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Summary

Multivariate failure time data arise when two or more distinct failures are

recorded on an individual. We consider competing and semi-competing risks

data, involving failures of different types. The latter occurs when a terminal

event censors a non-terminal event but not vice-versa. The proportional haz-

ards model is commonly used to examine relative risk. As a viable alternative

to the proportional hazards model, the additive risks model examines excess

risk and provides a flexible tool of modeling multivariate failure time data. We

propose a class of additive risk models for the analysis of competing risks and

semi-competing risks data. In all cases, we investigate the theoretical and nu-

merical properties of the estimators. Simulations were conducted to assess the

performance of the proposed models.

First, we consider the additive risk approach for competing risks data by mod-

eling both the cause-specific and subdistribution hazards. Simulation results

show that estimation is fairly accurate with little bias. We also apply our

method to a real dataset on prostate cancer and analyse treatment effects of

high-dose versus low-dose diethylstilbestrol (DES) on the outcome of interest

(cancer death) and competing risks endpoints (cardiovascular death and other

causes of death), while accounting for other covariates. Results indicate in-

creased survival chances from cancer death for patients receiving high-dose DES

in both cause-specific hazard and subdistribution hazard models.
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Secondly, we suggest an additive risk frailty model for semi-competing risks

data. Frailties are used to model the dependence between the terminal and

non-terminal events and covariate effects are examined by excess risk given the

frailty. Splines are used to model the conditional baseline hazard nonparamet-

rically. Simulations indicate that estimates have about 10% bias for moderate

sample sizes. Application to a randomized clinical trial on nasopharyngeal can-

cer shows the practical utility of the model. The incorporation of the depen-

dence structure reveals that patients in the chemotherapy group have increased

chances of disease-free survival as compared to the radiotherapy group. Our

results show that the chemotherapy group actually has increased risk of death

without relapse and a reduced risk of death after relapse.

Finally, the extension to the more general additive-multiplicative frailty risk

model for semi-competing risks data is discussed, with a similar splines approx-

imation method for the baseline hazards. Simulations indicate estimation has

little bias for the multiplicative component, while the estimates of the additive

components had biases of at most 0.1. We re-examine the nasopharyngeal cancer

dataset using this additive-multiplicative model under the reduced compartment

model, with the treatment variable as a multiplicative effect and adjusting for

nodal status and TNM staging as additive effects. Results show the significance

of all three variables. Patients in the chemoradiotherapy group have a lower risk

of both relapse and death as compared to patients in the radiotherapy group,

with the difference in the two treatment groups being even larger in the death

arm.
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Chapter 1

Introduction

Survival analysis is the analysis of data where the response is the time until an

event of interest occurs. In the case of univariate failure time data, research

on modelling its underlying distribution and its dependence on explanatory

variables are now well-established. However, additional problems arise when

we deal with multivariate failure times and types. Multivariate failure time

data arise when two or more distinct failures are recorded on an individual.

These failures could be recurrent failures or distinct failures of different types

(Kalbfleisch and Prentice, 2002).

Recurrent failures are observed in diverse settings, for instance, repeated episo-

des of infection, a sequence of asthmatic attacks, or epileptic seizures. Distinct

failures of multiple types occur when the failures are of an entirely different

nature, such as local or distant recurrences in cancer studies. In the context

of competing risks, the failures are usually of different types, and the subject

may fail from one of these distinct causes. (Tai et al., 2008). For example, in

a randomized clinical trial of patients with Stage III and IV nasopharyngeal

cancer, the competing failures of interest were distant metastasis, local relapse,

and neck relapses (Wee et al., 2005). Similarly, in a clinical trial investigating
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whether antiretroviral treatment delays the development of individual AIDS

events, the different events of interest included oesophageal candidiasis, Kaposi

sarcoma, pneumocystis carinii pneumonia, disseminated Mycobacterium avium

intercellulare, cytomegalovirus, cryptosporidiosis, and cerebral toxoplasmosis

(Delta Coordinating Committee, 1996).

This dissertation deals with multivariate failure time data of the latter type. It

is biologically plausible that the failure times of these distinct failure types may

be strongly correlated when observed in the same individual. Such failure time

data can be considered clustered. In univariate failure time analysis, clustering

may also arise when subjects are grouped based on common dependencies within

groups. For example, in clustered randomized clinical trials of a general practice

(primary care provider), all the patients in a general practice will be allocated

to the same intervention, with the general practice forming a cluster. Similarly,

in cohort studies on family members in genetic epidemiology, the family unit

forms the cluster. In either case, members of a cluster will be more like one

another than they are like members of other clusters. We need to take this into

account in the analysis and design of the study. Ignoring clustering may result

in misleading conclusions.

A particular case of multivariate failure time data is that of bivariate survival

data. Here, there are two non-negative survival times, T1 and T2, that are corre-

lated and have a particular joint survival function that expresses the dependence

between the two times. For example, in the Diabetic Retinopathy Study (Hus-

ter et al., 1989) the outcome of interest was the time to blindness in each eye of

197 patients with diabetic retinopathy. For each patient, one eye was randomly

selected for treatment and the other eye was observed without treatment.
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A special case of bivariate failure time data is the so-called semi-competing risks

data (Fine et al., 2001), where each subject may experience either a terminal

event or a non-terminal event. The terminal event censors the non-terminal

event, but not vice versa. In a randomised clinical trial conducted in Singapore

comparing two treatments on nasopharyngeal cancer (Wee et al., 2005), patients

may experience the terminal event - death, or the non-terminal event - relapse of

cancer at local or distant sites. It is plausible that the times to death and relapse

are highly correlated. The dependence between the times to terminal event and

non-terminal event, as well as the asymmetric structure of semi-competing risks

data, have created challenges for statistical analysis of such data, especially for

covariance analysis.

1.1 Frailty Models

One way of accounting for the dependence in multivariate failure time data is the

use of frailties. Frailty models attempt to characterize the association between

failure times through the use of a common unobserved random variable, known

as the frailty. The frailty model has been extensively used for univariate failure

time data, especially for clustered data where subjects experience a common

dependence within a particular group. Under the structure of a frailty model

for bivariate survival data, conditional on the frailty, T1 and T2 are considered

independent.

Covariate analysis is often implemented through the use of the Cox proportional

hazards model. Conditional on the frailty terms, the marginal hazard functions

for T1 and T2 follow independent proportional hazards models. Let tij, (i =

1, . . . , n and j = 1, 2), represent the failure time of the i-th individual for for
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the j-th type. Thus, the conditional hazard function is given as

λ(tij|γi, Zij) = γiλ0(tij)eβ
TZij ,

where Zij is the vector of covariates, β is the vector of regression coefficients,

λ0(·) is the unspecified baseline hazard function and {γ1, . . . , γn} are the inde-

pendent and identically distributed frailties.

Just as there are different kinds of copulas that one can use, there are also

various distributions that the frailty variable can follow. A convenient and pop-

ular choice is the gamma distribution (Clayton and Cuzick, 1985; Nielsen et al.,

1992). Hougaard (1984, 1986a,b) considers the inverse Gaussian and positive

stable distributions, and a three-parameter family of distributions, while Yau

(2001) suggests that the frailties follow a lognormal distribution. Hougaard

(1986b) makes a strong case for the positive stable distribution. Firstly, he

points out a shortcoming of the gamma frailty distribution in that the de-

pendence parameter and regression parameters are confounded and the joint

distribution can be identified from the marginal distribution. This problem is

present for any distribution with a finite mean. Secondly, the positive stable

distribution has an added advantage that it preserves the proportionality of the

hazards to the marginal distribution.

EM algorithms and maximum likelihood estimation (MLE) are often suggested

as the method to estimate the frailty parameter, as well as regression coefficients.

Since the frailty term is a latent variable, it makes sense to estimate these terms

in the E-step, then use these estimators in the maximization of the likelihood

in the M-step. Clayton and Cuzick (1985) use an EM-type algorithm with

pseudo-observations of marginal distribution rank score orders to estimate the
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regression and association parameters. Nielsen et al. (1992) also use the EM

algorithm to estimate the regression and association parameters, as well as the

unspecified baseline hazard for the proportional hazards model with a gamma

frailty. Lam and Kuk (1997) propose the use of the marginal likelihood to

estimate the parameters and suggest that this approach works for any frailty

distribution with explicit Laplace transform. Gorfine et al. (2006) develop a

new inference technique that can handle any parametric frailty distribution with

finite moments. The method proposed is a pseudo-likelihood method that uses

a plug-in estimator for the cumulative hazard function and avoids complicating

the iterative optimization process.

1.2 Additive Risk Models and Clustered Data

While the Cox proportional hazards model has been widely discussed and ex-

tended, there is another formulation that describes a different aspect of the

association between covariates and the failure time — the additive risk model.

The additive risk model is adopted when the absolute effects, instead of relative

effects, of predictors on the hazard function are of interest. In this way, we can

analyse excess risk, instead of relative risk.

The intuitive idea for the additive risk approach is that the background disease

incidence rate (or hazard rate) is due to the presence of general factors that are

common to all subjects. The exposure to a particular treatment or agent under

investigation causes the difference in an individual’s overall hazard rate and is

unrelated to the general factors. The differences in exposure are represented as

excess risk (Breslow and Day, 1980). In some cases, the analysis of the estimated

parameters results in the preference of excess risk measure over the relative risk

measure.
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Aalen (1980) first introduced the nonparametric version of the additive risk

model. The estimators obtained by Aalen (1980) were a generalisation of the

Nelson-Aalen (or natural) estimator and were based on least-squares type meth-

ods. Huffer and McKeague (1991) then extended the estimation to include

weighted least-squares estimators for Aalen’s additive risk model.

As mentioned earlier, the additive risk can be considered as an additive analogue

to the Cox proportional hazards model. Here, the hazard function for the i-th

individual is given as

λ(t|Zi) = λ0(t) + βTZi(t)

where Zi is the vector of covariates that are allowed to vary with time, β is

the vector of regression coefficients, and λ0(·) is the unspecified baseline haz-

ard function. Lin and Ying (1994) consider this model with time-dependent

covariates and develop a semiparametric estimating function for the regression

coefficient vector β. They first estimate the cumulative baseline hazard with

a natural estimator and use this estimator in the estimating function. The re-

sulting function mimics the martingale feature of the partial likelihood score

function under a proportional hazards model. Explicit forms for the estimates

were obtained. Under this method, the estimators converge weakly to a multi-

variate normal distribution with mean 0 and a covariance matrix that can be

consistently estimated.

Note that a limitation of the additive risk model is that it is complicated by the

constraint that the hazard function must be nonnegative (Huffer and McKeague,

1991; Lin and Ying, 1994). Thus, Lin and Ying (1994) suggest a substitution of

eβ
TZi(t) for βTZi(t). However, there is now no explicit solution to the estimating

equation and the Newton-Raphson algorithm is required. Analysis is also more
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complicated numerically and theoretically.

The estimators of Lin and Ying (1994) are used by Pipper and Martinussen

(2004) in applying the additive risk model to the clustered failure time setting

with clusters. A marginal additive hazards model like that of Lin and Ying

(1994) is suggested and the estimating function follows accordingly. Bearing

in mind that we can no longer assume independence between failure times in

clusters, working independence estimators that parallel those suggested by Lin

and Ying (1994) are obtained. It is also shown that the working independence

estimators of the regression coefficients are consistent and converge in distri-

bution to a normal vector with zero mean and the estimator of the baseline

cumulative hazard converges weakly to a Gaussian process.

Since it is of interest to estimate measures of dependence between failure times

in a cluster, Pipper and Martinussen (2004) assume an additive marginal hazard,

a parametric frailty and independence between the frailties and covariates in the

respective clusters. Frailties, indicated as γk for k = 1, . . . , K, are assumed to be

independent and identically distributed positive random variables with Laplace

transform φθ(u) = Eθ{e−uγ1}, where θ is parameter associated with the frailty

distribution. Through the use of the innovation theorem (Andersen et al., 1993),

observed intensities are obtained up to time t and again, estimating equations

are found that follow those of Lin and Ying (1994). Proper estimating equations

are obtained by first inserting natural estimators for the baseline hazard and

cumulative baseline hazard. The incorporation of the dependence through the

frailty variable results in a more efficient estimation of the regression parameters

as compared to the working independence estimators. While the choice of frailty

distribution is not specified, conditions are placed on the frailty distribution to

ensure that the Laplace transform φθ(u) behaves nicely at the boundary. Thus,
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this excludes distributions such as the positive stable distribution.

We now restrict our focus to semi-competing risks data and look at various

methods of modelling such data. It is noted that the methods discussed are

applicable to the more general cases of multivariate and clustered survival data.

1.3 Nonparametric Estimation in Semi-

Competing Risks

Semi-competing risks occur when there is a terminal failure time, T2 , and a non-

terminal failure time, T1 (Fine et al., 2001). The random variable T2 may censor

T1, but not vice-versa. This results in dependent censoring and there is possible

correlation between T1 and T2. Such data are often encountered in medical

studies. In cancer trials, when the goal is to estimate disease-free survival, the

relapse of the disease is the non-terminal event of interest. However, terminal

death from other causes censors the relapse.

Because of the asymmetric data structure, modelling can only be defined on the

upper wedge, U = {(t1, t2) : 0 < t1 ≤ t2 <∞}. Fine et al. (2001) introduced

the term “semi-competing risk” and developed a method to model the depen-

dence of the two event times. They also developed an estimator for the marginal

distribution of the non-terminal event, as it is often of scientific interest to model

its marginal distribution.

To model the dependence structure, they posited the use of the Clayton (1978)

copula. A copula is a parametric method of transforming marginal distributions

and expressing the transformed variables as a multivariate joint distribution.
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The Clayton copula is specified as

S(t1, t2) =
{
S1(t1)1−θ + S2(t2)1−θ − 1

}1/(1−θ)
,

where S(t1, t2) = P (T1 > t1, T2 > t2) is the joint survival function and S1(t1) =

P (T1 > t1) and S2(t2) = P (T2 > t2) are the marginal survival functions of T1

and T2 respectively. Clayton’s copula is an Archimedean copula with φθ(t) =

(t1−θ − 1)/(θ − 1). It is useful to note that because of the structure of semi-

competing risks data, the distribution of the terminal event, T2, can be easily

estimated using existing methods for univariate failure time data. Under the

copula model, θ is known as the association parameter. Hence, it is of interest

to estimate θ and S1.

An estimator for the association parameter is obtained from a concordance es-

timating function and is determined as the ratio of concordant to disconcordant

pairs. This is based on the idea that the cross-ratio function is equal to the

association parameter for the Clayton copula (Oakes, 1989). The cross-ratio

function is defined as the ratio of the hazard function of the conditional distri-

bution of T2, given T1 = t1, to that of T2, given T1 > t1 and can be written in

notation as
λ(t2|T1 = t1)
λ(t2|T1 > t1) . (1.1)

With regard to the estimator of S1, it is obtained through a rearrangement of

the copula distribution given earlier. Some algebra gives

S1(t) = {S2(t)1−θ − Sm(t)1−θ + 1}1/(1−θ),

where Sm(t) = P (T1 > t, T2 > t) = S(t, t) is the copula model defined at t.

Using this definition, Fine et al. (2001) suggest that the estimator of S1 can be
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found by

Ŝ1(t) = {Ŝ2(t)1−θ̂ − Ŝm(t)1−θ̂ + 1}1/(1−θ̂),

where Ŝ2 and Ŝm are the Kaplan-Meier nonparametric estimators for S2 and

Sm and θ̂ is the estimate of θ found earlier.

Jiang et al. (2005) provides another estimator for the survival function of T1.

The estimator is based on self-consistent estimating equations and is a step

function that jumps at observed times. In contrast, Fine’s estimator jumps not

only at the observed times, but also at times outside the observed range. Thus,

in this aspect, Jiang’s estimator is an improvement and has better properties

than the one proposed by Fine et al. (2001).

Wang (2003) extends the above model to a more general class of Archimedean

copulas to model the dependency. These copulas can be written as

Cθ(u, v) = φ−1
θ {φθ(u) + φθ(v)}, 1 ≥ v, u ≥ 0,

where φθ is a non-increasing convex function defined on (0,1] with φθ(1) = 0.

Wang (2003) considers two general dependence structures defined on the upper

wedge U — one based on the cross-ratio function defined earlier and the other

based on the Archimedean copula to model the joint distribution. From these

two dependence structures, Wang (2003) suggests several estimating functions

for the association parameter, θ. The variance of the estimator is complicated

and a resampling method, such as the jackknife approach, is used to obtain an

estimate of the variance.

Lakhal et al. (2008) provides a unified framework that generalizes the estima-

tion of the association parameter for the family of Archimedean copulas. They
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also use the cross-ratio function, defined in Equation (1.1), to construct an es-

timating function and show that the estimating functions provided by Fine et

al. (2001) and Wang (2003) are special cases of their function. In addition,

they present a method of estimating the survival function of T1. The copula-

graphic estimator they used was first introduced by Zheng and Klein (1995). In

the latter, they assumed that the joint distribution of the failure and censoring

times follow a known copula and derived estimating functions for the marginal

survival function. Rivest and Wells (2001) found a closed-form expression for

the survival function when the Archimedean copula is employed and this is the

estimator that Lakhal et al. (2008) used. Under the method proposed, limiting

distributions for the estimated copula parameter and survival function of T1 are

found and this is an improvement over the previous estimator.

