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Summary

We consider the problem of segmenting a pair of overlapping objects whose

intensity level in the intersection is approximately the sum of individual

objects. We assume that the image domain Ω = [0,N] × [0,M] contains two

overlapping objects O1 ⊆ Ω and O2 ⊆ Ω and consider images u ∶ Ω → R such

that

u(x, y) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c10 if (x, y) ∈ O1/O2

c01 if (x, y) ∈ O2/O1

c10 + c01 if (x, y) ∈ O1 ∩O2

c00 if (x, y) ∈ Ω/(O1 ∪O2).

(1)

The identification of the true objects O1 and O2 from a given image u is

called an additive segmentation problem. A segmentation of an image u is

a pair of objects {E1,E2} such that E1,E2 ⊆ Ω and {E1/E2,E2/E1,E1 ∩

E2,Ω/(E1 ∪E2)} forms a partition of Ω with E1,E2 approximating the true

objects O1,O2. The real-world applications of this model include X-ray im-

ages [1], magnetic resonance angiography images [14, 7] and microscopy im-
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ages recording protein expression levels [11] which standard segmentation

models does not work. In the paper [16], the authors proposed to solve the

additive segmentation problem by looking for a segmentation {E1,E2} and

a set of constants c = (c10, c01, c11, c00) that minimize the soft additive en-

ergy. This energy contains a curvature term. Applying the gradient descent

method to the model leads to a fourth-order Euler-Lagrange equation which

is often difficult to solve efficiently.

In this thesis, we present two methods to optimize the soft additive model. In

the first method, we adapt the augmented Lagrangian method developed in

[25] to optimize the Euler’s elastica to solve the Euler-Lagrange equations. In

the second method, we formulate a new Euler-Lagrange equation by placing

the terms resulting from the curvature term in the Euler-Lagrange equation

one step behind the rest and call it the lagged Euler-Lagrange equation. In

each step, we formulate a constrained convex minimization problem whose

minimizer is a solution of the lagged Euler-Lagrange equation. Each of these

constrained convex minimization problems can be solved by applying the

augmented Lagrangian method [10, 24]. The subproblems arising from the

augmented Lagrangian method can be solved directly by either an explicit

formula or by applying the Discrete Cosine Transform. The solution of the

Euler-Lagrange equation is achieved by allowing the iterative map to con-

verge to a fixed point.

This thesis is organized as follows. We first review the soft additive model

and some of its results in Chapter 1. In Chapter 2, we give details of the
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adaptation of the augmented Lagrangian method to solve the soft additive

model and also the lagged curvature method. In Chapter 3, we provide

solutions for the unconstrained minimization problems occurring in the al-

gorithms developed. The numerical results are given in Chapter 4 and the

thesis is summarized in Chapter 5.
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Chapter 1

Preliminaries

1.1 Soft Additive Model

A closed plane curve is a map γ ∶ [0,1]→ R2 such that γ(0) = γ(1), dγdt exists

and is continuous for every t ∈ [0,1]. It is said to be regular if dγdt ≠ 0 for each

t ∈ [0,1]. We denote the arc length parameter by s and γ′, γ′′ denotes the

first and second derivative of γ with respect to s. If the nth derivative γ(n)

exists and is continuous, we say that γ is a curve of class Cn, and we write

γ ∈ Cn. We denote C∞ = ∩∞n=1Cn. We also denote the curvature of a curve as

κ = γ′′.

Given a Lebesgue measurable set E ⊆ R2, we denote its boundary by ∂E.

We say that a bounded open set E is of the class C∞ if and only if its boundary

∂E is a closed plane curve of class C∞. A signed distance function of a set E

is a function Dist(E) ∶ Ω → R defined as Dist(E)(x) ≜ (−1)χE(x) inf{∣x − y∣ ∶

1



CHAPTER 1. PRELIMINARIES

y ∈ ∂E}.

A sequence of measurable sets {Ei} is said to converge to a measurable set

E if and only if χEi
→ χE in L1(Ω).

Using the ideas from [5, 20, 19], we are ready to introduce the soft additive

functional in [16] for (E1,E2,c) ∈ C∞ × C∞ ×R4 defined as:

F soft(E1,E2,c) =
2

∑
i=1
∫
∂Ei∩Ω

[α + βϕ(κi(z))] dH(z) (1.1)

+
1

∑
i=0

1

∑
j=0
∫
Eij

(u − cij)2 dx dy

+γ(c10 + c01 − c11)2

where H is the 1-dimensional Hausdorff measure, α,β, γ > 0, E1,E2 ⊆ Ω are

of class C∞, E10 = E1/E2, E01 = E2/E1, E00 = Ω/(E1 ∪E2), E11 = E1 ∩E2 are

subsets of Ω, c = (c10, c01, c00, c11) is a set of constants, κi(z) is the curvature

of the curve ∂Ei at point z ∈ Ω for i = 1,2 and

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2 if ∣x∣ ≤ 1

∣x∣ if ∣x∣ > 1
. (1.2)

We wish to note that this ϕ is not twice differentiable. Due to numerical

considerations, we replace it by a smooth function:

ϕ(x) = 2

π
(x tan−1(rx) − 1

2r
log(r2x2 + 1)) . (1.3)

2



1.1. SOFT ADDITIVE MODEL

where r > 0 is a constant. In this thesis, we choose r = 1. We note that

the soft additive functional only makes sense for sets of class C∞. To work

around this difficulty, we extend F soft to M(Ω) ×M(Ω) ×R4 by

F soft(E1,E2,c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F soft(E1,E2,c) if (E1,E2,c) ∈ C∞ × C∞ ×R4

∞ if (E1,E2,c) ∈M(Ω) ×M(Ω) ×R4/C∞ × C∞ ×R4

whereM(Ω) denotes the collection of measurable subsets of Ω.

Now we relax the soft additive functional by considering the lower semicon-

tinuous envelope of F soft with respect to the topology in L1(R2)×L1(R2)×R4.

We define the lower semicontinuous envelope F soft of F soft with respect to

the L1(R2) ×L1(R2) ×R4 topology as F soft ∶ P ×P ×R4 → R such that

F soft(E1,E2,c) ≜ inf{lim inf
n→∞

F soft(E1n,E2n,cn) ∶ (E1n,E2n,cn)→ (E1,E2,c)}

where the convergence (E1n,E2n,cn) → (E1,E2,c) is with respect to the

L1(R2) ×L1(R2) ×R4 topology and P denotes the collection of sets of finite

perimeter such that

P ≜ {E ⊆ Ω ∶ E is borel and χE ∈ BV (Ω)}.

It should be noted that F soft is a well defined function as the sets of class

C∞ is a dense subset of P with respect to the L1(R2) topology[12].

The additive segmentation problem is solved by the soft additive model which

seeks a (E1,E2,c) that minimizes the soft additive functional. It was also

3



CHAPTER 1. PRELIMINARIES

demonstrated in [16] that the soft additive model provides very good numer-

ical results.

To represent a set E of class C∞ using a level set function, we construct a

smooth function ψ on Ω satisfying

ψ(x, y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 if (x, y) ∈ E

= 0 if (x, y) ∈ Ω ∩ ∂E

< 0 if (x, y) ∈ Ω/E .

(1.4)

The level set method of Osher and Sethian [22] is particularly well suited to

handle topological changes and curvature dependent functions because the

curvature of a curve has a very simple expression in terms of the level set

function that represents the curve. If ψ is the level set function of a region E,

the curvature on the zeroth level set is given by the function ∇⋅ ∇ψ∣∇ψ∣ . For the

soft additive functional to be well defined, we require a level set function ψ

such that the term ∇⋅ ∇ψ∣∇ψ∣ is defined almost everywhere in Ω. Such a level set

function always exists as the sets we are considering are of class C∞ and by

a result in [17], the signed distance functions are smooth almost everywhere.

Using the idea of [5], the soft additive functional can be reformulated in terms

4



1.1. SOFT ADDITIVE MODEL

of level set functions as

F soft(ψ1, ψ2,c) =
2

∑
i=1
∫
Ω
[α + βϕ(κi)]∣∇ψi∣δ(ψi) dx dy (1.5)

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2H((−1)i+1ψ1)H((−1)j+1ψ2) dx dy

+γ∣c10 + c01 − c11∣2,

where ψ1, ψ2 are almost everywhere smooth functions, κi = ∇ ⋅ (∇ψi/∣∇ψi∣)

and δ and H are the Dirac delta and the Heaviside function, respectively.

