
ON THE PERFORMANCE
CHARACTERIZATION AND EVALUATION

OF RNA STRUCTURE PREDICTION
ALGORITHMS FOR HIGH PERFORMANCE

SYSTEMS

S. P. T. KRISHNAN

(M.Sc., National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

i

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

First, it is difficult to overstate my gratitude to my Ph.D. supervisor, Assoc. Prof.

Bharadwaj Veeravalli. His enthusiasm, inspiration, and his great efforts to explain

things clearly gave me the confidence to explore my research interests; his guidance

helped me to avoid getting lost in my exploration. Throughout my thesis-writing

period, he provided encouragement, sound advice, good teaching, good company,

and lots of good ideas. I would have been lost without him and this thesis would

not have existed in the first place.

I would like to express my sincere gratitude to Prof. Vladimir Bajic (KAUST) for

introducing me to the world of cell biology.

I would also like to deeply thank Assoc. Prof. S. K. Panda for providing substantial

support and inspiration over the years. He has also offered many constructive

advices. I am also grateful to Prof. Lawrence Wong for his support and guidance.

I would like to express my gratitude to my employer Institute for Infocomm Re-

search (I2R) for supporting me during this part-time study.

ii

I wish to thank Mr. Jean-Luc Lebrun who helped to horn my technical writing

skills.

I would also like to acknowledge the efforts of the following former undergraduate

students who helped by conducting additional experiments and cross-validating

the results - Derrick, Sze Liang, Zhi Ping, Yong Ning, Mushfique, Guangyuan,

Hashir, Keith Loo, Praveen and Soundarya.

The thesis marks the end of a long and eventful journey for which there are many

people that I would like to acknowledge for their support along the way. Above

all I would like to acknowledge the tremendous sacrifices that my parents, Dr. S.

K. Padmanabhan and Mrs. S. P. Tarabai, made to ensure that I had an excellent

education. For this and their support, love and encouragement I am forever in

their debt.

Finally, I would like to thank my wife Kavitha for her endless love, understanding,

support, patience, and sacrifices that gave me the bandwidth required to make this

journey possible. Without her I would have struggled to find the inspiration and

motivation needed to complete this thesis. Special thanks to my daughter Balini

Bhadra for letting me write my thesis and understanding that daddy is busy. It is

to my parents, wife and daughter, I dedicate this thesis.

iii

Contents

Acknowledgments i

Summary ix

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Nucleic Acids . 1

1.2 Gene Expression . 3

1.3 Molecular Structures . 4

1.4 Molecular Structure Determination 5

1.5 Molecular Structure Prediction . 5

1.6 RNA Secondary Structure Prediction 7

CONTENTS iv

1.7 Motivations for our Work . 8

1.8 Contributions & Scope of this Thesis 10

1.9 Organization of this Thesis . 11

2 Background 13

2.1 Introduction . 13

2.2 RNA Secondary Structure Prediction 14

2.3 RNA Structure Prediction on HPC Systems 18

2.4 Literature Survey on RNA Structure Prediction Algorithms 23

2.4.1 Dynamic Programming based Algorithms 26

2.4.2 Comparative-search based algorithms 31

2.4.3 Heuristic-search based Algorithms 32

2.4.4 Generic Parallel DP Algorithms 38

2.4.5 Parallel RNA Structure Prediction Algorithms 41

2.4.6 Parallel Computing Landscape 45

3 Parallelizing PKNOTS 50

3.1 Introduction . 50

3.2 Overview of PKNOTS . 52

CONTENTS v

3.3 Analyzing PKNOTS . 57

3.4 Parallelizing PKNOTS . 60

3.4.1 Measuring PKNOTS’s Performance 61

3.4.2 Code Parallelization (C-Par) 63

3.4.3 Data Parallelization (D-Par) 65

3.4.4 Hybrid Parallelization (H-Par) 67

3.4.5 Preliminary Results . 67

4 MARSs 70

4.1 Introduction . 70

4.2 RNA Secondary Structure . 72

4.3 Algorithm Initialization . 73

4.4 Level 1 Folding . 76

4.5 Symmetric Folding (S-Fold) . 79

4.6 Asymmetric Folding (A-Fold) . 81

4.7 A-Fold Scanning Methods . 83

4.8 Base Pair Selection . 85

4.9 Level 2 Folding . 87

CONTENTS vi

4.10 Predicting the Final Structures . 89

4.11 Prediction Quality Metrics of Interest 91

4.12 MARSs Complexities . 94

5 Performance Evaluation Studies 98

5.1 Introduction . 98

5.2 Input Sequence Dataset . 100

5.3 Performance Metrics . 101

5.4 PKNOTS on Google App Engine 107

5.4.1 Challenge 1 - Handling Space Complexity 110

5.4.2 Challenge 2 - Handling Time Complexity 115

5.4.3 Performance Results & Discussions 124

5.4.4 Is GAE an ideal platform for PKNOTS? 132

5.5 MARSs on Google App Engine . 133

5.5.1 Optimizing MARSs for GAE 134

5.5.2 Performance Results & Discussions 141

5.6 PKNOTS on Intel x64 . 143

5.6.1 Experiments . 145

CONTENTS vii

5.7 PKNOTS on Virtualized x64 Architecture 149

5.7.1 Implementation Method . 150

5.7.2 Performance Results & Discussions 151

5.8 MARSs on Intel x64 . 156

5.9 PKNOTS on IBM Cell . 165

5.9.1 Algorithmic Analysis . 167

5.9.2 Hardware Platforms . 168

5.9.3 Implementation Method . 168

5.9.4 Performance Results & Discussions 169

5.10 MARSs on IBM Cell Broadband Engine 171

5.10.1 Handling Space Complexity 172

5.10.2 Handling Task Parallelism & Scheduling 173

5.10.3 Performance Results & Discussions 175

5.11 Inferences from our Performance Evaluation Studies 181

6 Conclusions and Future work 185

6.1 Major Contributions . 187

6.2 Future Work . 188

CONTENTS viii

6.2.1 Short-term Enhancements 189

6.2.2 Long-term Improvements to MARSs Algorithm 189

Appendices 192

A Google App Engine 192

B Intel x64 198

C IBM Cell Broadband Engine 200

D A Brief History of Early Parallel Computing Architectures 204

D.1 Symmetric Multi-Processing . 204

D.2 Cluster Computing . 205

D.3 Grid Computing . 207

D.4 Multi-core Computing . 208

Bibliography 212

Author’s Publications 230

ix

Summary

Scientific problems in domains such as bioinformatics demand high performance

computing (HPC) based solutions. Yet, many of the existing algorithms were

designed during the era of single-core CPU computing. These algorithms have

traditionally benefitted from the performance scaling of the single CPU, typically

through higher CPU clock speeds, with no code changes. Currently, the trend

among processor manufacturers to get performance scaling is to add additional

computing cores rather than make the individual cores more powerful. This re-

quires that the existing algorithms be redesigned in order to run efficiently in this

new generation of parallel computers. It also emphasizes the need that paralleliza-

tion should be considered at the design stage itself, so that new algorithms can

scale from single-core computers to many-core computers automatically.

In this thesis, we design and analyze several parallelization methods, and apply

them to highly recursive dynamic programming based RNA secondary structure

prediction algorithms. We have implemented the parallelized versions of the algo-

rithm on three different high-performance-computing architectures. By conducting

x

large-scale experiments using different system configurations in these three archi-

tectures, we are able to characterize the performance trends on today’s parallel

computers. The parallelization techniques that we have explored and used are -

data parallelization, including wavefront parallelization, code parallelization and

hybrid parallelization.

The three high-performance-computing architectures that we have used in our ex-

periments are the Intel x64, IBM Cell Broadband Engine and the Google App

Engine (GAE). Each of these systems were chosen because of their respective

uniqueness. The Intel architecture is a homogenous ISA (Instruction Set Architec-

ture) multi-core system of Uniform Memory Access (UMA) type, while the Cell is

a heterogeneous ISA multi-core system of Non-Uniform Memory Access (NUMA)

type. GAE is a task-based multi-system parallel computing platform that is highly

scalable for extreme amounts of workloads.

Secondly, we designed a novel parallel-by-design RNA secondary structure predic-

tion algorithm. The algorithm has been designed such that it does not contain

any features that will inhibit the parallel execution of the algorithm. The algo-

rithm is designed to scale from single-core to many-cores automatically. We have

implemented optimized versions of this algorithm on the three HPC architectures

described above.

Using real RNA primary sequences, we conducted large-scale experiments for both

of these algorithms on the mentioned three HPC hardware architectures. We mod-

ified the system configuration and repeated the experiments for each of these archi-

xi

tectures. This resulted in the generation of large number of data points, comprising

of program runtimes and other performance metrics. We subsequently analyzed

this dataset and computed the performance trends such as Speedup, Incremental

Speedup and Performance gain. The large-scale study has helped in identifying

the best possible parallelization technique that can be used to parallelize exist-

ing Dynamic Programming based highly recursive algorithms. It has also helped

in identifying the performance bottlenecks, system limits and programming chal-

lenges of the various high performance computing systems.

xii

List of Tables

2.1 Summary of Relevant RNA Structure Prediction Algorithms 37

4.1 Base-Pair Matrix . 74

4.2 Affinity Matrix . 75

5.1 Runtimes of Parallelized PKNOTS on GAE 129

5.2 Profiling results of alphamRNA.sqd 167

A.1 GAE System Constraints . 197

B.1 Intel System Specifications . 199

C.1 Cell System Specifications . 203

xiii

List of Figures

2.1 RNA Secondary Structure Motifs - Loops 15

2.2 RNA Secondary Structural Motifs - Stems & Junctions 16

2.3 RNA Secondary Structural Motifs - Pseudoknots 19

2.4 RNA Secondary Special Structural Motifs 19

3.1 General recursion for vx in PKNOTS [76] 53

3.2 Mathematical formulation of general recursion for vx in PKNOTS

[76] . 54

3.3 Initialization condition for general recursion of vx in PKNOTS [76] 54

3.4 General recursion for wx in PKNOTS [76] 55

3.5 Mathematical formulation of general recursion for wx in PKNOTS

[76] . 55

3.6 Initialization condition for general recursion of wx in PKNOTS [76] 55

LIST OF FIGURES xiv

3.7 Motif types searched by PKNOTS algorithm 57

3.8 Pseudocode for matrix filling routine in PKNOTS algorithm 59

3.9 Program flow of the matrix filling routine in PKNOTS algorithm . 59

3.10 Data dependencies across matrices in PKNOTS algorithm 60

3.11 Timing Analysis of PKNOTS Algorithm 62

3.12 WHX layout in the PKNOTS Algorithm 63

3.13 C-Par model of PKNOTS on Sony PS3 65

3.14 D-Par model of PKNOTS on Sony PS3 66

3.15 H-Par flow chart of PKNOTS on Sony PS3 68

3.16 Preliminary results with PKNOTS on Sony PS3 69

4.1 MARSs Folding Points . 77

4.2 MARSs Level 1 Symmetrical Folding 79

4.3 MARSs Level 1 Asymmetrical Folding types - 1 82

4.4 MARSs Level 1 Asymmetrical Folding types - 2 83

4.5 MARSs Level 2 Pseudoknot Folds 89

4.6 MARSs Flowchart . 92

4.7 One predicted structure of PKB155 93

LIST OF FIGURES xv

5.1 Expected Speedup Vs. number of core used at different F values. . 104

5.2 Performance gains at different F values 106

5.3 Performance gains (using semi-log) at different F values 106

5.4 Google App Engine - System Architecture & Resource Limits . . . 109

5.5 Improvised barrier synchronization on GAE 118

5.6 Sequential filling of a 5x5 matrix in PKNOTS on GAE 119

5.7 Wavefront parallelized filling of a 5x5 matrix in PKNOTS on GAE . 120

5.8 Psuedocode for subroutine FillMtx with macro parallelization . . . 121

5.9 Data dependencies among the gap matrices in PKNOTS 122

5.10 Task Parallelism in PKNOTS on GAE 122

5.11 Optimized Task Parallelism in PKNOTS on GAE 123

5.12 Psuedocode for subroutine FillMtx with Max Parallelization 124

5.13 Runtimes Vs Sequence length for Serial PKNOTS on GAE 125

5.14 Runtimes Vs Sequence length for Serial PKNOTS on GAE - Log scale126

5.15 Algorithmic Vs Infrastructure Time in Serial PKNOTS on GAE . . 127

5.16 Speedup of algorithmic time between macro and max parallelization 129

5.17 Screenshot of the serial version of PKNOTS on GAE 131

LIST OF FIGURES xvi

5.18 MARSs on GAE - Work Flow . 140

5.19 Runtimes of MARSs on GAE . 141

5.20 Runtimes of MARSs and PKNOTS on GAE 142

5.21 Number of Predicted Structures in Level 1 using Asynchronous Best

Bond . 143

5.22 Number of Predicted Structures in Level 2 using Asynchronous Best

Bond . 144

5.23 Speedup of PKNOTS on Intel x64 as a Heat map & 3D graph . . . 146

5.24 CPU Cache-Miss performance benchmark for a sequence of length 68147

5.25 F values as a function of Sequence Length 148

5.26 Average Std. Dev. of F values Vs Sequence Length 149

5.27 Recommended number of parallel cores for various sequence lengths 150

5.28 PKNOTS Speedup on the physical machine - Apollo 153

5.29 PKNOTS Speedup on the virtual machine - AVM1 154

5.30 Distribution of RNA sequences according to sequence length 157

5.31 Distribution of RNA sequences according to source 157

5.32 Performance of MARSs on Intel - Sequence length < 20 Nucleotides 158

LIST OF FIGURES xvii

5.33 Performance of MARSs on Intel - Sequence length (20 < 100) Nu-

cleotides . 159

5.34 Performance of MARSs on Intel - Sequence length > 100 Nucleotides159

5.35 Performance of MARSs on Intel - Speedup 161

5.36 Performance of MARSs on Intel - Incremental Speedup 161

5.37 Performance of Multi-Process Vs. Multi-Thread Model - 1 core . . . 162

5.38 Performance of Multi-Process Vs. Multi-Thread Model - 4 core . . . 163

5.39 Prediction Accuracy of MARSs - PPV 163

5.40 Prediction Accuracy of MARSs - Sensitivity 164

5.41 Prediction Accuracy of MARSs - Base Pair Distance 164

5.42 Two different partitions for a DP problem organized as a DAG . . . 166

5.43 PKNOTS speedup graph on the PS3 machine. 170

5.44 PKNOTS speedup on the Blade server. 171

5.45 Performance of MARSs on Cell for sequence lengths < 32 176

5.46 Performance of MARSs on Cell for sequence lengths > 32 177

5.47 MARSs on Cell - PPU Idle Time for Sequence Lengths < 32 178

5.48 Performance of MARSs on Cell - Speedup 179

5.49 MARSs / Cell - PPU idle time for seq. len. > 32 179

LIST OF FIGURES xviii

5.50 MARSs on Cell - SPU Overhead Time 180

5.51 MARSs on Cell - SPU DMA Time 180

5.52 MARSs on Cell - Percentage of PPU Idle time / Total Runtime . . 182

C.1 Cell Microprocessor Schematic . 203

D.1 Symmetric Multiprocessing Schematic 206

D.2 Cluster Computing Schematic . 207

D.3 Grid Computing Schematic . 209

D.4 Multicore Computing Schematic . 210

1

Chapter 1

Introduction

1.1 Nucleic Acids

Molecular biology is the branch of biology that deals with the molecular basis of

biological activity. Molecular biology chiefly concerns itself with understanding

the various systems of a cell and the interactions between them.

Nucleic acids are the most important biological macromolecules and include DNA

(deoxyribonucleic acid), RNA (ribonucleic acid) and Proteins. All living cells

and organelles contain both DNA and RNA, while viruses contain either DNA or

RNA, but not usually both. Nucleic acids consist of a chain of linked units called

nucleotides, each of which contains a sugar (ribose or deoxyribose), a phosphate

group, and a nucleobase. There are four types of nucleobases in DNA - Adenine

(A), Cytosine (C), Guanine (G), and Thymine (T). RNA contains the base Uracil

Chapter 1 Introduction 2

(U) in place of Thymine. As nucleic acids are non-branched polymers they can be

written as a sequence of letters specifying the sequence of nucleobases.

Naturally occurring DNA molecules are double-stranded. James D. Watson and

Francis Crick determined the structure of DNA [98] using the x-ray crystallogra-

phy that indicated DNA had a helical structure (i.e., shaped like a right-handed

corkscrew). The double-helix model has two strands of DNA with the nucleotides

pointing inward, each matching a complementary nucleotide on the other strand.

Nucleotides ‘A’ and ‘T’ pair together, and nucleotides ‘C’ and ‘G’ pair together.

These base pairs are typically called as Watson-Crick base pairs. The base pair-

ing between Guanine(G) and Cytosine(C) forms three hydrogen bonds, whereas

the base pairing between Adenine(A) and Thymine(T) forms two hydrogen bonds.

Thus, in a two-stranded form, each strand effectively contains all necessary infor-

mation, redundant with its partner strand.

RNA molecules are single-stranded and do not appear as a double-helix structure.

Instead, they adopt highly complex three-dimensional structures that are based

on short stretches of intra-molecular base-paired sequences [31] that include both

Watson-Crick and non-canonical base pairs. An example of non-canonical base

pair is the bond between Guanine(G) and Uracil(U).

Nucleic acids have directionality due to the differences in the chemical compo-

sition of the bases and are known as the 3' and 5' ends of the molecule. The

directionality is vitally important to many cellular processes, such as gene expres-

sion, and the primary structure of a DNA or RNA molecule is reported from the

Chapter 1 Introduction 3

5' end to the 3' end. In molecular biology and genetics, the term ‘sense’ is used

to compare the polarity of nucleic acid molecules, such as DNA or RNA, to other

nucleic acid molecules. A single strand of DNA is called the sense strand if an

RNA version of the same sequence is translated or translatable into protein. Its

complementary strand is called antisense strand. The mRNA sequence is similar

to the DNA strand, however the transcription happens on the antisense strand, by

complementing the nucleotides. The terms sense and antisense also applies RNA

viral genomes, to refer to whether they are directly translatable (like mRNA) into

protein or if they need a RNA polymerase to assist in the translation. The cell

machinery directly translates the sense viral RNA into viral proteins. For example,

the common influenza virus belongs to the class of antisense RNA.

1.2 Gene Expression

The central dogma of molecular biology, first articulated by Francis Crick in 1958,

states that information flow is unidirectional from DNA to Protein and never

transfers from protein back into the sequence of DNA. The regions of a DNA that

are responsible for the start of this information transfer are called as Genes.

Genes are universal to all living organisms. Genes correspond to local regions

within DNA. There are two major type of genes, protein-coding and RNA-coding

genes [30]. The process of producing a protein from DNA comprises of two major

sequential processes - transcription and translation. Transcription is the process

Chapter 1 Introduction 4

in which a single-stranded mRNA (Messenger RNA) is created from the coding

strand of the DNA. Translation that follows transcription is the process in which a

protein is assembled using amino acids with mRNA as the template. RNA-coding

genes [30] must still go through the first step, but are not translated into protein.

The genetic code is the set of rules by which a gene is translated into a func-

tional protein. Each group of three nucleotides in the sequence, called a codon,

corresponds either to one of the twenty possible amino acids in a protein or an

instruction to end the amino acid sequence. The genetic code is nearly universal

among all known living organisms.

The order of amino acids in a protein corresponds to the order of nucleotides in the

gene. The amino acids in a protein determine how it folds into a three-dimensional

shape; this structure is, in turn, responsible for the protein’s function. Proteins

carry out almost all the functions needed for cells to live. A change to the DNA in

a gene can change a protein’s amino acids, changing its shape and function; this

can have a dramatic effect in the cell and on the organism as a whole.

1.3 Molecular Structures

In this context, molecular structures refer to the structure of nucleic acids such

as DNA and RNA. It is usually divided into four different levels. The primary

structure is the raw sequence of the nucleotides (represented by their nucleobases)

in a nucleotide sequence. Secondary structure, as shown in Figures {2.1, 2.2, 2.3,

Chapter 1 Introduction 5

2.4}, is a two-dimensional structure formed due to the interactions between bases in

the nucleotides. Tertiary structure is the three dimensional layout of the secondary

structure taking into consideration geometrical and steric constraints. Quaternary

structure is the higher-level organization of nucleic acid like DNA in chromatin or

interactions between separate RNA units in the ribosome or spliceosome.

1.4 Molecular Structure Determination

In this method, biochemical techniques are used to determine the structure of nu-

cleic acids. This analysis can be used to determine the patterns that can then infer

the molecular structure and function. Molecular structure can be probed using

many different methods that include chemical probing, hydroxyl radical probing,

Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE), Nu-

cleotide Analog Interference Mapping (NAIM), and in-line probing. As can be

seen, these methods are both time-consuming and resource-intensive and requires

high-level of skill set from an experienced individual.

1.5 Molecular Structure Prediction

In this method, a computational algorithm is used to determine the secondary

and tertiary structures from the primary sequence of a nucleic acid such as DNA

or RNA. Secondary structure can be predicted from a single [66] or from several

Chapter 1 Introduction 6

nucleic acid sequences [89]. Tertiary structure can be predicted from the sequence,

or by comparative modeling (when the structure of a homologous sequence is

known).

There are several important reasons why molecular structure prediction is increas-

ingly used when compared to molecular structure determination. The following

lists some of these key reasons.

Expensive Molecular Structure Determination in a biological lab is an expensive

process, in terms of both time and financial costs. Therefore, it is important

to determine which sequences are worthwhile to be processed in a biological

lab as the cell machinery contains a large amount of nucleotides material

with unknown functionality.

Large-scale Sequencing In recent years, nucleotide sequences of lot of organ-

isms have been sequenced. It is simply impossible to process all of them.

Therefore, the biological community is looking towards the computing com-

munity to help quicken the process.

Homologous Sequences It is a well-known fact that animals and plants have

similar genetic material. Hence, there is a large likelihood that their nucleic

acids are also similar. Therefore, it would make sense to compare the different

nucleic sequences and draw inferences on their structure and functions. This

can be used to study further in a biological lab.

Alternate Structures It is also known that the same primary sequence folds

Chapter 1 Introduction 7

into different secondary and tertiary structures under various circumstances.

It would be easier to process this in a virtual software-based environment

instead of a biological lab.

Visualization Visualizing the three-dimensional structures is very important and

is a task that the computers can do easily and repeatedly when compared to

a technician in a biological lab.

1.6 RNA Secondary Structure Prediction

There are minor differences in the approaches to RNA and DNA structure pre-

diction. In vivo, DNA structures are more likely to be duplexes with full com-

plementarity between two strands, while RNA structures being single-stranded

and therefore unstable are more likely to fold into complex secondary and tertiary

structures. At the molecular level, the extra oxygen in RNA increases the propen-

sity for hydrogen bonding in the nucleic acid backbone. The problem of predicting

nucleic acid secondary structure is therefore dependent mainly on base pairing and

base stacking interactions. The energy parameters are also different for the two

nucleic acids - DNA and RNA.

A common problem dealing with RNA is to determine the three-dimensional struc-

ture of the molecule given just the nucleic acid sequence. Moreover, in the case

of RNA much of the final structure is determined by the secondary structure or

intra-molecular base-pairing interactions of the molecule. This is shown by the

Chapter 1 Introduction 8

high conservation of base-pairings across diverse species. Secondary structure of

small RNA molecules is largely determined by strong, local interactions such as

hydrogen bonds and base stacking. To predict the folding free energy of a given

secondary structure, an empirical nearest-neighbor model is usually used. In the

nearest neighbor model the free energy change for each motif depends on the se-

quence of the motif and of its closest base pairs. The model and parameters of

minimal energy for different nucleotide pairs and loop regions were derived from

empirical calorimetric experiments. Summing the free energy for such interactions

normally provides an approximation for the stability of a given structure. There

are several types of secondary structural motifs and the most complex amongst

them is pseudoknots. Many secondary structure prediction methods rely on vari-

ations of dynamic programming and therefore are unable to efficiently identify

pseudoknots.

1.7 Motivations for our Work

The following are the major motivations for us to undertake this research work:

• RNA structure prediction is common to both Protein-coding and RNA-

coding (or non-coding) genes. Therefore, our work will have a wide impact

as it is applicable to both the genetic code pipelines.

• RNA tertiary structures are closely related to the secondary structures and

are highly dependent on the accurate and quick prediction of the secondary

Chapter 1 Introduction 9

structures. Therefore, our work on predicting secondary structure can be

useful in determining the three-dimensional structure as well.

• RNA secondary structure prediction using computational methods are valued

because determination of secondary structures, particularly for long-chain

RNA molecules, is difficult by experimental means.

• Many of the existing RNA secondary structure prediction algorithms are

based on dynamic programming; refer to Section 2.4.1. Consequently, they

are not able to predict pseudoknots completely or do not predict major and

important sub-classes within them. Therefore, there is a need for a new

algorithm that need not demarcate secondary structures prediction along

the boundaries of pseudoknot and Non-pseudoknot.

• The computing paradigm is undergoing a radical change from single-core

computers with higher CPU clock speeds to multi-core parallel computers

with lower CPU clock speeds. This means that existing iterative algorithms

such as those based on dynamic programming will be inefficient (as they

cannot use additional computing cores) and therefore slow in producing the

results. At the same time, the molecular sequencing efforts is on the rise to

sequence all or most of the organisms in earth. Therefore, it is important that

existing algorithms be made scalable and fast so that they can be deployed

on a large-scale.

Chapter 1 Introduction 10

1.8 Contributions & Scope of this Thesis

This thesis is primarily concerned with the performance evaluation and character-

ization of parallelized algorithms on high performance computing systems. The

domain we have chosen is bio-informatics and in particular RNA secondary struc-

ture prediction. Our primary objective is to parallelize an existing sequential

algorithm on HPC architectures and study the performance gains and trends.

We chose the PKNOTS [76] algorithm for two reasons - it is one of the leading

(and highly cited) RNA secondary structure prediction algorithm and also be-

cause it was available freely in source code form. We have developed optimized

versions of PKNOTS on three HPC architectures. We limit our validation efforts

by comparing the output of our parallelized versions to the original unmodified

sequential version only. Specifically, we do not validate the predicted structures

of PKNOTS. Subsequently, using this experience we have designed a new RNA

secondary structure prediction algorithm MARSs. Unlike PKNOTS, MARSs is a

non-iterative algorithm and is expected to run efficiently on both single-core and

multi-core architectures. As MARSs is a new algorithm we have compared the out-

put of MARSs to that of known structures for corresponding primary sequences

and show that MARSs is capable of predicting high-quality secondary structures.

We collected a large dataset of actual RNA primary sequences and used it in our

large-scale experiments. All the sequences have known secondary structures and

have both pseudoknots and non-pseudoknots. We conduct large-scale experiments

for both PKNOTS and MARSs under multiple system configurations and observe

Chapter 1 Introduction 11

their respective performance characteristics.

1.9 Organization of this Thesis

Rest of this thesis is organized into the following chapters:

Chapter 2 This chapter covers the background material. More specifically, we

conduct detailed literature surveys into existing & leading RNA secondary

structure prediction algorithms. These algorithms are based on diverse

methodologies such as dynamic programing, comparative search and heuris-

tics. Following this, we discuss about generic parallelized algorithms, par-

allelized RNA structure prediction algorithms and the parallel computing

landscape.

Chapter 3 In this chapter we describe the PKNOTS RNA secondary structure

prediction algorithm. We then analyze the algorithm, identify performance

hotspots and parallelize the software implementation. We evaluate different

parallelization methods and share & discuss the strengths & weaknesses of

them. We also provide early results using a small-scale dataset as well.

Chapter 4 This chapter introduces the new algorithm that we propose as part

of this thesis. We describe the algorithm step-by-step and in detail for the

reader to understand. We then describe a set of quality measures and show

a predicted example using our algorithm.

Chapter 1 Introduction 12

Chapter 5 This chapter contains details on the experiments performed and the

results generated. We parallelize PKNOTS on 3 different parallel hardware

architectures and discuss the customizations required & optimizations per-

formed. We also implement our MARSs algorithm on the same parallel

architectures and discuss the results from the two large-scale experiments.

Chapter 6 In this chapter we conclude this thesis by summarizing our contribu-

tions and also share the plans for the short-term enhancements and sugges-

tions for the long-term improvements.

13

Chapter 2

Background

2.1 Introduction

There are two main objectives for this chapter. First, we describe in detail the RNA

secondary structure prediction process from a computational perspective. In this

section, we show the need for High-Performance Computing (HPC) approaches for

RNA secondary structure prediction. Second, we discuss several RNA secondary

structure prediction algorithms and highlight their strengths & weaknesses from

the perspective of predicting the different types of RNA secondary structure mo-

tifs, time & space complexities and their suitability of being ported to a HPC

architecture.

Chapter 2 Background 14

2.2 RNA Secondary Structure Prediction

As briefly mentioned in Chapter 1, the central dogma of molecular biology high-

lights the fact that the protein-production transaction is RNA-mediated. In ad-

dition, RNA is involved in both coding (i.e., making protein as end product) and

non-coding (i.e., making RNA as the end product) gene expression pipelines. RNA

exists in three structural forms - primary, secondary and tertiary - and progres-

sively evolves from the primary to tertiary. In the case of RNA, the tertiary

structure closely resembles the secondary structure and therefore predicting cor-

rect secondary structures is a key factor in determining the structure and function

for both coding and non-coding RNAs.

A secondary structure is formed when nucleobases (or simply bases) in nucleotides

form base pairs with complementary bases in other nucleotides. In the case of

DNA, the base pairs occur between bases in nucleotides from two different strands.

On the other hand, RNA being single-stranded the base pairs occur between nu-

cleotides of the same strand. In case of DNA the purpose of forming base pairs

is primarily to replicate the genetic material for preservation and gene expression.

In case of mRNA, the purpose is to create a template that is then used in the

synthesis of amino acids, the building blocks of proteins.

A RNA secondary structure can be seen as comprising of several structural mo-

tifs (or patterns). These structural motifs were discovered through biological (or

wet-lab) experiments. A RNA secondary structure is formed when the primary

Chapter 2 Background 15

5'

3'

5'

3'

Bulge loop

5'

5'

3'

3'

Symmetric loop

5'

5'

3'

3'

Asymmetric loop

5'

3'

Hair-pin loop

Figure 2.1: RNA Secondary Structure Motifs - Loops

structure (or sequence) folds upon itself resulting in base pairs between compatible

& selected free nucleotides. Secondary structural motifs can be classified into two

broad categories depending on the number of times a sequence folds upon itself.

The first category “stems & loops” comprises of a set of secondary structural motifs

that are formed when the primary structure/sequence folds upon itself once. The

different secondary structure motifs are shown in Figures 2.1 & 2.2 and explained

below.

Loops are a major type of secondary structural motifs and are closely related to

stems. They can be classified into internal loops, bulges and hairpin loops.

The different types of loops are shown in Figure 2.1.

Internal loops are of two types - symmetric and asymmetric internal loops. In-

ternal loops are formed when nucleotides interlocked by a steam on either

Chapter 2 Background 16

5'

5'

3'

3'

Co-axial stem / stack

5'

5'

5'

3'

3'

3'3'

3'

3'

3'

5'

5'

5'

5'

Four stem junction Three stem junction

5'

5'

3'

3'

Stem

Figure 2.2: RNA Secondary Structural Motifs - Stems & Junctions

side do not form a base pair. When the number of non-pairing nucleotides is

same on both the strands the resultant internal loop is called as symmetric

internal loop. An asymmetrical internal loop is formed when the number of

non-pairing nucleotides on one side of a secondary structure is different from

the number of nucleotides on the other side of the secondary structure.

Bulge is a special type of internal loop and is formed when nucleotides are un-

paired on only one side of base pairing stem in a secondary structure.

Hair-pin loop is formed when a set of free nucleotides is locked by a single base

pair unlike internal loops & bulges that are bounded by two different base

pairs. In addition, a hairpin loop is usually formed near a folding point,

unlike internal loops & bulges that are always surrounded by base-pairing

Chapter 2 Background 17

stems.

Stem is a type of secondary structural motif that is formed when base pairs are

formed across a sequence of nucleotides that are facing each other as a result

of the structural fold. There are no free nucleotides (or simply gaps) in-

between the base pairs. There are two key attributes for a stem - the length

of the stem and the quality of the base pairs. The quality of the base pairs

is determined if they are canonical (such as Watson-Creek) or non-canonical

(such as Wobble). Stem is shown in Figure 2.2.

Junctions are intersections that are formed when several branches, each com-

prising of a set of motifs meet at a common point. There can be more than

one junction in a secondary structure and each junction can be of different

sub-type. There are currently three well-studied junctions - three-stem &

four-stem junctions and co-axial stem/stack. A co-axial stem/stack is a ter-

tiary structure and is derived from a four-stem junction. The three junction

types are shown in Figure 2.2.

Pseudoknots are the second category of secondary structural motifs that are

formed when a primary structure folds upon itself twice in opposite direc-

tions. A pseudoknot comprises of at least three secondary structural motifs -

loop, stem and a free dangling end. The stem (or at least a single base pair)

locks the loop and the free dangling end folds back. Base pairs are formed

with the free nucleotides in the hairpin loop or with the free nucleotides

interspersed between stems.

Chapter 2 Background 18

Pseudoknots are classified as simple and generic pseudoknots. A simple

pseudoknot is formed when the free-dangling end forms base pairs with free-

nucleotides in the loop region only. Therefore, a simple pseudoknot usually

contains two motifs regions - loops, stems - and could optionally include

free-dangling ends. In a generic pseudoknot base pairs are dispersed and

interspersed between stem regions as well. Therefore, a generic pseudoknot

could contain internal loops (asymmetric, symmetric) and bulges. Figure 2.3

shows both a simple pseudoknot and a generic pseudoknot.

