
Towards Efficient

Proofs of Storage and

Verifiable Outsourced Database

in Cloud Computing

Jia Xu
B.Comp.(Hons.), NUS

A THESIS SUBMITTED

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

May 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48653959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I would like to thank everyone who has helped me through my PhD study.

First of all, I express my most sincere appreciation to my PhD advisor Dr Ee-Chien

Chang. Dr Chang is very kind and provide me a research environment which is full of

freedom. He is greatly sensitive in capturing the essential ideas behind a complicate

appearance. He is always pursuing simplest and elegant algorithms in solving a wide

range of problems. His research methodology and academic personality will benefit

me for a long time. I also express my deep appreciation to the thesis committee

members Dr Haifeng Yu and Dr Stephanie Wehner.

I thank all of my co-authors and my lab fellows for all of great ideas, hard work,

discussions and arguments. They are Chengfang Fang, CheeLiang Lim, Jie Yu, Dr

Liming Lu, Dr Sourav Mukhopadhyay, Yongzheng Wu, Chunwang Zhang, Xuejiao

Liu. I also thank Dr Aldar Chun-fai Chan and Dr Zachary Peterson for their helpful

suggestions. I thank my friends Dr Tao Shao and Jiqin Wang, who helped me in

academic or non-academic aspects.

I express my great thanks to my family—my parents who always love me uncon-

ditionally, my two sisters and my little niece. I express my most special thanks to my

girl friend Zhu Chen, who gives me a lot of delighted hours and always companies me

in my bright and dark time.

Thank you all very much! Without your support, this dissertation may not be

possible.

i

Contents

Acknowledgement i

Summary viii

1 Introduction 1

1.1 Our Results and Contributions . 2

1.1.1 Part I: Proofs of Storage . 2

1.1.2 Part II: Verifiable Outsourced Database 4

1.2 Organization . 5

1.2.1 Organization of Part I . 5

1.2.2 Organization of Part II . 6

Part I Proofs of Storage 8

2 Background 8

2.1 Problem Description . 9

2.1.1 Remote Integrity Verification 9

2.1.2 Periodical Integrity Verification 9

2.1.3 Efficient Integrity Verification 9

2.1.4 Simple but Undesirable Methods 10

2.2 Two Early Approaches . 11

2.2.1 RSA based method . 11

2.2.2 MAC based method . 11

ii

2.2.3 Advantages and Disadvantages 12

2.3 Tools and Building blocks . 12

2.3.1 Chunking and Indexing . 13

2.3.2 Random Sampling and Error Erasure Code 13

2.3.3 Homomorphic Cryptography 15

2.3.4 Framework . 16

2.4 Related Work . 16

2.4.1 Early Approaches . 16

2.4.2 Online Memory Checker and Sublinear Authenticator 17

2.4.3 Proofs of Retrievability and Provable Data Possession 17

2.4.4 Proofs of Storage with More Features 18

2.4.5 More General Delegated Computation and Proofs of Storage . 19

3 Definitions and Formulation 20

3.1 Preliminaries . 20

3.1.1 Terminologies . 20

3.1.2 Conventions . 21

3.1.3 Summary of Notations . 21

3.2 Formulation: Proofs of Retrievability 23

3.2.1 System Model . 23

3.2.2 Security Model . 25

3.2.3 Alternative Formulation: Provable Data Possession 27

4 POR from Linearly Homomorphic MAC 29

4.1 Overview . 29

4.1.1 A Brief Description of proofs of storage scheme POS1 30

4.1.2 Organization . 32

4.2 Linearly Homomorphic MAC: Definition 32

4.3 Linearly Homomorphic MAC: Construction 33

4.3.1 Construction of S1 . 33

4.3.2 Correctness . 34

4.3.3 S1 is Symmetric Key Signcryption 34

iii

4.4 POS1: A POR scheme constructed from Homomorphic MAC S1 . . . 35

4.4.1 Construction of POS1 . 35

4.4.2 Completeness . 36

4.5 Performance Analysis . 37

4.6 Security Analysis of MAC scheme S1 37

4.6.1 Security Model . 37

4.6.2 S1 is Secure . 38

4.7 Security Analysis of POR scheme POS1 45

4.7.1 Two Lemmas on Random Sampling 45

4.7.2 Scheme POS1 is Sound . 48

4.8 Summary . 50

5 POR from Predicate-Homomorphic MAC 51

5.1 Overview . 52

5.1.1 A Brief Description of proofs of storage scheme POS2 52

5.1.2 Organization . 53

5.2 Linearly Predicate-Homomorphic MAC: Definition 55

5.3 Linearly Predicate-Homomorphic MAC: Construction 57

5.3.1 Background . 57

5.3.2 Construction of S2 . 59

5.3.3 Correctness . 62

5.4 POS2: A POR scheme constructed from Homomorphic MAC S2 . . . 64

5.4.1 Construction of POS2 . 64

5.4.2 Completeness . 67

5.5 Performance Analysis . 68

5.5.1 Communication . 68

5.5.2 Storage . 68

5.5.3 Computation . 69

5.5.4 Recommended System Parameters 69

5.5.5 Comparison . 70

5.5.6 Experiment: Measuring the computation time 73

iv

5.6 Security Analysis of MAC scheme S2 77

5.6.1 Security Model . 77

5.6.2 Assumption . 78

5.6.3 S2 is Secure . 79

5.7 Security Analysis of POR scheme POS2 88

5.8 Summary . 91

6 Provable Data Possession 93

6.1 Overview . 93

6.1.1 A Brief Description of proofs of storage scheme POS3 94

6.1.2 Organization . 95

6.2 Provable Data Possession: Definition and Formulation 97

6.3 POS3: An Efficient PDP Scheme . 98

6.3.1 Construction of POS3 . 98

6.3.2 Completeness . 100

6.4 Performance Analysis . 101

6.4.1 Comparison . 101

6.5 Security Analysis of PDP Scheme POS3 102

6.5.1 Security Model of PDP . 102

6.5.2 Assumptions . 103

6.5.3 Security Proof . 104

6.6 Summary . 111

Part II Verifiable Outsourced Database 114

7 Introduction 114

7.1 Our Results . 117

7.1.1 Contributions . 118

7.2 Related work . 119

7.3 Organization . 121

v

8 Overview of Main Scheme 122

8.1 Preliminary Scheme . 122

8.2 Deliver challenge-message efficiently and securely 125

9 Formulation 127

9.1 Dataset and Query . 127

9.2 Security Model . 128

9.3 Assumptions . 130

10 Functional Encryption Scheme 132

10.1 Polymorphic Property of BBG HIBE Scheme 132

10.2 Define Identities based on Binary Interval Tree 133

10.3 Construction of Functional Encryption Scheme 134

10.4 Correctness and Security . 137

10.4.1 Correctness . 137

10.4.2 Security . 138

11 Authenticating Aggregate Count Query 140

11.1 The Main Construction . 140

11.2 Security Analysis . 145

11.2.1 Our main theorem . 145

11.2.2 Overview of Proof of Main Theorem 145

11.2.3 The Preliminary Scheme is Secure 147

11.3 Performance . 151

12 Authenticating Other Types of Queries 153

12.1 Min and Max . 153

12.2 Median . 155

12.3 Range Selection . 156

13 Conclusion 158

Bibliography 160

vi

A Security Proof 174

A.1 BBG HIBE . 174

A.2 Two Propositions . 176

A.3 Proof of Lemma 10.1 . 176

A.4 Proof of Theorem 10.2 . 179

A.5 A valid proof should be generated from points within dataset D . . . 185

A.5.1 Lemma A.1 and Proof . 186

A.5.2 Lemma A.2 and Proof . 188

A.6 A valid proof should be generated from points within intersection D∩R192

A.7 A valid proof should be generated by processing each point within

intersection D ∩R for exactly once 200

A.8 Proof of Main Theorem 11.1 . 204

vii

Summary

Cloud computing is becoming an important topic in both industry and academic

communities. While cloud computing provides many benefits, it also brings in new

challenges in research, especially in information security. One of the main challenges is

how to achieve a pair of apparently conflicting requirements simultaneously: efficiency

in communication, storage and computation on both client and server sides, and

security against outside and internal attackers. Security concerns consist of data

confidentiality and data integrity.

This dissertation is devoted to efficiently verify integrity in cloud storage and

outsourced database. The main strategy is to devise new homomorphic cryptographic

methods.

For cloud storage, we propose three efficient methods that allow users to remotely

check the integrity of their files stored in a potentially dishonest cloud storage server,

without downloading their files. These three methods rely on three underlying ho-

momorphic authentication methods, which we design with different techniques. All

of these three underlying homomorphic authentication methods support linear homo-

morphism: Given a public key and a sequence of message-tag pairs, any third party

can compute a valid authentication tag for a linear combination of these messages.

Furthermore, the second and third authentication methods support an additional ho-

momorphism: Given a public key and an authentication tag of a long message, any

third party can compute a valid authentication tag for a short message, as long as the

short message and the long message satisfy a predetermined predicate. We prove se-

curity properties of the proposed schemes under various cryptographic hard problem

assumptions.

viii

For outsourced database, we propose an efficient authentication method that al-

lows users to query their database which is maintained by a potentially dishonest

server, and verify the correctness and completeness of the query results returned by

the server. Supported database queries include aggregate count/min/max/median

query conditional on multidimensional rectangular range selection, and non-aggregate

multidimensional rectangular range selection query. The proposed method relies

on our newly constructed functional encryption scheme. This functional encryption

scheme allows a third party, with a delegation key that is generated on the fly, to

compute a designated function (the function is specified in the delegation key) value

of the plaintext from the corresponding ciphertext, yet without knowing the value of

the plaintext. We prove security properties of the proposed schemes under various

cryptographic hard problem assumptions.

ix

List of Tables

1.1 Complexities of proofs of storage schemes POS1, POS2, and POS3 . . 4

2.1 The False Acceptance Rate Versus Challenge Size and Erasure Code

Rate . 14

3.1 Summary of Key Notations in Part I of this dissertation 22

5.1 Comparison with an example among POS2, Ateniese [ABC+07] and

SW [SW08a] . 70

5.2 Compare POS2 with existing Proofs of Storage Schemes 71

5.3 The choices of values of various system parameters in our experiment 73

6.1 Comparison among Ateniese et al. [ABC+07,ABC+11b] and POS3 and

POS2 . 102

7.1 Worst case performance of different authentication schemes for aggre-

gate range query or range selection query. 116

x

List of Figures

4.1 POR scheme POS1 constructed from linearly homomorphic MAC S1.

A square represents a data block and a circle represents an authenti-

cation tag. Detailed explanation is in the paragraph with title “Illus-

tration Picture”. 31

5.1 POR scheme POS2 constructed from linearly predicate-homomorphic

MAC scheme S2. Detailed explanation is in the paragraph with title

“Illustration Picture”. 54

5.2 Data Organization of POS2 . 66

5.3 Comparison on communication and storage overhead between POS2

and SW [SW08a] . 72

5.4 Computation Time of algorithms KeyGen and DEncode. 75

5.5 Computation Time of algorithm Prove and Verify. 76

6.1 An Efficient PDP scheme POS3. Detailed explanation is in the para-

graph with title “Illustration Picture”. 96

10.1 Binary Interval Tree with 8 leaf nodes. 134

xi

Chapter 1

Introduction

Software as a Service (SaaS), among other forms of cloud computing, is becoming a

trend in industry. By outsourcing IT services (e.g. database management, backup

services) to a professional service provider, users (e.g. companies, organizations or

individuals) can reduce expensive operation cost to maintain IT services, and are

relieved to focus on their core business.

Outsourcing computation tasks and IT services to a potentially dishonest cloud

service provider, bring in many research challenges, especially in information security.

Indeed, any third party cloud service provider could be considered as potentially

dishonest to a prudent user. One of the main challenges is how to achieve a pair

of apparently conflicting requirements simultaneously: efficiency in communication,

storage and computation on both client and server sides, and security against outside

and internal attackers. Security concerns consist of two main aspects among others:

• Computation confidentiality and privacy: The server is able to compute a re-

sult upon a query provided by a client, yet both query and result are in some

encrypted form and hidden from both the server and outside attackers.

• Computation authentication and integrity: The computation results requested

by clients and generated by the server from clients’ data should be correct.

Clients should be able to efficiently verify the correctness of the returned com-

putation results. Such correctness verification should be more efficient than

1

CHAPTER 1. INTRODUCTION 2

direct computation of these results from scratch.

In general, privacy-preserving and/or verifiable delegated computation for any

polynomial time computable function can be implemented in polynomial time [GGP10,

CKV10], due to Gentry’s recent breakthrough in constructing fully homomorphic en-

cryption [Gen09]. A natural and meaningful question is that: Can we design more

efficient solutions than the generic solution for a smaller class of functions? As Whit-

field Diffie said, “The whole point of cloud computing is economy” [Dif09].

Indeed, before the generic polynomial time solution appears in 2010, the research

community has studied privacy preserving and/or verifiable delegation of computa-

tion for smaller class of functions for almost a decade. As one of the first few examples

of outsourced IT services, outsourced database and its security [HILM02,MNT06] be-

came a hot research topic in database and security communities, since 2002. Recently,

there is growing interests in remote verification of integrity of data stored in a cloud

storage server [JK07,ABC+07,CX08], which is another example of secure outsourced

IT services.

1.1 Our Results and Contributions

In this dissertation, we focus on only integrity aspect of delegation of two sorts of

computation tasks: cloud storage and outsourced database. The goal of this disserta-

tion is to construct efficient and reliable delegation schemes for proofs of storage and

verifiable outsourced database. Our main strategy is to devise efficient homomorphic

cryptography methods, which has been proved to be an effective and powerful tools for

such task. This dissertation is divided into two parts. Our results and contributions

can be summarized as below.

1.1.1 Part I: Proofs of Storage

Problem.

In Part I of this dissertation, we are interested in this problem: Alice, with a small

and reliable storage, stores her file F together with some authentication information

CHAPTER 1. INTRODUCTION 3

at a potentially dishonest cloud storage server Bob, who has a large storage. Later,

Alice will periodically and remotely verify whether Bob indeed keeps the file F intact,

in an efficient manner.

Results.

In Part I, we propose three methods that allow Alice to verify the integrity of her file

stored in the untrusted cloud storage efficiently and reliably, without downloading

her file during a verification and without keeping a local copy of the file:

• In Chapter 4, we propose a homomorphic Message Authentication Code scheme

named S1 and apply S1 to construct a proofs of storage scheme named POS1.

The resulting proofs of storage scheme POS1 is very efficient in communication

and computation.

• In Chapter 5, we propose a homomorphic Message Authentication Code scheme

named S2 which supports two sorts of homomorphic properties, and apply S2

to construct a proofs of storage scheme named POS2. The constructed scheme

POS2 is very efficient in communication and storage, and is practical in com-

putation.

• In Chapter 6, we propose a proofs of storage scheme named POS3 that achieves

similar complexity as the second scheme, using different techniques. The con-

struction of of POS3 is conceptually simpler than POS2.

We prove the security properties of the above three proofs of storage methods condi-

tional on various cryptographic hard problem assumptions (i.e. Strong Diffie-Hellman

Assumption, Large Integer Factorization Assumption, assumption that secure pseudo-

random function exists), under Proofs of Retrievability (POR) security formulation

given by Juels and Kaliski [JK07] or Provable Data Possession (PDP) security for-

mulation given by Ateniese et al. [ABC+07]. A brief summary of complexities of these

three schemes is given in Table 1.1.

CHAPTER 1. INTRODUCTION 4

Table 1.1: Complexities of the three proofs of storage schemes POS1, POS2, and
POS3, proposed in Part I of this dissertation. All of these three solutions require
only O(λ) communication, storage and computation cost on client’s (Alice’s) side,
independent on the file size. More detailed complexity analysis will be given later in
Chapter 4, Chapter 5, and Chapter 6, respectively.

Scheme Server Storage Computation Computation Public Key Security
Overhead (Preprocess) (Prove) Size Model

POS1 |F| |F|/λ O(λ) O(λ) POR
POS2 |F|/m |F|/λ O(λm) O(λm) POR
POS3 |F|/m |F|/λ O(λm) O(λ) PDP

Notation: λ is the security parameter, m is the size of a block in POS2 and POS3, and |F| represents
the file size (after error erasure encoding).

1.1.2 Part II: Verifiable Outsourced Database

Problem.

In Part II of this dissertation, we are interested in the integrity of the query results

from an outsourced database service provider. Alice has a set D of d-dimensional

integer points. Alice chooses her private key and generates authentication tag T for

data set D under her private key. Alice passes the data set D together with the

authentication tag T, to an untrusted service provider Bob, and removes local copies

of D and T. Later, Alice issues some query over D to Bob, and Bob should produce

the query result and a proof based on D and T. Alice wants to verify the integrity

of the query result against the proof, using only her private key. In Part II of this

dissertation, we consider aggregate query conditional on multidimensional rectangular

range selection. In its basic form, a query asks for the total number of data points

within a d-dimensional range.

Authenticating Aggregate Count Query.

We are concerned about the number of communication bits required and the size

of the tag T. We propose a scheme that requires O(d2 log2N) communication bits

per query and linear size authentication tag T w.r.t. the size of dataset D, to au-

thenticate an aggregate count query conditional on d-dimensional rectangular range

selection, where N is the number of points in the dataset. The security of our scheme

CHAPTER 1. INTRODUCTION 5

relies on Generalized Knowledge of Exponent Assumption proposed by Wu and Stin-

son [WS07].

Authenticating Aggregate Min/Max/Median Queries and Non-aggregate

RangeSelect Query.

Besides counting, our scheme can be extended to support finding of the minimum,

maximum or median, and usual (non-aggregate) range selection with similar com-

plexity: O(d2 log2N) communication bits per query and linear size authentication

tag T w.r.t. the size of dataset D.

Functional Encryption.

The low communication bandwidth is achieved due to a new functional encryption

scheme, which we specially design by exploiting a property of BBG HIBE scheme [BBG05].

This functional encryption scheme allows a third party, with a delegation key that

is generated on the fly, to compute a designated function value of the plaintext from

the corresponding ciphertext, yet without knowing the value of the plaintext. This

designated function is a two-input one-way [Gol06] function, where one input is the

plaintext and the other input is secretly embedded in the delegation key. This new

functional encryption scheme may have independent interests.

1.2 Organization

Except Chapter 13 at the end which concludes the whole dissertation, the rest of this

dissertation consists of two parts. Part I includes Chapter 2 to Chapter 6, and is

devoted to proofs of storage problem. Part II includes Chapter 7 to Chapter 12, and

is devoted to the verifiable outsourced database problem.

1.2.1 Organization of Part I

In the first part, Chapter 2 introduces the background on proofs of storage problem

and Chapter 3 gives the formulation. In the subsequent three chapters, we will

CHAPTER 1. INTRODUCTION 6

propose three proofs of storage schemes. In Chapter 4, we propose a homomorphic

MAC scheme S1 and apply it to construct a proofs of storage scheme POS1. We prove

the security property of POS1 under the POR model. In Chapter 5, we propose a

homomorphic MAC scheme S2 and apply it to construct a proofs of storage scheme

POS2. We prove the security property of POS2 under the POR model. In Chapter 6,

we propose the third proofs of storage scheme POS3 and prove its security under PDP
model.

1.2.2 Organization of Part II

The second part of this dissertation is organized as follows: Chapter 7 gives an in-

troduction on the verifiable outsourced database problem and reviews related works.

Chapter 8 gives an overview of our main scheme. Chapter 9 presents the problem

formulation and security definition. The new functional encryption scheme is con-

structed in Chapter 10. Our main scheme for count query is described and analyzed

in Chapter 11 and its extensions for min/max/median and range selection queries are

given in Chapter 12. The full proof of security properties of the functional encryption

scheme and the authentication scheme is in Appendix A.

Part I

Proofs of Storage:

Are our files really in the cloud?

7

Chapter 2

Background

Storing data in a cloud storage, for example Amazon Cloud Drive, Microsoft Skydrive,

or Dropbox, is gaining popularity recently. We are considering scenarios where users

may have concerns of the integrity of their data stored in the cloud storage. Such

prudent users may not be simply satisfied with the cloud storage server’s promise on

maintaining the data integrity. Instead, they desire a technical way to verify that

whether the cloud storage server is keeping his promise and following the service

level agreement (SLA). That is, these users want to base their data integrity on the

incapability of cloud storage server to break SLA without being caught. Threat to

integrity of data stored in cloud is indeed realistic. It is reported that Dropbox keeps

all user accounts unlocked for almost 4 hours [wir] and allows adversaries to read and

modify users’ data files, due to a software bug. Very recently, a similar incident occurs

to Twitter [Twi]: A software bug in twitter’s official client allows adversaries to access

(read and modify) user accounts. Several events about massive data loss in cloud have

been reported, e.g. Microsoft Sidekick [Wik11], Amazon Cloud Service [Bus, Ama],

Gmail [Goo11] and Hotmail [Mic11]. There are also plenty of data loss cases that are

claimed by individuals but neither confirmed nor denied officially by the cloud server,

e.g. data loss cases in Dropbox [Dro11].

8

CHAPTER 2. BACKGROUND 9

2.1 Problem Description

We are interested in this problem: Suppose a user Alice with a small and reliable

storage, stores her file with a potentially dishonest cloud storage server Bob who

has a large storage. How can Alice remotely, periodically and efficiently verifies the

integrity of her file that is stored in Bob’s storage?

2.1.1 Remote Integrity Verification

“Remote Integrity Verification” is a counterpart of local data integrity verification,

which is a historic and well-studied problem. Existing solutions to local data in-

tegrity verification include collision resistant hash [NIS02] and message authentica-

tion code [BCK96] for adversarial errors, and cyclic redundancy check [PB61] (CRC)

for random errors, among others. Unlike local data integrity verification, the verifier

in remote data integrity verification does not possess (even a small portion of) the

data file at the time of verification.

2.1.2 Periodical Integrity Verification

It is desired that such remote data integrity verification could be done by a practically

unlimited number of times. For conditional secure remote data integrity verification

methods, it is required that, with respect to any fixed polynomial poly(·), for any

security parameter λ, the verification method can reliably run for at least poly(λ)

times, where the polynomial poly(·) is fixed before the value of λ is chosen. The

implication of this requirement is that, the communication cost per each remote

verification should be as small as possible.

2.1.3 Efficient Integrity Verification

We concern about the efficiency of such verification methods in communication1,

storage, and computation, on both client side (i.e. Alice’s side) and server side (i.e.

Bob’s side). Furthermore, efficiency (computation and storage and communication)

1Alice’s communication cost is always equal to Bob’s communication cost.

CHAPTER 2. BACKGROUND 10

on client side takes priority. Ideally, all of computation cost, storage overhead and

communication cost on client side should be O(λ), independent on the file size, where

λ is the security parameter. Indeed, all of three proofs of storage schemes POS1,

POS2 and POS3 satisfy this efficiency requirement.

2.1.4 Simple but Undesirable Methods

The above requirements exclude the following straightforward approaches, which are

either efficient or robust, but not both.

Keeping a hash value.

Alice keeps a hash value of her file in local storage. In a verification, Alice asks Bob to

compute the hash value over her file stored in Bob’s storage. The hash value returned

by Bob will be compared to the one kept in Alice’s local storage. This method can

support verification for only one time, since dishonest Bob may cache the hash value

and delete Alice’s file. This method can be generalized in this way: Alice precomputes

a number of t keyed-hash values under t different random hash keys, and in each out

of t verifications, Alice consumes one random key out of t hash keys.

Downloading the file.

Alice keeps a hash value of her file in local storage. In each verification, Alice down-

loads her file from Bob and verifies file integrity locally. This method suffers from a

large communication cost per verification.

Keeping a local copy of the file.

Alice persistently keeps a copy of her file in local storage. In each verification, Alice

sends a random key to Bob and asks Bob to compute a key-ed hash value over her file.

Alice computes the key-ed hash value over her local copy of the file w.r.t. the same

key and compare the result with the hash value returned from Bob. This method

suffers from large storage cost on client side.

CHAPTER 2. BACKGROUND 11

2.2 Two Early Approaches

Now we brief two early approaches for proofs of storage: One based on RSA method,

and the other based on Message Authentication Code. These two approaches have

influence in many subsequent solutions to proofs of storage, including Ateniese et

al. [ABC+07], Chang and Xu [CX08], Shacham and Waters [SW08a], and all of three

solutions proposed in the Part I of this dissertation.

2.2.1 RSA based method

This scheme appears in [DQS03,FB06]: Alice chooses two primes p and q, and com-

pute a RSA modulus N = pq, where N is made public and p, q are kept secretly. Alice

also chooses a random integer g < N which is co-prime to N . Suppose Alice wants to

backup a file F to Bob’s storage. Alice treats F as a single large integer, and computes(
F mod (p− 1)(q− 1)

)
and π =

(
gF mod (p−1)(q−1) mod N

)
. At the end of the setup

between Alice and Bob, Alice has only (N, g, π) in her storage and Bob has (N, F)

in his storage. In each verification, Alice chooses a random number d and sends
(
gd

mod N
)

to Bob. Bob should compute and return the value ψ =
(
gd
)F

= gdF mod N .

After receiving the response ψ, Alice checks whether ψ is equal to
(
πd mod N

)
.

2.2.2 MAC based method

This scheme appears in Naor and Rothblum [NR05,NR09]: Alice chooses a Message

Authentication Code scheme (for example, HMAC [BCK96]) and generates a random

private key k for the MAC scheme. To backup her file F to Bob, Alice encodes

file F using some error erasure code (e.g. Reed-Solomon code [RS60]) to obtain file

blocks Fi, i = 0, 1, 2, . . . , n− 1, such that only a fraction of blocks Fi’s can recover the

original file F using the decoding algorithm of the error erasure code. For each i, Alice

produces a MAC value σi for the combination of block Fi and index i, under private

key k. Then Alice interacts with Bob to carry out a setup. At the end of setup,

Alice has only the private key k and file size n (in term of number of blocks) in her

storage and Bob has all blocks and MAC values {(i, Fi, σi) : i = 0, 1, 2, . . . , n− 1}. In

CHAPTER 2. BACKGROUND 12

each verification, Alice sends a random subset C ⊂ {0, 1, 2, . . . , n− 1} to Bob. Bob is

supposed to return {(i, Fi, σi) : i ∈ C}. After receiving the response, Alice will check

each tuple (i, Fi, σi) using the MAC scheme, with private key k.

2.2.3 Advantages and Disadvantages

The above two methods can reliably verify integrity of Alice’s data stored in Bob’s

storage for practically unlimited times. The RSA based scheme is very efficient in

communication and storage: O(λ) communication cost and O(λ) storage overhead

on both client (Alice) and server (Bob) side, where λ is the bit-length of the RSA

modulus N . The MAC based scheme requires O(λ) storage overhead on client side

and accesses only a portion of the file of interest per verification, where λ is the

bit-length of the private key k.

However, the RSA based scheme has to access every single bit of the file of interest

during each verification, and the MAC based scheme has large communication cost

and large storage overhead on server side. Subsequent solutions improve these two

approaches in efficiency from various aspects.

Particularly, the first part of this dissertation will propose three solutions to the

problem described above. In all of these three methods, communication cost, storage

overhead and computation cost on client side are in O(λ). In each verification, only

a small portion of files are accessed on the server side, independent on file size.

Furthermore, in the second and third methods, the storage overhead is just a fraction2

of the original file size.

2.3 Tools and Building blocks

Many constructions of proofs of storage consist of three components: (1) Chunking

and Indexing; (2) Error Erasure Coding and Random sampling; (3) Homomorphic

cryptography. Each of them is described as below.

2This fraction is a configurable system parameter.

CHAPTER 2. BACKGROUND 13

2.3.1 Chunking and Indexing

An efficient proofs of storage scheme only requires a prover to access a sublinear

fraction of data file for one verification request. Thus the data file has to be broken

into many small units and each unit gets a unique identifier, otherwise the verifier has

no way to tell the prover to access which part of the file and to ensure the prover’s

response is indeed computed from those selected data units.

We call such small unit as block. Typically, the identifier of a data block in a data

file F consists of two parts: (1) a sequence number to distinguish it from other blocks

in the same file; (2) a unique file identifier for F to distinguish it from other files. A

file F with file identifier id and consisting of n blocks is represented as (F0, . . . , Fn−1),

where for each i ∈ [0, n − 1], the i-th block Fi has the unique identifier id‖i across

all data blocks and all files. Here the binary operator ‖ denotes the unambiguous

string concatenation which allows unique unambiguous decomposition. Readers will

find that in all proofs of storage schemes proposed later in this dissertation, the

authentication tag for the i-th block Fi in file F, which has identifier id, involves

id‖i. Thus, the verifier can distinguish different files and different blocks during a

verification. Notice that for proofs of storage schemes [WWL+09, EKPT09] built

on authenticated data structure (e.g. Merkle Hash Tree [Mer80] or authenticated

skip list [EKPT09]), the index information may be implicitly embedded into the

authentication meta-data.

2.3.2 Random Sampling and Error Erasure Code

We just discussed that a file is broken into many blocks, and in a verification the prover

only accesses a small subset of blocks specified by the verifier. A natural question

is that: How should the verifier sample the subset of blocks? If no extra knowledge

about error distribution among blocks is present, uniformly random sampling could

be the best strategy for the verifier to maximize the error detection probability.

Error erasure encoding (e.g. Reed-Solomon code [RS60]) allows the verifier to

achieve high error detection rate when randomly sampling only a small number (pos-

sibly constant) of blocks during one verification, at the cost of file size expansion.

CHAPTER 2. BACKGROUND 14

Suppose an error erasure encoded file consists of n blocks F0, . . . , Fn−1, such that any

ρn number of blocks can recover the original file, where ρn ∈ {1, 2, 3, 4, . . . , n}. If the

original file is unable to be recovered using the error erasure decoding algorithm, then

at most ρn−1 number of data blocks remain intact. The probability that a randomly

chosen block is intact is at most ρ− 1
n
, and the probability (False Acceptance Rate)

that ` number of independently and randomly chosen blocks are all intact is at most(
ρ− 1

n

)`
< ρ`. Thus a random sample of size ` will hit at least one corrupted block

with probability at least 1 −
(
ρ− 1

n

)`
> 1 − ρ`. This lower bound is a decreasing

function of ρ ∈ [1
n
, 1], indicating that the more redundancy introduced in the error

erasure encoding (i.e. the smaller ρ), the higher the hitting probability is. Notice that

if these ` blocks are chosen at random such that all ` blocks have distinct indices,

i.e. random sampling without replacement, the above lower bound on error detection

probability still holds.

Table 2.1 lists the “False Acceptance Rate” that ` random samples do not hit any

corrupted data blocks with ρ ∈ {0.98, 0.99} and ` ∈ {100, 300, 500, 700}. Note that

the the storage overhead due to erasure encoding is 1/0.99 − 1 ≈ 0.0101 of original

file size, if ρ = 0.99; 1/0.98− 1 ≈ 0.0204, if ρ = 0.98.

Table 2.1: The False Acceptance Rate Versus Challenge Size ` and Erasure Code Rate
ρ. The challenge size ` represents the number of data blocks accessed in a verification.

Challenge Size False Acceptance Rate ρ` False Acceptance Rate ρ`

with ρ = 0.99 with ρ = 0.98

` = 100 0.366032341 0.132619556
` = 300 0.049040894 0.002332506
` = 500 0.006570483 0.000041024
` = 700 0.000880311 0.000000722

Remark 1 We remark two points:

• In a verification of proofs of storage scheme, the verifier chooses a subset C

of ` indices, and asks the prover to check those data blocks with index within

the set C. To reduce communication cost, a natural thought [ABC+07] is to

CHAPTER 2. BACKGROUND 15

represent the set C compactly with a short seed s of some secure pseudoran-

dom function PRF: C = {PRFs(i) : i ∈ [0, ` − 1]}. However, Shacham and

Waters [SW08a] points out that this intuitive method actually requires rigorous

security proof, since the dishonest prover knows the values of seeds and the typi-

cal indistinguishability argument of pseudorandom function does not apply here.

This issue influences works [ABC+07,ABC+11b,CX08,SW08a] and all of three

schemes in Part I of this dissertation. The consequence is that, if we adopt this

compact representation of set C, our proposed schemes are only provable secure

in random oracle model, instead of standard model.

• Some proofs of storage schemes built on Merkle Hash Tree choose consecutive

blocks, in order to reduce proof size, at the cost of sacrificing error detection

probability. In comparison, in all of proofs of storage schemes proposed in this

dissertation, the proof size is independent on the choices of the subset of blocks

to be checked in a verification.

2.3.3 Homomorphic Cryptography

Previously, we analyzed the probability that a random sample of size ` will hit at

least one corrupted block, when the encoded file is so corrupted such that the original

file cannot be recovered. Once the hit event occurs, the cryptographic authentication

method should detect errors with overwhelming high probability—this is a require-

ment in security aspect. In the efficiency aspect, ` selected blocks and authentication

tags are too large as a proof. Ideally, a homomorphic authentication method may

allow the prover to aggregate those ` block-tag pairs into a single block-tag pair as

proof, and the verifier can detect any error among these ` blocks caused by a compu-

tationally bounded adversary with overwhelming high probability, by checking only

the single aggregated block-tag pair.

Linearly homomorphic cryptography allows the prover to produce an authenti-

cation tag for a linear combination of the ` selected data blocks with only a public

key. Among various homomorphic cryptography, linearly homomorphic cryptography

could be a good choice in constructing efficient proofs of storage scheme, since very

CHAPTER 2. BACKGROUND 16

efficient linearly homomorphic authentication scheme exists, and more importantly,

the original data blocks can be recovered efficiently from a number of authenticated

aggregated blocks by solving a linear equation system.

2.3.4 Framework

A typical framework of proofs of storage scheme is as below: A data file is error erasure

encoded and the encoded file consists of many small blocks. Each file is distinguished

from other files with a unique identifier and each data block is distinguished from

the other blocks within the same file with a unique sequence number. For each data

block, an authentication tag is generated w.r.t. the corresponding file identifier and

block sequence number, using some homomorphic authentication method. During a

verification, the verifier samples a random subset of ` data blocks, and the prover

produces an aggregated block-tag pair from these selected ` block-tag pairs by apply-

ing the homomorphic property. Only the aggregated block-tag pair is sent back as

proof to the verifier. Due to the security property of the homomorphic authentication

method, if verifier accepts the proof, then with overwhelming high probability, those

` selected data blocks are intact. The integrity of these ` blocks implies the integrity

of the original data file with high probability, due to the error erasure encoding.

All of Ateniese et al. [ABC+07,ABC+11b,AKK09], Chang and Xu [CX08], Shacham

and Waters [SW08a], and the three schemes POS1, POS2 and POS3 proposed in Part

I of this dissertation, fit in the above framework.

2.4 Related Work

2.4.1 Early Approaches

Our research is motivated by applications in remote-backup and peer-to-peer back-

up [ATS04, BBST02, LD06]. Peer-to-peer backup system requires a mechanism to

maintain the availability and integrity of data stored in peer nodes. Li and Dabek [LD06]

proposed to choose neighboring nodes based on the social relationships and relies on

the heuristic assumption that people are more likely cooperative with friends.

CHAPTER 2. BACKGROUND 17

2.4.2 Online Memory Checker and Sublinear Authenticator

Remote integrity verification has a close relationship with memory integrity verifica-

tion [BEG+91, SCG+03, NR05, DNRV09]. The notion of authenticator proposed by

Naor and Rothblum [NR05] is formulated for memory integrity checker. There is an

essential difference between memory checker and proofs of storage problem studied

in this dissertation: in the memory checker problem, an honest prover will follow

the specified protocol to verify its storage, where the storage is untrusted and could

be altered by outside attackers or random hardware failure; in the proofs of storage

problem, both the prover and its storage are untrusted, such that the prover could

do anything3 during a verification and the storage could be altered carefully by the

dishonest prover. Consequently, any solution to a proofs of storage problem is also

a solution to the memory checker problem. Thus, the lower bound on complexity

of memory checker discovered by Naor and Rothblum [NR05] also applies to proofs

of storage. Additionally, the idea of introducing redundancy to tradeoff resources is

useful in proofs of storage.

2.4.3 Proofs of Retrievability and Provable Data Possession

Recently, there is a growing interest in the cryptographic aspects of cloud storage

problem. Perhaps Filho and Barreto [FB06] first studied the scenario where the ver-

ifier does not have the original. They described two potential applications: uncheat-

able data transfer and demonstrating data possession, and proposed the RSA-based

scheme. Juels and Kaliski [JK07] proposed a formulation called Proofs of Retriev-

ability POR for the proofs of storage problem. Essentially, in a POR scheme, if the

cloud storage server can pass verification with a noticeable probability, then the veri-

fier can retrieve the original data from messages collected during polynomially many

verification interactions between the verifier and the cloud storage server. So POR
formulation allows a user to ensure whether his/her file is indeed in the cloud storage

in an intact form without actually downloading the file. However, the POR con-

struction in Juels and Kaliski [JK07] can support only a predefined constant number

3The only limitation is that the prover’s computation resource is polynomially bounded.

CHAPTER 2. BACKGROUND 18

of verifications. A refined security formulation is given in [BJO09b] .

Ateniese et al. [ABC+07] gave an alternative formulation called Provable Data

Possession for proofs of storage problem, and proposed an efficient construction.

Their method can be viewed as an extension of the RSA-based scheme. Similarly, the

scheme named RSAh given in our publication [CX08] exploits similar idea, and the

third scheme POS3 proposed in this dissertation is a refined version of RSAh, which

is more efficient than RSAh and Ateniese et al. [ABC+07].

Shacham and Waters [SW08a] proposed two efficient constructions of POR, where

one scheme supports private key verification and the other supports public key veri-

fication.

Ateniese and Kamara and Katz [AKK09] studied how to utilize homomorphic

linear identification scheme to construct proofs of storage scheme. Dodis and Vad-

han and Wichs [DVW09] studied how to construct proofs of retrievability scheme

through hardness application. All of schemes in [ABC+07,CX08,SW08a,AKK09] uti-

lize some underlying linear homomorphic authentication methods, which also has ap-

plications in network coding [AB09,BFKW09]. Several proofs of storage schemes with

pre-defined number of verifications have been proposed in works [JK07, ADPMT08,

DVW09]. A survey of proofs of storage is given by Yang and Jia [YJ11].

In this dissertation, we will compare our second method POS2 and third method

POS3 to Ateniese et al. [ABC+07,ABC+11b] and/or Shacham and Waters [SW08a].

2.4.4 Proofs of Storage with More Features

Very recently, several works [CKBA08,BJO09a,EKPT09,WWL+09,WWRL10] have

devoted to extend proofs of storage to support more features. In [CKBA08], verifier

checks whether the cloud storage server indeed keeps multiple intact copies of a user’s

file. Dynamic-PDP [EKPT09] allows insertion and deletion of data blocks on the fly

after setup. Proofs of storage schemes supporting public verifiability are proposed in

Shacham and Waters [SW08a] and Wang [WWL+09] and the privacy issue in public

verification is studied in Wang [WWRL10].

CHAPTER 2. BACKGROUND 19

2.4.5 More General Delegated Computation and Proofs of

Storage

Kate and Zaverucha and Goldberg [KZG10] proposed an efficient commitment scheme

for polynomial and Benabbas and Gennaro and Vahlis [BGV11] proposed a secure del-

egation scheme for polynomial evaluation. Both schemes can be extended to support

POR easily but with limitations: the POR scheme implied in Kate and Zaverucha

and Goldberg [KZG10] has large storage cost on client side and the POR scheme

implied in Benabbas and Gennaro and Vahlis [BGV11] has large storage and compu-

tation cost on the server side. We will elaborate more on Kate and Zaverucha and

Goldberg [KZG10]’s polynomial commitment scheme in Section 5.3.1 in Chapter 5.

The two solutions [GGP10,CKV10] to verifiable delegation of generic computation

task based on fully homomorphic encryption [Gen09], also imply a secure proofs of

storage scheme. However, the efficiency overheads in communication, storage and

computation on the server side are too large, rendering the resulting proofs of storage

schemes impractical.

Chapter 3

Definitions and Formulation

In this chapter, we provide preliminary definitions, and give security formulation for

proofs of storage problem.

3.1 Preliminaries

3.1.1 Terminologies

Definition 1 (Negligible [Gol06]) A non-negative function ε(λ) is negligible in λ,

if for any positive integer c, for all sufficiently large integer λ, 0 ≤ ε(λ) ≤ λ−c.

Definition 2 (Overwhelming High Probability) Let µ(·) be a function which

measures the probability of some event. We say µ(λ) is overwhelming high prob-

ability, if 1− µ(λ) is negligible in λ.

Definition 3 (Noticeable [Gol06]) A function ε(λ) is noticeable in λ, if there ex-

ists a positive integer c, for all sufficiently large integer λ, ε(λ) ≥ λ−c.

Note that (1) any noticeable function is non-negligible; (2) any negligible function

is non-noticeable; (3) there exists function which is both non-noticeable and non-

negligible (See the below Example 1).

20

CHAPTER 3. DEFINITIONS AND FORMULATION 21

Example 1 The function ε(·) defined as below is neither noticeable nor negligible.

ε(λ) =

{
1
2

(if λ is odd)

2−λ (if λ is even)

3.1.2 Conventions

We use expression S = (KeyGen, Sign,Verify) to represent a scheme named S, which

consists of three algorithms KeyGen, Sign and Verify. If necessary, we will use notation

S.KeyGen to represent the algorithm KeyGen in the scheme S, to distinguish it from

key generating algorithms from other schemes.

In this dissertation, the word “random” refers to “uniform random”, if there is no

distribution specified.

We also clarify two distinct concepts valid proof and genuine proof.

Valid Proof : A proof is valid, if it is accepted by the verifier.

Genuine Proof : A proof is genuine, if it is the same as the one generated by an

honest (deterministic1) prover on the same query.

We give an example to distinguish valid proof and genuine proof.

Example 2 Take as example the straightforward approach where Alice keeps a hash

value and downloads her file from Bob to perform a local data integrity check during

each verification. If Bob somehow finds another file F′ 6= F, such that hash(F) =

hash(F′), and returns F′ back to Alice. Alice will accept F′ as a valid proof. In this

case, both F and F′ are valid proofs, but only F is the genuine proof.

3.1.3 Summary of Notations

We summarize the key notations used in Part I of this dissertation in Table 3.1.

1The provers in all of three schemes in Part I are deterministic.

CHAPTER 3. DEFINITIONS AND FORMULATION 22

Table 3.1: Summary of Key Notations in Part I of this dissertation

Notation Semantics

x := a Assign the value a to the variable x.

x
def
=A The statement A defines the semantics of x.

x
$←− S Uniformly randomly choose x from a finite set S.
‖ Binary operator ‖ denotes the unambiguous string concatenation which

allows unique unambiguous decomposition.
[a, b] The set {a, a+ 1, . . . , b} where both a and b are integers and a ≤ b.
λ Security parameter. Group element size in bits.
n The number of data blocks in a data file.
m The number of sectors in a data block. Typically each sector is a group

element.
` The number of data blocks accessed during a verification.
~u A vector of form (u0, u1, u2, . . . , ud−1), where d is the dimension of vector

~u.
f~u(x) A polynomial u0 +u1x+u2x

2 + . . .+ud−1x
d−1 of degree d−1 with vector

~u as coefficient, where d is the dimension of vector ~u.
PPT Probabilistic Polynomial Time.
negl Some negligible function [Gol06].
MAC Message Authentication Code [Gol06].
PRF Pseudorandom function [Gol06].
POR Proofs of Retrievability [JK07].
PDP Provable Data Possession [ABC+07].
S1 The name of the homomorphic MAC scheme proposed in Chapter 4.
S2 The name of the homomorphic MAC scheme proposed in Chapter 5.

POS1 The name of proofs of storage scheme proposed in Chapter 4.
POS2 The name of proofs of storage scheme proposed in Chapter 5.
POS3 The name of proofs of storage scheme proposed in Chapter 6.

S1.KeyGen The key generating algorithm KeyGen of scheme S1.

CHAPTER 3. DEFINITIONS AND FORMULATION 23

3.2 Formulation: Proofs of Retrievability

Proofs of storage requires to periodically, remotely and reliably verify the integrity of

data stored in a cloud storage, without retrieving the data file. Proofs of Retrievability

(POR) model proposed by Juels and Kaliski [JK07] is among the first few attempts

to formulize the notion of “remotely and reliably verifying the data integrity”.

In this section, we review the POR model, which is proposed by Juels and

Kaliski [JK07] and revisited by Shacham and Waters [SW08a].

3.2.1 System Model

We restate the POR [JK07, SW08a] model as below, with slight modifications on

notations. We adopt the 1-round prove-verify version in Juels and Kaliski [JK07] for

simplicity.

