictive ability, which means it does not have any value to unseen or future data. 

There are two main types of overfitting situations: (1) a model more flexible than 

it needs to be and (2) a model including irrelevant descriptors (156). An over-

fitted classification system tends to obtain much higher prediction accuracies in 

the cross-validation sets than in the independent validation sets. Hence frequently 

used method for checking whether a model is overfitted is to compare the 

prediction accuracies in the cross-validation procedure with those found in testing 

independent validation sets (156).  

 

2.5 Combinatorial Machine Learning Methods 

Combinatorial machine learning methods are designed for the discovery of multi-

target agents. They are composed of the machine learning methods applied for 

individual target agents. Virtual hits simultaneously selected by all individual VS 

tools are considered as multi-target virtual hits (160). The multi-target agents 

search capability  of combinatorial machine learning methods is rigorously tested 

by excluding all known multi-target inhibitors from the training datasets and only 

those compounds known to be active against only one target in the target pair 

(these are tentatively referred to as individual-target inhibitors regardless of their 

possible activity against other targets outside the target pair) are used; The 
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purpose of this exclusiveness is to test to what extent these individual-target based 

VS tools can identify multi-target inhibitors without explicit knowledge of known 

multi-target inhibitors (105). Target selectivity of combinatorial machine learning 

methods is assessed by using the known individual-target inhibitors of each target 

pair and those in the other target pairs used for the same disease treatment. This 

can reflect the selectivity of combinatorial machine learning methods against 

random selection. Figure 2-4 shows the procedure of combinatorial machine 

learning methods in predicting dual-target agents. 
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Figure 2-4 The illustration of the procedure for combinatorial machine learning 

methods to predict dual-target agents 
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Chapter 3 Pharmainformatics Database Construction 

and Update 

With the exponential increase in pharmaceutical information, it is becoming 

increasingly necessary and important to collect and curate the information to 

provide informative databases to greatly assist the studies of disease mechanisms 

and the discovery of new drugs. Pharmainformatics databases can provide up-to-

date information and data that relate to disease mechanism studies, 

pharmaceutical research and drug development. 

 

3.1 The update of Kinetic Database of Bio-molecular Interaction 

 

3.1.1 Introduction to bio-molecular interactions  

 
Via individual and network actions, bio-molecular interactions participate 

fundamentally in biological, disease, and therapeutic processes (161-164). Over 

the past 20 years, the understanding of the characteristics, organization, evolution 

and complexity of bio-molecular interaction networks in biological systems have 

significantly advanced thanks to the extensive experimental and computational 

studies  (165-168) which also enabled the generation of  genome-scale protein-

protein interactions and the development prediction tools  (166, 167, 169-172) . 

Quite a number of databases have been developed for providing information 

about bio-molecular interactions (e.g. MIPS(173), DIP (174),  BIND  (175) , 

Biocyc (176), MINT (177), Biomodels (178), STRING (179), and IntAct (180)), 
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and biological networks and pathways (KEGG (181), BioGRID (182), 

NetworKIN (183), STITCH (184), DOMINE (185), CellCircuits (186), Reactome 

(187) and enzyme reactions (188)).  

3.1.2 New features of updated KDBI 

The updated KDBI includes a 2.3 fold increase of experimental kinetic data and 

four new features. The first new feature enables the access of KDBI entries via 

the list of nucleic acid and pathway names. The second new feature is added for 

facilitating the applications, assessments, and further development of the pathway 

models, it includes the literature-reported kinetic parameter sets of 63 pathway 

simulation models (189-198). The third new feature enables the facility for 

collectively accessing the available kinetic data of multi-step processes (e.g. 

metabolism, pathway segments) collected in KDBI. The fourth new feature 

provides the user with the SBML (199) files for all records of the kinetic 

parameter sets of pathway simulation models.  This format can facilitate the use 

of the relevant data in such software tools as Celldesigner (200), Copasi (201), 

cPath (202), PaVESy (203), and SBMLeditor (204). 

 

3.1.2.1 New Feature 1: nucleic acid and pathway names as KDBI 

entries  

The additional sets of the experimentally determined kinetic data of bio-molecular 

interactions were collected from published literatures.  The updated KDBI now 

contains 2635 protein-protein, 1711 protein-nucleic acid, 11873 protein-small 
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molecule, and 1995 nucleic acid-small molecule interactions. Each entry provides 

detailed description about binding or reaction event, participating molecules, 

binding or reaction equation, kinetic data, and related references. Compared to the 

last version of KDBI, the number of entries in the updated KDBI is increased by 

2.3 fold to 19263. As shown in Figure 3-1, kinetic data for protein-protein, small 

molecule-nucleic acid and protein-small molecule interactions is provided in 

terms of one or a combination of kinetic quantities as given in the literature of a 

particular event. These quantities include association/dissociation rate constant, 

on/off rate constant, first/second/third/… order rate constant, catalytic rate 

constant, equilibrium association/dissociation constant, inhibition constant, and 

binding affinity constant, IC50, etc. and experimental conditions (pH value and 

temperature).  

 

Figure 3-1: Experimental kinetic data page showing protein–protein interaction; It includes 

kinetic data and reaction equation (while available) as well as the name of participating molecules 

and description of event. 
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3.1.2.2 New Feature 2: pathway simulation models 

Mathematical simulation models of various pathways have been developed and 

extensively used for studying and quantitative understanding of signaling 

dynamics (189-193), signal specific sensing (194) and discrimination (198), 

feedback regulations and crosstalk  (196, 197), and receptor cross-activation  

(195)  and internalization (196). They have greatly assisted the understanding and 

quantitative analysis of complex biological processes and network responses. In 

the mathematical models, the temporal dynamic behaviors of molecular species in 

the pathway are typically described by ordinary differential equations (ODEs). 

The kinetic rate constants of protein–protein, protein-small molecule, protein-

nucleic acid, and other interactions (e.g. binding association rate Kf, binding 

dissociation rate Kb, reaction rate K, reaction turnover rate Kcat, Michaelis–

Menten constant Km) are needed to establish these ODEs. Those data have been 

primarily generated by combinations of experimental data, computed theoretical 

values, and empirically fitted values computational (193-198) . Therefore, in 

order to facilitate further applications, developments, and assessments of the 

published pathway models, in the KDBI update, I collected parameter sets of 63 

published ODE-based models, which can be accessed from the pathway list in the 

“Pathway Simulation Parameters” field in KDBI webpage. Additionally, the data 

type of kinetic data was included to every entry to clearly distinguish its original 

source (experimental or simulation model). In particular, when the data come 

from a simulation model, the cross reference to the original source is provided. 

Figure 3-2 demonstrates a pathway simulation model page. 
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Figure 3-2 This page provides kinetic data and reaction equation (when available) as 

well as the name of participating molecules and description of event in the pathway 

simulation models. 

 

3.1.2.3 New Feature 3: multi-step processes of kinetic data  

Multi-step processes have caught the interest and attention and there have been 

published studies providing information about the experimental kinetic data for 

the multiple components involved in multi-step processes (205-207). Some 

examples of these processes include RNA binding activity to translation initiation 

factors eIF4G, 70-kDa Heat Shock Protein polymerization, control of platelet 

function by cyclic AMP, GroEL interaction with conformational states of horse 
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cytochrome c, intermolecular catalysis by hairpin ribozymes, antisense RNA 

interaction with its complimentary RNA, nucleotide binding to actin. To facilitate 

the development of pathway simulation models based on these building blocks, 

direct access to the collection of the kinetic data for each of these processes are 

provided in the KDBI update, which can be accessed via a separate search field 

“Multi-step processes” in KDBI webpage. Figure 3-3 illustrates the multi-step 

process data displaying page. 

 

Figure 3-3 Multi-process kinetic data page provides kinetic data and reaction 

equation (when available) as well as the name of participating molecules and 

description of event 



Chapter 3 Pharmainformatics Databases Construction and Update        71 

 

 

 
 

3.1.2.4 New Feature 3: SBML availability  

Incredibly bio-information is being offered by numerous laboratories and 

research groups across the globe and hundreds of software for bioinformatics and 

chemo-informatics are used to process those data. Therefore, it is critical to adopt 

a unified data format that is compatible across the different software platforms. 

To this end, systems Biology Markup Language (SBML) has been developed as a 

free, open, XML-based format for representing biochemical reaction networks, 

and it is a software-independent language for describing models common to 

computational biology research, including cell signaling pathways, metabolic 

pathways, gene regulation, and others (208). Many pathway simulation and 

analysis software tools have built-in SBML compatibility features to allow the 

input, manipulation, simulation and analysis of different pathway models and 

parameters (199, 208-212). To meet the demand for SBML formatted date, the 

SBML files for the parameter sets of all 63 pathway simulation models included 

in KDBI were also created. These files can be downloaded via the link provided 

on the top of the page that displays the relevant kinetic data. Moreover, the SMBL 

viewer is provided for the convenience of the users, which can be found in the 

home page of KDBI. The SBML formatted data are offered in each query result 

page. See Figure 3-4 

 

Figure 3-4 The boxed part is link to where the SBML format data are offered. This link is presented in 

every query result page. 
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3.2 Update of Therapeutic Targets Database 

The studies of therapeutic targets (responsible for drug efficacy) and the targeted 

drugs can greatly facilitate both the discovery, validation of new targets and the 

development and optimization of new drug leads.  Therapeutic Target Database 

(TTD) is developed to provide comprehensive information of the known efficacy 

targets and the corresponding approved, clinical trial and investigative drugs. 

Since its last update in 2010, major improvements and updates have been made to 

TTD. First of all, a significant increase of data content (from 1,894 targets and 

5,028 drugs to 2,025 targets and 17,816 drugs plus 3,681 multi-target agents) has 

been made to the updated version. Besides, target validation information (drug 

potency against target, action against disease model, and the effect of target 

knockout, knockdown or genetic variations) for 932 targets (351 successful, 252 

clincial trial, 34 discontinued and 295 research targets), and 841 quantitative 

structure activity relationship (QSAR) models for active compounds of 228 

targets (71 of the targets are successful target, 20 are clinical trial and 30 are 

research targets) are added to the updates. Additionally, drug combinations and 

nature-derived drugs information are presented in the updated TTD. These 

updates are particularly useful for providing relevant information and facilitating 

target discovery and validation, drug lead discovery and optimization, and the 

development of multi-target drugs.  
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3.2.1 Target validation  

The decision to develop a drug against a particular target is usually a considerable 

commitment in terms of time and money. Once a target enters a pharmaceutical 

company's pipeline, it can take about 12 years to develop a marketable drug. Each 

new drug that reaches the market represents research and development costs of 

close to US$1 billion (213). Despite the huge investment in time and money, the 

number of NDAs (New Drug Applications) approved each year by the Food and 

Drug Administration (FDA), however, has declined from 53 in 1996 to 35 in 1999 

to 17 in 2002 to 15 in 2005. 

After passing the pre-clinical trials, pre-drugs will go through clinical trials, 

which are the tests conducted on humans. There are usually three stages in the 

clinical trials: Phase I (screening for safety), Phase II (establishing the testing 

protocol), Phase III (final testing). And sometimes, Phase IV will be conducted 

for post-approval studies. Drugs fail in the clinic usually for two basic reasons: it 

is either that they do not work as they were expected or they prove to be unsafe 

for patients. The ultimately ideal way to be completely certain that a drug can 

affect a protein instrumentally in a given disease is to test the idea in humans. 

Obviously such clinical trials cannot be applied for initial drug development, 

which means that a potential target must undergo other validation processes to 

clearly define its role in disease before drugs are sought that act against it, or 

before it is used to screen large numbers of compounds for drug activity. There 

are several aspects that can reflect a target’s validation. Such measurements 
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include the target’s association with disease pathology, its expression in cells 

linked to disease pathology and animal models. A relatively new route to target 

validation adopts the disrupting of gene expression. This is to reduce the amount 

of the corresponding protein, and so to identify the physiological role of the 

target. Examples of this technique include gene knockouts, antisense technology 

and RNA interference. 

To facilitate the validation of current targets, TTD update includes the target 

validation data for 932 targets. The validation information collected is classified 

into three types: drug potency against target, action against disease model, and the 

effect of target knockout, knockdown or genetic variations. Currently, TTD 

provides complete or partial validation information for 932 targets (351 

successful, 252 clinical trial, 34 discontinued and 295 research targets). This 

collection of target validation data can offer a good reference for drug 

development. Figure 3-5 gives an example of the TTD update in target validation. 
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Figure 3-5 An example for target validation information presented in the updated 

TTD 

 

3.2.2 QSAR models 

Quantitative structure-activity relationships (QSAR) attempts to correlate 

structural or property descriptors of compounds with their activities. QSAR use 

physicochemical descriptors to represent the features of the compounds for model 
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construction. These physicochemical descriptors, which include parameters to 

account for hydrophobicity, topology, electronic properties, and steric effects, are 

determined empirically or, more recently, by computational methods. Activities 

used in QSAR include chemical measurements and biological assays.  QSAR 

methods have been intensively applied in biomolecular discovery and drug design 

(214).  A great number of QSAR models have been constructed for various targets 

with descriptors of all kinds. Therefore, it would be very helpful to summarize as 

many as possible already constructed models to provide an informative and 

convenient reference. TTD now includes 841 QSAR models for active 

compounds of 228 distinct chemical types against 121 targets (71 of the targets 

are successful target, 20 are clinical trial and 30 are research targets). It provides 

two means for search: search by drug target name and search by chemical type. 

And in the search result page, QSAR models are described in details in the pdf 

format files which can be downloaded in the result page by clicking “QSAR 

model page”. Figure 3-6 shows the search page for the QSAR update of TTD and 

Figure 3-7 is an example of the result page. 
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Figure 3-6 The QSAR model search page offers search by target and search by 

chemical type 

 

 

Figure 3-7 An example of the search page for QSAR models. Detailed 

description of QSAR models can be downloaded via the link “QSAR model page”
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3.2.3 Other update features 

 

Multi-target agents have become a new trend in drug design as this approach is 

showing the hope to conquer the issues confronting the traditional single-target 

drugs such as low efficacy and side effects  (215). There have been intensive 

studies with rigorous analysis on the effect of drug combinations for which the 

combination effect has been evaluated by and for which relevant molecular 

interaction profiles of the drugs involved. These combinations are found to reveal 

general and specific modes of action (88). Nature derived drugs have always been 

widely applied by the traditional medicines of many cultures. Recently, Low drug 

productivity has renewed interest in natural products as drug-discovery sources 

(216). In order to keep pace with these new drug discovery trends, TTD updates 

provides structure and potency information of 3,681 multi target agents against 

108 target pairs, drug-combination data of 72, 14 and 4 pharmacodynamically 

synergistic, additive, and antagonist combinations respectively, 19 and 7 

pharmacokinetically potentiative and reductive combinations together with their 

mode of actions and combination mechanisms and 939, 369 and 119 nature-

derived approved, clinical trial and preclinical drugs together with their species 

origin information. All data are available for user to download. Figure 3-8, 

Figure 3-9 and Figure 3-10 present the downloading page for these data. Right 

click “Click to save” and choose “Save link as” option, the data then can be saved 

to the users’ preferred destination. 
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                                                     Figure 3-8 

       

                                                 Figure 3-9 

 

      

                                                  Figure 3-10 

Figure 3-8, Figure 3-9, Figure 3-10 Downloading pages for multi-target agents, 

Drug combination information and Nature-derived drugs
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Chapter 4 Preliminary Tests of Combinatorial Machine 

Learning Methods in Screening Multi-target Agents  

4.1 Introduction: Multi-target Kinase Inhibitor Therapeutics for 

Cancer Treatment 

Tyrosine kinases (TKs) are usually classified into receptor tyrosine kinases 

(RTKs) (e.g. epidermal growth factor receptor (EGFR), vascular endothelial 

growth factor (VEGFR)) and cytoplasmic/non-receptor kinase (e.g. Src, Lck). 