Special Structures In addition to the single-sequence secondary structure fold-

ing, it is also possible for base pairs to occur between two independent sec-

ondary structures. This is due to the availability of free nucleotides (usually

in the loops, bulges) of two secondary structures that are close to each other

(in atomic scale). Figure 2.4 shows two examples of such a possibility. We

restrict the scope of this thesis to predict single-sequence based secondary

structures only.

2.3 RNA Structure Prediction on HPC Systems

Section 2.2 described the process in which a secondary structure is formed from the

primary structure. The nucleotides in the RNA primary structure is distinguished

by their nucleobases sub-units and abbreviated as A, C, G and U. Assuming a

random distribution of nucleotides in the primary sequence, and with the RNA

Chapter 2 Background 19

5'

3'

Simple Pseuodoknot

5'

3'

Generic Pseuodoknot

Figure 2.3: RNA Secondary Structural Motifs - Pseudoknots

5'

3'
5'

3'

Kissing hair-pin loops

5'

3'
5'

3'

5'

3'

Hairpin loop -- bulge contact

Figure 2.4: RNA Secondary Special Structural Motifs

Chapter 2 Background 20

alphabet size being small, the possibility of base pairs between compatible nu-

cleotides is high, since finding another nucleotide of same type is rather easy.

Therefore, it is possible to have more than one RNA secondary structure for a

primary structure. This property distinguishes RNA from DNA.

Before the advent of general-purpose computers, RNA secondary structures were

exclusively determined using biophysical methods in a laboratory. This method

when used exclusively has a couple of shortcomings. First, although the biophysical

method is conclusive in determining the secondary structure, it is very expensive

from both time and resource perspectives. Second, the method captures or snap-

shots RNA secondary structure at one point-in-time only. Third, should there be

an error in sequencing the primary structure, the process has to be repeated all

over again. Fourth, the knowledge gained from previous experiments, like map-

ping secondary structure motifs to known primary structure sequence, cannot be

re-applied. These prompted the biologists to source for alternate methods that

can be used ubiquitously & repeatedly with ease as the first-choice and to use

biophysical methods selectively afterward.

For nearly three decades, computers have been used as an enabling technology

for bioinformatics. Computers are being used to predict molecular structures in-

cluding RNA secondary structures for more than a decade now. This is primarily

due to the explosion in the number of organisms that are being sequenced and

the availability of affordable general-purpose computing resources. Importantly,

usage of computers helps in step-by-step inspection and visualization of the folding

Chapter 2 Background 21

process, which cannot be easily accomplished with biophysical methods.

The computing power required for molecular structure prediction like RNA sec-

ondary structure prediction is much higher compared to other tasks such as data

acquisition, organizing, and classification. Therefore, there is a strong need for

high performance computing solutions. In this context, it is important to explore,

albeit briefly, the evolution of the various HPC architectures and note the strength

and weaknesses of each of them.

The computer revolution started with the invention of the microprocessor and

aided by the steady improvements in silicon packaging, the CPU has become more

and more compact & powerful over the years. As an example, today’s smartphones

such as Nexus One from Google have more computing power than the desktops

of a decade ago. During the years of evolution, performance from a single pro-

cessor has been achieved primarily by increasing the CPU clock frequency. This

method served quite well until recently when its side effects began to out-weigh the

benefits that diminished the gains that can be obtained through higher operating

frequencies.

The three prominent side effects are - memory wall, frequency wall and ILP (In-

struction Level Parallelism) wall. Memory wall refers to the trend where the CPU

speed is increasing at a much higher rate compared to the RAM speed. This leads

to a situation where the CPU is idling while waiting for the memory sub-system

to fetch data for processing or deliver the results. CPU designers have partly mit-

igated this situation by using caches. Recent CPUs also use larger and multi-level

Chapter 2 Background 22

caches, with 3 levels being the current maximum. This solution however hides the

memory latencies as memory bandwidth is the ultimate bottleneck in performance.

This also question the need for CPUs with clock frequencies that are much higher

than the inter-connecting bus speed.

The second side effect is the frequency wall. In order to understand this situation,

let us formulate the power consumed in a chip mathematically and summarize it

in Equation 2.1. In this equation, P represents power, C is the capacitance being

switched per clock cycle, V is voltage, and F is the processor frequency (cycles per

second) [75]. The rising CPU frequencies means more power is consumed and more

heat needs to be dissipated from the surface of the chip. In operation, the temper-

ature of a computer’s components will rise until the heat lost to the surroundings

is equal to the heat produced by the component, and thus the temperature of the

component reaches equilibrium. For reliable operation, the equilibrium tempera-

ture must be sufficiently low for the structure of the computer’s circuits to remain

intact and not meltdown. Therefore, there is an upper limit on the amount of

power that can be dissipated and this indirectly restricts the CPU frequency scal-

ing.

P = CV 2F (2.1)

The third side effect is the ILP wall and is closely linked to the frequency wall.

ILP is a measure of the number of operations in a computer program that can

Chapter 2 Background 23

be performed simultaneously. The amount of ILP in programs is very application

specific. For example, in fields like graphics and scientific computing the amount

can be very high while programs in cryptography exhibit much less parallelism. An

ILP wall is set to exist when there is not enough parallelism in a single instruction

stream to keep a high performance single-core busy.

Despite these issues, transistor densities are still doubling every 18 to 24 months as

per Moore’s law. With the end of frequency scaling, these new transistors (which

are no longer needed to facilitate frequency scaling) are being used to add extra

hardware, such as additional cores, to facilitate parallel computing - a technique

that is being referred to as parallel scaling. The end of frequency scaling as the

dominant cause of processor performance gains has caused an industry-wide shift

to parallel computing.

2.4 Literature Survey on RNA Structure Predic-

tion Algorithms

In this section, we highlight some of the more relevant work done in the field

of RNA secondary structure prediction. We discuss some of the important algo-

rithms from multiple dimensions such as prediction method, types of secondary

structural motifs predicted and performance metrics such as time complexity, space

complexity and prediction accuracies. Our objective is to understand the exist-

ing algorithms and their suitability for HPC architectures, in particular multi-core

Chapter 2 Background 24

systems.

RNA secondary structures can be derived using two different methods - single se-

quence based prediction algorithms and multi-sequence based comparative search

algorithms. In single sequence algorithms, the input to the algorithm is the primary

structure, for which the secondary structure needs to be determined along with

applicable thermo-dynamic models and other auxiliary information. Secondary

structure is derived using different types of algorithms and the most popular ap-

proach for structure prediction is to predict the lowest free energy structure with a

dynamic programming algorithm. In comparative search algorithms, one or more

primary sequences with known secondary structures are available for reference in

addition to the primary structure with unknown secondary structure. Comparing

structural motifs between the known sequences and the unknown sequence does

the search for secondary structural motifs.

Several generic algorithmic methods have been adopted from other scientific do-

mains and customized to predict RNA secondary structures. There are two major

categories - dynamic programming and heuristic-search based algorithms. Dy-

namic programming is a method of solving complex problems by breaking them

down recursively into simpler problems. It is applicable to problems that exhibit

the property of overlapping sub-problems and have optimal sub-structures. Dy-

namic programming based algorithms employ single-sequence based search method.

In heuristics-search based algorithms different types of heuristics are used to deter-

mine the secondary structural motifs. Some of the well-known methods that adopt

Chapter 2 Background 25

different forms of heuristics are Genetic Algorithms, Quasi-Monte Carlo Search,

Stochastic Context-free Grammar, and Hop-field networks.

In addition, algorithms can also be classified based on types of secondary structural

motifs that they predict. The motifs can be classified as non-pseudoknots and pseu-

doknots. Pseudoknots are the most complex of all the RNA secondary structural

motifs. RNA pseudoknots are functionally important in several known RNAs [21].

Pseudoknots occurs in a number of functional RNA sequences ([12], [20]). Plau-

sible pseudo-knotted structures have been proposed by Pleij et al., [70], and con-

firmed by Kolk et al., [50]. Pseudoknots are classified into simple and generic pseu-

doknots and are shown in Figure 2.3. Simple pseudoknots, as the name implies, are

formed by fewer structural motifs while the generic pseudoknots are more complex

by nature. Naturally, the algorithms that predict RNA secondary structures can

be classified into three groups - those that predict secondary structures without

pseudoknots, those that predict secondary structures with simple pseudoknots and

those that predict secondary structures with both types of pseudoknots. It is to be

noted that the categories described until now do not necessarily mutually-exclude

the various algorithms. It is possible to create hybrid algorithms and several algo-

rithms within a single category have different prediction capabilities as well.

Batenburg [12] has compiled a collection of RNA secondary sequences that contain

pseudoknots and called it pseudobase. Pseudobase [110] is an online database

containing structural, functional and sequence data related to RNA pseudoknots.

Each pseudoknot comprises of the relevant sequence and supporting information

Chapter 2 Background 26

such as the reliability of the data, stem location and accession numbers.

The following subsections list the related publications to our research work in

chronological order. We have categorized them into dynamic programming, com-

parative search and heuristics-based methods. Further, we have also listed some

of the research work done in parallelizing existing RNA secondary structure pre-

diction methods.

2.4.1 Dynamic Programming based Algorithms

As early as 1971, scientists were debating and proposing stability models for RNA

secondary structure. In particular, two pioneering works were by Ignacio et al.,

([86], [87]). The proposed stability model calculates the stability of a folded

RNA molecule in terms of its free energy by adding independent contributions

from base pair stacking and loop destabilizing terms from the secondary structure.

This model has proven to be a good approximation of the forces governing RNA

secondary structure formation, thus allowing fair predictions of real structures by

determining the most stable structures in the model of a given sequence.

The energy rules are essential in these algorithms and therefore the quality of

the result depends strongly on the validity of our knowledge about the values of

the energetic parameters. One of the reasons for a deviation of the minimum-

energy solution from proven secondary structures is our lack of knowledge about

thermodynamic parameters used in the calculations [48].

Chapter 2 Background 27

Based on this thermodynamic model, algorithms for computing the most stable

structures have been proposed, for example Nussinov & Jacobson [66] and Zuker

& Stiegler [104]. Later Zuker [106] also proposed a method to determine all base

pairs that can participate in structures with a free energy within a specified range

from the optimal.

The Zuker algorithm, implemented in the programs MFOLD [106] and Vien-

naRNA [42], is an efficient dynamic programming algorithm for identifying the

globally minimal energy structure for a sequence, as defined by such a thermo-

dynamic model ([104], [105], [77]). The Zuker algorithm requires O(N3) time

and O(N2) space for a sequence of length ‘N’, and so is reasonably efficient and

practical even for large RNA sequences. The dynamic programming based Zuker

algorithm was subsequently extended to allow experimental constraints, and to

sample suboptimal folds [107]. McCaskill’s variant [62] of the Zuker algorithm

calculates probabilities (confidence estimates) for particular base pairs. One well-

known limitation of the Zuker algorithm is that it is incapable of predicting RNA

pseudoknots.

The focus of this class of algorithms is to reduce the free energy in the predicted

RNA secondary structures. In particular, Zuker et al., [108] report an upgraded

version of their program MFOLD that is capable of predicting RNA secondary

structures without pseudoknots. Additionally, they exclude the prediction of base

triples and also restrict a hairpin loop to contain at least 3 free nucleotides. The

algorithm has been updated to use the newer thermodynamic parameters as well.

Chapter 2 Background 28

Rivas et al., [76] describe a dynamic-programming based algorithm that is able

to predict a class of pseudoknots, namely simple pseudoknots. This is the first

algorithm to predict optimal (minimum energy) pseudo-knotted RNAs using the

standard RNA secondary structure thermodynamic model. The algorithm gen-

erates the optimal minimal-energy structure for a single RNA sequence, using

standard RNA folding thermodynamic parameters ([33], [78]) augmented by a

few parameters describing the thermodynamic stability of pseudoknots and using

coaxial stacking energies [97] for both pseudoknotted and non-pseudoknotted struc-

tures. The authors have tested their algorithm using different classes of RNAs -

tRNAs, HIV-1-RT-ligands and viral RNAs. The test set comprised of several small

pseudo-knotted and non-pseudo-knotted RNAs. There are several concerns of the

proposed algorithm.

1. The worst-case time and space complexities are O(n6) and O(n4), where ‘n’

is the length of the input primary sequence. Due to the high complexities the

algorithm can only be used for smaller RNA sequences, typically sequences

that are <= 150 nucleotides in length. This is a severe limitation given that

longer RNA sequences are being discovered now such as HIV1 genome whose

sequence length is 9229 nucleotides.

2. The authors reported a prediction accuracy of 50% median across the

datasets that was used with the accuracies being different for different classes

of RNAs. This again is a drawback because the algorithm’s output cannot

be confidentially used and moreover longer RNA sequences have not been

Chapter 2 Background 29

tested with as well.

3. The algorithm uses recursions heavily, making it difficult to take advantage

of newer HPC architectures like multi-core processors, where the total com-

puting power of the system is distributed among multiple, typical slower,

multi-core CPUs.

Akutsu [4] analyzed Uemura et al., [95] and found that the usage of tree adjoining

grammar was not crucial. However, the parsing procedure was crucial and is in-

trinsically a dynamic programming procedure. Akutsu re-formulated their method

as a dynamic programming procedure without tree adjoining grammar. Akutsu

also showed the secondary structure prediction for generalized pseudoknots is a

NP-hard problem when using free energy thermodynamics.

Jitender et al., [24] proposed a dynamic programming based algorithm that can

predict simple pseudoknots as well. The algorithm was reported to have worst-case

time and space complexities of O(n4) and O(n3). The authors have validated their

algorithm by using the simple-pseudoknot subset of the Pseudobase collection.

This subset consists of 169 sequences and is the same set as used by Rivas et

al., [76]. The authors have reported a prediction accuracy of 95% with 78% of

pseudoknots with correct or almost correct structures.

Although the prediction accuracy of Jitender et al., [24] is significantly higher

than Rivas et al., [76], two important questions can be raised. First, how does

the algorithm perform on a sequence that does not contain any pseudoknot in

Chapter 2 Background 30

its secondary structure? In other words, does the algorithm assume that there

will always be a simple pseudoknot in secondary structure? Second, the selected

dataset is rather limited, especially the size of the input sequences are smaller. The

largest sequence that has been tested is only 114 nucleotides in size. Therefore,

the performance is not known for longer sequences and prediction accuracies for

sequences with no pseudoknots have been tested as well.

David Mathews et al., [64] revised a dynamic programming algorithm for predicting

RNA secondary structures to include folding constraints determined by chemical

modification and to include free energy increments for coaxial stacking of helices

when they are either adjacent or separated by a single mismatch. Furthermore,

free energy parameters are revised to account for recent experimental results for

terminal mismatches and hairpin, bulge, internal, and multi-branch loops. The

authors report that the percentage of known base pairs in the predicted structure

for certain species increased significantly using modification constraints while it

remained at the same level for others.

R. Tyagi and DH. Mathews [92] tested and confirmed the hypothesis that RNA

secondary structures can be predicted by free energy minimization using nearest-

neighbor thermodynamic parameters. In their experiments, the authors observed

that their predictions had more than 50% accuracies when compared with crystal-

ized structures.

Chapter 2 Background 31

2.4.2 Comparative-search based algorithms

Comparative-search is a rather reliable approach for RNA secondary structure pre-

diction in which covarying motifs are identified across primary structures that are

multiple sequence-aligned, but from different sequences [99]. Covarying residues

are indicative of conserved base pairing in secondary structures. Comparative-

search based algorithms are generally known to perform better on longer sequences

and are likely to be more robust as existing knowledge is reused.

Fariza et al., [90] proposed a secondary structure prediction algorithm p-DCfold

based on comparative-search principles. The proposed method is able to predict

all types of pseudoknots. This work is based on an extension to the author’s

earlier work DCfold [89] in which secondary structures with the exception of pseu-

doknots were searched. In this work, pseudoknots are searched in several steps,

and the authors report very satisfactory results without any false positives in helix

prediction.

The primary shortcoming of the algorithm includes the ability to search for only

non-interleaved helices. Second, being based on comparative-search this algo-

rithm (and other comparative-search based algorithms) cannot be used to pre-

dict secondary structures for sequences with no matching primary structural mo-

tifs. Other earlier comparative-search based RNA structure prediction methods

are [3], [38], [40] and [36]. We do not analyze these algorithms further, as the fo-

cus of this thesis is on single sequenced based RNA secondary structure prediction

Chapter 2 Background 32

methods only.

2.4.3 Heuristic-search based Algorithms

Most methods for RNA folding that are capable of folding pseudoknots adopt

heuristic search procedures and sacrifice optimality. Examples of these approaches

include quasi-Monte Carlo searches [2] and genetic algorithms ([37], [8]). These

approaches are inherently unable to guarantee that they have found the “best”

structure given the thermodynamic model, and consequently unable to say how

far a given prediction is from an experimentally verified structure.

Abrahams et al., [2] contributed one of the earliest software programs to predict

secondary structures including pseudoknots. Their algorithm simulates a hypo-

thetical process of folding and uses published, experimentally verified free energy

values to get the optimum secondary structure. As a mark of performance, the

authors report that their algorithm is able to fold a 700-nucleotide sequence in just

over an hour using only a CPU at 8MHz.

Stormo et al. introduced a different approach to pseudoknot prediction based on

the Maximum Weighted Matching (MWM) algorithm ([29], [35], [16]). Using the

MWM algorithm, an optimal structure is found, even in the presence of compli-

cated pseudo-knotted interactions & base-triples, in O(N3) time and O(N2) space.

However, MWM currently seems best suited to folding sequences for which a pre-

vious multiple alignment exists, so that scores may be assigned to possible base

Chapter 2 Background 33

pairs by comparative analysis. The authors subsequently improved the same al-

gorithm in [88] to improve the accuracy to filter out spurious base pairs and also

used new information such as experimental data, statistical and thermodynamic

information to calculate the MWM performance.

Batenburg el al., [8] investigated the possibility of using genetic algorithm for the

prediction of RNA secondary structures. The authors use a step-wise selection of

most-fit structures that is similar to natural evolution. It is also reported that this

process allows for easy interchange of various fitness models.

Brown and Wilson [9] proposed a way to model RNA secondary structural motif

pseudoknot. The model is based on intersections of SCFGs (Stochastic Context

Free Grammars). The authors have used the proposed model to do a database

search to find RNA sequences containing one particular type of RNA pseudoknot.

Kim et al., [49] proposed an algorithm using simulated annealing technique. The

algorithm uses a multiple-sequence alignment strategy to align multiple RNA se-

quences to identify conserved RNA secondary structure and in the process identifies

secondary structures in new sequences. The algorithm proposes the construction

of an intra-sequence dot matrix. A hit probability is then computed based on these

matrices and a score function is defined.

Uemura et al., [95] proposed an algorithm based on tree adjoining grammar. The

time complexities of their algorithm depends on types of pseudoknots; it is O(n4)

for simple pseudoknots and at least O(n5) for the other types of pseudoknots. Al-

Chapter 2 Background 34

though the algorithm can always find optimal structures, tree-adjoining grammars

are complicated and impractical for longer RNA sequences.

Lyngso et al., [57] proposed a new heuristics-based method to evaluate all possible

internal loops of size at most ‘k’ in an RNA sequence ‘s’, in time O(k|s|2); this is

an improvement from the previously used method that has a time complexity of

O(k2|s|2). For unlimited loop size this method improves the overall complexity of

evaluating RNA secondary structures from O(|s|4) to O(|s|3). The authors have

used this method to examine the soundness of setting k = 30, a commonly used

heuristic.

Lyngso et al [58] has proved that the general problem of predicting RNA secondary

structures containing pseudoknots is NP-hard for a large class of reasonable models

of pseudoknots. The algorithm has a time and space complexity of O(n5) and

O(n3). It is able to predict only certain classes of pseudoknots.

Haslinger et al., [44] proposed and implemented a minimum free-energy folding

algorithm. The algorithm has runtime complexities O(mn3) in time and O(mn2)

in space where ‘m’ is a constant depending on the structural freedom approved

to the pseudoknots. The limitation of this algorithm is that it searches only the

simplest type of pseudoknot, the H-type pseudoknot.

Ye Ding and Charles E. Lawrence [23] have proposed a statistical algorithm to

sample rigorously and exactly the Boltmann ensemble of secondary structures for

a given RNA primary sequence. This is important because a RNA molecule,

Chapter 2 Background 35

particularly a long-chain mRNA, may exist as a population of structures each

playing important and different functional roles. Thus, a representation of the

ensemble of probable structures is of interest.

The algorithm has two steps - aptly named forward and backward. The for-

ward step of the algorithm computes the equilibrium partition functions of RNA

secondary structures using thermodynamic parameters. Using conditional prob-

abilities computed with the partition functions in a recursive sampling process,

the backward step of the algorithm quickly generates a statistically representative

sample of structures. The algorithm has O(n3) time complexity for the forward

step, O(n4) time complexity in the worst case for the sampling step, and O(n4)

space complexity.

Deschenes et al., [26] improved the prediction of RNA secondary structures using

evolutionary algorithms by adding more information on stacking energies to the

thermodynamic energies. They have compared the performance of their algorithm

against [66]. The authors have done detailed analysis using real world data, but

only with three sets of them. They have found that although EA outperforms [66],

their algorithm’s accuracy is good at sequences of shorter lengths only.

Dowell and Eddy [25] evaluated several lightweight stochastic context-free gram-

mars for RNA secondary structure prediction. In particular, they implemented

nine different small SCFGs to understand the tradeoff between model complexity

and prediction accuracy on a benchmark set of RNA secondary structures. They

conclude that four SCFG designs have prediction accuracy that is near the current

Chapter 2 Background 36

energy minimization algorithms. They further shortlisted one SCFG in PFOLD

that is much simpler than others.

Another approach to predict RNA secondary structures is called maximum ex-

pected accuracy structure prediction ([54], [28], [47], [61]). Roughly, maximum

expected accuracy structures are structures composed of pairs that provide the

maximal sum of pairing probabilities. The pairing probabilities can be derived

by machine learning methods or by thermodynamic methods using partition func-

tions. Maximum expected accuracy structures have improved accuracy compared

with free energy minimization because it has been observed that highly probable

base pairs are more likely to be correctly predicted pairs [64].

Stanislav Bellaousov and David H. Mathews [14] proposed a new algorithm to

predict RNA secondary structures with pseudoknots of any topology. Their Prob-

knot algorithm assembles maximum expected accuracy structures from computed

base-pairing probabilities in O(N2) time, where ‘N’ is the length of the sequence.

The performance of ProbKnot was measured by comparing predicted structures

with known structures for a large database of RNA sequences with fewer than

700 nucleotides. The percentage of known pairs correctly predicted was 69.3%.

The resulting sensitivity is therefore higher than Rivas et al., [76] and the au-

thors have also used longer sequences. However, since the algorithm is based on

heuristic-search principles, it will not be suitable to predict on RNA sequences

with no known analogous sequences. Secondly, the percentage of predicted pairs

in the known structure was 61.3%. This means that the algorithm is also predict-

Chapter 2 Background 37

Table 2.1: Summary of Relevant RNA Structure Prediction Algorithms

Algorithm Method Time Space Pseudoknots
Zuker [106] DP O(N3) O(N2) No
Rivas [76] DP O(N6) O(N4) Simple

Jitender [24] DP O(N4) O(N3) Simple
Stormo [16] MWM O(N3) O(N2) Yes
Uemura [95] TAG O(N5) Not Specified Yes
Lyngso [58] Heuristics O(N5) O(N3) Restricted

MARSs (this thesis) Multi-model O(N3) O(N2) Yes

ing close to 40% of additional incorrect base pairs, which may not be suitable for

predicting on new RNA sequences.

Bon and Orland [15] have proposed a new algorithm to predict RNA secondary

structures with pseudoknots. The authors claim that their method will be able

to find minimum free energy structures irrespective of pseudoknot topology. The

algorithm significantly improves the quality of prediction at the expense of process-

ing longer sequences. The algorithm is based on Maximum-Weighted-Set (WIS)

principles and uses graph theory to represent the various base pairs and selects a

subset of all base pairs to form the secondary structure with minimum energy.

Table 2.1 summarizes the most relevant RNA secondary structure prediction algo-

rithms to our work. It highlights the prediction method, time & space complexities

and the ability to predict pseudoknots. The purpose of this table is to relate our

proposed algorithms MARSs to existing algorithms.

Chapter 2 Background 38

2.4.4 Generic Parallel DP Algorithms

In this section, we highlight some of the relevant work done in the field of generic

parallel DP algorithms. The objective is to understand some of the existing par-

allelization methods through which DP based algorithms have been adapted to

parallel computers.

Martins et al., [63] demonstrated that it is possible to parallelize a dynamic pro-

gramming based algorithm using wavefront parallelization techniques. The au-

thors parallelized a sequence comparison algorithm and used the EARTH (Effi-

cient Architecture for Running THreads) execution environment. EARTH is an

event-driven architecture where it is possible to define data dependencies for each

individual scheduled thread. The system only schedules the thread for execution

when all the data-dependencies are satisfied. EARTH is implemented as applica-

tion libraries & runtime on top of COTS (Components Off The Shelf) hardware &

software. In a desktop OS such as Linux, the threads will block when their data

dependencies are not satisfied (for example being read). In such cases, EARTH

might have a mild performance gain in that a thread is not allotted until all data

dependencies are satisfied. The EARTH scheduler though always maintains a list

of scheduled threads and executing threads. One disadvantage of EARTH is that

it is not aware of the general system workload; this however is not a major issue

as in HPC setup it can be assumed that the worker nodes are dedicated.

On an algorithmic level, the authors observed that using the wavefront paralleliza-

Chapter 2 Background 39

tion method, the number of concurrent parallel processors required is uneven and

this is a concern for longer sequences. The communication overhead between large

numbers of processors should also be considered. The authors have proposed to

sub-divide the computation of the single similarity matrix into rectangular blocks.

Through this way, the limited number of execution units (or processors) can be

reused to compute various parts of the matrix. This method though introduces se-

rialized phases in a parallel computing environment. EARTH is a good candidate

for cloud computing where computation nodes may be instantiated on-demand.

Alves et al., [6] worked on a similar biological sequence comparison problem of

using wavefront parallelization to distribute work to a distributed memory parallel

computer. They used the beowulf cluster architecture based system, comprising

of 64 nodes and each node comprising of 256MB RAM and 256MB swap space.

The authors have introduced a parameter ‘α’ that represents the optimum size of

the sub-matrices. Subsequently, the authors experimented with variable sized sub-

matrices to optimize the computation & communication overhead and documented

their results.

The core contribution of this paper is to show that it is possible to split the

input data matrices, such that the individual pieces will fit in each of the worker

nodes, typically the RAM. The results however may not be directly extensible

to secondary structure prediction scenario, due to the data dependencies among

the various elements. In this latter case, the CPUs may stall periodically and

cache flushes may become frequent during data fetch, thereby limiting the total

Chapter 2 Background 40

performance.

Anvik et al., [5] introduced a method of automatically generating parallelized

framework code for wavefront design patterns. They have implemented their pro-

posal as a GUI application in CO2P3S (Correct Object-Oriented Pattern-based

Parallel Programming System), which generates the parallelized framework code

with hook functions. The programmer subsequently only needs to introduce seri-

alized domain-specific functions that overrides these hook functions. The system

has been implemented on a shared-memory multi-processor system.

Wirawan et al., [102] have introduced scalable and efficient parallelism to DNA

sequence alignment problem. The authors have implemented a parallel DNA se-

quence alignment on the Cell Broadband Engine. The authors have also exper-

imented with two parallelization methods - SIMD (Single Instruction Multiple

Data) and wavefront. SIMD has been used within the SPEs while wavefront was

used across the processor. The dataset used was artificial DNA sequences and the

experiments were conducted with the IBM full system simulator.

Tan et al., [93] have proposed a parallel dynamic programming algorithm to solve

problems of non-serial polyadic type. The authors have addressed this challenge by

exploiting fine-grain parallelism and data locality. The authors have used multiple

techniques such as helper threads (to read/write data in parallel with computa-

tions), parallel pipelining and tiling. The proposed algorithm achieves sub-linear

speedup.

Chapter 2 Background 41

The targetted multi-core system is the IBM Cyclops64 supercomputer. However,

IBM Cyclops64 supercomputer is an on-going project and no real machine has been

built so far. Therefore, the authors have used the corresponding simulator C64-

Simulator-FAST (Functionally Accurate Simulator Toolkit) for conducting all their

experiments. FAST is designed for the purposes of architectural design verification

and software development, and unlike the IBM Cell full system simulator, does not

give accurate runtimes corresponding to what will be obtained in real hardware.

The authors have experimented with varying tile size and noted the impact on the

synchronization & communication overheads for various tile sizes.

Sadecki [82] has studied the possibilities of real implementations of a selected group

of parallel dynamic programming algorithms. The experiments were conducted in

the parallel multi-transputer SUPER NODE 1000 (SNODE) system and using

the OCCAM programming language. The author used different configurations

of connections between the computing elements such as master/slave and direct

model. The author concludes that the proper choice of the system structure and

the inter processor communication methods can considerably affect the efficiency

of parallel computations and ultimately the speedup factor.

2.4.5 Parallel RNA Structure Prediction Algorithms

In this section, we highlight some of the relevant work done in the field of parallel

RNA structure prediction algorithms. The objective is to understand some of the

relevant parallelized RNA structure prediction algorithms.

Chapter 2 Background 42

Zhou et al., [109] proposed a new out-of-core distributed memory method for ex-

tended sequential RNA secondary structure prediction algorithms. The algorithm

has several novel features such as redundant file scheme, I/O-reducing in-core

buffer mechanism and dynamic load balancing. The algorithms utilize explicit file

I/O operations to manage the data between in-core and out-of-core. In particu-

lar, it does not rely on the operating system (OS) to do the management using

virtual memory; the authors argue that this will be suboptimal as the OS/VMM

(Virtual Machine Monitor) is not aware of the application domain and the data

dependencies.

The authors experimented with in-core distributed-memory parallelization and

found that communication with neighboring processors is the key. In the redundant

file scheme, the matrix stores the data from the rows and columns separately. This

approach saves in-core memory when either the column or row is required. This

approach is similar to creating indexes in databases servers. The authors conducted

the experiments on a cluster of 16 Sun UltraSPARC IIIi nodes and have obtained

good speedup. The authors have found that the size of in-memory buffer is critical

for the efficiency of the parallel program. In particular, a large in-core memory

buffer actually increases the number of memory access to cache misses.

Estrada et al., [32] have proposed a parallel framework compPknots that combines

existing softwares Pknots-RE and Pknots-RG. The software predicts RNA sec-

ondary structures concurrently and automatically compares them with reference

structures from database or literature. CompPknots is implemented using MPI

Chapter 2 Background 43

(Message Passing Interface) on a beowulf cluster to predict structures concurrently,

thereby saving time and providing higher accuracies. The basic approach is still

to run two existing algorithms concurrently on worker nodes, thereby exhibiting

High Throughput Computing (HTC) where there is no data dependencies between

the parallel jobs. The limitation of this approach is that the input data size that

can be processed is still limited by one worker node’s capabilities. The authors

have used the software to predict 217 RNA structures from pseudobase database.

Nakaya et al., [67] have proposed a parallelized RNA secondary structure predic-

tion method. The algorithm focuses on finding thermodynamically stable struc-

tures for single-stranded RNA molecules. The algorithm is based on a parallel

combinatorial method that calculates the free energies of a molecule as the sum

of the free energies of all the physically possible hydrogen bonds. The algorithm

predicts many highly stable structures at once, although the structures are sub-

optimal. This is contrary to most other algorithms that predict single optimal

secondary structures. The core idea used in the algorithm is search tree prun-

ing, with dynamic loading balancing across the processing elements in a parallel

computer. The software has been implemented on CM-5.

Shapiro et al., [79] have proposed a RNA secondary structure prediction algorithm

using Genetic Algorithm (GA) methodology. The algorithm has been implemented

on a massively parallel supercomputer, MasPar MP-2, of type SIMD (Single In-

struction Multiple Data) with 16,384 processors. Using this algorithm and setup,

the authors have successfully predicted the existence of H-type pseudoknots in

Chapter 2 Background 44

several sequences. The results from these experiments match the phylogenetically

supported tertiary structures of these sequences.

Shapiro et al., [81] have extended their previous work described in [79] to three

different computer architectures. The algorithm was adapted to a 64 processor

MIMD (Multiple Instruction Multiple Data) based SGI ORIGIN 2000 SMP system

and a 512 processor MIMD CRAY T3E. Using the input sequences, the algorithm

is initialized by generating a stem pool (consisting of either fully or partially zipped

stems), which is then stored in all the individual processors. The parallel GA is

initialized by stochastically picking stems from this stem pool. Evolution continues

based on GA methods - selection, mutation and crossover individually across all

the processors and in parallel. The results are measured using metrics such as

runtime efficiency and prediction accuracy. Through this work, the authors have

shown that it is possible to port existing algorithms to newer parallel computer

architectures. They have also hinted at the optimizations that might be required

to get better performances.

Liu and Schmidt [59] have proposed a parallel space-saving algorithm for align-

ing an RNA sequence to a SCFG using wavefront parallelization technique. The

authors have implemented the algorithm on a PC cluster, a cluster of SMPs and

recorded their speedups. On a 10-node PC cluster with each node being a dual-

processor for a total of 20 processors the speedup was 16. Next on a 12-node

SMP cluster, with each node being a quad-processor for a total of 48 processors,

the speedup recorded was 36. The SMP is of hybrid type as the intra-node com-

Chapter 2 Background 45

munication is using shared memory while the inter-node communication is using

MPI.