To solve the soft additive model numerically (see [16]), we regularize the

Heaviside function, Dirac delta function and the modulus function using the

following smooth functions:

Hϵ(x) =
1

π
tan−1 (x

ϵ
) + 1

2
,

δϵ(x) =
1

π

ϵ

ϵ2 + x2
,

∣(x, y)∣ϵ =
√
x2 + y2 + ϵ,

where ϵ is the regularization coefficient. Thus, we minimize the regularized

soft additive functional

F soft
ϵ (ψ1, ψ2,c) =

2

∑
i=1
∫
Ω
[α + βϕ(κi)]∣∇ψi∣ϵδϵ(ψi) dx dy (1.6)

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2Hϵ((−1)i+1ψ1)Hϵ((−1)j+1ψ2) dx dy

+γ∣c10 + c01 − c11∣2

5



CHAPTER 1. PRELIMINARIES

by evolving the level set functions using the gradient flow of F soft
ϵ :

∂ψ1

∂t
= δϵ(ψ1)∇ ⋅ {

∇ψ1

∣∇ψ1∣ϵ
[α + βϕ(κ1)] −

1

∣∇ψ1∣ϵ
(I − P ∇ψ1

∣∇ψ1 ∣ϵ
)∇[βϕ′(κ1)∣∇ψ1∣ϵ]} (1.7)

− δϵ(ψ1){[(u − c10)2 − (u − c00)2][1 −Hϵ(ψ2)] + [(u − c01)2 − (u − c11)2]Hϵ(ψ2)},

∂ψ2

∂t
= δϵ(ψ2)∇ ⋅ {

∇ψ2

∣∇ψ2∣ϵ
[α + βϕ(κ2)] −

1

∣∇ψ2∣ϵ
(I − P ∇ψ2

∣∇ψ2 ∣ϵ
)∇[βϕ′(κ2)∣∇ψ2∣ϵ]} (1.8)

− δϵ(ψ2){[(u − c01)2 − (u − c00)2][1 −Hϵ(ψ1)] + [(u − c10)2 − (u − c11)2]Hϵ(ψ1)}.

with boundary condition ∂ψi

∂n = 0 and ∂ϕ′(κi)∣∇ψi∣ϵδϵ(ψi)
∂n = 0 for i = 1,2. Here,

I ∶ R2 → R2 is the identity operator and Pn ∶ R2 → R2 is the projector defined

by Pn(v) = (v ⋅ n)n for v ∈ R2.

1.2 Existence of solutions for the Soft Addi-

tive Model.

In this section, we study the existence of solutions for the soft additive model.

First, we show that any minimizing sequence of F soft is relatively compact in

P ×P ×R4.

Proposition 1.2.1. Let {(E1n,E2n,cn)}n∈N ⊆M(Ω)×M(Ω)×R4 be a min-

imizing sequence of F soft such that {cn}n∈N is a bounded sequence. Then

{(E1n,E2n,cn)}n∈N is relatively compact in P×P×R4(i.e. there exists (E1,E2,c) ∈

P×P×R4 and a subsequence {(E1nj
,E2nj

,cnj
)}j∈N that converges to (E1,E2,c)

with respect to the L1(R2) ×L1(R2) ×R4 topology).

6



1.2. EXISTENCE OF SOLUTIONS FOR THE SOFT ADDITIVE
MODEL.

Proof. Let {(E1n,E2n,cn)}n∈N be such a minimizing sequence of F soft. By

deleting a finite number of terms, we may assume that sup
n∈N
{F soft(E1n,E2n,cn)}

is finite and thus E1n,E2n are bounded open sets of class C∞ for any n ∈ N.

Since,
1

∑
i=0

1

∑
j=0
∫
Eijn

(u − cijn)
2 dx dy ≥ 0

and

γ∣c10n + c01n − c11n∣2 ≥ 0,

for each n ∈ N we have

∫
∂Ein

[α + βϕ(κin(z))] dH(z) ≤ sup
n
F soft(E1n,E2n,cn) <∞ for i = 1,2.

By the fact that α > 0, it follows that

sup
n∈N
H(∂Ein) <∞, for i = 1,2.

Since the image domain Ω is bounded, there exists a ball B(0,R) such that

E1n,E2n ⊆ Ω ⊆ B(0,R) for all n ∈ N. Since {(E1n,E2n,cn)}n∈N is a mini-

mizing sequence, the perimeter of the sets E1n and E2n are bounded above

by F soft(E11,E21,c1). Thus χE1n
, χE2n

are in BV for all n ∈ N. By Rellich

Compactness Theorem in BV[12], it follows that there exists bounded sets

E1,E2 ∈ P and a subsequence {E1nk
}n∈N,{E2nk

}k∈N such that E1nk
converges

to E1 and E2nk
converges to E2 in L1(R2) as k →∞. Thus the subsequence

{(E1nk
,E2nk

)}k∈N converges to (E1,E2) with respect to L1(R2) × L1(R2)

7



CHAPTER 1. PRELIMINARIES

topology. Since {cn} is a bounded sequence, {cnk
} is also a bounded se-

quence. By the Heine-Borel Theorem there exists c ∈ R4 and a conver-

gent subsequence {cnkj
} such that {cnkj

} → c. Thus, the subsequence

{(E1nkj
,E2nkj

,cnkj
)}j∈N converges to (E1,E2,c) with respect to the L1(R2)×

L1(R2) ×R4 topology. This concludes the proof.

Remark 1.2.2. For the rest of this section, we assume that the sequence

{cn}n∈N is bounded. This is a reasonable assumption as it will be seen in

the later chapters that cn can be chosen to be the ‘average’ intensity for the

region it represents in the image domain Ω for each n ∈ N.

Since the limit of a sequence of sets {Ei}i∈N of class C∞ may not be of

class C∞, it is possible that the functional F soft has no minimizers. However,

we can show that F soft has minimizers.

Theorem 1.2.3. There exists (E1
∗,E2

∗,c∗) ∈ P × P × R4 that minimizes

F soft. Furthermore, if any minimizer (E∗1 ,E∗2 ,c) of F soft is an element of

C∞ × C∞ ×R4, then (E∗1 ,E∗2 ,c) is also a minimizer of F soft.

Proof. Pick any minimizing sequence {(E1n,E2n,cn)}n∈N ⊆M(Ω)×M(Ω)×R4

of F soft. By the previous proposition, there exists a subsequence

{(E1nk
,E2nk

,cnk
)}k∈N that converges to a (E1

∗,E2
∗,c∗) ∈ P × P × R4. We

reindex this subsequence by {(E1j,E2j,cj)}j∈N and denote the infimum by

m = inf
j
F soft(E1j,E2j,cj).

8



1.2. EXISTENCE OF SOLUTIONS FOR THE SOFT ADDITIVE
MODEL.

Since {(E1j,E2j,cj)}j∈N is also a minimizing sequence of F soft, the following

inequality

m ≤ F soft(E1,E2,c)

holds for any (E1,E2,c) ∈M(Ω) ×M(Ω) ×R4 . Therefore, we have

lim inf
n

F soft((F1n, F2n,dn)) ≥m

for any (F1, F2,d) ∈ P × P × R4 and any sequence {(F1n, F2n,dn)}n∈N that

converges to (F1, F2,d). Thus we conclude that

F soft((F1, F2,d) ≥m

for any (F1, F2,d) ∈ P ×P ×R4. Furthermore, we know that

F soft(E1
∗,E2

∗,c∗) ≤m.

Therefore (E1
∗,E2

∗,c∗) is a minimizer of F soft. Furthermore, if any mini-

mizer (E∗1 ,E∗2 ,c) of F soft is an element of C∞ × C∞ ×R4, then (E∗1 ,E∗2 ,c) is

also a minimizer of F soft.

9



Chapter 2

Methods to optimize the soft

additive model

In this chapter, we present the outline of the two algorithms developed to

reduce the computational cost of solving the soft additive model. The first

algorithm is adapted from [25] which proposes to optimize the Euler’s elastica

using the augmented Lagrangian method. The second algorithm is developed

by attempting to solve for a fixed point of the Euler-Lagrange equations of

the soft additive functional.

In the literature of image segmentation, there are many methods which may

be adapted to optimize the soft additive functional. In [2], the authors used

the method of graph cuts to denoise an image which involves a curvature

term. In another paper [6], the authors applied the method of convex splitting

to solve a fourth-order partial differential equation. Multigrid methods [4]

10



2.1. AUGMENTED LAGRANGIAN METHOD ON LEVEL SETS

are also used to solve image segmentation models. The methods mentioned

above may be adapted to optimize the soft additive functional.

2.1 Augmented Lagrangian method on level

sets

In this section we follow the ideas discussed in [25] and apply the augmented

Lagrangian method to the level set formulation of the soft additive model.

Before applying the augmented Lagrangian method, we convert the mini-

mization problem (1.5) into a constrained optimization problem by introduc-

ing the new variables pi and ni for i = 1,2 satisfying the following equations:

pi = ∇ψi, ni =
∇ψi
∣∇ψi∣

.

The last constraint above can be reformulated as ni∣pi∣ = pi. Following a

similar argument in [25], we split the two constraints into

pi = ∇ψi, ni =mi, pi ⋅mi = ∣pi∣, ∣mi∣ ≤ 1 for i = 1,2.

11
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MODEL

Using a change of variables, the problem of minimizing the functional in (1.5)

is equivalent to the following constrained minimization problem:

minimize
ψi,pi,ni,mi,c

i∈{1,2}

2

∑
i=1
∫
Ω
[α + βϕ(∇ ⋅ ni)]∣pi∣δ(ψi) dx dy

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2H((−1)i+1ψ1)H((−1)j+1ψ2) dx dy

+ γ∣c10 + c01 − c11∣2 + δR(m1) + δR(m2)

subject to

pi = ∇ψi, ni =mi, pi ⋅mi = ∣pi∣ for i = 1,2.