They play pivotal roles in diverse cellular activities including growth, 

differentiation, metabolism, adhesion, motility, death (217). For example, EGFR 

is found to be overexpressed or aberrantly activated in the most common solid 

turmors, including non-small cell lung cancer, breast cancer, prostate cancer and 

colon cancer. It has been proven that tyrosine kinases have particularly important 

implications in development of cancers. Therefore, they have emerged as 

clinically useful drug target molecules for treating certain types of cancer (218). 

Several tyrosine kinase inhibitors  (TKIs) (e.g. Gefitinib as EGFR inhibitor, 

Avastin as VEGFR inhibitor) have stumblingly survived the drug development 

stages and been applied for cancer treatment in clinical treatment of cancer (219).  

Despite the discovery and application of those kinase inhibitors, almost inevitably, 

cancer patients treated with single-target develop drug resistance and suffer a 

relapse. Moreover, many tumors are multi-factorial  and  are  linked  to  defects  

in  more  than  one  signaling  pathways,  and  the  inhibition  of  a  single  
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molecule  may  not  be sufficient to interfere efficiently with disease progression 

(220). As a result, a  multi-target  approach  has become a prevailing idea and  the 

new  generation  of TKIs  is  selected  on  the  basis  of  their  ability  

simultaneously  to  target  different  molecules.  Based on their importance in 

cancerogenesis implications, I selected five TKs (EGFR, FGFR, VEGFR, Src and 

Lck) to test virtual screening (VS) for the studies of inhibitors of the four dual-

target pair, EGFR-FGFR, EGFR-Src, VEGFR-Lck and Src-Lck. The strategy is to 

use experimentally obtained small-scale multi-target kinase inhibitors profiles to 

predict  inhibitors in a larger kinase set (221) by means of virtual screening. In 

principle, single-target VS tools may be combined to collectively identify multi-

target agents. This is practically useful when the individual VS tools have 

sufficiently high yields and low false-hit rates. High yields can compensate for the 

reduced collective yields of combinatorial VS tools (For two statistically-

independent VS tools of 50%-70% yields, the collective yield of their 

combination is roughly the product of the yield of individual tools, which is 25%-

49%). Low false-hit rates contribute to  high enrichment factors in searching 

multi-target agents that are more sparsely distributed in the chemical space than 

non-dual inhibitors (Table 4-1). 
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Table 4-1 Datasets of dual-inhibitors and non-dual-inhibitors of the kinase-pairs used for developing and testing combinatorial SVM virtual 
screening tools; Additional sets of 13.56 million PubChem compounds and 168 thousand MDDR active compounds were also used for the 
test. 
Kinase Pair  Inhibitors in Training Sets Inhibitors and Other Compounds in Testing Set 

Kinase A – 
Kinase B 

Training Set for Kinase A Training Set for Kinase B Dual Inhibitors of A and B MDDR 
Compounds 
Similar to 
Dual 
Inhibitors of 
A and B 

 No of 
inhibitors of 
A that are 
non-
inhibitor of 
B (No of 
families) 

No of  
these 
inhibitors 
that are in 
the B 
inhibitor 
families 
(No of 
families) 

No of 
these 
inhibitors 
that are in 
the 
families 
of dual 
inhibitors 
of A and 
B (No of 
families) 

No of 
inhibitors 
of B that 
are non-
inhibitor of 
A (No of 
families) 

No of 
these 
inhibitors 
that are in 
the A 
inhibitors 
families 
(No of 
families) 

No of  
these 
inhibitors 
that are in 
the 
families 
of dual 
inhibitors 
of A and 
B (No of 
families) 

No of 
dual 
inhibitors 
of A and 
B (No of 
families) 

No (%) of 
dual 
inhibitors in 
the families 
that contain 
both A and B 
non-dual 
inhibitor in 
training sets 

No (%) of 
dual-inhibitors 
of A and B as 
inhibitor of at 
least one of 
the other 5 
kinases 
studied in this 
work 

No (%) of 
dual-
inhibitors 
of A and B 
as inhibitor 
of more 
than 2 of 
the other 
5kinases 
studied in 
this work 

No of 
Compounds 

EGFR-FGFR 1303 (388) 284 (52) 160 (22) 392 (131) 154 (52) 124 (27) 71 (39) 37 (52.1%) 70 (98.6%) 2 (2.8%) 1001 

EGFR-Src 1262 (372) 331 (73) 166 (31) 748 (216) 243 (73) 168 (38) 112 (64) 46 (41.1%) 46 (41.1%) 2 (1.8%) 1127 

VEGFR-Lck 1232 (427) 220 (69) 102 (17) 445 (171) 206 (69) 52 (11) 61 (23) 29 (47.5%) 37 (60.7%) 0 (0.0%) 413 

Src-Lck 804 (236) 222 (49) 98 (11) 450 (175) 160 (49) 23 (9) 56 (17) 23 (41.1%) 38 (67.9%) 0 (0.0%) 276 
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4.2 Materials and Methods 

4.2.1 Compound collection, training and testing datasets, 

molecular descriptors 

We collected a total of 233-1,316 non-dual inhibitors of EGFR, VEGFR, FGFR, 

Src, Lck and 56-188 dual inhibitors of EGFR-FGFR, EGFR-Src, VEGFR-Lck,, 

and Src-Lck, each with IC50≤10µM, were collected from the litterature (222-231) 

and the BindingDB database (125). Here dual-inhibitors and non-dual inhibitors 

of a kinase-pair are defined as inhibitors of both and one of the two kinases 

respectively regardless of their activities against other kinases. Table 4-1 

summarizes the statistics of these inhibitors and MDDR compounds similar to at 

least one dual-inhibitor. The implication of machine learning methods requires 

both positive (e.g. the active compounds) and negative data (e.g. the inactive 

compounds). As few non-inhibitors have been reported, putative non-inhibitors of 

each kinase were generated by using our published method that requires no 

knowledge of inactive compounds or active compounds of other target classes and 

enables more expanded coverage of the “non-inhibitor” chemical space (85, 102). 

First, 13.56 million PubChem and 168 thousand MDDR compounds were 

clustered into 8,993 compound families of similar molecular descriptors (151). 

These are consistent with the reported 12,800 compound-occupying neurons 

(regions of topologically close structures) for 26.4 million compounds of up to 11 

atoms (8), and 2,851 clusters for 171,045 natural products (153). A total of 
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42,670- 44,115 compounds extracted from the 8,534-8,823 families (5 per family) 

that contain no known inhibitor were used as the putative non-inhibitors.  

 

In this study, I used a total of 98 important descriptors calculated by the program 

MODEL. The details about molecular descriptors have been explained in 

Chapter 2 Section 2.2.1 

 

4.2.2 Computational methods  

Support Vector Machine (SVM) is based on the structural risk minimization 

principle of statistical learning theory (132). SVM can detect active compounds 

fast by differentiating physicochemical profiles rather than structural similarity to 

active compounds per se. It does not require knowledge of target structures and 

the computation of structural flexibility, activity-related features, solvation effects 

and binding affinities. It has shown outstanding classification performance, less 

chance being penalized by sample redundancy, low over-fitting risks. It  is 

capable of accommodating large and structurally diverse training and testing 

datasets, and is fast in performing classification tasks (134, 135). Although the 

performance of SVM critically depends on the diversity of training datasets thus 

the limited knowledge of known inhibitors for many kinase targets may hinder the 

application of sufficiently good SVM VS, its high yields and low false-hit rates in 

searching single-target agents (103) sometimes even based on sparsely distributed 

active compounds (102) still make it a potentially good virtual screening tool for 
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the exploration of multi-target agents. In this study, I derived multi-target SVM 

VS tool: combinatorial SVMs (COMBI-SMV), which combines the prediction of 

two separate SVM classifier for each the multiple kinases.  

 

Figure 4-1 illustrates the application of COMBI-SVM for searching multi-target 

inhibitors. The SVM VS models were developed by using a hard margin 

c=100,000 and their σ values are in the range of 0.1-2. In terms of the numbers of 

true positives TP (true inhibitors), true negatives TN (true non-inhibitors), false 

positives FP (false inhibitors), and false negatives FN (false non-inhibitors), the 

yield and false-hit rate are given by TP/(TP+FN) and FP/(TP+FP) respectively. 

 

Figure 4-1 Illustration of combinatorial support vector machines method 
(COMBI-SVM) for searching multi-target inhibitors for searching multi-target 
inhibitors 
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4.3 Results and Discussion 

4.3.1 Virtual screening performance of Combinatorial SVM in 

searching kinase dual-inhibitors from large libraries 

The performance of combinatorial SVM (COMBI-SVM) for identifying the 4 

dual-kinase inhibitors is summarized in Table 4-2. We used 5-fold cross-

validation to select the COMBI-SVM model parameters for the evaluated kinases 

and they reside in the ranges of σ=0.5~0.8.  The dual-inhibitor yields are 40.9% 

for EGFR-FGFR, 26.8% for EGFR-Src, 52.6% for VEGFR-Lck, and 48.2% for 

Src-Lck respectively.  Besides, the yields for the intra-PTK group are comparable 

to the expected 25%-49% yields of combinations of good VS tools with 

individual yields of 50%-70%. This shows reasonably good capability for 

COMBI-SVM in identifying multi-target agents for kinase-pairs within a protein 

kinase group without requiring explicit knowledge of multi-target agents. 

 

The target selectivity is conducted by two means. Firstly, I tested the target 

selectivity of COMBI-SVM by screening the 233-1,316 non-dual inhibitors of the 

4 kinase pairs. The misidentifying rates are 10.1% and 8.7% of the non-dual 

inhibitors of the kinase pair as dual-inhibitors for EGFR-FGFR, 12.9% and 11.1% 

for EGFR-Src, 6.6% and 29.2% for VEGFR-Lck, 15.8% and 18.7% for Src-Lck 

(see Table 4-2). The misidentification of a substantial percentage of non-dual 

inhibitors as dual-inhibitors might be caused by the following two reasons.  1) 

SVMs were trained exclusively by non-dual inhibitors, which may make it 
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difficult for a SVM model to fully distinguish dual and non-dual inhibitors. 2) 

Some of the misidentified non-dual inhibitors are probably true dual-inhibitors not 

yet experimentally tested for multi-target activities. Hence the “mistaken” 

selection of these non-dual inhibitors can still be utilized in tests as possible dual-

inhibitor candidates. Therefore, COMBI-SVMs have reasonably good selectivity 

in distinguishing dual-inhibitors from non-dual inhibitors.  

 

Virtual-hit rates and false-hit rates of COMBI-SVMs in detecting compounds 

similar in the structural and physicochemical properties to the training datasets 

were measured by using 276-1,127  MDDR compounds similar to a dual-inhibitor 

of each kinase-pair. Similarity was defined by Tanimoto similarity coefficient 

≥0.9 between a MDDR compound and its closest dual-inhibitor (102). COMBI-

SVMs identified 65 virtual hits from 1,001 MDDR compounds (6.5%) for EGFR-

FGFR, 24 from 1,127 MDDR compounds (2.1%) for EGFR-Src, 21 from 413 

MDDR compounds (5.1%) for VEGFR-Lck, and 26 from 276 MDDR compounds 

(9.4%) for Src-Lck. 

 

The virtual-hit rates and thus false hit rates were tested by screening large 

libraries of 168 thousand MDDR and 13.56 million PubChem database. The 

numbers of virtual-hits and virtual-hit rates in screening 168 thousand MDDR 

compounds are 126 and 0.07% for EGFR-FGFR, 162 and 0.096% for EGFR-Src, 

170 and 0.1% for VEGFR-Lck, and 131 and 0.078% for Src-Lck. The numbers of 
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virtual-hits and virtual-hit rates in screening 13.56M PubChem compounds are 

2,200 and 0.015% for EGFR-FGFR, 4,471 and 0.033% for EGFR-Src, 4,817 and 

0.036% for VEGFR-Lck,  2,674 and 0.02% for Src-Lck. COMBI-SVM hence 

showed significantly low false-hit rates in screening large libraries.  

 

Analysis of the MDDR virtual hits showed that substantial percentages of the 

MDDR virtual-hits belong to the classes of antineoplastic, tyrosine-specific 

protein kinase inhibitors, and signal transduction inhibitors (Table 4-3). As some 

of these virtual-hits may be true dual-inhibitors, the actual number of true false-

hits may be smaller than the total number of virtual-hits for each kinase-pair. 

Hence, the false-hit rates of the combinatorial SVMs are at most equal to and 

likely less than the virtual-hit rates. Hence the false-hit rates are ≤2.13%-9.4% in 

screening 276-1,127 MDDR similarity compounds, ≤0.078%-0.10% in screening 

168 thousand MDDR compounds, and ≤0.002%-0.011% in screening 13.56 

million PubChem compounds, which are comparable and in some cases better 

than single-target false-hit rates of 0.0054%-8.3% of single-target SVMs (29, 

102), 0.08%-3% of structure-based methods, 0.1%-5% by other machine learning 

methods, 0.16%-8.2% by clustering methods, and 1.15%-26% by pharmacophore 

models (232). 
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Table 4-2 Virtual screening performance of combinatorial SVMs for identifying dual-inhibitors of 4 combinations of EGFR, 
VEGFR,FGFR, Src and Lck 
 

Kinase  Virtual Screening Performance 

  Dual inhibitors Non-dual inhibitors of the same 
kinase pair 

MDDR compounds 
similar to dual 
inhibitors 

All 168 thousand 
MDDR compounds 

13.56 million 
PubChem comnds 

1.02 million 
Zinc clean-
leads dataset 

  Yield No (%) of 
identified true 
hits outside the 
common training 
active families of 
both kinases 

False hit rate for 
inhibitors of 
kinase A 

False hit rate for 
inhibitors of 
kinase B 

 Virtual hit rate (No 
of virtual hits) 

Virtual hit rate (No 
of virtual hits) 

Virtual hit rate 
(No of virtual 
hits) 

Virtual hit rate 
(No of virtual 
hits) 

EGFR-FGFR 40.90% 6 (8.5%) 10.10% 8.70% 6.5% (65) 0.07% (126) 0.016% (2200) 0.004% (36) 

EGFR-Src 26.80% 13 (11.6%) 12.90% 11.10% 2.13% (24) 0.096% (162) 0.033% (4471) 0.007% (76) 

VEGFR-Lck 52.60% 8 (13.1%) 6.60% 29.20% 5.1% (21) 0.10% (170) 0.036% (4817) 0.011% (113) 

Src-Lck 48.20% 9 (16.1%) 15.80% 18.70% 9.4% (26) 0.078% (131) 0.020% (2674) 0.002% (25) 
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Table 4-3 MDDR classes that contain higher percentage (≥9%) of virtual-hits 
identified by combinatorial SVMs in screening 168 thousand MDDR compounds 
for dual-inhibitors of 4 combinations of EGFR, VEGFR, FGFR, Src and Lck 
Kinase Pair No of 

SVM 

Identified 

Virtual 

Hits 

MDDR Classes that Contain Higher 

Percentage of Virtual Hits  

No of 

Virtual 

Hits in 

Class 

Percentage 

of Class 

member as 

Virtual 

Hits 

EGFR-FGFR 126 Antineoplastic 78 0.40% 

Tyrosine-Specific Protein Kinase 
Inhibitor 

47 4.00% 

Antiarthritic 37 0.30% 

Signal Transduction Inhibitor 23 1.10% 

Antiangiogenic 16 1.00% 

EGFR-Src 162 Antineoplastic 95 0.40% 

Tyrosine-Specific Protein Kinase 
Inhibitor 

42 3.60% 

Signal Transduction Inhibitor 39 1.90% 

Antiangiogenic 21 1.30% 

Antiarthritic 15 0.10% 

VEGFR-Lck 170 Antineoplastic 87 0.40% 

Antiarthritic 42 0.40% 

Tyrosine-Specific Protein Kinase 
Inhibitor 

36 3.00% 

Signal Transduction Inhibitor 31 1.50% 

Antiangiogenic 16 1.00% 

Atherosclerosis Therapy 10 0.90% 

Antiarthritic 10 0.10% 

Src-Lck 131 Antineoplastic 65 0.30% 

Tyrosine-Specific Protein Kinase 
Inhibitor 

34 2.90% 

Antiarthritic 23 0.20% 

Signal Transduction Inhibitor 17 0.80% 

Antineoplastic Enhancer 14 2.20% 
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4.3.2 Analysis of combinatorial sVM identified MDDR virtual hits 

The virtual hits of MDDR detected by combinatorial SVM (COMBI-SVM) were 

analyzed based on the known biological or therapeutic target classes specified in 

MDDR. Table 4-3 has listed the MDDR classes that contain higher percentage 

(≥9%) of COMBI-SVM virtual-hits and the percentage values. It is shown that 

65-95 (41.6%-61.9%) of the 126-170 virtual-hits belong to the antineoplastic 

class, which represent 0.30%-0.40% of the 21,557 MDDR compounds in the 

class. In particular, 34-47 (21.2%-37.3%) of the virtual-hits belong to the 

tyrosine-specific protein kinase inhibitor class, which represents 2.9%-4.00% of 

the 1,181 MDDR compounds in the class. Moreover, 17-39 (13.0%-24.1%) of the 

virtual-hits are the numbers of the signal transduction inhibitor representing 

0.80%-1.9% of the 2,037 members in this class. Therefore, many of the COMBI-

SVM virtual-hits are antineoplastic compounds that may also inhibit tyrosine 

kinases and possibly other kinases involved in signal transduction, angiogenesis 

and other cancer-related pathways. Although some of these kinase inhibitors 

might be true dual-inhibitors of specific kinase pairs, the majority of them are 

expected to be false selection of non-dual inhibitors of the same kinase-pairs (at 

6.6%-29.2% false-hit rates).  