Definition 4 (POR [JK07,SW08a]) A Proofs Of Retrievability (POR) scheme

consists of four algorithms (KeyGen, DEncode, Prove, Verify):

• KeyGen(1λ) → (pk, sk): Given security parameter λ, the probabilistic key gen-

erating algorithm, run by the data owner Alice, outputs a public-private key pair

(pk, sk).

• DEncode(sk, F) → (idF, F̂, n): Given the private key sk and a data file F, the

encoding algorithm DEncode, run by Alice, produces a unique identifier idF and

the encoded file F̂ with size n (in term of number of blocks), where (id, n) will be

kept by the data owner Alice and (id, F̂) will be kept by the cloud storage server

Bob.

• Prove(pk, idF, F̂,Chall) → ψ: Given the public key pk, an identifier idF, an en-

coded file F̂, and a challenge query Chall as input, the prover algorithm Prove,

run by cloud storage server Bob, produces a proof ψ.

• Verify(sk, idF,Chall, ψ)→ accept or reject: Given the private key sk, an iden-

tifier idF, a challenge query Chall, and a proof ψ as input, the deterministic

CHAPTER 3. DEFINITIONS AND FORMULATION 24

verifier algorithm Verify, run by the data owner Alice, will output either accept

or reject.

A proofs of storage system between data owner Alice and cloud storage server

Bob can be implemented using a POR scheme (KeyGen, DEncode, Prove, Verify):

At the very beginning, Alice chooses a security parameter λ, and generates a pair of

public-private keys (pk, sk) := KeyGen(1λ) where pk is made public and sk is kept

private. Then Alice will interact with Bob in the following way.

Setup Phase: Alice and Bob will carry out the setup phase for one time per each

file.

• Alice preprocesses her file F to produce (id, F̂, n) := DEncode(sk, F). Alice

sends (id, F̂) to Bob and removes F̂ from local storage.

At the end of setup phase, Alice only has (sk, id, n) in her local storage, and Bob

has (pk, id, F̂) in his storage.

Verification Phase: The verification phase consists of multiple verification sessions.

In each session, Alie and Bob interact as below.

• To check the file with identifier id, Alice chooses a random challenge Chall

and sends Chall together with the identifier id to Bob.

Note: Typically, the challenge Chall includes as a part a subset C ⊂ [0, n−
1], which indicates those blocks that Bob should access.

• Bob is supposed to run algorithm Prove upon the encoded file F̂ correspond-

ing to the identifier id to generate a proof ψ := Prove(pk, id, F̂,Chall), and

send ψ to Alice.

• Alice runs the algorithm Verify with the private key sk to check the valid-

ity of the received proof ψ. Alice computes b := Verify(sk, id,Chall, ψ) ∈
{accept, reject} and outputs b.

Definition 5 (Completeness of POR) A POR scheme (KeyGen, DEncode, Prove,

Verify) is complete, if an honest prover (who ensures the integrity of his storage and

CHAPTER 3. DEFINITIONS AND FORMULATION 25

executes the procedure Prove to compute a proof) will always be accepted by the verifier.

More precisely, for any key pair (pk, sk) generated by KeyGen, and any data file F,

any challenge query Chall, if ψ ← Prove(pk, idF, F̂,Chall), then Verify(sk, idF,Chall, ψ)

outputs accept with probability 1, where (idF, F̂, n)← DEncode(sk, F).

3.2.2 Security Model

3.2.2.1 Trust Model and Scope of Topic

In a proofs of storage system, only the data owner Alice is trusted and the cloud

storage server Bob is treated as untrusted and potentially malicious.

We clarify that, the following topics are out of the scope of this dissertation: (1)

Confidentiality of Alice’s data against Bob; (2) Support of dynamic operations like

insertion and deletion of data blocks; (3) Denial of Service Attack; (4) Frame attack

where dishonest Alice claims honest Bob was cheating.

3.2.2.2 POR Security Game

We rephrase the POR security game, which is proposed by Juels and Kaliski [JK07]

and revisited by Shacham and Waters [SW08a], in a standard way. The POR se-

curity game between a probabilistic polynomial time (PPT) adversary A and a PPT

challenger C w.r.t. a POR scheme E = (KeyGen, DEncode, Prove, Verify) is as below.

Setup: The challenger C runs the key generating algorithm KeyGen to obtain public-

private key pair (pk, sk). The challenger C gives the public key pk to the adversary

A and keeps the private key sk securely.

Learning: The adversary A adaptively makes queries, where each query is one of

the following:

• Store query (F): Given a data file F chosen by A, the challenger C responses by

running data encoding algorithm (id, F̂, n) ← DEncode(sk, F) and sending the

encoded data file F̂ together with its identifier id to A. The challenger C will

keep (id, n).

CHAPTER 3. DEFINITIONS AND FORMULATION 26

• Verification query (id): Given a file identifier id chosen by A, if id is the (partial)

output of some previous store query that A has made, then the challenger C
initiates a POR verification with A w.r.t. the data file F associated to the

identifier id in this way:

– C chooses a random challenge Chall using the meta-data n;

– A produces a proof ψ w.r.t. the challenge Chall;

Note: adversary A may generate the proof in an arbitrary method rather

than applying the algorithm Prove.

– C verifies the proof ψ by running algorithm Verify(sk, id,Chall, ψ). Denote

the output as b ∈ {accept, reject}.

C sends the decision bit b to A as feedback. Otherwise, if id is not the (partial)

output of any previous store query that A has made, C does nothing.

Commit: AdversaryA chooses a file identifier id∗ among all file identifiers she obtains

from C by making store queries in Learning phase, and commits id∗ to C. Let F∗

denote the data file associated to identifier id∗.

Retrieve: The challenger C initiates ζ number of POR verifications with A w.r.t.

the data file F∗, where C plays the role of verifier and A plays the role of prover, as

in the Learning phase. From messages collected in these ζ interactions with A, C
extracts a data file F′ using some PPT extractor algorithm. The adversary A wins

this game, if and only if F′ 6= F∗.

The adversary A is ε-admissible [SW08a], if the probability that A convinces C to

accept in a verification in the Retrieve phase, is at least ε ∈ (0, 1). We denote the

above game as GameEA(ζ).

Definition 6 ([JK07,SW08a]) A POR scheme E is sound, if for any PPT ε-

admissible adversary A with ε being a noticeable function in the security parameter

λ, there exists a polynomial function ζ in λ, such that the advantage AdvEA(ζ) defined

CHAPTER 3. DEFINITIONS AND FORMULATION 27

as below is negligible in λ.

AdvEA(ζ)
def
= Pr

[
A wins GameEA(ζ)

]
. (3.1)

Notice that the above definition is slightly different from [JK07, SW08a], in which ε

is non-negligible and the extractor algorithm runs in time Ω(ε−1). When ε is non-

negligible and not noticeable, Ω(ε−1) is not upper-bounded by any fixed polynomial.

3.2.2.3 Clarification of Security Model

There should be no confusion between the security formulation and the real world

application of a POR scheme. We remark that the security games GameEA, especially

the Retrieve phase, are only for security formulation, and applications of a POR
scheme do not necessarily follow the description of the security game exactly. For

example, in real world applications, the data owner will be the one who chooses the

data file, instead of the cloud storage server, and the data owner can retrieve her file

by simply requesting the cloud storage server to send it back.

The Retrieve phase in the security games just ensures that, in theory, user’s file

can be recovered from multiple verifications with the cloud storage server efficiently

(using some PPT extractor algorithm), as long as the cloud storage server can pass a

noticeable fraction of challenge queries. Essentially, a secure POR scheme provides

a mechanism, in which the data owner will be guaranteed that her data file can be

efficiently recovered from the server’s storage at the moment that a verification is

accepted, without actually downloading the file from the server. Furthermore, this

guarantee is based on the assumption that the cloud storage server is not able to solve

some cryptographic hard problems2, without trusting in the cloud storage server.

3.2.3 Alternative Formulation: Provable Data Possession

An alternative formulation Provable Data Possession (PDP) proposed by Ateniese et

al. [ABC+07] will be reviewed later in Chapter 6, since the third proofs of storage

2For information-theoretical secure POR schemes (e.g. [DVW09]), such assumption is not nec-
essary.

CHAPTER 3. DEFINITIONS AND FORMULATION 28

scheme proposed in Chapter 6 will be proved under the PDP model, while the first

two proofs of storage schemes proposed in Part I of this dissertation will be proved

under POR model. It is well-known that PDP is a weaker formulation than POR,

in the sense that any secure POR scheme is a secure PDP scheme, but not vice

versa. Our third proofs of storage scheme is such an example: It is provably secure

under PDP , and insecure under POR.

Chapter 4

Proofs of Retrievability from

Linearly Homomorphic Message

Authentication Code

A Linearly Homomorphic Message Authentication Code (MAC) scheme allows any

third party to compute a valid MAC value for a linear combination of messages Mi’s

from the MAC values of these messages Mi’s, using the public key. This chapter will

propose a linearly homomorphic MAC scheme, which we refer to as S1, and apply it

to construct a proofs of storage scheme, which we refer to as POS1 in this dissertation.

The proposed scheme POS1 is very efficient in communication and computation, and

will be proved under the Proofs of Retrievability formulation. The result in this

chapter is published in Chang and Xu [CX08] (under name “HTAG”). We remark that

Chang and Xu [CX08] declared the HTAG scheme as an independent work of Shacham

and Waters [SW08a].

4.1 Overview

Section 2.2.2 (on page 11) described a proofs of storage scheme constructed from a

non-homomorphic MAC scheme. In each verification of this MAC based method,

the verifier selects a random subset of ` indices, and the prover finds all data blocks

29

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 30

corresponding to the selected indices and sends these data blocks together with their

MAC values to the verifier. Thus the communication cost is dominated by the `

message-MAC pairs. A wishful but natural thought is that: Can we somehow ag-

gregate all of these ` message-MAC pairs into a single message-MAC pair, such that

any errors in these ` message-MAC pairs introduced by a computationally bounded

adversary can be detected by checking only the single aggregated message-MAC pair?

Linearly homomorphic MAC is a good answer. Since such homomorphic MAC allows

the prover to compute a valid MAC value for a linear combination of these ` selected

data blocks from only these ` message-MAC pairs and a public key. Thus only one

message, which is the linear combination of previous ` data blocks, together with its

MAC value is sent back to the verifier, yet the verifier is able to detect any possible

errors within these ` data blocks with overwhelming high probability by checking the

received message-MAC pair.

4.1.1 A Brief Description of proofs of storage scheme POS1

Setup. Suppose Alice wants to backup her data file F to a cloud storage server

Bob. Alice first encodes file F using some error erasure code, and resulting enlarged

file consists of n data blocks F0, . . . , Fn−1. Alice chooses a prime p, a random secret

value τ , and a random secret seed, denoted as seed, of a pseudorandom function

PRF [Gol06]. For each data block Fi, Alice generates an authentication tag σi using

a linearly homomorphic MAC scheme:

σi := PRFseed(i) + τFi mod p. (4.1)

Alice sends all data blocks together with authentication tags, i.e. {(i, Fi, σi) : i ∈
[0, n− 1]}, to Bob.

Verification. Later, Alice may remotely verify the integrity of her data file stored

with Bob periodically. In each verification session, Alice randomly selects a subset

C ⊂ [0, n − 1] of indices and selects a random weights νi for each i ∈ C. Alice

sends {(i, νi) : i ∈ C} as challenge to Bob. Bob then finds all data blocks Fi’s and

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 31

authentication tags σi’s with index i ∈ C, and apply the linear homomorphism to

compute an aggregated message-MAC pair (M, σ) as below:

M :=
∑
i∈C

νiFi mod p; (4.2)

σ :=
∑
i∈C

νiσi mod p. (4.3)

Upon receiving (M, σ) as response from Bob, Alice checks the following equality

with private information (seed, τ):

σ
?
=
∑
i∈C

νiPRFseed(i) + τM mod p. (4.4)

b b b

b b b

Linear Homomorphism

Figure 4.1: POR scheme POS1 constructed from linearly homomorphic MAC S1. A
square represents a data block and a circle represents an authentication tag. Detailed
explanation is in the paragraph with title “Illustration Picture”.

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 32

Illustration Picture. Figure 4.1 illustrates the scheme POS1 that we just briefed.

In Figure 4.1, a square represents a data block and a circle represents an authenti-

cation tag (i.e. a MAC value). Each square together with the circle which lies just

below, represent a valid message-MAC pair. Those shaded squares represent data

blocks that are generated by the error erasure code. Figure 4.1 shows that during a

verification, a subset of 3 message-MAC pairs are selected and are aggregated into a

single message-MAC pair by applying the linear homomorphism property.

4.1.2 Organization

The rest of this chapter is organized as below. Section 4.2 gives the definition of

linearly homomorphic MAC scheme and Section 4.3 provides the construction of a

linearly homomorphic MAC scheme named S1. Next, we propose the proofs of storage

scheme POS1 based on S1 in Section 4.4 and analyze its performance in Section 4.5.

We analyze the security of S1 and POS1 in Section 4.6 and Section 4.7, respectively.

In the end, Section 4.8 summarizes this chapter.

4.2 Linearly Homomorphic MAC: Definition

A linearly homomorphic MAC scheme consists of four algorithms (KeyGen, Sign,

Combine,Verify), where each algorithm is described as below.

• KeyGen(1λ)→ (spk, ssk): The probabilistic key generating algorithm takes the

security parameter λ as input, and outputs a pair of public and private key

(spk, ssk).

• Sign(ssk, i, M) → σ: The signing algorithm takes the private key ssk, an index

i and a message M as input, and outputs a signature σ.

Note: The algorithm Sign is stateful.

• Combine(spk, {(i, Mi, σi, νi) : i ∈ C},) → (M, σ): The algorithm Combine im-

plements the homomorphic property. Taking as input the public key spk, the

sequence of tuples (i, Mi, σi, νi), i ∈ C, where σi is a MAC value of a message Mi

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 33

w.r.t. an index i, and νi is a weight of Mi in a linear combination, algorithm

Combine outputs a message-MAC pair (M :=
∑

i∈C νiMi, σ).

• Verify(ssk, M, σ, {(i, νi) : i ∈ C}) → accept or reject: The deterministic ver-

ification algorithm takes the private key ssk, a message M, a MAC value σ,

a sequence of tuples {(i, νi) : i ∈ C} as input, and outputs either accept or

reject.

Definition 7 (Linearly Homomorphic MAC) A MAC scheme S = (KeyGen, Sign,

Combine,Verify) is Linearly Homomorphic, if for any public-private key pair

(spk, ssk) := KeyGen(1λ) generated by the key generating algorithm KeyGen and for

any sequence of message-MAC pairs {(i, Mi, σi), i ∈ C} generated by the signing al-

gorithm Sign under the private key ssk, the output (
∑

i∈C νiMi, σ) := Combine(spk,

{(i, Mi, σi, νi) : i ∈ C}) is accepted as a valid message-MAC pair by the verification al-

gorithm Verify under the private ssk w.r.t. {(i, νi) : i ∈ C}, i.e. Verify(ssk,
∑

i∈C νiMi, σ,

{(i, νi) : i ∈ C}) = accept.

4.3 Linearly Homomorphic MAC: Construction

The construction of the MAC scheme S1 = (KeyGen, Sign,Combine,Verify) is as below.

4.3.1 Construction of S1

S1.KeyGen(1λ)→ (spk, ssk)

Choose at random a λ bits long prime number p. Choose at random a group

element τ from Z∗p: τ
$←− Z∗p. Choose at random a seed, denoted as seed, from

the key space of the pseudorandom function family {PRFseed : {0, 1}2λ → Zp}.
The public key is spk := (p) and the private key is ssk := (seed, τ, p). Output

(spk, ssk).

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 34

S1.Sign(ssk, i, M)→ σi

The MAC value σi for a given message M ∈ Zp w.r.t. an index i ∈ {0, 1}2λ is

computed as below

σi := PRFseed(i) + τM mod p. (4.5)

S1.Combine(spk, {(i, Mi, σi, νi) : i ∈ C})→ (M, σ)

The MAC value for the linear combination M :=
∑

i∈C νiMi mod p is computed

as below

σ :=
∑
i∈C

νiσi mod p. (4.6)

S1.Verify (ssk, M, σ, {(i, νi) : i ∈ C})→ accept or reject

Check the following equality with the private key ssk = (seed, τ, p). Output

accept if the equality holds; otherwise output reject.

∑
i∈C

νi PRFseed(i) + τ · M ?
= σ mod p (4.7)

4.3.2 Correctness

The following lemma is straightforward:

Lemma 4.1 (S1 is a linearly homomorphic MAC) The proposed MAC scheme

S1 is a linearly homomorphic MAC scheme under Definition 7.

4.3.3 S1 is Symmetric Key Signcryption

We realize that the proposed MAC scheme S1 actually functions as (private key)

signature scheme and encryption scheme simultaneously, i.e. S1 is a symmetric key

signcryption scheme [Zhe97]. The algorithm S1.Sign also takes the role of encryption.

The corresponding decryption algorithm is as below:

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 35

S1.Decrypt(ssk, σ, i)→ M

The plaintext M is computed as below.

M := (σ − PRFseed(i)) τ
−1 mod p. (4.8)

Consequently, S1 may have applications in constructing authenticated error correcting

code [BJO09b,LTT10].

4.4 POS1: A Proofs of Retrievability scheme con-

structed from Homomorphic MAC S1

4.4.1 Construction of POS1

Let S1 = (S1.KeyGen, S1.Sign, S1.Combine, S1.Verify) be a linearly homomorphic MAC

scheme. We construct a POR scheme named POS1 based on S1 as below.

POS1.KeyGen(1λ)→ (pk, sk)

Invoke the key generating algorithm S1.KeyGen of the MAC scheme S1 to gen-

erate the public-private key pair (pk, sk) := S1.KeyGen(1λ).

POS1.DEncode(sk, F)→ (id, F̂, n)

Let ρ ∈ (0, 1) be a system parameter. Apply rate-ρ error erasure code on data

file F to generate blocks (F0, . . . , Fn−1), such that each block Fi ∈ Zp and any ρn

number of blocks Fi’s can recover the original file F. Choose a unique identifier

id for file F from the space {0, 1}λ. For each i ∈ [0, n− 1], generate a tag σi for

block Fi as below:

σi := S1.Sign(sk, id‖i, Fi), (4.9)

where ‖ denotes a string concatenation that allows unique decomposition. The

encoded file is F̂ := {(i, Fi, σi) : i ∈ [0, n− 1]}. Send (id, F̂) to the cloud storage

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 36

server and keep only (id, n) in local storage.

POS1.Prove(pk, id, F̂, {(i, νi) : i ∈ C})→ (M, σ)

Receive (id, {(i, νi) : i ∈ C}) from the verifier as the challenge where C is a

subset of [0, n − 1]. Find the encoded file F̂ = {(i, Fi, σi) : i ∈ [0, n − 1]}
associated with identifier id. Compute a message M and a MAC value σ using

the homomorphic property of the MAC scheme S1 as below

(M, σ) := S1.Combine(pk, {(id‖i, Fi, σi, νi) : i ∈ C}). (4.10)

The prover sends (M, σ) to the verifier as response.

POS1.Verify(sk, id, M, σ, {(i, νi) : i ∈ C})→ accept or reject

Invoke the algorithm S1.Verify to obtain b ∈ {accept, reject} as below:

b := S1.Verify(sk, M, σ, {(id‖i, νi) : i ∈ C}). (4.11)

Output b.

Remark 2 To simplify the security proof, we assume that νi’s, i ∈ C, forms a simple

geometric sequence. More precisely, denote the elements of set C as {ij ∈ [0, n− 1] :

j ∈ [0, ` − 1]}, where ` is the size of set C and 0 ≤ i0 < i1 < i2 . . . < i`−1 < n.

There exists some element ν ∈ Z∗p, for each j ∈ [0, ` − 1], νij = νj mod p. Thus,

` distinct vectors of form (ν0, ν1, . . . , ν`−1) ∈
(
Z∗p
)`

can constitute a vandermonde

matrix [MS58].

4.4.2 Completeness

Lemma 4.2 (POS1 is Complete) The above construction POS1 is complete under

Definition 5 (on page 5).

The completeness of POS1 is implied by the correctness of the underlying linearly

homomorphic MAC scheme S1 (Lemma 4.1). Recall that, a POR scheme is complete,

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 37

if any genuine proof generated by following the POR scheme honestly upon an intact

copy of the file uploaded by Alice, will be accepted by the verifier Alice.

4.5 Performance Analysis

The scheme POS1 is very efficient in communication and computation. The proof

size is 2λ bits. In the setup, only one group multiplication, one group addition

and one pseudorandom function evaluation are required to compute a tag per each

data block. Let ` be the size of set C in a verification. In each verification, the

prover takes 2` group multiplications/additions to generate a proof; the verifier takes

` group multiplications/additions and ` number of pseudorandom function evaluations

to verify the proof.

The drawback is that an authentication tag is as large as a data block, and the

storage overhead due to the authentication tags is equal to the file size (after er-

ror erasure encoding). In applications where large data redundancy is required, this

drawback is mitigated due to the fact that the underlying MAC scheme S1 also func-

tions as a symmetric key encryption key (i.e. a symmetric key signcryption [Zhe97]):

All authentication tags together is another copy of the file in the encrypted domain.

4.6 Security Analysis of MAC scheme S1

4.6.1 Security Model for Linearly Homomorphic MAC

Let S = (KeyGen, Sign,Combine,Verify) be a linearly homomorphic MAC scheme as

described in Section 4.3. We define the security game GameCMA
S,A between a challenger

C and an existential forgery adversary A w.r.t. a linearly homomorphic MAC scheme

S, under adaptive chosen message attack as below.

Setup.

The challenger C generates a pair of public-private key (spk, ssk) by running the

key generating algorithm KeyGen(1λ) with security parameter λ, and gives the public

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 38

key spk to the adversary A and keeps the private key ssk securely. The challenger

C maintains a state variable state, which is used to assign a unique index to each

message to be signed.

Learning.

The adversary A can adaptively make queries, where each query is in one of the

following forms:

• SignQuery(M): Given a message M chosen by the adversary A, the challenger

C chooses a unique index i based on the current value of state and updates

state. The challenger C denotes the message as Mi and responses the query with

a signature σi := Sign(ssk, i, Mi).

• VerifyQuery(M, σ, {(i, νi) : i ∈ C}): Let I denote the set of all indices i’s chosen

by the challenger in answering all SignQuery. For each tuple (M, σ, {(i, νi) :

i ∈ C}) chosen by the adversary A, if C ⊂ I, then the challenger C responses

with b := Verify(ssk, M, σ, {(i, νi) : i ∈ C}) ∈ {accept, reject}. If C 6⊂ I, the

challenger does nothing.

Forge.

The adversary A outputs (M′, σ′, {(i, νi) : i ∈ C}) with C ⊂ I. Let (M, σ) :=

S1.Combine(spk, {(i, Mi, σi, νi) : i ∈ C}) be the corresponding genuine output. The

adversary A wins the game if and only if

Verify(ssk, M′, σ′, {(i, νi) : i ∈ C}) = accept and (M′, σ′) 6= (M, σ). (4.12)

4.6.2 The Linearly Homomorphic MAC Scheme S1 is Secure

Theorem 4.3 (S1 is secure) Suppose {PRFseed : {0, 1}2λ → Zp} is a secure pseu-

dorandom function family. Then the MAC scheme S1 is existentially unforgeable

under adaptive chosen message attack. For any PPT adversary A, the advantage of

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 39

A against S1 defined as below is negligible in the security parameter.

AdvS1A
def
= Pr[A wins GameCMA

S1,A]. (4.13)

We start by proving the unforgeability in a simplified setting, where all acceptance

or rejection decisions are kept secret from the adversary. That is, the challenger does

not answer any VerifyQuery in the security game. We refer to this simplified setting

as no-feedback setting, and refer to the original setting as feedback setting. Next, we

prove the security in feedback setting, based on the security in no-feedback setting.

It is worthy to point out that, we achieve security in feedback setting by “lift-

ing” the security in no-feedback setting, in contrast with verifiable cloud comput-

ing [GGP10, CKV10] that achieve security only in no-feedback setting (for a much

larger class of delegated functions). We emphasize that this is possible because our

scheme S1 has an essential difference with [GGP10, CKV10]: Informally, in S1, we

prove that if a candidate aggregated message-MAC pair (M, σ) w.r.t. {(i, νi) : i ∈ C} is

accepted by the verifier, then both of M and σ should be genuine (i.e. equal to the cor-

responding value computed by an honest user); while in the case of [GGP10,CKV10],

their security proof only ensures that the computation result (counterpart of M) is

genuine and cannot ensure whether the proof (counterpart of σ) is exactly the one

generated by an honest user. In [GGP10,CKV10], indeed anyone with the public key

of the fully homomorphic encryption scheme can output many different proofs (for

the correct computation result) such that the verifier will accept all of them.

4.6.2.1 S1 is secure in no-feedback setting

Lemma 4.4 If there exists a PPT adversary A which wins GameCMA
S1,A in the no-

feedback setting with non-negligible probability, then there exists a PPT adversary B
which breaks the security of the pseudorandom function PRF. Precisely,

Pr[A wins GameCMA
S1,A in no-feedback setting] ≤ 1

p− 1
+NPRF · AdvPRFB ,

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 40

where NPRF is the number of distinct evaluations of pseudorandom function PRF re-

quired to answer all SignQuerys made by A (one PRF evaluation for one Sign-

Query), and AdvPRFB denotes the probability that B can distinguish the output of PRF

from true randomness.

Proof of Lemma 4.4:

Game 1. The first game is the same as GameCMA
S1,A, except that the challenger will not

answer VerifyQuery made by the adversary A. Therefore, Pr[A wins Game 1] =

Pr[A wins GameCMA
S1,A in no-feedback setting].

Game 2. The second game is the same as Game 1, except that in the scheme

S1, the pseudorandom function PRFseed(·) is replaced by a simulator PRFSim which

outputs true randomness over the range of PRFseed. Precisely, the function PRFSim is

evaluated in the following way:

• The challenger keeps a table, which is empty at the very beginning, to store all

previous encountered input-output pairs (v,PRFSim(v)).

• Given an input v, the challenger lookups the table for v, if there exists an entry

(v, u), then return u as output. Otherwise, choose u at random from the range

of PRFseed, insert (v,PRFSim(v) := u) into the table and return u as output.

Claim 4.6.1 If there is a non-negligible difference in an PPT adversary A’s success

probability between Game 1 and Game 2, then there exists another PPT adversary

B which can break the security of the pseudorandom function PRF. More precisely,

∣∣Pr[A wins Game 1]− Pr[A wins Game 2]
∣∣ ≤ NPRF · AdvPRFB ,

where NPRF is the number of distinct evaluations of pseudorandom function PRF re-

quired to answer all SignQuerys made by A (one PRF evaluation for one Sign-

Query), and AdvPRFB denotes the probability that B can distinguish the output of PRF

from true randomness.

The above Claim 4.6.1 can be proved using a standard hybrid argument [Gol06]. Here

we save the details.

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 41

Claim 4.6.2 For any computationally unbounded adversary A, after interacting in

Game 2, the probability that A finds the value of τ is 1/(p− 1).

Proof of Claim 4.6.2: The secret value τ is only involved in the MAC values

σi’s. Since in Game 2, the pseudorandom function PRF is replaced by a simulator

PRFSim which outputs truly uniform randomness over Zp, the MAC values σi’s reveal

absolutely no information to adversary A about the secret τ at all, although A
is computationally unbounded. That is, the entropy of τ to the adversary A is

unchanged before and after A’s interaction with the challenger in the Game 2, and

the probability thatA can find τ is exactly 1/(p−1). Recall that τ is chosen uniformly

randomly from Z∗p. ut

Claim 4.6.3

Pr[A wins Game 2] ≤ 1

p− 1
. (4.14)

Proof of Claim 4.6.3: Recall that (M′, σ′, {(i, νi) : i ∈ C}) denotes the forgery

output by the adversary A in the Forge phase of Game 2, and (M, σ, {(i, νi) : i ∈ C})
denotes the corresponding genuine output1 which shares the same value {(i, νi) : i ∈
C} with the forgery output. We assume the forgery is valid, that is, the forgery

output (M′, σ′, {(i, νi) : i ∈ C}) is accepted by the verifier algorithm S1.Verify, and

(M′, σ′) 6= (M, σ).

Since both the forgery output (M′, σ′, {(i, νi) : i ∈ C}) and the genuine output

(M, σ, {(i, νi) : i ∈ C}) are accepted by S1.Verify, we substitute them into the Equa-

tion (4.7) (on page 34) separately and obtain the below equations:

∑
i∈C

νiPRFseed(i) + τM′ = σ′ mod p; (4.15)∑
i∈C

νiPRFseed(i) + τM = σ mod p. (4.16)

1The adversary can compute the genuine output by keeping an intact copy of users’ file from the
very beginning.

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 42

Subtract Equation (4.16) from Equation (4.15), we have

τ(M′ − M) = σ′ − σ mod p. (4.17)

If M′ = M, then σ′ − σ = τ(M′ − M) = 0 mod p, which is a contradiction with our

hypothesis that (M′, σ′) 6= (M, σ). Thus M′ 6= M and the secret value τ can be found

τ =
σ′ − σ
M′ − M

mod p. (4.18)

By the Claim 4.6.2, we conclude

Pr[A wins Game 2] ≤ Pr[A finds τ in Game 2] ≤ 1

p− 1
. (4.19)

Thus, Claim 4.6.3 is proved. ut

Therefore, Lemma 4.4 is inferred by combining Claim 4.6.1 and Claim 4.6.3. ut

4.6.2.2 S1 is secure in feedback setting

Lemma 4.5 S1 is unforgeable in feedback setting.

Proof of Lemma 4.5:

Game 1. The first game is just GameCMA
S1,A in the no-feedback setting, where all

acceptance or rejection decisions are kept secret from the adversary. It is identical to

the Game 1 in the proof of Lemma 4.4 (on page 39).

For each integer k ≥ 0, we define the following game:

Game 2.k. This game is the same as Game 1, except that, A adaptively makes k

verification queries in the Learning phase and all acceptance or rejection decisions

are provided to A at the end of each query.

We describe two different verification strategies as below, where the first one is

adopted by the challenger of the security game Game 2.k and the second one serves

as the reference:

• SimulatedVerifier: The challenger keeps a local copy of messages and MACs,

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 43

where messages are chosen by the adversary in a SignQuery and MAC values

are generated by the challenger in response to that SignQuery. The challenger

also plays the role of an honest user of the MAC scheme S1. For each tuple

(M′, σ′, {(i, νi) : i ∈ C}) received from the adversary A in a VerifyQuery, the

challenger computes the corresponding genuine tuple (M, σ, {(i, νi) : i ∈ C})
from the challenger’s local copy of messages and MACs. If adversary’s output

are the same as the genuine output, i.e. (M′, σ′) = (M, σ), then outputs accept;

otherwise outputs reject.

• ImaginaryVerifier: An imaginary verification oracleOS1.Verify(ssk;·) which some-

how has access to the private key ssk.

Note that (1) the simulated verifier accepts only genuine output while the imaginary

verifier oracle accepts all valid outputs which include genuine outputs; (2) the sim-

ulated verifier provides absolutely no new information to the adversary A, since A
itself can simulate such verifier by keeping another intact copy of the messages and

MAC values from the very beginning.

Let us code accept with the bit ‘1’ and code reject with the bit ‘0’, and de-

note with ai ∈ {0, 1} be the decision bit output by the imaginary verification oracle

OS1.Verify(ssk;·) for the i-th VerifyQuery made by the adversary A in Game 2.k;

bi ∈ {0, 1} be the corresponding decision bit output by the simulated verifier. Fur-

thermore, let Ak := a1a2 . . . ak ∈ {0, 1}k and Bk := b1b2 . . . bk ∈ {0, 1}k. We notice

that

• ak+1 6= bk+1 indicates the event that the adversary wins Game 2.k.

– (ak+1 = 1, bk+1 = 0) indicates the event that the adversary wins Game 2.k,

since the adversary’s output is valid (accepted by ImaginaryVerifier),

but different from the genuine output (rejected by SimulatedVerifier).

– (ak+1 = 0, bk+1 = 1) is impossible, since the MAC scheme S1 is correct

such that all genuine MAC values are valid.

• ak+1 = bk+1 indicates the event that the adversary loses Game 2.k.

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 44

Claim 4.6.4 Let ξ be a negligible function implied in Lemma 4.4, such that for any

PPT adversary A, Pr[A wins Game 1] ≤ ξ. Then Pr[A wins Game 2.0] ≤ ξ.

Claim 4.6.5 If Pr[Ak = Bk] ≥ X, then Pr[Ak+1 = Bk+1] ≥ X(1− ξ).

Proof of Claim 4.6.5:

Pr[Ak+1 = Bk+1] = Pr[Ak = Bk ∧ ak+1 = bk+1] (4.20)

= Pr[Ak = Bk]× Pr[ak+1 = bk+1 | Ak = Bk] (4.21)

≥ Pr[Ak = Bk]× Pr[A loses Game 1] (4.22)

≥ X(1− ξ). (4.23)

ut

Claim 4.6.6 Pr[Ak = Bk] ≥ (1− ξ)k.

Proof of Claim 4.6.6: We prove the above claim using mathematical induction.

Base Case: k = 1. Pr[A1 = B1] = Pr[a1 = b1] = Pr[A loses Game 2.0] ≥ (1− ξ).
Induction Step: from k to k + 1. This is just Claim 4.6.5. ut

Claim 4.6.7 Pr[A wins Game 2.k] ≤ ξ +
(
1− (1− ξ)k

)
= (k + 1)ξ + o(ξ).

Notice that here o(·) denote the little-O notation.

Proof of Claim 4.6.7:

Pr[A wins Game 2.k]

= Pr[A wins Game 2.k ∧ Ak = Bk] + Pr[A wins Game 2.k ∧ Ak 6= Bk]

≤ Pr[A wins Game 2.k | Ak = Bk]× Pr[Ak = Bk] + Pr[Ak 6= Bk]

≤ Pr[A wins Game 2.k | Ak = Bk] + Pr[Ak 6= Bk]

≤ Pr[A wins Game 1] + Pr[Ak 6= Bk]

≤ ξ +
(
1− (1− ξ)k

)
= (k + 1)ξ + o(ξ).

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 45

Notice that Pr[A wins Game 2.k | Ak = Bk] ≤ Pr[A wins Game 1], since in Game

2.k, Ak = Bk indicates that the adversary gains absolutely no information from the

k VerifyQuery in the Learning phase. ut

Therefore, Lemma 4.5 is concluded from Claim 4.6.7. ut

Now it is time to prove the Theorem 4.3.

Proof of Theorem 4.3: By Lemma 4.4 and Lemma 4.5, for any PPT adversary

A which makes NPRF number of SignQuery and Nverify number of VerifyQuery

in the security game GameCMA
S1,A, the probability that A wins the security game is

Pr[A wins GameCMA
S1,A] ≤ (Nverify + 1)

(
1

p− 1
+NPRF · AdvPRFB

)
,

which is negligible in the security parameter λ = log p. ut

4.7 Security Analysis of POR scheme POS1

Theorem 4.6 If {PRFseed : {0, 1}2λ → Zp} is a secure pseudorandom function fam-

ily, then the proposed POR scheme POS1 is sound under Definition 6 (on page 26).

We first prove two lemmas about random sampling and then apply these two

lemmas, together with the security property of S1, to prove the above theorem.

4.7.1 Two Lemmas on Random Sampling

Lemma 4.7 Let X and Y be two finite sets. Let UX denote a uniform random variable

over the domain X and UY denote a (independent) uniform random variable over the

domain Y. Consider any function f : X × Y → {0, 1}. Let ε = Pr[f(UX, UY) = 1].

For any constant a ∈ (0, 1
2
), define a set Sa = {x ∈ X : Pr[f(x, UY) = 1] ≥ aε}. We

have

Pr[UX ∈ Sa] =
|Sa|
|X|
≥
(

1− a
1
ε
− a

)
= O(ε).

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 46

Proof of Lemma 4.7: Let N = |Sa| be the size of set Sa. We have

ε = Pr[f(UX, UY) = 1] (4.24)

=
1

|X|

∑
x∈Sa

Pr[f(x, UY) = 1] +
∑

x∈X\Sa

Pr[f(x, UY) = 1]

 (4.25)

≤ 1

|X|
(N + aε(|X| −N)) (4.26)

⇒ N ≥ |X|
(

1− a
1
ε
− a

)
(4.27)

⇒ N

|X|
≥
(

1− a
1
ε
− a

)
∈ (

1

2
ε, ε] = O(ε). (4.28)

ut

Lemma 4.8 Let κ be an integer. Let δ, ε ∈ (0, 1] be two real values and δ ≥ ε. Let

t = dκ
ε
e. Independently sample t number of values r1, . . . , rt from {0, 1} under the

Bernoulli distribution with probability δ. Let d be a positive integer and d ≤ κc for

some real valued constant c ∈ (0, 1). Then with overwhelming high probability (w.r.t.

κ), there exists d distinct indices i1, i2, . . . , id ∈ [1, t] such that ∀j ∈ [1, d], rij = 1.

We remark that the original form of Chernoff bound [Che52, Gol06] does not serve

our purpose.

Proof of Lemma 4.8: Let us consider the set S = {i ∈ [1, t] : ri = 1}. We will

show that the size of set S is at least d with overwhelming high probability.

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 47

For each index i ∈ [1, t], we have Pr[ri = 1] = δ ≥ ε.

Pr[|S| < d] =
d−1∑
j=0

Pr[|S| = j] =
d−1∑
j=0

(
t

j

)
δj(1− δ)t−j (4.29)

≤
d−1∑
j=0

(
t

j

)
εj(1− ε)t−j (4.30)

≤
d−1∑
j=0

(
t

d− 1

)
εd−1(1− ε)t−d+1 (4.31)

≤ d(κ+ 1)d−1e−κ+O(κc) (4.32)

≤ κc

eO(κ)
(4.33)

where e is the base of natural logarithm.

Now we explain the above inference. Equation (4.30) can be derived from Equa-

tion (4.29), since for each j ∈ {0, 1, 2, . . . , d − 1}, function f(δ) = δj(1 − δ)t−j, δ ∈
(0, 1), has a negative first order derivative since κ > κc ≥ d, and is thus a monotone

decreasing function of δ ∈ (0, 1).

Equation (4.31) can be derived from Equation (4.30), since the probability mass

function of a binomial distribution is a bell shape (like normal distribution) and

reach its maximum at j = t · ε ≥ κ > d. That is, for 0 ≤ j < d < t · ε, the function

g(j) =
(
t
j

)
(ε)j (1− ε)t−j is a monotone increasing function of j.

Equation (4.32) can be derived from Equation (4.31), due to the following two

Equations (4.34) and (4.35).

(1− ε)t−d+1 = (1− ε)
1
ε
×(εt+ε(−d+1)) ≤ (1− ε)

1
ε
×(κ−εκc)

<

(
1

e

)κ−O(κc)

= e−κ+O(κc). (4.34)

(
t

d− 1

)
εd−1 ≤ td−1εd−1 = (tε)d−1 ≤ (κ+ 1)d−1 (4.35)

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 48

Equation (4.33) can be derived from Equation (4.32), since

(κ+ 1)d−1

eκ−O(κc)
≤ (κ+ 1)(κc−1)

eκ−O(κc)
= e(κc−1) ln(κ+1)−κ+O(κc) = e−O(κ). (4.36)

So de−O(κ) ≤ κc · e−O(κ) is negligible in κ. Recall that d < κc for constant c ∈ (0, 1).

Therefore, Pr[|S| < d] is negligible in κ and the set S has size at least d with

overwhelming high probability (1− Pr[|S| < d]) in κ. ut

4.7.2 Scheme POS1 is Sound

Proof of Theorem 4.6: Suppose in the Retrieve phase of the POR security

game between an adversary A and a challenger, the challenger initiates ζ = O(t2)

verifications, and the adversary A correctly answers ε fraction of verification queries,

where t = dnλ
ε
e. Here n is the number of blocks in the error erasure encoded file.

Recall that a challenge query (C, ~ν) consists of two parts: a subset C ⊂ [1, n] with

size `, and a weight vector ~ν = (ν, ν2, . . . , νd+1) ∈ (Zp)`. Let us denote the domain

of C as C and the domain of weight as W.

We remark that (1) a negligible function w.r.t. nλ is also a negligible function

w.r.t. λ; (2) both sizes of domain C and W are exponentially large in λ, since

` = O(λ).

Extractor Strategy The challenger chooses challenge queries in this way: For each

i ∈ [1, t], independently choose a random subset Ci ∈ C, and independently choose

t number of random weights ~νi,j ∈ W, j ∈ [1, t]. For each (i, j) ∈ [1, t] × [1, t], send

(Ci, ~νi,j) to the adversary A, receive response (Mi,j, σi,j) from the adversary. Define a

function f : C×W→ {0, 1}, such that if (Mi,j, σi,j) is accepted, then f(Ci, ~νi,j) = 1,

otherwise f(Ci, ~νi,j) = 0.

The challenger finds all indices i ∈ [1, t], such that for at least ` distinct in-

dices jι, ι ∈ [1, `], the adversary A’s responses (Mi,jι , σi,jι) w.r.t. query (Ci, ~νi,jι) are

accepted. From such responses Mi,jι , the challenger can solve the following linear

equation system to obtain the data blocks Fu’s with index u in the set Ci. Let

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 49

~M = (Mi,j1 , . . . , Mi,j`)
> be a column vector and µ be a `× ` matrix, such that ι-th row

of µ is just the row vector ~νi,jι , ι ∈ [1, `]. The linear equation system with unknown

~x is as below

µ~x = ~M (4.37)

Note that µ is a vandermonde matrix [MS58] and has rank ` as long as all ~νi,jι ’s,

ι ∈ [1, `], are distinct.

From ρn number of blocks Fu’s, the original file can be recovered using the error

erasure decoding algorithm. Recall that ρ is the rate of the error erasure code.

Analysis of the Extractor Strategy Let a = 1
3
. For a subset C ∈ C, we say

C is good, if the Pr[f(C, ~ν) = 1] ≥ aε, where the probability is over uniformly ran-

domly chosen weight vector ~ν ∈ W. Let Sa be the set of all good subset C. By

applying Lemma 4.7, a uniformly random chosen subset C is good with probabil-

ity at least O(ε): Pr[C ∈ Sa] ≥ O(ε). By Lemma 4.8 with κ = nλ and constant

d = ρn < κ, among these t number of independent samples Ci’s, i ∈ [1, t], with

overwhelming high probability, there exists at least d = ρn number of good Ci’s.

For each good Ci, applying the Lemma 4.8 on the random variable ~ν with κ = nλ

and d = ` < κ, with overwhelming high probability, there exists at least d samples

~νi,jι , ι ∈ [1, d], jι ∈ [1, t], such that f(Ci, ~νi,jι) = 1 (We call such ~νi,jι as good weight).

Therefore, with overwhelming high probability, the challenger can find sufficient num-

ber of good subsets and weight vectors to form ρn number of linear equation systems

as in Equation (4.37).

Since the underlying MAC scheme S1 is unforgeable (Theorem 4.3), a valid proof

(M, σ) is genuine with overwhelming high probability. Additionally, since the domain

of subset Ci (respectively, weights ~νi,jι) is exponentially large w.r.t. λ, all good Ci’s

(respectively, good weights ~νi,jι) are distinct with overwhelming high probability.

Thus the challenger’s above extractor algorithm succeeds with overwhelming high

probability. This completes the proof of Theorem 4.6. ut

We remark that the above proof assumes that the adversary’s response w.r.t.

a given particular query is deterministic for simplicity. In the more generic case

CHAPTER 4. POR FROM LINEARLY HOMOMORPHIC MAC 50

where the adversary’s response to a given query is probabilistic, we can write out the

adversary’s random coin explicitly and apply the Lemma 4.8 on this random coin for

one more time. After that the above argument still holds. The cost is that in this

more generic case, the extractor runs O(t3) number of verification interactions.

4.8 Summary

This chapter presented a linearly homomorphic MAC scheme S1, which allows any

third party to compute a MAC value for a linear combination of messages Mi’s, from

the MAC values of these messages Mi’s and a public key. S1 is also a symmetric key

signcryption scheme, that is, it functions as a symmetric key signature (i.e. MAC)

scheme and a symmetric encryption scheme simultaneously. Based on S1, a Proofs of

Retrievability scheme POS1 is constructed. The POR scheme POS1 is very efficient

in communication and computation: (1) only linear (w.r.t. the security parame-

ter) communication bits per verification are required; and (2) only group multiplica-

tion/addition and pseudorandom function evaluations are required in data preprocess

and proof generation. The drawback is that the authentication tags are as large as

the data file size. Full security proof of S1 and POS1 under assumption of existence

of secure pseudorandom function are provided. The security property of S1 is proved

in two steps: (1) in the first step, security of S1 is proved in a simplified setting,

where all acceptance/rejection decisions of each verification are kept secret from the

adversary; (2) in the second step, security of S1 is proved in the original setting, using

the result in the first step.