(2.1)

We impose the constraint

∣mi∣ ≤ 1 a.e. in Ω

in the above problem by defining a set

R = {mi ∈ L1(Ω)∣ ∣mi∣ ≤ 1 a.e in Ω}

and a characteristic function δR(⋅) such that

δR(mi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 mi ∈R,

+∞ otherwise.

12



2.1. AUGMENTED LAGRANGIAN METHOD ON LEVEL SETS

Following similar ideas in [25], we define the following augmented Lagrangian

functional:

L(ψ1, ψ2,c,p1,p2,m1,m2,n1,n2;λp1 , λp2 , λm1 , λm2 , λn1 , λn2) (2.2)

=
2

∑
i=1
∫
Ω
[α + βϕ(∇ ⋅ ni)]∣pi∣ϵδϵ(ψi) dx dy

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2 ×Hϵ((−1)i+1ψ1)Hϵ((−1)j+1ψ2) dx dy

+γ∣c10 + c01 − c11∣2

+rm1 ∫
Ω
(∣p1∣ϵ −m1 ⋅ p1) dx dy + ∫

Ω
λm1(∣p1∣ϵ −m1 ⋅ p1) dx dy

+rm2 ∫
Ω
(∣p2∣ϵ −m2 ⋅ p2) dx dy + ∫

Ω
λm2(∣p2∣ϵ −m2 ⋅ p2) dx dy

+rp1 ∫
Ω
∣p1 −∇ψ1∣2ϵ dx dy + ∫

Ω
λp1 ⋅ (p1 −∇ψ1) dx dy

+rp2 ∫
Ω
∣p2 −∇ψ2∣2ϵ dx dy + ∫

Ω
λp2 ⋅ (p2 −∇ψ2) dx dy

+rn1 ∫
Ω
∣n1 −m1∣2ϵ dx dy + ∫

Ω
λn1 ⋅ (n1 −m1) dx dy

+rn2 ∫
Ω
∣n2 −m2∣2ϵ dx dy + ∫

Ω
λn2 ⋅ (n2 −m2) dx dy

+δR(m1) + δR(m2),

where λp1 , λp2 , λn1 , λn2 , λm1 and λm2 are Lagrange multipliers and rp1 , rp2 , rn1 ,

rn2 , rm1 and rm2 are positive penalty parameters. It is known that one of the

saddle points of the augmented Lagrangian functional gives a minimizer for

the constrained minimization problem (2.1). We use an iterative scheme to

find the saddle points of (2.2). We initialize the Lagrange multipliers as

λ0p1
, λ0p2

, λ0n1
, λ0n2

, λ0m1
, λ0m2

= 0 and for given initial level set functions ψ0
1,ψ

0
2,

we set p0
1 = ∇ψ0

1, p
0
2 = ∇ψ0

2, n
0
1 =

∇ψ0
1

∣∇ψ0
1 ∣ϵ
, n0

2 =
∇ψ0

2

∣∇ψ0
2 ∣ϵ
, m0

1 = n0
1 and m0

2 = n0
2. We

13



CHAPTER 2. METHODS TO OPTIMIZE THE SOFT ADDITIVE
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perform the outer iteration as described in the algorithm below.

1. Initialize the variables: ψ0
i ,p

0
i ,m

0
i ,n

0
i , λ

0
pi
, λ0mi

, λ0ni
,c0 for i = 1,2.

2. For k ≥ 1, an alternative minimization method is used to approx-

imate a local minimizer (ψk1 , ψk2 ,ck,pk1,pk2,mk
1,m

k
2,n

k
1,n

k
2) of the

augmented Lagrangian functional with fixed Lagrange multipliers

λp1 = λk−1p1
, λp2 = λk−1p2

, λm1 = λk−1m1
, λm2 = λk−1m2

, λn1 = λk−1n1
and

λn2 = λk−1n2
.

(ψk1 , ψk2 ,ck,pk1 ,pk2 ,mk
1 ,m

k
2 ,n

k
1 ,n

k
2)

≈ argminL(ψ1, ψ2,c,p1,p2,m1,m2,n1,n2;λp1 , λp2 , λm1 , λm2 , λn1 , λn2)

3. If the residual decreases we update the Lagrange multipliers by

maximizing the Lagrangian with respect to the Lagrangian multi-

pliers using

λkmi
= λk−1mi

+ 2rmi
(pki −mk

i ⋅ pki )

λkni
= λk−1ni

+ 2rni
(nki −mk

i )

λkpi
= λk−1pi

+ 2rpi
(pki −∇ψki ).

else we update the penalty parameters of the variables whose resid-

ual ex did not decrease, by

rnewx = 1.2rx, x ∈ {mi,ni,pi}

14



2.1. AUGMENTED LAGRANGIAN METHOD ON LEVEL SETS

where the residual corresponding to a variable x is defined as

emi
= ∥pki −∇mk

i ∥2

eni
= ∥nki −mk

i ∥2

epi
= ∥pi −∇ψki ∥2

for i ∈ {1,2}.

4. Stop the outer iterations if the residuals are smaller than tolerance,

go to step 2 otherwise.

Now, we describe the alternative minimization of L in greater detail. We

name this sub-algorithm to minimize L the inner iterations of the augmented

Lagrangian method on level sets. To simplify the notations, we define

Jk(ψ1, ψ2,c,p1,p2,m1,m2,n1,n2)

≜ L(ψ1, ψ2,c,p1,p2,m1,m2,n1,n2;λ
k−1
p1
, λk−1p2

, λk−1m1
, λk−1m2

, λk−1n1
, λk−1n2

)

for a fixed k.

15
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1. Initialize the inner loop variables : ψ̃1

0
= ψk−11 , ψ̃2

0
= ψk2 , p̃1

0 = pk−11 ,

p̃2
0 = pk−12 , m̃1

0 = mk−1
1 , m̃2

0 = mk−1
2 , ñ1

0 = nk−11 , ñ2
0 = nk−12 , c̃0 =

ck−1.

2. For l = 0, ..., L − 1, solve the following problems alternatively:

c̃l+1 = argmin
c

Jk(ψ̃1
l
, ψ̃2

l
, p̃1

l, p̃2
l, m̃1

l, m̃2
l, ñ1

l, ñ2
l,c) (2.3)

⎛
⎜⎜
⎝

ψ̃1
l+1

ψ̃2
l+1

⎞
⎟⎟
⎠
≈ argmin

ψ1,ψ2

Jk(ψ1, ψ2, p̃1
l, p̃2

l, m̃1
l, m̃2

l, ñ1
l, ñ2

l, c̃l+1) (2.4)

⎛
⎜⎜
⎝

ñ1
l+1

ñ2
l+1

⎞
⎟⎟
⎠
≈ argmin

n1,n2

Jk(ψ̃1
l+1
, ψ̃2

l+1
, p̃1

l, p̃2
l, m̃1

l, m̃2
l,n1,n2, c̃

l+1) (2.5)

m̃1
l+1 = argmin

m1

Jk(ψ̃1
l+1
, ψ̃2

l+1
, p̃1

l, p̃2
l,m1, m̃2

l, ñ1
l+1, ñ2

l+1, c̃l+1) (2.6)

m̃2
l+1 = argmin

m2

Jk(ψ̃1
l+1
, ψ̃2

l+1
, p̃1

l, p̃2
l, m̃1

l+1,m2, ñ1
l+1, ñ2

l+1, c̃l+1) (2.7)

p̃1
l+1 = argmin

p1

Jk(ψ̃1
l+1
, ψ̃2

l+1
,p1, p̃2

l, m̃1
l+1, m̃2

l+1, ñ1
l+1, ñ2

l+1, c̃l+1) (2.8)

p̃2
l+1 = argmin

p2

Jk(ψ̃1
l+1
, ψ̃2

l+1
, p̃1

l+1,p2, m̃1
l+1, m̃2

l+1, ñ1
l+1, ñ2

l+1, c̃l+1) (2.9)

3. If l+1 = L or when the relative change of the variables is lesser than

a predetermined tolerance, we stop this sub-algorithm and update

the variables:

(ψk
1 , ψ

k
2 ,c

k,pk
1 ,p

k
2 ,m

k
1 ,m

k
2 ,n

k
1 ,n

k
2) = (ψ̃1

L
, ψ̃2

L
, c̃L, p̃1

L, p̃2
L, m̃1

L, m̃2
L, ñ1

L, ñ2
L)
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2.2. LAGGED CURVATURE METHOD

2.2 Lagged Curvature Method

In this section, we propose another method to optimize the soft additive func-

tional. Solving the soft additive model using the gradient descent method

is computationally expensive as the gradient flow is a fourth-order partial

differential equation. However, when we allow some of the terms of Euler-

Lagrange equations to be lagged, the problem becomes a lot easier. Similar

techniques for other related models have been proposed in [3]. In fact, the

new gradient flow corresponds to a convex optimization problem with some

suitable change of variables. We split the method into outer and inner iter-

ations and give an outline of the details involved in this section.

