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SUMMARY 

Nijmegen Breakage Syndrome (NBS), a rare autosomal recessive disorder typically 

caused by mutations in NBS1 gene, is characterized by immunodeficiency and a strong 

predisposition to cancer. Studies revealed that NBS1 plays an important role in 

maintaining genome stability, but the underlying mechanism is controversial and elusive. 

Our study used NBS cells derived from NBS patients with 657del5 mutation in NBS1 

gene as well as normal cells with wild type NBS1 gene to examine the roles of NBS1 in 

maintaining genome stability. Our results showed that NBS1 was involved in ataxia-

telangiectasia mutated (ATM)- and ataxia-telangiectasia and Rad3-related (ATR)-

dependent DNA damage signaling pathways. NBS1 deficiency led to a decrease in the 

phosphorylation level of  ATM and ATR as well as their downstream targets, including 

histone H2AX, p53, Chk1 and Chk2. The inefficiency in activating DNA damage 

signaling pathway led to multiple defects in cellular responses towards DNA damage. 

BrdU proliferation assay revealed a delay of NBS cells in inhibiting DNA synthesis after 

Doxorubicin (Dox) treatment. In addition, under high concentration of 1μM Dox, NBS 

cells exhibited 15% ~ 25% lower level of apoptosis compared to their normal 

counterparts, indicating a resistance to Dox treatment.  

Accelerated telomere shortening was also observed in NBS fibroblasts, consistent with an 

earlier onset of cellular replicative senescence in vitro. This abnormality may be due to 

the shelterin protein telomeric binding factor 2 (TRF2) which was found to be 

upregulated in NBS fibroblasts. However, both accelerated telomere shortening and 

upregulation of TRF2 were not observed in NBS B-lymphocytes, although these cells 
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showed earlier occurrence of senescence-associated apoptosis. These results suggest that 

NBS1 deficiency exerts different regulatory effects on fibroblasts and B-lymphocytes 

even with the same type of gene mutation. Dysregulation of telomere shortening rate and 

TRF2 expression level in NBS fibroblasts led to frequent telomere end-to-end fusions and 

cellular aneuploidy. 

Collectively, our results suggest a possible mechanism that NBS1 deficiency 

simultaneously affects ATM- and ATR-dependent DNA damage signaling and TRF2-

regulated telomere maintenance, which synergistically leads to genomic abnormalities. 
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1. INTRODUCTION 

1.1 NBS and NBS1 protein 

NBS is a rare autosomal recessive disorder which was first delineated in 1981 by C. 

Weemaes and colleagues. NBS is characterized by immunodeficiency, microcephaly, 

growth retardation, congenital malformations and a strong predisposition to malignancies, 

especially to B-cell lymphoma (The International Nijmegen Breakage Syndrome Study 

Group 2000). The main causes of death in NBS patients are lymphoid malignancy and 

infectious complications of immunodeficiency (Resnick, Kondratenko et al. 2002). A 

study of 55 NBS patients showed that 40% of them developed cancer before 21 years old 

(The International Nijmegen Breakage Syndrome Study Group 2000).  

The underlying gene mutated in NBS, NBS1, was cloned in 1998 with chromosomal 

location 8q21 (Varon, Vissinga et al. 1998). NBS1 gene is 50 kb in size and consists of 16 

exons. NBS1 is expressed ubiquitously and the expression level is higher in the testis 

(Kobayashi, Antoccia et al. 2004). Mutation screening of NBS1 gene has identified six 

distinct mutations in NBS patients, including 657del5, 698del4, 835del4, 842insT, 

1142delC and 976C>T (Varon, Vissinga et al. 1998). Among all these patients, 90% of 

them are homozygous for the 657del5 mutation. 657del5 mutation causes two truncated 

proteins because of premature termination at codon 219, a N-terminal and a C-terminal 

species with relative molecular weight of 26 KD and 70 KD respectively (Figure 1.1B) 

(Maser, Zinkel et al. 2001). The mutation of NBS1 gene leads to pleiotropic phenotypes 

of NBS cells in vitro, such as hyper-sensitivity to ionizing radiation (IR), impaired cell 
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cycle checkpoints, decreased homologous recombination, accelerated telomere 

shortening and frequent chromosomal aberrations (Tauchi, Matsuura et al. 2002).  

 

 

  
Figure 1.1 The structure of NBS1 (modified from (Tauchi, Matsuura et al. 2002)). A. 
Schematic diagram representing the wild type NBS1 structure. B. Schematic diagram 
representing the truncated NBS1 N-terminus and C-terminus structure caused by internal 
translation initiation due to 657del5 mutation.  
 
 
 

The normal NBS1 gene encodes a 754 amino acid protein that contains three functional 

regions (Figure 1.1A): the N-terminal DNA damage recognition region, the signal 

transduction region and the C-terminal MRE11 binding region (Kobayashi, Antoccia et al. 

2004). The N-terminal DNA damage recognition region contains a forkhead-associated 

(FHA) domain and a BRCA1 C-terminus (BRCT) domain which are widely conserved in 

eukaryotes. FHA and BRCT domains involve in regulation of cell cycle checkpoints and 

DNA damage repair. The FHA domain is generally thought to mediate protein-protein 
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interactions (Durocher, Henckel et al. 1999). It is reported that the FHA/BRCT domain is 

essential for binding to the phosphorylated histone H2AX, following which the MRE11 

and RAD50 are recruited to the vicinity of DNA damage foci (Kobayashi, Tauchi et al. 

2002). The central region includes several SQ motifs that could be phosphorylated by 

ATM or  ATR kinase in response to DNA damage, especially at serine (Ser) 278 and 

Ser343. Following phosphorylation, NBS1 undergoes a conformational change that 

makes NBS1 as an adaptor in DNA damage signaling pathway. Adaptor NBS1 positions 

NBS1-binding proteins in a manner such that could be phosphorylated by ATM/ATR 

(Yazhi, Zhao et al. 2006). Phosphorylation of NBS1 is essential to execute its 

downstream cellular functions, such as cell cycle checkpoint control and DNA damage 

repair (Iijima, Komatsu et al. 2004; Kobayashi, Antoccia et al. 2004; Zhang, Zhou et al. 

2006). Mutation at the phosphorylation sites partially abrogates its cellular functions in 

DNA damage responses (Lim, Kim et al, 2000). The C-terminus of NBS1 contains the 

region that binds to MRE11. The binding of NBS1 to MRE11 is necessary for the 

recruitment of MRE11 and RAD50 from cytoplasm to nucleus, thus forming the MRN 

complex, a central player in many aspects of the cellular response towards DNA double 

strand breaks (DSBs) (Assenmacher and Hopfner 2004). In addition to MRE11, the C-

terminus of NBS1 is able to attract other factors to DNA damage foci to amplify and 

propagate the original signal to multiple DNA damage response pathways (Bradbury and 

Jackson 2003).  
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1.2 MRN complex 

MRN complex consists of three subunits, MRE11, RAD50 and NBS1. This complex is a 

main player in cellular response to DSBs in many aspects, including DSB detection and 

processing, DSB-activated cell cycle checkpoint and telomere maintenance 

(Assenmacher and Hopfner 2004). This broad range of cellular functions of MRN 

complex is explained by the multiple enzymatic and non-enzymatic activities of its 

components.  

The MRE11 component is a nuclease with ssDNA endonuclease, 3’ to 5’ ssDNA 

exonuclease, dsDNA exonuclease and hairpin opening activities in vitro (Rupnik, 

Lowndes et al. 2010). These nuclease activities are dependent on the presence of NBS1 

(Paull and Gellert 1999). RAD50 is a member of the Structural Maintenance of 

Chromosome family proteins with ATPase activity. The central region of RAD50 

contains a large coiled-coil structure that allows itself fold back via a “hinge” region 

(Rupnik, Lowndes et al. 2010). The third component of MRN complex, NBS1, plays 

important roles in regulating complex functions. Firstly, NBS1 is required for the 

localization of MRE11 and RAD50 to nucleus. Secondly, NBS1 stimulates the activities 

of MRE11 and RAD50. Thirdly, NBS1 is also essential for the assembly of MRN 

complex at sites of DNA damage in nucleus (Carney, Maser et al. 1998; Horejsi, Falck et 

al. 2004; Rupnik, Lowndes et al. 2010).  

Electron microscopy and scanning force microscopy revealed a striking architecture of 

MRN complex. The MRN complex exhibits as a bipolar structure with a head and two 

tails (Figure 1.2). The head is composed of two RAD50 ATPase domains along with a 



 

5 

 

MRE11 dimer. Although not directly imaged, NBS1 is suggested as part of the head and 

binds to MRE11 molecules by biophysical data (Assenmacher and Hopfner 2004). The 

tails presents as anti-parallel coiled-coil structure which can form interlocked hook 

bridges that might be important for MRN complex functions (Assenmacher and Hopfner 

2004).  

 

 

 
Figure 1.2 Structural model of the MRN complex (modified from (Assenmacher and 
Hopfner 2004)). MRE11 binds to RAD50, adjacent to the RAD50 ATPase domains. NBS1 is 
suggested binding to MRE11.  
 
 

MRN complex is required to maintain genome stability. Null mutation of any component 

of MRN complex is lethal in higher eukaryotes (Luo, Yao et al. 1999; Yamaguchi-Iwai, 

Sonoda et al. 1999; Zhu, Petersen et al. 2001). Hypomorphic mutations in NBS1 and 
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MRE11 cause human genetic diseases, NBS and ataxia-telangiectasia like disease 

(ATLD), respectively (Matsuura, Tauchi et al. 1998; Stewart, Maser et al. 1999). 

Hypomorphic RAD50 mutant mice (RAD50 (S/S) mice) show growth defects and cancer 

predisposition, and die with complete bone marrow depletion as a consequence of 

hematopoietic stem cell failure (Bender, Sikes et al. 2002). Thus, disturbance of MRN 

complex activity has profound effects on genome stability, indicating the importance of 

this complex in maintaining the integrity of genome.  
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1.3 ATM and ATR kinases 

ATM and ATR belong to a superfamily of protein kinases which contain a domain at their 

carboxyl termini with motifs that is characteristic of the lipid kinase phosphatidylinositol 

3-kinase (PI3K), thus they are named ‘PI3K-like protein kinases’ (PIKKs). The 

mammalian members of PIKK family respond to various cellular stresses by 

phosphorylating other proteins in the corresponding pathways, therefore affecting 

numerous cellular processes depending on the spectrum of their targets (Shiloh 2003). 

ATM and ATR are at the central of DNA damage signaling pathways. About 25 substrates 

of ATM and ATR have been identified, and many of them have been revealed as 

candidates in DNA damage signaling pathway that play a role in cell cycle checkpoint, 

DNA damage repair or apoptosis (Matsuoka, Ballif et al. 2007).  

The importance of ATM and ATR in DNA damage signaling pathway has been 

manifested in human genetic disorder ataxia-telangiectasia (A-T) and ATR-Seckle 

syndrome, which are caused by the mutation of ATM and ATR gene, respectively (Stiff, 

Reis et al. 2005). However, ATM and ATR have different functional roles as manifested 

by the pathological symptoms of A-T and  ATR-Seckle syndrome (Table 1). The 

functional differences between ATM and ATR are also reflected in the genetically 

modified mice. ATM knockout mice are viable though infertile and growth-retarded (Xu, 

Ashley et al. 1996). In contrast, ATR knockout mice show early embryonic death in 

development subsequent to the blastocyst stage. ATR-null blastocyst cells only continue 

growth for 2 days before dying of caspase-dependent apoptosis (Brown and Baltimore 

2000). These results indicate that ATR plays a vital role for normal cell growth, while 
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ATM is not essential for cell viability.  

Although in the same family, ATM and ATR respond to different types of DNA damage 

stimuli. Due to this fact, it is generally thought that ATM and ATR orchestrate DNA 

damage response separately in response to specific types of DNA damage. While ATM 

mainly responds to DSBs, ATR primarily reacts to single strand breaks (SSBs) and stalled 

replication forks (Shiloh 2001; Matsuoka, Ballif et al. 2007). However, recent studies 

suggest that ATM- and ATR-mediated signaling pathways are highly interconnected. 

ATM and ATR communicate with each other to coordinate and modulate the cellular 

outputs in respond to DNA strand breaks and stalled replication forks (Hurley and Bunz 

2007).   

Many studies have revealed that NBS1 is involved in both ATM- and ATR-mediated 

DNA damage signaling pathways (Lim, Kim et al. 2000; Stiff, Reis et al. 2005). It is 

worth to note that the characteristics of NBS disease almost encompass those of A-T and 

ATR-Seckle (Table 1). Notably, A-T disease shares the clinical characteristics, such as 

hypersensitivity to IR, immunodeficiency and cancer predisposition, with NBS (Tauchi, 

Matsuura et al. 2002). Moreover, the cellular features of A-T cells also partly overlap 

with those of NBS cells, like chromosome instabilities, abnormal cell cycle checkpoints 

and accelerated telomere shortening (Kobayashi, Antoccia et al. 2004). Besides A-T 

disease, ATR-Seckle syndrome also shares several clinical symptoms with NBS, namely 

microcephaly and characteristic facial appearance (Stiff, Reis et al. 2005). The 

similarities between A-T/ATR-Seckle syndrome and NBS further imply that NBS1 and 

ATM/ATR work in the same or similar signaling pathway.  
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Table 1. Comparison of clinical signs with NBS, A-T, ATLD and ATR-Seckle syndrome 
 

Clinical symptom NBS ATLD A-T ATR-Seckle 

syndrome 

Ataxia - + + - 

Growth retardation + NK - - 

Characteristic facial appearance + - - + 

Microcephaly  + - - + 

Hypersensitivity to IR + + + - 

Immunodeficiency + - + - 

Ovarian failure  + NK + - 

Mental retardation  - - - + 

Neuronal degeneration  - NK + - 

Telangiectasia  - - + - 

Cancer predisposition  + NK + - 

Cryptorchidism  - - - + 

Low birth weight - NK - + 

‘+’ means clinical positive; ‘-’ means clinical negative, ‘NK’ means not known. 
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1.4 DNA damage response 

DNA is susceptible to a multitude of damaging agents, including intracellular reactive 

metabolites and extracellular harmful factors, such as environmental chemicals, IR or UV 

light (Essers, Vermeulen et al. 2006). DNA damage caused by these damaging agents is a 

serious threat to cellular homeostasis as it compromises genome stability and integrity. Of 

the many types of DNA lesions, DSBs are particularly cytotoxic. If failed to be repaired, 

some of the DNA lesions may induce cell malignancy transformation (Shiloh 2006). Thus, 

cells have evolved a complex signaling network to regulate DNA damage response and 

maintain genome stability.  

1.4.1 DNA damage sensing 

DNA damage response begins with “sensor” proteins that sense DNA lesions/chromatin 

alterations after DNA damage induction. This process is characterized by rapid formation 

of DNA damage foci composed of recruited DNA damage response proteins (Shiloh 

2006). The recruitment of these proteins follows a temporal order.  

Histone H2AX is the first protein that is phosphorylated by ATM and possibly ATR 

shortly after induction of DSBs. The phosphorylated state of histone H2AX, γ-H2AX, 

immediately forms foci and co-localizes with other proteins that respond to DSBs, such 

as MRN complex (Kobayashi, Antoccia et al. 2004). MRN complex is the first candidate 

that is recruited to the sites of DSB foci (Tauchi, Matsuura et al. 2002). The recruitment 

of MRN complex follows two steps. Firstly, NBS1 interacts with γ-H2AX through the 

FHA/BRCT domain rather than directly binds to damaged DNA (Kobayashi, Tauchi et al. 

2002). The interaction between NBS1 and γ-H2AX is essential for the following 
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recruitment of MRE11/RAD50 from cytoplasm to the vicinity of DSB damage sites, thus 

forming the functional MRN complex. In the second step, MRN complex switches to a 

mode of direct association with damaged DNA by the DNA binding region within 

MRE11/RAD50 (Tauchi, Matsuura et al. 2002; Kobayashi, Antoccia et al. 2004). 

However, it has also been reported that NBS1 recognition of DSB foci does not require 

the modification of H2AX (γ-H2AX). Using microbeam radiation, it was found that the 

recruitment of NBS1 to DNA damage sites was not impaired in H2AX-/- mice (Celeste, 

Fernandez-Capetillo et al. 2003). MDC1 (mediator of DNA damage checkpoint protein) 

and 53BP1 (p53 binding protein 1) are the following DSBs sensors that bind to DNA 

damage foci. The recruitment of additional proteins and the repeated protein-protein 

interaction stabilize the DSB foci and thus facilitate the transduction of damage signals to 

transducers (Shiloh 2006).   

1.4.2 DNA damage mediating - ATM and ATR activation 

Imaging analysis has demonstrated that ATM is also present at DSB foci together with 

MRN and other DSB damage sensors (Bekker-Jensen, Lukas et al. 2006), although the 

hierarchical association of ATM and MRN to the sites of damage foci has been rather 

elusive. Since NBS1 is known to be phosphorylated by ATM in response to DSB-

inducing agents, ATM must function upstream of NBS1 (Lim, Kim et al. 2000). However, 

recent findings place NBS1 upstream of ATM and redefine NBS1 an activator in addition 

to a sensor (Shiloh 2006). It has been found that in response to DNA DSBs, MRN 

complex binds tightly to both DNA and ATM, implicating the role of MRN in the 

recruitment of ATM to damaged DNA (Matsuoka, Ballif et al. 2007). During this process, 
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dimeric ATM is autophosphorylated and become active monomers (Dupre, Boyer-

Chatenet et al. 2006). But the remaining question is whether the recruitment of ATM to 

DSB foci must precede its activation. Further studies on the ATM activation mechanism 

will clarify this point.  

ATR, which mainly responds to SSBs and stalled replication forks, is also found present 

together with MRN and BRCA1 at single-stranded DNA ends (Shiloh 2006). NBS1 is not 

only phosphorylated by ATM but also a downstream target of ATR (Stiff, Reis et al. 

2005). However, whether NBS1 functions upstream of ATR and modulate its activation is 

not known. Recent findings suggest a positive role of NBS1 in the activation of ATR. In 

response to hydroxyurea (HU), a chemotherapeutic drug that induces replication stalling, 

the  ATR-dependent phosphorylation of Chk1 and replication protein A (RPA) was 

defective in NBS1 deficient cells (Stiff, Reis et al. 2005; Manthey, Opiyo et al. 2007). 

Furthermore, the other ATR-dependent events, such as ubiquitination of FANCD2 and 

restart of stalled replication forks, were also impaired in NBS1 deficient cells (Zhou, Lim 

et al. 2006). 

Recent data suggests that the activation of ATM and ATR could be affected by each other. 

In response to IR-induced DSBs, ATR is also robustly activated in addition to ATM. This 

activation of ATR is ATM-dependent (Cuadrado, Martinez-Pastor et al. 2006; Myers and 

Cortez 2006). ATM could induce the generation of RPA-coated single-stranded DNA, 

which is essential for the following recruitment of ATR to DSBs foci. Upon recruitment, 

ATR is subsequently activated by the DNA-protein structure, followed by the 

phosphorylation of its downstream target Chk1.  
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Understanding the convergence of ATM and ATR is taken one step further by showing 

that ATM is also activated in response to stimuli that are previously thought to activate 

ATR, such as UV and HU (Stiff, Walker et al. 2006). In addition, the activation of ATM is 

ATR-dependent without the requirement of γ-H2AX and 53BP1. ATM activation also 

leads to the phosphorylation and activation of its downstream target Chk2 to elicit 

cellular activities, such as cell cycle checkpoints.   

 Although the precise molecular events of ATM and ATR activation remain to be 

elucidated, growing evidence demonstrates a high degree of communication between 

these two kinases. ATM and ATR may function in an integrated molecular circuit to 

mediate diverse DNA damage signals and induce coordinated DNA damage response.  

1.4.3  DNA damage effect - cell cycle checkpoint control 

The survival of cells relies on faithful transmission of genetic information from parents to 

their progenies. This transmission requires not only accurate replication of DNA, but also 

the ability of cells surviving either spontaneous or induced DNA damage (Zhou and 

Elledge 2000). To preserve the stability of genome, cells have evolved the DNA damage 

repair and cell cycle checkpoint mechanisms to cope with DNA damage. These 

checkpoints verify whether the cellular activities at each phase of the cell cycle have been 

completed before cells progress to next phase. Three distinct checkpoints that have been 

identified and well studied are G1/S, intra-S and G2/M checkpoint.  

The G1/S checkpoint is at the end of G1 phase, making the decision of whether the cell 

should enter S phase or delay S phase. The intra-S phase checkpoint is activated when 

cells are exposed to DNA damage-inducing agents that interfere with ongoing DNA 
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replication. Activated intra-S phase checkpoint inhibits replication and delay cell cycle 

progression through S phase. And the G2/M checkpoint is at the end of G2 phase which 

check several criteria to ensure that the cell is ready for mitosis. If all the criteria are 

reached, the cell initiates many cellular processes for the beginning of mitosis (Lamarche, 

Orazio et al. 2010).  

 

Figure 1.3 Major pathways of ATM/ATR-mediated cell cycle arrest, including G1 arrest, 
intra-S arrest and G2 arrest. The regulatory role of Chk1 on intra-S arrest remains to be 
elucidated.  

 

ATM and ATR are the two protein kinases that phosphorylate numerous substrates to 

regulate cell cycle progression in response to DNA damage (Figure 1.3). The G1/S cell 

cycle checkpoint is mainly mediated by the activation and accumulation of p53 (Shiloh 

2001). p53 could be phosphorylated by ATM and ATR at many different sites, including 

Ser 6, 9, 15, 46 and threonine (Thr) 18 (Yang, Xu et al. 2004). In particular, Ser15 is the 
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common site that could be phosphorylated by both ATM and ATR, which is important for 

its transactivating activity (Shiloh 2001; Yang, Xu et al. 2004). Activated p53 turns on the 

transcription of one important gene, p21 (WAF1, Cip-1). p21 protein binds to several 

cyclin-Cdk complexes, which inhibits the complex activities and blocks cell cycle 

progression, resulting in G1 arrest (Levine 1997).  

The intra-S cell cycle checkpoint is also controlled by several branches of ATM-mediated 

signaling pathways (Kastan and Bartek 2004). One branch involves the phosphorylation 

of NBS1 by ATM, a process that is required for the following ATM-mediated 

phosphorylation of cohesin protein SMC1 that is implicated in the activation of intra-S 

checkpoint (Yazdi, Wang et al. 2002). Another branch involves the activation of Chk2 by 

ATM. Activated Chk2 phosphorylates the cell cycle regulator CDC25A, leading to the 

poly-ubiquitination-mediated degradation of CDC25A. CDC25A degradation will 

ultimately lead to the inhibition of cyclin E/A-CDK2 kinase complexes. Since new 

replication origin firing requires the activity of CDK2 kinase to recruit into pre-

replication complexes, inhibition of CDK2 kinase would finally block the DNA 

replication in S phase (Bartek, Lukas et al. 2004).  

Studies show that ATR is also implicated in intra-S checkpoint (Luciani, Oehlmann et al. 

2004). Slowing down the replication fork by DNA polymerase inhibitor aphidicolin 

strongly suppresses further initiation events and leads to intra-S cell cycle checkpoint. 

The intra-S checkpoint can be overcome by ATM/ATR kinase inhibitor, caffeine, or by 

ATR neutralizing antibodies, suggesting that the aphidicolin-induced checkpoint is ATR-

dependent (Luciani, Oehlmann et al. 2004). However, depletion or inhibition of Chk1 
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does not abolish the intra-S checkpoint, indicating Chk1 is not involved in the signaling 

pathway that induces this checkpoint (Luciani, Oehlmann et al. 2004). Other studies have 

raised controversial viewpoints regarding the role of Chk1 in inducing intra-S checkpoint 

by showing that Chk1 mediates the degradation of Cdc25A and leads to intra-S 

checkpoint (Xiao, Chen et al. 2003).  

In addition to regulating intra-S phase checkpoint, Chk2 is also known as a key regulator 

of the G2/M cell cycle checkpoint (Shiloh 2001). As a downstream target of ATM, Chk2 

could be phosphorylated at Thr68 by ATM when exposed to DNA damage-inducing 

agents that cause DSBs. In vitro, Chk2 phosphorylates the members of Cdc25 family, 

particularly Cdc25C at Ser216. The phosphorylation of Cdc25C creates a binding site for 

14-3-3 protein, leading to the formation of Cdc25C/14-3-3 complex, a process that 

sequesters Cdc25C in cytoplasm (Buscemi, Savio et al. 2001). The cytoplasmic Cdc25C 

fails to dephosphorylate and activate the cyclin-dependent nuclear kinase Cdc2, thus 

preventing mitosis and resulting in G2 arrest (Yang, Xu et al. 2004).  

Chk1 is also linked to G2 arrest in response to DNA damage in several cell types 

(Yamane, Taylor et al. 2004; Wang, Li et al. 2008). It has been shown that Chk1 is 

partially responsible for lithium-induced G2 arrest in hepatocellular carcinoma cells 

SMMC-7721. Using Chk1 inhibitor SB218078 or Chk1 siRNA, or overexpression of the 

kinase dead Chk1 abrogates the G2 arrest induced by lithium (Wang, Li et al. 2008). 

Moreover, using Chk1 siRNA also destroys the G2 arrest induced by chemotherapeutic 

drug 6-thioguanine in Hela cells (Yamane, Taylor et al. 2004). Chk1 is also revealed to 

mediate G2 arrest in glioma cells in response to temozolomide treatment (Hirose, 
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Katayama et al. 2004). These data collectively suggests that Chk1 is also actively 

involved in the regulation of G2/M checkpoint. 

1.4.4 DNA damage effect - apoptosis 

Following the induction of DNA damage, another prominent route of cellular activities is 

apoptosis. Apoptosis could be induced by many DNA damaging agents that cause 

collapse of replication forks and/or DSBs (Kaina and Roos 2006). If these lesions fail to 

be repaired, they will trigger the apoptosis signaling to eliminate unwanted cells through 

at least two pathways, the extrinsic pathway and the intrinsic pathway.  