Chapter 5

Proofs of Retrievability from

Linearly Predicate-Homomorphic

Message Authentication Code

A linearly predicate-homomorphic MAC scheme satisfies two homomorphic properties:

• It is a linearly homomorphic MAC scheme as described in previous Chapter 4.

That is, any third party can compute a MAC value for a linear combination of

messages Mi’s from the MAC values of these messages Mi’s, using the public key.

• It is a predicate-homomorphic MAC scheme, such that given a MAC value of a

message M, any third party can compute a MAC value for another message M′

with the public key, as long as the two messages (M, M′) satisfies the designated

predicate.

This chapter will propose a linearly predicate-homomorphic MAC scheme, which

we refer to as S2, and apply it to construct a proofs of storage scheme, which we

refer to as POS2 in this dissertation. The proposed scheme POS2 is very efficient

in communication and storage, and is practical in computation. The result in this

chapter is published in Xu and Chang [XC12].

51

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 52

5.1 Overview

5.1.1 A Brief Description of proofs of storage scheme POS2

The POR scheme POS1 constructed in the previous Chapter 4 is very efficient in

communication—only a single message-MAC pair is returned as the response in a

verification. However, in POS1, the size of authentication tags are equally large as

the size of data file (after erasure encoding). Can we reduce the size of authentication

data?

Asymmetric Linear Homomorphic MAC—A MAC value is shorter than a

message Suppose a data block is large and consists of m sectors. We wish to build

an authentication tag with size equal to one sector. This can be done in this way:

Choose a secret random vector ~s ∈ (Zp)m. Treat a data block ~Fi ∈ (Zp)m as a vector.

Compute the inner product
〈
~Fi, ~s

〉
of the two vectors ~Fi and ~s, and then apply the

MAC scheme S1 on the inner product to generate a MAC value σi as below,

σi := PRFseed(i) + τ
〈
~Fi, ~s

〉
mod p (5.1)

where (seed, τ) is the private key of the MAC scheme S1. The generated MAC values

σi’s are also linearly homomorphic w.r.t. the data blocks ~Fi’s, in the sense that, for

any weights νi ∈ Zp

∑
i

νiσi :=
∑
i

νiPRFseed(i) + τ

〈∑
i

νi~Fi, ~s

〉
mod p (5.2)

The linear combination
∑

i νi~Fi and its MAC value
∑

i νiσi have to be returned to

the verifier for validity check. However, the size of block
∑

i νi~Fi (mod p) is mλ bits

and the proof size increases from 2λ bits to (m+ 1)λ bits. In summary, the size of all

authentication tags is reduced by a multiplicative factor m, at the cost of increase in

proof size by a multiplicative factor m+1
2

. We remark that the above is the essential

idea of Shacham and Waters [SW08a].

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 53

Predicate Homomorphism Can we recursively apply some Proofs of Retrievabil-

ity scheme on the data
∑

i νi~Fi with authentication tag
∑

i νiσi, although both the

data and the authentication tag are generated dynamically?

A wishful thought is that: Suppose somehow our MAC scheme supports an ad-

ditional homomorphism, such that given a message-MAC pair (M, σ), anyone can

produce a valid MAC value σ′ for another shorter message M′, as long as (M′, M) satisfy

some designated predicate. Thus the shorter message-MAC pair (M′, σ′) can be sent

back as response for verification, instead of the original (M, σ). Furthermore, there are

many different shorter messages M′is such that (M′i, M) satisfy the designated predicate,

and from these shorter messages M′is, the original long message M can be recovered (or

retrieved) efficiently. In other words, M′is are codewords of M.

Illustration Picture Figure 5.1 illustrates the above idea. In Figure 5.1, each

rectangle consists of three squares. Each rectangle represents a data block and each

square within a rectangle represents a sector in that data block. Thus in the case of

Figure 5.1 the block size is m = 3. Those shaded rectangles represent data blocks

that are generated due to the error erasure code. A rectangle represents a data block

and the circle that lies just below represents the corresponding authentication tag

generated by some underlying MAC scheme. An authentication tag is about the same

size of one data sector, and thus is one third of a data block. During a verification, a

subset of three data blocks and their authentication tags are selected, from which a

single pair of data block and an authentication tag is generated by applying the linear

homomorphism of the underlying MAC scheme. Instead of sending the large data

block back directly, some predicate homomorphism is applied to generate a shorter

message-MAC pair, which is sent back to the verifier as response.

5.1.2 Organization

The rest of this chapter is organized as below: The next Section 5.2 presents the def-

inition of a linearly predicate-homomorphic MAC scheme, followed by a construction

(named S2) of such a homomorphic MAC scheme in Section 5.3. In Section 5.4, a

proofs of storage scheme (named POS2) is constructed using the newly constructed

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 54

b b b

b b b

Linear Homomorphism

b b b

b b b

Predicate Homomorphism

Figure 5.1: POR scheme POS2 constructed from linearly predicate-homomorphic
MAC scheme S2. Detailed explanation is in the paragraph with title “Illustration
Picture”.

homomorphic MAC scheme. The performance of POS2 is analyzed in Section 5.5.

Next, we present the security formulation of linearly predicate-homomorphic MAC

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 55

and provide the full security proof for our construction S2 in Section 5.6. The security

proof for scheme POS2 under POR security formulation is in Section 5.7. At the last,

Section 5.8 summarizes this chapter.

5.2 Linearly Predicate-Homomorphic MAC: Defi-

nition

In this section, we describe the definition of a linearly predicate-homomorphic Message

Authentication Code scheme. We defer the security formulation later to Section 5.6,

where we will analyze the security property of the proposed construction of such

homomorphic MAC scheme.

Ahn et al. [ABC+11a] proposed the new concept of “Predicate-Signature”, which

can be viewed as a counterpart of predicate encryption [BW07, KSW08, SW08b]. In

this dissertation, we are interested in a small class of predicates—function.

Let F : M×R→M′ be a two inputs function. We are interesting in the following

predicate w.r.t. function F :

PF,r(M
′, M) =

{
1 (F (M, r) = M′)

0 (o.w.)
(5.3)

A linearly predicate-homomorphic MAC scheme w.r.t. a predicate family {PF,r : r ∈
R} consists of six algorithms (KeyGen, Sign,Combine,P-Sign,Verify,P-Verify), where

each algorithm is described as below.

• KeyGen(1λ)→ (spk, ssk): The probabilistic key generating algorithm takes the

security parameter λ as input, and outputs a pair of public and private keys

(spk, ssk).

• Sign(ssk, i, M) → σ: The signing algorithm takes the private key ssk, an index

i, and a message M ∈M as input, and outputs a signature σ.

• Combine(spk, {(i, Mi, σi, νi) : i ∈ C}) → (M, σ): The algorithm Combine imple-

ments the linearly homomorphic property. Taking as input the public key spk,

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 56

a sequence of tuples (i, Mi, σi, νi), i ∈ C, where σi is the MAC value of a mes-

sage Mi w.r.t. an index i, and νi is a weight of Mi in a linear combination, the

algorithm Combine outputs a message-MAC pair (M :=
∑

i∈C νiMi, σ).

• P-Sign(spk, M, σ, r) → (F (M, r), σ̂): This algorithm implements the predicate-

homomorphic property. Algorithm P-Sign takes the public key spk, a message-

MAC pair (M, σ) and a value r as input, and outputs a message-MAC pair

(F (M, r), σ̂).

Note: In order to construct an efficient Proofs of Retrievability scheme using

such predicate homomorphism, we wish that (1) σ̂ is a valid MAC value for

F (M, r); (2) the bit-length of (F (M, r), σ̂) is sublinear in the bit-length of (M, σ);

(3) F (M, r) is a codeword of M for any value r from a proper domain R, such

that the message M can be decoded (or retrieved) efficiently from a subset of

{F (M, r) : r ∈ R}.

• Verify(ssk, M, σ, {(i, νi) : i ∈ C}) → accept or reject: The deterministic veri-

fication algorithm Verify takes the private key ssk, a message-MAC pair (M, σ)

and a sequence of pairs of index i and weight νi, i ∈ C as input, and outputs

either accept or reject.

• P-Verify(ssk, M, σ, {(i, νi) : i ∈ C}, r) → accept or reject: The deterministic

predicate-verification algorithm P-Verify takes the private key ssk, a message-

MAC pair (M, σ), a sequence of pairs of index i and weight νi, i ∈ C, and a

value r as input, and outputs either accept or reject.

Intuitively, a MAC scheme is linearly homomorphic, if the MAC value of a linear

combination of messages Mi can be generated without the private key from the MAC

values of these messages Mi’s; a MAC scheme is predicate-homomorphic, if the MAC

value of a message M′ can be generated without the private key from the MAC value of

another message M as long as the two messages (M′, M) satisfy the designated predicate.

Definition 8 (Linearly Predicate-Homomorphic Message Authentication Code)

Let S = (KeyGen, Sign,P-Sign,Verify,P-Verify) be a MAC scheme. We say S is a lin-

early predicate-homomorphic MAC scheme, if the following conditions hold:

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 57

• Linear Homomorphism: If for any public-private key pair (spk, ssk) := KeyGen(1λ)

generated by the key generating algorithm KeyGen and for any sequence of

message-MAC pairs {(i, Mi, σi), i ∈ C} generated by the signing algorithm Sign

under the private key ssk, the output (
∑

i∈C νiMi, σ) := Combine(spk, {(i, Mi, σi, νi) :

i ∈ C}) is accepted as a valid message-MAC pair by the verification algorithm

Verify under the private key ssk w.r.t. {(i, νi) : i ∈ C}.

• Predicate Homomorphism: If for any public-private key pair (spk, ssk) :=

KeyGen(1λ) generated by the key generating algorithm KeyGen, and for any

message-MAC pair (M, σ) := Combine(spk, {(i, Mi, Sign(ssk, i, Mi), νi) : i ∈ C})
generated by the algorithm Combine under the public key spk w.r.t. {(i, νi) :

i ∈ C}, and for any value r ∈ R, the output (F (M, r), σ̂) := P-Sign(spk, M, σ, r)

is accepted as a valid message-MAC pair by the verification algorithm P-Verify

under the private key ssk w.r.t. {(i, νi) : i ∈ C}.

5.3 Linearly Predicate-Homomorphic MAC: Con-

struction

We first briefly review the polynomial commitment scheme proposed by Kate and

Zaverucha and Goldberg [KZG10]. Next, we present our construction of linearly

predicate-homomorphic MAC, which integrates the linearly homomorphic MAC scheme

S1 presented in Chapter 4 and the idea of polynomial commitment scheme [KZG10].

5.3.1 Background on Short Polynomial Commitment Scheme

Kate and Zaverucha and Goldberg [KZG10] proposed a constant size commitment

scheme [Blu81,BCC88] for polynomial functions, which has a special feature in sup-

porting efficient verification of polynomial evaluation. Their scheme exploits a simple

and elegant algebraic property of polynomials: For any polynomial f(x) ∈ Zp[x] in

variable x with coefficients in group Zp, and for any scalar input r ∈ Zp, the polyno-

mial x− r divides the polynomial f(x)− f(r).

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 58

Let us denote with f~u(x) ∈ Zp[x] the polynomial with coefficient vector ~u =

(u0, . . . , um−1) ∈ (Zp)m, that is, f~u(x) ≡
∑m−1

j=0 ujx
j. Let G and GT be two multi-

plicative group of prime order p and e : G×G→ GT be a bilinear map.

We brief how the commitment scheme in [KZG10] supports verification of poly-

nomial evaluation as below. In the setup, a trust party chooses a public key pk :=

(g, gα, . . . , gα
m−1

) ∈ Gm, where g is a generator of group G and α ∈ Zp is chosen at

random and kept secret. In order to commit a polynomial f~u(x) :=
∑m−1

j=0 ujx
j with

coefficient vector ~u = (u0, . . . , um−1) ∈ (Zp)m, a committer can compute a commit-

ment C using the public key pk, that is, C :=
∏m−1

j=0

(
gα

j
)uj

= gf~u(α) ∈ G, and then

publish C. Later, for any scalar r ∈ Zp, the committer can compute y := f~u(r) ∈ Zp
and generate a short proof ψ ([KZG10] calls it witness) to convince a verifier that

y is indeed the correct evaluation of f~u(r), without revealing the polynomial f~u(x).

The proof (or witness) ψ is generated as below:

• Divide the polynomial f~u(x)−f~u(r) with (x−r) using polynomial long division,

and denote the coefficient vector of the resulting quotient polynomial as ~w =

(w0, w1, . . . , wm−2), that is, f~w(x) ≡ f~u(x)−f~u(r)
x−r .

• Then compute ψ := gf~w(α) using the public key pk in the same way as computing

gf~u(α), i.e. ψ :=
∏m−2

j=0

(
gα

j
)wj

= gf~w(α) ∈ G.

After receiving (r, y, ψ) from the committer, a verifier can verify whether y
?
= f~u(r)

with the proof ψ and public key pk = (g, gα, . . . , gα
m−1

) and the public commitment

C of the unknown polynomial f~u(x), using a bilinear map e : G×G→ GT :

e(g, C)/e(g, g)y
?
= e(ψ, gα/gr). (5.4)

Note that the left hand side of above Equation (5.4) is e(g, C)/e(g, g)y = e(g, g)f~u(α)−y,

and the right hand side is e(ψ, gα/gr) = e(gf~w(α), gα−r) = e(g, g)(α−r)f~w(α).

In summary, the commitment scheme proposed by Kate and Zaverucha and Gold-

berg [KZG10] allows the owner of a polynomial f(x) to generate a constant size proof

for the correctness of the polynomial evaluation f(r) at any particular point x = r,

without revealing the polynomial f(x).

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 59

5.3.2 Construction of S2 : Integrating KZG Polynomial Com-

mitment and the Linearly Homomorphic MAC S1

In this subsection, we construct a linearly predicate-homomorphic MAC scheme

named S2. The new MAC scheme S2 integrates the main idea of polynomial commit-

ment scheme [KZG10] and the linearly homomorphic MAC scheme S1 we proposed

in previous Chapter 4. Recall that:

• The notation f~u(x) denotes the polynomial with coefficient vector ~u = (u0, . . . ,

um−1), that is, f~u(x) ≡
∑m−1

j=0 ujx
j;

• The construction described below exploits an algebraic property of polynomials:

for any polynomial f(x) in variable x and for any scalar input r, the polynomial

x− r divides the polynomial f(x)− f(r).

The construction of S2 = (KeyGen, Sign,Combine,P-Sign,Verify,P-Verify) as below.

We emphasize that the construction of S2 can be instantiated over elliptic curve

group 1, although in the following description, S2 is constructed over a modulo group.

S2.KeyGen(1λ)→ (spk, ssk)

Choose at random a λ bits safe prime q such that p := (q−1)/2 is also prime. Let

QRq be the subgroup of quadratic residues modulo q in Z∗q. Choose at random

a generator g of group QRq. Choose at random two elements τ, α from Z∗p:
τ, α

$←− Z∗p. Choose at random a PRF key, denoted as seed, from the key space

of a pseudorandom function family {PRFseed : {0, 1}2λ → Zp}. The public key

is spk := (p, q, {gαj mod q}m−1
j=0) and the private key is ssk := (p, q, seed, α, τ).

Note: (1) Both the size of group QRq and the multiplicative order of g modulo

q are equal to p; (2) Zero is not in Z∗q or QRq.

1Bilinear map is not required, since S2 does not support public verification.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 60

S2.Sign(ssk, i,~M)→ σ

The input is the private key ssk, an index i ∈ {0, 1}2λ, and a vector ~M =

(M0, . . . , Mm−1) ∈ (Zp)m. Compute the MAC value σ for ~M as below:

σi := PRFseed(i) + τ · f~M(α) = PRFseed(i) + τ

m−1∑
j=0

Mjα
j mod p. (5.5)

S2.Combine(spk, {(i,~Mi, σi, νi) : i ∈ C})→ (~µ, σ)

The input consists of a public key spk, a sequence of tuples (i,~Mi, σi, νi), i ∈ C,

where i is an index, ~Mi ∈ (Zp)m is a message in vector form, σi is the MAC value

of ~Mi, and νi ∈ Z∗p is a weight for linear combination. Compute a message-MAC

pair (~µ, σ) as below

~µ :=
∑
i∈C

νi~Mi mod p ∈ (Zp)m ; σ :=
∑
i∈C

νiσi mod p ∈ Zp. (5.6)

Output (~µ, σ).

S2.P-Sign(spk, ~µ, σ, r)→ (f~µ(r), σ̂)

The input consists of a public key spk, a message ~µ = (µ0, . . . , µm−1) ∈ (Zp)m

in vector form, a MAC value σ for ~µ, and a value r ∈ Zp. Evaluate poly-

nomial f~µ(x) at point x = r to obtain y := f~µ(r) mod p. Divide the poly-

nomial f~µ(x) − f~µ(r) in variable x with (x − r) using polynomial long divi-

sion, and denote the coefficient vector of the resulting quotient polynomial as

~w = (w0, . . . , wm−2) ∈ (Zp)m−1, that is,

f~w(x) ≡ f~µ(x)− f~µ(r)

x− r
.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 61

Compute ψ with the public key spk = (p, q, {gαj mod q}m−1
j=0) as below

ψ :=
m−2∏
j=0

(
gα

j
)wj

= gf~w(α) mod q. (5.7)

The MAC value for y is σ̂ := (ψ, σ). Output (y, σ̂).

S2.Verify(ssk, ~µ, σ, {(i, νi) : i ∈ C})→ accept or reject

The input consists of a private key ssk, a message ~µ ∈ (Zp)m in vector form,

and a sequence of tuples (i, νi), i ∈ C, where i is an index and νi is a weight

for linear combination. Check the following equality with the private key ssk =

(p, q, seed, α, τ). If Equality (5.8) holds, then output accept; otherwise output

reject. (∑
i∈C

νiPRFseed(i)

)
+ τ · f~µ(α)

?
= σ mod p. (5.8)

S2.P-Verify(ssk, y, (ψ, σ), {(i, νi) : i ∈ C}, r)→ accept or reject

The input consists of a private key ssk, a message y ∈ Zp, a MAC value (ψ, σ)

for y, a sequence of tuples (i, νi), i ∈ C, where i is an index and νi is a weight

for linear combination, and value r ∈ Zp. Check the following equality with the

private key ssk = (p, q, seed, α, τ). If Equality (5.9) holds and ψ ∈ QRq is a

quadratic residue, then output accept; otherwise output reject.

ψα−r
?
= gτ

−1(σ−
∑
i∈C νiPRFseed(i)) − y mod q (5.9)

Remark 3

• In case that α−r is even, if (y, ψ, σ) satisfies Equation (5.9), so does (y,−ψ, σ).

• We check whether ψ is a quadratic residue modulo q in algorithm S2.P-Verify,

in order to avoid accepting (y,−ψ, σ). The reasons are as below:

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 62

– From motivation point of view, we hope to authenticate both the message

y and the MAC value (ψ, σ), so that we can achieve stronger security.

– The correct value ψ generated by the Equation (5.7) is

ψ = gf~w(r) mod q is within group QRq,

since g ∈ QRq.

– Recall that q = 2p+1 is a safe prime with p being prime, thus q = 3 mod 4.

For such kind of prime q, the negation of a quadratic residue modulo q is

not a quadratic residue [Gol06].

• S2 can be alternatively instantiated over an elliptic curve group, and bilinear

map operation is not required. This is different from [KZG10], since S2 only

supports private key verification.

5.3.3 Correctness

Recall that f~u(x) denotes the polynomial in variable x with vector ~u = (u0, . . . , um−1)

as coefficients: f~u(x) =
∑m−1

i=1 uix
i. We define a predicate family {Pr : Zp× (Zp)m →

{0, 1}} w.r.t. the polynomial function2 f~u as below

Pr(y, ~u) =

{
1 (if f~u(r) = y mod p)

0 (o.w.)
(5.10)

Lemma 5.1 (S2 is a Linearly Predicate-Homomorphic MAC) The proposed

MAC scheme S2 is both linearly homomorphic and predicate-homomorphic w.r.t.

predicate family {Pr : r ∈ Zp} as defined in Equation (5.10), under Definition 8

(on page 56).

2Here the corresponding two input function F (·, ·) is F (~u, r) = f~u(r).

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 63

Proof of Lemma 5.1: One can verify that the following Equality (5.11) holds

through some straightforward algebra manipulation over polynomials.

∑
i∈C

νif~Mi(α) = f~u(α), where ~u =
∑
i∈C

νi~Mi. (5.11)

The following proof will utilize the above equality.

Linear-Homomorphism Let ~µ =
∑

i∈C νi~Mi and σ =
∑

i∈C νiσi be as computed

by the algorithm S2.Combine. The RHS (right hand side) of Equation (5.8) is

RHS =
∑
i∈C

νiσi =
∑
i∈C

νi
(
PRFseed(i) + τ · f~Mi(α)

)
(5.12)

=
∑
i∈C

νiPRFseed(i) + τ
∑
i∈C

νif~Mi(α) (5.13)

=
∑
i∈C

νiPRFseed(i) + τf∑
i∈C νi~Mi

(α) (Since Equality (5.11)) (5.14)

=
∑
i∈C

νiPRFseed(i) + τf~µ(α) (5.15)

= LHS. (5.16)

Predicate-Homomorphism Suppose ψ = gf~w(α) mod p, σ =
∑

i∈C νiσi mod p,

y = f~µ(r) mod p. Then ψ ∈ QRq is a quadratic residue, and the LHS (left hand

side) of Equation (5.9) is

LHS =
(
gf~w(α)

)α−r
= gf~w(α)×(α−r) = g

f~µ(α)−f~µ(r)

α−r ×(α−r) = gf~µ(α)−f~µ(r) mod q.(5.17)

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 64

The RHS (right hand side) of Equation (5.9) is

RHS = gτ
−1(

∑
i∈C νiσi −

∑
i∈C νiPRFseed(i)) − y (5.18)

= gτ
−1(

∑
i∈C νi(σi−PRFseed(i))) − y (5.19)

= gτ
−1(

∑
i∈C νi · τf~Mi (α)) − y (5.20)

= g

(
f∑

i∈C νi~Mi
(α)
)
− y

(5.21)

= gf~µ(α) − y (Since ~µ =
∑
i∈C

νi~Mi) (5.22)

= gf~µ(α) − f~µ(r) = LSH mod q. (5.23)

Note that we obtain Equation (5.21) from Equation (5.20), i.e. the equality between∑
i∈C νif~Mi(α) and f~u(α) with vector ~u =

∑
i∈C νi~Mi, due to Equality (5.11). ut

5.4 POS2: A Proofs of Retrievability scheme

constructed from Homomorphic MAC S2

In this section, we construct an efficient POR scheme with private verifiability, by

applying the newly constructed linearly predicate-homomorphic MAC scheme S2. We

refer to this scheme as POS2 in this dissertation.

5.4.1 Construction of POS2

POS2.KeyGen(1λ)→ (pk, sk)

Invoke the key generating algorithm S2.KeyGen to generate the public-private

key pair: (pk, sk) := S2.KeyGen(1λ). Output (pk, sk).

POS2.DEncode(sk, F)→ (id, F̂, n)

The input consists of a private key sk and a file F. Let ρ ∈ (0, 1) be a system

parameter. Apply a rate-ρ error erasure code on the file F to generate file blocks

(~F0, . . . ,~Fn−1), such that each block ~Fi = (Fi,0, . . . , Fi,m−1) ∈ (Zp)m is a vector

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 65

of sectors Fi,j ∈ Zp, and any ρn number of blocks ~Fi’s can recover the original

file F. Choose a unique identifier id from domain {0, 1}λ. For each block ~Fi,

i ∈ [0, n−1], generate a MAC value σi using the MAC scheme S2 under private

key sk as below:

σi := S2.Sign(sk, id‖i, ~Fi). (5.24)

The encoded file F̂ is {(i,~Fi, σi) : i ∈ [0, n−1]}. Send (id, F̂) to the cloud storage

server and keep (id, n) in local storage. Output (id, F̂, n).

Note: Figure 5.2 illustrates the data organization. In this figure, a rectangle

represents a data block ~Fi and a square within a rectangle represents a data

sector Fi,j in the data block ~Fi. A circle below represents the corresponding

authentication tag σi. Those shaded rectangles represent data blocks that are

generated by the error erasure code.

POS2.Prove(pk, id, F̂, {(i, νi) : i ∈ C}, r)→ (y, ψ, σ)

The input consists of a public key pk, a file identifier id, an encoded file F̂ =

{(i,~Fi, σi) : i ∈ [0, n − 1]} which is associated with the identifier id, and a

challenge ({(i, νi) : i ∈ C}, r), where i ∈ C ⊆ [0, n − 1] is index, νi ∈ Z∗p is a

weight for linear combination, and r ∈ Zp. Apply the linear homomorphism of

S2 to compute a message-MAC pair (~µ, σ~µ) as below

(~µ, σ~µ) := S2.Combine(pk, {(id‖i,~Fi, σi, νi) : i ∈ C}). (5.25)

Next, apply the predicate-homomorphism of S2 to generate a message-MAC

pair (y, σ̂) as below

(y, σ̂) := S2.P-Sign(pk, ~µ, σ~µ, r). (5.26)

Parse σ̂ as (ψ, σ) and send (y, ψ, σ) back to verifier (i.e. data owner). Output

(y, ψ, σ).

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 66

b b b

b b b

b b b

b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b

b b b

~F0 ~F1 ~Fn−1

F0,2

~Fn−3 ~Fn−2

F0,1

F0,0

F0,m−2

F0,m−1

σ0 σ1 σn−3 σn−2 σn−1

Figure 5.2: Data Organization of POS2

POS2.Verify(sk, id, (y, ψ, σ), {(i, νi) : i ∈ C}, r)→ accept or reject

The input consists of a private key sk, a file identifier id, the response (y, ψ, σ)

from the prover (i.e. the cloud storage server), and the challenge ({(i, νi) : i ∈
C}, r), where i ∈ C ⊆ [0, n − 1] is an index, νi ∈ Z∗p is a weight for linear

combination, and r ∈ Zp. Invoke the verification algorithm S2.P-Verify of MAC

scheme S2 to obtain b ∈ {accept, reject} with private key sk as below, and

output b.

b := S2.P-Verify(sk, y, (ψ, σ), {(id‖i, νi) : i ∈ C}, r) ∈ {accept, reject}.
(5.27)

Remark 4

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 67

• The challenge {(id‖i, νi) : i ∈ C, νi ∈ Z∗p} can be represented compactly with two

short random seeds of a pseudorandom function under random oracle model [SW08a,

DVW09]. Alternatively, Dodis, Vadhan and Wichs [DVW09]’s PoR Code can

be applied.

• To simplify the proof, we assume that νi’s, i ∈ C, forms a simple geometric

sequence. More precisely, denote the elements of set C as {ij ∈ [0, n− 1] : j ∈
[0, ` − 1]}, where ` is the size of set C and 0 ≤ i0 < i1 < i2 . . . < i`−1 < n.

There exists some element ν ∈ Z∗p, for each j ∈ [0, ` − 1], νij = νj mod p.

In other words, the sequence (. . . , νi, . . .)i∈C, ordered by increasing i, forms a

simple geometric sequence (ν0, ν1, . . . , ν`−1). Thus, ` distinct vectors of form

(ν0, ν1, . . . , ν`−1) ∈
(
Z∗p
)`

can constitute a vandermonde matrix [MS58].

• Compared to Shacham and Waters [SW08a] scheme, the algorithm Prove in

POS2 is able to aggregate m number of weighted sums µ0, µ1, . . . , µm−1 into two

short numbers y and ψ using the idea in the polynomial commitment scheme [KZG10],

where y = f~µ(r) =
∑m−1

j=0 µjr
j ∈ Zp (r is a random nonce chosen by the data

owner) and ψ = g
f~µ(α)−f~µ(r)

α−r ∈ Z∗q. In this way, POS2 requires only O(λ)

communication bits per verification. In comparison, the Shacham and Wa-

ters [SW08a] scheme requires O(mλ) communication bits per verification, since

(µ0, µ1, . . . , µm−1) are sent back directly as the response.

5.4.2 Completeness

Lemma 5.2 (POS2 is Complete) The above construction POS2 is complete under

Definition 5 (on page 24).

The completeness of POS2 is implied by the correctness of the underlying homomor-

phic MAC scheme S2 (Lemma 5.1). Recall that, a POR scheme is complete, if any

genuine proof generated by following the POR scheme honestly will be accepted by

the verifier.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 68

5.5 Performance Analysis

In this section, we analyze the performance of our proposed scheme POS2 in commu-

nication, storage, and computation. We also compare POS2 with existing works by

Shacham and Waters [SW08a] and Ateniese et al. [ABC+07, ABC+11b]. We remark

that, the scheme POS2 can be instantiated over a modulo group of size 21024, or over

an elliptic curve with much smaller group size 2160 (Bilinear map is not required).

5.5.1 Communication

During a verification, the communication cost is the size of a challenge plus the size

of its corresponding response (or proof). In our scheme POS2, the challenge consists

of a set {(i, νi) : i ∈ C} and a group element r. As mentioned previously, the set

{(i, νi) : i ∈ C} can be represented compactly with two 80 bits PRF seeds. The group

element r is used to retrieve a polynomial function value f(r) for some polynomial

f(x) determined by a linear combination of the data blocks specified in the set C. In

the security analysis, the goal of r is to retrieve multiple function values f(ri)’s for

different inputs ri, and then recover the polynomial f(x) by solving a linear equation

system. For this reason, we can simply choose r from a smaller range [1, 280] without

any sacrificing in the security. As a result, the challenge size is 80× 3 = 240 bits.

In our scheme POS2, a response, i.e. the proof, consists of three group elements

y, σ, ψ, which are derived from the challenge, the data blocks and authentication tags.

So the size of a response is 3λ bits. Therefore, the communication cost per verification

is 3λ+ 240 bits.

5.5.2 Storage

During verification, the data owner only keeps the private key, and identifier and size

(in term of number of blocks) of each file in her local storage. Similar to Shacham and

Waters [SW08a], in the scheme POS2, the data owner can sign the meta-data of each

file and store the meta-data together with data owner’s digital signature in the cloud

storage. Before conducting a verification, the data owner retrieves the meta-data for

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 69

the file of interest from the cloud storage, and check its digital signature. Thus, the

storage cost on data owner side is just the size of private key, which is 3λ+ 80 bits.

The storage overhead (due to authentication tags) on the cloud storage server side

is 1/m of the data file size, where the system parameter m is the block size and is

equal to the ratio of the size of a data block to the size of an authentication tag. The

public key is also kept in the cloud storage and its size is (m+ 1)λ bits. Note that in

our scheme, there is only one public key per user, without regarding to the number

of files the user stores in the cloud storage server.

5.5.3 Computation

Our scheme is very efficient in setup. Key generation requires m number of group

exponentiations. Suppose a nmλ bits data file consists of n data blocks, each block has

m group elements and each group element has λ bits. The data preprocess (i.e. the

DEncode algorithm) requires only nm number of group multiplications and additions,

together with n PRF evaluations. Note that the PRF can be simulated [BH05] with

an AES cipher [DR02] in counter mode.

During a verification, the computation complexity on the cloud storage server side

is dominated by the computation of ψ in Equation (5.7) in the algorithm P-Sign (on

page 61), which is invoked by algorithm Prove. This dominant step takes (m − 1)

number of group exponentiations, and is the bottleneck of efficiency of our scheme

when the block size m becomes large. We will measure the actual running time in

Section 5.5.6.

5.5.4 Recommended System Parameters

We recommend the following system parameter for our proposed scheme POS2: The

error erasure rate is 0.98, block size m is around 160, the challenge size is around 500.

In this setting, the false accept rate is 4.1024× 10−5 (False accept rate is analyzed in

Section 2.3.2 and example values are listed in Table 2.1 on page 14), the number of

communication bits required in a verification is 720 for elliptic curve group or 3312

for modulo group, the storage overhead is about 2% due to erasure encoding and

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 70

Table 5.1: Comparison with an example among the PDP scheme by Ateniese et
al. [ABC+07], the POR scheme by Shacham and Waters [SW08a], and the POR
scheme POS2 proposed in this chapter. After erasure encoding, the file size is 1GB,
block size is m = 100, and storage overhead due to authentication tags is about 10MB
for all schemes. For all schemes listed below, we assume that, during a verification,
the challenge {(i, νi) : i ∈ C} are represented by two 80 bits PRF seeds. System
parameter ` represents the size of set C. All computation times are represented by
the corresponding dominant factor. exp and mul denote the group exponentiation and
group multiplication respectively in the corresponding group. Note that one 1024 bits
modular exponentiation or one 160 bits elliptic curve exponentiation takes roughly 5
millisecond in a standard PC.

Scheme Group Element Communication Computation Computation
Size (bits) bits (Data Preprocess) (Prove)

Ateniese λ = 1024 2λ+ 160 + 256 = 2464 223 exp. over Z∗N (100 + `) exp. over Z∗N
[ABC+07]

SW [SW08a] λ = 80 (m+ 1)λ+ 160 = 8240 227 mul. over Zp 100` mul. over Zp
POS2 (E.C.) λ = 160 3λ+ 240 = 720 226 mul. over Zp 100 exp. over Elliptic Curve
POS2 (Z∗q) λ = 1024 3λ+ 240 = 3312 223 mul. over Zp 100 exp. over Z∗q

1/160 = 0.625% due to authentication tags. Our experiment will confirm that the

query latency is within 1 second.

5.5.5 Comparison

We give a comparison on the performances of our scheme with Shacham and Wa-

ters [SW08a] and Ateniese et al. [ABC+07] in Table 5.1 with an example. A more

detailed and generic comparison is given in Table 5.2 (on page 71). Note that in our

proposed scheme POS2, the practical choice of value m is bounded by the computa-

tion on the server side, which is similar to the case of Ateniese [ABC+07]. In contrast,

in SW [SW08a], the largest practical value of m (SW [SW08a] uses “s” to denote this

value) is limited by the communication requirement.

C
H
A
P
T
E
R

5.
P
O
R

F
R
O
M

P
R
E
D
IC

A
T
E
-H

O
M
O
M
O
R
P
H
IC

M
A
C

71

Table 5.2: Performance Comparison. All schemes support private verification only. In each scheme, a challenge set
{(i, νi) : i ∈ C} contains ` index-coefficient pairs and is represented compactly by two 80 bits PRF seeds. In the
table, exp, mul and add represent exponentiation, multiplication and addition in the corresponding groups/fields;
notation |F| denotes the file size in bits. Note: In Ateniese’s PDP scheme, exponentiation with a large integer of
mλ bits is required. We represent such exponentiation as a number of m normal group exponentiation exp, where
the exponent is λ bits long. Similar for the RSA based scheme.

Scheme Finite Field
Element Size
(bits)

Communica-
tion (bits)

Storage
Over-
head

Computation (Prover) Computation
(Verifier)

Computation (Data
Preprocess)

RSA-based
scheme [DQS03]

λ = 1024 2λ Zero |F|/λ exp. 1 exp. 1 exp.

PolyCommit
[KZG10]

λ = 160 3λ Zero |F|/λ exp. + 2|F|/λ (mul.
+ add.)

2 pairing |F|/λ (mul. + add.) +
1 exp.

PolyDelegation
[BGV11]

λ = 160 2λ+ 240 |F| |F|/λ (exp. + mul. +
add.)

2 exp. |F|/λ (exp. + mul. +
add.)

Ateniese
[ABC+11b,
ABC+07]

λ = 1024 2λ+ 320 |F|/m (`+m) exp. + 2` mult. +
` add + 1 hash + 2` PRF

` (exp. + mult.)
+ 1 hash

|F|/λ exp. + n hash

S.W.
[SW08a](Private
Verification)

λ = 80 (m+ 1)λ+
160

|F|/m m` (add + mult) + 2` PRF (` + m) (add +
mult) + 3` PRF

|F|/λ (mul. + add.) +
|F|/(λm) PRF

POS2 (Elliptic
Curve)

λ = 160 3λ+ 240 |F|/m (m−1) exp. + (m`+m+`)
(add + mul) + 2` PRF

2 exp. + ` (add
+ mult) + 3`
PRF

|F|/λ (mul. + add.) +
|F|/(λm) PRF

POS2 (Z∗q) λ = 1024 3λ+ 240 |F|/m (m−1) exp. + (m`+m+`)
(add + mul) + 2` PRF

2 exp. + ` (add
+ mult) + 3`
PRF

|F|/λ (mul. + add.) +
|F|/(λm) PRF

Notations: λ is the size of group/field and also functions as the security parameter, n is the number of

blocks in a file, m is the number of group elements in a block, and ` is the number of blocks accessed during a

verification.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 72

We also compare the proposed scheme POS2 with SW scheme [SW08a] in com-

munication and storage overhead. For a 1GB data file, we plot the number of com-

munication bits (i.e. the size of a challenge and a proof) against the storage overhead

for both schemes in Figure 5.3.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100 120

N
um

be
r

of
 C

om
m

un
ic

at
io

n
bi

ts
 p

er
 v

er
ifi

ca
tio

n

Storage Overhead (in MegaBytes)

POS2 (Zq)
SW

POS2 (E.C.)

Figure 5.3: Comparison on communication (in bits) and storage overhead (in megabytes)
w.r.t. a 1GB data file. SW denotes the POR scheme with private verification by Shacham
and Waters [SW08a]; POS2 (E.C.) denotes our proposed scheme instantiated over elliptic
curve group; POS2 (Z∗q) denotes our proposed scheme instantiated over group Z∗q .

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 73

Table 5.3: The choices of values of various system parameters in our experiment

System Semantics Choices
Parameter of Values

λ Group element size in bits 1024
m The number of group elements in a data block 40, 80, 160, 320, 640, or 960
` The number of data blocks accessed in a verification 100, 300, 500 or 700.

5.5.6 Experiment: Measuring the computation time

The goal of this experiment is to measure the actual running time of the four algo-

rithms KeyGen,DEncode,Prove,Verify in the proposed scheme POS2(Z∗q), with disk IO

time included and networking communication time excluded. Note that the reported

query latency includes of running time of Prove and Verify and disk IO time.

5.5.6.1 Experiment Environment and Setting

We have implemented a prototype of our POS2 scheme in C programming language.

The large integer arithmetic is computed using GNU MP [GMP] library with version

5.0.1. The pseudorandom function PRF are simulated with AES symmetric cipher

provided in OpenSSL [Ope] library with version 1.0.0d. The disk IO is handled by

C library function mmap. We observe a low memory consumption for all experiments

conducted. Our implementation is not optimized and further performance improve-

ments of our scheme can be expected.

Our test machine is a laptop computer, which is equipped with a 2.5GHz Intel

Core 2 Duo CPU (model T9300), a 3GB PC2700-800MHZ RAM and a 7200RPM

hard disk. The test machine runs 32 bits version of Gentoo Linux OS with kernel

2.6.36. The file system is EXT4 with 4KB page size.

Our test data files are of size 16MB, 32MB, 64MB, 128MB, 256MB and 512MB,

respectively (We assume these are the file sizes after error erasure encoding). The

choices of values of various system parameters, i.e. group element size λ, block size

m and challenge size `, are listed in Table 5.3.

Our experiments are conducted in this way:

• Key generation: For each choice of block size m, we generate a key pair with

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 74

size m using the key generating program KeyGen. The generated public key

consists of m group elements.

• Data preprocess: For each test file, for each choice of value of block size m,

we run the data encoding program DEncode to generate a set of authentication

tags.

• Verification: For each test file, for each choice of value of block size m, for each

choice of value of challenge size `, we run the Prove and Verify programs to

simulate the interaction between the data owner and cloud storage server.

Every single experiment case is repeated for 10 times and the reported timing data

are the averages. We remark that experiment trials are run in sequence without

parallelism.

5.5.6.2 Experiment Results

The experiment results are showed in Figure 5.4 and Figure 5.5. All experiment

results are averaged over 10 trials. Since all experiment results vary little across

different trials, we do not report the variances or confidence intervals.

Our experiment result in Figure 5.4(a) indicates that the key generating time is

proportional to the key size, i.e. the number of group elements in a key. The exper-

iment result in Figure 5.4(b) indicates that the data preprocess time (particularly,

DEncode) is proportional to the data file size and almost independent on the block

size s. The experiment (Figure 5.5(a) and Figure 5.5(b)) also shows that the query

latency is proportional to the block size m, almost independent on the file size, and

grows very slowly with the challenge size `, suggesting that the computation of ex-

ponentiations becomes the bottleneck when m is so large. All of these results agree

with our analysis.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 75

(a) Time to generate a key VS the key size

(b) Data preprocess time VS the block size. Each line is labeled with the size (in megabytes) of
corresponding data file.

Figure 5.4: Computation Time of algorithms KeyGen and DEncode.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 76

(a) Query latency VS the challenge size for a 128MB data file. Each line is labeled with the
corresponding block size.

(b) Query latency VS the challenge size for a 512MB data file. Each line is labeled with the
corresponding block size.

Figure 5.5: Computation Time of algorithm Prove and Verify.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 77

5.6 Security Analysis of MAC scheme S2

In this section, we give the security model for linearly predicate-homomorphic MAC

scheme, introduce the Strong Diffie-Hellman Assumption, and then prove the security

of our construction S2 under this assumption.

5.6.1 Security Model for Linearly Predicate-Homomorphic

MAC

Let S = (KeyGen, Sign,Combine,P-Sign,Verify,P-Verify) be a linearly predicate ho-

momorphic MAC scheme as described in Section 5.2 (on page 55). We define the

existential forgery security game GameCMA
S,A (1λ) between a challenger C and an adver-

sary A w.r.t. the MAC scheme S under adaptive chosen message attack model as

below.

Setup.

The challenger C generates a pair of public-private key (spk, ssk) by running the key

generating algorithm KeyGen(1λ) with security parameter λ, and gives the public key

spk to the adversary A and keeps the private key ssk securely. The challenger C
maintains a state variable state, which will be used to assign unique index to each

message to be signed.

Learning.

The adversary A can adaptively make queries, where each query is in one of the

following forms:

• SignQuery(M): Given a message M chosen by the adversary A, the challenger C
chooses a unique index i based on the current value of state and updates state.

The challenger C denotes the message M as Mi and responses the query with a

signature σi := Sign(ssk, i, Mi).

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 78

• P-VerifyQuery(M, σ, {(i, νi) : i ∈ C}, r): Let the state variable I denote the set

of all indices i’s chosen by the challenger in answering all previous SignQuery.

For each tuple (M, σ, {(i, νi) : i ∈ C}, r) chosen by the adversary A, if C ⊂ I,

then the challenger C responses with b := P-Verify(ssk, M, σ, {(i, νi) : i ∈ C}, r) ∈
{accept, reject}. If C 6⊂ I, then the challenger does nothing.

Forge.

The adversaryA outputs (M′, σ′, {(i, νi) : i ∈ C}, r) with C ⊂ I. Let the corresponding

genuine output be

(M, σ) := P-Sign(spk, Combine(spk, {(i, Mi, σi, νi) : i ∈ C}), r)

The adversary A wins the game if and only if

P-Verify(ssk, M′, σ′, {(i, νi) : i ∈ C}, r) = accept and (M′, σ′) 6= (M, σ).

5.6.2 Assumption

Let p and q = 2p + 1 be prime. Denote the subgroup of quadratic residues in Z∗q as

QRq. The order of group QRq is p. The Strong Diffie-Hellman Assumption [BB04,

BB08] over the group QRq is described as below.

Assumption 1 (m-SDH Assumption [BB04,BB08]) Let p and q = 2p + 1 be

prime, and QRq be the subgroup of quadratic residues in Z∗q. Let g be a random

generator of QRq. Let α
$←− Zp be a random element from Zp. Let T = (g, gα, gα

2
, . . . ,

gα
m−1

) ∈
(
Z∗q
)m

. Given as input a tuple (p, q, T), for any PPT adversary A, the

probability

AdvSDH
A

def
= Pr

[
w = g1/(α+c) where (c, w) := A(p, q, T)

]
is negligible in λ = log p.

We remark that when the MAC scheme S2 is alternatively instantiated using

elliptic curve, the SDH Assumption over elliptic curve group is required.