2.2.1 Formulation of Outer Iterations

In this subsection, we present two functionals whose Euler-Lagrange equa-

tions correspond to the Euler-Lagrange equation of the soft additive func-

tional with some of the terms placed one step behind the rest.

For a fixed k ≥ 1 and level set functions ψk1 , ψ
k
2 such that {ψk1 = 0},{ψk1 =

0} ∈ C∞, we define the functional

G1(ψ1;ψ
k
1 , ψ

k
2 ,c) = ∫

Ω
[α + βϕ(κk1)]∣∇ψ1∣δ(ψ1) dx dy (2.10)

+∫
Ω
R(ψk1)H(ψ1) dx dy

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2H((−1)i+1ψ1)H((−1)j+1ψk2) dx dy

17
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and similarly

G2(ψ2;ψ
k
1 , ψ

k
2 ,c) = ∫

Ω
[α + βϕ(κk2)]∣∇ψ2∣δ(ψ2) dx dy (2.11)

+∫
Ω
R(ψk2)H(ψ2) dx dy

+
1

∑
i=0

1

∑
j=0
∫
Ω
(u − cij)2H((−1)j+1ψ2)H((−1)i+1ψk1) dx dy

where

R(ψki ) = ∇ ⋅ {
1

∣∇ψki ∣ϵ
(I − Pnk

i,ϵ
)∇[βϕ′(κki )∣∇ψki ∣ϵ]} for i = 1,2

where nki,ϵ =
∇ψk

i

∣∇ψk
i ∣ϵ
. We will see in the later part of this section that including

the second term in Equation (2.10) and (2.11) ensures that the gradient flow

to minimize Equation (2.10) and (2.11) corresponds to an iterative map for

the Euler-Lagrange equations for the soft additive model.

One way of minimizing the above functionals numerically is to evolve ψ1 and

ψ2 with respect to the gradient flow of the regularized G1 and G2 (similar to

minimizing equation (1.6)). They are derived as

∂ψ1

∂t
= δϵ(ψ1)∇ ⋅ {

∇ψ1

∣∇ψ1∣ϵ
[α + βϕ(κk1)] −

1

∣∇ψk1 ∣ϵ
(I − Pnk1,ϵ

)∇[βϕ′(κk1)∣∇ψk1 ∣ϵ]} (2.12)

− δϵ(ψ1){[(u − c10)2 − (u − c00)2][1 −Hϵ(ψk2)] + [(u − c01)2 − (u − c11)2]Hϵ(ψk2)},

and

∂ψ2

∂t
= δϵ(ψ2)∇ ⋅ {

∇ψ2

∣∇ψ2∣ϵ
[α + βϕ(κk2)] −

1

∣∇ψk2 ∣ϵ
(I − Pnk2,ϵ

)∇[βϕ′(κk2)∣∇ψk2 ∣ϵ]} (2.13)

− δϵ(ψ2){[(u − c01)2 − (u − c00)2][1 −Hϵ(ψk+11 )] + [(u − c10)2 − (u − c11)2]Hϵ(ψk+11 )}.

18



2.2. LAGGED CURVATURE METHOD

with boundary condition ∂ψi

∂n = 0 for i = 1,2. We also call equation (2.12) and

(2.13) the lagged Euler-Lagrange equations. Presumably, the steady state of

equations (2.12) and (2.13) give ψk+11 and ψk+12 respectively. We define the

process of obtaining ψk+11 , ψk+12 from ψk1 , ψ
k
2 as a iterative map such that

M(ψk1 , ψk2) = (ψk+11 , ψk+12 ). (2.14)

When (ψ∗1 , ψ∗2) is a minimizer of F soft
ϵ for a fixed c, equations (1.7) and

(1.8) give us

∂ψ∗i
∂t
= 0 for i = 1,2.

We can check that (ψ∗1 , ψ∗2) is a fixed point of equation (2.14) too.

Hence, we solve the Euler-Lagrange equations for the soft additive model by

looking for a fixed point of equation (2.14). Usually, the process for deriving

ψk+11 from a given ψk1 , ψ
k
2 can be done by using the gradient descent method.

However the gradient descent method is usually slow, thus we propose an-

other method to minimize the functionals (2.10) and (2.11).

Minimizing the functionals (2.10) and (2.11) is difficult as they are non-

convex. However, we can use a change of variables hk+11 = H(ψ1) and hk+12 =

H(ψ2) to obtain new minimization problems which are much easier to handle.

We only provide the details for the case of hk+11 = H(ψ1) as the details for

the other case is similar.
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Using the change of variables hk+11 =H(ψ1), Problem (2.10) becomes

minimize
hk+11 ∶Ω→{0,1}
{hk+11 =1}∈M

∫
Ω
[α + βϕ(κk1)]∣∇hk+11 ∣ dx dy

+ ∫
Ω
R(ψk1)hk+11 dx dy + ∫

Ω
[(u − c11)2hk+11 hk2

+ (u − c01)2(1 − hk+11 )hk2 + (u − c10)2hk+11 (1 − hk2)

+(u − c00)2(1 − hk+11 )(1 − hk2)] dx dy.

(2.15)

Since hk+11 is a binary variable, the problem is non-convex. It can be shown

that a global minimizer hk+11 for Problem (2.15) can be found by carrying

out the following convex minimization where the variable hk+11 is relaxed to

a measurable function taking values in the interval [0,1]:

minimize
hk+11 ∶Ω→[0,1]

∫
Ω
[α + βϕ(κk1)]∣∇hk+11 ∣ dx dy

+ ∫
Ω
R(ψk1)hk+11 dx dy + ∫

Ω
[(u − c11)2hk+11 hk2

+ (u − c01)2(1 − hk+11 )hk2 + (u − c10)2hk+11 (1 − hk2)

+(u − c00)2(1 − hk+11 )(1 − hk2)] dx dy.

(2.16)

After solving for a minimizer h
k+1
1 of (2.16), the binary function

hk+11 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 h̄k+11 < µ

1 h
k+1
1 ≥ µ

is a minimizer of (2.15) for almost every µ ∈ [0,1].
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Before we give a proof of the above result, we require a lemma

Lemma 2.2.1. The functional minimized in Problem (2.16)

∫
Ω
[α + βϕ(κk1)]∣∇hk+11 ∣ +R(ψk1)hk+11 + [(u − c11)2hk+11 hk2

+ (u − c01)2(1 − hk+11 )hk2 + (u − c10)2hk+11 (1 − hk2)

+ (u − c00)2(1 − hk+11 )(1 − hk2)] dx dy,

can be rewritten as

∫
1

0
∫
Ω
[α + βϕ(κk1)]∣∇χΣµ ∣ dx dy dµ

+ ∫
1

0
∫
Ω∩Σµ

R(ψk1) + (u − c11)2hk2 + (u − c10)2(1 − hk2) dx dy dµ

+ ∫
1

0
∫
Ω/Σµ

(u − c01)2hk2 + (u − c00)2(1 − hk2) dx dy dµ

where Σµ = {z ∈ Ω ∶ hk+11 (z) < µ}.

Proof. Using the coarea formula[8], we obtain

∫
Ω
[α + βϕ(κk+11 )]∣∇hk+11 ∣ dx dy = ∫

R
∫
hk+11

−1(µ)
[α + βϕ(κk1(z))] dH(z) dµ

= ∫
R
∫
hk+11

−1(µ)
[α + βϕ(κk1)]∣∇χΣµ ∣ dx dy dµ

= ∫
1

0
∫
hk+11

−1(µ)
[α + βϕ(κk1)]∣∇χΣµ ∣ dx dy dµ

The last equality follows from the fact that the range of hk+11 is [0,1].
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For any measurable function A ∶ Ω→ R, we have

∫
Ω
A(x, y)hk+11 (x, y) dx dy = ∫

Ω
A(x, y)∫

hk+11 (x,y)

0
1 dµ dx dy

= ∫
Ω
A(x, y)∫

1

0
χ[0,hk+11 (x,y))(µ) dµ dx dy

= ∫
Ω
∫

1

0
A(x, y)χ[0,hk+11 (x,y))(µ) dµ dx dy

= ∫
1

0
∫
Ω
A(x, y)χ[0,hk+11 (x,y))(µ) dx dy dµ

= ∫
1

0
∫
Ω∩Σµ

A(x, y) dx dy dµ.

Similarly, we have

∫
Ω
A(x, y)(1 − hk+11 (x, y)) dx dy = ∫

Ω
A(x, y)∫

1

hk+11 (x,y)
1 dµ dx dy

= ∫
Ω
A(x, y)∫

1

0
χ[hk+11 (x,y),1](µ) dµ dx dy

= ∫
Ω
∫

1

0
A(x, y)χ[hk+11 (x,y),1](µ) dµ dx dy

= ∫
1

0
∫
Ω
A(x, y)χ[hk+11 (x,y),1](µ) dx dy dµ

= ∫
1

0
∫
Ω/Σµ

A(x, y) dx dy dµ.

Putting all the computations together proves the lemma.

