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Summary

In systems biology, high-throughput omics data, such as microarray and se-

quencing data, are generated to be analyzed. Multiple testing methods always are

employed to interpret the omics data. In multiple testing problems, false discov-

ery rates (FDR) are commonly used to assess statistical significance. Appropriate

tests are usually chosen for the underlying data sets. However the statistical sig-

nificance (p-values and error rates) may not be appropriately estimated due to the

complex data structure of the microarray.

In this thesis, we proposed two methods to improve the false discovery rate es-

timation in computational systems biology. The first method, called constrained

regression recalibration (ConReg-R), recalibrates the empirical p-values by mod-

eling their distribution in order to improve the FDR estimates. Our ConReg-R

method is based on the observation that accurately estimated p-values from true

null hypotheses follow uniform distribution and the observed distribution of p-

values is indeed a mixture of distributions of p-values from true null hypotheses



CONTENTS ix

and true alternative hypotheses. Hence, ConReg-R recalibrates the observed p-

values so that they exhibit the properties of an ideal empirical p-value distribution.

The proportion of true null hypotheses (π0) and FDR are estimated after the re-

calibration. ConReg-R provides an efficient way to improve the FDR estimates.

It only requires the p-values from the tests and avoids permutation of the origi-

nal test data. We demonstrate that the proposed method significantly improves

FDR estimation on several gene expression datasets obtained from microarray and

RNA-seq experiments.

The second method, called iterative piecewise linear regression (iPLR), in the

context of SAM to re-estimate the expected statistics and FDR for both one-sided

as well as two-sided statistics based tests. We demonstrate that iPLR can accu-

rately assess the statistical significance in batch confounded microarray analysis.

It can successfully reduce the effects of batch confounding in the FDR estima-

tion and elicit the true significance of differential expression. We demonstrate the

efficacy of iPLR on both simulated as well as several real microarray datasets.

Moreover, iPLR provides a better interpretation of the linear model parameters.
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Chapter 1

Introduction

In recent years, a number of novel biotechnologies have enabled biologists to read-

ily monitor genome-wide expression levels. For instance, microarray technology is

one of the most popular technologies. To analyze microarray data, many statis-

tical methods are employed and multiple hypothesis testing procedure is one of

the major approaches. In multiple hypothesis testing problem, p-values and false

discovery rates (FDR) are commonly used to assess statistical significance. In this

thesis, we develop two methods to assess the statistical significance in microarray

studies. One method is extrapolative recalibration of the empirical distribution of

p-value to improve FDR estimation. The second method is iterative piecewise lin-

ear regression to accurately assess the statistical significance in batch confounded

microarray analysis.
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1.1 Overview of microarray data analysis and

multiple testing

A common question in microarray data analysis is the identification of differentially

expressed genes, i.e., genes whose expression levels are associated with possibly

censored biological and clinical covariates and outcomes. Most microarray stud-

ies include identifying disease genes (Diao et al., 2004) or differentially expressed

genes between wild type cell and mutant cell (Chu et al., 2007a); finding differ-

ential patterns by time course microarray experiments (Chu et al., 2007b; Li et

al., 2007). Moreover, microarray technology can be applied in comparative ge-

nomic hybridization (Pollack et al., 1999), SNP (single nucleotide polymorphism)

detection (Hacia et al., 1999), Chromatin immunoprecipitation on Chip (Li et al.,

2009) and even DNA replication studies (Eshaghi et al., 2007; Li et al., 2008a).

The biological question in microarray data analysis can be restated as a multi-

ple hypothesis testing problem: simultaneous testing for each gene or each probe

in microarray, with the null hypothesis of no association between the expression

measures and the covariates.

In microarray data analysis, parametric or non-parametric tests are employed.

The two sample t-test and ANOVA (Baggerly et al., 2001; Kerr et al., 2004; Park

et al., 2003) are among the most widely used techniques in microarray studies. Al-

though the usage of their basic form, possibly without justification of their main
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assumptions, is not advisable (Jafari and Azuaje, 2006). Modifications to the stan-

dard t-test to deal with small sample size and inherent noise in gene expression

datasets include a number of t-test like statistics and a number of Bayesian frame-

work based statistics (Baldi and Long, 2001; Fox and Dimmic, 2006). In limma

(linear model for microarray data), Smyth (2004) cleverly borrowed information

from the ensemble of genes to make inference for individual gene based on the

moderate t-statistic. Some other researchers also took advantages of shared infor-

mation by examining data jointly. Efron et al. (2001) proposed a mixture model

methodology implemented via an empirical Bayes approach. Similarly, Broet et

al. (2002), Edwards et al. (2005), Do et al. (2005) used Bayesian mixture model

to identify differentially expressed genes. Although Gaussian assumptions have

dominated the field, other types of parametrical approaches can also be found in

the literature, such as Gamma distribution models (Newton et al., 2001).

Due to the uncertainty about the true underlying distribution of many gene

expression scenarios, and the difficulties to validate distributional assumptions

because of small sample sizes, non-parametric methods have been widely used as

an attractive alternative to make less stringent distributional assumptions, such

as the Wilcoxon rank-sum test (Troyanskaya et al., 2002).
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1.2 Error rates for multiple testing in microar-

ray studies

Each time a statistical test is performed, one of four outcomes occurs, depending

on whether the null hypothesis is true and whether the statistical procedure rejects

the null hypothesis (Table 1.1): the procedure rejects a true null hypothesis (i.e.

a false positive or type I error); the procedure fails to reject a true null hypothesis

(i.e. a true negative); the procedure rejects a false null hypothesis (i.e. a true

positive); or the procedure fails to reject a false null hypothesis (i.e. a false negative

or type II error).

Therefore, there is some probability that the procedure will suggest an incor-

rect inference. When only one hypothesis is to be tested, the probability of each

type of erroneous inference can be limited to tolerable levels by carefully planning

the experiment and the statistical analysis. In this simple setting, the probability

of a false positive can be limited by preselecting the p-value threshold for rejecting

the null hypothesis. The probability of a false negative can be limited by perform-

ing an experiment with adequate replications. Statistical power calculations are

performed to determine the number of replications required to achieve a desired

level of control of the probability of a false negative result (pawitan et al., 2005).

When multiple tests are performed, as in the analysis of microarray data, it is even

more critical to carefully plan the experiment and statistical analysis to reduce
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Table 1.1: Four possible hypothesis testing outcomes.

Statistical inference Fail to reject the
null hypothesis

Reject the null hy-
pothesis

Total

True null hypotheses U (True negative) V (False positive) m0

False null hypotheses O (False negative) S (True positive) m1

Total W R m

the occurrence of erroneous inferences.

Every multiple testing procedure uses some error rate to measure the occur-

rence of incorrect inferences. Most error rates focus on the occurrence of false

positives. Some error rates that have been used in the multiple testing are de-

scribed next.

Classical multiple testing procedures use the family-wise error rate (FWER)

control. The FWER is the probability of at least one Type I error,

FWER = Pr(V > 0) = 1− Pr(V = 0), (1.1)

where V is defined in Table 1.1.

The FWER was quickly recognized as being too conservative for the analysis

of genome scale data, because in many applications, the probability that any

of thousands of statistical tests yield a false positive inference is close to 1 and

no result is deemed significant. A similar, but less stringent, error rate is the

generalized family-wise error rate (gFWER). The gFWER is the probability that

more than k of the significant findings are actually false positives.

gFWER(k) = Pr(V > k). (1.2)
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When k = 0, the gFWER reduces to the usual family-wise error rate, FWER.

Recently, some procedures have been proposed to use the gFWER to measure the

occurrence of false positives (Dudoit et al., 2004).

The false discovery rate (Benjamini and Hochberg, 1995) (FDR) control is now

recognized as a very useful measure of the relative occurrence of false positives in

omics studies (Storey and Tibshirani, 2003). The FDR is the expected value of

the proportion of Type I errors among the rejected hypotheses,

FDR = E[
V

R
1{R>0}], (1.3)

where V and R are defined in Table 1.1. If all null hypotheses are true, all R

rejected hypotheses are false positives, hence V/R = 1 and FDR = FWER =

Pr(V > 0). FDR-controlling procedures therefore also control the FWER in the

weak sense. In general, because V/R ≤ 1, the FDR is less than or equal to the

FWER for any given multiple testing procedure.

If we are only interested in estimating an error rate when positive findings

have occurred, then the positive false discovery rate (pFDR) (Storey, 2002) is

appropriate. It is defined as the conditional expectation of the proportion of

type I errors among the rejected hypotheses, given that at least one hypothesis is

rejected

pFDR = E[
V

R
|R > 0]. (1.4)

This definition is intuitively pleasing and has a nice Bayesian interpretation.

Suppose that identical hypothesis tests are performed with independent statistic
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T and rejection region Γ. Also suppose that a null hypothesis is true with a priori

probability π0. Then

pFDR(Γ) =
π0Pr(T ∈ Γ|H = 0)

Pr(T ∈ Γ)
= Pr(H = 0|T ∈ Γ) (1.5)

where Pr(T ∈ Γ) = π0Pr(T ∈ Γ|H = 0)+ (1− π0)Pr(T ∈ Γ|H = 1). Here H is an

indicator variable where H = 1 if the alternative hypothesis is true and H = 0 if

the null is true. We denote Pr(H = 0) by π0.

The conditional false discovery rate (Tsai et al., 2003) (cFDR) is the FDR

conditional on the observed number of rejections R = r, is defined as

cFDR = E(V/R|R = r) = E(V |R = r)/r (1.6)

provided that r > 0, and cFDR = 0, for r = 0.

The cFDR is a natural measure of proportion of false positives among the r

most significant tests. Further, under Storey’s mixture model (Storey, 2002), Tsai

et al. (2003) have shown that

cFDR(α) = pFDR(α) = π0αm/r. (1.7)

A major criticism of FDR is that it is a cumulative measure for a set of r

most significant tests. An rth significance test may have an acceptable FDR only

due to it being part of the r most significant tests. To address this anomaly,

Efron et al. (2001) introduced the local false discovery rate (lFDR), a variant

of Benjamini-Hochberg’s FDR. It gives each tested null hypothesis its own false
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discovery rate. While the FDR is defined for one rejection region, the lFDR is

defined for a particular value of the test statistic. The definition of lFDR is:

lFDR(t) = Pr(H = 0|T = t). (1.8)

The local nature of the lFDR is an advantage for interpreting results from

individual test statistic. Moreover, lFDR is the average of global FDR given

T ∈ Γ i.e.

FDR(Γ) = E(lFDR(T )|T ∈ Γ). (1.9)

In recent years, many methods are develpoed to estimate lFDR. For example,

constrained polynomial regression procedure (Dalmasso et al., 2007), unified ap-

proach (Strimmer, 2008) or semi-parametric kernel-based approach ( Guedj et al.,

2009).

Ploner et al. (2006) generalized the local FDR as a function of multiple statis-

tics, which combining a common test statistics with its standard error information

and proposed 2D-lFDR. If two different statistics Z1 and Z2 capture different as-

pects of the information contained in the data, the 2D-lFDR can be defined as

2D-lFDR(z1, z2) = π0
f0(z1, z2)

f(z1, z2)
, (1.10)

where f(z) is the density function of the statistics z, and f0(z) = f(z|z ∈ H0).

2D-lFDR is very useful to deal with small standard error problems.

The FDR, cFDR, pFDR, lFDR and 2D-lFDR are reasonable error rates be-

cause they can naturally be translated into the costs of attempting to validate
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false positive results. In practice the first three concepts lead to similar values,

and most statistical software will usually report only one of the three (Li et al.,

2012b).

1.3 p-value distribution and π0 estimation

P -value is the smallest level of significance where the hypothesis is rejected with

probability one (Lehmann and Romano, 2005) and the definition is following,

Definition 1. Suppose X has distribution Pθ for some θ ∈ Ω, and the null hy-

pothesis H0 specifies θ ∈ ΩH0. Assume the rejection regions Sα are nested in the

sense that

Sα ⊂ Sα′ if α < α′, (1.11)

p-value is defined as follows:

p = p(X) = inf{α : X ∈ Sα}. (1.12)

A general property of p-values is given in the following lemma.

Lemma 1.1. Suppose the p-value p follows the definition 1 , and assume the

rejection regions Sα satisfy (1.11).

(i) If

sup
θ∈ΩH0

Pθ{X ∈ Sα} ≤ α for all 0 < α < 1, (1.13)
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then the distribution of p under θ ∈ ΩH0 satisfies

Pθ{p ≤ u} ≤ u for all 0 ≤ u ≤ 1. (1.14)

(ii)If, for θ ∈ ΩH0,

Pθ{X ∈ Sα} = α for all 0 < α < 1, (1.15)

then

Pθ{p ≤ u} = u for all 0 ≤ u ≤ 1; (1.16)

i.e. p is uniformly distributed over (0, 1).