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 79

5.6.3 The Linearly Predicate-Homomorphic MAC scheme S2

is Secure

Theorem 5.3 (S2 is Secure) Suppose the SDH Assumption 1 holds and {PRF} is

a secure pseudorandom function family. Then the proposed MAC scheme S2 is exis-

tentially unforgeable under adaptive chosen message attack. More precisely, for any

PPT adversary A, the advantage AdvCMA
S2,A of A against S2 is negligible in the security

parameter, where AdvCMA
S2,A is defined as below

AdvCMA
S2,A(1λ)

def
= Pr

[
A wins GameCMA

S2,A(1λ)
]
. (5.28)

5.6.3.1 Outline of Proof of Theorem 5.3

We show that the MAC scheme S2 is secure in two steps:

• Security in no-feedback setting: We prove the unforgeability in a simplified

setting, where all decision bits (acceptance or rejection) are kept secret from

the adversary.

• Security in feedback setting: We prove the security in the feedback setting,

which is as stated in Theorem 5.3, based on the security in the simplified no-

feedback setting.

5.6.3.2 S2 is unforgeable in no-feedback setting.

Lemma 5.4 (Unforgeability in no-feedback setting) In the no-feedback setting,

where all decision bits (acceptance or rejection) are kept secret from the adversary in

GameCMA
S2,A w.r.t. scheme S2, for any PPT adversary A, there exist PPT adversaries

B1 and B2, such that

Pr
[
A wins GameCMA

S2,A in no-feedback setting
]

≤ AdvSDH
B1 +

1

p− 1
+NPRF · AdvPRFB2 , (5.29)

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 80

where NPRF is the number of distinct evaluations of the pseudorandom function PRF

in GameCMA
S2,A (NPRF is equal to the number of SignQuerys made by A in GameCMA

S2,A),

AdvSDH
B1 is the probability that B1 breaks the SDH Assumption 1 and AdvPRFB2 is the

probability that B2 can distinguish the output of pseudorandom function PRF from

true randomness.

Proof of Lemma 5.4:

Game 1. The first game is the same as GameCMA
S2,A, except that all decision bits

(acceptance or rejection) are kept secret from the adversary A, i.e. the challenger in

Game 1 does not answer any P-VerifyQuery made by the adversary A.

Let (y′, φ′, σ′, {(i, νi) : i ∈ C}, r) be the output of A in the Forge phase of the

Game 1, and (y, φ, σ, {(i, νi) : i ∈ C}, r) be the corresponding genuine output that

shares the same values {(i, νi) : i ∈ C} and r. Let (spk, ssk) be the public-private

key pair chosen by the challenger. By the definition of security game GameCMA
S2,A and

Game 1, the following claim can be derived straightforwardly.

Claim 5.6.1

Pr
[
A wins GameCMA

S2,A in no-feedback setting
]

= Pr [A wins Game 1]

= Pr [S2.P-Verify(ssk, y′, φ′, σ′, {(i, νi) : i ∈ C}, r) = accept ∧ (y′, φ′, σ′) 6= (y, φ, σ)]

Game 2. The second game is the same as Game 1, except that the pseudorandom

function PRFseed(·) in the scheme S2 is replaced by a simulator PRFSim, which outputs

true randomness over the range of PRFseed. Precisely, the function PRFSim is evaluated

in the following way:

• The challenger keeps a table, which is empty at the very beginning, to store all

previous encountered input-output pairs (v,PRFSim(v)).

• Given an input v, the challenger lookups the table for v, if there exists an entry

(v, u), then return u as output. Otherwise, choose u uniformly randomly from

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 81

the range of PRFseed, insert (v,PRFSim(v) := u) into the table and return u as

output.

Game 3. The third game is the same as Game 2, except that adversary A wins if

and only if S2.P-Verify(ssk, y′, φ′, σ′, {(i, νi) : i ∈ C}, r) = accept and (y′, ψ′, σ′) 6=
(y, ψ, σ) and σ′ = σ.

Game 4. The fourth game is the same as Game 2, except that adversary A wins

if and only if S2.P-Verify(ssk, y′, φ′, σ′, {(i, νi) : i ∈ C}, r) = accept and (y′, ψ′, σ′) 6=
(y, ψ, σ) and σ′ 6= σ.

From the definitions of Game 2, Game 3 and Game 4, the following claim is

straightforward.

Claim 5.6.2

Pr[A wins Game 2] = Pr[A wins Game 3] + Pr[A wins Game 4].

Claim 5.6.3 If there is a non-negligible difference in a PPT adversary A’s success

probability between Game 1 and Game 2, then there exists another PPT adversary

B, which can break the security of the pseudorandom function PRF. More precisely,

∣∣Pr[A wins Game 1]− Pr[A wins Game 2]
∣∣ ≤ NPRF · AdvPRFB ,

where NPRF is the number of distinct evaluations of pseudorandom function PRF re-

quired to answer all SignQuerys made by A (one PRF evaluation for one Sign-

Query), and AdvPRFB denotes the probability that B can distinguish the output of PRF

from true randomness.

The above Claim 5.6.3 can be proved using a standard hybrid argument [Gol06]. Here

we save the details.

Claim 5.6.4 If a PPT adversary A wins Game 3 with non-negligible probability,

then these exists a PPT algorithm B that can break the SDH Assumption 1. More

precisely,

AdvSDH
B

def
= Pr [B solves SDH problem] ≥ Pr [A wins Game 3] . (5.30)

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 82

Proof of Claim 5.6.4: We construct a PPT algorithm B, based on the adversary

A, to solve the SDH problem.

Given an input (p, q, {gαj}m−1
j=0) of the m-SDH problem, the algorithm B can sim-

ulate the Game 3, where B plays the role of challenger and A plays the role of

adversary. The simulated game Sim is as below:

Sim.Setup The challenger B simulates the algorithm S2.KeyGen:

• Choose τ, seed in the same way as in the algorithm S2.KeyGen.

• Let public key spk := (p, q, {gαj}m−1
j=0) and conceptually set private key

ssk := (p, q, seed, α, τ), where α is unknown to the challenger B.

The challenger B gives the public key spk to the adversary A.

Sim.Learning

Sim.SignQuery(~M): Given a message ~M ∈ (Zp)m chosen by the adversary A, the

challenger B chooses a unique index i for message ~M based on a state variable

and updates the state variable. The challenger B denotes the message ~M as ~Mi

and generates the authentication MAC σi by randomly choosing an element

from group Zp: σi
$←− Zp. B provides σi to A as response.

Note: (1) There exists some unknown si ∈ Zp, such that σi = si + τf~Mi(α)

mod p. (2) si is uniformly randomly distributed over Zp since σi is uniformly

randomly distributed over Zp. (3) (Conceptually) Set the value of PRFSim(i) as

the unknown value si.

Sim.P-VerifyQuery: The challenger B does nothing. In the no-feedback setting,

the challenger will not answer this query, and will keep all verification results

(i.e. acceptance or rejection) secret from the adversary A.

Sim.Forge The conditions that the adversary A wins the simulated Game Sim are

the same as the conditions that A wins Game 3. That is, the adversary A
wins if and only if

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 83

• A outputs a valid forgery (y′, ψ′, σ′, {(i, νi) : i ∈ C}, r) as in the Forge

phase of the game GameCMA
S,A .

• σ′ = σ, where σ is from the corresponding genuine output (y, ψ, σ, {(i, νi) :

i ∈ C}, r) which shares the same values {(i, νi) : i ∈ C} and r with the

forgery output.

Note that B can compute the genuine output (y, ψ, σ, {(i, νi) : i ∈ C}, r) by itself.

After interacting with the adversary A in Game Sim, the adversary B computes

(c, w) as a solution to the SDH problem as below:

• If y = y′: find any c 6= −r ∈ Zp and set w := g1/(r+c) mod q;

• If y 6= y′: set c = −r and w :=
(
ψ
ψ′

)1/(y′−y)

mod q.

Until now, the construction of the adversary B is complete.

Next, we want to show the following Claim 5.6.5 and Claim 5.6.6, which together

imply the Claim 5.6.4:

Claim 5.6.5 Pr[A wins Game 3] = Pr[A wins Game Sim].

Proof (Sketch proof of Claim 5.6.5): The above security game Game Sim

between the challenger B and the adversary A is identical to the Game 3 to the

view of the adversary A (even if A is computationally unbounded), since all infor-

mation that A obtains from the challenger in game Sim is identically distributed as

information that A can obtain from the challenger in Game 3: All MAC values σi’s

received as the response of SignQuery are uniformly randomly distributed over Zp.
Furthermore, the conditions that A wins in Game Sim and in Game 3 are identical.

Thus,

Pr[A wins Game 3] = Pr[A wins Game Sim].

ut

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 84

Claim 5.6.6 If A wins the Game Sim, i.e. S2.P-Verify(ssk, y′, ψ′, σ′, {(i, νi) : i ∈
C}, r) = accept and (y′, ψ′, σ′) 6= (y, ψ, σ) and σ′ = σ, then the output (c, w) of the

adversary B is a correct solution to the SDH problem, i.e. g
1

α+c = w. That is,

Pr[A wins Game Sim] ≤ Pr[B solves SDH problem].

Proof of Claim 5.6.6: Since both the forgery output (y′, ψ′, σ′, {(i, νi) : i ∈ C}, r)
and the corresponding genuine output (y, ψ, σ, {(i, νi) : i ∈ C}, r) are accepted by the

verifier algorithm S2.P-Verify, the two tuples satisfy the Equation (5.9) (on page 61):

ψα−r = gτ
−1(σ−

∑
i∈C νiPRFseed(i)) − y mod q (5.31)

ψ′
α−r

= gτ
−1(σ′−

∑
i∈C νiPRFseed(i)) − y′ mod q (5.32)

Dividing Equation (5.31) with Equation (5.32), we obtain(
ψ

ψ′

)α−r
= gτ

−1(σ−σ′) + y′−y = g y′−y mod q (Since σ′ = σ) (5.33)

Recall that if A wins Game Sim (or Game 3), then σ′ = σ.

Now we do a case analysis on whether y′ is equal to y.

Case 1: y′ = y mod p. The equality that y′ = y, implies ψ′ 6= ψ, since (y′, ψ′, σ′) 6=
(y, ψ, σ) and σ′ = σ. Note that the verifier algorithm S2.P-Verify accepts the forgery

output (genuine output respectively) only if ψ′ (ψ respectively) is a quadratic residue

modulo q. In the subgroup QRq of quadratic residue modulo q, all elements, except

unity element 1, have multiplicative order p modulo q. We know that ψ′/ψ 6= 1, so

the element ψ′/ψ ∈ QRq has multiplicative order p. Thus, Equation (5.33) and y′ = y

mod p together imply α = r mod p. Thus adversary B’s output (c, w = g1/(r+c) =

g1/(α+c)) is a valid solution to the m-SDH problem.

Case 2: y′ 6= y mod p. Equation (5.33) and y′ 6= y mod p together imply that

α 6= r mod p. Recall that in case y′ 6= y, the output of B to the SDH problem is

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 85

(c = −r, w =
(
ψ
ψ′

)1/(y′−y)

mod q). Substituting ψ
ψ′

with
(
wy
′−y mod q

)
into the

Equation (5.33), we have

w(y′−y)(α−r) = gy
′−y mod q (5.34)

Since y′ − y 6= 0 mod p and α − r 6= 0 mod p, their inverses 1/(y′ − y) mod p

and 1/(α − r) mod p exist. Therefore, the following equality can be derived from

Equation (5.34):

w =
(
gy
′−y
) 1

(y′−y)(α−r)
= g

1
α−r mod q (5.35)

The above Equation (5.35) shows that the adversary B’s output (c = −r, w) is a

valid solution to the SDH problem.

We remark that Case 2 in the above proof for Claim 5.6.6 borrows ideas from the

proof in Kate, Zaverucha and Goldberg [KZG10]. ut

By combining the results in Claim 5.6.5 and Claim 5.6.6, Claim 5.6.4 is proved:

Pr[A wins Game 3] = Pr[A wins Game Sim] ≤ Pr[B solves SDH problem].

ut

Claim 5.6.7 For any computationally unbounded adversary A, after interacting in

Game 4, the probability that A finds the value of τ is 1/(p− 1).

Proof of Claim 5.6.7: In Game 4, the adversary A is given the public key

spk = (p, q, {gαj mod q}m−1
j=0) and authentication MAC values σi’s for any message

~Mi (vectors) chosen by the adversary A:

σi = PRFSim(i) + τf~Mi(α) mod p.

The secret value τ is only involved in the MAC values σi’s. Since in Game 4,

the pseudorandom function PRF is replaced by a simulator PRFSim, which outputs

uniform randomness over Zp, the MAC values σi’s reveal absolutely no information

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 86

to adversary A about the secret τ at all, although A is computationally unbounded.

That is, the entropy of τ to the adversary A is unchanged before and after A’s

interaction with the challenger in the Game 4, and the probability that A can find

τ is exactly 1/(p− 1). Recall that τ is chosen at random from Z∗p.
ut

Claim 5.6.8 For any computationally unbounded adversary A,

Pr [A wins Game 4] ≤ 1

p− 1
.

Proof of Claim 5.6.8: Let (y, ψ, σ, {(i, νi) : i ∈ C}, r) and (y′, ψ′, σ′, {(i, νi) : i ∈
C}, r) be as specified in Game 1. Suppose a computationally unbounded adversary

A wins Game 4, i.e. S2.P-Verify(ssk, y′, φ′, σ′, {(i, νi) : i ∈ C}, r) = accept and

(y′, ψ′, σ′) 6= (y, ψ, σ) and σ′ 6= σ.

Similar as the proof of Claim 5.6.6 (precisely Equation (5.33)), we have(
ψ

ψ′

)α−r
= gτ

−1(σ−σ′) + y′−y mod q (5.36)

The computationally unbounded adversary A can find α from the public key spk

by solving discrete log problem, and eventually find τ from the above Equation (5.36).

However, by Claim 5.6.7, the probability that A finds τ has to be 1/p. Consequently,

the adversary A wins Game 4 with probability

Pr [A wins Game 4] ≤ Pr [A finds τ] =
1

p− 1
.

Thus, the Claim 5.6.8 is proved. ut

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 87

In summary, we have showed that

Pr
[
A wins GameCMA

S2,A in no-feedback setting
]

= Pr[A wins Game 1] ≤ Pr[A wins Game 2] +NPRF · AdvPRFB2
=

(
Pr[A wins Game 3] + Pr[A wins Game 4]

)
+NPRF · AdvPRFB2

≤ AdvSDH
B1 +

1

p− 1
+NPRF · AdvPRFB2 . (5.37)

Therefore, Lemma 5.4 is proved. ut

5.6.3.3 S2 is unforgeable.

Lemma 5.5 (Unforgeable in feedback setting) Let ξ be the probability that a

PPT adversary A can win the security game GameCMA
S2,A in the no-feedback setting.

Then the probability AdvCMA
S2,A that the adversary A can win the security game GameCMA

S2,A

in the feedback setting is as below

AdvCMA
S2,A ≤ ξ +

(
1− (1− ξ)Nver

)
≤ ξ +Nver · ξ + o(ξ), (5.38)

where Nver is the number of verification query P-VerifyQuerys made by the adver-

sary A during the security game, and o(·) is the little-O notation.

The proof of Lemma 5.5 is essentially identical to the proof of Lemma 4.5 (on

page 42). We save the details.

Proof of Theorem 5.3: By Lemma 5.4 and Lemma 5.5, for any PPT adversary

A which makes NPRF number of SignQuery and Nver number of P-VerifyQuery

in the security game GameCMA
S2,A, the advantage of A against the MAC scheme S2 is

AdvCMA
S2,A = Pr

[
A wins GameCMA

S2,A
]
≤ (Nver + 1)

(
AdvSDH

B1 +
1

p− 1
+NPRF · AdvPRFB2

)
,

which is negligible in λ ≈ log p. ut

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 88

5.7 Security Analysis of POR scheme POS2

Theorem 5.6 Suppose the SDH Assumption 1 holds and {PRF} is a secure pseu-

dorandom function family. Then the proposed scheme POS2 is a sound Proof of

Retrievability under Definition 6 (on page 26).

Proof of Theorem 5.6: At first, we review Lemma 4.7 and Lemma 4.8 from

Section 4.7.1 (on page 45) in the previous Chapter 4.

Lemma 4.7 (on page 45) Let X and Y be two finite sets. Let UX denote the uniform

random variable over the domain X and UY denote the (independent) uniform ran-

dom variable over the domain Y. Consider any function f : X × Y → {0, 1}. Let

ε = Pr[f(UX, UY) = 1]. For any constant a ∈ (0, 1
2
), define a set Sa = {x ∈ X :

Pr[f(x, UY) = 1] ≥ aε}. We have

Pr[UX ∈ Sa] =
|Sa|
|X|
≥
(

1− a
1
ε
− a

)
= O(ε).

Lemma 4.8 (on page 46) Let κ be an integer. Let δ, ε ∈ (0, 1] be two real values

and δ ≥ ε. Let t = dκ
ε
e. Independently sample t number of values r1, . . . , rt from

{0, 1} under the Bernoulli distribution with probability δ. Let d be a positive integer

and d ≤ κc for some real valued constant c ∈ (0, 1). Then with overwhelming high

probability (w.r.t. κ), there exists d distinct indices i1, i2, . . . , id ∈ [1, t] such that

∀j ∈ [1, d], rij = 1.

Extractor Strategy In the Retrieve phase of the POR security game between an

adversary A and a challenger, the challenger runs ζ = O(t3) number of verifiability

interactions with the adversary A, where A can answer each query correctly with

probability ε and t = d nλ
a2ε
e for some real constant a ∈ (0, 1

2
) (say a = 1

3
). We

emphasize that the encoded file in the security game consists of n file blocks ~Fu ∈
(Zp)m, u ∈ [0, n − 1]. Here, we assume m ≤ n (In the alternative case that m > n,

we will set t = dmλ
a2ε
e).

A challenge query consists of three parts: a subset C ⊂ [1, n] of size `, a weights

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 89

vector ~ν ∈ (Zp)`, and a value r ∈ Zp. Let C, W and R denote the domain of C, ~ν

and ~r = (r0, r1, . . . , rm−1) ∈ Zmp , respectively. Recall that in a verification, given

a challenge query (C, ~ν, ~r) ∈ C ×W × R, where C = {i1, i2, . . . , i`} ⊂ [0, n − 1],

0 ≤ i1 < i2 < i3 . . . i` < n, ~ν = (νi1 , νi2 , . . . , νi`) = (ν0, ν1, . . . , ν`−1) ∈
(
Z∗p
)m

, and

~r = (r0, r1, . . . , rm−1) ∈
(
Z∗p
)m

, an honest prover will return a value y together with

proof (ψ, σ), where y is computed as below

y =

〈∑
i∈C

νi~Fi, ~r

〉
∈ Zp, ~Fi ∈ (Zp)m is the i-th file block.

The challenger issues queries as in Algorithm 1.

Algorithm 1 Collect responses from adversary through O(t3) number of verification
interactions.

1: Initiate a three-dimensional array f : C×W× R→ {0, 1}.
2: for each i ∈ [1, t] do
3: Choose a subset Ci ∈ C at random
4: for each j ∈ [1, t] do
5: Choose a weight vector ~νi,j ∈W at random
6: for each k ∈ [1, t] do
7: Choose ~ri,j,k ∈ R at random
8: Send (Ci, ~νi,j, ~ri,j,k) as challenge query to the adversary A and get response

(yi,j,k, ψi,j,k, σi,j,k)
9: if the response (yi,j,k, ψi,j,k, σi,j,k) is accepted by the verifier then

10: Set f(Ci, ~νi,j, ~ri,j,k) = 1
11: else
12: Set f(Ci, ~νi,j, ~ri,j,k) = 0

Next, the challenger finds the set I of all i ∈ [1, t], which satisfy this property: there

exits a set Ji ⊂ [1, t] and sets Ki,j ⊂ [1, t], j ∈ Ji, such that (1) ∀j ∈ Ji,∀k ∈ Ki,j,

f(Ci, ~νi,j, ~ri,j,k) = 1; (2) |Ji| ≥ ` and ∀j ∈ Ji, |Ki,j| ≥ m.

For each i ∈ I, for each j ∈ Ji, for each k ∈ Ki,j, adversary’s response (yi,j,k, ψi,j,k, σi,j,k)

for query (Ci, ~νi,j, ~ri,j,k) is accepted. Since the underlying MAC scheme S2 is unforge-

able (Theorem 5.3), with overwhelming high probability, we have ∀i ∈ I,∀j ∈ Ji,∀k ∈

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 90

Ki,j, 〈∑
u∈Ci

νi,j,u~Fu, ~ri,j,k

〉
= yi,j,k ∈ Zp,where vector (. . . νi,j,u . . .)u∈Ci = ~νi,j.

Thus the linear combination
∑

u∈Ci νi,j,u
~Fu is a solution of the below linear equation

system in unknown ~x
...

~ri,j,k
...

k∈Ki,j

ordered by increasing k

× ~x> =

...

yi,j,k
...

k∈Ki,j

ordered by increasing k

(5.39)

In turn, the file blocks ~Fu, u ∈ Ci, can be recovered from (at least) ` number of linear

combinations
∑

u∈Ci νi,j,u
~Fu, j ∈ Ji, by solving the below linear equation system

...

~νi,j
...

j∈Ji

ordered by increasing j

×

...

~Fu
...

u∈Ci

ordered by increasing u

=

...∑

u∈Ci νi,j,u
~Fu

...

j∈Ji

ordered by increasing j

(5.40)

Therefore, for each i ∈ I, the challenger can recover file blocks Fu’s with u ∈ Ci. If

the challenger recovers ρn number of file blocks, then he/she can recover the original

file F using the error erasure decoding algorithm.

We emphasize that the coefficient matrix in each of above linear equation systems

in Equation (5.39) and (5.40) is a vandermonde matrix [MS58], since in POS2, verifiers

choose vectors ~r and ~ν in the form (z0, z1, z2, . . .). Consequently, the solution to each

of the above linear equation system is unique.

Analysis of Extractor Strategy Recall that the adversary can answer correctly

a random chosen query from domain C×W×R with probability at least ε. That is

Pr[f(C, W, R) = 1] ≥ ε, where (C, W, R) is chosen at random from C ×W × R. Recall

that constant a = 1
3
. We say a set C ∈ C is good, if Pr[f(C, W, R) = 1] ≥ aε, where

(W, R) is chosen at random from W×R. By the Lemma 4.7, a random chosen C ∈ C

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 91

is good with probability at least O(ε) (more precisely at least 1
2
ε). For a good C, we

say W ∈ W is good w.r.t. C, if Pr[f(C,W, R) = 1] ≥ a2ε, where C and W are fixed

and R is chosen at random from R. By Lemma 4.7, a randomly chosen W is good

w.r.t. a good C with probability at least O(aε) (more precisely at least 1
6
ε).

By Lemma 4.8 with κ = nλ and d = ρn ≤ n < κc for some constant3 c ∈
(lnn

ln(nλ)
, 1), with overwhelming high probability, there are at least d = ρn good Ci’s

among {Ci : i ∈ [1, t]}. For each good Ci, by Lemma 4.8 with κ = nλ and d = ` ≤
n < κc, with overwhelming high probability, there are at least ` good Wj’s w.r.t. Ci

among {~νi,j : j ∈ [1, t]}. For each good ~νi,j w.r.t. Ci, by Lemma 4.8 with κ = nλ

and d = m ≤ n < κc, with overwhelming high probability, there are at least m

number of ~ri,j,k among {~ri,j,k : k ∈ [1, t]}, such that f(Ci, ~νi,j, ~ri,j,k) = 1. Thus

in the above extractor algorithm, the challenger can find sufficient number of correct

responses from the adversary to form linear equation systems, with overwhelming high

probability. Since the domain sizes of C, W and R are all exponentially large, with

overwhelming high probability, all good Ci’s (respectively, ~νi,j or ~ri,j,k) are distinct.

ut

5.8 Summary

This chapter presented a predicate-homomorphic MAC scheme S2, which allows any

third party to compute MAC values for many short messages Mi’s from a long message

M and its MAC value σ using the public key, as long as two messages (Mi, M) satisfy

some pre-determined predicates. Furthermore, each short message Mi is a codeword

of the long message M, such that M can be recovered from a certain number of distinct

messages Mi’s. Based on homomorphic MAC scheme S2, a Proofs of Retrievability

scheme POS2 is constructed, which is very efficient in communication and storage.

Empirical study confirmed that POS2 is practical in computation. POS2 is also

compared with the existing works in various aspects. Full security proof for S2 and

POS2 are provided, under Strong Diffie-Hellman assumption and the assumption of

3Note that the file size n is upper bounded by a polynomial in λ. Thus there exists a positive
integer z such that n ≤ λz. We can set constant c = z

z+1 ≥
lnn

ln(nλ) .

CHAPTER 5. POR FROM PREDICATE-HOMOMORPHIC MAC 92

existence of secure pseudorandom function. The security property of S2 is proved

in two steps: (1) in the first step, security of S2 is proved in a simplified setting,

where every acceptance/rejection decision of each verification is kept secret from the

adversary; (2) in the second step, security of S2 is proved in the original setting, using

the result in the first step.

Chapter 6

Provable Data Possession

Provable Data Possession (PDP) is an alternative formulation of proofs of storage

proposed by Ateniese et al. [ABC+07]. This chapter will propose a proofs of storage

scheme, which we refer to as POS3. The proposed scheme POS3 improves Ateniese et

al. [ABC+07,ABC+11b] in computation aspect, and will be proved under PDP for-

mulation.

6.1 Overview

Ateniese et al. [ABC+07] proposed the first Provable Data Possession (PDP for short)

scheme. Their scheme is very efficient in communication and storage: the size of a

proof is a small multiple of the security parameter, and the storage overhead due

to authentication tags is a fraction1 of the size of the original data. However, their

scheme requires a large number of modular exponentiation in both setup phase and

verification phase, and is thus relative expensive in computation.

In this chapter, we will propose a new PDP construction named POS3, which

requires no modular exponentiation in the setup phase and a smaller number of

modular exponentiations in verification phase, without sacrificing in communication

or storage aspects.

1This fraction is a configurable system parameter.

93

CHAPTER 6. PROVABLE DATA POSSESSION 94

6.1.1 A Brief Description of proofs of storage scheme POS3

Setup.

Suppose Alice wants to backup her file F into a cloud storage server provided by Bob.

Alice encodes file F with some error erasure code to obtain data blocks (F0, . . . , Fn−1).

Alice chooses a RSA modulus N = pq, a secret seed, denoted as seed, of a pseudo-

random function PRF, and a secret number τ . Let φ(N) = (p − 1)(q − 1). With

the private key sk = (φ(N), seed, τ), Alice produces an authentication tag σi for each

block Fi:

σi := τFi + PRFseed(i) mod φ(N). (6.1)

It is worthy to point out that the generated authentication tag σi is much shorter than

a data block Fi. At the end of setup, Alice sends data blocks and tags {(i, Fi, σi) : i ∈
[0, n− 1]} together with a public key pk = (N) to Bob.

Verification.

Later, Alice may remotely verify the integrity of her data file stored with Bob peri-

odically. In each verification session, Alice randomly selects a subset C ⊂ [0, n − 1]

of indices and selects a random weights νi for each i ∈ C. Alice sends {(i, νi) : i ∈ C}
as challenge to Bob. Bob then finds all data blocks Fi’s and authentication tags σi’s

with index i ∈ C, and applies the linear homomorphism to compute an aggregated

message-tag pair (M, σ) as below:

M :=
∑
i∈C

νiFi; (6.2)

σ :=
∑
i∈C

νiσi. (6.3)

We emphasize that the above two equations are computed over integer domain, and

thus the bit-length of the linear combination M (the aggregated authentication tag

σ, respectively) is slightly larger than a data block Fi (an authentication tag σi,

respectively).

Instead of sending the large message block M together with authentication tag σ

CHAPTER 6. PROVABLE DATA POSSESSION 95

directly to the verifier Alice, Bob is able to produce a shorter message-tag pair with

the help of Alice. Alice generates a pair of fresh public token pt and secret token

st per each verification, where the public token pt is sent to the prover Bob and the

secret token st is kept private. With pt and (M, σ), Bob is able to generate a shorter

message-tag pair, which can be verified by the verifier Alice with the private key and

the secret token st.

Illustration Picture

Figure 6.1 illustrates the scheme POS3 briefed above. In Figure 6.1, a rectangle repre-

sents a data block, and a circle represents a short authentication tag corresponding to

the data block represented by the rectangle that lies above. Those shaded rectangles

represent data blocks that are generated by the error erasure code. In our scheme

POS3, a data block is treated as a single large integer (much larger than the RSA

modulus N). Figure 6.1 shows an example where a data block is about three times

larger than a tag, by dividing each rectangle with dashed lines.

In a verification, a subset of three pairs of blocks and tags are selected, which are

aggregated into a single pair of block and tag through linear homomorphism. Since

the linear combination is computed over integer domain, the aggregated block (tag,

respectively) is slightly larger than an original data block (tag, respectively). With

the help of the public token pt provided by the verifier, a shorter message-tag pair

can be generated from the long aggregated message-tag pair. The verifier can verify

the short message-tag pair using a secret token st.

6.1.2 Organization

The rest of this chapter is organized as below. The next Section 6.2 describes the

definition of PDP . Section 6.3 presents the construction of our PDP scheme POS3.

Then we analyze the performance of proposed scheme in Section 6.4 and security in

Section 6.5. At the end, Section 6.6 summarizes this chapter.

CHAPTER 6. PROVABLE DATA POSSESSION 96

b b b

b b b

Linear Homomorphism

b b b

b b b

Predicate Homomorphism

pu
bl

ic
to

ke
n

pt

(pt,st)

Verifier

Accept or Reject

Figure 6.1: An Efficient PDP scheme POS3. Detailed explanation is in the paragraph
with title “Illustration Picture”.

CHAPTER 6. PROVABLE DATA POSSESSION 97

6.2 Provable Data Possession: Definition and For-

mulation

A PDP [ABC+07] scheme consists of five polynomial algorithms (KeyGen,DEncode,

Challenge, Prove,Verify), which are described as below.

• KeyGen(1λ)→ (pk, sk): Given security parameter λ, the probabilistic key gen-

erating algorithm outputs a public-private key pair (pk, sk).

• DEncode(sk, F) → (idF, F̂, n): Given the private key sk and a data file F as

input, the data encoding algorithm DEncode produces a unique identifier idF,

an encoded file F̂, and file size n (in term of number of blocks).

• Challenge(sk, id, n)→ (pt, st,Chall): The probabilistic algorithm Challenge takes

as input the private key sk, a file identifier id and the file size n (in term of

number of blocks), and outputs a public token pt, a private token st and a query

Chall.

Note: (1) The public/secret token pair (pt, st) is generated independently per

each execution of algorithm Challenge. (2) In both Ateniese et al. [ABC+07] and

the scheme POS3 that will be presented later in this chapter, Chall = {(i, νi) :

i ∈ C ⊂ [0, n− 1]} is just a set of pairs of index i (in the range [0, n− 1]) and

weight νi (from some group) with i ∈ C, and has no secret information involved.

• Prove(pk, idF, F̂, pt,Chall) → ψ: Given as input the public key pk, an identifier

idF, an encoded file F̂, a public token pt and a challenge query Chall, the prover

algorithm Prove produces a proof ψ.

• Verify(sk, idF, st,Chall, ψ) → accept or reject: Given the private key sk, an

identifier idF, a secret token st, a challenge query Chall, and a proof ψ as input,

the deterministic verifier algorithm Verify will output either accept or reject.

Remark 5 Compared to POR, in the above description for PDP, the prover algo-

rithm Prove takes a public token pt as an additional input and the verifier algorithm

CHAPTER 6. PROVABLE DATA POSSESSION 98

Verify takes a corresponding secret token st as an additional input, where the pub-

lic/secret token pair (pt, st) is generated online by the verifier for each verification

session.

6.3 POS3: An Efficient PDP Scheme

In this section, we will construct the scheme POS3 which is briefed previously in

Section 6.1.

6.3.1 Construction of POS3

The description of scheme POS3 = (KeyGen,DEncode,Challenge,Prove,Verify) is as

below.

POS3.KeyGen(1λ)→ (pk, sk)

Choose at random a λ bits RSA modulus N = pq, such that all of p, q, p′ =

(p−1)/2 and q′ = (q−1)/2 are primes and the bit-lengths of p and q are the same.

Let φ(N) = (p− 1)(q − 1) = 4p′q′. Let QRN denote the subgroup of quadratic

residues modulo N . Choose at random a generator g of the subgroup QRN .

Choose at random τ
$←− Zφ(n). Choose at random a seed, denoted as seed, from

the key space of the pseudorandom function family {PRFseed : {0, 1}2λ → Zφ(N)}.
The public key is pk = (N, g) and the private key is sk := (g, p, q, τ, seed).

Note: Size of subgroup QRN [Gol06] is equal to 1
4
φ(N) = p′q′.

POS3.DEncode(sk, F)→ (id, F̂, n)

Let ρ ∈ (0, 1) be a system parameter. Apply rate-ρ error erasure code on data

file F to generate blocks (F0, . . . , Fn−1), such that each block Fi ∈ {0, 1}mλ and

any ρn number of blocks Fi’s can recover the original file F. Choose a unique

identifier id ∈ {0, 1}λ for the file F. For each data block Fi, i ∈ [0, n−1], compute

CHAPTER 6. PROVABLE DATA POSSESSION 99

an authentication tag σi:

σi := τFi + PRFseed(id‖i) mod φ(N). (6.4)

The encoded file is F̂ = {(i, Fi, σi) : i ∈ [0, n − 1]}. Send (id, F̂) to the cloud

storage server, and keep (id, n) in the local storage. Output (id, F̂, n).

POS3.Challenge(sk, id, n)→ (pt, st, {(i, νi) : i ∈ C})

Choose at random a secret value d
$←− Z∗φ(N), and computes gd := gd mod N .

The public token is pt := gd and the secret token is st := d. Chooses a subset

C ⊂ [0, n − 1] with size |C| = ` at random and choose weight νi
$←− Z∗φ(N) at

random for each i ∈ C. Output (pt, st, {(i, νi) : i ∈ C}).

POS3.Prove(pk, id, F̂, pt, {(i, νi) : i ∈ C})→ (ψ1, ψ2)

Receive (id, pt, {(i, νi) : i ∈ C}) from the verifier as the challenge. Find the

encoded file F̂ corresponding to the identifier id. Find all selected blocks Fi’s

and tags σi’s with index i ∈ C, and compute (π1, π2) as below over integer

domain:

π1 :=
∑
i∈C

νiFi; (6.5)

π2 :=
∑
i∈C

νiσi. (6.6)

Compute (ψ1, ψ2) from (π1, π2) using the public key pk = (N, g) and the public

token pt = gd as below

ψ1 := gπ1d mod N ; (6.7)

ψ2 := gπ2 mod N. (6.8)

Send (ψ1, ψ2) to the verifier. Output (ψ1, ψ2).

CHAPTER 6. PROVABLE DATA POSSESSION 100

POS3.Verify(sk, id, st, {(i, νi) : i ∈ C}, ψ1, ψ2)→ accept or reject

With the private key sk = (g, p, q, τ, seed) and the secret token st = d, check

whether (1) ψ1 ∈ QRN is a quadratic residue modulo N and (2) the following

equality holds.

(ψ1)τ
?
=

(
ψ2

g
∑
i∈C νiPRFseed(id‖i)

)d
mod N (6.9)

If both verifications succeed, then output accept; otherwise output reject.

Remark 6

• We remark that in the above scheme, we can change the proof from (ψ1, ψ2)

to (ψ1, SHA256(ψ2)) to reduce the size of response/proof from 2λ bits to (λ +

256) bits using a secure hash function SHA256 [NIS02], similar to Ateniese et

al. [ABC+07].

• Like the first PDP scheme proposed by Ateniese [ABC+07] and different from

previous POS1 and POS2, in our construction POS3, the prover requires a public

token to generate a short proof and the verifier requires a corresponding secret

token to verify the short proof, where this pair of public-secret tokens are gen-

erated by the verifier online per each verification. Therefore, the underlying

homomorphic cryptography component of the POS3 is not a MAC scheme, and

we do not separate it out as a standalone primitive.

6.3.2 Completeness

In the above scheme POS3, if the response (ψ1, ψ2) is generated by an honest prover

from intact data blocks and authentication tags, then the verifier always accepts

(ψ1, ψ2), since

• ψ1 = gπ1d = gdπ1 mod N ∈ QRN (recall that g ∈ QRN);

CHAPTER 6. PROVABLE DATA POSSESSION 101

• The RHS (right hand side) of Equation (6.9) is

RHS =

(
gπ2

g
∑
i∈C νiPRFseed(id‖i)

)d

=

g∑i∈C νi

(
PRFseed(id‖i)+τFi

)
g
∑
i∈C νiPRFseed(id‖i)

d

=
(
gτ
∑
i∈C νiFi

)d
= (gτπ1)d =

(
gdπ1

)τ
= (gπ1d)τ = (ψ1)τ = LHS (mod N).

6.4 Performance Analysis

The proposed scheme POS3 is efficient in storage, communication and computation.

The storage overhead due to authentication tags is 1/m of the file size (after error

erasure encoding). The proof size in a verification is 2λ bits. In the setup, the data en-

coding algorithm DEncode requires n number of pseudorandom function evaluations,

and modular additions/multiplications. In a verification session, the computation of

the prover algorithm Prove is dominated by the exponentiation with large integer

exponent in Equation (6.7), which is equivalent to (m+ 2) number of group exponen-

tiation in Z∗N with exponent in ZN . The verifier algorithm Verify requires one modular

division, three modular exponentiation in Z∗N , ` number of additions/multiplications

in Zφ(N), and ` number of pseudorandom function evaluations, where ` = |C| is the

number of indices selected during a verification.

6.4.1 Comparison

We compare the proposed scheme POS3 and Ateniese et al. [ABC+07, ABC+11b] in

Table 6.1 in the setting specified in the below example.

Example 3 After erasure encoding, the file size is 1GB, block size is m = 100, and

storage overhead due to authentication tags is about 10MB for both schemes. For both

schemes, we assume that, during a verification, the challenge query {(i, νi) : i ∈ C}

CHAPTER 6. PROVABLE DATA POSSESSION 102

Table 6.1: Comparison among Ateniese et al. [ABC+07, ABC+11b] and POS3 and
POS2 w.r.t. a 1GB file. The setting is described in Example 3.

Scheme Group Ele-
ment Size

Communication bits Computation (Data
Preprocess)

Computation (Prove)

Ateniese
[ABC+11b]

[ABC+07]
λ = 1024 2λ+ 160 + 256 = 2464 223 exp. over Z∗N (100 + `) exp. over Z∗N

POS3 λ = 1024 2λ+ 160 + 256 = 2464 223 mul. over Zφ(N) 102 exp. over Z∗N
POS2 λ = 1024 3λ+ 240 = 3312 223 mul. over Zp 100 exp. over Z∗q

is represented by two 80 bits PRF seeds. System parameter ` represents the size of set

C. All computation times are represented by the corresponding dominant factor. exp

and mul denote the group exponentiation and group multiplication respectively in the

corresponding group. Note that one 1024 bits modular exponentiation takes roughly 5

millisecond in a standard PC. See Table 6.1.

It is worthy to point out that, the most efficient variant scheme E-PDP in Ate-

niese et al. [ABC+07] is suffering from the attack by Shacham and Waters [SW08a].

In Ateniese et al. [ABC+07], the main scheme requires the prover to compute the

product
∏

(i,ai)∈Chal T
ai
i for all tags Ti selected by the challenge Chal. The authors

proposed an efficient variant scheme, named E-PDP, by setting all coefficients ai in

the challenge Chal as 1, so that in the computation of the aggregated tag, only

multiplication is involved and expensive exponentiation is avoided. Shacham and

Waters [SW08a] presented an attack on E-PDP, such that the adversary can answer

correctly a non-negligible fraction of queries, but there exists no extractor that can

recover any data block.

We remark that even compared to the insecure variant E-PDP, our scheme POS3

is still much more efficient in setup and equally efficient in verification.

6.5 Security Analysis of PDP Scheme POS3

6.5.1 Security Model of PDP

The security game for a PDP [ABC+07] scheme is the same as the game for a POR
scheme in Section 3.2.2.2 (on page 25), except the following differences:

CHAPTER 6. PROVABLE DATA POSSESSION 103

• To process a verification query, the challenger C chooses the challenge query in a

different way from the POR game: C runs the algorithm Challenge to generate

a pair of public-secret tokens (pt, st) and the a challenge query Chall, and sends

(pt,Chall) to the adversary A and keeps st private. The secret token st will be

used in the verifier algorithm Verify.

• The Retrieve phase is different from the POR game: The challenger C ini-

tiates polynomially many PDP verifications w.r.t. the data file F∗ chosen by

A. Suppose the challenger C asks A to check all data blocks Fi of F∗ with index

i ∈ I. The challenger C extracts file blocks {(i, F′i) : i ∈ I} from A’s storage

by applying a PPT knowledge extractor. The adversary A wins this PDP se-

curity game, if the challenger C accepts A’s response in the verification during

the Retrieve phase. The challenger C wins this game if the extracted blocks

{(i, F′i) : i ∈ I} are identical to the original {(i, Fi) : i ∈ I}.

Definition 9 ([ABC+07]) A PDP scheme is sound if for any PPT adversary A,

the probability that A wins the above PDP security game is negligibly close to the

probability that C wins the same security game. That is

Pr[A wins PDP game] ≤ Pr[C wins PDP game] + negl. (6.10)

6.5.2 Assumptions

The Knowledge of Exponent Assumption (KEA) is introduced by Damg̊ard [Dam92]

and subsequently appears in many works [HT98, BP04a, BP04b, Kra05, Den06]. The

below is a variant version of KEA in the RSA ring given by Ateniese et al. [ABC+07].

Assumption 2 (Knowledge of Exponent Assumption [Dam92,BP04a])

Let N = pq be a RSA modulus, g ∈ Z∗N and s be an positive integer. For any PPT

algorithm A that takes (N, g, gs) as input and r as random coin and returns (C, Y)

such that Y = Cs mod N , there exists a PPT extractor algorithm Ā which, given

(N, g, gs, r) as input, outputs x such that gx = C mod N .

CHAPTER 6. PROVABLE DATA POSSESSION 104

Remark 7

• Note that the extractor Ā has access to A’s input (N, g, gs) and A’s random

coin r, thus Ā can replay step by step the process how A computes (C, Y) from

(N, g, gs).

• This assumption has been shown to hold in generic group by Abe and Fehr [AF07].

Assumption 3 (Factorization Assumption [RSA78]) We say an integer N is

a RSA modulus, if N = pq and all of p, q, p−1
2
, q−1

2
are prime numbers and bit-lengths

of p and q are equal. Then for any PPT adversary A, the probability that A can

factorize a randomly chosen λ bits RSA modulus, is negligible in λ.

6.5.3 Security Proof

Theorem 6.1 (POS3 is Sound) If Knowledge of Exponent Assumption 2 and Fac-

torization Assumption 3 hold and the pseudorandom function family {PRF} is secure,

then the proposed scheme POS3 is sound.

The proof below is similar to the proof of Ateniese et al. [ABC+07] in the high level:

If an adversary A wins the security game, then some knowledge extractor (as in the

assumption KEA) can find a linear combination of data blocks (See Equation (6.5)).

Next, each individual block can be obtained by solving a linear equation system.

However, the details of the below proof is significantly different from Ateniese et

al. [ABC+07,ABC+11b].

Like in previous chapters, at first in Lemma 6.2, we prove that the response

in a verification of POS3 is unforgeable in a simplified setting, where all decisions

(acceptance or rejection) are kept secret from the adversary in the PDP security

game. Recall that we call this simplified setting as “no-feedback” setting.

Lemma 6.2 Suppose Factorization Assumption 3 holds and the pseudorandom func-

tion family {PRF} is secure. Then the proof (ψ1, ψ2) in the proposed scheme POS3 is

unforgeable in the no-feedback setting, where all acceptance or rejection decisions are

CHAPTER 6. PROVABLE DATA POSSESSION 105

kept secure from the adversary in the PDP security game. More precisely, let (ψ̂1, ψ̂2)

denote the adversary A’s response in the Retrieve phase of the PDP security game

w.r.t. POS3, and (ψ1, ψ2) denote the corresponding genuine response. The probability

Pr[Verifier accepts (ψ̂1, ψ̂2) ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)] ≤ negl(λ) (6.11)

is negligible.

Proof of Lemma 6.2:

Game 1. The first game is the same as the PDP security game, except that

• All acceptance or rejection decisions are kept secure from the adversary A. Es-

sentially, the challenger in the PDP security game does not answer verification

queries made by the adversary.

