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Summary 

The production of enantiomerically pure drugs is crucial to the current pharmaceutical 

industry due to the contrasting pharmacological effects associated with the different 

enantiomeric forms of a drug. Apart from the more complicated direct synthesis, various 

resolution techniques are also developed, among which the membrane process, due to its 

advantages such as lower energy consumption and higher productivity, is chosen to be 

investigated in depth by fabricating superior membrane and designing innovative 

membrane systems in this study.  

The first part of this study was inspired by and was actually a continuation of our 

previous publications by Dr. Xiao et al who studied the effects of membrane pore size on 

chiral separation using the beta-cyclodextrin (β-CD) and acetylated β-CD functionalized 

cellulose membranes. To have a more complete picture of chiral separation, we 

investigated here the effects of spacer arm lengths of the β-CD by reacting the β-CD with 

ethylenediamine (EDA), diaminopropane (PDA) and diaminobutane (BDA) before 

functionalization. The enantioselectivity, in racemic tryptophan resolution, increased with 

decreasing spacer arm length, i.e. αBDA- β-CD < αPDA- β-CD < αEDA- β-CD, while the highest 

selectivity of 1.20 was obtained when a mixture of chiral selectors were grafted to the 

membranes. Further improvement of enantioselectivity, to ~1.3-1.5, was realized by 

substituting the hydroxyl groups on the aminated cyclodextrins with benzoate groups.  

The effects of membrane preparation and functionalization protocol, chiral separation 

operating conditions and more importantly, different driving forces were investigated in 

the subsequent studies using the chitosan functionalized cellulose acetate membranes. 

The tryptophan enantiomeric excesses obtained using the same membrane in 
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concentration gradient, hydraulic pressure and electric field driven processes are 94%, 66% 

and -19%, respectively. This reverse in the enantioselectivity in the electric driven 

process was also observed in phenylalanine resolution and was mainly attributed to the 

orienting force exerted by the electric field and the tryptophan complexes formed with 

copper ions generated via electrolysis.  

Besides the membrane itself, a novel membrane separation process is also critical to 

better resolution. A membrane process named selective permeation enhancement (SPE) 

was developed by injecting human serum albumin (HSA), which binds selectively to L-

tryptophan, in the strip chamber of a dialysis permeation cell, resulting in a more 

enhanced permeation flux of L-tryptophan than that of D-tryptophan. Furthermore, the 

separation efficiency was enhanced by introducing a racemic mixture into the strip 

solution that decreased the flux of the more weakly bound D-tryptophan; and by 

integrating the SPE with affinity dialysis, the highest enantioselectivity of ~9.7 was 

obtained. Another membrane system that integrates stereoselective affinity dialysis and 

ion-exchange membrane partitioned free flow isoelectric focusing (FFIEF) was also 

studied.  And it showed superior optical resolution efficiency over the normal affinity 

dialysis (AD) and affinity ultrafiltration (AUF) membrane processes under similar 

experimental conditions, i.e. by using the same sulfonated polyetherketone (SPEK) 

membranes and identical human serum albumin (HSA) to tryptophan ratio of 0.75. The 

separation factor is increased with increasing protein concentration while the permeation 

flux can be enhanced by increasing the operating current.  
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Chapter 1. Introduction & motivation  

1.1. Chirality  

An object is termed chiral if it cannot be superimposed onto its mirror image. For 

example, human hands are the most naturally observed chiral object as shown in Figure 

1.1 [1]. In molecular level, a pair of chiral molecules is called enantiomers. Normally, the 

structure of an enantiomer contains at least one chiral center which is an atom bonding to 

four different neighboring groups. The physical and chemical properties of enantiomers 

are identical except in reactions with other chiral compounds. Different enantiomers may 

have different taste and odor because of the receptors in human body also contains chiral 

molecules which behave differently towards different enantiomers.  

 
Figure 1.1. Illustration of chirality 

 

1.2. Chiral pharmaceuticals 

Most of the biochemical processes in living organism involve stereochemistry since the 

building units of life, such amino acids, proteins and enzymes are chiral in nature and 

only certain enantiomer can exist. For example, there are only L-amino acids and D-

sugars in human body.  

As most of the active pharmaceutical ingredients (API) in drugs are also chiral, their 

enantiomers would therefore interact with biological macromolecules, which are 
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stereoselective, differently, resulting in different pharmacological effect. Normally only 

one enantiomer is active while the other being either inactive or even a toxin. For 

example, ibuprofen is an anti-inflammatory drug used for the treatment of arthritis and 

fever, however, its R-form is teratogenic especially in first trimester. In view of this, the 

US Food and Drug (FDA) administration has required the detailed analysis of both 

enantiomers before the drug can be approved [2]. Hence it is important to develop single 

enantiomer drugs.  

 

1.3. Current technologies for chiral separation 

1.3.1. Need for chiral separation [2] 

It is clear that, from the above discussion, the production of single enantiomer drugs is 

necessary. And in fact, more and more drugs have been marketed as single enantiomeric 

form in recent year. According to the Chiral Chemicals Report, the chiral chemical 

market is expected to grow at 13.57% compounded annually from 2005 to 2012 [3].  

There are basically two approaches: one is the asymmetric synthesis by stereoselective 

processes which are usually catalyzed by metal complexes [4] and enzymes [5-7], and the 

second is chiral separation from the racemic mixtures via techniques such as 

crystallization, high pressure liquid chromatography (HPLC), capillary electrophoresis 

(CE) and membrane.  

The asymmetric synthesis can be the most elegant if it can produce above 99% 

enantiomeric pure compounds in a cost effective manner. However, the catalysts such as 

Rhodium, Ruthenium (II) complexes [4] and enzymes [6] are expensive; moreover, the 

processes are usually complex and sometimes require extreme conditions such as -78 ºC 
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[8]. Most importantly, the products from these processes are not enantiomerically pure; 

there are numerous examples in the literature that the enantiomeric excesses range from 

80% to 99% for most of the synthesized β-amino acids in the review [9]. Thus, a second 

step of chiral separation may be still required at the current stage.  

 

1.3.2. Preferential crystallization [10, 11] 

This is a crystallization process done by seeding a saturated racemic solution with a pure 

crystal of one enantiomer. The enantiomer can precipitate out and grow on the seed with 

the same chirality and enantiomer crystal of high purity can be obtained by this process; 

however, there are a few limitations. First, a pure seed must be available to start the 

crystallization; other separation techniques such as HPLC and CE may be needed to get 

the pure seed. Second, the racemic compound must be a conglomerate i.e. the two 

enantiomers of which show two different crystal structures, which is not common in 

nature (less than 20%) [12]. Therefore this process cannot be generally applied for chiral 

separation.  

 

1.3.3. High Performance Liquid Chromatography (HPLC) 

HPLC is the most widely applied technique in enantiomer resolution. Separation is 

achieved by the chiral stationary phases (CSP) which consist of chiral recognizing 

compounds that interact and form transient diastereomeric complexes with enantiomers 

differently. A three point interaction rule must be fulfilled for separation: there must be at 

least three simultaneous interactions between one enantiomer and the CSP, and the total 

interaction energies of the two enantiomers must be distinct. The type of interaction can 
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be either attractive or repulsive, including hydrogen bonding, ionic, dipole and steric 

interactions depending on the functional groups available.  