Proof. (i)If θ ∈ ΩH0 , then the event {p ≤ u} implies {X ∈ Sv} for all u < v.

The result follows by letting v → u.

(ii) Since the event {X ∈ Su} implies {p ≤ u}, it follows that

Pθ{p ≤ u} ≥ Pθ{X ∈ Su}.

Therefore, if (1.15) holds, then Pθ{p ≤ u} ≥ u, and the result follows from (i).�

From Lemma 1.1, p-values from multiple testing is assumed to follow a mixture

model with two components, one component follows a uniform distribution on

[0,1] under the null hypotheses (Casella and Berger, 2001), and other component

under the true alternative hypotheses (Pounds and Morris, 2003). A density plot

(or histogram) of p-values is a useful tool for determining when problems are
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present in the analysis. This simple graphical assessment can indicate when crucial

assumptions of the methods operating on p-values have been radically violated

(Pounds, 2006).

Additionally, it can be helpful to add a horizontal reference line to the p-

value density plot at the value of the estimated π0, null proportion. A line falling

far below the height of the shortest bar suggests that the estimate of the null

proportion may be downward biased. Conversely, a line high above the top of the

shortest bar may suggest that the method is overly conservative. It is appropriate

to add this line to the density plot to assess the reliability of the π0 estimates

(Storey, 2002).

Furthermore, adding the estimated density curves to the p-value histogram can

aid in assessing model fit (Pounds and Cheng, 2004). Large discrepancies between

the density of the fitted model and the histogram indicate a lack of fit. This

diagnostic can identify when some methods produce unreliable results. This is a

good graphic diagnostic for any of the smoothing based and model-based methods

that operate on p-values.

1.4 Significance analysis of microarrays

SAM (Significance Analysis of Microarrays) is a statistical technique for finding

significant genes in a set of microarray experiments. It was proposed by (Tusher
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et al., 2001). SAM assigns a score to each gene on the basis of change in gene

expression relative to the standard deviation of repeated measurements. The p-

value for each gene is computed by repeated permutations of the data and the

estimation of π0 (Storey, 2002) is given below:

π̂0 = min(
#{di ∈ (q25, q75)}

0.5n
, 1) (1.17)

where the di are the original score for gene i(i = 0, 1, . . . , n), and q25, q75 are 25%

and 75% points of the permuted scores.

q-value (Storey, 2002) and local FDR (lFDR) (Efron et al., 2001) are used

in SAM. q-value is the lowest FDR at which the gene is called significant. The

q-value measures how significant the gene is, as score increases, the corresponding

q-value decreases. lFDR is the false discovery rate for genes with scores that fall

in a window around the score for the given gene. This is in contrast to the usual

(global) FDR, which is the false discovery rate for a list of genes, whose scores

exceed a given threshold.

GSA (Gene Set Analysis) (Efron and Tibshirani, 2007), a variation on the Gene

Set Enrichment Analysis technique of (Subramanian et al., 2005), is a function in

SAM. The idea is to make inferences not about individual genes, but pre-defined

sets of genes. GSAmentions most gene set enrichment scores S appear significantly

large compared to the permutation values S∗. To address this kind of permutation

bias, GSA use “Restandardization” method to adjust the permutation values as
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follow,

S∗∗ = μ+
σ

σ∗ (S
∗ − μ∗) (1.18)

where S∗∗ is restandardized permutation value, (μ, σ) and (μ∗, σ∗) are the overall

means and standard deviations for S and S∗.

This approach is very simple and effective when π0 is extremely close to 1

such that the test statistic S will almost come from null hypothesis and follow the

unique asymptotically normal distribution. In GSA, only few gene sets will signifi-

cantly enrich out of thousands gene sets for most cases, therefore, the permutation

bias can be easily removed in GSA.

1.5 Problems and approaches

In microarray data analysis, multiple hypothesis testing is employed to address

certain biological problems (e.g., gene selection, binding site selection and selection

of gene sets). Appropriate tests are usually chosen for the particular microarray

data sets, however the statistical significance (p-values and error rates) may not be

appropriately estimated due to the complicated data structure of the microarray.

There are many factors influencing statistical significance in microarray stud-

ies. Dependence in the data is one of the major factors. Usually microarray

data have large number of genes (variables) but few samples, and there are many

groups of genes having similar expression patterns. Each array also has global
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effect which will influence the dependence of the data. FDR controlling procedure

for independent test statistics may still control the false discovery rate, however it

requires that the test statistics have positive regression dependency on each of the

test statistics corresponding to the true null hypotheses(Benjamini and Yekutieli,

2001). For example, batch and cluster effects often occur in the experiments and

sometimes it may mainly affect the significance i.e. underestimate or overestimate

the statistical significance. Besides these major factors, approximate p-value esti-

mation, violation of test assumptions, over or under estimation of some parameters

and other unaccounted variations may also influence the FDR estimation.

Batch effects (Lander et al., 1999) are commonly observed across multiple

batches of microarray experiments. There are many different kinds of effects,

RNA batch effect (experimenter, time of day, temperature), array effect (scan-

ning level, pre/postwashing), location effect (chip, coverslip, washing), dye effect

(dye, unequal mixing of mixtures, labeling, intensity), print pin effect, spot effect

(amount of DNA in the spot printed on slide) (Wit and McClure, 2003) and even

the atmospheric ozone level (Fare et al., 2003). Local batch effects (such as lo-

cation, print pin, dye effect and spot effect) may be removed by using one of the

many local normalization methods available in the literature (Smyth and Speed,

2003). However global batch effects are too complicated. It is difficult to detect

and not easy to eliminate across all circumstances.

If the test statistics from multiple testing can be well modeled using certain
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Figure 1.1: Four different p-value density plot examples.

distribution and p-values are appropriately computed, the p-value distribution can

be used to validate whether the statistical significance is appropriately estimated

or not. In Figure 1.1, there are four different p-value density plot examples. The

most desirable shape of the p-value density plot is the one in which the p-values are

most dense near zero, become less dense as the p-values increase, and have near-

uniform tail towards 1 (Figure 1.1A). This shape does not indicate violation of the

assumptions of methods operating on p-values and suggests that several features

are differentially expressed, though they may not be statistically significant after

adjusting for multiple testing. A very sharp p-value density plot without near-

uniform tail close to 1 (Figure 1.1B) and g(1) < 0.5 may indicate over-assessment
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of significance i.e. under-measured p-values where g(.) is the density function of

p-value. It suggests that fewer features are significant than observed. A right

triangle p-value density plot with g(0) < g(1) and g(1) > 1 (Figure 1.1C) may

also indicate over-measure p-values, suggesting that more features are differentially

expressed than observed. A p-value density plot with one or more humps in the

middle (Figure 1.1D) can indicate that an inappropriate statistical test was used

to compute the p-values, some heterogeneity data were included in the analysis,

or a strong and extensive correlation structure is present in the data set (Pounds,

2006).

Sometimes the tests can be modified to increase the stability of the testing

power (for example, modified t-test) and the test statistics may not follow any

well-defined distribution. Re-sampling method is usually used to measure the sta-

tistical significance. Re-sampling p-values mostly are not highly precise and its

distribution is difficult to model. We can use Q-Q plot between observed test

statistics and expected test statistics to validate whether the statistical signifi-

cance is appropriately estimated. In Figure 1.2A, the expected score(expected

test statistics) and observed score (test statistics) are aligned with the diagonal.

This indicates the statistical significance is appropriately estimated. If the ex-

pected test statistics deviate much from observed test statistics (Figure 1.2B and

1.2C), the statistical significance will be over/under-estimated.

Therefor, we develop two methods which focus on p-values and re-sampling
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Figure 1.2: Three different Q-Q plot examples.

statistics respectively to assess the statistical significance in microarray studies.

One method is extrapolative recalibration of the empirical distribution of p-value

to improve FDR estimation (Li et al., 2011). The second method is iterative

piecewise linear regression to accurately assess the statistical significance in batch

confounded microarray analysis (Li et al., 2012a).

1.5.1 Constrained regression recalibration

In multiple hypothesis testing problems, the most appropriate error control may

be false discovery rate (FDR) control. The precise FDR depends on the accurate

p-values from each test and validity of independent assumption. However, in

many practical testing problems such as in genomics, the p-values could be under-

measured or over-measured for many known or unknown reasons. Consequently,

FDR estimation would then be influenced and lose its veracity.
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We propose a regression method to model the empirical distribution of p-values

and transform the conservative or optimistic p-values to well-defined p-values to

improve the FDR estimation. Our approach first generates the theoretical p-values

following uniform distribution, and then performs the constrained polynomial re-

gression between the p-values supposedly to have come from the null hypotheses

and the theoretical p-values. The constrained polynomial regression can be posed

as a quadratic programming problem. Finally, the overall p-values will be trans-

formed using the normalized regression function and output the adjusted p-values.

FDR is estimated using the adjusted p-values and the π0 can be determined during

this procedure. We have demonstrated that our procedure can well estimate the

FDR by adjusted p-values from both dependency data and meta-analyzed data.

1.5.2 Iterative piecewise linear regression

Batch dependent variation in microarray experiments may be manifested through

systematic shift in expression measurements from batch to batch. Such a system-

atic shift could be taken care of by using an appropriate model for differential

expression analysis. However, it poses greater challenge in the estimation of sta-

tistical significance and false discovery rate (FDR), if the batches are confounded

(collinear) with the biological groups of interest. Batch confounding problem

occurs commonly in the analysis of time-course data or data from different labo-

ratories.
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We demonstrate that batch confounding may lead to incorrect estimation of

the expected statistics. We propose an iterative piecewise linear regression (iPLR)

method, a major extension of our previously published Stepped Linear Regression

(SLR) method, in the context of SAM to re-estimate the expected statistics and

FDR. iPLR can be applied to one-sided or two-sided statistics based tests. We

demonstrate the efficacy of iPLR on both simulated and real microarray datasets.

iPLR also provides a better interpretation of the linear model parameters.

1.6 Organization of the thesis

This thesis consists of 5 chapters. The next chapter, Chapter 2, is focused on the

details of ConReg-R method to model and recalibrate the p-value distribution.

In Chapter 3, we propose iterative piecewise linear regression (iPLR) method to

address batch confounding problem. In Chapter 4, we study the application of our

methods in few real microarray data studies such as yeast datasets, human tumor

datasets, human RNA-seq datasets and ChIP-chip studies. Finally, in Chapter 5,

we summarize the achievements in the thesis work, discuss the limitations of the

methods, and propose a few potential directions for future work.
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Chapter 2

ConReg-R: Constrained

regression recalibration

This chapter describes the ConReg-R procedure to recalibrate p-values for accurate

assessment of FDR and simulation results.

2.1 Background

In high-throughput biological data analysis, multiple hypothesis testing is em-

ployed to address certain biological problems. Appropriate tests are chosen for

the data, and the p-values are then computed under some distributional assump-

tions. Due to the large number of tests performed, error rate controls (which focus

on the occurrence of false positives) are commonly used to measure the statistical
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significance. False discovery rate (FDR) control is accepted as the most appropri-

ate error control. Other useful error rate controls include conditional FDR (cFDR)

(Tsai et al., 2003), positive FDR (pFDR) (Storey, 2002) and local FDR (lFDR)

(Efron et al., 2001) which have similar interpretations as that of FDR. However,

appropriate FDR estimation depends on the precise p-values from each test and

the validity of the underlying assumptions of the distribution.

The p-values from multiple hypothesis testing, for n hypotheses, can be de-

scribed by a mixture model g(p) (2.1) with two components: one component g0(p)

originates from true null hypotheses and follows uniform distribution U(0, 1), and

the other component g1(p) results from true alternative hypotheses and follows

a distribution confined to the p-values close to 0 (Lehmann and Romano, 2005;

Pounds and Morris, 2003). The mixing parameter, π0, is the proportion of true

null hypotheses in the data.

g(p) = π0 g0(p) + (1− π0) g1(p) (2.1)

where g0(p) = 1 is a uniform distribution over (0, 1) and g1(p) will be approxi-

mately 0 for p close to 1 which is expected to be true in most practical situations.

Therefore, g(p) will be close to a constant (i.e. π0) for p close to 1.

FDR in multiple hypothesis testing for a given p-value threshold α is estimated

as

F̂DRα =
π̂0αn

#{p < α} .
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π0 can be estimated from the mixture model in equation (2.1) as (Storey, 2002)

π̂0 =
#{p > β}
[(1− β)n]

where β is typically chosen to be 0.25, 0.5 or 0.75. These estimates are reasonable

under the uniform distribution assumption of g0(p) component in this mixture

model (Pawitan et al., 2005).