Although rarely reported, ATM and ATR are also involved in mediating apoptosis 

signaling pathways by phosphorylating their downstream targets (Kaina and Roos 2006). 

p53 is the most extensively explored target that plays essential roles in modulating 

apoptosis. After activation, p53 regulates the apoptotic process primarily through intrinsic 

pathway that centers on mitochondria (Fridman and Lowe 2003).  

p53 controls the transcription of pro-apoptotic genes in the Bcl-2 family, such as Bax 

(BCL-2-associated X protein), Puma (p53 upregulated modulator of apoptosis), Noxa and 

Bid. The net effect of transcription is to increase the ratio of pro-apoptotic to anti-

apoptotic proteins, thereby favoring the release of apoptogenic factors from mitochondria, 

such as cytochrome c, AIF and SMAC/DIABLO (Kroemer and Reed 2000). The release 

of these factors from mitochondria to cytoplasm leads to the signaling cascade of 

caspases, the “executioner” of cell death, whereby promoting the occurrence of apoptosis 

(Kumar 2007). In addition to regulating the transcription of pro-apoptotic genes, p53 also 

activates the components that are involved in the apoptotic effector machinery, including 
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Apaf-1 and caspase 6, to potentiate cell death in the presence of cytochrome c (Fridman 

and Lowe 2003). 

Another ATM downstream target c-Abl is also implicated in eliciting apoptosis in 

response to IR (Shaul 2000). The phosphorylation of c-Abl by ATM induces the 

activation of p73, a family member of p53 that is also linked to apoptosis (Shiloh 2001). 

In cells that are null for c-Abl, the apoptotic response to IR is impaired (Yuan, Huang et 

al. 1997). Moreover, overexpression of c-Abl in combination of p73 is sufficient to 

induce apoptosis in fibroblasts (Agami, Blandino et al. 1999).  

1.4.5 DNA damage response as anti-cancer barrier 

Accumulating evidence suggests that cancer is essentially a disease of genes 

(Hoeijmakers 2001). The initiation and progression of cancer involves a series of DNA 

mutations that inactivate tumor-suppressor genes and activate proto-oncogenes. The 

observation that many tumor-suppressor genes that are inactivated during the process of 

carcinogenesis are components of the DNA damage response network (Bartek, Lukas et 

al. 2007) reflects the significance of the integrity of DNA damage response in preventing 

cancer. Recently, DNA damage response has been proposed as an anti-cancer barrier in 

early human carcinogenesis (Bartkova, Horejsi et al. 2005).  

ATM and ATR, as the central players in DNA damage response, serve as critical barriers 

to constrain tumor development. An investigation of the human tumor specimens from 

urinary bladder, lung, colon and breast shows phosphorylation of ATM, Chk2, p53, 

histone H2AX, as well as the 53BP1 foci (DiTullio, Mochan et al. 2002; Bartkova, 

Horejsi et al. 2005). Activation of ATM/ATR-mediated DNA damage pathways could 
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delay or prevent cancer in the early stage before malignant conversion. However, 

mutations in ATM/ATR signaling pathway might allow cell growth and limit cell death of 

the incipient cancer cells, thus increasing genomic instabilities and promoting tumor 

progression (Bartek, Lukas et al. 2007). Consistent with this viewpoint, mutation of TP53, 

the gene that encodes the tumor-suppressor protein p53, is found in 50% of human 

cancers (Toledo and Wahl 2006). Furthermore, the mouse model with targeted mutation 

of p53 (p53 S18, 23A) develops a wide spectrum of tumors after 1 year latency, suggesting 

the role of wild type p53 in tumor suppression (Chao, Herr et al. 2006).  

However, DNA damage response is not always activated in the early lesions of tumor. It 

has been reported that the activation of DNA damage response is observed in majority of 

human cancers, while not in testicular germ-cell tumors (Bartek, Lukas et al. 2007; 

Bartkova, Rajpert-De Meyts et al. 2007). This exception could be explained that the 

molecular events that drive the pathogenesis of testicular germ-cell tumors are unable to 

reach the threshold levels of DNA damage required for DNA damage response (Bartek, 

Lukas et al. 2007). The speculation may also provide some hints to the question of why 

the initial pre-malignant cells could grow and proliferate in the first place rather than 

being detected and eliminated by DNA damage response machinery. Another more likely 

explanation relies in the fact that not all oncogenic insults have the same ability to cause 

DNA damage, thus escaping from the surveillance of DNA damage response network. 

Examination of a variety of oncogenes shows that activation of the majority of oncogenes 

could evoke DNA damage responses, such as H-ras, c-Myc and E2F1 (Powers, Hong et 

al. 2004; Di Micco, Fumagalli et al. 2006; Pickering and Kowalik 2006; Reimann, 

Loddenkemper et al. 2007). However, a small subset of oncogenic events, such as 



 

20 

 

overexpression of proto-oncogene cyclin D1 and loss of tumor-suppressor gene p16ink4a, 

do not activate DNA damage responses (Bartek, Lukas et al. 2007).  

As a barrier of cancer development, DNA damage response on the other hand provides 

pressure that favors the growth of cells with defects in the DNA damage signaling 

machinery. Therefore, cells with deficient DNA damage signaling are preferentially 

selected to survive and perpetuate rather than being eliminated, which finally contributes 

to cancer initiation. Many human diseases caused by mutations of the genes involved in 

DNA damage signaling machinery have illustrated this point by showing a strong 

predisposition to cancer, such as A-T, NBS and ATLD (Metcalfe, Parkhill et al. 1996; 

Williams, Williams et al. 2007).   

Considering the importance of DNA damage signaling pathway in prevention of cancer 

development, it has become a target for cancer therapies. Conventional chemotherapy 

works by impairing the cell division of fast-proliferating cells, thus causing apoptosis. 

However, due to the potential mutations in DNA damage response machinery, cancer 

cells may favor cell cycle arrest rather than apoptosis, resulting in resistance to 

chemotherapeutic drugs. Therefore, choosing appropriate treatments to the cancer with 

specific cellular defects would have profound effects on outcome. Recent years, 

inhibitors of the proteins involved in DNA damage response pathway have been 

developed and used in a combination with other treatment strategies. For example, ATM 

inhibitors, KU55933 and CP466722, have been used to treat cancers and are effective in 

sensitizing cancer cells to IR (White, Choi et al. 2008). Chk1, the protein that is activated 

by ATR and induces intra-S and G2/M cell cycle arrest, is also a hot target in treating 
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cancers. Inhibitors of Chk1, such as UCN-01, XL844, PF-00477736 and AZD7762, are 

especially effective in cancer cells that are defective in G1/S cell cycle arrest (Ashwell 

and Zabludoff 2008; Ljungman 2009). Inhibitors that target other DNA damage signaling 

proteins, such as ATR, MRN complex, Chk2 and p53 have also been developed. They 

have been used to treat specific types of cancers to initiate cancer cell death rather than 

cell cycle arrest (Ljungman 2009).  
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1.5 The biology of telomeres  

1.5.1 Telomere and telomerase 

Telomeres are highly specialized nucleoprotein structures at chromosome ends composed 

of telomeric DNA and associated proteins (Blackburn 2001). Telomeric DNA consists of 

a stretch of tandem G-rich repeats (5-26 bp) oriented 5’ to 3’ toward the chromosomal 

terminus (McEachern, Krauskopf et al. 2000). In humans, the telomeric repeat sequence 

is 5’-TTAGGG-3’ and the length of telomeric tract ranges from 5 to 15 kb which is kept 

in a cell-type specific manner (Lingner and Hug 2006). Due to the “end-replication” 

problem, the extreme end of telomeric DNA is a 3’ single-strand overhang rather than a 

duplex. In mammalian cells, the single-strand 3’-overhang of telomeric DNA folds back 

into the duplex telomeric DNA to form a “T-loop”, a process which protects eukaryotic 

chromosome ends from chromosome fusion, recombination and telomeric degradation 

(Blackburn 2001).  

The most common way to solve the “end-replication” problem occurs through telomerase, 

a specialized DNA polymerase that adds telomeric DNA repeats onto chromosome ends 

(Greider 1996). Telomerase is composed of two essential components, the protein 

component (TERT) and the RNA component (TER). The protein component contains the 

catalytic core of this enzyme, while the RNA component provides the template for 

telomeric DNA repeats (Blackburn 1992; Lingner and Hug 2006).  In human, the 

telomerase RNA has a length of 450 nucleotides which contains the redundant template 

nucleotides 5’-CUAACCCUAAC-3’. The redundancy of the RNA template allows the 

base pairing of RNA with growing telomere during replication (Greider 1996).  
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In addition to TERT and TER, the biogenesis and assembly of active telomerase requires 

additional protein subunits to mediate its access to telomeres (Cong, Wright et al. 2002). 

So far, at least 13 proteins that associate with human telomerase (hTERT and hTER) have 

been identified, including the molecular chaperone p23 and p90, the DNA damage 

response regulator 14-3-3, the H/ACA snoRNA (small nucleolar RNA) binding proteins 

dyskerin, hNOP10, hNHP2 and hGAR1, and hnRNPs (heterogeneous nuclear 

ribonucleoproteins) C1, C2, A1 and UP1. The telomerase-associated proteins are thought 

to regulate telomerase activity and modulate the accessibility of telomerase to telomeres. 

However, the precise actions of most telomerase-associated proteins are still unknown 

and remain to be determined (Cong, Wright et al. 2002).  

Telomerase-dependent telomere elongation occurs in S phase, while no elongation is 

observed in G1 phase of the cell cycle (Lingner and Hug 2006). The newly-synthesized 

telomeric DNA repeats will balance the loss of chromosome ends caused by the semi-

conservative DNA replication (Collins 2006). If the balance is lost, cells will suffer from 

cumulative loss of telomere repeats and eventually become senescence as a response to 

DNA damage when telomeres are critically short (de Lange 2005).  

However, telomerase is not a “housekeeping” enzyme that is found in all cell types. In 

most of human somatic cells, telomerase activity is distinguished during embryonic 

development, but only exists in several cell lineages, such as embryonic stem cells, germ 

cells, activated lymphocytes and almost all types of cancer cells (Shay and Bacchetti 

1997; Collins and Mitchell 2002). The loss of telomerase activity in human somatic cells 

has been suggested as an anti-cancer mechanism (Shay and Wright 2005). Reactivation of 
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telomerase activity exists in approximately 90% of all human cancers (Shay and 

Bacchetti 1997). Ectopic expression of hTERT in cooperation with other two oncogenes, 

the simian virus 40 large-T oncoprotein and an oncogenic allele of H-RAS, could 

successfully convert normal human epithelial and fibroblast cells into tumorigenic cells 

(Hahn, Counter et al. 1999).  

Telomerase activity is regulated at multiple levels, such as transcription, mRNA splicing, 

post-translational modification, transportation and localization, as well as assembly of 

active telomerase holoenzyme (Cong, Wright et al. 2002). But the regulation of hTERT 

gene transcription is the most important layer. In most situations, the hTERT expression 

level is the limiting factor and is closely correlated to telomerase activity in most cell 

types (Takakura, Kyo et al. 1999). Post-translational modification of hTERT, such as 

reversible phosphorylation, provides another important layer to control telomerase 

activity. Reversible phosphorylation of hTERT could regulate the protein structure and 

localization, thereby switching the active and inactive status of telomerase activity (Cong, 

Wright et al. 2002). 

The mechanisms that regulate telomerase activity are still not fully understood. 

Identification of new telomerase-associated proteins may contribute to the discovery of 

the unidentified cellular functions of telomerase. Revealing the multiple layers that 

regulate telomerase activity would further aid the investigation of the functions of 

telomerase in telomerase elongation, immortalization as well as carcinogenesis.  

1.5.2 Telomere and shelterin complex 

In mammalian cells, the telomeric TTAGGG repeats associate with shelterin complex 
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that is composed of six telomere-specific proteins, including telomeric repeat binding 

factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), the human ortholog of the 

yeast repressor/activator protein 1 (RAP1), the TRF1- and TRF2-interacting nuclear 

protein 2 (TIN2) and the POT1-TIN2 organizing protein 1 (TPP1) (de Lange 2005). The 

specificity of shelterin complex to telomere is determined by three of its components, 

TRF1, TRF2 and POT1 (Palm and de Lange 2008). TRF1 and TRF2 directly bind to the 

duplex region of telomeres, whereas POT1 binds to the single-strand 3’-overhang. These 

three proteins are interconnected by the rest three components of shelterin, RAP1, TIN2 

and TPP1, and form a stable complex binding to telomeres (de Lange 2005; Palm and de 

Lange 2008).  

Shelterin complex is implicated in the protection of telomeres by affecting the structure 

of telomeres. The natural ends of telomeres are long single-strand 3’-overhangs. However, 

electron microscopy of the purified telomeric restriction fragments stabilized by psoralen 

and UV in both human and mouse cells showed that telomeres are presented as “T-loops” 

(Griffith, Comeau et al. 1999). Accumulating evidence suggests that the shelterin 

complex has DNA remodeling activities that are responsible for “T-loop” formation (de 

Lange 2005). At least three components of the shelterin complex have been identified 

with DNA remodeling activity, including TRF1, TRF2 and TIN2. TRF2 can remodel 

artificial telomeres into loops, although with low efficiency (Griffith, Comeau et al. 1999). 

TRF1, with the help of TIN2, can bend and pair telomeric DNA repeats in vitro, activities 

which might correspond to the folding of telomeres into “T-loops” in vivo (Bianchi, 

Smith et al. 1997).  
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By hiding into “T-loops”, telomeres are protected from being recognized as DSBs by 

DNA damage signaling machinery. Inhibition or loss of shelterin complex components 

would therefore jeopardize the integrity of telomeres and lead to DNA damage response 

at telomeric ends. Recent studies revealed that the canonical DNA damage signaling 

pathways are involved in protecting telomere integrity, particularly the ATM- and ATR-

mediated pathways (de Lange 2005). It was firstly found that inhibition of TRF2 with a 

dominant negative version activates ATM kinase as well as its downstream target p53, 

and leads to p21-mediated G1/S cell cycle arrest (Karlseder, Broccoli et al. 1999). The 

mouse model with conditional deletion of TRF2 confirms this result by showing 

accumulated telomere dysfunction induced foci (TIFs) formed by 53BP1, γH2AX and 

phosphorylated ATM (Celli and de Lange 2005). In contrast to TRF2, depletion of POT1 

activates ATR signaling pathway and ATR-dependent phosphorylation of Chk1. When 

inhibition of ATR by shRNA, the telomere damage response is significantly suppressed 

indicated by a pronounced decrease of TIFs (Denchi and de Lange 2007). Conditional 

deletion of TRF1 activates both ATM and ATR kinases and their substrates Chk1 and 

Chk2. Inhibition of kinase activities by ATM and ATR inhibitors rescues TIFs induced by 

TRF1 deletion, which further manifests the involvement of both ATM and ATR pathways 

in response to dysfunctional telomeres (Martinez, Thanasoula et al. 2009). TIFs 

formation has also been reported when TIN2 is inhibited (Kim, Beausejour et al. 2004). 

Collectively, these data argue the importance of shelterin complex components in 

protecting telomere integrity and repressing the DNA damage responses at telomeric ends.  

As a consequence of telomere dysfunction, telomeric fusions are frequently observed in 

cells deprived of protection from shelterin complex. One type of telomeric fusions is non-
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homologous end joining (NHEJ) which involves covalent fusions of the C-strand of one 

telomere and the G-strand of another thus creating a dicentric or circular chromosome 

(Smogorzewska, Karlseder et al. 2002). Inhibition or loss of shelterin components, such 

as TRF1, TRF2, POT1 and TPP1, leads to accumulated NHEJ in cells (de Lange 2005; 

Denchi and de Lange 2007; Martinez and Blasco 2010). Another type of telomeric 

fusions is homologous recombination (HR) in which DNA sequences are exchanged 

between similar or identical fragments. HR has been observed in cells with functional 

mutation of TRF2, named TRF2ΔB. TRF2ΔB mutants are protected from NHEJ but show 

telomere truncations and contain circular extrachromosomal telomeric DNA (Cesare and 

Griffith 2004). HR between telomeres could result in generation of aberrant telomere 

length and lead to telomere deletions, inversions as well as translocations which are 

detrimental to cells (de Lange 2005). Thus, shelterin complex components play essential 

roles in preventing telomeric fusion-associated cell death.  

Shelterin complex components are negative regulators of telomere length. Long-term 

overexpression of TRF1 leads to gradual telomere shortening without affecting the 

expression of telomerase in human sarcoma cell line HT1080 (vanSteensel and deLange 

1997). Mouse model with transgenic TRF1 expression in the context of epithelial tissues 

(K5TRF1 mouse) has shorter telomeres in the epidermis compared to wild-type control. 

Moreover, K5TRF1 cells exhibit increased aberrant telomeric fusions, such as end-to-end 

fusions, telomere recombination and multitelomeric signals (Munoz, Blanco et al. 2009). 

Similar to TRF1, overexpression of TRF2 is also implicated in negative regulation of 

telomere length in both mouse and human cells (Smogorzewska, Van Steensel et al. 2000; 

Munoz, Blanco et al. 2005). The same effect of negative regulation of telomere length has 
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also been reported in cells with TIN2 or RAP1 overexpression (Kim, Beausejour et al. 

2004; O'Connor, Safari et al. 2004). However, how shelterin components exert the 

negative effect in regulation of telomere length is far from being fully understood.  

1.5.3 Other telomere associated proteins  

In addition to shelterin complex, telomeres also bind to a large number of other proteins 

that are involved in DNA damage signaling and repair pathways (Table 2) (Munoz, 

Blanco et al. 2006). In particular, these proteins include MRN complex, Ku70/80 and 

ATM (Munoz, Blanco et al. 2006; Palm and de Lange 2008). Unlike shelterin complex, 

these proteins have non-telomeric functions and are typically more abundant at non-

telomeric sites in nucleus or cytoplasm (Palm and de Lange 2008). The association of 

these proteins to telomeres suggests a role in protecting and maintaining telomere 

integrity. Ku70/80, the protein involved in NHEJ, is required for telomere localization to 

the nuclear periphery (Galy, Olivo-Marin et al. 2000), while loss of Ku70/80 function 

leads to striking recombinational activities near chromosomal ends (Baumann and Cech 

2000). RAD50, MRE11and XRS2 (the ortholog of NBS1 in yeast) have also been 

implicated in the maintenance of telomeres. Mutation of any of these genes leads to 

pronounced telomere shortening in S. cerevisiae (Le, Moore et al. 1999). The role of 

ATM at telomeric ends is manifested by A-T disease in human that ATM gene mutation 

results in accelerated shortening of telomeres in A-T cells (Metcalfe, Parkhill et al. 1996).  
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Table 2. List of non-shelterin proteins associated with telomeres 

Protein  Telomeric 

interaction 

Telomeric function Non-telomeric 

function 

Implication in 

carcinogenesis 

MRN TRF2 Telomere length 

regulation; prevent 

telomeric end fusions 

DSB sensor; HR 

repair 

Mutations cause 

cancer onset 

ATM TRF1/ 

TRF2 

Telomere length 

regulation; telomere 

integrity maintenance 

DSB response Mutations cause 

cancer onset 

WRN TRF2 Telomeric circles 

formation repression 

DNA resolution; 

branch migration 

Mutations cause 

cancer onset 

BLM TRF1/ 

TRF2 

Prevention of 

telomeric fusions 

HR repression; 

branch migration 

Mutations cause 

cancer onset 

DNA-PKcs TRF1 Prevention of 

telomeric fusions 

NHEJ Tumor 

suppressor 

Rad9/Rad

1/Hus1 

TERT Regulation of 

telomerase activity 

Cell cycle 

checkpoints 

regulation 

Rad9 is abundant 

in prostate 

cancer 

Ku70/80 TRF2 Telomere length 

regulation 

NHEJ; V(D)J 

recombination 

Overexpressed in 

gastric cancer 
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XPF/ 

ERCC1 

TRF2 Telomere length 

regulation; telomere 

overhang processing 

NER; 

degradation of 3’ 

tail ends 

NK 

Apollo TIN2/ 

TRF2 

Protect telomeres 

from DNA repair 

5’ exonuclease NK 

PINX1 TRF1/ 

TERT 

Telomerase inhibitor Chromosomal 

segregation 

Tumor 

suppressor 

Tankyrase TRF1 Telomere length 

regulation 

Role in mitosis Overexpressed in 

many cancers 

PARP1/2 TRF2 NK ssDNA breaks 

repair; BER 

PARP inhibitors 

sensitize cancer 

cell death 

RAD51D NK Prevention of 

telomeric fusions 

HR repair Mutations cause 

cancer onset 

ORC1 TRF2 NK Replication 

initiation 

NK 

‘NK’ means not known. Abbreviations: NER: nucleotide excision repair; BER: base excision 
repair; WRN: gene mutated in Werner syndrome; BLM: gene mutated in Bloom syndrome; 
PINX1: PIN1-interacting protein 1; PARP: poly-ADP-ribose-polymerase; ORC1: origin 
recognition complex subunit 1. Selected references: MRN (Lamarche, Orazio et al. 2010); ATM 
(Pandita 2002); WRN (Li, Jog et al. 2008); BLM (Lillard-Wetherell, Machwe et al. 2004); DNA-
PKcs, Tankyrases, PARP1/2, RAD51D (de Lange 2005); Ku70/80 (Ponnusamy, Alderson et al. 
2008); XPF/ERCC1 (Wu, Mitchell et al. 2008), ORC1 (Noguchi, Vassilev et al. 2006).  
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Direct interaction between shelterin components, especially TRF2, and factors that are 

involved in DNA damage response has been observed. TRF2 serves as a protein hub at 

telomeric ends and interacts with a number of factors, such as MRN complex and ATM 

(Munoz, Blanco et al. 2006). The interaction indicates an interplay between DNA damage 

response and telomere integrity maintenance. Indeed, canonical DNA damage responses 

are activated when telomeres are deprived of protection from shelterin components (as 

discussed above in section 1.5.2). In turn, shelterin components might also influence 

DNA damage response. It has been observed that overexpression of TRF2 inhibits ATM 

autophosphorylation at Ser1981 as well as the phosphorylation of its downstream targets, 

NBS1 and p53, after IR (Karlseder, Hoke et al. 2004).  

1.5.4 Telomerase and shelterin in cancer and aging 

In most normal human somatic cells, the low telomerase level is insufficient to maintain 

telomere length and support indefinite cell division. Therefore, these cells undergo 

gradual telomere attrition with age which eventually results in critically short telomeres 

and senescence, indicating a direct link between telomere length and cellular aging 

(Harley, Futcher et al. 1990). In many diseases that are associated with premature aging, 

short telomeres are observed, such as A-T, NBS, Werner syndrome and Bloom syndrome 

(Munoz, Blanco et al. 2006). In addition, short telomeres are also observed in late stage 

cancers, probably due to their long proliferation history (Blasco 2005).  

Reactivation of telomerase is observed in more than 90% of human cancers (Shay and 

Bacchetti 1997), indicating that acquisition of telomerase is one of the essential steps in 

tumorigenesis. Some cancers that are not detectable of telomerase activity maintain 
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telomere length by another telomerase-independent mechanism, alternative lengthening 

of telomeres (ALT) (Henson, Neumann et al. 2002). Although with telomere lengthening 

mechanisms, tumors generally have shorter telomere length than their surrounding 

normal tissues which may eventually lead to cell death within tumors (Blasco 2005).  

The impact of short telomeres in the whole organism has been manifested by telomerase-

deficient mouse model. The first telomerase deficient mouse was generated by deletion of 

the mouse TER component (mTER) from germline. The mTER-/- mice are only viable for 

six months and suffer from a series of pathologies associated with loss of telomeric DNA 

repeats, including a reduction in proliferation potential, increased apoptosis, loss of 

fertility, decreased tissue regeneration and tissue atrophies (Blasco, Lee et al. 1997; 

Blasco 2005). Reintroduction of mTER gene into the mTER-/- mice prevents telomere 

shortening, premature aging and loss of organismal viability (Samper, Flores et al. 2001). 

These results suggest that an appropriate telomere length is necessary to maintain tissue 

homeostasis.  

Recent studies show that shelterin components also play a role in cancer susceptibility 

even in the presence of normal telomerase activity. Aberrant expression of TRF1, TRF2, 

TIN2 and POT1 is observed in some human tumor types (Blasco 2005; Martinez and 

Blasco 2010). To study the function of shelterin components in cancer and aging, mouse 

models with genetic modification of various shelterin components have been generated. 

However, complete deletion of TRF1, TRF2, POT1a, TPP1 or TIN2 leads to early 

embryonic lethality (Martinez and Blasco 2010). Due to this fact, tissue specific 

conditional mouse models and transgenic mouse models have been generated recently to 
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study the potential roles of shelterin components in caner and aging (Martinez and Blasco 

2010).  

Conditional deletion of TRF1 in stratified epithelia (TRF1Δ/Δ K5-Cre mice) leads to 

perinatal death and multiple skin abnormalities, such as skin hyperpigmentation, skin 

morphogenesis and absence of mature hair follicles (Martinez, Thanasoula et al. 2009). 

p53 deletion in TRF1Δ/Δ K5-Cre mice rescues mice survival and most of the skin-related 

defects, indicating that the defects associated with TRF1 deletion are mediated by p53. 

TRF1/p53 double null mice develop squamous cell carcinomas, suggesting a tumor 

suppressive effect of TRF1 (Martinez, Thanasoula et al. 2009). TPP1Δ/Δ K5-Cre mice 

show similar phenotypes as that observed in TRF1Δ/Δ K5-Cre mice (Tejera, d'Alcontres et 

al. 2010). As an ortholog of TRF1, TRF2 is also implicated in tumorigenesis. TRF2 

transgenic mice (K5TRF2 mice) exhibit severe skin defects and an increased incidence of 

skin cancer (Munoz, Blanco et al. 2005). In line with this, an elevation of TRF2 is 

frequently observed in human skin carcinomas (Munoz, Blanco et al. 2005). However, 

conditional deletion of TRF2 in liver does not compromise mice viability and liver 

regeneration, probably due to the fact that liver regeneration occurs without cell division, 

thus circumventing the chromosome segregation problems caused by TRF2 deletion 

(Denchi, Celli et al. 2006).   