In analytical application, HPLC can resolute enantiomers with high purity in relatively 

short time [13]. However, it is usually a batch process and not suitable for large scale 

production, where continuous processes are preferred. Besides, HPLC is not an 

economical process either, due to the costly chromatography column and the packing 

materials, the consumption of a large quantity of solvent, and more importantly the 

energy requirement for maintaining the high pressure.  

Moving bed chromatography is a special continuous chromatography process, capable of 

separating larger quantity of chiral chemicals. Instead of eluting the solutes from one 

outlet, the chromatography column is moving in a reverse direction to the solvent flow 

while the feed is introduced in the column body, such that the products can be collected 

at two distinct outlets continuously. It is able to achieve higher yield (10% more), higher 

productivity (5 to 10 fold) and lower solvent consumption (5 to 10 fold) than a batch 

chromatography process [14, 15], making a more cost effective. The difficulties lie in the 

system design and control as much more system and operating parameters need to be 

optimized; furthermore, a point to note is that this system is not suitable for multi-

component separation, although it may not be detrimental in our application here where a 

chiral system is usually binary.   

 

1.3.4. Capillary Electrophoresis (CE)  

This is a powerful technique for enantiomer resolution in analytical application 

developed in last decade. The working principle of CE is based on the difference in 



5 
 

mobility of the analytes in the capillary under a strong electric field. The separation 

principle is similar to that of HPLC but with different driving forces. A chiral selector, 

which interacts with enantiomers and drags the enantiomers to a different extent, is either 

added into the background electrolyte [16] or coated on the inner wall of the capillary 

[17]; the two enantiomers hence experiences different resistance due to their interactions 

with the chiral selector and elute out the capillary at different time, in such a way chiral 

separation is achieved by applying a suitable voltage.  

CE is slowly replacing HPLC in analytical application mainly due to its higher flexibility, 

lower consumption of solvent and lower operating cost. However, it is not practical for 

preparative applications due to its low throughput, the scale of which is in the µl range 

only.   

 

1.3.5. Membrane separation  

Membrane technology is, in principle, particularly suited for large scale production of 

enantiomers as it presents various attractive features: continuous operation, easy to scale 

up and low energy consumption. A membrane can be made of polymers, inorganic 

materials or even liquid. There are mainly two types of separation mode depending on 

whether the chiral selector is immobilized in the membrane, making a chiral selective 

membrane, or dissolved in solution. Chiral selectors in membranes include cyclodextrins 

[18], crown ethers [19], proteins [20] and even recognition sites formed by molecular 

imprinting [21]. A chiral selective membrane can facilitate or slow down the transport of 

one enantiomer, thus separate the enantiomers in different proportion. With a non-chiral 

selective membrane, the chiral selectors, normally large molecules such as proteins and 
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enzymes, are added into the racemic feed solution and form complexes with one 

enantiomer which are then retained by the membrane by size exclusion [22, 23].  

The amount of enantiomers processed by membrane separation is much larger than 

HPLC and CE. For example, Zydney and Romero performed chiral separation of 80ml of 

feed solution using a membrane area of only 5 cm2 within a few hours [24], while 

Morbidelli et al used 8 columns of the size 12.5×1.0 cm to produce 0.72 g/day of α-

ionone and 0.22 g/day of α-damascone [25] in a moving bed HPLC. Besides, the energy 

required in a membrane process is also lower. While the pressure in HPLC easily reaches 

above 100 bars, an pressure driving force less than 10 bars are sufficient in an ultra-

filtration membrane process for chiral separation, and even zero transmembrane pressure 

for affinity dialysis membrane process. Also, another advantage of the membrane process 

is it can be easily scaled up by increasing the membrane area by inserting more 

membrane fibers or adding parallel membrane modules, etc.  

However, the main drawback of this technology is its relatively lower purity. The above 

mentioned membrane technique [24] can give a purity of 95% by a two stage process, 

which is among the highest in membrane research, while the usual separation factor is 

less than 10 [20]; however, the HPLC can produce purity of 99.9% and 99.2% for S and 

R enantiomers of α-ionone for instance.  

The comparison of the current technologies discussed is summarized in Table 1.1. An 

ideal process should have high throughput, high purity and low cost with a simple 

operation system. The asymmetric synthesis is more expensive and complex. The 

preferential crystallization method has only limited application, though it can produce 

large amount of pure product with low cost; separation methods are still needed for 
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chemical compounds other than conglomerates. Capillary electrophoresis, although 

shows high resolution power on enantiomers, is mainly used for analytical purpose due to 

its extremely low throughput. HPLC is the separation technology currently employed in 

industry due to its high purity, and the issue of low throughput is being tackled by 

moving bed technique; however, the system becomes more complex and its high cost is 

not reduced. The membrane technology has the attractive features such as high 

throughput, lower energy cost, simple operation and easily scalable, but its selectivity 

remains the major challenge currently to really compete with HPLC.  

 Advantages Disadvantages 

Membrane separation 
 

High throughput 
Energy saving 

Continuous process 
Easily scale up 

Fouling; 
Challenging selectivity 

(increased by new chiral 
selectors, cascade, new 

model design) 
Asymmetric synthesis One stop process; chiral 

separation may not be 
required 

Expensive and complex 
process 

Preferential 
crystallization 

Low cost, confirmed 
purity 

Only applicable to 
conglomerates which is not 

common in drugs 
Chromatography High purity, reliable Low throughput, expensive 

stationary phase and 
operation cost 

Capillary 
electrophoresis 

High flexibility 
low consumption of 

chemicals and solvents 

Low throughput 

Table 1.1. Comparison of advantages and disadvantages of chiral separation technologies 

 

1.4. Project objectives & thesis organization 

From the above discussion, we conclude that the membrane separation system can be the 

most suitable technology for large scale production of pure enantiomer pharmaceuticals 

only if its selectivity can be greatly improved and comparable to that of HPLC. Since 
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membrane chiral separation is still an emerging field, there are more areas to be explored 

and improved in searching for the solution of higher separation performance. Possible 

ways to improve chiral selectivity are: 1, synthesizing more specific and powerful chiral 

selectors of enhanced intrinsic selectivity; 2, optimizing the fabrication and 

functionalization of chiral selective membranes; 3, novel membrane system design. 

Hence, the objectives of this study are to achieve the improved separation performance 

by employing the above approaches and investigating their effects. And through this 

study, we have not only developed the new chiral selective membranes and membrane 

systems for enantiomer resolution, but gained more in-depth knowledge of the membrane 

chiral separation mechanisms and characteristics, which are significant contributions to 

the literature as well.   

The dissertation is organized in the following manner; the Chapter 2 introduces the 

membrane preparation, chiral separation with various membrane systems and calculations 

for separation efficiency analysis.  

Chapter 3-6 show the in depth study of chiral separation using various membrane systems. 

The chapter 3 is a study utilizing approaches 1 and 2. We have shown that by carefully 

designed chemical modification of the chiral selector β-cyclodextrin, its intrinsic 

selectivity can be increased, so is the overall membrane selectivity; also, the membrane 

structure design plays an important role: the spacer arm between the chiral selector and 

the membrane surface affects the chiral selectivity.  