• Adversary A wins in Game 1, if A’s forgery proof (ψ̂1, ψ̂2) is accepted and it

is different from the genuine proof. Formally, let id, {(i, νi) : i ∈ C} and (pt, st)

denote the file identifier, challenge query, and public-secret tokens respectively

in a verification in the Retrieve phase of the PDP security game, let (ψ1, ψ2)

denote the corresponding genuine proof and (pk, sk) be the public-private key

pair. Adversary A wins in Game 1, if

Verify(sk, id, st, {(i, νi) : i ∈ C}, ψ̂1, ψ̂2) = accept and (ψ̂1, ψ̂2) 6= (ψ1, ψ2).

(6.12)

Game 2 The second game is the same as Game 1, except that the pseudorandom

function PRF is replaced by a simulator PRFSim, which outputs true randomness over

the range of PRF. Precisely, the function PRFSim is evaluated in the following way:

• The challenger keeps a table, which is empty at the very beginning, to store all

previous encountered input-output pairs (v,PRFSim(v)).

• Given an input v, the challenger lookups the table for v, if there exists an entry

(v, u), then return u as output. Otherwise, choose u uniformly randomly from

CHAPTER 6. PROVABLE DATA POSSESSION 106

the range of PRF, insert (v,PRFSim(v) := u) into the table and return u as

output.

Game 3 The third game is the same as Game 2, except that:

• The range of the function PRF is changed from Zφ(N) to ZN , thus in this game,

PRFSim outputs true randomness over ZN ;

• The range of the authentication tag is also changed from Zφ(N) to ZN . More

precisely, the Equation (6.4) (on page 99) is replaced by the following equations

σi := τFi + PRFseed(id‖i) mod N. (6.13)

We remark that in Game 3, the challenger is not able to verify adversary’s response

with algorithm Verify. The challenger does not need to do verification either, since in

the no-feedback setting, the challenger will not answer verification queries made by

the adversary.

Claim 6.5.1 If there is a non-negligible difference in a PPT adversary A’s success

probability between Game 1 and Game 2, then there exists another PPT adversary

B that can break the security of the pseudorandom function PRF. More precisely,

|Pr[A wins Game 1]− Pr[A wins Game 2]| ≤ NPRF · AdvPRFB ,

where NPRF is the number of distinct evaluations of pseudorandom function PRF re-

quired and AdvPRFB denotes the probability that B can distinguish the output of PRF

from true randomness.

The above Claim 6.5.1 can be proved using a standard hybrid argument [Gol06]. Here

we save the details.

Claim 6.5.2 For any computationally unbounded adversary A, the probability that

A can find the secret value τ after interacting in Game 2, is 1
φ(N)

.

CHAPTER 6. PROVABLE DATA POSSESSION 107

Proof (Proof Sketch of Claim 6.5.2): In Game 2, the pseudorandom function

PRF is replaced by a simulator PRFSim which outputs true random numbers in Zφ(N),

thus the secret value τ is hidden perfectly. Therefore, the probability that an (com-

putationally unbounded) adversary A can find τ is 1
φ(N)

. Recall that τ is chosen at

random from group Zφ(N). ut

Claim 6.5.3 For any PPT adversary A, the probability that A can factorize N after

interacting in Game 3 is negligible.

Proof (Proof Sketch of Claim 6.5.3): Recall that in Game 3, the authentication

tag σi for each block is a group element chosen at random from ZN . Suppose a PPT

adversary A can factorize the RSA modulus N after interacting in Game 3.

Based on A, we construct a PPT adversary B to factorize N . Given only the

RSA modulus N , the adversary B can play the role of challenger to setup2 the PDP
security game w.r.t. scheme POS3, and answer store queries made by the adversary

A by sampling uniform random number from ZN as the authentication tag σi. Thus,

Pr[A factorizes N in Game 3] ≤ Pr[B factorizes N] = AdvFactB . (6.14)

ut

Claim 6.5.4 For any PPT adversary A, the probability that A can factorize N after

interacting in Game 2 is negligible.

Proof of Claim 6.5.4: We will show that any PPT adversary cannot distinguish

between Game 2 and Game 3. As a result, Claim 6.5.3 can imply Claim 6.5.4.

Now we study the statistical difference [SV03] between uniform random variables

over Zφ(N) and over ZN .

2From the input N , B can generate the public key and simulate the algorithm DEncode. In the
no-feedback setting, B does not need to do verification, so secret key is not necessary.

CHAPTER 6. PROVABLE DATA POSSESSION 108

Let X be a uniform random variable over Zφ(N) and Y be a uniform random

variable over ZN . The statistical difference [SV03] between X and Y is

SD(X, Y)
def
=

1

2

∑
a

|Pr[X = a]− Pr[Y = a]|

=
1

2

∑
a∈Zφ(N)

|Pr[X = a]− Pr[Y = a]| +
1

2

∑
a∈ZN\Zφ(N)

|Pr[X = a]− Pr[Y = a]|

=
1

2

(
1

φ(N)
− 1

N

)
× φ(N) +

1

2

(
1

N
− 0

)
× (N − φ(N))

= 1− φ(N)

N

= 1− (1− 1

p
)(1− 1

q
)

=
1

p
+

1

q
− 1

pq
.

Let N0 be a positive integer. Let Xi, i = 1, 2, . . . , N0, be independently and iden-

tically distributed uniform random variables over Zφ(N), and Yi, i = 1, 2, . . . , N0, be

independently and identically distributed uniform random variables over ZN . Ac-

cording to Fact 2.1 and Fact 2.3 of Sahai and Vadhan [SV03], we have

SD((X1, . . . , XN0), (Y1, . . . , YN0)) ≤
∑

i∈[1,N0]

SD(Xi, Yi). (6.15)

The right hand side of the above Equation (6.15) is

∑
i∈[1,N0]

SD(Xi, Yi) = N0 × SD(X, Y) = N0

(
1

p
+

1

q
− 1

pq

)
. (6.16)

Suppose the adversary A obtains exactly NPRF authentication tags σi (σ′i respec-

tively) for NPRF different indices i’s in Game 2 (Game 3 respectively). Since σi’s

are independently and identically distributed uniform random variables over Zφ(N)

and σ′is are independently and identically distributed uniform random variables over

ZN , the difference of the adversary’s views3 in Game 2 and Game 3 is bounded as

3Adversary’s view is a transcript of all messages received.

CHAPTER 6. PROVABLE DATA POSSESSION 109

below

SD(ViewGame 2
A , ViewGame 3

A) ≤ NPRF

(
1

p
+

1

q
− 1

pq

)
. (6.17)

The adversaryA is polynomially bounded, which impliesNPRF is polynomially bounded.

Therefore, the statistical difference SD(ViewGame 2
A , ViewGame 3

A) is negligible in

λ ≈ logN ≈ 2 log p ≈ 2 log q, and there is no adversary can distinguish between

Game 2 and Game 3.

Combining with Claim 6.5.3, we conclude that the probability

Pr[A factorizes N in Game 2] ≤ Pr[A factorizes N in Game 3]+NPRF

(
1

p
+

1

q
− 1

pq

)
is negligible in λ ≈ logN . The proof for Claim 6.5.4 is complete. ut

Claim 6.5.5 Without loss of generality, assume p′ < q′. Then

Pr[A wins Game 2] ≤ 1

p′
.

Proof of Claim 6.5.5: Let (ψ̂1, ψ̂2) denote the adversary A’s forgery output in

the Game 2 and (ψ1, ψ2) be the corresponding genuine output which shares the

same values {(i, νi) : i ∈ C} with the forgery output. Suppose the adversary A wins

Game 2, then A’s forged proof (ψ̂1, ψ̂2) is accepted and is different from the genuine

output (ψ1, ψ2): (ψ̂1, ψ̂2) 6= (ψ1, ψ2). Since both the forged proof and genuine proof

are accepted by the verifier w.r.t. {(i, νi) : i ∈ C} and satisfy the Equation (6.9) (on

page 100), we have

(
ψ̂1

)τ
=

(
ψ̂2

g
∑
i∈C νiPRFseed(id‖i)

)d

mod N (6.18)

(ψ1)τ =

(
ψ2

g
∑
i∈C νiPRFseed(id‖i)

)d
mod N (6.19)

CHAPTER 6. PROVABLE DATA POSSESSION 110

Dividing Equation (6.18) with Equation (6.19), we have

(
ψ̂1

ψ1

)τ

=

(
ψ̂2

ψ2

)d

mod N (6.20)

Recall that the verifier algorithm Verify accepts only if ψ1, ψ̂1 ∈ QRN . Thus ψ̂1

ψ1
∈

QRN is also a quadratic residue. For any element x ∈ QRN , x
1
4
φ(N) = 1, and the

multiplicative order of x modulo N will be a factor of 1
4
φ(N) = p′q′. Let ϕ denote the

multiplicative order of ψ̂1

ψ1
modulo N . Since ψ̂1

ψ1
6= 1, ϕ is at least min{p′, q′} = p′. Thus

a computationally unbounded adversary B can invoke the adversary A to obtain the

above Equation (6.20) and find the value (τ mod ϕ) from Equation (6.20) by solving

a discrete log problem with ψ̂1

ψ1
as base. The probability that (τ mod ϕ) = τ is

Pr[(τ mod ϕ) = τ] = Pr[τ ∈ Zϕ] =
ϕ

φ(N)
. (6.21)

By Claim 6.5.2, we have the probability

Pr[A wins Game 2] ≤ Pr[B finds τ in Game 2]

Pr[(τ mod ϕ) = τ]

=

1
φ(N)
ϕ

φ(N)

=
1

ϕ
≤ 1

p′

is negligible in λ ≈ logN ≈ 2 + 2 log p′. The proof of Claim 6.5.5 is complete. ut

Thus, Lemma 6.2 is proved. ut

Lemma 6.3 Suppose Factorization Assumption 3 holds and the pseudorandom func-

tion family {PRF} is secure. Then the proof (ψ1, ψ2) in the proposed scheme POS3

is unforgeable in the feedback setting, where all acceptance or rejection decisions are

provided to the adversary in the PDP security game.

With Lemma 6.2 present, the proof of the above Lemma 6.3 is essentially identical

to the proof of Lemma 4.5 (on page 42). Here we save the details.

CHAPTER 6. PROVABLE DATA POSSESSION 111

Now it is time to prove the main Theorem 6.1 of this chapter.

Proof of Theorem 6.1: Lemma 6.3 states that the response/proof (ψ1, ψ2) in

the scheme POS3 is unforgeable. Since for random value d ∈ Z∗φ(N), A can win

PDP security game with non-negligible probability. Then for many different values

di’s, A can compute (ψi,1 = gπ1di , ψi,2 = gπ2) correctly. Let us just consider d1 and

d2 among these di’s. Let c = d2
d1

mod 1
4
φ(N). Given input (gd1 , gd2 =

(
gd1
)c

),

the adversary A can output (gd1π1 , gd2π1 =
(
gd1π1

)c
). By Knowledge of Exponent

Assumption (KEA [Dam92]), there exists a PPT extractor that can find M , such

that gd1π1 = gd1M mod N .

Case 1: M 6= π1 If the two integers M and π1 are distinct (Notice that, here we

treat M , π1 as large integer instead of group elements from Zφ(N)), then the difference

M−π1 has to be a multiple of 1
4
φ(N), from which the factorization of N can be found

using Miller’s result [Mil75]. As a result, this case occurs with negligible probability

under large integer factorization assumption.

Case 2: M = π1 In this case, the extractor finds π1, as desired. Recall that the

large integer π1 =
∑

i∈C νiFi (Indeed, integer, not group element) is linear equation

of file blocks Fi’s. Similar to the proof in Ateniese’s PDP [ABC+07, ABC+11b], by

choosing independent weights νi’s in |C| number of executions of the protocol, we

obtain |C| independent linear equations in the unknowns Fi, i ∈ C. Thus these file

blocks Fi, i ∈ C, can be found by solving the linear equation system over integer

domain.

Thus, Theorem 6.1 is proved.

ut

6.6 Summary

This chapter proposed a Provable Data Possession scheme POS3 using an underlying

homomorphic authentication method, which has a similar homomorphic property as

the predicate-homomorphic MAC scheme S2. POS3 is very efficient in communication

CHAPTER 6. PROVABLE DATA POSSESSION 112

and storage. Its computation complexity is comparable to POS2. Compared to

Ateniese et al. [ABC+07, ABC+11b], POS3 is much more efficient in computation,

and equally efficient in communication and storage. Different from both POS1 and

POS2, the verification of POS3 requires a pair of public-secret tokens, which are

generated on the fly by the verifier per each verification. Full security proof of POS3

is provided under Knowledge of Exponent Assumption, Large Integer Factorization

Assumption and the assumption of existence of secure pseudorandom function.

Part II

Verifiable Outsourced Database:

Authenticating Aggregate Range Query over

Multidimensional Outsourced Dataset

113

Chapter 7

Introduction

Alice has a set D of d-dimensional integer points. She chooses a private key, and

preprocesses the dataset D using her private key to generate some authentication tag

T. She sends (outsources) D and T to an untrusted service provider Bob. Then Alice

deletes the original copy of dataset D and tag T from her local storage. Later Alice

may issue a query over D to Bob, for example, an aggregate query conditional on

a multidimensional range selection, and Bob should produce the query result and a

proof based on D and T. Alice wants to authenticate the query result, using only her

private key. In Part II of this dissertation, we focus on count query conditional on

a multidimensional range selection, that is, counting the number of points within a

multidimensional rectangular range. Our solution can be extended to support other

types of aggregate queries, like finding minimum coordinate value of points within a

multidimensional range, and non-aggregate range selection query, which asks for all

points within the query range.

The problem we study fits in the framework of the outsourced database applica-

tions [DGMS01,HILM02], which emerged in early 2000s as an example of “Software-

as-a-Service” (SaaS). By outsourcing database management, backup services and

other IT needs to a professional service provider, companies can reduce expensive

cost in purchase of equipments and even more expensive cost in hiring or training

qualified IT specialists to maintain the IT services [MNT06].

114

CHAPTER 7. INTRODUCTION 115

We are concerned about the communication cost and the storage overhead on Al-

ice/Bob’s side. Such requirements exclude the following straightforward approaches:

(1) Bob sends back the whole dataset D with its tag T; (2) Alice keeps a local copy

of the dataset; (3) During preprocessing, Alice generates and signs answers to all pos-

sible queries. Recently, Gennaro, Gentry and Parno [GGP10] and Chung, Kalai and

Vadhan [CKV10] showed that, in general any outsourced/delegated polynomial time

function can be verified efficiently using a private verification key in the outsourced

computation model, by using fully homomorphic encryption (e.g. Gentry [Gen09]).

Nevertheless, it is still meaningful to devise more efficient scheme for small class of

functions, without using a fully homomorphic encryption, as mentioned by Gennaro et

al. [GGP10].

There are many works on authenticating non-aggregate range selection query

(e.g. [MND+04,PJRT05,MNT06,CT09,LHKR06,ACK08,MSP09,PZM09,GTT08]).

Although there are efficient solutions for 1D and 2D range selection (e.g. Atallah et

al. [ACK08] for 2D grid dataset), solutions for higher dimension typically rely on geo-

metric partitions which suffer from the “curse of dimensionality”, leading to exponen-

tial communication overhead. Aggregate range query is arguably more challenging.

Only a few works (e.g. [PT08,TYH+09,LHKR10]) are devoted to the authentication

of aggregate query, and these works require high communication overhead for high

dimensional dataset. Table 7.1 gives a comparison between our result and several

previous works.

C
H
A
P
T
E
R

7.
IN

T
R
O
D
U
C
T
IO

N
116

Table 7.1: Worst case performance of different authentication schemes for aggregate range query or range selection query.
This table consists of two parts: the first three rows are for aggregate query; the rest four rows are for range selection query.
Note: (1) The symbol “-” indicates that the authors do not provide such information in their paper. (2) We do not include
Pang et al. [PT08] and Cheng et al. [CT09] in this table, since no concise asymptotic bound are provided. Nevertheless,
their performances are limited by their data structure, i.e. KD-tree [PT08] and R-Tree [CT09], which require exponential
(in dimension) communication overhead in the worst case. (3) Our scheme supports private key verification, while the other
works in this table support public key verification. (4) Our scheme can be extended to provide similar privacy protection
like PDAS [TYH+09].

Scheme Dimension
d

Communica-
tion overhead
(bits)

Storage over-
head

Computation
(Verifier Al-
ice)

Computation
(Prover Bob)

Query Techniques

PDAS
[TYH+09]

d = 1 O(|S| logN) O(N) O(|S| logN) O(|S|+K2) Sum,Count Aggregated commitment
+ Shamir’s Secret-Sharing
Scheme

Li et al.
[LHKR10]

d ≥ 1 O(dN + 2d) Ω(dN) O(dN + 2d) Ω(N1− 1
d) Sum or Count or Min

or Max (One authen-
tication data structure
per query type)

MHT-like authentication
structure for B-Tree/R-
Tree

This work d ≥ 1 O(d2 log2 Z) O(dN) O(d2 log2 Z)† O(dN logZ)‡ Count,Min,Max, Me-
dian

(customer designed) func-
tional encryption + GKEA
based homomorphic tag

Atallah et
al. [ACK08]

d = 1, 2 O(1) O(N) O(|S|) O(1) Range Selection Precomputed prefix sum +
BLS signature

Martel et
al. [MND+04]

d ≥ 1 O(logd−1N
+|S|)

- - - Range Selection Authentication Data Struc-
ture + Geometry Partition

Chen et
al. [CMH+08]

d ≥ 1 O(logd Z) O(N logd Z) O(logd Z) O(logd Z) Range Selection Authentication Tree Struc-
ture + Access Control

This work d ≥ 1 O(d2 log2 Z) O(dN) O(d2 log2 Z +
|S|)†

O(dN logZ +
|S|)‡

Range Selection (customer designed) func-
tional encryption + GKEA
based homomorphic tag

N : The number of tuples in the dataset. S: The set of tuples satisfying the query condition.
K: The number of servers in PDAS [TYH+09]. Z: The domain size of attributes/points in one dimension.
†: O(d2 log2 Z) group multiplications. ‡: O(dN logZ) bilinear map operations.
MHT: Merkle Hash Tree

CHAPTER 7. INTRODUCTION 117

7.1 Our Results

The design of our scheme consists of a few techniques. The first technique exploits

Generalized Knowledge of Exponent Assumption (GKEA) proposed by Wu and Stin-

son [WS07], to verify that the result is computed only from data points within the

query range. This is achieved by first associating a secret number with each location

in the space. Next, a homomorphic tag is computed by Alice from the secret number

for each data point and kept in Bob’s storage. To authenticate a query, Alice gener-

ates and sends to Bob another homomorphic tag for each location within the query

range, based on the associated secret number and a random nonce. Bob aggregates

these two types of tags for all data points within the query range, and sends the

resulting aggregated values together with the query result to Alice. The aggregated

values can be verified due to homomorphism, and it is difficult to forge the aggre-

gated values using data points outside the query range, under Computational Diffie

Hellman assumption and GKEA.

However, there are two main drawbacks if the above mentioned technique is em-

ployed by itself. Firstly, the validity of the aggregated tags do not rule out “over-

counting” (where a data point is used more than once by Bob) and “under-counting”

(where a data point is omitted by Bob). To prevent over-counting and under-counting,

we further query for data points outside the original query range, and check consis-

tency between proofs and results of these queries.

The second drawback is the high communication overhead required—Alice has to

send a tag for each location within the query range. In order to lower the communi-

cation complexity, we design a functional encryption scheme by exploiting a special

property of BBG HIBE scheme [BBG05]. Using this functional encryption scheme,

Alice encrypts secret numbers associated with each data point, and sends the result-

ing ciphertexts to Bob during the setup. For each query, from the query range and

the random nonce, Alice can generate a short decryption key. From the decryption

key, Bob can decrypt those ciphertexts to obtain the tags for data points within the

query range as the decrypted values, and learn nothing for data points outside the

range, due to the property of our functional encryption scheme.

CHAPTER 7. INTRODUCTION 118

7.1.1 Contributions

Our main contributions in Part II of this dissertation can be summarized as below:

1. We propose a functional encryption scheme in Chapter 10, by exploiting a spe-

cial property (we call it “polymorphic property”) of the BBG HIBE scheme [BBG05].

Under this functional encryption scheme, given a message Msg and an identity1

(or attribute) ~x, which is a d-dimensional point in domain [1,Z]d (Here Z is

an integer), a ciphertext can be generated using the private2 key. A decryption

key w.r.t. a d-dimensional rectangular range R and a random nonce ρ can also

be derived from the private key. With this decryption key and the ciphertext

for message Msg under identity ~x, the decryption algorithm will output Ωρ·Msg

iff ~x ∈ R, where Ω is a part of key of the functional encryption scheme. The

size3 of a private key is in O(1), the size of a ciphertext is in O(d), and the size

of a decryption key is in O(d log2Z).

2. We prove that the proposed functional encryption scheme is weak-IND-sID-CPA

secure (as defined in Section 10.3), if BBG HIBE scheme [BBG05] is IND-sID-

CPA secure (See Theorem 10.2).

3. We propose a scheme for aggregate count query in Chapter 11 by incorporat-

ing the functional encryption scheme into the preliminary scheme presented in

Chapter 8. The resulting scheme is efficient. For a dataset D with N points

in [1,Z]d and a d-dimensional rectangular query range, round complexity is

one per query, communication overhead is O(d2 log2Z) bits per query, and the

storage overheads on Alice/Bob’s side are O(1) and O(dN), respectively. If the

dataset D is normalized4 [PS85], then Z = N and O(d2 log2Z) is sublinear in

1In our functional encryption scheme, identity ~x alone is insufficient to encrypt a message.
2Unlike [BSW11,O’N10], our functional encryption scheme is a symmetric key encryption system.
3 Since the private key contains O(d) random elements from Z∗p and O(`) random elements from

G̃, its size can be reduced from O(` + d) to O(1) (precisely, O(1) number of secret seeds, and each
seed with length equal to the security parameter λ), using a pseudorandom function.

4For any dataset with size N , one can normalized [PS85] it by sorting the dataset along each
dimension, so that the normalized dataset is a subset of [1, N]d. We remark that such normalization
will not loss generality: queries over the original dataset can be translated into queries over normal-
ized dataset online by Bob and Alice can verify this translation by checking some authentication
tags.

CHAPTER 7. INTRODUCTION 119

N and polynomial in d. To the best of our knowledge, this is the first solution

with worst case communication overhead sublinear in the number of points in

the dataset and with polynomial (in (d,N)) storage overhead on server side,

without using fully homomorphic encryption scheme [Gen09, vDGHV10]. We

compare our result with several previous works in Table 7.1.

4. We prove that the proposed scheme is correct and sound (Theorem 11.1) under

reasonable assumptions (Computational Diffie Hellman assumption, GKEA

and `-wBDHI assumption [BBG05]). We describe our proof strategy in Sec-

tion 11.2 and illustrate it by proving that the preliminary scheme in Chapter 8

is correct and sound. The full proof is in appendix.

5. Our solution for count query leads to efficient solutions that authenticates mul-

tidimensional aggregate min/max/median query or non-aggregate range selec-

tion query, with communication overhead O(d2 log2Z). These extensions are

described in Chapter 12 and performance is listed in Table 7.1.

7.2 Related work

Researches in secure outsourced database focus on two major aspects: (1) privacy (i.e.

protect the data confidentiality against both the service provider and any third party)

for example [HILM02, HIM04, MT06, GZ07], and (2) integrity (i.e. authenticate the

soundness and completeness of query results returned by the service provider) for ex-

ample [DGMS01,MND+04,DGMS03,PJRT05,MNT06,PT08,Sio05,CT09,LHKR06,

XWYM07,ACK08,YPPK09,MSP09,PZM09,GTT08,TYH+09,LHKR10]. In the lat-

ter aspect, a lot of works are conducted for “identity query” [Sio05], i.e. the query

result is a subset of the database. Aggregate range query is arguably more challeng-

ing and only a few works (for example [PT08,TYH+09,LHKR10]) are devoted to the

authentication of aggregate query.

There are roughly four categories of approaches for outsourced database authenti-

cation in the literature [DGMS01,MND+04,DGMS03,PJRT05,MNT06,PT08,Sio05,

CT09, LHKR06, XWYM07, ACK08, YPPK09, MSP09, PZM09, GTT08]. (1) Crypto-

graphic primitives, like collision-resistant hash, (homomorphic and/or aggregatable)

CHAPTER 7. INTRODUCTION 120

digital signature/commitment [MNT06, HHSY06, TYH+09]. (2) Geometry parti-

tion and authenticated data structure [MND+04, CT09, ACK08, MSP09, LHKR06,

LHKR10]. For example, Merkle Hash Tree (“MHT” for short; typically for 1D case)

and variants, KD-tree with chained signature [PT08], R-Tree with chained signa-

ture [CT09], and MHT-like authenticated B-Tree/R-Tree [LHKR10]. (3) Authen-

ticated precomputed partial result, for example, authenticated prefix sum [ACK08,

LHKR10] (the static case solution in [LHKR10]) and authenticated partial sum hier-

archy [PT08]. (4) Inserting and auditing fake tuples [XWYM07].

To the best of our knowledge, the existing few works (e.g. [PT08,TYH+09,LHKR10])

on authentication of aggregate query either only deal with 1D case, or have commu-

nication overhead linear (or even superlinear) w.r.t. the number of data points in the

query range, and are suffering from the “curse of dimensionality”. Even for multidi-

mensional (non-aggregate) range selection query, the communication overhead is still

in O(logd−1N + |S|) (Martel et al. [MND+04], Chen et al. [CMH+08]), where S is

the set of data points within the query range, N is the number of data points in the

dataset, and d is the dimension.

Recently, Gennaro et al. [GGP10] and Chung et al. [CKV10] proposed methods

to authenticate any outsourced (or delegated) polynomial time computable function,

based on fully homomorphic encryption [Gen09, vDGHV10, Gen10]. They [GGP10,

CKV10] also gave a good discussion on why previous techniques (e.g. interactive

proofs, probabilistic checkable proof (PCP), and interactive arguments) are insuffi-

cient for authenticating outsourced function from the performance point of view. If a

function has input size Γ1 and output size Γ2, then both Gennaro et al. [GGP10] and

Chung et al. [CKV10] have communication overhead in Ω(Γ1 + Γ2) to authenticate

correctness of the output of this function, where the hidden constant behind the big-

Ω notation could be huge. The difference between their solutions and our work may

become more clear when authenticating non-aggregate range selection query: Both

Gennaro et al. [GGP10] and Chung et al. [CKV10] will require at least linear commu-

nication overhead Ω(|S|) where S is the set of points within the query range, while

our solution (the extension in Section 12.3) still requires O(d2 log2Z) communication

overhead which is independent on size of S.

CHAPTER 7. INTRODUCTION 121

Shi et al. [SBC+07] proposed a predicate encryption scheme called MRQED (Multi-

dimensional Range Query over Encrypted Data). Under their scheme, given a message

and an identity, which is a d-dimensional point, a ciphertext can be generated. A

short decryption key for a d-dimensional rectangular range can be generated from the

master secret key. From this decryption key and the ciphertext, the original message

can be decrypted, iff the identity point associated with the ciphertext is within the

range. There is a subtle but crucial difference between MRQED scheme and our im-

plementation of functional encryption scheme [BSW11,O’N10,LOS+10,OT10]: After

a successful decryption, MRQED scheme reveals the original message, whereas our

functional encryption scheme reveals only a two-input one-way function value with

the original message and a nonce as inputs. As the nonce plays a crucial role in

preventing replay attack, it is not suitable to adopt MRQED for our problem. On the

other hand, MRQED has its own advantages over our functional encryption scheme,

including that MRQED is a public key encryption scheme and has a stronger security

model.

Several works in verification of integrity of data stored in remote cloud storage

server (e.g. [ABC+07,CX08,SW08a,BJO09a,DVW09,AKK09] and the three schemes

POS1, POS2 and POS3 proposed in Part I of this dissertation) also adopted some

homomorphic and/or aggregatable verification tags to achieve efficient communication

cost.

7.3 Organization

The rest of Part II of this dissertation is organized as follows: Chpater 8 gives a

more detailed overview of our main scheme. Chapter 9 presents the problem formu-

lation and security definition. The new functional encryption scheme is constructed

in Chapter 10. Our main authentication scheme for count query is described and

analyzed in Chapter 11 and its extensions for min/max/median and range selection

queries are given in Chapter 12. The full proof of security properties of the functional

encryption scheme and the authentication scheme is in Appendix A.

Chapter 8

Overview of Main Scheme

In this chapter, we illustrate our main ideas in two parts: (1) The first part presents

a preliminary scheme that authenticates count query. This preliminary scheme is

secure (Theorem 11.2) under Computational Diffie Hellman assumption and GKEA.

However, it requires high communication and computation cost. (2) The second part

describes the technique that reduces the communication and computation cost. In

particular, the reduction is achieved using a functional encryption scheme which is

constructed by exploiting a special property of BBG HIBE scheme [BBG05].

8.1 Preliminary Scheme

Let D ⊂ [1,Z]d be a set of d-dimensional points. Let G be a cyclic multiplicative

group of prime order p and {Fs : [1,Z]d → G}s∈{0,1}λ be a pseudorandom function.

During setup, Alice chooses at random β ∈ Z∗p, θ ∈ G, and s ∈ {0, 1}λ as the

private key. From the private key, Alice generates a tag value tx = (tx,1, tx,2) =

(θFs(x),Fs(x)β) for each data point x ∈ D. Alice also computes a value ∆ =∏
x∈D tx,2. Next, Alice sends dataset D and tag values T = {tx : x ∈ D} to Bob

and deletes everything except ∆ and the private key (β, θ, s) from her storage.

Consider a count query conditional on a range R ⊂ [1,Z]d, which asks for the size

of set D ∩R. Bob is expected to send to Alice a number X as the query result, and

a proof to show that indeed X = |D ∩R| (mod p).

122

CHAPTER 8. OVERVIEW OF MAIN SCHEME 123

To authenticate this query, Alice chooses two random nonces1 ρ and ρ̂, computes

and sends auxiliary messages (called as challenge-message) Φ = {Fs(x)ρ : x ∈ R} and

Φ̂ = {Fs(x)ρ̂ : x ∈ R{} to Bob, where R{ = {x ∈ [1,Z]d : x 6∈ R} is the complement

set of range R. Bob is expected to compute X = |D ∩ R| and X̂ = |D ∩ R{|, and

generate the proof (Ψ1,Ψ2,Ψ3, Ψ̂1, Ψ̂2, Ψ̂3) as below:

Step B1: Bob multiplies all tags tx for point x ∈ D ∩R to obtain Ψ1,Ψ2

Ψ1 ←
∏

x∈D∩R
tx,1 = θX

∏
x∈D∩R

Fs(x); Ψ2 ←
∏

x∈D∩R
tx,2 =

∏
x∈D∩R

Fs(x)β.

Step B2: Bob multiplies all values Fs(x)ρ from the challenge-message Φ for point x ∈ D∩R

to obtain Ψ3:

Ψ3 ←
∏

x∈D∩R
Fs(x)ρ.

Step B3: Bob repeats Step B1 and Step B2 for data points x ∈ D∩R{ using challenge-message

Φ̂ to obtain Ψ̂1, Ψ̂2, Ψ̂3 correspondingly.

Bob sends back (X,Ψ1,Ψ2,Ψ3; X̂, Ψ̂1, Ψ̂2, Ψ̂3) to Alice, and Alice verifies the returned

message using the private key (β, θ, s), the secret random nonces (ρ, ρ̂), and value ∆

in this way:

Step A1: Is (Ψ1,Ψ2) indeed an aggregated multiplication of valid tags?

(
Ψ1

θX

)β
?
= Ψ2.

Step A2: Is Ψ2 computed using only points inside D ∩R?

Ψρ
2

?
= Ψβ

3 .

1Here the secret random nonces prevent Bob from abusing this challenge-message for other
queries.

CHAPTER 8. OVERVIEW OF MAIN SCHEME 124

Step A3: Repeat Step A1 and Step A2 to verify (X̂, Ψ̂1, Ψ̂2, Ψ̂3) using private key and

secret random nonce ρ̂.

Step A4: Is every point counted for exactly once?

Ψ2 · Ψ̂2
?
= ∆. (8.1)

If all of above verifications succeed, Alice accepts that X is the correct query result.

Remark 8

• In the computations of Ψ1, Ψ2 and Ψ3, an adversary (playing the role of Bob)

may try to multiply tags for some points within D ∩R multiple times, and/or

ignore some points within D ∩R. That is, the adversary tries to find integers

µx’s for each point x ∈ D, treat (tµxx,1, t
µx
x,2) as the tag of point x ∈ D in the com-

putations of Ψ1 and Ψ2, treat {Fs(x)ρ·µx : x ∈ D∩R} as the challenge-message

in the computation of Ψ3, and compute the query result X =
∑

x∈D∩R µx. Here

µx > 1 indicates that the point x is over-counted, µx < 1 indicates that the

point x is under-counted, and µx might take negative integer value. By doing

so, the adversary can pass the verifications in Step A1, A2 and A3. However,

if such adversary succeeds in passing Step A4, i.e. he can find integers µx’s, for

each x ∈ D, such that
∏

x∈D t
µx
x,2 = ∆ =

∏
x∈D tx,2 and some µx 6= 1, then he

can solve DLP (Discrete Log Problem).

• The above attack strategy is “restrictive”. A stronger adversary might perfor-

mance something else to pass the verifications. Fortunately, under GKEA, we

can show that: (informally) for any efficient adversary, under-counting and/or

over-counting are the only ways to pass verifications in Step A1, A2 and A3,

with a negligible exception.

• In the preliminary scheme, the size of challenge-message is linear w.r.t. |R|,
which can be very large, leading to large computation and communication cost.

CHAPTER 8. OVERVIEW OF MAIN SCHEME 125

• The second component tx,2 = Fs(x)β in a tag tx is required to deal with adap-

tive adversary: An adversary does not gain additional knowledge from adap-

tive learning, since it can generate challenge-message by itself from {Fs(x)β :

x ∈ D}, and the forged challenge-message is identically distributed as the

challenge-message generated by Alice.

8.2 Deliver challenge-message efficiently and se-

curely

To reduce complexity, Alice needs a way to deliver the information Φ = {Fs(x)ρ : x ∈
R} (actually the subset {Fs(x)ρ : x ∈ D ∩ R} is sufficient to serve the purpose) to

Bob by sending some auxiliary data of much smaller size, and Bob must not know

the value of Fs(x)ρ for point x 6∈ R. We design such delivery method by exploiting a

special property of existing HIBE scheme.

Polymorphic Property. We observe that some (HIBE) encryption scheme (KeyGen,

Enc, Dec), e.g. BBG HIBE scheme [BBG05], satisfies a polymorphic property : From a

pair of keys (pk, sk) ∈ KeyGen(1λ), a plaintext M , an identity id, and a random coin

r, one can efficiently find multiple tuples (pkj, skj,Mj, rj), 1 ≤ j ≤ n, such that for

each 1 ≤ j ≤ n, (pkj, skj) ∈ KeyGen(1λ) is a valid key pair and

Encpk(id,M ; r) = CT = Encpkj(id,Mj; rj).

From the opposite point of view, a ciphertext CT can be decrypted into different

values Mj’s using different decryption keys. We can view these decrypted values Mj’s

as a function of the original plaintext M which is used to produce the ciphertext CT.

Hence, such polymorphic property may lead to a new way to construct functional

encryption schemes [BSW11,O’N10,LOS+10,OT10].

CHAPTER 8. OVERVIEW OF MAIN SCHEME 126

Overview of the Delivery Method. Alice can deliver the challenge-message

{Fs(x)ρ : x ∈ D∩R} in this way: For simplicity, assume the dataset D ⊂ [1,Z] con-

sists of N 1D data points. Each point x in the domain is associated with an identity

ID(x), which corresponds to a leaf node in the identity hierarchy tree of BBG HIBE

scheme. In the setup phase, for each data point xi ∈ D, Alice computes a ciphertext

~ci, which can be considered as encryption of Mi,j under key (pkj, skj), j = 1, 2, 3, . . .

Alice sends these N ciphertexts {~ci : 1 ≤ i ≤ N} to Bob at the end of setup phase.

Later, for a query range R, Alice chooses a random nonce ρ and derives the delegation

key ~δ w.r.t. the set S = {ID(x) : x ∈ R} of identities from the key pair (pkρ, skρ),

and sends ~δ as challenge-message to Bob. With this delegation key, Bob is able to

decrypt ciphertext ~ci to obtain Mi,ρ if xi ∈ D∩R. By carefully choosing parameters,

we may have Mi,ρ = Fs(xi)
ρ as desired.

The tree structure of the identity hierarchy of HIBE scheme facilitates short de-

scription of the delegation key, and thus the challenge-message, which originally con-

tains Z subkeys in the worst case, can now be expressed with only O(logZ) subkeys.

For high dimensional cases, we perform the above procedure for each dimension,

and combines the challenge-messages for all dimensions. The security of this method

can be reduced to the IND-sID-CPA security of the underlying HIBE scheme.

Chapter 9

Formulation

In this chapter, we formalize the problem and security model, and describe the security

assumptions formally.

9.1 Dataset and Query

The dataset D is a set of N d-dimensional points ~x1, ~x2, . . . , ~xN from the domain

[1,Z]d where Z can be a large integer (e.g. 64 bits integer). Let R = [a1, b1] ×
[a2, b2] × . . . × [ad, bd] ⊆ [1,Z]d be a d-dimensional rectangular range. In Part II of

this dissertation, we focus on queries that count the number of points in D ∩R. Let

us define function F :

F (D,R)
def
= |D ∩R| = |D ∩R| mod p,

where p is a large prime. Note that p is exponential in the security parameter λ and

N is polynomial in λ.

We write an integer interval [1, n] = {1, 2, 3, . . . , n} as [n] for abbreviation, where

n is some positive integer.

127

CHAPTER 9. FORMULATION 128

9.2 Security Model

We formulize our problem, as a variant of Verifiable Computation proposed by Gen-

naro et al. [GGP10]. Let us view a query on a dataset as the function F : D× R→
{0, 1}∗, where D is the domain of datasets, R is the set of all possible queries, and the

output of F is represented by a binary string. We define a remote computing protocol

as follows:

Definition 10 (RC) A Remote Computing (RC) protocol for a function F : D ×
R → {0, 1}∗, between Alice and Bob, consists of a setup phase and a query phase.

The setup phase consists of a key generating algorithm KGen and data encoding algo-

rithm DEnc; the query phase consists of a pair of interactive algorithms, namely the

evaluator Eval and the extractor Ext. These four algorithms (KGen,DEnc, 〈Eval,Ext〉)
run in the following way:

Setup Phase

1. Given security parameter λ, Alice generates a key K: K ← KGen(1λ).

2. Alice encodes dataset D ∈ D: (DB,DA) ← DEnc(D, K), then sends DB to

Bob and keeps DA.

Query Phase The query phase consists of multiple query sessions. In each query

session, Alice and Bob interact as below.

1. Alice selects a query R ∈ R.

2. Algorithm Ext(DA,R, K) on Alice’s side, interacts with algorithm Eval(DB)

on Bob’s side to compute (ζ,X, ~Ψ) ← 〈Eval(DB),Ext(DA,R, K)〉, where

ζ ∈ {accept, reject} and ~Ψ is the proof of result X.

If ζ = accept, then Alice accepts that X is equal to F (D,R). Otherwise,

Alice rejects.

We are interested in efficient RC protocol where the sizes of K,DA,DB, and the

communication overhead are all small.

One of the main differences betweenRC model and Verifiable Computation [GGP10]

model is that: RC allows multiple rounds of communication between Alice and Bob

CHAPTER 9. FORMULATION 129

to compute a function value in a query session; in contrast, Verifiable Computation

model [GGP10] allows only one round of communication. Although in Part II of this

dissertation, both the scheme for count query in Section 11.1 and the extension for

range selection query in Section 12.3 requires only one round of communication due

to parallelism, our extensions for min/max/median query in Section 12.1 and Sec-

tion 12.2 require at least two rounds of communication, since dependencies between

different rounds prevent parallelism.

We say a RC protocol is verifiable, if the following conditions hold: (1) Alice

always accepts, when Bob follows the protocol honestly; (2) Alice rejects with o.h.p.

(overwhelming high probability), when Bob returns a wrong result. Here we consider

adversaries, i.e. malicious Bob, who are allowed to interact with Alice and learn

for polynomial number of query sessions, before launching the attack. During the

learning, the adversary may store whatever it has seen or learnt in a state variable.

Definition 11 (VRC) Let λ be the security parameter. We call a RC protocol E =

(KGen,DEnc, 〈Eval,Ext〉) w.r.t. function F : D × R → {0, 1}∗ a Verifiable Remote

Computing (VRC) protocol, if the following two conditions hold:

• correctness: for any D ∈ D, any K ← KGen(1λ) and any R ∈ R, it holds

that 〈Eval(DB),Ext(DA,R, K)〉 = (accept, F (D,R), ~Ψ) for some ~Ψ, where

(DB,DA)← DEnc(D, K).

• soundness: for any adaptive PPT adversary A, the advantage AdvE,A(1λ) ≤
negl(λ),

where AdvE,A(1λ) is defined as below

CHAPTER 9. FORMULATION 130

Experiment ExpEA(1λ)

D← A(viewEA);

K ← KGen(1λ);

(DB,DA)← DEnc(D, K);

loop until A(viewEA) decides to stop

Ri ← A(DB, view
E
A);

(ζi, Xi, ~Ψi)← 〈A(DB, view
E
A),Ext(DA,Ri, K)〉;

R← A(DB, view
E
A);

(ζ,X, ~Ψ)← 〈A(DB, view
E
A),Ext(DA,R, K)〉;

Output (ζ,X, ~Ψ, viewEA,D,R).

AdvE,A(1λ)
def
= Pr

[
(ζ,X, ~Ψ, viewEA,D,R)← ExpEA(1λ) :

ζ = accept ∧ X 6= F (D,R)

]
.

The probability is taken over all random coins used by related algorithms, negl(·) is

some negligible function, and viewEA is a state variable1 describing all random coins

chosen by A and all messages A can access during previous interactions with E.

9.3 Assumptions

Throughout Part II of this dissertation, let p be a λ bits safe prime, and e : G×G→ G̃
be a bilinear map, where G and G̃ are two cyclic multiplicative groups of order p.

Assumption 4 (Computational Diffie Hellman Assumption [DH76]) For any

PPT algorithm A, it holds that

Pr
[
A(g, ga, gb) = gab

]
≤ ν1(λ),

where g is chosen at random from G̃, a and b are chosen at random from Z∗p, and

ν1(·) is some negligible function.

1The adaptive adversary A may keep updating this state variable.

CHAPTER 9. FORMULATION 131

The assumption GKEA is an extension of KEA1 [Dam92,HT98,BP04b,Kra05,

Den06] and KEA3 [BP04a], and proposed by Wu and Stinson [WS07]. Roughly,

GKEA assumption can be described as below:

For any adversary A that takes input {(ui, uβi) : 1 ≤ i ≤ m} and returns (U1, U2)

with Uβ
1 = U2, there exists an “extractor” Ā, which given the same inputs as A

returns {µi : 1 ≤ i ≤ m}, such that
∏m

i=1 u
µi
i = U1.

Assumption 5 (Generalized KEA [Dam92,BP04a,WS07,Gro10]) Let A and

Ā be two algorithms. We define the GKEA-advantage of A against Ā as

AdvGKEA
A,Ā (λ)

def
= Pr

Wm = {(ui, uβi) : i ∈ [m], ui

$←− G̃, β $←− Z∗p}
(U1, U2)← A(Wm; r);

(µ1, µ2, . . . , µm)← Ā(Wm; r, r̄) :

Uβ
1 = U2 ∧ U1 6=

∏m
j=1 u

µj
j

 , (9.1)

where the probability is taken over all random coins used and with m fixed (Here the

notation
$←− denotes uniformly randomly sampling from a set. E.g. the expression

x
$←− S means that x is uniformly randomly chosen from the set S). For any PPT

algorithm A (called as adversary), there exists PPT algorithm Ā (called as extractor),

such that the GKEA-advantage of A against Ā is upper bounded by some negligible

function ν2(λ), i.e. AdvGKEA
A,Ā (λ) ≤ ν2(λ), where m is polynomial in λ.

Remark 9

• GKEA is a natural extension of KEA1 and KEA3, in the sense that GKEA⇒
KEA3⇒ KEA1. Abe and Fehr [AF07] proved KEA1 and KEA3 in generic

group model. Following their techniques, GKEA can be proved in generic group

model.