Mouse contains two POT1 orthologs, POT1a and POT1b. POT1a and POT1b have 

different roles revealed by single knockouts. While abrogation of POT1a results in 

embryonic lethality, POT1b-deficient mice survive to adulthood and show degenerative 

abnormalities, such as skin hyperpigmentation and bone marrow failure (Hockemeyer, 
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Daniels et al. 2006). Because of the embryonic lethality of TIN2 knockout mice, 

conditional or tissue-specific TIN2 knockout mice are required for further analysis of its 

in vivo function. RAP1 deficiency mouse models suggest that RAP1 is not required for 

viability but important in protection of telomeres from recombination (Sfeir, Kabir et al. 

2010).   

Understanding the roles of telomerase and shelterin complex in human diseases is 

essential for designing appropriate therapeutic strategies. In diseases associated with 

premature aging and shortened telomeres, reactivation of telomerase is one of the 

potential strategies. It has been reported that the telomere-elongation defect of NBS could 

be rescued by simultaneous reintroduction of NBS1 and hTERT (Ranganathan, Heine et al. 

2001). In cancers characterized by high telomerase activity, anti-telomerase is an 

important aspect for cancer therapy. However, targeting telomerase is challenging due to 

the lag period that anti-telomerase inhibitor takes to exert cytotoxic effects 

(Satyanarayana, Manns et al. 2004). The most likely use of anti-telomerase inhibitors is 

as an adjuvant strategy in combination with surgery (Shay, Zou et al. 2001). In addition, 

the fact that expression of shelterin components TRF1, TRF2 and TIN2 is altered in 

human cancers raises the potential of using them as therapeutic targets for cancer. Future 

investigation of the biology of shelterin components in diseases and cancers would 

certainly facilitate the exploration of their clinical usage. 
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1.6 Project rationale and aims 

Accumulating evidence suggests that NBS1 is involved in both ATM- and ATR-

dependent signaling pathways. In addition to being a downstream substrate that could be 

phosphorylated by either ATM or ATR in response to specific type of DNA lesions, NBS1 

is also reported as an upstream regulator of ATM that influences ATM 

autophosphorylation. However, whether NBS1 is also an upstream regulator of ATR is 

not fully understood.  

The involvement of NBS1 in cell cycle checkpoint is reported in several studies. In 

response to IR, NBS cells failed to induce intra-S checkpoint control (Tauchi, Matsuura 

et al. 2002). Defects in inducing G1/S and G2/M checkpoint have also been observed in 

NBS cells (Buscemi, Savio et al. 2001). However, other studies showed normal and 

proficient G1/S and G2/M checkpoint in spite of NBS1 deficiency (Antoccia, di Masi et 

al. 2002). The role of NBS1 in maintaining checkpoint integrity still remains 

controversial. Moreover, the influence of NBS1 deficiency in apoptosis is rarely reported 

and how NBS1 regulates DNA damage induced apoptosis is waiting to be elucidated.  

Besides cell cycle checkpoint and apoptosis, NBS1 also plays a role in telomere 

maintenance (Lamarche, Orazio et al. 2010). In yeast, XRS2, the functional homolog of 

NBS1, is involved in telomerase-dependent telomere synthesis (Wu, Xiao et al. 2007). In 

human, NBS1 is associated with shelterin component TRF2 in S phase while not in other 

phases (Zhu, Kuster et al. 2000). The interaction of NBS1 and TRF2 in S phase suggests 

a role of NBS1 in telomere replication. Furthermore, it has been reported that NBS 

fibroblasts showed premature growth cessation in culture. But the mechanism of how 
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NBS1 deficiency affects telomere replication and attrition, therefore premature aging is 

far from fully established.   

This study aims to examine the roles of NBS1 both in DNA damage signaling pathway 

and in maintaining telomere integrity. On one hand, the role of NBS1 as an upstream 

regulator of both ATM and ATR will be examined by using NBS cells derived from NBS 

patients with 657del5 mutation. The function of NBS1 in regulating DNA synthesis and 

apoptosis will also be examined after introduction of DNA damage by Dox treatment. On 

the other hand, the telomere shortening rate of NBS cells will be determined in vitro and 

compared with the age, gender and race-matched normal counterparts. If aberrant 

telomere shortening rate is observed in NBS cells, this study will further elucidate the 

underlying mechanism of how NBS1 affects the telomere shortening rate by looking into 

the potential changes in telomerase activity and shelterin complex in NBS cells.  

Cancer predisposition is one of the characteristics of NBS disease. As telomere 

dysfunction has been implicated in carcinogenesis, this study will also examine the 

integrity of telomeres in NBS cells. If frequent telomere aberrations are observed in NBS 

cells, this study would provide new evidence to explain the high incidence of cancers in 

NBS patients from the point of telomeres.   
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2. MATERIALS AND METHODS 

2.1 Cells  

Table 3. List of fibroblasts and B-lymphocytes used in this study 
 
 

Disease Cat. ID Cell type Immort-

alization 

Age Sex race 

Pair1 Normal AG09309 Fibroblast NA 21 F Caucasian 

NBS GM07166 Fibroblast NA 20 F Caucasian 

Pair2 Normal GM00637 Fibroblast SV40 18 F Caucasian 

NBS GM15989 Fibroblast SV40 20 F Caucasian 

Pair3 Normal AG14725 B-lymphocyte EBV 11 M Caucasian 

NBS GM15814 B-lymphocyte EBV 12 M Caucasian 

Pair4 Normal GM22671 B-lymphocyte EBV 28 F Caucasian 

NBS GM07078 B-lymphocyte EBV 20 F Caucasian 

Normal 

fibroblast 

GM01864 Fibroblast NA 11 M Caucasian 

‘M’: male, ‘F’: female, ‘SV40’: Simian Virus 40, ‘EBV’: Epstein-Barr virus, ‘NA’: not applicable.  
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Table 4. List of cancer cells used in this study 
 

Disease Cat. ID Cell type Origin  

Breast cancer MCF7 HTB-22 Epithelial mammary gland 

Colon cancer HCT116 CCL-247 Epithelial colon 

 

Cells used in this study were obtained from Coriell Cell Repositories (CCR) or  ATCC. In 

each pair, the NBS cells were paired with normal cells under the criteria of age, gender 

and race. The NBS cell lines within each pair are homozygous for a deletion of 5 

nucleotides in exon 6 of NBS1 gene, called 657del5 mutation. Additionally, another three 

cell lines, including one normal fibroblast cell line GM01864, the human breast cancer 

cell line MCF7 and the human colon cancer cell line HCT116 were also used in particular 

experiments.  

Fibroblast cell lines at CCR were established by outgrowth of undifferentiated 

mesodermal cells from a biopsy. The morphology of fibroblasts is spindle shaped or 

stellate. B-lymphocytes were isolated as peripheral blood mononuclear cells and 

transformed with Epstein-Barr virus. The B-lymphocytes are small round cells that grow 

as loose aggregates in suspension. 
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2.2 Cell culture 

2.2.1 Cell culture conditions 

The five fibroblast cell lines were cultured in Minimum Essential Medium Eagle (MEM, 

Gibco, Invitrogen) and the four B-lymphocytes cell lines were cultured in Roswell Park 

Memorial Institute-1640 (RPMI-1640, Sigma-Aldrich). Both medium was supplemented 

with 15% fetal bovine serum (FBS, Gibco, Invitrogen), 1% L-Glutamine (Gibco, 

Invitrogen), 1% non-essential amino acid (NEAA, Gibco, Invitrogen) and 1% vitamin 

solution (Gibco, Invitrogen), 100 U/ml penicillin and streptomycin (Gibco, Invitrogen) 

and incubated in 37 °C under 5% CO2. The two cancer cell lines were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Invitrogen) supplemented with 

10% heat-inactivated FBS, 1% L-Glutamine and 100 U/ml penicillin and streptomycin.  

2.2.2 Cell harvesting 

Fibroblasts and cancer cells were harvested by trypsinization. Growing medium was 

removed and cells were washed with PBS once. 0.25% (w/v) Trypsin with 0.38 g/L 

EDTA (Gibco, Invitrogen) was added into cell culture dish which was then incubated in 5% 

CO2, 37 oC incubator for 3 minutes. Cells were resuspended with MEM (for fibroblasts) 

or DMEM (for cancer cells) and centrifuge at 1000 × g for 5 minutes. The medium was 

aspirated and the pellet was washed with PBS twice. Cells were then used for following 

experiments.   

B-lymphocytes were harvested in tubes and centrifuge at 1000 × g for 5 minutes. The 

medium was aspirated and the pellet was washed with PBS twice. Cells were then used 
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for following experiments.  

2.2.3 Cell storage 

For storage of cells, the pellet was resuspended with freezing medium composed of 10% 

DMSO (Sigma-Aldrich) and 90% FBS, and stored in cryovials (Thermo Scientific). 

Frozen cells were stored at -180 oC liquid nitrogen tank.  
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2.3 Western Blotting  

2.3.1 Protein extraction and separation 

Cell pellet was resuspended in 50 mmol/L Tris-HCl (pH 7.4), 250 mmol/L NaCl, 5 

mmol/L EDTA, and 0.1% NP-40 with protease and phosphatase inhibitors (1 µg/ml 

Aprotinin, Leupeptin and Pepstatin, 1 mM NaF, 1 mM Na3VO4 and 1 mM PMSF). The 

lysate were centrifuged at 17,000 × g for 10 minutes before protein quantitation using 

Bradford assay (Biorad). The lysates were then mixed with reducing agent, 5 × loading 

buffer with 20 × DTT (Fermentas), and boiled at 95 oC for 5 minutes. The protein was 

run on appropriate SDS-PAGE gels and transferred to nitrocellulose membrane 

(Millipore). After transfer, the membrane was incubated with 5% skimmed milk, primary 

antibody and secondary antibody sequentially. Following incubation, the membrane was 

washed using Tris buffered saline- 0.1% (v/v) Tween 20 (TBST). Horseradish peroxidase 

(HRP) conjugated secondary anti-mouse or anti-rabbit IgG antibodies were used. 

Immunostaining was detected using ECL Plus Detection Regent (GE healthcare).  

2.3.2 Antibodies  

Table 5. List of antibodies used in this study 

 

Antibody name Company  Cat. No. Antibody 

isotype 

Molecular 

weight (KD) 

NBS1 Cell signaling #3002 Rabbit  95 
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ATM Novus Biologicals NB100-104 Rabbit  370 

ATM-pS1981 Rockland #200-301-400 Mouse  370 

ATR Cell signaling #2790 Rabbit  250 

ATR-pS428 Cell signaling #2853 Rabbit  300 

Chk2 Cell signaling #2662 Rabbit  62 

Chk2-pT68 Cell signaling #2661 Rabbit  62 

Chk1 Cell signaling #2345 Rabbit  56 

Chk1-pS317 Cell signaling #2349 Rabbit 56 

p53 Cell signaling #9286 Mouse  53 

p53-pS15 Cell signaling #9284 Rabbit  53 

γH2AX-pS146 Novus Biologicals NBP1-19255 Mouse  14 

p21 Cell signaling #2946 Mouse  21 

Cleaved caspases 3 Cell signaling #9664 Rabbit  17,19 

PARP Abcam  #9542 Rabbit  24, 116 

TRF1 Abcam  Ab14397 Mouse  55 
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POT1 Abcam  Ab47082 Rabbit  71 

RAP1 Bethyl laboratories A300-306A Rabbit  60 

TIN2 Abcam Ab13791 Mouse 39 

TPP1 Abnova H00065057-M02 Mouse 86 

TOPBP1 Calbiochem PC743 Rabbit  180 

α-tubulin Sigma-Aldrich T9026 Mouse  50 

HRP-GAPDH Cell signaling #3683 Rabbit  37 

HRP- β-actin Abcam  Ab20272 Mouse  42 
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2.4 5-Bromo-2’-deoxy-uridine (BrdU) Labeling & Detection (Roche, Cat. No. 

11444611001) 

Cells were cultured in 96-well flat bottom plates (Thermo Scientific) in a density of 

10,000 cells per well and incubate for 24 hours. 10 µM BrdU labeling solution and 1 µM 

Dox were added to culture medium at the same time and cells were incubated for either 

10 hours or 22 hours. Before removing the culture medium, suspension cells were spin 

down for 10 minutes at 300 × g in a centrifuge. Cells were dried to the bottom of the 96-

well plate for approximately 2 hours at 60 oC. Then, cells were fixed with 200 µl 

precooled fixative (70% ethanol p.a. in 0.5 M HCl) per well for 30 minutes at -30 oC. 

Fixative was removed and cells were washed 3 times with 250 µl wash medium (PBS 

containing 10% FBS) per well. Cells were Incubated with 100 µl nuclease working 

solution per well for 30 minutes at 37 oC water bath. Nuclease working solution was 

removed and cells were washed 3 times with 250 µl wash medium containing 10% FBS 

per well. 100 µl anti-BrdU-POD, Fab fragments, working solution was added per well for 

30 minutes at 37 oC. Cells were washed 3 times with 250 µl washing buffer after 

antibody conjugate was removed. 100 µl peroxidase substrate was added per well. Cells 

were incubated at room temperature until positive samples show a green color, and is 

clearly distinguishable from the color of pure peroxidase substrate (2-30 minutes). 

Extinction of the samples was measured in a microplate reader at 405 nm with a 

reference wave-length at approximately 490 nm.   
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2.5 FITC Annexin V Apoptosis Detection (BD Pharmingen, Cat. No. 556570)  

Cells were seeded with a density of 1 × 105 cells/ml in 10 ml medium, 1 day prior Dox 

treatment. Dox concentration and incubation period was decided based on experimental 

design. Cells were collected by centrifugation  at 500 × g for 5 minutes. Cells were 

washed 2 times with cold PBS and resuspended in 1 × Binding Buffer at a concentration 

of 1 × 106 cells/ml. 100 µl of the solution (1 × 105 cells) was transferred to a 5 ml culture 

tube containing 5 µl of FITC Annexin V and 5 µl propidium iodide (PI). Cells were 

incubatesd for 15 minutes at room temperature in the dark. After incubation, 400 µl of 1 

× Binding Buffer was added to each tube. Just before doing flow cytometry, cells were 

transferred to the flow tube through the filter (60 µm). Samples were analyzed within 1 

hour by flow cytometry (BD LSR II Flow Cytometer).  
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2.6 TeloTAGGG Teloere Length Assay (Roche, Cat. No. 12209136001) 

Genomic DNA was extracted using DNeasy Blood & Tissue Kit (Qiagen). Cells 

(maximum 5 × 106) were centrifuged for 5 minutes at 300 × g. Pellet was resuspended in 

200 µl PBS and with 20 µl proteinase K. Subsequently, 200 µl Buffer AL was added 

(without added ethanol) into the cell mixture. Mixture was mixed thoroughly by 

vortexing 5-10 seconds and incubated at 56 oC for 10 minutes. After incubation, 200 µl 

ethanol (96-100%) was added to the sample and thoroughly mixed by vortexing. The 

mixture was transferred into the DNeasy Mini spin column placed in a 2 ml collection 

tube and centrifuged for 1 minute at 6,000 × g. After centrifugation, flow-through and the 

collection tube were discarded. DNeasy Mini spin column was replaced in a new 

collection tube. 500 µl Buffer AW1 was added before centrifugation for 1 minute at 6,000 

× g. Flow-through and collection tube were discared again. DNeasy Mini spin column 

was replaced in a new collection tube. 500 µl Buffer AW2 was added before 

centrifugation for 3 minutes at 20,000 × g to dry the DNeasy membrane. Flow-through 

and collection tube were discared and  the DNeasy Mini spin column was placed in a 

clean 1.5 ml microcentrifuge tube. 30-50 µl Buffer AE was added directly onto the 

DNeasy membrane. Column was incubated at room temperature for 1 minute, then 

centrifuged for 1 minute at 6,000 × g to elute. DNA concentration was determined using 

Nanodrop (Thermo Scientific). The extracted genomic DNA was stored at -80 oC freezer.  

Genomic DNA (1-2 µg) was digested by enzyme Hinf I and Rsa I for 2 hours at 37 oC. To 

stop the reaction, 5 μl of gel electrophoresis loading buffer was added with quick-spin of 

the reaction vial. Separation of digested DNA was done by 0.8% agarose gel 
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electrophoresis at 5 V/cm in 1 × TAE buffer until the bromophenol blue tracking dye is 

separated about 10 cm from the starting well. Gel was submerged in HCl solution and 

agitated for 5-10 minutes at room temperature, until the bromophenol blue stain changes 

color to yellow. Gel was rinsed 2 times with water before submerged in the denaturation 

solution and neutralization solution sequentially for 2 × 15 minutes. Gel was rinsed 2 

times with water after each submergence. Digested DNA was blotted from the gel to 

nylon membrane by capillary transfer using 20 × SSC as a transfer buffer overnight. After 

southern transfer, transferred DNA on the wet blotting membrane was fixed by UV-

crosslinking (120 mJ). Membrane was washed 2 times with 2 × SSC. For 

prehybridization, blot was submerged in prewarmed DIG Easy Hyb and incubated for 30-

60 minutes at 42 oC. Prehybridization solution was discarded and hybridization solution 

was added to the membrane immediately. Membrane was incubated for 3 hours at 42 oC 

before washed twice with stringent wash buffer I for 5 minutes, followed by wash with 

stringent buffer II for 15-20 minutes at 50 oC.  Membrane was rinsed in 100 ml 1 × 

washing buffer for 1-5 minutes. Then membrane was incubated in 100 ml freshly 

prepared 1 × blocking solution for 30 minutes. After blocking, membrane was incubated 

in 500-100 ml Anti-DIG-AP working solution for 30 minutes. Membrane was washed 

twice with 1 × washing buffer for 15 minutes before incubated in 100 ml of 1 × detection 

buffer for 2-5 minutes. Detection buffer was discarded and excess liquid was removed 

from the membrane by placing the membrane, DNA side up, on a sheet of absorbent 

paper. Wet membrane was immediately placed, DNA side facing up, on an opened 

hybridization bag and approximately 40 drops substrate solution was very quickly 

applied to the membrane. Substrate solution was carefully spread homogeneously over 
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the membrane without trapping air bubbles. Membrane was incubated for 5 minutes 

before exposed to X-ray film for appropriate time (10 minutes-24 hours) to get optimal 

result.  
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2.7 β-galactosidase Staining (US Biological, Cat. No. G1041-76) 

Normal and NBS fibroblasts were cultured to the population doubling level (PDL) as 

required. PDL = 3.32(log (total viable cells at harvest/total viable cells at seed)). Growth 

medium was removed from the cells. The plate was rinsed 1 time with PBS. 1 ml of 1 × 

Fixative Solution was added to each 35 mm well to fix cells for 10-15 minutes at room 

temperature. The plate was rinsed two  times with  PBS.  1  ml o f th e β-galactosidase 

staining solution was added and the plate was incubated at 37 oC overnight in incubator. 

The next day, while the staining solution is still on the plate, the cells were checked under 

a microscope for the development of blue color.  
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2.8 Growth curve study 

NBS as well as normal B-lymphocytes were cultured and split 1:3 every other day. Cell 

number was counted every time when splitting. Cells were seeded for growth in flasks 

(Thermo Scientific) with a density of 1 × 105 cells/ml medium. Cells were cultured for 18 

days until massive cell death was observed in NBS B-lymphocytes.  
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2.9 Telomerase activity assay (XpressBio, Cat. No. XT-100) 

Count cells and take 1 × 106 cells to use. Spin down cells and wash with PBS for 2 times. 

Resuspend cell pellet in 50 µl TeloExpress Lysis Buffer and incubate on ice for 30 

minutes. Spin the sample at 12,000 × g for 3 minutes at 4 oC. Transfer supernatant to a 

fresh microcentrifuge tube. Respin sample at 12,000 × g for 20 minutes at 4 oC. Transfer 

supernatant to another fresh microcentrifuge tube. Then quantify protein concentration by 

Bradford assay. Dilute sample to a final concentration of 1.1 µg/µl with TeloExpress 

Lysis Buffer (5 µl in total). Add 1 µl sample into PCR Reaction Mixture (15 µl 

TeloExpress Master Mix and 9 µl RNase-free Water for one reaction) and mix well in 

PCR tubes. Place the tubes in the real-time PCR instrument (Qiagen, Rotor-Gene Q) and 

start the program. Use the real-time PCR instrument’s software to plot threshold cycle 

and determine the telomerase activity of samples in reference to the standard curve.  
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2.10 RT-PCR 

Total RNA was extracted using RNeasy kit with on-column DNase digestion (Qiagen) 

with slight modifications. Cell pellet was washed with PBS twice before Trizol 

(Invitrogen) lysis of samples. Pipet up and down for at least six times before 

centrifugation at 12,000 × g for 10 minutes at 4 oC. After centrifugation, transfer the 

supernatant into a new 1.5 ml microcentrifuge tube and add appropriate amount of 

chloroform to each tube (trizol : chloroform = 5:1). Shake by hands for 15 seconds before 

incubation for 2-3 minutes at room temperature. Centrifuge at 12,000 × g for 15 minutes 

at 4 oC to separate different layers. Transfer the upper colorless layer into a new 1.5 ml 

microcentrifuge tube. Add 1 volume of 70% ethanol to the colorless lysate and mix well 

by pipetting. Transfer up to 700 µl of the sample to an RNeasy spin column placed in a 2 

ml collection tube and centrifuge for 15 seconds at 8,000 × g. Discard the flow-through 

and add 350 µl Buffer RW1 to the column and centrifuge for 15 seconds at 8,000 × g. 

Discard the flow-through, add 80 µl DNase I incubation mixture directly to the column 

membrane and place on bench top for 15 minutes. Then add 350 µl Buffer RW1 to the 

RNeasy spin column and centrifuge for 15 seconds at 8,000 × g. Add 500 µl Buffer RPE 

to the column after discarding flow-through and centrifuge at 8,000 × g for 15 seconds. 

The same step was repeated with centrifugation for 2 minutes. Place the RNeasy spin 

column in a new 1.5 ml microcentrifuge tube and add 30-50 µl RNase-free water directly 

onto the column membrane. Incubate at room temperature for 1 minute and centrifuge at 

8,000 × g for another 1 minute to elute. Determine the total RNA concentration using 

Nanodrop. The extracted mRNA was stored at -80 oC freezer.  
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One step RT-PCR was performed using the One Step RT-PCR kit (Qiagen) following 

manufacturer’s protocol. mRNA was transcribed and amplified following the program as 

described using Thermal Cyclers PCR machine: DNA synthesis for 30 minutes at 50 oC, 

followed by initial PCR activation step for 15 minutes at 95 oC. The three-step cycling 

profile is as follows: Denaturation at 94 oC for 30 seconds, Annealing at 55 oC for 30 

seconds and Extension at 72 oC for 1 minute for 30 cycles. Final extension is at 72 oC for 

10 minutes, followed by 4 oC forever. The primers for TRF2 are: 5’-TGCTCAAGTTCTA 

CTTCCACGA-3’ and 5’-TTGATAGCTGATTCCAGTGGTG-3’. PCR products were run 

on 2% agarose gel and viewed under UV Gel Doc (BioRad). 
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2.11 Cytogenetic analysis of metaphase spreads 

Normal and NBS fibroblasts were cultured to late passages. Metaphase spreads were 

prepared as described by the Jeppesen’s protocol (Jeppesen 2000) with slight 

modifications. Cells were first arrested at metaphase by incubation with 0.1 µg/ml 

colcemid (Gibco Invitrogen) under normal culture conditions for 8-12 hours depending 

on the cell growth rates. Cells were then harvested by trypsinization. Hypotonic KCl 

solution (75 mM) was then added to cells for 10 minutes at 37 oC for swelling. Following 

which, 5 × 104 cells were diluted with the KCl solution containing 0.1% Tween 20 (v/v) 

and cytocentrifuged at 1000 rpm for 5 minutes onto glass microscopic slides. After 

cytocentrifugation, slides were allowed to dry for a few minutes before being transferred 

to KCM solution (120 mM NaCl, 10 mM Tris HCl pH 7.5, 0.5 mM EDTA, 0.1% (v/v) 

Triton X-100) for 15 minutes at room temperature to solubilize cellular membranes. 

Antibody incubations were carried out in KCM with 10% normal serum to block non-

specific binding and slides were washed with KCM between primary and secondary 

antibody incubations. After incubation, slides were fixed with KCM containing 4% 

formaldehyde and finally washed with distilled water for 5 minutes before mounting with 

Vectashield with DAPI (Vectorlabs). Slides were then observed using Olympus Fluoview 

1000 confocal microscopy system.  
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2.12 Transfection, virus production and cell infection 

The following plasmids were used for transfection and virus production. 

 

 

Figure 2.1 Plasmid constructs used for virus production. A. lentiviral packaging plasmid 
pCMV. B. Lentiviral enveloping plasmid pMD.G. C. Lentiviral shRNA NBS1, Addgene plasmid 
1864. D. Lentiviral CMV hTERT. E. Retroviral pBABE H-RAS V12, Addgene plasmid 9051. F. 
Retroviral pBABE E1A (the adenovirus early 1A region), Addgene plasmid 18742.   



 

56 

 

2.12.1 Transformation and amplification of plasmids 

Competent Escherichia coli cells were used for transformation. Thaw cells from -80 °C 

on wet ice. Add 1 μl plasmid into tubes containing competent cells (50 μl/tube) and tap 

tube to mix. Incubate the mixture on ice for 15 minutes. After incubation, put the mixture 

tube to 42 °C water bath for 90 seconds for heat shock. Place back the tube on ice for 3 

minutes. Add 200 μl lysogeny broth (LB) medium (without ampicillin) to the tube and 

shake the tube for 30 minutes at 30 °C. Take out the mixture in tube and spread onto LB 

plates (with ampicillin). Let plates dry at room temperature for 2 minutes before 

incubation for 24 hours at 32 °C for colony growth. Pick colonies into liquid LB medium 

(with ampicillin) to amplify the plasmids by shaking at 30 °C for 16 hours.  