However, in many applied testing problems, the p-values could be under-

measured or over-measured for many known or unknown reasons. The violation of

p-value distribution assumptions may lead to inaccurate FDR estimation. There

are many factors influencing FDR estimation in the analysis of high-throughput

biological data such as microarray and sequencing studies. Dependence among the

test statistics is one of the major factors (Efron, 2007; Qiu et al., 2005). Usually

in microarray data, there are many groups of genes having similar expression pat-

terns and the test statistics (for example, t-statistic) are not independent within

one group. The global effects in the array may also influence the dependence in

the data. For example, batch and cluster effects (Johnson et al., 2007; Li et al.,

2008b) always occur in the experiments and sometimes they may be the major

cause of incorrectly estimated FDR.

Further, due to the “large p, small n” problem (Ochs et al., 2001) for the gene

expression data, some parameters such as mean and variance for each gene cannot

be well estimated, or the test assumptions are not satisfied or the distribution of

the statistic under null hypotheses may not be accurate. Therefore, many applied
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testing methods modified the standard testing methods (for example, modifying t-

statistic to moderated t-statistic (Smyth, 2004) to increase their usability. As the

modified test statistics only approximately follow some known distribution, the

approximate p-value estimation may influence the FDR estimation. Resampling

strategies may better estimate the underlying distributions of the test statistics.

However, due to small sample size and data correlation, the limited number of

permutations and resampling bias (Efron and Tibshirani, 2007) also influence the

FDR estimation.

To address the above problems, we propose a novel extrapolative recalibration

procedure called Constrained Regression Recalibration (ConReg-R) which models

the empirical distribution of p-values in multiple hypothesis testing and recali-

brates the imprecise p-value calculation to better recalibrated p-values to improve

the FDR estimation. Our approach focuses on p-values as the p-values from true

null hypotheses are expected to follow the uniform distribution and the interfer-

ence from the distribution of p-values from alternative hypotheses is expected to

be minimal towards p=1. In contrast, the estimation of the empirical null dis-

tributions of test statistics may not be accurate as their parametric form may

not be known beforehand and their accuracy may depend on the data and the

resampling strategy used. ConReg-R first maps the observed p-values to prede-

fined uniformly distributed p-values preserving their rank order and estimates the

recalibration mapping function by performing constrained polynomial regression

to the k highest p-values. The constrained polynomial regression is implemented
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by quadratic programming solvers. Finally, the p-values will be recalibrated using

the normalized recalibration function. FDR is estimated using the recalibrated

p-values and the π̂0 can be determined during ConReg-R procedure. We demon-

strate that our ConReg-R procedure can significantly improve the estimation of

FDR on simulated data, and also the environmental stress response time course

microarray datasets in yeast and a human RNA-seq dataset.

2.2 Methods

Under the null hypotheses, the p-values are uniformly distributed. Hence, ConReg-

R first generates the uniformly distributed p-values within [0, 1] range.

2.2.1 Uniformly distributed p-value generation

Let pi denotes the p-value of the ith test (i = 1, . . . , n), without loss of generality,

we assume p1 ≥ p2 ≥ . . . ≥ pn. If we choose a suitable k < n such that the ith

null hypothesis H
(i)
0 (i ≤ k) is most likely true, then p1, . . . , pk correspond to the

order statistics of k independent uniformly distributed random variables provided

pi’s i(i = 1, . . . , k) are correctly estimated.

Let p′i are conditional expectations of the corresponding order statistics of p-

values under H
(i)
0 (i ≤ k), and suppose p′k is known. p′i(i ≤ k) can be defined
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as

p′i = 1− i− 1

k − 1
(1− p′k), i = 1, . . . , k. (2.2)

Then

π̂0 =
k

n(1− p′k)
. (2.3)

Using (2.3), (2.2) becomes

p′i = 1− i− 1

k − 1
· k

nπ̂0

, i = 1, . . . , k. (2.4)

Since k is usually large, k/(k − 1) is almost 1, therefore p′i in (2.4) can be

approximated as

p′i
.
= 1− i− 1

nπ̂0

, i = 1, . . . , k. (2.5)

We can estimate the recalibration function f(·), to be described below, between

{p′i}ki=1 and {pi}ki=1 and apply it to all input p-values to output the recalibrated

p-values, pcali (i = 1, . . . , n) i.e.

pcali = f(pi), i = 1, . . . , n. (2.6)

By Stone-Weierstrass theorem (Bishop, 1961), polynomial functions can well

approximate any continuous function in the interval [0, 1]. Therefore we use poly-

nomial regression to estimate the recalibration function f(·) satisfying appropriate

boundary and monotone constraints.
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2.2.2 Constrained regression recalibration

Let yi = p′i and xi = pi (i = 1 . . . k), and the recalibration polynomial function

f(·) is defined as follows,

yi = f(xi) =
t∑

j=0

βjx
j
i + εi. (2.7)

The constraints f(0) = 0, f(1) = 1 and f ′(x) > 0 should be imposed to ensure

the orders of the p-values remain the same after the transformation. Furthermore,

the constraint for either f ′′(x) > 0 or f ′′(x) < 0 indicates the function f should

also be a monotonic convex or monotonic concave function to deal with the sit-

uations with under-measured or over-measured p-values separately and helps in

good extrapolation.

The constraints f(0) = 0 and f(1) = 1 can be easily met by scaling and

shifting the regression function. Therefore, the regression function only depends

on the other two constraints which can be combined into one constraint during

the regression procedure.

Quadratic programming (QP) (Nocedal and Wright, 2000) is employed to es-

timate the regression function as follows: Let y = (y1, . . . , yk)
T , β = (β0, . . . , βt)

T

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 . . . xt

1

...
...

...
...

...

1 xk x2
k . . . xt

k

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Equation (2.7) can be rewritten more succinctly as

y = f(X) = Xβ + ε (2.8)

and the constrains for the first and second order derivatives of f(X) will be Aβ ≥ b

where b = (0, . . . , 0)T is a 2l × 1 vector and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2a1 . . . tat−1
1

...
...

...
...

...

0 1 2al . . . tat−1
l

0 0 (−1)c2 . . . (−1)ct(t− 1)at−2
1

...
...

...
...

...

0 0 (−1)c2 . . . (−1)ct(t− 1)at−2
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a 2l×(t+1) matrix, where a1, . . . , al are l randomly generated numbers following

U(0, 1) to guarantee this constraint is valid in (0, 1), and c is chosen to be 0 (or

1) if f is desired to be convex (or concave respectively).

The least squares procedure for (2.8) will minimize

‖y −Xβ‖22 = (y −Xβ)T (y −Xβ)

= (yT − βTXT )(y −Xβ) = yTy − yTXβ − βTXTy + βTXTXβ

= βTXTXβ − 2yTXβ + yTy.

(2.9)

Minimizing (2.9) under Aβ ≥ b is equivalent to minimizing

h(β) = 1
2
βTQβ + qTβ (2.10)
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under Aβ ≥ b, where Q = XTX and q = −XTy. Therefore, the constrained

polynomial regression problem can be reformulated as a quadratic programming

problem. Dalmasso et al. (2007) have used similar ideas to estimate lFDR. How-

ever, they used entire data for fitting and meant to estimate the densities of g0 and

g1 which can be used to estimate lFDR. In contrast, ConReg-R is an extrapolative

procedure to generate well calibrated p-values which can be used for multitude of

purposes e.g. meta-analysis, FDR computation, lFDR computation, effect size

estimation, etc.

Two further modifications

We use QuadProg package in R to solve the quadratic programming problem

(Goldfarb and Idnani, 1983). Due to floating point errors (Press et al., 2007),

Q = XTX tends to be positive semidefinite instead of being positive definite.

To get around this, we add a sufficiently small positive value (λ = 10−10) to the

diagonal of Q to guarantee Q′ = Q + λIt+1 is positive definite and Q′ replaces Q

in (2.10).

Furthermore, the polynomial function may not accurately fit the data due to

the limitation of the polynomial maximal power (usually set the maximal power

t = 10). We can add the fraction of the power (i.e. a non-integer power) to

increase the accuracy of the fit. For example, let f(xi) =
∑mt

j=0 βjx
j/m
i + εi, where

m = 1, 2 or more.
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Computational procedure

For any given k, after applying ConReg-R, the estimation of π̂0 and its variation

(error) are given by

π̂0(k) = median
(
{ i

n(1− pcali )
}ki=1

)
(2.11)

and

eπ̂0(k) = MAD
(
{ i

n(1− pcali )
}ki=1

)
(2.12)

where MAD denotes the median absolute deviation. The final regression function

and optimal k(kbest) are determined by examining π̂0(k) and eπ̂0(k) over k. Figure

2.1 illustrates how to choose kbest from the function π̂0(k). Ideally, π̂0(k) is not

expected to change over a range of k (as shown by the blue dashed line in Figure

2.1) such that p1, . . . , pk are most likely to be from null hypotheses. If k is too

large, p1, . . . , pk may contain too many p-values from alternate hypotheses and

π̂0(k) may be wrongly estimated to be close to 1, in an extreme case if k is chosen

to be n then π̂0(k) = 1. However, the extrapolation in recalibration procedure

may be unreliable if only a small number of p-values (i.e. small k) are used for the

regression and π̂0(k) may fluctuate near the real π0 (the red curve in Figure 2.1).

Therefore, we aim to choose optimal k(kbest) as a trade-off to include just enough p-

values from null hypotheses for the regression to achieve good extrapolation. The

k that gives stable estimate (eπ̂0(k) < δ) and the last minimum of π̂0(k) is chosen

to be the kbest. The regression function, extrapolation and π̂0(k) corresponding to

k = kbest are chosen for recalibrating p-values and re-estimating FDR.
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Figure 2.1: Illustration of choosing kbest using k vs. π̂0(k) plot. The blue dashed
line indicates the ideal π0 estimated for different choice of k. The red curve
indicates the actual π̂0(k).

The following is the computational procedure for a given {pi}ni=1 in descending

order:

1. For each k = v, 2v, · · · , [n
v
]v (v is the interval over k and default setting is

v = [n/100]), let π̂0 = 1.

2. Use equation (2.5) to compute {p′i}ki=1.

3. Use quadratic programming to obtain regression function hk, where c can

be predefined or estimated by checking whether more than half of points for

(pi, p
′
i) are above the diagonal (line from origin to (1, 1)) (c = 1) or below

the diagonal (c = 0).
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4. Transform hk to fk(·) = hk(·)−hk(0)
hk(1)−hk(0)

to satisfy constraints fk(0) = 0, and

fk(1) = 1.

5. Repeat steps 2-4 for all k, and compute the π̂0(k) and eπ̂0(k) for each k. Let

kbest be the maximal of k which locally minimizes π̂0 under the constraint of

small eπ̂0 , where the cutoff of eπ̂0 and local minimization criteria should be

predefined.

6. Choose the final regression function f(.) under kbest and output recalibrated

p-values.

7. Re-estimate the FDR using recalibrated p-values and π̂0 = π̂0(kbest).

R-code for ConReg-R is attached as Appendix A.

2.3 Results

2.3.1 Dependence simulation

Data dependence is one of the major causes for under-measured or over-measured

p-values. We simulated an expression data, with dependence, Z = (zij)(i =

1, . . . , n, j = 1, . . . , r) with n(n = 10000) genes and r(r = 10) replicates using the

formula as follows,

zij = bi + dij + εij
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where bi denotes the biological effect, dij denotes the dependence effect. Set bi = 1,

if i ≤ n(1 − π0) and bi = 0 if i > n(1 − π0). di. = (1, 1, 1, 0, 0, 0, 0,−1,−1,−1)

if i ≤ [n
2
] and di. = (−1,−1,−1, 0, 0, 0, 0, 1, 1, 1) if i > [n

2
]). εij ∼ N(0, 1) is the

background noise.

To compare the result, we also simulated a data set with no dependence using

the same procedure but with the dependence effect dij = 0. One sample t-test was

performed to generate p-values. Figure 2.2 shows the p-value density histograms

for π0 = 0.7 and π0 = 0.9. As can be seen in the plots B and D in Figure 2.2, the

p-value histograms from independent data have constant frequency for p ≥ 0.5

and the density near 1 indicates the π̂0. However, the p-value histograms from

dependent data (the plots A and C in Figure 2.2) do not have such constant

frequency and p-value density increases as p-value increases in the neighborhood

of 1. The density near 1 exceeds the respective π0.