 

Some of the COMBI-SVM virtual hits belong to the antiarthritic class. Four of the 

evaluated kinases have been linked to arthritis in the literature. EGFR-like 

receptor stimulates synovial cells and its elevated activities may be involved in 

the pathogenesis of rheumatoid arthritis (29). VEGF has also been related to such 
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autoimmune diseases as systemic lupus erythematosus, rheumatoid arthritis, and 

multiple sclerosis (233). FGFR may partly mediates osteoarthritis (234). Lck 

inhibition leads to immunosuppression and has been explored for the treatment of 

rheumatoid arthritis and asthma (235). Therefore, some of the COMBI-SVM 

virtual-hits in the antiarthritic class could actually be capable of producing 

antiarthritic activities.  

 

Moreover, Multiple FGFRs are elevated in atherosclerotic lesions in apoE-/- 

micand and active FGFR-1 signalling promotes atherosclerosis development via 

increased SMC proliferation and by augmenting macrophage accumulation via 

increased expression of MCP-1 and factors promoting macrophage retention in 

lesions (236). Hence, some of the COMBI-SVM virtual hits in the atherosclerosis 

therapy could act as dual inhibitors of the two kinases.
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4.4 Conclusion 

In these preliminary tests for the search of dual-kinase inhibitors, combinatorial 

SVM (COMBI-SVM) VS tools developed by exclusively using non-dual 

inhibitors showed good yields for dual-inhibitors of several anticancer target 

kinase pairs and in many cases. The capability of the combinatorial SVMs and 

other VS tools in identifying multi-kinase inhibitors and other multi-target agents 

may be further enhanced by incorporating knowledge of multi-target agents into 

VS tool development processes. When more multi-target kinase inhibitors are 

found and tested to prove effective on their targets, it is possible to introduce 

more comprehensive elements of distinguished structural and physicochemical 

features of selective multi-target agents into the training of combinatorial VS 

tools. This could in turn enhance more effective identification of selective multi-

target agents. In order to improve the target selectivity, the multi-target VS tools 

can be combined with structure-based filters. Because of their high computing 

speed and generalization capability, combinatorial SVM can be potentially 

studied and applied as useful VS tools to complement other VS methods or to be 

used as part of integrated VS tools in facilitating the discovery of multi-kinase 

inhibitors and other multi-target agents. 
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Chapter 5 The Application of Combinatorial Machine 

Learning Methods in Virtual Screening of Selective 

Multi-target Antidepressant Agents 

5.1 Introduction 

Major depression is a prevailing, heterogeneous, and often incapacitating 

disorder. It is triggered by complex patterns such as genetic, epigenetic, 

developmental, and environmental factors (237). Major depression is 

characterized as an episode of change in mood that lasts for weeks or months. It is 

one of the most severe types of depression. It usually involves a low or irritable 

mood and/or a loss of interest or pleasure in usual activities. It interferes with 

one's normal functioning and often includes physical symptoms. A person may 

experience only one episode of major depressive disorder, but often there are 

repeated episodes over an individual's lifetime. The effects of major depression 

could be devastating and lead to suicide. Hence antidepressants have become one 

of the largest therapeutic areas of current drug market (63). Despite the efforts 

spent in the treatment of major depression, Antidepressant drug discovery has 

been a complex task due to incomplete understanding of neurobiological basis of 

depression. A primary anti-depression strategy is to inhibit monoamine reuptakes, 

such as serotonin reuptake, by both single-target and multi-target drugs (95). 

Commonly used antidepressants, such as the selective serotonin (5-HT) reuptake 

inhibitors (SSRIs) (e.g. Fluoxetine) are often effective, but the full efficacy takes 
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several weeks to achieve and many patients only partially respond to the drugs 

while some others remain refractory (237). Single-target drugs (78, 85) frequently 

encounter reduced efficacy and drug resistance problems caused by network 

robustness (78), redundancy (79), crosstalk (80), compensatory and neutralizing 

actions (81), anti-target and counter-target activities (82), and on-target and off-

target toxicities (83) . Multi-target drugs are particularly useful for avoiding these 

problems.  

 

Multi-target monoamine inhibitor drugs achieve enhanced efficacies by several 

mechanisms. The first one involves the inhibition of multiple monoamine 

reuptakes (1). The simultaneous blockade of complementary monoamine 

reuptakes synergistically enhances the overall therapeutic efficacy (238). Specific 

types of monoamines in CNS are reduced both by a primary monoamine 

transporter and by alternative transporters (239, 240). For instance, 5-HT is 

reduced primarily by serotonin transporter (SERT), and secondarily by 

noradrenaline transporter (NET) and dopamine transporter (DAT) particularly at 

high levels of 5-HT and/or when SERT function/expression is compromised 

(240). Therefore, inhibition of one monoamine reduction route is complemented 

by the inhibition of the other routes to reduce their compensatory activities, 

leading to therapeutic synergy. This multi-target strategy is the basis for 

developing dual serotonin reuptake and noradrenaline reuptake inhibitors  

(NETSRIs) as antidepressant drugs of fast and enhanced therapeutic effects (241). 
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DES-VENLATAFINE and TESOFENSINE are good examples of NETSRI and 

dual SERT and DAT inhibitor respectively (Figure 5-1).  

The second mechanism involves collective monoamine reuptake inhibition and 

receptor antagonism. For instance, it has been reported that increased release of 5-

HT by SERT inhibition stimulates 5-HT1A, 5-HT1B, and 5-HT1C autoreceptors, 

which subsequently reduces 5-HT release, thereby delaying the therapeutic effect 

of serotonin reuptake inhibitors until the 5-HT1A and 5-HT1B/1C autoreceptors 

become desensitized (242). This counteractive effect can be reduced by 

simultaneous targeting of serotonin transporters and 5-HT1A, 5-HT1B or 5-HT1C 

receptors. Indeed, co-administration of a 5-HT1A receptor antagonist with a 

selective serotonin reuptake inhibitor leads to an immediate increase in CNS 5-

HT levels (243) and shortened onset of anxiolytic activity (244). SSA-426 is an 

example of dual SERT and 5-HT1A receptor antagonist (Figure 5-1). Histamine 

H3 receptor also promotes counteractive effect against serotonin reuptake 

inhibition by mediating the inhibition of serotonin release in the brain (245, 246). 

Therefore, in some circumstances, simultaneous targeting of serotonin reuptake 

transporter and histamine H3 receptor achieves an improved antidepressant effect 

by more enhanced 5-HT release (247).  

 

Another mechanism involves bimodal antidepressant actions. This approach aims 

at reducing the undesirable actions of selective serotonin reuptake inhibitors 

(SSRIs) through multi-targeted inhibition of other related receptors. Some of the 



Chapter 5 The Application of Combinatorial Machine Learning Methods in 

Virtual Screening of Selective Multi-target Antidepressant Agents 97 

 

 

 
 

undesirable actions of SSRIs, such as the short-term anxiety, arise from 

stimulation of 5-HT2C receptor, and 5-HT2C receptors also mediate the inhibitory 

effects of SSRIs on sleep, sexual function, and appetite (1). Therefore, serotonin 

reuptake inhibitors with antagonist activities against 5-HT2C receptor sites are 

expected to show a better tolerability than SSRIs (1). AGOMELATINE is a dual 

serotonin reuptake inhibitor and 5-HT2C receptor antagonist (5HT2cAntags) 

(Figure 1) with clinically proven activity against major depression. The blockade 

of neurokinin 1 (NK1) receptors by NK1 receptor antagonists (NK1Antags) not 

only complement the effects of serotonin reuptake inhibition but also accelerate 

the long-term facilitating influence of SSRIs on serotonergic transmission (237).  

Therefore, dual serotonin reuptake inhibitor and NK1 receptor antagonist, such as 

UCB (Figure 5-1), is expected to be more efficacious and faster in achieving 

therapeutic effects than SSRIs.  Moreover, dual serotonin reuptake inhibitor and 

melanocortin 4 (MC4) receptor antagonist (MC4Antags), such as MCL10004 

(Figure 1), has been found to interlink neuropeptide receptor antagonist activity 

with SRI activity to synergistically improve mood (237).  

 

Extensive efforts have been directed at the development of multi-target serotonin 

reuptake inhibitors (e.g. dual serotonin reuptake and noradrenaline reuptake 

inhibitors (NETSRIs) (248, 249), dual serotonin reuptake inhibitor and 5-HT1A 

receptor antagonists (5HT1aSRIs) (250, 251), dual serotonin reuptake inhibitor 

and 5-HT1B receptor antagonists (5HT1bSRIs) (252), dual serotonin reuptake 
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inhibitor and H3 receptor antagonists (H3SRIs) (247), dual serotonin reuptake 

inhibitor and 5-HT2C receptor antagonists (5HT2cSRIs) (253), dual serotonin 

reuptake inhibitor and MC4 receptor antagonists (MC4SRIs) (254) and dual 

serotonin reuptake inhibitor and NK1 receptor antagonists (NK1SRIs) (255)) 

based on the above mechanisms. While in-silico methods have been extensively 

used for searching selective serotonin reuptake inhibitors (256, 257), 

noradrenaline reuptake inhibitors (258),(259), 5HT1A receptor antagonists (260, 

261) and H3 receptor antagonists (262, 263), these methods have been used in a 

few published works for searching NETSRIs, 5HT1aSRIs, 5HT1bSRIs, H3SRIs, 

5HT2cSRIs, MC4SRIs and NK1SRIs (252) (264, 265). Therefore, in order to 

identify multi-target agents that are more sparsely distributed in the chemical 

space than single-target agents, there is a strong need to explore in-silico methods 

more extensively, particularly those methods capable of searching large 

compound libraries at good yields and low false-hit rates.  

 

In this work, I used a machine learning method, support vector machines (SVM), 

to develop the combinatorial SVM (COMBI-SVM) virtual screening (VS) tool for 

searching dual-target agents NETSRIs, 5HT1aSRIs, 5HT1bSRIs,  H3SRIs, 

5HT2cSRIs, MC4SRIs and NK1SRIs. In Chapter 4, COMBI-SVM has been 

tested as dual-kinase inhibitor VS tools with reasonably good yields, target 

selectivity and low false-hit rates in searching large compound libraries (105). 

Hence, it is time to apply COMBI-SVM to search the dual-target antidepressant 
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agents NETSRIs, H3SRIs, 5HT1aSRIs, 5HT1bSRIs, 5HT2cSRIs, MC4SRIs and 

NK1SRIs from large compound libraries. 
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Figure 5-1 Examples of multi-target multi-target serotonin reuptake inhibitors; NETSRI=dual serotonin reuptake and noradrenaline 
reuptake inhibitor; NEDASRI= serotonin, dopamine, and noradrenaline reuptake inhibitor; 5HT1ASRI: dual serotonin reuptake inhibitor/5-
HT1A ; NK1SRI=dual serotonin reuptake inhibitor/neurokinin 1 receptor antagonist; MC4SRI=dual serotonin reuptake 
inhibitor/melanocortin 4 receptor antagonist.
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5.2 Materials and Methods 

5.2.1 Data collection and molecular descriptors 

Individual-target and dual-target inhibitors, each with IC50 or Ki value ≤10µM, 

were collected from the literature (247, 248, 251), and the ChEMBL (266) and 

BindingDB (125) databases. The collected individual-target inhibitors include 

1125-1951 SSRIs, 1410 noradrenaline reuptake inhibitors (NRIs), 1689 H3 

receptor antagonists (H3Antags), 1144 5-HT1A receptor antagonists 

(5HT1aAntags), 917 5-HT1B receptor antagonists (5HT1bAntags), 1234 5-HT2C 

receptor antagonists (5HT2cAntags), 1721 melanocortin 4 receptor antagonists 

(MC4Antags) and 1787 neurokinin 1 receptor antagonists (NK1Antags). The 

collected dual inhibitors are 101 dual serotonin reuptake/noradrenaline reuptake 

inhibitors (NETSRIs), 147 dual serotonin reuptake inhibitor/H3 receptor 

antagonists (H3SRIs), 216 dual serotonin reuptake inhibitor/5-HT1A receptor 

antagonists (5HT1aSRIs), 57 dual serotonin reuptake inhibitor/5-HT1B receptor 

antagonists (5HT1bSRIs), 27 dual serotonin reuptake inhibitor/5-HT2C receptor 

antagonists (5HT2cSRIs), 6 dual serotonin reuptake inhibitor/melanocortin 4 

receptor antagonists (MC4SRIs) and 45 dual serotonin reuptake 

inhibitor/neurokinin 1 receptor antagonists (NK1SRIs), Table 5-1 summarises the 

datasets of these individual-target inhibitors, dual-inhibitors and MDDR 

compounds similar to at least one dual-inhibitor for each the target pair used as 

the training and testing sets in this work. Figure 5-1 illustrates the composition of 

the collected dual-inhibitors of the seven studied. 
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As few non-inhibitors have been reported, putative non-inhibitors of each target 

were generated by using our published method that requires no knowledge of 

inactive compounds or active compounds of other target classes and enables more 

expanded coverage of the “non-inhibitor” chemical space (29, 102). First, 17 

million PubChem and 168 thousand MDDR compounds were clustered into 8,993 

compound families of similar molecular descriptors (267), which are consistent 

with the reported 12,800 compound-occupying neurons (regions of topologically 

close structures) for 26.4 million compounds of up to 11 atoms (268), and 2,851 

clusters for 171,045 natural products (269).  