Chapter 4 and 5 present two cases on innovative system design and utilization for chiral 

separation via approach 3. The systems developed in these two studies (Selective 

Permeation Enhancement and Free Flow Iso-Electric Focusing) both show enhanced 
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chiral separation performance than normal membrane processes such as affinity ultra-

filtration and dialysis, under similar experimental conditions. Besides, we have also 

designed and fabricated new membranes for the system described in chapter 5.  

Chapter 6 employed the approaches 2 and 3: we have designed both a chiral selective 

membrane and the separation system, which is modified from the system developed in 

chapter 5. We have shown the interesting effects of the nature of driving forces on 

enantiomeric separation as well.       

The thesis is then concluded in chapter 7 and a list of publication and presentation is 

attached in the appendix.  
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Chapter 2. Theoretical background  

2.1. Membrane preparation by phase inversion 

Phase inversion in the membrane formation process is a process by which a 

homogeneous polymer solution separates into two liquid phase (polymer rich and 

polymer lean) caused by a quenching media. The polymer rich phase then starts to be 

solidified, resulting in the formation of a solid polymer matrix [26]. Phase inversion can 

be induced by different techniques including solvent evaporation, thermal precipitation 

and immersion precipitation, etc. The membrane prepared in this study used immersion 

precipitation as the induce technique. It is done by casting a thin film on a substrate and 

then immersing the film into a coagulant bath containing a nonsolvent (a liquid that is 

miscible with the solvent of the dope but not able to dissolve the polymer) [27, 28].  

 

2.2. Chiral separation with membrane systems 

2.2.1. Three point contact model 

The enantio-recognition is described by a three point contact model: the enantiomers 

should have at least three distinct interactions such as hydrogen bonding, hydrophobic/ 

hydrophilic interactions, steric hindrance, dipole-dipole interactions, etc. The strengths of 

each bonding should be different, and the total energies of interaction between the two 

enantiomers must be different for a good resolution. A simple schematic diagram is 

shown below: for a pair of enantiomers, we assume that the numbers 1-3 represent three 

distinct point of interaction sites which are not in the same plane, i.e. the two structures 

are not super imposable by flipping the other over, then only the molecule at the left can 

fit well to all the interaction sites of the selector on top. As a result, the left molecule 
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binds more strongly to the selector and absorbed, while the other molecule stays in the 

bulk; chiral separation is thus achieved.  

 
Figure 2.1. The schematic of a three point contact model. 

 

Another special kind of interaction model is in situation where the chiral molecules are 

experiencing external field such as electric or magnetic field. A schematic is shown 

below for clear representation: if a pair of chiral molecules nearby an interacting surface 

are under the effect of two fields that are perpendicular to each other (for simplicity, the 

model works as long as the two field are non-parallel), field E orientates the molecules in 

a direction such that R2 points to the right, and field F orientates R3 to point outside the 

paper, the R1 of D-type molecules then points to the interacting surface while the R1 of 

the L-type points away, resulting in different bonding energies with the surface and hence 

chiral selectivity.    
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Figure 2.2. The Schematic of chiral recognition in presence of external field [29] 

 

2.2.2. Chiral selector 

Chiral selectors are molecules that exhibit different binding strengths towards a pair of 

enantiomers and they are the key component in a membrane system for chiral separation. 

The common examples are cyclodextrins and their derivatives [18, 30], proteins [22-23], 

DNA [31], enzymes [20] and crown ether derivatives [19], etc. In this thesis, the chiral 

selectors used are β-cyclodextrins, bovine serum albumin and human serum albumin.  

 

Cyclodextrins 

Cyclodextrins are a family of naturally occurring, water-soluble oligosaccharides forming 

a bucket-shaped macrocycle comprised of α-(+)-glucopyranose units. The common forms 

contain six to eight sugar units and are named α, β, and γ-CD, respectively. Their chiral 

recognition ability is realized through a three-point contact model: hydrophobic 

interactions in the CD cavity and hydrogen bonding with two secondary hydroxyl groups 

at the cavity opening [32]. The intrinsic selectivity of cyclodextrins is relatively low, thus 

they are often derivatized such that the binding of enantiomers can be more specific due 

to chemical interaction and steric hindrance.  
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Figure 2.3. A sample of derivatized β-cyclodextrin drawn in material studio 

 

Serum albumins   

Serum albumin is the most abundant plamsma protein in mammals; its main functions are 

maintaining osmotic pressure, transporting hormones, fatty acids and drugs, etc [33]. Its 

chiral selectivity to L-tryptophan was first discovered more than 50 years ago [34]; the 

main selectivity is resulted from the predominant binding of L-tryptophan in a highly 

stereoselective manner towards one site, to which the D-tryptophan has 100-fold less 

affinity. The selectivity varies with pH and the optimum pH was found to be ~8.5; this 

implies that the presence of an ionizable group at the protein site can prevent the binding 

when both this group and the amino acids are similar charged. Also, the protein starts to 

unfold at lower pH as shown in Fig 2.5 [34-36], thus the binding site loses its stereo-

specificity.  
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Figure 2.4. The effect of pH on equilibrium constants between human serum albumin and 

tryptophan enantiomers [35] 
 
 

 
Figure 2.5. The diagram of bovine serum albumin [36] 

 

The enantioselectivity of albumin has also been found to decrease with increasing 

temperature [35]: both the equilibrium binding constants of L-tryptophan and D-

tryptophan decrease while the decrease associated with the L-tryptophan is to a much 

greater extent.    

The most commonly used albumin proteins in chiral separations are bovine serum 

albumin (BSA) and human serum albumin (HSA), which are used in this study as well. 

They have similar selectivity (slightly lower for BSA), but with different dimensions: the 

hydrodynamic radius of BSA is 4-5nm while that of HSA is 7-8nm [37-38].  
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Table 2.1. The temperature effect on association constants 

 

2.2.3. Separation mechanisms in membrane systems 

2.2.3.1. Chiral separation with chirally selective membranes 

Chirally selective membranes can be divided into two classes: membrane made from 

polymer materials with stereoselective behavior and membranes functionalized with 

chiral selectors. Polymers such chitosan [39-40] and cellulose acetate butyrate [41] do 

demonstrate chiral selectivity due to the abidance of chiral centers in the polymer chains. 

However, not all polymers with chiral centers show chiral selectivity, such as regenerated 

cellulose and cellulose acetate, etc. It depends on the actual position of the point of 

bonding /interaction between the polymer and the enantiomers. The detail is still unclear, 

though the molecular simulations can help better understanding of the mechanism. In this 

study, the chitosan polymer was treated as a chiral selector and functionalized on 

cellulose acetate, rather than a polymeric membrane material.  

Another kind of chirally selective membrane without chiral selector is made from helical 

polymeric structures such as polypeptide [42]. These materials mimic the helix of a DNA 
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structure which is chiral in nature; the separation can be achieved by two ways: first, an 

enantiomer can only be inserted inside one helix with a fixed rotations while its isomer fit 

in a helix having the other direction as shown in Figure 2.6; in the second manner, the 

small enantiomers migrating in-between the polymer chains rotate in a certain direction 

such that one migrate in the favorite direction and the other in a hindered manner.    