Theorem 2.2.2. A global minimizer hk+11 for Problem (2.15) can be found

by solving for a minimizer h
k+1
1 of Problem (2.16) and setting

hk+11 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 h
k+1
1 < µ

1 h
k+1
1 ≥ µ
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for almost every µ ∈ [0,1].

Proof. Let h
k+1
1 be a global minimizer of Problem (2.16). Using the previous

lemma, for almost every µ ∈ [0,1] chosen, the set Σµ = {z ∈ Ω ∶ h1
k+1
1 < µ}

minimizes the functional

∫
Ω
[α + βϕ(κk1)]∣∇χΣ∣ dx dy

+ ∫
Ω∩Σ

R(ψk1) + (u − c11)2hk2 + (u − c10)2(1 − hk2) dx dy

+ ∫
Ω/Σ
(u − c01)2hk2 + (u − c00)2(1 − hk2) dx dy

with respect to Σ. We rewrite the above statement into χΣµ minimizes the

functional

∫
Ω
[α + βϕ(κk1)]∣∇h∣ dx dy

+ ∫
Ω
R(ψk1)h + (u − c11)2hk2h + (u − c10)2(1 − hk2)h dx dy

+ ∫
Ω
(u − c01)2hk2(1 − h) + (u − c00)2(1 − hk2)(1 − h) dx dy

with respect to h ∶ Ω → {0,1}. Comparing this functional to the functional

in problem (2.15), we conclude that

hk+11 = χΣµ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 h
k+1
1 < µ

1 h
k+1
1 ≥ µ

is a minimizer of Problem (2.15) for almost every µ ∈ [0,1].
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In summary, given ψk1 ,ψ
k
2 and c, we can find ψk+11 using the following

steps:

1. Solve for the minimizer h̄k+11 of the convex minimization problem

minimize
hk+11 ∶Ω→[0,1]

∫
Ω
[α + βϕ(κk1)]∣∇hk+11 ∣ dx dy + ∫

Ω
R(ψk1)hk+11 dx dy

+ ∫
Ω
[(u − c11)2hk+11 hk2 + (u − c01)2(1 − hk+11 )hk2

+ (u − c10)2hk+11 (1 − hk2) +(u − c00)2(1 − hk+11 )(1 − hk2)] dx dy.

2. Let hk+11 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 h̄k+11 < 0.5

1 h̄k+11 ≥ 0.5
.

3. Define ψk+11 = Dist ({hk+11 = 0} ∩Ω) .

In our implementation, the distance function is computed using the Matlab

function bwdist. We can use a similar method to obtain ψk+12 that minimizes

the functional (2.11). We denote the maps from ψk1 , ψ
k
2 ,c to ψk+1i as

It1(ψk1 , ψk2 ,c) = ψk+11 and It2(ψk+11 , ψk2 ,c) = ψk+12 .
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Thus, the outer iterations to solve the soft additive model is described as:

1. Initialize outer loop variables h01, h
0
2,c

0.

2. For k ≥ 1, we solve the following problems alternatively

ck−
1
2 = argmin

c
F soft(ψk−11 , ψk−12 ,c) (2.17)

ψk1 = It1(ψk−11 , ψk−12 ,ck−
1
2 ) (2.18)

ck = argmin
c

F soft(ψk1 , ψk−12 ,c) (2.19)

ψk2 = It2(ψk1 , ψk−12 ,ck) (2.20)

3. Stop outer iterations if ∥(ψk1 , ψk2 ,ck)−(ψk−11 , ψk−12 ,ck−1)∥ < tolerance.

2.2.2 Augmented Lagrangian Method on the Inner It-

erations

The augmented Lagrangian method was used to minimize the Euler’s elas-

tica quickly in [25]. We use some of the ideas presented in [25] to solve

the minimization problems in the outer iterations. In this subsection, we

give details on the solving of Problem (2.16) in the outer iteration using

the augmented Lagrangian method. Problem (2.16) can be expressed in a
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constrained optimization form

minimize
h̄k+11 ∶Ω→R

∫
Ω
[α + βϕ(κk1)]∣∇h̄k+11 ∣ dx dy

+ ∫
Ω
R(ψk1)h

k+1
1 dx dy + ∫

Ω
[(u − c11)2h̄k+11 hk2

+ (u − c01)2(1 − h̄k+11 )hk2 + (u − c10)2h̄k+11 (1 − hk2)

+ (u − c00)2(1 − h̄k+11 )(1 − hk2)] dx dy.

subject to

h̄k+11 − 1 ≤ 0, −h̄k+11 ≤ 0.

(2.21)

By introducing a new variable:

p1 = ∇h̄k+11 ,

we have a new constrained convex optimization problem

minimize
h̄k+11 ,p1∶Ω→R

∫
Ω
[α + βϕ(κk1)]∣p1∣ dx dy + ∫

Ω
R(ψk1)h̄k+11 dx dy

+ ∫
Ω
[ (u − c11)2h̄k+11 hk2 + (u − c01)2(1 − h̄k+11 )hk2

+ (u − c10)2h̄k+11 (1 − hk2) +(u − c00)2(1 − h̄k+11 )(1 − hk2)] dx dy.

subject to

p1 −∇h̄k+11 = 0, h̄k+11 − 1 ≤ 0, −h̄k+11 ≤ 0.
(2.22)
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To solve this constrained optimization problem, we define the augmented

Lagrangian functional as follows

L(h̄k+11 , p1, s1, s2;λp1 , λs1 , λs2)

= ∫
Ω
[α + βϕ(κk1)]∣p1∣ dx dy

+∫
Ω
R(ψk1)h̄k+11 dx dy

+∫
Ω
[(u − c11)2h̄k+11 hk2 + (u − c01)2(1 − h̄k+11 )hk2

+(u − c10)2h̄k+11 (1 − hk2) + (u − c00)2(1 − h̄k+11 )(1 − hk2)] dx dy.

+rp1 ∫
Ω
∣p1 −∇h̄k+11 ∣2 dx dy + ∫

Ω
λp1 ⋅ (p1 −∇h̄k+11 ) dx dy

+rs1 ∫
Ω
∣h̄k+11 − 1 + s21∣2 dx dy + ∫

Ω
λs1 ⋅ (h̄k+11 − 1 + s21) dx dy

+rs2 ∫
Ω
∣ − h̄k+11 + s22∣2 dx dy + ∫

Ω
λs1 ⋅ (−h̄k+11 + s22) dx dy.

We initialize the Lagrange multipliers λ0p1 , λ
0
s1 , λ

0
s2 as the zero function and

for a given function h01, we use the initializations p01 = ∇h01, s01 =
√
1 − h01 and

s02 =
√
h01. The framework for the augmented Lagrangian method is described

as:
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1. Initialize variables:h01, p
0
1, s

0
1, s

0
2, λ

0
p1 , λ

0
s1 , λ

0
s2 .

2. For k ≥ 1, an alternative minimization method is used to approxi-

mate a minimizer (hk1, pk1, sk1, sk2) of the augmented Lagrangian func-

tional with fixed Lagrange multipliers λp1 = λk−1p1 , λs1 = λk−1s1 and

λs2 = λk−1s2 .

(hk1, pk1, sk1, sk2) ≈ argmin
h1,p1,s1,s2

L(h1, p1, s1, s2;λp1 , λs1 , λs2)

3. If all the residuals decrease, we update Lagrange multipliers

λkp1 = λk−1p1 + 2rp1(p1 −∇h
k
1)

λks1 = λk−1s1 + 2rs1(h
k
1 − 1 + s21)

λks2 = λk−1s2 + 2rs2(−h
k
1 + s22)

else we update the penalty parameters of the variables whose resid-

ual ex did not decrease, by

rnewx = 1.2rx, x ∈ {p1, s1, s2}
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2.2. LAGGED CURVATURE METHOD

where the residual corresponding to a variable x is defined as

ep1 = ∥p1 −∇hk1∥2

es1 = ∥hk1 − 1 + s21∥2

es2 = ∥p1 −∇hk1∥2

4. Stop the outer iterations if the residuals are smaller than tolerance

and got to step 2 otherwise.

Now, for k ≥ 1, we describe the alternative minimization method used to

approximate a minimizer (hk1, pk1, sk1, sk2) of the augmented Lagrangian func-

tional L(h1, p1, s1, s2;λp1 , λs1 , λs2) with fixed Lagrange multipliers λp1 = λk−1p1 ,

λs1 = λk−1s1 and λs2 = λk−1s2 defined earlier. To simplify our notation, for a fixed

k ≥ 1, we define

Lk(h1, p1, s1, s2) ≜ L(h1, p1, s1, s2;λkp1 , λ
k
s1 , λ

k
s2)
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1. Initialize inner loop variables : h̃1
0
= hk−11 , p̃1

0 = pk−11 , s̃1
0 = sk−11 and

s̃2
0 = sk−12 .