The link between bivariate distributions generated by frailty models and Archi-

medean copulas is established by Oakes (1989). He presents a criterion based

on the cross-ratio function and demonstrates that any bivariate frailty model

leads to an Archimedean survival function, though the converse does not hold.

1.4 Regression Modelling in Semi-competing

Risks

The methods mentioned so far deal with nonparametric estimation of the sur-

vival function of T1. In addition, the copula model does not include any covari-

ates. Thus, Peng and Fine (2007) focused on regression modelling, employing

time-varying effects for the marginal survival function of T1, given by

S1(t|Z) = g{θ0(t)TZ},



1.4 Regression Modelling in Semi-competing Risks 12

where g(·) is a known monotone function and Z and θ0(t) are (p+1)×1 vectors

of covariates and time-dependent coefficients respectively. Since in the semi-

competing risks setting, T2 censors T1, a model for the dependence structure is

required in order to estimate θ0(t). Hence, a time-independent copula function

C(u, v, w), is used and the joint survival function is given as

S(t1, t2|Z) = C{S1(t1|Z), S2(t2|Z), α0(t1, t2)}, for 0 ≤ t1 ≤ t2.

Similar to earlier definitions, S1(t1|Z) = P (T1 > t1|Z) and S2(t2|Z) = P (T2 >

t2|Z) are the marginal survival functions of T1 and T2 for a given covariate vector

Z, while α0(t1, t2) is the time-dependent association parameter. Peng and Fine

(2007) also specified that the marginal survival function of T2 to be of the same

form as S1(t1|Z), though the link function and coefficient vector need not be

the same. S2(·|Z) is specified as

S2(t|Z) = h{η0(t)TZ},

and the estimator for the coefficient vector, denoted as η̂0, can be obtained using

existing methods.

The simultaneous estimation for (α0, θ0), where α0(t) = α0(t, t) is done via

nonlinear estimating functions, which are obtained from a nonlinear binary

regression model of the covariates Z on I(min(T1, T2) > t), given that T2 > t,

where I(·) is the indicator function. These functions jointly estimate α0 and θ0,

separately at each t, adopting the “working independence” assumption across

time (Liang and Zeger, 1986). Thus, the estimators obtained, α̂0(t) and θ̂0(t),

are step functions which jump only at observed failure and censoring times.

It is also suggested that a sensitivity analysis could be carried out based on
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the proposed estimation procedure. That is, at each t, we can vary α0(t) and

estimate θ0(t) at each value of α0(t). This results in bounds on the covariate

effects at t and gives us a rough idea of how sensitive the covariate effects are

to changes in the dependence structure.

Under this structure of Peng and Fine (2007), variance estimators can be ob-

tained through the delta method. In addition, nonparametric test statistics are

constructed to test the null hypothesis of r linear combinations of α0(t) and

θ0(t). One of these statistics is motivated by the Wald test, while another is

a supremum-norm test. A graphical method of model checking is suggested in

order to test the goodness-of-fit. This involves using the idea of a P-P plot to

graph the fitted joint survival function against its nonparametric estimate, for a

given covariate value. However, formal goodness-of-fit tests are not introduced

here.

Hsieh and Wang (2008) propose a method of regression analysis for semi-

competing risks data involving discrete covariates only. Again, their methodol-

ogy assumes the family of Archimedean copulas for the dependence structure.

However, separate copula models with different association parameters are as-

sumed for different covariate groups. They suggest a two-stage inference proce-

dure, where their main focus is on the estimation of the regression covariates. In

the first stage, a modification of Wang’s (2003) approach is used to estimate the

association parameters, while the marginal distributions are estimated using the

approach suggested by Fine et al. (2001). These estimators are then plugged

into the second-stage estimating equation for the regression parameters.

While the copula model has been used widely in the area of semi-competing risks

data, there are various disadvantages to the use of this type of model. Firstly,
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the copula function requires the assumption of a marginal distribution for T1,

which presumes the existence of T1 as a latent time. This is a rather hypothetical

and unnatural concept and can be considered controversial. In addition, there

is little literature on the modelling of regression covariates, which is often of

interest in medical studies. The estimation methods proposed are also rather

complicated. In contrast, our proposed method uses the additive risk frailty

model as discussed below in Equation (1.2). It simplifies the estimation to

nonlinear least-squares and the incorporation of time-dependent covariates is

relatively simple.

So far in the literature, the modelling of semi-competing risks data employs the

use of a parametric copula model for the dependence structure. In this thesis,

we propose an alternative way of examining the possible correlation between T1

and T2 via the frailty models. The frailty approach for semi-competing risks

data has been analysed by Xu et al. (2010) and Lim (2010). Both employ

the use of proportional hazards conditional on the frailty. However, Xu et al.

(2010) used a nonparametric method to describe the baseline hazards, while

Lim (2010) assumes a parametric Weibull form. In both works, the frailty was

assumed to follow the Gamma distribution with mean 1 and variance θ.

1.5 Layout of Thesis

Before embarking on our approach for modelling semi-competing risks data, we

first examine a simpler situation. In Chapter 2, we look at the competing risks

scenario, where an individual faces possible failure from multiple causes and the

failure from one cause censors the failure from the others. Currently, there are

two ways to model competing risks, either through the cause-specific hazard or

the subdistribution hazard (Fine and Gray, 1999) and the proportional hazards
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model is used. We apply the additive risk model to both the cause-specific

hazard and the subdistribution hazard. Simulations conducted to examine the

performance of the proposed model show that the estimation works well in both

approaches. As an application, we also analyse a real dataset on prostate cancer

(Green and Byar, 1980) and examine the treatment effect on the competing risks

endpoints of cancer death, cardiovascular death and other causes of death. We

apply both the cause-specific hazards and subdistribution hazards model to the

dataset since both can provide complementary information about the data.

Next, as an alternative to the proportional hazards frailty models proposed by

Xu et al. (2010) and Lim (2010), which were described at the end of the pre-

vious section, we propose an additive risk frailty approach for the modelling

of semi-competing risks data. The random effect, or frailty, is used to model

the dependence and the additive risk model is used to incorporate covariate

effects. The nature of additive risk frailty modelling enables us to develop a

class of estimation equations which can be numerically and conveniently solved

by standard iterative least squares, or nonlinear least squares estimation. The-

oretical properties of the estimator for both the dependence parameter and the

regression coefficients can be rigorously established with their variance formula

explicitly derived and consistently estimated by the sandwich formula and plug-

in methods.

Under the additive risk frailty model, conditional on the frailty, the hazards

model is an additive one. We have 3 hazard functions for each individual —

one for time to relapse, one for time to death without relapse and one for time

to death after relapse. The set of hazard functions facing the i-th individual is
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given as

λ1(t|Ti2 ≥ t, γi,Zi) = γi(λ01(t) + βT1 Zi(t)),

λ2(t|Ti1 ≥ t, γi,Zi) = γi(λ02(t) + βT2 Zi(t)),

λ3(t|Ti1 < t, γi,Zi) = γi(λ03(t) + βT3 Zi(t)). (1.2)

These hazards can be represented in a compartment model, shown in Figure

1.1.

Figure 1.1: Compartment model for semi-competing risks. Hazard functions as
shown in Equation (1.2)

In Chapter 3, we look at the context of semi-competing risks and the model

discussed at the beginning of this section. In this thesis, for the fitting of the

baseline hazards, we use the method of B-splines (de Boor, 1978). This reduces

the estimation of parameters to a finite number. Simulations indicate that the

method works well for moderate sample sizes. In addition, consistency and

asymptotic normality can be established for the estimators of the parameters

of interest — the frailty variance and the regression coefficients. We apply

our method to a randomized clinical trial in nasopharyngeal cancer (Wee et al.,

2005) and analyse treatment effect, adjusting for nodal status and TNM staging.

Results show that the model fitting treatment and accounting for nodal status

and TNM staging gives similar results to the model fitting treatment only.
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In Chapter 4, we extend the method explored in Chapter 3 and generalise it

to the additive-multiplicative model. Under such a model, we allow some of

the covariates to have an excess risk effect and others to have a relative risk

effect. Simulations on semi-competing risks data show that estimation works

well for the reduced model (relapse-death). The nasopharyngeal cancer dataset

analysed in Chapter 3 is re-examined here with the treatment covariate having

a multiplicative effect and nodal status and TNM staging as additive effects.

With this new model, all covariates now have significant effects.

1.6 Contributions to the Medical Literature

The work arising from Chapter 2 of this thesis has been presented at a seminar

talk in the first NUS Department of Statistics and Applied Probability PhD

Students’ Conference held in 2010. Parts of Chapter 3 have been presented at

the 32nd Annual Conference of the International Society for Clinical Biostatis-

ticians (Ottawa, Canada), as well as in a poster presentation at the Second

Singapore Conference on Statistical Science (NUS, 19–20 September 2011).
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Chapter 2

Additive Risk Models for

Competing Risks Data

2.1 Introduction

Semi-competing risks data can be analysed in the competing risks setting, if we

consider time to first event. Competing risks is a special case of multivariate

failure time data and is the situation where an individual can potentially expe-

rience failure from one of several distinct causes. Under the classical competing

risks framework, the causes of failure can be terminal and absorbing and there

can be more than two causes of failure. In this chapter, we explore the mod-

elling of such data, using the additive model for two different approaches. This

model will be extended to model semi-competing risks in Chapter 3.

Competing risks are commonly observed in medical research, where subjects

can experience failure from disease processes and/or non-disease-related causes.

For instance, a multicentre randomized clinical trial conducted on bone mar-

row transplant patients records competing risks endpoints including recovery,

relapse, chronic graft versus host disease and death (Couban et al., 2002). An-
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other example is data from a randomised clinical trial comparing treatment for

patients with prostate cancer, where competing risks endpoints observed were

cancer, cardiovascular and other causes of death (Green and Byar, 1980; Kay,

1986). The occurrence of one event either precludes the occurrence of another

event under investigation or alters the probability of occurrence of other events

(Gooley et al., 1999). It is easy to see that there is dependence between the

time to an event and the censoring mechanism.

Existing literature models competing risks data using two methods — the cause-

specific hazard and the subdistribution hazard. We next look at these two ap-

proaches in Sections 2.1.1 and 2.1.2 respectively.

2.1.1 Cause-Specific Hazard

The cause-specific hazard is observed when we consider competing risks as latent

(unobserved) failure times. We define the multivariate survival function as

S(t1, t2, . . . , tK |Z) = P (T1 > t1, T2 > t2, . . . , TK > tK |Z),

where T1, . . . , TK are potential, unobserved event times for each ofK event types

and Z is the covariate vector. Under the competing risks scenario, only one event

is observed, since the occurrence of this event will preclude the occurrence of

other events, that is, T = min{T1, T2, . . . , TK}. The event variable, ε, then

takes on values 0, 1, 2, . . . , K, where 0 means the observation is censored and a

non-zero values which of the K events has occurred.

From the multivariate survival function S(t1, t2, . . . , tK |Z), we can obtain the



2.1 Introduction 20

marginal survival function for event type k as

Sk(t|Z) = S(t1 = 0, t2 = 0, . . . , tk = t, . . . , tK = 0|Z).

The cause-specific hazard is defined as

hk(t|Z) =
− ∂ log(S(t1, t2, . . . , tK |Z))

∂tk


(t1=t2=...=tK=t)

, (2.1)

It can also be written as

hk(t|Z) = lim
δt→0

P (t < T ≤ t+ δt, ε = k|T > t,Z)
δt


= fk(t|Z)

S(t|Z) ,

where

fk(t) =
− ∂S(t1, t2, . . . , tK |Z)

∂tk


(t1=t2=...=tK=t)

,

and S(t|Z) is the overall survival function and is defined as

S(t|Z) = exp

−
∫ t

0

K∑
k=1

hk(t|Z)dt

. (2.2)

One disadvantage of this approach is the non-identifiability of the joint distribu-

tion. In the special case of two competing risks, the two marginal distributions

can result in more than one joint distribution. When only the first event is

observed, the possible dependence between the competing events cannot be

modelled. In such situations, only the marginal distribution function and the

cause-specific hazard defined in Equation (2.1) can be modelled.
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2.1.2 Subdistribution Hazard

The other approach based on the subdistribution hazard is a result of observing

competing risks as a bivariate random variable. Such data can be presented as

a pair (T, ε), where T is observed time and ε is as defined earlier. If ε = 0, then

T is the censored time. If ε = k (k = 1, 2, . . . , K), then T is the observed time

that event of type k occurred. We then have the cumulative incidence function

(CIF), or subdistribution, for the event of type k (k = 1, 2, . . . , K) as

Fk(t|Z) = P (T ≤ t, ε = k|Z).

As can be seen, the CIF is the joint probability that an event of type k occurs

at or before time t.

The hazard of the subdistribution (Gray, 1988) is defined as

λk(t|Z) = lim
δt→0

{
P (t < T ≤ t+ δt, ε = k | T > t or (T ≤ t and ε 6= k),Z)

δt

}
(2.3)

and this is the function that is usually modelled. The cumulative incidence

function can then be modelled through Fk(t|Z) = 1 − exp
[∫ t

0 λk(u)du
]
. The

subdistribution hazard λk can be considered as the hazard function for the

improper random variable T ∗ = I(ε = k)× T + {1− I(ε = k)} ×∞.

2.1.3 Existing Methodology for Modelling Competing

Risks

To model competing risks data, the standard approach is to model the cause-

specific hazards for different failure types. An important question in statistical

analyses is whether one group of patients fare better than another group. For
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example, in considering a clinical trial on prostate cancer where treatment is

the main exposure of interest (Green and Byar 1980), it may sometimes also

be important to consider the effects of other covariates such as age and disease

history and account for these in the regression model when assessing the effect

of treatment. Thus, covariate models for competing risks have been applied to

cause-specific hazards to account for covariates like treatment. In particular,

the proportional hazards model has been widely used in competing risks situa-

tions, just as in the usual survival model (Prentice et. al, 1978; Larson, 1984).

The additive risk model was also considered as under the competing risks sce-

nario, it seemed biologically more plausible and tends to give a more intuitive

interpretation for relative survival than the multiplicative risk model (Shen and

Cheng, 1999). This is because multiplicative models postulate that the hazards

due to the event of interest are related to the hazards of the competing events.

As such, estimation under the multiplicative model can result in illogical factors

for mortality rates (Buckley, 1984).

Cause-specific hazards modelling reduces to univariate modelling since we only

consider failure times of our cause of interest, ie. Ti where εi = k, and all

other failure times Ti with εi 6= k (failure times not of our cause of interest) are

considered censored observations. Hence, there is only a single outcome being

recorded, with a single censoring indicator. When the cause-specific hazard

is modelled, the cumulative incidence function is often used to summarize the

cause-specific failure time data through the relationship

Fk(t|Z) =
∫ t

0
S(u|Z)dΛk(u|Z), (2.4)

where S(t|Z) is the all-cause survival function defined in Equation (2.2) and

Λk(t|Z) is the cumulative cause-specific hazard function for the k-th event. This
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is an indirect way of modelling the subdistribution. It has been noted in other

works that the effect of a covariate on the cause-specific hazards of a specific

failure type can be very different from the effect of the same covariate on the

corresponding cumulative incidence function (Gray 1988, Pepe 1991). Thus,

the focus of this chapter will be on the direct modelling of the subdistribution

through the associated subdistribution hazard.

In previous work in the literature, the cumulative incidence function has been

modelled nonparametrically, as well as with discrete covariates. Gray (1988)

considered K-sample tests to compare the cumulative incidence of a particular

failure type among different groups. Fine and Gray (1999) introduced a pro-

portional hazards model for the subdistribution. The proportional hazards was

applied to the hazard of the subdistribution given in Equation (2.3). Under Fine

and Gray’s (1999) formulation, the risk set for censoring complete data (where

the potential censoring time is always observed) at time t for failure type k was

defined as

R(t) = {i : (Ci ∧ Ti ≥ t) ∪ (εi 6= k ∩ Ti ≤ t ∩ Ci ≥ t)}

and the subdistribution hazard for failure type k was specified as

λk(t|Z) = λk0(t) exp(βT0 Z(t))

where λk0 is the unspecified baseline hazard for failure type k, β0 is the unknown

p-vector regression coefficients for the possibly time-varying covariates Z , so

that the cumulative incidence function is now

Fk(t|Z) = 1− exp
[∫ t

0
λk0(u) exp(βT0 Z(u))du

]
.
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Three different scenarios were considered — complete data (without censor-

ing), censoring complete data (failure times and potential censoring times all

known) and incomplete data (when usual right censoring is present). The last

scenario involved the use of inverse probability of censoring weighting (IPCW)

techniques.

Sun et al. (2006) proposed a more general additive-multiplicative model for the

subdistribution hazard of the form

λk(t|X,Z) = α(t)TX + λk0(t) exp(βT0 Z),

where α(t) is an unknown q-vector of time-varying coefficients representing the

additive effects of covariates X on λk, β0 is a p-vector of unknown regression

coefficients denoting the multiplicative effects of covariates Z on λk and λk0 is

as defined earlier. This model was first introduced by Martinussen and Scheike

(2002) in the non-competing risk situation. Inference on the model was accom-

plished through the use of IPCW techniques to obtain score functions.