• If ui = gx
i

for each i with some random g and x, then Assumption 5 will become

the q-PKE assumption proposed by Groth [Gro10].

Furthermore, the (Decision) `-wBDHI Assumption [BBG05] is required for the

IND-sID-CPA security of the underlying BBG HIBE scheme.

Chapter 10

Functional Encryption Scheme

Recall that the preliminary scheme in Chapter 8 requires large communication and

computation cost. In order to reduce such cost, we construct a functional encryp-

tion [BSW11, O’N10] scheme by exploiting the polymorphic property of BBG HIBE

scheme [BBG05], following the overview given in Chapter 8.

10.1 Polymorphic Property of BBG HIBE Scheme

We observe that the BBG HIBE scheme [BBG05] satisfies the polymorphic property:

An encryption of a message M can be viewed as the encryption of another message M̂

under different key. Precisely, let CT and ĈT be defined as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(

Ωs ·M, gs,
(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`,Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(

Ωsz · M̂, ĝsz,
(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`,Ω = e(g1, g2)), ̂master-key = gαz2

(10.1)

where ` is the maximum depth of the HIBE scheme, k ≤ ` is the length of identity

id, M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 , ĥi = hz

−1 mod p
i for 1 ≤ i ≤ `

and identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k

. To be self-contained, the description of this

132

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 133

BBG HIBE scheme is given in Appendix A.1 (on page 174). One can verify the above

equality easily.

10.2 Define Identities based on Binary Interval Tree

An identity is a sequence of elements from Z∗p. To apply HIBE scheme, we intend

to construct two mappings to associate identities to integers or integer intervals: (1)

ID(·) maps an integer x ∈ [Z] into an identity ID(x) ∈
(
Z∗p
)`

, where ` = dlogZe
is the height of identity hierarchy tree of the BBG HIBE scheme. (2) IdSet(·) maps

an integer interval [a, b] ⊆ [Z] into a set of O(`) identities, where each identity is a

sequence of at most ` elements from Z∗p. The two mappings ID and IdSet are required

to satisfy the property: For any x ∈ [a, b] ⊆ [Z], there is a unique identity id in the set

IdSet([a, b]), such that identity id is a prefix of identity ID(x). If x 6∈ [a, b], then there

is no such identity id in IdSet([a, b]). For each dimension ι ∈ [d], we will construct

such mappings IDι and IdSetι using a binary interval tree [SBC+07]. The resulting

mappings are made public.

Binary Interval Tree. The binary interval tree is constructed as below: First,

we build a complete ordered binary tree with 2` leaf nodes. Next, we associate an

integer interval to each tree node in a bottom-up manner: (1) Counting from the

leftmost leaf, the j-th leaf is associated with interval [j, j]; (2) For any internal node,

the associated interval is the union of the two intervals associated to its left and right

children respectively. As a result, the interval associated to the root node is [1, 2`].

An example of binary interval tree with size 8 is showed in Figure 10.1.

Constructions of Mappings IDι and IdSetι for dimension ι. Let H : Z2`+1 ×
Z2`+1 × [d] → Z∗p be a collision resistant hash function. Let (v1, v2, . . . , vm) be the

path from the root node v1 to the node vm in the binary interval tree. We associate

to node vm the identity (H(a1, b1, ι), . . . ,H(am, bm, ι)) ∈
(
Z∗p
)m

, where [aj, bj] is the

interval associated to node vj, 1 ≤ j ≤ m.

For any x ∈ [Z], we define IDι(x) as the identity associated to the x-th leaf node

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 134

(counting from the left). For any interval [a, b] ⊆ [Z], we find the minimum set {vj :

vj is a tree node, 1 ≤ j ≤ n} such that the intervals associated to vj’s form a partition

of [a, b], and define IdSetι([a, b]) as the set {idj : idj is the identity associated to node vj,

1 ≤ j ≤ n}. One can verify that the newly constructed mappings IDι and IdSetι sat-

isfy the property mentioned in the beginning of Section 10.2. Furthermore, the set

IdSetι([a, b]) contains O(`) identities and each identity is a sequence of at most `

elements from Z∗p.

[1,1] [2,2]

[3,4]

[3,3] [4,4] [5,5] [6,6] [7,7] [8,8]

[5,6] [7,8][1,2]

[5,8][1,4]

[1,8]

Figure 10.1: Binary Interval Tree with 8 leaf nodes.

10.3 Construction of Functional Encryption Scheme

Let (Setup, KeyGen, Encrypt, Decrypt) be the BBG Hierarchical Identity Based Encryp-

tion (HIBE) scheme proposed by Boneh, Boyen and Goh [BBG05] (the description

of this scheme is in Appendix A.1 on page 174). Based on this HIBE scheme, we

construct a functional encryption scheme FE = (f Setup, f Enc, f KeyGen, f Dec, f Mult)

as below.

f Setup(1λ, d,Z) : security parameter λ, dimension d, maximum integer Z; the

domain of points is [Z]d

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 135

1. Let ` = dlogZe. Run algorithm Setup(`, λ) to obtain bilinear groups (p,G, G̃, e),
public parameter params = (g, g1, g2, g3, h1, . . . , h`,Ω = e(g1, g2)) and master

private key master-key = gα2 , such that p is a λ bits prime, G, G̃ are cyclic

multiplicative groups of order p, e : G × G → G̃ is a bilinear map, g is a

generator of G, α ∈ Zp, g1 = gα ∈ G, and g2, g3, h1, . . . , h` ∈ G.

2. Let IDι and IdSetι, ι ∈ [d], be the mappings as in Section 10.2.

3. Choose d random elements τ1, . . . , τd from Z∗p and let ~τ = (τ1, . . . , τd).

4. Let pk = (p,G, G̃, e,Ω) and sk = (pk, params, master-key, ~τ). Make IDι’s and

IdSetι’s public and output (pk, sk).

f Enc(Msg, ~x, sk) : message Msg ∈ Z∗p, d-dimensional point ~x

1. Treat the d-dimensional point ~x as (x1, . . . , xd) ∈ [Z]d; recall that the private

key sk is (pk, params,master-key, ~τ), where ~τ = (τ1, . . . , τd).

2. Choose d random elements s1, . . . , sd from Zp with constraint Msg = −
∑d

j=1 sj ·
τj (mod p).

3. Choose d random elements σ1, . . . , σd from G̃ with constraint
∏d

j=1 σj = Ω−
∑d
j=1 sj .

4. For each j ∈ [d], encrypt σj under identity IDj(xj) with random coin sj to

obtain ciphertext ~cj as follows

~cj ← Encrypt(params, IDj(xj), σj; sj). (10.2)

5. Output ciphertext CT = (~c1, . . . ,~cd).

f KeyGen(R, ρ, sk) : d-dimensional rectangular range R, function key ρ ∈ Z∗p

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product A1×
A2 . . . ×Ad, where Aj ⊆ [Z] for each j ∈ [d]; recall that the private key sk is

(pk, params,master-key, ~τ), where ~τ = (τ1, . . . , τd).

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 136

2. For each dimension j ∈ [d], generate a set δj in this way:

(a) For each identity id ∈ IdSetj(Aj), generate the private key did, using algo-

rithm KeyGen and taking the value master-keyρτj as the master key.

(b) Set δj ← {did : id ∈ IdSetj(Aj)}.

3. Output delegation key ~δ = (δ1, δ2, . . . , δd).

f Dec(CT, ~x,R, ~δ, pk) : ciphertext CT, d-dimensional point ~x, d-dimensional

rectangular range R, delegation key ~δ

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product A1×
A2 . . . ×Ad, where Aj ⊆ [Z] for each j ∈ [d]. Let us write the ciphertext CT

as (~c1, . . . ,~cd), and the d-dimensional point ~x as (x1, . . . , xd).

2. For each dimension j ∈ [d], generate t̃j in this way: If xj 6∈ Aj, then output ⊥
and abort. Otherwise, do the followings:

(a) Find the unique identity id∗ ∈ IdSetj(Aj) such that id∗ is a prefix of identity

IDj(xj).

(b) Parse ~δ as (δ1, . . . , δd) and find the private key did∗ ∈ δj = {did : id ∈
IdSetj(Aj)} for identity id∗.

(c) Generate the private key dj for the identity IDj(xj) from private key did∗ ,

using algorithm KeyGen.

(d) Decrypt ~cj using algorithm Decrypt with decryption key dj, and denote

the decrypted message as t̃j.

3. Output t̃ =
∏

1≤j≤d t̃j ∈ G̃.

f Mult(CT′, y, pk) : ciphertext CT′, y ∈ G̃

1. Let us write the ciphertext CT′ as (~c′1, . . . ,~c
′
d).

2. Choose d random elements η1, . . . , ηd from G̃ with constraint
∏d

j=1 ηj = y ∈ G̃.

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 137

3. For each dimension j ∈ [d]: parse ~c′j as (A,B,C) and set ~cj = (A · ηj, B, C).

4. Output ciphertext CT = (~c1, . . . ,~cd).

Note: Both ~c′j and ~cj are valid BBG ciphertexts for different plaintexts under

the same identity.

10.4 The Constructed Functional Encryption Scheme

is Correct and Secure

In this section, we analyze the correctness and security of the newly constructed

functional encryption scheme.

10.4.1 Correctness

Let us define a key-ed function family {fρ : Z∗p → G̃}ρ∈Z∗p as below: Let Ω ∈ G̃ be as

in f Setup of Section 10.3.

f1(Msg) = ΩMsg; ∀ρ ∈ Z∗p, fρ(Msg) = f1(Msg)ρ ∈ G̃. (10.3)

Lemma 10.1 (FE is correct) The functional encryption scheme FE described in

Section 10.3 satisfies these properties:

(a) For any public-private key pair (pk, sk) ← f Setup(1λ, d,Z), for any message

Msg ∈ Z∗p, for any point ~x ∈ [Z]d, for any rectangular range R ⊆ [Z]d, for any

ρ ∈ Z∗p, if CT← f Enc(Msg, ~x, sk) and ~δ ← f KeyGen(R, ρ, sk), then

f Dec(CT, ~x, R, ~δ, pk) =

{
fρ(Msg) (if ~x ∈ R)

⊥ (otherwise)
(10.4)

(b) For any public-private key pair (pk, sk) ← f Setup(1λ, d,Z), for any message

Msg ∈ Z∗p, for any point ~x ∈ [Z]d, for any rectangular range R ⊆ [Z]d, for any

ρ ∈ Z∗p, for any y ∈ G̃, if CT ← f Enc(Msg, ~x, sk) and ~δ ← f KeyGen(R, ρ, sk),

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 138

then

f Dec(f Mult(CT, y, pk), ~x, R, ~δ, pk) =

{
y · fρ(Msg) (if ~x ∈ R)

⊥ (otherwise)

(10.5)

(The proof is in Appendix A.3.)

10.4.2 Security

We formulize the security requirement of our functional encryption scheme by mod-

ifying the IND-sID-CPA security game [BBG05]. The resulting weak-IND-sID-CPA

security game between an adversary A and a challenger C is defined as below:

Commit: The adversary A chooses the target point ~x∗ from the space [Z]d and

sends it to the challenger C.
Setup: The challenger C runs the setup algorithm f Setup and gives A the resulting

system parameters pk, keeping the secret key sk to itself.

Challenge: The challenger C chooses two plaintexts Msg0,Msg1 at random from the

message space Z∗p, and chooses a random bit b ∈ {0, 1}. C sets the challenge ciphertext

to CT = f Enc(Msgb, ~x
∗, sk), and sends (CT, f1(Msg0), f1(Msg1)) to the adversary A.

Learning Phase: The adversary A adaptively issues queries to the challenger C,
where each query is one of the following:

• Delegation key query (R, ρ), where ~x∗ 6∈ R: In response to this query, C runs

algorithm f KeyGen(R, ρ, sk) to generate the delegation key ~δ, and sends ~δ to

A.

• Anonymous delegation key query (R): In response to this query, C chooses ρ

at random from the space Z∗p and runs algorithm f KeyGen(R, ρ, sk) to generate

the delegation key ~δ, and sends ~δ to A.

• Encryption query (Msg, ~x): In response to this query, C runs f Enc(Msg, ~x, sk)

to obtain a ciphertext, and sends the ciphertext to A.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins if b = b′.

CHAPTER 10. FUNCTIONAL ENCRYPTION SCHEME 139

We refer to the above adversary A as a weak-IND-sID-CPA adversary. We define

the advantage of the adversary A in attacking the scheme FE as

Advweak-IND-sID-CPA
FE,A =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

Theorem 10.2 If the BBG HIBE scheme is IND-sID-CPA secure (as defined in [BBG05]),

then the functional encryption scheme FE constructed in Section 10.3 is weak-IND-

sID-CPA secure. That is, there is no PPT adversary A that can win the weak-IND-

sID-CPA game against the scheme FE with non-negligible advantage Advweak-IND-sID-CPA
FE,A .

(The more detailed statement of this theorem and its proof appear in Appendix A.4

on page 179).

Most of previous functional encryption schemes (e.g. attribute-based encryp-

tion [SW05], and predicate encryption [KSW08]), if not all, allow the decryptor to

obtain the original plaintext Msg in “good” case (e.g. if the attribute of plaintext

and/or the decryption key satisfy the designated predicate) from a ciphertext of Msg,

and nothing otherwise. In contrast, our functional encryption scheme FE only allows

the decryptor to obtain f1(Msg)ρ in “good” case, from a ciphertext of Msg, where

f1 is a one-way function. Unlike [BSW11, O’N10], our functional encryption scheme

is a symmetric key system. Our security formulation is weaker than previous works

(e.g. [BSW11,O’N10]), but it is sufficient for our main result in Theorem 11.1.

Chapter 11

Authenticating Aggregate Count

Query over Multidimensional

Outsourced Dataset

In this chapter, we propose an authentication scheme for aggregate count query in

Section 11.1. We analyze the proposed scheme in security aspect in Section 11.2 and

in performance aspect in Section 11.3.

11.1 The Main Construction

By incorporating the newly constructed functional encryption scheme FE into the

preliminary scheme presented in Chapter 8, we construct a RC protocol E = (KGen,

DEnc, 〈Eval,Ext〉) as below, to authenticate aggregate count query over multidimen-

sional dataset.

(Alice) KGen(1λ):

Step 1: Run f Setup(1λ) to obtain public/private key pair (pk′, sk), where pk′ =

(p,G, G̃, e,Ω). Set pk = (p,G, G̃, e).
Note: e is a bilinear map e : G × G → G̃, Ω ∈ G̃, and both G and G̃ are

multiplicative groups of prime order p.

140

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 141

Step 2: Choose β, γ at random from Z∗p, and θ at random from G̃. Let K =

(pk′, sk, β, γ, θ).

Step 3: Output (K, pk).

(Alice) DEnc(D;K):

Step 1: Dataset D ⊂ [Z]d consists of N points ~x1, ~x2, . . . , ~xN . Choose N random

elements W1, . . . ,WN from Z∗p independently and N random elements v1, . . . , vN

from G̃ independently.

Step 2: For each i ∈ [N], generate a tag ~ti ∈ G̃3:

~ti ←
(
θvi, v

β
i , wi = f1(Wi)

)
. (11.1)

Note: Alice can evaluate functions {fρ(·)}ρ∈Z∗p, since Alice has Ω ∈ G̃.

Step 3: For each i ∈ [N]:

(a) Encrypt message Wi under point ~xi: CT′i ← f Enc(Wi, ~xi, sk);

(b) Apply the homomorphic property of FE to attach vγi to ciphertext:

CTi ← f Mult(CT′i, v
γ
i , pk

′).

Step 4: Send DB =
(
D, T = {~ti : i ∈ [N]}, C = {CTi : i ∈ [N]}, pk

)
to Bob, and

keep only key K and DA =
(
N, d,∆ =

∏
i∈[N] v

β
i

)
in local storage.

(Alice, Bob) ProVer = 〈Eval (DB) , Ext (DA, R, K)〉: DA = (N, d,∆), DB = (D,T,C, pk)

Precondition: The query range R ⊂ [Z]d is a rectangular range.

Step 1: Alice partitions the complement range R{ into 2d rectangular ranges {R` ⊂
[Z]d : ` ∈ [1, 2d]}, and sets R0 = R.

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 142

Step 2: For 0 ≤ ` ≤ 2d, Alice and Bob invokes CollRes on range R`. Denote the

output as (ζ`, X`,Ψ
(`)
2).

Step 3: Alice sets ζ = accept, if the following equalities hold

∀0 ≤ ` ≤ 2d, ζ`
?
= accept,

∏
0≤`≤2d

Ψ
(`)
2

?≡ ∆; (11.2)

otherwise sets ζ = reject. Alice outputs (ζ,X0,∆).

(Alice, Bob) CollRes =
〈
Ẽval (DB) , Ẽxt (DA, R, K)

〉
: DA = (N, d,∆), DB = (D,T,C, pk)

Precondition. The query range R ⊂ [Z]d is a rectangular range.

Step A1: (Alice’s first step) Alice chooses a random nonce ρ from Z∗p and runs al-

gorithm f KeyGen to generate a delegation key ~δ w.r.t. (R, ρ): ~δ ← f KeyGen(R,

ρ, sk). Alice sends (R, ~δ) to Bob, where ~δ will be treated as the challenge-message.

Step B1: (Bob’s first step) Bob computes the query resultX and proof (Ψ1,Ψ2,Ψ3,Ψ4)

as follows

X ← |D ∩R| ; (Ψ1,Ψ2,Ψ3)←
⊗

~xi∈D∩R

~ti; Ψ4 ←
∏

~xi∈D∩R

f Dec(CTi, ~xi,R, ~δ, pk).

(11.3)

Bob sends (X,Ψ1,Ψ2,Ψ3,Ψ4) to Alice.

Note: For ~xi ∈ D∩R, f Dec(CTi, ~xi,R, ~δ, pk) is supposed to output vγi f1(Wi)
ρ =

vγi w
ρ
i ; the operator

⊗
denotes component-wise multiplication of vectors of the

same dimension.

Step A2: (Alice’s second step) Let Λ← Ψ1

θX
. Alice sets ζ = accept, if the following

equalities hold

Λβ ?
= Ψ2, ΛγΨρ

3
?
= Ψ4. (11.4)

Otherwise sets ζ = reject. Alice outputs (ζ,X,Ψ2).

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 143

Remark 10

1. To understand the verifications in the interactive algorithm CollRes, one may

consider a homomorphic tag function Tag defined as below: Let y be the input,

K = (β, γ, θ) be the key, and v, w be random coins.

TagK(y; v, w) = (θyv, vβ, w, vγwρ);∏
i

TagK(yi; vi, wi) = TagK

(∑
i

yi;
∏
i

vi,
∏
i

wi

)
.

Note that the first three component of TagK(1; vi, wi) are just the three com-

ponents of vector ~ti generated in Equation (11.1), and the fourth component

vγwρ is the output of f Dec(CTi, ~xi,R, ~δ, pk) w.r.t. the random nonce ρ (i.e.

~δ ← f KeyGen(R, ρ, sk)). In the algorithm CollRes, Bob computes the product

of Tag values of data points within the query range as the proof of the query

result X. Next, Alice verifies whether the proof (Ψ1,Ψ2,Ψ3,Ψ4) is a valid Tag

value for X, with key K and without knowing the values of random coins vj’s

and wj’s.

2. A simple alternative construction of Tag is as follows, as in the preliminary

scheme in Chapter 8:

Tag′K(y; v) = (θyv, vβ, vρ),

where vρ is the output of f Dec. However, we encounter difficulty in proving

the security of the constructed scheme if we adopt Tag′. Thus we introduce a

new random coin w and change Tag′ to Tag. It is not clear whether such ad-

ditional component plays a crucial role in achieving security or simply helps

in simplifying the proof. The role of the additional random coin wi is as fol-

lows: In our proof, given the first two components {(θyivi, vβi) : i ∈ [N]} of all

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 144

tag values, a simulator can simulate Alice in our scheme. Next, the simula-

tor invokes a malicious Bob to interact with Alice to produce a forgery. For

the alternative construction with Tag′, to simulate DEnc, the simulator has to

find a ciphertext for some message Wi ∈ Z∗p, such that f1(Wi) = ΩWi = vβi ,

which could be infeasible due to DLP (Discrete Log Problem). In our con-

struction with Tag, since the additional term wi is independent on the first two

components of tag ~ti, the simulator can choose Wi freely, and generate wi ←
f1(Wi) and the ciphertext CTi ← f Mult

(
f Enc (Wi, ~xi, sk) , vβ·γ

′

i , pk
)

where

γ′ ∈ Z∗p is randomly chosen. Consequently, if ~xi ∈ R, then by Lemma 10.1,

f Dec (CTi, ~xi,R, f KeyGen(R, ρ, sk), pk) = vβγ
′

i fρ(Wi) = vγi w
ρ
i as desired (taking

γ as βγ′). Thus the simulation of DEnc can be done.

3. To ensure completeness and prevent over-counting or under-counting, we need

to run CollRes on the complement query range R{. Since our functional encryp-

tion scheme FE only supports high dimensional rectangular ranges, we have to

divide range R{ into multiple high dimensional rectangular ranges, and then run

CollRes on each of them.

4. The (2d+ 1) invocations of CollRes can be executed in parallel. As a result, the

round complexity of our scheme is exactly 1.

5. In Step 2 of ProVer, in the extreme case that R` = ∅, Alice can save the

execution of CollRes on range R`, since Alice can predict the genuine result

(ζ` = accept, X` = 0,Ψ1 = Ψ2 = Ψ3 = Ψ4 = 1 ∈ G̃).

6. The complement set of rectangular range [a1, b1]× [a2, b2]× . . .× [ad, bd] ⊂ [Z]d

can be partitioned into 2d number of rectangular ranges: [a1, b1]× [a2, b2]× . . .×
[1, a` − 1] and [a1, b1]× [a2, b2]× . . .× [b` + 1,Z], ` ∈ [d].

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 145

11.2 Security Analysis

11.2.1 Our main theorem

Theorem 11.1 (Main Theorem of Part II) Suppose Computational Diffie-Hellman

Assumption 4 and GKEA Assumption 5 hold, and BBG [BBG05] HIBE scheme is

IND-sID-CPA secure. Then the RC protocol E = (KGen,DEnc,ProVer) constructed in

Section 11.1 is VRC w.r.t. aggregate count function F (·, ·), where F (·, ·) is defined

in Section 9.1 (on page 127) and VRC (Verifiable Remote Computing protocol) is

defined in Definition 11 (on page 129). Namely, E is correct and sound w.r.t.

multidimensional aggregate count query.

The full proof is in appendix. In this section, we will brief the proof strategy

for the main theorem, and prove the security of the preliminary scheme given in

Chapter 8 as an illustration of our proof strategy.

11.2.2 Overview of Proof of Main Theorem

To process a query, our scheme (particularly the algorithm ProVer) invokes (2d +

1) instances of interactive algorithm CollRes. In each instance of CollRes, Bob is

supposed to return a 5-tuple (X,Ψ1,Ψ2,Ψ3,Ψ4) where X is the query result and

(Ψ1,Ψ2,Ψ3,Ψ4) is the proof, and Alice will verify whether the proof is valid w.r.t.

the query result. Furthermore, after all of (2d+1) invocations, Alice will perform one

additional verification (equation (11.2)) to ensure completeness and prevent over-

counting or under-counting. In order to fool Alice with a wrong query result, an

adversary has to provide a valid 5-tuple for each invocation of CollRes and pass the

equation (11.2). Therefore, an adversary against E = (KGen,DEnc,ProVer) is also an

adversary against Ẽ = (KGen,DEnc,CollRes).

We consider various types of PPT adversaries against E or Ẽ , which interacts with

Alice by playing the role of Bob and intends to output a wrong query result and a

forged but valid proof:

• Type I adversary: This adversary is not confined in any way in its attack

strategy and produces a 5-tuple (X,Ψ1,Ψ2,Ψ3,Ψ4) on a query range R.

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 146

• Type II adversary: A restricted adversary which can produce the same forgery1

from the same input as Type I adversary, and can find N integers2 µi’s, 1 ≤
i ≤ N , such that Ψ2 =

∏
i∈[N]

(
vβi

)µi
, where β and vi’s are as in Section 11.1.

• Type III adversary: The same as Type II adversary, with additional constraint:

µi = 0 for each ~xi ∈ D ∩R{.

• Type IV adversary: The same as Type III adversary, with additional constraint:

µi = 1 for each ~xi ∈ D ∩R.

Note that the Type II (or Type III, Type IV) adversary explicitly outputs {µ1, . . . , µN},
and implicitly outputs (X,Ψ1,Ψ2,Ψ3,Ψ4) which is exactly the output of the corre-

sponding Type I adversary. This is similar to the relationship between KEA extractor

and KEA adversary.

Basically, our proof framework is like this:

• Lemma A.2 (on page 188): The existence of Type I adversary implies the ex-

istence of Type II adversary, under GKEA Assumption 5, where Type I ad-

versary is a counterpart of adversary A in GKEA and Type II adversary is a

counterpart of the extractor Ā in GKEA.

• Theorem A.3 (on page 192): If there exists a Type II adversary which is not

in Type III, then there exists a PPT algorithm to break the weak-IND-sID-CPA

security of the functional encryption scheme FE.

• Theorem A.4 (on page 200): If there exists a Type III adversary which is not

in Type IV, then there exists a PPT algorithm to break Discrete Log Problem.

• (Part of)Theorem 11.1 (on page 204): If there exists a Type IV adversary which

breaks our scheme, then there exists a PPT algorithm to break Assumption 4.

1This is possible, if the Type II adversary just invokes Type I adversary as a subroutine using
the same random coin.

2Note that µi can take negative integer value, and µi > 1 (µi < 1, respectively) corresponds to
the case of over-counting (under-counting, respectively) point ~xi.

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 147

Informally, by combining all together, Theorem 11.1 states that if there exists a Type

I adversary which outputs result X and a valid proof, then X has to be equal to the

correct query result with o.h.p, under related computational assumptions. Note that

Lemma A.2 and Theorem A.3 focus on the partial scheme Ẽ and Theorem A.4 and

Theorem 11.1 focus on the whole scheme E .

The structure of our proof or the relationships among all assumptions, lemmas

and theorems are shown as below. Note that the proof of correctness (Lemma 10.1)

does not rely on any computational assumption.

Assumption 4

BBG is IND-sID-CPA secure [BBG05]⇒ Theorem 10.2

Assumption 5⇒ Lemma A.1⇒ Lemma A.2

⇒ Theorem A.3

Assumption 4⇒ DLP Assumption

⇒ Theorem A.4

Assumption 4

Lemma 10.1

⇒ Theorem 11.1

11.2.3 The Preliminary Scheme is Secure

In this subsection, we prove that the preliminary scheme described in Chapter 8 is

secure, following the proof framework in Section 11.2.2. This proof sketch serves as

an illustration of our proof strategy and as a warm up of our full proof for the main

scheme in appendix.

Theorem 11.2 Suppose Assumption 4 and Assumption 5 hold for the cyclic multi-

plicative group G of order p and Fs(·) is a random oracle. The preliminary scheme

described in Chapter 8 is a VRC w.r.t. function F (·, ·) as defined in Section 9.1,

under Definition 11. Namely, the preliminary scheme is correct and sound w.r.t. the

aggregate count function F .

Proof sketch of Theorem 11.2: The correctness part is straightforward. We just

focus on soundness.

Part I: The existence of Type I adversary implies the existence of Type II adversary,

under GKEA Assumption 5. Suppose there exists Type I adversary B against the

preliminary scheme. We try to construct a Type II adversary B̄ based on GKEA

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 148

Assumption. We follow the proof framework for the statement that KEA3 implies

KEA1 by Bellare et al. [BP04a]. First, we construct a GKEA adversary A1 based

on the Type I adversary B:

Construction of GKEA adversary A1 based on the Type I adversary B

1. The input is {(ui, uβi) : ui ∈ G, 1 ≤ i ≤ m}, where β ∈ Zp is unknown.

2. Choose two independent random elements R1, R2 ∈ G. There exist some unknown

θ, v0 ∈ G, such that R1 = θv0, R2 = vβ0 .

3. Let D = {x1, x2, . . . , xm+1} ⊂ [Z]d be the dataset. Let um+1 = 1. Define function

Fs: For any xi ∈ D, Fs(xi) = uiv0; for any x ∈ [Z]d \D, choose zx ∈ Z∗p at random

and set Fs(x) = uzx1 . Note that Fs(x)β still can be computed, although β is unknown.

4. Invoke the preliminary scheme (Alice’s part) with parameters β, θ and function Fs.

Note that tag ti = (θFs(xi),Fs(xi)
β) = (uiR1, u

β
i R2) still can be computed without

knowing the values of θ, β,Fs(xi).

5. Invoke the adversary B (Bob’s part) to interact with Alice. For any query R made by

B, generate challenge-message from {Fs(x)β} in this way: choose ρ′ ∈ Z∗p at random,

and send {Fs(x)βρ
′

: x ∈ R}. Note the actual random nonce ρ = βρ′ is unknown.

6. Obtain output (X,Ψ1,Ψ2,Ψ3) from B, and output
(

Ψ1

RX1
, Ψ2

RX2

)
.

If the adversary B’s output (X,Ψ1,Ψ2,Ψ3) can pass Alice’s verification step 1, i.e.(
Ψ1

θX

)β
= Ψ2, then the GKEA adversary A1’s output is valid:

(
Ψ1

RX
1

)β
=

Ψβ
1

θXβvXβ0

=
Ψ2

vXβ0

=
Ψ2

RX
2

.

By GKEA Assumption, there exists an extractor Ā1, which outputs {µi : 1 ≤ i ≤ m}
from the same input3 of A, such that Ψ2

RX2
=
∏m

i=1 u
βµi
i . Then we can construct

an adversary B2 based on Ā1 which just outputs {µi : 1 ≤ i ≤ m + 1}, where

3Including the random coin.

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 149

µm+1 = X−
∑m

i=1 µi mod p. We conclude that B2 is a Type II adversary against the

preliminary scheme, since

m+1∏
i=1

Fs(xi)
βµi = Fs(xm+1)βµm+1

m∏
i=1

Fs(xi)
βµi = R

X−
∑m
i=1 µi

2

m∏
i=1

(
uβi R2

)µi
= RX

2

m∏
i=1

uβµii = Ψ2.

Part II: If there exists a Type II adversary which is not in Type III, then there exists

a PPT algorithm to break Computational Diffie Hellman Assumption 4.

Construction of adversary A2 against Computational Diffie Hellman Problem

1. The input is (v, va, u) ∈ G3 where a ∈ Zp. The goal is to find ua.

2. Define function Fs: For each xi ∈ D, choose zi at random from Zp and set Fs(xi) =

vzi ∈ G. For each xi ∈ [Z]d\D, choose zi at random from Zp and set Fs(xi) = vzi ∈ G.

3. Choose i∗ from [N] at random and redefine Fs(xi∗): Fs(xi∗) = u.

4. Invoke the preliminary scheme (Alice’s part) with function Fs and invoke the Type II

adversary (Bob’s part) to interact with Alice. The adversary’s adaptive queries can

be answered in the same way as in Step 5 of algorithm A1.

5. Let R be the adversary’s challenging query range. If xi∗ ∈ R, abort and fail. Other-

wise, generate challenge-message with random nonce ρ = a: the value Fs(xi)
a = (va)zi

for xi ∈ R can be computed, although a is unknown.

6. Let (X,Ψ1,Ψ2,Ψ3, µ1, . . . , µN) be the output of adversary. If µi∗ 6= 0, then compute

ϕ as below and output ϕµ
−1
i∗ (This is the success case).

ϕ← Ψ3∏i 6=i∗
1≤i≤N Fs(xi)aµi

Otherwise, abort and fail.

Let S# = {i : µi 6= 0, xi ∈ D ∩ R{}. Since the adversary is not in Type III,

S# 6= ∅. It is easy to verify that, in the success case, i.e. when the adversary’s output

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 150

pass Alice’s verifications and Ψ2 =
∏N

i=1 Fs(xi)
βµi and i∗ ∈ S#, then the output

ϕµ
−1
i∗ = Fs(xi∗)

a = ua. Since the index i∗ is uniformly random in [N] and tags for

all N points are identically distributed, there is non-negligible probability that the

success case will be reached, and thus the value of ua can be found.

Part III: If there exists a Type III adversary which is not in Type IV, then there

exists a PPT algorithm to break Discrete Log Assumption.

Construction of adversary A3 against Discrete Log Problem

1. The input is (v, va) ∈ G2. The goal is to find a ∈ Zp.

2. Define function Fs: For each xi ∈ D, choose yi, zi at random from Zp and set Fs(xi) =

(va)yi · vzi ∈ G; otherwise, set Fs(x) to a random number in G.

3. Invoke the preliminary scheme (Alice’s part) with function Fs and invoke the Type

III adversary (Bob’s part) to interact with Alice. The adversary’s adaptive queries

can be answered in the same way as in the preliminary scheme. Note the simulator

has all of private key.

4. Let R be the challenging query range. Let (X,Ψ1,Ψ2,Ψ3, {µi : xi ∈ D ∩R}) be the

output of adversary for range R and let (X̂, Ψ̂1, Ψ̂2, Ψ̂3, {µi : xi ∈ D ∩R{}) be the

output of adversary for the complement range R{.

5. If the adversary succeeds, we have

N∏
i=1

Fs(xi)
βµi =

∏
xi∈D∩R

Fs(xi)
βµi

∏
xi∈D∩R{

Fs(xi)
βµi = Ψ2 · Ψ̂2 = ∆ =

N∏
i=1

Fs(xi)
β

6. Since the adversary is not Type IV, there exists some i, such that µi 6= 1. Conse-

quently, a univariable equation in unknown a of order 1 can be formed from the above

equation. Solve this equation to get root a′ and output a′.

Note that Computational Diffie Hellman Assumption 4 implies Discrete Log Assump-

tion.

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 151

Part IV: If there exists a Type IV adversary which breaks our scheme, then there

exists a PPT algorithm to break Assumption 4. Given input (u, uβ, vβ), we can con-

struct an algorithm to find v. Choose a random number R. There exists some θ,

such that R = θv. Similar as the construction of GKEA adversary A1 in Part I,

from input (u, uβ, θv, vβ), we can simulate the preliminary scheme (Alice’s part). Let

R be the challenging query range. let (X ′,Ψ′1,Ψ
′
2,Ψ

′
3, {µi : xi ∈ D ∩ R}) be an

output of a Type IV adversary on query R and let (X,Ψ1,Ψ2,Ψ3, {µi : xi ∈ D∩R})
be the output of an honest Bob on query R. If the Type IV adversary succeeds,

then Ψ′2 =
∏

xi∈D∩R Fs(xi)
βµi , where µi = 1, 1 ≤ i ≤ N , and

(
Ψ′1
θX′

)β
= Ψ′2. On

the other hand, the output from an honest Bob also passes Alice’s verifications:(
Ψ1

θX

)β
= Ψ2 and Ψ2 =

∏
xi∈D∩R Fs(xi)

β = Ψ′2. Combining the above equations,

we have
(

Ψ′1
Ψ1

)(X−X′)−1

= θ. As a result, we find the value of v: v = R
θ
.

Combining the results in Part I, II, III and IV, we conclude that no efficient

adversary against the preliminary scheme can output a wrong result and forged a

valid proof. In other words, the preliminary scheme is sound. ut

11.3 Performance

In the setup phase, the computation complexity on Alice’s side is O(dN logZ) and

the dominant step is Step 3 of DEnc in Section 11.1. In the query phase, the com-

munication overhead (in term of bits) per query is O(d2 log2Z): (1) In CollRes, the

communication overhead is dominated by the size of challenge-message ~δ, which is

in O(d log2Z), i.e. O(logZ) decryption keys for each dimension, and each decryp-

tion key of size O(logZ); (2) There are O(d) invocations of CollRes to process one

query. Computation complexity on Bob’s side is O(dN logZ) (bilinear map opera-

tions): (1) In CollRes, O(d|D ∩R| logZ) computation is required for query range R

and the dominant computation step is Step B1 of CollRes in Section 11.1; (2) In total,∑2d
`=0O(d|D∩R`| logZ) = O(dN logZ), where {R` : ` ∈ [0, 2d]} is a partition of the

domain [Z]d. The computation complexity per query on Alice’s side is O(d2 log2Z)

CHAPTER 11. AUTHENTICATING AGGREGATE COUNT QUERY 152

(group multiplications). The dominant computation step is Step A1 of CollRes in Sec-

tion 11.1. The storage overhead on Bob’s side, is O(dN). The storage cost on Alice’s

side, i.e. the size of key and DA, is O(d+ `), which can be reduced to O(1) (precisely

O(1) number of seeds and each seed with length equal to the security parameter λ)

using a pseudorandom function.

Chapter 12

Authenticating Other Types of

Queries—Min,Max,Median and

Range-Selection Queries

In this chapter, we apply the authentication scheme for count query proposed in the

previous Chapter 11 as a blackbox, in order to authenticate other types of queries,

including aggregate min/max/median and non-aggregate range-selection queries. The

extended schemes require only O(d2 log2Z) communication overhead for each type of

queries which are supported.

To distinguish different queries, in this chapter, we denote an aggregate count

query with multidimensional rectangular range R with notation Count(R).

12.1 Min and Max

Min and Max queries can be authenticated in a similar way. We only elaborate the

authentication method for Min query as below.

A min query Min(R, ι) with query range R and dimension ι ∈ [d], asks for the

minimum coordinate value along the ι-th dimension among all data points within

D ∩ R, i.e. min{~x[ι] : ~x ∈ D ∩ R}. We find that Min query can be converted to

Count query. The conversion is based on the below Proposition 1:

153

CHAPTER 12. AUTHENTICATING OTHER TYPES OF QUERIES 154

Proposition 1 For any finite set S of numbers,

c = minS ⇔ c ∈ S ∧ |S| = |{x : x ∈ S ∧ x ≥ c}|. (12.1)

Suppose Alice asks Bob for the minimum coordinate value along the ι-th dimension

of points within range R. Bob returns a data point ~x, such that ~x[ι] is the minimum

in the set S of coordinate values along the ι-th dimension of all points within range

R (i.e. S = {~x[ι] : ~x ∈ R ∩D}). Meanwhile, Bob also sends a proof to show that

~x ∈ D. Then Alice issues two Count queries to Bob: (1) Count(R), i.e. the size

of set S; (2) Count
(
R
⋂ (

[Z]ι−1 × [c,Z]× [Z]d−ι
))

where c = ~x[ι], i.e. the size of

set {x : x ∈ S∧x ≥ c}. Bob is expected to return the two count numbers with proofs

following the scheme in previous Chapter 11. Alice believes c is the minimum value if

all proofs are valid and the two count nubmers are equal. The interactive algorithm

between Alice and Bob is showed as below.

Authenticating Query Min(R, ι)

1. Alice sends (R, ι) to Bob.

2. Bob finds ~x∗ = arg min~x∈D∩R ~x[ι] and sends ~x∗ to Alice.

3. Alice issues a count query Count({~x∗}) with range {~x∗} to Bob and gets authenti-

cated query result N0.

4. Alice sets c = ~x∗[ι] and finds the range Rc = R ∩
(
[Z]ι−1 × [c,Z]× [Z]d−ι

)
.

5. Alice issues two count queries Count(R) and Count(Rc) to Bob and gets authen-

ticated results N1 and N2.

6. Alice accepts c as the minimum, if all verifications succeed and N0 ≥ 1 and N1 = N2.

Proposition 1 and our main Theorem 11.1 in Part II of this dissertation, imply

the following Corollary 12.1:

Corollary 12.1 The above extended scheme is a VRC (Verifiable Remote Computing

protocol) w.r.t. Min query, i.e. it is correct and sound to authenticate Min query.

CHAPTER 12. AUTHENTICATING OTHER TYPES OF QUERIES 155

12.2 Median

Median can also be converted into Count. Quartile or percentile queries can be

handled in a similar way.

Proposition 2 Let S be a finite set of numbers.

c is the median in set S ⇔

c ∈ S ∧ |{x : x ∈ S ∧ x ≤ c}| ≥ d |S|
2
e ∧ |{x : x ∈ S ∧ x ≥ c}| ≥ d |S|

2
e (12.2)

Suppose Alice asks Bob for the median coordinate value along the ι-th dimension of

points within range R. Bob returns a data point ~x, such that ~x[ι] is the median in

the set S of coordinate values along the ι-th dimension of all points within range R

(i.e. S = {~x[ι] : ~x ∈ D ∩ R}). Meanwhile, Bob also sends a proof to show that

~x ∈ D. Then Alice issues three Count queries to Bob: (1) Count(R), i.e. the size

of set S; (2) Count
(
R
⋂ (

[Z]ι−1 × [c,Z]× [Z]d−ι
))

where c = ~x[ι], i.e. the size of

set {x : x ∈ S ∧ x ≥ c}; (3) Count
(
R
⋂ (

[Z]ι−1 × [1, c]× [Z]d−ι
))

i.e. the size of

set {x : x ∈ S ∧ x ≤ c}. Bob is expected to return the three count numbers N1, N2

and N3 with proofs following the scheme in previous Chapter 11. Alice believes c is

the median value if all proofs are valid and N2 ≥ dN1

2
e and N3 ≥ dN1

2
e.

The interactive algorithm between Alice and Bob is showned as below. Note that

when the size of S is even, there are two medians. For simplicity of presentation of

the algorithm, we request Bob to return either one of the two medians, instead of

both.

Authenticating Query Median(R, ι)

1. Alice sends (R, ι) to Bob.

2. Bob finds ~x∗ such that ~x∗[ι] is a median among {~x[ι] : ~x ∈ D} and sends ~x∗ to Alice.

3. Alice issues a count query Count({~x∗}) with range {~x∗} to Bob and gets authenti-

cated query result N0.

CHAPTER 12. AUTHENTICATING OTHER TYPES OF QUERIES 156

4. Alice sets c = ~x∗[ι] and finds the range R+
c = R∩

(
[Z]ι−1 × [c,Z]× [Z]d−ι

)
and range

R−c = R ∩
(
[Z]ι−1 × [1, c]× [Z]d−ι

)
.

5. Alice issues three count queries Count(R), Count(R+
c) and Count(R−c) to Bob

and gets authenticated results N1, N2 and N3.

6. Alice accepts c as the median, if all verifications succeed and N0 ≥ 1 and N2 ≥ dN1
2 e

and N3 ≥ dN1
2 e.

Proposition 2 and Theorem 11.1 for count query, imply the following Corol-

lary 12.2:

Corollary 12.2 The above extended scheme is a VRC (Verifiable Remote Computing

protocol) w.r.t. Median query, i.e. it is correct and sound to authenticate Median

query.

12.3 Range Selection

With the help of an aggregate signature scheme (e.g. BLS signature [BLS04,BGLS03]),

it is straightforward to extend our scheme for count query to authenticate range

selection query with multidimensional rectangular range R, which is denoted with

RangeSelect(R) and asks for the set {~x : ~x ∈ D ∩ R}. To the best of our

knowledge, this is the first solution that authenticates multidimensional range selec-

tion query with sublinear communication overhead in the worst case and polynomial

storage on Bob’s side.

We assume the dataset D is a set of distinct points. The authentication scheme

for range selection query is as follows:

Authenticating Query RangeSelect(R)

1. In the setup, Alice generates a signature Sig(~x) for each data point ~x ∈ D using an

aggregate signature scheme, and sends all signatures to Bob.

2. To answer a range selection query with range R, Bob finds the set S = {~x : ~x ∈ D∩R}
and computes an aggregated signature Sig(S) for set S from signatures Sig(~x)’s for

CHAPTER 12. AUTHENTICATING OTHER TYPES OF QUERIES 157

point ~x ∈ D ∩ R, using the aggregate signature scheme. Bob sends (S, Sig(S)) to

Alice.

3. Alice verifies: (1) Is S a set of distinct points? (2) Is S a subset of query range R?

(3) Is Sig(S) a valid signature for S?

4. Alice issues a count query with range R to Bob using our scheme presented in Sec-

tion 11.1 and gets authenticated result N0.

5. Alice verifies whether |S| = N0.

6. Alice accepts S as the query result, if all verifications succeed.

We remark that the extra aggregate signature for each data point is actually

unnecessary, since our authentication tag can take the role of aggregate signature in

this particular application.

Corollary 12.3 The above extended scheme is a VRC (Verifiable Remote Computing

protocol) w.r.t. RangeSelect query, i.e. it is correct and sound to authenticate

RangeSelect query.

Chapter 13

Conclusion

In this dissertation, we studied two problems in verifiable cloud computing: proofs of

storage and verifiable outsourced database. We have constructed efficient solutions

to these problems, by devising new homomorphic cryptographic methods.