Fekete [34], has developed a novel parallel algorithm for RNA secondary structure

prediction on distributed memory machines. The algorithm has been implemented

on two distributed memory systems. The first system is an Intel iPSC/860 dis-

tributed memory parallel computer with 16 i860 processors. The second system

is a Touchstone DELTA supercomputer consisting of an ensemble of processors

organized as a two-dimensional mesh. The DELTA system is also a distributed

memory parallel computer with maximum of 512 nodes. Subsequently, using the

algorithm, the author has predicted and analyzed secondary structure of several

long RNA sequences, including a complete HIV1 genome of sequence length 9229

nucleotides.

2.4.6 Parallel Computing Landscape

In this section, we highlight some of the important work done in the field of parallel

computing. The objective is to understand some of the relevant academic work in

the field of parallel computing. Asanovic et al., [7] review paper is an excellent

summary of the landscape of the parallel computing research in 2006.

Petrini et al., [73] optimized Sweep3D on the Cell Broadband Engine and to their

pleasant surprise observed several good performance trends such as high float-

ing point performance reaching 64% of the theoretical peak in double precision,

Chapter 2 Background 46

and an overall performance speedup ranging from 4.5 times when compared with

“heavy iron” processors such as IBM Power5, up to over 20 times with conventional

processors. The authors have ported existing MPI-style software Sweep3D avail-

able in public domain using several handcrafted parallelization techniques. The

authors also compare their results against other processors and also offer some ar-

chitectural improvement suggestions. This paper is interesting as it shows that an

existing MPI-style application registers better performance on a single multi-core

CPU. This highlights the trend of using a single multi-core CPU for small and

medium-sized problems.

Bader et al., [13] present a complexity model for designing algorithms on the Cell

processor, and a systematic procedure for algorithm analysis. The execution time

of the algorithm is estimated using computational complexity, memory access pat-

terns (to and from SPUs in particular) and the complexity of branching instruc-

tions. The authors propose that the model and associated analysis procedure will

likely simplify the algorithm design on the cell microprocessor and identify poten-

tial implementation bottlenecks. Subsequently, the authors have used this model

to design an efficient implementation of list ranking. This paper is one of the early

papers to analyze the cell architecture and show how to design efficient programs

for the same.

Williams et al., [100] introduce a performance model for Cell and apply the same

to several key scientific computing kernels such as dense matrix multiply, sparse

matrix vector multiply, stencil computations and 1D/2D FFTs. The authors sub-

Chapter 2 Background 47

sequently validated the accuracy of their model by comparing their results against

published hardware results, and also against the values from full system simulator.

Additionally, the authors compared this performance benchmark against bench-

marks from other HPC chips such as superscalar (AMD Opteron), VLIW (Intel

Itanium 2), and vector (Cray X1E) architectures. The authors also propose mod-

est micro-architectural modifications to increase the efficiency of double-precision

calculations. Based on the results, the authors conclude that IBM Cell architec-

ture is suitable for scientific computations in terms of both raw performance and

power efficiency.

Beowulf cluster [85] architecture was designed during single-core processor era to

amalgamate the processing capabilities of individual single-core computers into

a single entity. The individual nodes were linked through ethernet. In this tra-

ditional configuration there was only inter-node communication and the perfor-

mance limiter was the ethernet network. This led to the design and development

of high-speed alternatives such a infiniband. The advent of multi-core system has

introduced the problem of both intra-node communication using (perhaps) shared

memory and inter-node using conventional MPI. It makes the design of cluster

schedulers more complex in that they need to be aware of this two-tier architec-

ture (nodes, cores) and schedule jobs accordingly. For example, two tasks that

have data dependencies could benefit by being scheduled in the same node and

pinned to different CPUs vs. being scheduled in different nodes.

Chai et al., [18], have designed a set of experiments to study the impact of multi-

Chapter 2 Background 48

core systems as individual nodes in a computer cluster like Beowulf clusters. The

authors used popular benchmarks like HPL, NAMD and NAS as the applications

to study. From the experiments, the authors found that on an average about

50% messages are communicated through slower intra-node communications. The

author suggests that the trend indicates that intra-node communications must be

optimized just like inter-node communications have been optimized earlier using

faster communication networks. In addition, the authors observe that cache and

memory contention may be potential bottlenecks and suggest that techniques such

as data tiling can improve execution time. The authors suggest that in general

newer applications should be multi-core aware. The results from this paper is very

relevant to this research study and we have many similar observations. In general,

the bottleneck in a multi-core is the communicating channels and the intermediate

caches, rather than the endpoints (CPUs, Memory).

Paul and Meyer [72], observe that Amdahl’s law [1] is based upon two assump-

tions - boundlessness and homogeneity - and argue that Amdahl’s law does not

apply to single-chip heterogeneous multi-processors (SCHM) architecture or even

micro-architecture based systems. The authors have examined the implications

of Amdahl’s law on SCHMs and advocate that more research & design needs to

be done and the processor performance should be viewed holistically and from

a global perspective instead of local gains (such as one part of system, one task

or program section) that could result in system-level slowdown. The authors in-

fer that it will be more beneficial to invest time and effort in developing more

Chapter 2 Background 49

sophisticated system-aware schedulers rather than using off-the-shelf schedulers.

Custom-designed schedulers will generally outperform generic schedulers, however

the cost of developing an efficient one is the challenge. There is also an unknown

factor on how individual systems will be clustered together in a real-world scenario.

As an example, it is not uncommon for a computer cluster to contain nodes that

are of different types. In such a case, the custom-scheduler may be of little use.

We therefore argue that it may be beneficial to design a scheduling language that

defines the entire hierarchy - network architecture, individual nodes features such

as number of CPUs, their ISAs, number & size of various CPU caches. The sched-

uler should also know the data dependencies between parallel programs at various

execution points. By this way, an intelligent scheduler will be able to better use

the system resources.

Hill et al., [46] apply the historical Amdahl’s law to hypothetical multicore chips

of different configurations - symmetric cores, asymmetric cores and dynamically

reconfigurable multi-cores. The authors have added a simple hardware model to fit

the simple software model used by Amdahl in his famous argument. Based on their

experiments they suggest that multicore designers should view the performance of

a multicore chip entirely rather than focusing on core efficiencies. At the same

time, they observe that obtaining optimal performance from single core is also im-

portant as there is likely to be sequential parts in any parallelized programs. They

conclude by recommending that efforts be put into (automatically) parallelizing

serial programs and also building more efficient parallelized hardware.

50

Chapter 3

Parallelizing PKNOTS

3.1 Introduction

Rivas & Eddy [76] proposed the first dynamic programming based algorithm

that predicts optimal RNA secondary structure with pseudoknots and called it

PKNOTS. The algorithm has a worst-case time complexity of O(N6) and worst-

case space complexity of O(N4). The authors have implemented the algorithm

in ANSI C programming language. The authors observed the program to run

empirically in the complexities of O(N6.8) for time and O(N3.8) in space. The

program scales above the theoretical complexity of the algorithm and the authors

attributed this to the way the memory was allotted by the underlying operating

system on the hardware used. The high complexity rates for the algorithm limited

the program’s RNA primary sequence input to be less than 150 nucleotides and

Chapter 3 Parallelizing PKNOTS 51

consequently the authors used the program to predict secondary structures for

several small pseudo-knotted and non-pseudo-knotted RNAs.

The PKNOTS algorithm was introduced in the year 1999 while the modern high

performance computing was still in its early stages of development. As discussed in

the previous chapter, in the last decade, the computing landscape has seen the in-

troduction of many new (& affordable) high performance computing architectures

such as - faster processors, SMPs, cluster computing, grid computing, many-core

architectures and more recently scalable cloud computing. The common pattern

among most of these newer architectures is that they emphasize ‘parallel comput-

ing’. On the other hand, the dynamic programing algorithm PKNOTS published

in [76] evolves the final optimum secondary structure by identifying optimum sec-

ondary sub-structures recursively. By the nature of this definition, PKNOTS is a

highly-recursive algorithm with deep data dependencies across multiple recursions.

This property is generally considered be the bottleneck to parallelizing serial al-

gorithms. Therefore, it is a very interesting problem to attempt to efficiently

parallelize a dynamic programming algorithm and measure its performance on a

variety of parallel hardware architectures and is one of the core contributions of

this thesis.

In this chapter, we will explain the PKNOTS algorithm from the perspectives of

algorithmic design and the data structures used in the program. We will refer the

reader to the relevant sections of the publication [76] in order to avoid duplicating

the material. Following this, we will explain the several parallelization techniques

Chapter 3 Parallelizing PKNOTS 52

that we have experimented with and implemented in different types of parallel

computers. The techniques will be explained in detail in this chapter with the

experimental results discussed in Chapter 5; the hardware used for experiments

are detailed in the appendices.

3.2 Overview of PKNOTS

PKNOTS is the first single-sequence RNA secondary structure prediction algo-

rithm that showed optimal RNA pseudoknot predictions can be made with polyno-

mial time algorithms. The algorithm uses standard RNA folding thermodynamic

parameters augmented by a few parameters describing the thermodynamic sta-

bility of pseudoknots. PKNOTS recursively searches for the optimum secondary

structural motif(s) for sub-sequences of decreasing lengths and evolves the single

optimal secondary structure for the whole input sequence at the end of the search

process.

The algorithm makes a distinction between non-pseudoknot structures and pseu-

doknots structures that make up the RNA secondary structure. The algorithm

refers to these as nested and non-nested structures and uses different search mech-

anisms. For the nested algorithm, the algorithm uses two triangular n x n matrices,

called vx and wx. vx(i,j) is the score of the best folding between positions i and j,

provided that i and j are paired to each other; whereas wx(i,j) is the score of the

best folding between positions i and j regardless of whether i and j pairs to each or

Chapter 3 Parallelizing PKNOTS 53

Figure 3.1: General recursion for vx in PKNOTS [76]

not. A nested dynamic programming algorithm fills the vx and wx matrices with

appropriate numerical weights through a recursive calculation. The recursion for

vx includes contributions due to - hairpins, bulges, internal loops, and multi-loops.

The recursion is shown diagrammatically in Figure 4 of [76] and is reproduced in

Figure 3.1.

The filling of matrix vx has been expressed mathematically in [76] and is repro-

duced here in Figure 3.2 along with initialization conditions in Figure 3.3. Each

line gives the formal score for one of the several motif types and the optimal struc-

ture for this sub-sequence is the structure with the highest score. In particular, the

first equation simply refers to a base pair, the second equation identifies hairpin

loops, bulges, stems and internal loops. The rest of the higher-order equations are

collected under the name of multi-loops, which have been observed to be much

less frequent compared to their simpler counterparts.

Chapter 3 Parallelizing PKNOTS 54

Figure 3.2: Mathematical formulation of general recursion for vx in PKNOTS [76]

Figure 3.3: Initialization condition for general recursion of vx in PKNOTS [76]

Chapter 3 Parallelizing PKNOTS 55

Figure 3.4: General recursion for wx in PKNOTS [76]

Figure 3.5: Mathematical formulation of general recursion for wx in PKNOTS [76]

The recursive relations used to fill the wx matrix identifies the remaining types

of secondary structural motifs - single-stranded nucleotides, external pairs, and

bifurcations. The actual recursive process is easier to understand using a diagram

and is given in Figure 7 in [76] and is reproduced here in Figure 3.4. The filling of

this matrix wx is given mathematically by Equation 5 and initialization condition

in Equation 6 from [76] and are reproduced here in Figures 3.5 and 3.6.

Figure 3.6: Initialization condition for general recursion of wx in PKNOTS [76]

Chapter 3 Parallelizing PKNOTS 56

Pseudoknots are non-nested configurations and cannot be described by using only

wx and vx matrices. In order to handle pseudoknots, PKNOTS introduces two

new gap matrices in addition to the existing non-gap matrices. Pseudoknots are

described visually in Figure 8 in [76] and based on this can be described using two

gap matrices with complementary holes. The gap matrices are of type one-hole,

which means the pseudoknots are restricted to be of class simple pseudoknots.

However, it is possible to use multiple one-hole gap matrices to model generalized

pseudoknots.

The interesting aspect of using one-hole gap matrix is that non-gap matrix vx and

wx can be represented as a special case of using gap matrix with no-hole. They are

shown visually in Figure 10 and Figure 11 in [76] as well. Corresponding Equation

8 and Equation 9 in [76] show the mathematical formulation. In total, 4 matrices

- VHX, WHX, YHX, ZHX are used to model the relationship between bounding

base pairs of a pseudoknot. The details of the relationship are shown as Table

1 in [76]. This brings the total number of matrices to 6 in PKNOTS. PKNOTS

uses the turner thermodynamic information for non-nested secondary structures

and estimates the corresponding thermodynamic parameters for pseudoknot (as

none was available at the time the paper was written). These are again shown in

Table 2 and Table 3 in [76]. Mathematical formulations for the four gap matrices

are described and discussed in appendices section of [76]. Finally, the algorithm is

also able to handle co-axial stacking and dangle type secondary structural motifs.

Figure 3.7 shows from a mathematical perspective all the types of motifs that are

Chapter 3 Parallelizing PKNOTS 57

Figure 3.7: Motif types searched by PKNOTS algorithm

searched by the PKNOTS algorithm.

3.3 Analyzing PKNOTS

There are three key reasons why we choose to parallelize PKNOTS against other

alternative algorithms. First, PKNOTS was the first dynamic programming al-

gorithm to be able to predict secondary structures including pseudoknots (albeit

not all types) using a single RNA primary sequence. This motivated us to work

with a novel algorithm. Second, the time and space complexities for PKNOTS

is on a higher-end. Therefore, introducing efficient parallelism from today’s par-

allel computing architectures to the algorithm will likely bring the biggest gains.

Third, PKNOTS implementation is available freely in source code form, unlike

Chapter 3 Parallelizing PKNOTS 58

several other programs that are only provided as web applications. This allows

us to tweak & port the algorithm to multiple parallel architectures and subse-

quently measure their performances as well. The following paragraphs describe

the several generic parallelization techniques that we have experimented with.

The architecture-specific parallelization-tuning optimizations and results from the

experiments using them are discussed in Chapter 5.

As described in the previous section, PKNOTS contains 6 core matrices - 2 for non-

pseudoknots and 4 for pseudoknots - that are used to predict secondary structures.

In the reference software implementation, there is a corresponding sub-routine for

each of these matrices. The sub-routines are known as FillVX, FillWX, FillVHX,

FillWHX, FillYHX and FillZHX. The functions for pseudoknots run in time com-

plexities of O(N6) while the functions for non-pseudoknots run in time complexi-

ties of O(N5). In addition to these core matrices, the software program uses other

supporting matrices as well. Figure 3.8 shows the pseudocode for core part of

PKNOTS algorithm while Figure 3.9 shows the program flow of this matrix filling

routine.

From the pseudocode in Figure 3.8, it can be seen that the matrices are highly

interdependent on each other and moreover the dependency is non-serial polyadic.

Non-serial polyadic property means the value to fill a particular matrix cell is

dependent not just on the value from the immediate previous recursion but on

historical value(s) as well. Figure 3.10 shows in matrix form the data dependencies

between the various matrices as well; data dependencies are from row to column.

Chapter 3 Parallelizing PKNOTS 59

	

Pseudo	
 code	
 for	
 subroutine	
 FillMtx	

	
 1	
 for	
 j	
 =	
 0	
 to	
 seqlen	
 	

	
 2	
 	
 for	
 d	
 =	
 mind	
 to	
 j+1	
 	

	
 3	
 	
 	
 	
 	
 FillVP(vx,	
 vp,	
 j,	
 d);	

	
 4	
 	
 	
 	
 	
 FillWX	
 (wx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 5	
 	
 	
 	
 	
 FillWBX(wbx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 6	
 	
 	
 	
 	
 	
 for	
 d1	
 =	
 0	
 to	
 d+1	
 	

	
 7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 d2	
 =	
 0	
 to	
 d-­‐d1-­‐1	

	
 8	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillVHX(whx,	
 vhx,	
 j,	
 d,	
 d1,	
 d2)	

	
 9	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillZHX(wbx,	
 vx,	
 whx,	
 vhx,	
 zhx,	
 j,	
 d,	
 d1,	
 d2)	

10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillYHX(wbx,	
 vx,	
 whx,	
 vhx,	
 yhx,	
 j,	
 d,	
 d1,	
 d2)	

11	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillWHX(wbx,	
 vx,	
 whx,	
 vhx,	
 zhx,	
 yhx,	
 j,	
 d,	
 d1,	
 d2)	
 	
 	

12	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 for	

13	
 	
 	
 	
 	
 	
 end	
 for	

14	
 	
 end	
 for	

15	
 end	
 for	

	

Figure 3.8: Pseudocode for matrix filling routine in PKNOTS algorithm

Figure 3.9: Program flow of the matrix filling routine in PKNOTS algorithm

Chapter 3 Parallelizing PKNOTS 60

Figure 3.10: Data dependencies across matrices in PKNOTS algorithm

Every matrix filling function is also dependent on thermodynamic parameters that

govern the pairing of bases in the structure. The thermodynamic parameters

are provided as a two dimensional matrix, named ICFG, that is of size 4276 ×

4276 elements. The four gap matrices are four-dimensional while the other three

matrices are two-dimensional yielding the maximum algorithmic space complexity

of O(n4).

3.4 Parallelizing PKNOTS

In this section we will describe our efforts to introduce parallelization into the

PKNOTS algorithm. We begin by analyzing the scalar implementation to identify

Chapter 3 Parallelizing PKNOTS 61

suitable locations in the algorithms for introducing parallelization. Following this

we will describe the three-parallelization methods that we have designed. We

attempted various strategies and exploited several relationships among the code

graphs and data paths of the PKNOTS scalar implementation. We describe all

these in the following subsections.

3.4.1 Measuring PKNOTS’s Performance

Amdahl's lawAmdahl1967 states that the amount of speedup achievable is bounded

by (1/((1−p)+p/s) where ‘p’ is the percentage of the original code where a speedup

of ‘s’ is obtained. Therefore, to obtain an upper bound for parallelism we set out

to identify the section of the program where most of the time is spent. A timing

analysis was performed on the scalar implementation, to clock each matrix filling

function. The result of the timing analysis is shown in Figure 3.11. From the fig-

ure, it is clear that a bottleneck exists at the function that fills the WHX matrix.

This is both because the function contains large amounts of computations and is

located four levels deep in the nested configuration of the program. Therefore,

the function is invoked for every variation of the four loops, whose variables are

denoted by j, d, d1 and d2 in Figure 3.11. For that reason, the extremely low

weights of the functions for VHX, ZHX, and YHX is not considered for paral-

lelization efforts as the performance gains are likely to be insignificant. Therefore,

the parallelization efforts focus solely on this function which fills the WHX matrix,

simply because of the 90% contribution of this function towards the program’s

Chapter 3 Parallelizing PKNOTS 62

Figure 3.11: Timing Analysis of PKNOTS Algorithm

runtime.

Next, we seek to understand the structure of the WHX code block. WHX consists

of six major blocks of work. Each major block contains a large amount of compar-

isons between values from other matrices. A point to note is that there is no data

dependency between the individual blocks. Figure 3.12 shows the WHX function

with each block of work named WHXn where ‘n’ is in the range from 1-6. Each

block is essentially a loop and the number of borders indicates the level of nesting.

Note WHX1 does not contain loops and therefore in all subsequent parallelization

WHX1 is left untouched.

In addition to the individual WHXn loops (or work units) in the WHX matrix-

filling function being independent of each other, the loops themselves are each

independent across iterations. We use this to our advantage by performing SIMD-

Chapter 3 Parallelizing PKNOTS 63

Figure 3.12: WHX layout in the PKNOTS Algorithm

style loop parallelization. We begin by using a CE (Consumer Electronics) class

parallelized computer, namely the Sony PS3, to do small-scale experiments prior

to doing large-scale experiments with parallelization across multiple parallelized

architectures. Techniques we describe in this chapter have largely remained the

same across the different architectures, with required changes to optimize them to

suit the various system specifics.

3.4.2 Code Parallelization (C-Par)

In the C-Par model, we parallelize the algorithm by splitting it into WHX process-

ing and non-WHX processing. The WHX processing is again parallelized into six

Chapter 3 Parallelizing PKNOTS 64

routines, each handling one of six WHX blocks WHX1 to WHX6. In this model,

data independence between the individual WHX blocks is exploited. Each block

of work for filling WHX is now performed separately and the execution of each

block is performed in parallel.

In order to test the feasibility of this model, we ported the PKNOTS algorithm

to the IBM Cell [112] platform and tested it out using the Sony PS3. The effort

of porting required making sizable changes to the source code in order to accom-

modate the platform intricacies. However, since the programming language was

common between the platforms, we didn’t have to recode the algorithm in another

programming language.

The IBM Cell architecture will be explained in much detail in Appendix C and we

will provide a very brief overview here for the reader to understand the sections

below. IBM Cell is a heterogeneous multi-core processor comprising of two different

types of processing elements each with its own Instruction Set Architecture (ISA).

The processing cores are PPE (Power Processing Element) and SPE (Synergistic

Processing Elements). There is 1 PPE and up to 8 PPEs in a single cell processor;

Sony PS3 has only 6 SPEs. The PPE is capable of running an executive process

like the OS while the SPEs acts as specialized co-processors.

In this architecture, the PPE’s primary task is to run the non-WHX routines

while managing the synchronization between the SPEs. The strategy is to run six

SPEs, each handling one unique block of work, in essence running concurrently all

the work 6 blocks of WHX, WHX1 to WHX6. Figure 3.13 illustrates this model

Chapter 3 Parallelizing PKNOTS 65

Figure 3.13: C-Par model of PKNOTS on Sony PS3

on the Sony PS3 platform. Based on timing analysis we conducted, the C-Par

implementation didn't make effective use of the available computational power in

the SPEs due to different runtimes of various WHX blocks (i.e., number of loop

iterations) in matrix-filling functions and thus causing synchronization delays. In

our next implementation, we aim to balance out the workload among the available

SPEs.

3.4.3 Data Parallelization (D-Par)

In this model, each SPU executes all the six functions sequentially for the same

piece of input. This mitigates some effects of slowdown in C-Par model due to the

non-constant number of iterations performed in each WHXn block. SPE contexts,

Chapter 3 Parallelizing PKNOTS 66

Figure 3.14: D-Par model of PKNOTS on Sony PS3

an abstraction of SPE containing the code and data, was used in the implementa-

tion. Figure 3.14 shows the D-Par implementation in a graphical way.

Through our experimental investigations, we found that SPE context creation and

swapping is expensive as the functions are nested in loops and SPE contexts are

swapped repeatedly in this finer-grain parallelization model. The overheads of

setting up the parallel environment is amplified by the time complexity of the

algorithm as well. This created the issue of SPU initialization as different function

codes needs to be swapped in and out of the SPU for each and every piece of data at

various stages of the WHX2-6 functions. We eliminated the inefficiency associated

with SPU initialization, by using a single binary image. The single binary image

contains all the WHX functions and using input parameters, the scheduling task

will let the worker task know which functions to execute.

Chapter 3 Parallelizing PKNOTS 67

3.4.4 Hybrid Parallelization (H-Par)

Both the C-Par and D-Par models have their own unique strengths (and weak-

nesses). Although, they differ on what gets executed on the SPE and when, they

both are alike in that algorithmic computation is always done on the SPEs and

the task in PPE is simply synchronizing the different SPE tasks. We wanted to

find out the trade offs between communication costs vs. computation gains of ex-

ecuting tasks locally vs. remotely. We call this the H-Par model. H-Par model is

essentially a runtime tuning mechanism that decides on the locality of execution,

i.e., whether to run on PPE or to distribute across SPEs. We use the input RNA

sequence length as a threshold value and whenever it is below a certain length,

the scheduler will run the code in the PPE and avoids invoking the SPEs, as

the communication and synchronization costs are more than the computational

gain achieved by executing the functions in the SPEs. For longer RNAs, SPEs

are chosen for computation workloads. Figure 3.15 shows the flow chart of this

implementation strategy.

3.4.5 Preliminary Results

The parallelization methods and strategies that we explored in the previous sec-

tions give us valuable knowledge into parallelizing an existing dynamic program-

ming based algorithm called PKNOTS. We also tested the various methods with

a small dataset and Figure 3.16 shows the performance differences between the

Chapter 3 Parallelizing PKNOTS 68

Figure 3.15: H-Par flow chart of PKNOTS on Sony PS3

various methods. It can be seen that each successive method has better per-

formance with H-Par, which incorporates intelligent scheduling, having the best

performance. This clearly sets the motivation to design a new algorithm for RNA

secondary structure prediction and also do large-scale experiments with PKNOTS

across three parallel architectures.

C
hapter

3
Parallelizing

PK
N
O
T
S

69

Figure 3.16: Preliminary results with PKNOTS on Sony PS3

70

Chapter 4

MARSs

4.1 Introduction

In this chapter, we introduce and describe in detail a novel algorithm that we are

proposing for the prediction of RNA secondary structures. The algorithm is called

“A Matrix Algorithm for RNA Secondary Structure Prediction” and is abbreviated

as MARSs. MARSs is capable of predicting all of the currently known structural

motifs of a RNA secondary structure. MARSs is shown to have polynomial time

and space complexities of O(n3) and O(n2) respectively. Following are the key

salient and distinguishing features of MARSs.

MARSs is a top-down algorithm. This means that the algorithm first pre-

dicts secondary structure motifs at the macro or whole-sequence level and

then fills in the gaps created. This is in contrast to Dynamic Programming

Chapter 4 MARSs 71

(DP) based algorithms such as PKNOTS, which are bottom-up algorithms.

MARSs evolves secondary structures. MARSs does not perform a library-

based search for predicting secondary structural motifs. Instead, it evolves

the complete secondary structures as a whole.

MARSs is a non-recursive algorithm. MARSs algorithm has been designed

specifically for higher performance and one of the design objective is to easily

parallelize it on multi-CPU architecture. To achieve this, the algorithm uses

a non-recursive design unlike DP based algorithms such as PKNOTS.

MARSs can predict alternate structures. DP based algorithms by definition

grow and evolve one optimum secondary structure. In contrast, MARSs is

capable of predicting a set of high-quality structures for a given sequence. By

this way, for sequences with unknown secondary structures alternate output

from MARSs can be considered.

MARSs algorithm is targeted at High Performance Computing (HPC) architec-

tures and seeks to eliminate the performance shortcomings found in traditional al-

gorithms based on Dynamic Programming (DP). As such, we believe that MARSs

will perform equally well in HPC architectures from multi-core CPU based SMPs

to cloud-based HPC architectures. The implementation features auto-scaling and

detects the number of parallel cores available in the system during program startup.

At the same time, the algorithm performs equally well in single core CPUs with

no reduction in the prediction accuracy.

Chapter 4 MARSs 72

4.2 RNA Secondary Structure

RNA primary structure is a linear sequence comprising of RNA nucleotides -

Adenine(A), Cytosine(C), Guanine(G) or Uracil(U) as alphabets. The string of

nucleotides folds upon itself and in the process forms hydrogen bonds amongst

themselves. When two nucleotides (or bases) forms a bond, the bases are collec-

tively known as the base pair. The base pair is known to be in a more stable

state (compared to the primary sequence) due to the reduction in free energy.

Therefore, the more the base pairs are formed, the more stable is the resultant

secondary structure. The secondary structures that are naturally possible have

been documented by the biologists and are listed below

◦ Bases of the same kind do not bond with each other. For example, Ade-

nine(A) cannot bond with another Adenine(A)

◦ Two successive nucleotides in the primary sequence cannot bond with each

other again

◦ The allowed base pairs are A− U , C −G, A− C and G− U

• Energy reduction of A − U and C − G bonds are approximately the

same (A)

• Energy reduction of A − C and G − U bonds are approximately the

same (B)

• Energy reduction of case ‘A’ above is more than case ‘B’

Chapter 4 MARSs 73

◦ The structure that has larger energy reduction is more stable and preferable.

As the RNA alphabet size is only 4, the number of possible combinations among

nucleotides is quite small. Therefore, the challenge is to determine the optimal

configuration of the RNA secondary structure that is likely to produce the more

stable secondary structure.

4.3 Algorithm Initialization

Step 1 of the MARSs algorithm is to initialize the secondary structure prediction

process. We do this by capturing the biological rules discussed in the previous

section in two data structures. As the name of the algorithm indicates, these data

structures are of matrix type. The two matrices are called as Base-Pair Matrix

(BPM) and Affinity Matrix (AM).

The Base-Pair Matrix (BPM) is a static matrix such that the contents of the

matrix is fixed and does not change with different input RNA primary sequences.

The matrix stores the bond strengths among the nucleotides and can contain either

integer or floating-point values. The values can be updated before each run of the

MARSs algorithm and the algorithm auto-updates the prediction of the secondary

structure using the new values. By this way, MARSs can be used to predict RNA

sequences from different organisms with ease, such as plants and animals, which

might use different bonding energies. Table 4.1 shows the simplified version of a

Base-Pair Matrix using relative bond strengths; the larger the number the stronger

Chapter 4 MARSs 74

Table 4.1: Base-Pair Matrix

* A C G U
A 0 1 0 2
C 1 0 2 0
G 0 2 0 1
U 2 0 1 0

the bond. Therefore, in this case the total energy of the predicted structure is

energy maximization instead of the traditional energy minimization. It is trivial to

use negative energies and invert the corresponding value comparison mathematical

operators in the prediction algorithm to mimic the energy minimization behavior in

conventional algorithms. The bond strengths can then be seen from the perspective

of energy reduction as well. The bonding strengths in particular do not consider

the effects of nearest neighbor nucleotides or other constraints like being part of a

loop or stem.

As can be seen in Table 4.1, Base-Pair Matrix (BPM) is always a 4 x 4 matrix

irrespective of the sequence length. In the above example, we have used a scoring

value ‘2’ to represent Watson-Crick (A-U and C-G) base pairs, while Hoogsteen

(A-C) and Wobble (G-U) are given a scoring value of ‘1’. Base pairing of the

same bases are given a score of ‘0’ that means that bonding between them is not

possible. The chosen scoring model highlights the fact that the Watson-Crick base

pairs are stronger than both Hoogsteen and Wobble base pairs and this multi-level

scoring scheme guides the MARSs algorithm to predict stronger bonds wherever

possible.

Chapter 4 MARSs 75

Table 4.2: Affinity Matrix

* G G U U A G U U C C
G 0 0 1 1 0 0 1 1 2 2
G 0 0 0 1 0 0 1 1 2 2
U 1 0 0 0 2 1 0 0 0 0
U 1 0 0 0 0 1 0 0 0 0
A 0 0 2 0 0 0 2 2 1 2
G 0 0 1 1 0 0 0 1 2 2
U 1 1 0 0 2 0 0 0 0 0
U 1 0 0 0 2 1 0 0 0 0
C 2 2 0 0 1 2 0 0 0 0
C 2 2 0 0 1 2 0 0 0 0

The second matrix that is required for MARSs to predict RNA secondary struc-

tures is called Affinity Matrix. Unlike the Base-Pair Matrix, Affinity Matrix is

constructed on a per-sequence basis. For every RNA primary sequence, Affin-

ity Matrix is constructed using the raw bonding values from Base-Pair Matrix.

Therefore, the size of the matrix is a square of the length of the primary sequence.

Next, we apply the ‘neighbor no bonding’ rule as explained in Section 4.2. This is

achieved by making 3 diagonal columns zeros - that match the rule (n,n), (n-1,n)

and (n,n+1) where ‘n’ is the nucleotide position. Table 4.2 shows the affinity

matrix using a hypothetical sequence of 10 nucleotides, whose primary sequence

is “GGUUAGUUCC”.

Our hypothesis is that the Affinity Matrix contains all the possible secondary

structures predictions for the primary sequence. By selectively traversing along

the Affinity Matrix we can extract the different secondary structures at much less

computation cost than dynamic programming based prediction algorithms.

Chapter 4 MARSs 76

4.4 Level 1 Folding

In general, a RNA secondary structure is formed when the primary structure folds

upon itself. We refer to this as Level 1 folding. Every nucleotide can be a folding

point and therefore the number of folding points is equal to the length of the input

sequence. The number of folding points also grows linearly with the length of

different sequences. Let us represent the length of a given sequence using variable

‘n’. We now need to identify the number of potential bases these folding points

can bond, to form the first base pair for this fold. As a constraint, we also need to

factor in the neighbors-no-bonding rule that states that two naturally occurring

neighbor nucleotides cannot form a base pair through hydrogen bonding.

Let us visualize the process of computing the total number of Level 1 folds possible

for a given RNA primary sequence. The visualization process consists of two

stages. In the first stage, let us suppose that any nucleotide (folding point) can

bond with any other single nucleotide to form the first base pair. In the second

stage, we apply the neighbors-no-bonding rule and eliminate the impossible bond

pairs and count the remaining possible base pairs. Using an anonymous sequence

of four nucleotides the Figure 4.1 shows this process. using this visualization as

an example, we mathematically represent it to compute the total number of Level

1 folds for a sequence of any given length.

In Stage 1, for a sequence containing four nucleotides, the first nucleotide has 3

bases to bond with. The second nucleotide has 2 bases to bond with and the third

Chapter 4 MARSs 77

1 2 3 4 1 2 3 4

After
applying
neighbors-
no-bonding
rule

Figure 4.1: MARSs Folding Points

nucleotide has 1 base to bond with. Hence, the max number of folding points in

Stage 1 for any sequence of 4 nucleotides = 3 + 2 + 1 = 6. This can be written

as (n-1) + (n-2) + (n-3) or written as a summation equation as ∑n−1
x=1(n− x).

