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SUMMARY

Traditionally, the focus of specification mechanism has been on improving its ability to

cover a wider range of problems more accurately, while the effectiveness of verification is left to

the underlying provers. In this thesis, we attempt a novel approach, where the focus is on deter-

mining a good specification mechanism to achieve better expressivity (the specification should

capture more accurately and concisely the functionality and applicability of the corresponding

code) and verifiability (the verification process should succeed in more scenarios than the cor-

responding verification without the specification enhancements, with better or at least similar

performance). In particular, we develop three new specification mechanisms, which, besides

improving the specification, are meant to assist during the verification process itself.

We begin by investigating the benefits of immutability annotations in the specification for

allowing more flexible handling of aliasing, as well as more precise and concise specifications.

Our approach supports finer levels of control that can localize and mark parts of a data struc-

ture as being immutable through the use of annotations on predicate and data declarations. By

using such annotations to encode immutability guarantees, we expect to obtain better specifica-

tions that can more accurately describe the intentions, as well as prohibitions, of the method.

Ultimately, our goal is improving the precision of the verification process. We have designed

and implemented a new entailment procedure to formally and automatically reason about im-

mutability enhanced specifications. We have also formalised the soundness for our new pro-

cedure through an operational semantics with mutability assertions on the heap. Additionally,

we have carried out a set of experiments to both validate and affirm the utility of our current

proposal on immutability enhanced specification mechanism.

Secondly, we notice that, often, a user has an intuition about the proving process. This the-

sis provides the necessary utensils for integrating this intuition in the specification. Instead of

writing a flat (unstructured) specification, the user can use insights about the proof for writing

a structured specification that will trigger different techniques during the proving process: (i)

case analysis can be invoked to take advantage of disjointness conditions in the logic. (ii) early,
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as opposed to late, instantiation can minimise on the use of existential quantification. (iii) for-

mulae that are staged provide better reuse of the verification process. Initial experiments have

shown that structured specifications can lead to more precise verification without incurring any

performance overhead.

Lastly, we observe that one major issue about writing specifications for object-oriented (OO)

programs is the fact that such specifications must adhere to behavioral subtyping in support of

class inheritance and method overriding. However, this requirement inherently weakens the

specifications of overridden methods in superclasses, leading to imprecision in program rea-

soning. To address this, we advocate for two types of specifications, one type that caters to

calls with static dispatching, and one for calls with dynamic dispatching. We formulate a novel

specification subsumption that can avoid code re-verification, where possible. Using a predicate

mechanism, we propose a flexible scheme for supporting class invariant and lossless casting.
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CHAPTER I

INTRODUCTION

Computer programs (software) are present everywhere in our day to day life, and it is crucial

for them to be dependable, especially in critical environments (aeronautics, automotive indus-

try, banking, etc.). In 2002, the US Department of Commerce estimated that the cost to the US

economy of avoidable software errors is between 20 and 60 billion dollars every year [117].

Consequently, a great effort has been put into software verification, in order to prove that soft-

ware fully satisfies the expected requirements.

Software verification appears in two flavors, static and dynamic [38]. Dynamic verification

(analysis) works by inspecting the executions of a given program. Examples of standard dy-

namic analysis are testing and profiling. The disadvantage of dynamic analysis is that it might

not generalize to all the possible runs. The fact that the program has been found to behave in a

certain manner for a set of possible inputs, might not signify that the behavior can be generalized

for all the possible inputs.

While dynamic verification requires the running code, static verification (analysis) works at

the program code level in order to reason about all possible behaviors that might arise at run

time, regardless of the inputs provided or of the environment in which the program is being run

[91, 48]. Hence, it can be applied earlier in development. One example of static analysis are

the compiler optimizations. In order to cover all the possible execution paths, static analysis

typically uses an abstracted model of the program state, which might lose some information.

Consequently, the result of the analysis, while sound, might be less precise, providing false pos-

itives (issues which are reported but are not really defects). The goal of the research community

is constructing a program verifier, which by using logical proof, can give an automatic check of

the correctness of programs submitted to it [117, 54].

First formulations of the usage of logic for program verification were given by Floyd [43],

and Hoare [53]. The main feature of Hoare logic is the Hoare triple, {p}c{q}, describing how

the execution of a command c changes the state of the program from p to q. A problem faced

by Hoare logic is establishing the correctness of programs that mutate data structures. These



2 CHAPTER 1. INTRODUCTION

programs typically require a storage that persists outside the call stack, namely the heap, and

their correctness usually depends upon complex restrictions on the sharing in the data structures.

As Hoare logic has to explicitly handle all the possible aliasing on the heap, scalability issues

are likely to arise [107].

In order to deal with this shortcoming, Ishtiaq and O’Hearn [56] and Reynolds [107] de-

signed separation logic, an extension to Hoare logic for reasoning about shared mutable data

structures, i.e. data structures with updatable fields that can be referenced from more than one

point. Separation logic assertions describe states, which contain both the store (stack) and the

heap. In order to simplify the aliasing issue, separation logic adds two new logical connectives,

interpreted as follows:

• p1 ∗ p2, where ∗ represents the separating conjunction, and denotes the fact that the heap

can be split into two disjoint parts such that p1 holds for one part and p2 holds for the

other. Basically, the separating conjunction has the non-aliasing information built in.

• p1 −−∗p2, where −−∗ represents the separating implication for denoting the fact that if the

heap is extended with a disjoint part in which p1 holds, then p2 holds for the extended

heap.

For illustration, if we compare p1∗p2 and p1∧p2, the novelty introduced by the separat-

ing conjunction over the logical conjunction is the fact that, in the former case, p1 and p2 are

required to point to disjoint pieces of heap. Thus, there is no need to explicitly consider the

aliasing between them. On the other hand, in the latter case, p1 and p2 can be either aliased, or

disjoint.

By using the separating conjunction, local specifications can be extended, as illustrated by

the frame rule:
{p}c{q}

{p ∗ r}c{q ∗ r}

where no variable occurring free in r is modified by c.

With the help of the frame rule, a local specification can be extended with arbitrary predi-

cates about variables and heap cells that are not modified by command c. By local specification

we mean a specification involving only the variables and heap cells that are actually used by

the command c (the footprint of c). Basically, the frame rule says that in order to understand

how a program works, the specification should only refer to the cells that the program actually
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accesses. All the other heap cells automatically remain unchanged. Through this frame rule, a

specification of the heap being used by c can be arbitrarily extended as long as free variables of

the extended part are not modified by c.

By the use of separation logic, the heap memory assertions can be made more precise (with

the help of must-aliases implied by the separating conjunction) and concise (with the help of

frame conditions).

From the moment when separation logic was proposed, lots of automated reasoning tools

based on this logic were developed [8, 45, 92, 57]. The use of the separation logic formalism

has been further extended for termination proofs [15], concurrency [119, 120, 47, 46], interpro-

cedural shape analysis [45, 18, 109], verifying overlapping structures [76, 52], Java verification

[35, 101, 35].

1.1 About This Thesis

The current thesis applies to the area of static program verification, and makes use of the for-

malism of separation logic in order to verify properties of mutable data structures. The starting

point of this thesis is the automated verification system proposed in [92]. As opposed to other

works [7, 33], which have designed specialised solvers that work for a fixed set of predicates

(e.g. the predicate lseg to describe a segment of linked-list nodes), the approach in [92] de-

scribes a verifier that works for user-defined shape predicates. Shape predicates are predicates

specifying data structure shapes, as well as certain numerical properties of data structures, such

as size and reachability.

The main concern of the current thesis is improving the precision and expressivity of the

verification process. We start from the remark that most efforts on improving the verification

process have been confined to the verification technology, an approach that may lead to more

reliance on clever heuristics from the verification tools, and also more complex implementation

for the verification tools themselves. In this thesis, we shall propose a novel approach towards

improving the verification process that focuses on enhancing the specification mechanism in-

stead. In particular, we advocate for enhancing the specification in order to capture the intention

of the corresponding code in a more precise and concise manner:

• a more precise specification should capture more accurately the functionality and appli-

cability of the corresponding code.
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• more concise specification should be shorter than the specification prior to the enhance-

ment.

This specification restructuring is not meant to only increase the readability of the specifica-

tions, but it should assist in the verification process. Correspondingly, the results in the current

thesis provide evidence that, when put to good use, a more precise and concise specification

mechanism leads to a more precise and more efficient verification:

• more precise verification means that it should succeed in more scenarios than the corre-

sponding verification without the specification enhancements.

• more efficient verification means that it should be faster.

Next, we will illustrate the specification enhancements proposed by the current thesis through

a running example, which verifies properties of an AVL tree. An AVL tree is a binary search

tree such that, for each of its nodes, the balance factor is between -1 and 1 (the balance factor of

a node is the difference between the height of its right subtree and the height of its left subtree).

We first define a data node node2, as follows:

data node2 { int val; int height; node2 right; node2 left; }

Each node is used to store the actual data in the val field, the maximum height of its subtrees

in the height field, and references to the right and left subtrees in the right and left fields,

respectively. Next, we provide a shape predicate for the AVL tree. The first version of this

shape predicate conforms to the approach in [92], and it is given below. Subsequently, we will

enhance this specification according to the directions pursued in the current thesis. The name

of the predicate is avl and it captures the size property via s, the height via h, and the balance

factor via b.

root::avl〈h, s, b〉 ≡ root=null ∧ h=0 ∧ s=0 ∧ b=0

∨ root::node2〈 , h, r, l〉∗r::avl〈h1, s1, b1〉∗l::avl〈h2, s2, b2〉 ∧ h=max(h1, h2)+1

∧ s=s1+s2+1 ∧ h1=h2+1 ∧ b=−1

∨ root::node2〈 , h, r, l〉∗r::avl〈h1, s1, b1〉∗l::avl〈h2, s2, b2〉 ∧ h=max(h1, h2)+1

∧ s=s1+s2+1 ∧ h1+1=h2 ∧ b=1

∨ root::node2〈 , h, r, l〉∗r::avl〈h1, s1, b1〉∗l::avl〈h2, s2, b2〉 ∧ h=max(h1, h2)+1

∧ s=s1+s2+1 ∧ h1=h2 ∧ b=0
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Formula p::c〈v∗〉 may denote either a points-to fact of the heap where c is a data node, or

a shape (heap) predicate where c is a named, parameterized assertion over the heap. For both

cases, v∗ denotes the arguments, and denotes an anonymous variable. For each shape predicate

and data node, we distinguish the first parameter root, denoting a pointer to the specified data

structure that guides data traversal.

The aforementioned inductive definition of the AVL tree consists of a base case correspond-

ing to the situation when the tree is null (root=null∧h=0∧s=0∧b=0), and an inductive case

consisting of the last three disjuncts in the definition. The constraints b=0, b=1, and b= − 1

state that the tree is balanced, while constraints s=s1+s2+1 and h=max(h1, h2)+1 compute

the size and height of the tree pointed by root, respectively. The ∗ connector ensures that the

head node, the right and left subtrees reside in disjoint heaps. Existential quantifiers for local

values and pointers, such as r, l, h1, h2, s1, s2 are implicitly assumed.

Let us first address the issue of the lack of structure of the aforementioned specification (this

reaserch direction is pursued in more detail in Chapter 5). With a closer inspection, the reader

might notice that the specification contains significant redundancy. More specifically, the only

part changing between the last three disjuncts is the relation between the heights of the left and

right subtrees, and, consequently, the balance factor (the underlined formula). Everything else

is left unchanged. In order to remove the redundancy, the user may rewrite the same inductive

definition as follows:

root::avl〈h, s, b〉 ≡ case

{root=null⇒ h=0 ∧ s=0 ∧ b=0;

root6=null⇒ root::node2〈 , h, r, l〉∗r::avl〈h1, s1, b1〉∗l::avl〈h2, s2, b2〉

∧ h=max(h1, h2)+1 ∧ s=s1+s2+1 then

case {h1=h2+1⇒ b=1;

h1+1=h2 ⇒ b=− 1;

h1=h2 ⇒ b=0}}

In the latter definition for the AVL tree, the following constructs proposed by the current

thesis are being used:

• case constructs (denoted by the keyword case): employed in order to highlight the

disjointedness conditions root=null and root6=null, and h1=h2+1, h1+1=h2, and
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h1=h2, respectively.

• staged formula (denoted by the keyword then ): ensures the reuse of the logical formula

before the keyword,

root::node2〈 , h, r, l〉∗r::avl〈h1, s1, b1〉∗l::avl〈h2, s2, b2〉

∧h=max(h1, h2)+1 ∧ s=s1+s2+1,

between the three branches corresponding to h1=h2+1, h1+1=h2 and h1=h2, respec-

tively.

Take note that, at this point, we only highlight the syntactic implications of the new con-

structs in making the specification more readable and minimizing the redundancy. In Chapter 5,

we will explain how the new constructs assist in obtaining a better verification from the point

of efficiency and precision. Additionally, in Chapter 5, we will explain the third specification

structuring enhancement, which provides a way for the user to specify the type of instantiation

to be used for a given logical variable.

Another contribution of this thesis relies on the observation that, while the shape predicates

in the specifications denote resources that can be always consumed, some data structures are

only being read from (direction pursued in Chapter 4). Hence, we enhance the specification

mechanism for capturing the immutability property of data structures and investigate how the

verification process can take advantage of this knowledge. Consequently, our approach enables

a more restricted access to data structures. Assuming one of the aforementioned definitions of

the AVL tree, let us try to specify a method which computes the balance factor of the head node

of an AVL tree. For this purpose, we define two methods:

• get height, which returns the height of the AVL tree received as argument.

• get balance, which computes the balance factor.

Note that the keyword requires introduces the method’s precondition (the program state

that must hold prior to the method’s execution), whereas ensures precedes the method’s post-

condition (the program state that must hold just after the method’s execution). Additionally, res

is a special identifier used in the postcondition to denote the result of a method.
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int get height(node2 x)

requires x::avl〈h, s, b〉

ensures x::avl〈h, s, b〉 ∧ res=h ;

{ int lh, rh;

if (x==null) then return 0;

else {rh=get height(x.right);

lh=get height(x.left);

{ if (rh≥lh) then return 1+rh else return 1+lh}}

int get balance(node2 x)

requires x::avl〈h, s, b〉

ensures x::avl〈h, s, b〉 ∧ res=b ∧ −1≤b≤1;

{ return get height(x.right)−get height(x.left)}

The precondition of both get height and get balance assume an AVL tree of height

h, size s, and balance factor b. The same predicate, x::avl〈h, s, b〉, is also present in their

postconditions, which suggests that an AVL tree of the same height, size and balance factor is

being preserved by both methods. However, as these methods do not mutate the input tree, we

would want to express a stronger property stating that exactly the same tree from the method’s

entry is being preserved at the method’s exit. We propose to use an immutability annotation of

the form @I to annotate the specification of the AVL tree in order to indicate that the tree pointed

by x is not mutated by its method:

int get height(node2 x)

requires x::avl〈h, s, b〉@I

ensures res=h ;

int get balance(node2 x)

requires x::avl〈h, s, b〉@I

ensures res=b ∧ −1≤b≤1;

Each precondition states that the AVL tree pointed by x will only be read by the correspond-

ing method. This indirectly ensures the preservation of the input AVL tree, which does not
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need to be re-proven in the postcondition. The latter specifications given for get height and

get balance methods are:

• more concise (or shorter) since there are fewer predicate in the postconditions.

• more precise (or accurate) since they capture the total preservation of the input AVL tree

without resorting to the use of a more complex predicate.

As the final research direction of this thesis, we investigate the specification mechanism in an

object oriented (OO) setting (direction pursued in Chapter 6). One major issue to consider when

verifying OO programs is how to design a specification for a method that may be overridden by

another method down the class hierarchy (a subclass might provide a specific implementation

of the method), such that it conforms to behavioral subtyping. According to the behavioral

subtyping requirement, an object of a subclass can always be passed to a location where an

object of its superclass is expected, as the object from each subclass must subsume the entire set

of behaviors from its superclass [80]. This requirement may lead to imprecision during program

reasoning.

For illustration, let us define the AVL tree in our running example in an OO setting. For this

purpose, we will provide three classes:

• a class Node2 denoting an element of the tree. This class has three fields: val representing

the value stored in the node, and right and left for denoting the references to the right

and left subtrees, respectively.

• a class BinaryTree with four fields: root denoting the reference to the head node, h

representing the height of the tree, s for denoting the size of the tree, and b for denoting

the balance factor of the head node. The class also provides a method get balance,

which returns the balance factor of the head node.
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class Node2 {

int val;

Node2 right, left;

Node2(int v) {

val=v; right=null; left=null;

}}

class BinaryTree {

Node2 root;

int h, s, b;

BinaryTree(){

root=null; h=0; s=0; b=0;

}

int get balance() {

return b;

}}

Next, we design the specification of the get balance method in class BinaryTree without

worrying about any potential subclass that might override it. The this variable denotes the

receiver of the method.

int BinaryTree.get balance()

requires this::BinaryTree〈h, s, b〉

ensures this::BinaryTree〈h, s, b〉 ∧ res=b;

This specification is very precise as it was considered statically on a per method basis with-

out concern for method overriding, and can be used whenever the actual type of the receiver is

known (static dispatch). Now, let us assume we have a subclass AVLTree extending BinaryTree,

which inherits method get balance, but adds an additional constraint in its specification in or-

der to make sure that the balance factor is between −1 and 1.
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class AVLTree extends BinaryTree {

int get balance()

requires this::AVLTree〈h, s, b〉

ensures this::AVLTree〈h, s, b〉 ∧ res=b ∧ −1≤b≤1;

}}

Getting back to the specification of get balance in class BinaryTree, if we take into

account the overriding of the get balance method by its corresponding method in the AVLTree

subclass, in order to adhere to behavioral subtyping, we may have to weaken the postcondition

of BinaryTree.get balance by adding the constraint −1≤b≤1.

void BinaryTree.get balance()

requires this::BinaryTree〈s, h, b〉

ensures this::BinaryTree〈s, h, b〉 ∧ res=b ∧ −1≤b≤1;

Such changes make the specifications of the methods in superclasses less precise, and are

carried out to ensure behavioral subtyping in order to handle calls with dynamic dispatch. Fur-

thermore, these specifications must also cater to potential modifications that may occur in the

extra fields of the subclasses. To address this, we advocate a new specification mechanism for

the OO setting that focuses on the distinction and relation between specifications that cater to

calls with static dispatching from those for calls with dynamic dispatching.

1.2 Contributions of the Thesis

After providing a short description of the research directions pursued by the current thesis, we

highlight its contributions:

• Immutability enhanced specifications (Chapter 4, first proposed in [28]). We provide

a more concise and precise specification mechanism that allows immutability annotations

and heap sharing. We show how our proposal enables better precision and applicability

of the specifications, as well as preservation of cut-points in support of modular analysis.

In order to support and make use the immutability enhanced specifications, we make the

following related contributions:
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– Immutability Guarantees We discuss several immutability guarantees that can be

enforced through our approach. Among them, we differentiate between total im-

mutability and partial immutability.

– Entailment Procedure We have designed a new entailment procedure to automati-

cally reason about immutability enhanced specifications and have carried out exper-

iments for validating the proposal.

• Structured specifications (Chapter 5, first proposed in [44]). We propose to add new

structures to specifications to achieve a better outcome for the verification of pointer-based

programs. We have designed and implemented a new entailment procedure to formally

and automatically reason about our enhanced specifications. The three new specification

mechanisms that we propose are described next:

The experimental results have shown that our proposal can lead to more precise verifica-

tion with a performance gain.

– Case constructs allow capturing different contexts of use by highlighting disjoint-

edness conditions. Case analysis is conventionally captured as part of the proving

process. The user typically indicates the program location where case analysis is to

be performed [123]. This corresponds to performing a case analysis on some pro-

gram state (or antecedent) of the proving process. In our approach, we provide a

case construct to distinguish the input states of pre/post specifications instead. This

richer specification can be directly used to guide the verification process.

– Staged formulae allow the specification to be made more concise through sharing

of common sub-formulae. Apart from better sharing, this also allows verification

to be carried out incrementally over multiple (smaller) stages, instead of a single

(larger) stage.

– Early vs. late instantiations denote different types of bindings for the logical vari-

ables (of consequent) during the entailment proving process. Early instantiation

is an instantiation that occurs at the first occurrence of its logical variable, while

late instantiation occurs at the last occurrence of its logical variable. While late in-

stantiation can be more accurate for variables that are constructed from inequality
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constraints, early instantiation can typically be done with fewer existential quanti-

fiers since instantiation converts these existential logical variables to quantifier-free

form at an earlier point. We propose to use early instantiation, by default, and only

to resort to late instantiation when explicitly requested by the programmer.

• Static and dynamic specifications (Chapter 6, first proposed in [22]). We advocate

for the coexistence of static and dynamic specifications, with an emphasis on the former.

This technique is important as the majority of method dispatch operations (71%) are in-

deed statically known [3]. We impose an important subsumption relation between the

static and the dynamic specifications. This principle allows for improved precision, while

keeping code re-verifications to a minimum. While building up the necessary framework

for the use of static and dynamic specifications, the following related contributions were

achieved:

– Enhanced Specification Subsumption : We improve on a classical specification

subsumption relation. Apart from the usual checking for contravariance on pre-

conditions and covariance on postconditions, we allow postcondition checking to

be strengthened with the residual heap state from precondition checking. This en-

hancement is courtesy of the frame rule from separation logic which can improve

modularity.

– Lossless Casting : We use a new object format that allows lossless casting to be

performed. This format supports both partial views and full views for objects of

classes that are suitable for static and dynamic specifications, respectively.

– Statically-Inherited Methods : New specifications may be given for inherited

methods but must typically be re-verified. To avoid the need for re-verification,

we propose for specification subsumption to be checked between each new static

specification of the inherited method in a subclass against the static specification of

the original method in the superclass. We identify a special category of statically-

inherited methods that can safely avoid code re-verification for static specifications.

– Deriving Specifications : We propose techniques to derive dynamic specifications

from static specifications, and show how refinement can be carried out to ensure

behavioral subtyping.
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1.3 Thesis Overview

After introducing some background notions in Chapter 2, the subsequent chapters will describe

our specification enhancements, as follows:

• Chapter 3 presents a summary of the most relevant related works.

• Chapter 4 investigates the benefits of immutability annotations for allowing more flexible

handling of aliasing, as well as more precise and concise specifications;

• Chapter 5 presents our work on introducing structured specifications;

• Chapter 6 describes our distinction between static and dynamic specifications.

Note that we consider the programming language in Sec 2.1, the specification language in

Sec 2.2, the forward verification rules in Sec 2.3, and entailment checking rules in Sec 2.4 as a

reference for the verification techniques developed in this thesis. Accordingly, the correspond-

ing sections of Chapters 4, 5, and 6 will only present the differences/enhancements from this

reference point.
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CHAPTER II

TECHNICAL BACKGROUND

In the current chapter, we provide a summary of the relevant technical background. We assume

the reader is familiar with first-order logic, Presburger arithmetic, bag theory. More specifically,

we explain some of the technical notions that we use in the current dissertation:

• the programming language.

• the specification language, with an emphasis on user-defined predicates.

• the forward verification procedure.

• the entailment checking procedure.

• semantic issues, including the storage model, the semantic model, and the dynamic se-

mantics.

2.1 Programming Language

In this section, we introduce a core imperative language, which is given in Figure 2.1.

For simplicity, we shall assume that programs and specification formulas we use are well-

typed. To simplify the presentation but without loss of expressiveness, we allow only one-

level field access like v.f (rather than v.f1.f2...), and we allow only boolean variables (but not

expressions) to be used as the test conditions for conditionals. The language supports data type

declaration via datat, and shape predicate definition via spred. The syntax for shape predicates

is given in the next section.

The following data node declarations can be expressed in our language and will be used as

examples throughout this chapter. Note that they are recursive data declarations with different

numbers of fields.

data node { int val; node next }

data node2 { int val; node2 prev; node2 next }

data node3 { int val; node3 left; node3 right; node3 parent }
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P ::= tdecl∗ meth∗

tdecl ::= datat | spred

datat ::= data c { field∗ }

field ::= t v

t ::= c | τ

τ ::= int | bool | float | void

meth ::= t mn ((ref t v)∗, (t v)∗) mspec {e}

e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)
| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2 | return e

Figure 2.1: A Core Imperative Language

Each method meth is associated with a pre/post specification mspec, the syntax of which will

be given in the next section. For simplicity, we assume that variable names declared inside each

method are all distinct.

Pass-by-reference parameters are marked with ref. In a pass-by-reference evaluation, a

method receives a reference to a variable used as argument, rather than a copy of its value. For

formalization convenience, all the pass-by-reference parameters are grouped together. As an

example of pass-by-reference parameters, the following function allows the actual parameters

of {x, y} to be swapped at its callers’ sites.

void swap(ref node2 x, ref node2 y)

· · ·

{ node2 z:=x; x:=y; y:=z }

Furthermore, these parameters allow each iterative loop to be directly converted to an equivalent

tail-recursive method, where mutation on parameters are made visible to the caller via pass-by-

reference. This technique of translating away iterative loops is standard and is helpful in further

minimising our core language. Note that we use an expression-oriented language where the last

subexpression (e.g. e2 from e1;e2) denotes the result of an expression. The missing method

specifications, denoted by mspec, are described in the next section.
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The standard insertion sort algorithm can be written in our language as follows:

node insert(node x, node vn)

{ if (vn.val≤x.val)

then { vn.next:=x; return vn }

else if (x.next=null) then

{ x.next:=vn; vn.next:=null; return x }

else { x.next:=insert(x.next, vn); return x }}

node insertion sort(node y)

{ if (y.next=null) then return y

else {

y.next:=insertion sort(y.next);

return insert(y.next, y)}}

The insert method takes a sorted list x and a node vn that is to be inserted in the correct

location of its sorted list. The insertion sort method recursively applies itself (sorting) to

the tail of its input list, namely y.next, before inserting the first node, namely y, into its now

sorted tail.

2.2 Specification Language

A program P consists of declarations tdecl and methodsmeth. Declarations can be shape pred-

icates spred or object types objt. Each method is decorated with the specification

{requires Φi
pr ensures Φi

po}
p
i=1, which is made up of a collection of pre- and post-condition

pairs. The reason for supporting multiple pre- and post-conditions is that, given the rich variety

of shapes that can be specified, there are often multiple ways of viewing a methods behaviour.

The intended meaning is that whenever the method is called in a program state satisfying pre-

condition Φi
pr and if the method terminates, the resulting state will satisfy the corresponding

postcondition Φi
po. We handle while loop in a similar way. Other constructs are standard.

Primed notation is used to capture the latest value of local variables and may appear in the
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Shape pred. spred ::= c〈v∗〉 ≡ Φ inv π

Method spec. mspec ::= {requires Φi
pr ensures Φi

po}
p
i=1

Formula Φ ::=
∨

(∃v∗·κ∧π)∗

Pure formula π ::= γ∧φ

Ptr. equality/disequality γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2

Heap formula κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ |∆1∨∆2 |∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2

a ::=s1=s2 | s1≤s2

Presburger arith. s ::= kint | v | kint×s | s1+s2 | −s
| max(s1,s2) | min(s1,s2) | |B|

Bag constraint ϕ ::= v∈B | B1=B2 | B1@B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2 | B1uB2 | B1−B2 | {} | {v}

Figure 2.2: The Specification Language

postcondition of loops. For example :

while x<0

requires true

ensures (x>0∧x′=x) ∨ (x≤0∧x′=0);

do { x:=x+1 }

Here x and x′ denote the old and new values of variable x at the entry and exit of the loop,

respectively.

The separation formulas we use are in a disjunctive normal form (eg. Φ, Φpr, Φpo in Fig-

ure 2.2). Each disjunct consists of a ∗-separated heap constraint κ, referred to as heap part,

and a heap-independent formula π, referred to as pure part. The pure part does not contain any

heap nodes and is presently restricted to pointer equality/disequality γ, Presburger arithmetic

s, φ ([105]) and bag constraint ϕ, φ. Furthermore, ∆ denotes a composite formula that could

always be safely translated into the Φ form which captures a disjunct of heap states, denoted
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by κ, that are in separation conjunction.1 The constraint domains φ for properties are currently

chosen, due to the availability of the corresponding solvers.

2.2.1 User-defined Predicates

In order to verify properties of the linked data structures handled by a program, we must have

a description/specification of those properties. A shape predicate is such a possibly inductive

definition of the consistency and correctness properties of a data structure. Throughout the thesis

we might refer to a shape predicate as a heap predicate, or simply a predicate.

Some automated reasoning systems [7, 10] are designed to work with only a small set of

fixed predicates. However, it is impossible to provide specifications for all possible data struc-

tures. In our approach, we allow users to define their own specifications for data structures.

User-definable shape predicates provide us with more flexibility than other automated reason-

ing systems [7, 10] as users can capture multiple aspects of linked data structures, such as their

shapes, their numerical constraints and their contents constraints.

We provide below the predicate for an acyclic linked list (that terminates with a null refer-

ence):

root::ll〈n〉 ≡ (root=null∧n=0)∨

(∃i, m, q · root::node〈i, q〉∗q::ll〈m〉∧n=m+1)

inv n≥0

From the notation point of view, in separation logic [107, 56], the formula p7→[val : 3, next : l]

represents a singleton heap referred to by p, where [val : 3, next : l] is a data record containing

fields val and next. On the other hand, separation logic also uses predicate formulas to denote

more complicated shapes, e.g. lseg(p, q) represents list segments from p to q. In our system,

we unify these two different representations into one form: p::c〈v∗〉. When c is a data type

name, p::c〈v∗〉 stands for a singleton heap p7→[(f:v)∗] where f∗ are fields of data declaration

c. When c is a predicate name, p::c〈v∗〉 stands for the predicate formula c(p, v∗) . The reason

we distinguish the first parameter from the rest is that each predicate has an implicit parameter

root as its first parameter. Effectively, this is a “root” pointer to the specified data structure that

guides data traversal and facilitates the definition of well-founded predicates (given in Sec 2.2).

Getting back to the shape predicate root::ll〈n〉, the parameter n captures a derived value

1This translation is elaborated later in Figure 2.4.
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that denotes the length of the acyclic list starting from root pointer. The above definition asserts

that an ll list can be empty (the base case root=null) or consists of a head data node (specified

by root::node〈i, q〉) and a separate tail data structure which is also an ll list (q::ll〈m〉). The

∗ connector ensures that the head node and the tail reside in disjoint heaps. We also specify

a default invariant n≥0 that holds for all ll lists. (This invariant can be verified by checking

that each disjunctive branch of the predicate definition always implies its stated invariant. In

the case of ll predicate, the disjunctive branch with n = 0 implies the given invariant n≥0.

Similarly, the n = m + 1 branch together with m≥0 from the invariant of q::ll〈m〉 also implies

the given invariant n≥0.) Our predicate uses existential quantifiers for local values and pointers,

such as i, m, q. The syntax for inductive shape predicates is given in Figure 2.2. For each shape

definition spred, the heap-independent invariant π over the parameters {root, v∗} holds for each

instance of the predicate. Types need not be given in our specification as we have an inference

algorithm to automatically infer non-empty types for specifications that are well-typed. For the

ll predicate, our type inference can determine that m, n, i are of int type, while root, q are of

the node type. As the construction of type inference algorithm is quite standard for a language

without polymorphism, its description is omitted in the current thesis.