 
Figure 2.6. Schematic diagram of interaction between enantiomers and helical structure 

(modified from [43]). 
 

The more common chirally selective membranes are prepared by immobilizing various 

chiral selectors such as cyclodextrins [18] on the membrane surface or/and matrix. The 

chiral selectivity is solely resulted from the different interaction between the chiral 

selector and the enantiomers. One special case is the molecular imprinted membranes 

where the membrane is first prepared by mixing one of the enantiomer in the polymer 

dope before membrane casting. The enantiomer is then removed from the membrane 

matrix afterwards and leaves a void space that only fit with this particular enantiomer, 

which can be treated as a special chiral selector as well. A crosslinker can also be mixed 

together in the polymer dope prior to membrane preparation to enhance the performance 

[21].  

In the common case, the kinetic mechanism is as shown in Figure 2.7: first, the 

enantiomer is adsorbed onto the membrane surface and the more preferentially bound 
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enantiomer is adsorbed in a greater concentration; second, the enantiomers diffuse in the 

membrane matrix from one surface to the other side, the more preferentially bound 

enantiomer experiences a stronger resistance force and diffused more slowly than the 

weakly bound enantiomer; third, the desorption from the other membrane surface also 

favors the weakly bound enantiomers. And thermodynamically, a greater amount of the 

more strongly bound enantiomer is absorbed in the membrane, resulting in a higher 

concentration of the more weakly bound enantiomer permeating through the membrane. 

Thus, generally, for a membrane with immobilized chiral selectors, the more weakly 

bound enantiomer is preferentially permeated through the membrane.  

 
Figure 2.7. A schematic diagram of the transport of chiral molecules in a chiral selective 

membrane functionalized with chiral selectors. 
 

However, the results will be otherwise if the chiral selector is not fixed in the membrane 

matrix but loosely bound inside the membrane pores. As shown by Lakshmi et al [20], 

the more strongly bound enantiomer actually permeated faster since the chiral selector is 

physically immobilized inside the pores and facilitates the transport of one of the 
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enantiomers. This is similar to the mechanism in a supported liquid membrane system, 

and a clear description of which is shown below.   

A chiral selective supported liquid membrane system composed of three parts as shown 

in Figure 2.8, a feed chamber with the racemic mixture, a permeate chamber and a 

membrane, inside the pores of which containing the chiral selectors in a solvent that is 

immiscible with that of the feed and permeate. The racemic feed should be insoluble in 

the solvent in the membrane pores such that the only way for it to permeate through the 

membrane is by binding with the chiral selectors. In this case, the mechanism is different 

from the above: the enantiomer amount of enantiomer permeated through the membrane 

is directly related to the number of enantiomer-chiral selector complexes formed, and the 

transport resistances of both enantiomers are the same. Therefore, the chiral selector 

functions as a carrier and facilitates the transport of the more strongly bound enantiomer.  

 
Figure 2.8. The separation mechanism in a supported liquid membrane. 

 

2.2.3.2. Chiral separation with non-chirally selective membranes 
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In a system with a non-chiral selective membrane, the chiral selectors are usually injected 

in the feed solution to form complexes with the enantiomers. The complexes and the left-

over free enantiomers are then separated with the membrane either by size exclusion 

or/and charge effect. A common example is the use of serum albumins by Higuchi et al 

[23] and Zydney et al [22]. And in parts of this study, serum albumins are used as the 

chiral selector for the resolution of tryptophan in systems with non-chirally selective 

membranes.  

The separation mechanism in this case is straight forward: the more strongly bound 

enantiomer is retained in the feed solution and the more weakly bound enantiomer is 

collected in the permeate chamber. The separation efficiency greatly relies on the 

equilibrium binding constants of the chiral selector.   

 
Figure 2.9. schematic diagram of the transport in a system using a non-chirally selective 

membrane 
 

The separation mechanism is very different in a free flow isoelectric focusing (FFIEF) 

membrane system, and is discussed separated below. 

 

Free flow isoelectric focusing (FFIEF) 
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FFIEF is a separation technique making use of the charges on the molecules under 

different pH environment. A molecule is positively charged in a buffer with pH lower 

than its pI value and negatively charged in buffer pH higher than its pI. In a series of 

buffer chambers partitioned by ion exchange membranes, an electric field is generated by 

setting the anode at the lower pH and the cathode at higher pH side. The positively 

charged molecules can migrate to the cathode side which is at higher pH, the molecule 

will become neutral in charge once it reaches the chamber with pH equal to its pI (iso-

electric point); it will then stay in the chamber since the electric field has no force acting 

on a neutral molecule. The mechanism is similar for negatively charged molecules. Thus 

a mixture of molecules such as proteins (Figure 2.10) with different pIs can be separated 

efficiently in a FFIEF system [44-46].   

 
Figure 2.10. The schematic diagram of the application of FFIEF in protein separation. 

 

In a solution with racemic feed and chiral selector, the complexes formed may have 

slightly different pI values. Although the difference can be as small as ~0.05, a separation 

using the FFIEF technique is still achieved [47] and high enantiomeric purity is obtained. 
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The separation mechanism is similar to that in protein separations above; the complexes 

with different pIs can be isolated in different chambers containing buffer solutions with a 

pH equivalent to the pI value of the complex.  

In this study, a different approach is employed as our auto-titrating system is not able to 

control the pH in such a small range. The concept of iso-electric focusing is still 

employed.   

 

2.3. Enantioselectivity of membranes [48] 

The enantioselectivity of a membrane can be calculated the ratio between the 

permeability coefficients of the two enantiomers. The detailed calculations are shown 

below:  

 A plot of enantiomer concentration in strip solution against time is plotted and the 

gradient G is calculated 

 The permeability coefficient is then calculated by equation 1, while V is the strip 

volume, d the membrane thickness, A the membrane area, and CF and CP the 

concentration of feed and strip solutions respectively.   

)( pF CCA
dVGP

−•
••

=                                                   (1) 

 The selectivity is then calculated with equation 2, while PD and PL are the 

permeability coefficients of D- and L- enantiomer, respectively.   

L

D

P
P

=α                                                            (2) 
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2.4. Enantiomeric excess (ee%) [49] 

Enantiomeric excess is defined as the absolute difference between the mole fractions of 

the enantiomers. The calculation is shown by equation 3, where CD and CL are the 

concentrations of the enantiomers, respectively.  

%100% ×
+
−

=
LD

LD

CC
CCee                                           (3) 
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Chapter 3. Effects of spacer arm length and benzoation on enantioseparation 

performance of β-cyclodextrin immobilized cellulose membranes 

3.1. Introduction  

In a previous work published by our group, Xiao and Chung first studied the 

enantioseparation of tryptophan by immobilization of β-CD onto commercial cellulose 

membranes [48]; subsequently, Xiao et al. derivatized β-CD through acetylation and 

achieved enhanced selectivity in the separation of a racemic phenylalanine mixture [30]. 