Plasmid was then extracted from cells and purified using QIAprep Spin Miniprep Kit 

(Qiagen). Bacteria pellet was resuspended in 250 μl Buffer P1 in a microcentrifuge tube. 

Following this step, 250 μl Buffer P2 was added and mixed thoroughly by inverting the 

tube for 4-6 times. Before centrifugation, 350 μl Buffer N3 was added to mixture and 

mixed immediately by inverting the tube 4-6 times. Then centrifuge the tube for 10 

minutes at 13,000 rpm. Apply the supernatants to the QIAprep spin column by pipetting 

and centrifuge for 30-60 seconds. Discard the flow-through and add 0.75 ml Buffer PE to 

wash the column by centrifuging for 30-60 seconds. Discard the flow-through and 

centrifuge for an additional 1 minute to remove the residual wash buffer. After 

centrifugation, place the column in a clean 1.5 ml microcentrifuge tube. To elute DNA, 

add 50 μl Buffer EB or nuclease-free water to the center of each column and let it stand 

for 1 minute before centrifuging for 1 minute. The extracted plasmid DNA was stored at -
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30 °C freezer.  

2.12.2 Lentivirus production 

Plasmids with interested genes (12 μg), virus enveloping plasmid pMD.G (4 μg) and 

virus packaging plasmid pCMV (8 μg) were co-transfected into 293T cells cultured in 10 

cm dishes using Lipofectamine (Invitrogen) method. Medium that is used for transfection 

was Opti-MEM reduced serum medium (Invitrogen). Six or eight hours post transfection, 

medium was changed to DMEM. Virus was harvested in two batches (at 24 and 48 hours) 

and filtered using 0.45 μm filters. The virus were then stored at -80 °C in 1.5 ml aliquots.  

2.12.3 Retroviral production 

12 μg of plasmids were transfected into Pheonix cells cultured in 10 cm dishes using 

Lipofectamine method. Medium that is used for transfection was Opti-MEM reduced 

serum medium (Invitrogen). Six or eight hours post transfection, medium was changed to 

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Invitrogen) supplemented with 

10% heat-inactivated FBS (without penicillin and streptomycin). Virus was harvested in 

two batches (at 24 and 48 hours) and filtered using 0.45 μm filters. The virus were then 

stored at -80 °C in 1.5 ml aliquots. 

2.12.4 Cell infection 

For cell infection, 1.5 ml virus with 0.5 ml DMEM (without penicillin and streptomycin) 

and 2 μl polybrene (8 mg/ml) were added to cells cultured in 6-well plates with ~70% 

confluency. Cells were incubated at normal culture condition for 24 hours before double 

infection was performed. After 2 days of infection, remove medium with virus particles 
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and add fresh DMEM medium and culture for 24 hours before selection with appropriate 

antibiotics.   
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2.13 Soft agar assay/Anchorage-independent growth assay 

Infected cells were seeded into each well of a 24-well plate with a density of 1 × 105 

cells/well. The cells were embedded into 0.3% (w/v) noble agar (Sigma-Aldrich) in 

DMEM supplemented with 16.66% FBS, over a substratum of 0.6% noble agar in 

DMEM supplemented with 10% FBS. Fresh medium was added weekly and the agar 

plate was observed for colony formation for 6 weeks. At the end of 6 weeks, the colonies 

from each well were counted under microscope. Tumorigenicity of different samples was 

assessed by comparing the average number of colonies observed from 8 wells. 
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3. RESULTS 

3.1 NBS1 deficiency does not affect the expression of MRE11 and RAD50 

In this study, cells derived from NBS patients who have typical 657del5 mutation of the 

NBS1 gene were used. As controls, normal cells with wild type NBS1 gene were also 

employed and paired with NBS cells under the criteria of age, gender and race for a more 

reliable comparison. As shown, the wild type NBS1 protein was only expressed in normal 

cells but not in NBS cells (Figure 3.1A), which corresponds to the notion that the 657del5 

mutation abolishes the expression of full length NBS1 protein (Maser, Zinkel et al. 2001). 

We further checked the expression level of another two components that consist of MRN 

complex, MRE11 and RAD50, in NBS cells as well as in normal cells. Results showed 

that although NBS1 deficiency, the expression of MRE11 and RAD50 was not affected 

(Figure 3.1B). 

 

 
Figure 3.1 NBS1 deficiency does not affect the expression of MRE11 and RAD50. A. The 
expression of NBS1 protein in NBS fibroblasts as well as in age, race and gender-matched normal 
fibroblasts. The four cell lines were classified into two pairs, nominated as Pair 1 and Pair 2. 
GAPDH serves as the loading control. B. the expression of MRE11 and RAD50 in NBS 
fibroblasts as well as in normal fibroblasts. GAPDH serves as the loading control. 
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3.2 NBS1 deficiency affects ATM phosphorylation 

 

 

 
Figure 3.2 NBS1 deficiency affects ATM phosphorylation. A. The expression and 
phosphorylation level of ATM in NBS fibroblasts as well as in normal fibroblasts. Cells were 
treated with 1 µM Dox and collected at the time points indicated. Arrow indicates the band that 
represents pS1981-ATM. GAPDH serves as the loading control. B. The immunoblots in A were 
scanned and quantitated by densitometer, and the phosphorylation level of ATM was normalized 
to its total protein level. 
 
 

 
To determine if NBS1 deficiency affects the phosphorylation of ATM, these two pairs of 

fibroblasts (Pair 1 and Pair 2) were then subjected to 1 µM Dox treatment and the 

phosphorylation level of ATM at Ser1981 was examined at different time points by 
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western blot. Results showed that ATM was quickly activated in normal cells and reached 

the highest level in 8 hours after Dox treatment (Figure 3.2A). However, in NBS cells, 

ATM phosphorylation was severely impaired, exhibited by a much lower level than that 

in normal counterparts (Figure 3.2B). Although ATM phosphorylation level decreased 

dramatically in NBS cells, there was still a basal level detectable (Figure 3.2A), 

indicating that NBS1 deficiency does not fully abolish ATM phosphorylation. 
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3.3 NBS1 deficiency affects the phosphorylation of ATM downstream targets 

If NBS1 deficiency affects ATM activation, whether the activation of ATM downstream 

targets is also affected is the question that we want to address next. H2AX, p53 and Chk2 

are three important ATM downstream substrates that are involved in DNA damage 

response (Varon, Vissinga et al. 1998). The phosphorylation statuses of these three 

proteins were also examined by western blot. Results showed that the phosphorylation of 

H2AX at Ser139 and phosphorylation of p53 at Ser15 were also severely affected in NBS 

cells (Figure 3.3A). In normal cells, these two proteins were quickly phosphorylated to a 

high level and the high phosphorylation level was maintained for all the rest time points 

detected. But in NBS cells, the phosphorylation level was significantly decreased (Figure 

3.3A). Moreover, the total level of p53 was also affected in NBS cells, suggesting a 

possibility that NBS1 deficiency compromises p53 stability. The defects in 

phosphorylation of p53 were also observed in human breast cancer cells MCF7 with 

NBS1 knockdown (Figure S1). Surprisingly, the phosphorylation level of Chk2 at Thr68 

was not reduced in NBS cells, but only exhibited a delay in activation in pair 2. As shown, 

Chk2 was activated and reached a high level within 2 hours in normal cells, but was 

activated in NBS cells at a much later time point of 8 hours (Figure 3.3B). Taken together, 

these results suggest that NBS1 deficiency could affect the phosphorylation of ATM 

downstream targets, leading to either a lower phosphorylation level or a delayed 

activation. 
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Figure 3.3 NBS1 deficiency affects the phosphorylation of ATM downstream targets. A. The 
phosphorylation of ATM downstream targets, including histone H2AX, p53 and Chk2. Cells 
were treated with 1 µM Dox and collected at the time points indicated. GAPDH serves as the 
loading control. B. The immunoblots of Chk2 and pT68-Chk2 were scanned and quantitated by 
densitometer, and the phosphorylation level of Chk2 was normalized to its total protein level. 
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3.4 NBS1 deficiency also affects ATR phosphorylation and the phosphorylation of 

ATR downstream target Chk1 

 

 
 

Figure 3.4 NBS1 deficiency affects the phosphorylation of ATR as well as its downstream 
target Chk1. A. The expression and phosphorylation of ATR in Pair 2. Cells were treated with 1 
µM Dox and collected at the time points indicated. α-tubulin serves as the loading control. The 
immunoblots of ATR and pS428-ATR were scanned and quantitated by densitometer, and the 
phosphorylation level of ATR was normalized to its total protein level. B. The phosphorylation of 
ATR downstream target Chk1 in Pair 2. Cells were treated with 1 µM Dox and collected at the 
time points indicated. Phosphorylation of Chk1 at Ser317 was detected. GAPDH serves as the 
loading control. The immunoblots of Chk1 and pS317-Chk1 were scanned and quantitated by 
densitometer, and the phosphorylation level of Chk1 was normalized to its total protein level. 
 
 
The phosphorylation status of ATR upon Dox treatment was also investigated. As shown 

by western blot (Figure 3.4A), normal cells exhibited ATR phosphorylation at Ser428 

even without Dox treatment. When exposed to 1 µM Dox, the phosphorylation level in 

normal cells increased and reached a peak in 4 hours. But NBS cells only showed a subtle 

increase when subjected to Dox and the phosphorylation level was much lower than that 

in normal counterparts (Figure 3.4A). This result suggests that NBS1 deficiency also 
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compromises the phosphorylation of ATR. In addition to ATR, we also observed a 

decrease in the induction level of TOPBP1 (Figure S2). Since TOPBP1 is crucial in 

activation of ATR and the initiation of ATR-dependent signaling pathway (Kumagai, Lee 

et al. 2006; Choi, Lindsey-Boltz et al. 2009), we suggested that the decrease in ATR 

phosphorylation was due to the reduction in TOPBP1 level. Chk1, a direct downstream 

target of ATR (Zhao and Piwnica-Worms 2001), also showed impaired phosphorylation 

at Ser317 in NBS cells (Figure 3.4B). Collectively, NBS1 deficiency affects both ATR 

and ATR-dependent phosphorylation of downstream substrate. 
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3.5 NBS1 deficiency delays inhibition of DNA synthesis after DNA damage occurs 

 

 

 
Figure 3.5 NBS1 deficiency delays inhibition of DNA synthesis after DNA damage occurs. A. 
The expression of NBS1 protein in NBS B-lymphocytes as well as in age, race and gender-
matched normal B-lymphocytes. The four cell lines were classified into two pairs, nominated as 
Pair 3 and Pair 4. GAPDH serves as the loading control. B. Cells were seeded into 96-well plate 
and after culturing for 2 days, cells were treated with 1 µM Dox and 10 µM BrdU at the same 
time for either 10 or 22 hours. The bar represents the ratio of Dox-treated BrdU+ cells to untreated 
BrdU+ cells. Data are mean ± S.D. from triplicates. (*, P ≤ 0.05) 
 

DNA damage response could lead to inhibition of DNA synthesis to stop the propagation 

of “bad” cells with DNA lesions. We next investigated the potential roles of NBS1 in 

eliciting inhibition of DNA synthesis when DNA is damaged. Since pair 2 fibroblasts are 

transformed with simian virus 40 which would render G1/S checkpoint inactive and 

therefore affect the number of cells entering S phase for DNA synthesis (Petrini, Attwooll 

et al. 2009), we used additional 2 pairs of B-lymphocytes for analysis of DNA synthesis 

status (Pair 3 and Pair 4).  As shown in the western blot, full length NBS1 was only 

expressed in normal cells but not in NBS cells (Figure 3.5A). Furthermore, similar as the 

phenotypes shown in NBS fibroblasts, the ATM-dependent phosphorylation events, such 

as phosphorylation of histone H2AX, p53 and Chk2, were also impaired in NBS B-
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lymphocytes (Figure S3).  

BrdU incorporation assay was employed to assess the proliferation profile of cells after 1 

µM Dox treatment for either 10 or 22 hours. From this result, we found that the cell 

proliferation was suppressed after Dox treatment in both normal and NBS cells, exhibited 

by the ratio of BrdU+Dox+ cells to BrdU+Dox- cells less than 1 (Figure 3.5B). Although 

suppression of cell proliferation was observed in both normal and NBS cells, at 10 hours, 

NBS cells showed a lesser degree of arrest than the normal cells, indicated by a higher 

BrdU+Dox+ to BrdU+Dox- cells ratio. It was only after 22 hours of Dox treatment, did the 

NBS cells exhibit a similar degree of arrest as their normal counterparts (Figure 3.5B). 

This result indicates the suppression of proliferation in NBS cells is not as efficient as 

that in normal cells, suggesting a delay in inhibition of DNA synthesis in NBS cells.  
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3.6 NBS1 deficiency affects the initiation of apoptosis 

 

 

Figure 3.6 NBS1 deficiency affects the initiation of apoptosis. A. FITC Annexin V apoptosis 
assay. B-lymphocytes were treated with Dox at the indicated concentrations for 24 hours. The 
number of apoptotic cells was analyzed by flow cytometry. B. Quantitation of the percentage of 
apoptotic cells (including early and late apoptotic cells) shown in A. Data are mean ± S.D. from 
3 independent experiments. C. Western blot analysis of apoptosis-related proteins, including 
caspases 3 and PARP. Cells were treated with Dox at the indicated concentration for 24 hours. 
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Another cellular event of DNA damage response is to initiate apoptosis when DNA 

damage is beyond repair. Cells treated with different concentration of Dox for 24 hours 

were harvested and subjected to flow cytometry analysis. Results showed that NBS cells 

had comparable apoptosis level to normal cells under lower concentration of Dox 

treatment. When the concentration of Dox was increased to a high concentration of 0.5 

µM (in pair 4) or 1 µM (in pair 3), normal cells exhibited elevated level of apoptosis. 

However, the apoptosis level in NBS cells remained low as that under lower 

concentrations of Dox treatments (Figure 3.6A & B), indicating that NBS cells were 

defective in inducing apoptosis when cells were exposed to high dosage of Dox. Western 

analysis of apoptosis associated markers showed that cleaved caspases 3 almost 

diminished in NBS cells. However, as a direct downstream target of caspases 3 

(Simbulan-Rosenthal, Rosenthal et al. 1998), PARP only exhibited a minor decrease in its 

cleaved form in NBS cells (Figure 3.6C). This is probably due to the low level of cleaved 

caspases 3 in NBS cells. The low efficiency in cleavage of these proteins may be 

responsible for the defects of NBS cells in initiation of apoptosis under high 

concentration of Dox treatment.   
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3.7 NBS1 deficiency promotes telomere shortening and an earlier onset of 

senescence in fibroblasts  

 

 
  

 

 

Figure 3.7 NBS1 deficiency leads to accelerated telomere shortening and an earlier onset of 
senescence in NBS fibroblasts. A. Measurement of the telomere restriction fragment length. 
Genomic DNA isolated from normal and NBS fibroblasts at indicated PDLs were analyzed. B. 
Telomere shortening rate in normal and NBS fibroblasts. Data are mean ± S.D. from duplicate 
experiments. Telomere shortening rate (slope of the regression line) and Spearman’s regression 
coefficient are indicated. C. Cellular senescence assay in fibroblasts using β-galactosidase 
staining. Arrows indicate senescent cells. D. Bars represent the percentage of β-
galactosidase positive cells. Data are mean ± S.D. from 5 images each.  
 

Premature aging has been observed in NBS fibroblasts in vitro (Ranganathan, Heine et al. 
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2001). Premature cellular senescence could be elicited by accelerated telomere shortening. 

We therefore asked whether NBS1 deficiency elicits premature aging through regulating 

telomere attrition rate. Telomere length of the two pairs of fibroblasts was tested by the 

Terminal Restriction Fragment southern blot. Result showed that the telomere length of 

NBS fibroblasts was generally shorter than that of age-matched normal fibroblasts, which 

probably represents the long-term accumulative effect of an accelerated telomere 

shortening rate of NBS cells in vivo. When comparing the telomere attrition rate with 

each replication cycle in vitro, we found that NBS fibroblasts indeed had a higher 

telomere shortening rate compared to that in normal fibroblasts (Figure 3.7A). For each 

replication cycle, the telomere shortening rate of NBS fibroblasts was around 30 bp faster 

than that of its respective normal counterparts (Figure 3.7B). This result strongly 

indicates that NBS1 plays a role in telomere length maintenance and the deficiency of 

NBS1 leads to faster telomere attrition.  

We performed β-galactosidase assay to study the senescence status of normal as well as 

NBS fibroblasts in vitro. Cells were cultured to the same PDL and stained, and the cells 

stained blue were counted as senescent cells. Consistent with the accelerated telomere 

shortening, NBS fibroblasts exhibited a significantly higher percentage of cells 

undergoing senescence compared to normal cells with the same PDLs (Figure 3.7C & D). 

These results suggest that NBS cells have a larger population of cells with critically short 

telomeres. 
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3.8 NBS1 deficiency leads to an earlier onset of cell death in B-lymphocytes 

Progressive telomere shortening in the absence of telomerase would eventually trigger 

DNA damage responses and lead to replicative senescence or senescence-associated 

apoptosis (Blasco 2005). In this regard, accelerated telomere shortening could not only 

lead to earlier onset of senescence, but also lead to earlier occurrence of senescence-

associated apoptosis in cells. In order to examine the role of NBS1 in induction of 

senescence-associated apoptosis, the two pairs of B-lymphocytes were cultured in vitro 

till late passages and subjected to flow cytometry analysis. Results showed that NBS B-

lymphocytes had a higher percentage of cells undergoing apoptosis compared to normal 

counterparts when cultured to similar or even lower PDLs (Figure 3.8A & B), indicating 

NBS1 deficiency leads to earlier and more severe senescence-associated apoptosis.  

This result was corroborated by microscopy images of NBS B-lymphocytes which 

showed prevalent cell debris under normal culture conditions, while normal B-

lymphocytes remained spherical even at higher PDLs, suggesting a healthy growing 

status (Figure 3.8C). The growth curve demonstrated the trend of replication and 

apoptosis status of NBS B-lymphocytes over 18 days. As shown (Figure 3.8D), the 

growth rate of NBS B-lymphocytes is comparative to that of normal cells at the early 

days of cell culture. But at later days, the number of NBS B-lymphocytes ceased 

increasing and even started to decrease, probably indicating the onset of cellular 

senescence and cell death in these cells. By contrast, normal B-lymphocytes only had a 

slight decrease in cell growth rate even at later days, suggesting a healthy cell replication 

and proliferation status.  
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  Figure 3.8 NBS1 deficiency leads to an earlier onset of cell death in B-lymphocytes. A. FITC 
Annexin V apoptosis assay. B-lymphocytes were cultured to late passages under normal culture 
condition without drug treatment. The number of apoptotic cells was analyzed by flow cytometry. 
B. Quantitation of the percentage of apoptotic cells (including early and late apoptotic cells) 
shown in A. C. Cellular morphologies of B-lymphocytes at late passages. Circles enclose the 
dead cell debris. D. Growth curve of B-lymphocytes. Cells were split and counted every other day 
over 18 days. The accumulative cell number was shown against days.   
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3.9 Accelerated telomere shortening is not observed in NBS B-lymphocytes 

 

 

 
Figure 3.9 NBS1 deficiency does not lead to accelerated telomere shortening in NBS B-
lymphocytes.  A. Measurement of the telomere restriction fragment length. Genomic DNA 
isolated from normal and NBS B-lymphocytes at indicated PDLs were analyzed. B. 
Telomere shortening rate in normal and NBS B-lymphocytes. Telomere shortening rate 
(slope of the regression line) and Spearman’s regression coefficient are indicated. 
 

The earlier onset of senescence-associated apoptosis could be driven by accelerated 

telomere attrition which would result in the faster generation of cells with critically short 

telomeres. Therefore, telomere length of the two pairs of B-lymphocytes was tested by 

the Terminal Restriction Fragment southern blot. However, the shortened telomeres were 

only observed in the NBS B-lymphocytes of Pair 4, but not in the one of Pair 3 (Figure 

3.9A). Furthermore, when comparing the telomere shortening rate with each replication 

cycle, a lower rather than a higher telomere shortening rate was detected in both NBS B-

lymphocytes (Figure 3.9B), suggesting that NBS1 deficiency does not cause accelerated 
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telomere shortening in B-lymphocytes. The earlier occurrence of senescence-associated 

apoptosis observed in NBS B-lymphocytes is probably due to other mechanisms. 

Moreover, this result suggests that the extremely short telomere length observed in NBS 

B-lymphocytes of Pair 4 is not because of accelerated telomere attrition, but probably due 

to their long proliferation history in NBS patients before isolated. 
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3.10 NBS1 deficiency does not affect telomerase activity 

 

 

 
Figure 3.10 Real-time PCR for relative telomerase activity in NBS versus normal fibroblasts. 
Cells with similar PDLs were lysed in TeloExpress lysis buffer and the supernatant containing 
telomerase was used for subsequent Real-time PCR analysis. Data are mean ± S.D. from 2 
biological repeats. 
 
 

Telomere length is maintained by the activity of telomerase. Although it is generally 

thought that human primary fibroblasts lack telomerase activity, transient expression of 

telomerase has been reported in human fibroblasts (Masutomi, Yu et al. 2003). We next 

investigated whether telomerase is involved in the regulation of telomere shortening rate 

in NBS fibroblasts. Telomerase activity of NBS fibroblasts was compared with normal 

counterparts by real-time PCR. Results showed that NBS fibroblasts have comparative 

telomerase activity to normal counterparts (Figure 3.8), suggesting that the accelerated 

telomere shortening is not due to the changes in telomerase activity.  
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3.11 NBS1 deficiency leads to upregulation of TRF2 in fibroblasts 

Shelterin complex proteins protect the telomere integrity, but it also has been claimed that 

these proteins are negative regulators for telomere length (de Lange 2005). We next 

looked into the different components of shelterin complex and found that the cellular 

level of TRF2 was upregulated in NBS fibroblasts (Figure 3.9A). However, the 

expression of other shelterin components, including TRF1, RAP1 and POT1, did not 

show obvious changes (Figure 3.9B). RT-PCR confirmed this result by showing an 

upregulation of TRF2 at mRNA level (Figure 3.9C). The overabundance of TRF2 at 

telomere ends may negatively regulate telomere length, resulting in accelerated telomere 

shortening in NBS fibroblasts.  

 

Figure 3.11 NBS1 deficiency leads to upregulation of TRF2. A. Western blot analysis of the 
TRF2 protein level in NBS fibroblasts as well as in normal counterparts with similar PDLs. The 
numbers above the blot indicate its fold difference measured by densitometer with normal cell’s 
TRF2 protein level being set at a reference value of 1. β-actin serves as the loading control. B. 
Western blot analysis of the other shelterin complex proteins in NBS and normal fibroblasts, 
including TRF1, POT1 and RAP1. GAPDH serves as the loading control. C. RT-PCR analysis of 
the TRF2 mRNA level in NBS and normal fibroblasts. mRNA was extracted from fibroblasts 
with similar PDLs and used in one-step RT-PCR analysis. The numbers above the blot indicate its 
fold difference measured by densitometer with normal cell’s TRF2 protein level being set at a 
reference value of 1. 
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3.12 TRF2 level is not affected in NBS B-lymphocytes 

 

 

 
Figure 3.12 NBS1 deficiency does not affect the expression level of TRF2 in B-lymphocytes. 
Western blot analysis of the protein levels of all the six components of shelterin complex, 
including TRF1, TRF2, POT1, RAP1, TIN2 and TPP1 in NBS B-lymphocytes as well as in 
normal ones with similar PDLs. GAPDH serves as the loading control.  
 
 

The expression levels of shelterin components in NBS B-lymphocytes were also detected 

by western blots. However, TRF2 protein level was not altered in NBS B-lymphocytes 

within each pair. And the expression levels of the rest five components of shelterin 

complex, including TRF1, POT1, RAP1, TPP1 and TIN2, also did not show alterations in 

the condition of NBS1 deficiency (Figure 3.12). These results further manifest that the 

same type of NBS1 mutation would cause different defects at telomeric ends in 

fibroblasts and B-lymphocytes.   

  



 

80 

 

3.13 NBS1 deficiency potentiates chromosome instabilities in NBS fibroblasts 

 

 

 
Figure 3.13 NBS1 deficiency leads to chromosome instabilities. A. Metaphase spreads of Pair 
1 fibroblasts were stained with antibodies against TRF2 (green) and visualized by 
immunofluorescence. DNA was stained with DAPI (blue). Arrows point to telomeric end fusions. 
The insets (a and b) are representatives of telomeric fusions. B. Bars represent the percentage of 
cells that are positive with telomeric fusions. The total cell number is 25. C. Bars represent the 
average number of chromosomes enumerated from the metaphase spreads. Data are mean ± S.D. 
from 25 spreads each.  
 
 
 
The accelerated telomere shortening and dysregulation of shelterin complex components 

may jeopardize the stability of telomeres in NBS cells. To evaluate the integrity of 

telomeres of NBS cells, we performed cytogenetic analysis of metaphase spread to 

investigate directly at the chromosome ends. As shown, prevalent telomere associations 
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were observed in NBS fibroblasts (Figure 3.13A), exhibited by telomeres of different or 

the same chromosomes exist in unusually close proximity. Although very rare, telomere 

fusions were also observed in normal cells (Figure 3.13B). Telomere associations affect 

the chromosome separation during mitosis, resulting in aneuploid cells. We found that 

most of the normal cells retain 46 chromosomes during culture in vitro, although few of 

them showed abnormal chromosome numbers that slightly deviate from 46 (Figure 

3.13C). In contrast, NBS cells showed an average chromosome number of 78 which 

significantly deviates from the normal chromosome number, suggesting that the 

continued replication of NBS cells in vitro leads to more severe genome instabilities.    
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3.14 NBS1 deficiency does not promote malignant transformation of fibroblasts in 

vitro 

 

 

Figure 3.14 NBS1 does not promote malignant transformation of fibroblasts in vitro. A. 
Western blot analysis of the protein level of hTERT, H-RAS and p53 in normal as well as in NBS 
fibroblasts infected with virus particles containing hTERT, E1A and H-RAS V12 gene. Arrow 
indicates the band of Flag-hTERT. B. The representative images of colonies formed in soft agar 
plates containing transformed cells. C. Quantification of the colony formation efficiency of 
different cell lines. Human colon cancer cells HCT116 serve as the positive control. The colony 
formation efficiency equals the average number of colonies in one well divided by the total cells 
seeded. Data are mean ± S.D. from 8 wells each.   
 