Regarding the notation, in the rest of the thesis we use underscore to denote an anonymous

variable. Non-parameter variables (including anonymous variables) in the RHS of the shape

definition, such as q, are existentially quantified. Furthermore, terms may be directly written as

arguments of shape predicate or data node, while the root parameter on the LHS can be omitted

as it is an implicit parameter that must be present for each of our predicate definitions. By using

these conventions, a more complex shape, doubly linked-list with length n, is described by:

dll〈p, n〉 ≡ (root=null∧n=0)∨(root::node2〈 , p, q〉∗q::dll〈root, n−1〉)

inv n≥0

The dll shape predicate has a parameter p that represents the prev field of the first node of the

doubly linked-list. It captures a chain of nodes that are to be traversed via the next field starting

from the current node root. The nodes accessible via the prev field of the root node are not

part of the dll list. This example also highlights some shortcuts we may use to make shape

specifications shorter. Our shape predicates can describe not only the shape of data structures,

but also their size and bag properties. (Examples with bag properties will be described later in

Sec 2.2.3.) This capability enables many applications, including those requiring the support for
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data structures with more complex invariants. For example, we may define a non-empty sorted

list as below. The predicate also tracks the length, the minimum and maximum elements of the

list.

sortl〈n, min, max〉 ≡ (root::node〈min, null〉 ∧ min=max ∧ n=1)

∨ (root::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉 ∧ min≤k)

inv min≤max ∧ n≥1

The constraint min≤k guarantees that sortedness property is adhered between any two adjacent

nodes in the list. We may now specify (and then verify) the insertion sort algorithm mentioned

earlier (see Sec 2.1 for the code) :

node insert(node x, node vn) where

requires x::sortl〈n, mi, ma〉 ∗ vn::node〈v, 〉

ensures res::sortl〈n+1, min(v, mi), max(v, ma)〉;

node insertion sort(node y)

requires y::ll〈n〉 ∧ n>0

ensures res::sortl〈n, , 〉;

A special identifier res is used in the postcondition to denote the result of a method. The

postcondition of insertion sort shows that the output list is sorted and has the same number

of nodes as the input list.

In this chapter, we use only separation conjunction, as we focus on only forward reason-

ing. This extension can help support more precise and concise reasoning for heap memory,

as it can easily support must-aliasing and local reasoning. For example, when we specify that

x::node〈3, y〉∗y::node〈5, x〉 to be a precondition of some method, we can immediately deter-

mine that x, y are non-aliased, namely x6=y due to the use of the separation conjunction, while

x.next = y and y.next = x are must-aliases for the two fields from the heap formula. In con-

trast, if we had used the formula x::node〈3, y〉∧y::node〈5, x〉, we may not be able to determine

if x, y are aliased with each other, or not, Furthermore, due to the use of local reasoning, we can

assume that only the heap memory specified in the precondition of each method is ever possibly

modified by its method’s body. This makes specifications using separation logic shorter by omit-

ting the need to write modifies clauses that are necessary in traditional specification languages,

such as JML [71] or Spec][5]. In Chapter 4 we will relax the explicit aliasing requirement in

order to allow arbitrary aliasing. Consequently, the use of ∧ in the heap description will be
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allowed for some cases.

2.2.2 Well-formedness Notions

As we have already seen, separation formulas are used in pre/post conditions and shape defini-

tions. In order to handle them correctly without running into unmatched residual heap nodes,

we require each separation constraint to be well-formed, as given by the following definitions:

Definition 2.2.1 (Accessible). A variable is accessible if it is a method parameter, or it is a

special variable, either root or res.

Definition 2.2.2 (Reachable). Given a heap constraint κ and a pointer constraint γ, the set of

heap nodes in κ that are reachable from a set of pointers S can be computed by the following

function.

reach(κ, γ, S) =df p::c〈v∗〉∗reach(κ−(p::c〈v∗〉), γ, S∪{v|v ∈ {v∗}, IsPtr(v)})

if ∃q ∈ S · (γ =⇒ p=q) ∧ p::c〈v∗〉 ∈ κ

reach(κ, γ, S) =df emp, otherwise

Note that κ−(p::c〈v∗〉) removes a term p::c〈v∗〉 from κ, while IsPtr(v) determines if v is of

pointer type.

Definition 2.2.3 (Well-Formed Formulas). A separation formula is well-formed if

• it is in a disjunctive normal form
∨

(∃v∗ · κi ∧ γi ∧ φi)∗ where κi is for heap formula,

and γi ∧ φi is for pure, i.e. heap-independent, formula, and

• all occurrences of heap nodes are reachable from its accessible variables, S. That is, we

have ∀i · κi = reach(κi, γi, S), modulo associativity and commutativity of the separation

conjunction ∗.

We also ensure that root can appear only in predicate bodies, res in postconditions. The

primary significance of the well-formed condition is that all heap nodes of a heap constraint are

reachable from accessible variables. This allows the entailment checking procedure to correctly

match nodes from the consequent with nodes from the antecedent of an entailment relation.

Arbitrary recursive shape relations can lead to non-termination in unfold/fold reasoning. To

avoid that problem, we propose to use only well-founded shape predicates in our framework.
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Definition 2.2.4 (Well-Founded Predicates). A shape predicate is said to be well-founded if it

satisfies the following conditions:

• its body is a well-formed formula,

• for all heap nodes p::c〈v∗〉 occurring in the body, c is a data type name iff p = root.

Note that the definitions above are syntactic and can easily be enforced. An example of

well-founded shape predicates is avl - binary tree with near balanced heights, as follows :

avl〈n, h〉 ≡ (root=null ∧ n=0 ∧ h=0)

∨ (root::node2〈 , p, q〉 ∗ p::avl〈n1, h1〉∗q::avl〈n2, h2〉

∧n=1+n1+n2∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1) inv n, h≥0;

In contrast, the following three shape definitions are not well-founded.

foo〈n〉 ≡ root::foo〈m〉 ∧ n=m+1

goo〈〉 ≡ root::node〈 , 〉 ∗ q::goo〈〉

too〈〉 ≡ root::node〈 , q〉 ∗ q::node〈 , 〉

For foo, the root identifier is bound to a shape predicate. For goo, the heap node pointed by q

is not reachable from variable root. For too, an extra data node is bound to a non-root vari-

able. The first example may cause infinite unfolding, while the second example captures an

unreachable (junk) heap that cannot be located by our entailment procedure. The last example

illustrates the syntactic restriction imposed to facilitate termination of proof reasoning, which

can be easily overcome by introducing intermediate predicates. For example, we may use:

too〈〉 ≡ root::node〈 , q〉 ∗ q::tmp〈〉

tmp〈〉 ≡ root::node〈 , 〉

where tmp is the intermediate predicate added to satisfy our well-founded condition.

Our specification language allows bag/multiset properties to be specified in shape predicates

and method specifications. This extra expressivity will be illustrated in Sec 2.2.3 by some

examples.

2.2.3 Bag of Values/Addresses

The earlier specification of sorting from Sec 2.2 captures neither the in-situ reuse of memory

cells nor the fact that all the elements of the list are preserved by sorting. The reason is that the
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shape predicate captures only pointers and numbers but does not capture the set of reachable

nodes in a heap predicate. A possible solution to this problem is to extend our specification

mechanism to capture either a set or a bag of values. For generality and simplicity, we propose

to only use the bag (or multi-set) notation that permits duplicates, though set notation could also

be supported. In the rest of the thesis, we will use the following bag operators: bag union t,

bag intersection u, bag subsumption @, and bag cardinality |B|. The shape specifications from

the previous section are revised as follows:

ll2〈n, B〉 ≡ (root=null∧n=0∧B={})

∨(root::node〈 , q〉∗q::ll2〈n−1, B1〉∧B=B1t{root})

inv n≥0∧|B|=n;

sortl2〈B, mi, ma〉 ≡ (root::node〈mi, null〉∧mi=ma∧B={root})

∨ (root::node〈mi, q〉∗q::sortl2〈B1, k, ma〉∧B=B1t{root} ∧ mi≤k)

inv mi≤ma ∧ B 6={};

Each predicate of the form ll2〈n, B〉 or sortl2〈B, mi, ma〉 now captures a bag of addresses

B for all the data nodes of its data structure (or heap predicate).With this extension, we can

provide a more comprehensive specification for in-situ sorting, as follows :

node insert(node x, node vn) where

requires x::sortl2〈B, mi, ma〉 ∗ vn::node〈v, 〉

ensures res::sortl2〈Bt{vn}, min(v, mi), max(v, ma)〉;

{· · · }

node insertion sort(node y) where

requires y::ll2〈n, B〉 ∧ B6={}

ensures res::sortl2〈B, , 〉;

{· · · }

We stress that this bag mechanism to capture the reachable nodes in a shape predicate is quite

general. For example, instead of heap addresses, we may also revise our linked list view to

capture a bag of reachable values, and its length, as follows:

ll3〈n, B〉 ≡ (root=null∧n=0∧B={})∨

(root::node〈a, q〉∗q::ll3〈n−1, B1〉∧B=B1t{a})

inv n≥0 ∧ |B|=n;
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Capturing a bag of values allows us to reason about the collection of values in a data structure,

and permits relevant properties to be specified and automatically verified (when equipped with

an appropriate constraint solver), as highlighted by two examples below:

data pair{node v1; node v2}

pair partition(node x, int p)

requires x::ll3〈n, A〉

ensures res::pair〈r1, r2〉 ∗ r1::ll3〈n1, B1〉∗r2::ll3〈n2, B2〉

∧A=B1tB2 ∧ n=n1 + n2 ∧ (∀a∈B1·a≤p)∧(∀a∈B2·a>p);

{ if (x=null) then new pair(null, null)

else { pair t; t:=partition(x.next, p);

if (x.val≤p) then { x.next:=t.v1; t.v1:=x }

else { x.next:=t.v2; t.v2:=x };

t } }

bool allPos(node x) where

requires x::ll3〈n, B〉

ensures x::ll3〈n, B〉 ∧ ((∀a∈B·a≥0)∧res ∨ (∃a∈B·a<0)∧¬res);

{ if (x=null) then true

else if (x.val<0) then false else allPos(x.next) }

Note that both universal and existential properties over bags can be expressed. The first ex-

ample returns a pair of lists that have been partitioned from a single input list according to an

integer pivot. This partition function and its pre/post specification can be used to prove the total

correctness of the quicksort algorithm. The second example uses existentially and universally

quantified formulae to determine if at least one negative number is present in an input list, or

not. These specifications are somewhat expressive, but can be easily handled by our separation

logic prover in conjunction with relevant classical provers, such as MONA [95] and Isabelle

[64].

2.3 Forward Verification

The front-end of the system is a standard Hoare-style forward verifier, which invokes the entail-

ment prover. In this section, we present the forward verifier which comprises a set of forward
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verification rules to systematically check that the precondition is satisfied at each call site, and

that the declared postcondition is successfully verified (assuming the given precondition) for

each method definition. The back-end entailment prover will be given in Sec 2.4.

Program verification is typically formalised using Hoare triples of form {pre}code{post},

where pre and post are the initial and final states of the program code in some logic (separation

logic in our case). We use P to denote the program being checked. With pre/post conditions

declared for each method in P , we can now apply modular verification to its body using Hoare-

style triples ` {∆1} e {∆2}. These are forward verification rules as we expect ∆1 to be given

before computing ∆2. To capture proof search, we generalize the forward rule to the form

` {∆1} e {S} where S is a set of heap states, discovered by a search-based verification process.

When S is empty, the forward verification is said to have failed for ∆ as prestate.

For convenience, we also provide lifted variant of the forward verifier to take a set of

prestates. Verification in such a case succeeds if any of the prestates gives rise to a success-

ful verification, that is if at least one of the Si is non-empty. This rule is useful when the for-

ward verifier has processed at least one subexpression, potentially giving rise to a set of residual

states.

∀i ∈ 1..n · {∆i} code {Si}

` {{∆1, ..,∆n}} code {
⋃n
i=1 Si}

Verification of a method starts with each precondition, and proves that the corresponding

postcondition is guaranteed at the end of the method. The verification is formalized in the

following rule:

[FV−METH]

V={vm..vn} W=prime(V )

∀i = 1, .., p · ( ` {Φi
pr∧nochange(V )} e {Si1}

(∃W·Si1)`Φi
po ∗Si2 Si2 6={})

` t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e}

The function prime(V) returns {v′ | v ∈ V }. The predicate nochange(V) returns
∧
v∈V (v = v′).

If V = {}, nochange(V)=true. ∃W · S returns {∃W · Si|Si ∈ S}. The entailment (∃W·Si1)`Φi
po ∗Si2

is discharged by the entailment prover described in the next subsection.
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At a method call, each of the method’s precondition is checked. The combination of the

residue Si and the postcondition is added to the poststate. If a precondition is not entailed by

the program state ∆, the corresponding residue is not added to the set of states. The test S 6={}

ensures that at least one precondition is satisfied.

[FV−CALL]

t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e} ∈ P

ρ=[v′j/vj ]
n
j=m ∆`ρΦi

pr ∗Si ∀i=1, .., p

S =
⋃p
i=1 Si ∗ Φi

po S 6= {}
` {∆}m(v1..vn) {S}

Note that the verification rule also invokes the entailment prover to discharge ∆`ρΦi
pr ∗Si,

where ρ represents a substitution of vj by v′j , for all j = 1, .., n.. The lifted separation conjunc-

tion ∗ over a set (i.e., Si ∗ Φi
po) is defined in Fig. 2.4.

Our verifier also ensures that each field access is safe from null dereferencing. This is shown

in the field access rules in Fig. 2.3 which also includes other forward verification rules for the

language. The verification rules attempt to track heap states, as accurately as possible, with

path-sensitivity captured by [FV−IF] rule, flow-sensitivity by [FV−SEQ] rule and context sen-

sitivity by the [FV−CALL] rule. In a nutshell, verification is carried out at three places. For

each call site, the [FV−CALL] rule (mentioned earlier) ensures that at least one of its method’s

preconditions is satisfied. At each method definition, the [FV−METH] rule checks that every

postcondition holds for the method body assuming its respective precondition. At each shape

definition, [FV−SPRED] checks that its given invariant πinv is sound w.r.t. (i.e. semantic con-

sequence of) the well-formed heap formula Φ. (The rule for while loop is omitted but is es-

sentially similar to the mechanics for handling tail-recursive methods.) The function XPure0(Φ)

generates a sound and heap-independent approximation of the heap constraint Φ. For instance,

XPure0(x::node〈 , 〉) ≡ x > 0

XPure0(x::node〈 , 〉 ∗ y::node〈 , 〉) ≡ x>0∧y>0∧x6=y

XPure0(x::lseg〈p, n〉) ≡ n ≥ 0

For the shape predicate case above, we can get a more precise approximation by unrolling the

predicate definition once, for example:

XPure1(x::lseg〈p, n〉) ≡ (x=p∧n=0 ∨ x>0∧n>0)
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[FV−SPRED]

XPure0(Φ) =⇒ [0/null](πinv )

` c〈v∗〉 ≡ Φ inv πinv

[FV−VAR]

S={∆∧res=v′}
` {∆} v {S}

[FV−CONST]

S = {∆∧eqτ (res, k)}
` {∆} kτ {S}

[FV−LOCAL]

` {∆} e {S}
` {∆} {t v; e} {∃ v, v′·S}

[FV−IF]

` {∆∧v′} e1 {S1} ` {∆∧¬v′} e2 {S2}
` {∆} if v then e1 else e2 {S1∨S2}

[FV−NEW]

S={∆ ∗ res::c〈v′1, .., v′n〉}
` {∆} new c(v1, .., vn) {S}

[FV−SEQ]

` {∆} e1 {S1} ` {S1} e2 {S2}
` {∆} e1; e2 {S2}

[FV−ASSIGN]

` {∆} e {S1}
S2=∃res·(S1∧{v}v′=res)

` {∆} v:=e {S2}

[FV−FIELD−READ]

∆`v′::c〈v1..n〉 ∗S1 S1 6={} fresh v1..vn
S2 = ∃v1..vn·(S1 ∗ v′::c〈v1..n〉∧res=vi)

` {∆} v.fi {S2}

[FV−FIELD−UPDATE]

∆`v′::c〈v1..n〉 ∗S1 S1 6={} fresh v1..vn
S2 = ∃v1..vn·(S1 ∗ v′::[v′0/vi]c〈v1..n〉)

` {∆} v.fi:=v0 {S2}

Figure 2.3: Forward Verification Rules with Non-Determinism

The definition for the general approximation procedure XPuren(Φ) (also used in the entailment

prover) can be found in Sec 2.4.4, where n denotes the number of unrollings done on the shape

predicates.

The operators ∧{v} (in assignment rule) and ∗W (in while rule) are composition with up-

date operators. Given a state ∆1, a state change ∆2, and a set o‘f variables to be updated

X={x1, .., xn}, the composition operator ⊕X is defined as:
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∆1 ⊕X ∆2 =df ∃ r1..rn · ρ1 ∆1 ⊕ ρ2 ∆2

where r1, . . . , rn are fresh variables;

ρ1 = [ri/x
′
i]
n
i=1 ; ρ2 = [ri/xi]

n
i=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′i in ∆1 with the cor-

responding initial value xi in ∆2 via a fresh variable ri. The binary operator ⊕ is either ∧ or

∗.

Normalization rules for separation constraints and lifted operators over sets of states are

given in Fig. 2.4. Note that the separation conjunction operator ∗ is commutative, associative,

and distributive over disjunction. In separation logic, the separation conjunction between a for-

mula and a pure (i.e. heap independent) formula is logically equivalent to a normal conjunction,

i.e., ∆ ∗ π = ∆ ∧ π. This justifies the third translation rule.

(∆1 ∨∆2) ∧ π ; (∆1 ∧ π) ∨ (∆2 ∧ π)
(∆1 ∨∆2) ∗∆ ; (∆1 ∗∆) ∨ (∆2 ∗∆)
(κ1∧π1) ∗ (κ2∧π2) ; (κ1∗κ2)∧(π1∧π2)
(κ1∧π1) ∧ (π2) ; κ1∧(π1∧π2)
(γ1∧φ1) ∧ (γ2∧φ2) ; (γ1∧γ2) ∧ (φ1∧φ2)
(∃x ·∆) ∧ π ; ∃y · ([y/x]∆ ∧ π)
(∃x ·∆1) ∗∆2 ; ∃y · ([y/x]∆1 ∗∆2)
(S1 ∨ S2) ; {∆1∨∆2 |∆1 ∈ S1, ∆2 ∈ S2}
F (S) ; {F (∆) |∆ ∈ S}

where
F (A) ::= A∧π | A ∧W π | A∗∆ | A ∗W ∆ | ∃x·A
y denotes fresh variable

Figure 2.4: Normalization Rules for Separation Constraints and with Operators Lifted to a Set

2.3.1 Forward Verification Example

We present the detailed verification of the first branch of the insert method from Sec 2.1.

Note that program variables appear primed in formulae to denote the latest values, whereas log-

ical variables are always unprimed. The verification is straightforward, except for the last step,

where a folding operation is invoked when we check an obtained disjunctive formula estab-

lishes the method’s postcondition. The procedure to perform the unfolding/folding operations
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is presented in Sec 2.4.

{{x′::sortl〈n, mi, ma〉 ∗ vn′::node〈v, 〉}} // [FV−METH](initialize precondition)

if (vn.val ≤ x.val) then {

{{(x′::node〈mi, null〉 ∗ vn′::node〈v, 〉 ∧ mi=ma ∧ n=1∧ v≤mi)

∨ (∃q, k · x′::node〈mi, q〉∗q::sortl〈n−1, k, ma〉∗vn′::node〈v, 〉

∧mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}} // [FV−IF], [UNFOLDING](Sec 2.4)2

vn.next := x;

{{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1∧ v≤mi)

∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉∗vn′::node〈v, x′〉

∧mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}} // [FV−FIELD−UPDATE]

vn

{{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1∧ v≤mi ∧ res=vn′)

∨ (∃q, k · x′::node〈mi, q〉∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, x′〉

∧mi≤k ∧ mi≤ma∧n≥2 ∧ v≤mi ∧ res=vn′)}} // [FV−VAR]

}

{{res::sortl〈n+1, min(v, mi), max(v, ma)〉}}

// [FV−METH](checking postcondition), [FOLDING](Sec 2.4)

2.4 Entailment Checking

Our prover for checking the entailment relation of separation formulae makes use the set of

heap states to support non-deterministic entailment. By non-determinism, we mean a search

process that returns multiple answers, any one of which indicates a successful verification. Our

entailment prover is of the form ∆A`κV ∆C ∗S which denotes κ ∗∆A`∃V ·(κ ∗∆C) ∗S, where

S is a set of possible residual poststates. The purpose of heap entailment is to check that heap

nodes in the antecedent ∆A are sufficiently precise to cover all nodes from the consequent ∆C ,

and to compute the set of possible residual poststates S. The entailment succeeds when S is

non-empty, otherwise it is deemed to have failed. κ is the history of nodes from the antecedent

that have been used to match nodes from the consequent, V is the list of existentially quantified

2The rule [UNFOLDING] is to replace the predicate x′::sortl〈n, mi, ma〉 by its definition. The rule [FOLDING]
used in the last step is to fold a formula which matches with a predicate’s definition back to the predicate. Both rules
will be discussed in detail in Sec 2.4.
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variables from the consequent. Note that κ and V are derived. The entailment checking pro-

cedure is initially invoked with κ = emp and V = ∅. The entailment proving rules are given in

Fig 2.5. We now briefly discuss the key steps that we may use in such an entailment proof.

2.4.1 Matching up heap nodes from the antecedent and the consequent

The procedure works by successively matching up heap nodes that can be proven aliased. As

the matching process is incremental, we keep the successfully matched nodes from antecedent

in κ for better precision. For example, consider the following entailment proof:

(((p=null ∧ n=0) ∨ (p6=null ∧ n>0))∧n>0 ∧ m=n) =⇒ p6=null

(XPure1(p::ll〈n〉) ∧ n>0 ∧ m=n =⇒ p 6=null) S = {(n>0 ∧ m=n)}

n>0 ∧ m=n `p::ll〈n〉 p6=null ∗ S

p::ll〈n〉 ∧ n>0 ` p::ll〈m〉 ∧ p 6=null ∗ S

Had the predicate p::ll〈n〉 not been kept and used, the proof would not have succeeded

since we require this predicate and n>0 to determine that p 6=null. Such an entailment would

be useful when, for example, a list with positive length n is used as input for a function that

requires a non-empty list.

Another feature of the entailment procedure is exemplified by the transfer of m=n to the an-

tecedent (and subsequently to the residue). In general, when a match occurs (rule [ENT−MATCH])

and an argument of the heap node coming from the consequent is free, the entailment procedure

binds the argument to the corresponding variable from the antecedent and moves the equality

to the antecedent. In our system, free variables in consequent are variables from method pre-

conditions. These bindings play the role of parameter instantiations during forward reasoning,

and can be accumulated into the antecedent to allow the subsequent program state (from resid-

ual heap) to be aware of their instantiated values. This process is formalized by the function

freeEqn below, where V is the set of existentially quantified variables:

freeEqn([ui/vi]
n
i=1, V ) =df let πi = (if vi∈V then true else vi=ui) in

∧n
i=1 πi

For soundness, we perform a preprocessing step to ensure that variables appearing as argu-

ments of heap nodes and predicates are i) distinct and ii) if they are free, they do not appear in
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the antecedent by adding (existentially quantified) fresh variables and equalities. This guaran-

tees that the formula generated by freeEqn does not introduce any additional constraints over

existing variables in the antecedent, as one side of each equation does not appear anywhere else

in the antecedent.

Apart from the matching operation, another two essential operations that may be required

in an entailment proof are (1) unfolding a shape predicate and (2) folding some data nodes

back to a shape predicate. Unfold/fold operations can be used to handle well-founded inductive

predicates in a deductive manner. They are normally invoked before a matching operation is

invoked. In particular, we can unfold a predicate that appears in the antecedent if it co-relates

(via aliasing) with a data node in the consequent. Correspondingly, if a predicate that appears

in the consequent co-relates (via aliasing) with a data node in the antecedent, then we can fold

the data node (perhaps together with other nodes) in the antecedent back to a shape predicate so

that it can match with the predicate in the consequent. The well-founded condition is sufficient

to ensure termination. We shall now use some examples to illustrate these two key steps.

2.4.2 Unfolding a shape predicate in the antecedent

Consider:

x::ll3〈n, B〉∧n>2 ` (∃r·x::node〈r, y〉∧y6=null∧r ∈ B) ∗S

where S captures the set of possible residual states. Note that a predicate x::ll3〈n, B〉 from

the antecedent and a data node x::node〈r, y〉 from the consequent are co-related via the same

variable x. For the entailment to succeed, we would first unfold the ll3〈n, B〉 predicate in the

antecedent:

∃q1, v ·x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2∧B=B1 ∪ {v}

` (∃r·x::node〈r, y〉∧y6=null ∧ r ∈ B) ∗S

After removing the existential quantifiers, we obtain:

x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2 ∧ B=B1 ∪ {v}

` (x::node〈r, y〉∧y6=null ∧ r ∈ B) ∗S

The data node in the consequent is then matched up, giving:

q1::ll3〈n−1, B1〉∧n>2∧B=B1 ∪ {v}∧q1=y ` (q1 6=null ∧ v ∈ B) ∗S



2.4. ENTAILMENT CHECKING 33

Due to the well-founded condition, each unfolding exposes a data node that matches with

the data node in the consequent. Thus a reduction of the consequent immediately follows, which

contributes to the termination of the entailment proving. A formal definition of the unfolding

operation is given by the [UNFOLDING] rule in Figure 2.5.

2.4.3 Folding against a shape predicate in the consequent

Consider:

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉 ` (x::ll3〈n, B〉∧n>1∧1 ∈ B) ∗S

The data node x::node〈1, q1〉 from the antecedent and the predicate x::ll3〈n, B〉 from the

consequent are co-related by the variable x. In this case, we apply the folding operation to the

first two nodes from the antecedent against the shape predicate from the consequent. After that,

a matching operation is invoked since the folded predicate now matches with the predicate in

the consequent.

The fold step may be recursively applied but is guaranteed to terminate for well-founded

predicates as it will reduce a data node in the antecedent for each recursive invocation. This

reduction in the antecedent cannot go on forever. Furthermore, the fold operation may introduce

bindings for the parameters of the folded predicate. In the above, we obtain ∃n1, n2 ·n=n1+1∧

n1=n2+1 ∧ n2=0 and ∃B1, B2 · B=B1∪{2} ∧ B1={1}∪B2 ∧ B2={}, where n1, n2, B1, B2 are

existential variables introduced by the folding process, and are subsequently eliminated. These

binding formulae may be transferred to the antecedent if n and B are free (for instantiation).

Otherwise, they will be kept in the consequent. Since n and B are indeed free, our folding

operation would finally derive:

y::node〈3, null〉 ∧ n = 2 ∧ B = {1, 2}` (n>1 ∧ 1 ∈ B) ∗S

The effects of folding may seem similar to unfolding the predicate in the consequent. How-

ever, there is a subtle difference in their handling of bindings for free derived variables. If we

choose to use unfolding on the consequent instead, these bindings may not be transferred to the

antecedent. Consider the example below where n is free :

z=null ` z::ll3〈n, B〉 ∧ n>−1 ∗S
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By unfolding the predicate ll3〈n〉 in the consequent, we obtain :

z=null ` (z=null∧n=0∧B = {}∧n>−1)

∨(∃q, v·z::node〈v, q〉∗q::ll3〈n−1, B1〉∧B = B1 ∪ {v}∧n>−1) ∗ S

There are now two disjuncts in the consequent. The second one fails because it mismatches. The

first one matches but still fails as the derived binding n=0 was not transferred to the antecedent.

When a fold against a predicate p2::c2〈v∗2〉 is performed, the constraints related to variables

v∗2 are significant. The split function projects these constraints out and differentiates those con-

straints based on free variables. These constraints on free variables can be transferred to the

antecedent to support the variables’ instantiations.

split{v
∗
2}

V (

n∧
i=1

πri ) ≡ let πai , π
c
i = if FV(πri ) ∩ v∗2 = ∅ then (true, true)

else if FV(πri ) ∩ V = ∅ then (πri , true) else (true, πri )

in (
∧n
i=1 π

a
i ,
∧n
i=1 π

c
i )

A formal definition of folding is specified by the rule [FOLDING] in Figure 2.5. Some heap

nodes from κ are removed by the entailment procedure so as to match with the heap formula

of the predicate p::c〈v∗〉. This requires a special version of entailment that returns three extra

things:

• consumed heap nodes,

• existential variables used,

• final consequent.

The final consequent is used to return a constraint for {v∗} via ∃Wi·πi. A set of answers

is returned by the fold step as we allow it to explore multiple ways of matching up with its

disjunctive heap state. Our entailment also handles empty predicates correctly with a couple of

specialised rules.

2.4.4 Approximating separation formula by pure formula.

In our entailment proof, the entailment between separation formulae is reduced to entailment

between pure formulae by successively removing heap nodes from the consequent until only a

pure formula remains. When this happens, the heap formula in the antecedent can be soundly
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approximated by function XPuren. The function XPuren(Φ), whose definition is given in Fig 4.6,

returns a sound approximation of Φ as a formula of the form: β ::= ex i · β |
∨

(∃v∗·π)∗ where

ex i construct is being used to capture a distinct symbolic address i that has been abstracted

from a heap node or predicate Φ. The function IsData(c) returns true if c is a data node, while

IsPred(c) returns true if c is a shape predicate.

We illustrate how the approximation functions work by computing XPure1(p::ll〈n〉). Let Φ

be the body of the ll predicate, i.e. Φ ≡ (root=null∧n=0) ∨ (root::node〈 , r〉∗r::ll〈n−1〉).

Inv0(p::ll〈n〉) =df n ≥ 0

XPure0(Φ) =df ex j · (root=0∧n=0)∨(root=j∧j>0 ∧ Inv0(r::ll〈n−1〉))

= ex j · (root=0∧n=0)∨(root=j∧j>0∧n−1≥0)

Inv1(p::ll〈n〉) =df [p/root]XPure0(Φ)

= ex j · (p=0∧n=0) ∨ (p=j∧j>0∧n−1≥0)

XPure1(p::ll〈n〉) =df ex i · [i/j]Inv1(p::ll〈n〉)

= ex i · (p=0∧n=0) ∨ (p=i∧i>0∧n−1≥0)

The following normalization rules are also used to propagate ex to the leftmost :

(ex I ·φ1)∨(ex J ·φ2) ; ex I∪J · (φ1 ∨ φ2)

∃ v · (ex I ·φ) ; ex I · (∃ v ·φ)

(ex I ·φ1)∧(ex J ·φ2) ; ex I∪J ·φ1∧φ2∧
∧
i∈I,j∈J i 6=j

The ex i∗ construct is converted to ∃ i∗ when the formula is used as a pure formula. For instance,

the above XPure1(p::ll〈n〉) is converted to ∃i · (p=0∧n=0) ∨ (p=i∧i>0∧n−1≥0), which is

further reduced to (p=0∧n=0)∨(p>0∧n−1≥0).

The soundness of the heap approximation (given in the next section) ensures that it is safe

to approximate an antecedent by using XPure, starting from a given sound invariant (checked

by [FV−PRED] in Sec 2.3). The heap approximation also allows the possibility of obtaining

a more precise invariant by unfolding the definition of a predicate one or more times, prior to

applying the XPure0 approximation with the predicate’s invariant. For example, when given

a pure invariant n≥0 for the predicate ll〈n〉, the XPure0 approximation is simply the pure

invariant n≥0 itself. However, the XPure1 approximation would invoke a single unfold before

the XPure0 approximation is applied, yielding ex i·(root=0∧n=0∨root=i∧i>0∧n−1≥0),

which is sound and more precise than n≥0, since the former can relate the nullness of the root

pointer with the size n of the list.



36 CHAPTER 2. TECHNICAL BACKGROUND

The invariants associated with shape predicates play an important role in our system. With-

out the knowledge m≥0, the proof search for the entailment x::node〈 , y〉∗y::ll〈m〉 ` x::ll〈n〉∧

n≥1 would not have succeeded (failing to establish n≥1). Without a more precisely derived in-

variant using XPure1 on predicate ll, the proof search for the entailment x::ll〈n〉 ∧ n>0 `

x6=null would not have succeeded either.

2.5 Storage Model

The semantics of our separation heap formula is similar to the model given for separation logic

[107], except that we have extensions to handle our user-defined shape predicates.

To define the storage model we assume sets Loc of locations (positive integer values), Val of

primitive values, with 0 ∈ Val denoting null, Var of variables (program and logical variables),

and ObjVal of object values stored in the heap, with c[f1 7→ν1, .., fn 7→νn] denoting an object

value of data type c where ν1, .., νn are current values of the corresponding fields f1, .., fn. with

h, s from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal

s ∈ Stacks =df Var→ Val∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total mapping, as in the

classical separation logic [107, 56]. Function dom(f) returns the domain of function f . Note

that we use 7→ to denote mappings, not the points-to assertion in separation logic, which has

been replaced by p::c〈v∗〉 in our notation.

2.6 Semantic Model

Let s, h |= Φ denote the model relation, i.e. the stack s and heap h satisfy the constraint Φ.