2.2 Proposed Additive Hazards Models

Let T and C be the failure and censoring times, ε ∈ {1, . . . , K} be the cause

of failure (where the K causes are assumed to be observable) and Z be a p× 1

bounded vector of covariates. For the usual right-censored data, we observeX =

min(T,C), δ = I(T ≤ C) and Z. Assume that {Xi, δi, δiεi, Zi} are independent

and identically distributed for i = 1, . . . , n. For simplicity, we assume that C

is independent of T , given Z. Here, we take failure type 1 to be our event of

interest. Let Ni(t) be the counting process for the i-th individual, given by

Ni(t) = I(Ti ≤ t, εi = 1, δi = 1).
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Here, we introduce the additive risk model for the cause-specific hazard with

fixed covariates. The model is given as

h1(t|Z) = h01(t) + βT1 Z, (2.5)

where h1 is the cause-specific hazard for event 1, h01(t) is the unknown baseline

hazard, β1 and Z are p-vector regression coefficients and covariates respectively.

In contrast to Fine and Gray’s (1999) proportional hazards model for the sub-

distribution, we propose an additive hazards model for the subdistribution. The

subdistribution hazard then takes the form

λ1(t|Z) = λ01(t) + α(t)TZ, (2.6)

where α(t) are time-varying coefficients to be estimated. This is analogous to

Aalen’s additive model. In Sun et. al (2006), α(t) is allowed to vary nonpara-

metrically. In contrast, we fix the time-varying coefficient and as an example,

assume it to be α(t) = β1e
−t.

2.3 Model Fitting

Both the cause-specific hazards model and subdistribution hazards model can

be fitted using the method provided by Lin and Ying (1994). The cause-specific

hazards model is straightforward and is a direct application of the method, with

the at-risk indicator as Yi(t) = I(Ci ∧ Ti ≥ t) for the i-th individual. Under the

method by Lin and Ying (1994), the estimating equation to estimate β1 can be
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defined as

U(β1) =
n∑
i=1

∫ ∞
0

{
Zi(t)− Z̄(t)

}{
dNi(t)− Yi(t)βT1 Zi(t)dt

}
, (2.7)

where the covariate Z is allowed to vary over time and

Z̄(t) =
n∑
j=1

Yj(t)Zj(t)
/

n∑
j=1

Yj(t).

The resulting estimator can be explicitly expressed as

β̂1 =
[
n∑
i=1

∫ ∞
0

Yi(t)
{
Zi(t)− Z̄(t)

}⊗2
dt

]−1 [ n∑
i=1

∫ ∞
0

{
Zi(t)− Z̄(t)

}
dNi(t)

]
,

(2.8)

where a⊗2 = aaT , and a is a column vector.

In our additive subdistribution hazards model, we set the coefficients of the

covariates to be time-varying, where α(t) = β1e
−t, and the covariates are fixed,

as shown in Equation (2.6). In order to use Lin and Ying’s method, we set β1

as the coefficient vector and Ze−t as the time-varying covariate vector Z(t).

Under the subdistribution hazards model with censoring complete data (that

is, censoring is only from administrative loss-to-follow up and the potential

censoring time is always observed; Fine and Gray, 1999), the risk indicator at

time t for the i-th individual is defined as

Yi(t) = I({Ci ∧ Ti ≥ t} ∪ {εi 6= 1 ∩ Ti ≤ t ∩ Ci ≥ t}).

The estimator given in (2.8) can then be applied, where

Zi(t) = Zie−t, Z̄(t) =
n∑
j=1

Yj(t)Zj(t)
/

n∑
j=1

Yj(t).
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2.4 Theoretical Properties

In this section, we assume, without loss of generality, that T is bounded on

[0, 1]. Also, let β10 be the true value of β1 and β10 ∈ B, where B is a compact

set of Rp with nonempty interior. We first list some of the conditions needed.

1. (Finite interval).
∫ 1

0 λ0(t)dt <∞.

2. (Asymptotic stability). There exists a matrix function z1 and vector func-

tion z2 defined on [0, 1] such that

sup
t∈[0,1]

∥∥∥∥∥n−1
n∑
i=1

Yi(t){Zi(t)− Z̄(t)}⊗2 − z1(t)
∥∥∥∥∥ P−→ 0,

sup
t∈[0,1]

∥∥∥∥∥n−1
n∑
i=1

Yi(t){Zi(t)− Z̄(t)}⊗2Zi(t)− z2(t)
∥∥∥∥∥ P−→ 0.

3. (Lindeberg condition). There exists δ > 0 such that

n−1/2 sup
1≤i≤n,t∈[0,1]

{
|Zi(t)|Yi(t)I(βT10Zi(t) > −δ|Zi(t)|)

}
P→ 0.

4. (Asymptotic regularity conditions). Z has bounded support on Rp where

p is the dimension of Z. Also, z1 and z2 obtained in Condition 2 are

bounded and the matrix

Σ =
∫ 1

0

[
z1(t)λ0(t) + βT10z2(t)

]
dt

is positive definite.

Theorem 2.4.1. (Consistency of β̂1) Suppose that Conditions 1–4 listed above

hold, then β̂1
P−→ β10.

Proof. To prove the consistency of β̂1, we first write down the log-likelihood
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function under the additive risk model, C(β1, t), which is given as

C(β1, t) =
n∑
i=1

[ ∫ t

0
log(λ0(u) + βT1 Zi(u))dNi(u)−

∫ t

0
Yi(u)(λ0(u) + βT1 Zi(u))du

]
.

We now consider the process

X(β1, t) = n−1(C(β1, t)− C(β10, t))

= n−1∑n
i=1

[ ∫ t
0 log

(
λ0(u)+βT1 Zi(u)
λ0(u)+βT10Zi(u)

)
dNi(u)−

∫ t
0 Yi(u)(β1− β10)TZi(u)du

]
and

A(β1, t) = n−1
n∑
i=1

[ ∫ t

0
log

(
λ0(u) + βT1 Zi(u)
λ0(u) + βT10Zi(u)

)
Yi(u)(λ0(u) + βT1 Zi(u))du−

∫ t

0
Yi(u)(β1 − β10)TZi(u)du

]

For each β1, X(β1, t)− A(β1, t) is a local square integrable martingale with

〈X(β1, t)− A(β1, t), X(β1, t)− A(β1, t)〉 = B(β1, t),

where 〈W,W 〉 is the predictable covariation process ofW (Andersen et al., 1993)

and

B(β1, t) = n−2
n∑
i=1

∫ t

0

[
log

(
λ0(u) + βT1 Zi(u)
λ0(u) + βT10Zi(u)

)]2

Yi(u)(λ0(u) + βT10Zi(u))du.

By Conditions 1, 2 and 4, we can see that B(β1) = B(β1, 1) tends to 0 in

probability. Therefore, by the inequality of Lenglart (I.2) in the appendix of

Andersen and Gill (1982), we see that X(β1) = X(β1, 1) converges to the same

limit as A(β1) = A(β1, 1) for each β1 ∈ B, where B was defined at the start of

this section. By the boundedness conditions in Condition 4, we can obtain first

and second derivatives which also have limits according to the limiting function
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of A(β1). The first and second derivatives of A(β1) are then given by

n−1
n∑
i=1

[ ∫ 1

0

Yi(u)(λ0(u) + βT10Zi(u))Zi(u)
λ0(u) + βT1 Zi(u) − Yi(u)Zi(u)du

]

and

n−1
n∑
i=1

[ ∫ 1

0
−Yi(u)(λ0(u) + βT10Zi(u))[Zi(u)]⊗2

(λ0(u) + βT1 Zi(u))2 du
]

respectively.

We can see that at β1 = β10, the first derivative is zero and the second derivative

is the negative of a positive definite matrix. Thus for each β1 ∈ B, X(β1)

converges in probability to a concave function of β1 with a unique maximum at

β1 = β10. Since β̂1 maximises the random concave function X(β1), it follows by

convex analysis (Andersen and Gill, 1982) that β̂1
P−→ β10.

Theorem 2.4.2. (Asymptotic normality of β̂1) The function n1/2(β̂1 − β10) is

asymptotically normal with mean 0 and covariance matrix consistently estimated

by V −1
n Σ̂nV

−1
n , where

Vn = n−1
n∑
i=1

∫ 1

0
Yi(t){Zi(t)− Z̄(t)}⊗2dt, (2.9)

and Σ̂n is the estimator of the variance-covariance matrix of n−1/2U(β10), where

U(β10) is the estimating function given in Equation (2.7) evaluated at the true

value.

Proof. One of the benefits of an additive risk model for competing risks is that

the model provided by Lin and Ying (1994) has a closed form, given in Equation

(2.8). The estimating function U(β1) to obtain this estimator is defined in
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Equation (2.7). At the true value β10, the estimating function becomes

U(β10) =
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}

{
dNi(t)− Yi(t)[dΛ0(t) + βT10Zi(t)dt]

+Yi(t)[dΛ0(t) + βT10Zi(t)dt]− Yi(t)βT10Zi(t)dt
}

=
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}{dMi(t) + Yi(t)dΛ0(t)}

=
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}{dMi(t)},

where Mi(·) is a local square integrable martingale and is defined by Ni(t) =

Mi(t) +
∫ t

0 Yi(u){dΛ0(u) + βT10Zi(u)du} for every i and t.

To prove the asymptotic normality of β̂1, we first note that it reduces to proving

the normality of n−1/2∑n
i=1

∫ 1
0 {Zi(t)− Z̄(t)}dNi(t). Since

dNi(t) = dMi(t) + Yi(t)(λ0(t) + βT10Zi(t))dt,

the required normality proof reduces to proving the normality of

n−1/2
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}dMi(t).

Hence, it remains to prove n−1/2U(β10) converges weakly to a p-variate normal

with mean 0.

Firstly, we can see that U(β10) is a local square integrable martingale. Apply-

ing Rebolledo’s Central Limit Theorem for local square integrable martingales

(Andersen and Gill, 1982), we have

Hil(t) = n−1/2{Zi(t)− Z̄(t)}l
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Then

∫ t

0

n∑
i=1
{Hij(s)Hil(s)λi(s)ds}

=
∫ t

0

n∑
i=1
{n−1{Zi(s)− Z̄(s)}j{Zi(s)− Z̄(s)}lYi(s){λ0(s) + βT10Zi(s)}ds}

=
[ ∫ t

0
n−1

n∑
i=1

Yi(s){Zi(s)− Z̄(s)}⊗2{λ0(s) + βT10Zi(s)}ds
]
jl

=
[ ∫ t

0
n−1

n∑
i=1

Yi(s){Zi(s)− Z̄(s)}⊗2dΛ1i(s)
]
jl

for j, l = 1, . . . , p

where Λ1i(t) =
∫ t

0

{
λ0(s) + βT10Zi(s)

}
ds. By finite interval, stability and regu-

larity conditions, the above tends to Σ defined in Condition 4.

To verify (I.4) in the Appendix of Andersen and Gill (1982), we have, for ξ > 0,

∫ 1

0

n∑
i=1

Hil(t)2λi(t)I{|Hil(t)| > ξ}dt

=
∫ 1

0

n∑
i=1

n−1
{
Zi(t)− Z̄(t)}2

l Yi(t){λ0(t) + βT10Zi(t)}

I{|n−1/2{Zi(t)− Z̄(t)}l| > ξ}
}
dt

≤
∫ 1

0

n∑
i=1

4n−1|Zi(t)|2l I{n−1/2|Zi(t)|l > ξ}Yi(t){λ0(t) + βT10Zi(t)}dt

+
∫ 1

0

n∑
i=1

4n−1|Z̄(t)|2l I{n−1/2|Z̄(t)||l > ξ}Yi(t){λ0(t) + βT10Zi(t)}dt.

Thus it is sufficient to verify that

n−1
∫ 1

0

n∑
i=1

{
|Zi(t)|2I{n−1/2|Zi(t)| > ξ, βT10Zi(t) > −δ|Zi(t)|}

Yi(t){λ0(t) + βT10Zi(t)}
}
dt

P−→ 0, (2.10)
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n−1
∫ 1

0

n∑
i=1

{
|Zi(t)|2I{n−1/2|Zi(t)| > ξ, βT10Zi(t) ≤ −δ|Zi(t)|}

Yi(t){λ0(t) + βT10Zi(t)}
}
dt

P−→ 0, (2.11)

n−1
∫ 1

0

n∑
i=1
|Z̄(t)|2l I{n−1/2|Z̄(t)||l > ξ}Yi(t){λ0(t) + βT10Zi(t)}dt

P−→ 0. (2.12)

Using Condition 3, we have (2.10) using

P
[
∃i, t : n−1/2|Zi(t)| > ξ, βT10Zi(t) > −δ|Zi(t)|, Yi(t) = 1

]
−→ 0.

For (2.11), note that the left hand side of (2.11) is bounded by

n−1
∫ 1

0

n∑
i=1
|Zi(t)|2{λ0(t)− δ|Zi(t)|}I{|Zi(t)| > n1/2ξ}dt.

When βT10Zi(t) ≤ −δ|Zi(t)|, we have λ0(t)−δ|Zi(t)| ≥ 0. Hence by Condition 4,

the quantity on the left hand side is bounded by some positive finite quantity.

Equation (2.12) is easily verified by the boundedness and regularity conditions

in 1 and 4.

Thus, n−1/2U(β10) converges weakly to a certain continuous Gaussian function.

With the process evaluated at t = 1, the covariance matrix is Σ. A consistent

estimator of Σ is

Σ̂n = n−1
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}⊗2dNi(t), (2.13)

where the proof is as follows.
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Let

W (t) = n−1
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}⊗2{dNi(t)− dΛi(t)}

= n−1
n∑
i=1

∫ 1

0
{Zi(t)− Z̄(t)}⊗2dMi(t),

where dΛi(t) = dΛ0(t)+βT10
∫ t

0 Zi(u)du. It can be seen thatW (t) is a local square

integrable martingale with mean 0. We now consider W = W (∞), where we

have

〈W,W 〉 = n−2
n∑
i=1

∫ 1

0

[
{Zi(t)− Z̄(t)}⊗2

]2
dΛi(t).

Using Lenglart’s inequality (I.2) in the appendix of Andersen and Gill (1982),

we have for all δ, η > 0,

P{ sup
t∈[0,1)

|W (t)| > η} ≤ δ

η2 + P{〈W,W 〉 > δ}.

Since 〈W,W 〉 is bounded and finite in probability, we can show that the right

hand side of the above inequality disappears and hence,

Σ̂n
P−→ Σ.

With this consistent estimator of the covariance matrix and the asymptotic

normality of n−1/2U(β10), we thus obtain the asymptotic normality of n−1/2(β̂1−

β10) with covariance matrix consistently estimated by V −1
n Σ̂nV

−1
n , where Vn is

defined in Equation (2.9) and Σ̂n is the estimator of the variance-covariance

matrix of n−1/2U(β10) defined in Equation (2.13).
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2.5 Simulation Studies Based on Additive Haz-

ards Model

The methods of data generation for the cause-specific hazards and subdistribu-

tion hazards are introduced in Section 2.5.1. Simulation results for the additive

models on both types of hazard functions are presented in Section 2.5.1.

2.5.1 Data Generation for Competing Risks

Data generation using cause-specific hazards

Simulation studies for competing risks data often utilise the latent failure time

model, which has been criticized. Since the cause-specific hazards can determine

the competing risk process, Beyersmann et al. (2009) introduce a simulation

design that depends only on the cause-specific hazards and not on unobservable

quantities. Using the simple case of a main event of interest (Event 1) and a

single competing risk (Event 2), we briefly introduce the algorithm here:

1. Specify the cause-specific hazards, h1(t) and h2(t). Here, we specify them

to be the additive hazards indicated in Equation (2.5).

2. Generate survival times T using the all-cause hazard, h1(t) + h2(t).

3. For each time T , assign event indicator ε the value 1 with probability

h1(t)/(h1(t) + h2(t)). Since there are only 2 events in the simple case, it

reduces to a binomial experiment.

4. Generate external censoring times C from the Uniform[0, a] distribution

for some a > 0.
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Data generation using subdistribution hazards

Following Fine and Gray (1999), we propose a similar algorithm to generate data

from an additive subdistribution hazard (SH) of a competing risk. Denote the

SH as λ1(t|Z) = P [T ∈ dt, ε = 1|(T ≥ t) ∪ (ε 6= 1 ∩ T ≤ t)]. For the cumulative

incidence function (CIF) of interest, we use the additive hazards model on the

SH as denoted in Equation (2.6). The CIF can then be written as

F1(t|Z) = 1− exp
[
−
∫ t

0

{
λ01(t) + αT (t)Z

}]
= 1− exp

[
−
{

Λ01(t) +
∫ t

0
α(u)TZdu

}]
= 1− exp [−Λ01(t)] exp

[
−
∫ t

0
α(u)TZdu

]
= 1− [1− F1(t|0)] exp

[
−
∫ t

0
α(u)TZdu

]

and

1− F1(t|0) = 1− P (T ≤ t, ε = 1|0)

= P (ε = 1|0) + P (ε = 2|0)− P (T ≤ t, ε = 1|0)

= P (ε = 2|0) + P (T ≥ t, ε = 1|0)

= P (ε = 2|0) + P (T ≥ t|ε = 1, 0) · P (ε = 1|0)

Here, we use 3 conditions:

1. P (ε = 1|0) + P (ε = 2|0) = 1,

2. P (ε = 1|0) = p (independent of Z), and

3. T |ε = 1,Z = 0 follows the exponential(1) distribution.
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We then obtain

1− F1(t|0) = (1− p) + p · exp(−t)

= 1− p [1− exp(−t)]

Thus, we have

F1(t|Z) = 1−
[
1− p

{
1− e−t

}]
exp

[
−
∫ t

0
α(u)TZdu

]

If we specify α(t) = β1 (ie. a constant coefficient vector), we can see that when

t→∞ and Z = 0, F1(t|0)→ P (ε = 1|0) = p.