ConReg-R used the above p-values as input and output the recalibrated p-

values. The results are shown in Figure 2.3. For the independent data sets, the

algorithm chose k = 0.71n for π0 = 0.7 and k = 0.64n for π0 = 0.9 since it

locally minimized π̂0 under error(π̂0) < 0.05. The p-values do not significantly

change after regression. As such, the regression curves almost overlap with the

diagonals, and the input p-value histogram and the output p-value histogram are

very similar to each other. The FDR estimation errors (the absolute difference

between FDR estimated by p-values and real FDR) also do not significantly change
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Figure 2.2: Density histograms of dependent datasets and independent datasets
at π0 = 0.7 and π0 = 0.9, and the gray horizontal line indicates the π0 for each
dataset.

after applying ConReg-R and the estimation of FDR is very close to the real FDR.

However, for the dependent data sets, the algorithm chose k = 0.62n for π0 = 0.7

and k = 0.88n for π0 = 0.9. The regression curves are all below the diagonals

and the output p-value histograms after applying ConReg-R appears more like

the ones obtained for the independent data. The accuracy of estimated FDR after

applying ConReg-R is substantially improved.

To study more complicated dependency situations, we generated dependent
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Figure 2.3: Procedural steps for the independent and dependent datasets at π0 =
0.7 and π0 = 0.9. The plots in first row show the π̂0 and eπ̂0 at different k/n. The
blue curve indicates π̂0 and the black curve indicates eπ̂0 , the red horizontal line
indicates the cutoff of eπ̂0 (here we used 0.05), the red vertical line indicates the
choice of k/n at which locally minimized π̂0 under eπ̂0 < 0.05 is obtained. The
plots in second row show the regression procedure. The black thick curve indicates
the (pi, p

′
i), i = 1, . . . , k and the blue curve is the regression line hk(.), and the red

curve is the regression line f(.) after transformation. The plots in third and fourth
row show the p-value histograms before and after applying ConReg-R and the gray
horizontal line indicates the π0. The plots in last row show the FDR estimation
errors between real FDR and the FDR estimated by p-values before (black) and
after applying ConReg-R (red).
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datasets with random dependence effect (Qiu et al., 2005) as follows,

zij = ρ(bi + dj) + (1− ρ)εij

where ρ is the correlation constant (here we set ρ = 0.5) which determines the

correlation coefficient between genes. Here bi denotes the biological effect, and dj

denotes the random dependence effect. Set bi = 1, if i ≤ n(1 − π0) and bi = 0 if

i > n(1− π0), and dj ∼ N(0, 1). Let εij ∼ N(0, 1) be the background noise. The

result for π0 = 0.7 and π0 = 0.9 are shown in Figure 2.4. Similar to the simulations

of fixed dependence effect, the estimated FDR after applying ConReg-R is closer

to real FDR.

The results of our procedure for 100 repeated simulations are summarized in

the box-and-whisker plots in Figure 2.5. As shown in this figure, for the indepen-

dent data sets, the FDR estimation errors (the mean absolute difference between

real FDR and the FDR estimated by p-values using Benjamini-Hochberg method)

after applying ConReg-R is slightly higher. However, it is still acceptable since

most simulations resulted in errors below 0.05. For the dependent data sets with

fixed and random dependence effects, the FDR estimation errors after applying

ConReg-R are significantly less than those without applying ConReg-R. The FDR

estimation for π0 = 0.9 is even closer to real FDR after applying ConReg-R com-

pared with the result for π0 = 0.7 because of more p-values used for regression

and less number of p-values for extrapolating in datasets of π0 = 0.9.
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Figure 2.4: Procedural steps for the independent and dependent datasets with
random dependent effect at π0 = 0.7 and π0 = 0.9. The detail description for
plots in each raw is same as Figure 2.2.
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Figure 2.5: Boxplots of FDR estimation errors (the mean difference between real
FDR and the FDR estimated by p-values) for 100 simulations of independent and
dependent datasets at π0 = 0.7 and π0 = 0.9 before (input) and after applying
ConReg-R (calibrated).

2.3.2 Combined p-values simulation

In many analyses, more than one dataset are involved and a meta-analysis by com-

bining p-values from different studies or datasets is needed to estimate the overall

significance for each gene. For example, (i) to find genes which are significant in

at least one experiment, minimal p-values will be of interest; (ii) to identify genes

which are significant across all the experiments, the maximal p-values will be of

interest; and (iii) in order to detect genes which are significant on average, the

product of p-values will be appropriate.

The distribution of combined p-values will not be uniform even under true null
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hypotheses (Hedges and Olkin, 1985). For currently used meta-analysis methods,

such as “minimal”, “maximal” or “product”, we can obtain the transformation

functions to recalibrate the combined p-values to satisfy the condition of p-values

are uniform distributed under true null hypotheses. However, for other more com-

plicated meta-analysis methods, the transformation function cannot be determined

accurately leading to under- or over-estimation of significance, and ConReg-R can

provide the polynomial function approximation for the unknown transformation.

Suppose for gene i, the p-values pij(j = 1, 2, . . . , L) follow the uniform dis-

tribution over (0, 1), then 1 − (1 − pmin)
L ∼ U(0, 1) and pLmax ∼ U(0, 1), where

pmin = min(pi1, pi2, . . . , piL) and pmax = max(pi1, pi2, . . . , piL). For the p-values

from “product” method, −2
∑L

j=1 log(pij) ∼ χ2
2L according to Fisher’s method

(Fisher, 1948).

For each meta-analysis method, we simulated two data sets Z0 = (δij), Z =

(zij)(i = 1, . . . , n, j = 1, . . . , r) with n(n = 10000) genes and r(r = 10) repeats

based on the formula as follows,

zij = bi + εij

where bi (bi = 1, if i ≤ n(1 − π0) and bi = 0 if i > n(1 − π0)) denotes the

biological effect, both δij ∼ N(0, 1) and εij ∼ N(0, 1) are the background noise.

The individual p-values are computed from two-sample t-test and the combined

p-values are calculated by L(L = 3) simulations.



Chapter 2: Constrained regression recalibration 39

Table 2.1: Combined p-values methods (Hedges and Olkin, 1985).

Method Formula Transformation
Min pmin = min(pi1, pi2, . . . , piL) 1− (1− pmin)

L

Max pmax = max(pi1, pi2, . . . , piL) pLmax

Square psq = p2i1
√
psq

Sqroot psqrt =
√
pi1 p2sqrt

Prod pprod =
∏L

j=1 pij −2
∑L

j=1 log(pij) ∼ χ2
2L

To compare the results, we also included two other transformation methods,

“square” and “square root”. All methods are listed in Table 2.1.

The two p-value histograms for each π0 = 0.7 and π0 = 0.9, and for each

of five different methods are plotted in Figure 2.6. It can be seen from Figure

2.6 that the p-value histograms after theoretical transformation have constant

frequency after 0.5 and the p-value density near 1 indicates the π̂0. However,

the p-value histograms from “Min”, “Square”, “Prod” shifted towards 0 and the

p-value histograms from “Max”, “Sqroot” shifted towards 1.

ConReg-R used the above combined p-values as input and the results are shown

in Figure 2.7 (π0 = 0.7) and Figure 2.8 (π0 = 0.9). From Figure 2.7 and Figure

2.8, the regression curves are monotonic concave functions for “Min”, “Square”,

“Prod” and monotonic convex functions for “Max”, “Sqroot”. The histograms af-

ter applying ConReg-R are also very similar to the theoretical transformed p-value

histograms. The FDR estimation improved significantly after applying ConReg-R.

It shows that the estimated FDR after applying ConReg-R is more likely to be

the real FDR.
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Figure 2.6: Density histograms for “Min”, “Max”, “Sqroot”, “Square” and “Prod”
datasets at π0 = 0.7 and π0 = 0.9. (Th.) indicates the density histograms for each
method after theoretical transformation. The gray horizontal line indicates the π0

for each plot.
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Figure 2.7: Procedure details for “Min”, “Max”, “Sqroot”, “Square” and “Prod”

datasets at π0 = 0.7. The detail description for plots in each raw is same as Figure

2.2.

The results of using our procedure for 100 repeated simulations are summa-

rized in Figure 2.9. The FDR estimation errors after applying ConReg-R are

significantly less than those obtained without applying ConReg-R.
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Figure 2.8: Procedure details for “Min”, “Max”, “Sqroot”, “Square” and “Prod”

datasets at π0 = 0.9. The detail description for plots in each raw is same as Figure

2.2.
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Figure 2.9: Boxplots of FDR estimation errors for 100 simulations of “Min”,
“Max”, “Sqroot”, “Square” and “Prod” datasets at π0 = 0.7 and π0 = 0.9 before
(input) and after applying ConReg-R (calibrated).



Chapter 3: Iterative piecewise linear regression 44

Chapter 3

iPLR: Iterative piecewise linear

regression

This chapter describes the iPLR procedure to re-estimate null distribution from

resampling procedures and the simulation results.

3.1 Background

Batch dependent systematic variations or batch effects (Lamb et al., 2006) are

commonly observed across multiple batches of microarray experiments. Batch

effect influences the expression measurements of all genes in the arrays; the effect

on a single gene is random but similar across all arrays in the batch and different

from other genes and batches (Li and Wong, 2003). It has been observed by
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many researchers that the established normalization and preprocessing methods

cannot fully eliminate batch effects (Johnson et al., 2007) and hence developed

procedures to account for batch effects at probe level in the differential expression

models (Alter et al., 2000; Nielsen et al., 2002; Benito et al., 2004).

A few popular methods are SVD (Singular Value Decomposition) / PCA (Prin-

cipal Component Analysis) (Alter et al., 2000; Nielsen et al., 2002), DWD (Dis-

tance Weighted Discrimination) (Benito et al., 2004) and empirical Bayes methods

(Johnson et al., 2007) which treat batch as a factor assuming that the experimen-

tal batches are not confounded with the biological groups of interest i.e. batch

and treatment variables are not collinear. In other words, each batch contains

arrays of samples from different biological groups (see the row titled “ideal batch”

in Table 3.1). However the problem is not amenable to such analysis if the bio-

logical groups are confounded with that of the batches i.e., the arrays in a batch

receive samples from one biological group of interest and the arrays in the other

batch contain samples from the other biological group of interest (see the row ti-

tled “batch confounding” in Table 3.1 for illustration). It results in collinearity of

batch and treatment variable which means the above methods are not applicable.

It is unavoidable in many practical situations as one wants to compare the data

from one experiment or laboratory to the data from another experiment or labo-

ratory which essentially means batch confounded biological groups. Time course

experiments spread over long time horizons may also result in batch confounding

when samples from different time-points are compared for change of expression.
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Table 3.1: Illustration of batch confounding. s1-8 indicate sample 1-8, c1(2) indi-
cates class 1(2), and b1(2) indicates batch 1(2).

samples s1 s2 s3 s4 s5 s6 s7 s8
class c1 c1 c1 c1 c2 c2 c2 c2
batch confound-
ing

b1 b1 b1 b1 b2 b2 b2 b2

ideal batch b1 b1 b2 b2 b1 b1 b2 b2

Similarly, batch confounding is unavoidable in huge experiments even though all

groups were generated in the same laboratory.

Batch confounding has severe influence on differential expression analysis as

the biologically differentially expressed genes are mixed up with large number of

mere batch affected expression measurements. Even after microarray data pre-

processing and normalization, batch confounding still exists in the data. It may

lead to gross incorrect estimation of statistical significance, i.e. false discovery

rate (FDR), to an intolerable limit as several batch affected biologically irrele-

vant genes will also have significantly lower p-values. This is true irrespective of

whether the statistical significance is assessed using resampling as in SAM (Signif-

icance Analysis of Microarrays) (Tusher et al., 2001) or parametric distribution as

in LIMMA (Linear Models for Microarray Data) (Smyth, 2004). In the absence of

gold standard positive and negative gene sets in genome-wide expression studies,

FDR, being an important parameter, needs to be accurately estimated. For exam-

ple, FDR has been used to estimate the effects of certain treatment or condition

on a cell culture via the number of genes passed the FDR cut-off (Storey and Tib-
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shirani, 2003). Hence it is important to estimate FDR as accurately as possible

even in the batch confounded data analysis to facilitate correct conclusions on the

significantly affected genes.

To address these issues, we developed a method called stepped linear regression

(SLR) (Li et al., 2008b) to improve FDR estimation in batch confounded data.

After increasing the accuracy and usability of SLR, we upgraded SLR to itera-

tive piecewise linear regression (iPLR) which is major modification of SLR. iPLR

re-estimates the expected differential expression statistics under the assumption

that the expression difference due to batch variation is smaller than that of the

biological variation. FDR is estimated based on the re-estimated expected statis-

tics i.e. the null distribution is re-estimated. After applying iPLR, we can get

accurate significance assessment and biologically significant genes. Moreover, our

method provides a better interpretation for the linear model in this paper and

incorporated procedure to handle one-sided tests.