Simplifying this to a mathematical form we get equation n(n− 1)/2.

In Stage 2, we apply the neighbors-no-bonding and this reduces the maximum

number of folding points from 6 to 3 for a sequence of 4 nucleotides. This reduction

in the number of base pairs can be represented in two ways - either as the number of

naturally occurring bonds or as the number of remaining number of bases from the

primary sequence after subtracting the number of bases to skip-over. Representing

this in a mathematical form we get equation n(n− 1)/2− (n− 1)/1. Simplifying

this further we get equation (n− 1)(n− 2)/2.

This represents the total number of folding points that is possible for any sequence

of length ‘n’. For example, a sequence of length 8 nucleotides can fold upon itself

in 21 different ways. The challenge is to determine which of these 21 folds will

produce the most optimal secondary structure as there is only one optimal sec-

Chapter 4 MARSs 78

ondary structure for a given RNA sequence. The above stage can be generalized

to accommodate organism-specific rules for skipping a minimum number of nu-

cleotides for establishing the folding pair. The above mathematical representation

can therefore be generalized to representation n(n− 1)/2− (n−m)/1 where ‘m’

is the number of nucleotides to skip and ‘m’ can be any value between ‘1’ and (n

- 2).

For each of these folds, we will use the nucleotide bonding values from Affinity

Matrix to determine the total number of base pairs (and therefore total energy) for

each of the folded sequences. As an example, referring to the hypothetical sequence

in the Affinity Matrix in Table 4.2 and using nucleotides (U,A) at positions (2,4)

as folding points the Figure 4.2 shows the secondary structure for this sequence.

It can be observed that there are two bonds - (U,A) and (G,U) - at locations (2,4)

and (0,6). The bond between nucleotides (2,4) is of type Watson-Creek while the

bond between (0,6) is of type Wobble. This folding point at (2,4) has created

a hairpin loop comprising of a single nucleotide (U) at position (3). It has also

created a symmetric internal loop between nucleotides (0-2) and (4-6) and a free

dangling end between nucleotides (7-9).

It can also be observed from Figure 4.2 that MARSs has proposed a bond (G,U)

between nucleotides (0,6) instead of nucleotides (1,6) although both of the bonds

will be exactly the same. We call this type of prediction as symmetric-fold and

will be explained in more detail in the next section along with a second type of

prediction called as asymmetric-fold.

Chapter 4 MARSs 79

G G U

U

AGUUCC

Nucleotide 0

Nucleotide 9

MARS Algorithm: Level 1 S-
Fold at 2nd and 4th nucleotides

Legend Hoogsteen &
Wobble base pairs

Watson & Creek
base pairs

1 2

3

45678

5' end

3' end

Figure 4.2: MARSs Level 1 Symmetrical Folding

4.5 Symmetric Folding (S-Fold)

There are several well-known secondary structural motifs - hairpin loops, stems,

bulge, internal loops (symmetrical & asymmetrical), free dangling ends, junction

and pseudoknots (simple and generic). MARSs uses a systematic approach to

discover secondary structural motifs and does not employ a library-based search

method.

The first step in the process of evolving a secondary structure is fixing the folding

point. This has been described in detail in the previous section. Once the folding

point has been fixed, the algorithm processes the nucleotides on the side opposite

from where the loop has been introduced. The nucleotides at the folding point

may bond depending on the type of nucleotides on either side. There are two

outcomes.

The first outcome is that a bond is predicted. In this case, the search continues by

Chapter 4 MARSs 80

moving one nucleotide on either side of the bond. If the original folding point is at

positions (n,m) then the search will continue from the indices that is derived by

subtracting 1 from one of the indices and adding 1 to the other index - (n-1,m+1).

In the above example, if the folding point was at n = 2 and m = 4 the new indices

will be n - 1 = 1 and m + 1 = 5. Now, the search continues using the new indices

as the base n = n - 1 and m = m + 1. Using the same hypothetical sequence as

an example, we can see that the nucleotides at positions (1,5) cannot form a bond

as they both are the same molecule - Guanine(G). In this situation the output is

the same as the first outcome that is possible with the original bonding pair. The

second outcome is that a bond is not feasible at the folding point.

The scenario in the previous paragraph gives us two choices. First, move both sides

of the RNA strand by the same number of nucleotides, one in this case. Second,

move the two sides of the RNA strand using different number of nucleotides. We

call the first type as Symmetrical Fold and the second type as Asymmetrical Fold.

Asymmetrical Fold can further be sub-classified and will therefore be explained in

detail in the next section. Symmetrical fold allows the prediction of the third type

of secondary structural motif - internal loops (symmetrical) - in addition to the

stem and hairpin loop predicted as part of the first folding point/pair selection.

This is depicted in Figure 4.2.

Chapter 4 MARSs 81

4.6 Asymmetric Folding (A-Fold)

Symmetric Fold as the name suggests, is capable of predicting secondary structural

motifs that have symmetry across the base pairs such as stems, hairpin loops and

internal loops (symmetric). At the same time, a RNA secondary structure may

comprise of other types of structural motifs that are asymmetrical by nature such

as bulges and asymmetrical internal loops. In order to equip MARSs with the

capability to predict asymmetrical motifs we introduce a second type of folding

called Asymmetric Fold or A-Fold in short in this section.

Let us start by describing what exactly is meant by asymmetry from the per-

spective of a RNA secondary structure prediction. The bonding process starts

by arranging the nucleotides so that they are facing each other, either when the

primary folding base pair is formed or after a previous base-pair prediction. After

this, if a base pair is predicted between nucleotides that are opposite to each other,

then there are either 0 or equal number of nucleotides between base pairs. For ex-

ample, in Figure 4.2 the base pair between nucleotides (0,6) is the newly predicted

one and is two nucleotides (one on each side) from the previous prediction at nu-

cleotides (2,4). The free nucleotides at positions (1,5) form a symmetrical internal

loop. On the other hand, if the new base pair was formed between nucleotides

(1,6) instead of (0,6) then there would be only one free nucleotide at location (5).

This would have resulted in bulge rather than a symmetrical internal loop. A-Fold

predicts these kinds of structures.

Chapter 4 MARSs 82

G G U

U

AGUUCC

Nucleotide 0

Nucleotide 9

MARS Algorithm: Level 1 A-
Fold from 2nd nucleotide...

Legend Hoogsteen &
Wobble base pairs

Watson & Creek
base pairs

1 2

3

45678

123456

5' end

3' end

Figure 4.3: MARSs Level 1 Asymmetrical Folding types - 1

Asymmetrical structures can have more free nucleotides either on the 5' or 3' side

of the primary sequence. Any prediction algorithm must cater for this possibility.

MARSs achieves this by scanning for potential base pairs using a pivotal base on

either side of the primary sequence.

Figure 4.3 shows the scanning process that MARSs uses to form a potential base

pair on the 5' side of the primary sequence. The open base on the 5' side of the

RNA sequence is used as a pivot nucleotide and open bases on the 3' side are

sequentially scanned for a potential base pair. The base-pair selection criteria will

be explained in the next section.

Figure 4.4 shows a similar scanning process using a open base as the pivot nu-

cleotide on the 3' side of the primary sequence and scanning for potential base

pairs using open bases on the 5' side of the primary sequence.

Chapter 4 MARSs 83

G G U

U

AGUUCC

Nucleotide 0

Nucleotide 9

MARS Algorithm: Level 1 A-
Fold from 4th nucleotide...

Legend Hoogsteen &
Wobble base pairs

Watson & Creek
base pairs

1 2

3

45678

13 2

5' end

3' end

Figure 4.4: MARSs Level 1 Asymmetrical Folding types - 2

4.7 A-Fold Scanning Methods

As briefly mentioned in the previous section, A-Fold could occur on either side

of the sequence. Therefore, we need to scan on both the 3' and 5' sides of the

sequence. Also, a criterion is required for the number of bases to scan and a

condition to stop. For this, we introduce two scanning stop methods - first bond

and best bond.

First Bond In this option, the scanning process will stop at the first base pair

that it can find based on energies for the respective nucleotides in the affinity

matrix. The advantage of this option is that the number of free nucleotides

that are skipped over (and therefore part of a bulge) will be the least. The

disadvantage of this option is that the first base pair may not necessarily be

the best (or strong) base pair from all the options that are available.

Best Bond In this option, the scanning process will attempt to make base pairs

Chapter 4 MARSs 84

with all possible open bases on the opposite side of sequence. When a po-

tential base pair is formed, the algorithm will memorize two attributes - the

distance of the base pair from the start point and the strength of the base

pair and continues scanning. At the end of the scanning, the strongest bonds

amongst the various bonds is selected. Should two base pairs of the same

strength be short-listed then the one that opens the least number of bases

(or closer to the starting point) is chosen. The advantage of this method

is that the base pair that is selected is the best among all the possibilities.

There are two disadvantages to this method. First, it is computationally

expensive as more bases are scanned. Second, it is possible that the bulge

due to the free nucleotides could potentially be large when compared with

first bond option.

Max Scan The number of open bases can be potentially large for a very long

sequence. This could have a severe impact on the time complexity of the

algorithm. Therefore the algorithm limits the search to a maximum number

of bases. The default value is ‘5’ nucleotides as a maximum bulge of 5

nucleotides is observed in Pseudobase [12]. This value can be over written

using a configuration option during program startup.

Chapter 4 MARSs 85

4.8 Base Pair Selection

From the previous two sections, it can be seen that the selection of a base pair is

thoroughly explored in order to search for the best possible option. The following

bullet list summarizes all the scanning possibilities.

◦ S-Fold

◦ A-Fold

• First Bond - Both 5' and 3' search

• Best Bond (default) - Both 5' and 3' search

In particular, A-Fold scanning is more elaborate and configurable. MARSs can be

configured during startup to use First Bond instead of Best Bond. In addition,

scanning along 5' and 3' sides will yield two bonds as well. Therefore, there is a

need to select among the short-listed base pairs from these two searches and also

between A-Fold and S-Fold itself.

The selection between the two base pairs predicted from 5' and 3' end searches are

analyzed based on the distance from the starting point and strength of the bonds

itself.

Distance In this context, distance is defined as the number of free nucleotides

between the starting point and the base pair. For asymmetric folds this is

easy to count as the nucleotides are along one side of the primary sequence.

Chapter 4 MARSs 86

It is possible that the two base pairs can have the same distance and for

these cases the strength of the bonds are considered.

Strength The strength of the predicted base pair is taken directly from the actual

nucleotide interaction values from the affinity matrix. MARSs prioritizes

stronger bonds that leave fewer nucleotides i.e., whose distance is as low as

possible.

There is also the possibility that both the distance and strength of the short-listed

base pair is exactly the same. In this case, one of the base pairs is randomly

selected in order to be unbiased about the asymmetry. The selection criteria

remains the same whether the A-Fold search mechanism is the First Bond or the

Best Bond. There is a disadvantage of randomly selecting the base pair though;

two executions of MARSs over the same input sequence might produce different

secondary structure predictions. The user can therefore override this randomness

by instructing MARSs to choose between either 5' or 3' anchored base pairs. The

option is also exposed as a command line argument.

Finally, it is likely that one is a S-Fold base pair and the other is a A-Fold base

pair. Under such a circumstance, the strength of the base pair and the distance is

again used for final selection with a minor difference. For distance in S-Fold base

pair, the number of free bases on one side of the sequence is used instead of both.

Through these processes, one final base pair is selected.

Chapter 4 MARSs 87

The above base pairing process is then repeated by moving one nucleotide on each

side of the newly formed base pair and the search is continued for the next base-

pair. At the end, the Level 1 fold is created that could comprise of S-Folds and

A-Folds (on 5' and 3' ends) with free nucleotides interspersed between them. An

example structure is shown in Figure 4.2 that comprises of two S-Folds between

bonds (0,6),(2,4), internal loop between bonds (1,5), hairpin loop at (3) and free

dangling end from (7-9) nucleotides.

4.9 Level 2 Folding

From the previous sections it can be observed that the prediction process is able to

predict all of the known secondary structural motifs except pseudoknots and multi-

loops without employing a library-based search method. As explained in Chapter

2 pseudoknots can be classified into simple and generic pseudoknots. There are

several algorithms that either cannot predict pseudoknots or predict only the sim-

ple pseudoknots. This is primarily due to the algorithmic complexity involved in

predicting this class of motifs.

MARSs, in contrast, is able to predict pseudoknots and from a design perspective

does not distinguish between simple and generic pseudoknots. Therefore, it is able

to predict both types of pseudoknots with the same computational complexity.

Pseudoknot prediction is the cornerstone feature of the Level 2 folding while multi-

loops can also be produced in certain situations.

Chapter 4 MARSs 88

Referring back to the Level 1 structure in Figure 4.2, it can be seen that nucleotides

(7-9) are both unpaired and are also freely dangling. Free dangling ends are con-

sidered problematic in molecular biology as they may bond with other neighboring

molecules or simply increase the free energy of the structure being predicted. It is

best if free-dangling ends can be avoided.

Level 2 folding is similar to Level 1 folding and uses A-Fold and S-Fold techniques

to identify secondary structural motifs as well. There are a few key differences

though.

The Level 1 fold may or may not contain a free-dangling end as part of the pre-

diction. Figure 4.2 shows a Level 1 fold with a free-dangling end and therefore is

a good candidate for evolving a secondary structure with a pseudoknot. Figure

4.5 shows the Level 2 folding containing a pseudoknot using the Level 1 folding

derived in Figure 4.2. Bending the free-dangling end on the 3' side onto the 3' side

itself and applying the rules of A-Fold and S-Fold obtain this structure respec-

tively. One of the notable differences is the selection of the folding point. In the

case of Level 1 folding, the folding point is a set of two free nucleotides. In case of

Level 2 folding, the folding point is the last bonded nucleotide or in other words

the entire free-dangling end folds. However, as there can only be single hydrogen

bonding per nucleotide, the nucleotide at the folding point cannot bond again. In

addition, not all nucleotides are free as well. Many of them would have bonded

already as part of Level 1 folding.

MARSs handles the above situation by simplifying the Affinity Matrix and replac-

Chapter 4 MARSs 89

G G U

U

AGU

U

C C

Nucleotide 0

Nucleotide 9
3' end

MARS algorithm: Level 2 Fold
with Psuedoknots

Legend Hoogsteen &
Wobble base pairs

Watson & Creek
base pairs

1 2

3

4

5

6

7

8

5' end

Figure 4.5: MARSs Level 2 Pseudoknot Folds

ing the bonded nucleotides with a value of ‘0’. The value of ‘0’ was used in Level 1

folding when bonding was not possible between two nucleotides like A and A. By

zeroing the respective cells in the matrix the algorithm marks them as not possible

as well. The free nucleotides are then arranged facing the bonded side after skip-

ping the minimum number of nucleotides. After this, the search commences using

the techniques of S-Fold and A-Fold.

4.10 Predicting the Final Structures

MARSs can be configured to run in three modes - exhaustive, selective and de-

fault. In the exhaustive mode, MARSs will use all of the possible options available

such as Symmetric fold, Asymmetric folds (first, best) and two levels of folding.

Chapter 4 MARSs 90

Naturally, this will result in a lot of predicted structures after two levels of folding.

In the selective mode, the user should choose the various configurable options such

as folding type to use in both Level 1 and Level 2, the minimum size of the hairpin

& internal loops and so on. Consequently, the number of structures predicted is

much less but the fidelity of the prediction structures is also directly linked to the

selected options. The third and final mode, default, is more like auto-pilot where

the algorithm will attempt to choose the best options based on certain properties

of the primary sequence. We experimented with sequence length, nucleotides dis-

tribution, k-mer histogram values and also if the biophysical determined structure

contained a pseudoknot or not.

At the end of the Level 2 folding stage MARSs has evolved several potential

structures for the given RNA primary structure. In Level 2 stage as in Level 1 stage

there could be duplicate predictions. Therefore, the first step here is to eliminate

duplicates. Following this, the secondary structure energies needs to be finalized.

The total energy of each of the predicted structure is a summation of the energies

of individual base pairs in the predicted structure. Until now, no consideration

is given to the effect of the neighboring nucleotides or base pairs. At this stage,

the algorithm can be configured to do post-processing and apply any applicable

energy models that account for the number of free nucleotides in the hairpin loops,

size of stems and so on. By this way, RNA sequences from different species can

be processed with different & applicable energy models. Following this, using a

threshold energy value, MARSs will filter out the best performing structures. The

Chapter 4 MARSs 91

threshold values can be specified as an input parameter or the default can be

used. The input parameter can be an absolute energy value or a percentile. In the

latter case, the top percentile of the predicted structures will be the result and the

prediction output. As can be seen MARSs is a highly configurable algorithm and

implementation that is meant to be adapted to different RNA worlds. The Figure

4.6 shows the flowchart of the MARSs algorithm.

In Chapter 5 we perform large-scale experiments using parallelized PKNOTS and

MARSs on three different HPC hardware architectures. MARSs, being a new and

young algorithm, needs to prove that the structures that it predicts are accurate (or

close) to the actual known structures. Let us take, for example, a pseudoknotted

RNA structure of brome mosaic virus, having a PKB-number of PKB155 in

Pseudobase [12]. Figure 4.7 shows one of the high-quality predicted structures

for the sequence PKB155. All bonds are correctly predicted when compared to

the structure in Pseudobase [12], hence the predicted structure has a base-pair

distance of 0. It has a PPV of 100% and a sensitivity of 100%. We will define

these prediction quality metrics in Section 4.11.

4.11 Prediction Quality Metrics of Interest

We use three accuracy measures to analyze the accuracy of a predicted structure

to compare them to experimentally verified structures - Sensitivity, PPV and

BP Distance.

Chapter 4 MARSs 92

Level 1 Folding

START

RNA
Sequence,

Configuration
Parameters

Level 1
Folding points

All Folding
Points

Processed?

Symmetric
Fold

Asymmetric
Fold

(First Bond)

Asymmetric
Fold

(Best Bond)

Select Best
base-pair

Level 2 Folding
(same as Level 1)

All open
bases

processed?

Select Best Structures
(> threshold energy
value) & Visualize

structures

Post processing
(energy adjustments)

END

Print / Save
Predictions

Yes

No

Yes

No

Figure 4.6: MARSs Flowchart

Chapter 4 MARSs 93

0

2
0

C

C

U

G

U

C

U

C

A

G

G

G

A

G

A

C

C

U

U

A

C

Figure 4.7: One predicted structure of PKB155

Positive Predictive Value (PPV) is the number of correctly predicted base

pairs as a percentage of the total number of base pairs in the predicted struc-

ture. Its primary focus is on the accuracy of predicted base pairs, without

regard to any unpredicted base pairs.

PPV = number of correctly predicted base pairs
total number of base pairs in PREDICTED STRUCTURE × 100%

Sensitivity is the number of correctly predicted base pairs as a percentage of

the total number of base pairs in the experimentally verified structure. Its

primary focus is on predicting base pairs present in the actual structure,

without regards to the number of false base pair predictions. These two

measures are regularly used as the standards for measuring accuracy in the

case of RNA secondary structure prediction [27].

Sensitivity = number of correctly predicted base pairs
total number of base pairs in ACTUAL STRUCTURE×100%

Chapter 4 MARSs 94

BP Distance is the number of different base pairs between the actual structure

and the predicted structure. A BP distance of zero means that the algorithm

predicted all of the base pairs in the known structure and nothing more.

A structure is perfectly predicted, when both the PPV and sensitivity values are

100%. PPV and sensitivity shows the measure of accurate base pairs predictions

relative to the predicted and the actual structure respectively.

4.12 MARSs Complexities

In this section, we derive the time and space complexities of MARSs and also

compare the same with some of the relevant algorithms. In Section 4.4 we derived

the maximum number of Level 1 folds possible and will restate it in Equation

(4.1).

Maximum number of Level 1 folds = n(n− 1)/2 (4.1)

For each of these folding points, the algorithm can be configured to predict base

pairs using either Symmetric Fold or Asymmetric Fold (Best Bond or First Bond).

Under the exhaustive option, the implementation can be configured to use all these

three options and choose the best base pair from among the three outcomes. The

maximum and minimum number of potential base pairs in Symmetric Fold can

be given by the Equations (4.2) and (4.3). Using these figures, we can arrive

Chapter 4 MARSs 95

at the average potential base pairs S-Fold transverses and provide it in Equation

(4.4). Scanning using the A-Fold technique, under the exhaustive option will

simply increase the base pairs to transverse by a constant number, leaving the time

complexity the same. Using the folding points and also the number of potential

base pairs scanned per folding point we can arrive at the time complexity of MARSs

in Equation 4.5.

Maximum number of potential base pairs traversed in S-Fold = N

2 (4.2)

Minimum number of potential base pairs traversed in S-fold = 1 (4.3)

Average number of potential base pairs traversed in S-fold = N + 2
4 (4.4)

MARSs Time Complexity = N(N − 1)
2 × N + 2

4 = O(n3) (4.5)

MARSs uses two primary matrices - Base Pair Matrix and Affinity Matrix. Of

these two, Affinity Matrix is constructed on the fly and is proportional to the

size of the primary sequence. In addition to these two matrices, the software

program needs a fixed size of main memory to hold the software instructions and

Chapter 4 MARSs 96

intermediate data. Therefore, the space complexity of MARSs can simply be given

as in equation 4.6.

MARSs Space Complexity = O(n2) (4.6)

Although MARSs does Level 2 folding to predict pseudoknots motifs, the com-

plexity added is either none or not significant. This is because the number of Level

2 folding points is inversely proportional to the number of Level 1 folding points

and can be explained in two possible scenarios.

Case 1 All the Level 1 folding points attempted results in base pairs leaving no

free nucleotides and therefore Level 2 folding is not possible. The maximum

number of Level 1 folding points is N
2 and since Level 2 folding is not required

the total complexity remains the same. It is also possible that no base pairs

are possible in the set of remaining free nucleotides. These type of predictions

do not include pseudoknots.

Case 2 In cases where the number of actual Level 1 base pairs are less than the

Level 1 folding points attempted, the number of Level 2 folding points is

the difference between the number of Level 1 folding points and the actual

number of Level 1 base pairs realized. This scenario will add to the total time

complexity and the value depends on the distribution of the four different

nucleotides in the input primary sequence. As the distribution of the various

nucleotides differs from sequence to sequence it is difficult to arrive at an

Chapter 4 MARSs 97

estimate. However, as a general rule of thumb, primary sequences with even

distributions of A & U and C & G nucleotides is likely to have more base

pairs in Level 1 resulting in a small runtime for Level 2 folding.

In general, it should be noted that the actual space and time complexities depends

on the composition of the nucleotides themselves that in turn affects the set of

possible structures. The resource complexities also depends on the tuning param-

eters that dictate the final number of secondary structures that are desired. As

given in Table 2.1 the algorithm complexity of MARSs is among the best of the

algorithms designed so far and is equal to Stormo et al. [16]. It is interesting to

note that both MARSs and Stormo’s algorithm are non-DP based.

98

Chapter 5

Performance Evaluation Studies

5.1 Introduction

The focus of this chapter is to describe the various experiments that we have con-

ducted as part of this research study. The experiments were done by parallelizing

PKNOTS algorithm and developing MARSs algorithm from scratch. Both the al-

gorithms have been implemented on three different parallel hardware architectures

yielding 6 combinations of performance clusters in total. We will rigorously ex-

plore the following hardware platforms - Google App Engine, Intel x64, and IBM

Cell Broadband Engine. These hardware architectures are described in detail in

the Appendices. Appendix A describes the selected cloud-hosted PaaS (Platform

as a Service) architecture, the Google App Engine (GAE). Appendix B describes

the selected homogeneous ISA & UMA architecture, the Intel x64. Appendix C

Chapter 5 Performance Evaluation Studies 99

describes the selected heterogeneous ISA & NUMA architecture, the IBM Cell

Broadband Engine. Each of these appendices provides a generic overview and

specific details of the systems such as system architecture, design, limitations and

programming challenges. These hardware platforms were specifically chosen as

they are fundamentally of different types and in general represent the emerging

trends of multi-core processors and cloud computing. In addition, Appendix D

recalls some of the HPC architectures that were actively explored by academic

researchers and industry alike in the last decade.

This chapter is organized as follows. Section 5.2 describes the master dataset used

in our experiments. Section 5.3 describes some of the useful metrics to measure

performance gains from parallelization efforts and sets the stage to understand

the results from our parallelization experiments. Rest of the sections are coupled

into two sections per architecture with each section describing either PKNOTS or

MARSs on one hardware architecture. Section 5.4 describes the parallelization ef-

forts and details the performance of parallelized PKNOTS on Google App Engine.

Section 5.5 describes the challenges of developing MARSs algorithm on Google

App Engine and the performance results. Section 5.6 describes the PKNOTS al-

gorithm’s performance on Intel x64 using a physical machine. Section 5.7 measures

the performance of running the PKNOTS algorithm on virtualized x64 hardware,

as these are typical of an IaaS (Infrastructure As A Service) provider. Section 5.8

describes the performance obtained by MARSs algorithm on the Intel x64 plat-

form. Sections 5.9 describes the parallelization efforts required to port & parallelize

Chapter 5 Performance Evaluation Studies 100

PKNOTS algorithm on the IBM Cell Broadband Engine architecture. Section

5.10 describes the corresponding performance of MARSs algorithm on IBM Cell

Broadband Engine architecture. Each combination of algorithm and hardware ar-

chitecture introduces unique software programming challenges & constraints and

also offers distinct performance tuning opportunities as well. Therefore, the run-

times of both the algorithms, especially across the various architectures should not

be directly compared value wise. Our objective instead is to understand why the

performance of certain hardware and software combination is better compared to

others, and in cases where it is low, offer suggestions to improve the same.

5.2 Input Sequence Dataset

We assembled a master RNA sequence dataset for use in our experiments. A total

of 1510 RNA sequences were downloaded from publicly available data sources. The

data sources were Sprinzl tRNA database [113] assembled by Sprinzl et. al., [83],

RCSB Protein Data Bank [114] assembled by Berman et. al., [11], Nucleic Acid

Database [115] assembled by Berman et. al., [10] and Gutell lab CRW [116] as-

sembled by Cannone et. al., [17]. The sequence lengths varied from 4 nucleotides

to 4381 nucleotides. For all the primary sequences there were either predicted

or experimentally verified secondary structures. In addition, the sequences con-

tains both pseudoknots and non-pseudoknots as part of their secondary structures.

We used this master dataset across all our three hardware architectures and two

Chapter 5 Performance Evaluation Studies 101

RNA secondary structure prediction algorithms. However, due to constraints such

as system availability and speed of data processing we selected a representative

subset of this master dataset for experiments on different algorithm & hardware

combinations. The representative sequences were selected based on their sequence

lengths and also distribution of the various nucleotides.

5.3 Performance Metrics

In this section we derive the performance metrics - Speedup, Incremental Speedup

and Performance Gain - as articulated by Gene Amdahl. A standard way to

measure performance from a parallelized program is to use the metric of Speedup.

Speedup is defined as a ratio of the performance of a given program on a single-

processor (or single-core) computer system over the performance obtained in a

multi-processor (or multi-core) system. Let the time taken by the original serial

program be To and the time taken by the parallelized (enhanced) program on the

same input be Te, then the speedup of this software system is given by Equation

(5.1).

S = To

Te

(5.1)

Now, we can use speedup to analyze the performance of the paralleled algorithm.

Let us suppose that a program P can be fully parallelized and we use n cores to run

Chapter 5 Performance Evaluation Studies 102

this program. Theoretical maximum enhanced performance is given by Te = To

n

and the corresponding speedup is given by S = To

Te
= n. If n → ∞,then S → ∞.

However, practically this is unattainable due to parallelization limits and various

system overheads.

Let us derive the parallelization gains for a given serial program or algorithm P .

For this we will assume that the program is arbitrarily divisible into two parts

- one part that cannot be parallelized and has to run serially and another part

that can be parallelized. Let us use |p| to denote the number of instructions in P

and for simplicity we assume every instruction to take the same number of clock

cycles. Let F represent the fraction of the program that can be parallelized. Then

the non-parallelizable part is given by 1− F . Then the total instructions or total

time of the parallelizable part of the algorithm is |P | ·F . The total instructions or

total time of the non-parallelizable part is |P | · (1−F). Thus the total time taken

by the enhanced program can be given by Equation (5.2) where n is the number

of cores used to run the program. Now we can calculate the overall speedup of

the parallelized program and denote it in Equation (5.3). This equation is a form

of Amdahl’s law [1] and was originally proposed to measure the performance of a

parallel hardware system. We use Amdahl’s law to measure the performance of

parallelized algorithms on a variety of parallel architectures - homogeneous multi-

core, heterogeneous multi-core and auto-scaling cloud platform. Additionally, it is

also our interest to quantify the parallelism exposed during runtime, due to the

availability of hardware parallelism. Specifically, our interest is to know how much

Chapter 5 Performance Evaluation Studies 103

hardware parallelism that the parallelized parts of one particular algorithm use ?

Can the algorithm scale indefinitely should the amount of hardware parallelism is

unlimited, such as in auto-scaling cloud platform. We can also derive an upper

limit of the speedup and denote it by Equation (5.4). This is a hard limit no

matter what parallel computing technology is used.

Te = |P | · (1− F) + |P | · F
n

(5.2)

S = |P |
|P | · (1− F) + |P |·F

n

= 1
(1− F) + F

n

, 0 ≤ F < 1 (5.3)

n→∞, S → 1
1− F (5.4)

Using Equation (5.3) we can derive the relationship between speedup and the

number of cores used/needed. Figure 5.1 shows a plot on the relationship between

‘S’ and ‘n’ at F = 0.1, 0.4, 0.6, 0.8, 0.9 separately.

The patterns in the Figure 5.1 can be split into two distinct regions - a semi-linear

and a saturation region. In the semi-linear region, the speedup increases as the

number of cores used increases. In the saturation region, using additional number

of computing cores in a computer system has little or no effect on the speedup.

When F = 0.8 i.e., at 80% parallelization the semi-linear region roughly lies in 0

to 10 cores. After 20 cores, there is virtually no need to add additional computing

Chapter 5 Performance Evaluation Studies 104

Figure 5.1: Expected Speedup Vs. number of core used at different F values.

cores anymore. Another noticeable trend is that the semi-linear region grows in

tandem with the increase in the F values. Therefore, a computer system with many

independent computing cores is only useful when you have a very well parallelized

algorithm. The secondary structure prediction algorithm and associated software

in this study are all highly parallelized and as the number of computing cores are

limited in our experimental system, at this stage our hypotheses is that only the

semi-linear region will be observed in our experiments.

Equation (5.3) gives us an insight on the relationship between number of computing

cores used to run an algorithm and the resulting speedup, which is the performance

gain. This equation also indicates diminishing returns when the number of cores

increases for a fixed F value. This provides us with guidance on the ideal number

of computing cores to run any parallelized algorithm. We will define two more

Chapter 5 Performance Evaluation Studies 105

performance metrics - incremental speedup and performance gain.

Incremental speedup is defined as the difference between successive speedups ob-

tained by adding one more computing core. Performance gain is defined as the

ratio of the incremental speedup over the base speedup. Both these metrics are

given as Equations in (5.5) and (5.6).

4S = Sn+1 − Sn = F

(1− F)2n2 + (1− F 2)n+ F
(5.5)

pgain = 4S
Sn

= (F − F 2)n+ F 2

(1− F)2n3 + (1− F 2)n2 + Fn
(5.6)

We use Equation (5.6) to compute the performance gain while increasing the num-

ber of parallel computing cores, at various F values. The resulting values are plot-

ted using both linear and semi-log scales in Figures 5.2 and 5.3 respectively. From

these graphs we can see the diminishing gains that are obtained as more parallel

computing cores are added for a given F values. We can then use heuristics to

decide on adding additional computing cores. We use these metrics to understand

the results that we obtain from our experiments.

Chapter 5 Performance Evaluation Studies 106

Figure 5.2: Performance gains at different F values

Figure 5.3: Performance gains (using semi-log) at different F values

Chapter 5 Performance Evaluation Studies 107

5.4 PKNOTS on Google App Engine

Google App Engine (GAE) is a new scalable cloud-computing platform from

Google. We explore this platform and investigate if it is indeed suitable for han-

dling PKNOTS/MARSs type of HPC algorithms. The platform is currently un-

der “developer preview” and therefore is rapidly changing. In fact, the platform

evolved multiple times during the course of our experiments as well. At the time

of writing this thesis, the GAE supported two programming language runtimes -

JVM and Python. In addition, several programming languages that can be com-

piled into platform neutral Java byte-code are supported on the JVM as well. We

used Python in our experiments and the Python SDK version was 1.4.3.

GAE is a Platform as a Service (PaaS). PaaS architecture abstracts the lower-

level infrastructure elements such as networking, computing, storage and exposes

an integrated platform to the application. These are offered through standard

APIs. In GAE, tasks are the primary means through which parallelism is realized.

Tasks are simply functions that are executed by a sandboxed instance (equivalent

to a VM process). Each instance is guaranteed a pre-defined amount of system

resources (CPU slice, RAM). Other concurrent instances are provided their own

system resources, and may be launched in the same physical server (if resources

are available) or in a different server. The task scheduling mechanism are unique

& different from typical systems and our other architectures used in this study.

The tasks cannot store any content on the local system’s file system; instead

Chapter 5 Performance Evaluation Studies 108

a network-based managed storage, called datastore, is provided and is available

through APIs. Each object stored in the datastore is limited in size and the

database type is NoSQL. GAE also provides a volatile in-memory NoSQL style

database for storing temporary and data that can be regenerated. The advantage

of using memcache is the lower latencies, when compared to non-volatile datastore.