The model relation for separation heap formulas is defined below. The model relation for pure

formula s |= π denotes that the formula π evaluates to true in s.
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Definition 2.6.1. [Model for Separation Constraint]

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃ν1..n·(s[v1 7→ν1, .., vn 7→νn], h |= κ and s[v1 7→ν1, .., vn 7→νn] |=π)

s, h |=κ1∗κ2 iff ∃h1, h2 · h1 ⊥ h2 and h = h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |=emp iff dom(h) = ∅

s, h |=p::c〈v1..n〉 iff data c {t1 f1, .., tn fn}∈P, h=[s(p) 7→r],

and r=c[f1 7→s(v1), .., fn 7→s(vn)]

or (c〈v1..n〉≡Φ inv π)∈P and s, h |= [p/root]Φ

Note that h1⊥h2 indicates h1 and h2 are domain-disjoint, i.e. dom(h1)∩dom(h2)=∅. h1·h2

denotes the union of disjoint heaps h1 and h2. The definition for s, h |= p::c〈v∗〉 is split into

two cases: (1) c is a data node defined in the program P; (2) c is a shape predicate defined in the

program P. In the first case, h has to be a singleton heap. In the second case, the shape predicate

c may be inductively defined.

2.7 Dynamic Semantics

This section presents a small-step operational semantics for our language given in Fig. 2.1. The

machine configuration is represented by 〈s, h, e〉, where s denotes the current stack, h denotes

the current heap, and e denotes the current program code. Each reduction step is formalized

as a transition of the form: 〈s, h, e〉↪→〈s1, h1, e1〉. The full set of transitions is given in Fig.

4.7.2. We have introduced an intermediate construct ret(v∗, e) to model the outcome of call

invocation, where e denotes the residual code of the call. It is also used to handle local blocks.

The forward verification rule for this intermediate construct is given as follows:

[FV−RET]

` {∆} e {∆2} ∆1 = (∃v′∗ ·∆2)

` {∆} ret(v∗, e) {∆1}

Note that whenever the evaluation yields a value, we assume this value is stored in a special

logical variable res, although we do not explicitly put res in the stack s.
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We also have the following postcondition weakening rule:

[FV−POST−WEAKENING]

` {∆} e {∆1} ∆1≈>∆2

` {∆} e {∆2}

where ∆1≈>∆2 =df ∀s, h · s, h |= Post(∆1) =⇒ s, h |= Post(∆2). As discussed earlier, we

can view ∆1 and ∆2 as binary relations (as far as only program variables are concerned). There-

fore, we use Post(∆) here to refer to the postcondition(i.e. the set of post-states) specified by

∆. Note also that ∆1 and ∆2 share the same set of initial states (in which e start to execute).

Definition 2.7.1 (Poststate). Given a constraint ∆, Post(∆) captures the relation between primed

variables of ∆. That is :

Post(∆) =df ρ (∃V·∆), where

V = {v1, .., vn} denotes all unprimed program variables in ∆

ρ = [v1/v
′
1, .., vn/v

′
n]

We now explain the notations used in the operational semantics. We use k to denote a

constant,⊥ to denote an undefined value, and () to denote the empty expression (program). Note

that the runtime stack s is viewed as a ‘stackable’ mapping, where a variable v may occur several

times, and s(v) always refers to the value of the variable v that was popped in most recently.3

The operation [v 7→ν]+s “pushes” the variable v to s with the value ν, and ([v 7→ν]+s)(v) = ν.

The operation s−{v∗} “pops out” variables v∗ from the stack s. The operation s[v 7→ν] changes

the value of the most recent v in stack s to ν. The mapping h[ι 7→r] is the same as h except that

it maps ι to r. The mapping h+[ι 7→r] extends the domain of h with ι and maps ι to r.

3We can give a more formal definition for s, where different occurrences of the same variable can be labeled with
different ‘frame’ numbers. We omit the details here.
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[ENT−EMP]
ρ=[0/null]

b=(XPuren(κ1∗κ∧π1) =⇒ ∃V·ρπ2)

κ1∧π1`κV (π2) ∗ {κ1∧π1 | b}

[ENT−MATCH]
XPuren(p1::c〈v∗1〉∗κ1∧π1) =⇒ p1=p2 ρ=[v∗1/v

∗
2]

κ1∧π1∧freeEqn(ρ, V )`κ∗p1::c〈v∗1〉
V−{v∗2}

ρ(κ2∧π2) ∗S
p1::c〈v∗1〉∗κ1∧π1`κV (p2::c〈v∗2〉∗κ2∧π2) ∗S

[ENT−FOLD]
IsPred(c2)∧IsData(c1) {(∆i, κ

r
i , π

r
i )}ni=1=foldκ(p1::c1〈v∗1〉∗κ1∧π1, p2::c2〈v∗2〉)

XPuren(p1::c〈v∗1〉∗κ1∧π1) =⇒ p1=p2 (πai , π
c
i )=split{v

∗
2}

V (πri ) ∆i∧πai `
κri
V κ2∧(π2∧πci ) ∗Si

p1::c1〈v∗1〉∗κ1∧π1`κV (p2::c2〈v∗2〉∗κ2∧π2) ∗
⋃n
i=1 Si

[ENT−UNFOLD]
XPuren(p1::c〈v∗1〉∗κ1∧π1) =⇒ p1=p2 IsPred(c1)∧IsData(c2)

unfold(p1::c1〈v∗1〉)∗κ1∧π1`κV (p2::c2〈v∗2〉∗κ2∧π2) ∗S
p1::c1〈v∗1〉∗κ1∧π1`κV (p2::c2〈v∗2〉∗κ2∧π2) ∗S

[ENT−RHS−OR]
∆1`κV ∆2 ∗S1

∆1`κV ∆3 ∗S2 S=S1∪S2

∆1`κV (∆2∨∆3) ∗S

[ENT−LHS−OR]
∆1`κV ∆3 ∗S1 ∆2`κV ∆3 ∗S2

S3={∆5∨∆6 |∆5∈S1,∆6∈S2}
∆1∨∆2`κV ∆3 ∗S3

[ENT−RHS−EX]
∆1`κV ∪{w}([w/v]∆2) ∗S1

fresh w S={∃ w ·∆ | ∆∈S1}
∆1`κV (∃ v ·∆2) ∗S

[ENT−LHS−EX]
[w/v]∆1`κV ∆2 ∗S

fresh w
∃v ·∆1`κV ∆2 ∗S

[UNFOLDING]
c〈v∗〉≡Φ inv π ∈ P

unfold(p::c〈v∗〉) =df [p/root]Φ

[FOLDING]
c〈v∗〉≡Φ inv π ∈ P Wi=Vi−{v∗, p}
κ∧π`κ′{p,v∗}[p/root]Φ ∗ {(∆i, κi, Vi, πi)}ni=1

foldκ
′
(κ∧π, p::c〈v∗〉) =df {(∆i, κi, ∃Wi·πi)}ni=1

Figure 2.5: Non-Deterministic Separation Constraint Entailment
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(c〈v∗〉 ≡ Φ inv π) ∈ P
Inv0(p::c〈v∗〉) =df [p/root, 0/null]π

(c〈v∗〉 ≡ Φ inv π) ∈ P n≥1

Invn(p::c〈v∗〉) =df [p/root, 0/null]XPuren−1(Φ)

XPuren(
∨

(∃v∗·κ∧π)∗) =df
∨

(∃v∗·XPuren(κ)∧[0/null]π)∗

XPuren(emp) =df true

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

IsData(c) fresh i
XPuren(p::c〈v∗〉) =df ex i·(p=i∧i>0)

IsPred(c) fresh i∗

Invn(p::c〈v∗〉) = ex j∗ ·
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉) =df ex i∗ · [i∗/j∗]
∨

(∃u∗·π)∗

Figure 2.6: XPure : Translating to Pure Form
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〈s, h, v〉↪→〈s, h, s(v)〉 〈s, h, k〉↪→〈s, h, k〉 〈s, h, v.f〉↪→〈s, h, h(s(v))(f)〉

〈s, h, v:=k〉↪→〈s[v 7→k], h, ()〉 〈s, h, (); e〉↪→〈s, h, e〉

〈s, h, e1〉↪→〈s1, h1, e3〉
〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, v:=e〉↪→〈s1, h1, v:=e1〉

s(v)=true

〈s, h, if v then e1 else e2〉↪→〈s, h, e1〉
s(v)=false

〈s, h, if v then e1 else e2〉↪→〈s, h, e2〉

〈s, h, {t v; e}〉↪→〈[v 7→⊥]+s, h, ret(v, e)〉

〈s, h, ret(v∗, k)〉↪→〈s−{v∗}, h, k〉

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, ret(v∗, e)〉↪→〈s1, h1, ret(v∗, e1)〉

r=h(s(v1))[f 7→s(v2)] h1=h[s(v1)7→r]
〈s, h, v1.f := v2〉↪→〈s, h1, ()〉

data c {t1 f1, .., tn fn}∈P ι/∈dom(h) r=c[f1 7→s(v1), .., fn 7→s(vn)]

〈s, h, new c(v1···n)〉↪→〈s, h+[ι 7→ r], ι〉

s1=[wi 7→s(vi)]ni=m+s t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) {e}

〈s, h,mn(v1···n)〉↪→〈s1, h, ret({wi}ni=m, [vi/wi]
m−1
i=1 e)〉

Figure 2.7: Small-Step Operational Semantics
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CHAPTER III

RELATED WORKS SURVEY

Considerable work has been done in analyzing and verifying programs with heap allocated data

structures. Next, we provide a summary of the most relevant related works based on several

often overlapping categories. For each category, we attempt to position the current thesis in re-

lation to the other works. We start with the general areas of separation logic and shape analysis,

followed by more specific work done on tracking size and set/bag properties. Furthermore, we

present an overview of other program verifiers, followed by an investigation of the three main

research directions pursued by the current thesis: immutability annotations, structures specifi-

cations, and static and dynamic specifications.

3.1 Separation Logic

From the moment when separation logic was first proposed [56, 107], its use has been further

extended for termination proofs [15], interprocedural shape analysis [45, 18, 109], overlapping

structures verification [76, 52], concurrency [119, 120, 47, 46], Java verification [35, 101]. In

the search for a decidable fragment of separation logic for automated verification, Berdine et al.

[7, 8] support only a limited set of predicates without size properties. Similarly, Jia and Walker

[59] postponed the handling of recursive predicates in their work on automated reasoning of

pointer programs.

On the inference front, Lee et al. [75] has conducted an intraprocedural analysis for loop in-

variants using grammar approximation under separation logic. Their analysis can handle a wide

range of shape predicates with local sharing but is restricted to predicates with two parameters

and without size properties. Separation logic has also shown promising results in interproce-

dural shape analysis. Several approaches have been formulated, based either on computing

procedure summaries [45, 18], or on abstraction of calling context [109].

Following the increasing exploitation of separation logic in verification tools [8, 35, 9, 92],

the development of entailment checking procedures for separation logic was tackled in several

works, among which we recall those based on SMT solvers [13], and on superposition calculus
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[103]. While most of the work on proving properties of mutable data structures using separation

logic targeted structures with constrained sharing, there are also works for overlapping data

structures. After running multiple sub-analyses for tracking information about non-overlapping

components, Lee et al. combine the results of these sub-analysis and derive the safety properties

of the entire overlapping structure [76]. A different approach is taken in [52], where Hawkins

et al. allow the programmer to specify an overlapping data structure in the style of a relational

database, with the goal of generating correct programs.

Sims [114] extends separation logic with fixpoint connectives and postponed substitution

to express recursively defined formulae to model the analysis of while-loops. However, it is

unclear how to check for entailment in their extended separation logic. While our work does

not address the inference/analysis challenge, we have succeeded in providing direct support for

automated verification via an expressive specification mechanism.

In this thesis, we make use of the formalism of separation logic for verifying properties of

mutable data structures in sequential programs. Our approach requires annotations in the form

of pre and postconditions for each method and invariants for each loop. We aim for a sound

and terminating formulation of automated verification via separation logic but do not aim for

completeness in the expressive fragment that we handle.

3.2 Shape Checking/Analysis

Many formalisms for shape analysis are proposed for checking user programs’ intricate manip-

ulations of shapely data structures. One well-known work is the Pointer Assertion Logic [89]

by Moeller and Schwartzbach, which is a highly expressive mechanism to describe invariants of

graph types [63]. The Pointer Assertion Logic Engine (PALE) uses Monadic Second-Order

Logic over Strings and Trees as the underlying logic and the tool MONA [64] as the prover.

PALE invariants are not designed to handle arithmetic, hence it is not possible to encode height-

balanced priority queue in PALE. Moreover, PALE is unsound in handling procedure calls [89],

whereas we would like to have a sound verifier. Harwood et al. [50] describe a UTP theory

for objects and sharing in languages like Java or C++. Their work focuses on a denotational

model meant to provide a semantical foundation for refinement-based reasoning or Hoare-style

axiomatic reasoning. Our work focuses more on practical verification for heap-manipulating

programs.
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In an object-oriented setting, the Dafny language [77] uses dynamic frames (introduced by

Kassios [61]) in its specifications. The term frame refers to a set of memory locations, and an

expression denoting a frame is dynamic in the sense that as the program executes, the set of

locations denoted by the frame can change. A dynamic frame is thus denoted by a set-valued

expression (in particular, a set of object references), and this set is idiomatically stored in a

field. Methods in Dafny use “modifies” and “reads” clauses, which frame the modifications of

methods and dependencies of functions. By comparison, separation logic provides a reasoning

logic that hides the explicit representation of dynamic frames.

For shape inference, Sagiv et al. [112] present a parameterized framework, called TVLA,

using 3-valued logic formulae and abstract interpretation. Based on the expected properties of

data structures, programmers must supply a set of predicates to the framework which are then

used to analyse that certain shape invariants are maintained.

However, most of these techniques are focused on analysing shape invariants, and do not

attempt to track the size and bag properties of complex data structures. One exception is the

quantitative shape analysis of Rugina [111] where a data flow analysis is proposed to compute

quantitative information for programs with destructive updates. By tracking unique points-to

reference and its height property, their algorithm is able to handle AVL-like tree structures.

Even then, the author acknowledge the lack of a general specification mechanism for handling

arbitrary shape/size properties.

The current thesis aims at handling user-defined shape predicates, which may describe com-

plex data structures as AVL trees, red-black trees, sorted lists, doubly-linked lists. Moreover,

the shape predicates may track other properties of the data structures, such as size and bag

properties.

3.3 Size Properties

In another direction of research, size properties have been most explored for declarative lan-

guages [55, 122, 23] as the immutability property makes their data structures easier to analyse

statically. Size analysis was later extended to object-based programs [24] but was restricted to

tracking either size-immutable objects that can be aliased and size-mutable objects that are una-

liased, with no support for complex shapes. The Applied Type System (ATS) [20] was proposed

for combining programs with proofs. In ATS, dependent types for capturing program invariants
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are extremely expressive and can capture many program properties with the help of accompa-

nying proofs. Using linear logic, ATS may also handle mutable data structures with sharing in a

precise manner. However, users must supply all expected properties, and precisely state where

they are to be applied, with ATS playing the role of a proof-checker. In comparison, we use a

more limited class of constraint for shape, size and bag analysis but support automated modular

verification.

3.4 Set/Bag Properties

Set-based analysis has been proposed to verify data structure consistency properties in [67],

where a decision procedure is given for a first order theory that combines set and Presburger

arithmetic. This result may be used to build a specialised mixed constraint solver but it cur-

rently has high algorithmic complexity. Lahiri and Qadeer [68] reported an intra-procedural

reachability analysis for well-founded linked lists using first-order axiomatization. Reachability

analysis is related to set/bag property that we capture but implemented by transitive closure at

the predicate level.

3.5 Other Verifiers
3.5.1 ESC/Java

Extended Static Checking for Java (ESC/Java) [42], developed at Compaq Systems Research

Center, aims for scalability and usability. For that, it forgoes soundness for the potential ben-

efits of more automation and faster verification time. Hence, ESC/Java suffers from both false

negatives (programs that pass the check may still contain errors that ESC/Java is designed to

handle), and false positives (programs flagged as erroneous are in fact correct programs). On

the contrary, our verifier is a sound program verifier as it does not suffer from false negatives: if

a program is verified, it is guaranteed to meet its specifications for all possible program execu-

tions.

3.5.2 ESC/Java2

The ESC/Java effort is continued with ESC/Java2 [27], which adds support for current versions

of Java, and also verifies more JML [71] constructs. One significant addition is the support

for model fields and method calls within annotations [25]. Since ESC/Java2 continues to use
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Simplify [31] as its underlying theorem prover which does not support transitive closure oper-

ations, it may have difficulties in verifying properties of heap-based data structures that require

reachability properties, such as collections of values stored in container data structures.

3.5.3 Spec]/Boogie

Spec] [5] is a programming system developed at Microsoft Research. It is an attempt at verifying

programs written for the C] programming language. It adds constructs tailored to program

verification, such as pre- and post-conditions, frame conditions, non-null types, model fields and

object invariants. Spec] programs are verified by the Boogie verifier [5, 6]. Boogie generates

verification conditions that are passed to an SMT solver in order to be discharged. The default

SMT solver is Z3 [30]. Spec] also supports runtime assertion checking.

Spec] supports object invariants but leaves the decision of when to enforce/assume object

invariants to the user. In order to verify object invariant modularly, Spec] employs an ownership

scheme that allows an object o to own its representation – objects that are reachable from o and

are part of o’s abstract state. The ownership scheme in Spec] forces a top-down unpacking of

the objects for updates, and a bottom-up packing for re-establishing the object invariant. The

packing and unpacking of objects are done explicitly by having programmers writing special

commands in method bodies.

In our system, instead of using special fields in method contracts to indicate whether an

invariant should be enforced, users directly use predicates. Hence, there is no need for explicitly

packing and unpacking the objects in the method body. Consequently, users are shielded from

the details of the verification methodology, which are largely irrelevant, from a user’s point of

view.

3.5.4 Jahob

The main focus of Jahob [65, 66] is on reasoning techniques for data structure verification

that combines multiple theorem provers to reason about expressive logical formulas. Jahob

uses a subset of the Isabelle/HOL [95] language as its specification language, and works on

instantiatable data structures, as opposed to global data structures used in its predecessor, Hob

[69]. Like SPEC], Jahob supports ghost variables and specification assignments which places

onus on programmers to help in the verification process by providing suitable instantiations of

these specification variables.
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3.5.5 EVE Proofs

EVE Proofs [118] is an automatic verifier for Eiffel [87]. The tool translates Eiffel programs

to Boogie [5]. EVE Proofs is integrated in the Eiffel Verification Environment. The authors

acknowledge the importance of frame conditions in modular verification. When a routine is

called, the verifier is invalidating all knowledge about the locations which may have changed.

Therefore it is essential to constrain the effect a routine has on the system to preserve as much in-

formation as possible. As Eiffel does not offer a way to specify the frame condition, the authors

introduced an automatic extraction of “modifies” clauses. Their approach uses the postcondition

to extract a list of locations which constitute the “modifies” clause.

Although the approach uses the dynamic type for the pre- and postcondition of a routine

call, it uses the static type for the frame condition. This can lead to unsoundness in the system.

As opposed to EVE Proofs, our approach does not have to infer frame conditions, courtesy to

the frame rule of separation logic [107]. The crucial power of the frame rule is that it allows a

global property to be derived from a local one, without looking at other parts of the program.

Another restriction of EVE Proofs regards the methodology for invariants, which has to take

into account that objects can temporarily violate the invariant, but also that an object can call

other objects while being in an inconsistent state. As this is not considered at the moment, their

current implementation of invariants can introduce unsoundness in the system.

3.5.6 jStar

jStar [35, 34] is an automatic verification tool based on separation logic aiming at object-oriented

programs. The tool combines the idea of abstract predicate families [100, 101] and the idea

of symbolic execution and abstraction using separation logic [33]. jStar integrates theorem

proving and abstract interpretation techniques as loop invariants are synthesized automatically.

However, the user must provide abstraction rules used to ensure convergence in the fixed-point

computation of loop invariants. While very general structural rules which need to be used with

any kind of logic systems are built in, the user must provide the problem specific logical rules

used by the theorem prover to decide entailment and other kinds of implications. jStar does not

check that user-defined rules are consistent.

By comparison, our system does not require the specification of logical rules. As we do not

infer loop invariants, we do not require the abstraction rules either. While the user might provide
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lemmas, which state any auxiliary relations between predicate definitions, as opposed to jStar,

we do verify that the lemmas provided by the user are sound [93].

3.5.7 SLAyer

SLAyer [9] is a verification system designed to automatically prove the absence of memory

safety errors (i.e. dangling pointer dereferences, double frees, memory leaks) of programs writ-

ten in C. Validity of memory is treated at a per-object granularity, meaning that errors such as

buffer overflows are not covered. It has been successfully used for finding bugs in Windows 8

codebase. SLAyer does not intend to check other properties of data structures beyond memory

safety.

3.5.8 Thor

Thor [83] is a tool meant to automatically discover memory errors by combining shape analysis

and arithmetic reasoning. The implemented shape analysis uses separation logic for describ-

ing the memory states and is capable of reasoning about doubly-linked lists. Regarding the

arithmetic reasoning, Thor adds support for stack-based integers, integers in the heap, and the

lengths of lists by utilizing off-the-shelf arithmetic analysis. If a program can be proven safe

by only the shape reasoning, then no further processing is required. However, if the program’s

safety depends on arithmetic information, then the result of the shape analysis will be translated

into an arithmetic program. Consequently, the integer programs produced by the shape analysis

phase provide a new source of test programs for the arithmetic analysis tool.

3.5.9 VeriFast

VeriFast [57, 58] is a tool for the specification and verification of safety properties of pointer-

manipulating imperative programs. It supports abstract predicates described in the separation

logic formalism, such that the memory is represented as a conjunction of points-to assertions

and abstract predicate assertions, while data values are represented as first-order logic terms. As

opposed to our approach, abstract predicates must be folded and unfolded explicitly using ghost

statements. Assertions over data values are delegated to an SMT solver.

3.5.10 Key

Key is a verification tool designed for proving the correctness of programs written in the Java

language [1, 121]. The underlying logic used in Key is a dynamic logic [29], an extension of
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first-order predicate logic with modal operators. For addressing the aliasing issue, Key makes

use of dynamic frames. The dynamic frames allow the explicit specification of the set of memory

locations that are relevant for a method or for an abstract variable. “Modifies” clauses, used for

listing the memory locations that can be modified, are being encoded in the underlying dynamic

logic [37].

3.5.11 Why/Krakatoa/Caduceus/Frama-C

Why/Krakatoa/Caduceus/Frama-C [39, 82] is a set of tools for deductive verification of Java and

C source code, where the requirements are specified as annotations in the source. Why provides

its own internal language, to which the input languages are compiled. The internal language

is a small ML-like language with imperative features (references and arrays), exceptions and

annotations. For Java the specifications are given in the Java Modeling Language (JML) and are

interpreted by the Krakatoa tool. For C, Why has its own specification language, largely inspired

from JML and interpreted by the Caduceus or Frama-C tools. Verification conditions generated

by the Why tool can then be discharged by different theorem provers. However, to the best of

our knowledge, neither inheritance nor method overriding is supported by their system. Frama-

C denotes a suite of tools dedicated to the analysis of the source code written in C, which gathers

several static analysis techniques in a single collaborative framework. By using Frama-C, the

results output by an analyzer can be used by other analyzers in the framework.

3.5.12 jMoped

jMoped [116, 115] is a checker for Java programs. The tool combines model-checking and

testing, as model checking is used to symbolically test many inputs at the same time. Internally, a

Java program is translated into a symbolic pushdown system (SPDS), preserving the control flow

of the program. JMoped checks for errors such as assertion violations, null pointer exceptions,

and array bound violations. Whenever an error is found, jMoped outputs the arguments leading

to the error. As opposed to our approach, it requires the user to set bounds for the size of

variables and of the heap, in order to perform the modelling only for a finite amount of data.
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3.5.13 Remarks

As a comparison, we shall discuss some features in our current verification system that differ

from those used in other verifiers. Our use of user-defined predicates, which capture the proper-

ties to be analysed, removes the need for model fields. Regarding ghost variables (specification

variables), we provide support for automatically instantiating them. Furthermore, we make use

of unfold/fold reasoning to handle the properties of recursive data structures. This obviates the

need for specifying transitive closure relations that are used by classical verifier, such as Jahob,

when tracking recursive properties. Additionally, as separation logic employs local reasoning

via a frame rule, our approach does not require a separate “modifies” clause to be prescribed.

3.6 Immutability Annotations

Immutability has been extensively studied in the context of object-oriented programs under the

form of object immutability (a given object cannot be mutated through any reference whatso-

ever), class immutability (no instance of an immutable class can be changed), reference im-

mutability (a given reference is not used to modify its referent) [11, 125, 124, 49, 106]. Our

approach works at the specification level, rather than as part of the type system, and can achieve

object immutability by marking the object as immutable, and reference immutability by marking

the reference as immutable. For field and class immutability, we can provide support for it by

adding immutability annotations to field and data (class) declarations, respectively. This makes

every instances of such annotated field or data (class) be automatically marked as immutable in

our logic.

However, what really distinguishes our work from type-based approaches is that we can ap-

ply immutability annotation on user-definable predicate definitions. This can be used to annotate

either partial or entire data structures for read-only access, as may be required by the logics of a

given program component. This new approach adds considerable expressiveness to immutable

specifications, allowing us to support more concise, more precise and more flexible schemes for

both analysis and verification of user programs.

Separation logic uses separation and local reasoning as a means to enforce exclusive owner-

ship over each heap cell [107]. This interpretation of the points-to assertion in separation logic

is not simply to describe a part of the heap, but can be enhanced with read/write permissions

for better analysis and control. This observation has been extensively exploited by works
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dealing with permissions [12, 36] for enabling race free sharing of heap storage between con-

current threads. Bornat et al. [12] extended separation logic to allow shared read access using

permissions. The authors considered predicates that admit to a weaker permission, namely read-

only permission. One problem with the read-only permissions is that ∗ can no longer be used

to express disjointness as the same permission can appear twice, i.e. two read permissions on

the same cell. Any two read permissions on a field look identical and cannot be distinguished.

Hence, permissions need to be disjoint. Parkinson solves this problem by giving names to per-

missions [99].

Inspired by the use of permissions for the concurrent programming setting [12], we have

designed a much simpler mechanism for enabling immutability annotations in the sequential

programming setting. In our case, ∗ still expresses disjointness. As our model is focused on

the sequential setting, we do not currently support multiple read-only permissions for a given

resource. Instead, our goal is to exploit those scenarios in which data structures can be treated

as immutable in order to support a more precise verification/analysis. Our solution is tailored

towards more flexible alias analysis, supports partial immutability, better cut-points preservation

for modular analysis and can support access controls through immutable predicates within both

pre and post-conditions. The new specification mechanism allows us to design a more concise

and more precise verification/analysis system, with finer controls over accesses to resources

(data structures).

3.7 Structured Specifications

Previous works on enhancing pre/post specifications [70, 60] were mainly concerned with im-

proving modularity to allow easier understanding of specifications. With this objective, multiple

specifications and redundant representations were advocated as the primary machinery. In the

context of shape analysis, Chang and Rival [19] make use of if notation for defining inductive

checkers. However, the conditional gets approximated to disjunction during the actual analysis.

Verification wise, the three structured specification mechanisms that we have proposed are not

available in existing tools, such as JML [17], Spec# [5], Dafny [79], JStar [35] and VeriFast [57].

The closest relationships may be summarized, as follows. JML supports specification cases, in

the form of multiple pre/post conditions, for better modularity and clarity of specifications. Our

case constructs also intend to provide better guidance to the verification process. Spec#/Dafny
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supports ghost variables for manual instantiation (by user) of logical variables. In contrast, our

early/late instantiation mechanisms provided two solutions to automatic instantiation of logical

variables. Overall, little attempt has been made to add specification structures that can help

produce a better verification outcome.

On timings, we did not compare with Spec# and Dafny, since our benchmark on heap-

manipulating programs is not properly covered by their specification logic. Regarding JStar, it

currently uses logics involving only shapes and equalities, it does not support more expressive

properties, like set and numeric properties, needed by our benchmark. Lastly, VeriFast requires

more user intervention in the form of explicit unfolding and folding of the abstract predicates

through ghost statements.

In a distributed systems setting, Seino et al. [113] present a case analysis meant to improve

the efficiency of protocol verification, which involves finding appropriate predicates and split-

ting a case into multiple sub-cases based on the predicates. In order to cover all the possible

case splits, they use a special type of matrix. Pientka [104] argues for the need of case analysis

in inductive proofs. The potential case splits are selected heuristically, based on the pattern of

the theorem. A case split mechanism has been used by Brock et al. [14] to guide case anal-

ysis during proving. As opposed to the previous works, our current proposal is to incorporate

structured mechanisms within the specification mechanism itself for guiding the case analysis,

existential instantiation or staged proving.

3.8 Object Oriented Verification

In support of modular reasoning on properties of object-oriented programs, the notion of be-

havioral subtyping has been intensively studied in the last two decades, e.g. [80, 2, 81, 32, 86,

41, 90, 99]. The notion of specification inheritance, where an overriding method inherits the

specifications of all the overridden methods, was first introduced in Eiffel [86]. As an effort to

relate these two notions, [32] presented a modular specification technique which automatically

forces behavioral subtyping through specification inheritance. More recently, [73] proposed

a formal characterization for behavioral subtyping and modular reasoning. The basic idea of

modular reasoning, which the authors call supertype abstraction, is that reasoning about an in-

vocation, say E.m(), is based on the specification associated with the static type of the receiver

expression E. In [73], the authors proved the equivalence between supertype abstraction and
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behavioral subtyping. The new formalization is supposed to serve as a semantic foundation for

object-oriented specification languages.

Various embodiments of these proposals have been implemented in both static and runtime

verification tools and have been applied to rich specification and programming languages such

as ESC/Java [42], JML [71], Spec# [5], ESpec [98], Krakatoa [85, 84]. Software model check-

ing frameworks [110, 51] have also been used in the verification of OO programs. Inference

mechanisms for loop invariants have been proposed in [94, 102] amongst others, and they can

make verification even easier to use. However, most of these works are based primarily on the

idea of dynamic specifications. Even when static specifications are added, like code contracts

in JML [74, ch 15], they did not enforce an important subtyping relation between a static spec-

ification and its dynamic counterpart. Moreover, in comparison with our approach, Spec# is

more restrictive in handling overriding as it does not allow any changes in the precondition of

the overriding method.

Using the rules of behavioral subtyping, Findler et al. have formalized hierarchy violations

and blame assignment for pre and postcondition failures [40, 41]. They identified a problem

(related to preservation of class invariants) that arises from synthesizing the specifications of

overriding methods through specification inheritance. This problem is caused by specification

inheritance’s manner of enforcing behavioral subtyping which may wrongly assume that the

original specification of an overriding method is too weak. In our proposal, we can avoid this

problem by using specification abstraction instead of specification inheritance, if class invariants

are to be preserved for the overriding methods. Furthermore, while [40] and [41] focus on

checking the correctness of contracts at run-time, we propose a static verification system.

The problem of writing specifications for programs that use various forms of modularity

where the internal resources of a module should not be accessed by the module’s clients, is

tackled in several papers [96, 100, 72]. In [96] the internal resources of a module are hidden

from its clients using a so called hypothetical frame rule, whereas in [100] the notion of abstract

predicates is introduced. While [96] only supports single instances of the hidden data structure,

abstract predicates can deal with dynamic instantiation of a module. Visibility modifiers are

taken into consideration in [72] where a set of rules for information hiding in specifications

for Java-like languages is given. Moreover, the authors demonstrate their application on the

specification language JML. However, some JML tools, including ESC/Java2 [42, 26] ignore
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visibility modifiers in specifications.

The emergence of separation logic provided a novel way to handle the challenging aliasing

issues for heap-manipulating programs [100, 99, 101].