We present our iPLR in the context of SAM (Tusher et al., 2001). SAM is a

statistical technique for finding significantly differentially expressed genes in mi-

croarray experiments. SAM assigns a score called d-score to each gene on the

basis of change in gene expression relative to the standard deviation of replicated

measurements. The genes with d-scores greater than certain threshold are de-

clared to be differentially expressed. This threshold corresponds to certain false

discovery rate (FDR), the percentage of genes identified by chance for the given
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d-score by permuting the class labels. Those genes will be regarded as significantly

biologically relevant genes according to the data. However, in the case of batch

confounding, many of them may not be actually relevant to the underlying biology

of interest. Our iPLR helps correct this artifact.

Though iPLR is presented in the context of SAM analysis for simplicity, the

method is equally applicable to any reasonable statistical procedure based on

resampling strategy. Our results show that iPLR is effective in estimating FDR

accurately both in simulated as well as real data with batch confounding. We

demonstrate how iPLR corrects for the incorrectly magnified assessment of effects

of certain conditions or treatments on gene expression.

3.2 Methods

The iterative piecewise linear regression (iPLR) is based on the following assump-

tions: (a) for those biologically differentially expressed genes, the biological in-

fluence is much greater than those of the batch effects’ influence; (b) the batch

effect is independent of biological effect; and (c) the proportion of biologically

non-differentially expressed genes (π0) is larger than 0.5.



Chapter 3: Iterative piecewise linear regression 49

3.2.1 Re-estimating the expected statistics

For a SAM analysis based on a two-sided test statistics (Chu et al.), we first obtain

the SAM computed statistic di =
ri

si+s0
for each gene gi(i = 1, 2, . . . , n), where ri

is a score, si is a standard deviation, and s0 is an exchaneability factor. Without

loss of generality we assume d1 ≤ d2 ≤ ... ≤ dn. To compute FDR, SAM performs

permutations by random labeling each sample for as many times as defined by the

user to estimate the expected values of these order statistics d̄1 ≤ d̄2 ≤ · · · ≤ d̄n.

When batch effect exists in the data and is confounded with biological effect,

we propose the linear model between observed statistics di and expected statistics

d̄i as follows:

di = ad̄i + b+ ci + ei, (3.1)

where a and b are batch effect factors, ci is the biological effect factor and ei is the

model error (i = 1, 2, .., n). ci = 0 if gene gi has no differential expression between

different classes of the experiment.

It is difficult to estimate batch effect factors without knowing biological effect

factor ci. Therefore, we simply approximate ci by a linear function in d̄i when

ci 
= 0. Based on (3.1), we are led to consider

di =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ad̄i + b+ ei if ci = 0

ad̄i + b+ ca+d̄i + cb+ + ei if ci > 0

ad̄i + b+ ca−d̄i + cb− + ei if ci < 0

(3.2)
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where ca+, cb+ and ca−, cb− are the coefficients of the linearity between ci and d̄i.

From (3.2), we perform the iterative piecewise linear regression (iPLR) to estimate

the batch effect factors a and b. In iPLR, we use iterative approach to identify

the regression section with ci = 0 to estimate the batch effect factors a and b. The

proportion of non-differentially expressed genes, π0, will be estimated by #{ci=0}
n

.

After estimating the batch effect factors a and b, we can re-estimate the ex-

pected statistics to eliminate the batch effect in FDR estimation. The model in

(3.1) is about comparing quantiles or ordered statistics (origin is about the 50th

percentile or median which is usually close to 0) for the observed test statistics (a

combination of null hypotheses and alternative hypotheses) and the test statistics

of null distribution obtained by resampling. If π0 is very close to 1, then quantiles

of both distributions will be very close to each other. So the test statistics and the

expected statistics will lie close to the diagonal of the observed statistic quantiles

versus the expected statistic quantiles plot. Then we can set a = 1 to eliminate

the batch effect. However, when π0 is not very close to 1 (for example, π0 = 0.7),

we have to consider the fact that the distribution of the test statistics is a mixture

of the distribution of statistics under null hypothesis (null distribution multiplied

by π0) and the alternate distribution. If the null distribution of test statistics is

uniform, the slope for the observed statistic quantiles versus the expected statis-

tic quantiles plot for ci = 0 is π−1
0 . In typical hypothesis testing in microarray

experiments, the null distributions are unimodal. In these typical cases, we can

approximate this slope as π−1
0 to achieve a better estimate of the FDR based on
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Proposition 3.1. Therefore, we set â = π̂−1
0 to eliminate the batch effect. Then,

we define the re-estimated expected order statistics as

d̄∗i = π̂0(âd̄i + b̂), (3.3)

and then (3.1) will be rewritten as

di = π̂−1
0 d̄∗i + ci + ei. (3.4)

This is the linear model after eliminating the batch effect.

Below is a proof that the slope of the Q-Q plot at the 50th quantile is π−1
0 under

some mild conditions. Let g be the function which maps the qth quantile of the

null cumulative distribution function to the qth quantile of the mixture cumulative

distribution function. We shall identify g below after introducing some notations.

Let f0 and f1 be symmetric probability density functions. For π0 ∈ (0, 1), we

define a probability density function f as

f(x) = π0f0(x) + (1− π0)f1(x).

Let F, F0 and F1 be the cumulative distribution functions of f, f0 and f1 respec-

tively.

To see why g is given as in (3.5). We let xq and yq be the qth quantile relative

to F0 and F respectively. That is, xq = F−1
0 (q) and yq = F−1(q). Equivalently,

q = F0(xq) and yq = F−1(F0(xq)). As yq = g(xq), this leads to g(x) = F−1(F0(x)).



Chapter 3: Iterative piecewise linear regression 52

Proposition 3.1. With f0, f1, f, F0, F1 and F as defined above, we assume further

that

1. f0(x) is continuous at x = 0 and f0(0) > 0, and

2. f1(x) = 0 for x in the neighborhood of 0.

Let g :→ R be defined as

g(x) = F−1(F0(x)). (3.5)

Then g′(0) = π−1
0 .

Proof. Since 0 = x0.5 �→ y0.5 = 0, we have g(0) = 0. From (3.5), we obtain

F0(x) = F (g(x)). (3.6)

Differentiate (3.6) with respect to x in the neighborhood of 0 where f1 = 0, we

obtain

f0(x) = f(g(x))g′(x) = [π0f0(g(x)) + (1− π0)f1(g(x))]g
′(x).

Since g(0) = 0 and f1(0) = 0, evaluating the above at x = 0 gives

f0(0) = π0f0(0)g
′(0)

which leads to g′(0) = 1/π0 after canceling out f0(0) which is positive.

Examples: We simulated x ∼ f0 and y ∼ π0f0+(1− π0)f1, where we set f0

is N(0, 1) and f1 is −χ2(1)− 1 and χ2(1) + 1. We can see the example Q-Q plots

for π0 = 0.9 and π0 = 0.7. The red lines are approximately yq = π−1
0 xq.
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Figure 3.1: Examples for Q-Q plot slope approximation.

3.2.2 Iterative piecewise linear regression

The iPLR takes observed statistics di and expected statistics d̄i as input data, and

uses iterative approach to search for the best piecewise linear regression model fit

in (3.2). The batch effect factors and π0 are estimated by this model, then iPLR

re-estimates the expected order statistics d̄∗i by (3.3). Finally, iPLR outputs the

re-estimated FDR. The work flow for iPLR is illustrated in Figure 3.2.

By assumption (c), there are more than 50% non-differentially expressed genes

in the dataset. Therefore, the baseline, regression line for ci = 0 part in iPLR,

will include more than half of the data and batch effect factors a and b will be

estimated from this portion of the data.

At the initialization step, we set π̂
(0)
0 = 1, and define the data split

S0 = {D(0), D
(0)
− , D

(0)
+ }, (3.7)
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Figure 3.2: Work flow for iPLR.
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where D(0) := {(di, d̄i), i = 1, 2, . . . , n} is the initial baseline dataset and D
(0)
− =

D
(0)
+ = φ (empty set).

We perform the linear regression in D(0) and this is the baseline in the initial

step. Let δ(0) be the standard deviation of baseline regression errors. The next

baseline dataset D(1) is generated by excluding the data points which are far away

from the baseline. We define the split S1 = {D(1), D
(1)
− , D

(1)
+ } as

D(1) = {(di, d̄i)| − zδ(0) ≤ l
(0)
i ≤ zδ(0)}, π̂

(1)
0 =

#{D(1)}
n

D
(1)
− = {(di, d̄i)|l(0)i < −zδ(0)}, D

(1)
+ = {(di, d̄i)|l(0)i > zδ(0)},

(3.8)

where l
(0)
i is the distance between (di, d̄i) to the regression baseline, z is a pre-

defined boundary cutoff. D
(1)
− and D

(1)
+ indicate ci < 0 and ci > 0 and generally

distributed at the left and right tails of the data. Then we perform 3-piece linear

regression for D(1), D
(1)
− and D

(1)
+ separately. We repeat the above procedure to

generate Sk = {D(k), D
(k)
− , D

(k)
+ } and π̂

(k)
0 from Sk−1 = {D(k−1), D

(k−1)
− , D

(k−1)
+ } and

π̂
(k−1)
0 until convergence is reached. The procedure is said to converge at k = K if

π̂
(K)
0 < 0.5 or the sequence {π̂(k)

0 }Kk=1 converges to a constant i.e. |π̂(K)
0 − π̂

(K−1)
0 | <

10−3.

Among the sequence of data-splits Sk for k = 1, . . . , K, we choose the split that

gives lowest fitting RSS (residual sum of squares) for 3-piece linear regression, and

π̂0 is estimated by this split. In iPLR, there are only two free parameters to be pre-

selected, boundary cutoff z and stopping cutoff 10−3. We can set z = 3 implying

the 3 standard deviation boundary. Different choices of z and stopping cutoff
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influence the search bandwidth and the number of iterations without affecting the

outcome significantly. The first two steps (from D(0) to S1, and S1 to S2) for iPLR

are illustrated in Figure 3.3.

Figure 3.3: Illustration of first two iterations in iPLR. They can be generalized to
the following iterations.

The following steps detail the computational procedure for iPLR.

1. Set π̂
(0)
0 = 1. Perform the linear regression for D(0) to determine the base-

line. Compute the distance of each point to the baseline and the standard

deviation of baseline regression errors δ(0).

2. Calculate π̂
(1)
0 using (3.8) and perform a 3-piece linear regression for D(1),
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D
(1)
− and D

(1)
+ separately. Compute the standard deviation of baseline re-

gression errors δ(1) and RSS of the 3-piece regression.

3. Repeat step 2 to obtain Sk and π̂
(k)
0 from S(k−1) until k = K for which

π̂
(K)
0 < 0.5 or |π̂(K)

0 − π̂
(K−1)
0 | < 10−3.

4. Choose the estimation of π̂0 as π̂
(k)
0 with the least RSS fitting for the iPLR,

and the batch effect factors a and b are estimated in the baseline regression

using this π̂0.

5. Re-estimate the expected statistics using (3.3). Re-estimate the FDR for

each gene.

3.2.3 iPLR for one-sided test

The above procedure is designed for 3-piece linear regression for a two-sided test.

If the test statistics are from one-sided test, the biological effect ci ≥ 0, i =

1, 2, . . . , n. Therefore, (3.2) becomes

di =

⎧⎪⎪⎨
⎪⎪⎩

ad̄i + b+ ei if ci = 0

ad̄i + b+ ca+d̄i + cb+ + ei if ci > 0

. (3.9)

Then iPLR procedure can be modified to take care of this one-sided test. Indeed,

we only need to set D
(k)
− = φ, k = 1, 2, . . . , K in the definition of the split. Sub-

sequently, iPLR performs a 2-piece linear regression by removing one piece for

D
(k)
− , k = 1, 2, . . . , K and the rest of iPLR procedure remains the same.
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3.3 Results

We demonstrate that the effects of batch confounding on FDR estimation and

the efficacy of iPLR in alleviating it using both simulated data and real data.

Using simulated data, we show that iPLR does not introduce any artifacts in

FDR estimation for data without batch confounding, and that iPLR corrects the

influence of batch confounding if it is present in the data.