A chiral layer model was developed to interpret the observed enantioselectivities.  We 

report here the effects of chiral layer position on enantioselectivity, by comparing the 

tryptophan enantioselectivity of membranes immobilized with chiral selectors of different 

spacer arm lengths, and of chiral layer thickness by using membranes grafted with 

mixtures of spacer arms of different lengths. The spacer arm length is the distance from 

the membrane surface to the chiral selector, i.e., the length of the diamine linking the β-

CDs to the cellulose membranes. The diamines were reacted first with a tossylated β-CD 

(Ts-β-CD) to form aminated-β-CD and the products are then grafted onto cellulose 

membranes via reductive amination. The enantioselectivity of the cellulose membranes 

was tested using a dialysis permeation cell with a concentration gradient as the only 

driving force.  

 

Although native CDs often exhibit low enantioselectivity, higher selectivity can be 

realized by further derivatizing the CDs with various chemical moieties [50]. In this study, 

the hydroxyl groups on the CDs are substituted with benzoate groups which provide 

increased steric hindrance to the binding of guests within the CD cavity and a reduced 
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rotational freedom of these guests, in such a way that the enantioselectivity is notably 

enhanced.  

 

3.2. Experimental 

3.2.1. Materials  

The cellulose dialysis membranes Spectra/Pro 7, MWCO (molecular weight cut-off) = 

1000, membrane thickness = 0.002 inches) were purchased from Spectrum medical 

Industries, Inc. Beta-cyclodextrin (β-CD) and 6-O-(p-Toluenensulfonyl)-β-cyclodextrin 

(Ts-β-CD) from Cyclolab, DL-tryptophan from Alfa Aesar, ethylenediamine (EDA), 

diaminopropane (PDA), diaminobutane (BDA) and p-toluenesulfonyl chloride from 

Sigma Aldrich, were all reagent grade and used without further purification.   

 

3.2.2. Synthesis of aminated cyclodextrins  

The EDA-β-CD, PDA- β-CD and BDA- β-CD were synthesized by a method similar to 

that reported by Liu et al [51]. One gram of Ts-β-CD was reacted with 6ml of EDA, PDA 

and BDA respectively at 75°C for 4 hours. The mixture was added drop wise into 30-

50ml of cold acetone after the reaction was completed; the precipitates were then 

dissolved with addition of 50:50 water-methanol mixtures after removal of acetone. This 

process was repeated 3 times to remove diamine impurities. The final product was 

obtained by drying the sample in a vacuum oven at 50°C for 3 days.  

 

3.2.3. Immobilization of aminated cyclodextrins onto membranes  
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The cellulose membranes were immobilized with EDA- β-CD, PDA- β-CD and BDA- β-

CD following a method similar to that reported previously by Xiao and Chung [48]. 

Before chemical modification, the membranes were first soaked in de-ionized water for 2 

hours to remove residual storage chemicals; they were then partially oxidized by soaking 

in 1N NaIO4 solution for 2 hours. After washing with de-ionized water, the membranes 

were soaked in phosphate buffers (0.5M, pH 6.0) containing 2mM of EDA- β-CD (or 

PDA- β-CD, BDA- β-CD) and 20mM NaCNBH3 sequentially for 2 hours each to attach 

the chiral selectors via reductive amination. For the immobilization of a mixture of 

aminated β-CDs, the membranes were soaked in phosphate buffer containing equal molar 

concentrations of EDA- β-CD, PDA- β-CD and BDA- β-CD. All reactions in this process 

were carried out at room temperature. The modified membranes were stored in de-

ionized water prior to the enantioseparation performance tests.  

 

3.2.4. Benzoate derivatization at cyclodextrin  

The cellulose membranes (EDA-β-CD modified) prepared in the previous stage were first 

immersed in repeatedly in fresh pyridine solvent for 1h at room temperature to remove 

residual water from the membranes. They were then reacted in a mixture consisting of 

30ml pyridine, 20ml 3-picoline and 10g benzoic anhydride at 70°C for 10, 15, 30, 40 and 

60 minutes. After the reactions were completed, the resulting membranes were washed 

repeatedly with de-ionized water and then soaked in de-ionized water for one day to 

remove residual pyridine. The reaction scheme is depicted in Figure 3.1.   
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Figure 3.1: Preparation of EDA-β-CD immobilized membranes and further benzoation 

reaction. (The figures are schematic representation only and not drawn to scale) 
 

3.2.5. Characterization of modified membranes  

The elemental ratio on the membrane surface was measured by an AXIS His 

spectrometer (Kratos Analytical Ltd, England) using a monochromatized Al Kα X-ray 

source (1486.6 eV photon) at a constant dwell time of 100ns and a pass energy of 40 eV. 

The anode voltage and anode current were 15kV and 10mA respectively. The pressure in 

the analysis chamber was 5.0x10-8 Torr. The photoelectron takeoff angle with respect to 

the sample surface was 90°, and the X-ray penetration depth was about 5-7nm.     

FTIR-transmission measurements were made on a Bio-Rad FTS-3500 ARX FTIR 

spectrometer with a scan range of 500-4000 cm-1. Each sample was scanned 32 times 

after the sample chamber had been purged with nitrogen for 10 minutes. 
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3.2.6. Chiral separation performance test 

The performance tests were carried out using a dialysis permeation cell as shown in 

Figure 3.2 [48]. The key units of the device were the two Teflon chambers, the feed and 

strip chambers, between which the modified membrane was clamped. The feed solution, 

with the initial tryptophan concentration of 0.1mM, was circulated between the feed 

chamber and a 1L reservoir; the solution volume in the feed chamber was maintained at 

35ml. Different from the feed, 35ml of deionized water was used as a strip solution 

without external circulation. Both solutions were stirred by Teflon impellers connected to 

an overhead stirrer (CAT R18, M. Zipperer GmbH, Staufen, Germany) at 200 rpm. 

200µL of samples were taken periodically and analyzed by Capillary Electrophoresis 

(P/ACE MDQ capillary electrophoresis system, Beckman). The buffer solution consisted 

of 20mM phosphate and 50mM α-cyclodextrin solution at pH = 2.2. Sample injection 

was 7.5s at 0.8 psi and the forward separating voltage was 25kV. The sample collection 

time ranged from 3 hours to 60 hours depending on the permeation flux of the 

membranes.   

 
Figure 3.2: Permeation test set-up on immobilized membranes 
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3.2.7. Predicted binding energies and enantioselectivities 

Calculations of complex formation energies were performed using the Material Studio 

4.3 Visualizer software package from Accelrys Inc. All molecular structures were built 

using the builder visualizer and the complexes were formed by manually inserting the 

enantiomers into the chiral selector cavities. The structures were then optimized by the 

Discovery module and their minimized energies calculated. For all calculations, the pcff 

force field and ultra-fine iterations were applied.   

Matlab 7.4.0 was used for the calculation of theoretical enantioselectivities of modified 

membranes. The function ‘solve’ was utilized to solve the series of mass balance and 

equilibrium equations.  

 

3.3. Results and discussion  

3.3.1. Characterization of modified membranes 

The cellulose membrane used in this experiment had a molecular weight cut-off (MWCO) 

of 1000 Da; its effective pore size was about 1nm, comparable to the size of the aminated 

β-CDs (MW = 1177~1201 Da). Thus we assumed that the majority of the β-CDs were 

immobilized on the membrane surface and that only trace amounts penetrated the pores. 