The closest to our work is the distinction between static and dynamic specifications, pro-

posed by Parkinson and Bierman, in support of modular verification and direct method calls

handling [101]. Regarding the modularity issues found in the Java programming language,

they address the issue of encapsulation with the concept of an abstract predicate, which is the

logical analogue of an abstract datatype, and the issues of inheritance by extending the con-

cept of abstract predicates to abstract predicate families. This extension allows a predicate to

have multiple definitions that are indexed by class, which allows subclasses to have a different

internal representation while remaining behavioural subtypes. We support encapsulation and

inheritance through the use of partial and full views. Similar to their work, we support inheri-

tance and overriding, while avoiding unnecessary re-verifications. We have a marginal emphasis

on static specifications over dynamic specifications, as we advocate for the latter to be derived

from the former, when needed, using the refinement techniques of specification specialization

and abstraction.
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CHAPTER IV

IMMUTABILITY ENHANCED SPECIFICATIONS

4.1 Motivation

The importance of immutability information has been discussed in several works [49, 11]. Im-

mutability is essential when we have to guarantee that non-privileged clients are never allowed

to modify some given resource (or data structure). Moreover, immutability is useful in the pres-

ence of aliasing, where it is challenging [49] to maintain invariants of aliased objects otherwise.

In a concurrent programming setting, immutability, seen as a read-only permission, enables safe

sharing between different threads without the cost of synchronization [99, 12].

Immutability was extensively investigated in the context of object-oriented programs un-

der several forms, such as object immutability (a given object cannot be mutated through any

reference whatsoever), class immutability (no instance of an immutable class can be changed),

reference immutability (a given reference is not used to modify its referent) [11, 125, 124].

These proposals were formulated as extensions of the underlying type system.

However, to the best of our knowledge, the concept of immutability has not been applied to

a richer specification logic that could be used to specify more concisely and precisely the be-

haviors of software programs, particularly in the sequential programming setting. In the current

thesis, we investigate the benefits of enforcing immutability requirements in the context of an

expressive logic, called separation logic [108], that is particularly suited for verifying proper-

ties of mutable data structures. In contrast to the previous works, our approach applies at the

specification level, rather than as part of the type system.

The current work enhances the approach introduced in the previous chapters of this thesis

with the possibility of specifying which parts of the data structures cannot be mutated (are

immutable), and by allowing the sharing of aliases in the heap formula through the use of the

conjunctive ∧ operator. In several recent verification systems based on separation logic [92, 8,

35], a specification formula is a restricted form of logic that allows only separating conjunction,

∗, in the heap description. The separating conjunction Φ1 ∗Φ2 denotes a program state with two

disjoint heap spaces described by sub-formulae Φ1 and Φ2, respectively. Such heap separation
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supports precise knowledge about the pointer aliasing, and can be exploited by the frame rule

of separation logic [107], that forms the basis for local reasoning.

Our goal is to take advantage of the immutability property, so as to generalize the heap

description to allow a greater degree of sharing. Thus, instead of relying on just a spatial formula

Φ1 ∗Φ2 in the specification logic, our new verification system also supports conjunctive formula

of the form Φ1 ∧Φ2 whereby the heap formula Φ1 is expected to be marked as immutable, whilst

Φ2 is unrestricted. This allows the heap nodes from both Φ1 and Φ2 to be possibly aliased

with one another, thus supporting a more general specification mechanism for data structures,

including the use of overlaid data structures.

4.2 Chapter Overview

In the rest of the chapter we shall focus on the apparatus for writing and verifying specifications

with immutability annotations. Sec 4.3 provides examples to motivate the need for immutability

annotations for a more concise and precise specification mechanism. Sec 4.4 introduces the

specification language. Sec 4.5 and Sec 4.6 formalize the entailment proving for immutability

enhanced specifications and the verification rules to generate Hoare triples, respectively. The

soundness properties for both the forward verifier and the entailment prover are discussed in

Sec 4.7. Sec 4.8 presents our experimental results.

4.3 Examples

Immutable annotations allow us to write stronger specifications that lead to more concise and

precise program verification. We shall use simple examples to highlight how these desirable

traits for program specifications are being achieved. To help construct simple examples, let us

consider the specification for a singly-linked list, already described in Sec 2.2.

data node { int val; node next}

ll〈n〉 ≡ root=null ∧ n=0

∨ root::node〈 , q〉 ∗ q::ll〈n−1〉

inv n≥0;
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4.3.1 Concise Specification

Consider a method that receives a list as its input, before returning the list’s length as its result.

Typically, such a method would not be mutating its input list. Let us first specify this method

without any immutability annotation. Note the use of a special variable res for denoting the

result of the method.

int length(node x)

requires x::ll〈n〉

ensures x::ll〈n〉∧res=n ;

{ if (x==null) then return 0;

else return 1 + length(x.next); }

The precondition assumes that variable x points to a singly-linked list of length n using the

predicate x::ll〈n〉. The same predicate, x::ll〈n〉, is also present in the postcondition which

suggests that a list of the same length is being preserved by the method. However, we would

really prefer to express something stronger for this method since it is the same input list (from

the method’s entry) that is being preserved in the postcondition (at the method’s exit).

One solution for capturing total preservation of list is to introduce a stronger llS predicate

that would capture the entire sequence of elements and their nodes, as shown below. Note that V

captures the sequence of values, while L captures the sequence of pointers to nodes in the linked

list.

llS〈V, L, n〉 ≡ root=null ∧ n=0 ∧ V=L=[]

∨ root::node〈v, q〉 ∗ q::llS〈V1, L1, n−1〉 ∧ V=v:V1

∧ L=root:L1

inv n≥0;

With this more informative predicate, we could now capture a more complete specification of

length method, as follows:

int length(node x)

requires x::llS〈V, L, n〉

ensures x::llS〈V, L, n〉∧res=n ;
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However, this approach makes our verification more complex as we are now required to verify

two additional properties, namely the preservation of sequence of values and sequence of ad-

dresses, for the input list. Apart from causing more work for our verifier, we must also rely on

a more complex prover that is expected to handle proofs involving sequences.

We propose a simpler solution to this problem that uses immutability annotation of the

form @I to annotate the specification of each node or each predicate that is only read (and not

modified) by its method. In the case of the length method, we can indicate that the list pointed

by x is not mutated by its method through the following specification:

int length(node x)

requires x::ll〈n〉@I

ensures res=n ;

The precondition states that the linked-list pointed by x will only be read by the length method.

This indirectly ensures the preservation of the input list, which need not be re-proven in the

postcondition. The net result is a cleaner specification that more succinctly captures the intended

semantics of the length method. We said that the new specification is more concise (or shorter)

since it has one fewer predicate in the postcondition. It is also more precise (or accurate) since

it captures the total preservation of the input list without resorting to the use of a more complex

predicate. These improvements are due entirely to the use of an immutable predicate in the

precondition.

4.3.2 Flexible Aliasing

Let us now consider a method, called sum, that receives two data nodes pointed by x and y,

respectively, and computes the sum of the values stored inside the two nodes.

Under the principle of heap separation, as promoted by separation logic, our specifica-

tion logic would explicitly state that the two input nodes are either disjoint, as specified using

x::node〈a, 〉∗y::node〈b, 〉, or are exact aliases for one another, namely x::node〈v1, 〉∧x=y.

To support both these scenarios, one way for specifying this is to use two pairs of pre and

post-conditions, one corresponding to the case when x and y are disjoint, and another to the case

when they are exact aliases, as shown below.



4.3. EXAMPLES 61

int sum(node x, node y)

requires x::node〈a, q1〉∗y::node〈b, q2〉

ensures x::node〈a, q1〉∗y::node〈b, q2〉∧res=a+b;

requires x::node〈a, q〉∧x=y

ensures x::node〈a, q〉∧res=2 ∗ a;

{return x.val + y.val}

With the help of these two specifications, we can now deal with different scenarios, whereby

the nodes may either be aliased or otherwise. As an example, consider the two sum calls in the

code fragment below.

node u = new node(...)

node w = new node(...)

int r1 = sum(u, u)

int r2 = sum(u, w)

The first call sum(u, u) would only match with the second pre/post specification, while the

second call sum(u, w) where the input nodes are disjoint, would match with the first pre/post

specification.

Though this specification is fairly precise, it is unnecessary complicated for the given method.

In particular, neither of the two nodes pointed to by x and y are being updated. For such a sce-

nario, it is actually not important if x and y are aliases or not. What is important is to be able to

access the values of the two nodes. With the help of immutability annotations, we can actually

use a much simpler specification below.

int sum(node x, node y)

requires x::node〈a, 〉@I∧y::node〈b, 〉@I

ensures res=a+b;

We apply the immutability annotation @I on both the nodes pointed by x and y, respectively.

Moreover, we allow the use of ∧ operator, instead of the ∗ operator, to express the fact that x

and y may either be aliases or otherwise. As a consequence, the same pre/post specification

can now be used for both the sum calls, namely sum(u, u) and sum(u, w), from our earlier code

fragment. Yet another improvement is that the two immutable nodes need not re-appear in the
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postcondition, thus avoiding the need to re-prove its preservation by the sum method. With this

cleaner specification, we are able to claim that the result returned by the method is always a+b,

regardless of whether or not x and y are aliases or not.

We refer to this as the flexible aliasing from the use of immutable specification. The knowl-

edge that something is immutable enables us to support arbitrary aliasing in the heap description

with the use of the conjunctive ∧ operator. This results in a unified specification that is both

concise and precise. Functional programmers are all too aware of this benefit, whereby aliasing

was never an issue for understanding (or analysing) purely functional code without any heap

mutation. In the present work, we advocate for the use of immutable annotations to help us

achieve a similar benefit for the specification of data structures that are only being read, and

never modified, in the imperative setting.

4.3.3 Preservation of Cut-Points

Cut-points refer to the intermediate data points that may be encountered prior to a method call.

Previous works on program analysis [45] have attempted to preserve cut-points for method

calls, where possible. This is typically achieved by keeping track of multiple summaries for

each method under analysis, so that more cut-points could be preserved. In this section, we

show how cut-points may be preserved with the help of immutability annotations.

Let us re-visit the length example, covered in Sec 4.3.1. Let us also consider the following

code fragment:

node y = new node(2, null)

node x = new node(1, y)

int r = length(x)

Prior to the length call, we would have the following heap state, x::node〈1, y〉∗y::node〈2, null〉,

that is formed by two assignment statements. This heap state captures two cut-points from vari-

ables x and y. If we had used the following mutable specification of length:

int length(node x)

requires x::ll〈n〉

ensures x::ll〈n〉∧res=n ;

We would have matched the current heap state to x::ll〈2〉 before asserting x::ll〈2〉∧r=2 as the
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post-state of the code fragment. However, this abstracted heap state has lost track of the entire

cut-point from variable y, while the node at x is being replaced by a x::ll〈2〉 predicate. As a

result, we are unable to reason about any information pertaining to y (and to a lesser extend x)

after the method call.

To rectify this deficiency, we can use the earlier immutable specification:

int length(node x)

requires x::ll〈n〉@I

ensures res=n ;

During the entailment for each immutable predicate, such as x::ll〈n〉@I, the original heap state

remains unchanged but instantiation on properties, such as n=2, can still be computed from the

current heap state. Thus, at the end of the code fragment given earlier, we expect the following to

be captured, x::node〈1, y〉∗ y::node〈2, null〉∧r=n=2, which preserves the cut-points for both

x and y. This difference in the treatments between mutable and immutable predicates by our

new entailment procedure, allows considerable more information to be preserved for immutable

predicates. We shall formally describe this procedure later in Sec 4.5.2.

4.3.4 Partial Immutability

Another aspect of our immutability enhanced specification is that we could support the anno-

tation of only a segment of linked nodes, rather than a fully linked data structure. Let us first

consider a segment of singly-linked nodes, as defined by the following predicate:

lseg〈p, n〉 ≡ root=p ∧ n=0

∨ root::node〈r, q〉 ∗ q::lseg〈p, n−1〉

inv n≥0 ;

As an example of its use, let us also consider a method to join a linked list to another, as shown

below.
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void append(node x, node y)

requires x::lseg〈null, n〉∧x6=null

ensures x::lseg〈y, n〉 ;

{if (x.next6=null) then append(x.next, y);

else x.next=y;}

The first linked-list must be non-empty and moreover it will be mutated by the method to join

up with the second list. On closer inspection, it is actually the last node of the first linked list

that is being mutated. Thus, to capture the specification of append method in a more accurate

manner, we can actually use the following pre/post specification instead:

void append(node x, node y)

requires x::lseg〈p, n〉@I∗p::node〈v, null〉

ensures p::node〈v, y〉 ;

The entire segment of the first linked list minus the last element, namely x::lseg〈p, n〉@I, is

now marked as immutable. Only the last node p::node〈v, null〉 of the first linked list is left

as a mutable node, and suitably specified as modified in the post-condition of the method. This

specification is both simpler and more precise. All cut-points pertaining to the initial segment of

parameter x are preserved by the presence of an immutable lseg predicate in the precondition.

It can even be used to reason about the formation of cyclic linked list when x = y, or even

lasso-style circular linked list when y points to a node within the first list of nodes.

4.3.5 Read and Write Phases

One of the goals of the current proposal is to relax the heap separation principles specific to

separation logic, by allowing two phases in the heap description. The two phases have the

following attributes:

• a read phase, where all the predicates must be immutable. As mutation is disabled in the

read phase, we allow heap sharing between the constituting heap predicates, which can

be co-joined by both ∗ and ∧. This corresponds to the initial reading phase in a program,

and contains the heap being read before any writing took place.

• a write phase, where the predicates can be either mutable or immutable. As this phase
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might involve writing, we do not allow heap sharing. Hence, we require structural sepa-

ration between the heap predicates through ∗.

Our formulation for entailment proving is simple as it comprises only two phases, but is

general enough to cover several situations where flexible aliasing may be deployed. We advocate

for capturing the precise aliasing only when required, namely after at least one mutation/writing

has took place.

For illustration, let us assume a method call length, which calls the length method

defined in Sec 4.3.1 for two lists received as argument, and records the addition of the two

results in a data node, also received as argument. Initially, we leave the call length method

unspecified.

void call length(node x, node y, node z)

{ int l = length(x)+length(y);

z.val = l; }

In the body of the call length method, we can distinguish two distinct phases, namely:

• an initial read phase, where the linked lists pointed by x and y are being read by the

length method.

• a subsequent write phase, where the data node pointed by z is updated to record the

addition of the lengths of the lists pointed by x and y.

Using our read/write phases approach, we can provide the specification given below, where

the heap description precisely captures the code behavior. Semantically, Φ1#Φ2 is equivalent

to Φ1∧Φ2. Operationally, we interpret Φ1#Φ2 as a specification that comprised of a read phase

for an immutable formula Φ1, followed by a write phase for a possibly mutated Φ2. In this

example, the initial read phase is captured by x::ll〈n〉@I∧y::ll〈m〉@I , while the subsequent

write phase is denoted by z::node〈 , v〉. As mentioned before, inside the read phase there is

no need to explicitly specify the aliasing between x and y (this is exploited in the specification

through the use of the ∧ connector). Moreover, as all the reading takes place before updating

the node pointed by z, there is no need to capture the aliasing between x and y and z (this is

exploited through the use of the # connector).
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void call length(node x, nodey, node z)

requires (x::ll〈n〉@I∧y::ll〈m〉@I)#z::node〈 , v〉

ensures z::node〈n+m, v〉;

4.3.6 Immutable Postconditions

Apart from improving the analysis of methods, one other application of our immutability en-

hancement is the construction of immutable (or partially immutable) data structures. For il-

lustration, consider a method for constructing a list of length n. Let us assume that after the

construction phase we do not allow the list to be mutated.

In order to guarantee that the list cannot be mutated outside this method, we can mark it as

immutable in the method’s postcondition. Consequently, after a call to the ll build method,

any caller will only be allowed to read the list, and cannot update it in any way.

node ll build(int n)

requires n≥0

ensures res::ll〈n〉@I;

{ if (n == 0) then null;

else { int v = ... ;

new node(v, ll build(n−1)); } }

We can use this mechanism to specify the methods of immutable classes or data structures.

4.4 Specification and Programming Language

In Figure 4.1 we introduce the differences from the programming and specification languages

given in Fig 2.1 and Fig 2.2, respectively. Each heap predicate can be annotated with an im-

mutability annotation, u ∈ {I,M}, (v::c〈v∗〉@u). This is to support use-site annotations. In

order to support declaration-site annotations, every data type declaration and heap predicate

definition can also have attached immutability annotations. If no annotation is present, a data

node/heap predicate is considered to be mutable. For illustration, x::node〈v, y〉@I corresponds

to an immutable node, meaning a node whose both fields cannot be mutated. Note that we

support the following subtyping relation between the immutability annotations M<:I .

The heap part, κ, is organized according to the code’s reading and writing phases:
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Data type datat ::= data c[@u] { (field)∗ }

Imm ann. u ::= I |M

Shape pred. spred ::= c〈v∗〉[@u] ≡ Φ inv π0

Heap formula κ ::= κR#κW | emp

κR ::= κR∗∧κR | v::c〈v∗〉@I | emp

κR∗ ::= κR∗∗κR∗ | v::c〈v∗〉@I | emp

κW ::= κW ∗κW | v::c〈v∗〉[@u] | emp

Figure 4.1: Modifications to the programming and specification languages

• κR corresponding to the initial read phase in the code. This phase contains only im-

mutable predicates co-joined by either ∗ or ∧. Note that it is compulsory in this phase for

each predicate to be immutable, i.e. to have an immutability annotation @I .

• κW corresponding to the write phase in the code. This phase can contain both immutable

and mutable predicates co-joined by ∗.

• The read and write phases are co-joined by the # connector, whose semantic is given in

Sec. 4.7.2.

During the verification process, the heap state might contain nested read and write phases,

κ ::= κR#(κW ∗κ). For brevity, we only present the formalization for one read and one write

phase.

Our specification is meant to minimize the need to explicitly express aliasing relations.

Accordingly, we use the following principles:

1. Aliasing does not need to be considered:

– inside the read phase as none of the available pointers can be used to mutate the

heap.

– between the read phase and the write phase as, during our entailment checking, once

the writing phase is encountered, the read phase is discarded. Basically, we consider
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that writing to the heap invalidates all the previous reads from the heap. This will be

further described during the entailment proving procedure in Sec 4.5 .

2. Aliasing needs to be considered:

– inside the write phase

4.5 Entailment Checking

Our goal in the current section is enhancing the entailment proving procedure introduced in

Sec 2.4 to handle the current form of the heap formula with conjunction and immutability an-

notations.

Besides the entailment procedure in Sec 2.4, we also provide an amended form that al-

lows heap sharing between the consequent and the residual states, as long as the shared heap

is immutable: ∆A`κV ∆C ∗i SR. If we consider any of the residual states, ∆R ∈ SR, then the

semantics of the ∗i connector is such that

s, h |=∆C∗i∆R iff ∃h1, h2, h3 · h = h1⊥h2⊥h3 and

s, h1·h3 |= ∆C and s, h2·h3 |= ∆R

Similar to the entailment procedure introduced in Sec 2.4, the purpose of heap entailment is

to check that heap nodes in the antecedent ∆A are sufficiently precise to cover all nodes from

the consequent ∆C , and to compute the set of possible residual poststates SR. The entailment

succeeds when SR is non-empty, otherwise it is deemed to have failed. κ is the history of nodes

from the antecedent that have been used to match nodes from the consequent, V is the list of

existentially quantified variables from the consequent. κ and V are derived. The entailment

checking procedure is initially invoked with κ = emp and V = ∅.

4.5.1 Splitting the entailment

Our entailment proving is structured as follows:

• split the heap on the RHS according to the rules

[ENT−SPLIT−RHS1] and [ENT−SPLIT−RHS2] (Fig 4.2)

• split the heap on the LHS according to the rules

[ENT−SPLIT−LHS1] and [ENT−SPLIT−LHS2] (Fig 4.3)
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For convenience, we also provide a lifted variant of the entailment checking procedure,

which takes a set of prestates. The entailment succeeds in such a case if any of the prestates

gives rise to a successful entailment, that is if at least one of the Si is non-empty. This variant

of the entailment is useful when we break the entailment procedure according to the read and

write phases, where each individual phase could potentially give rise to a set of residual states.

In order for the entire entailment to succeed, we need it to only succeed for one of the phases.

∀i∈1. . .n·Φi`κV Φ ∗i Si
{Φ1, . . . ,Φn}`κV Φ ∗i ∪ni=1 Si

For the case of the [ENT−SPLIT−RHS1] rule in Fig 4.2, the splitting is performed when

encountering a phase split, #. At that point, the heap entailment is divided into sub-phases

corresponding to the read and write phases, respectively:

• First the read phase, κR, is entailed, obtaining a set of residual states, S. If the heap from

the read phase is co-joined through ∧, then the entailment will be further split according

to rule [ENT−SPLIT−RHS2] in Fig 4.2. To differentiate the entailment of the read phase,

we provide the entailment judgement Φ1|=RDRHS

κ
V Φ2 ∗i SR (Fig 4.2).

• Secondly, the write phase is entailed with the help of the residual state from the previous

entailment. Take note that before entailing the write phase, κW , the read phase needs to

be dropped as it is no longer safe to use that information (the heap from the read phase

might have been mutated by a write in the write phase). The dropping of the read phase

is performed by the dropRP function, which is given below.

dropRP (S) =df ∀Φ ∈ S.dropRPΦ(Φ)

dropRPΦ(
∨

(∃v∗·κ∧π)∗) =df
∨

(∃v∗·dropRPκ(κ)∧π)∗

dropRPκ(κR # κW ) =df κW

• Lastly, the pure information from the RHS, π2, is entailed, generating the final set of

residual states, S2.

For the rule [ENT−SPLIT−LHS1] in Fig 4.3, we take advantage of the proof search capability

of our system by trying to entail the heap κ from the RHS using both the read phase, κR, and

write phase, κW , from the LHS. The entailment succeeds if either the read or the write phase

on the LHS gives rise to a successful entailment, that is if at least one of the residual states S1
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[ENT−SPLIT−RHS1]

κ1∧π1|=RDRHS

κ
V κR ∗i S

dropRP (S)`κV κW ∗i S1

S1`κV π2 ∗i S2

κ1∧π1`κV (κR#κW∧π2) ∗i S2

[ENT−SPLIT−RHS2]

κ1∧π1`κV κR∗ ∗i S
S|=RDRHS

κ
V κR ∗i S1

κ1∧π1|=RDRHS

κ
V (κR∗∧κR) ∗i S1

Figure 4.2: Splitting RHS

[ENT−SPLIT−LHS1]

κR|=RDLHS

κ
V κ ∗i S1

κW`κV κ ∗i S2

κR#κW`κV κ ∗i (S1 ∪ S2)

[ENT−SPLIT−LHS2]

κR∗`κV κ ∗i S1

κR|=RDLHS

κ
V κ ∗i S2

κR∗∧κR|=RDLHS

κ
V κ ∗i (S1 ∪ S2)

Figure 4.3: Splitting LHS

and S2 is non-empty. When the LHS consists of only the read phase, rule [ENT−SPLIT−LHS2]

from Fig 4.3 applies. This rule continues splitting the antecedent whenever ∧ is encountered

in the heap formula on the LHS. The entailment succeeds if at least one of the sub-entailments

succeeds. We provide the entailment judgement Φ1|=RDLHS

κ
V Φ2 ∗i SR (Fig 4.3).

4.5.2 Matching

During entailment, each pair of aliased nodes from the antecedent and consequent are matched

up, whenever they are proved identical. The formal rules for matching are given in [ENT−MATCH−MUT]

and [ENT−MATCH−IMM] in Fig 4.5. Rule [ENT−MATCH−MUT] applies whenever the node

to be matched on the RHS is mutable, while [ENT−MATCH−IMM] applies for immutable nodes

on the RHS. For the former rule, the matching node from the LHS is consumed. As the match-

ing process is incremental, we keep the successfully matched nodes from antecedent in κ for

better precision. Function XPuren soundly approximates the heap formula in the antecedent, and

it will be described in Sec 4.5.3.

In the case of the rule [ENT−MATCH−IMM], the matching node on the LHS is not con-

sumed. However, the node needs to be temporarily removed until the entire κ2 is entailed. This

is due to the fact that p2::c〈v∗2〉@I and κ2 must reside in disjoint heaps as they are co-joined by

the separating conjunction. Hence, we will extract the matching node from the heap formula
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SH(S, (p1::c〈v∗1〉@u, id)) =df ∀Φ ∈ S.SHΦ(Φ, (p1::c〈v∗1〉@u, id))

SHΦ(
∨

(∃v∗·κ∧π)∗, (p1::c〈v∗1〉@u, id)) =df
∨

(∃v∗·SHκ(κ, (p1::c〈v∗1〉@u, id))∧π)∗

SHκ(κX C κY , (p1::c〈v∗1〉@u, id)) =df SHκ(κX , (p1::c〈v∗1〉@u, id)) C

SHκ(κY , (p1::c〈v∗1〉@u, id)),

for X, Y ∈ {R,W} and C ∈ {#, ∗,∧}

SHκ(p2::c〈v∗2〉@u, (p1::c〈v∗1〉, id)) =df p2::c〈v∗2〉@u

SHκ([id1], (p1::c〈v∗1〉@u, id)) =df p1::c〈v∗1〉 if id=id1

SHκ([id1], (p1::c〈v∗1〉@u, id)) =df [id1] if id6=id1

Figure 4.4: Function SH

and replace it by a formula hole with a unique identifier ([id]). The matching node is substi-

tuted back into the formula at the end of the entailment of κ2 by function SH given in Fig 4.4.

This function iterates over the heap formula until reaching the holes. When hitting a hole, it

checks the hole identifier and, in the case of a match with the identifier received as argument, it

substitutes the corresponding heap predicate back into the formula.

Note that, at the point in the entailment procedure when the matching is reached, the heap

formulae in both the antecedent and consequent contain only heap predicates co-joined by ∗.

This is due to the fact that the entailment was already split according to the rules in Sec 4.5.1

such that ∧ and # were eliminated from the heap.

Another feature of the entailment procedure is exemplified by the transfer of the bindings

between free variables from the matched node in the consequent and the corresponding vari-

ables from the consequent to the antecedent (and subsequently to the residue). In general, when

a match occurs (rules [ENT−MATCH−MUT] and [ENT−MATCH−IMM]) and an argument of the

heap predicate coming from the consequent is free, the entailment procedure binds the argument

to the corresponding variable from the antecedent and moves the equality to the antecedent. In

our system, free variables in consequent are variables from method preconditions. These bind-

ings play the role of parameter instantiations during forward reasoning, and can be accumulated
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[ENT−MATCH−MUT]

XPuren(p1::c〈v∗1〉@u∗κ1∗π1)=⇒p1=p2 ρ=[v∗1/v
∗
2]

κ1∧π1∧freeEqn(ρ, V )`κ∗p1::c〈v
∗
1 〉

V−{v∗2}
ρ(κ2∧π2) ∗i S u<:M

p1::c〈v∗1〉@u∗κ1∧π1`κV (p2::c〈v∗2〉@M∗κ2∧π2) ∗i S

[ENT−MATCH−IMM]

XPuren(p1::c〈v∗1〉@u∗κ1∗π1)=⇒p1=p2 ρ=[v∗1/v
∗
2]

[id]∗κ1∧π1∧freeEqn(ρ, V )`κV−{v∗2}ρ(κ2∧π2) ∗i S u<:I

p1::c〈v∗1〉@u∗κ1∧π1`κV (p2::c〈v∗2〉@I∗κ2∧π2) ∗i SH(S, (p1::c〈v∗1〉, id))

Figure 4.5: Heap Entailment Rules

into the antecedent to allow the subsequent program state (from residual heap) to be aware of

their instantiated values. This process is formalized by the function freeEqn below, where V is

the set of existentially quantified variables:

freeEqn([ui/vi]
n
i=1, V ) =df

let πi = (if vi∈V then true else vi=ui) in
∧n
i=1 πi

4.5.3 Heap Approximation by a pure formula

As explained in Sec 2.4, in our entailment proof, the entailment between separation formulae

is reduced to entailment between pure formulae by successively removing heap nodes from the

consequent until only a pure formula remains. When the consequent is pure, the heap formula in

the antecedent is approximated by function XPuren. In the current section, we enhance the defi-

nition of the XPuren function, such that it approximates Φ as a tuple of the form: (
∨

(∃v∗·π)∗, S)

where
∨

(∃v∗·π)∗ represents a pure formula approximating Φ and S denotes the set of disjoint

memory sets in Φ. Each disjoint memory set contains non-aliased symbolic memory addresses.

The definition of XPuren(Φ) is given in Fig 4.6. The function IsData(c) returns true if c is a

data node, while IsPred(c) returns true if c is a heap predicate. ∪disj and ∩disj are used for

computing the set of disjoint memory sets and are defined as follows:

S1 ∪disj S2 = {X ∪ Y | X ∈ S1 ∧ Y ∈ S2}

S1 ∩disj S2 = {X ∩ Y | X ∈ S1 ∧ Y ∈ S2}
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We illustrate how the approximation functions work by computing

XPure0(x::ll〈n〉@I∗y::ll〈m〉@I#z::ll〈v〉 ∧ n≥0 ∧m≥0 ∧ v≥0)

Note that, according to the definition provided for the ll〈n〉 predicate, the pure invariant pro-

vided is n≥0.

ll〈n〉 ≡ root=null ∧ n=0

∨ root::node〈 , q〉 ∗ q::ll〈n−1〉

inv n≥0;

XPure0(x::ll〈n〉@I) = (Inv0(x::ll〈n〉@I), {{x}}) =

= (n≥0, {{x}}) given that n≥0

XPure0(y::ll〈m〉@I) = (Inv0(y::ll〈m〉@I), {{y}}) =

= (m≥0, {{y}}) given that m≥0

XPure0(z::ll〈v〉) = (Inv0(z::ll〈v〉), {{z}}) =

= (v≥0, {{z}}) given that v≥0

XPure0(x::ll〈n〉@I∗y::ll〈m〉@I) =

= (n≥0 ∧ m≥0, {{x}} ∪disj {{y}}) =

= (n≥0 ∧ m≥0, {{x, y}})

XPure0(x::ll〈n〉@I∗y::ll〈m〉@I#z::ll〈v〉) =

= (n≥0 ∧ m≥0 ∧ v≥0, {{x, y}} ∪ {{z}}) =

= (n≥0 ∧ m≥0 ∧ v≥0, {{x, y}, {z}})

4.6 Forward Verification

As most of the forward verification rules are the same as those given in Sec 2.3, in Fig 4.7 we

only provide new ones for method verification, method call, field read and field update. These

rules exploit the modified form of the entailment procedure defined in Sec 4.5 for allowing

sharing of immutable heap.

Verification of a method starts with each precondition, and proves that the corresponding

postcondition is guaranteed at the end of the method. The verification is formalized in the rule

[FV−METH−IMM]. As opposed to the [FV−METH] rule in Sec 2.3, now we make use of the

modified form of the entailment procedure through (∃W·Si1)`Φi
po ∗i Si2.
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(c〈v∗〉 ≡ Φ inv π) ∈ P
Inv0(p::c〈v∗〉@u) =df [p/root, 0/null]π

(c〈v∗〉 ≡ Φ inv π) ∈ P n≥1
XPuren−1(Φ) = (πn−1, Sn−1)

Invn(p::c〈v∗〉@u) =df [p/root, 0/null]πn−1

XPuren(κi) = (π′i, S)

XPuren(
∨
i(∃v∗i ·κi∧πi)∗) =df (

∨
i(∃v∗i ·π′i∧[0/null]πi)

∗,∩disjiSi)

XPuren(emp) =df (true, ∅)

XPuren(κ1) = (π1, S1) XPuren(κ2) = (π2, S2)

XPuren(κ1 ∧ κ2) =df (π1∧π2, S1 ∪ S2)

XPuren(κ1) = (π1, S1) XPuren(κ2) = (π2, S2)

XPuren(κ1#κ2) =df (π1∧π2, S1 ∪ S2)

XPuren(κ1) = (π1, S1) XPuren(κ2) = (π2, S2)

XPuren(κ1 ∗ κ2) =df (π1∧π2, S1 ∪disj S2)

IsData(c) fresh i
XPuren(p::c〈v∗〉@u) =df (true, {{p}})

IsPred(c) p 6=null

Invn(p::c〈v∗〉@u) =
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉@u) =df (
∨

(∃u∗·π)∗, {{p}})

IsPred(c) p=null

Invn(p::c〈v∗〉@u) =
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉@u) =df (
∨

(∃u∗·π)∗, ∅)

Figure 4.6: XPure : Translating to Pure Form
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[FV−METH−IMM]

V={vm..vn} W=prime(V )

∀i = 1, .., p · ( ` {Φi
pr∧nochange(V )} e {Si1}

(∃W·Si1)`Φi
po ∗i Si2 Si2 6={})

` t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e}

• function prime(V) returns {v′ | v ∈ V }.