2. For l = 0, ..., L − 1, solve the following problems alternatively:

h̃1
l+1
= argmin

h1

Lk(h1, p̃1l, s̃1l, s̃2l) (2.23)

p̃1
l+1 = argmin

p1

Lk(h̃1
l+1
, p1, s̃1

l, s̃2
l) (2.24)

s̃1
l+1 = argmin

s1

Lk(h̃1
l+1
, p̃1

l+1, s1, s̃2
l) (2.25)

s̃2
l+1 = argmin

s2

Lk(h̃1
l+1
, p̃1

l+1, s̃1
l+1, s2) (2.26)

3. If ∥(h̃1
l+1
, p̃1

l+1, s̃1
l+1, s̃2

l+1)− (h̃1
l
, p̃1

l, s̃1
l, s̃2

l)∥2 < tolerance or l+ 1 =

L, we stop the inner iterations and update:

(hk1, pk1, sk1, sk2) = (h̃1
l+1
, p̃1

l+1, s̃1
l+1, s̃2

l+1)
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Chapter 3

Solutions of subproblems

In this chapter, we give the solutions to the various minimization subproblems

occurring in the augmented Lagrangian method for level sets and the lagged

curvature method. The derivations for the solutions are omitted as they can

be easily derived.

The image u is in practice digital, therefore we minimize the discretized cost

functional rather than the continuous one. In this section, Ω denotes the

N ×M lattice. The given image u is a function defined on Ω. The gradient

operator
Ð→∇ denotes the forward difference operator on Ω with Neumann

boundary condition. The divergence operator
←Ð∇⋅ is the adjoint operator of

Ð→∇ . The level set functions ψi are functions on Ω. For any vector-valued

functions p,n ∶ Ω→ R2, we define their dot product as a function defined on

Ω with

(p ⋅ n)(i, j) ≜ p(i, j) ⋅ n(i, j)
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CHAPTER 3. SOLUTIONS OF SUBPROBLEMS

for 1 ≤ i ≤ N and 1 ≤ j ≤M . We also denote the modulus of n as a function

defined on Ω with

∣n∣ϵ(i, j) =
√
n(i, j) ⋅ n(i, j) + ϵ

for 1 ≤ i ≤ N and 1 ≤ j ≤ M . Also, the product of any two functions

a, b ∶ Ω→ R defined on Ω is given to be

(ab)(i, j) = a(i, j)b(i, j)

for 1 ≤ i ≤ N and 1 ≤ j ≤ M . For a function f ∶ R → R and a function a

defined on Ω, we define their composition as

f(a)(i, j) = f(a(i, j))

for 1 ≤ i ≤ N and 1 ≤ j ≤M . Lastly, we denote the sum over all entries of a

function a ∶ Ω→ R defined on Ω as

∑
Ω

a ≜
N

∑
i=1

M

∑
j=1
a(i, j).

32



3.1. SOLUTION FOR THE AUGMENTED LAGRANGIAN METHOD
ON LEVEL SETS

3.1 Solution for the augmented Lagrangian

method on level sets

In the case of the augmented Lagrangian method on level sets, the augmented

Lagrangian functional is discretized as

L(ψ1, ψ2,c, p1, p2,m1,m2, n1, n2;λp1 , λp2 , λm1 , λm2 , λn1 , λn2)

=
2

∑
i=1
∑[α + βϕ(←Ð∇⋅ni)]∣pi∣ϵδϵ(ψi) + γ∣c10 + c01 − c11∣2

+
1

∑
i=0

1

∑
j=0
∑(u − cij)2Hϵ((−1)i+1ψ1)Hϵ((−1)j+1ψ2)

+rm1∑(∣p1∣ϵ −m1 ⋅ p1) +∑λm1(∣p1∣ϵ −m1 ⋅ p1)

+rm2∑(∣p2∣ϵ −m2 ⋅ p2) +∑λm2(∣p2∣ϵ −m2 ⋅ p2)

+rp1∑ ∣p1 −
Ð→∇ ψ1∣2ϵ +∑λp1 ⋅ (p1 −

Ð→∇ ψ1)

+rp2∑ ∣p2 −
Ð→∇ ψ2∣2ϵ +∑λp2 ⋅ (p2 −

Ð→∇ ψ2)

+rn1∑ ∣n1 −m1∣2ϵ +∑λn1 ⋅ (n1 −m1)

+rn2∑ ∣n2 −m2∣2ϵ +∑λn2 ⋅ (n2 −m2)

+δR(m1) + δR(m2)

where pi,mi,ni, λpi
, λmi

, λni
∶ Ω→ R2 are functions defined on Ω.

In the next subsections, we present the solutions to each of the minimiza-

tion problems occurring in the inner iterations of the augmented Lagrangian

method.
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3.1.1 Problem (2.3), (2.17) and (2.19)

We discretize F soft
ϵ into

F soft
ϵ (ψ1, ψ2,c) =

2

∑
i=1
∑
Ω

⎡⎢⎢⎢⎢⎣
α + βϕ

⎛
⎝
←Ð∇⋅
Ð→∇ ψi
∣Ð→∇ ψi∣ϵ

⎞
⎠

⎤⎥⎥⎥⎥⎦
∣Ð→∇ ψi∣ϵδϵ(ψi)

+
2

∑
i=1
∑
Ω

R(ψi)Hϵ(ψi)

+
1

∑
i=0

1

∑
j=0
∑
Ω

(u − cij)2Hϵ((−1)i+1ψ1)Hϵ((−1)j+1ψ2)

+γ∣c10 + c01 − c11∣2.

A direct differentiation of F soft
ϵ with respect to c yields

⎛
⎜⎜⎜⎜⎜⎜
⎝

x11 −γ −γ

−γ x10 γ

−γ γ x01

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

c11

c10

c01

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

y11

y10

y01

⎞
⎟⎟⎟⎟⎟⎟
⎠
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where

x11 = γ +∑
Ω

Hϵ (ψ1)Hϵ (ψ2)

x10 = γ +∑
Ω

Hϵ (ψ1)Hϵ (−ψ2)

x01 = γ +∑
Ω

Hϵ (−ψ1)Hϵ (ψ2)

y11 = ∑
Ω

u0Hϵ (ψ1)Hϵ (ψ2)

y10 = ∑
Ω

u0Hϵ (ψ1)Hϵ (−ψ2)

y01 = ∑
Ω

u0Hϵ (−ψ1)Hϵ (ψ2)

and

c00 =
∑Ω u0Hϵ(−ψ1)Hϵ(−ψ2)
∑ΩHϵ(−ψ1)Hϵ(−ψ2)

.

The solution for (c11, c10, c01) can be easily computed by solving this matrix

equation. It can be easily check that the system is non-singular if and only if

∑Hϵ (ψ1)Hϵ (−ψ2) ≠ 0 and ∑Hϵ (−ψ1)Hϵ (ψ2) ≠ 0. If the system is singular

then we know that either ∑Hϵ (ψ1)Hϵ (−ψ2) = 0 or ∑Hϵ (−ψ1)Hϵ (ψ2) = 0.

Without loss of generality, we can assume that ∑Hϵ (ψ1)Hϵ (−ψ2) = 0. We

set c10 = 0 and solve the 2 × 2 system of equations.
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3.1.2 Problem (2.4)

Since problem (2.4) is an implicit first order difference equation, there is no

explicit formula for the solution. We use the method of steepest descent

to solve for an approximation of the local minimum. By considering the

gradient flow of the augmented Lagrangian, the evolution equation for ψ1

can be given as

∂ψ1

∂t
= − [←Ð∇⋅λp1 + rp1

←Ð∇⋅(Ð→∇ ψ1 − p1)

+
1

∑
k=0

1

∑
l=0
(−1)k(u0(x, y) − ckl)2δϵ(ψ1)Hϵ((−1)lψ2)

+ {α + βϕ(←Ð∇⋅n1)} ∣p1∣ϵδ′ϵ(ψ1)]

and similar the evolution equation for ψ2 can be given as

∂ψ2

∂t
= − [←Ð∇⋅λp2 + rp2

←Ð∇⋅(Ð→∇ ψ2 − p2)

+
1

∑
k=0

1

∑
l=0
(−1)l(u0(x, y) − ckl)2Hϵ((−1)kψ1)δϵ(ψ2)

+{α + βϕ(←Ð∇⋅n2)} ∣p2∣ϵδ′ϵ(ψ2)]

3.1.3 Problem (2.5)

Similar to problem (2.4), problem (2.5) is also an implicit first order dif-

ference equation and there is no explicit formula for its solution. However

the augmented Lagrangian functional is convex and coercive with respect to

n1,n2. Thus, a global minimum can be obtained by the method of steepest
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descent. By considering the gradient flow of the augmented Lagrangian, the

evolution equation for n1 is

∂n1

∂t
= [Ð→∇ (βϕ′ (←Ð∇⋅(n1)) ∣p1∣ϵδϵ(ψ1))

+ rn1 ((n1 −m1) + λn1)] .

Similarly, the evolution equation for n2 is

∂n2

∂t
= [Ð→∇ (βϕ′ (←Ð∇⋅(n2)) ∣p2∣ϵδϵ(ψ2))

+ rn2 ((n2 −m2) + λn2)] .

3.1.4 Problem (2.6,2.7)

If we remove δR(m1) and δR(m2) from problems (2.6,2.7), they become

piecewise quadratic with respect to m1,m2 and decoupled for each (i, j).