This enabled the grafting efficiency of the β-CDs, proportional to the relative 

concentration of β-CDs immobilized on the membrane surface, to be investigated by XPS 

analysis, with the results shown in Table 3.1. Since only the aminated β-CDs contained 

nitrogen atoms, the atomic percentage of nitrogen was used to compare the β-CD 

concentrations on the surfaces of different membranes. The trace amount of nitrogen 

present in the unmodified membranes was from the residual storage chemical, sodium 
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azide, which suppressed bacteria growth. After reaction with β-CDs, an increase in 

nitrogen content was clearly observed, indicating the successful immobilization of β-CDs 

onto the membrane surface. The apparent nitrogen content decreased again following 

benzoation because of two factors related to the benzoate group: a shielding of the 

nitrogen atom in the bottom layers by this group, and a decrease in the percentage 

nitrogen content owing to the increase in carbon and oxygen atoms following benzoation. 

This observation also provided evidence for the successful benzoation of the EDA-β-CD.  

Membranes O % N % C %
Pristine 44.1 ± 0.3 0.2 ± 0.0 55.7 ± 0.3 
EDA-BCD 42.3 ± 0.8 1.3 ± 0.1 56.4 ± 0.8 
PDA-BCD 43.1 ± 0.4 1. 1 ± 0.1 55.8 ± 0.2 
BDA-BCD 39.9 ± 0.3 1.0 ± 0.1 59.1 ± 0.5 
Mix EPB 41.2 ± 0.1 1.2 ± 0.0 57.6 ± 0.1 
Benzoated 40.2 ± 0.8 0.5 ± 0.0 59.3 ± 0.8 

Table 3.1. Surface elemental analysis by XPS on membranes immobilized with various 
chiral selectors  
 

The measured percentage atomic nitrogen decreased slightly with increasing spacer arm 

length, consistent with a higher grafting efficiency for EDA- β-CD than for the others, 

with the lowest grafting density for BDA- β-CD. This was due to their difference in 

reactivity in the reductive amination reaction. As this reaction was carried out in an 

aqueous solution, the amino end groups of the β-CDs could be protonated such that their 

nucleophilicity is reduced. Mehta and Zydney showed in their work that the charge on 

diamines with shorter chain lengths was smaller than that on longer diamines, and hence   

degree of protonation was lower [52]. We inferred from this work that the β-CDs with  

shorter diamine groups, especially EDA-β-CD, possessed the strongest nucleophilicity, 

and hence the highest grafting efficiency on the membranes.  
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FTIR spectrometry was also employed for surface characterization to confirm the 

benzoation sof the β-CD. Figure 3.3 shows the spectral changes for the membranes 

functionalized with benzoated β-CDs. The spectra for the unmodified and EDA-β-CD 

modified membranes were similar because both β-CD and cellulose consist of glucose 

building units. However, a new peak at wavenumber 1730 cm-1 was clearly observed in 

the spectra for the benzoated β-CDs. This wavenumber corresponds to the stretching 

vibration of the C=O in the benzoate group. Furthermore, the increment in absorption 

observed at a wavenumber of 1230 cm-1 can be attributed to the asymmetric stretching of 

the C-O bond in the ester group. Hence, the FTIR results further confirmed the successful 

benzoation of the β-CDs on the membrane surface. The analysis above provides 

qualitative comparisons only; methods for the precise quantification of the β-CD 

concentration on the membrane surface and the degree of substitution of hydroxyls on the 

β-CD by benzoate have not yet been fully realized.  

 
Figure 3.3: FTIR spectra of modified membranes 

 

3.3.2. Enantioseparation performance of aminated CD modified membranes  
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With the concentration gradient as the only driving force, the permeation flux was 

relatively low such that the concentration of enantiomers in the stripping solution was 

only about a tenth of that in the feed by the end of experiment. Hence, the feed 

concentration was assumed to be constant at 0.1mM throughout. The plots of enantiomer 

concentration CS (mM) in the stripping solution against time t (min) were therefore 

approximated by straight lines, the slopes (ΔCS /Δt) of which were utilized in the 

calculation of the flux J (mol/cm2 min) via the equation:  

                                                         
tA

CV
J S

Δ
Δ

=                                                                  (1) 

where ΔCS is the change in concentration, Δt is the permeation time, V is the stripping 

volume (35 ml) and A is the effective membrane area (1.77 cm2). The permeability 

coefficient P (cm2/s) is calculated as 

                                                           
SF CC

JdP
−

=                                                            (2) 

where d is the membrane thickness (0.005cm) and CF is the feed concentration (0.1mM). 

Finally, the enantioselectivity α was obtained as the ratio of the permeability coefficient 

of D-tryptophan to that of L-tryptophan:  

                                                             
L

D

P
P

=α                                                                   (3) 

The permeability coefficients and enantioselectivity calculated from experimental results 

are tabulated in Table 3.2. The unmodified membranes, i.e., those with no β-CD 

immobilization, exhibited no selectivity for racemic tryptophan separation, and were used 

as a control to show that the enantioselectivity of our functionalized membranes was due 

to the attachment of the chiral selectors.  
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Membranes 
 

Permeability (10-7 cm2/s) Average 
selectivity  L-tryp D-tryp 

Unmodified  4.41 4.34 0.99 
EDA-β-CD immobilized 3.05 3.66 1.19 
PDA-β-CD immobilized 2.81 3.08 1.10 
BDA-β-CD immobilized 2.54 2.71 1.07 
Mix EPB immobilized 1.94 2.33 1.20 

Table 3.2. Permeability and enantioselectivity in racemic tryptophan separation through 
membranes immobilized with various chiral selectors 
 

Enantioselectivity was observed for all membranes immobilized with aminated β-CD 

chiral selectors. The β-CD exhibited a stronger interaction with L-tryptophan than with 

D-tryptophan such that more β-CD-L-tryptophan complexes were formed at the 

membrane surface, resulting in lower concentrations of free and mobile L-tryptophan 

there. Thus the concentration gradient of free L-tryptophan across the membrane was 

smaller than that of D-tryptophan. As this concentration gradient was the only driving 

force for transport across the membrane, and since the diffusion constants for both 

enantiomers were the same, a higher permeation flux of D-tryptophan through the 

membrane was observed, i.e., the membrane exhibited an enantioselectivity for D-

tryptophan over L-tryptophan.  