Proofs of Storage.

In this first part of this dissertation, we designed three efficient solutions POS1,

POS2 and POS3 to proofs of storage problem, based on some underlying linearly

homomorphic authentication methods. Each of these three solutions enables a user

Alice to remotely and reliably verify the integrity of her data files stored in a cloud

storage server Bob, without trusting in Bob and without retrieving the files. All

of these three solutions require only O(λ) communication, storage and computation

cost on Alice’s side, independent on the size of the file stored in the cloud storage.

Furthermore, in both POS2 and POS3, the storage overhead (due to error erasure

encoding and authentication information) is only a fraction (e.g. 2% or 3%) of the

original file size, and the latency for one verification is within one second independent

on the file size, confirmed by empirical study and analysis. We provided full security

proofs for all of three solutions. The proposed predicate-homomorphic MAC scheme

may have independent interests.

158

CHAPTER 13. CONCLUSION 159

Verifiable Outsourced Database.

In the second part, we proposed a new functional encryption scheme. This functional

encryption scheme allows a third party, with a delegation key which is generated

on the fly, to compute a pre-determined two-input one-way function value from a

ciphertext, where the first input is the corresponding plaintext and the second input is

secretly embedded in the delegation key, without knowing the value of of the plaintext.

We applied the proposed functional encryption scheme to construct a scheme to

authenticate aggregate range query over static multidimensional outsourced dataset,

and the communication complexity (in term of bits) is O(d2 log2Z) (d is the dimension

and each data point is in domain [Z]d). Our solution for aggregate count query leads

to solutions for aggregate min/max/median and non-aggregate range selection queries

with similar complexities.

The proposed functional encryption scheme and the idea of implementing func-

tional encryption by exploiting polymorphic property of existing encryption schemes

may have independent interests.

Bibliography

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-Based

Integrity for Network Coding. In ACNS ’09: International Conference

on Applied Cryptography and Network Security, pages 292–305, 2009.

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea

Kissner, Zachary Peterson, and Dawn Song. Provable data possession

at untrusted stores. In CCS ’07: ACM conference on Computer and

communications security, pages 598–609, 2007.

[ABC+11a] Jae Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat,

and Brent Waters. Computing on Authenticated Data. Cryptology

ePrint Archive, Report 2011/096, 2011. http://eprint.iacr.org/.

[ABC+11b] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring,

Osama Khan, Lea Kissner, Zachary Peterson, and Dawn Song. Re-

mote data checking using provable data possession. ACM Transactions

on Information and System Security, 14:12:1–12:34, 2011.

[ACK08] Mikhail Atallah, YounSun Cho, and Ashish Kundu. Efficient Data Au-

thentication in an Environment of Untrusted Third-Party Distributors.

In ICDE ’08: IEEE International Conference on Data Engineering,

pages 696–704, 2008.

[ADPMT08] Giuseppe Ateniese, Roberto Di Pietro, Luigi Mancini, and Gene Tsudik.

Scalable and efficient provable data possession. In SecureComm ’08:

160

http://eprint.iacr.org/

BIBLIOGRAPHY 161

International conference on Security and privacy in communication ne-

towrks, pages 9:1–9:10, 2008.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness.

In TCC ’07: Theory of Cryptography Conference, pages 118–136, 2007.

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of Storage

from Homomorphic Identification Protocols. In ASIACRYPT ’09: In-

ternational Conference on the Theory and Application of Cryptology and

Information Security: Advances in Cryptology, pages 319–333, 2009.

[Ama] AmazonForum. Major Outage for Amazon S3 and EC2.

https://forums.aws.amazon.com/thread.jspa?threadID=

19714&start=15&tstart=0.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of

peer-to-peer content distribution technologies. ACM Computing Sur-

veys, 36(4):335–371, 2004.

[BB04] Dan Boneh and Xavier Boyen. Short Signatures Without Random Or-

acles. In EUROCRYPT ’04: Annual International Conference on Ad-

vances in Cryptology, pages 56–73, 2004.

[BB08] Dan Boneh and Xavier Boyen. Short Signatures Without Random Ora-

cles and the SDH Assumption in Bilinear Groups. Journal of Cryptology,

21:149–177, 2008.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based

Encryption with Constant Size Ciphertext. In EUROCRYPT ’05: An-

nual International Conference on Advances in Cryptology, pages 440–

456, 2005.

[BBST02] Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Trepetin.

pStore: A Secure Peer-to-Peer Backup System. Technical Report MIT-

LCS-TM-632, MIT, 2002.

https://forums.aws.amazon.com/thread.jspa?threadID=19714&start=15&tstart=0
https://forums.aws.amazon.com/thread.jspa?threadID=19714&start=15&tstart=0

BIBLIOGRAPHY 162

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-

sure proofs of knowledge. Journal of Computer and System Sciences,

37:156–189, 1988.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Func-

tions for Message Authentication. In CRYPTO ’96: Annual Interna-

tional Cryptology Conference on Advances in Cryptology, pages 1–15,

1996.

[BEG+91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni

Naor. Checking the correctness of memories. In FOCS ’91: Annual

Symposium on Foundations of Computer Science, pages 90–99, 1991.

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing

a Linear Subspace: Signature Schemes for Network Coding. In PKC

’09: International Conference on Practice and Theory in Public Key

Cryptography, pages 68–87, 2009.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate

and Verifiably Encrypted Signatures from Bilinear Maps. In EURO-

CRYPT ’03: Annual International Conference on Advances in Cryptol-

ogy, pages 416–432, 2003.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable

Delegation of Computation over Large Datasets. In CRYPTO ’11: An-

nual International Cryptology Conference on Advances in Cryptology,

pages 111–131, 2011.

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-

random generation with applications to /dev/random. In CCS ’05:

Proceedings of the 12th ACM conference on Computer and communi-

cations security, pages 203–212, 2005.

BIBLIOGRAPHY 163

[BJO09a] Kevin Bowers, Ari Juels, and Alina Oprea. HAIL: a high-availability

and integrity layer for cloud storage. In CCS ’09: ACM conference on

Computer and communications security, pages 187–198, 2009.

[BJO09b] Kevin Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability:

theory and implementation. In CCSW ’09: ACM workshop on Cloud

computing security, pages 43–54, 2009.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the

Weil Pairing. Journal of Cryptology, 17(4):297–319, 2004.

[Blu81] Manuel Blum. Coin Flipping by Telephone. In CRYPTO ’81: Annual

International Cryptology Conference on Advances in Cryptology, pages

11–15, 1981.

[BP04a] Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent As-

sumptions and 3-Round Zero-Knowledge Protocols. In CRYPTO ’04:

Annual International Cryptology Conference on Advances in Cryptology,

pages 273–289, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards Plaintext-Aware Public-

Key Encryption Without Random Oracles. In ASIACRYPT ’04: Inter-

national Conference on the Theory and Application of Cryptology and

Information Security, pages 48–62, 2004.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption:

Definitions and Challenges. In TCC ’11: Theory of Cryptography Con-

ference, pages 253–273, 2011.

[Bus] BusinesSinsider. Amazon’s Cloud Crash Disaster Permanently De-

stroyed Many Customers’ Data. http://www.businessinsider.com/

amazon-lost-data-2011-4.

[BW07] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries

on Encrypted Data. In TCC ’07: Theory of Cryptography Conference,

pages 535–554, 2007.

http://www.businessinsider.com/amazon-lost-data-2011-4
http://www.businessinsider.com/amazon-lost-data-2011-4

BIBLIOGRAPHY 164

[Che52] Herman Chernoff. A Measure of Asymptotic Efficiency for Tests of a

Hypothesis Based on the sum of Observations. Annals of Mathematical

Statistics, 23(4):493507, 1952.

[CKBA08] Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese.

MR-PDP: Multiple-Replica Provable Data Possession. In ICDCS ’08:

International Conference on Distributed Computing Systems, pages 411–

420, 2008.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved Delegation of

Computation Using Fully Homomorphic Encryption. In CRYPTO ’10:

Annual International Cryptology Conference on Advances in Cryptology,

pages 483–501, 2010.

[CMH+08] Hong Chen, Xiaonan Ma, Windsor Hsu, Ninghui Li, and Qihua Wang.

Access Control Friendly Query Verification for Outsourced Data Pub-

lishing. In ESORICS ’08: European Symposium on Research in Com-

puter Security, pages 177–191, 2008.

[CT09] Weiwei Cheng and Kian-Lee Tan. Query assurance verification for out-

sourced multi-dimensional databases. Journal of Computer Security,

17(1):101–126, 2009.

[CX08] Ee-Chien Chang and Jia Xu. Remote Integrity Check with Dishonest

Storage Server. In ESORICS ’08: European Symposium on Research in

Computer Security, pages 223–237, 2008.

[Dam92] Ivan Damg̊ard. Towards Practical Public Key Systems Secure Against

Chosen Ciphertext Attacks. In CRYPTO ’91: Annual International

Cryptology Conference on Advances in Cryptology, pages 445–456, 1992.

[Den06] Alexander W. Dent. The Cramer-Shoup Encryption Scheme Is Plaintext

Aware in the Standard Model. In EUROCRYPT ’06: Annual Interna-

tional Conference on Advances in Cryptology, pages 289–307, 2006.

BIBLIOGRAPHY 165

[DGMS01] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart Stub-

blebine. Authentic Third-party Data Publication. In Proceedings of

the IFIP TC11/ WG11.3 Fourteenth Annual Working Conference on

Database Security, pages 101–112, 2001.

[DGMS03] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart Stub-

blebine. Authentic data publication over the internet. Journal of Com-

puter Security, 11(3):291–314, 2003.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[Dif09] Whitfield Diffie. How Secure Is Cloud Computing? (An Interview),

2009. http://www.technologyreview.com/computing/23951/.

[DNRV09] Cynthia Dwork, Moni Naor, Guy Rothblum, and Vinod Vaikun-

tanathan. How Efficient Can Memory Checking Be?. In TCC ’09:

Theory of Cryptography Conference, pages 503–520, 2009.

[DQS03] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Säıdane. Remote

Integrity Checking: How to Trust Files Stored on Untrusted Servers . In

Conference on Integrity and Internal Control in Information Systems,

pages 1–11, 2003.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The

Advanced Encryption Standard. 2002.

[Dro11] Dropbox. Dropbox forums on data loss topic, 2011. http://forums.

dropbox.com/tags.php?tag=data-loss.

[DVW09] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of Retrievabil-

ity via Hardness Amplification. In TCC ’09: Theory of Cryptography

Conference on Theory of Cryptography, pages 109–127, 2009.

[EKPT09] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and

Roberto Tamassia. Dynamic provable data possession. In CCS ’09:

http://www.technologyreview.com/computing/23951/
http://forums.dropbox.com/tags.php?tag=data-loss
http://forums.dropbox.com/tags.php?tag=data-loss

BIBLIOGRAPHY 166

ACM conference on Computer and communications security, pages 213–

222, 2009.

[FB06] Décio Filho and Paulo Barreto. Demonstrating data possession and

uncheatable data transfer. Cryptology ePrint Archive, Report 2006/150,

2006. http://eprint.iacr.org/.

[Gen09] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In

STOC ’09: ACM Symposium on Theory of Computing, pages 169–178,

2009.

[Gen10] Craig Gentry. Toward Basing Fully Homomorphic Encryption on Worst-

Case Hardness. In CRYPTO ’10: Annual International Cryptology Con-

ference on Advances in Cryptology, pages 116–137, 2010.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Ver-

ifiable Computing: Outsourcing Computation to Untrusted Workers.

In CRYPTO ’10: Annual International Cryptology Conference on Ad-

vances in Cryptology, pages 465–482, 2010.

[GMP] GMP. The GNU Multiple Precision Arithmetic Library. http://www.

gmplib.org/.

[Gol06] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.

Cambridge University Press, New York, NY, USA, 2006.

[Goo11] Google. Gmail back soon for everyone, 2011. http://gmailblog.

blogspot.com/2011/02/gmail-back-soon-for-everyone.html.

[Gro10] Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Ar-

guments. In ASIACRYPT ’10: International Conference on the Theory

and Application of Cryptology and Information Security, pages 321–340,

2010.

[GTT08] Michael Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Super-

Efficient Verification of Dynamic Outsourced Databases. In CT-RSA

http://eprint.iacr.org/
http://www.gmplib.org/
http://www.gmplib.org/
http://gmailblog.blogspot.com/2011/02/gmail-back-soon-for-everyone.html
http://gmailblog.blogspot.com/2011/02/gmail-back-soon-for-everyone.html

BIBLIOGRAPHY 167

’08: The Cryptographer’s Track at the RSA Conference on Topics in

Cryptology, pages 407–424, 2008.

[GZ07] Tingjian Ge and Stanley Zdonik. Answering Aggregation Queries in a

Secure System Model. In VLDB ’07: International Conference on Very

Large Data Bases, pages 519–530, 2007.

[HHSY06] Stuart Haber, William Horne, Tomas Sander, and Danfeng Yao.

Privacy-Preserving Verification of Aggregate Queries on Outsourced

Databases. Technical report, HP Laboratories, 2006. HPL-2006-128.

[HILM02] Hakan Hacigümüs, Balakrishna Iyer, Chen Li, and Sharad Mehrotra.

Executing SQL over Encrypted Data in the Database Service Provider

Model. In SIGMOD ’02: ACM SIGMOD International conference on

Management of data, pages 216–227, 2002.

[HIM04] Hakan Hacigümüs, Balakrishna Iyer, and Sharad Mehrotra. Efficient

Execution of Aggregation Queries over Encrypted Relational Databases.

In DASFAA ’04: Database Systems for Advanced Applications, pages

125–136, 2004.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the Existence of 3-Round Zero-

Knowledge Protocols. In CRYPTO ’98: Annual International Cryptol-

ogy Conference on Advances in Cryptology, pages 408–423, 1998.

[JK07] Ari Juels and Burton Kaliski, Jr. Pors: proofs of retrievability for large

files. In CCS ’07: ACM conference on Computer and communications

security, pages 584–597, 2007.

[Kra05] Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman

Protocol. In CRYPTO ’05: Annual International Cryptology Conference

on Advances in Cryptology, pages 546–566, 2005.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption

Supporting Disjunctions, Polynomial Equations, and Inner Products.

BIBLIOGRAPHY 168

In EUROCRYPT ’08: Annual International Conference on Advances

in Cryptology, pages 146–162, 2008.

[KZG10] Aniket Kate, Gregory Zaverucha, and Ian Goldberg. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT

’10: International Conference on the Theory and Application of Cryp-

tology and Information Security, pages 177–194, 2010.

[LD06] Jinyang Li and Frank Dabek. F2F: Reliable Storage in Open Networks.

In IPTPS ’06: International Workshop on Peer-to-Peer Systems, 2006.

[LHKR06] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.

Dynamic authenticated index structures for outsourced databases. In

SIGMOD ’06: ACM SIGMOD International conference on Manage-

ment of data, pages 121–132, 2006.

[LHKR10] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.

Authenticated index structures for aggregation queries. ACM Transac-

tions on Information and System Security, 13:32:1–32:35, 2010.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,

and Brent Waters. Fully Secure Functional Encryption: Attribute-

Based Encryption and (Hierarchical) Inner Product Encryption. In

EUROCRYPT ’10: Annual International Conference on Advances in

Cryptology, pages 62–91, 2010.

[LTT10] Anna Lysyanskaya, Roberto Tamassia, and Nikos Triandopoulos. Au-

thenticated error-correcting codes with applications to multicast au-

thentication. ACM Transactions on Information and System Security,

13:17:1–17:34, 2010.

[Mer80] Ralph Merkle. Protocols for Public Key Cryptosystems. In SP ’80:

IEEE Symposium on Security and Privacy, page 122, 1980.

BIBLIOGRAPHY 169

[Mic11] Microsoft. Hotmail email access issue now resolved, 2011. http:

//windowsteamblog.com/windows_live/b/windowslive/archive/

2011/01/03/hotmail-email-access-issue-now-resolved.aspx.

[Mil75] Gary Miller. Riemann’s hypothesis and tests for primality. In STOC

’75: ACM Symposium on Theory of Computing, pages 234–239, 1975.

[MND+04] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz,

April Kwong, and Stuart Stubblebine. A General Model for Authenti-

cated Data Structures. Algorithmica, 39(1):21–41, 2004.

[MNT06] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication

and Integrity in Outsourced Databases. Trans. Storage, 2(2):107–138,

2006.

[MS58] N. Macon and A. Spitzbart. Inverses of Vandermonde Matrices. The

American Mathematical Monthly, 65(2):95–100, 1958.

[MSP09] Kyriakos Mouratidis, Dimitris Sacharidis, and Hweehwa Pang. Par-

tially materialized digest scheme: an efficient verification method for

outsourced databases. The VLDB Journal, 18(1):363–381, 2009.

[MT06] Einar Mykletun and Gene Tsudik. Aggregation Queries in the Database-

As-a-Service Model. In IFIP WG 11.3 Working Conference on Data and

Applications Security, pages 89–103, 2006.

[NIS02] NIST. National Institute of Standards and Technology. Secure hash

standard (SHS). FIPS 180-2, August 2002.

[NR05] Moni Naor and Guy Rothblum. The complexity of online memory check-

ing. In FOCS ’05: Symposium on Foundations of Computer Science,

pages 573–584, 2005.

[NR09] Moni Naor and Guy Rothblum. The complexity of online memory check-

ing. Journal of the ACM, 56:2:1–2:46, 2009.

http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/01/03/hotmail-email-access-issue-now-resolved.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/01/03/hotmail-email-access-issue-now-resolved.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/01/03/hotmail-email-access-issue-now-resolved.aspx

BIBLIOGRAPHY 170

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology

ePrint Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[Ope] OpenSSL. OpenSSL Project. http://www.openssl.org/.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully Secure Functional

Encryption with General Relations from the Decisional Linear Assump-

tion. In CRYPTO ’10: Annual International Cryptology Conference on

Advances in Cryptology, pages 191–208, 2010.

[PB61] W. Peterson and D. Brown. Cyclic Codes for Error Detection. Proceed-

ings of the IRE, 49(1):228–235, 1961.

[PJRT05] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan.

Verifying completeness of relational query results in data publishing.

In SIGMOD ’05: ACM SIGMOD International conference on Manage-

ment of data, pages 407–418, 2005.

[PS85] Franco Preparata and Michael Shamos. Computational geometry: an

introduction. Springer-Verlag New York, Inc., 1985.

[PT08] Hweehwa Pang and Kian-Lee Tan. Verifying Completeness of Relational

Query Answers from Online Servers. ACM Transactions on Information

and System Security, 11(2):1–50, 2008.

[PZM09] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable Verifi-

cation for Outsourced Dynamic Databases. Proc. VLDB Endow., 2:802–

813, 2009.

[RS60] Irving Reed and Gustave Solomon. Polynomial Codes over Certain Fi-

nite Fields. Journal of the Society for Industrial and Applied Mathe-

matics (SIAM), 8(2):300–304, 1960.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Commun.

ACM, 21(2):120–126, 1978.

http://eprint.iacr.org/
http://www.openssl.org/

BIBLIOGRAPHY 171

[SBC+07] Elaine Shi, John Bethencourt, Hubert Chan, Dawn Song, and Adrian

Perrig. Multi-Dimensional Range Query over Encrypted Data. In SP

’07: IEEE Symposium on Security and Privacy, pages 350–364, 2007.

[SCG+03] Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and

Srinivas Devadas. Efficient Memory Integrity Verification and Encryp-

tion for Secure Processors. In MICRO ’03: Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 339–350, 2003.

[Sio05] Radu Sion. Query Execution Assurance for Outsourced Databases. In

VLDB ’05: International Conference on Very Large Data Bases, pages

601–612, 2005.

[SV03] Amit Sahai and Salil Vadhan. A Complete Problem for Statistical Zero

Knowledge. Journal of the ACM, 50:196–249, 2003.

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In

EUROCRYPT ’05: Annual International Conference on Advances in

Cryptology, pages 457–473, 2005.

[SW08a] Hovav Shacham and Brent Waters. Compact Proofs of Retrievability.

In ASIACRYPT ’08: International Conference on the Theory and Ap-

plication of Cryptology and Information Security, pages 90–107, 2008.

[SW08b] Elaine Shi and Brent Waters. Delegating Capabilities in Predicate

Encryption Systems. In ICALP ’08: International colloquium on Au-

tomata, Languages and Programming, Part II, pages 560–578, 2008.

[Twi] Twitter. Tweetdeck. http://money.cnn.com/2012/03/30/

technology/tweetdeck-bug-twitter/.

[TYH+09] Brian Thompson, Danfeng Yao, Stuart Haber, William Horne, and

Tomas Sander. Privacy-Preserving Computation and Verification of

Aggregate Queries on Outsourced Databases. In PETS ’09: Privacy

Enhancing Technologies Symposium, 2009.

http://money.cnn.com/2012/03/30/technology/tweetdeck-bug-twitter/
http://money.cnn.com/2012/03/30/technology/tweetdeck-bug-twitter/

BIBLIOGRAPHY 172

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-

tanathan. Fully Homomorphic Encryption over the Integers. In EURO-

CRYPT ’10: Annual International Conference on Advances in Cryptol-

ogy, pages 24–43, 2010.

[Wik11] Wikipedia. 2009 Sidekick data loss, 2011. http://en.wikipedia.org/

wiki/2009_Sidekick_data_loss.

[wir] wired.com. Dropbox left user accounts unlocked for 4 hours sunday.

http://www.wired.com/threatlevel/2011/06/dropbox/.

[WS07] Jiang Wu and Doug Stinson. An Efficient Identification Protocol and

the Knowledge-of-Exponent Assumption. Cryptology ePrint Archive,

Report 2007/479, 2007. http://eprint.iacr.org/.

[WWL+09] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling

public verifiability and data dynamics for storage security in cloud com-

puting. In ESORICS’09: European conference on Research in computer

security, pages 355–370, 2009.

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-

Preserving Public Auditing for Data Storage Security in Cloud Com-

puting. In INFOCOM ’10: Annual IEEE International Conference on

Computer Communications, pages 525–533, 2010.

[XC12] Jia Xu and Ee-Chien Chang. Towards Efficient Proofs of Retrievabil-

ity. In AsiaCCS ’12: ACM Symposium on Information, Computer and

Communications Security, 2012.

[XWYM07] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. Integrity auditing

of outsourced data. In VLDB ’07: International conference on Very

large data bases, pages 782–793, 2007.

[YJ11] Kan Yang and Xiaohua Jia. Data storage auditing service in cloud

computing: challenges, methods and opportunities. (will appear in)

Journal of World Wide Web, 2011.

http://en.wikipedia.org/wiki/2009_Sidekick_data_loss
http://en.wikipedia.org/wiki/2009_Sidekick_data_loss
http://www.wired.com/threatlevel/2011/06/dropbox/
http://eprint.iacr.org/

BIBLIOGRAPHY 173

[YPPK09] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis.

Authenticated join processing in outsourced databases. In SIGMOD

’09: ACM SIGMOD International conference on Management of data,

pages 5–18, 2009.

[Zhe97] Yuliang Zheng. Digital Signcryption or How to Achieve Cost(Signature

& Encryption) � Cost(Signature) + Cost(Encryption). In CRYPTO

’97: Annual International Cryptology Conference on Advances in Cryp-

tology, pages 165–179, 1997.

Appendix A

Security Proof

A.1 BBG HIBE

We restate the BBG HIBE scheme proposed by Boneh et al. [BBG05], to make this

paper self-contained. Let p be a λ bits safe prime, and e : G×G → G̃ be a bilinear

map, where the orders of G and G̃ are both p. The HIBE scheme contains four

algorithms (Setup,KeyGen,Encrypt,Decrypt), which are described as follows.

Setup(`)

To generate system parameters for an HIBE of maximum depth `, select a

random generator g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick

random elements g2, g3, h1, . . . , h` ∈ G. The public parameters and the master

key are

params = (g, g1, g2, g3, h1, . . . , h`,Ω = e(g1, g2)), master-key = gα2 .

KeyGen(did|k−1, id)

To generate a private key did for an identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k

of depth

k ≤ `, using the master secret key master-key, pick a random r ∈ Zp and output

did =
(
gα2 ·

(
hI11 . . . hIkk · g3

)r
, gr, hrk+1, . . . , h

r
`

)
∈ G2+`−k

174

APPENDIX A. SECURITY PROOF 175

The private key for id can be generated incrementally, given a private key for

the parent identity id|k−1 = (I1, . . . , Ik−1) ∈
(
Z∗p
)k−1

. Let

did|k−1 =

(
gα2 ·

(
hI11 . . . h

Ik−1

k−1 · g3

)r′
, gr

′
, hr

′

k , . . . , h
r′

`

)
= (K0, K1,Wk, . . . ,W`)

be the private key for id|k−1. To generate did, pick a random t ∈ Zp and output

did =

(
K0 ·W Ik

k ·
(
hI11 . . . hIkk · g3

)t
, K1 · gt, Wk+1 · htk+1, . . . ,W` · ht`

)
.

This private key is a properly distributed private key for id = (I1, . . . , Ik) for

r = r′ + t ∈ Zp.

Encrypt(params, id,M ; s)

To encrypt a message M ∈ G̃ under the public key id = (I1, . . . , Ik) ∈
(
Z∗p
)k

,

pick a random s ∈ Zp and output

CT =
(

Ωs ·M, gs,
(
hI11 . . . hIkk · g3

)s)
∈ G̃×G2. (A.1)

Decrypt(did,CT)

Consider an identity id = (I1, . . . , Ik). To decrypt a given ciphertext CT =

(A,B,C) using the private key did = (K0, K1,Wk+1, . . . ,W`), output

A · e(K1, C)

e(B,K0)
.

For a valid ciphertext, we have

e(K1, C)

e(B,K0)
=

e
(
gr,
(
hI11 . . . hIkk · g3

)s)
e
(
gs, gα2

(
hI11 . . . hIkk · g3

)r) =
1

e(gs, gα2)
=

1

e(g1, g2)s
=

1

Ωs
. (A.2)

APPENDIX A. SECURITY PROOF 176

A.2 Two Propositions

Some analysis in our proof is based on the following propositions (We do not claim

the discovery of Proposition 3 or Proposition 4.)

Proposition 3 If event A implies event B, then Pr[A] ≤ Pr[B].

Proof : Since A⇒ B, we have Pr[¬A ∨B] = 1 and Pr[A ∧ ¬B] = 0. Therefore,

Pr[A] = Pr[A ∧ ¬B] + Pr[A ∧B] = 0 + Pr[A ∧B] = Pr[A|B]Pr[B] ≤ Pr[B].

ut

Proposition 4 For any n events A1, . . . , An, it always holds that Pr[
∧

1≤i≤n Ai] ≥
1−

∑n
i=1 Pr[¬Ai].

Proof :

Pr[
∧

1≤i≤n

Ai] = 1− Pr[
∨

1≤i≤n

¬Ai] ≥ 1−
n∑
i=1

Pr[¬Ai].

ut

A.3 Proof of Lemma 10.1

Lemma 10.1 The functional encryption scheme FE described in Section 10.3 satisfies

these properties:

(a) For any (pk, sk) ← f Setup(1λ, d,Z), for any message Msg ∈ Z∗p, for any point

~x ∈ [Z]d, for any rectangular range R ⊆ [Z]d, if CT ← f Enc(Msg, ~x, sk) and

~δ ← f KeyGen(R, ρ, sk), then

f Dec(CT, ~x, R, ~δ, pk) =

{
fρ(Msg) (if ~x ∈ R)

⊥ (otherwise)
(A.3)

APPENDIX A. SECURITY PROOF 177

(b) For any (pk, sk) ← f Setup(1λ, d,Z), for any message Msg ∈ Z∗p, for any point

~x ∈ [Z]d, for any rectangular range R ⊆ [Z]d, for any y ∈ G̃, if CT ←
f Enc(Msg, ~x, sk) and ~δ ← f KeyGen(R, ρ, sk), then

f Dec(f Mult(CT, y, pk), ~x, R, ~δ, pk) =

{
y · fρ(Msg) (if ~x ∈ R)

⊥ (otherwise)

(A.4)

Proof of Lemma 10.1: We observe that the BBG HIBE scheme [BBG05] satisfies

the polymorphic property: An encryption of a message M can be viewed as the

encryption of another message M̂ under different key. Precisely, let CT and ĈT be

defined as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(

Ωs ·M, gs,
(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`,Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(

Ωsz · M̂, ĝsz,
(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`,Ω = e(g1, g2)), ̂master-key = gαz2

(A.5)

where identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k

, M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 =

gz
−1 mod p

3 and ĥi = hz
−1 mod p
i for 1 ≤ i ≤ `. To be self-contained, the description of

this BBG HIBE scheme [BBG05] is given in Appendix A.1. One can verify the above

equality easily.

Proof of Lemma 1(a):

Let (pk, sk) ← f Setup(1λ), message Msg ∈ Z∗p, point ~x ∈ [Z]d, R be a d-

dimensional rectangular range, and ρ ∈ Z∗p. Let CT ← f Enc(Msg, ~x, sk), ~δ ←
f KeyGen(R, ρ, sk), and y ∈ G̃.

We consider dimension j ∈ [d] and apply the polymorphic property of BBG scheme

(equation (A.5)): Take M = σj, s = sj and z = ρτj. Then M̂ = MΩs(1−z) =

σjΩ
sj(1−τjρ).

APPENDIX A. SECURITY PROOF 178

In case ~x ∈ R. If ~x ∈ R, then the HIBE decryption will succeed in the

process of f Dec (Section 10.3). Note that during decryption for dimension j, we

use decryption key derived from master-keyρτj . Let t̃j be as in Step 2(d) of f Dec for

decrypting ciphertext CT. We have

t̃j = M̂ = σjΩ
sj(1−τjρ), j ∈ [d]. (A.6)

Combining all d dimensions, and applying the two equalities (see algorithm f Enc

in Section 10.3) Msg = −
∑d

j=1 sjτj mod p and
∏d

j=1 σj = Ω−
∑d
j=1 sj we have,

f Dec(CT, ~x, R, ~δ, pk) = t̃ =
d∏
j=1

t̃j =
d∏
j=1

(
σjΩ

sj(1−τjρ)
)

=
d∏
j=1

σj ·
d∏
j=1

Ωsj ·

(
d∏
j=1

Ω−sjτj

)ρ

= Ω−
∑d
j=1 sj ·

d∏
j=1

Ωsj ·
(
ΩMsg

)ρ
= ΩρMsg

= fρ(Msg).

In case ~x 6∈ R. Let R = A1 ×A2 . . . ×Ad as in Step 1 of f Dec. If ~x 6∈ R,

then for some dimension j ∈ [d], ~x[j] 6∈ Aj, and f Dec will output ⊥ (Step 2 of f Dec

in Section 10.3).

Proof of Lemma 1(b):

In case ~x ∈ R. Check the decryption algorithm Decrypt of BBG HIBE (See

Appendix A.1), it is easy to verify that: For any η ∈ G̃, if Decrypt(did, (A,B,C))

outputs M , then Decrypt(did, (A · η,B,C)) will output η ·M .

Let η1, . . . , ηd be as in Step 2 of f Mult in Section 10.3. Similar as the argument

for Lemma 10.1(a), for dimension j ∈ [d], we have (t̃j is as in equation (A.6) and t̃′j

APPENDIX A. SECURITY PROOF 179

is the counterpart of t̃j for decrypting ciphertext f Mult(CT, y, pk))

t̃′j = ηjM̂ = ηj t̃j.

Combining all d dimensions and applying the equation
∏d

j=1 ηj = y (See Step 2 of

f Mult) and the result in Lemma 10.1(a), we have

f Dec(f Mult(CT, y, pk), ~x, R, ~δ, pk) =
d∏
j=1

t̃′j =
d∏
j=1

(
ηj t̃j
)

=

(
d∏
j=1

ηj

)
· f Dec(CT, ~x, R, ~δ, pk)

= y · fρ(Msg).

In case ~x 6∈ R. The same argument for the case ~x 6∈ R of Lemma 10.1(a)

applies. ut

A.4 Proof of Theorem 10.2

Theorem 10.2 Suppose there exists a weak-IND-sID-CPA adversary AFE, which

runs in time tFE and has non-negligible advantage ε against the functional encryption

scheme FE with one chosen delegation key query and Naq chosen anonymous delega-

tion key queries and Nenc chosen encryption queries. Then there exists an IND-sID-

CPA adversary ABBG, which has advantage ε
2d

against the BBG HIBE scheme [BBG05]

with O(d`) chosen private key queries and zero chosen decryption query, and runs in

time tFE +O(d` · tmax · (Naq +Nenc)), where tmax is the maximum time for a random

sampling (within a space of size at most p), a BBG encryption Encrypt, or a BBG key

generation KeyGen.

Proof :

APPENDIX A. SECURITY PROOF 180

The proof idea.

Let AFE be the weak-IND-sID-CPA adversary against the functional encryption scheme

FE as in Theorem 10.2. We try to construct an IND-sID-CPA adversary ABBG against

BBG based on AFE: Choose two random messages m0 and m1, and send them to the

BBG challenger. After receiving the challenge ciphertext CT for message mb where

b ∈ {0, 1}, guess b = 0 and construct a FE challenge (f1(Msg0), f1(Msg1),CTFE) based

on the BBG challenge CT. If the adversary AFE wins the weak-IND-sID-CPA game,

then output a guess b′ = 0; otherwise output a guess b′ = 1.

We argue that if indeed b = 0, then the forged FE challenge is valid, and the

hypothesis is applicable: AFE wins with probability 1/2 + ε. If b = 1, the forged FE

challenge is invalid, we cannot apply the hypothesis. However, in this case the forged

FE challenge is independent on the value of b. Hence, in case of b = 1, AFE wins with

probability exactly 1/2.

Recall that the BBG HIBE scheme is (Setup,KeyGen,Encrypt,Decrypt) and the

functional encryption scheme FE is (f Setup, f Enc, f KeyGen, f Dec, f Mult). Now let

us construct the IND-sID-CPA adversary ABBG against BBG. ABBG will simulate the

weak-IND-sID-CPA game where ABBG takes the role of challenger and invokes AFE in

the hypothesis as the adversary.

Construction of IND-sID-CPA adversary ABBG against BBG HIBE scheme

based on AFE

BBG Commit :

FE Commit : Adversary AFE chooses a random point ~x∗ = (x1, . . . , xd) ∈ [Z]d.

AFE sends ~x∗ to FE challenger ABBG as the target identity.

BBG adversary ABBG chooses ξ ∈ [d] at random and sends target identity id∗ =

IDξ(xξ) ∈
(
Z∗p
)`

to BBG challenger CBBG.

APPENDIX A. SECURITY PROOF 181

BBG Setup : BBG challenger CBBG runs setup algorithm Setup, and give ABBG the re-

sulting system parameter params, keeping the master-key private.

BBG Phase 1 : Adversary ABBG does nothing.

BBG Challenge : Adversary ABBG chooses m0,m1 at random from the plaintext space

G̃, and sends (m0,m1) to the challenger CBBG. CBBG picks a random bit b ∈ {0, 1}
and sends the challenge ciphertext CT = Encrypt(params, id∗,mb; s) to ABBG.

BBG Phase 2 :

FE Setup : ABBG chooses d random elements τ1, . . . , τd from Z∗p and let ~τ =

(τ1, . . . , τd). Let (p,G, G̃, e,Ω) be a part of params, where p is a prime, both

G and G̃ are cyclic multiplicative group of order p, e : G×G→ G̃ is a bilinear

map, and Ω ∈ G̃. Let pk = (p,G, G̃, e,Ω) and sk = (pk, params,master-key, ~τ).

ABBG sends pk to AFE.

Note: ABBG does not know master-key.

FE Challenge : The FE challenger ABBG chooses a random bit a ∈ {0, 1} and a

random message Msg1−a from the message space Z∗p. ABBG will decide Msga

and generate the challenge ciphertext CTFE in this way:

1. Parse the BBG challenge ciphertext as CT = (A,B,C), where A = Ωsmb.

2. Choose (d − 1) random elements s1, . . . , sξ−1, sξ+1, . . . , sd (i.e. excluding

sξ) from Z∗p.

3. Choose d random elements σ1, . . . , σd from G̃ with constraint

d∏
j=1

σj = (Ωsmb)
−1m0 · Ω

−
∑

1≤j≤d
j 6=ξ

sj

4. For each j ∈ [d] and j 6= ξ, encrypt σj under identity IDj(xj) with random

coin sj to obtain ciphertext ~cj as follows

~cj ← Encrypt(params, IDj(xj), σj ; sj). (A.7)

5. Define ~cξ based on the BBG challenge ciphertext CT = (Ωsmb, B,C):

~cξ = (Ωsmb ·m−1
0 · σξ, B, C).

APPENDIX A. SECURITY PROOF 182

6. Define Msga = −
∑

j∈[d] sj · τj (mod p), where unknown sξ ∈ Zp is defined

by Ωsξ = Ωsmb · m−1
0 . Although the value Msga is unknown since sξ is

unknown, ABBG can still compute f1(Msga):

f1(Msga) = ΩMsga =
(

(Ωsmb)
−1 ·m0

)τξ
· Ω
−
∑

1≤j≤d
j 6=ξ

sj ·τj

ABBG computes f1(Msg1−a) = ΩMsg1−a .

7. Set the challenge ciphertext to CTFE = (~c1, . . . ,~cd), and send (CTFE, f1(Msg0),

f1(Msg1)) to AFE.

FE Learning Phase :

1. AFE issues a delegation key query (R, ρ), where ~x∗ 6∈ R and R = A1 ×
A2 . . . ×Ad ⊆ [Z]d: If xξ ∈ Aξ, then ABBG aborts and outputs a random

bit b′ ∈ {0, 1} (Denote this event as E1). Otherwise, simulate the procedure

of f KeyGen:

(a) The private key is sk = (pk, params,master-key, ~τ = (τ1, . . . , τd)), where

ABBG has only pk, params and ~τ , and does not know master-key (which

is kept securely by the BBG challenger CBBG).

(b) For each j ∈ [d], generate a set δj in this way:

• For each identity id ∈ IdSetj(Aj), issue a private key query with

identity id to BBG challenger CBBG and get reply did.

Note: The BBG private key query (id) is valid, i.e. id 6= id∗ and id

is not a prefix of id∗. This is implied by the following two properties

satisfied by our constructions of IDι and IdSetι in Section 10.2: (1)

For any i, j ∈ [d], x, y ∈ [Z], if IDi(x) and IDj(y) share a non-empty

prefix, then i = j; (2) For any ∈ [a, b] ⊆ [Z], iff x ∈ [a, b], there

exits an identity id in the set IdSetj([a, b]), such that id is a prefix of

identity IDj(x).

• For each identity id ∈ IdSetj(Aj), parse the key did as (K0,K1,Υk, . . . ,Υ`)

and set d′id = (K
ρτj
0 ,K

ρτj
1 ,Υ

ρτj
k , . . . ,Υ

ρτj
`).

• Set δj ← {d′id : id ∈ IdSetj(Aj)}.

(c) Send ~δ = (δ1, δ2, . . . , δd) to AFE as the delegation key w.r.t. (R, ρ).

Note: AFE can make at most one delegation key query.

APPENDIX A. SECURITY PROOF 183

2. AFE issues an anonymous delegation key query (R): Choose a random

element Z ∈ G̃. For each anonymous delegation key query (R), choose

ρ ∈ Z∗p at random, run the algorithm f KeyGen(R, ρ, sk′), where sk′ =

(pk, params, Z, ~τ) (i.e. taking Z as the master key), and get output ~δ. Send

~δ to AFE as the delegation key w.r.t. R.

Note: (1) ABBG can answer anonymous delegation key query without the

help of BBG challenger CBBG. (2) There exists an unknown ω, such that

Z = master-keyω. The generated delegation key ~δ corresponds to range R

and (unknown) function key ρω, where ρω is uniformly distributed in Z∗p as

desired.

3. AFE issues an encryption key query (Msg, ~x): Run the encryption algorithm:

C ← f Enc(Msg, ~x, sk) and send the resulting ciphertext C to AFE as the

reply.

Note: ABBG can run algorithm f Enc, since it requires only pk, params, ~τ .

FE Guess : Adversary AFE outputs a bit a′ ∈ {0, 1}.

BBG Guess : If a = a′, adversary ABBG outputs b′ = 0. Otherwise, ABBG outputs b′ = 1.

The constructed BBG adversary ABBG made O(d`) private key query and zero

decryption query to the BBG challenger CBBG. Let id∗ = IDξ(xξ) = (I1, . . . , I`) ∈(
Z∗p
)`

. Recall that the two BBG ciphertexts CT and ~cξ are

CT = (A, B, C) =
(

Ωs ·mb, g
s,
(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

~cξ = (Ωsξ · σξ, B, C) =
(

Ωsξ · σξ, gs,
(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

where Ωsξ = Ωsmb ·m−1
0 . If b = 0, then sξ = s and ~cξ is a valid BBG encryption of σξ

under identity IDξ(xξ) with random coin sξ. Consequently, the FE scheme simulated

by ABBG is identical to a real one from the view of AFE (even if AFE is computationally

unbounded). If b = 1, then sξ is independent on s. As a result, in the FE scheme

simulated by ABBG, the challenging ciphertext CTFE is independent on the value of

Msga. Note that adversary AFE does not know m0,m1, params.

APPENDIX A. SECURITY PROOF 184

Let the d-dimensional range R = A1 × . . .×Ad. Define set S#:

S# = {j ∈ [d] : ~x∗[j] 6∈ Aj}

Since ~x∗ 6∈ R, S# is not empty and |S#| ≥ 1. We have

Pr[¬E1] = Pr[ξ ∈ S#] =
|S#|
d
≥ 1

d
.

Note that adversary ABBG has two terminal cases: (1) If event E1 occurs, ABBG

outputs a random bit b′ ∈ {0, 1}. (2) If event E1 does not occur, ABBG outputs b′ = 0

iff AFE outputs a′ = a.

In case of E1: Conditional on event E1, Pr[b = b′] = 1/2.

In case of ¬E1: Suppose event E1 does not occur. Then b′ = 0⇔ a = a′ and b′ =

1 ⇔ a 6= a′. Applying the Proposition 3, we have Pr[b′ = 0|b = 0] = Pr[a = a′|b = 0]

and Pr[b′ = 1|b = 1] = Pr[a 6= a′|b = 1].

As a result, conditional on event ¬E1,

Pr[b = b′] = Pr[b = b′ = 0] + Pr[b = b′ = 1]

= Pr[b = 0]Pr[b′ = 0|b = 0] + Pr[b = 1]Pr[b′ = 1|b = 1]

= Pr[b = 0]Pr[a = a′|b = 0] + Pr[b = 1]Pr[a 6= a′|b = 1]

=
1

2
×
(

1

2
+ ε

)
+

1

2
× 1

2

=
1

2
+

1

2
ε

Combining the two cases (E1 and ¬E1), we obtain the advantage of ABBG against

BBG scheme in the IND-sID-CPA game:

AdvABBG
BBG +

1

2
= Pr[E1]× 1

2
+ Pr[¬E1]×

(
1

2
+

1

2
ε

)
=

1

2
+
ε

2
Pr[¬E1] ≥ 1

2
+

ε

2d

The adversary ABBG wins the game with probability at least 1/2+ ε/(2d) using O(d`)

APPENDIX A. SECURITY PROOF 185

private key queries and running in time tFE + O(d` · tmax · (Naq +Nenc)), where tmax

is the maximum time for random sampling (within a space of size at most p), BBG

encryption Encrypt, or BBG key generation KeyGen, and Naq (Nenc, respectively) is the

number of anonymous delegation key queries (encryption key queries, respectively)

made by AFE. ut

A.5 A valid proof should be generated from points

within dataset D

The notion that a valid proof is essentially generated from points (and their tags)

within the dataset D, is formulized by Lemma A.2. We prove Lemma A.2 in two

steps: first we show that the GKEA Assumption 5 implies Lemma A.1 (which states

that an alternative form of GKEA problem is hard); then we derive Lemma A.2

from Lemma A.1.

We remark that both the proof of Lemma A.1 in Appendix A.5.1 and proof of

Lemma A.2 in Appendix A.5.2 follow the proof framework for statement that KEA3

implies KEA in [BP04a]. Their proof can be outlined as follows: Given any ad-

versary algorithm AKEA, construct an adversary algorithm AKEA3. Then applying

KEA3 Assumption, there exists an extractor algorithm ĀKEA3. Based on ĀKEA3,

construct extractor algorithm ĀKEA for AKEA. The key point is how to convert

the input/output between ĀKEA (AKEA, respectively) and ĀKEA3 (AKEA3, respec-

tively).