Figure 5.4 shows the GAE system architecture and the various resource limitations.

C
hapter

5
Perform

ance
Evaluation

Studies
109

Instance 1

App Engine Datastore
(NoSQL DB)

Memcache
(volatile)

Stateful
APIs

Python
VM

Process

Stdlib
URL fetch

Mail

Images
App

Stateless
APIs

R/O FS

Web
request

Web
request
handler

Task 1 Task 2 Task 3

Task Queue

Task 0

Instance 2
.
.
.

Request /
Response

10KB 10MIN

30SEC

1MB 1MB

300MB
1 - 1.2 Ghz

Google App Engine
Architecture

Figure 5.4: Google App Engine - System Architecture & Resource Limits

Chapter 5 Performance Evaluation Studies 110

We next describe our efforts into optimizing PKNOTS to run on GAE and discusses

in detail the experimental results. We begin by describing the major challenges -

handling space complexities, time complexities - and following this we share the

results from executing PKNOTS on GAE.

5.4.1 Challenge 1 - Handling Space Complexity

The first challenge of making PKNOTS available on Google App Engine (GAE)

is handling the space complexity. We provide a detailed write-up on GAE in

Appendix A. In general, GAE system architecture is very different from a normal

Intel based workstation. In particular, programs running on the GAE cannot

write to a local file system directly and the data objects themselves cannot be of

arbitrary size. The memcache is not designed to be an automatic & transparent

caching layer as with CPU caches. The software process address space for both

code and data is very limited and finally the latencies incurred to read/write

non-perishable data objects varies and are not published. These are the major

constraints that needs to be considered in the program design and therefore have

a direct impact on algorithm runtimes.

Although the GAE system architecture makes the program design & implemen-

tation challenging, it helps in automatically (parallel) scaling the program. The

following list highlights some of the benefits of these challenges.

1. By using an API to read/write non-volatile data objects, program no longer

Chapter 5 Performance Evaluation Studies 111

needs to worry about disk access contention and inode exhaustion.

2. The data object size limit of 1MB is to ensure that the latency is low and

also that the object in its entirety can fit in both the memcache and also

the main memory. Conversely, in an IBM PC as there is no such limit, main

memory trashing and cache-miss are commonly known system issues.

3. The optional memcache can be used to selectively store important objects

and not cache every object that is read/written from the datastore, which

might introduce hidden system performance issues.

4. By having a fixed pre-allotted address space means that each task will not

run out-of-memory in the middle of processing.

From the above list, it can be seen that Google has designed the GAE system

architecture so that applications can scale and the system constraints actually

help to produce better structured & high performing applications.

The total algorithmic space complexity of PKNOTS is polynomial and is equal to

O(N4). The data is split in multiple matrices and the smallest of these is O(N2)

while the largest is O(N4). As each of the datastore object is limited to 1MB in

size the matrices needs to be sliced into multiple objects. In addition, the GAE

datastore is a key-value style NoSQL DBMS and this means that the matrix data

needs to be stored as a set of key-value pairs. We experimented with several data

splicing methods, each with different own pros and cons, and eventually selected

two splicing schemes. We call these splicing schemes as simply ‘3+1’ and ‘1+1’

Chapter 5 Performance Evaluation Studies 112

and use it for different matrix types as explained below.

‘3+1’ data scheme We use the ‘3+1’ scheme for the matrices that are four-

dimensional in nature and therefore O(N4) in space complexity. In these

matrices, the first 3 dimensions are used as the ‘key’ for the datastore objects

and the data in the 4th dimension is stored as the value as a list object. For

instance, for matrix YHX[i][j][k][l] the keys will be YHX[i][j][k], with each

of the indices varying between ‘1’ and length of input sequence ‘n’, and the

value is a list of numbers in the ‘l’ dimension. Let us take an example where

the length of the sequence ‘n’ is 100. Using this ‘3+1’ scheme, there will

be 1003 (or 1,000,000) datastore objects with each datastore object of size

800+ bytes (100 X 8 Bytes per object). Conversely, as each datastore object

can be of size 1MB (1,048,576 bytes) we can derive the maximum value

of sequence length ‘n’ to be 131,072 or simply 128K. For this maximum

sequence length of ‘n’ there will be correspondingly n3 objects or 2.25× E15

objects per matrix. Whenever a single matrix cell value is required, the object

containing the entire 4th dimension and indexed by the first 3 dimensions is

retrieved, value updated and written back to the datastore. As the algorithm

computes only one matrix cell at any one time, this method also indirectly

conserves main memory usage as the newer objects can replace older objects,

making the algorithm scale for longer sequences as well. This access & update

method may be seen as a minor drawback, but is currently the best method

for maximizing resource-usage and minimizing the communication-overhead

Chapter 5 Performance Evaluation Studies 113

and is further explained in the following paragraphs.

Other schemes In addition to the previous data storage method, we have also

considered alternate storage schemes of ‘1+3’, ‘2+2’ and ‘4+0’ for storing

these 4D matrices. As with the ‘3+1’ scheme, the first number represents

the number of dimensions that are used as datastore object keys and the

second number is the dimensions stored as value in these datastore objects.

In the ‘4+0’ scheme, the datastore object value is simply the 8 byte value

from the matrix cell and the number of objects will be n4. As each datastore

object can be up to 1MB in size this scheme will be resource-wasteful and the

communication costs in reading/writing an object is likely to be expensive as

well. In the ‘2+2’ scheme, again using the maximum size of datastore object

as a constraint, we can derive maximum sequence length ‘n’ to be 362 using

the equation
√

1048576/8 and the number of data objects is n2 or 131,044.

Similarly, in ‘1+3’ scheme the maximum sequence length ‘n’ will be 50 using

the equation 3
√

1048576/8 and the corresponding number of datastore objects

will be 50. The longest RNA sequence in our collection is close to 4,500

nucleotides and from the above it can be seen that neither ‘1+3’ nor ‘2+2’

will be sufficient and ‘4+0’ will be resource-wasteful. Therefore, we have

chosen ‘3+1’ to be the datastore object scheme. Google promises that GAE

datastore will be able to scale infinitely. It is important to highlight the fact

that this storage scheme will be able to handle all known RNA sequences as

none have been identified to be of length 128,000 but some of the discovered

Chapter 5 Performance Evaluation Studies 114

RNA primary sequences are longer than 4,500 nucleotides.

In addition to the 4-dimensional matrices for predicting pseudoknots, the algorithm

also needs two 2-dimensional matrices for predicting non-pseudoknots and other

supporting 2D matrices as well. For these matrices, we simply use the ‘1+1’

scheme in order to balance the resource-usage and communication-overhead. In

addition to this data modeling, we have also optimized the storage of ICFG matrix.

The ICFG matrix is of size 4276 × 4276 and contains integer log form grammar

for alignment and is used for filling up of the gap matrices. We observed that,

although there are 18 million values in this matrix, 99.9% of them are zeros. In

this case, we only store the elements that are non-zero and the object key is made

of both the dimensions [i][j] using the ‘2+0’ model. We use operator overloading

to check if the object exists in the datastore and if so fetch the object/value, if not

we simply return the value ‘0’. This further reduces the memory requirements.

We have also catered for geospatial access patterns in the matrices, and attempted

to further reduce the access latencies in general as well. To achieve this, we have

tapped on the optional volatile memcache storage system in GAE. As mentioned

earlier, memcache is not an in-line caching layer like a CPU cache. Instead, it

has to be activated specifically and different objects can be stored in memcache in

addition to the datastore. However, being volatile by design there is no guarantee

that objects will be present forever. Therefore, our program stores a copy of the

read/written objects in memcache in addition to the datastore. During a data

read, the object is first checked in the local storage (AKA main memory), followed

Chapter 5 Performance Evaluation Studies 115

by memcache and if not present in either of these volatile memories it is finally

retrieved from the datastore. When the object is not found in both local storage

and memcache, the object is retrieved from the datastore to the local storage and

a copy is also saved in the memcache. During a data write, the object is stored in

the memcache in addition to the datastore. This process will potentially reduce

latencies for future data access although results in increased code complexity.

5.4.2 Challenge 2 - Handling Time Complexity

The second challenge in making PKNOTS available on GAE is handling the time

complexity. This is primarily because of execution time limits imposed by Google

App Engine. GAE is a task-based software platform and by default a computa-

tional task can run for 10 minutes only. After the expiration of this time limit,

if the task is still incomplete, then it needs to re-spawn itself (by queuing up a

new task) and have an internal state-saving mechanism to continue from where

it left off. This is usually not a problem for PKNOTS as each of the task that

calculates one matrix cell runs from few seconds to few tens of seconds only. As a

first step, we have ported the PKNOTS algorithm to GAE but it still runs in serial

mode where only one task runs at any given point in time. The whole problem is

solved by the single task re-spawning itself again and again at the end of 10-minute

boundary. Subsequently, we have experimented with several parallelization meth-

ods and sequentially improved the parallelization performance in the process. We

call these methods as macro, micro and max parallelization and will be explained

Chapter 5 Performance Evaluation Studies 116

in the next couple of paragraphs.

The process of getting PKNOTS up and running in GAE, required two major

steps.

1. To begin with, the entire PKNOTS algorithm was recoded using Python

programming language. This is necessary as the reference source code is in

ANSI C while GAE only supported Python and JVM (Java Virtual Ma-

chine) supported programming languages; ANSI C was not one of them.

The PKNOTS-Python version was tested for correctness with the original

PKNOTS-C version using the same input sequence on a standard IBM PC

running Ubuntu Linux OS.

2. The PKNOTS-Python was subsequently ported to run on GAE taking into

consideration the GAE constraints like datastore, memcache, local storage,

task-based scheduling and web-based UI. This is still the serialized version,

and we call this the ‘sequential’ implementation because only one task runs at

a time and it sequentially computes all the matrices values one after another.

The implementation uses a timer to trigger an alarm routine towards the end

of allotted time that then saves the current state to both the datastore and

the memcache before scheduling the next task. A task’s runtime is consumed

for both algorithmic computation and also for the synchronous communica-

tion to read/write datastore and memcache objects. The implementation

differentiates between CPU times spent on algorithmic progression, infras-

Chapter 5 Performance Evaluation Studies 117

tructure overhead activities and keeps track of both of them.

In the sequential version, although PKNOTS is running on GAE it is still executing

in serial mode. In addition, as the GAE runs the application in a sandbox, a virtual

machine by design, the expected performance therefore is worse than running

natively on an IBM PC. In addition, Google states that the CPU clock speed in

the hardware powering GAE is between 1.0 and 1.2 GHz. As most of the current

desktop workstations are now in the range above 2 GHz, this also means that the

performance of any serialized program in GAE is likely to be less than a standard

workstation. Following these observations, we explored the parallelization methods

available. In any parallelization model, the parallel processes (or threads) need a

way to communicate with one another and synchronize their actions. This was our

first roadblock as tasks running on GAE cannot communicate with one another,

as each one is running in its own sandbox, and the platform doesn’t provide any

synchronization routines as well. So, we improvised a custom solution for our

algorithm.

We used a combination of memcache & datastore to implement a barrier synchro-

nization primitive. In this model, ‘i’ parallel tasks are spawned in every compu-

tation cycle. At the end of their computation each of them increments a common

memcache counter object. In addition, they also write ‘i’ different & unique ob-

jects to the datastore. By using different objects, datastore contention is avoided.

A ‘i+1’ th task is started in every computation cycle and checks if the value of

the common memcache object has reached ‘i’ and if it does then starts the next

Chapter 5 Performance Evaluation Studies 118

Figure 5.5: Improvised barrier synchronization on GAE

computation cycle. As memcache is unreliable, should the object go missing, the

synchronizing task simply resorts to counting the number of datastore objects to

ensure all parallel tasks in a computation cycle have finished. We observed empiri-

cally the memcache objects to be frequently missing as the length of the sequences

increases. Figure 5.5 shows this improvised algorithm as a flow chart.

Macro Parallelization

Our first parallelization method is called ‘macro parallelization’. The paralleliza-

tion technique that we used in here is the Wavefront parallelization. Wavefront

parallelization is a technique that is used to expose hidden parallelization in a

dynamic programming algorithm. More specifically, this technique identifies inde-

pendent sub-problems that can be executed in parallel, in a dynamic programming

Chapter 5 Performance Evaluation Studies 119

Figure 5.6: Sequential filling of a 5x5 matrix in PKNOTS on GAE

algorithm. We have identified four sub-problems or ‘macros’ that can be executed

in parallel. These are the routines that fill in 4 pseudoknot matrices - fillvhx,

fillwhx, fillyhx, fillzhx - and each of them have a runtime complexity of O(N6).

Under this model, up to ‘i’ tasks can be executed in parallel provided they satisfy a

relationship ‘r’. Each task fills up the matrices of a particular index - [j][d][d1][d2].

The relationship ‘r’ is defined such that the sum of the 3rd and 4th dimensions are

equal to a constant ‘n’. The number of tasks that can run in parallel will range

from ‘1’ to ‘n’, where ‘n’ is equal to the length of the input primary sequence. As

an example, we will use a small sequence of 5 nucleotides. The pattern of filling up

using both, the sequential process and macro parallelization is shown in Figures

5.6 and 5.7.

In the sequential process, the cells (0,0), (0,1), ... (1,0), (1,1) are computed one

by one. Under macro parallelization, in the first computation cycle, index (0,0)

is computed, during the second computation cycle, indexes (1,0) and (0,1) are

computed and so on. Each computation cycle proceeds only when all the parallel

Chapter 5 Performance Evaluation Studies 120

Figure 5.7: Wavefront parallelized filling of a 5x5 matrix in PKNOTS on GAE

tasks in that cycle completes. This is synchronized using our improvised barrier

synchronization primitive. The performance and scalability of our approach is

coupled with the size of the input sequenced, i.e., there can be more parallel tasks

for a longer sequence compared to a shorter one. The pseudocode for the wavefront

parallelization is shown in Figure 5.8. In summary, macro parallelism is built on

the foundation of data parallelism as each of the wavefront executes the same code

but fills up different parts of the matrices.

Micro Parallelization

Our second parallelization method is called ‘micro parallelization’. In the previous

method of macro parallelism, one task in a computation cycle fills up one value in

each of the four matrices - vhx, yhx, zhx and whx. This task cannot be directly

split into 4 concurrent sub-tasks to fill up each matrix elements simultaneously,

due to the data dependencies between the various matrices. Table 5.9 shows

the data dependencies. From this table, it can be observed that in order to fill

Chapter 5 Performance Evaluation Studies 121

	
 Pseudo	
 code	
 for	
 subroutine	
 FillMtx	
 with	
 macro	
 parallelization	

1	
 for	
 j	
 =	
 0	
 to	
 seqlen	
 	

	
 2	
 	
 for	
 d	
 =	
 mind	
 to	
 j+1	
 	

	
 3	
 	
 	
 	
 	
 FillVP(vx,	
 vp,	
 j,	
 d);	

	
 4	
 	
 	
 	
 	
 FillWX	
 (wx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 5	
 	
 	
 	
 	
 FillWBX(wbx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 6	
 	
 	
 	
 	
 	
 for	
 k	
 =	
 1	
 to	
 d+1	
 cobegin	

	
 7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 d1	
 +	
 d2	
 =	
 k	
 ;	
 d1	
 >=	
 0	
 ;	
 d2	
 >=	
 0;	

	
 9	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillVHX(whx,	
 vhx,	
 j,	
 d,	
 d1,	
 d2)	

10	
 	
 	
 FillZHX(wbx,	
 vx,	
 whx,	
 vhx,	
 zhx,	
 j,	
 d,	
 d1,	
 d2)	

11	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillYHX(wbx,	
 vx,	
 whx,	
 vhx,	
 yhx,	
 j,	
 d,	
 d1,	
 d2)	

12	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillWHX(wbx,vx,whx,vhx,zhx,yhx,j,d,d1,d2)	

13	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 if	
 	

14	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 for	

15	
 	
 	
 	
 	
 	
 coend	
 for	

16	
 	
 end	
 for	

17	
 end	
 for	

	

Figure 5.8: Psuedocode for subroutine FillMtx with macro parallelization

the matrix cell yhx[j][d][d1][d2] and zhx[j][d][d1][d2], the corresponding matrix

element vhx[j][d][d1][d2] needs to be filled first. Similarly, to fill whx[j][d][d1][d2]

corresponding matrix elements from other three matrices needs to be filled first.

From this access pattern, it can be seen that a 3-step task-based parallelism be

introduced in addition to the macro parallelism introduced earlier.

1. One matrix element in vhx is filled.

2. The corresponding matrix elements in matrices yhx and zhx are filled.

3. The corresponding matrix element in matrix whx is filled.

This task-based parallelism is shown graphically in Figure 5.10.

Chapter 5 Performance Evaluation Studies 122

Figure 5.9: Data dependencies among the gap matrices in PKNOTS

Figure 5.10: Task Parallelism in PKNOTS on GAE

In an ideal parallel computer, that has zero or negligible overhead in creating

new tasks and accessing discrete & random memory locations, the above scheme

will produce good speedup when compared to the serialized version. However,

all practical systems incur varying amounts of overheads while creating tasks and

accessing memory; GAE is no exception. In GAE, it is very expensive to create and

schedule a new task. We have observed the latencies to be in the order of seconds

in some cases. PKNOTS-GAE, in one invocation, will create 4× n2 number of

tasks where ‘n’ is the length of the sequence. At its peak, there could be up to 4n

concurrently running tasks. Again, using n = 100 as an example, this translates

to 40,000 total tasks and 400 concurrently running peak tasks. According to the

system documentation, GAE will be able to handle this workload. However, in

our case each of these tasks depends on the value created by at least one previous

Chapter 5 Performance Evaluation Studies 123

Figure 5.11: Optimized Task Parallelism in PKNOTS on GAE

task. In GAE, there is nothing equivalent of a shared memory communication

that two tasks can use to exchange information. We therefore have resorted to

using a combination of memcache and datastore to have a reliable mechanism for

information exchange. A total of 4× (4n2) number of read/writes to both the

datastore and memcache is required for this synchronization. Using n = 100 as

the sequence length, this translates to a total of 160,000 calls. This became the

second bottleneck and a major performance killer.

We have mitigated this situation to a certain extent using our observation that the

computation of WHX takes the longest amount of time and is equal to the sum of

computation times for the rest of the matrices. Therefore, we decided to use only

two tasks - one computing the vhx, yhx and zhx - while the other computes whx

matrix. Again using n = 100 as the sequence length, this translates to 2n2 total

tasks, 2n total peak tasks and 2 × (2n2) datastore and memcache read & writes.

Performance is indirectly improved by reducing the overhead costs. The timing

diagram in Figure 5.11 shows the optimized version of task scheduling on GAE.

Chapter 5 Performance Evaluation Studies 124

	
 Pseudo	
 code	
 for	
 subroutine	
 FillMtx	
 with	
 macro	
 and	
 micro	
 parallelization	

1	
 for	
 j	
 =	
 0	
 to	
 seqlen	
 	

	
 2	
 	
 for	
 d	
 =	
 mind	
 to	
 j+1	
 	

	
 3	
 	
 	
 	
 	
 FillVP(vx,	
 vp,	
 j,	
 d);	

	
 4	
 	
 	
 	
 	
 FillWX	
 (wx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 5	
 	
 	
 	
 	
 FillWBX(wbx,	
 vx,	
 whx,	
 yhx,	
 j,	
 d)	

	
 6	
 	
 	
 	
 	
 	
 for	
 k	
 =	
 1	
 to	
 d+2	
 cobegin	

	
 7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 d1	
 +	
 d2	
 =	
 k	
 ;	
 d1	
 >=	
 0	
 ;	
 d2	
 >=	
 0;	

	
 8	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 k	
 not	
 equal	
 to	
 d+1	
 then	

	
 9	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillVHX(whx,	
 vhx,	
 j,	
 d,	
 d1,	
 d2)	

10	
 	
 	
 FillZHX(wbx,	
 vx,	
 whx,	
 vhx,	
 zhx,	
 j,	
 d,	
 d1,	
 d2)	

11	
 	
 	
 FillYHX(wbx,	
 vx,	
 whx,	
 vhx,	
 yhx,	
 j,	
 d,	
 d1,	
 d2)	

12	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 if	

13	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 d2	
 not	
 equal	
 to	
 0	
 then	

14	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FillWHX(wbx,vx,whx,vhx,zhx,yhx,j,d,d1,d2-­‐1)	
 //parallel	
 with	
 above	
 function	

15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 if	
 	

16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 for	

17	
 	
 	
 	
 	
 	
 coend	
 for	

18	
 	
 end	
 for	

19	
 end	
 for	

	

Figure 5.12: Psuedocode for subroutine FillMtx with Max Parallelization

Max Parallelization

Our third parallelization method is called ‘max parallelization’ and simply an amal-

gamation of both the macro and micro parallelization introduced above. As macro

parallelization is based on data parallelization model and micro parallelization is

based on task parallelization model, a hybrid parallelization that includes both of

them will produce the best overall performance from parallelized PKNOTS. The

code listing in Figure 5.12 shows the pseudocode for the max parallelization model.

5.4.3 Performance Results & Discussions

In this section, we detail and discuss the results from our experiments on GAE. We

conducted a set of experiments using all the three versions of the implementation

- sequential, macro and micro. In the sequential version, only one task is executed

Chapter 5 Performance Evaluation Studies 125

0.0000	

50.0000	

100.0000	

150.0000	

200.0000	

250.0000	

300.0000	

350.0000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

To
ta
l	
 '

m
e	

ta
ke
n	

(in

	
 h
ou

rs
)	

Sequence	
 Length	

Total	
 Time	
 taken	
 vs	
 Sequence	
 Length	

Figure 5.13: Runtimes Vs Sequence length for Serial PKNOTS on GAE

at any one point in time. Each task runs for a full time slice of 10 minutes and

then another task is queued that continues from where the previous task left out.

In essence, there is no parallelization in this implementation. Figure 5.13 plots

the sequence length vs. the run-time. It can be seen that as the length of the

sequence increases the run-time also increases, and the growth of the run-time is

polynomial as the time complexity of the algorithm is O(N6). Figure 5.14 shows

the same data in log scale where the runtimes for shorter sequences can be seen

more clearly and the rate of growth as well.

The total execution time for each instance comprises of algorithmic time and infras-

tructure overhead time. We define the algorithmic time as the time the implemen-

tation spends in calculating and populating the various matrices. Infrastructure

Chapter 5 Performance Evaluation Studies 126

0.0010	

0.0100	

0.1000	

1.0000	

10.0000	

100.0000	

1000.0000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

To
ta
l	
 '

m
e	

ta
ke
n	

(in

	
 h
ou

rs
)	

Sequence	
 Length	

Total	
 Time	
 taken	
 vs	
 Sequence	
 Length	

Figure 5.14: Runtimes Vs Sequence length for Serial PKNOTS on GAE - Log scale

overhead time is defined as the time various GAE APIs take to return values.

These APIs are used to read/write data to both the memcache and datastore, to

create new tasks and for other interactions with the platform. We wanted to find

out what percentage of each execution time goes towards algorithmic progression.

Using programming language primitives (python in this case), for each of the exe-

cution times we measured both the algorithmic and overhead time. As our interest

is in algorithmic time, we plot a ratio of algorithmic time to total time vs. the

sequence length and show it in Figure 5.15. Several patterns can be observed from

this figure.

Sequence length <= 45 As the length of sequence initially increases the ratio

of the algorithmic time to total time increases. This is certainly a good

Chapter 5 Performance Evaluation Studies 127

0	

10	

20	

30	

40	

50	

60	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Al
go
ri
th
m
ic
	
 ti
m
e/
O
ve
ra
ll	

ti
m
e	

%
	

Sequence	
 Length	

Figure 5.15: Algorithmic Vs Infrastructure Time in Serial PKNOTS on GAE

trait as the program is spending more time towards algorithmic progression

rather than on overhead matters. There are a couple of reasons for this.

During the early phase of the program execution the data that is retrieved

from the datastore is stored on memcache. Subsequently, when new values

are computed they are stored in both the memcache and datastore. As

the algorithm continues to run, the probability of finding the required value

in the memcache increases and therefore the algorithm progresses faster,

making the algorithmic portion of the time consumed to be higher. Another

important factor is the fixed-duration nature of the task. As each task runs

for 10 minutes, during its lifetime it can process multiple matrix values. As

there is a data-dependency pattern between various tasks, the later tasks

benefit directly by having the results from previous iterations in the main

memory itself.

Sequence length > 45 This upward trend continues until around 45 nucleotides

Chapter 5 Performance Evaluation Studies 128

where the ratio is slightly above 50% mark of total time. After this, the ratio

of the algorithmic time begins to fall & oscillate as well. We believe this is

because of the nature of memcache sub-system. memcache seems to be using

some unpublished heuristics to decide on the lifetime of a memory object. In

our experiments, we observed that some of the metrics that memcache system

might be using are the amount of data one particular application pushes to

memcache, last data object accessed time, last data object updated time,

number of main memory references to one memcache object within a time

period and so on. The overall result is that as the length of the sequence

increases, the probability of finding the data in memcache decreases and

therefore time is spent to retrieve the object from the datastore, thus adding

to the infrastructure overhead time. This trend continued for the rest of the

sequences in our test group and we expect it to continue further as well. The

inference from this experiment is that unless an application is parallelized

it will not gain (and might even lose) performance by running directly on

GAE.

Table 5.1 shows the runtimes recorded for the same dataset when executed us-

ing the macro-parallelized and max-parallelized versions of the PKNOTS algo-

rithm. It can be observed that max-parallelized version performs better. Fig-

ure 5.16 plots the speedup of the algorithmic times of both the versions. Again,

it can be seen that the max-parallelized version performs better, although only

slightly better, than macro-parallelized version. The mild performance gain is

Chapter 5 Performance Evaluation Studies 129

Table 5.1: Runtimes of Parallelized PKNOTS on GAE

0	

2	

4	

6	

8	

10	

12	

14	

16	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 60	
 70	

Sp
ee
du
p	

Sequence	
 Length	

Speedup	
 in	
 terms	
 of	
 Algorithmic	
 time	

Macro	
 parallelization	

Hybrid	
 of	
 macro	
 and	
 micro	

parallelization	

Figure 5.16: Speedup of algorithmic time between macro and max parallelization

Chapter 5 Performance Evaluation Studies 130

because FillV HX,F illY HX,F illZHX occupies only 3% of total runtime while

FillWHX occupies 89%. The overall performance gain is attributed to the fact

that in max-parallelized version there are more concurrently running tasks com-

pared to macro-parallelized version. As the number of concurrently running tasks

is tied to sequence length, with longer sequences better speedup is expected and

is observed to be more when compared to shorter sequences. One notable arti-

fact with the execution times of the parallelized versions is that it is slower than

the sequential times for the same length sequences. The primary reason for this

unexpected outcome in GAE is the notable absence of shared memory and syn-

chronization routines. More specifically, in the parallelized version the lifetime of

any task, specifically for shorter sequences, is in the range of few seconds to few

tens of seconds. The implication of this behavior is that the local variables are

flushed when a new task is created. The new task needs to fetch the values from

the datastore or the memcache again. At the time of these experiments, GAE

did not have any mechanism to re-use the same address space for running several

sequential tasks. This coupled with the fact that for longer sequences the data is

also not reliably found in the memcache, degrades the performance even more. We

believe this to be a transient situation as Google is rapidly adding newer features

to GAE. As an example, when we initially started this project the max runtime for

all the tasks was only 30 seconds and was subsequently increased to 10 minutes.

Had the max time remained at 30 seconds, the performance gain for sequential

version would not be so high after all.

Chapter 5 Performance Evaluation Studies 131

Figure 5.17: Screenshot of the serial version of PKNOTS on GAE

We have implemented all three versions - sequential, macro and max paralleliza-

tion - on the free version of Google App Engine at the URLS http://pknots1.

appspot.com (sequential), http://pknots2.appspot.com (macro) and http://

pknots3.appspot.com (max parallelization). The availability of these URLs is

subject to the non-exhaustion of daily free quotas for GAE web applications. We

are also providing a screenshot of the sequential version as a reference in Figure

5.17.

Chapter 5 Performance Evaluation Studies 132

5.4.4 Is GAE an ideal platform for PKNOTS?

Based on our experience of implementing PKNOTS on GAE, the feasible experi-

ments we conducted and the results that we obtained, we arrive at the conclusion

that GAE in its current incarnation is not a good fit for PKNOTS type of HPC

applications. The following list of shortcomings will justify our observations &

claims.

Expensive Tasks The computation cost of creating a new task is very expensive

in GAE. This is primarily due to the fact that a new sandboxed VM needs

to be allotted, the application byte code should be loaded before execution

can commence. In cases where an instance is already running, it needs to be

purged of data from previous task execution before a new task can execute.

Synchronization At the time of these experiments GAE lacked any system prim-

itives that provides synchronization functionality like barrier synchroniza-

tion. The absence of this important system primitive, prevents cooperative

tasks from updating other peer tasks of their progress.

Memcache The memcache system is non-volatile by design. In addition, Google

does not declare the size per application. These combined together for a

HPC application, that tends to write a lot of temporary data, results in high

memcache flushing and more calls to the datastore ultimately.

Main Memory The size of main memory per process was also limited to 300MB

at the time of our experiments. This resulted in application managing the

Chapter 5 Performance Evaluation Studies 133

data by writing excessive items to the datastore. This process incurred over-

head time through the use of CPU time and also latencies to read/write to

the datastore.

CPU Speed The CPU speed was limited to between 1 and 1.2 GHz and this re-

sulted in the application running much slower compared to today’s standard

workstation

GAE++ We observed these shortcomings while using the Python runtime with

SDK version 1.4.3. Google has since announced the addition of more HPC

application friendly features. Therefore, we believed it is only a matter-of-

time before these shortcomings are addressed. We describe some of these

newer features in Chapter 6.

5.5 MARSs on Google App Engine

In this section, we discuss our efforts to make MARSs available on the scalable

cloud-computing platform - Google App Engine (GAE). MARSs, unlike PKNOTS,

does not use deep recursions and therefore is considered to be easier to parallelize.

Using our experience with making PKNOTS available on GAE we next make

available MARSs on GAE. Following the implementation, we describe and discuss

the results that we obtained as well.

Chapter 5 Performance Evaluation Studies 134

5.5.1 Optimizing MARSs for GAE

Unlike PKNOTS, it was much easier to develop MARSs to execute on GAE. This

is primarily because MARSs has been designed with parallelization as one of its

core-enabling features. Every stage of the MARSs algorithm is designed so that

it can be parallelized and with ease on different parallel architectures. On GAE,

tasks and task queues is the primary method to introduce parallelism. As such, we

use both code and data parallelism in an intrinsic way and at different stages of the

algorithm. As described in detail in Chapter 4, MARSs mimics RNA secondary

structure formation using two stages - Stage 1 and Stage 2.

Stage 1 In this stage, the algorithm identifies a folding point and enumerates base

pairs in a zipping fashion. Several folding points are proposed & analyzed

and up to 3 different base-pairing methods can be used. Therefore, there is

a clear need for parallelization.

Stage 2 In this stage, a second folding point (if possible) is identified to create a

pseudoknot with additional base pairing.

As briefly described above, base-pairing in each stage can be attempted using three

distinct processes called - Symmetric Folding, Asymmetric Folding - Best Bond

and Asymmetric Folding - First Bond. A lightweight synchronization method is

required at two stages of the algorithm - at the base-pair choice stage and between

Stages 1 and Stages 2. Performance of MARSs or any other RNA structure pre-

diction algorithm is largely dependent on the distribution of the nucleotides in a

Chapter 5 Performance Evaluation Studies 135

given sequence. A sequence where the four nucleotides are evenly distributed, is

likely to have large number of canonical base pairs. At the same time, another

sequence of the same length with an uneven distribution of nucleotides is likely

to have lesser number of base pairs. Therefore, the nucleotide distribution of a

sequence is also indirectly proportional to the run-time of the MARSs algorithm.

MARSs Initialization

An application on GAE begins execution in response to a web request. In the

case of MARSs application, the web request consists of the primary sequence of

the RNA for which secondary structure(s) needs to be predicted along with any

configuration parameters. A handler task, for web requests, is activated and has far

more constraints than a regular background task. Chief among the constraints is

that it cannot execute more than 30 seconds. Therefore, in our application design

the web-request handler simply creates a ‘root’ task based on the web-content

(sequence, configuration parameters) received. The ‘root’ task is responsible for

kick starting the algorithm by creating the Base Pair Matrix, creating the Affinity

Matrix using Base Pair Matrix and the input sequence and finally identifying

the various folding points in the MARSs algorithm. However, no folding has

occurred yet and all the above is done in a serial fashion as parallelism will add

very little gain at this stage. At this stage, any suitable thermodynamic model can

be used and affinity values between various positional base pairs can be updated

in the Affinity Matrix. The Affinity Matrix is then stored in the datastore as a

Chapter 5 Performance Evaluation Studies 136

single object and will also be cached in the memcache on first access. As each

datastore object is limited to 1MB in size, catering to a base-pair affinity value in

64 bits, this model enables MARSs to handle input sequences of up to 362 base

pairs in length. We specifically choose this model for two reasons. First, given our

experience with PKNOTS and GAE datastore we knew that read/writing from the

datastore/memcache is the number one performance killer and wanted to explore

another method. Second, MARSs references matrix values more than PKNOTS

and at every base-pair stage. Therefore having the matrix as a single object,

although with size limits, will help us to extract the best performance possible

from GAE.