We also observed a decrease in enantioselectivity with increasing spacer arm length. This 

was partly due to the decrease on the membrane surface in β-CD concentration with the 

longer spacer arms. Through mathematical modeling as shown in equations 4-10, and 

with the assumption of thermodynamically equilibrated complex formation, we deduced 

that a higher chiral selector concentration resulted in a higher enantioselectivity. The 

results of these simulations, given in Figure 3.4 show a steady increase in 

enantioselectivity with increasing chiral selector concentration. This model was used to 
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estimate the β-CD concentration from experimental measurements of the membrane 

selectivity; the results in Table 3.3 show a decreasing chiral selector concentration can be 

responsible for an enantioselectivity decrease. These estimated concentrations did not 

correspond perfectly with those obtained by XPS analysis given in Table 3.1 and shown 

in Figure 5, although both showed similar trends. We inferred from Figure 3.5 that the 

decrease in β-CD concentration at membrane surface was not the only factor affecting the 

selectivity when the spacer arm length was increased.  
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Membranes Selectivity Calculated Conc/mM 
EDA-β-CD immobilized 1.19 31 
PDA-β-CD immobilized 1.10 11 
BDA-β-CD immobilized 1.07 7 
Mix EPB immobilized 1.20 34.5 

Table 3.3. Theoretical β-CD concentration on membrane surface calculated from 
measured selectivity 

 



34 
 

 
Figure 3.4: Theoretical calculation of enantioselectivity as a function of tryptophan and 

β-CD concentration 
 

 

Figure 3.5: Comparison of CD concentrations by theoretical calculation and XPS results 

 

Another cause of the lower selectivity with longer spacer arms was the presence of 

defects in the chiral layers. The chiral selectors with longer spacer arms had higher 

degrees of translational freedom than those with shorter arms such that defective spots 

form in the chiral layer through which the enantiomers could pass without interacting 

with the chiral selectors. The enantiomers reaching the membrane surface via the 

defective spots would off-set the enantioselectivity by decreasing the difference between 
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the driving forces for D-tryptophan and L-tryptophan diffusion across the membrane. For 

chiral selectors with shorter spacer arms, the probability of defect formation was smaller 

as the chiral selectors were much closer to the membrane surface. We therefore conclude 

that the enantioselectivity would be compromised if the chiral layer position were to be 

located too far from the membrane surface.  

 

The selectivity was the highest when a mixture of chiral selectors was grafted onto the 

cellulose membrane surface. From the XPS results, the total β-CD concentration was 

slightly lower than that of the EDA-β-CD modified membrane mainly due to the lower 

grafting efficiency of the other two chiral selectors (PDA- β-CD and BDA- β-CD); this 

again indicated that the β-CD concentration, though important, was not the only factor 

determining enantioselectivity. The high selectivity associated with this membrane was 

due mainly to its chiral layer thickness. While the three previously-described modified 

membranes with only single chiral selector layers, these could be viewed as possessing 

three layers of chiral selectors. Thus the enantiomers experienced more stages of 

separation. Similar to the plate number concept in chromatography, a thicker chiral layer 

could be depicted as a micro scale chromatography column with a higher plate number. 

Hence, a thicker chiral layer could enhance enantioselectivity.   

 

It is generally accepted that there is a trade-off between selectivity and permeability in 

membrane separations [53] but this trend is not observed in our studies in which 

permeability also decreased as the selectivity decreased with increasing spacer arm length, 

as shown in Table 3.2. This interesting phenomenon is due to the reduction in pore size 
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through two different effects as depicted in Figure 3.6. First, the opening of the pores was 

blocked partially by the chiral selectors with longer spacer arms due to their greater 

degree of translational freedom. Second, small amounts of the chiral selectors were 

immobilized within the membrane pores although the majority were on the membrane 

surface; the larger the size of chiral selectors, the severer the reduction in pore size. As 

the sizes of the selectors varied according to the ranking BDA- β-CD > PDA- β-CD > 

EDA- β-CD, the extent of the pore size reduction increased in the same order, and hence 

the permeability decreased with increasing spacer arm length. [This was evidenced in a 

recent study on the pure water permeation fluxes of the pristine membranes without 

functionalization (9.9 Lm2hr-1bar-1), the membranes functionalized with BDA- β-CD (8.3 

Lm2hr-1bar-1) and EDA- β-CD (9.2 Lm2hr-1bar-1), which agree well with our argument.]  

While the aminated β-CD concentration on the membrane surface was the highest for the 

EDA-β-CD functionalized membrane, and was thus expected to have a stronger retarding 

effect on enantiomer diffusion than the other, longer selectors, this effect was mitigated 

by the smaller pore size reduction with the shorter selectors. The lowest permeability was 

observed with the mixed EPA/PDA/BDA membrane owing to the greater thickness and 

density of the chiral layer in this case.  
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Figure 3.6: Graphical representation of pore size reduction by various chiral selectors 

 

3.3.3. Enantioseparation performance of benzoated CD modified membranes 

The enantioselectivity β-CD functionalized membranes increased after the immobilized 

chiral selectors were derivatized with benzoate groups as shown in Table 3.4. The 

rotational freedom of tryptophan in the β-CD cavity was greatly restricted following its 

distortion by the replacement of the secondary hydroxyl groups with the much bulkier 

benzoate groups. The binding between the enantiomers and the benzoated β-CD was 

more stereo-specific, i.e., the enantiomeric selectivity of the β-CD was enhanced by the 

attachment of the benzoate groups.  We compared the binding energies between racemic 

tryptophan and EDA-β-CD against those of benzoated β-CD calculated using molecular 

modeling.  The structures of L, D-tryptophan, chiral selectors and their respective binding 

complexes shown in Figure 3.7 were drawn with the visualizer, and their minimized 

energies were obtained using the discovery module. The complex formation energy was 

calculated by subtracting the minimized energies of the free compounds from those of the 

complexes. The relative differences between the calculated complex formation energies 
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of the two tryptophan isomers and the different selectors (ΔΔGs) were consistent with the 

relative differences in measured enantioselectivities for these selectors: the larger this 

difference, the higher the enantioselectivity. The results summarized in Table 3.5, 

indicate that the ΔΔG value increased after benzoation, consistent with a higher 

theoretical selectivity in agreement with the experimental results. 

Reaction Time/min Permeability(10-7 m2/s) Selectivity L-tryp D-tryp
0 3.05 3.66 1.19 

10 1.86 2.22 1.19 
15 1.53 2.20 1.32 
30 0.644 0.844 1.31 
40 0.147 0.221 1.51 
60 0.147 0.218 1.49 

Table 3.4. Permeability and enantioselectivity in racemic tryptophan separation through 
benzoated EDA-β-CD immobilized membranes with various reaction times 

 

 
Figure 3.7: Computational analysis of complex formation energy between tryptophan and 

EDA-β-CD 
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Chiral selector 
Δ GL / 
(kcal/mol)

Δ GD / 
(kcal/mol)

ΔΔ G / 
(kcal/mol) 

EDA-β-CD -58 -54 4 
Partially benzoated EDA-β-CD -52 -45 7 
Fully benzoated EDA-β-CD -27 -18 9 

Table 3.5. Comparison of simulated complex formation energy before and after 
benzoation. Δ GL is complex formation energy of L-tryptophan with chiral selector, ΔGD 
is that of D-tryptophan and ΔΔG = ΔGD - Δ GL. 
 