 

The putative non-inhibitors for each target were extracted from those families (5-

8 per family) that contain no known individual-target inhibitors. The specific 

numbers of putative non-inhibitors are 60726-62593 from 7590-8018 families for 

SERT, 61957 from 7937 families for NET, 61960 from 7937 families for H3 

receptor, 62376 from 7991 families for 5-HT1A receptor, 64790 from 8114 

families for 5HT1B receptor, 61912 from 7739 families for 5-HT2C receptor, 

63807 from 7976 families for MC4 receptor and 62733 from 7842 families for 

NK1 receptor. This approach has the risk of the wrong exclusion of the compound 

families that contain multi-target inhibitors and undiscovered individual-target 

inhibitors from the non-inhibitor training dataset. The maximum possible “wrong” 

classification rate arising from these mistakes has been estimated at <13% even in 

the extreme and unlikely cases that all of the undiscovered single-target and 
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multi-target agents are misplaced into the non-inhibitor class (102), (103). The 

noise level generated by up to 13% “wrong” negative compound family 

representation is expected to be substantially smaller than the maximum 50% 

false-negative noise level tolerated by SVM (270). 

 

We used the 98 descriptors which include 18 descriptors in the class of simple 

molecular properties, 3 descriptors in the class of chemical properties, 35 

descriptors in the class of molecular connectivity and shape, 42 descriptors in the 

class of electro-topological state. These descriptors are described in Chapter 2 

Section 2.2.1. This set of descriptors has been selected in our previous studies for 

representing diverse structural and physicochemical properties of both inhibitors 

of a specific target and non-inhibitors of that target distributed in large chemical 

space defined by 13.56 million Pubchem compounds (Chapter 4). Although the 

structures of inhibitors of one target can be very different from those of another 

target, each inhibitor set plus the representatives of the non-inhibitors cover the 

same chemical space defined by the 13.56 million Pubchem compounds. 

Therefore, the same set of molecular descriptors was used in this work as well as 

our previous works. The virtual screening models of vastly different biochemical 

classes (kinases, GPCR agonists/antagonists, peptidase inhibitors, DHFR 

inhibitors, and HDAC inhibitors) developed by this same descriptor set have 

shown equally good performance in screening large chemical libraries (102, 103, 

105) (160).
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Table 5-1 Datasets of individual-target inhibitors, dual inhibitors and MDDR compounds similar to at least one dual inhibitor used as the 
training and testingsets in this work 
 

Target 

Pair  
Inhibitors in Training Sets Inhibitors and Other Compounds in Testing Set 

Target A – 
Target B  

Training Set for Target A Training Set for Target B Multi-Target Agents of Target A and B 

Inhibitors 
of other six 
targets 
outside 
target-pair 

MDDR 
Compounds 
Similar to 
Multi-
Target 
Inhibitors 
of A and B 

No of 
inhibitors of 
A that are 

non-inhibitor 
of B (No of 

families) 

No of  
these 

inhibitors 
that are in 

the B 
inhibitor 
families 
(No of 

families) 

No of 
these 

inhibitors 
that are in 

the 
families 
of multi-

target 
agents of 
A and B 
(No of 

families) 

No of 
inhibitors 
of B that 
are non-

inhibitor of 
A (No of 
families) 

No of  
these 

inhibitors 
that are in 

the A 
inhibitor 
families 
(No of 

families) 

No of these 
inhibitors 
that are in 

the families 
of multi-

target 
agents of A 
and B (No 
of families) 

No of 
multi-target 
agents of A 
and B (No 
of families) 

No (%) of 
multi-target 
agents in the 
families that 

contain 
single-target 
inhibitor of 

A in training 
sets  

No (%) of 
multi-target 
agents in the 
families that 

contain single-
target inhibitor 
of B in training 

sets 

No (%) of 
multi-target 

agents outside 
the families that 
contain single-
target inhibitor 

of A or B in 
training sets 

(No of families) 

No of 
inhibitors  

No of 
Compounds 

SERT-NET  1125(405) 399(124) 113(33) 1410(486) 471(124) 176(42) 101(73) 65(64.3%) 46(45.5%) 25 (24.8%) 8389 8181 

SERT-H3  1804(604) 366(95) 39(16) 1689(486) 345(95) 124(28) 147(56) 97(65.9%) 53(36.1%) 27 (18.4%) 8191 1486 

SERT-5HT1A  1679(590) 512(130) 121(26) 1144(432) 421(130) 151(26) 216 (71) 
130 

(60.2%) 
120 (55.6%) 52 (24.1%) 8354 7349 

SERT-5HT1B  1894(631) 514(108) 164(22) 917(309) 424(108) 93(11) 57(35) 21(41.2%) 42(73.7%) 14 (24.6%) 8688 7475 

SERT-5HT2C 1924(631) 689(145) 28(10) 1234(493) 405(145) 36(9) 27(23) 10(37.0%) 13(48.1%) 10(37.0%) 8426 1302 

SERT-MC4 1951(644) 175(61) 2(2) 1721(248) 557(61) 2(2) 6(2) 6(100%) 6(100%) 0 8164 7 

SERT-NK1 1910(631) 262(69) 39(8) 1787(358) 219(69) 62(8) 45(23) 29(64.4%) 9(20%) 9(20%) 8110 275 
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Figure 5-2 The Venn graph of the collected 7 evaluated dual-inhibitors pairs and 
non-dual-inhibitors of the 8 evaluated targets 
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5.2.2 Computational models 

SVM is based on the structural risk minimization principle of statistical learning 

theory (132). It consistently shows outstanding classification performance; It is 

less penalized by sample redundancy; It has lower risk for overfitting; It is 

capable of accommodating large and structurally diverse training and testing 

datasets, and is fast in performing classification tasks (134, 135). However, like 

all machine learning methods, the performance of SVM is critically dependent on 

the diversity of training datasets. Because of the limited knowledge of known 

inhibitors for many targets, sufficiently good SVM VS tools may not be readily 

developed for these targets. Nonetheless, SVM VS tools with comparable 

performances or partially improved performances in certain aspects (e.g. reduced 

false-hit rates at comparable inhibitor yield) are useful to complement other VS 

tools. The performance of SVM in predicting non-dual inhibitors was evaluated 

by 5-fold cross-validation test. For each target pair, non-dual inhibitors and non-

inhibitors were randomly divided into 5 groups of approximately equal size, with 

4 groups used for training a SVM VS tool and 1 group used for testing it, and the 

test process is repeated for all 5 possible compositions to derive an average VS 

performance. After the 5-fold cross-validation, the σ values are chosen in the 

range of 0.9-5 based on the average VS performance for the model development. 

Table 5-2 shows the results of the 5-fold cross validation of SVM VS models for 

the target pairs SERT-NET, SERT-H3, SERT-5HT1A, SERT-5HT1B, SERT-

5HT2C, SERT-MC4 and SERT-NK1. As for margin C, the SVM VS models were 
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developed by using a hard margin c=100,000. A hard margin has been proven to 

provide well with a more sensitive and strict classification for unbalanced datasets 

in which the negative data outnumbered the positive ones (263)(36, 37) (43) (47). 

Figure 5-3 illustrates the schematic diagram of COMBI-SVMs. 
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Table 5-2 5-fold cross-validation of SVM models for parameter selection and 
additional tests of these models for predicting dual-inhibitors and non-inhibitors; 
SEN: sensitivity, SPE: specificity, AC: overall accuracy, AVE: average; SD: 
standard deviation, SEM: standard error of means 

Target 

Pair 

5-fold C.V.Performance for parameter selection 

5-fold C.V. tests for dual and 

non-inhibitors 

SERT-

NET  

C.V. group 

SERT  NET NETSRIs 

non-

SSRIs 

non-NRIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 84% 99.8% 99.5% 90% 99.8% 99.6% 48% 88% 81% 

2 91% 99.8% 99.7% 90% 99.7% 99.5% 48% 86% 77% 

3 89% 99.7% 99.5% 88% 99.7% 99.5% 45% 86% 81% 

4 85% 99.8% 99.5% 89% 99.7% 99.4% 43% 84% 83% 

5 87% 99.8% 99.6% 88% 99.8% 99.5% 48% 85% 82% 

AVE 87% 99.8% 99.6% 89% 100% 99% 46% 86% 81% 

S.D 0.025 0.000 0.001 0.010 0.000 0.000 0.02 0.02 0.02 

S.E.M 0.011 0.000 0.000 0.004 0.000 0.000 0.01 0.01 0.01 

SERT-

H3  

C.V. group 

SERT  H3 H3SRIs 

non-

SSRIs 

non-H3Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 93% 99.5% 99.3% 92% 99.8% 99.6% 17% 85% 100% 

2 89% 99.6% 99.3% 93% 99.7% 99.5% 31% 80% 100% 

3 88% 99.6% 99.3% 93% 99.7% 99.5% 25% 77% 100% 

4 89% 99.6% 99.3% 93% 99.7% 99.5% 24% 84% 100% 

5 86% 99.5% 99.1% 92% 99.7% 99.5% 19% 87% 100% 

AVE 89% 99.6% 99% 93% 99.7% 99.5% 23% 82% 100% 

S.D 0.025 0.001 0.001 0.006 0.000 0.000 0.06 0.04 1.00 

S.E.M 0.011 0.000 0.000 0.003 0.000 0.000 0.03 0.02 0.00 

SERT-

5HT1A  

C.V. group 

SERT  5HT1a 

5HT1aSR

Is  

non-

SSRIs 

non-

5HT1aIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 99.7% 99.7% 99.4% 88% 99.8% 99.6% 48% 86% 74% 

2 99.6% 99.6% 99.3% 83% 99.8% 99.4% 45% 79% 74% 
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3 99.5% 99.5% 99.2% 86% 99.7% 99.5% 44% 85% 74% 

4 99.7% 99.7% 99.3% 86% 99.8% 99.5% 45% 89% 77% 

5 99.7% 99.7% 99.4% 84% 99.8% 99.5% 45% 89% 82% 

AVE 99.7% 99.7% 99% 85% 99.8% 99.5% 45% 86% 76% 

S.D 0.001 0.001 0.001 0.021 0.000 0.001 0.01 0.04 0.04 

S.E.M 0.000 0.000 0.000 0.009 0.000 0.000 0.01 0.02 0.02 

SERT-

5HT1B  

C.V. group 

SERT  5HT1b  

5HT1bS

RIs 

non-

SSRIs 

non-

5HT1bIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 84% 99.98% 99.7% 85% 99.8% 99.6% 23% 98% 99% 

2 82% 99.98% 99.7% 85% 99.8% 99.6% 19% 98% 91% 

3 78% 99.95% 99.5% 80% 99.8% 99.6% 23% 98% 96% 

4 81% 99.96% 99.6% 85% 99.8% 99.6% 23% 97% 92% 

5 80% 99.97% 99.6% 83% 99.9% 99.6% 23% 97% 93% 

AVE 81% 99.97% 99.6% 84% 99.8% 99.6% 22% 98% 94% 

S.D 0.024 0.0001 0.001 0.023 0.000 0.000 0.018 0.004 0.03 

S.E.M 0.011 0.00005 0.0003 0.010 0.000 0.000 0.008 0.002 0.02 

SERT-

5HT2C 

C.V. group 

SERT  5HT2c 

5HT2cSR

Is 

non-

SSRIs 

non-

5HT2cIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 86.8% 99.5% 99.2% 91.4% 99.7% 99.3% 22% 75% 89% 

2 89.4% 99.6% 99.3% 90.6% 99.7% 99.3% 26% 84% 88% 

3 90.1% 99.6% 99.3% 90.6% 99.7% 99.4% 15% 81% 88% 

4 88.8% 99.6% 99.3% 94.1% 99.8% 99.3% 15% 82% 88% 

5 92.4% 99.6% 99.4% 98.0% 99.8% 99.4% 15% 81% 95% 

AVE 90% 99.6% 99% 92.9% 99.7% 99.3% 20% 81% 90% 

S.D 0.021 0.000 0.001 0.032 0.0006 0.0003 0.05 0.03 0.028 

S.E.M 0.009 0.000 0.000 0.014 0.0003 0.0002 0.02 0.01 0.013 

SERT-

MC4 
C.V. group 

SERT  MC4 MC4SRIs 

non-

SSRIs 

non-

MC4Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 
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1 89.3% 99.5% 99.2% 97.4% 100.0% 99.9% 83% 94% 95% 

2 92.6% 99.5% 99.3% 98.3% 99.9% 99.9% 83% 93% 91% 

3 92.1% 99.5% 99.3% 98.3% 99.9% 99.9% 67% 91% 92% 

4 92.8% 99.6% 99.4% 98.3% 99.9% 99.9% 67% 91% 94% 

5 87.7% 99.6% 99.2% 97.1% 99.9% 99.8% 67% 91% 93% 

AVE 91% 99.5% 99% 98% 99.9% 99.9% 73% 92% 93% 

S.D 0.023 0.000 0.001 0.006 0.000 0.000 0.09 0.01 0.02 

S.E.M 0.010 0.000 0.000 0.003 0.000 0.000 0.04 0.01 0.01 

SERT-

NK1 

C.V. group 

SERT  NK1 NK1SRIs 

non-

SSRIs 

non-

NK1Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 87.4% 99.5% 99.1% 93.6% 99.8% 93.6% 36% 88% 91% 

2 89.8% 99.6% 99.3% 95.5% 99.8% 95.5% 40% 88% 93% 

3 89.5% 99.5% 99.2% 96.6% 99.8% 96.6% 40% 90% 93% 

4 91.4% 99.5% 99.2% 95.0% 99.8% 95.0% 38% 86% 93% 

5 87.7% 99.6% 99.3% 95.2% 99.8% 95.2% 38% 88% 93% 

AVE 89% 99.5% 99% 95% 99.8% 95.2% 38% 88% 93% 

S.D 0.016 0.001 0.001 0.011 0.000 0.011 0.02 0.02 0.01 

S.E.M 0.007 0.000 0.000 0.005 0.000 0.005 0.01 0.01 0.00 
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Figure 5-3 The COMBI-

5-fold cross-validation where the training set is randomly divided into 5 sub sets 

and in turns 4 sets are used for training and 1 set for testing to choose the best 

parameters for model construction. 

individual SVM models are considered as m

INBs=inhibitors; Non-INBs=non
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-SVMs diagram. Individual SVM models are built after 

validation where the training set is randomly divided into 5 sub sets 

and in turns 4 sets are used for training and 1 set for testing to choose the best 

parameters for model construction. Virtual hits simultaneously selected by all 

are considered as multi-target virtual hits. 