However, when Z 6= 0, we get F1(t|Z)→ P (ε = 1|Z) = 1 since exp(−βT1 Zt)→

0.

Thus, in this model, α(t) is constrained to be time-varying and here, we specify

the form as α(t) = β1e
−t. With this form of α(t), we have

λ1(t|Z) = λ01(t) + βT1 e
−tZ, and

F1(t|Z) = 1−
[
1− p

{
1− e−t

}]
exp(−βT1 Z(1− e−t)).

Under this specification, the covariate effect is a monotone one that decreases

towards zero over time. The time-varying effect can also be generalised to

account for different functional types.

Let T and C be the failure and censoring times and ε be the cause of failure.

We assume two causes of failure — the event of interest (denoted as event 1)

and the competing risk (event 2). Let Z be a p× 1 bounded time-independent
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covariate vector. The algorithm for generating data from this model is based

on Fine and Gray (1999) and is as follows:

1. Generate Z, the covariate variable.

2. Generate the cause of failure, ε.

(a) Calculate F1(∞|Z) = P (ε = 1|Z) =: p∗.

(b) Generate U1 from Uniform[0,1].

(c) If U1 < p∗, then set ε = 1 and generate failure times from event 1.

Else, set ε = 2.

3. Generate T , conditional on ε.

(a) If ε = 1, generate T from G1(t) = P (T ≤ t|ε = 1,Z) using numerical

methods, where

G1(t) = P (T ≤ t, ε = 1|Z)
P (ε = 1|Z)

= 1− [1− p {1− e−t}] exp(−βT1 Z(1− e−t))
1− [1− p] exp(−βT1 Z)

i. Generate U2 from Uniform[0,1].

ii. Solve for t such that G1(t) = U2, i.e., t = G−1(U2), using R

function optim.

(b) If ε = 2, generate T from P (T ≤ t|ε = 2,Z), which follows the

exponential distribution with rate (1 + βT2 Z)

4. Generate external censoring times C from the Uniform[0, a] distribution

for some a > 0.
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2.5.2 Simulation Results for Competing Risks

Cause-specific hazards simulations

In this section, we first present the simulation results for the cause-specific haz-

ards. We applied the method of Lin and Ying (1994) to data generated using the

method described in Section 2.5.1. For the purposes of simulation, we generated

a main event of interest (Event 1) and a competing event (Event 2). Failures

from cause 2 were taken as censored observations. A single discrete covariate Z

was generated, first from the Bernoulli(0.5) distribution, and the true parame-

ter values for the regression coefficients of the respective cause-specific additive

hazards models were assumed to be β1 = β2 = 1. Continuous covariates were

also considered in a separate simulation with a single Normal(0, 0.252) covariate

generated and parameter values set at β1 = β2 = 1.

Simulations of sample size 200 were conducted 1000 times for three degrees of

censoring (10%, 30%, 60%). Table 2.1 gives the following estimators under all

the different simulation scenarios: (i) AV E(β̂1), estimated with the average of

β̂1 from 1000 samples and standard errors of the average estimator given in

parentheses; (ii) SD(β̂1), estimated with the empirical standard deviation of β̂1

from the 1000 samples; (iii) AV E(ŜD), the average of the 1000 standard error

estimators. It can be seen from Table 2.1 that the method works well for both

continuous and discrete cases, with little bias. In the discrete case, the biases

range between 0.002 and 0.028 with standard errors of the mean estimates (in

parentheses) varying about 0.012, while the biases for the continuous case are

higher and range between 0.005 and 0.037 with standard errors of the mean

estimates varying about 0.015. The biases and standard errors tend to increase

with the level of censoring. In addition, the SD(β̂1) values are close to those of

AV E(ŜD), although the differences are slightly larger in the continuous case.
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Estimated standard errors of β1 increased with the level of censoring in both

the discrete and continuous case.

Table 2.1: Estimating Equation Estimators for main event of interest (Event 1)
based on a Cause-Specific Hazards Model with single Z, assuming β1 = β2 = 1,
varying censoring from 10% to 60%.

Z from Bernoulli(0.5)

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 3.5] 10 1.010(0.010) 0.342 0.326

[0, 1] 30 1.002(0.012) 0.362 0.366

[0, 0.38] 60 1.028(0.015) 0.490 0.481

Z from Normal(0, 0.252)

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 5.2] 10 1.021(0.013) 0.430 0.420

[0, 1.64] 30 0.995(0.015) 0.490 0.476

[0, 0.57] 60 1.037(0.021) 0.679 0.639

We also check to see that the method works well when fitting the additive

risk model for the competing risk. In our simulations for the cause-specific

model, the competing risk was also generated from the additive risk model, as

mentioned in Section 2.5.1. Table 2.2 shows the results for a single scenario

with a single Bernoulli(0.5) covariate, where (β1, β2) = (−0.5, 1) at 10%, 30%

and 60% censoring. From Table 2.2, the biases are relatively small, with higher

biases at higher levels of censoring. The observations for SD(β̂1) and AV E(ŜD)

were similar to the ones made for Event 1, with differences being small and the

estimations increasing with the level of censoring.
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Table 2.2: Estimating Equation Estimators of β2 for competing event (Event
2) based on a Cause-Specific Hazards Model with single Z from Bernoulli(0.5),
assuming β1 = −0.5, β2 = 1, varying censoring from 10% to 60%.

β1 = −0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂2) SD(β̂2) AVE(ŜD)

[0, 4.7] 10 1.012(0.009) 0.285 0.282

[0, 1.49] 30 0.879(0.009) 0.251 0.280

[0, 0.51] 60 0.965(0.013) 0.385 0.397

Since we are interested to evaluate the treatment effect in most clinical trials, we

next look at the discrete Bernoulli(0.5) covariate, with differing values of β1 and

β2. We fix the value of β2 to be 1 and β1 takes on values 0.5 (adverse treatment

effect), 0 (no treatment effect) and −0.5 (beneficial treatment effect). Table

2.3 shows the results of these simulations at the same censoring proportions as

before. All estimates have very little bias (absolute bias less than 0.01) and

standard deviation estimates were similar for SD(β̂1) and AV E(ŜD). Higher

censoring proportions result in higher standard errors and standard deviation

estimates, as well as lower biases per unit of standard error. Censoring of

10% and 60% gave biases per unit of standard error around 0.033 and 0.015

respectively.
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Table 2.3: Estimating Equation Estimators for main event of interest (Event
1) based on a Cause-Specific Hazards Model with single Z from Bernoulli(0.5),
assuming 10% to 60% censoring and varying β1 and β2.

β1 = 0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 3.75] 10 0.491(0.009) 0.286 0.279

[0, 1.19] 30 0.503(0.010) 0.314 0.315

[0, 0.41] 60 0.495(0.013) 0.415 0.418

β1 = 0, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 4.15] 10 0.008(0.007) 0.239 0.234

[0, 1.3] 30 0.009(0.009) 0.272 0.268

[0, 0.46] 60 0.006(0.011) 0.352 0.352

β1 = −0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 4.7] 10 −0.489(0.006) 0.195 0.195

[0, 1.49] 30 −0.499(0.007) 0.216 0.221

[0, 0.51] 60 −0.505(0.009) 0.296 0.291
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Subdistribution hazards simulations

Following the data generation method outlined in Section 2.5.1, we conduct sim-

ulations for the additive subdistribution hazards model with censoring-complete

data and report the results below. We first assume a single covariate, Z,

from the Bernoulli(0.5) distribution and that the true parameter values are

(p, β1, β2) = (0.3, 1, 1). We used three different degrees of censoring (ie. 10%,

30% and 60%), with 1000 samples, each of size 200, generated for each case. We

also consider the case of a single continuous covariate from Normal(0.5, 0.252)

distribution, with parameter values set to be the same as with the discrete case.

Table 2.4 shows the results for these simulations. The estimators here are simi-

lar to those reported previously. The biases for the discrete case (range of 0.001

– 0.025) are smaller than those for the continuous case (range of 0.01 – 0.031).

It is interesting to note that for the continuous case, lower censoring proportions

resulted in higher biases, although the biases are still small. Standard deviation

estimates were similar for both methods, regardless of censoring proportions,

and increased with the level of censoring.

We also examined simulations with varying values of p, as well as looked at

covariate effect by differing the values of β1. Tables 2.5, 2.6 and 2.7 show the

results for adverse, no and beneficial treatment effect for 3 different values of p

— 0.3, 0.6 and 0.9. Each covariate effect and level of p is examined at the same

levels of censoring as before. In all the simulations, the estimating equations

performed well, with little bias, with most of the biases ranging between 0.004

and 0.01. The largest bias observed was 0.023. The standard errors for the

average values obtained were about 0.009 and varied little regardless of degree of

censoring or the values of p or (β1, β2). The empirical and model variances were

similar. There were larger variance estimators at higher degrees of censoring.
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Table 2.4: Censoring Complete Estimating Equation Estimators for main event
of interest (Event 1) based on a Subdistribution Hazards Model with single Z,
assuming β1 = β2 = 1, varying censoring from 10% to 60%.

Z from Bernoulli(0.5)

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 8] 10 0.999(0.010) 0.323 0.319

[0, 2.5] 30 1.004(0.011) 0.348 0.336

[0, 0.85] 60 1.025(0.012) 0.365 0.386

Z from Normal(0.5, 0.252)

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 7] 10 1.031(0.020) 0.649 0.637

[0, 2.4] 30 1.024(0.021) 0.669 0.661

[0, 0.82] 60 1.010(0.025) 0.760 0.771

However, given the degree of censoring and combination of (β1, β2), the variance

estimators were similar for varying p. This seems to indicate a robustness in our

estimation method in relation to p, since p is not a parameter that is estimated

in our proposed model.
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Table 2.5: Censoring Complete Estimating Equation Estimators for main event
of interest (Event 1) based on a Subdistribution Hazards Model with single Z
from Bernoulli(0.5) and p = 0.3, assuming 10% to 60% censoring and varying
β1 and β2.

β1 = 0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 8] 10 0.506(0.009) 0.288 0.285

[0, 2.65] 30 0.496(0.009) 0.304 0.297

[0, 0.9] 60 0.507(0.011) 0.354 0.343

β1 = 0, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 8.2] 10 0.007(0.008) 0.248 0.251

[0, 2.58] 30 −0.004(0.008) 0.266 0.264

[0, 0.87] 60 −0.010(0.010) 0.305 0.306

β1 = −0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 7.5] 10 −0.508(0.007) 0.224 0.221

[0, 2.33] 30 −0.495(0.007) 0.233 0.233

[0, 0.78] 60 −0.511(0.009) 0.269 0.275



2.5 Simulation Studies Based on Additive Hazards Model 45

Table 2.6: Censoring Complete Estimating Equation Estimators for main event
of interest (Event 1) based on a Subdistribution Hazards Model with single Z
from Bernoulli(0.5) and p = 0.6, assuming 10% to 60% censoring and varying
β1 and β2.

β1 = 0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 8.76] 10 0.505(0.009) 0.277 0.283

[0, 2.72] 30 0.502(0.009) 0.296 0.297

[0, 0.92] 60 0.506(0.011) 0.350 0.342

β1 = 0, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 9] 10 −0.002(0.008) 0.250 0.249

[0, 2.83] 30 0.008(0.008) 0.267 0.263

[0, 0.97] 60 0.011(0.010) 0.302 0.301

β1 = −0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 9] 10 −0.500(0.007) 0.220 0.221

[0, 2.86] 30 −0.501(0.007) 0.226 0.230

[0, 0.98] 60 −0.495(0.008) 0.270 0.262
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Table 2.7: Censoring Complete Estimating Equation Estimators for main event
of interest (Event 1) based on a Subdistribution Hazards Model with single Z
from Bernoulli(0.5) and p = 0.9, assuming 10% to 60% censoring and varying
β1 and β2.

β1 = 0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 8.8] 10 0.514(0.009) 0.281 0.284

[0, 2.79] 30 0.477(0.009) 0.303 0.297

[0, 0.94] 60 0.496(0.011) 0.332 0.340

β1 = 0, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 9.7] 10 −0.018(0.008) 0.249 0.252

[0, 3.1] 30 −0.007(0.008) 0.264 0.261

[0, 1.09] 60 0.014(0.009) 0.296 0.294

β1 = −0.5, β2 = 1

[0,a] Censoring proportion AVE(β̂1) SD(β̂1) AVE(ŜD)

[0, 10.8] 10 −0.501(0.007) 0.223 0.220

[0, 3.5] 30 −0.504(0.007) 0.226 0.228

[0, 1.27] 60 −0.492(0.008) 0.246 0.250
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2.6 Application to Prostate Cancer Dataset

The dataset application in this chapter is a randomised clinical trial compar-

ing treatment for patients with prostate cancer in stages 3 and 4. It was first

analysed by Green and Byar (1980). This dataset consisted of 506 patients

randomly allocated to one of four different doses of diethylstilbestrol (DES)

(placebo, 0.2mg, 1mg and 5mg daily). Treatment effect was examined for the

risk of death from different causes. Green and Byar (1980) applied the propor-

tional hazards model with an exponential baseline on the survival times and

considered interaction effects between treatment and other covariates, without

accounting for the competing risks nature of the data. Kay (1986) re-examined

the data using a subset of 483 patients, those with complete information on

all the relevant variables, and applied the proportional hazards model on the

cause-specific hazards. This allowed a direct measure of the effect of treatment

on the different causes of death — cancer, cardiovascular disease (CVD) and

other causes. Cheng et al. (1998) also analysed this dataset using the same

subset of patients but with different classifications of death, that is, death from

prostate cancer, CVD and other causes. They predicted the cumulative inci-

dence function (defined in Section 2.1.2) based on proportional hazards on the

cause-specific hazards. Ng and McLachlan (2003) used the same subset of data

with the same endpoints as Cheng et al. (1998) and proposed a semi-parametric

mixture model to account for the competing risks nature of the data.

We aim to examine this dataset on prostate cancer using the same failure types

as Kay (1986) — death due to cancer, death due to CVD and death due to

other causes. There were 483 patients in the subset with complete information.

For analysis purposes, the four different doses of DES were classified into two

groups — low-dose DES (0 and 0.2mg) and high-dose (1.0mg and 5.0mg). The
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Table 2.8: Coding of the covariates in the prostate cancer data (Green and
Byar, 1980)

Value

Variable 0 1 2

RX 0 (placebo) and 0.2mg 1.0mg and 5.0mg

AG <75 years 75 to 79 years ≥ 80 years

WT ≥ 100 80 to 99 <80

PF Normal Limited

HX No Yes

HG ≥ 12 g/100 ml 9–11.9 g/100 ml <9 g/100 ml

SZ < 30cm2 ≥ 30cm2

SG ≤ 10 >10

treatment indicator, RX, assigned value 0 for the low-dose group and value

1 for the high-dose group. Following the previous work of Kay (1986), there

were seven other covariates included in the model: age (AG), weight index

(WT), performance rating (PF), history of cardiovascular disease (HX), serum

hemoglobin (HG), size of primary lesion (SZ) and Gleason stage/grade category

(SG). The coding of these covariates are according to Green and Byar (1980)

and is given in Table 2.8.

Of the 483 patients, there were 241 patients in the low-dose group and 242 pa-

tients in the high-dose group. There were 344 deaths in total, with 149 cancer

deaths, 139 CVD deaths and 56 deaths from other causes. Other causes in-

clude deaths from respiratory diseases, other specified or unspecified noncancer

causes and unknown causes. The remaining 139 patients were censored, giving

a censoring proportion of 28.8%. While Kay (1986) and Cheng et al. (1998) use



2.6 Application to Prostate Cancer Dataset 49

goodness-of-fit tests to suggest that the Cox model on the cause-specific hazards

is a reasonable fit to the data, we apply the additive risk model on the three

cause-specific hazards to examine excess risk. The estimates of the regression

coefficients based on the additive risk model outlined earlier for the three causes

are given in Table 2.9. We fit the treatment indicator as well as the seven other

covariates, keeping in line with previous analysis work. We also fit the additive

risk model for the overall survival. The survival time was measured in months.

Table 2.9: Parameter estimates for overall survival and cause-specific hazards
(data from Green and Byar, 1980).