• predicate nochange(V) returns
∧
v∈V (v = v′). If V = {}, nochange(V)=true.

• ∃W · S returns {∃W · Si|Si ∈ S}.

At a method call, each of the method’s precondition is checked, ∆`ρΦi
pr ∗i Si, where ρ

represents a substitution of vj by v′j , for all j = 1, .., n. The combination of the residue Si

and the postcondition is added to the poststate (this addition might cause phase nesting). If a

precondition is not entailed by the program state ∆, the corresponding residue is not added to

the set of states. The test S6={} ensures that at least one precondition is satisfied.

[FV−CALL−IMM]

t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e} ∈ P

ρ=[v′j/vj ]
n
j=m ∆`ρΦi

pr ∗i Si ∀i=1, .., p

S =
⋃p
i=1 Φi

po ∗ Si S 6= {}
` {∆}m(v1..vn) {S}

Whenever there is a field access (read or update), the current state, ∆, must contain the

node to be dereferenced, v′::c〈v1, .., vn〉. For [FV−FIELD−READ], it is sufficient for the en-

tailed node to be immutable as it will only be read. For [FV−FIELD−UPDATE], the node needs

to be mutable, as it will be updated. As shown in the matching rules from Sec 4.5.2, for the

case of the immutable node v′::c〈v1, .., vn〉@I , the matching of the immutable node on the RHS
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[FV−FIELD−READ]

∆`κV v′::c〈v1, .., vn〉@I ∗i S1 fresh v1..vn S1 6=∅
S2 = ∃v1..vn·(S1∧res=vi)

` {∆} v.fi {S2}

[FV−FIELD−UPDATE]

∆`κV v′::c〈v1, .., vn〉@M ∗S1 fresh v1..vn S1 6=∅
S2 = ∃v1..vn·(S1 ∗ [v′0/vi]v

′::c〈v1, .., vn〉)
` {∆} v.fi:=v0 {S2}

Figure 4.7: Forward Verification Rules

with a corresponding node from the LHS will not consume the node from the LHS. Hence, for

[FV−FIELD−READ] there is no need to add back the node at the end of the entailment. However,

when entailing the mutable node v′::c〈v1, .., vn〉 in the rule [FV−FIELD−UPDATE], the corre-

sponding node on the LHS will be consumed and needs to be added back at the end of the entail-

ment. Moreover, in the entailment ∆`κV v′::c〈v1, .., vn〉@I ∗i S1 from rule [FV−FIELD−READ],

as the matching node on the LHS is not consumed, there might be heap sharing between the

RHS and the residual states. Hence, we use the modified entailment procedure Φ1`κV Φ2 ∗i SR

introduced in Sec 4.5.

Note that we use the primed notation for denoting the latest value of a variable. Correspond-

ingly, [v′0/vi] is a substitution that replaces the value vi with the latest value of v′0.

4.7 Soundness

In this section we present the soundness properties for both the forward verifier and the entail-

ment prover. The storage model, semantic model and dynamic semantics are similar to those

given in Sec 2.5, 2.6, and 2.7, respectively, with extensions for immutability annotations.

4.7.1 Storage Model

We define our storage model by making use of a domain of heaps, which is equipped with a

partial operator for gluing together disjoint heaps. h0 · h1 takes the union of partial functions

when h0 and h1 have disjoint domains of definition, and is undefined when h0(l) and h1(l) are

both defined for at least one location l ∈ Loc.
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To define the model we assume sets Loc of locations (positive integer values), Val of prim-

itive values, with 0 ∈ Val denoting null, Var of variables (program and logical variables), and

ObjVal of object values stored in the heap, with c[f1 7→ν1, .., fn 7→νn] denoting an object value of

data type c where ν1, .., νn are current values of the corresponding fields f1, .., fn. Each object

value has attached an immutability annotation from {I,M}. I means that the corresponding

object value cannot be modified, while M allows its mutation.

h ∈ Heaps =df Loc ⇀fin ObjVal x {I,M}

s ∈ Stacks =df Var→ Val∪Loc

4.7.2 Semantic Model of the Specification Formula

Let s, h |= Φ denote the model relation, i.e. the stack s and heap h satisfy the constraint Φ.

Function dom(f) returns the domain of function f . We use 7→ to denote mappings, not the

points-to assertion in separation logic, which has been replaced by p::c〈v∗〉@u, u∈{I,M} in

our notation, as mentioned in Sec 4.3. The model relation for separation heap formulae is given

in Def 4.7.1. The model relation for pure formula s |= π denotes that the formula π evaluates

to true in s. The addImm function in Fig 4.8 propagates the immutability annotation u inside

the heap formula Φ.

4.7.3 Dynamic Semantics

This section presents a small-step operational semantics for our language. The rules are given

in Fig. 4.9. The machine configuration is represented by 〈s, h, e〉, where s denotes the current

stack, h denotes the current heap, and e denotes the current program code. Note that the opera-

tional semantics must consider the mutability assertions recorded in the heap h. Each reduction

step is formalized as a transition of the form: 〈s, h, e〉↪→〈s1, h1, e1〉. We have introduced an

intermediate construct ret(v∗, e) to model the outcome of call invocation, where e denotes the

residual code of the call. It is also used to handle local blocks.

Similar to Sec 2.7, we use k to denote a constant, ⊥ to denote an undefined value, and ()

to denote the empty expression (program). The operation [v 7→ν]+s “pops in” the variable v to

s with the value ν, such that ([v 7→ν]+s)(v) = ν. The operation s−{v∗} “pops out” variables

v∗ from the stack s. The operation s[v 7→ν] changes the value of the most recent v in stack s

to ν. The mapping h[ι 7→ur] is the same as h except that it maps ι to r, with u as the attached
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Definition 4.7.1 (Model for Specification Formula).

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃ν1..n·s[v1 7→ν1, .., vn 7→νn], h |= κ and
s[v1 7→ν1, .., vn 7→νn] |=π

s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2 and
s, h1 |= κ1 and s, h2 |= κ2

s, h |=κ1#κ2 iff ∃h1, h2, h3 · h1⊥h2⊥h3 and h = h1·h2·h3 and
s, h1·h3 |= κ1 and s, h2·h3 |= κ2

s, h |=κ1∧κ2 iff ∃h1, h2, h3 · h1⊥h2⊥h3 and h = h1·h2·h3 and
s, h1·h3 |= κ1 and s, h2·h3 |= κ2

s, h |=emp iff dom(h) = ∅

s, h |=p::c〈v1..n〉@u iff data c {t1 f1, .., tn fn}∈P, h=[s(p)7→wr],
and r=c[f1 7→s(v1), .., fn 7→s(vn)]
and u<:w

or (c〈v1..n〉≡Φ inv π)∈P and
s, h |= [p/root](addImm(Φ, u))

immutability annotation, u∈{I,M}. If no immutability annotation is present, then the map-

ping h[ι 7→r] maintains the previous immutability annotation. The mapping h+[ι 7→ur] extends

the domain of h with ι and maps ι to r with the immutability annotation u. The operation

h(l)[vn 7→tn] updates the field vn of the object stored at location l in the heap h with the value

tn. We also make use of the function type(v) to get the run-time type of the variable v.

In order to relate the logic with the storage model, we introduce an auxiliary construct,

assert Φ, which checks whether the model relation s, h |=Φ holds. The forward verification

rule for this intermediate construct is given below.

[FV−ASSERT]

∆`κV Φ1 ∗i S1 S1 6=∅
` {∆} assert Φ1 {∆}

The connection between the immutability information from the specification and the storage



4.7. SOUNDNESS 79

addImm(Φ, u) =df addImm(
∨

(∃v∗·κ∧π)∗, u) =df
∨

(∃v∗·addImmκ(κ, u)∧π)∗

addImmκ(κX C κY , u) =df addImmκ(κX , u) C addImmκ(κY , u),
for X, Y ∈ {R,W} and C ∈ {#, ∗,∧}

addImmκ(p2::c〈v1, .., vn〉@u1, u) =df p2::c〈v1, .., vn〉@u

Figure 4.8: Function addImm

model is established at the beginning and end of each method execution, when the assert

construct is used to check that the stack s and the heap h model the method’s precondition and

postcondition, respectively. Note that in the rule for new c(v∗) we assume that the object newly

created is immutable, and, whenever a field update takes place, the immutability annotation is

updated to @M (in the rule for field update v1.fi := v2 in Fig 4.9).

4.7.4 Soundness of Verification

The soundness of our verification rules is defined with respect to the small-step operational

semantics. We need to extract the post-state of a heap constraint by function Post(∆) defined

in Def 2.7.1.

Theorem 4.7.1 (Preservation). If

` {∆} e {S2} S2 6={} s, h |= Post(∆) 〈s, h, e〉↪→〈s1, h1, e1〉

Then there exists S1 6={}, such that ∀∆1 ∈ S1· s1, h1 |= Post(∆1) and ` {∆1} e1 {S3} S3⊆S2.

Proof: By structural induction on e. Details can be found in the Appendix.

Theorem 4.7.2 (Progress). If

` {∆} e {S1} S1 6={} s, h |= Post(∆)

then either e is a value, or there exist s1, h1, and e1, such that 〈s, h, e〉↪→〈s1, h1, e1〉.

Proof: By structural induction on e. Details can be found in the Appendix.

Theorem 4.7.3 (Safety). Consider a closed term e without free variables in which all methods

have been successfully verified. Assuming unlimited stack/heap spaces and that ` {true} e {∆},
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〈s, h, v〉↪→〈s, h, s(v)〉 〈s, h, k〉↪→〈s, h, k〉 〈s, h, v.f〉↪→〈s, h, h(s(v))(f)〉

〈s, h, v:=k〉↪→〈s[v 7→k], h, ()〉 〈s, h, (); e〉↪→〈s, h, e〉

〈s, h, e1〉↪→〈s1, h1, e3〉
〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, v:=e〉↪→〈s1, h1, v:=e1〉

s(v)=true

〈s, h, if v then e1 else e2〉↪→〈s, h, e1〉
s(v)=false

〈s, h, if v then e1 else e2〉↪→〈s, h, e2〉

〈s, h, {t v; e}〉↪→〈[v 7→⊥]+s, h, ret(v, e)〉

〈s, h, ret(v∗, k)〉↪→〈s−{v∗}, h, k〉

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, ret(v∗, e)〉↪→〈s1, h1, ret(v∗, e1)〉

type(v1) = c〈w1, .., wn〉
r=h(s(v1))[f 7→s(v2)] h1=h[s(v1)7→Mr]

〈s, h, v1.fi := v2〉↪→〈s, h1, ()〉

s, h |=Φ

〈s, h, assert Φ〉↪→〈s, h, ()〉
s, h |=iΦ

〈s, h, assertimm Φ〉↪→〈s, h, ()〉

data c {t1 f1, .., tn fn}∈P ι/∈dom(h) r=c[f1 7→s(v1), .., fn 7→s(vn)]

〈s, h, new c(v∗)〉↪→〈s, h+[ι 7→I r], ι〉

t0 mn((ref tj wj)
m−1
j=1 , (tj wj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e}

s1=[wj 7→s(vj)]nj=m+s 〈s1, h, (assert Φi
pr)

p
i=1〉↪→〈s1, h, ()〉

〈s1, h, ret({wj}nj=m, [vj/wj ]
m−1
j=1 e; (assert Φi

po)pi=1)〉↪→〈s, h1, e1〉
〈s, h,mn(v∗)〉↪→〈s, h1, e1〉

Figure 4.9: Small-Step Operational Semantics
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then either 〈[], [], e〉↪→∗〈[], h, v〉 terminates with a value v that is subsumed by the postcondition

∆, or it diverges 〈[], [], e〉6↪→∗.

Theorem 4.7.4 (Soundness of Entailment). If entailment check ∆1`∆2 ∗i S succeeds, we have:

for all s, h, and ∆ ∈ S , if s, h |= ∆1 then s, h |= ∆2 ∗i ∆.

Proof: Details can be found in the Appendix.

4.8 Experimental Evaluation

We have built a prototype system using Objective Caml. The proof obligations generated by

our verification are discharged using a number of off-the-shelf constraint solvers (like Omega

Calculator [105]) or theorem provers (like Isabelle [95] and Mona [64]).

Preliminary experiments were conducted by testing our system on a suite of examples sum-

marized in Figure 4.10. The examples can handle data structures with sophisticated shape and

size properties, such as sorted lists, and balanced trees, in a uniform way. Method sum is the

one described in Sec 4.3.1. Methods insert and delete refer to the insertion and deletion of

a value into/from the corresponding data structure, respectively. Moreover, we verify a suite of

sorting algorithms, which receive as input an unsorted singly-linked list and return a sorted list.

The benchmarks under the category Big Naturals consider the representation of a big natu-

ral as a list, with each node containing a decimal digit. The order of recording the digits is such

that the head of the list contains the least significant digit. We make use of the following heap

predicate for describing the singly-linked list containing the big natural number:

root::bignat〈v〉 ≡ root=null ∧ v=0

∨ root::node〈p, q〉 ∗ q::bignat〈v1〉 ∧ 0≤p≤9

∧v=10∗v1+p ∧ v>0

inv v≥0;

The definition asserts that a big natural is either an empty list denoting the value 0 (the base case

root=null∧v=0), or it consists of a head data node (root::node〈p, q〉) and a separate tail data

structure which is also a big natural (q::bignat〈v1〉). For the latter case, the value of the big

natural is computed as v=10∗v1+p. To ensure uniqueness in representing the value 0, this pred-

icate also adds the constraint v>0 for non-null representations of big natural numbers. Using

this definition, the methods under the Big Naturals category compute the addition, subtraction
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Program LOC Timings Heap Immutability Heap Aliasing scenarios
codes [secs] sharing degree [%] reduction [%] reduction[%]

Data Nodes (verifies data node value)
sum 1 0.04 X 100 50 50

Big Naturals (verifies bignat value)
addition 29 0.74 X 62 38 40

subtraction 24 0.76 X 62 38 40
multiplication 23 0.97 X 71 36 25

compare 20 0.66 X 100 50 50
karatsuba mult 64 3.82 X 60 60 33

Linked List (verifies shape + length)
length 6 0.05 χ 100 50 0
append 8 0.08 X 66 40 50

List Segment (verifies shape + length)
append 8 0.06 X 50 33 50

Sorted List (verifies shape + bounds + sortedness)
insert 17 0.26 χ 50 33 0

insertion sort 45 0.32 X 57 36 25
selection sort 52 0.37 χ 57 36 0
bubble sort 42 0.45 χ 40 29 0
merge sort 105 0.51 X 77 35 20
quick sort 85 0.68 X 50 33 20

AVL Tree (verifies shape + height + balance factor)
insert 169 5.63 χ 44 30 0
delete 287 8.92 X 69 40 74

Perfect Tree (verifies shape + height + perfectness)
insert 89 0.34 χ 50 33 0

Binary Search Tree (verifies shape + min + max + sortedness)
insert 40 0.45 χ 50 33 0
delete 62 0.49 χ 50 33 0

Priority Queue (verifies shape + size + height + max-heap)
insert 54 0.89 χ 50 33 0

delete max 140 2.73 X 38 28 25
Red-Black Tree (verifies shape + size + black-height)

insert 167 2.65 X 75 42 75
delete 430 15.16 X 70 42 93

Figure 4.10: Experimental Results

and multiplication of two big naturals in the corresponding methods, respectively. Under the

same category, method compare takes as input two big naturals and returns 0 if they are equal,

1 if the first one in bigger, and −1 if the first one is smaller. Lastly, method karatsuba mult

uses the fast multiplication Karatsuba algorithm for multiplying two big naturals.

The second column of Figure 4.10 contains the number of lines of code, followed by the

timings in the third column. The fourth column records whether or not the specification contains
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heap sharing, meaning if there are any usage of ∧ in the heap description. We mark the presence

of heap sharing by X, and the absence by χ. The fifth column contains the immutability degree

of a specification, denoting the percentage of immutable heap predicates out of the total number

of heap predicates in the specification. The sixth and seventh columns record the reduction

in the size of the specification when using the immutability enhancements proposed by the

current work. The sixth column represents the heap reduction, which is due to the fact that

the heap predicates marked as immutable in the precondition are guaranteed to be preserved

by the corresponding method, and do not have to be mentioned in the postcondition. The last

column registers the reduction in the number of aliasing scenarios that have to be recorded by the

specification. This happens when several aliasing scenarios are unified through the use of ∧ in

the heap description. In order to compute the timings, immutability degree, heap reduction and

aliasing scenarios reduction for each benchmark, we took into consideration all the functions

that are being called.

For illustration, let us consider the results recorded for the method sum under Data Nodes.

The specification, which is given below, employs heap sharing due to the presence of ∧ in the

precondition. The immutability degree is 100% (all the heap predicates in the specification are

immutable), the reduction of heap predicates is 50% (the two immutable heap predicates from

the precondition do not have to be repeated in the postcondition) and the reduction of aliasing

scenarios is 50% (the scenario when x and y are aliases is unified with the scenario when they

are disjoint).

int sum(node x, node y)

requires x::node〈a, 〉@I∧y::node〈b, 〉@I

ensures res=a+b;

The results of our preliminary experiments recorded in Fig 4.10 can be interpreted as fol-

lows:

• The heap sharing and immutability degree (fourth and fifth columns, respectively) are

measures on the applicability of our enhancements. The potential heap sharing in a spec-

ification creates the opportunity to use ∧ in the heap description for unifying multiple

aliasing scenarios. Fig 4.10 shows that for 15 out of all 24 benchmarks, there is good po-

tential for heap sharing in the specification. Moreover, the immutability degree recorded

in the figure confirms the fact that, on average, from all the heap that a method accesses,
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62% can be symbolically analyzed for read-only. Hence, only less than half is marked

for mutation. The heap that is not being updated can be declared as immutable in the

associated specification. These results affirms the applicability of our approach.

• The heap and aliasing scenarios reduction (sixth and seventh columns, respectively) are

used to quantify the gains recorded by our current enhancements with respect to the con-

ciseness of the specification. The data shows that, on average, there is a 38% reduction

in the number of heap predicates, and a 28% reduction in the number of aliasing scenar-

ios. This heap and aliasing scenarios reduction shows an improvement in the specification

conciseness when using the immutability annotations proposed by the current work.

• The immutability degree together with the heap reduction (fifth and sixth columns, respec-

tively) are measures that relate to the improvement on the precision of the specifications,

as they denote the cases where cut-point preservations are possible.

When comparing the verification timings for the immutability-enhanced approach with those

for the base approach, we found them to be similar. The biggest differences were recorded in

the case of the insert method for red-black tree (1.2 secs in favor of the base approach), and of

the insert method for the AVL tree (1.1 secs in favor of the immutability-enhanced approach).
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CHAPTER V

CASE STRUCTURED SPECIFICATIONS

5.1 Motivation

Recent developments of the specification mechanisms have focused mostly on expressiveness

[8, 5, 17] (to support verification for more properties), abstraction [100, 97] (to support informa-

tion hiding in specification) and modularity [70, 21, 35] (to support more readable and reusable

specifications). To the best of our knowledge, there has been hardly any attempt on the de-

velopment of specification mechanisms that could support better verifiability (in terms of both

efficiency and effectiveness). Most efforts on better verifiability have been confined to the ver-

ification technology; an approach that may lead to less portability (as we become more reliant

on clever heuristics from the verification tools) and also more complex implementation for the

verification tools themselves. In this thesis, we shall propose a novel approach towards better

verifiability that focuses on new structures in the specification mechanism instead.

To illustrate the need for an enhanced specification mechanism, we will make use of sep-

aration logic, which allows for a precise description of heap-based data structures and their

properties. As an example, consider a data node node2 and a predicate describing an AVL tree

that captures the size property via s and the height via h:

data node2 { int val; int height; node2 right; node2 left; }

avl〈h, s〉 ≡ root=null ∧ h=0 ∧ s=0

∨ root::node2〈 , h, r, l〉 ∗ r::avl〈h1, s1〉∗l::avl〈h2, s2〉∧h = max(h1, h2)+1

∧ − 1≤h1−h2≤1∧s=s1+s2+1

inv h≥0∧s≥0;

The aforementioned definition asserts that an AVL tree is either empty (the base case root=null∧

h=0 ∧ s=0), or it consists of a data node (root::node2〈 , h, r, l〉) and two disjoint subtrees

(r::avl〈h1, s1〉∗l::avl〈h2, s2〉). Each node is used to store the actual data in the val field, and

the maximum height of the current subtree in the height field. The constraint −1≤h1−h2≤1

states that the tree is balanced, while s=s1+s2+1 and h=max(h1, h2)+1 compute the size and
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height of the tree pointed by root from the properties s1, s2 and h1, h2, respectively, that are

obtained from the two subtrees. The ∗ connector ensures that the head node and the right and

left subtrees reside in disjoint heaps. We also specify a default invariant, h≥0∧s≥0, that holds

for all AVL trees.

Next, we specify a method that attempts to retrieve the height information from the root

node of the data structure received as argument. In case the argument has the value null, the

method returns 0, as captured by res=0. To provide a suitable link between pre- and post-

conditions, we use the logical variables v, h, lt, lr that have to be instantiated for each call to

the method. As a first try, we capture both the null and non-null scenarios as a composite

formula consisting of a disjunction of the two cases, as shown below:

int get height(node2 x)

requires x=null ∨ x::node2〈v, h, lt, lr〉

ensures (x=null ∧ res=0) ∨ (x::node2〈v, h, lt, lr〉 ∧ res=h);

{if (x = null) then 0 else x.height}

This specification introduces disjunctions both in the pre and post-conditions, which would

make the verification process perform search over the disjuncts[92]. Basically, each disjunct

corresponds to an acceptable scenario of which at least one needs to be proven. However, there

are situations when the program state does not contain enough information to determine which

of the scenarios applies. For illustration, let us consider that we are interested in retrieving

the height information for an AVL tree pointed by x and the program state before the call to

the get height method is x::avl〈h1, s1〉. We have to verify that the current program state

obeys the method’s precondition. However, when verifying the null and non-null scenar-

ios separately, both checks fail as the program state x::avl〈h1, s1〉 does not contain sufficient

information to conclude neither that x 6=null, nor that x=null. We provide the two failing ver-

ification conditions below. As none of the following two entailments succeeds, the verification

of the method call fails.

x::avl〈h1, s1〉`(x=null)∗Φr1

x::avl〈h1, s1〉`(x::node2〈v, h, lt, lr〉)∗Φr2

As a second try, we write the specification in a modular fashion by separating the two scenar-

ios as advocated by past works ([70, 21] and Chapter 2). In [70], Leavens and Baker proposed
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for each specification to be decomposed into multiple specifications (where it is called case

analysis) to capture different scenarios of usage. Their goal was improving the readability of

specifications, as smaller and simpler specifications are easier to understand than larger ones.

In Chapter 2 multiple specifications were advocated to help achieve more scalable program

verification. By using multiple pre/post conditions, we obtain the following specification:

int get height(node2 x)

requires x=null

ensures res=0;

requires x::node2〈v, h, lt, rt〉

ensures x::node2〈v, h, lt, rt〉 ∧ res=h;

During the verification process, each scenario (denoted by a pre/post-condition pair) is

proven separately (Chapter 2). However, neither of the two entailments (for each of the two

scenarios) succeeds, causing the verification of the method call to fail.

A possible solution is to perform case analysis on variable x: first assume x=null, then

assume x 6=null, and try to prove both cases. For soundness, these cases must be disjoint

and exhaustively cover all scenarios. Accordingly, the following two provable entailments are

obtained, and the verification succeeds:

x::avl〈h1, s1〉∧x=null`(x=null)∗Φr1

x::avl〈h1, s1〉∧x6=null`(x::node2〈v, h, lt, lr〉)∗Φr2

However, case analysis is not always available in provers, as it might be tricky to decide on

the condition for a case split.

5.2 Chapter Overview

In the rest of the chapter we shall focus on the apparatus for writing and verifying (or checking)

structured specifications. Sec 5.3 provides examples to motivate the need for structured specifi-

cations, whereas Sec 5.4 formalizes the notion of structured specifications. Sec 5.5 introduces

the verification rules to generate Hoare triples, and Sec 5.6 presents the entailment proving for

structured specifications. Sec 5.8 presents our experimental results.
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5.3 Examples

In the current section we present two more examples that motivate our enhancements to the

specification mechanism.

5.3.1 Example 1

Consider a method that receives two AVL trees, t1 and t2, and merges them by recursively

inserting all the elements of t2 into t1. By using the case construct introduced in Sec 4.1 we

may write a case structured specification, which captures information about the resulting tree

size when t1 is not null, and about the resulting size and height, whenever t1 is null:

case{t1 = null → requires t2::avl〈s2, h2〉

ensures res::avl〈s2, h2〉;

t1 6=null → requires t2::avl〈s2, h2〉 ∗ t1::avl〈s1, 〉

ensures res::avl〈s1+s2, 〉};

However, let us note that there is a redundancy in this specification, namely the same pred-

icate t2::avl〈s2, h2〉 appears on both branches of the case construct. After the need for a case

construct which was already discussed in Sec 5.1, this is the second deficiency we shall address

in our specification mechanism, that is due to a lack of sharing in the logic formula which in

turn causes repeated proving of identical sub-formulae. To provide for better sharing of the

verification process, we propose to use staged formulae of the form (Φ1 then Φ2), to allow

sub-formula Φ1 to be proven prior to Φ2.

Though (Φ1 then Φ2) is semantically equivalent to (Φ1 ∗ Φ2), we stress that the main pur-

pose of adding this new structure is to support more effective verification with the help of spec-

ifications with less redundancy. By itself, it is not meant to improve the expressivity of our

specification, but rather its effectiveness. Nevertheless, when it is used in combination with the

case construct, it could support case analysis of logical variables to ensure successful verifica-

tion. The same structuring mechanisms can be used by formulae in both predicate definitions

and pre/post specifications.

Getting back to the AVL merging example, the redundancy in the specification can be fac-

tored out by using a staged formulae, as follows:
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requires t2::avl〈s2, h2〉 then

case{t1 = null → ensures res::avl〈s2, h2〉;

t1 6=null → requires t1::avl〈s1, 〉

ensures res::avl〈s1+s2, 〉};

During the verification process, when reaching a call to the AVL merging method, the cur-

rent program state must entail the method’s precondition. Since the entailment process needs

to explore both branches of the specification, the t2::avl〈s2, h2〉 node will be proven twice for

each method call. By using staged formulae, the second specification will force the common

formula to be proved only once. Although the two specifications capture the same informa-

tion, the second version requires much less proving effort. For this example, there was a 40%

reduction in verification time by our system, due solely to the presence of staged formulae.

For the general case, if x denotes the number of heap nodes/predicates that are shared in

the consequent formula, and y the number of possible matchings from the antecedent, then the

number of redundant matchings that are eliminated is (x − 1) ∗ y. An analogy can be made

between the use of the staged formula and the use of the binary decision diagram (BDD) as an

intermediate representation for SAT formulae to support better sharing of identical sub-formulae

[16]. Where applicable, we expect staged formulae to improve the effectiveness of verification.

5.3.2 Example 2

Parameter instantiation is needed primarily for connecting the logical variables between precon-

dition and postcondition of specifications. Traditionally, manual instantiation of ghost variables

has played this role. In this thesis, we propose two new mechanisms, early and late instantia-

tions, to support automatic instantiations of logical variables. As an example, consider a data

node cell and a predicate cellPred defined as follows:

data cell { int val}

cellPred〈i〉 ≡ root=null ∧ i≤3 ∨ root::cell〈 〉 ∧ i>3

To highlight the difference between early and late instantiations, we shall consider two sep-

arate proof obligations. The first one is given below.

p::cell〈 〉 ` (p::cellPred〈j〉∧j>2)∗Φr
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At this point, we first need to match a heap predicate p::cellPred〈j〉 on the RHS with a data

node p::cell〈 〉 on the LHS to obtain an instantiation for the variable j. A fundamental question

is whether the variable instantiation could occur for just the predicate p::cellPred〈j〉 (we refer

to this as early instantiation), or it has to be for the entire formula p::cellPred〈j〉 ∧ j>2

(known as late instantiation). By default, our system uses early (or implicit) instantiation for

variables that are not explicitly declared. In this scenario, early instantiation j>3 is obtained

when folding with the predicate p::cellPred〈j〉. This instantiation is transferred to the LHS.

Consequently, we obtain a successful proof below.

j>3 ` (j>2)∗Φr

Now, let us consider a second proof obligation that will require late instantiation:

p=null ` (p::cellPred〈j〉∧j>2)∗Φr

Similar to the previous case, we will first use a default early instantiation mechanism. After

matching p::cellPred〈j〉, we obtain the instantiation j≤3. However, moving only this binding

to the LHS is not enough, causing the proof below to fail.

p=null ∧ j≤3 ` (j>2)∗Φr

To support late instantiation for variable j, we declare it explicitly using [j] below:

p=null ` ([j] p::cellPred〈j〉∧j>2)∗Φr

This time variable j is kept on the RHS until the end of the entailment. As its proof below

succeeds, the instantiation for j will be captured in the residue as Φr=j≤3∧j>2.

p=null ` (∃j.j≤3∧j>2)∗Φr

Though late instantiation is more general, it may require existential quantifications over a larger

formula. Hence, by default, we prefer to use early instantiation where possible, and leave it to

the user to manually declare where late instantiation is mandated.

5.4 Specification and Programming Language

We shall now focus on the structured specifications mechanism. Fig 5.1 provides a syntactic

description where Z denotes structured (pre/post) specifications, while Q denotes structured
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Shape pred. spred ::= c〈v∗〉 ≡ Q inv π

Pre/Post. Z ::= ∃v∗1·Y1 . . . ∃v∗n·Yn multiple specs

Y ::= case{π1⇒Z1; . . . ; πn⇒Zn} case construct
| requires [w∗] Φ [then] Z staged spec
| ensures Q post

Formula Q ::=
∨
∃v∗·R multiple disjuncts

R ::= case{π1⇒Q1; . . . ; πn⇒Qn} case construct
| [w∗] Φ [then Q] staged formula

Figure 5.1: Structured Specifications

formulae that may be used for pre/post specifications, as well as for predicate definitions. Apart

from multiple specifications, our new syntax includes case constructs and staged formulae. Take

note that the syntax for the rest of the formulae, namely the pure formula π, the heap formula κ,

and the formula Φ remain the same as those given in Fig 2.2.

For structured specification, the requires keyword introduces a part of precondition through

a staged specification. The postcondition is captured after each ensures keyword, which must

appear as a terminating branch for the tree-like specification format. We support late instantia-

tion via variables w∗, from requires [w∗] Φ Z and [w∗] Φ [then Q] at the end of proving Φ.

To minimise user annotations, our system automatically determines the other unbound variables

(different from those to be late instantiated) as either existential or to be early instantiated.

Our construct to support case analysis is case{π1⇒Z1; . . . ; πn⇒Zn} for specification,

and case{π1⇒Q1; . . . ; πn⇒Qn} for formula. We impose the following three conditions on

π1, . . . , πn:

(i) are restricted to only pure constraints, without any heap formula.

(ii) are exclusive, meaning that ∀i, j · i6=j → πi∧πj=false.

(iii) are exhaustive, meaning that π1∨ . . .∨πn=true.

Condition (i) is imposed since pure formula can be freely duplicated. Condition (ii) is

imposed to avoid conjunction over the heap-based formula. If absent, each heap state may have
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to satisfy multiple case branches. Condition (iii) is needed for soundness of case analysis which

requires all scenarios to be considered. To illustrate, consider:

[(w : t)∗] Φ case{x=null⇒Q1; x 6=null⇒Q2}

The first condition holds as the two guards, x=null and x 6=null, are pure. Furthermore, our

system checks successfully that the guards are exclusive ((x=null∧x 6=null)=false) and

exhaustive ((x=null ∨ x 6=null) = true).

5.5 Forward Verification

The main goal of structured specification is to support a modular verification process that could

be carried out efficiently and precisely. In this section, we propose a set of rules to help generate

Hoare-style triples for code verification, together with entailment checking to support proof

obligations over the structured formulae domain.