INBs=non-inhibitors. 
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5.3 Results and Discussion 

5.3.1 Individual target inhibitors and dual inhibitors of the 

studied target pairs 

As shown in Table 5-1, high percentages of the known dual inhibitors of the 

seven studied target pairs are distributed in the compound families containing 

individual target inhibitor of at least one target in the target pair. Only 18.4%-

37.0% of the known dual inhibitors are not in the compound families of the 

known individual target inhibitors.  Nonetheless, dual inhibitors have some 

features distinguished from those of individual target inhibitors, which are partly 

exhibited from the top-ranked scaffolds contained in higher percentages of dual 

inhibitors of the studied target pairs (Figure 5-3). Table 5-3 gives the distribution 

of some of these scaffolds in the dual inhibitors of the studied target pairs and 

inhibitors of individual targets of these target pairs.  Scaffolds A, B, C, D, E, F 

and G are contained in high percentages of dual inhibitors.  Specifically, scaffold 

A is contained in 21.8% of the 101 NETSRIs, scaffold B in 17.7% of the 147 

H3SRIs, scaffold C in 14.8% of the 216 5HT1aSRIs, scaffold D in 14.8% of the 

27 5HT2cSRIs, scaffold E in 100% of the 6 MC4SRIs, and scaffold F and G in 

44.4% and 33.3% of the 45 NK1SRIs, whereas these scaffolds are contained in 

single-digit percentages or less of the inhibitors of other target pairs and the 

individual target inhibitors of the specific target-pairs.  Known 5HT1bSRIs 

appear to be distributed in many scaffolds each containing no more than three 

compounds. Nonetheless, some specific variations of side-chain groups of these 
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and other scaffolds found in the known 5HT1bSRIs as well as known NETSRIs, 

H3SRIs and 5HT1aSRIs appear to be sufficient to convert individual target 

inhibitors into dual inhibitors. Moreover, physicochemical properties as well as 

structural features are also important for distinguishing individual target inhibitors 

and dual inhibitors. 
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Figure 5-4 Top-ranked molecular scaffolds primarily found in known multi-target serotonin reuptake inhibitors; Scaffold A, B and C are 

distributed in significantly higher percentage of known multi-target NETSRIs, H3SRIs, and 5HT1aSRIs than known “individual-target”  
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Table 5-3 Distribution of the top-ranked scaffolds in multi-target inhibitors of the 7 target pairs SERT-NET, SERT-H3, SERT-5HT1A, 
SERT-5HT1B, SERT-5HT2C, SERT-MC4 and SERT-NK1 
 

Target 

pair 
Datasets 

Percent of inhibitors in dataset 

containing scaffold 

Scaffold A Scaffold B Scaffold C Scaffold D Scaffold E Scaffold F Scaffold G 

SERT-
NET 

Multi-target  NETSRIs 21.8(22/101) 0(0/101) 3(3/101) 1.0(1/101) 0(0/101) 0(0/101) 0(0/101) 

NET reuptake inhibitors inactive against SERT 0.07(1/1410) 0(0/1410) 0(0/1410) 3.0(43/1410) 0.6(8/1410) 0(0/1410) 0(0/1410) 

SERT reuptake inhibitors inactive against NET 2(23/1125) 2.1(24/1125) 1.7(24/1125) 0.4(5/1125) 0(0/1125) 0.2(2/1125) 1.3(15/1125) 

SERT-
H3 

Multi-target  H3SRIs 0(0/147) 17.7(26/147) 0(0/147) 0(0/147) 0(0/147) 0(0/147) 0(0/147) 

H3 receptor antagonists inactive against SERT 0(0/1689) 0(0/1689) 0.4(6/1689) 0(0/1689) 0(0/1689) 0(0/1689) 0(0/1689) 

SERT reuptake inhibitors inactive against H3 receptors 1.5(27/1804) 0(0/1804) 1.3(24/1804) 1.8(32/1804) 0(0/1804) 1.0(18/1804) 0.9(16/1804) 

SERT-
5HT1A 

Multi-target 5HT1aSRIs 0(0/216) 0(0/216) 14.8(32/216) 0(0/216) 0(0/216) 0(0/216) 0(0/216) 

5HT1A receptor antagonists inactive against SERT 4.8(55/1144) 0(0/1144) 1.4(16/1144) 0(0/1144) 0(0/1144) 0(0/1144) 0(0/1144) 

SERT reuptake inhibitors inactive against 5HT1A receptors 1.3(21/1679) 1.5(26/1678) 0.8(13/1679) 1.8(31/1679) 0(0/1679) 1.1(18/1679) 0.9(15/1679) 

SERT-
5HT1B 

Multi-target 5HT1bSRIs 1.8(1/57) 0(0/57) 7(4/57) 5.3(3/57) 0(0/57) 0(0/57) 0(0/57) 

5HT1B receptor antagonists inactive against SERT 0(0/917) 0(0/917) 0.3(3/917) 0(0/917) 0(0/917) 0(0/917) 0(0/917) 

SERT reuptake inhibitors inactive against 5HT1B receptors 1.4(26/1894) 1.4(26/1894) 1.1(20/1894) 1.4(26/1894) 0(0/1894) 1.0(18/1894) 0.8(15/1894) 

SERT-
5HT2C 

Multi-target 5HT2cSRIs 3.7(1/27) 0(0/27) 3.7(1/27) 14.8(4/27) 0(0/27) 0(0/27) 0(0/27) 

5HT2C receptor antagonists inactive against SERT 1.6(20/1234) 0(0/1234) (3/1234) 0(0/1234) 0(0/1234) 0(0/1234) 0(0/1234) 

SERT reuptake inhibitors inactive against 5HT2C receptors 0(0/1924) 0(0/1924) 1.2(23/1924) 1.5(29/1924) 0(0/1924) 0.9(18/1924) 0.7(13/1924) 

SERT-
MC4 

Multi-target MC4SRIs 0(0/6) 0(0/6) 0(0/6) 0(0/6) 100%(6/6) 0(0/6) 0(0/6) 

MC4 receptor antagonists inactive against SERT 0(0/1721) 0(0/1721) 0(0/1721) 0(0/1721) 2.5(43/1721) 0(0/1721) 0(0/1721) 

SERT reuptake inhibitors inactive against MC4 receptors 0(0/1951) 0(0/1951) 1.2(23/1951) 1.6(31/1951) 0(0/1951) 0.9(18/1951) 0.8(15/1951) 

SERT-
NK1 

Multi-target NK1SRIs 0(0/45) 0(0/45) 0(0/45) 0(0/45) 0(0/45) 44.4(20/45) 33.3(15/45) 

NK1 receptor antagonists inactive against SERT 0.2(4/1787) 0(0/1787) 0(0/1787) 0(0/1787) 0(0/1787) 0.06(1/1787) 0(0/1787) 

SERT reuptake inhibitors inactive against NK1 receptors 0.1(2/1910) 0(0/1910) (20/1910) 1.0(33/1910) 0(0/1910) 0.9(18/1910) 0.6(11/1910) 
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5.3.2 5-fold cross-validation tests of SVM, k-NN and PNN models 

The parameters of the SVM, k-NN and PNN models were determined by 5-fold 

cross- validation studies of individual target inhibitors and putative non-inhibitors 

of each target pair. Additionally, each 5-fold cross-validation model was tested by 

dual target NETSRIs, H3SRIs, 5HT1aSRIs, 5HT1bSRIs, 5HT2cSRIs, MC4SRIs 

and NK1SRIs and real non-inhibitors of the individual target of each target pair. 

Non-inhibitors of a target refer to compounds with IC50 or Ki value >20µM.  The 

results of these tests for SVM, k-NN and PNN are shown in Table 5-3, 5-4 and 5-

5 respectively. The 5-fold cross-validation tests were measured by sensitivity, 

specificity and over all accuracy given as TP/(TP+FN), TN/(TN+FP) and 

TP+TN/(TP+TN+FP+FN) respectively in terms of the numbers of true positives 

TP (true inhibitors), true negatives TN (true non-inhibitors), false positives FP 

(false inhibitors), and false negatives FN (false non-inhibitors). Overall, the 

sensitivity of SVM, k-NN and PNN is in the range of 78.0%-99.8%, 79%-99.7% 

and 89%-99.7%, the specificity in the range of 99.4%-99.98%, 99%-99.98%, and 

95.1%-99.4%, and overall accuracy in the range of 93.6%-99.6%, 99.0%-99.98%, 

and 96.5%-99.3% respectively.  The dual inhibitor accuracy of SVM, k-NN and 

PNN are in the range of 15%-83%, 10%-83%, and 17%-58% respectively. The 

non-inhibitor prediction accuracy of SVM, k-NN and PNN are in the range of 

73%-100%, 62%-97% and 72%-89% respectively. Therefore, SVM showed 

comparable overall performance in these 5-fold cross-validation tests. 
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Table 5-4 5-fold cross-validation of k-NN models for parameter selection and 

additional tests of these models for predicting dual-inhibitors and non-inhibitors, 

SEN sensitivity, SPE specificity, AC overall accuracy, AVE average; SD standard 

deviation, and SEM standard  

error of means. 

Target 

Pair 

5-fold C.V.  for parameter selection 5-fold C.V. tests for dual and non-inhibitors 

SERT-

NET  

C.V. 

group 

SERT  NET NETSRIs non-SSRIs non-NRIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 85% 99.60% 99% 89% 99.60% 99.30% 40% 83% 62% 

2 84% 99.60% 99% 88% 99.40% 99.20% 38% 89% 84% 

3 88% 99.60% 99% 86% 99.60% 99.30% 37% 89% 81% 

4 89% 99.60% 99% 87% 99.60% 99.30% 36% 80% 83% 

5 87% 99.60% 99% 91% 99.50% 99.30% 39% 85% 82% 

AVE 87% 99.60% 99% 88% 99.50% 99% 38% 85% 78% 

S.D 0.023 0 0 0.018 0.001 0.001 0.02 0.04 0.09 

S.E.M 0.01 0 0 0.008 0 0 0.01 0.02 0.04 

SERT-

H3  

C.V. 

group 

SERT  H3 H3SRIs non-SSRIs non-H3Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 91% 99.50% 99.20% 93% 99.50% 99.40% 10% 85% 88% 

2 92% 99.40% 99.20% 92% 99.60% 99.40% 14% 80% 83% 

3 87% 99.30% 99.00% 92% 99.60% 99.40% 13% 77% 83% 

4 90% 99.50% 99.30% 93% 99.60% 99.50% 10% 84% 88% 

5 91% 99.40% 99.10% 91% 99.50% 99.30% 12% 87% 88% 

AVE 90% 99% 99% 92% 99.60% 99% 12% 82% 86% 

S.D 0.02 0.001 0.001 0.008 0.001 0.001 0.02 0.04 0.03 

S.E.M 0.009 0 0.001 0.003 0 0 0.01 0.02 0.01 

SERT-

5HT1A  

C.V. 

group 

SERT  5HT1a 5HT1aSRIs  non-SSRIs non-5HT1aIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 89.30% 99.50% 99.20% 85% 99.60% 99.40% 32% 83% 79% 
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2 89.30% 99.40% 99.10% 78% 99.50% 99.20% 33% 89% 81% 

3 90.80% 99.40% 99.20% 84% 99.60% 99.30% 34% 80% 82% 

4 93.80% 99.40% 99.30% 85% 99.60% 99.30% 36% 80% 78% 

5 89.60% 99.60% 99.30% 84% 99.60% 99.30% 35% 79% 82% 

AVE 91% 99% 99% 83% 99.60% 99% 34% 82% 80% 

S.D 0.019 0.001 0.001 0.029 0 0.001 0.01 0.04 0.02 

S.E.M 0.009 0 0 0.013 0 0 0.01 0.02 0.01 

SERT-

5HT1B 

C.V. 

group 

SERT  5HT1b  5HT1bSRIs non-SSRIs non-5HT1bIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 91% 99.50% 99.20% 84% 99.70% 99.50% 30% 82% 83% 

2 92% 99.30% 99.10% 86% 99.80% 99.60% 30% 86% 84% 

3 91% 99.40% 99.10% 86% 99.70% 99.50% 25% 82% 84% 

4 91% 99.40% 99.10% 82% 99.60% 99.40% 30% 88% 87% 

5 92% 99.30% 99.10% 83% 99.70% 99.40% 28% 88% 84% 

Average 91% 99% 99% 84% 99.70% 99% 28% 85% 84% 

S.D 0.006 0.001 0 0.019 0.001 0.001 0.02 0.03 0.01 

S.E.M 0.003 0 0 0.008 0 0 0.01 0.01 0.01 

SERT-

5HT2C 

C.V. 

group 

SERT  5HT2c 5HT2cSRIs non-SSRIs non-5HT2cIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 92.2% 99.4% 99.2% 86% 99% 99.2% 26% 88% 87% 

2 90.1% 99.3% 99.1% 85% 99.6% 99.3% 26% 87% 83% 

3 90.9% 99.3% 99.1% 82% 99% 99.1% 26% 86% 84% 

4 91.9% 99.3% 99.1% 79% 99.5% 99.2% 26% 88% 82% 

5 90.9% 99.4% 99.2% 81% 99.5% 99.2% 26% 87% 82% 

AVE 83% 99.5% 99% 83% 99.5% 99.2% 26% 87% 84% 

S.D 0.028 0.000 0.000 0.028 0.000 0.001 0.00 0.01 0.02 

S.E.M 0.012 0.000 0.000 0.012 0.000 0.000 0.00 0.00 0.01 

SERT-

MC4 

C.V. 

group 

SERT  MC4 MC4SRIs non-SSRIs non-MC4Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 89.8% 99.3% 99.0% 99.7% 99.98% 99.98% 17% 84% 95% 

2 91.3% 99.3% 99.1% 98.3% 99.7% 99.7% 17% 81% 90% 

3 92.8% 99.5% 99.3% 97.7% 99.8% 99.7% 17% 86% 90% 
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4 88.7% 99.4% 99.1% 98.0% 99.7% 99.7% 83% 84% 95% 

5 91.5% 99.4% 99.1% 99.1% 99.8% 99.7% 17% 83% 97% 

AVE 91% 99.4% 99% 98.5% 99.8% 99.8% 30.2% 84% 93.4% 

S.D 0.016 0.001 0.001 0.008 0.001 0.001 
0.30 0.02 0.03 

S.E.M 0.007 0.000 0.000 0.004 0.0005 0.001 0.132 0.01 0.01 

SERT-

NK1 

C.V. 

group 

SERT  NK1 NK1SRIs non-SSRIs non-NK1Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 91.4% 99.3% 99.1% 95.5% 99.7% 99.6% 20% 88% 81% 

2 92.7% 99.4% 99.2% 95.0% 99.5% 99.4% 24% 89% 82% 

3 91.6% 99.3% 99.1% 95.0% 99.6% 99.4% 22% 88% 85% 

4 90.3% 99.5% 99.2% 95.8% 99.6% 99.5% 20% 87% 85% 

5 89.3% 99.4% 99.1% 95.2% 99.5% 99.4% 20% 87% 85% 

AVE 91% 99.4% 99% 95% 99.6% 99% 21% 88% 84% 

S.D 0.013 0.001 0.001 0.004 0.001 0.001 0.02 0.01 0.02 

S.E.M 0.006 0.000 0.000 0.002 0.000 0.000 0.01 0.00 0.01 
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Table 5-5 5-fold cross-validation of PNN models for parameter selection and 

additional tests of these models for predicting dual-inhibitors and non-inhibitors, 

SEN sensitivity, SPE specificity, AC overall accuracy, AVE average; SD standard 

deviation, and SEM standard error of means. 