. Cause-specific

Coefficient Overall Survival Cancer CVD Others

RX −0.0029 −0.0043 * 0.0030 * −0.0017

(0.0022) (0.0015) (0.0014) (0.0009)

AG 0.0066 * 0.0000 0.0035 * 0.0031 *

(0.0023) (0.0014) (0.0015) (0.0012)

WT 0.0036 0.0014 0.0004 0.0018 *

(0.0020) (0.0014) (0.0012) (0.0008)

PF 0.0131 * 0.0047 0.0058 0.0025

(0.0062) (0.0041) (0.0039) (0.0025)

HX 0.0090 * −0.0004 0.0094 * −0.0000

(0.0025) (0.0015) (0.0017) (0.0010)

HG 0.0079 * 0.0063 * 0.0002 0.0014

(0.0035) (0.0025) (0.0019) (0.0014)

SZ 0.0203 * 0.0183 * −0.0009 0.0029

(0.0058) (0.0048) (0.0025) (0.0021)

SG 0.0077 * 0.0101 * −0.0008 −0.0015

(0.0023) (0.0016) (0.0015) (0.0009)
Standard errors given in parentheses and * indicates significance at 5% level.
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As shown from Table 2.9, the conclusion with regards to the statistical signif-

icance of individual covariates are similar to that of Kay (1986). For overall

survival, the treatment effect is not significant, with the high-dose group hav-

ing higher survival probability. The remaining covariates have significant effect,

with WT having marginal significance and worse survival for increased WT. As

for the cause-specific analysis, it can be seen that the high-dose DES group does

better with reduced risk of cancer death (estimated excess risk = −0.00426 per

month), but fared worse with increased risk of CVD death (estimated excess risk

= 0.00303 per month). Hemoglobin, tumour size and stage/grade significantly

affected the risk of cancer death, with higher values associated with higher risk.

Older patients had a higher risk of CVD death, as are those with a history of

CVD. Older patients with a higher value for the weight index were at higher risk

of deaths from other causes (noncancer, nonCVD or unknown), with a marginal

beneficial treatment effect.

We now examine the same dataset using the subdistribution hazards model

described in Section 2.2, Equation (2.6), with estimators defined in Section 2.3.

In the model, we assumed that the regression coefficients are time-varying and

take the form α(t) =β1e
−t, where α and β1 are column vectors of length 8,

corresponding to the eight covariates fitted. Table 2.10 shows the estimators of

β1 when fitted for the subdistribution hazards for each of the three competing

events — cancer death, CVD death and death due to other causes. Figure

2.1 shows the cumulative incidence functions comparing treatment for each of

the three causes of death, when adjusted for the average value of the other

covariates.

The results indicate a lack of a significant treatment effect for the subdistribu-

tion hazards model with time-varying coefficients of the form β1e
−t. However,
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Figure 2.1: Cumulative incidence functions (CIF) comparing low- and high-
dose DES patients with average values of other covariates (data from Green
and Byar, 1980). CIFs are plotted for: (i) cancer, (ii) cardiovascular, (iii) other
causes of death.
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Table 2.10: Parameter estimates for subdistribution hazards (data from Green
and Byar, 1980).

Subdistribution hazard

Coefficient Cancer CVD Others

RX 0.0122 0.0386 −0.0079

(0.0179) (0.0255) (0.0189)

AG 0.0184 0.0102 0.0107

(0.0133) (0.0244) (0.0249)

WT −0.0130 −0.0004 0.0123

(0.0149) (0.0159) (0.0070)

PF 0.0208 0.0054 0.0797

(0.0415) (0.0517) (0.0637)

HX −0.0144 0.0778 * −0.0065

(0.0191) (0.0282) (0.0209)

HG 0.0235 0.0281 0.0613

(0.0238) (0.0349) (0.0453)

SZ 0.0641 0.0014 −0.0006

(0.0525) (0.0416) (0.0396)

SG 0.0229 0.0147 0.0145

(0.0180) (0.0247) (0.0170)
Standard errors given in parentheses and * indicates significance at 5% level.

we can see that under the subdistribution hazards model, the covariate effects

differ from those under the cause-specific hazards model, in particular, the treat-

ment effect on cancer deaths. Since the risk varies over time, we will take time

at month 1 as an example. Under the cause-specific hazards model, patients

receiving high-dose DES had a lower risk of cancer death. However, under the

subdistribution hazards model, patients receiving high-dose DES had a higher

instantaneous risk of cancer death such that at month 1, high-dose patients had
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a 0.0122e−1 = 0.00449 higher risk than low-dose patients.

Using the model from Table 2.10, we can estimate the probability of different

death outcomes over time for patients with different characteristics. A patient

between 75–79 years of age with a moderate weight index and has a history of

CVD has an estimated probability of 0.25 of cancer death within 4 years if he

receives high-dose DES. A patient with the same characteristics would die from

cardiovascular disease within 4 years with probability 0.3, and from other causes

with probability 0.08. Thus, for patients who have a history of CVD, cancer

death may not be the primary concern. On the other hand, a patient between

75–79 years of age with a moderate weight index and a primary lesion more

than 30cm2 has a probability of 0.30 of cancer death within 4 years, whereas

the estimated probability of cardiovascular death and other causes is 0.25 and

0.06 respectively.

2.7 Discussion

In this chapter, we applied the additive hazards model to competing risks via

two approaches — the cause-specific hazard and the subdistribution hazard,

with the focus on the estimation of the regression coefficients. The purpose of

using additive hazards models is to act as a complement to the widely-used pro-

portional hazards models which examine relative risk, even in competing risks

data. Using counting process theory, we prove the consistency and asymptotic

normality of the estimators. Simulations were conducted from new approaches

for both the cause-specific and subdistribution hazards. Results from the sim-

ulations show that the data generation and estimation procedures work well.

Application of the methods to the prostate cancer dataset yields similar conclu-

sions as Kay (1986) under the cause-specific hazards model. We also analysed
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the data from the subdistribution hazards approach, to see if it yielded a dif-

ferent result from the cause-specific hazards approach used earlier and in other

literature. Fine (1999) examines this dataset using a general class of transfor-

mation models for the cumulative incidence function. The proportional hazards

and odds model was selected for cancer and CVD outcomes respectively. Our

results differ from Fine (1999) as we observed that high-dose DES increased the

incidence of death, while Fine (1999) observed otherwise. However, we observe

similar results for the modelling CVD cumulative incidence in that high-dose

DES increases the incidence of CVD death. While the additive subdistribution

hazards model does not seem a reasonable fit for the prostate cancer dataset,

one reason for this is that we have specified the form of the time-varying func-

tion of the regression coefficient. Further work could look at other time-varying

forms that could be used for the subdistribution model.
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Chapter 3

A Frailty Model with

Conditional Additive Hazards

for Semi-Competing Risks Data

3.1 Introduction

In studies involving time-to-event outcome, a subject may experience multiple

failures, such as repeated episodes of infection, or distant or local recurrences

in cancer studies. In the context of competing risks, the failures are usually

of different types. In this chapter, we consider a variation of the competing

risks problem, known as semi-competing risks (Fine, Jiang and Chappell, 2001)

where a non-terminal event is censored by a terminal event but not vice versa.

Under the semi-competing risks framework, each subject is associated with two

potential failure times — a non-terminal failure (e.g. relapse) and a terminal

failure (e.g. death). It is biologically plausible that the failure times observed

for each individual may be strongly correlated.

As an example, consider the randomized clinical trial for nasopharyngeal cancer
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(NPC), conducted in Singapore between September 1997 and May 2003 (Wee et

al., 2005). This study compared standard radiotherapy treatment to chemora-

diotherapy followed by adjuvant chemoradiotherapy on patients with American

Joint Committee on Cancer/International Union Against Cancer (1997) Stage

3 and 4 nasopharyngeal cancer of the endemic variety. The end-points of inter-

est were distant metastasis and disease-free survival. In both cases, relapse is

the non-terminal event of interest, but could be censored by death. Wee et al.

(2005) used competing risks methodology to analyse the data, but this does not

utilise the additional information provided by the dependent censoring structure

of semi-competing risks.

Existing literature uses the method of copulas to model the joint survival func-

tion between the two failure times, both without covariates (Fine, Jiang and

Chappell, 2001; Jiang et al., 2005; Wang, 2003; Lakhal et al., 2008) and with

covariates (Peng and Fine, 2007; Hsieh and Wang, 2008). These methods were

discussed in Chapter 1. In this chapter, we introduce an alternative way to fit

such data that has a straightforward way of incorporating covariates and mea-

suring the dependent relationship between T1 and T2. Instead of modelling the

joint survival function, we propose to model the hazards of each branch of the

compartment model in Figure 1.1, conditional on a frailty term. In addition,

we model the baseline hazards using B-splines (de Boor, 1978).

Splines are piecewise polynomials satisfying continuity constraints at the knots

joining the pieces. As the number of knots increases, very flexible families of

models are created, so spline methods are a good alternative to exploring the

nature of relationships, especially those of a continuous smooth form. The

shape of a spline function depends on: (i) the order of the function; (ii) the

knot sequence; and (iii) the continuity conditions at each knot. Splines can
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be expressed as a linear combination of basis functions — functions that span

the space of all piecewise polynomials with a specific order, knot sequence and

continuity conditions. Commonly used spline bases include the truncated power

basis and the B-spline basis.

Such methods have been considered for modelling in survival analysis. Splines

using the truncated power basis were considered by Etezadi-Amoli and Ciampi

(1987) in the modelling of the baseline hazard in the extended hazard regression

model, which is a generalisation that includes the proportional hazards and

accelerated failure time models. Cubic B-splines were used by Sleeper and

Harrington (1990) as regression splines (without penalty functions) and by Gray

(1992, 1994) through penalized likelihoods to model arbitrary covariate effect as

an extension to the Cox model. Rosenberg (1995) also used cubic B-splines for

hazard function estimation without covariates. Cubic splines are often sufficient

and flexible enough to reflect the changes in the hazard function.

In this thesis, we focus our use of splines to that of cubic B-splines in the fitting

of the baseline hazards in our conditional additive risk model for semi-competing

risks data. We also apply this method to the NPC dataset and aim to model the

hazards of relapse, death without relapse and death after relapse respectively,

adjusting for treatment, nodal status and TNM staging.

3.2 Proposed Model and Estimation

3.2.1 Additive Hazards for Semi-Competing Risks

Let T1 and T2 be the failure times of the non-terminal and terminal events

respectively. There is a censoring time C that is independent of both T1 and

T2, such as administrative loss to follow-up. Denote the observed failure times
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as Y = min(T2, C) and X = min(T1, Y ). We have the corresponding event

indicators as δ1 = I(T1 < Y ) and δ2 = I(T2 < C) for the occurrence of the

non-terminal and terminal events respectively. The observed data for the i-th

individual is then Ωi = {Xi, δi1, Yi, δi2,Zi}, where Zi is a p× 1 covariate vector.

Under the additive risk frailty model, conditional on the frailty, the hazards

model is an additive one. We have 3 hazard functions for each individual — one

for time to relapse, one for time to death without relapse and one for time to

death after relapse. Their relationships can be seen in the compartment model

shown in Figure 1.1 of Chapter 1. Here we restate the set of of hazard functions

for the i-th individual from Chapter 1:

λ1(t|Ti2 ≥ t, γi,Zi) = γi(λ01(t) + βT1 Zi(t)),

λ2(t|Ti1 ≥ t, γi,Zi) = γi(λ02(t) + βT2 Zi(t)),

λ3(t|Ti1 ≤ t, γi,Zi) = γi(λ03(t) + βT3 Zi(t)), (3.1)

where γi (i = 1, . . . , n) is independent and identically distributed from the

Gamma distribution with shape θ−1 and scale θ, such that the mean of the

frailty parameter is 1 and the variance is θ. We assume the Gamma dis-

tribution here for mathematical convenience. Conditional on the frailty, the

above hazards are independent for each individual. It is of interest to esti-

mate {β1,β2,β3, θ,Λ01(t),Λ02(t),Λ03(t)}. In general, λ3(t2|t1, γ,Z) can depend

on both t1 and t2. In this thesis, we consider the semi-Markov process, where

λ3(t2|t1, γ,Z) = λ3(t2−t1|γ,Z) which depends only on the time between relapse

and death.

A simpler, restricted model that might be of interest is to assume β2 = β3 and

λ02 = λ03. In this restricted model, the dependence between T1 and T2 is fully
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captured by the frailty parameter, γ.

3.2.2 Estimation of Additive Risk Frailty Model

For the three unknown baseline hazards, we propose to use cubic B-splines with

M breakpoints {ξ1, . . . , ξM}, making the maximization of the likelihood function

over a finite dimensional space. This is in contrast to the nonparametric plug-in

estimator provided by Lin and Ying (1994) in the usual survival setting. With

splines, the baseline hazard functions can be estimated as

g0m(t) =
J∑
j=1

cmjBmj(t), m = 1, 2, 3, (3.2)

where {Bm1(t), . . . , BmJ(t)} are the B-spline basis functions for each of the three

hazards facing an individual.

Three important mathematical properties of cubic B-splines (deBoor, 1978) are,

for each m = 1, 2, 3,

1. Bmj(t) = 0 if t /∈ (τj, τj+4),

2. Bmj(t) > 0 if τj < t < τj+4,

3. ∑J
j=1Bmj(t) = 1,

where the knot sequence τ here is defined to be τ= {a = τ1 = . . . = τ4, τ5 =

ξ1, . . . , τ4+M = ξM , τ4+M+1 = . . . = τM+8 = b} and a and b are the observed

minimum and maximum of the survival times. In this thesis, we consider only

splines that do not require estimation of the number (M) and placement of the

knots.

We next set up the likelihood under the additive hazards frailty model. Un-

der the assumption of independent hazards given the frailty, the conditional
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likelihood for the i-th individual is

Lci = [γi{λ01(Xi) + βT1 Zi}]δi1 [γi{λ02(Yi) + βT2 Zi}]δi2(1−δi1)

[γi{λ03(Yi) + βT3 Zi}]δi1δi2exp
[
− γi

{
Λ01(Xi) + (βT1 Zi)Xi + Λ02(Xi)

+(βT2 Zi)Xi + (Λ03(Yi)− Λ03(Xi)) + (βT3 Zi)(Yi −Xi)
}]
.

The unconditional observed likelihood for the i-th individual is obtained by

integrating out the frailty term, which we have assumed to follow the Gamma

distribution with shape θ−1 and scale θ. We then obtain the unconditional

likelihood

Li =
[
λ01(Xi) + βT1 Zi

]δi1[
λ02(Yi) + βT2 Z

]δi2(1−δi1)[
λ03(Yi) + βT3 Zi

]δi1δi2
(1 + θ)δi1δi2

[
1 + θ

{
Λ01(Xi) + (βT1 Zi)Xi + Λ02(Xi)

+(βT2 Zi)Xi + (Λ03(Yi)− Λ03(Xi)) + (βT3 Zi)(Yi −Xi)
}]1/θ+δi1+δi2

.

Thus the overall observed loglikelihood for semi-competing risks can be written

as

` =
n∑
i=1

δi1 log
[
λ01(Xi) + βT1 Zi

]
+ δi2(1− δi1) log

[
λ02(Yi) + βT2 Zi

]

+δi1δi2 log
[
λ03(Yi) + βT3 Zi

]
+ δi1δi2 log(1 + θ)

−(1
θ

+ δi1 + δi2)log
[
1 + θ

{
Λ01(Xi) + (βT1 Zi)Xi + Λ02(Xi)

+
(
βT2 Zi

)
Xi + (Λ03(Yi)− Λ03(Xi)) + (βT3 Zi)(Yi −Xi)

}], (3.3)
where λ0m(t) is estimated by Equation (3.2) and Λ0m(t) (m = 1, 2, 3) is esti-
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mated by

G0m(t) =
J∑
j=1

cmj

∫ t

0
Bmj(u)du. (3.4)

The loglikelihood equation (3.3) is the function we aim to maximise with respect

to the parameters ϑn = (βT1 ,βT2 ,βT3 , θ, ϕn = (G01, G02, G03)T ). Score functions

and the hessian matrix are accordingly calculated for the information matrix.

3.3 Theoretical Properties

By parameterizing the baseline hazard, we consider the space Θn, spanned by

the parameters we aim to estimate, in this case, ϑn, which are the regression

coefficients β1, β2, β3, the variance of the Gamma frailty distribution, θ, and

the spline approximations to the baseline hazard functions, ϕn. This space

is known as a sieve space (Grenander, 1981) and approximates the infinite-

dimensional parameter space Θ, spanned by {β1, β2, β3, θ,Λ01(t),Λ02(t),Λ03(t)}.

Here, the estimator ϑ̂n is obtained by maximizing the empirical criterion func-

tion `n(ϑ) = (1/n)∑n
i=1 `(ϑ,Ωi), where `n(ϑ) is the loglikelihood function de-

fined in Equation (3.3) multiplied by a constant (1/n) and `(ϑ,Ωi) is the con-

tribution of the i-th individual to the loglikelihood.