APPENDIX A. SECURITY PROOF 186

A.5.1 Lemma A.1 and Proof

Lemma A.1 Suppose Assumption 5 holds. For any PPT algorithm A, there exists

a PPT algorithm Ā, such that

AdvLem A.1
A,Ā (λ)

def
= Pr

Sm+1 ← {(θvi, vβi) : i ∈ [m+ 1], vi

$←− G̃, θ $←− G̃, β $←− Z∗p}
(Ψ1,Ψ2, X)← A(Sm+1; r);

(Ψ1,Ψ2, X, µ1, µ2, . . . , µm, µm+1)← Ā(Sm+1; r, r̄) :

Ψ2 =
(

Ψ1

θX

)β ∧ Ψ2 6=
∏m+1

j=1 (vβj)µj

≤ ν2(λ), (A.8)

where the probability is taken over all random coins used, m is polynomial in λ and

function ν2(·) is as in Assumption 5.

Proof of Lemma A.1: Let adversary A be as in Lemma A.1. We construct a

GKEA adversary A1 based on an adversary A.

Construction of GKEA adversary A1: Based on an adversary A

1. The input is Wm = {(ui, uβi) ∈ G̃2 : 1 ≤ i ≤ m} and the random coin is r1.

2. Choose two independent random elements R1, R2 ∈ G̃2 based on the random coin r1.

There exists some unknown θ, vm+1 ∈ G̃, such that R1 = θvm+1 and R2 = vβm+1.

3. For each 1 ≤ i ≤ m, define vi = uivm+1 and compute θvi = ui(θvm+1) = uiR1 and

vβi = (uivm+1)β = uβi R2. Let Sm+1 = {(θvi, vβi) : 1 ≤ i ≤ m+ 1}.

4. Invoke the adversaryA with random coin r derived from r1: (Ψ1,Ψ2, X)← A(Sm+1; r).

5. Output (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
).

Since
(

Ψ1

RX1

)β
=

Ψβ1
θXβvXβm+1

and Ψ2

RX2
= Ψ2

vXβm+1

, we have

(
Ψ1

θX

)β
= Ψ2 ⇔

(
Ψ1

RX
1

)β
=

Ψ2

RX
2

. (A.9)

APPENDIX A. SECURITY PROOF 187

According to Assumption 5, there exists an extractor Ā1 for the adversary A1,

such that AdvGKEA
A1,Ā1

is negligible. Now we construct an extractor Ā for A based on

Ā1.

Construction of extractor Ā for A: Based on GKEA extractor Ā1

1. The input is Sm+1 = {(θvi, vβi) : 1 ≤ i ≤ m+ 1}. The random coin is (r, r̄).

2. For each 1 ≤ i ≤ m, set ui = θvi
θvm+1

and compute uβi =
vβi
vβm+1

. Let Wm = {(ui, uβi) :

1 ≤ i ≤ m}.

3. Invoke adversaryA1 with random coin r1 = (θvm+1, v
β
m+1, r): (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
)←

A1(Wm; r1).

Note: We can represent the random coin r1 used by A1 as (R1, R2, r).

4. Invoke extractor Ā1 with random coin (r1, r̄1 = r̄): (µ1, . . . , µm)← Ā1(Wm; r1, r̄1).

5. Define µm+1 = X −
∑m

i=1 µi. Output (µ1, . . . , µm, µm+1).

If U2 =
∏m

i=1 u
βµi
i , then we have

m+1∏
i=1

vβµii = v
βµm+1

m+1

m∏
i=1

vβµii = v
β(X−

∑m
i=1 µi)

m+1

m∏
i=1

uβµii

m∏
i=1

vβµim+1 = vβXm+1U2 = RX
2 U2 = Ψ2.

That is,

U2 =
m∏
i=1

uβµii ⇒
m+1∏
i=1

vβµii = Ψ2. (A.10)

If Uβ
1 = U2 ⇒ U2 =

∏m
i=1 u

βµi
i , combining with equation (A.9) and equa-

tion (A.10), we have

(
Ψ1

θX

)β
= Ψ2 ⇒ Uβ

1 = U2 ⇒ U2 =
m∏
i=1

uβµii ⇒ Ψ2 =
m+1∏
i=1

vβµii .

APPENDIX A. SECURITY PROOF 188

As a result,(
Uβ

1 = U2 ⇒ U2 =
m∏
i=1

uβµii

)
⇒

((
Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

)

Note that the implications in equation (A.9) and equation (A.10) are always true,

while the implication that Uβ
1 = U2 ⇒ U2 =

∏m
i=1 u

βµi
i is true only with certain

probability.

Applying the Proposition 3 in Appendix A.2, we have

Pr

[
Uβ

1 = U2 ⇒ U2 =
m∏
i=1

uβµii

]
= 1− AdvGKEA

A1,Ā1

≤ Pr

[(
Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

]
= 1− AdvLem A.1

A,Ā .

Hence,

AdvLem A.1
A,Ā ≤ AdvGKEA

A1,Ā1
≤ ν2.

ut

A.5.2 Lemma A.2 and Proof

Lemma A.2 Suppose Assumption 5 holds. For any PPT algorithm A, there exists a

PPT algorithm Ā, such that AdvLem A.2
A,Ā (1λ) ≤ ν2(λ), where the advantage AdvLem A.2

A,Ā

of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes) is defined as

AdvLem A.2
A,Ā (1λ)

def
= 1− Pr

(ζ,X,Ψ2, view

Ẽ
A,D,R)← ExpẼA(1λ);

{µi : i ∈ [N]} ← Ā(viewẼA) :

ζ = accept ⇒ Ψ2 =
∏

i∈[N]

(
vβi

)µi
 ,

where vβi is the second component of tag ~ti for data point ~xi ∈ D (See Step 2 of DEnc

in Section 11.1).

APPENDIX A. SECURITY PROOF 189

Proof of Lemma A.2: Let A be any PPT adversary against scheme Ẽ = (KGen,

DEnc, CollRes). We construct a PPT adversary B against Lemma A.1 based on A.

Adversary B against Lemma A.1: Based on A

1. The input is Sm = {(θvj , vβj) ∈ G̃2 : j ∈ [m]}. The random coin used in this algorithm

is r.

2. Simulate Alice in the experiment ExpẼA.

(a) Invoke adversary A with a random coin derived from r. A chooses a set D =

{~xi ∈ [Z]d : i ∈ [N]} of N = m d-dimensional data points. Note: If N > m, B
can generate more tuples (θvj , v

β
j) for j = m+1, . . . , N from Sm. For simplicity,

we just assume N = m.

(b) Simulate KGen:

i. Invoke f Setup(1λ) to obtain public/private key pair (pk, sk).

ii. Choose γ′ at random from Z∗p. B does not know the values of θ, β.

(c) Simulate DEnc:

i. Choose N random elements W1, . . . ,WN from Z∗p.

ii. For each i ∈ [N], compute a tag ~ti =
(
θvi, v

β
i , f1(Wi)

)
.

iii. For each i ∈ [N], encrypt messageWi under point ~xi: CT
′
i ← f Enc(Wi, ~xi, sk);

attach vβγ
′

i to ciphertext by applying the homomorphic property of the

functional encryption scheme: CTi ← f Mult(CT′i, v
βγ′

i , pk).

iv. Send DB = {D,T = {~ti : i ∈ [N]},C = {CTi : i ∈ [N]}, pk} to adversary

A.

(d) Simulate CollRes: For each query range Rj chosen by A during A’s learning

phase and challenging phase

i. (Step A1) Choose random nonce ρ ∈ Z∗p, generate delegation key ~δ ←
f KeyGen(Rj , ρ, sk), and send (Rj , ~δ) to adversary A.

ii. (Step A2) Do not perform verifications, after receiving reply from A.

3. Receive output (X,Ψ1,Ψ2,Ψ3,Ψ4) for the challenging query range R from A. Output

(X,Ψ1,Ψ2).

APPENDIX A. SECURITY PROOF 190

Remarks on Algorithm B.

1. Adversary B has the private key sk, and can generate the challenge-message in

the same way as in CollRes in Section 11.1.

2. Adversary B has no knowledge of β or θ, and consequently cannot perform

verification as in CollRes.

3. The view of adversary A after interacting with the simulated scheme is iden-

tically distributed with the the view viewẼA of A after interacting with the real

scheme in the experiment ExpẼA.

(a) KGen: The simulator B generates key (pk, sk) in the same way as the real

scheme. The unknown secret key β ∈ Z∗p, θ ∈ G̃ and γ = (βγ′)−1 ∈ Z∗p
are independently and uniformly randomly distributed over corresponding

domains.

(b) DEnc: The dataset D is generated in the same way as in real experi-

ment. The tags T are identically distributed as in real experiment. The

ciphertexts C are generated in the same way as in real experiment. As a

result, DB = {D,T,C} that A received is identically distributed as in real

experiment.

(c) CollRes

i. Step A1: The simulator just follows the procedure in Section 11.1 with

key sk and random nonce ρ to execute this step.

ii. Step A2: Since the simulator does not know the values of secret key

(β, γ, θ), it cannot perform the verifications. However, according to

our scheme, the accept/reject decisions are always kept secret from

Bob (or adversary).

4. If A is a successful adversary, then its output will indeed pass all verifications

with non-negligible probability, although the simulator cannot perform the ac-

tual verifications and yet cannot know whether A succeeds or not in each single

attack instance.

APPENDIX A. SECURITY PROOF 191

From the random coin r, B can simulate the experiment ExpẼA and produce a view

viewr which is identically distributed as the view viewẼA produced by a real experiment.

In the other direction, information theoretically, the random coin r can be recovered

from the adversary’s view viewr, considering r as the collection of all (true) random

bits flipped in the simulation. Consequently, we can view viewr as an alternative

representation of random coin r.

By Lemma A.1, there exists a PPT algorithm B̄ such that AdvLem A.1
B,B̄ ≤ ν2. We

construct an extractor Ā for adversary A based on B̄.

Extractor Ā: Based on B̄

1. The input is viewẼA, a state variable describing all random coins chosen and all message

accessed by A during interactions with Ẽ in the experiment ExpẼA.

2. Recover D,T,C from viewẼA and construct a set SN ← {(θvi, vβi) : i ∈ [N]}, where

θvi and vβi are the first two components of tag ~ti ∈ T.

3. Invoke B on input SN with random coin viewẼA. B extracts information from viewẼA

and replays1 the interaction between Alice and Bob (i.e. the adversary A) in the

experiment ExpẼA. Denote the output of experiment as (ζ,X, ~Ψ, viewẼA,D,R). Re-

cover the reply of A on the challenging query R from viewẼA, and denote it with

(X,Ψ1,Ψ2,Ψ3,Ψ4). B outputs (X,Ψ1,Ψ2).

4. Let B̄ be the extractor such that AdvLem A.1
B,B̄ ≤ ν2. Invoke B̄ on input SN using ran-

dom coin viewẼA, and obtain output (µ1, . . . , µN) from B̄. Output (Ψ1,Ψ2, X, µ1, . . . , µN).

Note that according to the algorithm CollRes, ζ = accept implies that the ver-

ification is passed and Ψ2 =
(

Ψ1

θX

)β
(the first equality test in equation (11.4)). We

have

ζ = accept ∧ Ψ2 6=
∏
i∈[N]

(vβi)µi ⇒ Ψ2 =

(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N]

(vβi)µi

1Since A is invoked with the same random coin recovered from viewẼA, its behaviors become
deterministic.

APPENDIX A. SECURITY PROOF 192

Hence, by applying Proposition 3, we have

AdvLem A.2
A,Ā = Pr

ζ = accept ∧ Ψ2 6=
∏
i∈[N]

(vβi)µi

≤AdvLem A.1

B,B̄ = Pr

Ψ2 =

(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N]

(vβi)µi

 ≤ ν2.

ut

A.6 A valid proof should be generated from points

within intersection D ∩R

Theorem A.3 Suppose Assumption 4 and Assumption 5 hold, and FE scheme con-

structed in Section 10.3 is weak-IND-sID-CPA secure. For any PPT algorithm A, there

exists PPT algorithm Ā, such that both AdvLem A.2
A,Ā and AdvThm A.3

A,Ā are negligible,

where the advantage AdvThm A.3
A,Ā of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes)

is defined as

AdvThm A.3
A,Ā (1λ)

def
= 1− Pr

(ζ,X,Ψ2, view

Ẽ
A,D,R)← ExpẼA(1λ);

({µi : i ∈ [N]})← Ā(viewẼA) :

ζ = accept ∧Ψ2 =
∏

i∈[N]

(
vβi

)µi
⇒

∀~xi ∈ D ∩R{, µi = 0

 ,

where vβi is the second component of tag ~ti for data point ~xi ∈ D (See Step 2 of DEnc

in Section 11.1).

Proof of Theorem A.3:

The idea of proof. For any PPT algorithm A, applying Lemma A.2, let Ā be

the PPT algorithm such that AdvLem A.2
A,Ā is negligible. Using proof of contradiction,

assume that AdvThm A.3
A,Ā is non-negligible (Hypothesis!). Based on A and Ā, we

APPENDIX A. SECURITY PROOF 193

construct a PPT algorithm B, such that B breaks weak-IND-sID-CPA security of FE

scheme in Section 10.4.2 with non-negligible advantage

Advweak-IND-sID-CPA
FE,B ≥ 1

4dN
AdvThm A.3

A,Ā − 1

4
ν1.

where ν1 is as in Assumption 4 and Advweak-IND-sID-CPA
FE,B is defined in Section 10.4.2 The

contradiction implies that our hypothesis is wrong, and thus Theorem A.3 is proved.

weak-IND-sID-CPA adversary B against FE scheme

Let Ẽ = (KGen,DEnc,CollRes). We construct the adversary B, which simulates the

experiment ExpẼA by invoking the adversary A, where B takes the role of Alice and A
takes the role of Bob. Note that B makes only one delegation key query.

weak-IND-sID-CPA adversary B against FE scheme

Commit : Initialize A’s status viewA. Invoke adversary A(viewA), and A chooses a set

D = {~x1, . . . , ~xN} of N d-dimensional points in [Z]d. B chooses i∗ ∈ [N] at random,

and sends ~xi∗ to the challenger C as the target identity.

Setup : The challenger C runs the setup algorithm f Setup and gives A the resulting system

parameters pk = (p,G, G̃, e,Ω), keeping the secret key sk = (pk, params,master-key, ~τ)

to itself.

Challenge : C chooses two plaintexts Msg0,Msg1 at random from the message space Z∗p,
and a random bit b ∈ {0, 1}. C sets the challenge ciphertext to CT = f Enc(Msgb, ~xi∗ , sk),

and sends (CT, f1(Msg0), f1(Msg1)) to B.

Learning Phase : B (playing the role of Alice) interacts with A (playing the role of Bob)

to simulate the experiment ExpẼA. B proceeds as below.

KGen : Choose β, γ at random from Z∗p , and θ at random from G̃. Let (pk, sk) be

the key pair generated by the challenger C. Generate pk by removing Ω from

pk, i.e. pk = (p,G, G̃, e). Output (pk, sk) Note: B knows pk, but not sk.

DEnc :

APPENDIX A. SECURITY PROOF 194

1. Choose N random elements W1, . . . ,WN from Z∗p and N random elements

v1, . . . , vN from G̃.

2. For each i ∈ [N] except i = i∗, generate a tag ~ti = (θvi, v
β
i , f1(Wi)) ∈ G̃.

Note: With Ω, B can evaluate function fρ(·).

3. For each i ∈ [N] except i = i∗, generate ciphertext CTi:

• Issue an encryption query (Wi, ~xi) to the challenger C and get reply

CT′i.

• Apply the homomorphic property of the functional encryption scheme

to attach vγi to the ciphertext: CTi ← f Mult(CT′i, v
γ
i , pk).

4. Define the tag ~ti∗ and ciphertext CTi∗ based on the challenge message

(CT, f1(Msg0), f1(Msg1)): Set ~ti∗ = (θvi∗ , v
β
i∗ , f1(Msg0)) and

CTi∗ ← f Mult(CT, vγi∗ , pk).

5. Send (D,T = {~ti : i ∈ [N]},C = {CTi : i ∈ [N]}, pk) to A (Bob).

A in Learning Phase : A issues queries R1,R2, For each of such queries, B
simulates Alice in CollRes as below.

Step A1: B makes a corresponding anonymous delegation key query (Ri) to

the challenger C, and sends the reply message ~δi to A (Bob).

Step A2: Do nothing. Note: (1) According to our scheme and formulation, the

accept/reject decision is always hidden from A. So there is no need to do

verification here. (2) B does not know the function key ρi for the delegation

key ~δi, so is not able to perform all verifications in step A2 of CollRes.

A in Challenge Phase : A issues a query with range R: If ~xi∗ 6∈ R, B simulates

Alice in CollRes as below.

Step A1: B chooses a random element ρ ∈ Z∗p and makes a corresponding

delegation key query (R, ρ) to the challenger C, and sends the reply message

~δ to A (Bob).

Step A2: Receive response (ζ,X,Ψ2) for count query R associated with chal-

lenge message ~δ) from A. Perform all verifications as in Step A2 of CollRes.

Note: In this case B does know the function key ρ for the delegation key ~δ

and secret values β, γ, so is able to perform all verifications in step A2 of

CollRes.

APPENDIX A. SECURITY PROOF 195

Otherwise, if ~xi∗ ∈ R then B abort and outputs a random bit b′ ∈ {0, 1} (Denote

this event as E1).

Guess : B outputs a guess bit b′ as below.

1. Invoke the extractor Ā(viewA) for A and get output {µi : i ∈ [N]}.

2. If ζ = accept,Ψ2 =
∏
i∈[N]

(
vβi

)µi
and µi∗ 6= 0, then output b′ = 0 (Denote

this event as E2).

3. Otherwise, output a random bit b′ ∈ {0, 1} (Denote this event as E3).

Note that all three events E1, E2 and E3 are mutually exclusive, and only E2 is

the success case, and both of E1 and E3 correspond to failure.

Pr[b = b′] = Pr [E1 ∨ E3]Pr [b = b′|E1 ∨ E3] + Pr [b = b′,E2]

= (1− Pr [E2])× 1

2
+ Pr [b = b′,E2]

=
1

2
+ Pr [b = b′,E2]− 1

2
Pr [E2] (A.11)

Therefore,

Advweak-IND-sID-CPA
FE,B =

∣∣∣∣Pr [b = b′,E2]− 1

2
Pr [E2]

∣∣∣∣ (A.12)

≥

∣∣∣∣∣
∣∣∣∣12Pr [b = b′,E2 | b = 0]− 1

4
Pr [E2 | b = 0]

∣∣∣∣ − (A.13)

∣∣∣∣12Pr [b = b′,E2 | b = 1]− 1

4
Pr [E2 | b = 1]

∣∣∣∣
∣∣∣∣∣ (A.14)

Advweak-IND-sID-CPA
FE,B conditional on b = 0.

In case of b = 0, the forged tag ~ti∗ and ciphertext CTi∗ are valid and consistent,

and identical to those generated by DEnc. The simulated experiment ExpB̃A by B is

identical to a real one, to the view of A (even if A is computationally unbounded).

APPENDIX A. SECURITY PROOF 196

Recall that by the hypothesis, A is a Type II adversary but not a Type III ad-

versary. That is, ζ = accept and Ψ2 =
∏

i∈[N]

(
vβi

)µi
with o.h.p, and there exists

~xi ∈ D ∩R{, such that µi 6= 0 with non-negligible probability. We denote with E4

the event that ζ = accept and Ψ2 =
∏

i∈[N]

(
vβi

)µi
, and there exists ~xi ∈ D ∩ R{,

such that µi 6= 0.

Pr[E4 | b = 0] = Pr

ζ = accept ∧Ψ2 =
∏
i∈[N]

(
vβi

)µi
∧ ∃~xi ∈ D ∩R{, µi 6= 0 | b = 0

= AdvThm A.3

A,Ā (A.15)

Denote with E5 the event that i∗ ∈ S# = {i ∈ [N] : ~xi ∈ D ∩R{, µi 6= 0}. In the

case of b = 0, the event E2 is equivalent to conjunctions of three events: ¬E1, E4,

and E5, i.e. E2 ≡ ¬E1 ∧ E4 ∧ E5. Since the conjunctions of E4 and E5 implies that

~xi∗ 6∈ R and ξ ∈ [d] is independently and randomly chosen, we have

Pr [¬E1 | E4 ∧ E5 ∧ b = 0] = Pr [~xi∗ [ξ] 6∈ Aξ | E4 ∧ E5 ∧ b = 0] ≥ 1

d
.

Therefore,

Pr [E2 | b = 0] = Pr [¬E1 ∧ E4 ∧ E5 | b = 0]

= Pr [¬E1 | E4 ∧ E5 ∧ b = 0]Pr [E4 ∧ E5 | b = 0]

≥ 1

d
Pr [E4 | b = 0]Pr [E5 | E4, b = 0]

=
1

d
AdvThm A.3

A,Ā · 1

|S#|

≥ 1

dN
AdvThm A.3

A,Ā (Event E4 implies that S# 6= ∅)

According to the construction of B, if b = 0 and event E2 occurs, the algorithm

B will output b′ = 0. That is, Pr [b = b′|E2, b = 0] = 1.

APPENDIX A. SECURITY PROOF 197

Hence, conditional on b = 0, the advantage of B is

Advweak-IND-sID-CPA
FE,B |b=0 =

∣∣∣∣Pr [E2 | b = 0] (Pr [b = b′ | E2, b = 0]− 1

2
)

∣∣∣∣ ≥ 1

2dN
AdvThm A.3

A,Ā .

(A.16)

Advweak-IND-sID-CPA
FE,B conditional on b = 1.

Next we show that Pr[E2 | b = 1] is negligible under Computational Diffie Hellman

(CDH) assumption.

Claim A.6.1 There exists a PPT algorithm which solves Computational Diffie Hell-

man problem with probability equal to Pr[E2 | b = 1].

Proof of Claim A.6.1: The proof idea is: Given input (v, vγ, u), we choose a

random number R, and simulate the scheme Ẽ = (KGen, DEnc, CollRes) by embedding

(u,R) into the tag/ciphertext for the target index i∗ and embedding (v, vγ) into

tag/ciphertext for the other index, . If b = 1 and event E2 occurs, we try to compute

uγ with the help of adversary A.

Algorithm D: Break Computational Diffie Hellman problem

1. Input is (v, va, u) ∈ G̃3, where the unknown exponent a is uniformly randomly dis-

tributed over Z∗p. The goal is to output ua.

2. Simulate the scheme Ẽ = (KGen,DEnc,CollRes):

KGen: The same as in Section 11.1, except that let γ be the unknown value a:

γ ← a.

DEnc: (a) Choose N random elements W1, . . . ,WN from Z∗p. Choose i∗ ∈ [N] at

random.

(b) For each i ∈ [N] except i∗:

APPENDIX A. SECURITY PROOF 198

i. choose zi ∈ Z∗p at random and compute vi = vzi and vγi = (vγ)zi =

(va)zi ;

ii. generate a tag ~ti = (vi, v
β
i , f1(Wi)) ∈ G̃3;

iii. generate a ciphertext CTi as in Section 11.1.

(c) For i∗:

i. generate a tag ~ti∗ = (vi∗ , v
β
i∗ , f1(Wi∗)) where vi∗ = u;

ii. generate a ciphertext CTi∗ = f Mult(CT′, R, pk), where CT′ ← f Enc(Wi∗ ,

~xi∗ , sk) and R is a random element in G̃.

(d) Send all tags and ciphertexts and pk to Bob as in Section 11.1.

CollRes: The same as in Section 11.1, except that the simulator does not perform

the verifications in step A2 of CollRes.

Note: Since γ is unknown, some verifications can not be done.

3. Invoke the adversary A and simulate the experiment ExpẼA using the above simulated

scheme Ẽ .

Let (X,Ψ1,Ψ2,Ψ3,Ψ4) denote the reply returned by adversary A on the challenging

query range R and ρ be the corresponding random nonce. Note: When the adversary

A is in challenging phase, the verification cannot be done, since γ = a is unknown.

4. Let viewA be the view of A after the experiment. Invoke the extractor Ā w.r.t. A,

and obtain output: {µi : i ∈ [N]} ← Ā(viewA).

5. Compute φ as below and output φµ
−1
i∗ :

φ← Ψ4

Ψρ
3 ·
∏i 6=i∗
i∈[N] (vγi)

µi

Denote the experiment ExpẼA simulated by D as ExpD; denote the experiment

ExpẼA simulated by B in the case of b = 1 as ExpB. Both simulated experiments ExpD

and ExpB are identical, to the view of adversary A (even if A is computationally

unbounded):

• In both simulated experiments, for each i ∈ [N] except i∗, the tag ~ti and

APPENDIX A. SECURITY PROOF 199

ciphertext CTi are consistent and identical as those generated by the algorithm

DEnc in Section 11.1.

• In both simulated experiments, the ciphertext CTi∗ is independent on the tag

~ti∗ :

– In ExpD,~ti∗ = (vi∗ , v
β
i∗ , f1(Wi∗)) and ciphertext CTi∗ = f Mult(CT′, R, pk),

where CT′ ← f Enc(Wi∗ , ~xi∗ , sk) and R is a random element in G̃. That

is, the ciphertext CTi∗ is randomized due to the independent randomness

R in the execution of f Mult.

– In ExpB, ~ti∗ = (vi∗ , v
β
i∗ , f1(Msg0)) and CTi∗ ← f Mult(CT, vγi∗ , pk), where

CT← f Enc(Msg1, ~xi∗ , sk) is the ciphertext of Msg1, and Msg0, Msg1 are

two independent random elements in Z∗p. That is, the ciphertext CTi∗ is

randomized2 due to the independent randomness Msg1 in the execution of

f Enc.

• In both simulated experiments, for any range query R, A receives the same

(identically distributed) reply as in CollRes in Section 11.1.

We remark that the differences in the capabilities of verifications in the two simulated

experiments, are invisible to A, since all accept/reject decisions are completely hidden

from A.

Suppose b = 1 and event E2 occurs3, that is, ζ = accept and Ψ2 =
∏

i∈[N]

(
vβi

)µi
and µi∗ 6= 0. It is easy to show that

φ = vγµi∗i∗ ; φµ
−1
i∗ = vγi∗ = uγ = ua.

2One can verify that randomization in f Mult is equivalent to randomization in f Enc, by checking
the constructions of f Mult and f Enc and the underlying BBG HIBE scheme. Note that public key
params of the underlying BBG HIBE scheme and Wi’s (Random numbers as in Step 1 of DEnc in
Section 11.1) are unknown to the adversary A.

3Note that the algorithm D cannot tell whether E2 occurs or not, since D does not know γ thus
cannot perform some verifications. D simply guesses that event E2 does occur, and this guess will
be correct with probability Pr[E2|b = 1]

APPENDIX A. SECURITY PROOF 200

Hence, the above algorithm D solve the CDH problem with probability

Pr[E2 | b = 1] Pr[φµ
−1
i∗ = ua | E2, b = 1] = Pr[E2 | b = 1].

ut

Therefore, under CDH assumption, Pr[E2 | b = 1] ≤ ν1, where ν1(·) is some negligible

function. As a result, conditional on b = 1, the advantage of B in breaking the FE

scheme is

Advweak-IND-sID-CPA
FE,B |b=1 =

∣∣∣∣Pr [E2 | b = 1] (Pr [b = b′ | E2, b = 1]− 1

2
)

∣∣∣∣ ≤ 1

2
ν1. (A.17)

Advweak-IND-sID-CPA
FE,B ≥

∣∣∣∣12Advweak-IND-sID-CPA
FE,B |b=0 −

1

2
Advweak-IND-sID-CPA

FE,B |b=1

∣∣∣∣
≥ 1

4dN
AdvThm A.3

A,Ā − 1

4
ν1.

ut

A.7 A valid proof should be generated by process-

ing each point within intersection D ∩ R for

exactly once

Theorem A.4 Suppose Assumption 4 and Assumption 5 hold, and BBG [BBG05]

HIBE scheme is IND-sID-CPA secure. For any PPT algorithm A, there exists a

PPT adversary Ā, such that all of AdvLem A.2
A,Ā , AdvThm A.3

A,Ā , and AdvThm A.4
A,Ā are

negligible, where the advantage AdvThm A.4
A,Ā of A against Ā w.r.t. scheme E =

APPENDIX A. SECURITY PROOF 201

(KGen,DEnc,ProVer) is defined as

AdvThm A.4
A,Ā (1λ)

def
= 1− Pr

(ζ,X,∆, viewEA,D,R)← ExpEA(1λ);

({µi : i ∈ [N]})← Ā(viewEA) :

ζ = accept ⇒(
∆ =

∏
i∈[N]

(
vβi

)µi
∧ ∀i ∈ [N], µi = 1

)

 ,

where vβi is the second component of tag ~ti for data point ~xi ∈ D (See Step 2 of DEnc

in Section 11.1).

Proof of Theorem A.4:

Idea of proof. For any PPT algorithm A, applying Theorem A.3, let Ā be the

PPT algorithm, such that AdvLem A.2
A,Ā ≤ ε5 and AdvThm A.3

A,Ā ≤ ε6 for some negligible

functions ε5(·) and ε6(·). Using proof of contradiction, assume that AdvThm A.4
A,Ā ≥ ε7

for some non-negligible function ε7(·). We construct a PPT algorithm B based on

A and Ā, such that B breaks Discrete Log Problem with non-negligible advantage

ε7 − (2d+ 1)(ε5 + ε6).

Denote with E1 the event that ζ = accept
∧

∆ 6=
∏

i∈[N]

(
vβi

)µi
, and with E2

the event that ζ = accept
∧

∆ =
∏

i∈[N]

(
vβi

)µi
∧ ∃j ∈ [N], µj 6= 1. We can split

the probability AdvThm A.4
A,Ā into two parts,

AdvThm A.4
A,Ā = Pr

(ζ,X, ~Ψ, viewEA,D,R)← ExpEA(1λ);

({µi : i ∈ [N]})← Ā(viewEA) :

ζ = accept
∧

∆ 6=
∏

i∈[N]

(
vβi

)µi

+Pr

(ζ,X, ~Ψ, viewEA,D,R)← ExpEA(1λ);

({µi : i ∈ [N]})← Ā(viewEA) :

ζ = accept
∧

∆ =
∏

i∈[N]

(
vβi

)µi
∧ ∃j ∈ [N], µj 6= 1

= Pr[E1] + Pr[E2].

APPENDIX A. SECURITY PROOF 202

Part I: Pr[E1] ≤ (2d+ 1)
(
AdvLem A.2

A,Ā + AdvThm A.3
A,Ā

)
.

Suppose that: (1) The challenging query range is R. (2) Alice partitions R{ into 2d

rectangular ranges R1, . . . ,R2d and sets R0 = R. (3) For 0 ≤ ` ≤ 2d, denote with

(ζ`, X`,Ψ
(`)
2) the reply returned by adversary A in the execution of CollRes on range

R`. (4) Denote with (ζ,X,∆) the output of Alice in the execution of ProVer. (5)

Recall that Alice keeps the value ∆ =
∏

i∈[N] v
β
i .

According to the construction in Section 11.1 (i.e. Step 3 of ProVer), we have ∧
`∈[0,2d]

ζ` = accept

 ∧ ∆ =
∏

`∈[0,2d]

Ψ
(`)
2 ⇔ ζ = accept (Denoted as statement A)

(A.18)

In additional to statement A, let us define statement A` and B` as below:

A`: ζ` = accept ⇒ Ψ
(`)
2 =

∏
i∈[N] v

βµ`,i
i , 0 ≤ ` ≤ 2d.

B`: ζ` = accept ∧Ψ
(`)
2 =

∏
i∈[N] v

βµ`,i
i ⇒ ∀~xi ∈ D ∩R{

` , µ`,i = 0, 0 ≤ ` ≤ 2d.

Let us define integers µi, i ∈ [N], based on integers µ`,i’s, ` ∈ [0, 2d], i ∈ [N], as

below: For each i ∈ [N], find the unique rectangular range R`, ` ∈ [0, 2d], such that

data point ~xi ∈ D ∩R`, then set µi = µ`,i.

The conjunctions of statements A, A`’s (0 ≤ ` ≤ 2d), and B`’s (0 ≤ ` ≤ 2d),

directly imply the following statement

ζ = accept ⇒ ∆ =
∏

~xi∈D∩(
⋃

0≤`≤2dR`)

vβµii =
∏
~xi∈D

vβµii . (A.19)

APPENDIX A. SECURITY PROOF 203

Applying Proposition 3 and Proposition 4 in Appendix A.2, we have

Pr

[
ζ = accept⇒ ∆ =

∏
~xi∈D

vβµii

]
≥ Pr [A ∧ A0 ∧ . . . ∧ A2d ∧B0 ∧ . . . ∧B2d]

≥ 1− Pr[¬A]−
2d∑
`=0

Pr [¬A`]−
2d∑
`=0

Pr [¬B`]

≥ 1− 0−
2d∑
`=0

AdvLem A.2
A,Ā −

2d∑
`=0

AdvThm A.3
A,Ā

= 1− (2d+ 1)
(
AdvLem A.2

A,Ā + AdvThm A.3
A,Ā

)
.

Therefore,

Pr[E1] = 1−Pr

[
ζ = accept⇒ ∆ =

∏
~xi∈D

vβµii

]
≤ (2d+1)

(
AdvLem A.2

A,Ā + AdvThm A.3
A,Ā

)
.

Part II: Break Discrete Log Problem.

Applying the result in Part I, we have Pr[E2] = AdvThm A.4
A,Ā −Pr[E1] ≥ AdvThm A.4

A,Ā −
(2d + 1)

(
AdvLem A.2

A,Ā + AdvThm A.3
A,Ā

)
. We construct the following algorithm to break

the Discrete Log Problem.

DLP Adversary B

1. The input is (v, va) ∈ G̃2. The goal is to find a ∈ Zp.

2. Invoke scheme E = (KGen,DEnc,ProVer) with f2 defined as above, with the following

modification:

• In DEnc, for each i ∈ [N], choose yi, zi ∈ Zp at random and set vi = (va)yi ·vzi ∈
G̃.

Note: B has full information of private key.

3. Simulate the experiment ExpEA, by invoking the adversary A (playing the role Bob)

to interact with Alice in E . Then invoke Ā(viewEA) to obtain {µi : i ∈ [N]}.

APPENDIX A. SECURITY PROOF 204

4. With probability equal to Pr[E2], it holds that ζ = accept
∧

∆ =
∏
i∈[N]

(
vβi

)µi ∧
∃j ∈

[N], µj 6= 1.

5. According to our scheme in Section 11.1 (Step 4 of DEnc), ∆ =
∏
i∈[N] v

β
i . So a

univariable equation in the unknown variable a of order 1 in group Zp can be formed

by substituting vj = vayj+zj . Solve this equation and get a root a∗. Output a∗.

The PPT algorithm B constructed as above breaks DLP with probability Pr[E2].

Therefore, under Computational Diffie Hellman Assumption 4, DLP is infeasible

and thus Pr[E2] has to be negligible.

Combining results in Part I and II, we have

AdvThm A.4
A,Ā ≤ (2d+ 1)

(
AdvLem A.2

A,Ā + AdvThm A.3
A,Ā

)
+ AdvDLP

B .

ut

A.8 Proof of Main Theorem 11.1

Theorem 11.1 (Main Theorem) Suppose Assumption 4 and Assumption 5 hold,

and BBG [BBG05] HIBE scheme is IND-sID-CPA secure. Then the RC protocol E =

(KGen,DEnc,ProVer) constructed in Section 11.1 is VRC w.r.t. function F (·, ·) as

defined in Section 9.1, under Definition 11. Namely, E is correct and sound w.r.t.

function F .

Proof of Theorem 11.1: The correctness is straightforward once we have Lemma 10.1.

Here we save the details and focus on the soundness part.

Suppose E is not sound, i.e. there exists a PPT algorithm A, with non-negligible

advantage ε6 against E :

AdvEA = Pr

[
(ζ,X, ~Ψ, viewEA,D,R)← ExpEA(1λ);

ζ = accept
∧

X 6= F (D,R) (mod p)

]
≥ ε6.

Applying Theorem A.4, let Ā be the extractor for A such that all of AdvLem A.2
A,Ā ,

AdvThm A.3
A,Ā , and AdvThm A.4

A,Ā are negligible.

APPENDIX A. SECURITY PROOF 205

We intend to construct a PPT algorithm B based on A to break Assumption 4

(Computational Diffie-Hellman Problem), and argue that B succeeds with probability

about ε6, with the help of Ā, under Assumption 4, Assumption 5, and the assumption

that BBG [BBG05] HIBE is IND-sID-CPA secure. The contradiction will imply that

such adversary A does not exist and the constructed scheme E is sound.

Adversary B against Computational Diffie-Hellman Problem

1. The input is (u, uβ, vβ) ∈ G̃. The goal is to find v.

2. Choose a random number R1 from G̃. Then R1 = vθ for some unknown θ ∈ G̃.

3. For 1 ≤ j ≤ m, choose zj at random from Z∗p and set uj ← uzj and compute

uβj =
(
uβ
)zj . Let Wm = ({uj , uβj : j ∈ [m]}).

4. Convert (Wm, R1, R2 = vβ) to Sm+1 = {(θvi, vβi)}mi=0 in the same way as in construc-

tion of algorithm A1 in the proof of Lemma A.1 in Appendix A.5.1.

5. From Sm+1, simulate the scheme E just as adversary B in the proof of Lemma A.2 in

Appendix A.5.2.

6. Invoke the adversary A and simulate the experiment ExpEA. Let (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4)

be the reply returned by adversary A on challenging query range R in the execution

of CollRes.

7. Simulate the experiment ExpEA honestly (just using the algorithm Eval instead of

adversary A) and get query result Y = |D ∩R| and proof (Ψ1,Ψ2,Ψ3,Ψ4).

8. Let Z be the inverse of (X − Y) modulo p and compute θ′ =
(

Ψ̄1
Ψ1

)Z
.

Note: (1) Y = F (D,R). (2) If A succeeds, then X 6= F (D,R) (mod p). Recall the

definition of function F : D× R→ Zp in Section 9.1.

9. Output R1
θ′ .

Note that as in proof of Lemma A.2, the simulated scheme E is identical to a real one

from the view of adversary A.

For the constructed adversary B, we make the following claim:

APPENDIX A. SECURITY PROOF 206

Claim A.8.1 Suppose Assumption 4 and Assumption 5 hold, and BBG [BBG05]

HIBE scheme is IND-sID-CPA secure. If A succeeds, it holds with o.h.p. (i.e. with

probability (1− negl)) that
(

Ψ̄1

θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1

θY

)β
.

Proof of Claim A.8.1: If A succeeds, then its output (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4) will

pass all verifications in the scheme E (Step A2 of CollRes and Step 3 in ProVer in

Section 11.1). So we have

(
Ψ̄1

θX

)β
= Ψ̄2, ζ = accept. (A.20)

where ζ ∈ {accept, reject} denotes the corresponding decision (a part of output of

ProVer) regarding A’s reply on the challenging query.

Let (µ1, . . . , µN) be the output of extractor Ā. Under Assumption 4, Assumption 5

and the assumption that BBG [BBG05] HIBE scheme is IND-sID-CPA secure, by

applying Lemma A.2, Theorem A.3 and Theorem A.4, the following implications

hold with o.h.p.,

ζ = accept ⇒

∆ =
∏
i∈[N]

(
vβi

)µi
∧ ∀i ∈ [N], µi = 1

 ;

ζ = accept ⇒ Ψ̄2 =
∏

~xi∈D∩R

(
vβi

)µi
.

Hence, conditional on A succeeds, with o.h.p. we have

Ψ̄2 =
∏

~xi∈D∩R

(
vβi

)µi
=

∏
~xi∈D∩R

vβi . (A.21)

The output (X,Ψ1,Ψ2,Ψ3,Ψ4) returned by an honest Bob also passes all verifica-

tions (Since the scheme E is correct).

(
Ψ1

θY

)β
= Ψ2, where Ψ2 =

∏
~xi∈D∩R

vβi is computed following the scheme. (A.22)

APPENDIX A. SECURITY PROOF 207

Combing equations (A.20)(A.21)(A.22), Claim A.8.1 can be implied directly:

(
Ψ̄1

θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1

θY

)β
.

ut

From Claim A.8.1, it is straightforward that

Pr

[
R1

θ′
= v

]
= Pr [θ′ = θ] ≥ Pr [A succeeds] (1− negl) ≥ ε6(1− negl),

where negl(·) is some negligible function. Therefore, the constructed algorithm B
breaks Assumption 4 with non-negligible probability ε6(1− negl). The contradiction

implies that our hypothesis is wrong: such adversary A does not exist. Thus, the

constructed scheme E is sound and Theorem 11.1 is proved. ut

	Acknowledgement
	Summary
	Introduction
	Our Results and Contributions
	Part I: Proofs of Storage
	Part II: Verifiable Outsourced Database

	Organization
	Organization of Part I
	Organization of Part II

	Part I Proofs of Storage
	Background
	Problem Description
	Remote Integrity Verification
	Periodical Integrity Verification
	Efficient Integrity Verification
	Simple but Undesirable Methods

	Two Early Approaches
	RSA based method
	MAC based method
	Advantages and Disadvantages

	Tools and Building blocks
	Chunking and Indexing
	Random Sampling and Error Erasure Code
	Homomorphic Cryptography
	Framework

	Related Work
	Early Approaches
	Online Memory Checker and Sublinear Authenticator
	Proofs of Retrievability and Provable Data Possession
	Proofs of Storage with More Features
	More General Delegated Computation and Proofs of Storage

	Definitions and Formulation
	Preliminaries
	Terminologies
	Conventions
	Summary of Notations

	Formulation: Proofs of Retrievability
	System Model
	Security Model
	Alternative Formulation: Provable Data Possession

	POR from Linearly Homomorphic MAC
	Overview
	A Brief Description of proofs of storage scheme POS1
	Organization

	Linearly Homomorphic MAC: Definition
	Linearly Homomorphic MAC: Construction
	Construction of S1
	Correctness
	S1 is Symmetric Key Signcryption

	POS1: A POR scheme constructed from Homomorphic MAC S1
	Construction of POS1
	Completeness

	Performance Analysis
	Security Analysis of MAC scheme S1
	Security Model
	S1 is Secure

	Security Analysis of POR scheme POS1
	Two Lemmas on Random Sampling
	Scheme POS1 is Sound

	Summary

	POR from Predicate-Homomorphic MAC
	Overview
	A Brief Description of proofs of storage scheme POS2
	Organization

	Linearly Predicate-Homomorphic MAC: Definition
	Linearly Predicate-Homomorphic MAC: Construction
	Background
	Construction of S2
	Correctness

	POS2: A POR scheme constructed from Homomorphic MAC S2
	Construction of POS2
	Completeness

	Performance Analysis
	Communication
	Storage
	Computation
	Recommended System Parameters
	Comparison
	Experiment: Measuring the computation time

	Security Analysis of MAC scheme S2
	Security Model
	Assumption
	S2 is Secure

	Security Analysis of POR scheme POS2
	Summary

	Provable Data Possession
	Overview
	A Brief Description of proofs of storage scheme POS3
	Organization

	Provable Data Possession: Definition and Formulation
	POS3: An Efficient PDP Scheme
	Construction of POS3
	Completeness

	Performance Analysis
	Comparison

	Security Analysis of PDP Scheme POS3
	Security Model of PDP
	Assumptions
	Security Proof

	Summary

	Part II Verifiable Outsourced Database
	Introduction
	Our Results
	Contributions

	Related work
	Organization

	Overview of Main Scheme
	Preliminary Scheme
	Deliver challenge-message efficiently and securely

	Formulation
	Dataset and Query
	Security Model
	Assumptions

	Functional Encryption Scheme
	Polymorphic Property of BBG HIBE Scheme
	Define Identities based on Binary Interval Tree
	Construction of Functional Encryption Scheme
	Correctness and Security
	Correctness
	Security

	Authenticating Aggregate Count Query
	The Main Construction
	Security Analysis
	Our main theorem
	Overview of Proof of Main Theorem
	The Preliminary Scheme is Secure

	Performance

	Authenticating Other Types of Queries
	Min and Max
	Median
	Range Selection

	Conclusion
	Bibliography
	Security Proof
	BBG HIBE
	Two Propositions
	Proof of Lemma 10.1
	Proof of Theorem 10.2
	A valid proof should be generated from points within dataset D
	Lemma A.1 and Proof
	Lemma A.2 and Proof

	A valid proof should be generated from points within intersection D R
	A valid proof should be generated by processing each point within intersection D R for exactly once
	Proof of Main Theorem 11.1