 
 
DNA damage response and telomere integrity maintenance are two important aspects in 

preventing malignant transformation of cells in the early stage of cancer (Bartek, Lukas et 

al. 2007). Having observed defects in both of these aspects in NBS fibroblasts, it seems to 
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be apparent that NBS fibroblasts are more prone to malignant transformation than normal 

cells. To test this hypothesis, soft agar assay which detects and measures the 

morphological transformation of cells was performed. Normal as well as NBS fibroblasts 

were infected with viruses containing plasmid hTERT, H-RAS V12 and E1A, 

simultaneously. The successfully transfected clones are subjected to soft agar assay. Due 

to the difficulty in getting transfected clones of AG09309, another normal fibroblast 

GM01864 was used as control of NBS fibroblast GM07166. As shown (Figure 3.14A), 

hTERT and H-RAS V12 were successfully transfected into cells. As E1A overexpression 

leads to accumulation of p53 (Querido, Teodoro et al. 1997), we also detected the protein 

level of p53 to reflect the transfection efficiency of E1A. However, p53 level was only 

upregulated in normal fibroblasts but not in NBS fibroblasts, suggesting that E1A-

induced p53 accumulation may be NBS1-dependent. The transfected cells were then 

seeded into agar plates and incubated for 6 weeks. Colonies were observed in both of the 

transfected cell lines although with a lower efficiency compared to the positive control 

HCT116, suggesting that transfected cells had less tumorigenicity (Figure 3.14B). 

Surprisingly, no obvious difference in the colony formation efficiency was observed 

when comparing NBS to normal fibroblasts (Figure 3.14C). This result indicates that 

NBS1 deficiency does not promote the malignant transformation of fibroblasts even 

though impairing the DNA damage response signaling pathway and telomere integrity.  
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4. DISCUSSION 

4.1 NBS1 deficiency affects the DNA damage response  

The NBS1 gene encodes a 95 KD protein (Difilippantonio and Nussenzweig 2007). The 

657del5 mutation of this gene leads to a frame shift and premature termination at codon 

219 which abolishes the expression of full length NBS1 (Maser, Zinkel et al. 2001). It is 

predicted that the premature termination would result in the expression of two truncated 

proteins, the 26 KD N-terminus and the 70 KD C-terminus (Tauchi, Matsuura et al. 2002). 

The NBS1 antibody used in this study recognizes C-terminal residues of human NBS1. 

However, the 70KD C-terminus was not observed (data not shown). Maser and 

colleagues also  reported that only the 26 KD fragment, but not the 70 KD one, was 

found in NBS fibroblasts (Maser, Zinkel et al. 2001).  The 70 KD C-terminus of NBS1 

contains the region that binds to MRE11 which is necessary for the nuclear localization 

of MRE11/RAD50 and the formation of functional MRN complex (Kobayashi, Antoccia 

et al. 2004). Our results showed that although the absence of NBS1 C-terminus in NBS 

fibroblasts, the expression level of another two components of MRN complex were not 

affected.   

It has been proved in Xenopus egg extracts that the C-terminus of NBS1 is essential for 

recruiting ATM to damaged DNA where its subsequent autophosphorylation occurs (You, 

Chahwan et al. 2005). Our results demonstrated that in the absence of full length NBS1 

and its C-terminus, ATM phosphorylation at Ser1981 was diminished in NBS cells when 

exposed to Dox treatment. This result indicates that NBS1 is not only a downstream 

substrate of ATM (Lim, Kim et al. 2000), but also serves as an upstream regulator that 
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mediates the phosphorylation and activation of ATM. However, NBS cells still retain a 

low level of ATM phosphorylation under Dox treatment. We suggest that ATM 

autophosphorylation exists in a low basal level in cells that are under DNA damage even 

without functional NBS1. NBS1 serves as an amplifier for ATM activity which facilitates 

ATM to reach a threshold maximal activity when DNA damage occurs (Horejsi, Falck et 

al. 2004). 

Lying in the crossroad of DNA damage signaling pathway, ATM mediates diverse 

responses through phosphorylation on different downstream targets. Histone H2AX is 

one of them. We found that NBS1 deficiency severely affects the phosphorylation of 

histone H2AX at Ser139 in response to Dox treatment. p53 is another ATM target which 

plays multifaceted role in DNA damage response. We also observed that p53 

phosphorylation is seriously impaired in NBS cells. Although the phosphorylation of 

ATM downstream substrates H2AX and p53 was severely affected, we could still observe 

a basal level of phosphorylation and activation of these proteins. This result suggests that 

NBS1 deficiency does not fully abolish the phosphorylation of  ATM targets, probably 

due to the existence of a basal level of ATM phosphorylation. However, the activation of 

Chk2 was apparently normal though slightly delayed in NBS cells under Dox treatment. 

Like p53, Chk2 could also be phosphorylated by ATM and functions in cell cycle arrest. 

The phosphorylation of Chk2 brings its catalytic domain into the close proximity of 

another Chk2 molecule that allows auto-trans-phosphorylation to occur (Oliver, Knapp et 

al. 2007). In NBS cells, although impaired, ATM activation was still present at basal 

levels. It could be explained that the basal level of activated ATM is sufficient to elicit 

initial phosphorylation of Chk2 which creates conditions for its following auto-trans-
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phosphorylation. But this process may take longer time than the direct phosphorylation of 

Chk2 by ATM, so that NBS cells showed a delay in Chk2 phosphorylation. Although pair 

1 and pair 2 generally exhibited similar trends, differences between these 2 pairs did exist, 

such as p53 expression level and Chk2 phosphorylation level. The differences between 

pair 1 and pair 2 may due to the transformation of SV40 in pair 2 cells. SV40 may 

activate DNA damage signaling pathway even without Dox treatment, causing 

differential protein expression and phosphorylation profiles between pair 1 and pair 2.  

As a DNA intercalating agent, Dox not only causes DSBs, but also inhibits cell 

proliferation and DNA synthesis by generating stalled replication forks (Kim, Lee et al. 

2009) which could be repaired by ATR-dependent signaling pathway (Stiff, Reis et al. 

2005). Indeed, we found that when subjected to Dox treatment, ATR phosphorylation 

level increased in normal cells. However, the phosphorylation event was impaired when 

NBS1 is deficient. This result suggests that NBS1 is not only an upstream regulator of 

ATM, but also functions upstream of ATR.  

Recent years, several studies showed an essential role of TOPBP1 in activating ATR and  

eliciting ATR-dependent signaling events in both human cells and Xenopus egg extracts 

(Kumagai, Lee et al. 2006; Mordes, Glick et al. 2008; Choi, Lindsey-Boltz et al. 2009). It 

was further shown that NBS1 interacts with TOPBP1, a process that is essential for 

TOPBP1 to activate ATR (Yoo, Kumagai et al. 2009). In human NBS1-2A mutants 

(mutations within BRCT domain), TOPBP1 failed to bind to NBS1 which further affects 

ATR-dependent signaling processes, such as phosphorylation of Chk1 (Yoo, Kumagai et 

al. 2009). In line with this, our study showed a reduction in TOPBP1 expression level 
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when NBS1 is deficient, which is probably responsible for the impaired activation of 

ATR in NBS fibroblasts. Although the direct interaction between NBS1 and TOPBP1 has 

been reported, how NBS1 regulates the expression level of TOPBP1 remains to be 

determined.  

As a direct downstream substrate of ATR (Liu, Guntuku et al. 2000), Chk1 

phosphorylation level was also affected in NBS fibroblasts (Figure 3.4B). In addition, the 

total protein level of Chk1 was also severely compromised, suggesting that NBS1 

deficiency affects the stability of Chk1.  

All together, our results suggest that NBS1 is an upstream regulator of both ATM and 

ATR kinase. The deficiency of NBS cells in producing full length NBS1 renders them 

inefficient in activating these two kinases as well as their downstream substrates upon 

DNA damage. But either a lower level of phosphorylation or a delayed activation of 

proteins still exists in NBS cells, indicating that NBS1 deficiency could only partially 

affect the DNA damage signaling pathway.  

As an initial response when DNA damage occurs, normal cells with intact DNA damage 

signaling pathway would arrest to allow DNA damage to be repaired (Kastan and Bartek 

2004). Different cell cycle arrest mechanisms are required in response to DNA damage in 

a cell-type and DNA-damage specific manner. All three types of cell cycle arrest, 

including G1/S, intra-S and G2/M arrest, have been reported in human cells treated with 

Dox although in a cell-type specific manner (Robles, Buehler et al. 1999; Lee, Youn et al. 

2005; Bar-On, Shapira et al. 2007). For example, human MCF7 cells exhibited G1/S and 

G2/M arrest when subjected to Dox treatment (Bar-On, Shapira et al. 2007), whereas 
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normal human F65 cells only showed G2/M arrest under the same drug treatment (Lee, 

Youn et al. 2005). How the kinases in DNA damage signaling pathway select and activate 

different substrates, thereby mediates cell-type specific responses, are still not fully 

resolved. But mutation of the genes in DNA damage signaling pathway will be one of the 

causes that affect the DNA damage response profile.  

NBS1 is involved in several signaling pathways that mediate cell cycle arrest. Mutation 

of NBS1 at ATM phosphorylation site (S343A mutation) resulted in a failure of S-phase 

arrest in response to IR in 293T cells (Lim, Kim et al. 2000). This phenomenon is known 

as radio-resistant DNA synthesis (RDS), in which cells continue DNA synthesis in the 

presence of IR-induced DNA damage. RDS was also observed in NBS cells with 657del5 

mutation (Kobayashi, Antoccia et al. 2004). Dox has similar effects with IR in terms of 

the damages that they could generate in cells (Lee, Youn et al. 2005). Consistent with 

previous reports, our data showed that in response to Dox treatment for 10 hours, NBS 

cells were deficient in inhibiting DNA synthesis. However, this defect was diminished 

after 22-hour treatment with Dox, by when NBS cells exhibited successful inhibition of 

DNA synthesis as that observed in normal cells. This result indicates that NBS1 

deficiency may delay the intra-S phase arrest, but does not abolish it.  

At least three parallel pathways involved in intra-S phase checkpoint have been reported, 

including the ATM/NBS1/SMC1 pathway (Yazdi, Wang et al. 2002), the ATM/CHK2/ 

CDC25A/CDK2 pathway (Falck, Petrini et al. 2002) and the ATM/FANCD2 pathway 

(Nakanishi, Taniguchi et al. 2002). Although it was previously thought that only the 

ATM/NBS1/SMC1 pathway is NBS1-dependent (Kobayashi, Antoccia et al. 2004), the 
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recent recognition of NBS1’s function as an upstream regulator of ATM suggest a 

dependency on NBS1 in all the three pathways. However, as shown by our study, NBS1 

deficiency did not fully abolish the phosphorylation of ATM and ATM-mediated 

downstream events. In particular, the phosphorylation of Chk2 was only delayed but not 

impaired in the phosphorylation level in the condition of NBS1 deficiency. This result 

probably provided an explanation for the delayed inhibition of DNA synthesis observed 

in NBS cells.  

Another cellular event that responds to DNA damage is apoptosis. Activation of apoptosis 

signaling pathway serves as an essential mechanism in removing damaged cells to 

maintain genome stability. One of the most important pathways that mediate apoptosis is 

the  ATM-Chk2-p53 pathway. Mutation or deletion of the genes involved in apoptosis 

signaling pathways would lead to defects in inducing apoptosis. A-T cells that are 

defective in ATM gene are more sensitive to IR and exhibit less apoptosis after IR than 

normal cells (Duchaud, Ridet et al. 1996). In addition, thymocytes derived from ATM 

knockout mice also exhibit a lower apoptosis level following IR than the corresponding 

wild type mice, indicating the importance of ATM in triggering apoptosis (Westphal, 

Rowan et al. 1997). Chk2 could phosphorylate p53 at additional Ser residues, including 

Ser15 and Ser20. It has been demonstrated that in cells expressing dominant negative 

Chk2 and mice with deficient Chk2, a defect in apoptosis was observed, suggesting Chk2 

also plays a role in mediating apoptosis in response to DNA damage (Rogoff, Pickering 

et al. 2004). NBS1 has also been reported participating in apoptosis pathway. It has been 

shown that the DNA-damage induced apoptosis level is significantly reduced in NBS 

cells in response to IR (Tauchi, Iijima et al. 2008).   
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Using annexin V apoptosis assay, we also observed a defect of NBS cells in inducing 

apoptosis. However, this defect only existed in cells exposed to high concentration of 

Dox treatment, but not in cells under low concentration. The concentration of Dox may 

be proportional to the amounts of DNA lesions caused. Under low concentration of Dox, 

small amount of DNA lesions are generated in cells. And as shown earlier, although the 

phosphorylation of ATM and the phosphorylation events elicited by ATM were either 

impaired or delayed in NBS cells, they still exhibited a basal level of phosphorylation or 

delayed activation. We speculate that the activated basal-level proteins are sufficient to 

encounter the small scale lesions caused by low concentration of Dox, but not enough to 

deal with the massive DNA damage caused by high concentration of Dox. This result 

suggests that the partially affected ATM signaling pathway in NBS cells could retain the 

apoptotic event to some degree but could not fully restore it when cells are under large 

scale of DNA damage.  

Caspases are the central components mediating apoptosis (Riedl and Shi 2004). Among 

them, caspases 3 is a frequently activated death executioner which catalyzes the specific 

cleavage of various key cellular proteins (Porter and Janicke 1999). Activation of 

caspases 3 is through cleavage by other initiator caspases (Li, Nijhawan et al. 1997). Our 

results showed that NBS1 deficiency severely affects the cleavage of caspases 3 in 

response to Dox treatment at different concentrations. However, this inefficiency in 

cleavage and activation of caspases 3 did not significantly affect the cleavage of its 

downstream targets, such as PARP.  Besides caspase 3, caspase 7 was also reported as an 

upstream regulator of PARP.  It is possible that caspase 7 activity was not affected in 

NBS cells and contributed to the cleavage of PARP.  Also, the unaffected PARP could be 
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due to the basal level of cleaved caspase 3 in NBS cells. However, the molecular 

mechanism of how NBS1 mediates the apoptotic signal to caspases therefore inducing 

apoptosis still remains to be elucidated.  

Taken together, our results suggested that NBS1 was involved in ATM/ATR-midiated 

DNA damage signaling pathway. Deficiency of NBS1 affected ATM/ATR 

phosphorylation as well as their downstream effectors, leading to defects in apoptosis and 

DNA synthesis (Figure 4.1). 

 

Figure 4.1 Model of NBS1’s role in regulating ATM/ATR-mediated DNA damage signaling 
pathways.  
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4.2 NBS1 deficiency compromises telomere integrity 

NBS1 have been shown to directly bind to telomeres (Zhu, Kuster et al. 2000; Dimitrova 

and de Lange 2009). The binding of NBS1 to telomeres suggests a role of this protein in 

protecting telomere integrity. Besides NBS1, many other proteins that are involved in 

DNA damage response are found associated with telomeres, such as ATM and the other 

two components of MRN complex, MRE11 and RAD50 (Munoz, Blanco et al. 2006). 

Many of the telomere-associated proteins are mutated in human genomic instability 

syndromes that are characterized by premature aging and shortened telomeres (Blasco 

2005). Premature aging is always attributed to accelerated telomere shortening of cells. 

For example, A-T cells that are derived from A-T patients featured by premature aging 

show accelerated shortening of telomeres (Metcalfe, Parkhill et al. 1996). Our study 

using NBS fibroblasts derived from NBS patients with 657del5 mutation showed that 

NBS fibroblasts also have shorter telomeres than normal counterparts. When comparing 

the telomere shortening rate in vitro, we observed that NBS fibroblasts have a higher 

telomere attrition rate with each replication cycle. This result extends our recognition of 

NBS’s role at telomeric ends.   

However, the accelerated telomere attrition was not observed in NBS B-lymphocytes 

with the same mutation type of NBS1. One possible explanation to account for the 

different effects of NBS1 mutation in NBS fibroblasts and NBS B-lymphocytes is the fact 

that the expression of NBS1 truncated fragments, the 26 KD N-terminus and the 70 KD 

C-terminus, are differentially expressed in these two types of cells. Although the 26 KD 

fragment is expressed in both NBS fibroblasts and B-lymphocytes, the 70 KD fragment is 
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only detected in B-lymphocytes but not in fibroblasts (Maser, Zinkel et al. 2001). The 70 

KD fragment physically interacts with MRE11/RAD50 complex and is essential for their 

nuclear localization and MRN complex formation (Desai-Mehta, Cerosaletti et al. 2001). 

This process may be important for the recruitment of MRN complex from cytoplasm to 

telomeres to partially restore its function at telomeric ends, such as regulation of telomere 

shortening rate. But this possibility has not been tested and other causes that may lead to 

the difference in telomere shortening rate between NBS fibroblasts and B-lymphocytes 

need to be determined.  

Accelerated telomere shortening will result in the earlier occurrence of critically short 

telomeres which would further elicit cellular senescence (Hezel, Bardeesy et al. 2005). 

We observed premature cellular senescence in NBS fibroblasts, as showed by β-

galactosidase assay, which corroborates with the finding of accelerated telomere attrition 

in these cells. Although NBS B-lymphocytes did not show telomere shortening defects, 

we did observe an earlier onset of senescence-associated apoptosis in these cells under 

normal cell culture conditions. The occurrence of senescence-associated apoptosis could 

be induced by shortened and unstable telomeres (Blasco 2005). Thus, it is possible that 

NBS1 deficiency could lead to telomeric abnormalities other than accelerated telomere 

shortening, even though with the presence of the 70 KD C-terminus.  

Telomerase is required to extend telomere length and prevent telomere attrition in most 

cell types, except cancer cells that use ALT mechanism (Henson, Neumann et al. 2002). 

Thus, lack of telomerase activity may be the cause for the accelerated telomere 

shortening in NBS fibroblasts. However, our result that NBS and normal fibroblasts 
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showed similar level of telomerase activity excludes this possibility, indicating that the 

accelerated attrition of telomeres is caused by other mechanisms.  

As mentioned earlier, A-T cells that are mutated in ATM gene also exhibited accelerated 

telomere shortening (Metcalfe, Parkhill et al. 1996). It has been proposed that this defect 

in A-T cells is caused by a decreased accessibility of telomerase to telomeres (Wu, Xiao 

et al. 2007). ATM, as a protein kinase, can phosphorylate TRF1, a process that will 

reduce the binding ability of TRF1 to telomeres. The reduction in TRF1 binding level at 

telomeric ends facilitates the assembly of telomerase to telomeres and leads to 

telomerase-dependent telomere elongation (Wu, Xiao et al. 2007). Therefore, ATM 

mutation would exert a negative effect in the telomere elongation by reducing the 

accessibility of telomerase to telomeres, which may further lead to accelerated telomere 

shortening observed in A-T cells. With regard to the close relationship between NBS1 

and ATM, it is possible that NBS1 also protects telomere from accelerated telomere 

shortening through the regulation of the accessibility of telomerase to telomeres.   

This model provides some hints to study the accelerated telomere shortening in A-T and 

NBS cells not only from the aspect of telomerase but also from the area of shelterin 

complex. The speculation of the relationship between shelterin complex and accelerated 

telomere shortening is strengthened by the fact that shelterin complex components are 

negative regulators of telomere length (vanSteensel and deLange 1997; Smogorzewska, 

Van Steensel et al. 2000; O'Connor, Safari et al. 2004; de Lange 2005; Munoz, Blanco et 

al. 2009). TRF1 and TRF2 are the two most frequently investigated shelterin components 

at telomeric ends. It has been well established that TRF1 and TRF2 expression level plays 
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an important role in determining telomere shortening rate (vanSteensel and deLange 1997; 

Richter, Saretzki et al. 2007). Overexpression of TRF1 or TRF2 leads to accelerated 

telomere shortening in vitro and premature aging in vivo (Munoz, Blanco et al. 2006; 

Munoz, Blanco et al. 2009).  

Our results showed that TRF2 was upregulated at both mRNA and protein level in 

fibroblasts with NBS1 deficiency. However, the expression level of TRF1 was not 

affected by NBS1 deficiency but maintained at the similar level as that in normal 

fibroblasts. The upregulation of TRF2 may contribute to the accelerated telomere 

shortening observed in NBS fibroblasts. TRF2 has also been reported as a substrate of 

ATM with a phosphorylation site at Thr188 (Huda, Tanaka et al. 2009). It is possible that 

the phosphorylated TRF2 has a similar mode with the phosphorylated TRF1 which would 

dissociate from telomeres and facilitate telomerase-dependent telomere elongation 

(Figure 4.2A). However, NBS1 deficiency affects ATM phosphorylation, which may 

further impair the phosphorylation of TRF2 by ATM. Un-phosphorylated TRF2 might 

accumulate to a high level and remain associated with telomeres, thereby preventing the 

access of telomerase to telomeres and leading to accelerated telomere shortening (Figure 

4.2B). 
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Figure 4.2 Model for NBS1- and ATM-mediated phosphorylation of TRF2 in modulating 
telomerase-dependent telomere elongation. A. NBS1 mediates the optimal phosphorylation of 
ATM, a process that contributes to the phosphorylation of TRF2. Phosphorylated TRF2 
dissociates from telomeres which facilitates the access of telomerase to telomeric ends and leads 
to telomerase-dependent telomere elongation. B. When NBS1 is mutated, the process of ATM 
auto-phosphorylation is affected, leading to incompetence in TRF2 phosphorylation. 
Unphosphorylated TRF2 remains associated with telomeres, thereby preventing the access of 
telomerase to telomeres and telomerase-dependent telomere elongation.  

 

Recently, a new feedback loop between p53 and TRF2 during cellular senescence has 

been reported. Cellular senescence activates the canonical DNA damage signaling 

pathway that engages p53 to initiate replicative senescence or senescence-associated 

apoptosis (Deng, Chan et al. 2008). During this process, activated p53 induces the 
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expression of Siah1, a p53-inducible ubiquitin ligase that is capable of ubiquitinating 

TRF2 and leads to proteasomal-mediated degradation of TRF2 (Figure 4.3A) (Fujita, 

Horikawa et al. 2010). However, NBS1 deficiency affects the activation of p53, which 

may subsequently influence the induction of Siah1. It has been shown that inhibition of 

Siah1 stabilizes TRF2 and results in TRF2 accumulation (Fujita, Horikawa et al. 2010). If 

NBS1 deficiency affects Siah1 level, TRF2 degradation would also be affected. As a 

result, an accumulated higher TRF2 level would be expected in NBS cells. It is possible 

that the access of telomerase to telomeres is blocked due to the accumulated TRF2 level, 

contributing to the accelerated telomere shortening (Figure 4.3B).   



 

98 

 

 

Figure 4.3 Model for p53-dependent ubiquitination of TRF2 in modulating telomerase-
dependent telomere elongation. A. p53 is activated during cellular senescence. Activated p53 
induces the expression of Siah1, a ubiquitin ligase that is capable of ubiquitinating TRF2. 
Ubiquitinated TRF2 is subjected to proteasomal-mediated degradation. B. When NBS1 is mutated, 
the optimal phosphorylation of ATM is affected, which further affects the phosphorylation and 
activation of p53. As a result, Siah1 induction level is also impaired, leading to TRF2 
accumulation at telomeres rather than being degraded. Accumulation of TRF2 prevents the the 
access of telomerase to telomeres and telomerase-dependent telomere elongation.  

 

Why NBS1 deficiency selectively upregulates TRF2 but not TRF1 also remains unknown. 

We speculate that the difference between TRF1 and TRF2 in terms of their functions at 

telomeric ends may be the leading cause for the differential regulation of their expression 
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level in NBS fibroblasts. Although TRF1 and TRF2 have similar function and binding 

mode to telomeric DNA, TRF2 plays an important role in T-loop formation that protects 

telomere integrity (Nishimura, Hanaoka et al. 2005). Furthermore, TRF2 has been shown 

to interact with MRN complex and maintain telomere integrity in a combination effort 

with ATM (Zhu, Kuster et al. 2000; Dimitrova and de Lange 2009). The difference 

between TRF1 and TRF2 may be the reason why TRF2 is affected in the condition of 

NBS1 deficiency, but not TRF1. 

In line with the observation that NBS1 deficiency does not lead to accelerated telomere 

shortening in NBS B-lymphocytes, we also did not observe the upregulation of TRF2 as 

well as other shelterin components in NBS B-lymphocytes. Unveiling the interaction of 

TRF2 and NBS1 as well as their functions at telomeric ends will partially answer the 

question of why the telomere shortening rate of NBS fibroblasts and NBS B-lymphocytes 

are differentially regulated even though with the same type of gene mutation.   

TRF2 is essential in maintaining the correct structure at telomere termini and preventing 

telomeres from end-to-end fusions (van Steensel, Smogorzewska et al. 1998). It has been 

shown that the dominant negative allele of TRF2 would induce telomere end-to-end 

fusions in metaphase and anaphase cells (van Steensel, Smogorzewska et al. 1998). 