Kick starting Level 1 Tasks

Next, for each of the folding points identified, the ‘root’ task creates and queues

an independent task to process that folding point. We choose to pass the various

parameters as payloads to the newly created tasks instead of making the task

fetch from the datastore. As the payload size is limited to 10KB the parameters

are the name of the affinity matrix in memcache along with the folding points to be

processed. The Level 1 tasks then fetches the Affinity Matrix from the memcache.

If the Affinity Matrix is evicted from the memcache for any reasons, then the first

task that references it will read from the datastore to its main memory and also

replicates it in the memcache. After this all other tasks can simply read from

the memcache. As it is possible that more than one task can detect, at almost

Chapter 5 Performance Evaluation Studies 137

the same time, that the Affinity Matrix is missing from memcache our design uses

semaphore-type variable in memcache to notify other tasks that the current task is

fetching the Affinity Matrix from the datastore. Other affected tasks will simply

wait for a fixed number of seconds before retrying. It is to be noted that each

task copies the Affinity Matrix from the memcache to its main memory before

processing. By this way, the number of references to either memcache/datastore

is greatly reduced. Each of the Level 1 tasks is based of the same codebase and

processes different data; this design therefore exhibits data parallelism.

Processing Level 1 Folds

Each of the independently executing Level 1 tasks enumerates the base pairs for

a given folding point. Each of the base pairs can be decided using the outcome of

three different search routines - Symmetric Bond, Asymmetric − First Bond

and Asymmetric − best bond. Each of these sub-routines is different from each

other, thereby exhibits code parallelism. We have used this code parallelism ap-

proach in our other implementations on Intel x64 and IBM Cell architectures.

However, given our experience with PKNOTS on GAE, we decided not to enable

it for MARSs on GAE. In order to understand this decision from a technical stand-

point, let us derive the number of memcache/datastore reads/writes that will be

required. For each of the base pairs that is being enumerated, three tasks must be

started and each of these tasks need to read the affinity matrix for processing. In

addition, each of the tasks needs to know the state of the base-pair enumeration

Chapter 5 Performance Evaluation Studies 138

as well and this can be passed as a parameter, subject to a cap on payload size.

After each of the task finishes, they will have to write the results to the datastore

(as memcache is not reliable and a data loss could mean the task has to be rerun)

and a watchdog task to monitor the progress of these new tasks and restart the

Level 1 task again. In total, 5 tasks have to be created for every base-pair enu-

meration, 3 memcache reads and 3 datastore writes performed, unknown number

of datastore reads by the watchdog. This whole process needs to be repeated for

up to n/2 base-pair enumeration per tasks and for up to n(n-1)/2 fold points that

are being checked by individual tasks. As can be seen this is a very complex and

performance-killing system design and moreover the gains from parallelizing the

individuals sub-routines does not justify the significant amount of overheads.

Kick starting Level 2 Tasks

Each of the Level 1 tasks complete the enumeration of the base-pair list and write

the result to the datastore. In addition to the ‘i’ Level 1 tasks that processes the

folding points, the root task also creates an ‘i+1’ th watchdog monitor task. The

monitor task is passed an argument containing the value of ‘i’ and also the prefix

the Level 1 tasks will use to create the datastore result objects. The monitor task

using GQL (Google Query Language) periodically queries to count the number of

objects in the datastore that matches the prefix. If there are ‘i’ objects then all ‘i’

Level 1 tasks have completed and the monitor task starts the Level 2 ‘root’ task.

Level 2 root task has a set of objectives. First, it analyses the Level 1 structures

Chapter 5 Performance Evaluation Studies 139

and eliminates (any) duplicates. Let us refer to this reduced number as ‘k’ where

‘k = i - j’ and ‘j’ is the number of duplicates and non-pseudoknots. Second, for

the ‘k’ Level 1 structures the affinity matrix is modified using the base pairs to

produce ‘k’ versions of the Affinity Matrices. These ‘k’ Affinity Matrices are then

used as the new Affinity Matrices for determining the Level 2 folding. This Level

2 ‘root’ task then computes the folding points for each of these ‘k’ New Affinity

Matrices. Finally, the Level 2 root task spawns new tasks for each of the folding

points in each of the ‘k’ Affinity Matrices. It also spawns one Level 2 watchdog

monitor task. The Level 2 watchdog will determine if all the Level 2 tasks are

complete and after that will eliminate the duplicates, sort the folding according

to the resultant energy and as a final step visualize the RNA secondary structure.

Figure 5.18 shows the complete MARSs/GAE processing pipeline.

C
hapter

5
Perform

ance
Evaluation

Studies
140

START

Serial Mode

Input
sequence,

Config
Parameter

s

Generation of BP,
AM matrices and
Level '1' folding

points

Serial ModeSerial ModeParallel Mode

Level 1
Structure #1

Level 1
Structure #n

Level 1
Structure #2

Level 1
Structure #3

Eliminate L1 duplicates,
generate Level '2'

folding points, customize
AM matrices

Parallel Mode

Level 2
Structure #1

Level 2
Structure #n

Level 2
Structure #2

Level 2
Structure #3

Eliminate L2 duplicates,
generate final secondary

structures

STOP

MARSs on GAE
System Architecture

Figure 5.18: MARSs on GAE - Work Flow

Chapter 5 Performance Evaluation Studies 141

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Ti
m
e	

El
ap

se
d	

(s
)	

Length	
 of	
 sequence	

MARSs	
 on	
 GAE	

Time	

Figure 5.19: Runtimes of MARSs on GAE

5.5.2 Performance Results & Discussions

In this section, we first show and discuss the performance results obtained from

MARSs on GAE. This is shown in Figure 5.19. From the figure it can be seen

that MARSs performance is an order of magnitude better than PKNOTS. This

performance gain is directly attributed to the non-recursive algorithmic structure

of MARSs vs. the highly-recursive algorithmic structure of PKNOTS. A non-

recursive algorithm is generally expected to perform better in a parallel architec-

ture. At the same time, it also should be noted that most of the performance-loss

in PKNOTS was due to the read/write to the datastore while we avoided the same

in MARSs. Also, PKNOTS implementation was using different thermodynamic

model compared to MARSs. Figure 5.20 plots the runtimes of PKNOTS and

MARSs in the same graph using log scale. This shows the performance difference

between both the algorithms. It can also be seen that for very small sequence

lengths, PKNOTS algorithm is actually faster compared to MARSs.

Chapter 5 Performance Evaluation Studies 142

Figure 5.20: Runtimes of MARSs and PKNOTS on GAE

In MARSs, we introduce 3 different base-pair selection methods - Symmetric,

Asymmetric Best Bond and Asymmetric First Bond. Although Symmetric and

Asymmetric methods are required to enumerate all the different types of secondary

structural motifs, it was not clear to us if the ‘best bond’ or ‘first bond’ was produc-

ing the structures that are of higher-quality i.e., lower energy. For this, we added in

a task trace to each of the Level 1 and Level 2 tasks. When Level 1 tasks produces

the various structures, information about the methods used is saved. Level 2 root

task reads this and passes it to Level 2 tasks, which then add more information

to it. At the end of this process, we categorized the various secondary structures

& counted their numbers in the top percentile. We found that ‘Asymmetric best

bonding’ produces majority of the top percentile structures. This pattern emerged

both in Level 1 folding and also Level 2 folding. We show the statistics in Figures

Chapter 5 Performance Evaluation Studies 143

0	

5	

10	

15	

20	

25	

30	

35	

4	
 5	
 5	
 7	
 7	
 7	
 8	
 9	
 9	
 10	
 10	
 10	
 13	
 13	
 14	
 14	
 14	
 15	
 16	
 16	
 17	
 17	
 18	
 23	
 27	
 28	
 28	
 29	
 36	
 41	
 44	
 49	
 53	
 62	
 73	
 81	
 87	

N
o.
	
 o
f	
 s
tr
uc
tu
re
s	

Length	
 of	
 primary	
 sequence	

Contribu8on	
 of	
 Best	
 Bonding	
 type	
 to	
 Max	
 Energy	
 Structures	
 in	
 Level	
 1	
 	

Max	
 Energy	
 Structures	

Best	
 Bonding	
 L1	

Figure 5.21: Number of Predicted Structures in Level 1 using Asynchronous Best
Bond

5.21 and 5.22. It should be noted that with a different thermodynamic model the

outcome could be different. We analyzed the performance of MARS from quality

perspectives, using a selected set of experimentally verified sequences. The results

are provided in Section 5.8. As the results from the experiment are the same on

the GAE, we choose not to include them here as well.

5.6 PKNOTS on Intel x64

In this section we describe the results from our experiments with parallelized

PKNOTS on the Intel x64 architecture. Parallelization is similar to what was

done on the Google App Engine (GAE) platform and therefore to avoid dupli-

cation, we opt not to repeat it again. The major difference being that codebase

here is in ANSI ’C’ while it was in Python on GAE. This difference of using a

compiled language (ANSI C) vs. an interpreted language (Python) manifests it-

Chapter 5 Performance Evaluation Studies 144

0	

5	

10	

15	

20	

25	

30	

35	

4	
 5	
 5	
 7	
 7	
 7	
 8	
 9	
 9	
 10	
 10	
 10	
 13	
 13	
 14	
 14	
 14	
 15	
 16	
 16	
 17	
 17	
 18	
 23	
 27	
 28	
 28	
 29	
 36	
 41	
 44	
 49	
 53	
 62	
 73	
 81	
 87	

N
o.
	
 o
f	
 s
tr
uc
tu
re
s	

Length	
 of	
 primary	
 sequence	

Contribu8on	
 of	
 Best	
 Bonding	
 type	
 to	
 Max	
 Energy	
 Structures	
 in	
 Level	
 2	
 	

Max	
 Energy	
 Structures	

Best	
 Bonding	
 L2	

Figure 5.22: Number of Predicted Structures in Level 2 using Asynchronous Best
Bond

self into shorter runtimes. We also used compiler optimizations to trade off speed

vs. size, as amount of RAM is not an issue. The operating system (OS) used was

RHEL 6 (Red Hat Enterprise Linux 6).

We used an Intel Xeon system with 64GB RAM and 2 physical CPUs. Each

CPU has a clock speed of 2.4 GHz and has 6 independent cores, bringing the

total number of processing elements in the system to 12. Each of the CPUs has a

12MB Level 3 cache that is shared by the 6 physical cores. The FSB bus speed is

1066MHz. This server is of type UMA (Uniform Memory Access) and this means

that the memory is equidistant from each core and the programs can address and

access the entire memory. Therefore, the expected hotspots are the L3 cache

hit/miss and also the FSB saturation.

Chapter 5 Performance Evaluation Studies 145

5.6.1 Experiments

The experimental dataset for PKNOTS on the Intel platform comprises of around

700 sequences. The sequences vary in length with the smallest sequence being

16 nucleotides and the longest sequence being 148 nucleotides. All the sequences

have experimentally-verified secondary structures and comprises of both pseudo-

knot and non-pseudoknots. Each of the sequence was executed on 12 cores se-

quentially and in a step-wise fashion yielding a total around 8,400-runtime data

points. Speedup factors for sequences of increasing sequence lengths using varying

number of cores are shown as a heat-map in Figure 5.23(a). The information is

also plotted as a 3D chart in Figure 5.23(b). From the figures it can be observed

that we were able to obtain a maximum speedup of around 6 for a sequence of

around 150 nucleotides using all the 12 cores in our test machine.

For small sequences, the relationship between the speedup and the number of core

used is not obvious. In other words, for smaller sequences there is no significant

performance gain by adding more processing cores. This may be due to several

reasons. First, when the sequence length is small, communication overhead be-

tween processing cores is more compared to computation time. Second, as the

various processes & threads run only for short periods of time cache-misses may

be frequent resulting in large amount of clock time spent in memory accesses. As

the sequence size increases, this phenomenon fade away as cache-hit increases with

computation times becoming more than communication overheads. We observed

this trend by using a Linux system tool valgrind (cachegrind) to measure cache-

Chapter 5 Performance Evaluation Studies 146

(a)

(b)

Figure 5.23: Speedup of PKNOTS on Intel x64 as a Heat map & 3D graph

Chapter 5 Performance Evaluation Studies 147

Figure 5.24: CPU Cache-Miss performance benchmark for a sequence of length 68

misses. Figure 5.24 shows the number and percentage of level 1 and Level 2 cache

misses for a sequence of length 68 nucleotides. It can be seen that cache-misses at

Level 1 is very minimal while at Level 2 it is virtually not existent. One plausi-

ble explanation for the low cache-miss is that parallelized parts of PKNOTS are

independent of one another and are cached for longer time in multiple CPU cores.

Added to this, is the fact that modern CPUs have larger caches and therefore the

caches are not flushed frequently as well.

We now use our speedup measurements across multiple cores to understand the

variations in the ‘F’ values. For this we simplify the Equation in (5.3) to make

the variable ‘F’ as the dependent variable to arrive at the Equation (5.7) with the

independent variables being ‘n’ and ‘S’. In this equation ‘S’ refers to the absolute

Chapter 5 Performance Evaluation Studies 148

Figure 5.25: F values as a function of Sequence Length

speedup obtained when using ‘n’ number of cores. We now plot the ‘F’ values

against the sequence length in Figure 5.25. Here we see an increasing trend of ‘F’

values, as the length of input sequence increases, reflecting the fact that more parts

of the program are executing in parallel. Next, we also plot the average standard

deviation of ‘F’ values vs. the sequence length in Figure 5.26.

F =
1− 1

S

1− 1
n

(5.7)

From the Figure 5.25 we can see that the ‘F’ value of PKNOTS for sequence lengths

above 120 is roughly 0.9. From this and previous experimental results, we form a

hypothesis that ‘25’ is the maximum number of processing cores for PKNOTS. At

the number of 25, adding one more processor would only give a gain of 1%. If ‘F’

= 0.9, speedup will reach the saturation point slightly after 30 processing cores.

We were not able to observe the saturation region in our experiments, because the

Chapter 5 Performance Evaluation Studies 149

Figure 5.26: Average Std. Dev. of F values Vs Sequence Length

total number of computing cores in our test machine is only 12. Based on this, we

are able to provide recommendations on the ideal number of processing cores for

sequences with different length. This is plotted in Figure 5.27. This knowledge

can be used to do load balancing in a web portal into choosing the right system

configuration based on the size of input sequence submitted.

5.7 PKNOTS on Virtualized x64 Architecture

Virtualization is a new technology and enables packing multiple fully functional

computing instances, typically servers, into a single physical server. By this way,

the hardware resource is better utilized compared to multiple lightly loaded indi-

vidual systems. While the virtualization technology is being increasingly adopted

by the industry to downsize the data centers, we wonder if this technology will

be suitable for high performance computing domain. In this section we describe

Chapter 5 Performance Evaluation Studies 150

Figure 5.27: Recommended number of parallel cores for various sequence lengths

our experiments with porting PKNOTS to two multi-processor platforms - one of

which is a virtual system. The first is a 12-core x86-64 Intel® Xeon® E7450 with

64 GB memory, processor speed 2.4 GHz and 12 MB cache per processor (abbrevi-

ated Apollo). The second is a 16-core x86-64 virtual machine with 16 GB memory

running on the QEMU Virtual CPU version 0.9.1, processor speed 2.4 GHz and

2 MB cache per processor (abbreviated AVM1). It draws processing power from

the Apollo machine. Both x86 platforms run on Red Hat Enterprise Linux 5 with

kernel version 2.6.18-164.11.1.e15.

5.7.1 Implementation Method

The POSIX multi-threading library is used to port PKNOTS to Apollo and AVM1.

Both the original and parallelized programs are complied using gcc-4.4.1 with O3

optimization.

Chapter 5 Performance Evaluation Studies 151

A total of 140 RNA sequences, drawn from two databases, are used to bench-

mark the parallelized algorithms. The first consists of 49 sequences found under

the PKNOTS software Demo/ directory provided within the pknots-1.05 software

repository. The second consists of 90 sequences from the on-line repository Pseu-

dobase [12]. Both contain sequences, which are found to have naturally occurring

pseudo-knotted secondary structures.

The sequences are analyzed by running the sequential program and the paral-

lelized versions on varying numbers of cores. The command line parameters used

for running PKNOTS are -c -k -t, which instructs the program to analyze the

sequences for pseudo-knotted and co-axial structures with trackback output.

5.7.2 Performance Results & Discussions

(A) Physical Machine - Apollo

The parallel speedup factor of running the entire 140 sequences on the Apollo

machine is plotted against the nucleotide length in Figure 5.28. The maximum

parallel speedup efficiency attainable (from 2 to 12 processors) are as follows:

102%, 101%, 91%, 90%, 83%, 83%, 83%, 78%, 75%, 69% and 70%. Super linear

speedups are attributed toward the effect of combined caches of a multi-processor

system.

An inverted-U shape profile can be observed from the results. For sequence lengths

below 90, there is an increase in speedup efficiency with increasing length. This

Chapter 5 Performance Evaluation Studies 152

is because longer jobs are offloaded to parallel cores for processing. Therefore,

the ratio of synchronization latencies in the total execution run-time decreases for

every successive execution, hence a gradual increase in parallel speedup. Likewise,

parallel speedup tends to unity for shorter sequences.

The decreasing trend in speedup efficiency, which occurs for longer sequences, is

contributed by two factors. Firstly, Dynamic Programming (DP) works by caching

previously computed sub problems to compute current sub problems. As such, the

number of memory references scales up on the order of O(n6), equivalent to that of

the time complexity. Given a fixed hardware system with limited communication

bandwidth between processor and memory, processing longer sequences leads to

more memory reference. This increases bus contention that causes processors to

halt when the bus is not available for use.

Secondly, due to the nature of the DP algorithm, referenced memory location for

consecutive iterations are rarely contiguous. Therefore together with an increase

in memory references, these locations cannot fit into the limited memory cache.

As such, cache misses increase for increasing sequence lengths, therefore partly

contributes to lower speedup efficiency.

Both factors are accentuated when more processors are used, as this would mean

a larger amount of stalling time each processor would encounter while waiting for

the bus to be available. This can be observed from the gradual development of a

‘hump’ profile in Figure 5.28 for a greater number of processors.

C
hapter

5
Perform

ance
Evaluation

Studies
153

Figure 5.28: PKNOTS Speedup on the physical machine - Apollo

C
hapter

5
Perform

ance
Evaluation

Studies
154

Figure 5.29: PKNOTS Speedup on the virtual machine - AVM1

Chapter 5 Performance Evaluation Studies 155

(B) Virtual Machine - AVM1

The parallel speedup factor of running the entire 140 sequences on the AVM1

machine is plotted against the nucleotide length in Figure 5.29. The graphs of 11

to 16 virtual processors are omitted as their profiles are similar to that of using

10 processors. The maximum parallel speedup efficiency attainable (from 2 to 16

virtual processors) are as follows: 99%, 98%, 91%, 87%, 85%, 78%, 76%, 72%,

69%, 66%, 59%, 54%, 51%, 48% and 46%.

The inverted-U trend is evident from Figure 5.29. Speedup decreases toward unity

for short sequences due to the inefficient spreading of workload among the proces-

sors.

The overall run-time performance is worse than that on Apollo. One of the reasons

is that the per processor cache size for the AVM1 is one sixth of the Apollo.

As such, cache misses are higher on the AVM1 compared to Apollo, therefore

leading to lower parallel speedup efficiencies. Secondly, the use of virtual machine

technology means that there would be overhead incurred in over committing the

number of physical cores available for the virtual machine to spread its workload

on. Therefore, the performance of using 16 virtual processors is not better than

that of using 12 virtual processors since there are 12 available physical processors

for use.

Chapter 5 Performance Evaluation Studies 156

5.8 MARSs on Intel x64

In this section, we describe our experiments with MARSs on Intel x64 and discuss

the results. We used the same hardware & software environment as described and

used with the PKNOTS on Intel x64. The dataset used for the experiments in this

architecture contains a total of 726 experimentally verified RNA sequences from

various biological databases. Close to 80% of the sequences are from RCSB Protein

Data Bank Database and the rest of them are from Nucleic Acid Database, Sprinzl

tRNA Database, and Gutell Lab CRW. The sequences are of different sequence

lengths and range from the smallest length of 4 nucleotides to the longest length of

545 nucleotides. Most of the sequences have RNA sequence length of less than 80

nucleotides and the average length size is approximately 63 nucleotides. Figures

5.30 and 5.31 show the distribution of lengths of various sequences and also the

distribution of sequences across the various databases.

The experiments were done such that the results can be as ‘unbiased’ as possible.

Some of the measures that were undertaken were the use of system primitives

such as ‘pthread’ and ‘taskset’. We use ‘pthread’ to create the required number

of threads while ‘taskset’ is used to pin the threads to different CPUs. Together

these primitives will either eliminate or reduce the effects of over-scheduling of

the threads to the same CPU(s) by the OS. We used system command ‘time’ to

measure actual time spent by the program and the system. We used our dataset

described in the previous paragraph and executed it using multiple cores to un-

Chapter 5 Performance Evaluation Studies 157

Figure 5.30: Distribution of RNA sequences according to sequence length

16%	

1%	

80%	

3%	

Distribu(on	
 of	
 sequence	

Gutell	
 Lab	
 CRW	

Nucleic	
 Acid	
 Database	

RCSB	
 Protein	
 Data	
 Bank	

Sprinzl	
 tRNA	
 Database	

Figure 5.31: Distribution of RNA sequences according to source

Chapter 5 Performance Evaluation Studies 158

0.000	

0.002	

0.004	

0.006	

0.008	

0.010	

0.012	

0.014	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Number of cores

Execution time (RNA length ≤ 20)

4	

8	

10	

12	

13	

14	

15	

16	

17	

18	

19	

RNA
length

Figure 5.32: Performance of MARSs on Intel - Sequence length < 20 Nucleotides

derstand the performance gain / loss. As expected, for shorter sequences adding

more computing power does not increase the performance, instead results in loss

of performance. For longer sequences, adding more computational cores results in

significant performance gain. Based on our observations we split the results into

three graphs as the run-times range from 0.003 seconds to over 12000 seconds.

Figures 5.32, 5.33 and 5.34 shows these trends. From Figure 5.32 it can be seen

that initially the execution times increases when more computing cores are added

before it settles down to a fixed band. This is because adding a second thread in

an independent core consumes system time and does not positively contribute to

algorithmic runtime.

We again use the two terms - Speedup and Incremental Speedup - to help us to

measure the performance gain between a single-core system and an ‘n’ core multi-

core system. To recall, Speedup is defined as the performance of the algorithm in

a single-core system vs. ‘n’ cores. The ideal speedup is ‘n’ for a ‘n’ core system

and is always measured against the absolute value of ‘1’ or single-core system.

Chapter 5 Performance Evaluation Studies 159

0	

1	

2	

3	

4	

5	

6	

7	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Number of cores

Execution time (20 ≤ RNA length ≤ 100)

30	

40	

50	

60	

70	

80	

90	

100	

RNA
length

Figure 5.33: Performance of MARSs on Intel - Sequence length (20 < 100) Nu-
cleotides

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Number of cores

Execution time (RNA length ≥ 100)

150	

200	

250	

300	

350	

408	

494	

499	

500	

545	

RNA
length

Figure 5.34: Performance of MARSs on Intel - Sequence length > 100 Nucleotides

Chapter 5 Performance Evaluation Studies 160

In contrast, incremental speedup refers to the performance gain that is obtained

by adding one more processing element to the existing set of processors. We

computed both of these measures for our dataset as given in Figures 5.35 and

5.36. From Figure 5.35 it can be seen for shorter sequences the speedup is low

and even negative. This is because the creation of additional thread consumes

time but is probably not required or used for such shorter sequences. From Figure

5.36, improvement in execution time decreases as the number of cores increases.

This is expected because of the concept of diminishing return, where the overall

execution time is improved at a decreasing rate with an increasing number of cores.

Another key observation is that marginal improvement is less than 10% or even

near to 0% when running at 9, 10 and 11 cores with a sequence length more than

100. This means that sequences running at 8 cores will gain very little or even

no improvement in execution time with an additional core. This suggests that it

is likely to be optimal when sequences of length more than 100 are running at 8

cores.

In UMA architecture such as Intel x64, it is possible to have task parallelism using

either a multi-process or multi-thread model. The difference being in a multi-

process model, each task runs in its own address space and does not share data such

as global variables by default; privileged system primitives are required for data

exchange. In a multi-threaded model all the threads run in the same address space

and are able to share data more easily. At the same time, in a multi-process model

each process can use up to 4GB in virtual memory size for 32bits. Conversely, in a

Chapter 5 Performance Evaluation Studies 161

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

0	
 50	
 100	
 150	
 200	
 250	
 300	
 350	
 400	
 450	
 500	
 550	
 600	

Sp
ee

d
up

RNA sequence length

Speed up for different number of cores

2	
 core	

3	
 core	

4	
 core	

5	
 core	

6	
 core	

7	
 core	

8	
 core	

9	
 core	

10	
 core	

11	
 core	

12	
 core	

Figure 5.35: Performance of MARSs on Intel - Speedup

-­‐50	

-­‐40	

-­‐30	

-­‐20	

-­‐10	

0	

10	

20	

30	

40	

50	

60	

0	
 100	
 200	
 300	
 400	
 500	
 600	

In
cr

em
en

ta
l i

m
pr

ov
em

en
t i

n
ex

ec
ut

io
n

tim
e

(%
)

RNA sequence length

Incremental Speedup in execution time

2	
 core	

3	
 core	

4	
 core	

5	
 core	

6	
 core	

7	
 core	

8	
 core	

9	
 core	

10	
 core	

11	
 core	

12	
 core	

Figure 5.36: Performance of MARSs on Intel - Incremental Speedup

Chapter 5 Performance Evaluation Studies 162

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

69	
 73	
 74	
 77	
 98	
 118	
 119	
 120	
 121	
 141	
 188	
 192	
 217	
 222	
 226	
 233	

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

RNA	
 sequence	
 length	

Comparison between Process and Thread model - 1 core

Process	
 Model	

Thread	
 Model	

Figure 5.37: Performance of Multi-Process Vs. Multi-Thread Model - 1 core

multi-threaded model all the threads in total use 4GB of virtual memory. In order

to evaluate the best model for MARSs we did a simple test using sufficiently long

sequences on a single-core and four-core setup. The results are shown in Figures

5.37 and 5.38. Finally, we measure the prediction accuracies of MARSs/Intel using

three metrics of PPV, Sensitivity and BP distance as defined in Section 4.11. We

used a simple thermodynamic model and the results for the dataset up to sequence

of length 63 nucleotides, the average sequence length, are shown in Figures 5.39,

5.40, and 5.41. This shows that MARSs is rather accurate in predicting structures

and at the same time can adopt a new & updated thermodynamic models in the

future as well.

Chapter 5 Performance Evaluation Studies 163

0	

20	

40	

60	

80	

100	

120	

140	

69	
 73	
 74	
 77	
 98	
 118	
 119	
 120	
 121	
 141	
 188	
 192	
 217	
 222	
 226	
 233	

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

RNA	
 sequence	
 length	

Comparison between Process and Thread model - 4 cores

Process	
 Model	

Thread	
 Model	

Figure 5.38: Performance of Multi-Process Vs. Multi-Thread Model - 4 core

1	

10	

100	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

PP
V	

(%

)	

RNA	
 sequence	
 length	

PPV	
 of	
 MARSs	

Figure 5.39: Prediction Accuracy of MARSs - PPV

Chapter 5 Performance Evaluation Studies 164

1	

10	

100	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

Se
ns
i&
vi
ty
	
 (%

)	

RNA	
 sequence	
 length	

Sensi&vity	
 of	
 MARSs	

Figure 5.40: Prediction Accuracy of MARSs - Sensitivity

1	

10	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	

BP
	
 d
is
ta
nc
e	

RNA	
 sequence	
 length	

BP	
 distance	
 of	
 MARSs	

BP	
 Distance	

Figure 5.41: Prediction Accuracy of MARSs - Base Pair Distance

Chapter 5 Performance Evaluation Studies 165

5.9 PKNOTS on IBM Cell

In this section we describe our efforts into parallelizing PKNOTS on the IBM Cell

architecture. We use wavefront parallelization technique for this purpose. Wave-

front parallelization is a technique for exposing hidden parallelism in dynamic pro-

gramming algorithms. The formulation analyzes the set of equations characteristic

to the algorithm and suggests a suitable parallelization scheme, which allows the

algorithm to be ported to a parallel architecture.

DP solves problems by first recursively evaluating their sub-problems. The com-

plete set of sub-problems to be enumerated can be organized as a Directed Acyclic

Graph (DAG) shown in Figure 5.42. Each sub-problem is represented by a node in

the graph, and every directed edge A→ B indicates that sub-problem B requires

the result of A for computation.

The entire set of sub-problems, denoted S, is a partially ordered set. This implies

that any two sub-problems in S can either be computed independently (given that

their ancestors1 have already been evaluated) or not. The latter is only true if one

sub-problem is an ancestor of the other.

A parallelization scheme would have to partition S into subsets gi such that el-

ements within gi are pairwise independent. Parallelization can then proceed by

computing elements within gi in parallel. Note that there might exist several

partitions for S (refer to Figure 5.42).
1A is an ancestor of B if there exists a path in the DAG from A to B.

Chapter 5 Performance Evaluation Studies 166

g
0

g
1

g
2

g
3

(a)

g
0

g
1

g
2

g
3

(b)

Figure 5.42: Two different partitions for a DP problem organized as a DAG

Chapter 5 Performance Evaluation Studies 167

Table 5.2: A partial extract of profiling results running alphamRNA through PKNOTS.

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls Ks/call Ks/call name
70.20 1396.27 1396.27 773517237 0.00 0.00 IntizeScale
26.55 1924.26 527.99 6664923 0.00 0.00 FillWHX
0.93 1942.67 18.41 6664923 0.00 0.00 FillYHX
0.84 1959.41 16.74 6664923 0.00 0.00 FillZHX
0.65 1972.33 12.92 5778 0.00 0.00 FillVX
0.28 1977.90 5.57 6664923 0.00 0.00 FillVHX
0.22 1982.20 4.30 5778 0.00 0.00 FillWX
0.21 1986.41 4.21 5778 0.00 0.00 FillWBX
0.01 1988.74 0.19 1 0.00 17.49 FillMtx

5.9.1 Algorithmic Analysis

The run-time of PKNOTS is analyzed using the GNU Profiler, the results of which

are given in Table 5.2. Functions that have single-input single-output behavior

(IntizeScale) are manually inlined. Indeed, the functions which contribute to the

O(n6) run-time complexity of PKNOTS (FillWHX, FillYHX, FillZHX, FillVHX)

accounts for the bulk of the computation time. The routines which run in O(n5)

(FillVX, FillWX, WBX) contribute to the remaining runtime.

By parallelizing the code section that consumes the most amount of time, maxi-

mum speedup can be achieved. Hence, the parallelization efforts as explained in

this chapter shall focus entirely on the gap matrices, that support the cost matrix

functions which runs in O(n6) time.

Chapter 5 Performance Evaluation Studies 168

5.9.2 Hardware Platforms

PKNOTS is ported to two multi-processor platforms. The first is the PlayStation

3 (abbreviated PS3) featuring the IBM Cell Broadband. The PS3 has 1 PPE2,

6 SPEs3, processor speed 3.2 GHz and 256 MB memory. The PS3 runs on the

Yellow Dog Linux 6.1 with kernel version 2.6.23-9.ydl6.1. The second platform

is the IBM Cell Blade Server consists of 2 PPE and 16 SPEs, processor speed

3.2 GHz and 8 GB memory. The server runs on Fedora 12 with kernel version

2.6.31.12-174.2.22.fc12.ppC54.

5.9.3 Implementation Method

The IBM Cell Software Development Kit v3.1 is used to port PKNOTS to the PS3

platform with O3 optimization enabled. Parallelizing the code for the IBM Cell

platforms is less straightforward as the SPEs does not have direct access to the

main memory. As such, programming requires managing each local store within

every SPE, as cache using software. This would mean double buffering, which

allows computations and memory transfers to be executed in parallel.

A total of 140 RNA sequences, drawn from two databases, are used to bench-

mark the parallelized algorithms. The first consists of 49 sequences found under

the PKNOTS software Demo/ directory provided within the pknots-1.05 software

repository. The second consists of 90 sequences from the on-line repository Pseu-
2PowerPC Processing Element
3Synergistic Processing Element

Chapter 5 Performance Evaluation Studies 169

doBase [12]. Both contain sequences, which are found to have naturally occurring

pseudo-knotted secondary structures. Structures with more than 133 nucleotides

are omitted from running on the PS3 due to limited physical memory on the

platform.

The sequences are analyzed by running the sequential program and the paral-

lelized versions on varying numbers of cores. The command line parameters used

for running PKNOTS are -c -k -t, which instructs the program to analyze the

sequences for pseudo-knotted and co-axial structures with trackback output.

5.9.4 Performance Results & Discussions

Sony PS3

The average speedup factor of analyzing the nucleotide sequences on varying num-

bers of SPEs are shown in Figure 5.43. The maximum speedup efficiency attainable

(from 2 to 6 SPEs) are as follows: 97%, 92%, 86%, 80% and 72%.

It can be seen that wavefront parallelization yields reasonably good speedup ef-

ficiencies for the range of nucleotide lengths used in our experiments. This is

because the architecture features an efficient EIB4, which allows memory access to

be serviced at a high rate. Therefore, this architecture does not suffer too much

from excessive bus contention, which is evident on the x86-64 machines.
4Element Interconnect Bus

Chapter 5 Performance Evaluation Studies 170

20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5

4

4.5

Nucleotide length

P
ar

al
le

l
sp

ee
du

p
 f

ac
to

r

Plot of parallel speedup factor versus nucleotide length (PS3)Plot of parallel speedup factor versus nucleotide length (PS3)Plot of parallel speedup factor versus nucleotide length (PS3)Plot of parallel speedup factor versus nucleotide length (PS3)

2 SPEs

3 SPEs

4 SPEs

5 SPEs

6 SPEs

Figure 5.43: PKNOTS speedup graph on the PS3 machine.