In this section, we assume that T1 and T2 are bounded on [0, 1]. Define Hr

as the collection of all functions on [0, 1] whose mth order derivative satisfies

the Hölder condition of order v with r = m + v. That is, for any h ∈ Hr,

there exists a positive constant c such that |h(m)(s) − h(m)(t)| ≤ c|s − t|v, for

any 0 ≤ s, t ≤ 1. Let Cr be the space of all bivariate functions h(t1, t2) on

[0, 1]2 such that D(u1,u2)h = ∂u1+u2h/∂u1t1∂
u2t2 is continuous and Lipschitz of

order v:
∥∥∥D(u1,u2)(T )−D(u1,u2)(S)

∥∥∥ ≤ W0|T − S|v for any T, S ∈ [0, 1]2 and

u1 + u2 < r − v, where W0 is a finite constant. Also let Pϑ0 be the probability
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measure under the true model parameters and Pn be the empirical probability

measure.

Before we examine some of the properties of ϑ̂n, the MLE of the sieve space,

we first give some conditions needed for the following theorems. Denote ϑ0 as

the true values of the parameters to be estimated.

1. T1 and T2 have supports on [0, 1] and Z has bounded support on Rp where

p is the dimension of Z.

2. β0 = (βT10,β
T
20,β

T
30)T ∈ B where B is a compact set in R3p with nonempty

interior. Also, λ01, λ02 ∈ Hr and λ03 ∈ Cr.

3. r ≥ 2 where r is the measure of smoothness of λj in the definitions of Hr

and Cr.

Theorem 3.3.1. (Consistency of estimator ϑ̂n). Suppose the conditions (1–3)

above hold true, then ϑ̂n is a consistent estimator of ϑ0.

Proof. The proof follows closely to Xue et al. (2004). Let Fn = {`(ϑ, ·) : ϑ ∈

Θn} and N(εn,Fn, Pn) be the covering number defined by Pollard (1984). Using

the results of the symmetrization lemma and II.31 of Pollard (1984), we have

as n −→∞

P (sup
Fn
|Pn`− P`| > 8εn) −→ 0.

Hence
∞∑
i=1

P
{

sup
Fn
|Pn`− P`| > 8εn

}
< +∞,

where P = Pϑ0 and by Borel-Cantelli lemma, under Pϑ0 ,

sup
ϑ∈Θn

|Pn`− P`| −→ 0, a.s.. (3.5)
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Now let

ζ1n = sup
ϑ∈Θn

|Pn`− P`|,

ζ2n = Pn`(ϑ0, ·)− P`(ϑ0, ·). (3.6)

Denote Kε = {ϑ : d(ϑ,ϑ0) ≥ ε,ϑ ∈ Θn}, where we define a distance metric

d as the sum of the L2 distance between each parameter in ϑ, based on the

probability measure of (T1, T2). Then

inf
Kε
P`(ϑ,Ω) = inf

Kε

{
P`(ϑ,Ω)− Pn`(ϑ,Ω) + Pn`(ϑ,Ω)

}
≤ ζ1n + inf

Kε
Pn`(ϑ,Ω) (3.7)

If ϑ̂n ∈ Kε, we have

inf
Kε
Pn`(ϑ,Ω) = Pn`(ϑ̂n,Ω)

≤ Pn`(ϑ0,Ω)

= ζ2n + P`(ϑ0,Ω) (3.8)

The choice of the sieve space results in infKε P`(ϑ,Ω)− P`(ϑ0,Ω) = δε, where

δε > 0. Hence, by (3.7) and (3.8),

inf
Kε
P`(ϑ,Ω) ≤ ζ1n + ζ2n + P`(ϑ0,Ω)

= ζn + P`(ϑ0,Ω),

where ζn = ζ1n + ζ2n. Thus we get ζn ≥ δε. Furthermore, we have {ϑ̂n ∈ Kε} ⊆

{ζn ≥ δε}. By (3.5) and the Strong Law of Large Numbers, we have ζ1n = o(1),

ζ2n = o(1) a.s.. Therefore, by ⋃∞k=1
⋂∞
n=k{ϑ̂n ∈ Kε} ⊆

⋃∞
k=1

⋂∞
n=k{ζn ≥ δε}, we

get d(ϑ̂n,ϑ0) P−→ 0 and thus prove the consistency of ϑ̂n.
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Theorem 3.3.2. (Asymptotic normality of ϑ̂n). Let η = (βT1 ,βT2 ,βT3 , θ)T . If

the conditions (1–3) above hold, then
√
n(η̂ − η0) is asymptotically normal.

Proof. This proof follows closely to Murphy (1995). To obtain the score func-

tions, one can use the usual method of differentiating the loglikelihood `n with

respect to the parameters given in ϑ. An equivalent method would be to con-

sider one-dimensional submodels through the estimators and differentiate at the

estimator. Set βjt = th1j +βj, θt = th2 + θ and Λ0jt(·) =
∫ ·

0[1 + th3j(u)]dΛ̂0j(u)

for j = 1, 2, 3, where h1j are vectors of length p, h2 is a scalar and h3j are

functions. Use these models in `n and differentiate and set t = 0 to obtain

Sn(ϑ). Note that the estimator that maximises `n will have Sn(ϑ̂) = 0. Sn can

be written as Sn = Sn1 + Sn2 + Sn3, where

Sn1(ϑ)(h1) =
n∑
i=1

{
δi1h

T
11Zi

λ01(Xi) + βT1 Zi

+ δi2(1− δi1)hT12Zi

λ02(Xi) + βT2 Zi

+ δi1δi2h
T
13Zi

λ03(Yi) + βT3 Zi

−(1
θ

+ δi1 + δi2)θ[h
T
11ZiXi + hT12ZiXi + hT13Zi(Yi −Xi)]

1 + θΛ

}
,

Sn2(ϑ)(h2) =
n∑
i=1

{
δi1δi2h2

1 + θ
+ h2

θ2 log[1 + θΛ]− (1
θ

+ δi1 + δi2) h2Λ
1 + θΛ

}
,

and

Sn3(ϑ)(h3) =
n∑
i=1

{
δi1h31(Xi)λ01(Xi)
λ01(Xi) + βT1 Zi

+ δi2(1− δi1)h32(Xi)λ02(Xi)
λ02(Xi) + βT2 Zi

+δi1δi2h33(Yi)λ03(Yi)
λ03(Yi) + βT3 Zi

− (1
θ

+ δi1 + δi2)θ
[∫Xi

0 h31(u)λ01(u)du
1 + θΛ

+
∫Xi
0 h32(u)λ02(u)du+

∫ Yi
Xi
h33(u)λ03(u)du

1 + θΛ

]}
,

where h1 = (hT11, h
T
12, h

T
13), h3 = (h31, h32, h33), Λ = Λ1(Xi) + Λ2(Xi) + (Λ3(Yi)−

Λ3(Xi)) and Λj(t) = Λ0j(t) + βTj Zit for j = 1, 2, 3.

We begin by proving the conditions in Theorem 2 of Murphy (1995). We obtain

the condition that
√
n(Sn(ϑ0)− S(ϑ0)) converges weakly to a normal distribu-
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tion with mean 0, by central limit theorem and continuous mapping theorem,

where Sn is the empirical score function of the likelihood and S is the asymp-

totic version of Sn. The approximation condition is a technical proof and is

omitted here.

Denote Ṡ(ϑ0) as the linear operator on the set of all linear combinations of

(ϑ − ϑ0) for all ϑ ∈ Θ. The classical relationship between the asymptotic

variance of the score function (the information matrix for ϑ) and the derivative

of the score equation, −Ṡ(ϑ0) holds. By writing S(ϑ) as a linear combination

of β̂ − β0, θ̂ − θ0 and d(Λ̂0j − Λ0j) plus error terms, we obtain −Ṡ(ϑ0)(ϑ0)(h)

as the variance for
√
nSn(ϑ0)(h). We thus get

S(ϑ̂)− S(ϑ0) = Ṡ(ϑ0)(ϑ̂− ϑ0).

Given the convergence to normality of
√
n(Sn(ϑ0) − S(ϑ0)) and the fact that

with S being the asymptotic vrsion of Sn, S(ϑ0) = 0 and Sn(ϑ̂) = 0, we can

now write

√
n(Sn(ϑ0)− S(ϑ0)) =

√
n(S(ϑ0)− S(ϑ̂))−

√
n((Sn − S)(ϑ̂)− (Sn − S)(ϑ0)),

which in turn can be rewritten as

√
n(Sn(ϑ0)− S(ϑ0)) =

√
nṠ(ϑ0)(ϑ̂− ϑ0) + oP (1).

With the asymptotic normality of
√
n(Sn(ϑ0)− S(ϑ0)) and the invertibility of

Ṡ(ϑ0), we get the convergence in distribution of
√
n(ϑ̂ − ϑ0) to the normal
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distribution. We now write

√
ngT1 (β̂ − β0) +

√
ng2( ˆtheta− θ0) +

3∑
j=1

∫ √
ng3jd(Λ̂0j − Λ0j),

where (gT1 , g2, g31, g32, g33) are coefficients to form linear combinations of
√
n(ϑ̂−

ϑ0). Thus, by Cramer-Wold device (van der Vaart, 1998) and setting g3j = 0

for j = 1, 2, 3, we have the asymptotic normality of
√
n(η̂ − η0).

3.4 Simulation Studies Based on Additive Risks

Frailty Model

3.4.1 Data Generation for Semi-Competing Risks

Based on the conditional independence of the hazard functions, we first generate

covariate vector Z and the gamma frailty term. Given the covariate values and

the frailty, we then generate two independent times, T1 (time to non-terminal

event) and T2 (time to terminal event), from their respective distributions based

on λ1 and λ2 from Equation (3.1). If T1 > T2, then we consider the non-terminal

event as censored. Conversely, if T1 < T2, then the non-terminal event has

occurred and we generate a third time from the third branch of the compartment

model to obtain the time to the terminal event after the non-terminal event has

occurred. Censoring times, C, are generated independently of T and from the

Uniform[0, a] distribution for some a > 0.

3.4.2 Simulation Results for Additive Risk Frailty Model

We consider the simple case of a single discrete covariate Z generated from the

Bernoulli(0.5) distribution. Simulations were conducted for a sample size of
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400, and at two degrees of censoring, 10% and 30%. We fix the baseline hazard

to be from the exponential distribution with mean 1. Two sets of true values

are considered for the three regression coefficients of the respective hazards —

(β1, β2, β3) = (1, 1, 1) and (β1, β2, β3) = (0.5, 1, 2); and the true value of θ for

the Gamma frailty distribution is first set at 0.95.

We generate 1000 simulations for each combination of censoring, regression co-

efficients and θ. Table 3.1 shows the results and for each parameter combination

gives: (i) the Estimate (Est), the average from 1000 estimates; (ii) the Empir-

ical Standard Error (EmpSE), the standard deviation of the 1000 estimators;

(iii) the Model Standard Error (ModSE), the average of 1000 standard error

estimators, using the information matrix. These notations are similar to those

reported in the simulations in Chapter 2, where Est, EmpSE and ModSe are

similar to AV E(β̂1), SD(β̂1) and AV E(ŜD) in Chapter 2 respectively. We also

conducted 1000 simulations for different levels of censoring and regression co-

efficients, and varying θ. Tables 3.2 and 3.3 shows the results for θ = 0.5 and

1.5 respectively. The tables indicate that the biases are relatively small and

are about 10% of the true value. All the simulations indicate that larger values

of the parameters result in larger standard errors. Similar observations can be

made for higher percentages of censoring. In addition, standard errors increase

slightly with censoring. Varying values of θ do not affect the estimates much.

Figure 3.1 shows the plots of the spline estimators of the basline survival function

for the time to relapse. Under the simulation, the true survival function is

S0(t) = e−t and is indicated on the diagram with the solid black line. The grey

lines are the estimators obtained from each of the 1000 samples. As can be

seen, the spline estimators approximate the general shape of the true survival

function well.



3.4 Simulation Studies Based on Additive Risks Frailty Model 68

Table 3.1: Estimators for Additive Risk Frailty Model for Semi-Competing Risks
Data with single Z from Bernoulli(0.5) and θ = 0.95, with 10% and 30% cen-
soring and varying β.

(β1, β2, β3) = (1, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 12] 10% β1 1.094 0.38 0.38

β2 1.066 0.36 0.38

β3 1.092 0.19 0.23

θ 1.045 0.17 0.19

[0, 2.4] 30% β1 1.108 0.40 0.41

β2 1.087 0.38 0.41

β3 1.090 0.46 0.51

θ 1.071 0.23 0.24

(β1, β2, β3) = (0.5, 1, 2)

[0,a] Cens Est EmpSE ModSE

[0, 12] 10% β1 0.549 0.28 0.31

β2 1.066 0.35 0.37

β3 2.162 0.64 0.67

θ 1.046 0.17 0.20

[0, 2.4] 30% β1 0.584 0.31 0.34

β2 1.105 0.39 0.41

β3 2.154 0.72 0.77

θ 1.083 0.22 0.25
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Table 3.2: Estimators for Additive Risk Frailty Model for Semi-Competing Risks
Data with single Z from Bernoulli(0.5) and θ = 0.5, with 10% and 30% censoring
and varying β.

(β1, β2, β3) = (1, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 6.6] 10% β1 1.127 0.35 0.35

β2 1.117 0.35 0.34

β3 1.120 0.40 0.41

θ 0.608 0.16 0.16

[0, 1.7] 30% β1 1.132 0.38 0.39

β2 1.120 0.37 0.39

β3 1.105 0.45 0.49

θ 0.625 0.21 0.21

(β1, β2, β3) = (0.5, 1, 2)

[0,a] Cens Est EmpSE ModSE

[0, 6.6] 10% β1 0.562 0.27 0.28

β2 1.103 0.34 0.33

β3 2.182 0.59 0.61

θ 0.592 0.16 0.16

[0, 1.7] 30% β1 0.591 0.30 0.32

β2 1.140 0.37 0.38

β3 2.194 0.69 0.73

θ 0.640 0.22 0.22
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Table 3.3: Estimators for Additive Risk Frailty Model for Semi-Competing Risks
Data with single Z from Bernoulli(0.5) and θ = 1.5, with 10% and 30% censoring
and varying β.

(β1, β2, β3) = (1, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 30] 10% β1 1.085 0.41 0.42

β2 1.067 0.41 0.41

β3 1.081 0.46 0.47

θ 1.616 0.23 0.23

[0, 3.9] 30% β1 1.104 0.43 0.45

β2 1.106 0.42 0.45

β3 1.103 0.50 0.54

θ 1.651 0.28 0.28

(β1, β2, β3) = (0.5, 1, 2)

[0,a] Cens Est EmpSE ModSE

[0, 30] 10% β1 0.571 0.32 0.34

β2 1.099 0.39 0.41

β3 2.192 0.69 0.72

θ 1.640 0.24 0.23

[0, 3.9] 30% β1 0.580 0.34 0.37

β2 1.124 0.43 0.45

β3 2.207 0.79 0.82

θ 1.662 0.29 0.31
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Figure 3.1: Plot of 1000 estimators of the baseline survival functions for time
to relapse. Estimators obtained using splines. Bold line indicates true survival
function.

3.5 Application to NP01 Clinical Trial

The dataset used in this chapter was briefly mentioned in Chapter 1 and is a

randomised clinical trial conducted in Singapore comparing two treatments on

nasopharyngeal cancer (Wee et al., 2005). In the trial (NP01) conducted be-

tween September 1997 and May 2003, patients may experience the non-terminal

event of interest — cancer relapse of any type, and/or the terminal event —

death. There were 221 patients who were randomly assigned in total, with

110 receiving radiotherapy (RT) alone and 111 receiving chemoradiotherapy

(CRT). Of the 110 patients receiving radiotherapy alone, there were 48 relapses

and 44 deaths (of which 39 were disease related); of the 111 patients receiving

chemoradiotherapy, there were 27 relapses and 24 deaths (of which 21 were dis-

ease related). The median follow-up time was 3.2 years. Both treatment groups

were well balanced with respect to most characteristics — gender, race, tumour

size, nodal status, TNM staging (disease stage). Full details of the trial are
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provided by Wee et al. (2005).

The NP01 dataset has been analysed using the competing risks approach to

compute the cumulative incidence function. However, this approach does not

take into account the additional information due to the unique dependent cen-

soring. The competing risks approach would not utilise the information from

the survival times of patients who have suffered relapse, but can still be anal-

ysed for time to death (the upper wedge). Here, we aim to use the model from

Section 3.2 to incorporate this special nature of the data.

In this trial, two endpoints were of interest — time to relapse and time to mor-

tality. Although death was the primary outcome, relapse was also considered

to be an important endpoint because it has been found that a substantial pro-

portion of patients with Stage III or IV endemic NPC relapsed locoregionally

and/or systematically with RT alone. Table 3.4 shows the breakdown of relapse

and deaths according to the compartment model for each treatment group.

Table 3.4: Number of relapses and deaths in each treatment group (data from
Wee et al., 2005).