Consistent with previous studies, our result showed that in the absence of functional 

NBS1, NBS fibroblasts that are characterized by dysregulated TRF2 level also showed 

frequent telomere end-to-end fusions. The abnormalities at telomere ends might cause 

abnormal chromosomal segregation, thus leading to aberrant chromosome number 

observed in NBS fibroblasts.   
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4.3 NBS1 deficiency promotes genome instabilities and is implicated in 

carcinogenesis of lymphoid cells 

NBS1 deficiency affects ATM- and ATR-mediated DNA damage signaling pathway. ATM 

and ATR are the two master regulators in DNA damage response network by signaling to 

control cell cycle checkpoints, DNA synthesis, DNA repair and apoptosis (Cimprich and 

Cortez 2008). Therefore, NBS1 deficiency would have an impact on these cellular 

activities, as observed in our study by BrdU assay and FITC Annexin V apoptosis assay. 

Improper response towards DNA damage may allow the continual growth of cells with 

DNA damage rather than being arrested, repaired or even “killed”, thus leading to 

genome instabilities.  

NBS1 deficiency also affects telomere integrity. As observed, NBS1 deficiency leads to 

frequent telomere end-to-end fusions and aneuploidy of cells in NBS fibroblasts, similar 

phenotypes as shown in A-T cells (Pandita 2002). End-to-end fusions might be triggered 

by critically short telomeres which are supposed to lead to replicative senescence. 

However, the process of senescence shares many features with classic DNA DSB 

response (Hezel, Bardeesy et al. 2005) and requires functional DNA damage response 

machinery. NBS1 deficiency affects DNA damage response, therefore may also affect the 

process of replicative senescence and result in telomere end-to-end fusions.  

Dysregulation of both DNA damage response and telomere integrity has been involved in 

cancer initiation and progression (Stewart and Weinberg 2006; Luijsterburg and van 

Attikum 2011). Since NBS1 deficiency leads to abnormalities in both of these two 

aspects, it is natural to link NBS1 deficiency to carcinogenesis. Indeed, NBS patients that 
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are mutated in NBS1 gene are characterized by cancer predisposition, especially to B-cell 

lymphoma and T-cell lymphoblastic lymphoma/leukaemia (The International Nijmegen 

Breakage Syndrome Study Group 2000), indicating that NBS1 deficiency preferentially 

promotes the malignant transformation of B- and T-cell. 

Although fibroblasts are always thought as static entity during cancer initiation and 

progression, recent studies showed that fibroblasts progress together with cancer cells and 

affect the morphology of tumors (Kalluri and Zeisberg 2006; Tsellou and Kiaris 2008). 

Thus, the possibility of NBS1 deficiency in promoting malignant transformation of 

fibroblasts was also tested in vitro by soft agar assay. However, the result suggested that 

NBS1 deficiency does not increase the tumorigenicity of NBS fibroblasts regardless of 

the affected DNA damage response network and compromised telomere integrity.  

Based on our results, we propose that NBS1 deficiency promotes the malignant 

transformation of lymphoid cells, thus leading to lymphoma/leukemia, in two ways. First 

of all, NBS cells with disrupted DNA damage responses license the continual growth and 

survival of cells regardless of genomic abnormalities, which presents a cellular setting 

that predisposes bad cells to sustain, accumulate and perpetuate, leading to 

carcinogenesis. On the other hand, NBS1 deficiency speeds up the process towards 

replicative senescence or senescence-associated apoptosis of NBS cells. Senescence and 

senescence-associated apoptosis process requires proper DNA damage response which is 

compromised due to NBS1 mutation. As a consequence, the natural process of senescence 

and senescence-associated apoptosis would also be affected, leading to unprotected short 

telomeres and genomic instabilities, which finally contributes to carcinogenesis (Figure 
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4.4).   

 

 

Figure 4.4 Model for NBS1 deficiency-initiated malignant transformation of lymphoid cells. 
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5. CONCLUSIONS  

This study examined the roles of NBS1 in protecting genome stability from the aspect of 

maintaining DNA damage response network and telomere integrity. Our work suggests 

that 657del5 mutation of NBS1 gene affects the DNA damage response network in both 

NBS fibroblasts and B-lymphocytes, leading to abnormal cellular responses. Furthermore, 

our work demonstrated that NBS1 gene mutation compromises the telomere integrity. We 

provided solid evidence that NBS fibroblasts have a higher telomere shortening rate in 

vitro in NBS fibroblasts. Moreover, we found that TRF2 expression was upregulated in 

NBS fibroblasts, which is an important clue for studying the underlying mechanism of 

accelerated telomere shortening in future. However, accelerated telomere shortening and 

upregulated TRF2 level were not observed in NBS B-lymphocytes, indicating NBS1 

mutation has different effects at the telomeric ends of fibroblasts and B-lymphocytes.  

Also, our results provided possible explanations to the high incidence of cancer in NBS 

patients. Since dysregulation of DNA damage response network and telomere integrity 

has been implicated in carcinogenesis, we propose that NBS patients are predisposed to 

cancer not only due to defects in repairing DNA damage but also owing to defects in 

maintaining telomere integrity.  
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6. FUTURE WORK 

6.1 Reintroduction of wild-type NBS1 into NBS fibroblasts and examination of the 

DNA damage response and telomere shortening rate in these cells 

As NBS1 mutation affects DNA damage response and telomere integrity in NBS 

fibroblasts, reintroduction of wild-type NBS1 to reach an expression level that close to 

normal counterparts in NBS fibroblasts may protect cells from these deficiencies. We 

have tried to infect NBS fibroblasts with wild-type NBS1 in our study. However, due to 

the low infection efficiency, the majority of cells died after selection with mammalian 

cell culture selective agent. The alive cells remained were hard to expand and get stable 

overexpressed clones. In the future, we will modify the infection protocol to achieve high 

infection efficiency.  

After we get the stable overexpressed clones with wild-type NBS1, the ATM/ATR 

mediated DNA damage response pathway will be examined. We postulate that ATM and 

ATR as well as their downstream targets will exhibit normal phosphorylation and 

activation in response to Dox treatment after reintroduction of wild-type NBS1. In 

addition, the DNA synthesis status and apoptosis profile will be examined by BrdU assay 

and Annexin V Apoptosis Detection, respectively. Moreover, the wild-type NBS1 

overexpressed cells will be cultured to a long period and the telomere shortening rate will 

be determined and compared with normal fibroblasts using TeloTAGGG Telomere 

Length Assay. We expect that the wild-type NBS1 overexpressed NBS fibroblasts have 

comparative telomere shortening rate with normal fibroblasts. Furthermore, the telomere 

integrity will be examined by metaphase spread analysis. Due to the existence of 
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telomeric end fusions in NBS fibroblasts prior to reintroduction of wild-type NBS1, we 

speculate that telomereic end fusions are still observable in wild-type NBS1 

overexpressed cells.   

6.2 To study the underlying mechanism of NBS1 deficiency-induced TRF2 

upregulation and accelerated telomere shortening in NBS fibroblasts 

As the upregulation of TRF2 and accelerated telomere shortening was observed in NBS 

fibroblasts, we next want to understand how NBS1 deficiency leads to these two 

phenotypes and whether there is a causal relationship between TRF2 upregulation and 

accelerated telomere shortening.  

Two hypotheses will be tested. The first hypothesis is that NBS1 deficiency compromises 

ATM-dependent phosphorylation of TRF2 as well as the dissociation of TRF2 from 

telomeres, resulting in the accumulation of unphosphorylated TRF2 at telomeric ends 

which leads to accelerated telomere shortening. As the first step, the efficiency of the 

recruitment of ATM to telomeres will be determined by confocal immunofluorescence in 

NBS vs. normal fibroblasts. Confocal immunofluorescence will also be employed to 

check the co-localization of TRF2 and ATM. Secondly, the phosphorylation level of 

TRF2 will be examined using western blot. If TRF2 phosphorylation is ATM-dependent, 

we would expect a higher phosphorylation level of TRF2 in normal fibroblasts compared 

to NBS fibroblasts. In the third step, we would transfect normal fibroblasts with a 

dominant negative allele of TRF2 with mutations at the ATM phosphorylation site. 

Confocal immunofluorescence will be performed to compare the TRF2 localization site 

in TRF2 wild-type fibroblasts (NBS1+/+ TRF2+/+) and TRF2 mutant fibroblasts (NBS1+/+ 
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TRF2Δ/Δ). If TRF2 phosphorylation facilitates its dissociation from telomeres, we would 

expect dispersed TRF2 in nucleus but not restricted at telomeric ends in NBS1+/+ TRF2+/+ 

cells, while in NBS1+/+ TRF2Δ/Δ cells, TRF2 mainly localizes at the telomeric ends. This 

step confirms the dissociation of TRF2 from telomeres after its phosp horylation by ATM. 

Lastly, the NBS1+/+ TRF2Δ/Δ fibroblasts will be cultured to a long period. DNA will be 

extracted from cells with different PDLs and subjected to TeloTAGGG Telomere Length 

Assay. The telomere shortening rate of NBS1+/+ TRF2Δ/Δ fibroblasts will be compared to 

that of NBS1+/+ TRF2+/+ cells. If accelerated telomere shortening is also observed in 

NBS1+/+ TRF2Δ/Δ cells, we can establish a model of NBS1 deficiency induced 

accumulation of TRF2 and accelerated telomere shortening as hypothesized.  

The second hypothesis is based on the model of p53-dependent induction of Siah1 and 

ubiquitination of TRF2. As p53 phosphorylation and activation is impaired by NBS1 

deficiency, we hypothesize that Siah1 induction and TRF2 ubiquitination will also be 

affected in NBS fibroblasts, leading to accumulated TRF2 at telomeric ends and 

accelerated telomere shortening. To test this hypothesis, western blot will be used to 

detect the expression level of Siah1 in NBS fibroblasts vs. normal fibroblasts. A lower 

level of Siah1 is expected in NBS fibroblasts compared to that in normal counterparts. To 

prove that the impaired induction of Siah1 is the cause of the upregulated TRF2 level in 

NBS fibroblasts, we will overexpress Siah1 in NBS fibroblasts and check the resulted 

TRF2 level in the second step. Expectedly, we would see a lower TRF2 level in the Siah1 

overexpressed NBS fibroblasts. Lastly, the Siah1 overexpressed fibroblasts will be 

cultured to a long period. DNA will be extracted from cells with different PDLs and 

subjected to TeloTAGGG Telomere Length Assay. The telomere shortening rate of Siah1 
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overexpressed NBS fibroblasts will be compared to untransfected cells. If a lower 

telomere shortening is also observed in Siah1 overexpressed cells, we can conclude that 

the accelerated telomere shortening observed in NBS fibroblasts is due to impaired 

induction of Siah1 and ubiquitination of TRF2.  

6.3 To study the role of the 70 KD C-terminus of NBS1 at telomeric ends in NBS B-

lymphocytes 

As reported, the 70 KD C-terminus of NBS1 is expressed in NBS B-lymphocytes (Maser, 

Zinkel et al. 2001). The 70 KD fragment contains the region that interacts with MRE11 

and is essential for the recruitment of MRE11 from cytoplasm to nucleus to form the 

functional MRN complex (Kobayashi, Antoccia et al. 2004). In the future, we want to 

explore the role of the 70 KD fragment at telomeric ends in NBS B-lymphocytes. To 

confirm the existence of the 70 KD fragment in NBS B-lymphocytes, antibody that 

specifically recognizes the C-terminus of NBS1 will be used in western blot and confocal 

immunofluorescence. Confocal immunofluorescence will be subsequently used to 

visualize the localization of MRE11 and RAD50 in NBS B-lymphocytes. If MRN 

complex could be partially restored in nucleus with the presence of 70 KD fragment, it 

may interact with shelterin complex to exert its roles at telomeric ends. The interaction 

and co-localization of MRN complex and TRF2 will also be examined by co-

immunoprecipitation and confocal immunofluorescence.  

The interaction of MRN complex with TRF2 may be essential to control the TRF2 

cellular level, therefore regulating the telomere shortening rate. Thus, the two hypotheses 

(see section 6.1) will also be examined to reveal the cellular activities of the 70 KD C-
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terminus in NBS B-lymphocytes. In this way, we will have a clear understanding of why 

the same type mutation of NBS1 exerts different effect at telomeric ends in NBS 

fibroblasts and B-lymphocytes.  

6.4 To examine the telomere integrity and malignant transformation of NBS B-

lymphocytes 

NBS patients are prone to B-cell lymphoma (The International Nijmegen Breakage 

Syndrome Study Group 2000), indicating that B cells are prone to malignant 

transformation in the condition of NBS1 mutation. Soft agar assay will be performed to 

test this hypothesis in NBS vs. normal B-lymphocytes. Expectedly, we will observe a 

higher ratio of malignant transformation in NBS B-lymphocytes than that in normal 

counterparts.  

Chromosomal instabilities, such as telomere abnormalities, can promote the malignant 

transformation (Michor 2005). Therefore, metaphase spread will also be performed in 

NBS B-lymphocytes to examine the telomere integrity and find out potential telomere 

end-to-end fusions.  

 

 

 

 

  



 

109 

 

7. REFERENCES 

Nijmegen Breakage Syndrome Study Group (2000). "Nijmegen breakage syndrome. The 
International Nijmegen Breakage Syndrome Study Group." Arch Dis Child

Agami, R., G. Blandino, et al. (1999). "Interaction of c-Abl and p73 alpha and their 
collaboration to induce apoptosis." 

 82(5): 
400-406. 

 

Nature

Antoccia, A., A. di Masi, et al. (2002). "G2-phase radiation response in lymphoblastoid 
cell lines from Nijmegen breakage syndrome." 

 399(6738): 809-813. 
 

Cell Proliferation

Ashwell, S. and S. Zabludoff (2008). "DNA damage detection and repair pathways--
recent advances with inhibitors of checkpoint kinases in cancer therapy." 

 35(2): 93-104. 
 

Clinical 
cancer research : an official journal of the American Association for Cancer 
Research

Assenmacher, N. and K. P. Hopfner (2004). "Mre11/Rad50/Nbs1: Complex 
Activities." 

 14(13): 4032-4037. 
 

Chromosoma

Bar-On, O., M. Shapira, et al. (2007). "Differential effects of doxorubicin treatment on 
cell cycle arrest and Skp2 expression in breast cancer cells." 

 113(4): 157-166. 
 

Anti-cancer drugs

Bartek, J., C. Lukas, et al. (2004). "Checking on DNA damage in S phase." 

 
18(10): 1113-1121. 

 
Nature 

Reviews Molecular Cell Biology

Bartek, J., J. Lukas, et al. (2007). "DNA damage response as an anti-cancer barrier - 
Damage threshold and the concept of 'conditional haploinsufficiency'." 

 5(10): 792-804. 
 

Cell Cycle

Bartkova, J., Z. Horejsi, et al. (2005). "DNA damage response as a candidate anti-cancer 
barrier in early human tumorigenesis." 

 
6(19): 2344-2347. 

 

Nature

Bartkova, J., E. Rajpert-De Meyts, et al. (2007). "DNA damage response in human testes 
and testicular germ cell tumours: biology and implications for 
therapy." 

 434(7035): 864-870. 
 

International journal of andrology

Baumann, P. and T. R. Cech (2000). "Protection of telomeres by the Ku protein in fission 
yeast." 

 30(4): 282-291; discussion 291. 
 

Molecular Biology of the Cell

Bekker-Jensen, S., C. Lukas, et al. (2006). "Spatial organization of the mammalian 
genome surveillance machinery in response to DNA strand breaks." 

 11(10): 3265-3275. 
 

Journal of 
Cell Biology

Bender, C. F., M. L. Sikes, et al. (2002). "Cancer predisposition and hematopoietic failure 

 173(2): 195-206. 
 



 

110 

 

in Rad50(S/S) mice." Genes & Development

Bianchi, A., S. Smith, et al. (1997). "TRF1 is a dimer and bends telomeric DNA." 

 16(17): 2237-2251. 
 

Embo 
Journal

Blackburn, E. H. (1992). "Telomerases." 

 16(7): 1785-1794. 
 

Annual Review of Biochemistry

Blackburn, E. H. (2001). "Switching and signaling at the telomere." 

 61: 113-129. 
 

Cell

Blasco, M. A. (2005). "Telomeres and human disease: Ageing, cancer and 
beyond." 

 106(6): 661-673. 
 

Nature Reviews Genetics

Blasco, M. A., H. W. Lee, et al. (1997). "Telomere shortening and tumor formation by 
mouse cells lacking telomerase RNA." 

 6(8): 611-622. 
 

Cell

Bradbury, J. M. and S. P. Jackson (2003). "The complex matter of DNA double-strand 
break detection." 

 91(1): 25-34. 
 

Biochemical Society Transactions

Brown, E. J. and D. Baltimore (2000). "ATR disruption leads to chromosomal 
fragmentation and early embryonic lethality." 

 31(Pt 1): 40-44. 
 

Genes & Development

Buscemi, G., C. Savio, et al. (2001). "Chk2 activation dependence on Nbs1 after DNA 
damage." 

 14(4): 397-
402. 

 

Molecular and Cellular Biology

Carney, J. P., R. S. Maser, et al. (1998). "The hMre11/hRad50 protein complex and 
Nijmegen breakage syndrome: Linkage of double-strand break repair to the 
cellular DNA damage response." 

 21(15): 5214-5222. 
 

Cell

Celeste, A., O. Fernandez-Capetillo, et al. (2003). "Histone H2AX phosphorylation is 
dispensable for the initial recognition of DNA breaks." 

 93(3): 477-486. 
 

Nature Cell Biology

Celli, G. B. and T. de Lange (2005). "DNA processing is not required for ATM-mediated 
telomere damage response after TRF2 deletion." 

 5(7): 
675-U651. 

 

Nature Cell Biology

Cesare, A. J. and J. D. Griffith (2004). "Telomeric DNA in ALT cells is characterized by 
free telomeric circles and heterogeneous t-loops." 

 7(7): 712-
U110. 

 

Molecular and Cellular Biology

Chao, C., D. Herr, et al. (2006). "Ser18 and 23 phosphorylation is required for p53-
dependent apoptosis and tumor suppression." 

 
24(22): 9948-9957. 

 

EMBO Journal

Choi, J. H., L. A. Lindsey-Boltz, et al. (2009). "Cooperative activation of the ATR 
checkpoint kinase by TopBP1 and damaged DNA." 

 25(11): 2615-2622. 
 

Nucleic Acids Research 37(5): 



 

111 

 

1501-1509. 
 
Cimprich, K. A. and D. Cortez (2008). "ATR: an essential regulator of genome 

integrity." Nature reviews. Molecular cell biology

Collins, K. (2006). "The biogenesis and regulation of telomerase holoenzymes." 

 9(8): 616-627. 
 

Nature 
Reviews Molecular Cell Biology

Collins, K. and J. R. Mitchell (2002). "Telomerase in the human organism." 

 7(7): 484-494. 
 

Oncogene

Cong, Y. S., W. E. Wright, et al. (2002). "Human telomerase and its 
regulation." 

 
21(4): 564-579. 

 

Microbiology and Molecular Biology Reviews

Cuadrado, M., B. Martinez-Pastor, et al. (2006). "ATM regulates ATR chromatin loading 
in response to DNA double-strand breaks." 

 66(3): 407-+. 
 

Journal of Experimental Medicine

de Lange, T. (2005). "Shelterin: the protein complex that shapes and safeguards human 
telomeres." 

 
203(2): 297-303. 

 

Genes & Development

de Lange, T. (2005). "Shelterin: the protein complex that shapes and safeguards human 
telomeres." 

 19(18): 2100-2110. 
 

Genes & Development

Denchi, E. L., G. Celli, et al. (2006). "Hepatocytes with extensive telomere deprotection 
and fusion remain viable and regenerate liver mass through 
endoreduplication." 

 19(18): 2100-2110.  
 

Genes & Development

Denchi, E. L. and T. de Lange (2007). "Protection of telomeres through independent 
control of ATM and ATR by TRF2 and POT1." 

 20(19): 2648-2653. 
 

Nature

Deng, Y. B., S. S. Chan, et al. (2008). "Telomere dysfunction and tumour suppression: the 
senescence connection." 

 448(7157): 1068-1071. 
 

Nature Reviews Cancer

Desai-Mehta, A., K. M. Cerosaletti, et al. (2001). "Distinct functional domains of nibrin 
mediate Mre11 binding, focus formation, and nuclear localization." 

 8(6): 450-458. 
 

Molecular and 
Cellular Biology

Di Micco, R., M. Fumagalli, et al. (2006). "Oncogene-induced senescence is a DNA 
damage response triggered by DNA hyper-replication." 

 21(6): 2184-2191. 
 

Nature

Difilippantonio, S. and A. Nussenzweig (2007). "The NBS1-ATM connection 
revisited." 

 444(7119): 638-
642. 

 

Cell Cycle

Dimitrova, N. and T. de Lange (2009). "Cell Cycle-Dependent Role of MRN at 

 6(19): 2366-2370. 
 



 

112 

 

Dysfunctional Telomeres: ATM Signaling-Dependent Induction of 
Nonhomologous End Joining (NHEJ) in G(1) and Resection-Mediated Inhibition 
of NHEJ in G(2)." Molecular and Cellular Biology

DiTullio, R. A., Jr., T. A. Mochan, et al. (2002). "53BP1 functions in an ATM-dependent 
checkpoint pathway that is constitutively activated in human cancer." 

 29(20): 5552-5563. 
 

Nature cell 
biology

Duchaud, E., A. Ridet, et al. (1996). "Deregulated apoptosis in ataxia telangiectasia: 
Association with clinical stigmata and radiosensitivity." 

 4(12): 998-1002. 
 

Cancer Research

Dupre, A., L. Boyer-Chatenet, et al. (2006). "Two-step activation of ATM by DNA and 
the Mre11-Rad50-Nbs1 complex." 

 56(6): 
1400-1404. 

 

Nat Struct Mol Biol

Durocher, D., J. Henckel, et al. (1999). "The FHA domain is a modular phosphopeptide 
recognition motif." 

 13(5): 451-457. 
 

Molecular Cell

Essers, J., W. Vermeulen, et al. (2006). "DNA damage repair: anytime, 
anywhere?" 

 4(3): 387-394. 
 

Current Opinion in Cell Biology

Falck, J., J. H. Petrini, et al. (2002). "The DNA damage-dependent intra-S phase 
checkpoint is regulated by parallel pathways." 

 18(3): 240-246. 
 

Nature Genetics

Fridman, J. S. and S. W. Lowe (2003). "Control of apoptosis by p53." 

 30(3): 290-294. 
 

Oncogene

Fujita, K., I. Horikawa, et al. (2010). "Positive feedback between p53 and TRF2 during 
telomere-damage signalling and cellular senescence." 

 22(56): 
9030-9040. 

 

Nature Cell Biology

Galy, V., J. C. Olivo-Marin, et al. (2000). "Nuclear pore complexes in the organization of 
silent telomeric chromatin." 

 12(12): 
1205-U1196. 

 

Nature

Greider, C. W. (1996). "Telomere length regulation." 

 403(6765): 108-112. 
 

Annual Review of Biochemistry

Griffith, J. D., L. Comeau, et al. (1999). "Mammalian telomeres end in a large duplex 
loop." 

 65: 
337-365. 

 

Cell

Hahn, W. C., C. M. Counter, et al. (1999). "Creation of human tumour cells with defined 
genetic elements." 

 97(4): 503-514. 
 

Nature

Harley, C. B., A. B. Futcher, et al. (1990). "Telomeres shorten during ageing of human 
fibroblasts." 

 400(6743): 464-468. 
 

Nature 345(6274): 458-460. 
 



 

113 

 

Henson, J. D., A. A. Neumann, et al. (2002). "Alternative lengthening of telomeres in 
mammalian cells." Oncogene

Hezel, A. F., N. Bardeesy, et al. (2005). "Telomere induced senescence: End game 
signaling." 

 21(4): 598-610. 
 

Current Molecular Medicine

Hirose, Y., M. Katayama, et al. (2004). "Cooperative function of Chk1 and p38 pathways 
in activating G2 arrest following exposure to temozolomide." 

 5(2): 145-152. 
 

Journal of 
neurosurgery

Hockemeyer, D., J. P. Daniels, et al. (2006). "Recent expansion of the telomeric complex 
in rodents: Two distinct POT1 proteins protect mouse telomeres." 

 100(6): 1060-1065. 
 

Cell

Hoeijmakers, J. H. (2001). "Genome maintenance mechanisms for preventing 
cancer." 

 126(1): 63-
77. 

 

Nature

Horejsi, Z., J. Falck, et al. (2004). "Distinct functional domains of Nbs1 modulate the 
timing and magnitude of ATM activation after low doses of ionizing 
radiation." 

 411(6835): 366-374. 
 

Oncogene

Huda, N., H. Tanaka, et al. (2009). "DNA Damage-Induced Phosphorylation of TRF2 Is 
Required for the Fast Pathway of DNA Double-Strand Break Repair." 

 23(17): 3122-3127. 
 

Molecular 
and Cellular Biology

Hurley, P. J. and F. Bunz (2007). "ATM and ATR: components of an integrated 
circuit." 

 29(13): 3597-3604. 
 

Cell Cycle

Iijima, K., K. Komatsu, et al. (2004). "The Nijmegen breakage syndrome gene and its 
role in genome stability." 

 6(4): 414-417. 
 

Chromosoma

Jeppesen, P. (2000). "Immunofluorescence in cytogenetic analysis: method and 
applications." 

 113(2): 53-61. 
 

Genetics and Molecular Biology

Kaina, B. and W. P. Roos (2006). "DNA damage-induced cell death by apoptosis." 

 23(4): 1107-1114. 
 

Trends 
in Molecular Medicine

Kalluri, R. and M. Zeisberg (2006). "Fibroblasts in cancer." 

 12(9): 440-450. 
 

Nature reviews. Cancer

Karlseder, J., D. Broccoli, et al. (1999). "p53- and ATM-dependent apoptosis induced by 
telomeres lacking TRF2." 

 6(5): 
392-401. 

 

Science

Karlseder, J., K. Hoke, et al. (2004). "The telomeric protein TRF2 binds the ATM kinase 
and can inhibit the ATM-dependent DNA damage response." 