PowerXcell 8i Blade Server

Unlike the inverted-U phenomenon that is found on the x86-64 system, the perfor-

mance of the parallelized PKNOTS does not suffer from bus contention for long

sequence analysis. This is attributed to a highly efficient EIB, which allows fast

memory service rates. Figure 5.44 shows the parallel speedup graph on the blade

server.

Chapter 5 Performance Evaluation Studies 171

Figure 5.44: PKNOTS speedup on the Blade server.

5.10 MARSs on IBM Cell Broadband Engine

In this section, we describe the efforts we have put in developing MARSs on IBM

Cell Broadband Engine architecture. IBM Cell is heterogeneous processor archi-

tecture (and unlike our other two architectures) needs special system-level software

development to take full advantage of the architecture. More specifically, the Power

Processing Unit (PPU) and Synergistic Processing Unit (SPU) are based on dif-

ferent Instruction Set Architectures (ISA). Therefore, for any routine to execute in

both of the processing elements, it needs to be compiled differently. At the same

time, it is a standard & good practice to run the administrative code in the PPU

while executing the CPU-bound code in the SPUs. Towards this end, we archi-

Chapter 5 Performance Evaluation Studies 172

tected our application so that sub-routines that enumerate base-pairs - symmetric

folding, asymmetric folding first, asymmetric folding best - are executed on the

SPU while the Level 1 and Level 2 root tasks along with watch dog monitor tasks

execute on the PPU.

5.10.1 Handling Space Complexity

Our first challenge in bringing MARSs to Cell is to adapt the implementation to

fit the constraints of the SPU. More specifically, SPU has a limited local storage of

size 256KB. This storage space is to be shared between code and data. In MARSs,

the size of the Affinity Matrix is dependent on the primary sequence length ‘n’

and therefore either we have to limit the size of the input sequence or adapt the

implementation to accommodate this restriction transparently. Without consider-

ing any code, the max length of primary sequence can be 512. We instead have

designed and implemented an auto-tiling scheme that makes available necessary

parts of the affinity matrix to the SPUs. In this scheme, the affinity matrix is

split into square tiles of fixed size. In our implementation, we choose a tile size of

32x32. Using 64bits per value this could use up to 8K of memory leaving out the

rest for code and program data. However, as more tiles are transferred from SPUs

to PPEs this could result in increased latency and leave SPUs idle. Therefore, we

implemented a second efficiency-improving scheme that would use less space and

therefore save bandwidth. Each of the matrix elements that is 64 bits in size is

replaced with 4 bits pointing into the lookup table of base-pair matrix for corre-

Chapter 5 Performance Evaluation Studies 173

sponding base-pair affinity values. By this way, the total space required for a tile

of 32x32 dimension is only 0.5K instead of 8K. This data size reduction scheme

works well for our simple thermodynamic model. Other thermodynamic models

that have more than 16 values can be indexed with higher number of bits, say

8 bits that can index 256 values. Using the above two methods, we are able to

effectively work around the SPU memory size constraints. These methods can be

classified under data parallelism.

5.10.2 Handling Task Parallelism & Scheduling

IBM Cell is a multi-core processor like Intel Xeon that we have used in our exper-

iments. At the same time, unlike Intel Xeon where each core has full accessibility

to the main and secondary memories, Cell’s SPUs cannot directly access either

of the memories and the I/O interface. This architecture requires DMA (Direct

Memory Access) to be performed to load both the code and data to each of the

SPUs. As the number of SPUs can vary between systems - 6 in Sony PS3, 8 in

Cell and 16 in a PowerXcell blade server - there is a variable amount of latencies

when using round robin scheduling with barrier synchronization. For most prac-

tical applications, this latency is not an issue due to the presence of high-speed

communication bus EIB (Element Interconnect Bus) that connects all the SPUs

and PPU. We endeavor to test the performance of Cell for our HPC algorithm

MARSs.

MARSs has been structured so that the Level 1 and Level 2 root tasks act as an

Chapter 5 Performance Evaluation Studies 174

admin and runs in the PPE. The 3 base-pairing routines are compiled as individual

SPE programs. During startup, MARSs using system commands finds out how

many SPUs are accessible to itself. This is then used in the scheduler routine to

schedule concurrent tasks to the SPUs in a round-robin fashion. MARSs also slices

up the affinity matrix into tiles of 32x32 dimensions and transfers the required data

along with the code to the SPUs. During one execution cycle, the admin task in

PPE provides each of the SPEs with an address in main memory from which to

fetch the code and data; each of the SPUs then initiates memory transfers to

themselves. We found this model to perform better instead of the PPE providing

each of the SPEs required information in a single-threaded fashion. After the

computation, each of the routines transfers back the results to the main memory

and notifies the PPU of task completion. It can be observed we use shared memory

interface for synchronization of tasks. There is also a need to use barrier style

synchronization as each of the SPUs potentially can be working on different tasks.

For example, we deploy 3 different base-pairing routines to 3 SPUs and then have

to wait for all the results before deciding the best base pairs. Therefore, while the

PPU task is waiting for all the SPUs to finish, there is an unavoidable & variable

amount of idle time at each of the SPUs. It is apparent that we use task parallelism

as well.

Chapter 5 Performance Evaluation Studies 175

5.10.3 Performance Results & Discussions

Our experimental dataset in Cell comprises of around 1000 RNA real sequences

from various RNA databases with known secondary structures containing both

pseudoknots and non-pseudoknots. The sequences in the dataset are from few

nucleotides to few hundreds nucleotides giving us the size diversity as well. Each

of the sequences were tested using 1 to 16 SPUs for performance measurements

resulting in 16,000 data points. Our first analysis is to understand the performance

gain (or loss) by using multiple SPUs for sequences of diverse varying length. For

this experiment, we used a subset of sequences with sequence lengths 8 to 154

nucleotides in length. As the performance metrics varies from a few seconds for

shorter sequences to a few hundred seconds for longer sequences we split the chart

into two, one for sequences below 32 nucleotides that show different runtime pat-

tern and one above 32 nucleotides that shows a different runtime pattern. These

are shown in Figures 5.45 and 5.46. As can be seen in Figure 5.45, the perfor-

mance for shorter sequences actually falls i.e., runtime increases on adding more

SPUs to the processing pool. This is because when there are SPUs the scheduling

sub-system has to wait for all of them to finish before a new set of jobs can be

assigned. As the length of the sequences is rather short, the SPUs finish the tasks

quickly and are idle for longer time periods. More specifically, the communication,

synchronization, and administrative overhead is more than the performance gains

for shorter sequence with more SPUs. In contrast, in Figure 5.46 it can be ob-

served that for sequences longer than 32 nucleotides there is positive performance

Chapter 5 Performance Evaluation Studies 176

Figure 5.45: Performance of MARSs on Cell for sequence lengths < 32

gain i.e., shorter run-times as the sequence length increases. In this case, the per-

formance gain is more than the total overheads and we witnessed the trend to

continue for the rest of the sequences in our collections. Using these runtimes we

computed the speedups for sequences with lengths above 32 from 2 SPUs to 16

SPUs. The speedups are shown in Figure 5.48 and from the figure it can be seen

that the speedup varies between 2 and 13. The dataset comprises of sequences

from 32 nucleotides to 320 nucleotides.

Next, we measure the amount of time the PPU is idle. We define the ‘PPU idle

time’ to be the sum of times within all execution cycles the PPU is idle. This

includes the time when the PPU (after assigning a task to SPU) is waiting for

SPU to do DMA transfer, when the SPU is performing the task and PPU waiting

for all SPUs to finish the assigned tasks before another round of tasks can be

assigned. We instrumented the binaries to compute the values and again split

Chapter 5 Performance Evaluation Studies 177

Figure 5.46: Performance of MARSs on Cell for sequence lengths > 32

the graph into two - for sequences less than and greater than 32 nucleotides. We

take representative samples within these two categories and show them in Figures

5.47 and 5.49. From Figure 5.47 it can be observed that for shorter sequences the

PPU idle times initially falls and then rapidly increases. This hints at an optimum

number of SPUs for a sequence of given length. In general, it can also be seen

that a sequence with length 19 has a longer idle time in PPU compared with a

sequence of length 8 nucleotides. In contrast, Figure 5.49 shows the PPU idle time

for sequences from 32 nucleotides in length to 192 nucleotides. It can be seen that

the PPU idle times follows a rapid downward exponential curve as the length of

the sequence increases. We have also computed the percentage of the PPU idle

time in the total runtime for sequences of various lengths and for different number

of SPUs. This helps us to understand the actual amount of time the PPU is idle

for MARSs on IBM Cell. This is shown in Figure 5.52. From the figure, many

Chapter 5 Performance Evaluation Studies 178

Figure 5.47: MARSs on Cell - PPU Idle Time for Sequence Lengths < 32

interesting trends can be observed. First, the percentage of PPU idle time is never

more than 1% of time for all the sequences that we have tested and this is indeed

good. Second, for each of the sequences, the idle time monotonically decreases as

the number of SPUs increases. Third, the percentage of idle time monotonically

increases for longer sequences for every SPU configuration. Overall, the nominal

value of 1% idle time is acceptable.

C
hapter

5
Perform

ance
Evaluation

Studies
179Figure 5.48: Performance of MARSs on Cell - Speedup Figure 5.49: MARSs / Cell - PPU idle time for seq. len. > 32

C
hapter

5
Perform

ance
Evaluation

Studies
180

Figure 5.50: MARSs on Cell - SPU Overhead Time Figure 5.51: MARSs on Cell - SPU DMA Time

Chapter 5 Performance Evaluation Studies 181

Following this, we examined the wait times from the SPU perspective. We call this

SPU overhead and is the summation of idle times when the SPU is not doing any

task. For shorter sequences & fewer SPUs the total idle time is less and is more

for more SPUs & shorter sequences. For longer sequences & few SPUs the wait

time is lower but the runtime will be higher as well. For longer sequences & more

SPUs the idle times will be less. We used a dataset of sequences with sequence

lengths up to 300 nucleotides and measure the SPU idle times. This data is shown

in Figure 5.50. It can be seen that a distinct hump pattern occurs for sequences of

increasing length and using progressively more SPUs. We also measure the amount

of time spent from the SPU side to fetch the affinity matrix slices. This is shown

in Figure 5.51 and from the figure it can be seen that the time spent increases

with longer sequences. In addition, a distinct pattern occurs periodically. This is

linked to the tile size of 32x32 and repeats at multiples thereof.

Finally, we measured the performance of MARSs from a quality perspective and the

results were the same as with MARSs on Intel as given in Section 5.8. Therefore,

we choose not to repeat it here.

5.11 Inferences from our Performance Evalua-

tion Studies

In this section, we discuss on the various trends from our six experiments conducted

as part of this research study. The objective is to summarize & discuss the results

Chapter 5 Performance Evaluation Studies 182

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

PP
U
	
 Id

le
	
 (
m
e	

/	

To

ta
l	
 R

un
(m

e	

No.	
 of	
 SPUs	

MARSs	
 on	
 IBM	
 Cell	
 -­‐	
 PPU	
 idle	
 (me	
 as	
 a	
 percentage	
 of	
 total	
 run	
 (me	

Seq	
 len	
 4	

Seq	
 len	
 10	

Seq	
 len	
 20	

Seq	
 len	
 30	

Seq	
 len	
 40	

Seq	
 len	
 50	

Seq	
 len	
 60	

Seq	
 len	
 70	

Seq	
 len	
 80	

Seq	
 len	
 92	

Seq	
 len	
 104	

Seq	
 len	
 116	

Seq	
 len	
 120	

Seq	
 len	
 130	

Seq	
 len	
 140	

Seq	
 len	
 150	

Seq	
 len	
 160	

Seq	
 len	
 176	

Seq	
 len	
 188	

Seq	
 len	
 192	

Seq	
 len	
 222	

Figure 5.52: MARSs on Cell - Percentage of PPU Idle time / Total Runtime

from the various experiments we have conducted.

Dynamic Programming based algorithms such as PKNOTS, when parallelized effi-

ciently, benefits from executing on auto-scaling platforms like Google App Engine

(GAE). The advantage of using GAE is that it is able to scale to input sequences

of arbitrary length, by automatically allocating additional parallel compute in-

stances. At the same time, in the current version, the time taken is on the higher

side. We believe that this is just a transition as more efficient system primitives

are being developed on the GAE platform. These include background instances,

faster instances, higher RAM allocations, workflow APIs, and mapreduce APIs.

Using these newer methods, we believe the runtimes can be reduced by a large

extent. We have also shown that algorithms that are parallelized-by-design, such

as MARSs, is able to scale on the GAE easily and produce better results, in the

Chapter 5 Performance Evaluation Studies 183

same platform release that we tested PKNOTS. This emphasizes the point that

all new algorithms should consider scalability as part of the design process rather

than as an after thought.

From our second set of experiments on the Intel x64 architecture, we can see both

similar (as with GAE) and distinct trends. The computational speedups of DP

based algorithm PKNOTS is significantly lower than the speedups for parallel-

by-design algorithm MARSs. This is similar to our observation from the GAE

experiments, where the runtimes of MARSs was superior to PKNOTS. The distinct

trend that we observe here is that even with a faster CPU (when compared to

GAE instances CPU speed), the performance could not be raised significantly. The

performance bottleneck is in other parts of the system architecture, like multi-level

caches that result in frequent cache flush & fetch and bus speeds & availability.

The main observation being that the limited system resources (CPU, RAM) limits

the length of input sequence that can be processed.

From our third set of experiments on the IBM Cell architecture, we can again

see similar trends with Intel x64 architecture and unique trends. The speedups

of the PKNOTS algorithm is generally less than the MARSs algorithm and this

is expected. At the same time, we don’t see the bell or hump curved that we

observed on the Intel architecture. We believe this is because of the superior system

architecture of this platform and the presence of both high-speed interconnecting

bus and a dedicated DMA controller. All these system capabilities computed

together resulted in better performance for both MARSs and PKNOTS with the

Chapter 5 Performance Evaluation Studies 184

former gaining more.

In summary, in this chapter we present extensive results from our large-scale ex-

periments. We infer that an auto-scaling architecture with practically infinite

resources is promising and will be better suited for HPC-type workloads with at

least the recommended updates. We also infer that a specialized architecture like

IBM Cell outperforms a generic architecture like Intel x64 for HPC class work-

loads. However, limited system resources in both of these systems limits the size

of the inputs that can effectively be removed if the algorithms are designed in such

a way that they only process a part of the input rather than the entire problem.

185

Chapter 6

Conclusions and Future work

In this chapter, we conclude our research and summarize the contributions de-

scribed in the earlier chapters. We also provide some thoughts for future enhance-

ments and improvements.

The computing capabilities offered by High Performance Computing (HPC) systems

are being effectively used to solve complex scientific problems in multiple domains

including the bioinformatics domain. The large-scale nucleotide sequencing initia-

tives undertaken by many biological labs across the world is producing more and

more DNA/RNA sequence data. Determining the secondary and tertiary struc-

tures of all these sequences using biophysical methods is prohibitively expensive

(time & cost). Therefore, there is a strong need for computational algorithms to

play a leading role in predicting the higher-order structures of the sequences.

During the last decade of the 20th century the performance scaling of the structure

Chapter 6 Conclusions and Future work 186

prediction algorithms was largely dependent on the performance gains of the single

CPUs. During the last decade however, chip manufacturing has hit many physical

limits such as thermal wall, memory wall and frequency wall. Due to this, the

performance gains in the new generation of CPUs are no longer being realized

through higher CPU frequencies; instead they are being realized through parallel

computing i.e., increasing the number of parallel computing cores on a single die

and adding multiple processors. At the time of writing this thesis, the maximum

number of processing cores in a general-purpose CPU is 8 (AMD Bulldozer) while

it is 512 on a GPU (Nvidia Fermi). Existing computational algorithms needs to

be redeveloped (not just ported) to take full advantage of this new-generation of

HPC systems. In addition, newer computational algorithms that are multi-core

aware by design needs to be developed. Along with the multi-core CPU revolution,

another upcoming & promising computing paradigm is cloud computing.

This trend of both multi-core and cloud computing required an in-depth analysis

of algorithmic performance of both existing and new algorithms. Therefore, we

believe the contributions of this thesis to be timely and useful to the scientific

community who are either evaluating the different architectures for use in their

studies or who need to know the performance benchmarks and therefore the system

limits of one of the architectures that we have studied in depth.

There are two primary contributions of this thesis. First, we parallelized an exist-

ing RNA secondary structure prediction algorithm in three different HPC archi-

tectures. Second, we have developed a new parallel algorithm that is multi-core

Chapter 6 Conclusions and Future work 187

aware for RNA secondary structure prediction and optimized it for the three HPC

architectures. Following this, we have performed large-scale experiments using

both these algorithms on three different HPC architectures and studied their per-

formance trends both within and across the architectures. We believe our work is

the first of its kind to do a large-scale comparative analysis across three different

HPC architectures in a single experimental study. Both of our contributions have

been peer-reviewed by the academic community and subsequently published in

leading conferences and journal.

6.1 Major Contributions

Our first major contribution is the parallelization and performance evaluation with

characterization of the PKNOTS algorithm. We studied the algorithm from the

design perspective and unraveled the dynamic programming recursions using the

reference implementation. Following this, we developed optimized versions of the

algorithm for three industry-leading HPC system architectures. Large-scale exper-

iments using hundreds of RNA sequences were conducted on varying configurations

of the HPC systems. Thousands of performance runtime data points were collected

and using them we generated the algorithmic performance trends on different HPC

architectures. We pushed the limits of the HPC systems to its maximum to observe

the system’s behavior under high workload stress.

Our second major contribution is the design and development of a new RNA

Chapter 6 Conclusions and Future work 188

secondary structure prediction algorithm. Using our experience of parallelizing

PKNOTS on various architectures, we developed this new algorithm MARSs.

MARSs has been designed to exploit the explicit parallelization provided by to-

day’s multi-core architecture. It uses task-based parallelization and optimized ver-

sions of the software have been developed for both homogenous and heterogeneous

multi-core architectures. The algorithm is agile by design and this property helped

to move the algorithm to GAE. Again, large-scale experiments were conducted and

the performance trends were studied.

This thesis has contributed the following to the parallel computing domain

1. The challenges that needs to be overcome while parallelizing an existing HPC

algorithm on parallel computers

2. Performance trends of parallelized DP algorithms on homogeneous, hetero-

geneous and cloud-based parallel architectures

3. Performance trends of the parallel-by-design MARSs algorithm on homoge-

neous, heterogeneous and cloud-based parallel architectures

6.2 Future Work

Using the experience gained from this research, we suggest certain future work

that can be done to both enhance and improve on our contributions. We classify

them as shorter-term enhancements and longer-term improvements based on the

Chapter 6 Conclusions and Future work 189

type & amount of work needed.

6.2.1 Short-term Enhancements

At the time of our experiments, the version of Python SDK on the Google App En-

gine (GAE) was 1.4.3. As of March 27 2012, Google has upgraded the Python SDK

to version 1.6.4 and has added several new features. Some of the new features such

as “Backend Instances” and “Pull-up Task Queues” have the potential to improve

the performance of HPC applications. In addition, Google is currently adding sup-

port for RDBMS style datastore, unlimited storage and many more HPC-friendly

features. As a shorter-term enhancement both MARSs and P-PKNOTS can take

advantage of this newer features for better performance gains.

In our experiments on Intel x64 and IBM Cell Broadband Engine we used the

generic Linux kernels that shipped with the respective Linux distributions. It

would be interesting to switch the kernels with their low-latency and real-time

variants and the experiments redone to observe the performance gains.

6.2.2 Long-term Improvements to MARSs Algorithm

MARSs does not currently use any heuristics in the prediction process. It is known

that heuristics can speedup the evaluation of sub-structures in practice. One way

to do this, is for every folding to keep track of the most stable structure of any

of its subsequences using lookup tables. This can then be used as a reference to

Chapter 6 Conclusions and Future work 190

reduce or even eliminate the evaluation of future similar sub-sequences, as it is

evident that they cannot be more stable than the most stable structure closed by

that base pair found so far.

MARSs currently aims to predict accurate secondary structures. As MARSs eval-

uates large number of alternate structures at multiple stages, it could be beneficial

to switch to approximate intermediate structure predictions from a time complex-

ity perspective.

GPU is one of the alternate HPC architectures and was beyond the scope of this

thesis. It would be interesting to develop & optimize MARSs for a leading HPC

architecture such as Nvidia Fermi and study the performance trends. Along the

same lines it would be interesting to debate on the suitability of MARSs for the

upcoming Petascale computing.

In summary, single-package multi-core architectures is the latest addition to the

HPC arena and will be used more often in scientific computing fields such as

bioinformatics. We plan to continue our research work in this domain for the next

couple of years.

191

Appendices

192

Appendix A

Google App Engine

Google App Engine (GAE) is a scalable cloud-hosted platform built & maintained

by Google and delivered as PaaS (Platform As A Service) to the software devel-

opers. GAE is built using redundant data centers located around the globe and

the developer sees it as one global platform. The application developer is pro-

vided with a secure sand-boxed & optimized language runtime. Hence it is easy to

build, maintain and scale the applications. Everything under the runtime, namely

the operating system (OS), software, patches, backup, hardware, networking is

maintained by Google transparently.

From a GAE-hosted application‘s perspective, the various system components like

CPU, Memcache, and non-volatile storage are exposed as services through well-

defined APIs (Application Programming Interfaces). Any application that needs

these services should request them by invoking the respective APIs. By this way,

Chapter A Google App Engine 193

GAE makes it very easy to build an application that runs reliably, even under

heavy load and with large amounts of data. Google App Engine includes the

following features

• Dynamic web serving, with full support for common web technologies

• Persistent storage with queries, sorting and transactions

• Automatic scaling and load balancing

• APIs for authenticating users and sending email using Google Accounts

• A fully featured local development environment that simulates Google App

Engine

• Task queues for performing work outside of the scope of a web request

• Scheduled tasks for triggering events at specified times and regular intervals

GAE applications can run in one of three runtime environments: the ‘Go’ envi-

ronment, the Java environment, and the Python environment. Each environment

provides standard protocols and common technologies for web application devel-

opment. Our application is developed in the Python programming language and

hence uses the python environment. The following are some of the major features

of Google App Engine that we use in our application.

The Sandbox Applications run in a secure environment that provides limited

access to the underlying operating system. The sandbox isolates the ap-

Chapter A Google App Engine 194

plication in its own secure, reliable environment that is independent of the

hardware, operating system and physical location of the web server. These

limitations allow App Engine to distribute web requests for the application

across multiple servers, and start & stop the servers to meet traffic demands.

Python Runtime The Python runtime environment uses Python version 2.5.2.

It supports the Python standard library except for a few features that will

defeat the sandbox like opening direct network connections to other com-

puters, sockets to non-standard ports. In addition, the python environment

provides rich Python APIs for the datastore, Google Accounts, URL fetch,

and email services. App Engine also provides a simple Python web applica-

tion framework called webapp to make it easy to start building applications.

The compiled python application code is cached for rapid responses to web

requests. External python libraries can be uploaded as long as they do not

violate the sandbox or require the unsupported python standard libraries.

Python extensions written in ‘C’ language are not supported.

Datastore Google App Engine provides a distributed data storage service that

features a query engine and transactions. The Appengine datastore is unlike

a traditional relational database. Data objects, or “entities”, have a kind

and a set of properties. Queries can retrieve entities of a given kind filtered

and sorted by the values of the properties. Several types of property values

are supported. Datastore entities are “schema-less”. The structure of data

entities is provided by and enforced by the application code. The datastore

Chapter A Google App Engine 195

is strongly consistent and uses optimistic concurrency control. The datastore

can be used with a SQL (Structured Query Language) like query language

called GQL (Google Query Language). Certain features of SQL such as

‘Join’, ‘LIKE’, ‘Not equal’, ‘OR’ are not supported by the datastore though.

Memcache The Memcache service provides the application with a high perfor-

mance in-memory key-value cache that is accessible by multiple instances of

the application. Memcache is useful for data that does not need the persis-

tence and transactional features of the datastore, such as temporary data or

data copied from the datastore to the cache for high-speed access.

Instances Appengine applications are web application by nature and therefore

execute in response to a web request from a client over the http/s protocol.

When a new request is received, the Appengine will either spin a new in-

stance or recycle an existing one. The number of concurrent instances at any

one time is determined by a scheduler that consider the rate at which web

requests are received, serviced and the application latency before a response

is sent to the client. The start-up time for an instance can be reduced by

using warm-up requests and also by using instance of type “always on”.

Task Queues An application can also perform work outside of responding to a

web request, using tasks. Tasks are small, discrete-units of code that are

scheduled using task queue APIs. Tasks are similar to ‘threads’ in POSIX

standard except that they do not share a single global namespace. The

application can perform tasks on a schedule that is configurable, such as

Chapter A Google App Engine 196

on a daily or hourly basis. Alternatively, the application can perform tasks

added to a queue by the application itself, such as a background task created

while handling a request. Background tasks created using the task queue API

can only run up to a maximum of 10 minutes. After this, the Appengine

scheduler will kill the task. In order to continue executing, the task needs to

queue another task and restart from where it left off. This is called as task

chaining. Recently, Google added a new type of background instance called

Backends that has no execution time limit. Backends are not covered here

as we have not used this feature in our software development.

System constraints The table A.1 lists the most common limitations of various

GAE system components at the time our experiments were conducted. The

SDK (Software Development Kit) version used was 1.4.3. These limitations

have direct impact on how an application can be structured in-order to run

it on GAE.

Chapter A Google App Engine 197

Table A.1: GAE System Constraints

HTTP/S request handlers

• Maximum 30 seconds runtime

• Request size - 10MB

• Response size - 10MB

Default Instances

• Maximum memory size 300MB

• CPU speed (variable), up to 1.2 GHz

• Run in separate namespace

Datastore

• Entity size limited to 1MB

• Higher latency compared to Memcache

• Datastore contention during simultane-
ous writes

Memcache

• Object size limited to 1MB

• Number of objects limited by (undis-
closed) capacity

• Objects may be deleted at anytime

Background Tasks

• 10 task queues for free apps

• Task object size limited to 10KB

• Maximum runtime of 10 minutes

198

Appendix B

Intel x64

A multi-core processor is a single computing component with two or more indepen-

dent actual processors (called “cores”), which are the units that read and execute

software instructions. In essence, a multi-core processor features multiple CPUs

in a single physical package. A multi-core processor may or may not share a single

cache.

Intel x64 is a 64-bit architecture and is an extension to the popular 32-bit x86

architecture and was originally invented by AMD and called AMD64. This ar-

chitecture allows the programs to easily refer to much larger virtual and physical

address space. Because the full 32-bit architecture remains implemented in the

hardware without any intervening emulation, existing 32-bit executable programs

will run with no compatibility and performance penalties.

The primary defining characteristic of AMD64 is the availability of 64-bit general-

Chapter B Intel x64 199

Table B.1: Intel System Specifications

Chip Architecture Intel x64
CPU Model E7450
CPU Clock speed 2.4Ghz
FSB Speed 1066MHz
No. Of Physical CPUs 2
No. Of Cores per CPU 6
Level ‘3’ Cache Size 12 MB
RAM Size 64 GB

purpose processor registers, 64-bit integer arithmetic & logical operations, and

64-bit virtual address space. In addition, the number of named general-purpose

registers is increased from eight (i.e. eax, ebx, ecx, edx, ebp, esp, esi, edi) in x86

to 16 (i.e. rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15)

in x64. It is therefore possible to keep more local variables in registers rather than

on the stack, and to let registers hold frequently accessed constants; arguments

for small and fast subroutines may also be passed in registers to a greater extent.

However, AMD64 still has fewer registers than RISC-based processors like CBEA,

which has 128 registers.

The machine used in this project consists of two physical processors of Intel®Xeon®Processor

E7450 with six independent cores each running at 2.4 GHz. Table B.1 shows the

major specifications of the processor.

200

Appendix C

IBM Cell Broadband Engine

Cell is a heterogeneous multi-core architecture and is the shorthand for Cell Broad-

band Engine Architecture, commonly abbreviated as either CBEA or Cell BE. Cell

combines general-purpose power architecture of modest performance with stream-

lined co-processing elements that greatly accelerates multimedia and vector pro-

cessing applications, as well as many other forms of dedicated computations.

The Cell processor can be split into four components: external input and output

structures, the main processor called the Power Processing Element (PPE) - a

two-way simultaneous multi-threaded Power ISA v.2.03 compliant core, eight fully

functional co-processors called the Synergistic Processing Elements, or SPEs, and

a specialized high-bandwidth circular data bus connecting the PPE, input/output

elements and the SPEs, called the Element Interconnect Bus or EIB.

PPE The PPE is Power Architecture based two-way multi-threaded core. The

Chapter C Cell Broadband Engine 201

PPE contains a 64 KB level 1 cache (32 KB instruction and a 32 KB data)

and a 512 KB Level 2 Cache. PPE is capable of producing 6.4 GFLOPS

double-precision calculations or 25.6 GFLOPS of single-precisions calcula-

tions at 3.2 GHz. However, PPE is usually used to run conventional operat-

ing systems and as a manager of SPEs.

SPE The Cell processor has 8 SPEs. An SPE is a RISC processor with 128-bit

SIMD organization for single and double precision instructions. The SPEs

contain a 128-bit, 128-entry register file. Each SPE is composed of a Syner-

gistic Processing Unit (SPU) and a Memory Flow Controller (MFC). Each

SPE contains a 256 KB SRAM for instruction and data called “Local Stor-

age”. The SPU cannot directly access the main memory; MFC has to set up

a DMA operation to retrieve the data from the main memory address space

to its local storage. At 3.2 GHz, each SPE gives a theoretical 25.6 GFLOPS

of single precision performance. For double-precision floating-point opera-

tions, Cell performance drops by an order of magnitude, but still reaches 20.8

GFLOPS (1.8 GFLOPS per SPE, 6.4 GFLOPS per PPE). The PowerXCell

8i variant, which was specifically designed for double precision, reaches 102.4

GFLOPS in double-precision calculations.

EIB The EIB is a communication bus internal to the Cell processor that connects

the various on-chip system elements: the PPE, the memory controller (MIC),

the eight SPE coprocessors, and two off-chip I/O interfaces. The EIB is

implemented as a circular ring comprising of four 16B-wide unidirectional

Chapter C Cell Broadband Engine 202

channels, which counter-rotate in pairs. EIB runs at half the system clock

rate and hence the effective channel rate is 16 bytes every two system clocks.

At maximum concurrency, the peak instantaneous EIB bandwidth is 96B

per clock (12 concurrent transactions * 16 bytes wide / 2 system clocks per

transfer).

Peripherals Cell contains a dual channel Rambus XIO macro, which interfaces

to Rambus XDR memory. The memory interface controller (MIC) is sep-

arate from the XIO macro. The XIO-XDR link runs at 3.2 Gbps per pin.

Two 32-bit channels can provide a theoretical maximum of 25.6 GB/s. The

I/O interface, also a Rambus design, is known as FlexIO. This provides a

theoretical peak bandwidth of 62.4 GB/s (36.4 GB/s outbound, 26 GB/s

inbound) at 2.6 GHz.

Limitations The Cell architecture emphasizes efficiency/watt, prioritizes band-

width over latency, and favors peak computational throughput over sim-

plicity of program code. For these reasons, Cell is widely regarded as a

challenging environment for software development.

Table C.1 shows the system specifications of the Cell blade server and the PS3.

Figure C.1 shows the Cell Processor Schematic. The Cell blade server has 8 SPEs

while the Sony PS3 has only 6 SPEs.

Chapter C Cell Broadband Engine 203

Table C.1: Cell System Specifications

PPE Architecture Power Architecture based dual-threaded core
PPU CPU Clock Speed GHz
Number of SPEs 8 in PowerXcell 8i, 6 in Sony PS3
PPE CPU Clock Speed GHz
PPE Local Storage Size 256KB

Figure C.1: Cell Microprocessor Schematic

204

Appendix D

A Brief History of Early Parallel

Computing Architectures

Industry & Academia have invented and evolved many different types of parallel

computing architectures - SMPs, Cluster Computing, Grid Computing and more

recently Multi-Cores. Each of these architectures have their strengths & weak-

nesses and pose unique challenges in software development.

D.1 Symmetric Multi-Processing

SMPs were the first to arrive in the scene of parallel computing space. SMP is

a computer hardware architecture in which two or more identical processors are

connected to the single shared main memory and are controlled by a single OS

Chapter D A Brief History of Parallel Computing Architectures 205

instance. SMP systems allow any processor to work on any task no matter where

the data is in the memory. This type of architecture where the data is equidistant

to all the processors is also known as uniform memory access.

The strength of this architecture is the ease of programmability as any given task

instance still runs on only one processor in the system at any given time. More

than one instance of the same task processing different data ranges can be executed

concurrently (up to the maximum number of CPUs) and simultaneously beyond

that with performance penalty. The weakness of the architecture is the scalabil-

ity. This affects both CPU-bound and IO-bound processes. Running significantly

higher number of CPU-bound processes than the available processors results in

performance degradation of all the processes as the OS needs to save/resume the

individual processes. For IO-bound processes, the memory bandwidth becomes

the bottleneck as processes compete amongst themselves to read/write to the main

memory. Ultimately, the memory bandwidth places the upper bound on the num-

ber of processors in a SMP system. This situation is made more complicated by

memory wall and frequency wall. Figure D.1 shows a schematic of a typical SMP

system.