Target 

Pair 

5-fold C.V.Performance for parameter selection 

5-fold C.V. tests for dual and non-

inhibitors 

SERT-

NET  

C.V. 

group 

SERT  NET NETSRIs non-SSRIs non-NRIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 94% 97.50% 97.50% 95% 97.00% 96.90% 58% 86% 80% 

2 94% 97.60% 97.50% 96% 96.60% 96.60% 57% 88% 79% 

3 95% 97.50% 97.50% 94% 97.00% 96.90% 50% 85% 76% 

4 94% 97.40% 97.30% 94% 96.90% 96.80% 55% 84% 72% 

5 93% 97.70% 97.60% 97% 96.90% 96.90% 55% 83% 76% 

AVE 94% 98% 98% 95% 97% 97% 55% 85% 77% 

S.D 0.005 0.001 0.001 0.013 0.002 0.002 0.03 0.02 0.03 

S.E.M 0.002 0 0 0.006 0.001 0.001 0.01 0.01 0.01 

SERT-

H3  

C.V. 

group 

SERT  H3 H3SRIs non-SSRIs non-H3Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 96% 96.80% 96.80% 98% 97.50% 97.50% 40% 80% 90% 

2 96% 96.80% 96.80% 97% 97.70% 97.70% 39% 84% 84% 

3 94% 97.00% 96.90% 96% 97.80% 97.80% 41% 83% 84% 

4 96% 96.90% 96.90% 98% 97.70% 97.70% 34% 83% 84% 

5 96% 96.70% 96.60% 95% 97.90% 97.80% 37% 83% 84% 

AVE 96% 97% 97% 97% 98% 98% 38% 83% 85% 

S.D 0.011 0.001 0.001 0.014 0.002 0.001 0.03 0.01 0.03 

S.E.M 0.005 0.001 0 0.006 0.001 0.001 0.01 0.01 0.01 

SERT-

5HT1A 

C.V. 

group 

SERT  5HT1a 5HT1aSRIs  non-SSRIs 

non-

5HT1aIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 97.30% 97.00% 97.00% 93% 97.80% 97.70% 46% 85% 72% 

2 94.90% 96.60% 96.60% 91% 97.70% 97.60% 48% 82% 73% 
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3 96.40% 96.60% 96.60% 93% 97.50% 97.40% 45% 82% 71% 

4 97.30% 96.70% 96.70% 92% 97.40% 97.30% 49% 84% 72% 

5 97.30% 96.70% 96.70% 92% 97.70% 97.60% 46% 83% 73% 

AVE 97% 97% 97% 92% 98% 98% 47% 83% 72% 

S.D 0.01 0.002 0.002 0.009 0.002 0.002 0.02 0.02 0.01 

S.E.M 0.005 0.001 0.001 0.004 0.001 0.001 0.01 0.01 0 

SERT-

5HT1B  

C.V. 

group 

SERT  5HT1b  5HT1bSRIs non-SSRIs 

non-

5HT1bIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 98% 97.00% 97.10% 91% 98.00% 97.90% 44% 78% 83% 

2 96% 96.90% 96.90% 92% 98.40% 98.30% 35% 77% 82% 

3 96% 96.90% 96.90% 92% 98.40% 98.30% 39% 75% 82% 

4 96% 96.60% 96.50% 91% 98.20% 98.10% 47% 75% 83% 

5 97% 97.00% 97.00% 89% 98.20% 98.10% 46% 75% 81% 

AVE 97% 97% 97% 91% 98% 98% 42% 76% 82% 

S.D 0.011 0.002 0.002 0.016 0.002 0.002 0.05 0.01 0.01 

S.E.M 0.005 0.001 0.001 0.007 0.001 0.001 0.02 0.01 0 

SERT-

5HT2C 

C.V. 

group 

SERT  5HT2c 5HT2cSRIs non-SSRIs 

non-

5HT2cIs 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 96.1% 97.0% 97.0% 91% 97% 97.4% 33% 84% 84% 

2 98.7% 97.0% 97.0% 89% 97.2% 97.0% 33% 83% 85% 

3 95.8% 96.7% 96.7% 93% 97% 97.3% 30% 83% 84% 

4 98.2% 97.0% 97.0% 91% 97.0% 96.9% 30% 82% 87% 

5 96.4% 96.8% 96.8% 93% 97.1% 97.0% 33% 83% 84% 

AVE 91% 97.2% 97% 91% 97.2% 97.1% 32% 83% 85% 

S.D 0.016 0.002 0.001 0.016 0.002 0.002 0.02 0.01 0.01 

S.E.M 0.007 0.001 0.001 0.007 0.001 0.001 0.01 0.00 0.00 

SERT-

MC4 

C.V. 

group 

SERT  MC4 MC4SRIs non-SSRIs 

non-

MC4Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 96.2% 96.7% 96.7% 96.5% 99.4% 99.3% 33% 82% 89% 
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2 95.6% 97.0% 97.0% 98.5% 99.2% 99.2% 17% 82% 78% 

3 96.4% 97.0% 97.0% 98.5% 99.3% 99.3% 17% 81% 79% 

4 97.2% 96.4% 96.5% 98.8% 99.2% 99.1% 33% 82% 81% 

5 95.1% 97.1% 97.0% 99.7% 99.2% 99.3% 33% 82% 77% 

AVE 96% 96.9% 97% 98.4% 99.3% 99.2% 27% 82% 81% 

S.D 0.008 0.003 0.002 0.011  0.0007 0.0006 0.09 0.00 0.05 

S.E.M 0.003 0.001 0.001 0.005 0.0003 0.0002 0.039 0.00 0.02 

SERT-

NK1 

C.V. 

group 

SERT  NK1 NK1SRIs non-SSRIs 

non-

NK1Is 

SEN SPE AC SEN SPE AC SEN SPE SPE 

1 96.1% 96.8% 96.8% 97.2% 98.6% 98.6% 29% 83% 89% 

2 95.5% 97.1% 97.1% 96.9% 98.7% 98.6% 33% 83% 85% 

3 97.1% 96.7% 96.7% 98.6% 98.6% 98.6% 36% 83% 86% 

4 96.3% 96.8% 96.8% 97.8% 98.5% 98.5% 33% 82% 85% 

5 96.1% 96.9% 96.8% 98.0% 98.6% 98.6% 33% 83% 83% 

AVE 96% 96.9% 97% 98% 98.6% 99% 33% 83% 86% 

S.D 0.006 0.002 0.001 0.007 0.001 0.001 0.02 0.00 0.02 

S.E.M 0.003 0.001 0.001 0.003 0.000 0.000 0.01 0.00 0.01 

 

 

 

5.3.3 Virtual screening performance of Combinatorial SVM in 

searching multi-target serotonin inhibitors from large compound 

libraries  

The VS performance of COMBI-SVM in identifying dual inhibitors of the seven 

target-pairs is summarized in Table 5-6 together with the similarity level 

(sequence identity) between the drug-binding domains of each pair.  Rost has 
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found that proteins with >40% sequence identity unambiguously distinguish 

similar and non-similar structures and the signal gets blurred in the twilight zone 

of 20–35% sequence identity (271). Thus, target-pairs can be classified into high, 

intermediate, and low similarity classes with their drug-binding domains at 

sequence identity levels of >40%, 20%-40% and <20% respectively. Based on 

this criterion, SERT-NET (72.3% sequence identity) is of high similarity, and the 

other six target-pairs (1.7%~15.1% sequence identity) are of low sequence 

similarity.  

 

In terms of the numbers of true positives TP (true inhibitors), true negatives TN 

(true non-inhibitors), false positives FP (false inhibitors), and false negatives FN 

(false non-inhibitors), the yield and false-hit rate are given by TP/(TP+FN) and 

FP/(TP+FP) respectively. The dual inhibitor yields are 49.5% for NETSRIs, 

25.9% for H3SRIs, 47.7% for 5HT1aSRIs, and 22.8% for 5HT1bSRIs, 22.0% for 

5HT2cSRIs, 83.3% for MC4SRIs and 31.1% for NK1SRIs respectively.  

Therefore, COMBI-SVMs showed reasonably good capability in identifying dual 

inhibitors of the seven evaluated target pairs without explicit knowledge of dual 

inhibitors. Target selectivity was tested by using COMBI-SVM to screen the 917-

1951 individual-target inhibitors of each target-pair, which misidentified 22.4% 

and 29.8% of the individual target inhibitors as dual inhibitors for the SERT-NET 

pair, 5.4% and 8.2% for SERT-H3, 15.4% and 19.4% for SERT-5HT1A, 13.8% 

and 12.3% for SERT-5HT1B, 14.2% and 12.4% for SERT-5HT2C, 2.2% and 8.0% 
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for SERT-MC4 and 4.2% and 6.3% for SERT-NK1 respectively. Therefore, 

COMBI-SVM is reasonably selective in distinguishing multi-target inhibitors 

from individual-target inhibitors of the same target pair.   

 

The misidentification of a substantial percentage of individual target inhibitors as 

dual inhibitors could have been caused by the similar reasons discussed in 

Chapter 4.3.1.  

 

Target selectivity was further tested by using COMBI-SVM to screen the 8110-

8688 (Table 5-1) inhibitors of the other six targets outside a given target-pair with 

the results summarised in Table 5-6. We found that 2.4%, 3.5%, 7.1%, 0.95%, 

4.0%, 0.58%, and 1.16% of the inhibitors of the other six targets were 

misclassified as NETSRIs, H3SRIs, 5HT1aSRIs, 5HT1bSRIs, 5HT2cSRIs, 

MC4SRIs and NK1SRIs respectively. These data showed that COMBI-SVM is 

fairly selective in separating multi-target inhibitors of specific target pair from 

antidepressant inhibitors of other targets outside the target pair.  

 

Virtual hit rates and false-hit rates of COMBI-SVM in screening compounds that 

resemble the structural and physicochemical properties of the training datasets 

were evaluated by using 7-8181 MDDR compounds (Table 5-1) similar to a 

multi-target inhibitor of each target pair. Similarity was defined by Tanimoto 

similarity coefficient ≥0.9 between a MDDR compound and its closest dual 
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inhibitor (102). As shown in Table 5-6, COMBI-SVM identified 81, 3, 256, 249, 

66, 1 and 1 virtual-hit(s) from 8181, 1486, 7349, 7475, 1302, 7 and 275 MDDR 

compounds similar to NETSRI, H3SRI, 5HT1aSRI, 5HT1bSRI, 5HT2cSRI, 

MC4RI and NK1SRI respectively.  Disregarding the target-pairs with only 1 

MDDR virtual-hits (which is statistically less meaningful for estimating virtual hit 

rates), the virtual hit rates in selecting MDDR compounds similar to the dual-

inhibitors are in the range of 0.2%~5.1%. As majority of the MDDR compounds 

similar to the known dual inhibitors are expected to be non-inhibitors for the 

target pairs, these virtual hit rates can be considered as the upper limit of the false-

hit rates.  

 

Significantly lower virtual hit rates and thus false-hit rates were found in 

screening large libraries of 168,000 MDDR and 17 million PubChem compounds.  

As shown in Table 5-6, the numbers of multi-target virtual hits (virtual hit rate) in 

screening 168,000 MDDR compounds are 201 (0.12%) for NETSRIs, 112 

(0.067%) for H3SRIs, 464 (0.28%) for 5HT1aSRIs, 241 (0.14%) for 5HT1bSRIs, 

353 (0.21%) for 5HT2cSRIs, 70 (0.042%) for MC4SRIs and 92 (0.055%) for 

NK1SRIs respectively. The numbers of multi-target virtual hits (virtual hit rate) in 

screening 17 million PubChem compounds are 6,305 (0.035%) for NETSRIs, 

4,993 (0.028%) for H3SRIs, 9,603 (0.054%) for 5HT1aSRIs, 6,326 (0.011%) for 

5HT1bSRIs, 7574 (0.042%) for 5HT2cSRIs, 1252 (0.007%) for MC4SRIs and 

1136 (0.006%) for NK1SRIs respectively. Substantial percentages of the MDDR 
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virtual-hits belong to the classes of antidepressant, anxiolytic, antimigraine, and 

antipsychotic (Table 5-7, details in the next section), some of which may be true 

multi-target serotonin inhibitors. Therefore, the true false-hits rates of the 

COMBI-SVM are likely smaller than the computed rates, i.e., the false-hit rates of 

COMBI-SVM are ≤0.2%-4.0%, ≤0.042%-0.28% and ≤0.011%-0.054% in 

screening MDDR similarity compounds, all MDDR compounds, and PubChem 

compounds respectively. These rates are similar to the false-hit rates of ≤1.4%-

9.4%, ≤0.057%-0.104%, and ≤0.013%-0.036% in COMBI-SVM screening of 

multi-target kinase inhibitors from MDDR and PUBCHEM compounds (105). 

These rates are also comparable and sometime better than the false-hit rates of 

0.02%-0.37% and 0.05%-0.35% produced by other machine learning methods and 

molecular docking tools (105). 
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Table 5-6 The virtual screening performance of combinatorial SVMs for identifying multi-target serotonin inhibitors of the seven target 
pairs SERT-NET, SERT-H3, SERT-5HT1A, SERT-5HT1B, SERT-5HT2C, SERT-MC4 and SERT-NK1; The target-pairs in this table are 
arranged with decreasing similarity level between their drug-binding domains. There are only 7 MDDR compounds similar to a dual-
inhibitor of SERT-MC4, the corresponding virtual hit rate was thus un-computed because the small number of compounds may not provide 
statistically meaningful test of the SVM performance.  
 

Target Pair Virtual Screening Performance 

 Target A – Target B 
(sequence identity 

between drug-binding 
domain) 

Multi-target inhibitors 
Inhibitors of individual target of 
the target pair inactive against 
another target of the target pair 

Inhibitors of other 
three targets 

outside the target 
pair 

MDDR compounds 
similar to multi-target 

inhibitors of the target pair 

All 168,000 
MDDR 

compounds 

17 million 
PubChem 

compounds 

Yield 

No (%) of 
identified true 

hits outside 
the common 

training active 
families of 
both targets 

False hit 
rate for 

inhibitors 
of target A 

False hit rate for 
inhibitors of target 

B 
False hit rate 

Virtual hit rate (No of 
virtual hits)  

Virtual hit rate 
(No of virtual 

hits) 

Virtual hit rate 
(No of virtual 

hits) 

SERT-NET (72.3%) 49.50% 8 (7.9%) 22.40% 29.80% 2.40% 0.99% (81) 0.12% (201) 0.035% (6305) 

SERT-5HT1B (15.1%) 22.8% 2 (3.5%) 13.80% 12.30% 0.95% 2.5% (185) 0.14% (241) 0.011% (6326) 

SERT-MC4 (11.7%) 83.33% 0 2.20% 8.02% 0.58% - 0.042%(70) 0.007%(1252) 

SERT-NK1 (9.6%) 31.11% 13(28.9%) 4.20% 6.30% 1.16% 0.36%(1) 0.055%(92) 0.006%(1136) 

SERT-5HT1A (8%) 47.70% 12 (5.6%) 15.40% 19.40% 7.10% 3.5% (256) 0.28% (464) 0.054% (9603) 

SERT-5HT2C (3.2%) 22.0% 5(18.5%) 14.24% 12.40% 4.0% 4.0%(52) 0.21%(353) 0.042%(7574) 

SERT-H3 (1.7%) 25.90% 7 (4.8%) 5.40% 8.20% 3.50% 0.2% (3) 0.067% (112) 0.028% (4993) 
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Table 5-7 MDDR classes in which higher percentage (≥5%) of COMBI-SVM 

identified MDDR multi-target virtual hits are distributed in 

Target 

pair(No.of 

COMBI-SVM 

virtual hits) 

MDDR class that contains higher 

percentage of these virtual hits 

Number (percentage) of 

COMBI-SVM identified 

multi-target virtual-hits in 

class 

Percentage of MDDR class 

members as virtual hits 

SERT-NET 

(201) 

Antidepressant 56 (27.9%) 0.91% 

5-HT Reuptake Inhibitor 36 (17.9%) 3.68% 

Dopamine Reuptake Inhibitor 28 (13.9%) 14.29% 

Antipsychotic 25 (12.4%) 0.48% 

Norepinephrine Uptake Inhibitor 20 (10.0%) 6.33% 

Treatment of Cocaine Dependency 20 (10.0%) 25.97% 

Anxiolytic 15 (7.5%) 0.22% 

Calcium Channel Blocker 15 (7.5%) 0.88% 

Antimigraine 14 (7.0%) 0.81% 

Analgesic, Non-Opioid 13 (6.5%) 0.27% 

SERT-H3 (112) 

Antidepressant 30 (26.8%) 0.49% 

Antipsychotic 23 (20.5%) 0.44% 

Analgesic, Non-Opioid 13 (11.6%) 0.27% 

5-HT Reuptake Inhibitor 10 (8.9%) 1.02% 

Anxiolytic 10 (8.9%) 0.15% 

Cognition Disorders, Agent for 10 (8.9%) 0.13% 

Antiparkinsonian 9 (8.0%) 0.48% 

Anticonvulsant 8 (7.1%) 0.26% 

Antifungal 7 (6.3%) 0.24% 
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Calcium Channel Blocker 7 (6.3%) 0.41% 

SERT-5HT1A 

(464) 

Antidepressant 177 (38.1%) 11.91% 

Antimigraine 118 (25.4%) 2.27% 

Antipsychotic 113 (24.3%) 1.67% 

5-HT1D receptor Agonist 100 (21.6%) 10.21% 

Anxiolytic 62 (13.4%) 3.58% 

5-HT Reuptake Inhibitor 49 (10.6%) 8.52% 

5-HT1A receptor Agonist 48 (10.3%) 4.66% 

5 HT2A Antagonist 47 (10.1%) 7.40% 

Dopamine (D4) Antagonist 26 (5.6%) 8.05% 

Analgesic, Non-Opioid 25 (5.4%) 3.63% 

SERT-5HT1B 

(241) 