 283(5406): 1321-1325. 
 

PLoS biology 2(8): 
E240. 



 

114 

 

 
Kastan, M. B. and J. Bartek (2004). "Cell-cycle checkpoints and cancer." Nature

Kim, H. S., Y. S. Lee, et al. (2009). "Doxorubicin exerts cytotoxic effects through cell 
cycle arrest and Fas-mediated cell death." 

 
432(7015): 316-323. 

 

Pharmacology

Kim, S., C. Beausejour, et al. (2004). "TIN2 mediates functions of TRF2 at human 
telomeres." 

 84(5): 300-309. 
 

Journal of Biological Chemistry

Kobayashi, J., A. Antoccia, et al. (2004). "NBS1 and its functional role in the DNA 
damage response." 

 279(42): 43799-43804. 
 

DNA Repair (Amst)

Kobayashi, J., H. Tauchi, et al. (2002). "NBS1 localizes to gamma-H2AX foci through 
interaction with the FHA/BRCT domain." 

 3(8-9): 855-861. 
 

Current Biology

Kroemer, G. and J. C. Reed (2000). "Mitochondrial control of cell death." 

 12(21): 1846-1851. 
 

Nature 
Medicine

Kumagai, A., J. Lee, et al. (2006). "TopBP1 activates the ATR-ATRIP complex." 

 6(5): 513-519. 
 

Cell

Kumar, S. (2007). "Caspase function in programmed cell death." 

 
124(5): 943-955. 

 
Cell Death and 

Differentiation

Lamarche, B. J., N. I. Orazio, et al. (2010). "The MRN complex in double-strand break 
repair and telomere maintenance." 

 14(1): 32-43. 
 

Febs Letters

Le, S., J. K. Moore, et al. (1999). "RAD50 and RAD51 define two pathways that 
collaborate to maintain telomeres in the absence of telomerase." 

 584(17): 3682-3695. 
 

Genetics

Lee, S. M., B. Youn, et al. (2005). "Gamma-irradiation and doxorubicin treatment of 
normal human cells cause cell cycle arrest via different pathways." 

 152(1): 
143-152. 

 

Molecules and 
Cells

Levine, A. J. (1997). "p53, the cellular gatekeeper for growth and division." 

 20(3): 331-338. 
 

Cell

Li, B., S. P. Jog, et al. (2008). "WRN controls formation of extrachromosomal telomeric 
circles and is required for TRF2DeltaB-mediated telomere shortening." 

 88(3): 
323-331. 

 

Molecular 
and cellular biology

Li, P., D. Nijhawan, et al. (1997). "Cytochrome c and dATP-dependent formation of 
Apaf-1/caspase-9 complex initiates an apoptotic protease cascade." 

 28(6): 1892-1904. 
 

Cell 91(4): 
479-489. 



 

115 

 

 
Lillard-Wetherell, K., A. Machwe, et al. (2004). "Association and regulation of the BLM 

helicase by the telomere proteins TRF1 and TRF2." Human molecular genetics

Lim, D. S., S. T. Kim, et al. (2000). "ATM phosphorylates p95/nbs1 in an S-phase 
checkpoint pathway." 

 
13(17): 1919-1932. 

 

Nature

Lingner, J. and N. Hug (2006). "Telomere length homeostasis." 

 404(6778): 613-617. 
 

Chromosoma

Liu, Q. H., S. Guntuku, et al. (2000). "Chk1 is an essential kinase that is regulated by Atr 
and required for the G(2)/M DNA damage checkpoint." 

 115(6): 
413-425. 

 

Genes & Development

Ljungman, M. (2009). "Targeting the DNA damage response in cancer." 

 
14(12): 1448-1459. 

 
Chemical 

reviews

Luciani, M. G., M. Oehlmann, et al. (2004). "Characterization of a novel ATR-dependent, 
Chk1-ndependent, intra-S-phase checkpoint that suppresses initiation of 
replication in Xenopus." 

 109(7): 2929-2950. 
 

Journal of Cell Science

Luijsterburg, M. S. and H. van Attikum (2011). "Chromatin and the DNA damage 
response: The cancer connection." 

 117(25): 6019-6030. 
 

Molecular oncology

Luo, G. B., M. S. Yao, et al. (1999). "Disruption of mRad50 causes embryonic stem cell 
lethality, abnormal embryonic development, and sensitivity to ionizing 
radiation." 

 5(4): 349-367. 
 

Proceedings of the National Academy of Sciences of the United States 
of America

Manthey, K. C., S. Opiyo, et al. (2007). "NBS1 mediates ATR-dependent RPA 
hyperphosphorylation following replication-fork stall and collapse." 

 96(13): 7376-7381. 
 

Journal of 
Cell Science

Martinez, P. and M. A. Blasco (2010). "Role of shelterin in cancer and aging." 

 120(23): 4221-4229. 
 

Aging Cell

Martinez, P., M. Thanasoula, et al. (2009). "Increased telomere fragility and fusions 
resulting from TRF1 deficiency lead to degenerative pathologies and increased 
cancer in mice." 

 
9(5): 653-666. 

 

Genes & Development

Maser, R. S., R. Zinkel, et al. (2001). "An alternative mode of translation permits 
production of a variant NBS1 protein from the common Nijmegen breakage 
syndrome allele." 

 23(17): 2060-2075. 
 

Nature Genetics

Masutomi, K., E. Y. Yu, et al. (2003). "Telomerase maintains telomere structure in normal 

 27(4): 417-421. 
 



 

116 

 

human cells." Cell

Matsuoka, S., B. A. Ballif, et al. (2007). "ATM and ATR substrate analysis reveals 
extensive protein networks responsive to DNA damage." 

 114(2): 241-253. 
 

Science

Matsuura, S., H. Tauchi, et al. (1998). "Positional cloning of the gene for Nijmegen 
breakage syndrome." 

 316(5828): 
1160-1166. 

 

Nature Genetics

McEachern, M. J., A. Krauskopf, et al. (2000). "Telomeres and their control." 

 19(2): 179-181. 
 

Annual 
Review of Genetics

Metcalfe, J. A., J. Parkhill, et al. (1996). "Accelerated telomere shortening in ataxia 
telangiectasia." 

 34: 331-358. 
 

Nature Genetics

Metcalfe, J. A., J. Parkhill, et al. (1996). "Accelerated telomere shortening in ataxia 
telangiectasia." 

 13(3): 350-353. 
 

Nature Genetics

Michor, F. (2005). "Chromosomal instability and human cancer." 

 13(3): 350-353. 
 

Philosophical 
Transactions of the Royal Society B-Biological Sciences

Mordes, D. A., G. G. Glick, et al. (2008). "TopBP1 activates ATR through ATRIP and a 
PIKK regulatory domain." 

 360(1455): 631-635. 
 

Genes & Development

Munoz, P., R. Blanco, et al. (2006). "Role of the TRF2 telomeric protein in cancer and 
ageing." 

 22(11): 1478-1489. 
 

Cell Cycle

Munoz, P., R. Blanco, et al. (2009). "TRF1 Controls Telomere Length and Mitotic 
Fidelity in Epithelial Homeostasis." 

 5(7): 718-721. 
 

Molecular and Cellular Biology

Munoz, P., R. Blanco, et al. (2005). "XPF nuclease-dependent telomere loss and 
increased DNA damage in mice overexpressing TRF2 result in premature aging 
and cancer." 

 29(6): 1608-
1625. 

 

Nature Genetics

Myers, J. S. and D. Cortez (2006). "Rapid activation of ATR by ionizing radiation 
requires ATM and Mre11." 

 37(10): 1063-1071. 
 

The Journal of biological chemistry

Nakanishi, K., T. Taniguchi, et al. (2002). "Interaction of FANCD2 and NBS1 in the 
DNA damage response." 

 281(14): 9346-
9350. 

 

Nature Cell Biology

Nishimura, Y., S. Hanaoka, et al. (2005). "Comparison between TRF2 and TRF1 of their 
telomeric DNA-bound structures and DNA-binding activities." 

 4(12): 913-920. 
 

Protein Science 
14(1): 119-130. 

 



 

117 

 

Noguchi, K., A. Vassilev, et al. (2006). "The BAH domain facilitates the ability of human 
Orc1 protein to activate replication origins in vivo." The EMBO journal

O'Connor, M. S., A. Safari, et al. (2004). "The human Rap1 protein complex and 
modulation of telomere length." 

 25(22): 
5372-5382. 

 

Journal of Biological Chemistry

Oliver, A. W., S. Knapp, et al. (2007). "Activation segment exchange: a common 
mechanism of kinase autophosphorylation?" 

 279(27): 28585-
28591. 

 

Trends Biochem Sci

Palm, W. and T. de Lange (2008). "How Shelterin Protects Mammalian 
Telomeres." 

 32(8): 351-356. 
 

Annual Review of Genetics

Pandita, T. K. (2002). "ATM function and telomere stability." 

 42: 301-334. 
 

Oncogene

Paull, T. T. and M. Gellert (1999). "Nbs1 potentiates ATP-driven DNA unwinding and 
endonuclease cleavage by the Mre11/Rad50 complex." 

 21(4): 611-618. 
 

Genes & Development

Petrini, J. H. J., C. L. Attwooll, et al. (2009). "The Mre11 Complex and the Response to 
Dysfunctional Telomeres." 

 
13(10): 1276-1288. 

 

Molecular and Cellular Biology

Pickering, M. T. and T. F. Kowalik (2006). "Rb inactivation leads to E2F1-mediated DNA 
double-strand break accumulation." 

 29(20): 5540-5551. 
 

Oncogene

Ponnusamy, S., N. L. Alderson, et al. (2008). "Regulation of telomere length by fatty acid 
elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 
function." 

 25(5): 746-755. 
 

The Journal of biological chemistry

Porter, A. G. and R. U. Janicke (1999). "Emerging roles of caspase-3 in apoptosis." 

 283(41): 27514-27524. 
 

Cell 
Death and Differentiation

Powers, J. T., S. K. Hong, et al. (2004). "E2F1 uses the ATM signaling pathway to induce 
p53 and Chk2 phosphorylation and apoptosis." 

 6(2): 99-104. 
 

Molecular Cancer Research

Querido, E., J. G. Teodoro, et al. (1997). "Accumulation of p53 induced by the 
adenovirus E1A protein requires regions involved in the stimulation of DNA 
synthesis." 

 2(4): 
203-214. 

 

Journal of Virology

Ranganathan, V., W. F. Heine, et al. (2001). "Rescue of a telomere length defect of 
Nijmegen breakage syndrome cells requires NBS and telomerase catalytic 
subunit." 

 71(5): 3526-3533. 
 

Curr Biol

Reimann, M., C. Loddenkemper, et al. (2007). "The Myc-evoked DNA damage response 

 11(12): 962-966. 
 



 

118 

 

accounts for treatment resistance in primary lymphomas in vivo." Blood

Resnick, I. B., I. Kondratenko, et al. (2002). "Nijmegen breakage syndrome: Clinical 
characteristics and mutation analysis in eight unrelated Russian families." 

 110(8): 
2996-3004. 

 

Journal 
of Pediatrics

Richter, T., G. Saretzki, et al. (2007). "TRF2 overexpression diminishes repair of 
telomeric single-strand breaks and accelerates telomere shortening in human 
fibroblasts." 

 140(3): 355-361. 
 

Mechanisms of Ageing and Development

Riedl, S. J. and Y. Shi (2004). "Molecular mechanisms of caspase regulation during 
apoptosis." 

 128(4): 340-345. 
 

Nature reviews. Molecular cell biology

Robles, S. J., P. W. Buehler, et al. (1999). "Permanent cell cycle arrest in asynchronously 
proliferating normal human fibroblasts treated with doxorubicin or etoposide but 
not camptothecin." 

 5(11): 897-907. 
 

Biochemical pharmacology

Rogoff, H. A., M. T. Pickering, et al. (2004). "Apoptosis associated with deregulated E2F 
activity is dependent on E2F1 and Atm/Nbs1/Chk2." 

 58(4): 675-685. 
 

Molecular Cell Biology

Rupnik, A., N. F. Lowndes, et al. (2010). "MRN and the race to the break." 

 
24(7): 2968-2977. 

 
Chromosoma

Samper, E., J. M. Flores, et al. (2001). "Restoration of telomerase activity rescues 
chromosomal instability and premature aging in Terc-/- mice with short 
telomeres." 

 
119(2): 115-135. 

 

EMBO reports

Satyanarayana, A., M. P. Manns, et al. (2004). "Telomeres, telomerase and cancer: an 
endless search to target the ends." 

 2(9): 800-807. 
 

Cell Cycle

Sfeir, A., S. Kabir, et al. (2010). "Loss of Rap1 induces telomere recombination in the 
absence of NHEJ or a DNA damage signal." 

 3(9): 1138-1150. 
 

Science

Shaul, Y. (2000). "c-Abl: activation and nuclear targets." 

 327(5973): 1657-1661. 
 

Cell Death and Differentiation

Shay, J. W. and S. Bacchetti (1997). "A survey of telomerase activity in human 
cancer." 

 
7(1): 10-16. 

 

European Journal of Cancer

Shay, J. W. and W. E. Wright (2005). "Senescence and immortalization: role of telomeres 
and telomerase." 

 33(5): 787-791. 
 

Carcinogenesis

Shay, J. W., Y. Zou, et al. (2001). "Telomerase and cancer." 

 26(5): 867-874. 
 

Human molecular genetics 
10(7): 677-685. 



 

119 

 

 
Shiloh, Y. (2001). "ATM and ATR: networking cellular responses to DNA 

damage." Current Opinion in Genetics & Development

Shiloh, Y. (2003). "ATM and related protein kinases: Safeguarding genome 
integrity." 

 11(1): 71-77. 
 

Nature Reviews Cancer

Shiloh, Y. (2006). "The ATM-mediated DNA-damage response: taking shape." 

 3(3): 155-168. 
 

Trends in 
Biochemical Sciences

Simbulan-Rosenthal, C. M., D. S. Rosenthal, et al. (1998). "Transient poly(ADP-
ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the 
early stages of apoptosis." 

 31(7): 402-410. 
 

Journal of Biological Chemistry

Smogorzewska, A., J. Karlseder, et al. (2002). "DNA ligase IV-dependent NHEJ of 
deprotected mammalian telomeres in G1 and G2." 

 273(22): 13703-13712. 
 

Current Biology

Smogorzewska, A., B. Van Steensel, et al. (2000). "Control of human telomere length by 
TRF1 and TRF2." 

 12(19): 1635-
1644. 

 

Molecular and Cellular Biology

Stewart, G. S., R. S. Maser, et al. (1999). "The DNA double-strand break repair gene 
hMRE11 is mutated in individuals with an ataxia-telangiectasia-like 
disorder." 

 20(5): 1659-1668. 
 

Cell

Stewart, S. A. and R. A. Weinberg (2006). "Telomeres: Cancer to human aging." 

 99(6): 577-587. 
 

Annual 
Review of Cell and Developmental Biology

Stiff, T., C. Reis, et al. (2005). "Nbs1 is required for ATR-dependent phosphorylation 
events." 

 22: 531-557. 
 

Embo Journal

Stiff, T., S. A. Walker, et al. (2006). "ATR-dependent phosphorylation and activation of 
ATM in response to UV treatment or replication fork stalling." 

 24(1): 199-208. 
 

EMBO Journal

Takakura, M., S. Kyo, et al. (1999). "Cloning of human telomerase catalytic subunit 
(hTERT) gene promoter and identification of proximal core promoter sequences 
essential for transcriptional activation in immortalized and cancer cells." 

 
25(24): 5775-5782. 

 

Cancer 
Research

Tauchi, H., K. Iijima, et al. (2008). "NBS1 regulates a novel apoptotic pathway through 
Bax activation." 

 59(3): 551-557. 
 

DNA Repair

Tauchi, H., S. Matsuura, et al. (2002). "Nijmegen breakage syndrome gene, NBS1, and 
molecular links to factors for genome stability." 

 7(10): 1705-1716. 
 

Oncogene 21(58): 8967-8980. 
 



 

120 

 

Tejera, A. M., M. S. d'Alcontres, et al. (2010). "TPP1 Is Required for TERT Recruitment, 
Telomere Elongation during Nuclear Reprogramming, and Normal Skin 
Development in Mice." Developmental Cell

Toledo, F. and G. M. Wahl (2006). "Regulating the p53 pathway: in vitro hypotheses, in 
vivo veritas." 

 18(5): 775-789. 
 

Nature Reviews Cancer

Tsellou, E. and H. Kiaris (2008). "Fibroblast independency in tumors: implications in 
cancer therapy." 

 6(12): 909-923. 
 

Future Oncology

van Steensel, B., A. Smogorzewska, et al. (1998). "TRF2 protects human telomeres from 
end-to-end fusions." 

 4(3): 427-432. 
 

Cell

vanSteensel, B. and T. deLange (1997). "Control of telomere length by the human 
telomeric protein TRF1." 

 92(3): 401-413. 
 

Nature

Varon, R., C. Vissinga, et al. (1998). "Nibrin, a novel DNA double-strand break repair 
protein, is mutated in Nijmegen breakage syndrome." 

 385(6618): 740-743. 
 

Cell

Wang, X. M., J. Li, et al. (2008). "Involvement of the role of Chk1 in lithium-induced 
G2/M phase cell cycle arrest in hepatocellular carcinoma cells." 

 93(3): 467-476. 
 

Journal of 
Cellular Biochemistry

Westphal, C. H., S. Rowan, et al. (1997). "atm and p53 cooperate in apoptosis and 
suppression of tumorigenesis, but not in resistance to acute radiation 
toxicity." 

 104(4): 1181-1191. 
 

Nature Genetics

White, J. S., S. Choi, et al. (2008). "Irreversible chromosome damage accumulates 
rapidly in the absence of ATM kinase activity." 

 16(4): 397-401. 
 

Cell Cycle

Williams, R. S., J. S. Williams, et al. (2007). "Mre11-Rad50-Nbs1 is a keystone complex 
connecting DNA repair machinery, double-strand break signaling, and the 
chromatin template." 

 7(9): 1277-1284. 
 

Biochemistry and Cell Biology-Biochimie Et Biologie 
Cellulaire

Wu, Y., T. R. Mitchell, et al. (2008). "Human XPF controls TRF2 and telomere length 
maintenance through distinctive mechanisms." 

 85(4): 509-520. 
 

Mechanisms of ageing and 
development

Wu, Y., S. Xiao, et al. (2007). "MRE11-RAD50-NBS1 and ATM function as co-mediators 
of TRF1 in telomere length control." 

 129(10): 602-610. 
 

Nat Struct Mol Biol

Xiao, Z., Z. Chen, et al. (2003). "Chk1 mediates S and G2 arrests through Cdc25A 
degradation in response to DNA-damaging agents." 

 14(9): 832-840. 
 

The Journal of biological 
chemistry 278(24): 21767-21773. 

 



 

121 

 

Xu, Y., T. Ashley, et al. (1996). "Targeted disruption of ATM leads to growth retardation, 
chromosomal fragmentation during meiosis, immune defects, and thymic 
lymphoma." Genes & Development

Yamaguchi-Iwai, Y., E. Sonoda, et al. (1999). "Mre11 is essential for the maintenance of 
chromosomal DNA in vertebrate cells." 

 10(19): 2411-2422. 
 

EMBO Journal

Yamane, K., K. Taylor, et al. (2004). "Mismatch repair-mediated G2/M arrest by 6-
thioguanine involves the ATR-Chk1 pathway." 

 18(23): 6619-6629. 
 

Biochemical and Biophysical 
Research Communications

Yang, L., Z. P. Xu, et al. (2004). "ATM and ATR: Sensing DNA damage." 

 318(1): 297-302. 
 

World Journal 
of Gastroenterology

Yazdi, P. T., Y. Wang, et al. (2002). "SMC1 is a downstream effector in the ATM/NBS1 
branch of the human S-phase checkpoint." 

 10(2): 155-160. 
 

Genes & Development

Yoo, H. Y., A. Kumagai, et al. (2009). "The Mre11-Rad50-Nbs1 Complex Mediates 
Activation of TopBP1 by ATM." 

 16(5): 571-582. 
 

Molecular Biology of the Cell

You, Z., C. Chahwan, et al. (2005). "ATM activation and its recruitment to damaged DNA 
require binding to the C terminus of Nbs1." 

 20(9): 2351-2360. 
 

Mol Cell Biol

Yuan, Z. M., Y. Y. Huang, et al. (1997). "Regulation of DNA damage-induced apoptosis 
by the c-Abl tyrosine kinase." 

 25(13): 5363-5379. 
 

Proceedings of the National Academy of Sciences 
of the United States of America

Zhang, Y., J. Q. Zhou, et al. (2006). "The role of NBS1 in DNA double strand break 
repair, telomere stability, and cell cycle checkpoint control." 

 94(4): 1437-1440. 
 

Cell Research

Zhao, H. and H. Piwnica-Worms (2001). "ATR-mediated checkpoint pathways regulate 
phosphorylation and activation of human Chk1." 

 16(1): 
45-54. 

 

Molecular and cellular biology

Zhou, B. B. S. and S. J. Elledge (2000). "The DNA damage response: putting checkpoints 
in perspective." 

 
21(13): 4129-4139. 

 

Nature

Zhou, J. Q., C. U. K. Lim, et al. (2006). "The role of NBS1 in the modulation of PIKK 
family proteins ATM and ATR in the cellular response to DNA damage." 

 408(6811): 433-439. 
 

Cancer 
Letters

Zhu, J., S. Petersen, et al. (2001). "Targeted disruption of the Nijmegen breakage 
syndrome gene NBS1 leads to early embryonic lethality in mice." 

 243(1): 9-15. 
 

Current 
Biology 11(2): 105-109. 

 



 

122 

 

Zhu, X. D., B. Kuster, et al. (2000). "Cell-cycle-regulated association of 
RAD50/MRE11/NBS1 with TRF2 and human telomeres." Nature Genetics 25(3): 
347-352. 

 
 

  



 

123 

 

8. APPENDICES 

 
Supplementary Figure 1 

 

 

Figure S1. NBS1 knockdown in human breast cancer cells MCF7. A. Western blot analysis of 
the protein level of NBS1 after knockdown by shRNA (sequence: 5’-AAAACTGCAGAAAAA 
GCAAGCAGATACATGGGATTTTCTCTTGAAAAATCCCATGTATCTGCTTGCGGTGTTTC
GTCCTTTCCACAAG-3’). 2 clones (clone 4 and clone 12) showed similar knockdown effect. α-
tubulin serves as the loading control. B. Western blot analysis of the phosphorylation level of p53 
in MCF7 cells with NBS1 knockdown. Cells were treated with 1 μM Dox for 24 hours. α-tubulin 
serves as the loading control. C. Western blots in B were scanned and quantified by densitometer. 
The phosphorylation level of p53 at Ser15 was normalized to the loading control α-tubulin.  
 
 
 
Supplementary Figure 2 

 

Figure S2. NBS1 deficiency affects the expression level of TOPBP1. Western blot analysis of 
the TOPBP1 protein level in NBS as well as normal fibroblasts. Cells were treated with 1 μM 
Dox and collected at the time points indicated. α-tubulin serves as the loading control.  
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Supplementary Figure 3 

 
 
 
Figure S3. NBS1 deficiency also affects the DNA damage signaling pathway in B-
lymphocytes. Western blot analysis of the phosphorylation level of ATM downstream targets, 
including histone H2AX, p53 and Chk2, in NBS as well as normal B-lymphocytes. Cells were 
treated with 1 µM Dox and collected at the time points indicated. GAPDH serves as the loading 
control. 
 
 
 



NBS1 deficiency promotes genome instability by affecting DNA
damage signaling pathway and impairing telomere integrity
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Studies revealed that Nijmegen Breakage Syndrome protein 1 (NBS1) plays an important role in maintaining genome stability, but the under-
lying mechanism is controversial and elusive. Our results using clinical samples showed that NBS1 was involved in ataxia-telangiectasia
mutated (ATM)-dependent pathway. NBS1 deficiency severely affected the phosphorylation of ATM as well as its downstream targets. BrdU
proliferation assay revealed a delay of NBS cells in inhibiting DNA synthesis after Doxorubicin (Dox) treatment. In addition, under higher
concentrations of Dox, NBS cells exhibited a much lower level of apoptosis compared to their normal counterparts, indicating a resistance
to Dox treatment. Accelerated telomere shortening was also observed in NBS fibroblasts, consistent with an early onset of cellular repli-
cative senescence in vitro. This abnormality may be due to the shelterin protein telomeric binding factor 2 (TRF2) which was found to be
upregulated in NBS fibroblasts. The dysregulation of telomere shortening rate and of TRF2 expression level leads to telomere fusions and
cellular aneuploidy in NBS cells. Collectively, our results suggest a possible mechanism that NBS1 deficiency simultaneously affects
ATM-dependent DNA damage signaling and TRF2-regulated telomere maintenance, which synergistically lead to genomic abnormalities.
Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Nijmegen Breakage Syndrome (NBS) is a rare human genetic
disorder characterized by immunodeficiency and a strong
predisposition to cancer.1 The underlying gene mutated in
NBS, NBS1, was cloned in 1998 and since then human
NBS1 protein has emerged as a player in the cellular response
to DNA damage, especially to double strand breaks (DSBs).2

In response to DSBs, NBS1 was found to have a close
relationship with another DNA damage-related protein
ATM,3 the gene that is mutated in the ataxia-telangiectasia
(A-T) disease.4

ATM is a member of the phosphoinositol 3-kinase-like
kinase (PIKK) family.5 ATM has a wide range of down-
stream targets, including DNA damage sensors, mediators,
transducers as well as effectors.6 NBS1 has been identified
as a DNA damage sensor which could be phosphorylated
by ATM in response to ionizing radiation (IR) that generates
DSBs.5 On the other hand, several other studies have placed
NBS1 as an upstream regulator of ATM.7–9

The activation of ATM leads to the phosphorylation of a
plethora of downstream substrates, such as p53, histone
H2AX and Chk2.10 The activation of these downstream
targets results in cellular responses, such as cell cycle

checkpoint controls, DNA damage repair and apoptosis.11

The deficiency in either ATM or its downstream substrates
would lead to defective cellular responses. It has been
shown that A-T cells that are deficient in ATM exhibited
defective G1/S, intra-S and G2/M cell cycle transition.6

NBS1, as a downstream target of ATM, is also involved in
the cell cycle arrest and apoptosis pathways. In response to
IR, NBS cells exhibited radio-resistant DNA synthesis, indi-
cating a failure in inducing intra-S checkpoint control.12

Defects in inducing G1 or G2 arrest have also been reported
in NBS cells.13 However, other studies showed normal and
proficient G1 andG2 checkpoint in spite of NBS1 deficiency.14

The role of NBS1 in maintaining checkpoint integrity still
remains controversial. Moreover, the influence of NBS1
deficiency on apoptosis is rarely reported and how NBS1
regulates DNA damage induced apoptosis is waiting to
be elucidated.