D.2 Cluster Computing

Following SMPs, the next parallel computing architecture to be widely researched

and deployed is the cluster computing architecture. A computing cluster seeks

Chapter D A Brief History of Parallel Computing Architectures 206

SMP System

CPU
0

CACHE

CPU
1

CACHE

CPU
2

CACHE

CPU
n

CACHE

System Bus

Shared Main Memory IO
GPU +
Video

Memory

Single Processor
System

Figure D.1: Symmetric Multiprocessing Schematic

to make it possible to group together arbitrary number of processors as a single

computing system. The system architecture links multiple independent computing

nodes over a high-speed network backend. Each of the computing nodes can be

single-CPU or a SMP system running an instance of the same operating system.

One of the nodes serve as the head that distribute workloads to the rest of the com-

puting nodes known as the worker nodes. A computer cluster is usually built from

scratch and when assembled from COTS (Common Off The Shelf) components is

known as the Beowulf cluster.

The strength of this architecture is the ability to add arbitrary number of proces-

sors and distribute tasks among them. There are several weakness in this architec-

ture. First, the programming environment is challenging as the application design

Chapter D A Brief History of Parallel Computing Architectures 207

Headless
Worker Node

0

Headless
Worker Node

1

Headless
Worker Node

2

Headless
Worker Node

X

Head
Node with

Task
Scheduler

Low-Speed Private Administrative Network Bus

High-Speed Private Communication Network Bus

External
Interface

Cluster Computer

Figure D.2: Cluster Computing Schematic

needs to accommodate the communication requirements (and the associated com-

munication delay) between tasks running in multiple nodes. Second, unlike a SMP

where each processor has access to the entire main memory, a node in a computing

cluster is generally limited to the main memory within itself. Although it is pos-

sible to use remote main memories as extension to local main memory, practical

considerations like node-failure, data redundancy & migration, memory access-

latencies, cache-invalidation limits the practical usefulness of the same. Figure

D.2 shows a schematic of a typical computer clustered system.

D.3 Grid Computing

Closely related to cluster computing is grid computing. In the case of cluster

computing, the various computing nodes are tightly coupled and communicate

over dedicated high-speed communication channel and usually are composed of

homogenous nodes. A cluster computer is therefore suitable for HPC jobs. In

Chapter D A Brief History of Parallel Computing Architectures 208

contrast, a grid is an amalgamation of computing resources over a relatively slow

communication channel like internet. Grids are loosely coupled, heterogeneous

and widely dispersed. Therefore a grid is suited for jobs that run independently

of each other and communicate their results to a coordinating server.

The strength of the grid architecture is that the size can vary by a considerable

amount and within a short span of time. For example, SETI@Home project claims

to be the largest distributed computing project with over 3 million active users

or nodes. The major weakness of the grid computing is the non-uniformity of

the hardware & software on the computing nodes. Factors like CPU type, bus

speed, RAM size, network bandwidth & latency are highly variable limiting the

performance and size of the task that can be run on the nodes. On the software

side, each node is in a different administrative domain and may run different OS,

version as well. These factors make the grid computing unsuitable for applications

of HPC class. Figure D.3 shows a schematic of typical grid architecture.

D.4 Multi-core Computing

Multi-core processors is the latest HPC architecture to be invented. A multi-core

processor is a single computing component that has two or more actual processors

(or “cores”) integrated into a single integrated circuit die or onto multiple dies in

a single chip package.

Processors were originally designed to be single-cores. Two or more such processors

Chapter D A Brief History of Parallel Computing Architectures 209

Compute Node 1

Compute Node 3

Compute Node 4

Compute Node 2
Internet

Client

Grid Computing

Figure D.3: Grid Computing Schematic

Chapter D A Brief History of Parallel Computing Architectures 210

Multicore SMP System

CPU 1

System Bus

Shared Main Memory IO
GPU +

Video Memory

CPU core
2

CPU core
2

L3 Cache

L1 and L2
Caches

L1 and L2
Caches

CPU 0

CPU core
0

CPU core
1

L3 Cache

L1 and L2
Caches

L1 and L2
Caches

CPU 2

CPU core
3

CPU core
4

L3 Cache

L1 and L2
Caches

L1 and L2
Caches

CPU X

CPU core
'n'

CPU core
'n+1'

L3 Cache

L1 and L2
Caches

L1 and L2
Caches

Multicore System

Figure D.4: Multicore Computing Schematic

were combined to form a SMP and as highlighted in a previous section, this archi-

tecture has its limitations due to the limited bandwidth of the shared memory bus.

In a multi-core CPU two or more cores can communicate directly thereby taking

the load of the shared system bus. Multi-cores can be either loosely or tightly

coupled depending on if they share a common cache or not. Also, multi-cores are

classified into homogenous and heterogeneous. In a homogenous multi-core all the

cores are of the same type and implement the same Instruction Set Architecture

(ISA). In a heterogeneous architecture, the cores can be of several types and im-

plement different ISAs. Example of homogeneous multi-core processors are Intel

Core 2 Duo while IBM Cell is a heterogeneous multi-core processor implementing

two different ISAs. Figure D.4 shows the schematics of both a single multi-core

and a multi-core SMP system.

HPC tasks are characterized as needing large amounts of computing power over

short periods of time. This can be achieved by performance scaling of a single

Chapter D A Brief History of Parallel Computing Architectures 211

processor or parallel scaling using multiple processors. It has been explained in an

earlier section that performance scaling of a single processor has reached its practi-

cal limits and recently the industry is achieving higher performance using parallel

scaling. Among the three parallel architectures discussed, multi-core systems are

the latest and least investigated. Therefore, this thesis examines the performance

characteristics of two multi-core architectures, one being homogenous type and

other heterogeneous type.

212

Bibliography

[1] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities”, AFIPS Conference Proceedings , Volume 30,

April 1967.

[2] J. P. Abrahams, M. van den Berg, E. van Batenburg, C. Pleij, “Prediction

of RNA secondary structure, including pseudoknotting, by computer simu-

lation”, Nucleic Acids Research, Volume 18, Issue 10, 25 May 1990, Pages

3035-3044.

[3] V. R. Akmaev, S. T. Kelley, and G. D. Stormo, “A phylogenetic approach

to RNA structure prediction”, Proc Int. Conf. Intell. Syst. Mol. Bio., 1999,

Pages 10-7.

[4] T. Akutsu, “Dynamic programming algorithms for RNA secondary structure

prediction with pseudoknots”, Discrete Applied. Mathematics - Special volume

on combinatorial molecular biology, Volume 104, Issue 1-3 , 15 August 2000 ,

Pages 45-62.

BIBLIOGRAPHY 213

[5] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, Kai Tan,

“Generating Parallel Programs from the Wavefront Design Pattern”, Parallel

and Distributed Processing Symposium , 07 August 2002, Pages 104 - 111.

[6] C. E. R. Alves, E. N. CÃąceres, F. Dehne, S. W. Song, “A Parallel Wavefront

Algorithm for Efficient Biological Sequence Comparison”, Computational Sci-

ence and Its Applications , 2003, Pages 249-258.

[7] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,

D. Patterson, W. Plishker, J. Shalf, S. Williams, K. Yelick, “The Landscape

of Parallel Computing Research: A View from Berkeley”, EECS Department

University of California, Berkeley, Technical Report, 18 December 2006.

[8] F. H. D. van Batenburg, A. P. Gultyaev, C. W. A. Pleij, “An APL-

programmed genetic algorithm for the prediction of RNA secondary struc-

ture”, Journal of Theoretical Biology, Volume 174, Issue 3, 7 June 1995, Pages

269-280.

[9] M. Brown, C. Wilson, “RNA Pseudoknot Modeling Using Intersections of

Stochastic Context Free Grammars with Applications to Database Search”,

Pacific Symposium on Biocomputing, 1996 , Pages 109-125.

[10] H. M. Berman, A. Gelbin, J. Westbrook, L. Clowney, C. Zardecki, “The Nu-

cleic Acid Database: Present and future”, Journal of Research of the National

Institute of Standards and Technology, Volume 101, Issue 3, May 1996, Pages

243.

BIBLIOGRAPHY 214

[11] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, P. E. Bourne, “The Protein Data Bank”, Nucleic Aicds

Research , Volume 28, Issue 1, 17 October 1999, Pages 235 - 242.

[12] F. H. D. van Batenburg, A. P. Gultyaev, C. W. A. Pleij, “PseudoBase: struc-

tural information on RNA pseudoknots”, Nucleic Acids Research, Volume 29,

Issue 1, 1 January 2001, Pages 194-195.

[13] D.A. Bader, V. Agarwal, K. Madduri, “On the design and analysis of irregular

algorithms on the Cell processor: A case study of list ranking”, In Proceedings

21st IEEE International. Parallel and Distributed Processing Symposium ,

March 2007, Pages 1-10.

[14] S. Bellaousov, D. H. Mathews, “ProbKnot: Fast prediction of RNA secondary

structure including pseudoknots”, RNA Journal, Volume 16, Issue 10, 16

October 2010, Pages 1870-1880.

[15] M. Bon, H Orland, “TT2NE: a novel algorithm to predict RNA secondary

structures with pseudoknots”, Nucleic Acids Research 18 May 2011, Pages

1-8.

[16] R. B. Cary, G. D. Stormo, “Graph-Theoretic Approach to RNA Modeling Us-

ing Comparative Data”, Proceedings International Conference on Intelligent

Systems for Molecular Biology 1995 , Volume 3, Pages 75-80.

[17] J. J. Cannone, S. Subramanian, M. N. Schnare , J. R. Collett, L. M. D’Souza,

Y. Du, B Feng, N. Lin, L. V. Madabusi, K. M. M§ller, N. Pande, Z. Shang,

BIBLIOGRAPHY 215

N. Yu, R. R. Gutell, “The Comparative RNA Web (CRW) Site: An Online

Database of Comparative Sequence and Structure Information for Riboso-

mal, Intron, and Other RNAs.”, BMC Bioinformatics, Volume 3, Issue 2, 17

January 2002.

[18] L. Chai, Q. Gao, D. K. Panda, “Understanding the Impact of Multi-Core

Architecture in Cluster Computing:Case Study with Intel Dual-Core System”,

International Sympsoium on Cluster Computing and the Grid, 29 May 2007,

Pages 417-478.

[19] Xiaowen Chen, Zhonghai Lu, A. Jantsch, Shuming Chen, “Speedup Analysis

of Data-parallel Applications on Multi-core NoCs”, ASIC IEEE 8th Interna-

tional Conference, 11 December 2009, Pages 105-108.

[20] A. Condon, H. Jabbari, “Computational prediction of nucleic acid secondary

structure: Methods, applications, and challenges”, Theoretical Computer Sci-

ence, Volume 410, Issue 4-5, 17 February 2009, Pages 294-301.

[21] E. Dam, K. Pleij, D. Draper, “Structural and functional aspects of RNA

pseudoknots”, Biochemistry, Volume 31, Issue 47, 1 December 1992, Pages

11665- 11676.

[22] J. A. Doudna, T. R. Cech, “The chemical repertoire of natural ribozymes”,

Nature, Volume 418, Issue 6894, 11 July 2002, Pages 222-228.

BIBLIOGRAPHY 216

[23] Ye Ding,C. E. Lawrence, “A statistical sampling algorithm for RNA secondary

structure prediction”, Nucleic Acids Research, Volume 31 , Issue 24, 29 Oc-

tober 2003, Pages 7280-7301.

[24] J. S. Deogun, R. Donts, O. Komina, Fangrui Ma, “RNA Secondary Structure

Prediction with Simple Pseudoknots”, Asia-Pacific Bioinformatics Confer-

ence - APBC , Volume 29, January 2004, Pages 239-246.

[25] R. D. Dowell, S. R. Eddy, “Evaluation of several lightweight stochastic

context-free grammars for RNA secondary structure prediction”, BMC Bioin-

formatics, Volume 5, Issue 1, 4 June 2004, Pages 5-71.

[26] A. Deschenes, K. C. Wiese, J. Poonian, “Comparison of dynamic program-

ming and evolutionary algorithms for RNA secondary structure prediction”,

Computational Intelligence in Bioinformatics and Computational Biology,

October 2004, Pages 214-222.

[27] Y. DING, C. Y. CHAN, C. E. LAWRENCE, “RNA secondary structure pre-

diction by centroids in a Boltzmann weighted ensemble”, RNA , Volume 11,

Issue 8, 2005, Pages 1157-1166.

[28] C. B. Do, D. A. Woods, S. Batzoglou “CONTRAfold: RNA secondary struc-

ture prediction without physics-based models”, Bioinformatics , Volume 22,

Issue 14, 2006, Pages e90-e98.

[29] J. Edmonds, “Maximum matching and polyhedron with 0, 1-vertices”, J. of

Research National. Bureau of Standards Section B , 1965, Pages 125-130.

BIBLIOGRAPHY 217

[30] S. R. Eddy, “Noncoding RNA genes and the modern RNA world”, Nature

Reviews Genetics, Volume 2, Issue 12, December 2001, Pages 919-929.

[31] S. R. Eddy, “How do RNA folding algorithms work?”, Nature Biotechnology

, Volume 22, Issue 11, 2004, Pages 1457-1458.

[32] T. Estrada, A. Licon, M. Taufer, “compPknots - a Framework for Paral-

lel Prediction and Comparison of RNA Secondary Structures with Pseudo-

knots”, Frontiers of High Performance Computing and NetworkingâĂŤISPA

2006 Workshops, 2006, Pages 677-686.

[33] S. M. Freier, R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers, T.

Neilson, D. H. Turner, “Improved free-energy parameters for predictions of

RNA duplex stability”, Proceedings of the National Academy of Sciences of

the United States of America, Volume 83, Issue 24, December 1986, Pages

9373-9377.

[34] M. Fekete “Prediction of RNA Secondary Structures using Parallel Comput-

ers”, Thesis , 1997, Pages 10âĂŞ14.

[35] H. N. Gabow, “An Efficient Implementation of Edmonds’ Algorithm for Max-

imum Matching on Graphs”, Journal of the ACM , Volume 23, Issue 2, April

1976, Pages 221-234.

[36] R. R. Gutell, A. Power, G. Z. Hertz, E. J. Putz, G. D. Stormo, “Identify-

ing constraints on the higher-order structure of RNA: continued development

BIBLIOGRAPHY 218

and application of comparative sequence analysis methods”, Nucleic Acids

Research, Volume 20, Issue 21, 11 November 1992, Pages 5785-5795.

[37] A. P. Gultyaev, F. H. van Batenburg, C. W. Pleij, “The computer simulation

of RNA folding pathways using a genetic algorithm”, Journal of Molecular

Biology , Volume 250, Issue 1, 30 June 1995, Pages 37-51.

[38] J. Gorodkin, L. J. Heyer, G. D. Stormo, “Finding the most significant common

sequence and structure motifs in a set of RNA sequences”, Nucleic Acids

Research, Volume 25, Issue 28, 15 September 1997 ,Pages 3724-3732.

[39] A. P. Gultyaev, F. H. van Batenburg, C. W. Pleij, “An approximation of

loop free energy values of RNA H-pseudoknots”, RNA, Volume 5, Issue 4, 8

September 2000, Pages 609-617.

[40] J. Gorodkin, S. L. Stricklin, G. D. Stormo, “Discovering common stem-loop

motifs in unaligned RNA sequences”, Nucleic Acids Research, Volume 29,

Issue 10, 15 May 2001 , Pages 2135-2144.

[41] M. L. Green, R. Miller, “Molecular structure determination on a computa-

tional and data Grid”, Journal Parallel Computing - Special issue: High-

performance parallel bio-computing , Volume 30, Issue 9-10, 27 September

2004, Pages 1001-1017.

[42] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker,

P. Schuster, “Fast Folding and Comparison of RNA Secondary Structures”,

BIBLIOGRAPHY 219

Monatshefte for Chemie Chemical Monthly , Volume 125, Issue 2, 1994, Pages

167 - 188.

[43] K. Han, D. Kim, H. J. Kim, “A Vector-based Method for drawing RNA

Secondary Structure”, Bioinformatics, Volume 15, Issue 4, 1999, Pages 286-

297.

[44] C. Haslinger, “Prediction Algorithms for Restricted RNA Pseudoknots”, PhD

thesis, Universitat Wien, March 2001.

[45] T. Hoefler, “The Cell Processor - A short Introduction”, 22 Chaos Commu-

nication Congress, 12 December 2005, Pages 286-292.

[46] M. D. Hill, M. R. Marty, “Amdahls Law in the Multicore Era”, Computer ,

Volume 41, Issue 7, 15 July 2008, Pages 33-38.

[47] M. Hamada, H. Kiryu, K. Sato, T. Mituyama, K. Asai, “Prediction of RNA

secondary structure using generalized centroid estimators”, Bioinformatics ,

Volume 25, Issue 4, 2009, Pages 465-473.

[48] J. A. Jaeger, Jr. J. SantaLucia, I. Jr. Tinoco, “Determination of RNA struc-

ture and thermodynamics”, Annual Review of Biochemistry , Volume 62, 1993,

Pages 255-287.

[49] J. Kim, J. R. Cole, S. Pramanik, “Alignment of possible secondary structures

in multiple RNA sequences using simulated annealing”, Computer Applica-

tions in Biosciences, Volume 12, Issue 4, August 1996, Pages 259-267.

BIBLIOGRAPHY 220

[50] M. H. Kolk, M.van der Graff, S. S. Wijmenga, C. W. Pleij, H. A. Heus, C.

W. Hilbers, “NMR structure of a classical pseudoknot: interplay of single-

and double-stranded RNA”, Science , Volume 280, Issue 5362, 17 April 1998,

Pages 434-438.

[51] H. Karen, “When RNA ruled another lost world?”, HMS Beagle The BioMed-

Net Magazine, 27 March 1998.

[52] S. Kawaharaa, T. Uchimaru, M. Sekine, “The hydrogen bond energy on

mismatched base pair formation between uracil derivatives and guanine in

the gas phase and in the aqueous phase”, Journal of Molecular Structure:

THEOCHEM , Volume 530, Issue 1-2, 18 September 2000, Pages 109-117.

[53] S. Kawahara, T. Uchimaru, “Computer-Aided Molecular Design of Hydrogen

Bond Equivalents of Nucleobases: Theoretical Study of Substituent Effects

on the Hydrogen Bond Energies of Nucleobase Pairs”, European Journal of

Organic Chemistry, Volume 2003, Issue 14,26 June 2003, Pages 2577âĂŞ2584.

[54] B. Knudsen, J. Hein “Pfold: RNA secondary structure prediction using

stochastic context-free grammars”, Nucleic Acids Research , Volume 31, Issue

13, 2003, Pages 3423-3428.

[55] P. Kongetira, K. Aingaran, K. Olokotun, “ Niagara: A 32-Way Multithreaded

Sparc Processor”, IEEE Micro, Volume 25, Issue 2, March 2005, Pages 21-29.

BIBLIOGRAPHY 221

[56] R. Kota, R. Oehler, “ Horus: Large-Scale Symmetric Multi-processing for

Opteron Systems”, IEEE Micro, Volume 25, Issue 2, March 2005, Pages 30-

40.

[57] RB Lyngso, M Zuker,C. N. S. Pedersen, “An Improved Algorithm for RNA

Secondary Structure Prediction”, BRICS Research Series, May 1999, Page

24, RS-99-15.

[58] R. B. Lyngso, C. N. S. Pedersen, “Pseudoknots in RNA secondary structures”,

RECOMB00: Proceedings of the Fourth Annual International Conference on

Computational Molecular Biology , 2000, Pages 201-209.

[59] T. Liu, B. Schmidt, “Parallel RNA secondary structure prediction using

stochastic context-free grammars”, Journal Concurrency and Computation:

Practice & Experience ,Volume 17, Issue 14, 10 December 2005, Pages

1669âĂŞ1685.

[60] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. Dongarra, “Ex-

ploiting the performance of 32 bit floating point arithmetic in obtaining 64

bit accuracy (revisiting iterative refinement for linear systems)”, Proceedings

of the ACM/IEEE conference on Supercomputing , 2006, Pages 113.

[61] Z. J. Lu, J. W. Gloor, D. H. Mathews, “Improved RNA secondary structure

prediction by maximizing expected pair accuracy”, RNA, Volume 15, Issue

10, October 2009, Pages 1805-1813.

BIBLIOGRAPHY 222

[62] J. S. McCaskill, “The equilibrium partition function and base pair binding

probabilities for RNA secondary structure”, Biopolymers, Volume 29, Issue

6-7, May-June 1990, Pages 1105-1119.

[63] W. S. Martins , J. B. Del Cuvillo, F. J. Useche, K. B. Theobald, G.R. Gao, “A

multithreaded parallel implementation of a dynamic programming algorithm

for sequence comparison”, Pacific Symposium on Biocomputing , 2001, Pages

311-322.

[64] D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker, D.

H. Turner, “Incorporating chemical modification constraints into a dynamic

programming algorithm for prediction of RNA secondary structure”, Proceed-

ings of the National Acadamey of Sciences USA, Volume 101, Issue 9, 11 May

2004, Pages 7287-7292.

[65] C. McNairy, R. Bhatia, “ Montecito: A Dual-Core, Dual-Thread Itanium

Processor”, IEEE Micro, Volume 25, Issue 2, March 2005, Pages 10-20.

[66] R. Nussinov, A. B. Jacobson, “Fast algorithm for predicting the secondary

structure of single-stranded RNA”, Proceedings of the National Acadamey of

Sciences USA, Volume 77, Issue 11, November 1980 Pages 6309-6313.

[67] A. Nakaya, K. Yamamoto, A. Yonezawa, “RNA secondary structure pre-

diction using highly parallel computers”, Computer Applications in the Bio-

sciences , Volume 11, Issue 6, 6 Spetmeber 1995, Pages 685-692.

BIBLIOGRAPHY 223

[68] A. Nakaya, K. Taura, K. Yamamoto, A. Yonezawa, “Visualization of RNA

secondary structures using highly parallel computers”, Bionformatics Volume

12, Issue 3, 3 June 1996, Pages 205-211.

[69] P. Nissen, J. Hansen, N. Ban, P. B. Moore, T.A. Steitz, “The structural basis

of ribosomal activity in peptide bond synthesis”, Science, Volume 289, Issue

5481, 11 August 2000, Pages 920-930.

[70] C. W. Pleij, K. Rietveld, L. Bosch, “A new principle of RNA folding based

on pseudoknotting”, Nucleic Acids Research, Volume 13, Issue 5, 11 March

1985, Pages 1717-1731.

[71] A. Perez, J. Sponer, P. Jurecka, P. Hobza , F. J. Luque, M. Orozco, “Are

the Hydrogen Bonds of RNA (A-U) Stronger Than those of DNA (A-T)?

A Quantum Mechanics Study”, Chemistry, Volume 11, Issue 17, 19 August

2005, Pages 5062-5066.

[72] J. M. Paul, B. H. Meyer, “Amdahl’s Law Revisited for Single Chip Systems”,

International Journal of Parallel Programming, Volume 35, Issue 2, April

2007, Pages 101-123.

[73] F. Petrini, G. Fossum, J. Fernandez, A. L. Varbanescu, N. Kistler, M. Perrone,

“Multicore Surprises: Lessons Learned from Optimizing Sweep3D on the Cell

Broadband Engine”, Parallel and Distributed Processing Symposium , 11 June

2007, Pages 1-10.

BIBLIOGRAPHY 224

[74] B. H. Park; M. Schmidt, K. Thomas, T. Karpinets, N. F. Samatova, “Par-

allel, Scalable, Memory-Efficient Backtracking for Combinatorial Modeling of

Large-Scale Biological Systems”, Parallel and Distributed Processing, IEEE

International Symposium , 03 June 2008, Pages 1-8.

[75] J. M. Rabaey, “Digital integrated circuits: a design perspective”, Prentice-

Hall, Inc, 1996.

[76] E. Rivas and S. Eddy, “A dynamic programming algorithm for RNA structure

prediction including pseudoknots”, Journal of Molecular Biology, Volume 285,

Issue 5, 5 February 1999, Pages 2053-2068.

[77] D. Sankoff, “Simultaneous solution of the RNA folding, alignment and pro-

tosequence problems”, Journal on Applied Mathematics, Volume 45, Issue 5,

1985, Pages 810-825.

[78] M. J. Serra, D. H. Turner, “Predicting the thermodynamic properties of

RNA”, Methods Enzymol, Volume 259, 1995, Pages 242-261.

[79] B. A. Shapiro, J. C. Wu, “Predicting RNA H-Type pseudo-knots with the

massively parallel genetic algorithm”, Computer Applications in the Bio-

sciences , Volume 13, Issue 4 , 17 March 1997, Pages 459-471.

[80] S. J. Schroeder, M. E. Burkard ME, D. H. Turner, “The Energetics of Small

Internal Loops in RNA”, Biopolymers, Volume 52, Issue 4, 29 March 2001,

Pages 157-167.

BIBLIOGRAPHY 225

[81] B. A. Shapiro, J. C. Wu, D. Bengali, M. J. Potts, “The Massively parallel

genetic algorithm for RNA folding - MIMD implementation and population

variation”, Bioinformatics, Volume 17, Issue 2, February 2001, Pages 137-148.

[82] J. Sadecki, “Parallel dynamic programming algorithms: Multitransputer

systems”, Journal of applied mathematics and computer science, Volume 12,

Issue 2, 2002, Pages 241-255.

[83] M. Sprinzl , K. S. Vassilenko, “Compilation of tRNA sequences and sequences

of tRNA genes”, Nucleic Aicds Research, Volume 33, Issue suppl 1, 2005,

Pages 139 - 140.

[84] G. Storz , S. Gottesman, “Versatile roles of small RNA regulators in bacteria”,

The RNA world, 3rd ed., 2006, Pages 567-594.

[85] Thomas Sterling, “Beowulf Cluster Computing with Linux, edited by”, The

MIT Press, 2002.

[86] I. Jr. Tinoco, O. C. Uhlenbeck, M. D. Levine, “Estimation of secondary struc-

ture in ribonucleic acids”, Nature , Volume 230, Issue 5293, 9 April 1971, Pages

362-367.

[87] I. Jr. Tinoco, P. N. Borer, B. Dengler, M. D. Levine, O. C. Uhlenbeck, D. M.

Crothers, J. Gralla, “Improved estimation of secondary structure in ribonu-

cleic acids”, Nature New Biology, Volume 246, Issue 150, 14 November 1973,

Pages 40-41.

BIBLIOGRAPHY 226

[88] J. E. Tabaska, R. B. Cary, H. N. Gabow, G. D. Stormo, “An RNA folding

method capable of identifying pseudoknots and base triples”, Bioinformatics

, Volume 14, Issue 8, 1998, Pages 691-699.

[89] F. Tahi, M. Gouy, and M. Regnier, “Automatic RNA secondary structure

prediction with a comparative approach”, Computers and Chemistry , Volume

26, Issue 5, July 2002,Pages 521-530.

[90] F. Tahi, S. Engelen, M. Regnier, “A Fast Algorithm for RNA Secondary Struc-

ture Prediction Including Pseudoknots”, Bioinformatic and Bioengineering,

IEEE International Symposium , 26 March 2003, Pages 11-17.

[91] B. J. Tucker , R.R. Breaker , “Riboswitches as versatile gene control elements”,

Current Opinion in Structral Biology , Volume 15, Issue 3, June 2005, Pages

342-348.

[92] R. Tyagi , D. H. Mathews, “Predicting helical coaxial stacking in RNA multi-

branch loops”, RNA , Volume 13, Issue 7, July 2007, Pages 939-951.

[93] G. Tan, N Sun, G. R. Gao, “A Parallel Dynamic Programming Algorithm

on a Multi-core Architecture”, Proceedings of the nineteenth annual ACM

symposium on Parallel algorithms and architectures , June 2007, Pages 135-

144.

[94] G. Tan, N Sun, G. R. Gao, “Improving Performance of Dynamic Programming

via Parallelism and Locality on Multicore Architectures”, IEEE Transactions

BIBLIOGRAPHY 227

on Parallel and Distributed Systems , Volume 20, Issue 2, February 2009 ,

Pages 261-274.

[95] Y. Uemura , A. Hasegawa , S. Kobayashi , Yokomori, “Grammatically mod-

eling and predicting RNA secondary structures”, Proceedings of the Genome

Informatics Workshop, 1995, Pages 67-76.

[96] P. Walter , G. Blobel, “Signal recognition particle contains a 7S RNA essential

for protein translocation across the endoplasmic reticulum”, Nature, Volume

299, Issue 5885, 21 October 1982, Pages 691-698.

[97] A. E. Walter , D. H. Turner , J. Kim , M. H. Lyttle , P. MÃĳller, D. H.

Mathews , M. Zuker, “Coaxial stacking of helixes enhances binding of oligori-

bonucleotides and improves predictions of RNA folding”, Proceedings of the

National Academy of Sciences of the United States of America , Volume 91,

Issue 20, 27 September 1994, Pages 9218-9222.

[98] J. D. Watson, F. H. C. Crick, F. H. C, “Molecular structure of nucleic acids:

A structure for deoxyribose nucleic acid." Nature, Volume 171, 25 April 1953,

Pages 737Ð738.

[99] C. R. Woese, N. R. Pace, B. C. Thomas, “Probing RNA structure, function,

and history by comparative analysis”, The RNA World , 1993, Pages 91-117.

[100] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. A. Yelick, “The

Potential of the Cell Processor for Scientific Computing”, Proceedings of the

3rd conference on Computing frontiers , Volume 6, 2006, Pages 9-20.

BIBLIOGRAPHY 228

[101] L. Wu , J. G. Belasco, “Let me count the ways: Mechanisms of gene regula-

tion by miRNAs and siRNAs”, Molecular Cell Volume 29, Issue 1, 18 January

2008, Pages 1-7.

[102] A. Wirawan, C. K. Kwoh, B. Schmidt, “Parallel DNA sequence alignments

on the Cell Broadband Engine”, Parallel Processing and Applied Mathematics,

Volume 4967/2008, Pages 1249-1256.

[103] I. K. Yanson, A. B. Teplitsky, L. F. Sukhodub, “Experimental Studies of

Molecular Interactions Between Nitrogen Bases of Nucleic Acids”, Biopoly-

mers, Volume 18, Issue 5, May 1979, Pages 1149-1170.

[104] M. Zuker, P. Stiegler, “Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information”, Nucleic Acids Research,

Volume 9, Issue 1, 10 January 1981, Pages 133-148.

[105] M. Zuker, D. Sankoff, “RNA secondary structures and their prediction”,

Bulletin of Mathematical Biology, Volume 46, Issue 4, 1984, Pages 591-621.

[106] M. Zuker, “Computer prediction of RNA structure.”, Methods Enzymol, Vol-

ume 180, 1989, Pages 262-288.

[107] M. Zuker, “On finding all suboptimal foldings of an RNA molecule”, Science,

Volume 244, Issue 4900, 7 April 1989, Pages 48-52.

[108] M. Zuker, D.H. Mathews, D.H. Turner, “Algorithms and thermodynamics for

RNA secondary structure prediction - A practical Guide”, RNA Biochemistry

and Biotechnology , 1999, Pages 11-43.

BIBLIOGRAPHY 229

[109] W. Zhou, D. K. Lowenthal, “A Parallel, Out-of-Core Algorithm for RNA

Secondary Structure Prediction”, Parallel Processing ICPP , Volume, 16 Oc-

tober 2006, Pages 74-81.

[110] “FHD(Eke) van Batenburg: homepage of PseudoBase”, http://www.

ekevanbatenburg.nl/PKBASE/PKB.HTML.

[111] “Crowd-sourced Information on RNA Secondary Structure”, http://en.

wikipedia.org/wiki/Secondary_structure.

[112] “CELL Broadband Engine Resource Center”, http://www.ibm.com/

developerworks/power/cell/.

[113] “tRNAdb transfer RNA database”, http://trnadb.bioinf.uni-leipzig.

de/.

[114] “RCSB The Protein Data Bank”, http://www.rcsb.org/pdb.

[115] “NDB The Nucleic Acid Database”, http://ndbserver.rutgers.edu/.

[116] “The Comparative RNA Web (CRW) Site:”, http://www.rna.ccbb.

utexas.edu/.

230

Author’s Publications

[1] S. P. T. Krishnan, Sim Sze Liang, and Bharadwaj Veeravalli, “Towards High-

Performance Computing for Molecular Structure Prediction using IBM Cell

Broadband Engine - an implementation perspective”, in Eighth Asia-Pacific

Bioinformatics Conference (APBC 10), Bangalore, India, January 18-21,

2010.

[2] S.P.T. Krishnan, Mushfique Junayed Khurshid, and Bharadwaj Veeravalli,

“A Matrix Algorithm for RNA Secondary Structure Prediction”, in 5th IAPR

International Conference, PRIB 2010, Nijmegen, The Netherlands, Septem-

ber 22-24, 2010

[3] S. P. T. Krishnan, Sim Sze Liang, and Bharadwaj Veeravalli, “Towards High-

Performance Computing for Molecular Structure Prediction using IBM Cell

Broadband Engine - an implementation perspective”, in BMC Bioinformat-

ics, Volume 11, (Suppl 1): S36, January 2010.

[4] S. P. T. Krishnan, Bharadwaj Veeravalli, “Performance Characterization and

Evaluation of Biological Structure Prediction Algorithms on Homogenous

231

and Heterogeneous Multi-core Architectures”, under review by Journal of

Parallel and Distributed Computing.

[5] S. P. T. Krishnan, Bharadwaj Veeravalli, “Case Study of Google App En-

gine Suitability for Developing HPC Applications - Challenges and Oppor-

tunities”, under review by IEEE Transaction on Parallel and Distributed

Systems.