3.3.1 Two-class simulations

A two-group data was simulated using the following rule

xijk = μik + ηik + εijk, (3.10)

where xijk is an expression measurement of gene gi(i = 1, 2, . . . , n = 10000) in

sample Sj(j = 1, 2, . . . , 10) in group Gk(k = 1, 2), and εijk are standard normal

noise. The biological effect μik and global batch effect ηik (ηik is the effect of batch

on the gene expression xijk which is different from the effect of batch confounding

on the relationship between di and d̄i) are defined as follows:

μi1 = 0 for 1 ≤ i ≤ n,

ηi1 = 0 for 1 ≤ i ≤ n,

μi2 =

⎧⎪⎪⎨
⎪⎪⎩

θi1 ∼ N(0, σ2
μ) for 1 ≤ i ≤ m

0 for m < i ≤ n

,

ηi2 = θi2 ∼ N(0, σ2
η) for 1 ≤ i ≤ n,

(3.11)
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Table 3.2: Parameters used to simulate the 4 different datasets A, B, C and D.

Dataset Simulation Parameters
Datasets Batch Effect ση σμ π0

A No 0 4 0.95
B Yes 2 4 0.95
C No 0 4 0.7
D Yes 2 4 0.7

where m is the number of differentially expressed genes and n is the total number

of genes. The model parameters signify that the batch effect and biological effect

are independent and the level of differential expression and batch effect varies

from gene to gene. The fraction 1− (m/n) is π0: the fraction of non-differentially

expressed genes or genes not affected by biological treatments.

We simulated four different datasets of n = 10000 genes each using two different

settings for two choices of ση and π0 as shown in Table 3.2 while keeping σμ = 4.

Datasets A and C are simulated without batch effects and analyzed with our

procedure in order to find out whether our procedure would introduce any artifacts

in FDR estimation or not (i.e., FDR estimates before and after re-estimation of

d̄i should be close to each other for non-batch affected data). Datasets B and

D are batch effect confounded with reasonably different values of π0 whose FDR

estimates before re-estimation are expected to be far from reality while the FDR

estimates after re-estimation are expected to be close to the reality. We used SAM

on each of the four datasets to obtain d-statistics for original as well as permuted

data. We applied our procedure on each pair of d-statistic sets.
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Table 3.3 gives the estimates of π0, the number of genes identified significant,

and the FDR estimates from applying SAM only, and from SAM followed by ap-

plying iPLR. The estimates of π0 after applying iPLR are markedly more accurate

than not applying iPLR for datasets B and D which are batch confounded. This

shows that iPLR succeeds in reducing the batch effects in FDR estimation. Both

estimates (before and after applying iPLR) of π0 for datasets A and C, which are

not batch confounded, agree quite well with the true values. Indeed, the estimates

after applying iPLR are slightly better than that of not using iPLR. This shows

that iPLR does not introduce any bias in the absence batch effect. The other π0

estimation methods which are only based on the p-value distribution will also be

affected by batch confounded data. For example, we used a cross-validatory ap-

proach (Celisse and Robin, 2010) to estimate π0 for datasets A-D and the results

(π̂0{A,B,C,D} = {0.9593, 0.3365, 0.8037, 0.3192}) are similar to SAM estima-

tion. It shows that p-value distribution based procedures cannot solve the bias

introduced by batch confounding.

The estimated FDR and true FDR for both before and after iPLR re-estimation

procedure are plotted in Figures 3.4(A) and 3.4(B). Ideally, the estimated FDR

should be close to the real FDR (smooth black curve), the closer the better. Both

plots for dataset A are similar and are close to the real FDR curve. The estimated

FDR after iPLR is slightly higher than real FDR at FDR> 0.6 which is not

important for practical purposes. However, FDR plots for original SAM and after

iPLR re-estimation are quite different for dataset B which is batch confounded.
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Table 3.3: Significant gene tables for dataset ABCD.

delta #sig.genes F̂DR #sig.genes F̂DR
dataset A
(π0 = 0.95)

SAM (π̂0 = 0.975) SAM+iPLR (π̂0 = 0.9673)

0.1 672 0.4832 575 0.4880
0.5 354 0.0137 345 0.0168
1 289 0 287 0
5 34 0 34 0
dataset B
(π0 = 0.95)

SAM (π̂0 = 0.2822) SAM+iPLR (π̂0 = 0.9726)

0.1 9327 0.2293 1480 0.7055
0.5 6785 0.0394 308 0.2242
1 4300 0.0002 112 0.0434
5 50 0 5 0
dataset C
(π0 = 0.7)

SAM (π̂0 = 0.7902) SAM+iPLR (π̂0 = 0.7833)

0.1 4918 0.6025 4101 0.6095
0.5 2376 0.0349 2299 0.0537
1 1967 0.0004 1921 0.0008
5 248 0 227 0
dataset D
(π0 = 0.7)

SAM (π̂0 = 0.236) SAM+iPLR (π̂0 = 0.8599)

0.1 9470 0.1963 5431 0.7831
0.5 7419 0.0396 2110 0.3637
1 5216 0.0002 1081 0.0823
5 313 0 27 0
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Plot for SAM is almost 0 showing how severely the FDR was underestimated. But

FDR after iPLR re-estimation is closer to the real FDR, even though FDR still

underestimated the real FDR due to the influence of batch confounding on the

permutation procedure (Xie et al., 2005).
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Figure 3.4: FDR comparison for simulation data sets A, B, C and D. Black
points indicate the real FDR. Blue points indicate estimated FDR before iPLR
re-estimation and the red points indicate estimated FDR after iPLR re-estimation.

Similar results are shown for datasets C and D in Table 3.3. The estimates of

π0 are consistently closer to the true value of 0.7 irrespective of the presence or

the absence of batch effect after applying our iPLR procedure. In the presence of

batch effect, the original SAM FDR estimates are severely biased by batch effect.



Chapter 3: Iterative piecewise linear regression 63

Table 3.4: Parameters used to simulate the 4 different datasets MA, MB, MC and
MD.

Dataset Simulation Parameters
Datasets Batch Effect ση1 ση2 σμ π0

MA No 0 0 4 0.95
MB Yes 1 1 4 0.95
MC No 0 0 4 0.7
MD Yes 1 1 4 0.7

Similar differences were observed even for FDR estimates for various values of δ.

The estimated FDR and true FDR for both before and after iPLR re-estimation

are plotted in Figures 3.4(C) and 3.4(D). Both plots for dataset C are similar and

close to real FDR for FDR in [0, 0.5] except towards FDR=1 which is not critical

in differential expression analysis. However, FDR plots for original SAM and that

of iPLR adjusted are quite different for the batch confounded dataset D. Plot for

SAM is almost 0 showing how erroneous the FDR estimation could be. FDR after

iPLR adjustment, on the other hand, is much closer to the real FDR.

3.3.2 Multi-class simulations

iPLR is not only applicable to two-class analysis with two batches. We can easily

adapt it to analyze multi-class dataset with more than two batches. We do this by

considering a 2-piece linear regression instead of a 3-piece linear regression since

up-regulated and down-regulated gene groups in two-class analysis will be merged

into one single differentially expressed gene group in multi-class analysis.
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We simulated three-class datasets using similar procedure as in two-class sim-

ulations by adding one more class for each dataset. As in two-class simulations,

we simulated 2 different datasets without batch effect (σμ = 4, ση1 = ση2 = 0) and

2 datasets with batch effect (σμ = 4, ση1 = ση2 = 1) for π0 = 0.95 and π0 = 0.7.

The parameter settings are listed in Table 3.4. We used SAM multi-class method

to generate d-score and permuted score, and then performed iPLR (2-piecewise

linear regression) to re-estimate the FDR. Results for these 4 datasets are listed

in Table 3.5. FDR comparisons are shown in Figure 3.5. Similar to the results

of two-class simulations, iPLR can accurately estimate the batch effect factors in

datasets and the FDR.



Chapter 4: Applications 65

Table 3.5: Significant gene tables for Multi-class simulated dataset MA-MD.

delta #sig.genes F̂DR #sig.genes F̂DR
dataset MA
(π0 = 0.95)

SAM (π̂0 = 0.9762) SAM+iPLR (π̂0 = 0.9567)

0.05 572 0.3413 529 0.3418
0.1 415 0.1011 400 0.1112
0.25 336 0.0000 332 0.0029
0.5 254 0.0000 250 0.0000
dataset MB
(π0 = 0.95)

SAM (π̂0 = 0.2194) SAM+iPLR (π̂0 = 0.9744)

0.05 9663 0.1845 639 0.5542
0.1 8734 0.1103 369 0.3366
0.25 4604 0.0027 182 0.0669
0.5 928 0.0000 107 0.0000
dataset MC
(π0 = 0.7)

SAM (π̂0 = 0.8168) SAM+iPLR (π̂0 = 0.7492)

0.1 2666 0.2045 2837 0.2084
0.25 2080 0.0023 2122 0.0031
0.5 1629 0.0000 1653 0.0000
1 908 0.0000 925 0.0000
dataset MD
(π0 = 0.7)

SAM (π̂0 = 0.2008) SAM+iPLR (π̂0 = 0.8135)

0.1 8957 0.1099 4129 0.5334
0.25 5659 0.0040 1791 0.1423
0.5 2474 0.0000 1098 0.0051
1 1006 0.0000 478 0.0000
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Figure 3.5: FDR comparison for simulation data sets MA, MB, MC and MD. Black
points indicate the real FDR. Blue points indicate estimated FDR before iPLR
re-estimation and the red points indicate estimated FDR after iPLR re-estimation.
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Chapter 4

Applications of ConReg-R and

iPLR in Systems Biology

In this chapter, we present the analysis of five high-throughput biological datasets

(Table 4.1) using ConReg-R and iPLR methods. The datasets were obtained from

different technologies and from different species. The analysis demonstrates the

efficacy and usefulness of ConReg-R and iPLR in systems biology.

4.1 Yeast environmental response data

Yeast environmental stress response gene expression data generated by (DeRisi et

al., 1997; Gasch et al., 2000) for nearly 6000 genes of yeast (S. cerevisiae) was

aimed at understanding how yeast adopts or reacts to various stresses present in its
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Table 4.1: List of datasets used for ConReg-R and iPLR application.

Dataset platform Method Reference
Yeast environmental
response data

DNA microarray ConReg-R (DeRisi et al., 1997;
Gasch et al., 2000)

Human RNA-seq data RNA-seq and
DNA microarray

ConReg-R (Marioni et al., 2008)

Fission yeast data DNA microarray iPLR (Chu et al., 2007a)
Human Ewing tumor
data

DNA microarray iPLR (Stegmaier et al.,
2007)

Data for type2 dia-
betes

cDNA microar-
ray

iPLR NIPER, India (Un-
published)

environment. We selected 10 datasets: (1) Heat shock from 25oC to 37oC response;

(2) Hydrogen peroxide treatment; (3) Menadione exposure; (4) DTT exposure

response; (5) Diamide treatment response; (6) Hyper-osmotic shock response; (7)

Nitrogen source depletion; (8) Diauxic shift study; and, (9-10) two nearly identical

experiments on stationary phase. We used Limma (Linear Models for Microarray

Data) (Smyth, 2004) package in R to compute p-values for responsiveness of genes

in each dataset.

The p-value distribution for each dataset is shown in Figure 4.1. As can be

seen in Figure 4.1, the majority of the p-value histograms do not have similar

frequency after p = 0.5, and the density near p = 1 is less than π0 = 0.5. This

implies that the p-values were under-measured and the number of significantly

responsive genes under these environmental stresses should be less than observed.

We applied ConReg-R on the p-values of each dataset. Our result shows that

the histograms of recalibrated p-values obtained by applying ConReg-R are better

than without recalibration, and π0 estimations are all above 0.5 (Figure 4.1).
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Figure 4.1: p-value density histograms for 10 stress response data sets. (CRR)

indicates the re-estimated p-values after ConReg-R. The gray horizontal line indi-

cates π0 = 0.5 for each plot.

We use a true positive set of 270 genes from (Chen et al., 2003) to compute true

FDR (FDRr). This is the intersection of core environmental stress response genes

obtained by co-regulation study in (Gasch et al., 2000) and the yeast orthologs

of S. pombe stress response genes. These 270 genes have been used as the true
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positive sets in other studies (Han et al., 2004; Li et al., 2007). The true FDR is

calculated based on this 270 gene list and we calculated the improvement of FDR

estimation (FDRim) for each dataset after applying ConReg-R. The FDRim is

defined as followed:

FDRim =

∑n
i=1 |FDR0

i − FDRr
i | −

∑n
i=1 |FDR1

i − FDRr
i |∑n

i=1 |FDR0
i − FDRr

i |

where FDR1
i (respectively, FDR0

i ) is the estimated FDR by recalibration (respec-

tively, input) p-values for gene i(i = 1 . . . n); and FDRr
i is the true FDR for gene

i.