Besides cell cycle checkpoint and apoptosis, NBS1 also
plays a role in telomere maintenance.15 In yeast, Xrs2, the
functional homolog of NBS1, is involved in telomerase-
dependent telomere synthesis.16 In human, NBS1 is asso-
ciated with telomeres in a cell-cycle regulated manner.17 It
has been reported that NBS fibroblasts showed premature
growth cessation in culture. But how NBS1 deficiency leads
to this phenomenon is not well studied. Shelterin complex
serves as another mechanism to maintain telomere integrity
by associating with telomeres and burying the telomeric ends
into t-loops, thus preventing them from being recognized as
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DSBs.18 NBS1 has been shown to interact with one of the
components of shelterin complex, TRF2.19 However, whether
the interaction between NBS1 and TRF2 has an effect on
telomere maintenance is still not known.
This study aims to examine the roles of NBS1 both in

DNA damage signaling pathway and in maintaining telo-
mere integrity. On one hand, we found that NBS1 deficiency
affected ATM-mediated DNA damage signaling pathway
and its subsequent cellular events, such as DNA prolifera-
tion and apoptosis. On the other hand, we observed acceler-
ated telomere shortening and an earlier onset of senescence
in NBS cells. Moreover, our group for the first time found
that NBS1 deficiency is related to an upregulation of
TRF2, which suggests an important clue for studying the
accelerated telomere shortening in the future. This study
also provided evidence that frequent telomere abnormalities
exist in NBS cells. As telomere dysfunction has been impli-
cated in carcinogenesis, this study extends our recognition
of the high incidence of cancers in NBS patients.

MATERIALS AND METHODS

Cells and culture conditions

Cells were obtained from Coriell Cell Repositories (pair1:
AG09309 &GM07166, pair2: GM00637&GM15989, pair3:
AG14725 & GM15814, pair4: GM22671 & GM07078) and
cultured in either MEM or RPMI with 15% FBS, 1% L-
Glutamine, 1% P/S, 1% NEAA and 1% vitamin solution,
and incubated at 37 �C under 5% CO2. The NBS cell lines
within each pair are homozygous for a deletion of 5 nucleotides
in exon 6 of NBS1 gene (657del5 mutation).

Western blot and antibodies

Cells were harvested for protein lysate. Briefly, cells were
resuspended in 50mmol/L Tris-HCl (pH 7.4), 250mmol/L
NaCl, 5mmol/L EDTA, and 0.1% NP40 containing prote-
ase and phosphatase inhibitors. Lysates were cleared by
centrifugation at 14,000 rpm for 10min, and samples were
run on SDS-PAGE gels. Western blotting was performed
with the following antibodies: ATM, gH2AX (Novus Biolo-
gicals); ATM pS1981 (Rockland); NBS1, p53, p53 pS15,
Chk2, Chk2 pT68, cleaved caspases3 (Cell Signaling);
PARP, TRF1, POT1 (Abcam); TRF2 (BD Biosciences);
RAP1 (Bethyl Laboratories); Horseradish peroxidase (HRP)-
conjugated mouse anti-GAPDH (Cell Signaling), HRP-
conjugated mouse anti-b actin (Abcam), or mouse anti-a
tubulin (Sigma-Aldrich) were used as loading controls. Immu-
nostaining was detected using ECL Plus Detection Reagent
(GE Healthcare).

FITC Annexin V apoptosis assay

Cells were harvested after 24 hours treatment with Dox under
the concentration of 0.25mM, 0.5mM or 1mM. The apoptosis
level was detected using the protocol as described by the FITC
Annexin V Apoptosis Detection Kit II (BD Pharmingen). The
data was analyzed using BD FACS Diva software.

BrdU assay

Cells were harvested after either 10 hours or 22 hours treat-
ment with 1 mM Dox. The percentage of BrdU+ cells was
determined using the protocol described by the 5-Bromo-
2’-deoxy-uridin labeling and detection kit III (Roche).

Telomere length assay

DNA was extracted from the cells using a genomic purifica-
tion kit (PureLink, Invitrogen). Telomere length analysis was
carried out using a non-radioactive TeloTAGGG Telomere
Length Assay (Roche) as described.

b-Galactosidase staining

Normal and NBS fibroblasts were cultured to the population
doubling level (PDL) indicated. Cells undergoing senes-
cence were detected using the protocol as described by the
b-Galactosidase Staining Kit (US Biological).

Cytogenetic analysis of metaphase spreads

Normal and NBS fibroblasts were cultured to late passages.
Metaphase spreads were prepared as described by the
Jeppesen’s protocol.20

Telomerase activity assay

Telomerase activity was quantified using Telomeric Repeat
Amplification Protocol (TRAP) as described by the TeloEx-
press Quantitative Telomerase Detection Kit (XpressBio).
Telomerase activity in each sample was calculated based on
the comparison with the Ct values of a standard curve gener-
ated from 10-fold dilutions of telomerase control (TC) oligo
with known copy numbers of the telomeric repeats.

RT-PCR

One step RT-PCR was performed using the Qiagen One Step
RT-PCR kit following manufacturer’s protocol. The primers
for TRF2 are: 5’-TGCTCAAGTTCTACTTCCACGA-3’
and 5’-TTGATAGCTGATTCCAGTGGTG-3’. PCR products
were run on 2% agarose gel and viewed under UV Gel Doc
(BioRad).

RESULTS

NBS1 deficiency affects ATM phosphorylation and ATM-
dependent phosphorylation of multiple downstream targets

In this study, cells derived from NBS patients who have
typical 657del5 mutation of the NBS1 gene were used. As
controls, normal cells with wild type NBS1 gene were also
employed and paired with NBS cells under the criteria of
age, gender and race for a more reliable comparison. To
determine if NBS1 deficiency affects the phosphorylation
of ATM, two NBS fibroblasts as well as their normal coun-
terparts were used (Pair 1 and Pair 2). As shown, the wild
type NBS1 protein was only expressed in normal cells but
not in NBS cells (Figure 1A). Cells were then subjected to
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1mMDox treatment and the phosphorylation level of ATM at
Ser1981 was examined at different time points by western
blot. Results showed that ATM was quickly activated in
normal cells and reached the highest level in 8 hours after
Dox treatment (Figure 1B). However, in NBS cells, ATM
phosphorylation was severely impaired, exhibited by a much
lower level than that in normal counterparts (Figure 1B).
Although ATM phosphorylation level decreased dramatically
in NBS cells, there was still a detectable basal level of phos-
phorylated ATM (Figure 1B) indicating that NBS1 deficiency
does not fully abolish ATM phosphorylation.

If NBS1 deficiency affects ATM activation, whether the
activation of ATM downstream targets is also affected is the
question that we want to address next. H2AX, p53 and
Chk2 are three important ATM downstream substrates which
are involved in DNA damage responses.10 The phosphoryl-
ation statuses of these three proteins were also examined by
western blot. Results showed that the phosphorylation of
H2AX at Ser139 and phosphorylation of p53 at Ser15 were
also severely affected in NBS cells under 1mMDox treatment
(Figure 1C). In normal cells, these two proteins were quickly

phosphorylated to a high level and the high phosphorylation
level was maintained for all the rest time points detected.
But in NBS cells, the phosphorylation level was significantly
decreased (Figure 1C). Moreover, the total level of p53 was
also affected in NBS cells, suggesting a possibility that
NBS1 deficiency compromises p53 stability. Surprisingly,
the phosphorylation level of Chk2 at Thr68 was not reduced
in NBS cells, but only exhibited a delay in activation. As
shown, Chk2 was activated and reached a high level within
2 hours in normal cells, but was activated in NBS cells at a
much later time point around 8 hours under 1mM Dox treat-
ment (Figure 1C). Taken together, these results suggest that
NBS1 deficiency could affect the phosphorylation of ATM
downstream targets, leading to either a lower phosphorylation
level or a delayed activation of ATM targets.

NBS1 deficiency delays inhibition of DNA synthesis after
DNA damages occur

One of the cellular events of DNA damage response is to
inhibit DNA synthesis to stop the propagation of “bad” cells

Figure 1. NBS1 deficiency affects ATM phosphorylation and the phosphorylation of multiple ATM downstream targets. A. The expression of NBS1 protein
in NBS fibroblasts as well as in age, race and gender-matched normal cells. The four cell lines were classified into two pairs, nominated as pair 1 and pair 2.
B. The expression and phosphorylation of ATM. Cells were treated with 1 mM Dox and collected at the time points indicated. The numbers above the blot
indicate the level of pS1981-ATM normalized to the total ATM level measured by densitometer. C. The phosphorylation of ATM downstream targets, includ-
ing H2AX, p53 and Chk2. Cells were treated with 1mM Dox and collected at the time points indicated.

NBS1 DEFICIENCY PROMOTES GENOME INSTABILITY
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with DNA lesions. We next investigated the potential roles
of NBS1 in eliciting inhibition of DNA synthesis when
DNA is damaged. Since pair 2 fibroblasts are transformed
with SV40 which would render G1/S checkpoint inactive
and therefore affect the number of cells entering S phase
for DNA synthesis,21 we used additional 2 pairs of B-
lymphocytes (Pair 3 and Pair 4) for analysis of DNA synthe-
sis status. As shown in the western blot, full length NBS1
was only expressed in normal cells but not in NBS cells
(Figure 2A). We performed BrdU incorporation assay to
access the proliferation profile of cells after 1 mM Dox treat-
ment for either 10 or 22 hours. From this result, we found
that the cell proliferation was suppressed after Dox treatment
in both normal and NBS cells, exhibited by the ratio of BrdU+

Dox+ cells to BrdU+Dox- cells less than 1 (Figure 2B).
Although suppression of cell proliferation was observed in
both normal and NBS cells, at 10 hours, NBS cells showed
a lesser degree of arrest than the normal cells, indicated by a
higher BrdU+Dox+ to BrdU+Dox- cells ratio. It was only after
22 hours of Dox treatment, did the NBS cells exhibit a similar
degree of arrest as their normal counterparts (Figure 2B). This
result indicates the suppression of proliferation in NBS cells is
not as efficient as that in normal cells, suggesting a delay in
inhibition of DNA synthesis in NBS cells.

NBS1 deficiency affects the initiation of apoptosis

Another cellular event of DNA damage response is to initiate
apoptosis when DNA damage is beyond repair. Cells treated
with different concentrations of Dox for 24 hours were
harvested and subjected to flow cytometry analysis. Results
showed that NBS cells had comparable apoptosis level to nor-
mal cells under lower concentration of Dox treatment. When
the concentration of Dox was increased to a high concentration
of 1mM, normal cells exhibited elevated level of apoptosis. But
apoptosis level in NBS cells remained low as that under lower
concentrations of Dox (Figure 3A, B), indicating that NBS
cells were defective in inducing apoptosis when cells were

exposed to high dosage of Dox. Western analysis of apoptosis
associated markers showed that cleaved caspase3 almost
diminished in NBS cells. However, as a direct downstream
target of caspase3, Poly-ADP-ribose-polymerase (PARP) only
exhibited a minor decrease in its cleaved form in NBS cells
(Figure 3C). This is probably due to the low level of cleaved
caspase3 in NBS cells. The low efficiency in cleavage of these
proteins may be responsible for the defects of NBS cells in ini-
tiation of apoptosis under high concentration of Dox treatment.

NBS1 deficiency promotes telomere shortening and an
earlier onset of senescence

Premature aging has been observed in NBS fibroblasts
in vitro.22 Premature cellular senescence could be elicited by
accelerated telomere shortening. We therefore asked whether
NBS1 deficiency elicits premature aging through regulating
telomere attrition rate. Telomere length of the two pairs of
fibroblasts was tested by the Terminal Restriction Fragment
southern blot. Result showed that the telomere length of
NBS cells was generally shorter than that of age-matched nor-
mal cells. When comparing the telomere attrition rate, we
found that NBS cells showed a higher telomere shortening rate
compared to that in normal cells in vitro (Figure 4A). For each
replication cycle, the telomere shortening rate of NBS cells is
around 30 bp faster than that of its respective normal counter-
parts (Figure 4B). This result strongly indicates that NBS1
plays a role in telomere length maintenance and the deficiency
of NBS1 leads to faster telomere attrition. We performed
b-galactosidase assay to study the senescence status of normal
as well as NBS fibroblasts in vitro. Cells were cultured to the
same PDL and stained, and the cells stained blue were counted
as senescent cells. Consistent with the accelerated telomere
shortening, NBS fibroblasts exhibited a significantly higher
percentage of cells undergoing senescence compared to nor-
mal cells with the same PDLs (Figure 4C, D). These results
suggest that NBS cells have a larger population of cells with
critically short telomeres.

Figure 2. NBS1 deficiency delays inhibition of DNA synthesis after DNA damages occur. A. The expression of NBS1 protein in NBS B-lymphocytes as well
as in age, race and gender-matched normal cells. The four cell lines were classified into two pairs, nominated as pair 3 and pair 4. B. BrdU incorporation assay.
Cells were seeded onto 96-well plate and after culturing for 2 days, cells were treated with 1 mM Dox and 10mM BrdU at the same time for either 10 or 22
hours. The bar represents the ratio of Dox-treated BrdU+ cells to untreated BrdU+ cells.
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NBS1 deficiency does not affect telomerase activity but
upregulates TRF2

Telomere length is maintained by the activity of telomerase.
We questioned whether the accelerated telomere shortening
is due to decreased telomerase activity in NBS cells. By real
time PCR, we found that NBS1-deficient fibroblasts have
comparative telomerase activity as control cells (Figure 5A),
which suggests that the accelerated telomere shortening is
not due to decreased telomerase activity. Shelterin complex
proteins protect the telomere integrity, but it also has been
claimed that these proteins are negative regulators for telo-
mere length.18 We next looked into the different compo-
nents of shelterin complex and found that the cellular level
of TRF2 was upregulated in NBS cells (Figure 5B).
However, the expression of other components, including
TRF1, RAP1 and POT1, did not show obvious changes
(Figure 5C). RT-PCR further showed an upregulation of
TRF2 at mRNA level (Figure 5D). The overabundance of

TRF2 at telomere ends may negatively regulate telomere
length, resulting in accelerated telomere shortening in
NBS cells.

NBS1 deficiency promotes genome instability

The accelerated telomere shortening and dysregulation of
shelterin complex components may jeopardize the stability
of telomeres in NBS cells. To evaluate the integrity of telo-
meres of NBS cells, we performed cytogenetic analysis of
metaphase spread to look directly at the chromosome ends.
As shown, prevalent telomere associations were observed
in NBS cells (Figure 6A), exhibited by telomeres of dif-
ferent or the same chromosomes exist in unusually close
proximity. Although very rare, telomere fusions were also
observed in normal cells (Figure 6B). Telomere associations
affect the chromosome separation during mitosis, resulting
in aneuploid cells. We found that most of the normal cells
retain 46 chromosomes during culture in vitro, although

Figure 3. NBS1 deficiency affects the initiation of apoptosis. A. FITC Annexin V apoptosis assay. B-lymphocytes were treated with Dox at the indicated
concentrations for 24 hours. The number of apoptotic cells was analyzed by flow cytometry. B. Quantitation of the percentage of apoptosis cells in A. C. Western
blot analysis of apoptosis-related proteins, including cleaved caspase3 and PARP.
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few of them showed abnormal chromosome numbers that
slightly deviate from 46 (Figure 6C). However, NBS cells
showed an average chromosome number of 78 which
significantly deviates from the normal chromosome number,
suggesting that the continued replication of NBS cells
in vitro leads to more severe genome instabilities.

DISCUSSION

The NBS1 gene encodes a 95KD protein.23 657del5 muta-
tion of this gene leads to a frame shift and premature termin-
ation at codon 219 which abolishes the expression of the full
length NBS1 protein. It is predicted that the premature
termination would result in the expression of two truncated
proteins, the 26KD N-terminus and the 70KD C-terminus.12

However, only the 26KD fragment, but not the 70KD one, is
found in NBS fibroblasts.24 Our study using the antibody
which recognizes the C-terminal residues of human NBS1
also did not detect the 70KD C-terminus band (data not
shown). It has been proved in Xenopus egg extracts that
the C-terminus of NBS1 is essential to recruit ATM to

damaged DNA where its subsequent autophosphorylation
happens.25 Our results showed in the absence of both full
length NBS1 and its C-terminus, ATM phosphorylation at
Ser1981 was diminished in NBS cells when exposed to
Dox treatment. This result strongly indicates that NBS1
serves as an upstream regulator of ATM. However, NBS
cells still retain a low level of ATM phosphorylation under
Dox treatment. We suggested that ATM autophosphoryla-
tion exists in a low level in cells that are under DNA damage
even without functional NBS1. NBS1 serves as an amplifier
for ATM activity which facilitates ATM to reach a threshold
maximal activity when DNA damages occur.
Besides ATM, the phosphorylation of ATM downstream

targets, including Histone H2AX and p53, was also severely
affected. But NBS1 deficiency does not fully abolish the
phosphorylation of these targets, probably due to the exist-
ence of a basal level of ATM phosphorylation. However,
the activation of Chk2 was apparently normal though slightly
delayed in NBS cells under Dox treatment. Like p53, Chk2
could also be phosphorylated by ATM and functions in cell
cycle arrest. The phosphorylation of Chk2 brings its catalytic
domain into the close proximity of another Chk2 molecule

Figure 4. NBS1 deficiency leads to accelerated telomere shortening in NBS fibroblasts. A. Measurement of telomere restriction fragment length. Genomic
DNA isolated from normal and NBS fibroblasts at indicated PDLs was analyzed. B. Telomere shortening rate in normal and NBS fibroblasts. Data are mean
S.D. from duplicate experiments. Telomere shortening rate (slope of the regression line) and Spearman’s regression coefficient are indicated. C. Cellular
senescence assay using b-galactosidase staining. Arrows indicate senescent cells. D. Bars represent the percentage of b-galactosidase positive cells. Data
are mean�S.D. from 5 images each.
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that allows auto-trans-phosphorylation to occur.26 In NBS1
deficient cells, ATM activation was still present at basal
levels. It could be explained that the basal level of acti-
vated ATM is sufficient to elicit initial phosphorylation
of Chk2 which creates conditions for its following auto-
trans-phosphorylation. But this process may take longer time
than the direct phosphorylation of Chk2 by ATM, thus NBS
cells had a delayed Chk2 phosphorylation.

As an initial response to DNA damages, normal cells with
intact DNA damage signaling pathway would arrest to allow
DNA damage to be repaired.27 Our results showed that the
proliferation rate of NBS cells was not as efficiently inhibited
as that of normal cells when they were treated for 10 hours.
But this difference was diminished after 22-hour treatment.
By then, NBS cells showed comparable proliferation rate to
normal cells. This result indicates that NBS1 deficiency
may delay the checkpoint control, but does not abolish it.

Using annexin V apoptosis assay, we showed that NBS1
deficient cells exhibited defects in inducing apoptosis under
higher concentration of Dox treatment, while these cells
showed normal apoptosis level under lower concentration

of Dox. The concentration of Dox may be proportional to
the amounts of DNA lesions caused. Under lower concen-
tration, small amount of DNA lesions are generated in cells.
And as shown earlier, although the phosphorylation of ATM
and the phosphorylation events elicited by ATM were either
impaired or delayed in NBS1 deficient cells, there were still
basal levels of activated proteins at later time points. We
speculate that the activated basal-level proteins are sufficient
to encounter the small scale DNA lesions but not enough to
deal with larger scale DNA damage caused by higher con-
centration of Dox. This result suggests that the partially
affected ATM and ATR signaling pathway in NBS cells
could retain the apoptotic event to some degree but could
not fully restore it when under large scale of DNA damage.

Evidence suggests that NBS1 binds to telomeres and is
implicated in telomere length maintenance. Besides NBS1,
many proteins that are crucial for maintaining genome sta-
bility are found associated with human telomeres, including
ATM, the other two subunits of MRN complex, MRE11 and
RAD50, WRN (gene mutated in Werner syndrome) and
BLM (gene mutated in Bloom syndrome).19 The presence

Figure 5. NBS1 deficiency upregulates TRF2. A. Real-time PCR for relative telomerase activity in NBS versus normal fibroblasts. B. Western blot analysis of
the TRF2 protein level in NBS and normal fibroblasts. The numbers above the blot indicate its fold difference measured by densitometer with normal cell’s
TRF2 protein level being set at a reference value of 1. C. Western blot analysis of the other shelterin complex proteins in NBS and normal fibroblasts, including
TRF1, POT1 and RAP1. D. RT-PCR analysis of the TRF2 mRNA level in NBS and normal fibroblasts. The numbers above the image indicate its fold difference
measured by densitometer with normal cell’s TRF2 mRNA level being set at a reference value of 1.
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of these proteins at telomeric ends indicates a role of them in
regulating telomere length and maintaining telomere integ-
rity. Mutations of certain telomere associated genes would
cause diseases that are characterized by premature aging, a
clinical symptom that is probably linked to accelerated telo-
mere shortening.28 Our results showed that NBS1 mutation
also led to accelerated telomere shortening. At or around
the same age, NBS cells exhibited shorter telomere length
compared to normal cells. Moreover, we examined the telo-
mere shortening rate in vitro and found that NBS cells had a
higher telomere attrition rate with each population doubling.
The accelerated telomere attrition probably leads to prema-
ture senescence of NBS cells, which was observed in our
study by b-galactosidase assay. AT cells that are mutated
in ATM gene also exhibited accelerated telomere shorten-
ing.29 It has been suggested that ATM phosphorylates
TRF1, a negative regulator of telomere length, thus reduces
the binding of TRF1 to telomeres.30 The reduction in TRF1
binding level at telomeric ends facilitates the assembly of

telomerase to telomere and leads to telomerase-dependent
telomere elongation.30 Therefore, ATM mutation would
exert a negative effect in the telomere elongation, which
may be the cause for accelerated telomere shortening
observed in AT cells. With regard to the close relationship
between NBS1 and ATM, it is possible that NBS1 protects
telomere from accelerated telomere shortening through the
interplay with ATM.
It has been well established that TRF2 expression levels

play an important role in determining telomere shortening
rate.31,32 Like TRF1, TRF2 is also recognized as a negative
regulator of telomere length.33 Overexpression of TRF2
leads to accelerated telomere shortening in vitro and prema-
ture aging in vivo.19 Our results showed that TRF2 was
upregulated at both mRNA and protein levels in NBS1
deficient cells. The upregulation of TRF2 may also contrib-
ute to the accelerated telomere shortening observed in NBS
cells. But how NBS1 deficiency leads to upregulation of
TRF2 is not known. In this study, we did not observe the

Figure 6. NBS1 deficiency promotes genome instability. A. Metaphase spreads of Pair 1 fibroblasts were stained with antibodies against TRF2 (green) and
visualized by immunofluorescence. DNA was stained with DAPI (blue). Arrows point to telomeric end fusions. The insets (a and b) are representatives of
telomere fusions. B. Bars represent the percentage of cells that are positive with telomere fusions. The total cell number is 25. C. Bars represent the average
number of chromosomes enumerated from the metaphase spreads. Data are mean�S.D. from 25 spreads each.
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upregulation in TRF1 level. Although TRF1 and TRF2 have
similar function and binding mode to telomeric DNA, TRF2
plays an important role in T-loop formation that protects
telomere integrity.34 The difference between TRF1 and
TRF2 may be the cause that only TRF2 is affected in the
condition of NBS1 deficiency, but not TRF1.

Telomere attrition causes replicative senescence,35 a cellular
process that shares many features with the classic DNA DSB
damage responses.36 NBS1 deficiency disrupts the cellular
signaling network, therefore affects the normal process of
cellular senescence and results in aberrant telomere associa-
tions. Our study clearly demonstrated aberrant telomere fusions
in NBS fibroblasts with 657del5 mutation, suggesting genomic
instabilities within these cells.

NBS1 deficiency has been implicated in carcinogenesis.
40% of NBS patients developed cancers before the age of
21 years old, especially B-cell lymphoma.1 The high inci-
dence of getting cancer manifests the importance of NBS1
in maintaining genome stability by mediating DNA damage
response and protecting telomere integrity. On one hand,
NBS cells with disrupted DNA damage responses license
the continual growth and survival of cells regardless of
genomic abnormalities, which presents a cellular setting that
predisposes bad cells to sustain, accumulate and perpetuate,
leading to carcinogenesis. On the other hand, accelerated
telomere shortening speeds up the process towards replicative
senescence. But checkpoints defects because of NBS1 defi-
ciency would jeopardize the normal process of cellular
senescence, thus leading to telomere abnormalities. Our work
provides solid evidence that NBS fibroblasts have a higher
telomere shortening rate in vitro. Moreover, we found that
TRF2 expression was upregulated in NBS fibroblasts, which
is an important clue for studying the underlying mechanism
of accelerated telomere shortening in future. Also, our results
from the aspect of telomere abnormalities provided possible
explanations to the high incidence of cancer in NBS patients.
Since telomere dysfunction has also been implicated in
carcinogenesis, we propose that NBS patients are predisposed
to cancer not only due to defects in repairing DNA damage
but also because of defects in maintaining telomere integrity.
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