Antidepressant 82 (34.0%) 1.33% 

Antimigraine 76 (31.5%) 4.39% 

5-HT1D receptor Agonist 63 (26.1%) 9.62% 

5-HT reuptake Inhibitor 53(22.0%) 5.41% 

Antipsychotic 47(19.5%) 0.9% 

Anxiolytic 44(18.32%) 0.65% 

5-HT2A receptor Antagonist 25 (10.4%) 3.63% 

5-HT1Areceptor Agonist 21 (8.7%) 2.0% 

Dopamine (D4) Antagonist 15 (6.2%) 2.23% 

 
5-HT1A receptor Antagonist 13(5.4%) 2.26% 
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Target 

pair(No.of 

COMBI-SVM 

virtual hits) 

MDDR class that contains higher 

percentage of these virtual hits 

Number (percentage) of 

COMBI-SVM identified 

multi-target virtual-hits in 

class 

Percentage of MDDR class 

members as virtual hits 

SERT-5HT2C 

(353) 

Antipsychotic 126 (5.7%) 2.42% 

Antidepressant 99 (28.0%) 1.60% 

Anxiolytic 76 (21.5%) 1.12% 

5-HT2A receptor Antagonist 46 (13.0%) 6.68% 

Antimigraine 36 (10.2%) 2.08% 

5-HT1A receptor Agonist 34 (9.6%) 3.30% 

Dopamine (D4) Antagonist 32(9.1%) 4.75% 

5-HT Reuptake Inhibitor 24(6.8%) 2.45% 

Antiparkinsonian 22 (6.2%) 1.16% 

5-HT1D  agent Agonist 22 (6.2%) 1.16% 

Antihypertensive 21(5.9%) 0.19% 

Antiallergic/Antiasthmatic 18(5.1%) 0.17% 

Cognition Disorders, Agent for 18(5.1%) 0.24% 

SERT-MC4(70) 

Antidepressant 15(21.4%) 0.24% 

Anti-allergic/Anti-asthmatic 15(21.4%) 0.14% 

Anxiolytic 13(18.6%) 0.19% 

Neurokinin NK2 Antagonist 9(12.9%) 2.16% 

Neurokinin NK3 Antagonist 8(11.4%) 4.40% 

Antipsychotic 7(10.0%) 0.13% 

Substance P Antagonist 7(10.0%) 0.40% 

Antiviral (AIDS) 5(7.1%) 0.11% 
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Analgesic, Non-Opioid 4(5.7%) 0.08% 

Cognition Disorders, Agent for 4(5.7%) 0.05% 

5-HT Reuptake Inhibitor 4(5.7%) 0.41% 

Anti-arthritic 4(5.7%) 0.03% 

SERT-NK1(92) 

Substance P Antagonist 23(25.0%) 1.31% 

Antidepressant 18(19.6%) 0.29% 

Anxiolytic 15(16.3%) 0.22% 

Antipsychotic 11(12.0%) 0.21% 

Antiallergic/Antiasthmatic 11(12.0%) 0.10% 

5-HT Reuptake Inhibitor 11(12.0%) 1.12% 

Analgesic, Non-Opioid 10(10.9%) 0.20% 

Neurokinin NK2 Antagonist 9(9.8%) 2.16% 

Calcium Channel Blocker 9(9.8%) 0.53% 

5-HT1A receptor Agonist 6(6.5%) 0.58% 

Antihypertensive 6(6.5%) 0.05% 

Antianginal 6(6.5%) 0.18% 

Adrenergic (beta) Blocker 6(6.5%) 2.76% 

Antiarrhythmic 5(5.4%) 0.19% 

Anti-inflammatory 5(5.4%) 0.09% 

Neurokinin Antagonist 5(5.4%) 3.73% 

Cognition Disorders, Agent for 5(5.4%) 0.07% 

5-HT1A receptor Antagonist 5(5.4%) 0.87% 

Antiviral (AIDS) 5(5.4%) 0.11% 
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5.3.4 Virtual screening performance of Combinatorial SVM in 

searching multi-target serotonin inhibitors from large compound 

libraries  

COMBI-SVM identified MDDR virtual hits were evaluated based on the known 

biological or therapeutic target classes specified in MDDR. Table 5-7 gives the 

MDDR classes in which higher percentage (≥5%) of COMBI-SVM identified 

MDDR dual inhibitor virtual hits are distributed. We found that 15-177 (21.4%-

38.1%), 10-76 (7.5%-21.5%), and 4-53 (5.7%-22.0%) of the 70-464 dual-inhibitor 

virtual hits of the seven target-pairs belong to the antidepressant, anxiolytic and 

5HT reuptake inhibitor class respectively. It is noted that serotonin reuptake 

inhibitors have been used as antidepressant and anxiolytic agents (95). Therefore, 

some of the COMBI-SVM virtual hits are either known SSRIs or have the same 

therapeutic actions of SSRIs, which were misidentified as dual inhibitors by 

COMBI-SVM partly because it has 2.2%-22.4% false-hit rates in misclassifying 

SSRIs as dual inhibitors of the seven target pairs (Table 5-6). Moreover, 20 

(10.0%) of the 201 SERT-NET dual inhibitor virtual hits belong to the 

norepinephrine uptake inhibitor class. While some of these virtual hits might be 

true SERT-NET dual inhibitors, most of these individual target NET inhibitors 

were falsely selected as dual inhibitors by COMBI-SVM at 6.33% false-hit rate 

(Table 5-7).  
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We found that 118 (25.5%), 76 (31.5%), 36 (10.2%) and 14 (7.0%) MDDR 

virtual hits for SERT-5HT1A, SERT-5HT1B, SERT-5HT2C and SERT-NET belong 

to the antimigraine class respectively. Serotonin has been implicated in migraine 

pathophysiology with a low 5-HT state facilitating activation of the 

trigeminovascular nociceptive pathway (272). Because serotonin is primarily 

reduced by SERT (240), serotonin reuptake inhibitors may in some circumstances 

have antimigraine effect in certain patients (273). Some of the MDDR 

antimigraine virtual hits may be selected by COMBI-SVM partly because they are 

SERT inhibitors (COMBI-SVMs select individual-target inhibitors as dual-target 

serotonin reuptake inhibitors at 2.2%-29.8% false-hit rates based on the statistics 

in Table 5-6). Moreover, 25-113 (11.4%-24.3%) MDDR virtual hits of six target 

pairs (SERT-NET, SERT-H3, SERT-5HT1B, SERT-5HT2C, SERT-MC4 and 

SERT-NK1) belong to the antipsychotic class. Some antipsychotic drugs show 

certain level of activity against serotonin reuptakes and 5-HT receptors (274).  It 

is further noted that serotonin reuptake inhibitors augment and synergize with 

antipsychotic drugs hence serotonin reuptake inhibitors have been used in 

combination with antipsychotic drugs in the treatment of some psychiatric 

disorders (275).  Hence, some of the antipsychotic MDDR virtual hits may be 

selected because they have these activities.  

 

An additional set of 87-100 (21.6%-21.7%), 38-48 (9.5%-10.3%) and 36-47 

(9.0%-10.1%) dual inhibitor virtual hits of the SERT-5HT1A and SERT-5HT1B 



Chapter 5 The Application of Combinatorial Machine Learning Methods in 

Virtual Screening of Selective Multi-target Antidepressant Agents 134 

 

 

 
 

target pairs belong to the 5-HT1D receptor agonist, 5-HT1A receptor agonist, and 

5-HT2A receptor antagonist classes respectively.  As discussed below, some of 

these MDDR 5-HT1D receptor agonist, 5-HT1A receptor agonist, and 5-HT2A 

receptor antagonist virtual hits were falsely selected by COMBI-SVM possibly 

because they have some level of structural similarity to 5-HT1A receptor 

antagonists or 5-HT1B receptor antagonists. Analogues of certain scaffolds have 

been found to bind to both 5-HT1A and 5-HT1D receptors with weak partial agonist 

activity in cloned receptor and antagonistic activity in in-vitro studies (276). Some 

compounds such as BMY 7378 can act as both 5-HT1A agonist and antagonist 

depending on the location of 5-HT1A. BMY 7378 shows agonist activity at 5-

HT1A autoreceptors and act as antagonists or show partial agonist activity at 

postsynaptic 5-HT1A receptors (277). Both mixed 5-HT1A and 5-HT2A receptor 

antagonists and 5-HT1A receptor agonists have been derived from the same 

scaffolds (278).  The human 5-HT1B and 5-HT1D receptors are significantly 

similar in sequence despite being encoded by two distinct genes, and some dual 

5HT1B/1D receptor antagonists show substantial degree of structural similarity to 

dual 5HT1B/1D agonists (279). Some analogs of specific scaffolds are mixed 5-

HT1B and 5-HT2A receptor antagonists (280). Moreover, some compounds have 

been reported to have dual 5-HT1A receptor agonist and serotonin reuptake 

inhibitory activities (281). It is possible that some of the MDDR 5-HT1A receptor 

agonist virtual hits were selected by the COMBI-SVM of SERT-5HT1B target pair 

because they have serotonin reuptake inhibitory activity which may be falsely 
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recognized as multi-target 5HT1bSRIs by COMBI-SVM at 13.8% false-hit rate 

based on the statistics in Table 5-6. 

 

 

5.3.5 Analysis of MDDR virtual hits of combinatorial SVM 

At present, the 3D structure is unavailable for  the eight targets considered in this 

work (serotonin transporter, noradrenaline transporter, H3 receptor, 5-HT1A 

receptor, 5-HT1B receptor, 5-HT2C receptor, NK1 receptor and MC4 receptor). 

Only some of their homologous proteins or other members from the same GPCR 

families, such as H1 receptor, have 3D structure information available (282, 283). 

While these structures give important insights into functional mechanism and 

allow the modelling of ligand binding to the eight evaluated targets, the modelled 

and homologous structures may not provide the most appropriate structural 

platforms as those of high-resolution crystal structures for fair comparison of the 

VS performance of COMBI-SVM with molecular docking methods. We therefore 

only compared the VS performance of COMBI-SVMs with three VS methods, 

i.e., similarity searching (284), k-NN (285), and PNN (286), by using the common 

testing datasets composed of 6~216 dual inhibitors of the seven evaluated target 

pairs, 917-1951 individual target inhibitors of the same target pairs, 8110-8688 

inhibitors of the other six target pairs outside a given target pair, and 168,000 

MDDR compounds respectively.  Similarity searching was conducted against 

known multi-target inhibitors of each target pair. The training datasets of k-NN 
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and PNN and the methods for estimating the yield and virtual hit rate are the same 

as those of SVM.  

 

Table 5-8 shows the comparison of the performance of COMBI-SVM with the 

other three VS methods for identifying multi-target inhibitors of the seven target-

pairs from the four common testing datasets. Overall, the dual-inhibitor yields of 

all VS methods are comparable, mostly in the ranges of 20%~83% for the seven 

target-pairs with the exception of k-NN for SERT-NK1 (7.7%) and similarity 

searching for SERT-5HT2c (11.1%). Compared to COMBI-SVM, k-NN produced 

comparable false-hit rates, and similarity searching and PNN produced slightly 

higher false-hit rates in misidentifying individual-target inhibitors of the same 

target-pair and inhibitors of the other six target pairs outside a target pair as dual-

inhibitors 

 

The false-hit rates of the similarity searching method may be significantly 

reduced by adjusting the similarity cut-off values for individual targets, which 

may however lead to significantly reduced yields.  The higher false-hit rates likely 

arise in part from the difficulty in establishing optimal molecular similarity 

threshold values that correlate with biological activity, and in separating active 

and inactive close analogs of reference molecules (287). Data fusion and group 

fusion approaches may be explored to conduct multiple similarity searches using 

different sets of molecular representations, similarity measure and parameters 
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followed by the combination of the resulting search outputs to give a single fused 

output (288), (289). The higher false-hit rates may also arise from the bias linked 

to molecular complexity and size, i.e., reference molecules of increasing size 

generate systematically higher Tanimoto coefficient values in database searching 

(290).  This bias may be partly reduced by exploring bit density reduction 

methods (290), complexity-independent molecular representations (290) and 

complexity-independent similarity metrics (290). 

  

In screening the MDDR compounds, COMBI-SVM produced slightly to 

substantially lower virtual hit rates (0.042%~0.28%) than those of similarity 

searching (2.81%-8.2%), k-NN (0.15%-0.83%) and PNN (0.93%-3.4%) in 

identifying the MDDR compounds as dual inhibitor virtual hits of the evaluated 

target pairs. The numbers of MDDR compounds in the antidepressant and 5-HT 

reuptake inhibitor classes are 6182 and 979 respectively. It is expected that no 

more than half of the MDDR antidepressant compounds are SSRIs. Therefore, the 

total number of labelled and unlabelled SSRIs in MDDR can be crudely estimated 

as ~1000-3000, most likely significantly less than 3000. Assuming that the ratio 

of the dual-target serotonin reuptake inhibitors against SSRIs in MDDR is 

roughly similar to those of known dual-target serotonin reuptake inhibitors against 

SSRIs which are 9.0% (101 vs. 1125) for NETSRIs, 8.2% (147 vs. 1804) for 

H3SRIs, 12.9% (216 vs. 1679) for 5HT1aSRIs,  3.0% (57 vs. 1894) for 

5HT1bSRIs, 1.4% (27 vs. 1924) for 5HT2cSRIs, 0.3% (6 vs. 1951) for MC4SRIs 
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and 2.4% (45 vs. 1910) for NK1SRIs. Then the numbers of dual-target serotonin 

reuptake inhibitors in MDDR can be crudely estimated as ~3-380 (1000×0.3% - 

3000×12.9%), most likely significantly less than 380. Therefore the numbers of 

COMBI-SVM identified MDDR dual inhibitor virtual hits of the evaluated target 

pairs (70-464) are consistent to the crudely estimated numbers of dual inhibitors 

in MDDR than the identified numbers from the other three methods (971-12,698). 
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Table 5-8 Comparison of the performance of combinatorial SVMs with other virtual screening methods for identifying multi-target 
inhibitors of the four target pairs 

Virtual Screening 

Performance Measure 
Method 

Virtual Screening Performance for Target pair 

SERT-NET SERT-H3 SERT-5HT1A SERT-5HT1B SERT-5HT2C SERT-MC4 SERT-NK1 

Yield of Multi-Target 
Inhibitors of Target pair 

SVM 49.50% 25.90% 47.70% 22.8% 22% 83.33% 31.11% 

Similarity Searching 53.50% 20.40% 63.90% 40.40% 11.11% 33.3% 48.89% 

k-NN 59.40% 10.90% 34.30% 31.60% 18.52% 16.7% 6.67% 

PNN 57.40% 38.10% 45.40% 45.60% 33.33% 66.7% 20.00% 

False-Hit Rate for 
“Individual-Target” 

Inhibitors of  the Same 
Target pair 

SVM 22.4%-29.8% 5.4%-8.2% 15.4%-19.4% 13.8%-12.3% 14.24%-12.4% 2.2%-8.02% 4.2%-6.3% 

Similarity Searching 46.5%-42.4% 35.6%-21.8% 28.6%-46.9% 28.6%-65.4% 19.4%-13.6% 8.5%-26.3% 17.7%-16.0% 

k-NN 19.8%-25.1% 9%-8.5% 16.6%-24.3% 14.1%-32.6% 15.0%-16.3% 3.1%-11.5% 4.5%-4.9% 