To better support structured specifications and case analysis, we propose a new triple of the

form {|Φ|} e {|Z|}, with pre being an unstructured formula and Z being the structured specifica-

tion. We use structured specifications in the poststate because our case analysis is guided from

the post-states. In contrast, unstructured formulae are used in the prestate since the structured

form is unnecessary here. The semantic meaning of this new triple is defined as follows:

Definition 5.5.1. The validity of {|Φ|} e {|Z|} is defined inductively over the structure of Z. That
is:

if Z ≡ ensuresQ :
|= {|Φ|} e {|Z|} ⇐⇒ |= {Φ}e{Q};

if Z ≡ requiresΦ1 [then] Z1 :
|= {|Φ|} e {|Z|} ⇐⇒ |= {|Φ∗Φ1|} e {|Z1|};

if Z ≡ case{π1⇒Z1; . . . ; πn⇒Zn} :
|={|Φ|} e {|Z|} ⇐⇒ ∀i∈{1, .., n}·|={|Φ∧πi|} e {|Zi|};

if Z ≡ (∃v∗1·Y1 . . . ∃v∗n·Yn) :
|= {|Φ|} e {|Z|} ⇐⇒ ∀i∈{1, .., n}· |= {|Φ|} e {|∃v∗i ·Yi|})2
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[FV−METH]
H=[(v:t)∗, (u:t)∗]

G = prime(H)+H + [res:t0]
G ` {|

∧
(v′=v)∗ ∧

∧
(u′=u)∗|} code {|Z|}

`t0 mn ((t v)∗, (ref t u)∗) Z { code }

[FV−MULTI−SPECS]
fresh nv∗

ρ=[(v→nv)∗]
∀i ·G`{|Φ|} code {|ρYi|}
G`{|Φ|} code {|∃v∗1·Y1..∃v∗n·Yn|}

[FV−REQUIRES]
{w∗} ∩ Vars(G) = {}
G1 = G+ [(w : t)∗]

G1 ` {|Φ1∗Φ2|} code {|Z|}
G`{|Φ1|} code {|requires [(w:t)∗] Φ2 Z|}

[FV−ENSURES]
V=PassByValue(G)
` {Φ} code {Φ2}

∃prime(V ) · Φ2 `emp{} Q∗S S 6={}
G`{|Φ|} code {|ensures Q|}

[FV−CASE]
∀i∈{1, .., n} ·G ` {|Φ ∧ πi|} code {|Zi|}

G`{|Φ|} code {|case{π1⇒Z1;...; πn⇒Zn}|}

Figure 5.2: Building Verification Rules for Structured Specifications

Our main verification rules are given in Fig. 5.2. Note that G records a list of variables

(including res as result of the code) visible to the code verifier. Our specification formulae

use both primed and unprimed notations, where primed notations represent the latest values of

program variables, and unprimed notations denote either logical variables or initial values of

program variables.

The verification of method declarations is described by the [FV−METH] rule. It verifies

the method body code against the specification Z, as indicated by the rule. The function

prime({v1, .., vm}) returns the primed version {v′1, .., v′m}. The third line of the premise deals

with the verification taskG ` {|
∧

(v′=v)∗ ∧
∧

(u′=u)∗|} code {|Z|}, where the precondition in-

dicates that the latest values of program variables are the same as their initial values. The other

rules are syntax-directed and rely on the structure of the specification Z.

The rule [FV−MULTI−SPECS] deals with the case where the post-state is a multi-specification.

It verifies the code against each of the specifications. Note that the substitution ρ replaces vari-

ables v∗ with fresh variables nv∗. The rule [FV−REQUIRES] deals with the case where the

post-state starts with a requires clause. In this case, the formula in the requires clause
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is added to the pre-state (by separation conjunction) before verifying the code against the re-

maining part of the specification in the post-state. The variables for late instantiation (w∗) are

also attached to the end of the list G. The rule [FV−ENSURES] deals with the case where the

post-state starts with an ensures clause. It invokes our forward verification rules to derive the

strongest postcondition Φ2 for the normal Hoare triple {Φ}code{Φ2} and invokes the entail-

ment prover (described in the next section) to check that the derived post-state Φ2 subsumes

the given post-condition Q (The test S 6= {} signifies the success of this entailment proof).

Note that V denotes the set of pass-by-value parameters that are not modified by the procedure.

Hence, their values (denoted by primed variables) are ignored in the postcondition, even if the

program code may have updated these parameters. The last rule [FV−CASE] deals with the case

where the post-state is a case specification. It verifies in each case the specification Zi is met

when the guard πi is assumed in the pre-state.

To illustrate the generation of the verification tasks, consider the AVL merging given in

Section 5.3.1. By applying the rules from Figure 5.2, two Hoare triples are produced.

` {t2::avl〈s2, h2〉 ∧ t1=null} code {res::avl〈s2, h2〉}

` {t1::avl〈s1, 〉∗t2::avl〈s2, h2〉∧t1 6=null} code {res::avl〈s1+s2, 〉}

5.6 Entailment Checking

In the current section, we enhance the entailment proving procedure to handle structured for-

mulae in the consequent. More specifically, the entailment procedure for structured formulae

checks that, given formulae Φ1 and Q2, Φ1 entails Q2, that is if in all heaps satisfying Φ1, we

can find a subheap satisfying Q2.

Following from the entailment checking procedure introduced in Sec 2.4, besides determin-

ing if the entailment relation holds, the current entailment procedure also infers the residual

heap of the entailment, that is a formula ΦR such that Φ1 ` Q2 ∗ ΦR , and derives the predicate

parameters. The relation is formalized using a judgment of the form Φ1`κV Q2 ∗ΦR, which is a

shorthand for Φ1∗κ ` ∃V · (Q2∗κ)∗ΦR. Note that κ denotes the consumed heap, while V is a

set, {v∗, E:w∗}, containing the existential variables encountered, v∗, together with the variables

w∗ for late instantiation.

To support proof search, we have also generalised the entailment checking procedure to

return a set of residues SR: Φ1`κV Q2 ∗SR.This entailment succeeds when SR is non-empty,
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otherwise it is deemed to have failed. The multiple residual states captured in SR signify differ-

ent search outcomes during proving. The main rules are given in Figure 5.3. Take note that we

make use of a method mark(V,w∗) , which marks the variables to be late instantiated, w∗, by

removing them from the existential variables stored in V and adding them as E : w∗:

mark(V,w∗) = (V−{w∗})∪{(E : w)∗}

The rule [ENT−FORMULA] makes use of the aforementioned marking method in order to

mark the fact that variables w∗ are to be late instantiated, whereas rule [ENT−EXIST] adds the

existentially quantified variables v∗ to the set V .

[ENT−FORMULA]
Φ `κmark(V,w∗) (Φ1) ∗ S

Φ `κV [w∗] Φ1 ∗ S

[ENT−CASE]
∀i · Φ ∧ πi `κV Qi ∗ Si

Φ`κV case{πi⇒Qi}∗ ∗ (
∨

Si)

[ENT−ENSURES]
Q ;T Φ1

Φ`κV (ensures Q) ∗ (Φ∗Φ1)

[ENT−STAGED−FORMULA]
Φ `κmark(V,w∗) (Φ1) ∗ S S `κV−{w∗} (Q) ∗ S2

Φ `κV ([w∗] Φ1 then Q) ∗ S2

[ENT−RHS−OR]
∀i · Φ `κV Ri ∗ Si

Φ`κV
∨

Ri ∗ (
⋃

Si)

[ENT−EXIST]
Φ `κV ∪{v∗} R ∗ S

Φ`κV ∃v∗·R ∗ S

Figure 5.3: Entailment for Structured Formula

In the rule for staged formula, [ENT−STAGED−FORMULA], the instantiation for the vari-

ables w∗ takes place in the first stage, Φ1. As instantiation moves the corresponding bindings

to the LHS (or antecedent of entailment), the variables w∗ must be removed from the set of

existentially quantified variables when entailing the rest of the formula, Q. At the end of the en-

tailment proving, the variables that were marked as late-instantiated are existentially quantified

in the residue state. The generalised entailment with a set of n formulae in the antecedent is an
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abbreviation of the n entailments, as illustrated below:

∀i∈{1, .., n} · Φi `κV (Q) ∗ Si
{Φ1, ..,Φn} `κV (Q) ∗

⋃n
i=1 Si

The rule [ENT−CASE] adds the pure term πi to the antecedent. This rule requires a lifted

disjunction operation defined as S1∨S2≡{Φ1∨Φ2|Φ1∈S1,Φ2∈S2} when applied to two sets of

states, S1, S2.

While a successful entailment of one disjunct suffices for the entailment of a disjunctive

formula, our entailment rule [ENT−RHS−OR] facilitates a proof search by trying to entail each

of the RHS disjuncts separately. Therefore, the residue state must contain the union of all

residues corresponding to the proof search from a set of entailments, ∀i · Φ `κV Ri ∗ Si.

Take note that, at each call site, the forward verification procedure ensures that the method’s

precondition is satisfied and assumes the method’s postcondition. This is achieved by entailing a

formula denoting a specification of the Z form. As the corresponding entailment rules are similar

to those for the entailment of a structured formula given in Figure 5.3, we omit them for brevity.

The only unusual rule is ENT−ENSURES that is needed when entailing the actual postcondition

ensures Q. In this case, the postcondition is added to the residual state in unstructured form,

immediately after the translation Q ;T Φ1 to unstructured form.

5.6.1 Instantiations

Our structured specification mechanism provides three types of instantiations for the logical

variables (of consequent) during the entailment proving process:

• no instantiation : this technique is used for existential variables and need only apply its

substitutions within the consequent itself.

• early (or implicit) instantiation : bindings of these variables, obtained from matching

or folding predicates, are immediately moved to the antecedent.

• late (or explicit) instantiation : bindings of these variables are kept in the consequent,

and moved to the antecedent at the end of scope of the logical variables.

If no instantiation is required, we only need to apply direct substitutions of the existential

variables during matching or folding of the predicate. This is the simplest mechanism and

should be used, where possible.
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Parameter instantiation is needed primarily for connecting the logical variables between the

precondition and the postcondition of a specification. In this section, we outline the specific

mechanisms needed to support both early and late instantiations. We highlight two main rules.

The first one occurs when matching a predicate in the antecedent with another predicate (with

the same root parameter, x) in the consequent, as follows:

[ENT−MATCH]

w∗ = late vars(V ) v∗ = V−w∗

(early eq, late eq,ρ) = split(v∗1, v
∗
2, v
∗, w∗)

κ1∧π1∧early eq `κ∗x::p〈v∗1 〉
V ρ(κ2∧π2∧late eq) ∗S

x::p〈v∗1〉∗κ1∧π1`κV (x::p〈v∗2〉∗κ2∧π2) ∗S

We divide the parameter bindings via split into three categories:

(i) existential (denoted by v∗),

(ii) to be late instantiated (denoted by w∗),

(iii) to be early instantiated (all other variables of the consequent).

Early binding early eq is immediately moved to the antecedent, while the late binding late eq

is kept in the consequent. In contrast, the existential binding ρ is made into a substitution that is

directly applied to the consequent. Applying direct substitution into the consequent is simplest

since the existential variables are immediately eliminated, where possible, and there is no need

to separately identify instantiations to move to the antecedent. For late instantiation, we keep

the bindings for the logical variables in the consequent until the end of entailment, in order to

obtain a more precise binding, as illustrated by the rule below.

[ENT−EMP]

(XPure(κ1∗κ)∧π1=⇒∃V·π2) w∗ = late vars(V )

v∗ = V−w∗ I = (∃v∗·π2)

κ1∧π1`κV (emp∧π2) ∗ {κ1∧(π1∧I)}

This occurs when the consequent is completely pure and has only an emp heap state. We

construct an instantiation, named I, for the variables to be late instantiated, w∗, before it is

moved to the antecedent via the residue of entailment proving. Note that the function XPure will

translate a heap-based formula into an approximate heap-independent formula.
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5.7 Soundness

The storage model, semantic model and dynamic semantics are similar to those given in Sec 2.5,

2.6, and 2.7, respectively, with extensions for the new structured formulae. Let s, h |= Q in

Fig 5.4 denote the model relation, i.e. the stack s and heap h satisfy the constraint Q, with h, s

from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal

s ∈ Stacks =df Var→ Val∪Loc

The model relation for pure formula s |= π denotes that the formula π evaluates to true in s.

s, h |=Q iff Q=
∨n
i=1 ∃v∗·Ri and s, h |=

∨n
i=1 ∃v∗·Ri

s, h |=
∨n
i=1 ∃vi1..im·Ri iff ∃k∈{1, .., n}·∃αk1..km·s[vk1 7→αk1, .., vkm 7→αkm], h |= Rk

s, h |=[wni=1]Φ then Q iff ∃h1, h2 · h1⊥h2 and h = h1·h2

and ∃α1..n·s[w1 7→α1, ..,wn 7→αn], h1 |= Φ and s, h2 |= Q

s, h |=case{(πi⇒Qi)
n
i=1} iff ∀k∈{1, .., n}·(s, h |= πk → s, h |= Qk)

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃α1..n·s[v1 7→α1, .., vn 7→αn], h |= κ
and s[v1 7→α1, .., vn 7→αn] |=π

s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2

and s, h1 |= κ1 and s, h2 |= κ2

s, h |=emp iff dom(h) = ∅

s, h |=p::c〈v1..n〉 iff exists a data type decl. data c {t1 f1, .., tn fn}
and h=[s(p) 7→r] and r=c[f1 7→s(v1), .., fn 7→s(vn)]

or exists a pred. def. (c〈v1..n〉≡Q inv π)∈P and
s, h |= [p/root]Q

Figure 5.4: Model for Structured Formulae

For the case of a data node, v::c〈v∗〉, h has to be a singleton heap. On the other hand, a shape

predicate defined by c〈v1..n〉≡Q may be inductively defined.

With the semantics of the structured formulae in place, we can provide a translation from
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∀i ·Qi;T Φi

case{πi⇒Qi}∗;T
∨

(Φi∧πi)
Q;T Φ

[w∗] Φ1 then Q;T Φ1 ∗ Φ

∀i · Ri;T Φi∨
∃v∗·Ri;T

∨
∃v∗·Φi [w∗] Φ;T Φ

Figure 5.5: Translation from a structured formula to its equivalent unstructured formula

a structured formula to its equivalent unstructured formula. This translation is formalised with

Q ;T Φ, as shown in Fig 5.5.

We make use of the semantics for structured formulae Q and for unstructured formula Φ to

prove the correctness of the given translation rules.

Theorem 5.7.1 (Correctness of Translation). Given Q and Φ such that Q ;T Φ: for all s, h,

s, h |= Q if and only if s, h |= Φ.

Proof: By structural induction on Q.

Theorem 5.7.2 (Safety). Consider a closed term e without free variables in which all methods

have been successfully verified. Assuming unlimited stack/heap spaces and that ` {true} e {∆},

then either 〈[], [], e〉↪→∗〈[], h, v〉 terminates with a value v that is subsumed by the postcondition

∆, or it diverges 〈[], [], e〉6↪→∗.

Proof: It follows from the safety of our underlying verification system (i.e. the one without

structured specifications) [92], the definition 5.5.1, and the soundness of the entailment prover

enriched with structured formulae formulated by Theorem 5.7.3.

Theorem 5.7.3 (Soundness of Entailment). Given Φ, Q such that s, h |= Φ, if Φ `κV Q∗Φr for

some Φr, then s, h |= Q∗Φr. That is, for all program states in which Φ holds if Φ `κV Q∗Φr

then Q∗Φr holds.

Proof: By structural induction on Q.

5.8 Experimental Evaluation

We have built a prototype system using Objective Caml. The proof obligations generated by our

verification are discharged using some off-the-shelf constraint solvers (like Omega Calculator
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[105]) or theorem provers (like MONA [64]). The specification mechanism works with any

constraint domain, as long as a corresponding prover for the domain is available. The specific

domains that our verifier currently supports, includes linear (Omega Calculator, Z3, CVC-lite)

and non-linear arithmetic (Redlog), set (MONA, Isabelle bag tactic) and list properties (a Coq

tactic).

We have conducted preliminary experiments by testing our system on a suite of examples

summarized in Figure 5.6. These examples are small but can handle data structures with so-

phisticated shape and size properties such as sorted lists, balanced trees, etc., in a uniform way.

Methods “insert” and “delete” refer to the insertion and deletion of a value into/from the cor-

responding data structure, respectively. Method “delete first” deletes the node at the head in a

circular list. Moreover, we verify a suite of sorting algorithms, which receive as input an un-

sorted singly-linked list and return a sorted list. Verification time for each function includes the

time to verify all functions that it calls. We compare the timings obtained with and without case

analysis.

Take note that for each of the verified methods, in order to compare the results obtained

with and without case analysis, we provided specifications with the same level of modularity

through specifications with multiple pre/post. FAIL for the ”without case” means it did not

verify functional correctness (including memory safety). This is due the absence of case analysis

that would have been provided by the missing case spec.

Preliminary results indicate that case analysis improves both the completeness and the per-

formance of our system. From the completeness point of view, case analysis is important for

verifying a number of examples that would fail otherwise. For instance, the method imple-

menting the selection sort algorithm over a linked list fails when it is written with multiple

specification instead of the case construct. The same scenario is encountered for the method

inserting/deleting a node of red black tree, and for the method appending two list segments.

The case construct thus helps our system to verify more examples successfully. Regarding the

performance, the timings obtained when using case analysis are smaller, taking on average 21%

less computation time than those obtained without case analysis. The improvements are due to

earlier pruning of false contexts with the help of case constructs and optimizations of the case

entailment rule.
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Program Timings (in seconds) speed
Codes LOC with case without case gain (%)

Linked List verifies length
delete 20 0.65 0.89 26

append 14 0.30 0.39 23
List Segment verifies length

append 11 0.95 failed -
Circular Linked List verifies length + circularity

delete first 15 0.35 0.41 15
insert 10 0.28 0.35 20

Doubly Linked List verifies length + double links
insert 18 0.35 0.52 33
delete 29 0.94 1.27 26

Sorted List verifies bounds + sortedness
insert 17 0.71 0.96 26
delete 21 0.60 0.68 22

insertion sort 45 0.92 1.35 32
selection sort 52 1.24 failed -
bubble sort 42 1.95 2.92 43
merge sort 105 2.01 2.53 31
quick sort 85 1.82 2.47 26

AVL Tree verifies size + height + balanced
insert 169 32.27 39.48 19
delete 287 85.1 97.30 13

Perfect Tree verifies height + perfectness
insert 89 0.73 0.99 26

Red-Black Tree verifies size + black-height
insert 167 5.44 failed -
delete 430 22.43 failed -

Figure 5.6: Verification Times for Case Construct vs Multiple Pre/Post

We also investigated the performance gain that can be attributed to the use of staged formu-

lae. We observed that the timings improved on average by 20%. However, in some cases, such

as the AVL-merge example, we obtain a 38% speedup from 5.1 seconds to 3.2 seconds. Other

noteworthy examples include the AVL insertion (from 32.27s to 22.93s) and AVL deletion (from

85.1s to 81.6s).

We may conclude from our experiments that structured specifications together with case

analysis give better precision to our verification system while also improving its performance,

when compared to corresponding unstructured specifications.
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CHAPTER VI

STATIC AND DYNAMIC SPECIFICATIONS

6.1 Motivation

Object-based programs are hard to statically analyse mostly because of the need to track object

mutations in the presence of aliases. Object-oriented (OO) programs are even harder, as we have

to additionally deal with class inheritance and method overriding.

One major issue to consider when verifying OO programs is how to design specification for

a method that may be overridden by another method down the class hierarchy, such that it con-

forms to method subtyping. In addition, it is important to ensure that subtyping is observed for

object types in the class hierarchy, including any class invariant that may be imposed. From the

point of conformance to OO semantics, most analysis techniques uphold Liskov’s Substitutivity

Principle [80] on behavioral subtyping. Under this principle, an object of a subclass can always

be passed to a location where an object of its superclass is expected, as the object from each

subclass must subsume the entire set of behaviors from its superclass. To enforce behavioral

subtyping for OO programs, several past works [32, 5, 62] have advocated for class invariants

to be inherited by each subclass, and for pre/post specifications of the overriding methods of its

subclasses to satisfy a specification subsumption (or subtyping) relation with each overridden

method of its superclass.

In this chapter, for brevity reasons, in stead of the notation {requiresΦi
pr ensures Φi

po}
p
i=1

denoting a method’s specification, we will we will use an infix notation {prei ∗→ posti}pi=1.

A basic specification subsumption mechanism was originally formulated as follows. Consider

a method B.mn in class B with (preB ∗→ postB) as its pre/post specification, and its overriding

method C.mn in subclass C, with a given pre/post specification (preC ∗→ postC). The speci-

fication (preC ∗→ postC) is said to be a subtype of (preB ∗→ postB) in support of method

overriding, if the following subsumption relation holds:

preB∧type(this)<:C =⇒ preC postC =⇒ postB

(preC ∗→ postC) <:C (preB ∗→ postB)
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The two conditions are to ensure contravariance of preconditions, and covariance on post-

conditions. They follow directly from the subtyping principle on methods’ specifications. As

the two specifications are from different classes, we add the subtype constraint type(this)<:C

to allow the above subsumption relation to be checked for the same C subclass. To reflect this,

we parameterize the subsumption operator <:C with a C-class as its suffix.

The main purpose of using specification subsumption is to support modular reasoning by

avoiding the need to re-verify the code of overriding method C.mn with the specification

(preB ∗→ postB) of its overridden method B.mn. In the case that specification subsumption

does not hold, an alternative way to achieve behavioral subtyping is to use the specification

inheritance technique of [32] to strengthen the specification of each overriding method with the

specification of its overridden method, as follows:

Consider a method B.mn in class B with (preB ∗→ postB) as its pre/post specification, and

its overriding method C.mn in subclass C, with pre/post specification (preC ∗→ postC). To

ensure specification subsumption, we can strengthen the specification of the overriding method

via specification inheritance with the intersection of their specifications, namely:

(preC ∗→ postC)
∧

(preB∧type(this)<:C ∗→ postB).

Specification inheritance requires the use of multiple specifications (or intersection type)

to provide for a more expressive mechanism to describe each method. By inheriting a new

specification for the overriding method, this technique uses code re-verification itself to ensure

that a behavioral subtyping property would be enforced. We can generalise a definition of the

subsumption relation between two multiple specifications, as follows:

Definition 6.1.1 (Multi-Specifications Subsumption). Given two multiple specifications,∧n
j=1 specBj (for class B) and

∧m
i=1 specCi (for subclass C), where each of specBj and

specCi is a pre/post annotation of the form pre ∗→ post. We say that they are in speci-

fication subsumption relation, (
∧m

i=1 specCi) <:C (
∧n

j=1 specBj), if the following holds :

∀j∈1..n ∃i∈1..m · specCi<:C specBj.

While modular reasoning can be supported by the above subsumption relations, the rea-

soning were originally formulated in the framework of Hoare logic. Recently, separation logic

has been proposed as an extension to Hoare logic, providing precise and concise reasoning for

pointer-based programs. A key principle followed in separation logic is the use of local reason-

ing to facilitate modular analysis/reasoning. An early work on applying separation logic to the
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OO paradigm was introduced by [100]. In that work, two key concepts were identified. Firstly,

an abstract predicate family pt(v1, .., vn) was used to capture some program states for objects

of class hierarchy with type t. Each abstract predicate has a visibility scope and is allowed to

have a different number of parameters, depending on the actual type of its root object. More-

over, each predicate family acts as an extensible predicate for which incremental specification

is given and verified for each class. Secondly, the concept of specification compatibility was

introduced to capture the subsumption relation soundly, as follows:

A specification preC ∗→ postC is said to be compatible with preB ∗→ postB under all

program contexts, if the following holds:

∀code · {preC}code{postC} =⇒ {preB}code{postB}
(preC ∗→ postC) <: (preB ∗→ postB)

Specification compatibility can be viewed as a more fundamental way to describe specifica-

tion subsumption in terms of Hoare logic triples. However, it cannot be directly implemented,

since its naive definition depends on exploring all possible program codes for compatibility. In

this thesis, we provide a practical alternative towards automated verification of OO programs

that can support better precision and avoid unnecessary code re-verification. We use key princi-

ples of separation logic to achieve this.

6.2 Chapter Overview

After introducing the specification language in Sec 6.3, we motivate our work through an exam-

ple in Sec 6.4. Our proposal is summarized by a few principles for OO verification in Sec 6.5,

and more details on the approach towards supporting method inheritance via an enhanced speci-

fication subsumption relation are provided in Sec 6.6. Sec 6.7 presents mechanisms for ensuring

that method overriding and method inheritance conform to the OO paradigm, whereas Sec 6.8

introduces techniques for deriving dynamic specifications from the static counterparts. Sec 6.9

describes the verification system, while its soundness is discussed in Sec 6.10.

6.3 Specification and Programming Language

We consider a core OO language consisting of a simple sequential language with just the basic

features from the OO paradigm. Some omitted features, such as exceptions, static fields and

static methods, can be handled in an orthogonal manner and do not cause any difficulty to our
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tdecl ::= classt | spred

classt ::= class c1 extends c2 inv κ∧π { (t v)∗meth∗ }

meth ::= t mn ((t v)∗) [static sp1] [dynamic sp2] {e}

sp ::= {Φi
pr ∗→Φi

po}
p
i=1

π ::= γ∧φ∧β

β ::= v=c | v<:c

Figure 6.1: A Core Object-Oriented Language

verification system.

We provide our language in Figure 6.1, and assume that the constructs not covered in Fig 6.1

remain unchanged from the programming and specification languages given in Fig 2.1 and

Fig 2.2, respectively. This core language is the target of some preprocessing steps. A pro-

gram consists of a list of class and view declarations and an expression which corresponds to

the main method in many languages. We assume that the super class of each class is explicitly

declared, except for Object at the top of the class hierarchy. We also use this as a special

variable referring to the receiver object, and super to refer to a superclass’s method invocation.

For simplicity, we assume that variable names declared in each method are all distinct and use

the pass-by-value parameter mechanism.

6.4 Examples

The focus on specifications that support method overriding has a potential drawback that these

specifications are typically imprecise (or weaker) for methods of superclasses. Such specifi-

cations typically have stronger preconditions (which restrict their applicability) and/or weaker

postconditions (which lose precision). This drawback can cause imprecision for OO verifi-

cation which has in turn spurred practical lessons on tips and tricks for specification writers

[62]. Furthermore, mechanisms such as specification inheritance may have unnecessary code

re-verification, especially when specification subsumption holds.

Let us consider the specification of a simple up-counter class in Figure 1. This Cnt class is
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accompanied by three possible subclasses:

• FastCnt to support a faster tick operation,

• PosCnt which works only with positive numbers,

• TwoCnt which supports an extra backup counter.

Let us first design the specifications for instance methods of class Cnt without worrying

about method overriding. A possible set of pre/post specifications is given below where this

and res are variables denoting the receiver and result of each method.

void Cnt.tick() static this::Cnt〈n〉 ∗→ this::Cnt〈n+1〉

void Cnt.set(int x) static this::Cnt〈n〉 ∗→ this::Cnt〈x〉

int Cnt.get() static this::Cnt〈n〉 ∗→ this::Cnt〈n〉∧res=n

We refer to these as static specifications and precede them with the static keyword. They can

be very precise as they were considered statically on a per method basis without concern for

method overriding, and can be used whenever the actual type of the receiver is known. The

notation y::c〈v1, .., vn〉 denotes that variable y is pointing to an object with the actual type1 of

c-class and where each field y.fi is denoted by variable vi. For example, in this::Cnt〈n〉,

the field this.val is denoted by variable n. This format for objects is used primarily for static

specification. To describe an object type whose type is merely a subtype of the c-class, we shall

use a different notation, namely y::c〈v∗〉$, which implicitly captures an object extension with

extra fields from its subclass.

If we take into account the possible overriding of the tick method by its corresponding

method in the FastCnt subclass, we may have to weaken the postcondition of Cnt.tick.

Furthermore, to guarantee the invariant this.val≥0 of the PosCnt class, we may have to

strengthen the preconditions of methods Cnt.set, Cnt.tick and Cnt.get. These weakenings

result in the following dynamic specifications which are the usual ones being considered for

dynamically dispatched methods, where the type of the receiver is a subtype of its current class.

1To make our static specifications more reusable through inherited methods, we shall avoid the use of an explicit
constraint, like type(this)=c, on the actual type of the receiver.
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class Cnt { int val;

Cnt(int v) {this.val:=v}

void tick() {this.val:=this.val+1}

int get() {this.val}

void set(int x) {this.val:=x}
}

class FastCnt extends Cnt {

FastCnt(int v) {this.val:=v}

void tick() {this.val:=this.val+2}
}

class PosCnt extends Cnt inv this.val≥0 {

PosCnt(int v) {this.val:=v}

void set(int x) {if x≥0 then this.val:=x else error()}
}

class TwoCnt extends Cnt { int bak;

TwoCnt(int v, int b) {this.val:=v; this.bak:=b}

void set(int x) {this.bak:=this.val; this.val:=x}

void switch(int x)

{int i:=this.val; this.val:=this.bak; this.bak:=i}
}

Figure 6.2: Example: Cnt and its subclasses

void Cnt.tick() dynamic this::Cnt〈n〉$∧n≥0 ∗→ this::Cnt〈b〉$∧n+1≤b≤n+2

void Cnt.set(int x) dynamic this::Cnt〈n〉$∧x≥0 ∗→ this::Cnt〈x〉$

int Cnt.get() dynamic this::Cnt〈n〉$∧n≥0 ∗→ this::Cnt〈n〉$∧res=n
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Such changes make the specifications of the methods in superclasses less precise, and are

carried out to ensure behavioral subtyping. Furthermore, these specifications must also cater

to potential modifications that may occur in the extra fields of the subclasses by their over-

riding methods either directly or indirectly. Due to conflicting requirements, we advocate the

co-existence of both static and dynamic specifications. The former is important for precision

and shall be used primarily for code verification, while the latter is needed to support method

overriding and must be used for dynamically dispatched methods. Formally:

Definition 6.4.1 (Static Pre/Post). A specification is said to be static if it is meant to describe

a single method declaration, and need not be used for subsequent overriding methods.

Definition 6.4.2 (Dynamic Pre/Post). A specification is said to be dynamic if it is meant for

use by a method declaration and its subsequent overriding methods.

Past works, such as [2, 32, 81, 99, 5, 90], are based primarily on dynamic specifications,

though implicit static specifications via type(this)=c can also be used in ESC/Java and Spec#,

while JML uses code contract [74, ch 15] as a form of static specification. However, these

proposals for static specifications are somewhat ad-hoc, as they do not impose any relation

between static and dynamic specifications. In our approach, we emphasize static specifications

over dynamic specifications. Most importantly, we always ensure that the static specification

of a method from a given class is always a subtype of the dynamic specification of the same

method within the same class. This principle is important for modular verification, as we need

only verify the code of each method once against its static specification. It is unnecessary to

verify the corresponding dynamic specification since the latter is a specification supertype. Our

proposal uses the following principles for OO verification, achieving both precision and reuse.

6.5 Principles for Enhanced OO Verification

• Static specification is given for each new method declaration, and may be added for in-

herited methods to support new auxiliary calls and subclasses with new invariants.

• Dynamic specification is either given or derived. Whether given or derived, each dynamic

specification must satisfy two subsumption properties. Each must be a :

– specification supertype of its static counterpart. This helps keep code re-verification

to a minimum.
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– specification supertype of the dynamic specification of each overriding method in

its subclasses. This helps ensure behavioral subtyping.

• Code verification is only performed for static specifications.

6.6 Our Approach

Our approach to enhancing OO verification is based on separation logic. We shall describe how

we adapt separation logic for reasoning about objects from a class hierarchy and how to write

precise specifications that avoid unnecessary code re-verification.

6.6.1 Object View and Lossless Casting

For separation logic to work with OO programs, one key problem that we must address is a

suitable format to capture the objects of classes. We should preferably also address the problem

of performing upcast/downcast operations statically in accordance with the OO class hierarchy,

and without loss of information where possible.