The improvements in FDR estimation for all 10 datasets are shown in Figure

4.2. After applying ConReg-R, FDR estimation improved by 15% to 25% which

means that the FDR estimation will be closer to the real FDR.

We performed the meta-analysis of 10 datasets to detect the core environmen-

tal stress response genes using “maximal” method. The combined p-values are

computed by the maximal p-values across 10 datasets, and then transferred to

meta analysis p-values by transformation function in Table 2.1. The p-value den-

sity histograms for meta-analysis before and after applying ConReg-R are shown

in Figure 4.3. The meta-analysis p-values show better distribution after first ap-

plying ConReg-R to each dataset and then perform the meta analysis. Moreover,

FDR estimation improved by 38.5% after applying ConReg-R.
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Figure 4.2: Improvements in FDR estimation for yeast environmental response
datasets.
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Figure 4.3: The p-value density histograms for meta-analysis (“Max”) before and
after applying ConReg-R using yeast environmental response datasets. The gray
horizontal line indicates π0 = 0.5 for each plot.
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4.2 Human RNA-seq data

The next-generation sequencing technologies have been used for gene expression

measurement. In (Marioni et al., 2008), the authors compared RNA-seq and

Affymetrix microarray experiments and claimed that the sequencing data iden-

tified many more differentially expressed genes between human kidney and liver

tissue samples than microarray data using the same FDR cutoff. In total, 11,493

significant genes were identified by RNA-seq (3380 more genes than Affymetrix),

only 6534 (56.9%) genes were also identified by Affymetrix experiments. Upon

checking the p-value histograms for RNA-seq dataset, we found that majority of

p-values are very significant and its frequencies are very non-uniform for p > 0.5.

However, the p-value histogram for Affymetrix datasets is close to uniform for

p > 0.5 (Figure 4.4).

We applied ConReg-R to recalibrate the p-values obtained from RNA-seq

datasets and re-estimated the FDR. We found 9481 significantly differentially ex-

pressed genes (only 1368 more genes than affymetrix) at FDR ≤ 0.1%. Among

them, 6266 genes (66.1%) were also identified by Affymetrix experiments. There is

an increase of 9.2% overlap after application of ConReg-R (Figure 4.5). The FDR

estimation is improved by 20% after applying ConReg-R if we used significant

genes identified by affymetrix experiments as the true positive set.
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Figure 4.4: p-value density histograms for RNA-seq and Affymetrix datasets.

Figure 4.5: Overlap between significantly differentially expressed genes identified
by sequencing (left circle) and microarray (right circle) technologies. The numbers
in black are the numbers reported in (Marioni et al., 2008). The numbers in red
are the numbers after applying ConReg-R.
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4.3 Fission yeast data

Having shown the efficacy of iPLR re-estimation on simulated data, we next

demonstrate the utility of our iPLR re-estimation on real gene expression data,

mip1 mutant (Δmip1) differential expression in S. pombe (or fission yeast) com-

pared to its wild-type. The data was obtained from (Chu et al., 2007a) containing

28 wt/wt spotted two-color array data and 6 Δmip1/wt data for ∼ 5000 open

reading frames (ORFs). The purpose is to find the genes influenced by mip1 mu-

tation (Δmip1). The data have been global and local normalized. The wt/wt data

contains two batches of equal number of arrays which we call wt1/wt1 (or wt-rep1)

and wt2/wt2 (or wt-rep2). The application of SAM on wt1/wt1 vs. wt2/wt2 data

are shown in Table 4.2. It estimates π0 to be 0.255, while it should be 1 as both

wt1 and wt2 samples are the same except that they were hybridized into two dif-

ferent batches of arrays at two different times. The corresponding SAM plot is

shown in Figure 4.6(A1). After application of our iPLR procedure, the estimate

of π0 is improved to 0.997. The respective SAM plot was shown in Figure 4.6(A2).

We analyzed wt/wt (combining wt1/wt1 and wt2/wt2) versus Δmip1/wt using

SAM to identify differentially expressed genes, the results are shown in Table 4.2

and the corresponding SAM plot is shown in Figure 4.6(B1-2). Δmip1/wt was

hybridized altogether on a different batch of arrays at completely different time.

This resulted in batch effects again and the underestimation of π0 (0.22). FDR

estimates and results are shown in Table 4.2 and Figure 4.6(B1). We applied our
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Table 4.2: Significant gene tables for yeast datasets.

delta #sig.genes F̂DR #sig.genes F̂DR
wt vs. wt SAM (π̂0 = 0.2548) SAM+iPLR (π̂0 = 0.9972)
0.5 4092 0.099 550 0.5657
1 3554 0.0369 146 0.3449
2 2241 0.0007 13 0.0767
3 1099 0 10 0
wt vs. Δmip1 SAM (π̂0 = 0.2194) SAM+iPLR (π̂0 = 0.9744)
0.5 3984 0.0426 813 0.8258
1 3116 0.0001 428 0.307
2 1918 0 185 0.0225
3 934 0 113 0

iPLR procedure on this dataset. The corresponding estimates of π0 and FDR are

shown in Table 4.2 and Figure 4.6(B2). π0 estimate is closer to 1 (0.974) than

the otherwise unrealistic estimate (0.22) by SAM alone. Results of comparing

estimated FDR before and after iPLR are shown in Figures 4.6(A3) and 4.6(B3).

As shown in these figures, FDR estimation before iPLR is extremely low for most

genes, but after iPLR procedure, they are closer to what are expected. This results

showed that iPLR is a practically useful technique.

4.4 Human Ewing tumor data

Another dataset we analyzed is human Ewing tumor data from (Stegmaier et

al., 2007). It is affymetrix microarray data of A673 cells treated with DMSO

vehicle control expression profiled at 24 hours (6 replicates), 3 days (5 replicates),

and 5 days (6 replicates). The data have been quantile normalized. Since the
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Figure 4.6: SAM plot and FDR comparison (before and after iPLR re-estimation)
for S. pombe data set. (A1) The SAM plot before iPLR re-estimation for wt1/wt1
vs. wt2/wt2 dataset. (A2) The SAM plot after re-estimation for wt1/wt1 vs.
wt2/wt2 dataset. (A3) FDR comparison for wt1/wt1 vs. wt2/wt2 dataset. Blue
points indicate estimated FDR before iPLR re-estimation and the red points
indicate estimated FDR after iPLR re-estimation. (B1) The SAM plot before
re-estimation for wt/wt vs. Δmip1/wt dataset. (B2) The SAM plot after re-
estimation for wt/wt vs. Δmip1/wt dataset. (B3) FDR comparison for wt/wt
vs. Δmip1/wt dataset. Blue points indicate estimated FDR before iPLR re-
estimation and the red points indicate estimated FDR after iPLR re-estimation.
The results are encouraging and iPLR is a practically useful technique.

experiments were performed on three different days, it is unrealistic to assume no

batch confounding effect. In fact, from the array clustering result in Figure 4.7,

the data from 3 different days are well separated by the day of the sample. It

suggests that biological effect and batch effect are confounded.

First we analyzed the datasets from 24 hours and 3 days using SAM alone, and



Chapter 4: Applications 77

Figure 4.7: Clustering of all arrays from Ewing et al. data using all the genes.

using iPLR combined with SAM. The result is shown in Table 4.3. SAM estimated

π0 to be 0.68, while we expect a higher π0 as the vehicle control data between two

days should not be very different. After application of iPLR, the estimation of π0

is 0.84 closer to what is expected. We repeated the same procedure to compare

24 hours vs. 5 days, and obtained similar result (Table 4.3). The estimation of π0

is 0.81 and it is less than the π0 estimated in comparison of 24 hours vs. 3 days.

This is to be expected since there should be more differently expressed genes in

5 days versus 24 hours than 3 days versus 24 hours. The SAM plots for theses

two comparisons and the comparisons of estimated FDR before and after applying

iPLR are shown in Figures 4.8 (A1-3) and (B1-3).

We also compared these three groups: 24 hours, 3 days and 5 days. Results

are shown in Table 4.3. It is seen that FDR is improved after applying iPLR

and estimation of π0 is closer to real π0. The SAM plots and the comparisons of

estimated FDR before and after applying iPLR are shown in Figure 4.8 (C1-3).
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Figure 4.8: SAM plots and FDR comparison (before and after iPLR re-estimation)
for human Ewing tumor data set. (A1) The SAM plot before iPLR re-estimation
for 24 hours vs. 3 days dataset. (A2) The SAM plot after re-estimation for 24
hours vs. 3 days dataset. (A3) FDR comparison for 24 hours vs. 3 days dataset
and 24 hours vs. 5 days dataset. Blue points indicate estimated FDR before iPLR
re-estimation and the red points indicate estimated FDR after iPLR re-estimation.
(B1) The SAM plot before re-estimation for 24 hours vs. 5 days dataset. (B2)
The SAM plot after re-estimation for 24 hours vs. 5 days dataset. (B3) FDR
comparison for 24 hours vs. 3 days dataset and 24 hours vs. 5 days dataset.
Blue points indicate estimated FDR before iPLR re-estimation and the red points
indicate estimated FDR after iPLR re-estimation. (C1) The SAM plot before
iPLR re-estimation for 24 hours vs. 3 days vs. 5 days dataset. (C2) The SAM
plot after re-estimation for 24 hours vs. 3 days vs. 5 days dataset. (C3) FDR
comparison for simulation 24 hours vs. 3 days vs. 5 days dataset. Blue points
indicate estimated FDR before iPLR re-estimation and the red points indicate
estimated FDR after iPLR re-estimation.
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Table 4.3: Significant gene tables for human Ewing tumor datasets.

delta #sig.genes F̂DR #sig.genes F̂DR
24H vs. 3D SAM (π̂0 = 0.6844) SAM+iPLR (π̂0 = 0.8416)
0.5 8905 0.2789 4091 0.3801
1 3822 0.0865 1675 0.1706
2 1024 0.0167 435 0.0474
3 368 0.0065 168 0.0251
24H vs. 5D SAM (π̂0 = 0.6052) SAM+iPLR (π̂0 = 0.8063)
0.5 8905 0.2789 4091 0.3801
1 3822 0.0865 1675 0.1706
2 1024 0.0167 435 0.0474
3 368 0.0065 168 0.0251
24H vs. 3D
vs. 5D

SAM (π̂0 = 0.5102) SAM+iPLR (π̂0 = 0.6372)

0.25 13873 0.2319 14101 0.3348
0.5 8421 0.0537 8131 0.0921
1 3498 0.0037 3144 0.0083
2 605 0.0000 494 0.0000

24H: 24 hours; 3D: 3 days; 5D: 5 days.

4.5 Integrating analysis in type2 diabetes

To understand Histone-DNA interaction mechanism in type2 diabetes, our col-

laborators from National Institute of Pharmaceutical Education and Research

(NIPER, India) performed the H3K4/ H3K9 mono methylation experiments with

the alteration in gene expression in 3T3 adipocytes under hyperglycaemic/hyperinsulinemic

conditions. The mouse 15K microarray (Microarray centre, University Health

Care, Toronto) used in this study consisted of 15,264 genes spotted in duplicate.

The experiments generate H3Ac (Histone H3 acetylation), H3K4me (H3 lysine 4

mono methylation), H3K9me (H3 lysine 9 mono methylation) ChIP-chip data and

30min gene expression data (each experiment have 3 biological replicates and each
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replicate have 2 technical replicates due to the duplicate probes in one array). This

array confounding effect which is similar to batch confounding effect occurred in

this study mainly because of the array design.

Since this array is the cDNA microarray, the signal (intensity) is weaker than

that from DNA microarray. Therefore, we add a small positive value to each

channel (CH5 & CH3) to achieve more stable data. The procedure is described as

followed,

Xij = Log2
IC5
ij + cj

IC3
ij + cj

,

where Xij is the gene expression for gene i in array j and IC5
ij and IC3

ij are the

intensity in CH5 and CH3 for gene i in array j. cj ≤ 100 is the predefined positive

value for array j. We can chose cj by maximizing the Pearson correlation coefficient

between the duplicate in array j. Since the median intensity of microarray is

around few thousands, the gene expression ratio do not change so much for the

majority of genes. It will reduce the variation for low intensity genes (the intensity

below 1000). We performed the LOWESS normalization for each array.

The SAM plot for 30min gene expression data is shown in Figure 4.9 (A). The

curve of expected score vs. observed score is all below the diagonal which may

be naively interpreted as that only down-regulated genes are identified and no

up-regulated genes. That result grossly deviated from our biological knowledge

and array confounding effect play a major role to generate this unexpected result.