Thus, there are explicit formulas for their solutions. By a similar method

used in [25], the solution of problem (2.6) is

m1(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z1(i, j) for ∣z1∣ϵ(i, j) ≤ 1

z1(i,j)
∣z1∣ϵ(i,j) for ∣z1∣ϵ(i, j) > 1
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where z1 =
λn1+(

rp1
2
+λp1)p1

rn1
+ n1 and the solution of problem (2.7) is

m2(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z2(i, j) for ∣z2∣ϵ(i, j) ≤ 1

z2(i,j)
∣z2∣ϵ(i,j) for ∣z2∣ϵ(i, j) > 1

where z2 =
λn2+(

rm2
2
+λm2)p2

rn2
+ n2 for 1 ≤ i ≤ N and 1 ≤ j ≤M .

3.1.5 Problem (2.8,2.9)

Similar to problems (2.6,2.7), problems (2.8,2.9) are piecewise quadratic with

respect to p1,p2 and decoupled for each (i, j). Therefore, we can obtain

explicit formulas for their solution. Using similar methods from [25], the

solution of problem (2.8) is

p1(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∣w1(i, j)∣ = 0

min(µ1,0)w1 (i, j) otherwise

for 1 ≤ i ≤ N and 1 ≤ j ≤M and where

w1 =
(λp1 − λm1 −

rm1

2
)m1

rp1

−Ð→∇ ψ1

and

µ1 = 2
{α + βϕ(←Ð∇⋅n1)} δϵ(ψ1) + λm1 +

rm1

2

rp1 ∣w1∣
− 1.
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Similarly, the solution of problem (2.9) is

p2(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∣w2(i, j)∣ = 0

min(µ2,0)w2 (i, j) otherwise

where

w2 =
(λp2 − λm2 −

rm2

2
)m2

rp2

−Ð→∇ ψ2

and

µ2 = 2
{α + βϕ(←Ð∇⋅n2)} δϵ(ψ2) + λm2 +

rm2

2

rp2 ∣w2∣
− 1.

3.2 Solutions for the lagged curvature method

In the next few subsections, we provide solutions for problems (2.23)–(2.26).

We discretize the augmented Lagrangian into

L(h̄k+11 , p1, s1, s2;λp1 , λs1 , λs2)

=∑
Ω

[α + βϕ(κk1)]∣p1∣ϵ +∑
Ω

R(ψk1)h̄k+11

+∑
Ω

(u − c11)2h̄k+11 hk2 +∑
Ω

(u − c01)2(1 − h̄k+11 )hk2

+∑
Ω

(u − c10)2h̄k+11 (1 − hk2) +∑
Ω

(u − c00)2(1 − h̄k+11 )(1 − hk2)

+rp1∑
Ω

∣p1 −∇h̄k+11 ∣2 +∑
Ω

λp1 ⋅ (p1 −∇h̄k+11 )

+rs1∑
Ω

∣h̄k+11 − 1 + s21∣2 +∑
Ω

λs1 ⋅ (h̄k+11 − 1 + s21)

+rs2∑
Ω

∣ − h̄k+11 + s22∣2 +∑
Ω

λs1 ⋅ (−h̄k+11 + s22).
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3.2.1 Problem (2.23)

Since the augmented Lagrangian functional is convex and coercive in the

variable h
k+1
1 , a minimizer exists and satisfies the Euler-Lagrange equation

0 = (u − c11)2hk2 − (u − c01)2hk2 + (u − c10)2(1 − hk2) − (u − c00)2(1 − hk2)

+2rp1
←Ð∇⋅(p1 −

Ð→∇ h̄k+11 ) +
←Ð∇⋅λp1 + 2rs1(h̄k+11 − 1 + s21) + λs1

−2rs2(−hk+11 + s22) − λs1 +R(ψk1).

Rearranging the equation, we obtain

2rp1
←Ð∇⋅Ð→∇ h̄k+11 − 2(rs2 + rs1)h̄k+11 = (u − c11)2hk2 − (u − c01)2hk2

+(u − c10)2(1 − hk2) − (u − c00)2(1 − hk2)

+rp1
←Ð∇⋅p1 +

←Ð∇⋅λp1 + 2rs1(s21 − 1) + λs1

−2rs2s22 − λs1 +R(ψk1).

This is a negative definite system of linear equation in h̄k+11 and we can obtain

its solution by applying the Discrete Cosine Transform to directly invert the

linear operator on the left hand side of the equation.

3.2.2 Problem (2.24)-(2.26)

Since problems (2.24)-(2.26) are piecewise quadratic and are decoupled for

each (i, j), we can find an explicit formula for their solution. The formula
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3.2. SOLUTIONS FOR THE LAGGED CURVATURE METHOD

for the solution p1 of problem (2.24) is given as

pk+11 (i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∣w1(i, j)∣ = 0

min(µ1(i, j),0)w1(i, j) otherwise

for 1 ≤ i ≤ N and 1 ≤ j ≤M and where

w1 =
Ð→∇ hk+11 −

λkp1
2rp1

and

µ1 =
−[α + βϕ(κk1)] + 2rp1

2rp1
.

The solution of problem (2.25) is

s1 =

¿
ÁÁÀmax(0, hk+11 − 1 + λs1

2rs1
).

The solution of problem (2.26) is

s2 =

¿
ÁÁÀmax(0, hk+11 − λs2

2rs2
).

We wish to point out that all the solutions for problems (2.24)–(2.26) can

be found explicitly and therefore very quickly. Also, Problem (2.23) can be

solved using quickly using the fast algorithm of the discrete cosine transform.

41



Chapter 4

Numerical Results

In this chapter, we present the numerical results obtained by evaluating the

algorithms proposed in this paper against some synthetic and real images.

All the numerical results presented below are obtained from running the al-

gorithms in MATLAB2009b on a Intel(R) Core(TM)i5 CPU M480 2.67GHz

2.67GHz 64-bit processor with 8GB RAM laptop. In all the numerical re-

sults presented below, the regularization coefficient ϵ is chosen to be 10−3.

In general, the parameters α,β and γ are chosen by considering the a priori

assumptions about the images. If corners are expected in the images, β and

α should be set to a smaller value to give less weight to the length and cur-

vature regularization. Also if the intensity are not exactly additive, the value

of γ can be lowered to give less constrain on the additivity of the estimated

values of the objects.

For the gradient descent method, we choose the time step to be dt = 10−6
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and we terminate the algorithm after it runs for tmax seconds.

For the augmented Lagrangian method on level sets, we need to choose the

penalty parameters rmi
, rni

, rpi
for i = 1,2 and the number of times L we run

the alternating minimizations L for the augmented Lagrangian algorithm in

its inner iterations. To generate the results in the next section, we choose

rmi
, rni

, rpi
= 10−6 for i = 1,2 and they are increased by a factor of 1.2 every-

time the residual ex increases for x ∈ {p1,m1,n1,p2,m2,n2}. We also choose

L = 1. We terminate the outer iterations after the algorithm runs for tmax

seconds.

For the lagged curvature method, we need to choose the penalty parameters

rpi , rs1i , rs2i for i = 1,2 and the number of times L we run the alternating

minimizations L for the augmented Lagrangian algorithm in its inner itera-

tions. In the algorithms we run in the next section, we choose rpi , rs1i , rs2i = 1

for i = 1,2 and they are increased by a factor of 1.2 everytime the residual

ex increases for x ∈ {p1, p2, s11 , s12 , s21 , s22}. We also choose L = 1. We ter-

minate the augmented Lagrangian method in the inner iterations when the

successive difference drops below tolerance = 0.5. We terminate the outer

iterations after the algorithm runs for tmax seconds.

We present the numerical results produced by the two algorithms comparing

them against the gradient descent method. In figure 4.1(256 × 256), we test

the algorithms against a synthetic image with irregular objects’ boundaries.

The lagged curvature method gives a more accurate segmentation in a shorter

time as compared to the gradient descent method. On the other hand, the
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augmented Lagrangian method on level sets gives a similar segmentation as

the gradient descent method, in fact the energy given by the gradient de-

scent method is slightly lower. However, from the energy graphs we can see

that the augmented Lagrangian method on level sets does it in a faster time.