PNN 38.4%-52.3% 22.2%-25.5% 34.3%-38.9% 30.3%-4.7% 34.8%-31.8% 6.6%-27.9% 11.8%-9.8% 

False-Hit Rate for 
Inhibitors of the Other 
Six Targets Outside the 

Target pair 

SVM 2.40% 3.50% 7.10% 0.95% 4.0% 0.58% 1.16% 

Similarity Searching 15.90% 20.50% 24.10% 11.60% 10.6% 5.0% 8.4% 

k-NN 3.00% 3.50% 9.30% 5.20% 4.2% 1.2% 2.9% 

PNN 16.90% 13.50% 24.20% 10.80% 14.2% 0.37% 8.8% 

Virtual Hit Rate for 
168,000 MDDR 

Compounds 

SVM 0.12% 0.067% 0.28% 0.14% 0.21% 0.042% 0.055% 

Similarity Searching 6.80% 8.20% 7.60% 7.60% 3.81% 3.26% 3.54% 

k-NN 0.58% 0.41% 0.83% 0.75% 0.52% 0.15% 0.81% 

PNN 3.14% 2.35% 3.40% 2.83% 3.90% 0.93% 2.24% 
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5.4 Conclusion  

In-silico methods have been increasingly explored for facilitating multi-target 

drug discovery, and shown promising potential in identifying selective multi-

target agents. In Chapter 4, I explored and discussed their application in 

discovering multi-target kinase inhibitors as the preliminary tests of the 

performances of combinatorial machine learning methods and promising results 

were obtained. Therefore, this chapter was the application of those methods  and 

it further suggested that combinatorial SVM VS tools developed from individual 

target inhibitors are capable of identifying dual target serotonin reuptake 

inhibitors at comparably good yields and low false-hit rates, and in some cases 

substantially lower false-hit rates than some of the other VS tools in screening 

large chemical libraries. COMBI-SVMs, in combination with other methods, may 

be useful for facilitating the search of novel multi-target antidepressants by 

screening larger chemical libraries. With more knowledge of newly discovered 

selective multi-target agents from the current and future drug discovery efforts 

(291, 292), COMBI-SVMs and other in-silico methods will have opportunities for 

enhanced performances. Further improvement of the algorithms and parameters of 

VS methods (103, 293-298) also enhance their capability and application range in 

facilitating multi-target drug discovery. Moreover, the introduction of more 

comprehensive elements of distinguished structural and physicochemical features 

of selective multi-target agents and multi-target activity and binding site profiles 

enable the development of more effective and relevant tools for the identification 



Chapter 5 The Application of Combinatorial Machine Learning Methods in 

Virtual Screening of Selective Multi-target Antidepressant Agents 141 

 

 

 
 

of selective multi-target agents as well as active compounds against an individual 

target.   
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Chapter 6 Concluding Remarks 

Multi-target agents have become a new and promising trend in the treatment for 

many diseases due to their improvement in efficacy and the averting of side 

effects. The focus of the thesis work was to assist the discovery of multi-target 

agents. This study was divided into two big compartments. The first part consisted 

of the construction and updates of the two chemoinformatics databases Kinetics 

Database of Biomolecular Interactions (KDBI) and Therapeutic Target Database 

(TTD) (Chapter 3). The second one discussed the application of virtual screening 

methods in discovery of two different systems, kinase inhibitors which perform as 

a major drug class and antidepressants, which are very important drug class 

especially in the modern societies where major depression has been empowered 

by the stresses (Chapter 4 and Chapter 5). This last chapter summarizes the 

major contributions and findings of this study (section 6.1). Section 6.2 discusses 

the limitations and presents suggestions for future studies. 

6.1 Major Findings and Merits 

6.1.1 Merits of the updates of KDBI and TTD in facilitating multi-

target drug discovery 

The kinetic information of biomolecular interactions plays the key factor in the 

quantitative investigation of the components of cellular networks and their 

interactions. They can promote the studies of cellular functions and interactions 

on a system level. Pathway studies are found especially interesting in 

understanding the mechanisms behind complex diseases which usually involve 
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interactions within or between diseases related pathways. On the other hand, a 

better understating of those mechanisms offers the theoretic foundation and 

guidance for the discovery of chemical agents that can improve the drug efficacy 

by acting on multiple targets. Therefore, the update of (KDBI) of pathway 

interaction kinetic information can greatly enhance the usefulness of KDBI. It is 

also found that together with this improvement, other factors such as the manual 

annotation, presentation and speed of database opening, cross-referencing to other 

databases, and the inclusion of critical information that could significantly 

increase the speed of their research of other researchers can greatly improve the 

quality of databases.  Another merit of the updates of KDBI is data integration of 

the simulating models by Systems Biology Markup Language (SBML).  Systems 

biology is characterized by synergistic integration of theory, computational 

modeling, and experiment (299). Nowadays, there is a proliferation of research 

institutions that produce sources of huge amounts of biological data derived from 

experimentation with biological systems and construct numerous stimulating 

models based on those data. Therefore, it is in great demand for a common format 

for describing models in the exchange models between different simulation and 

analysis tools. SMBL hence is developed as an exchange format used by different 

present-day software tools to communicate the essential aspects of a 

computational model (300). The integration of SBML into the simulation models 

data of KDBI hence can bring great convenience for users with different software 

in system biology simulation and studies. 
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Therapeutic   target database (TTD) was a pioneer for providing pharmaceutical 

information on therapeutic target and it has become a very functional tool to 

facilitate drug target studies. After its update in 2010 (4), major improvements 

and updates have been made to TTD. The information coverage has significantly 

increased from 1,894 targets and 5,028 drugs to 2,025 targets and 17,816 drugs 

plus 3,681multi-target agents. Table 6-1 summarizes the statistics of the current 

TTD version.  The new features added are the highlights of the update of TTD 

this time. These new features include (1) target validation information, 

quantitative structure activity relationship (QSAR) models for active compounds; 

(2) multi-target agents data with structure and potency information; (3) drug 

combinations; (4) nature-derived drugs together with drug species origin data. 

Therefore, informative and comprehensive information has been integrated to this 

version of TTD. It has become a very reliable, informative, useful, 

multifunctional and convenient source of drug target information. 
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Table 6-1 The data statistics of the updated Target Therapeutic Database  

Target 
coverage 
(2025) 

Successful 364 

Clinical trial 286 

Discontinued  44 

Research 1,331 

Drug 
coverage 
(17,816) 

Approved 1,540 

Clinical trial 1,423 

Experimental 14,853 

Multi-target 
agents 

Small molecules 14,170 

Antisense drugs 652 

Other 
coverage 

Protein biochemical class 61 

Drug therapeutic class 140 

New features 

Quantitative structure-activity relationship (QSAR) models 

Target 
validation 

Drug potency against target 

Drug action against disease model 

Effect of target knockout, knockdown or genetic variations 

Drug 
combinations 

Pharmacodynamically synergistic 72 

Pharmacodynamically additive 14 

Pharmacodynamically antagonist  4 

Pharmacokinetically potentiative 19 

Pharmacokinetically  7 

Nature-
derived 
drugs 

Approved 939 

Clinical trial 369 

Preclinical  119 

 

6.1.2 Findings of combinatorial machine learning methods for 

virtual screening in the multi-target kinase inhibitors and 

antidepressant agents  

Machine learning (ML) methods have been broadly applied as virtual screening 

tools due to their capability of high-CPU speed and the ability to cover highly 

diverse spectrum of compounds. However, while presenting equally good hit 

selection performance in screening extremely-large and large libraries, the 
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currently developed machine learning tools have the tendency for lower hit-rate 

and, in some cases, lower enrichment factor than the best performing structure 

based virtual screening tools.  

 

To improve the performance of one of the most popular ML method support 

vector machine (SVM), diverse inactive compounds apart from the known 

inactive compounds and active compounds of other biological target classes were 

used as negative data in training sets in this work. It was achieved by generating 

putative inactive compounds by the in-house programs. An advantage of this 

approach is that it is independent on the knowledge of known inactive compounds 

and active compounds of other biological target classes. This enables more 

extended coverage of the “inactive” chemical space compared to when only the 

limited knowledge of inactive compounds and compounds of other biological 

classes are used. In the virtual screening for active compounds in large libraries 

such as PubChem and MDDR, the hit-rates of the methods used in this work are 

comparable and the enrichment factors are substantially better than the best 

results of other VS tools. And the usage of putative negatives contributes to it. 

This method greatly increased the performance of VS without losing much 

positive accuracy.  This showed that a fulfilled presentation in the chemical space 

can provide improvement of machine learning methods in virtual screening, 

although some noises could be introduced with the generation of putative inactive 

compounds. 
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In this work, combinatorial support vector machines (COMBI-SVMs) were tested 

as VS tools for searching dual-inhibitors of 7 combinations of 6 anticancer kinase 

targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck) and 7 combinations of 8 

antidepressant target (serotonin transporter, noradrenaline transporter, H3 

receptor, 5-HT1A receptor, 5-HT1B receptor, 5-HT2C receptor, melancortin 4 

receptor and neurokinin 1 receptor). COMBI-SVMs Models were fairly selective 

in misidentifying as dual-inhibitors of the non-dual inhibitors of the same kinase-

pairs and produced low false-hit rates in misidentifying as dual-inhibitors of 

PubChem and MDDR databases. The performance of COMBI-SVM was 

compared with DOCK, k-NN and PNN methods. COMBI-SVM VS tools showed 

good capability in identifying dual-inhibitors of several anticancer target kinase-

pairs at comparable and in many cases substantially lower false-hit rates.  In the 

studies of multi-target antidepressants, COMBI-SVMs showed moderate to 

relatively good target selectivity in misclassifying as dual of the individual target 

inhibitors of the same target pair and of the other 6 targets outside the target pair. 

COMBI-SVMs showed low dual inhibitor false hit rates in screening 17 million 

PubChem compounds, 168,000 MDDR compounds, and 7-8,181 MDDR 

compounds similar to the dual inhibitors. Compared with similarity searching, k-

NN and PNN methods, COMBI-SVM produced comparable dual inhibitor yields, 

similar target selectivity, and lower false hit rate in screening 168,000 MDDR 

compounds. 
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Comparing the performances of COMBI-SVMs in virtual screening multi-target 

agents in anticancer kinase target combinations and in multi-target antidepressant 

agents, I found that the sequence similarity could affect the selectivity of COMBI-

SVMs against the same target pair. Table 6-2 shows the target selectivity as the 

false hit rate of misidentifying the other target pair as dual inhibitor in a target 

pair and dual inhibitor yield of each pair in the 4 kinase pairs and 7 antidepressant 

pairs. It is found that generally, there seems to be a tendency that the higher the 

sequence identity of the target pair is, the lower the target selectivity tends to be 

but the higher the dual yield tends to be. The dual inhibitor yield of target pair 

SERT-MC4 is excluded because very few dual inhibitors (only 6) could be found 

for testing and the result might not be so valid statistically.  

 

Table 6-2 Target pair (sequence identity) and the false hit rate for inhibitor pairs 
and their dual inhibitor yields 

Target pair (sequence identity) 
False hit rate 
for inhibitors 
of target A 

False hit rate 
for inhibitors 
of target B 

Average 
false hit 

rate for the 
target pair 

Dual 
inhibitor 

yields 

SERT-NET (72.3%) 22.40% 29.80% 26.1% 49.50% 

Src-Lck (67.6%) 15.80% 18.70% 17.3% 48.20% 

EGFR-Src(37.4%) 12.90% 11.10% 12.0% 26.80% 

EGFR-FGFR (33.2%) 10.10% 8.70% 9.4% 40.90% 

VEGFR-Lck (32.7%) 6.60% 29.20% 17.9% 52.60% 

SERT-5HT1B (15.1%) 13.80% 12.30% 13.1% 22.80% 

SERT-MC4 (11.7%) 2.20% 8.02% 5.1% - 

SERT-NK1 (9.6%) 4.20% 6.30% 5.3% 31.11% 

SERT-5HT1A (8%) 15.40% 19.40% 17.4% 47.70% 

SERT-5HT2C (3.2%) 14.24% 12.40% 13.3% 22.00% 

SERT-H3 (1.7%) 5.40% 8.20% 6.8% 25.90% 
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6.2 Limitations and Suggestions for the Future Studies 

The work for updates of KDBI and TTD has few limitations due to the data 

availability and the methods used in the development of databases. The 

information abundance of a database is limited to the current availability of 

accessible chemoinformatics data. On the other hand, new findings and results in 

chemoinformatics fields have been proliferating. Therefore, it is suggested to stay 

in tone with the latest findings in systems biology, therapeutic target research and 

drug discovery and constantly update the data collection in the two databases. 

Hence continuous efforts are required to maintain the quality and quantity of 

useful and comprehensive databases such as KDBI and TTD. Moreover for 

KDBI, its server is currently running on IIS 5.0 web server which has limitation in 

the processing of requests (maximum 10 requests at a time).  Therefore, future 

improvement in the requests can be done by upgrading the system. In KDBI, the 

SBML file for pathway simulation model is created based on Java API of SBML 

version 2.4. The system biology related software which process SBML file may 

not support lower version of SBML after their upgrading. Then the SBML file 

downloaded from KDBI will not open in that particular software. In these 

situations, users are advised to edit these SBML file using some SBML editor.   

 

In my study, I applied the generation of putative negatives for the machine 

learning methods application. This approach requires a classification of the 

chemical space which has always been a difficult task in chemoinformatics. The 

classification of the chemical space needs a clustering method, a distance matrix 



Chapter 6 Concluding Remarks 150 

 

 

 
 

selection and descriptors. K-means clustering method was used in this work. It is 

not the best clustering method but is suitable and computable for large chemical 

spaces. In future studies, more advanced clustering algorithm can be developed 

for improving the accuracy of chemical space clustering. Additionally, the 

selection of correlation coefficients and other chemical descriptors such as 

fingerprint can also help the improvement. Another possible drawback associated 

with the putative negatives generation approach is the possible inclusion of some 

undiscovered active compounds in the “inactive” class. This may hinder the 

identification of novel active compounds by machine learning methods. However, 

such an adverse effect is expected to be relatively small for many biological target 

classes.  

 

As for the virtual screening (VS) for multi-target agents, the support vector 

machine (SVM) is a robust but not a perfect machine learning method. The SVM 

models developed using the putative negative dataset have been proven to be able 

to improve the false hit rates. However, there are still some false hits that cannot 

be excluded easily. These false hits are selected as positive agents by the SVM 

models mostly due to the structural framework similarities with the actual active 

compounds. This could be caused by the molecular descriptors used in the SVM 

models in that they are insufficient to adequately differentiate the compounds 

with similar structural frameworks. In order to solve this problem, it is necessary 

to test different combinations of descriptors and apply optimal sets of descriptors 

by using more refined feature selection algorithms and parameters in future work. 
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Besides, the integration of new descriptors may help appropriate representations 

of compounds. Therefore, it is encouraging to employ new descriptors in the 

model constructions. 

 

The increase of positive compounds number in the model construction means a 

better representation of the positive agents in the chemical space. Hence, the 

capability of the combinatorial SVMs in identifying multi-kinase inhibitors and 

the antidepressant multi-target agents can be further enhanced by more data 

availability in the VS tool development processes. With the development of 

selective multi-target agents discovery from the current and future drug discovery 

efforts, it is possible to introduce more comprehensive elements of distinguished 

structural and physicochemical features of selective multi-target agents into the 

training of combinatorial VS tools for more effective identification of selective 

multi-target agents. 

 

There is no conclusive answer to which VS approach is the best. Both ligand 

based and structural based methods have their own advantages and drawbacks. 

Therefore, the choice of one or another depends on the specific case faced by the 

medicinal chemist. In terms of performance, ligand based methods have the 

advantage of better enrichment factors and higher speed serving  and they are 

more efficient in removing non active compounds; structure based methods 

provide  a more direct view of the interactions between the ligand and molecular 

target and it has an advantage for the detecting of novel structures. Nowadays a 
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synergistic, rational, synthetic combination of different approaches has become a 

trend. The combined VS approaches aims to firstly include less costly approaches, 

usually ligand based VS, at the first stage and apply the most demanding methods, 

such as docking, for the last stage when the original large compound library has 

been reduced to a manageable size after the previous stage. 
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