No. of patients

Event CRT RT Total

Relapse without death 11 9 20

Death without relapse 8 5 13

Relapse with death 16 39 55

Total 35 53 88

We fit the additive risk frailty model, using the Gamma distribution with shape

θ−1 and scale θ. As an initial analysis, we fit only the treatment covariate, with
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the patients receiving CRT as the reference group. Table 3.5 shows the result

of the model fitting. Treatment was significant in the relapse arm and only

marginally significant in the death after relapse arm. The estimate indicates

that the addition of chemotherapy to radiotherapy seems to decrease the hazard

of relapse of an individual by 0.0746 for an individual receiving CRT as compared

to one receiving RT alone. A similar observation can be made for hazard of

death after relapse. The instantaneous risk of death after relapse decreases by

0.353 for an individual receiving CRT as compared to one receiving RT alone.

The estimate of the variance of the frailty parameter was θ̂ = 0.00012. This

indicates little relationship between the three arms of the compartment model

for the semi-competing risks data of NP01 under this gamma frailty model.

It can also be observed that under the semi-competing risks setting, the treat-

ment effect is different in the two death arms. For death without relapse, the

addition of chemotherapy resulted in worser survival rates as compared to pa-

tients receiving only RT, although this effect was not significant. In contrast,

patients receiving CRT had better chances of survival from death after relapse

as compared to patients receiving RT and this effect was marginally significant.

Table 3.5: Estimation of treatment effect based on Additive Risk Frailty Model
for Semi-competing Risks (data from Wee et al., 2005).

Relapse Death without Relapse Death after Relapse

Treatment a 0.075 * −0.013 0.353

(0.033) (0.021) (0.205)

Loglikelihood −329.854
Standard errors given in parentheses and * indicates significance at 5% level.

aCRT as reference group

Figure 3.2 shows the survival curves comparing the treatment effect under the



3.5 Application to NP01 Clinical Trial 74

Figure 3.2: Survival functions comparing treatment effect on time to (from top
to bottom): (a) relapse; (b) death without relapse; and (c) death after relapse
(data fromWee et al., 2005). — gives the survival function for patients receiving
CRT; - - - gives the survival function for patients receiving RT.
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above model. The cumulative effect of an additive risk model can be seen over

time. Based on Figure 3.2, the 2- and 3-year disease-free survival rates were

about 75% v 65% and 73% v 58% for locally advanced NPC patients in the CRT

v RT group respectively. As for overall survival rate, we can observe the two

arms of death without relapse and death after relapse. In the death without

relapse arm, there was little treatment effect, but estimation indicates that the

addition of chemotherapy to radiotherapy results in a worse survival rate; the

2- and 3-year survival rate was about 92% v 96% and 90% v 95% for patients in

the CRT v RT groups respectively. In the death after relapse arm, the survival

rates are worse, with the 1- and 2-year survival rate after relapse has occurred

at about 62% v 44% and 36% v 16% for patients in the CRT v RT groups

respectively. As expected, patients who suffer relapse had worser survival rates

as compared to those who died without relapse, in particular, patients who

received RT appear to have less than 50% survival chance if they experience

relapse as compared to patients in the same treatment group who did not suffer

relapse.

We also fit the additive risk frailty model to account not only for treatment,

but also for nodal status (stratifying between N0–2 and N3) and tumour size

(TNM staging, stratifying between Stage 2–3 and 4). Table 3.6 shows the

results of the fitting. The conclusions with regard to statistical significance of

individual covariates are the same as before, even after accounting for the strata

of nodal status and TNM staging. One reason for this observation could be that

the treatment groups were well-balanced with respect to most characteristics

and hence, we would not expect the inclusion of these covariates to affect our

analysis. The frailty variance was estimated at 0.006 (SE=0.022), which implies

an insignificant dependence relationship between the three arms of the relapse-

death model. Figure 3.3 shows the survival curves comparing the treatment
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effect on relapse under the adjusted model. As can be seen, patients with

higher nodal status and TNM staging have lower recurrence-free rates.

Table 3.6: Estimators for Additive Risk Frailty Model for Semi-competing Risks,
accounting for treatment, nodal status and TNM staging (data from Wee et al.,
2005).

Relapse Death without Relapse Death after Relapse

Treatment a 0.071 * −0.001 0.355

(0.033) (0.058) (0.210)

Nodal status b 0.038 −0.009 0.018

(0.056) (0.062) (0.252)

TNM staging c 0.038 0.024 0.027

(0.038) (0.100) (0.275)

Loglikelihood −328.136
Standard errors given in parentheses and * indicates significance at 5% level.

aCRT as reference group
bN0–2 as reference group
cStage 3 as reference group

In both models analysed so far, the frailty parameter seems to indicate a lack

of association between relapse and death. Thus, we consider the restricted

model, which assumes that the two death arms share the same hazard function,

conditional on the frailty, that is, β2 = β3 and λ02 = λ03. Table 3.7 shows the

results of the restricted model evaluating treatment effect only.

The estimates obtained show significant protective effect of CRT as compared to

RT for both the relapse and death outcomes, although the effect in the relapse

arm is only significant at the 10% level. Also, the protective effect increases

in the death arm, as can be seen from the larger value of the estimate. In

addition, the frailty parameter is now estimated at 1.28 (SE=0.335) and is now
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Figure 3.3: Survival functions comparing treatment effect on time to relapse,
stratifying for nodal status and TNM staging: (a) Nodal status N0–2, TNM
Stage 2–3; (b) Nodal status N3, TNM Stage 2–3; (c) Nodal status N0–2, TNM
Stage 4; (d) Nodal status N3; TNM Stage 4 (data from Wee et al., 2005). —
gives the survival function for patients receiving CRT; - - - gives the survival
function for patients receiving RT.

Table 3.7: Estimation of treatment effect based on Restricted Additive Risk
Frailty Model for Semi-Competing Risks (data from Wee et al., 2005).

Relapse Death

Treatment a 0.088 0.106 *

(0.052) (0.035)

Loglikelihood −364.44
Standard errors given in parentheses and * indicates significance at 5% level.

aCRT as reference group
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significant, whereas the estimate under the general (three arms) compartment

model was close to 0 and not significant. This new estimate indicates that there

is an association between relapse and death. The survival rates for relapse and

death can be examined in Figure 3.4. The 2- and 3-year disease-free survival

can be seen from the survival functions for relapse and are estimated at 83% v

73% and 80% v 66% for the CRT v RT groups respectively. The 2- and 3-year

overall survival rates are estimated from the survival functions for death and

are 87% v 75% and 81% v 65% for the CRT v RT groups respectively. These

estimates are close to the ones obtained by Wee et al. (2005).

Figure 3.4: Survival functions comparing treatment effect on: (a) time to relapse
and (b) time to death, for an individual under restricted additive model (data
from Wee et al., 2005). — gives the survival function for patients receiving
CRT; - - - gives the survival function for patients receiving RT.

We also conducted a likelihood ratio test to see if the general model was a better

fit for the data, or if the restricted model was sufficient. The test statistic was
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69.18 and yielded a p-value of <0.001 under the χ2 distribution with 9 degrees

of freedom. This indicates strong evidence against the restricted model, when

we consider our formulation of the general model.

In a similar fashion, we also fit the additive restricted frailty model and ad-

justed for treatment, nodal status and TNM staging. The estimates are given

in Table 3.8. Compared to the restricted model with treatment only, the es-

timates for treatment effect are similar and only the treatment estimates are

marginally significant in this model. The estimate of the frailty parameter

was 2.01 (SE=0.502) and was highly significant, indicating a strong association

betwen relapse and death. A likelihood ratio test was used to compare this

adjusted model against the same adjusted general compartment model fitted

earlier. The test statistic obtained was 46.8 with a p-value <0.001 under the χ2

distribution with 11 degrees of freedom, indicating strong evidence against the

restricted model.

Table 3.8: Estimators for Restricted Additive Risk Frailty Model for Semi-
Competing Risks, accounting for treatment, nodal status and TNM staging
(data from Wee et al., 2005).

Relapse Death

Treatment a 0.134 0.108

(0.070) (0.060)

Nodal status b 0.136 0.065

(0.146) (0.110)

TNM staging c 0.070 0.135

(0.100) (0.097)

Loglikelihood −351.534
Standard errors given in parentheses and * indicates significance at 5% level.

aCRT as reference group
bN0–2 as reference group
cStage 3 as reference group
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3.6 Discussion

In this chapter, we applied additive hazards to the conditional frailty model to

account for covariates, where the frailty term measured the potential relation-

ship between relapse and death times for each individual. The additive hazards

model can provide a complementary analysis to the usual Cox model where the

covariate effect is multiplicative. Simulations indicated that the method works

reasonably well. Further discussion on the methodology is found in Chapter 5.

Application of the conditional additive risk frailty model on the NP01 dataset

utilises more information than the original literature of Wee et al. (2005), which

analysed the data as competing risks. In contrast, our proposed model accounts

for the unique censoring relationship between relapse and death. Results from

the model fitting indicate similar results to Wee et al. (2005) in that the addition

of nodal status and TNM staging as covariates did not yield different estimates

from the model that included treatment only. We also confirmed the findings

that chemotherapy improves the relapse control rate in NPC.

Under the semi-competing risks setting, we obtained further insight on overall

survival as we now examine death as two outcomes - with and without relapse

of NPC. In the trial conducted by Wee et al. (2005), overall 2- and 3-year

survival rates were found to be 85% v 78% and 80% v 65% for CRT and RT

treatment groups respectively. Similar survival rates were also obtained under

the restricted additive fraily model. However, when compared against the gen-

eral model, the restricted model was not sufficient as our likelihood ratio test

indicated.

For the general model, we obtained higher survival rates in our analysis for 2-

and 3-year survival rates for the two treatment groups in the death without
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relapse arm. On the other hand, the death with relapse arm had substantially

lower 2- and 3-year survival rates as compared to Wee et al. (2005). This is

also seen in the estimates obtained. One possible reason for the difference could

be the unique relationship between death and relapse and by accounting for

this relationship as we have done in our model, it reveals the distinct difference

between the two death outcomes rather than examining all the deaths for overall

survival, while examining death as a single outcome without accounting for

relapse might cause the two effects to cancel each other out.

This dataset was analysed in Lim’s (2010) thesis, which considered a parametric

proportional hazards model with a Weibull baseline and Gamma shared frailty.

Only treatment effect was accounted for and her model did not indicate signifi-

cant effect of adjuvant chemotherapy, although the observations made from the

estimates alone (regardless of significance) showed the same conclusion as the

analysis done in this chapter.

Xu et al. (2010) also analysed the same dataset, but considered the proportional

hazards model with shared frailty and nonparametric baseline hazards. Other

differences in our analyses and that of Xu et al. include different covariates

used in adjustment. This chapter adjusts for nodal status (N0–2 v N3) and

TNM staging (Stage 3 v Stage 4), while the latter adjusts for tumour size and

nodal status and accounts for them as categorical variables with 4 levels each.

The observations on treatment effect are similar in both analyses — patients

in the CRT group had significantly increased chances of disease-free survival

and overall survival after relapse, but experienced decreased chances of overall

survival without relapse, although the last effect was not significant. In addition,

the estimate of the frailty parameter was found to be highly significant in their

analysis, but was not in this chapter.
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The estimated frailty parameter under the general model was found to be a

small and non-significant value. A possible reason for this is that the general

compartment model allows the hazards in the death arms to differ. The frailty

in the restricted model captures the difference of hazards with and without

relapse since we assume β2 = β3 and λ02 = λ03. Thus intuitively, we can expect

the frailty variance to be smaller than that in the reduced model. In addition,

we have assumed the frailty to follow the Gamma distribution. In practice, this

might not be true, resulting in an inaccurate estimate for the frailty parameter.

Future work can examine model checking procedures for such assumptions on

the frailty distribution.
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Chapter 4

Extensions to the

Additive-Multiplicative Model

4.1 Introduction

The focus of this thesis thus far has been on the additive risk model. We now ex-

tend the additive risk frailty model to the more general additive-multiplicative

hazard models for the analysis of semi-competing risks data. For univariate

survival data, the general class of additive-multiplicative model has been stud-

ied. The additive hazards and multiplicative hazards models postulate different

relationships between the covariates and the hazard function and the choice be-

tween additive or multiplicative hazards can be an empirical decision or based

on physical logic. The general class of additive-multiplicative models has the

flexibility of allowing some covariate effects to be additive while letting others

be multiplicative or allowing certain covariates to have both the additive and

multiplicative effects.

A simple additive-multiplicative model was first analysed by Andersen and

Værth (1989), which looked at relative and excess mortality in comparison to a
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known population mortality, λ∗(t). Their model was given as

λ(t) = α(t) + β(t)λ∗(t),

where α(t) and β(t) measured the excess and relative risk respectively, but did

not account for covariate effects. The proportional excess hazards model was

also examined by Sasieni (1996). Lin and Ying (1995) studied the class of

models given by

λ(t|W,X) = g{αT0W (t)}+ λ0(t)h{βT0 X(t)},

where g and h are known link functions, W and X are possibly time-varying

covariates and λ0 is an unspecified baseline hazard under g = 0 and h = 1. It

is easy to see that such a class of models encompasses both the additive model

(g(x) = x, h = 1) and the Cox model (g = 0, h(x) = ex). Under this model, all

covariate effects are fixed and not time-varying.

Martinussen and Scheike (2002) and Scheike and Zhang (2002) suggested two

different additive-multiplicative models with time-varying covariate effects. In

the former, Martinussen and Scheike (2002) examined a model similar to Lin

and Ying (1995) with g as the identity link and h as the exponential link, but

they allowed α0 to vary with time while keeping β0 as time-invariant. Scheike

and Zhang (2002) considered a variation from the above models and extended

the Cox model by allowing the baseline hazard to depend on covariates through

the additive Aalen model. Their model was given as

λ(t|W,X) = (α0(t)TW (t))λ0(t)h{βT0 X(t)}.

In this chapter, we propose to extend the general additive-multiplicative model
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to the semi-competing risks setting discussed in Chapter 3. Conditional on the

frailty term, the hazard function is an additive-multiplicative function following

that of Lin and Ying (1995) with g(x) = x and h(x) = ex. Similar to Chapter

3, we model the baseline hazard functions via cubic B-splines with fixed knots.

4.2 Proposed Additive-Multiplicative Model

4.2.1 Additive-Multiplicative Model

Using the same notation as in Section 3.2 for the failure times, we have the

hazard functions for the i-th individual as:

λ1(t|Ti2 ≥ t, γi,Wi,Zi) = γi(λ01(t) exp(αT1 Wi(t)) + βT1 Zi(t)),

λ2(t|Ti1 ≥ t, γi,Wi,Zi) = γi(λ02(t) exp(αT2 Wi(t)) + βT2 Zi(t)),

λ3(t|Ti1 ≤ t, γi,Wi,Zi) = γi(λ03(t) exp(αT3 Wi(t)) + βT3 Zi(t)), (4.1)

where W and Z are covariate vectors with corresponding vectors of unknown

regression parameters, α and β, and as in Chapter 3, γi is the frailty term

for each individual and assumed to be independent and identically distributed

from the Gamma distribution with shape θ−1 and scale θ. Again, the Gamma

distribution is assumed for mathematical convenience.
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4.2.2 Estimation for Additive-Multiplicative Model

Similar to Chapter 3, we propose to use cubic B-splines to estimate the three

baseline hazard functions. The observed loglikelihood can then be written as

l =
n∑
i=1

δi1 log
[
λ01(Xi) exp(αT1 Wi) + βT1 Zi

]

+ δi2(1− δi1) log
[
λ02(Yi) exp(αT2 Wi) + βT2 Zi

]
+ δi1δi2 log

[
λ03(Yi) exp(αT3Wi) + βT3 Zi

]
+ δi1δi2log(1 + θ)

− (1
θ

+ δi1 + δi2) log
[
1 + θ

{
Λ01(Xi) exp(αT1Wi) + (βT1 Zi)Xi

+Λ02(Xi) exp(αT2Wi) +
(
βT2 Zi

)
Xi

+(Λ03(Yi)− Λ03(Xi)) exp(αT3Wi) + (βT3 Zi)(Yi −Xi)
}], (4.2)

where λ0m(t) is estimated by Equation (3.2) and Λ0m(t) (m = 1, 2, 3) is esti-

mated by Equation (3.4).

This loglikelihood function can be maximised over the finite dimensional space

for the parameters ψ = {αT1 ,αT2 ,αT3 ,βT1 ,βT2 ,βT3 , θ, c11, . . . , c1J , c21, . . . , c2J , c31, .

.., c3J}.

4.3 Theoretical Properties

In this section we use the assumptions listed in Section 3.3. The proofs of

consistency and asymptotic normality are similar to Chapter 3 and follow in

outline to that of Murphy (1995) and Xue et al. (2004) and are not given here.

Let ψ0 be the true values of the parameters.

Theorem 4.3.1. (Consistency). If the conditions 1–3 in Section 3.3 hold, then

ψ̂
P−→ ψ0.
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Theorem 4.3.2. (Asymptotic normality). If the conditions 1–3 in Section 3.3

hold, then
√
n(α̂ − α0, β̂ − β0, θ̂ − θ0) is asymptotically normal, where α =

(α1,α2,α3) and β = (β1,β2,β3).

4.4 Simulation Results for Extended Model

For simplicity, we consider the reduced model where λ2 = λ3, that is, λ02 = λ03

and β2 = β3.