Consider two variables, x and y, which point to objects from Cnt class (with a single field)

and TwoCnt class (with two fields), respectively. Intuitively, we may represent the first object

by x::Cnt〈v〉 where v denotes its field, and the second object by y::TwoCnt〈v, b〉 where v, b

denote its two fields. However, a fundamental problem that we must solve is how to cast the

object of one class to that of its superclass, and vice-versa when needed. To do this without

loss of information, we provide two extra information : (i) a variable to capture the actual type

of a given object and (ii) a variable to capture the object’s record extension that contains extra

field(s) of its subclass. When a TwoCnt object is first created, we may capture its state using the

formula :

y::TwoCnt〈t, v, b, p〉∧t=TwoCnt∧p=null

The above formula indicates that the actual type of the object is t=TwoCnt and that there is no

need for any record extension since p=null. With this object format, we can now perform an

upcast to its parent Cnt class by transforming it to:

y::Cnt〈t, v, q〉∗q::Ext〈TwoCnt, b, p〉∧t=TwoCnt∧p=null
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Though this cast operation is viewing the object as a member of Cnt class, it is still a TwoCnt

object as the type information t=TwoCnt indicates. Furthermore, we have created an extension

record q::Ext〈TwoCnt, b, p〉 that can capture the extra b field of the TwoCnt subclass. For

simplicity, we currently use an implicit pointer q to capture the extension record. This model

allows a sequence of upcast operations to be easily captured. Such an upcast operation is lossless

as we have sufficient information to perform the inverse downcast operation back to the original

TwoCnt format. To allow lossless casting between Cnt and TwoCnt, we add an equivalence rule

:

TwoCnt〈t, v, b, p〉 ≡ root::Cnt〈t, v, q〉∗q::Ext〈TwoCnt, b, p〉

An unfold step (which replaces a term that matches the LHS by RHS) corresponds to an upcast

operation, while the fold step (which replaces a term that matches the RHS by LHS) corresponds

to a downcast operation. Such a rule can be derived from each superclass-subclass pairing.

Formally:

Definition 6.6.1 (Lossless Casting). Given a class c〈v∗〉 with fields v∗ and its immediate sub-

class d〈v∗, w∗〉 where w∗ denotes its extra fields, we shall generate the following casting rule

that is coercible in either direction:

root::d〈t, v∗, w∗, p〉 ≡ root::c〈t, v∗, q〉∗q::Ext〈d, w∗, p〉

Note that for any object view d〈t, . . .〉 it is always the case that the subtype relation t<:d holds

as its invariant. Furthermore, the default root parameter on the LHS may be omitted for brevity.

Lossless casting is important for establishing the subsumption relation between each static

specification and its dynamic counterpart, as the extension record can be preserved, if needed,

by each static specification. Lossless casting is also important for the static specification of

inherited methods which should preferably be inherited without the need for re-verification.

This can be achieved by exploiting local reasoning which allows us to assert that an extension

record need not be modified by each inherited method.

There are also occasions when we are required to pass the full object with all its (extended)

fields. This occurs for dynamic specifications where subsequent overriding method may change

the extra fields of its subclass. To cater to this scenario, we introduce an ExtAll〈t1, t2〉 view
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that can capture all the extension records from a class t1 for an object with actual type t2. This

scenario occurs for the dynamic specification of Cnt.set method, as shown below:

this::Cnt〈t, , p〉∗p::ExtAll〈Cnt, t〉∧x≥0

∗→ this::Cnt〈t, x, p〉∗p::ExtAll〈Cnt, t〉

Such a dynamic specification may be used with any subtype of Cnt. The entire object view

must be passed to support dynamic specifications which are expected to cater to the current

method and all subsequent overriding methods. The ExtAll predicate itself can be defined as

follows:

ExtAll〈t1, t2〉 ≡ t1=t2∧root=null ∨ root::Ext〈t3, v∗, q〉

∗q::ExtAll〈t3, t2〉∧t3<t1∧t2<:t3 inv t2<:t1

The notation t3<t1 denotes a class t3 and its immediate superclass t1. The ExtAll predi-

cate is used to generate all the extension records from class t1 to t2. For example, expression

x::ExtAll〈Cnt, Cnt〉 yields x=null, and x::ExtAll〈Cnt, TwoCnt〉 yields x::Ext〈TwoCnt, b, null〉.

Our format allows two kinds of object views to be supported:

Definition 6.6.2 (Full and Partial Views). We refer to the use of formula x::c〈t, v∗, p〉∗p::ExtAll〈c, t〉

as providing a full view for an object with actual type t that is being treated as a c-class object,

while x::c〈t, v∗, p〉 provides only a partial view with no extension record. For brevity, full views

are also written as x::c〈v∗〉$, while partial views are coded using x::c〈v∗〉.

This distinction between partial and full views (for objects) follows directly from our de-

cision to distinguish static from dynamic specifications. Partial views are typically used for

the receiver object of static specifications, while full views are used by dynamic specifications.

Some readers may contend that lossless casting of an object x from d〈v∗, w∗〉 to c〈v∗〉 may also

be captured with the help of separating implication by representing the extension record using

x::c〈v∗〉−−∗ x::d〈v∗, w∗〉. This approach works well for partial views, but cannot easily handle

the ExtAll predicate required by full views. Moreover, by omitting separating implication, our

current approach to automated verification is easier to build and prove.

6.6.2 Ensuring Class Invariants

Ensuring that class invariants hold can be rather intricate, with the key problems being how and

when to check for the invariants. Based on the simplest assumption, one would expect object
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invariants to hold at all times. However, this assumption is impractical for mutable objects.

One sensible solution is to expect invariants to hold based on visible state semantics, which is

typically aligned to the boundaries of public methods. Even this approach may not be flexible

enough. Thus, in Boogie [4, 78], programmers are also allowed to use a specification field,

called valid, that can indicate if the invariant for an object is being preserved or temporarily

broken for mutation. Similarly, in [88], programmers are allowed to indicate invariants that are

inconsistent (not preserved) at some method boundary.

We aim for a similar level of flexibility but which still remains easy to use. To achieve

this, we introduce the concept of an invariant-enhanced view for each class with a non-trivial

invariant, as follows:

Definition 6.6.3 (Invariant-Enhanced View). Consider a class c with a non-trivial invariant

δc (6=true) over the fields v∗ of the object. We shall define a new view of the form c#I〈v∗〉

to capture its class invariant, as : c#I〈v∗〉 ≡ root::c〈v∗〉∗δc. Furthermore, for each subclass

d〈v∗, w∗〉 with an extra invariant δd over the fields v∗, w∗, we expect its invariant to be δc∗δd and

shall provide a corresponding view : d#I〈v∗, w∗〉 ≡ root::d〈v∗, w∗〉∗δc∗δd.

The use of separating conjunction to capture the class invariant allows a form of object

ownership to be specified for heap objects present in δc. Furthermore, invariant-enhanced view

can easily and explicitly indicate when an invariant can be enforced and when it can be assumed.

If a c〈v∗〉 is being used, the class invariant is neither enforced nor assumed. If a c#I〈v∗〉 is used

in the precondition, its invariant must be enforced at each of its call sites, but can be assumed

to hold at the beginning of its method declaration. If a c#I〈v∗〉 is used in the postcondition, its

invariant must be enforced at the end of its method declaration, but can be assumed to hold at

the post-state of each of its call sites.

With the help of invariant-enhanced views, we can provide pre/post specifications that guar-

antee class invariants are always maintained by public methods. This can help ensure that all

objects created and manipulated by public methods are guaranteed to satisfy their class invari-

ants. Alternatively, it is also possible to allow some methods (typically private ones) to receive

or produce objects without the invariant property. This corresponds to situations where the class

invariant is temporarily broken. Our invariant-enhanced views can achieve this as they can be

selectively and automatically enforced in pre/post annotations.
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For example, the invariant-enhanced view of PosCnt is:

PosCnt#I〈t, v, p〉 ≡ root::PosCnt〈t, v, p〉∗v≥0

Two methods get and tick are being inherited from the Cnt superclass, while a third method

set is re-defined to ensure the class invariant. We may provide new static specifications for

these three respective methods, to incorporate the invariant-enhanced view. Figure 6.3 shows

how this is done for our running example. It is sufficient to use a weaker precondition of

the form this::PosCnt〈v〉 for static-spec(PosCnt.set) without compromising its postcondi-

tion this::PosCnt#I〈x〉. This corresponds to a temporary violation of the class invariant of

PosCnt.

6.6.3 Enhanced Specification Subsumption

With our use of more precise static specifications, we can now leverage on a better specification

subsumption that can exploit the local reasoning capability of separation logic. In particular, the

extended fields of objects that are not used should be preserved by specification subsumption.

More formally, we define the enhanced form of specification subsumption, as follows:

Definition 6.6.4 (Enhanced Spec. Subsumption). A pre/post annotation preB ∗→ postB is

said to be a subtype of another pre/post annotation preA ∗→ postA if the following relation

holds:
preA` preB∗∆ postB∗∆` postA
(preB ∗→ postB) <: (preA ∗→ postA)

Note that ∆ captures the residual heap state from the contravariance check on preconditions that

is carried forward to assist in the covariance check on postconditions.

As an example of its utility, consider the following specification subsumption that is ex-

pected to hold for enhanced OO verification.

static-spec(Cnt.set) <: dynamic-spec(Cnt.set)

For the above to hold, we must prove:

this::Cnt〈t, v, p〉 ∗→ this::Cnt〈t, x, p〉

<: this::Cnt〈t, v, q〉∗q::ExtAll〈Cnt, t〉∧x≥0 ∗→

this::Cnt〈t, x, q〉∗q::ExtAll〈Cnt, t〉
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The above subtyping cannot be proven with the basic specification subsumption relation

from Sec 1 (without the use of a residual heap state), but succeeds with our enhanced subsump-

tion relation.

We first show the contravariance of the preconditions:

this::Cnt〈t, v, q〉∗q::ExtAll〈Cnt, t〉∧x≥0

` this::Cnt〈t, v, p〉∗∆

This succeeds with ∆≡p::ExtAll〈Cnt, t〉∧x≥0. We then prove covariance on the postcon-

ditions using:

this::Cnt〈t, x, p〉∗∆ ` this::Cnt〈t, x, q〉∗q::ExtAll〈Cnt, t〉

This is proven with the help of residual heap state ∆ (with an extension record) from the

entailment of preconditions.

Our preservation of residual heap state is inspired by the needs of static specification. By

the use of a new object format (with lossless casting) and a novel specification subsumption

mechanism, we can now support a modular verification process in which re-verification is al-

ways avoided for dynamic specifications. Our enhanced specification subsumption can also be

viewed as a practical algorithm for implementing Parkinson’s specification compatibility [99].

This link shall be formally proven later in Lemma 6.1.

6.7 Conformance to the OO Paradigm

We present mechanisms to ensure that method overriding and method inheritance are supported

in accordance with the requirements of the OO paradigm.

6.7.1 Behavioral Subtyping with Dynamic Specifications

Dynamic specifications are meant for the methods of a given class and its subclasses. They must

conform to the behavioral subtyping principle to support method overriding (and inheritance),

as defined by the requirement below:

Definition 6.7.1 (Behavioral Subtyping Requirement). Given a dynamic specification preC ∗→ postC

in a method mn in class C and another dynamic specification preD ∗→ postD of the correspond-

ing method mn in a subclass D. We say that the two specifications adhere to the behavioral sub-

typing requirement using (preD ∗→ postD)<:D (preC ∗→ postC), if the following subsumption

holds : preD ∗→ postD <: (preC∧type(this)<:D ∗→ postC).
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As shown above, we can use the enhanced specification subsumption relation to check for

behavioral subtyping. For an example, consider the dynamic specification of method Cnt.set

and its overriding method PosCnt.set. Assuming that these dynamic specifications are given,

the behavioral subtyping requirement can be checked using:

dynamic-spec(PosCnt.set) <:PosCnt dynamic-spec(Cnt.set)

Hence, we have:

this::PosCnt〈 〉$∧x≥0 ∗→ this::PosCnt#I〈x〉$ <:

this::Cnt〈v〉$∧x≥0∧(type(this)<:PosCnt) ∗→ this::Cnt〈x〉$

By contravariance of preconditions, we successfully prove:

this::Cnt〈v〉$∧x≥0∧(type(this)<:PosCnt) `

this::PosCnt〈 〉$∧x≥0 ∗ ∆

where ∆ is derived to be x≥0. By covariance of postconditions, we can prove:

this::PosCnt#I〈x〉$∗∆ ` this::Cnt〈x〉$

Hence, the above two dynamic specifications of Cnt.set and PosCnt.set conform to the

behavioral subtyping requirement.

Dynamic specifications may also be given (or derived) for inherited methods, especially

when their static specifications have been modified. As with method overriding, we con-

tinue to expect that the behavioral subtyping requirement holds between a dynamic speci-

fication (as supertype) for a method in a class and another dynamic specification (as sub-

type) for the same inherited method in the subclass. Let us consider Cnt.tick and its in-

herited method PosCnt.tick. Though no method overriding is present, we must still ensure

dynamic-spec(PosCnt.tick) <: PosCnt dynamic-spec(Cnt.tick).

6.7.2 Statically-Inherited Methods

Under the OO paradigm, it is possible for a method mn in a class C to be inherited into its

subclass D without any overriding. Furthermore, the user is free to add a new static/dynamic

specification to such an inherited method for each subclass. Such a scenario may occur for a

subclass with a strengthened invariant. For each inherited method of this subclass, we anticipate

a new static specification possibly using its invariant-enhanced view. An important question to
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ask is if there is a need to re-verify this new static specification against the body of the inherited

method.

We shall first consider static specification where the receiver is specified using partial view

of form this::c〈t, v∗, p〉. For this category of static specifications, we are expecting that each

method invocation by this.mn(..) does not modify any fields in the extension record and is

the same as that in the original method prior to method inheritance. To support the inheritance

of static specifications which use partial views for their receivers, without re-verification, we

identify a category of inherited methods that is semantically equivalent (modulo the receiver) to

the original method in the superclass.

Definition 6.7.2 (Statically-Inherited Methods). Given a method mn with body e from class

A that is being inherited into a subclass B, we say that this method is statically-inherited, if the

following conditions hold:

• it has not been overridden in the B subclass.

• for all auxiliary calls this.mn2(..) for which mn6=mn2, it must be the case that B.mn2 is

statically-inherited from A.mn2.

We can show that each statically-inherited method is semantically equivalent to the origi-

nal method from its superclass. The above conditions ensure this by checking that the inher-

ited method always invokes the same sequence of semantically equivalent method calls, as that

when executed with a receiver object from its superclass. With this classification for statically-

inherited methods, we can check inherited static specifications, as follows:

Definition 6.7.3 (Checking Inherited Static Specifications).

Consider a method mn with static specification spA (using a partial view for its receiver) from

class A that is being inherited into a subclass B with static specification spB. If this method

has been statically-inherited into subclass B, we only need to check for specification subsump-

tion spA<:spB. Otherwise, we have to re-verify the method body of mn with the new static

specification spB.

As an example, PosCnt.tick is statically-inherited from Cnt.tick (with a partial view

this::Cnt〈v〉), and we can conclude that both methods are semantically equivalent modulo the

receiver. To avoid the re-verification of the static specification of PosCnt.tick, we only need
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to check for the following subtyping:

static-spec(Cnt.tick) <: static-spec(PosCnt.tick)

Some other methods, such as PosCnt.get, FastCnt.get, FastCnt.set, TwoCnt.tick and TwoCnt.get,

are also statically-inherited. For a counterexample that is not statically-inherited, consider:

class A {

int foo { return this.goo() }

int goo { return 1 }

}

class B extends A {

int goo { return 2 }

}

The foo method cannot be statically-inherited in subclass B, since it invokes an auxiliary goo

method that is not statically-inherited (in this case overridden). In other words, method B.foo()

is not semantically equivalent (modulo the receiver) to A.foo() since they invoke different se-

quences of method calls when given the same parameters except for the receiver. As a result,

we expect that the static specification (with partial view) for B.foo must be re-verified against

its inherited method body from A.foo.

We have two solutions for handling methods that are not statically-inherited. One solution

is to transform each method that is not statically-inherited into an overriding method. This is

achieved by cloning the method declaration for each such method in its subclass. By doing so,

we force code re-verification to be performed for the cloned methods, when inheriting static

specifications into such non statically-inherited methods. A second solution is to utilize full

views on the receivers of static specifications. By using full views on receivers, we shall be

handling each method invocation of the form this.mn2(...) by using its corresponding dynamic

specification. As a consequence, each such static specification (with full views on receiver) can

always be inherited into any subclass without the need for re-verification, regardless of whether

the method is statically-inherited or not. However, some loss in precision may occur since

dynamic specifications are now used by each receiver during the verification of its method’s

body.



6.8. DERIVING SPECIFICATIONS 119

6.8 Deriving Specifications

While a static specification can give better precision, having to maintain both static and dynamic

specifications may seem like more human effort is required by our approach to OO verification.

To alleviate this, we provide the following set of derivation techniques that can be used, where

needed.

• derive dynamic specifications from static counterparts.

• refine dynamic specifications to meet behavioral subtyping.

• inherit static specifications from method of superclass.

Let us initially assume that none of the dynamic specifications are given for our running

example. We first present a simple technique for deriving a dynamic specification from its static

counterpart, as follows:

Definition 6.8.1 (From Static to Dynamic Specification). Given a static specification specS

for class C, we shall derive its dynamic counterpart specD, as follows:

specD = ρC specS where

ρC = [this::C〈v∗〉7→this::C〈v∗〉$,

this::C#I〈v∗〉7→this::C#I〈v∗〉$]
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Some examples of dynamic specifications that can be automatically derived from their static

counterparts are:

dynamic-spec(Cnt.get) = ρCnt static-spec(Cnt.get)

= this::Cnt〈v〉$ ∗→ this::Cnt〈v〉$ ∧ res=v

dynamic-spec(Cnt.tick) = ρCnt static-spec(Cnt.tick)

= this::Cnt〈v〉$ ∗→ this::Cnt〈v+1〉$

dynamic-spec(PosCnt.get) = ρPosCnt static-spec(PosCnt.get)

= this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v〉$ ∧ res=v

dynamic-spec(FastCnt.tick)

= ρFastCnt static-spec(FastCnt.tick)

= this::FastCnt〈v〉$ ∗→ this::FastCnt〈v+2〉$

This technique can help us derive dynamic specifications that are almost identical to static

specifications, and are especially relevant for methods (e.g. in final classes) where overriding is

not possible. However, these automatically derived dynamic specifications may fail to meet the

behavioral subtyping requirement. Failure of behavioral subtyping can be due to two possible

reasons:

1. Dynamic specification of method in superclass is too strong, or

2. Dynamic specification of method in subclass is too weak.

We propose two refinement techniques for related pairs of dynamic specifications to help

them conform to behavioral subtyping. A conventional way is to use specification inheritance

(or specialization) to strengthen the dynamic specification of the overriding method. However,

in our approach, this technique of strengthening the dynamic specifications of a method in the

subclass may violate a key requirement that the dynamic specification be a supertype of its

static counterpart. Thus, prior to using specification specialization, we must either check that

each inherited dynamic specification is indeed a supertype of the static specification from the

overriding method, or can be made to inherit the static specification from the overridden method,

as follows :
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Definition 6.8.2 (Specification Specialization). Given a dynamic specification preDA ∗→ postDA

and its static specification preSA ∗→ postSA for a method mn in class A, and its overriding

method in a subclass B with static specification preSB ∗→ postSB. A dynamic specification

(preDA∧type(this) <: B ∗→ postDA) can be added to the overriding method of the B subclass

if either of the following occurs:

• preSB ∗→ postSB <:B preDA ∗→ postDA holds, or

• ρA→B(preSA ∗→ postSA) can be inherited into the static specification of mn in class B

and successfully verified.

Note that

ρA→B = [this::A〈v∗〉7→this::B〈v∗, w∗〉, this::A#I〈v∗〉7→this::B〈v∗, w∗〉∗δA]

where w∗ are free variables of the extended record, while δA captures the invariant of A class.

The refined dynamic specification for the overriding method is obtained via intersection type,

(preDB ∗→ postDB)
∧

(preDA∧type(this) <: B ∗→ postDA).

As an example, the pair of dynamic specifications for Cnt.get and PosCnt.get do not con-

form to behavioral subtyping. We may therefore attempt to strengthen the dynamic specification

of PosCnt.get by specification specialization through the following multi-specification:

this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v〉$ ∧ res=v
∧

this::Cnt〈v〉$∧type(this)<:PosCnt ∗→ this::Cnt〈v〉$∧res=v

However, the inherited dynamic specification from Cnt.get is not a supertype of static-spec(PosCnt.get).

Hence, in order to proceed with this refinement, we must also inherit the static specification of

static-spec(Cnt.get) into PosCnt.get, as follows:

this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉 ∧ res=v
∧

this::PosCnt〈v〉 ∗→ this::PosCnt〈v〉 ∧ res=v

This strengthened static specification is now a subtype of the correspondingly derived dy-

namic specification. Furthermore, behavioral subtyping holds between the new dynamic spec-

ifications of Cnt.get and PosCnt.get. A caveat about specification specialization is that the
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strengthened static specification of the method in the subclass may not always guarantee the in-

variant property. For example, this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉 ∧ res=v guaran-

tees that the class invariant of PosCnt is preserved, but not this::PosCnt〈v〉 ∗→ this::PosCnt〈v〉∧

res=v. It is thus possible for successfully verified calls of this method to violate the class in-

variant property, but the above multi-specification is fully aware of when each such violation

occurs through the use of different predicates. This violation of a class invariant is one reason

why [41] considered specification inheritance to be a potentially ‘unsound’ derivation technique.

As a complement to specification specialization, we propose a dual mechanism that weakens

the specification of the overridden method instead. We refer to this new technique as specifica-

tion abstraction. Instead of an intersection type, we use a union type to obtain a weaker dynamic

specification for the overridden method. Formally:

Definition 6.8.3 (Specification Abstraction). Given a dynamic specification preDA ∗→ postDA

for a method mn in class A, and its overriding method in a subclass B with dynamic specification

preDB ∗→ postDB. If behavioral subtyping does not hold between these dynamic specifications,

we can generalise the specification of the overridden method using the following union type:

dynamic-spec(A.mn) = (preDA ∗→ postDA)∨
ρB→A(preDB) ∗→ ∃w∗·ρB→A(postDB)

ρB→A = [this::B〈v∗, w∗〉$ 7→this::A〈v∗〉$,

this::B#I〈v∗, w∗〉$7→this::A#I〈v∗〉$∗δB]

We refer to this process as specification abstraction. It is a safe operation that weakens the

dynamic specification of an overridden method to the point where behavioral subtyping holds.

As an example, consider the derived dynamic specifications from a pair of methods Cnt.tick

and FastCnt.tick where behavioral subtyping does not currently hold. We are unable to apply

specification specialization, as the inherited static specification of Cnt.tick cannot be verified

by the overriding method of FastCnt.tick. However, with the help of specification abstraction,

we can obtain the following union type for dynamic-spec(Cnt.tick) instead.

this::Cnt〈v〉$ ∗→ this::Cnt〈v+1〉$
∨

this::Cnt〈v〉$ ∗→ this::Cnt〈v+2〉$
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Our current separation logic prover is able to directly handle intersection types but not union

types for its multi-specifications. We propose to handle union type by the following translation

instead:

(pre1 ∗→ post1)
∨

(pre2 ∗→ post2)

=⇒ (pre1 ∧ pre2) ∗→ (post1 ∨ post2)

For brevity, we shall omit the formal details of how normalization (of separation logic for-

mulae) is carried out for the above translation. In the case of Cnt.tick, we can perform nor-

malization to obtain the following weakened dynamic specification:

this::Cnt〈v〉$ ∗→ this::Cnt〈w〉$ ∧ (w=v+1∨w=v+2)

It would appear that the use of specification abstraction loses modularity, due to its depen-

dence on the dynamic specifications of overriding methods. However, this is not true. Firstly,

the purpose of specification abstraction is to derive dynamic specifications which need not be

re-verified. Secondly, we maintain modularity as each static specification is verified once, but

need only be re-verified when the specifications it depends on change. Though changes may

occur for a dynamic specification that a method depends on; the necessity for re-verification

is analogous to a modular compilation system which re-compiles a module whenever the type

interface it depends on changes.

While our approach can theoretically derive all dynamic specifications, we shall also allow

the option for users to directly specify dynamic specifications, where required. This option

is especially helpful in supporting modular open-ended classes that could be further extended

with new subclasses. Our overall procedure for selectively but automatically deriving dynamic

specifications shall be as follows:

Definition 6.8.4 (Deriving Dynamic Specifications). We derive and refine dynamic specifica-

tions, as follows:

• If the dynamic specifications of both overridden and overriding methods are given, check

for the behavioral subtyping requirement.

• If only the dynamic specification of an overridden method is given, derive the dynamic

specification of the overriding method and then use specification specialization to refine
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it.

• If only the dynamic specification of an overriding method is given, derive the dynamic

specification of the overridden method and then use specification abstraction to refine it.

• Otherwise, derive both dynamic specifications and then use specification abstraction to

refine the dynamic specification of the overridden method in the superclass.

Note that the procedure is geared towards the preservation of class invariants, where possi-

ble, as it favours specification abstraction over specification specialization.

Lastly, it may also be possible for static specifications to be omitted for some statically-

inherited methods. We propose a way to derive static specifications for such methods, as follows:

Definition 6.8.5 (Deriving Static Specifications). Given a method mn from class A with static

specification spA, and a subclass B where the same method has been statically-inherited. If no

static specification is given for B.mn, we can derive a static specification for it, as follows :

static-spec(B.mn) = [this::A〈v∗〉7→this::B〈v∗, w∗〉] spA

The extra fields, w∗, in the subclass are never modified by each statically-inherited method.

The above substitution is only applicable for partial views, and it is not needed for full views

which will remain unchanged when deriving static specifications.

Though specification derivation techniques are important aids that make it easier for users

to adopt our OO verification methodology, they are not fundamental in the current work. In

the rest of this chapter, we shall assume that all required dynamic and static specifications are

available, and proceed to describe core components of our enhanced OO verification system.

6.9 Forward Verification

Our verification system for OO programs is implemented in a modular fashion. It processes

the class declarations in a top-down manner whereby the methods of superclasses are verified

before those of the subclasses. We shall assume that static specifications are given, and that

dynamic specifications are already given (or automatically derived). Also, for each method that
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is not statically inherited in a subclass, we shall clone the method for that subclass. There are

three major subsystems present, namely: (i) View Generator, (ii) Inheritance Checker, and (iii)

Code Verifier. These are elaborated next.

6.9.1 View Generator

For each subclass in the class hierarchy, we must generate a lossless upcasting rule in accor-

dance with Defn 6.6.1. However, the format Ext〈c, v∗, p〉 actually denotes a family of record

extensions that is distinct for each subclass c. To distinguish them clearly in our implementa-

tion, we provide a set of specialised record extensions of the form Extc〈v∗, p〉 instead. With

this change, we can generate the following casting rules for our running example:

PosCnt〈t, n, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtPosCnt〈p〉

FastCnt〈t, n, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtFastCnt〈p〉

TwoCnt〈t, n, b, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtTwoCnt〈b, p〉

Correspondingly, we may also provide an ExtAll view for the class hierarchy. In the case

of our running example, we can generate the following definition for the ExtAll view:

ExtAll〈t1, t2〉 ≡ (t1=t2)∧root=null

∨ root::ExtPosCnt〈q〉∗q::ExtAll〈PosCnt, t2〉

∧PosCnt<t1∧t2<:PosCnt

∨ root::ExtFastCnt〈q〉∗q::ExtAll〈FastCnt, t2〉

∧FastCnt<t1∧t2<:FastCnt

∨ root::ExtTwoCnt〈b, q〉∗q::ExtAll〈TwoCnt, t2〉

∧TwoCnt<t1∧t2<:TwoCnt

Lastly, for each subclass with a non-trivial invariant, we also generate two invariant-enhanced

views for this subclass. For our running example, only the subclass PosCnt has an invariant.

Hence, our generator will provide the following:

PosCnt#I〈t, n, p〉 ≡ root::PosCnt〈t, n, q〉∧n≥0
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In summary, the above shows how we explicitly generate predicate views for casting and

class invariants. In practice, our prototype verification system creates these views on demand

during entailment checking itself.

6.9.2 Inheritance Checker

This subsystem ensures that specifications of added methods are consistent with class inheri-

tance and method overriding requirements. Whenever a new subclass B is added, we expect a

set of new overriding methods and another set of statically-inherited methods. We propose to

check for consistency, as follows:

• Firstly, we check that each static specification is a subtype of the dynamic specification.

• For each new overriding method B.mn, we identify the nearest overridden method in a

superclass of B. We then check that each given dynamic specification is a subtype of the

given dynamic specification of its overridden method in its superclass.

• For each statically-inherited method B.mn, we check that its given static specification is a

supertype of the corresponding static specification in its superclass. If a dynamic specifi-

cation is also given, we check that it is a subtype of the given dynamic specification in its

superclass.

Some of the static and dynamic specifications may have been automatically derived. As

these derived specifications are correct by construction, we shall not be checking for the speci-

fication subsumption relation amongst them.

6.9.3 Code Verifier

There are four features in our core language that are peculiar to the OO paradigm, namely (i)

the object constructors, (ii) the cast constructs, (iii) instance method invocations and (iv) super

calls. Let us discuss how they are handled.

For the object constructor, we use the following rule where each primed variable v′i captures

the latest value of variable vi:

S1={∆ ∗ res::c〈c, v′1, .., v′n, null〉}
` {∆} new c(v1, .., vn) {S1}

This rule produces an object of actual type c using partial view.
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Consider a cast construct (c)(v:c1) where v:c1 captures the compile-time type of v inserted

before verification. We shall treat it as being equivalent to a primitive call of the form:

c castc (c1 v) static v::c1〈t, ..〉 ∗→ v::c1〈t, ..〉∧t<:c

∧ true ∗→ true

The above declaration allows the cast construct to possibly fail at runtime. If casting succeeds,

we may expect that the actual type of the object to be a subtype of c, as captured by the first

pre/post annotation. The second pre/post annotation is added for completeness, and may be used

if we are unable to establish the heap state of v.

Another important feature to consider is instance method call of the form (v:c).mn(v1..vn).

We first identify the best possible type of v using β=findtype(∆, v:c). The result β will tell

us if we have the actual type t=c1 or the best static type t<:c1 where t=type(v) and c1<:c.

Note that c1 can be more precise than the compile-time type c due to our use of flow- and path-

sensitive reasoning. If the actual type is known, we choose the static specification of method mn

from class c1. Otherwise, we choose its dynamic specification instead. This decision is captured

by spec=findspec(P, β, mn) where P denotes the entire OO program. The overall rule is:

β=findtype(∆, v:c) ρ = [v1 7→v′1, ..., vn 7→v′n]

findspec(P, β, mn) = {Φi
pr ∗→Φi

po}
p
i=1

ρ=[v′j/vj ]
n
j=1 ∆`ρΦi

pr ∗Si ∀i=1, .., p

S =
⋃p
i=1 Si ∗ Φi

po

` {∆} (v:c).mn(v1..vn) {S}

If ∆ is a disjunctive formula with different types for v, we can use findtype/findspec

operations in the entailment procedure, so that the best specification is selected for either the

actual or the static type of the object at v for each disjunct. For multi-specifications, we choose

the first specification whose precondition holds. We assume that these multiple specifications

are ordered to yield a more precise result ahead of the less precise ones.

We can easily deal with the invocation of super methods. This feature can be used in place

of the receiver this parameter to refer to the overridden method. It can be easily handled by our

approach since super method calls are essentially static calls that can be precisely captured by

static specifications. Consider an overridden method mn in a superclass A and a call super.mn(..)

being used in an overriding method in subclass B. We can handle this super call by re-writing

it to this.A.mn(..). In this case, our verification process will select the static specification of the
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overridden method in class A to use. Past works, such as [100, 62], do not handle super method

calls for verification well, as there is an inherent mismatch between super method calls (which

are static calls) and the mechanism based on dynamic specifications.

6.10 Soundness

The semantics of our constraints is that introduced in Sec 2.6. There are several soundness

results that are needed to show the overall safety of our verification system. The following

lemma highlights a key result showing that our use of specification subsumption relation is

sound for avoiding re-verification, as follows:

Lemma 6.10.1 (Soundness of Enhanced Spec. Subsumption).

Given that method body e has been successfully verified using preB ∗→ postB. If specifi-

cation subsumption preB ∗→ postB<: preA ∗→ postA holds, then its specification supertype

preA ∗→ postA is guaranteed to verify successfully against the same method body.