In figure 4.2(256 × 256), we test the algorithms against a synthetic image

with smooth objects’ boundaries with several possible segmentations that

are local minima. In this case, the gradient descent method is ‘trapped’ in

a local minimum whereas the lagged curvature method provides the correct

segmentation. The augmented Lagrangian method on level sets appears to

have ‘escaped’ the local minimum within a shorter time and seems to be mov-

ing towards the correct segmentation if more time was provided. However,

both methods were slow when compared to the lagged curvature method. In

figure 4.3(256× 256), we test the algorithms against a synthetic images with

some features in the intersecting region of the two ideal objects. The lagged

curvature also outperforms the gradient descent method both in accuracy of

segmentation and computational time. The augmented Lagrangian method

on level sets provided a slightly more accurate segmentation as compared to

the gradient descent method with al slight improvement in computational

time. In figure 4.4(128 × 128), we test the algorithms on a real image of

an X-ray of a right hip. The lagged curvature method seems to provide a

segmentation that is different from the suggested segmentation. However,

it could be seen from the energy that the lagged curvature method actually

provides a solution with the lower energy. The discrepancy from the sug-
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gested solution might be due to the irregularities of the intensity levels of the

image. On the other hand, the augmented Lagrangian method on level sets

provided a poorer segmentation in terms of energy minimization when com-

pared to the gradient descent method even though it had a faster decrease

in energy during the earlier periods of computation. In figure 4.5(135×135),

we test the algorithms on a real image of an MRA(Magnetic resonance an-

giography) of two overlapping blood vessels. The lagged curvature method

outperforms the gradient descent method in terms of energy. The gradient

descent method also seems to be converging to a local minimum. In this

case, the augmented Lagrangian method on level sets also gives the worst

segmentation in terms of energy minimization. However, it is still the lagged

curvature method that is the fastest. In figure 4.6(100 × 100), we test the

algorithms on a real image of an X-ray of an arm. The lagged curvature

method and gradient descent provides a segmentation with equal amount

of energy. However, the lagged curvature method outperforms the gradient

descent method in terms of computational time. Similar to the previous two

cases, the augmented Lagrangian method has poor performance in terms of

energy minimization when compared to the other two algorithms.

In figures 4.7–4.18, we plot the energy F soft(E1,E2,c) of the segmentation

given by each algorithm against time and also the segmentation error (sym-

metric difference between the suggested segmentation and segmentation pro-

vided by the algorithm) compared to a hand drawn segmentation against

time to compare the speed and performance of the algorithm. Here, the
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symmetric difference between the suggested segmentation {O1,O2} and seg-

mentation provided by the algorithm {E1,E2} is computed by

∣O1△E1∣ + ∣O1 +△E2∣ = #{pixels in O1 but not in E1}

+#{pixels in O2 but not in E2}

+#{pixels in E1 but not in O1}

+#{pixels in E2 but not in O2}.

Also, from figures 4.22–4.24, we demonstrate that the lagged curvature pro-

duces no visible change after 50 seconds of computation time in segmentation

however the segmentation provided by the gradient descent and augmented

Lagrangian method can be still seen to be evolving. Readers may refer to

figure 4.13 - 4.18 for the percentage changes in the segmentation error. The

following table gives the energy value achieved by each algorithm for each

image at time tmax:

Gradient descent Augmented Lagrangian Lagged curvature

Image 1 2.7694 × 107 2.8083 × 107 2.6477 × 107

Image 2 5.1797 × 107 4.8337 × 107 2.6776 × 107

Image 3 5.7785 × 107 5.7040 × 107 3.7008 × 107

Image RHip 5.7492 × 106 5.5498 × 106 5.4011 × 106

Image Vessel 1.9408 × 107 2.1632 × 107 1.9092 × 107

Image Arm 5.5965 × 106 6.4021 × 106 5.5915 × 106
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Figure 4.1: Solutions provided by the gradient descent method (third row),
lagged curvature method (forth row) and augmented Lagrangian method on
level sets (fifth row) when applied to image 1 with α = 20000, β = 10000 and
γ = 2000 with maximum time tmax = 600.
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Figure 4.2: Solutions provided by the gradient descent method (third row),
lagged curvature method (forth row) and augmented Lagrangian method on
level sets (fifth row) when applied to image 2 with α = 20000, β = 10000 and
γ = 2000 with maximum time tmax = 1000.
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Figure 4.3: Solutions provided by the lagged curvature method (forth row),
gradient descent method (third row) and augmented Lagrangian method on
level sets (fifth row) when applied to image 3 with α = 20000, β = 10000 and
γ = 2000 with maximum time tmax = 1000.
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Figure 4.4: Solutions provided by the gradient descent method (third row),
lagged curvature method (forth row) and augmented Lagrangian method on
level sets (fifth row) when applied to the Xray of a right hip (RHip) with
α = 2000, β = 200 and γ = 100 with maximum time tmax = 400.
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Figure 4.5: Solutions provided by the gradient descent method (third row),
lagged curvature method (forth row) and augmented Lagrangian method on
level sets (fifth row) when applied to the MRA of two overlapping blood
vessels (Image Vessel) with α = 20000, β = 2000 and γ = 10 with maximum
time tmax = 400.
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Figure 4.6: Solutions provided by the gradient descent method (third row),
lagged curvature method (forth row) and augmented Lagrangian method on
level sets (fifth row) when applied to the Xray of an arm (Image arm) with
α = 8000, β = 100 and γ = 100 with maximum time tmax = 400.
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Figure 4.7: Comparison of algorithms with respect to energy for Image 1
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Figure 4.8: Comparison of algorithms with respect to energy for Image 2
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Figure 4.9: Comparison of algorithms with respect to energy for Image 3
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Figure 4.10: Comparison of algorithms with respect to energy for Image
RHip
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Figure 4.11: Comparison of algorithms with respect to energy for Image
Vessel

0 50 100 150 200 250 300 350 400
10

6

10
7

10
8

time in seconds

S
of

t A
dd

iti
ve

 E
ne

rg
y 

of
 c

ur
re

nt
 b

es
t s

eg
m

en
ta

tio
n

Comparison of Algorithms for arm

 

 
Lagged Curvature
Augmented Lagrangian
Gradient Descent

Figure 4.12: Comparison of algorithms with respect to energy for Image Arm
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Figure 4.13: Comparison of segmentation errors for Image 1
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Figure 4.14: Comparison of segmentation errors for Image 2
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Figure 4.15: Comparison of segmentation errors for Image 3
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Figure 4.16: Comparison of segmentation errors for Image RHip
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Figure 4.17: Comparison of segmentation errors for Image Vessel
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Figure 4.18: Comparison of segmentation errors for Image Arm
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Figure 4.19: Comparison of Segmentations provided by the gradient descent
method, augmented Lagrangian method and the lagged curvature method
on level sets when applied Image 1 at t = 50s(first row),100s(second row),
200s(third row), 400s(forth row) and 600s(fifth row).

59



CHAPTER 4. NUMERICAL RESULTS

Gradient Descent Augmented Lagrangian Lagged Curvature

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 4.20: Comparison of Segmentations provided by the gradient descent
method, augmented Lagrangian method and the lagged curvature method on
level sets when applied to Image 2 at t = 100s(first row),200s(second row),
400s(third row),600s(forth row)and 1000s(fifth row).
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Figure 4.21: Comparison of Segmentations provided by the gradient descent
method, augmented Lagrangian method and the lagged curvature method
on level sets when applied to Image 3 t = 100s(first row), 200s(second row),
400s(third row), 600s(forth row) and 1000s(fifth row).
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Figure 4.22: Comparison of Segmentations provided by the gradient de-
scent method, augmented Lagrangian method and the lagged curvature
method on level sets when applied to the Xray of a right hip (RHip) at
t = 50s(first row),100s(second row),150s(third row), 200s(forth row) and
400s(fifth row).
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Figure 4.23: Comparison of Segmentations provided by the gradient de-
scent method, augmented Lagrangian method and the lagged curvature
method on level sets when applied to the MRA of two overlapping blood ves-
sel (Image Vessel) at t = 50s(first row),100s(second row),150s(third row),
200s(forth row) and 400s(fifth row).
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Figure 4.24: Comparison of Segmentations provided by the gradient de-
scent method, augmented Lagrangian method and the lagged curvature
method on level sets when applied to the Xray of an arm (Image arm) at
t = 50s(first row),100s(second row),150s(third row), 200s(forth row) and
400s(fifth row).
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Chapter 5

Conclusion

We have provided two methods to solve the soft additive model.

In the augmented Lagrangian method on level sets, we modified the idea of

the augmented Lagrangian method applied to solve problems related to the

Euler’s Elastica[25] to solve the soft additive model.

In the lagged curvature method, the problem of solving the Euler-Lagrange

equations of the soft additive functional is approached by solving a sequence

of lagged Euler-Lagrange equations. This sequence of lagged Euler-Lagrange

equations turns out to be the Euler-Lagrange equations of a sequence of min-

imization problems. Using a similar method demonstrated in [21], we can

find the minimizer to each minimization problem in the sequence by solv-

ing a convex problem. Finally, these convex problems can be solved by the

augmented Lagrangian method and it turns out that the subproblems that

arises are easy to solve.
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CHAPTER 5. CONCLUSION

From the numerical examples we have provided, the augmented Lagrangian

method on level sets does improve the computational time of the gradient

descent method. In most cases, there is a period of time where it has bet-

ter performance in energy minimization than the gradient descent method.

However, it can be seen in the real images that the gradient descent method

eventually catches up and out-performs the augmented Lagrangian method

on level sets. It is only in the cases of synthetic images that the augmented

Lagrangian method on level sets improves the computational time of the gra-

dient descent method.

Finally, it is clearly demonstrated in all the examples given that the lagged

curvature method outperforms, both in speed and energy minimization, the

gradient descent method and the augmented Lagrangian method on level sets

significantly. Other variational problems involving the curvature term may

also be solved quickly by employing the same techniques used in this method.
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