4.4.1 Data Generation of Semi-Competing Risks under

Extended Model

The algorithm to generate survival times T1 and T2 and the observed data is as

follows:

1. Generate T1 and T2 from distributions based on λ1 and λ2 respectively.

That is, T1 is generated from a distribution F1, whose hazard function is

λ1. T2 is generated in a similar fashion.

2. If T1 > T2, generate T* from distribution with hazard function λ2 and set

T2 = T1 + T ∗.

3. Generate censoring time, C, from Uniform[0,a] for some a > 0.

4. If T2 < C, set δ2 = 1 and Y = min(T2, C).

5. If T1 < min(T2, C), set δ1 = 1 and X = min(T1, Y ).

The observed data for each sample of size n is then {Xi, δ1i, Yi, δ2i, Zi}ni=1.
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4.4.2 Simulation Results for Additive-Multiplicative Haz-

ards on Semi-Competing Risks

For the reduced model, we consider the case of a single discrete covariate Z

generated from the Bernoulli(0.5) distribution for the additive component and

a single continuous covariate W from the standard Normal distribution for the

multiplicative component. Simulations were conducted for a sample size of 400,

and at two degrees of censoring, 10% and 30%. We fix the baseline hazard

to be from the exponential distribution with mean 1. Two sets of true val-

ues are considered for the regression coefficients of the respective hazards —

(α1, α2, β1, β2) = (0, 0, 1, 1) and (α1, α2, β1, β2) = (−0.5, 0, 0.5, 1); and we vary

the true values of θ for the Gamma frailty distribution — 0.5, 0.95, 1.5.

We generate 1000 simulations for each combination of censoring, regression co-

efficients and θ. Tables 4.1, 4.2, 4.3 show the results and for each parameter

combination give: (i) the Estimate (Est),the average of 1000 estimates; (ii) the

Empirical Standard Error (EmpSE), the standard deviation of the 1000 esti-

mators; (iii) the Model Standard Error (ModSE), the average of 1000 standard

error estimators, using the information matrix.

The results show that the method works reasonably well, with small biases of

about 0.1 or less. Empirical and estimated variances based on the information

matrix were relatively similar. Also, larger values of coefficients result in larger

biases and standard errors. However, they give smaller absolute biases per unit

of standard error. The exception is θ̂, which has a mostly constant value of 0.5

of absolute bias per unit of standard error. Larger values of θ resulted in larger

standard error estimates for all parameters.
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Table 4.1: Estimators for Additive-Multiplicative Risk Frailty Model for Re-
duced Model of Semi-Competing Risks Data with single W from standard Nor-
mal and single Z from Bernoulli(0.5) and θ = 0.5, with 10% and 30% censoring
and varying α and β.

(α1, α2, β1, β2) = (0, 0, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 6.6] 10% α1 0.0022 0.137 0.127

α2 0.0049 0.152 0.152

β1 1.0997 0.346 0.327

β2 1.1000 0.279 0.272

θ 0.5735 0.130 0.125

[0, 1.7] 30% α1 0.0050 0.139 0.136

α2 −0.0015 0.164 0.157

β1 1.1195 0.366 0.369

β2 1.1192 0.303 0.306

θ 0.5948 0.176 0.182

(α1, α2, β1, β2) = (−0.5, 0, 0.5, 1)

[0,a] Cens Est EmpSE ModSE

[0, 6.6] 10% α1 −0.5137 0.125 0.126

α2 −0.0014 0.157 0.155

β1 0.5543 0.251 0.254

β2 1.1100 0.277 0.277

θ 0.5779 0.133 0.133

[0, 1.7] 30% α1 −0.5152 0.136 0.135

α2 0.0006 0.147 0.157

β1 0.5566 0.275 0.284

β2 1.1073 0.305 0.308

θ 0.5794 0.173 0.191
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Table 4.2: Estimators for Additive-Multiplicative Risk Frailty Model for Re-
duced Model of Semi-Competing Risks Data with single W from standard Nor-
mal and single Z from Bernoulli(0.5) and θ = 0.95, with 10% and 30% censoring
and varying α and β.

(α1, α2, β1, β2) = (0, 0, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 12] 10% α1 −0.0015 0.172 0.158

α2 0.0026 0.204 0.191

β1 1.1135 0.374 0.367

β2 1.1134 0.321 0.317

θ 1.0382 0.164 0.165

[0, 2.4] 30% α1 −0.0032 0.161 0.154

α2 −0.0054 0.168 0.179

β1 1.0984 0.387 0.387

β2 1.1017 0.339 0.334

θ 1.0287 0.201 0.214

(α1, α2, β1, β2) = (−0.5, 0, 0.5, 1)

[0,a] Cens Est EmpSE ModSE

[0, 12] 10% α1 −0.5143 0.160 0.153

α2 0.0064 0.196 0.195

β1 0.5640 0.282 0.285

β2 1.1218 0.329 0.323

θ 1.0440 0.173 0.173

[0, 2.4] 30% α1 −0.5201 0.167 0.153

α2 0.0007 0.201 0.189

β1 0.5852 0.298 0.311

β2 1.1376 0.345 0.346

θ 1.0654 0.221 0.230
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Table 4.3: Estimators for Additive-Multiplicative Risk Frailty Model for Re-
duced Model of Semi-Competing Risks Data with single W from standard Nor-
mal and single Z from Bernoulli(0.5) and θ = 1.5, with 10% and 30% censoring
and varying α and β.

(α1, α2, β1, β2) = (0, 0, 1, 1)

[0,a] Cens Est EmpSE ModSE

[0, 30] 10% α1 0.0065 0.211 0.217

α2 0.0128 0.260 0.265

β1 1.1072 0.398 0.408

β2 1.1050 0.367 0.363

θ 1.6045 0.209 0.217

[0, 3.9] 30% α1 0.0054 0.190 0.185

α2 0.0060 0.220 0.220

β1 1.1193 0.422 0.431

β2 1.1091 0.371 0.375

θ 1.6100 0.254 0.259

(α1, α2, β1, β2) = (−0.5, 0, 0.5, 1)

[0,a] Cens Est EmpSE ModSE

[0, 30] 10% α1 −0.5120 0.204 0.214

α2 0.0009 0.266 0.283

β1 0.6033 0.307 0.324

β2 1.1485 0.380 0.374

θ 1.6199 0.223 0.228

[0, 3.9] 30% α1 −0.5123 0.182 0.181

α2 0.0143 0.231 0.229

β1 0.5892 0.319 0.337

β2 1.1248 0.384 0.381

θ 1.6427 0.275 0.276
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4.5 Application to NP01 Dataset

We apply this general additive-multiplicative frailty model to the NP01 dataset

described in Section 3.5. In the analysis of the previous chapter, the additive

risk frailty model that analysed treatment effect while adjusting for nodal sta-

tus and TNM staging showed little improvement over the model that analysed

treatment effect alone. Hence, we apply the reduced model used in the simula-

tions and adjust for the same covariates. We imposed a multiplicative effect on

the treatment covariate and additive effects on nodal status and TNM staging.

This is to compare our results obtained with those of Xu et al. (2010) and the

thesis written by Lim (2010), where both analysed the treatment covariate as

having a multiplicative effect. Table 4.4 shows the results of the modelling.

Table 4.4: Estimators for Additive-Multiplicative Risk Frailty Model for Semi-
Competing Risks, accounting for treatment, nodal status and TNM staging
(data from Wee et al., 2005).

Relapse Death

Multiplicative component

Treatment a 1.581 * 2.243 *

(0.513) (1.023)

Additive component

Nodal status b 0.343 * 0.103 *

(0.169) (0.048)

TNM staging c −0.190 * 0.063

(0.022) (0.084)
Standard errors given in parentheses and * indicates significance at 5% level.

aCRT as reference group
bN0–2 as reference group
cStage 3 as reference group

The association between relapse and death was measured through the frailty
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and the variance of the assumed Gamma distribution was estimated as 6.205

(SE=1.325), which is highly significant. This indicates a strong association

between relapse and death.

After accounting for the association in the model, the covariate effects are now

significant. Patients in the CRT group fared better than the RT group in

both the relapse arm and death arm, with hazard ratios e−1.581 = 0.206 and

e−2.243 = 0.106 respectively. This confirms the significant survival benefit of

CRT treatment over the RT treatment. In addition, the adjusted variables also

have a significant effect on survival, in terms of excess risk. Patients with higher

nodal status have a higher risk of relapse and of death. As for TNM staging,

the effect differs in the relapse and death arm. Patients with a higher TNM

Stage have a lower risk of relapse, but higher risk of death. However, the effect

of TNM staging on death is not significant. In contrast, the estimated effects

of the adjusted variables were not significant in Chapter 3.

Figures 4.1 and 4.2 show the curves for disease-free survival (time to relapse) and

overall survival (time to death). In contrast to the additive model where the ef-

fect on survival is cumulative and increases over time, the additive-multiplicative

model has effects which do not necessarily increase over time, as can be seen in

the graphs. Even after accounting for nodal status and TNM staging, patients

in the CRT group are observed to have better survival chances with regard to

both death and relapse. In all combinations of nodal status and TNM stag-

ing, the difference between the survival chances of the CRT and RT groups

becomes constant after about 2 years. Thus, the effect of adding chemotherapy

to radiotherapy is largely seen within the first 2 years of randomisation.

The comparison of survival rates also varied for patients in different nodal status
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Figure 4.1: Survival functions comparing treatment effect on time to relapse for
an individual under additive-multiplicative reduced model, stratifying for nodal
status and TNM staging: (a) Nodal status N0–2, TNM Stage 2–3; (b) Nodal
status N3, TNM Stage 2–3; (c) Nodal status N0–2, TNM Stage 4; (d) Nodal
status N3; TNM Stage 4 (data from Wee et al., 2005). — gives the survival
function for patients receiving CRT; - - - gives the survival function for patients
receiving RT.

groups. For patients with nodal status N0–N2, the 2-year disease-free survival

rate was about 85% for the CRT group, while the rate were about 60% for the

RT group. For patients with nodal status N3, the 2-year disease-free survival

rate was about 73% for the CRT group compared to 60% for the RT group. The

same analysis can be made for overall survival rates. For patients with nodal

status N0–N2, the 2-year overall survival rate was about 90% for the CRT group

and 78% for the RT group. Patients with nodal status N3 had estimated 2-year

survival rates of 83% if they were in the CRT group and 60% if they were in

the RT group.



4.6 Discussion 95

Figure 4.2: Survival functions comparing treatment effect on time to death for
an individual under additive-multiplicative reduced model, stratifying for nodal
status and TNM staging: (a) Nodal status N0–2, TNM Stage 2–3; (b) Nodal
status N3, TNM Stage 2–3; (c) Nodal status N0–2, TNM Stage 4; (d) Nodal
status N3; TNM Stage 4 (data from Wee et al., 2005). — gives the survival
function for patients receiving CRT; - - - gives the survival function for patients
receiving RT.

From the graphs, we can also see that within the treatment groups, patients

were more likely to suffer a relapse than death.

4.6 Discussion

In this chapter, we generalise the frailty model for semi-competing risks data to

include both the additive and multiplicative components. Simulations on the

reduced model show the method works well for moderate sample sizes. The

estimation for the multiplicative component seems to fare better than the esti-

mation for the additive coefficients. This could be due to the fact that there is no
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constraint on the regression coefficients for the multiplicative component while

the additive coefficients need to be constrained such that the hazards are non-

negative hazards, ie., that λm(t) ≥ 0 for m = 1, 2, 3. Application to the NPC

dataset provides insight for the covariate effects, where the effects of treatment,

nodal status and TNM staging are all significant. Under the reduced compart-

ment model, adjuvant chemotherapy is observed to have significant protective

effect, although the estimated effect appears to be implausibly large. This could

be due to the restrictive assumptions of the model made in this chapter. In

contrast, the estimate of the treatment effect under the restricted proportional

hazards model proposed by Lim (2010) is smaller but not significant, while the

estimates of Xu et al. (2010) under their restricted model produced a hazard

ratio of about 0.345 when comparing CRT to RT and accounting for tumour

size and nodal status. The estimate of the frailty parameter obtained in this

chapter (θ̂ = 6.2 with SE=1.3) is similar to the estimate of 7.0 obtained by

Xu et al. (2010), indicating the strong relationship between relapse and death.

Further work on the dataset could look into additive-multiplicative effects for

different combinations of the covariates to see which gives the best fit. Models

with less restrictive assumptions can also be explored to see if more plausible

estimates of multiplicative treatment effect can be obtained. Model checking

procedures can be developed to check the assumptions of the restricted model.
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Chapter 5

Conclusion and Further

Research

5.1 Conclusion

In biomedical studies, it is often of interest to evaluate drug efficacy in clinical

trials in diseases. Although death is an important endpoint, it is also essential

to study intermediate events like disease relapse, as they can provide additional

information. This area of semi-competing risks has often been analysed based

on a competing risks framework, due to the lack of an appropriate methodology.

Methods for analysing such data have been proposed in the existing literature

and were discussed in Chapter 1. These methods involve the use of copula

models and assumptions on the existence of the marginal distribution for the

time to the non-terminal event. In contrast, our proposed frailty model based

on additive hazards does not make such assumptions and our analysis is focused

only on the observable range of the data.

With the frailty model, covariate effects can be explicitly modelled and have a

direct interpretation, as compared to the copula models. While the proportional
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hazards model is the most commonly used regression model in univariate and

multivariate survival analysis, we propose the additive risk model as a comple-

mentary measure. As mentioned in Chapter 1, it may make more biological

sense in some cases to consider excess risk of a covariate instead of its relative

risk. For example, the latent period for the risk of cancer following exposure to

low doses of ionizing radiation can be better understood in terms of an additive

risk model (Huffer and McKeague, 1991). Buckley (1984) shows that assuming

a multiplicative model for analysis can have very misleading results when the

data is from an additive model.

As such, Chapter 2 looked at the setting of competing risks and applied the ad-

ditive risk model to the two widely-applied approaches for handling competing

risks data — cause-specific hazards and subdistribution hazards respectively.

We also proposed an additive risk model with time-varying coefficients for the

subdistribution hazards model due to model limitations of the model with con-

stant coefficients. Although there was a lack of fit in the subdistribution hazards

model when applied to the prostate cancer dataset, this could be due to the

specification of the time-varying form. If the time-varying form was correctly

specified, then the proposed model would work well in practical settings, as

demonstrated in the simulations. Other time-varying forms we could consider

include α(t) = β/t.

For the additive risk frailty model in Chapter 3, while we can allow the baseline

hazard to be estimated nonparametrically, we propose the use of spline approx-

imations to model the baseline hazard to reduce the complexity of the model.

Splines have been widely used in modelling and are known for their flexibility.

Our simulation studies indicate that the use of cubic B-splines to approximate

the baseline hazard functions do not affect the estimation of the regression coef-
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ficients and are flexible enough to estimate the continuous form of the unknown

baselines.

When fitting the additive hazards model, it needs to be ensured that the overall

hazard is non-negative. One way to account for this constraint would be to

reparameterize βTZ to become exp(βTZ), but this makes interpretation of the

coefficients less straightforward. Hence, we choose to retain the original form

of the additive risk model and work with contrained optimization. There are

many packages in statistical software readily available to cope with constrained

optimization. Also note that the contraints here are not on specific parameters

but only on the overall hazard.

We applied our proposed model in Chapter 3 to analyse a real dataset of patients

with endemic nasopharyngeal cancer. Results from the restricted model show

similar observations as the original clinical paper (Wee et al., 2005). Fitting

of the additive risk frailty hazards to the general compartment model showed

significant protective effect of CRT as compared to RT in the relapse and death

after relapse arms. However, patients in the CRT group experienced an increase

in risk of death without relapse as compared to those in the RT group. However,

the frailty variance was found to be small and close to 0, indicating a lack of

association between relapse and death.

In Chapter 4, we extended the model to the general additive-multiplicative

frailty model to include the conditional proportional hazards and additive haz-

ards as special cases. Simulations on the reduced model indicate reasonable

performance for moderate sample sizes. Analysis on a real dataset of patients

with endemic NPC using the restricted additive-multiplicative frailty model

showed significant protective effect of CRT as compared to RT in both the
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relapse and death outcomes. The estimated frailty variance also indicated a

significant relationship between relapse and death.

5.2 Further Work

This thesis has attempted to shed some light on the modelling of semi-competing

risks data through the use of shared frailties to model the dependence between

the terminal and non-terminal events and an additive risk model to capture

covariate effects. Further work in this area could include:

1. The consideration of other frailty distributions, such as the log-normal

or positive stable distributions. The positive stable distribution has been

shown to preserve proportionality of the hazards in the marginal distri-

bution (Hougaard, 1986b). It would be worth investigating how these

distributions behave in an additive risk setting and to analyse their prop-

erties.

2. Model-checking procedures to analyse goodness-of-fit of the restricted and

general compartment models and also for model selection. Procedures

could also be developed to check frailty assumptions.

3. Extension of spline approximations to tensor splines, to account for the

bivariate nature of the terminal and non-terminal event times observed in

the death after relapse arm of the compartment model. This would require

a more in-depth study of the nature of splines, their uses and theoretical

properties.

4. Extension of the proposed additive and additive-multiplicative models to

accommodate data of other censoring structures, such as bivariate data,

multivariate data and recurrent failure time data.
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