Proof: From the premise of specification subsumption (Defn 6.6.4), we can obtain: preA`preB ∗ ∆

and postB∗∆`postA. In our context, preconditions preA, preB and their entailment’s residual

∆ do not contain any primed variables, while only primed variables are modified indirectly

by our program. Hence, adding a formula with only unprimed variables, such as ∆, to both

pre/post always satisfies the side condition of the frame rule. Let e denote the method body

which has been preprocessed to a form where pass-by-value parameters are never modified. Let

{v1, .., vn} denote the set of free variables in e, and let N=
∧n

i=1(v
′
i=vi). From the premise

that preB ∗→ postB is a verified specification for the code, we have ` {preB∧N} e {postB}.

In order to show that its specification supertype preA ∗→ postA is also verifiable for the same

code, we need to derive ` {preA∧N} e {postA}. We conclude based on the following steps:

` {preB∧N} e {postB} premise

` {preB∧N∗∆} e {postB∗∆} frame rule

` {preA∧N} e {postB∗∆} precondition strengthening

` {preA∧N} e {postA} postcondition weakening 2

The above proof uses the following Consequence Lemma stating the soundness of precon-

dition strengthening and postcondition weakening:
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Lemma 6.10.2 (Consequence Rule). The following verification holds:

P ′`P ` {P} e {Q} Q`Q′

` {P ′} e {Q′}

Proof Sketch: Based on the premise, we have a set of s, h such that 〈s, h, e〉↪→∗〈s1, h1, v〉 and

s, h |= P ∧ s1+[res 7→v], h1 |= Post(Q). By Galois connection, we have s1+[res 7→v], h1 |= Post(Q′).

Thus, for all s, h |= P ′, we have ` {P ′} e {Q′}. 2

We extract the post-state of a heap constraint by:

Definition 6.10.1 (Poststate). Given a constraint ∆, Post(∆) captures the relation between

primed variables of ∆. That is :

Post(∆) =df ρ (∃V·∆), where

V = {v1, .., vn} denotes all unprimed program variables in ∆

ρ = [v′1 7→v1, .., v
′
n 7→vn]

The next two lemmas state some results on statically-inherited methods for which re-verification

is proven not to be needed.

Lemma 6.10.3 (Equivalence of Statically-Inherited Methods).

Consider a method mn from class A that satisfies the conditions of being statically-inherited into

a B subclass. Assuming that

∧ 〈s, h1, o.mn(p∗)〉↪→∗〈s1, h3, v〉

h1=h+[s(o)7→A(v1..vn)]

h3=h′+[s(o)7→A(w1..wn)]

then

∧ 〈s, h2, o.mn(p∗)〉↪→∗〈s1, h4, v〉

h2=h+[s(o) 7→B(v1..vn, vn+1..vm)]

h4=h′+[s(o) 7→B(w1..wn, vn+1..vm)]

Proof Sketch : Using the conditions of Defn 6.7.2, we can prove the above by an induction on

the dynamic semantics (see Fig. 2.7) over execution of the body of statically-inherited methods.

2

Lemma 6.10.4 (Soundness of Statically-Inherited Specifications). Consider a method mn

from class A that has been successfully verified against its static specification preSA ∗→ postSA,
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and a subclass B that statically-inherits mn with static specification preSB ∗→ postSB. Assum-

ing that a specification subsumption relation of the form preSA ∗→ postSA <: preSB ∗→ postSB

holds, then B.mn is guaranteed to verify successfully against its specification preSB ∗→ postSB.

Proof Sketch : Follows from Lemmas 6.10.3 and 6.10.1. 2

We shall now show a result regarding behavioral subtyping.

Lemma 6.10.5 (Soundness of Behavioral Subtyping). Consider a method mn from class A

with dynamic specification preDA ∗→ postDA and that

∧
s, h1 |= preDA

h1=h+[s(o)7→A(v∗)]

〈s, h1, o.mn(p∗)〉↪→∗〈s3, h3, v〉

s3 + [res 7→v], h3 |= Post(postDA)

If we assume a similar object from a subclass B such that

∧ s, h2 |= preDA

h2=h+[s(o) 7→B(v∗, w∗)]

and we call the overriding method, then we obtain :

∧ 〈s, h2, o.mn(p∗)〉↪→∗〈s4, h4, v〉

s4 + [res 7→v], h4 |= Post(postDA)

Proof Sketch : Follows from Defn 6.7.1 of the behavioral subtyping requirement and Lemma

6.10.1. 2

Lastly, we prove the soundness of our verification system using preservation and progress

lemmas.

Lemma 6.10.6 (Preservation). If

` {∆} e {∆2} s, h |= Post(∆) 〈s, h, e〉↪→〈s1, h1, e1〉

Then there exists ∆1 such that s1, h1 |= Post(∆1) and ` {∆1} e1 {∆2}.

Proof Sketch: By induction on e. 2

Lemma 6.10.7 (Progress). If ` {∆} e {∆1}, and s, h |= Post(∆), then either e is a value, or

there exist s1, h1, and e1, such that

〈s, h, e〉↪→〈s1, h1, e1〉.
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Proof Sketch: By induction on e. 2

Theorem 6.10.8 (Soundness of Verification). Consider a closed term e without free variables

in which all methods have been successfully verified. Assuming that ` {true} e {∆}, then

either 〈[], [], e〉↪→∗〈[], h, v〉 terminates with a value v such that the following ([res7→v], h) |= ∆

holds, or it diverges 〈[], [], e〉6↪→∗.

Proof Sketch: Follows from Lemma 6.10.6 and Lemma 6.10.7. 2
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class Cnt { int val;
Cnt(int v) static true ∗→ res::Cnt〈v〉
{this.val:=v}
void tick() static this::Cnt〈v〉 ∗→ this::Cnt〈v+1〉;

dynamic this::Cnt〈v〉$∧v≥0 ∗→ this::Cnt〈w〉$∧v+1≤w≤v+2

{this.val:=this.val+1}
int get() static this::Cnt〈v〉 ∗→ this::Cnt〈v〉∧res=v

dynamic this::Cnt〈v〉$∧v≥0 ∗→ this::Cnt〈v〉$
{this.val}
void set(int x) static this::Cnt〈v〉 ∗→ this::Cnt〈x〉;

dynamic this::Cnt〈v〉$∧x≥0 ∗→ this::Cnt〈x〉$
{this.val:=x}
}

class FastCnt extends Cnt {
FastCnt(int v) static true ∗→ res::FastCnt〈v〉
{this.val:=v}
void tick() static this::FastCnt〈v〉 ∗→

this::FastCnt〈v+2〉 {this.val:=this.val+2}
}

class PosCnt extends Cnt

inv this.val≥0 {
PosCnt(int v) static v≥0 ∗→ res::PosCnt#I〈v〉
{this.val:=v}
void tick() static this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v+1〉

dynamic this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v+1〉$
int get() static this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉∧res=v

void set(int x) static this::PosCnt〈v〉∧x≥0 ∗→ this::PosCnt#I〈x〉
dynamic this::PosCnt〈v〉$∧x≥0 ∗→ this::PosCnt#I〈x〉$

{if x≥0 then this.val:=x else error()}
}

class TwoCnt extends Cnt { int bak;
TwoCnt(int v, int b) static true ∗→ res::TwoCnt〈v, b〉
{this.val:=v; this.bak:=b}
void set(int x) static this::TwoCnt〈v, 〉 ∗→ this::TwoCnt〈x, v〉
{this.bak:=this.val; this.val:=x}
void switch(int x) static this::TwoCnt〈v, b〉 ∗→ this::TwoCnt〈b, v〉
{int i:=this.val; this.val:=this.bak; this.bak:=i}
}

Figure 6.3: Static and Dynamic Specifications given for Cnt and its Subes
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we aimed at enhancing the specification apparatus in order to achieve more pre-

cise and concise specifications that also assist in improving the precision and efficiency of the

verification process. More specifically, we proposed three new specification mechanisms:

• Immutability annotations : We show new application of immutability annotation, for

verifying and reasoning of sequential programs. Our solution is tailored towards more

flexible alias analysis, supports partial immutability, better cut-points preservation for

modular analysis through immutable predicates within both pre and post-conditions. The

new specification mechanism enables the design of a more concise and more precise ver-

ification/analysis system, with finer controls over accesses to resources (data structures).

In order to promote immutability as part of the verification methodology, this thesis shows

three main advantages of its use in a sequential setting through data from a set of small

experiments:

– more concise specifications

(38% reduction in shape predicates, and 28% reduction in aliasing scenarios)

– more precise analysis/verification

(62% immutability annotations that increase precision by helping to preserve cut-

points across method boundary)

– capability for finer-grained immutability.

• Structuring constructs : Some existing theorem provers use tactics as a way to au-

tomate or semi-automate proofs, and verification systems can take advantage of them

through lower-level proofs. However, for Hoare-style specification and verification, we

have chosen to design a structured specification (rather than another tactic language) for

the following reasons:
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– It can be provided at a higher-level that users can understand more easily, since it is

closer to specification mechanism rather than the (harder) verification process.

– It is more portable, as specification is tied to program codes, while tactic language

tend to be prover-specific, requiring the invoked prover to understand the relevant

commands. Our approach basically breaks down larger proofs into smaller (simpler)

proofs that provers could more easily and more effectively handle, as confirmed by

our experiments.

The current thesis tackles two key problems of verification, namely better modularity and

better completeness through a new form of structured specification. Our proposal has

been formalized and implemented with a promising set of experimental results.

• Static and dynamic specifications : We present an enhanced approach to OO verifica-

tion based on the co-existence of both static and dynamic specifications, together with a

principle that each static specification be a subtype of its corresponding dynamic specifi-

cation. Our approach attempts to track the actual type of each object, where possible, to

allow static specifications to be preferably used. We have designed a new object format

that allows each object to assume the form of its superclass via lossless casting. Another

useful feature of our proposal is a new specification subsumption relation for pre/post

specifications that is novel in using the residual heap state from precondition checking to

assist in postcondition checking.

By making each static specification be a subtype of its dynamic specification, we can limit

code verification to only static specifications.

7.1 Future Work

We conclude this thesis by outlining a series of possible future works.

7.1.1 Declaration-Site vs. Use-Site Immutability Annotations

In Chapter 4, we made use of predicate (or points-to fact) instances that have been annotated for

immutability which corresponds to use-site annotation. It is also possible to annotate the entire

data and predicate definition for immutability, so that all instances of the particular points-to

fact or predicate are automatically marked as immutable. This corresponds to declaration-site
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annotation. This immutability annotation scheme may be suitable if a functional programming

discipline is to be adopted. Two examples of declaration-site annotation are illustrated below:

data node@I { int val; node next}

ll〈n〉@I ≡ root=null ∧ n=0

∨ root::node〈 , q〉 ∗ q::ll〈q, n−1〉

inv n≥0;

Note the presence of @I annotation immediately after the name of the data or predicate defini-

tions. This signifies that all instances of this data or predicate definition will always be marked

as being immutable.

7.1.2 Selective Immutability

Throughout Chapter 4, the immutability annotations can scope over an entire data node/shape

predicate. We are interested in supporting more selective immutability through the use of field

annotations at either the point of declaration or the point of use. For example, at the point of a

specific node declaration, we could mark its next field as being immutable, as shown below:

data node { int val; node@I next}

This means that all next field instances of node type are always immutable after each node

instances have been constructed. This manner of marking just the pointer field as immutable has

the effect of always preserving the original shape, but not the contents of the data structures. For

this example, the val field remains mutable, whereas the shape formed through pointer fields

has been frozen. Such partial immutability can be used to enforce shape immutability, whereby

the shape of linked-structures (as well as properties that are derived from such shapes) are being

marked as immutable. Once a linked structure has been constructed, its existing shape remains

unchanged but its data contents may still be modified. A corresponding predicate definition for

shape immutable is given below:

ll〈n〉 ≡ root=null ∧ n=0

∨ root 7→ node〈 , q@I〉 ∗ q::ll〈n−1〉

inv n≥0;

where the next field of nodes captured by any ll predicate is not allowed to be modified.
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7.1.3 Inferring Immutability Enhanced Specifications

As a future direction for the work presented in Chapter 4, we intend to offer the user the possi-

bility of automatically inferring immutability enhanced specifications. This capability would be

particularly useful for legacy code. Given a specification without immutability annotations, this

inference process will consist of two steps:

• inferring the immutability annotations for each data node and shape predicate in the spec-

ification.

• relaxing the specifications such that they allow heap sharing whenever aliasing informa-

tion is not critical.

7.1.4 Inferring Structured Specifications

With respect to the work on structured specifications presented in Chapter 5, one future work

is heuristically inferring structured specifications from unstructured counterparts. Though the

inferred specifications may not be as good as those provided by expert users, they can never-

theless be used to handle most of the straightforward cases for legacy code, while leaving the

harder unverified examples to be handled by users.
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Theorem. 4.7.1(Preservation)

If

` {∆} e {S2} S2 6={} s, h |= Post(∆) 〈s, h, e〉↪→〈s1, h1, e1〉

Then there exists S1 6={}, such that ∀∆1 ∈ S1· s1, h1 |= Post(∆1) and ` {∆1} e1 {S3} S3⊆S2.

Proof: By structural induction on e.

• Case v := e3. There are two cases according to the dynamic semantics:

– e3 is not a value. Then, from [FV−ASSIGN] in Sec 2.3, if ` {∆}e3{S3}, then

S2=∃res·S3∧{v}v′=res. From dynamic rules, if 〈s, h, e3〉↪→〈s4, h4, e4〉, then

〈s, h, v:=e3〉↪→〈s4, h4, v:=e4〉.

From 〈s, h, e3〉↪→〈s4, h4, e4〉 and ` {∆}e3{S3}, by induction hypothesis, we have

that there exists S4 such that:

∀∆4 ∈ S4·s4, h4 |= Post(∆4)

and

` {∆4}e1{S3}.

Then, from verification rule [FV−ASSIGN] in Sec 2.3:

∀∆4 ∈ S4·` {∆4}v:=e1{S2}.

The proof is complete for h1=h4, s1=s4, and S1=S4.

– e3 is a value. Let:

∗ e1=(),

∗ S1=S2={(∆ ∧ v′=e3)},

∗ h1=h2=h, and s1=s2=s[v 7→ e3].

Straightforward.

• Case v1.f := v2. Take:

– e1=(),

– S1=S2,

137
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– h1=h2=h[s(v1)7→Mr], where r=h(s(v1))[f 7→s(v2)],

– s1=s2=s.

Hence, it is straightforward that:

∀∆1 ∈ S1·{∆1} e1 {S2}.

Now, we must show that:

∀∆1 ∈ S1·s1, h1 |= Post(∆1).

From the rule [FV−FIELD−UPDATE] in Sec 4.6, we have ∆`κV v′1::c〈w1, .., wf, .., wn〉@M ∗S3,

S3 6=∅ and S1 = ∃w1..wn·(S3 ∗ [v′2/wf ]v′1::c〈w1, .., wn〉) (*).

From the hypothesis, we know that s, h |= Post(∆) (**).

From (*) and (**), by Theorem 4.7.4, ∀∆3 ∈ S3.s, h |= Post(∆3).

The conclusion follows from s=s1 and h1=h[s(v1)7→ @Mr], where r=h(s(v1))[f 7→s(v2)].

• Case new c(v∗). From verification rule [FV−NEW] in Sec 2.3, we have ` {∆}new c(v∗){S2},

where S2 = {∆∗res::c〈v′1, .., v′n〉@M}. Let S1 = S2. From the dynamic semantics, we

have:

〈s, h, new c(v∗)〉↪→〈s, h+[ι 7→ @Ir], ι〉,

where ι /∈ dom(h). From s, h |= Post(∆), we have:

∀∆1 ∈ S1.s, h+[ι 7→I r] |= Post(∆1).

Moreover, ` {S1}ι{S2}.

• Case e1; e2. We consider the case where e1 is not a value (otherwise it is straightforward).

From the dynamic semantics, we have 〈s, h, e1〉↪→〈s1, h1, e3〉. From verification rule

[FV−SEQ] in Sec 2.3, we have ` {∆}e1{S3}. By induction hypothesis, there exists S1

s.t. ∀∆1 ∈ S1.s1, h1 |= Post(∆1) and ` {S1}e3{S3}. By rule [FV−SEQ] in Sec 2.3, we

have ` {S1}e3; e2{S2}.

• Case if v then e1 else e2. There are two possibilities in the dynamic semantics:

– s(v)=true. We have 〈s, h, if v then e1 else e2〉↪→〈s, h, e1〉. Let S1 = {∆∧v′}.

It is obvious that ∀∆1 ∈ S1.s, h |= Post(∆1). By the rule [FV−IF] in Sec 2.3, we
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have ` {∆∧v′} e1 {S1}. From the same rule S2 = S1 ∨ S2, where ` {∆∧¬v′} e2 {S2}.

By weakening the postcondition (rule FV−POST−WEAKENING in Sec 2.7), we get

` {∆∧¬v′} e1 {S2}, which is ` {S1} e1 {S2}.

– s(v) = false. Analogous to the above.

• Case t v; e. Let S1 = {∆}. From the dynamic rules in fig 4.9, we have e1 = ret(v, e),

s1 = [v 7→⊥]+s, h1 = h. We conclude immediately from the assumption and the rules

[FV−LOCAL] and [FV−RET] in Sec 2.3 and Sec 2.7, respectively.

• Case mn(v1..n). From the dynamic rule for method call in Fig 4.9:

s1=[wj 7→s(vj)]nj=m+s,

and

h1=h

From rule [FV−CALL−IMM] in Sec 4.6, we know:

∆`ρΦi
pr ∗i Si.

Take:

S1 = ρΦi
pr∗iSi.

From the hypothesis and Theorem 4.7.4, we have:

∀∆1 ∈ S1.s1, h1 |= Post(∆1).

From rule [FV−CALL−IMM], we have:

S2 =
⋃p
i=1 Si ∗ Φi

po,

while from the dynamic semantics we have:

e1 = ret({wj}nj=m, [vj/wj ]
m−1
j=1 e).

From rule [FV−METH−IMM] in Sec 4.6, we have

` {ρΦi
pr∗Si} e1 {Si∗Φi

po},

which concludes.
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• Case ret(v∗, e). There are two cases:

– e is a value k. Let S1 = {∃v′∗ ·∆}. It concludes immediately.

– e is not a value. 〈s, h, ret(v∗, e)〉↪→〈s1, h1, ret(v∗, e1)〉. By [FV−RET] and induc-

tion hypothesis, there exists S1 s.t. ∀∆1 ∈ S1.s1, h1 |= Post(∆1) and ` {S1} e1 {S3},

and S2 = ∃v′∗·S3. By rule [FV−RET] again, we have ` {S1} ret(v∗, e1) {S2}.

• Case null | k | v | v.f | assert Φ. Straightforward.

Theorem. 4.7.2(Progress)

If

` {∆} e {S1} S1 6={} s, h |= Post(∆)

then either e is a value, or there exist s1, h1, and e1, such that 〈s, h, e〉↪→〈s1, h1, e1〉.

Proof: By structural induction on e.

• Case v := e. There are two cases:

– e is a value k. We conclude.

– e is not a value. By [FV−ASSIGN] in Fig 2.3, we have ` {∆} e {S2}. By induc-

tion hypothesis, there exist s1, h1, e1, such that 〈s, h, e〉↪→〈s1, h1, e1〉. We conclude

immediately from the dynamic semantics.

• Case v1.f := v2. for fresh v1, .., vn. Follows from:

– e1 = (),

– s1 = s,

– h1 = h[s(v1)7→Mr], where r = h(s(v1))[f 7→s(v2)].

• Case new c(v1···n). Let ι be a fresh location, r denotes the object value

c[f1 7→s(v1), .., fn 7→s(vn)].

Take:

– s1 = s,

– h1 = h+[ι 7→Ir],
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– e1 = ι.

We conclude.

• Case e1; e2. If e1 is a value (), we conclude immediately by taking s1 = s, h1 = h. Other-

wise, by induction hypothesis, there exist s1, h1, e3 s.t. 〈s, h, e1〉↪→〈s1, h1, e3〉. We then

have 〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉 from the dynamic semantics.

• Case if v then e1 else e2. It concludes immediately from a case analysis (based on

value of v) and the induction hypothesis.

• Case t v; e. Let:

– s1 = [v 7→⊥]+s,

– h1 = h,

– e1 = ret(v, e).

We conclude immediately.

• Case mn(v1..n). Suppose v1, .., vm are pass-by-reference, while others are not. Take:

– s1 = [wj 7→s(vj)]nj=m+s,

– h1 = h,

– e1 = ret({wj}nj=m, [vj/wj ]
m−1
j=1 e), where wj are from method specification

t0 mn((ref tj wj)
m−1
j=1 , (tj wj)

n
j=m) where {requires Φi

pr ensures Φi
po}

p
i=1 {e}.

From hypothesis, we have:

s, h |= Post(∆).

From [FV−CALL−IMM] rule in Sec 4.6, we know:

∆`ρΦi
pr ∗i Si.

By Theorem 4.7.4, we have:

s, h |= Φi
pr.

From the dynamic semantics, [FV−METH−IMM] rule in Sec 4.6 and Theorem 4.7.4, we

have:

s1, h1 |= Φi
po.
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We conclude by the dynamic semantics.

• Case ret(v∗, e). If e is a value k, let:

– s1 = s− {v∗},

– h1 = h,

– e1 = k.

We conclude. Otherwise, by induction hypothesis, there exist s1, h1, e1 such that:

〈s, h, e〉↪→〈s1, h1, e1〉.

We then have:

〈s, h, ret(v∗, e)〉↪→〈s1, h1, ret(v∗, e1)〉.

• Case null | k | v | v.f | assert Φ. Straightforward.

Theorem. 4.7.3(Safety)

Consider a closed term e without free variables in which all methods have been successfully ver-

ified. Assuming unlimited stack/heap spaces and that ` {true} e {∆}, then either 〈[], [], e〉↪→∗〈[], h, v〉

terminates with a value v that is subsumed by the postcondition ∆, or it diverges 〈[], [], e〉6↪→∗.

Before we present the proof for Theorem 4.7.3, we state and prove the following lemma:

Lemma .1.1. For any s, h, e, if 〈s, h, e〉↪→∗〈ŝ, ĥ, ν〉 for some ŝ, ĥ, ν, where ν is a value, and

all free variables of e are already in the domain of the stack s, i.e. free-vars(e)⊆dom(s), then

dom(ŝ) = dom(s).

Proof: By structural induction over e.

Base cases: e is

• null

• k

• v

• v.f

• v.f = v1
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• assert Φ

The conclusion is obvious as the stack remains unchanged during the evaluation of e.

Inductive cases:

• e is v := e1. By the operational semantics, we know that

〈s, h, e1〉↪→∗〈s1, h1, ν1〉

for some s1, h1, ν1, and

〈s1, h1, v := ν1〉↪→〈ŝ, ĥ, ν〉.

Note that

free-vars(e1)⊆free-vars(e)⊆dom(s),

by induction hypothesis, we have dom(s1) = dom(s). The conclusion follows since

dom(ŝ) = dom(s1).

• e is e1; e2. By the operational semantics, there are s1, h1 such that

〈s, h, e1〉↪→∗〈s1, h1, ()〉,

〈s1, h1, (); e2〉↪→〈s1, h1, e2〉,

〈s1, h1, e2〉↪→∗〈ŝ, ĥ, ν〉.

Note that, for i=1, 2, we have

free-vars(ei)⊆free-vars(e)⊆dom(s).

By induction hypothesis, we have

dom(ŝ) = dom(s1) = dom(s).

• e is t v; e1. By the operational semantics, we have

〈s, h, e〉↪→〈[v 7→ ]+s, h, ret(v, e1)〉,

and

〈[v 7→ ]+s, h, e1〉↪→∗〈s1, h1, ν〉

for some s1, h1, and

〈s1, h1, ret(v, ν)〉↪→〈ŝ, ĥ, ν〉,
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where ŝ = s1−{v}. Note that

free-vars(e1)⊆dom([v 7→ ]+s),

by induction hypothesis, we have

dom(s1) = dom([v 7→ ]+s).

So dom(ŝ) = dom(s1)−{v} = dom([v 7→ ]+s)−{v} = dom(s).

• e is mn(u∗; v∗), where v∗ are arguments for call-by-value parameters w∗. By the opera-

tional semantics, we have

(1)〈s, h, e〉↪→〈[w∗ 7→v∗]+s, h, ret(w∗, emn)〉,

where emn is the body of the method mn, and

(2)〈[w∗ 7→v∗]+s, h, emn〉↪→∗〈s1, h1, ν〉

for some s1, h1, and

(3)〈s1, h1, ret(w∗, ν)〉↪→〈ŝ, ĥ, ν〉,

where ŝ = s1−{w∗}. Note also that we have

free-vars(emn)⊆dom([w∗ 7→v∗]+s),

by induction hypothesis, we have

dom(s1) = dom([w∗ 7→v∗]+s).

So dom(ŝ) = dom(s1)−{w∗} = dom(s). 2

Proof of Theorem 4.7.3: If the evaluation of e does not diverge (is not infinite), it will

terminate in a finite number of steps (say n): 〈[], [], e〉↪→〈s1, h1, e1〉↪→· · ·↪→〈sn, hn, en〉, and

there are no further reductions possible. By Theorem 4.7.1, there exist ∆1, ..,∆n such that,

si, hi |= Post(∆i), and ` {∆i} ei {∆}.

By Theorem 4.7.2, The final result en must be some value v (or it will make another reduc-

tion). The conclusion that the stack sn in the final state is empty is drawn from Lemma .1.1 in

the above. 2
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Theorem. 4.7.4(Soundness of Heap Entailment)

If entailment check ∆1`∆2 ∗i S succeeds, we have: for all s, h, and ∆ ∈ S , if s, h |= ∆1 then

s, h |= ∆2 ∗i ∆.

Proof: Note that the entailment rules [ENT−MATCH−MUT] and [ENT−MATCH−IMM] in

Fig. 4.5 denote a match of two nodes/shape predicates between the antecedent and the conse-

quent. We apply induction on the number of such matches for each path in the entailment search

tree for E0.

Base case.

The entailment search succeeds requiring no matches, meaning that the consequent consists of

only a pure formula. It can only be the case where rule [ENT−EMP] in Fig. 2.5 is applied. It is

straightforward to conclude.

Inductive case.

Suppose a sequence of transitions E0 → · · · → En where no match transitions (due to rules

[ENT−MATCH−MUT] and [ENT−MATCH−IMM]) are involved in this sequence but En will

perform a match transition. These transitions can only be generated by the following rules:

[ENT−UNFOLD], [ENT−FOLD], [ENT−LHS−OR], [ENT−RHS−OR], [ENT−LHS−EX], [ENT−RHS−EX],

[ENT−SPLIT−RHS1], [ENT−SPLIT−RHS2], [ENT−SPLIT−LHS1], [ENT−SPLIT−LHS2]. A case

analysis on these rules shows that the following properties hold:

s, h |= LHS(Ei) =⇒ s, h |= LHS(Ei+1)

(LHS is always weakened by the entailment rules)

s, h |= RHS(Ei+1) =⇒ s, h |= RHS(Ei)

(RHS is always strengthened by the entailment rules)

(†)

Now suppose a match between the antecedent and the consequent. There can be two situations,

which we discuss below:

• Suppose the match node for En ≡ ∆a`κV ∆c ∗i Sr is p::c〈v∗〉@I , and En becomes:

∆′a`
κ∗p::c〈v∗〉
V ∆′c ∗i S′r

where:

– ∆a=SH(∆′a, (p::c〈v∗〉@I, ha)), for some ha and ∆′a,

– ∆c = p::c〈v∗〉∗∆′c, for some ∆′c,
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– ∀∆r ∈ Sr.∃∆′r ∈ S′r.∆r=SH(∆′r, (p::c〈v∗〉@I, hr)), for some hr and S′r,

By induction, we have

∀s, h · s, h |= ∆′a =⇒ s, h |= ∆′c∗iS′r (‡)

Suppose s, h |= ∆a, then there exist h0, h1, h2, such that:

– h0⊥h1⊥h3,

– h = h0·h1·h3,

– s, h0·h3 |= p::c〈v∗〉@I ,

– s, h1·h3 |= ∆′a.

From (‡), we have:

s, h1·h3 |= ∆′c∗iS′r,

which yields:

s, h |= ∆c∗Sr.

We then conclude from (†).

• Suppose the match node for En ≡ ∆a`κV ∆c ∗i Sr is p::c〈v∗〉@M, and En becomes:

∆′a`
κ∗p::c〈v∗〉
V ∆′c ∗i Sr

for some ∆′a, ∆′c. By induction, we have:

∀s, h · s, h |= ∆′a =⇒ s, h |= ∆′c∗iSr (‡)

From the entailment process, we have:

∆a = p::c〈v∗〉∗∆′a,

and

∆c = p::c〈v∗〉∗∆′c.

Suppose s, h |= ∆a, then there exist h0, h1, such that h = h0∗h1, s, h0 |= p::c〈v∗〉, and

s, h1 |= ∆′a. From (‡), we have:

s, h1 |= ∆′c∗iSr,
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which immediately yields:

s, h |= ∆c∗iSr.

We then conclude from (†).
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[85] MARCHÉ, C., PAULIN-MOHRING, C., and URBAIN, X., “The KRAKATOA tool for cer-
tification of JAVA/JAVACARD programs annotated in JML,” Journal of Logic and Alge-
braic Programming, vol. 58, no. 1–2, pp. 89–106, 2004.



154 BIBLIOGRAPHY

[86] MEYER, B., Object-oriented Software Construction. Prentice Hall. Second Edition.,
1997.

[87] MEYER, B., Eiffel: the language. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1992.

[88] MIDDELKOOP, R., HUIZING, C., KUIPER, R., and LUIT, E. J., “Invariants for non-
hierarchical object structures,” in Proceedings of the 9th Brazilian Symposium on Formal
Methods (SBMF’06) (RIBEIRO, L. and MOREIRA, A. M., eds.), (Natal, Brazil), 2006.

[89] MOELLER, A. and SCHWARTZBACH, M. I., “The Pointer Assertion Logic Engine,” in
ACM PLDI, June 2001.

[90] MULLER, P., Modular specification and verification of object-oriented programs. New
York, NY, USA: Springer, 2002.

[91] NELSON, C. G., Techniques for program verification. PhD thesis, Stanford, CA, USA,
1980. AAI8011683.

[92] NGUYEN, H. H., DAVID, C., QIN, S., and CHIN, W., “Automated Verification of Shape
And Size Properties via Separation Logic,” in Intl Conf. on Verification, Model Checking
and Abstract Interpretation, (Nice, France), Jan. 2007.

[93] NGUYEN, H. H. and CHIN, W.-N., “Enhancing program verification with lemmas,” in
CAV, pp. 355–369, 2008.

[94] NIMMER, J. W. and ERNST, M. D., “Invariant inference for static checking.,” in
ESEC/SIGSOFT Foundations of Software Engr., pp. 11–20, 2002.

[95] NIPKOW, T., PAULSON, L. C., and WENZEL, M., Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.

[96] O’HEARN, P. W., YANG, H., and REYNOLDS, J. C., “Separation and Information Hid-
ing,” in ACM POPL, (Venice, Italy), Jan. 2004.

[97] O’HEARN, P., YANG, H., and REYNOLDS, J., “Separation and Information Hiding,” in
ACM POPL, (Venice, Italy), Jan. 2004.

[98] OSTROFF, J., WANG, C., KERFOOT, E., and TORSHIZI, F. A., “Automated model-based
verification of object-oriented code,” Tech. Rep. CS-2006-05, York University, Canada,
May 2006.

[99] PARKINSON, M. J., Local Reasoning for Java. PhD thesis, Computer Laboratory, Uni-
versity of Cambridge, 2005. UCAM-CL-TR-654.

[100] PARKINSON, M. J. and BIERMAN, G. M., “Separation logic and abstraction,” in ACM
POPL, pp. 247–258, 2005.

[101] PARKINSON, M. J. and BIERMAN, G. M., “Separation logic, abstraction and inheri-
tance,” in ACM POPL, 2008.

[102] PASAREANU, C. and VISSER, W., “Verification of Java programs using symbolic exe-
cution and invariant generation,” in SPIN Workshop, Apr. 2004.
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