Therefore, we performed iPLR to re-estimate the expected statistics, and the SAM
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plot after iPLR re-estimation is shown in Figure 4.9 (B). As shown in this figure,

we can obtain the up-regulated genes and down-regulated genes. There are total

1536 genes which are differentially expressed with at least 1.5 fold difference and

FDR< 10%.

To get further insight into the level of H3K9me, H3K4me and H3Ac across

the coding regions of the mouse genome, we performed ChIP-cDNA analysis us-

ing 15K cDNA array after 30 minutes of the insulin stimulation under the high

glucose condition. Using same procedure, SAM analysis with iPLR re-estimation,

we identified 844 targets for H3Ac, 215 targets for H3K4me and 999 targets for

H3K9me with differential status in high glucose as compared to no glucose condi-

tion in coding regions of the genes.

To understand the role of these histone H3 modifications in regulation of the

genes under hyperglycaemic/hyperinsulinemic conditions, we identified the genes

that underwent changes in any of these three histone modifications along with

change in their gene expression levels. To do so, we set up a criterion and to select

only the genes that were common in cDNA expression analysis with differential

change in status in any one of either H3Ac or H3K4me or H3K9me. This stringent

criterion might result in false negatives but it also reduces the number of genes

to a manageable size for further validation analysis and reduces the chance of

having false positives. With this criterion we identified 831 genes with significant

differential H3Ac or H3K4me or H3K9me status and also change in their mRNA
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Figure 4.9: SAM plots before and after iPLR re-estimation for 30min gene expres-
sion data for type2 diabetes and integrating cluster heat map for gene expression
and histone marks. (A) The SAM plot before iPLR re-estimation for 30min gene
expression data. (B) The SAM plot after iPLR re-estimation for 30min gene ex-
pression data. (C) Hierarchical cluster analysis of mRNA, H3Ac, H3K4me and
H3K9me profiles on coding regions of genes altered by the insulin (100 nM) stim-
ulation under high glucose as compared to low glucose conditions.

expression levels. Of these, 608 genes were down regulated and 223 genes were

up regulated. The integrating cluster heat map for gene expression and histone
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marks for these 831 genes is shown in Figure 4.9 (C).

With this analysis we demonstrated that histone H3Ac levels in the coding

regions of the genes very well correlates with the mRNA expression level of the

respective genes signifying H3Ac as a mark of gene activation even in the coding

regions of the genes. Furthermore, mRNA expression of most of the genes were

inversely proportional to H3K9me levels, suggesting that increased H3K9me oc-

cupancy in the coding regions of the genes is associated with gene inactivation.

However, very few genes are enriched for H3K4me in the coding regions and we

also failed to observe much overlap between H3K4me and mRNA expression levels

(4.9 (C)). This indicates that the genes with increased occupancy of H3Ac and

H3K9me in the coding region are not enriched for H3K4me.

Out of differentially expressed genes identified by cDNA microarray and ChIP-

chip analysis, we observed significant change in the expression of 9 genes that are

responsible for mediating chromatin remodeling by insulin under high glucose

condition. These include down regulation of Myst4 and Ep400 (histone acetyl

transferases, HAT), Jmjd2b and Jarid2 (histone methyl transferases, HMT) and

Dyrk2 (histone kinase). In addition to the above mentioned genes, Brdt gene which

is involved in reorganization of acetylated chromatin was also found to be down

regulated. Increase in the expression of Set gene (HAT inhibitor) and also genes

responsible for histone H3K4 demethylation (Jarid1a and Aof1) further supports

our earlier observation. The change in expression of these genes observed in the
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present study was in accordance with our previous findings that shows decrease

in levels of H3Ac, H3K4me and H3K9me after 30 minutes of insulin stimulation

under high glucose condition (Kabra et al., 2009).

Figure 4.10: RT-PCR validation on Histone H3 acetylation, lysine 4 mono methy-
lation and lysine 9 mono methylation levels on coding regions of the chromatin
modification regulating genes. (A) H3Ac, H3K4me and H3K9me levels on Myst4;
(B) H3Ac, H3K4me and H3K9me levels on Set; (C) H3Ac and H3K4me levels
on Jmjd2b and (D) H3Ac and H3K4me levels on Aof1. Relative fold change was
calculated after normalization with input. Similar results were obtained in the
three independent sets of experiments. All the values were represented as Mean
± S.E.M. (n=3), ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01 and ∗p < 0.05, Vs LGI.

Further , we selected 4 chromatin remodeling genes, Myst4, Jmjd2b, Set and

Aof1 and confirmed the change in H3Ac, H3K4me and H3K9me levels on their

coding regions by performing ChIP-RT-PCR analysis (Figure 4.10). We observed a

decrease in the level of H3Ac on Myst4 and Jmjd2b and an increase on Set and Aof1
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genes confirming our ChIP-chip data. However, we failed to observe any change

in H3K9me levels on the coding regions of histone H3K9 demethylase (Jmjd2b)

and H3K4 demethylase (Aof1). Decreased H3K4me levels on Myst4 and Jmjd2b

and increased H3K4me levels on Set and Aof1 further confirmed our ChIP-chip

analysis. These results suggest a novel mechanism of regulating the level of H3Ac

and H3K4me by each other under hyperinsulinemic/hyperglycemic conditions.

However, levels of H3K9me were only changed on histone acetylase (Myst4) and

deacetylase (Set), highlighting the role of this modification in regulating histone

acetylation only.



Chapter 5: Conclusions and future works 86

Chapter 5

Conclusions and future works

In this chapter, we first summarize the two methods presented in the thesis and

then discuss their limitations and potential directions of future work.

5.1 Conclusions

In the first method, to eliminate the dependency effect in microarray studies,

we developed Constrained Regression Recalibration (ConReg-R) which focuses on

the uniformity of p-values under null hypotheses and uses constrained polynomial

regression to recalibrate the empirical p-value distribution to more well-defined

p-value distribution. Therefore, the FDR estimation can be improved after the

recalibration since the assumption of FDR estimation is that the input p-values

should follow such an ideal empirical p-value distribution under null hypothesis.
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If the input p-values follow the properties of ideal empirical p-values distribution,

the regression function tends to be diagonal line (i.e., y = x) and the p-values do

not change considerably after recalibration.

Though our method is discussed in the context of global FDR control, it is

equally applicable to the other FDR like controls such as local FDR. Our method

does not provide any new FDR control, but inputs better calibrated p-values to

the existing FDR estimators to improve their efficacy.

In the second method, to remove the batch confounding effect in microarray

studies, we proposed iterative piecewise linear regression (iPLR) to correct the bias

introduced in the estimation of null distribution when experimental batches are

confounded with treatment groups of interest. In FDR estimation, this correction

is critical in gene expression studies where one wants to compare data obtained

from different laboratories or from the same laboratory but collected at different

times. Our results on the real data, which was preprocessed and normalized ap-

propriately, demonstrated that the effect of batch confounding continues to exist

in the normalized data also and leads to erroneous FDR estimation. iPLR plays

an important role in such a case, it works at the downstream of a resampling based

method such as SAM. In iPLR, we assume that batch effects are small and influ-

ences all spots on the array in unexpected but definite manner which varies from

batch to batch. Under this assumption which was used in the popularly used lo-

cation/scale model for batch effects (Johnson et al., 2007), the influence is mainly
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on the estimation of FDR via badly estimated null distribution, underestimated

proportion of non-differentially expressed genes and by the inevitable influence of

change of mean value on permutation procedure. The SAM manual cites this be-

havior as one that could be biologically more meaningful to be left to the biologists

to decide. When it is reasonable to assume in gene expression studies that π0 is

more than 0.5, and under realistic assumptions of low batch effects, we proposed

iPLR method to resolve this problem. iPLR procedure is equally applicable to

any differential expression analysis procedure for any number of classes. It is only

for the sake of simplicity in describing our methodology and evaluating the results

in the context of SAM (a widely used method for differential expression analysis).

Similar problem has been addressed in the evaluation of enrichment of gene

sets in a list of genes (Efron and Tibshirani, 2007), the GSA (Gene Set Analysis)

algorithm. GSA handles the problem by making the mean and standard deviations

of the distributions of both observed statistics and permutation statistics to be

the same. The idea is simple and effective for GSA because π0 in GSA is generally

close to 1. However, it may not work well in several gene expression studies if π0

is well below 1. This may lead to severe overestimation of standard deviation and

make the idea ineffective for this purpose. Hence, iPLR may play an important

contribution.

We have shown the efficacy of our iPLR method on both simulated and real

data. These results demonstrate that iPLR combined with SAM is robust to batch
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confounding effects of treatments. Results in Table 3.3 suggest that iPLR improves

the estimate of π0 to some extent than using SAM alone even in the absence of

batch confounding effects. More extensive experiments will be conducted in the

future to verify this hypothesis. Furthermore, there is still room to improve iPLR.

As shown in Figure 3.4, re-estimated FDR deviates considerably from real FDR

for dataset C. However, iPLR in its current form is still useful in making the right

choice of differential expression significance threshold in the wake of better and

meaningful FDR estimation.

5.2 Limitations and future works

There are several limitations and potential future works of the methods proposed

in this thesis.

5.2.1 Some special p-value distributions

In most common cases, the p-values are under-estimated or over-estimated and p-

value distribution is biased towards 1 or 0 respectively (e.g., Figure 1.1B & 1.1C).

ConReg-R can be useful to deal with these two cases by setting the regression

function is convex or concave function.

There are two special p-value distributions with mixture under-estimated or

over-estimated p-values in one experiment. One is mixture of over-estimating
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p-values from H1 and under-estimating p-values from H0 (Hump shape p-value

distribution in Figure 5.1(A)). Another is mixture of under-estimating p-values

from H1 and over-estimating p-values from H0 (U-shape p-value distribution in

Figure 5.1(B)).
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Figure 5.1: Hump shape and U-shape p-value density histograms. (A) Hump

shape p-value density histogram. The gray horizontal line indicates the π0 = 0.9.

(B) U-shape p-value density histogram. The gray horizontal line indicates the

π0 = 0.9.

The regression function for hump shape p-value distribution should be convex

for p-values from H1 and concave for p-values from H0. Similarly, The regression

function for U shape p-value distribution should be concave for p-values from H1

and convex for p-values from H0. However, how to distinguish the p-values from

H1 and H0 or define the regression function is a difficult problem. This may be
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one potential future work.

5.2.2 Parametric recalibration method

The distribution of p-values from microarray experiment can be modeled by beta-

uniform mixture (BUM) distribution (Pounds and Morris, 2003). The probability

density function for BUM distribution is

f(x|a, π0) = π0 + (1− π0)ax
a−1,

where 0 < x ≤ 1, 0 < π0 < 1 and 0 < a < 1. Therefore, the parametric recalibra-

tion method similar to ConReg-R can be developed. Though this procedure, the

estimation of pi0 and a can be obtain by inputting any kind of p-value distribution.

The false discover rate can be estimate by BUM distribution.

To more accurately estimate p-value distribution, we can use mixture of more

than 2 beta distributions to model the p-value distribution (uniform distribution

is the special case of beta distribution) (Allison et al., 2002). It is sufficient to

estimate all the parameters for multiple mixture beta distribution if we have large

number of p-values.

5.2.3 Discrete p-values

ConReg-R is only applicable for continues p-values from parametric test. If the

p-values from permutation or non-parametric test and the sample size is relatively
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small, the uniformity property of p-values may not fit well. For example, the

p-values from Wilcoxon tests for sample size = 3, 5, 10, 50 in Figure 5.2.
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Figure 5.2: p-value Density histograms from Wilcoxon test for various sample sizes

(3, 5, 10, 50).

The regression function in ConReg-R cannot be estimated by the discrete p-

values with small sample size because those p-values are distributed within few

blocks (Figure 5.2(A-C)). If the sample size is very large (Figure 5.2(D)), ConReg-

R may still work well. The new procedure to handle discrete p-values is one of
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potential future work.

5.2.4 π0 estimation for ConReg-R and iPLR

π0 estimation is very important in multiple testing problem. In ConReg-R, we

used (2.9) to estimate π0. And in iPLR, we used iterative approach to estimate π0.

However, our goal in this thesis is to improve FDR estimation. Next natural goal

will be better π0 estimation. Validation of π0 estimation in those two procedures

and more comprehensive comparisons to other exiting π0 estimation methods will

be explored. Another potential future work is that whether the π0 estimation can

be improved if we consider the input raw data.

5.2.5 Other regression functions for iPLR

In iPLR, we simply approximate the biological effect factor ci to be linearly related

with the permutation statistics d̄i when ci 
= 0. However, to more accurately fit

the iPLR model, other regression functions can be apply, such as, 2 or 3 degree

polynomial function.
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