The experimental results in Table 3.4 also showed increased enantioselectivity with a 

longer benzoation reaction time, i.e., with a greater extent of benzoation of the EDA-β-

CD. This increase in the concentration of the more efficient chiral selector on the 

membrane surface resulted in an enhancement in the enantioselectivity.  Furthermore, the 

degree of substitution (DS) on each EDA-β-CD selector was higher for longer reaction 

times, which also played a role in enhancing enantioselectivity.  The complex formation 

energies for partially (DS=7) and fully (DS=20) benzoated EDA-β-CD calculated using 

material studio are shown in Table 3.5, from which we can deduce that a higher degree of 

substitution should enhance the enantioselectivity since a larger ΔΔG was obtained for 

the fully benzoated EDA-β-CD than for the partially substituted selector.   

Although benzoation of the EDA-β-CD allowed for an increased membrane 

enantioselectivity, the permeability decreased, especially with prolonged reaction time. In 

Table 3.4, a drop of 50% in L-tryptophan permeability was noted after 15 minutes 

reaction, while about a 20-fold drop was observed following a reaction time of one hour. 

The drop in permeability was primarily due to the reduction in pore size, since not only 

were the hydroxyl groups of EDA-β-CD benzoated, but also the hydroxyl groups of the 

cellulose membrane. As a result, the membrane pores were greatly reduced in size as the 

bulkier benzoate groups were attached to the pore walls. Also, the trace amount of EDA-
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β-CD inside the pores grew in size with benzoation and further blocked passage of the 

enantiomers. All these factors led to a lower permeability which worsened with longer 

reaction times, the higher degree of benzoation intensified the pore size reduction and 

yielded even a lower permeability.   

 

3.4. Conclusion  

In this study, commercial cellulose membranes were first immobilized with chiral 

selectors of various spacer arm lengths and their enantioseparation performance was 

investigated and compared. Both higher permeability and higher selectivity were 

observed with chiral selector monolayers with shorter spacer arms. The enantioselectivity 

was highest (1.20) for thicker chiral layers formed by attaching a mixture of chiral 

selectors of varying spacer lengths to the membranes, although the permeability was 

lower.  The membrane enantioselectivity further increased to ~1.3-1.5 following 

benzoation of the EDA-β-CD selector. The enhanced selectivity was interpreted in terms 

of the increase in estimated complex formation energy difference (ΔΔG) determined 

from molecular modeling calculations. It was found that the degree of benzoation was 

critical to enantioseparation performance, which was enhanced with higher degrees of 

substitution.  

 

3.5. Acknowledgement   

We thank the Singapore-MIT Alliance and the National University of Singapore (Grant 

No.R-279-000-249-646) for funding this project. Thanks are also due to Professor 

Andrew Zydney and Professor Donald Paul for their invaluable suggestions.  



41 
 

Chapter 4. Novel Membrane Process for the Enantiomeric Resolution of 

Tryptophan by Selective Permeation Enhancements 

4.1. Introduction  

As discussed in section 2.2.3.2, different from the chiral selective membrane we prepared 

in chapter 3, another type of membrane chiral separation is carried out using non-chirally 

selective membranes coupled with affinity ultra-filtration concepts, where a specific 

chiral selector is introduced into the racemic feed solution to form complexes 

preferentially with one of the enantiomers [22-23, 54]. This mixture is then filtered under 

pressure by the non-chiral selective membrane with a suitable pore size and surface 

charge that retains the large complexes. A relatively high enantioseparation can be 

achieved. For example, chiral selectors such as bovine serum albumin (BSA) [23] and 

human serum albumin (HSA) [22, 55] have shown promising results in tryptophan 

separation. However, this pressure driven process is subject to higher operating costs, and 

the performance may deteriorate with membrane fouling. Also, extra post steps are 

required to separate the chiral selectors and enantiomers in the feed side.  

 

A different approach to membrane-based chiral separations that combines the concepts of 

liquid membrane technology and affinity ultra-filtration is employed in this study where 

the chiral selectors are added to the strip solution instead of the racemic feed solution. In 

a normal diffusion process, the diffusion rate decelerates with time since the 

concentration gradient across the membrane decreases. With chiral selectors in the strip 

solution, the enantiomers permeating through the membrane bind to the chiral selectors to 

different extents depending on their relative association equilibrium constants. As a 
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consequence, not only do we compensate for the deceleration of permeation rate, but the 

deceleration rates themselves also become different, i.e. the permeation deceleration of 

the more strongly binding enantiomer is lower, resulting in a higher accumulated 

permeation flux. Enantioselectivity can hence be demonstrated by the selective 

permeation enhancement of the enantiomers. Moreover, this is also different from the 

normal extraction process by a liquid membrane system where two immiscible solvents 

are used in the feed and the strip [56]. As all solutions in this work are aqueous, and the 

chiral selectors are fully constrained to be inside the chamber by the small pore sizes of 

the membranes, the stability problems associated with ordinary liquid membrane systems 

can be averted.  

 

The enantioseparation effectiveness of the newly developed selective permeation 

enhancement (SPE) approach is examined via three approaches in this study: single 

permeation cell, two permeation cells in series and the pre-addition of the racemic and 

chiral selectors to the strip solution. HSA and tryptophan are chosen as the chiral selector 

and enantiomer pair since the HSA has a high intrinsic selectivity for the resolution of a 

racemic tryptophan mixture. It has been reported that the L-tryptophan binds to the indol-

benzodiazepine site of HSA with an affinity 100 times greater than that of D-tryptophan 

[34]. Following a demosntration of the feasibility of enantioseparation by the single 

permeation cell process, the separation performance is further improved by adding a 

racemic mixture to the strip solution as well; both the selectivity and enantiomeric excess 

are shown to increase with higher concentrations of racemic mixture pre-added to the 

strip solution. Finally, by connecting two permeation cells in series, we show that the 
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separation performance is greatly enhanced; a new design suitable for industrial 

application is proposed using hollow fiber membrane modules. Mathematical modeling 

was exploited to interpret and support the experimental data, through the solution of a set 

of ordinary differential equations representing the mass balances and reaction equilibria.  

 

Overall, this is an original work that not only demonstrates the model designs of SPE for 

achieving high enantioselectivity, but may also open up new routes and stimulate new 

ideas for enantiomeric resolution.  
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4.2. Experimental 

4.2.1. Materials 

The cellulose dialysis membranes Spectro/Pro 7, (MWCO (molecular cut-off) = 1000, 

membrane thickness = 50μm) were purchased from Spectrum Medical Industries. Inc. 

Human serum albumin (HSA) and bovine serum albumin (BSA) from Sigma Aldrich, α-

cyclodextrin from Cyclolab, DL-tryptophan from Alfa Aesar and sodium phosphates 

were all reagent grade and used without further purification.  

 

4.2.2. Chiral separation by SPE in single permeation cell 

The chiral separation test was carried out on a dialysis permeation cell setup as shown in 

Figure 4.1 [30]. The permeation cell was comprised of two Teflon chambers between 

which the dialysis membrane was clamped. The feed was a 35ml racemic tryptophan 

solution of 0.1mM and the strip chamber contained a 35ml HSA solution at various 

concentrations. The pH of each solution was maintained at 8.6 by 20mM phosphate 

buffer. Two Teflon impellers connected to an overhead stirrer (CAT R18, M. Zipperer 

GmbH, Staufen, Germany) operating at 200 rpm were used to stir the solutions. 200 μl of 

samples were taken from the feed solution periodically and analyzed by Capillary 

Electrophoresis (CE) (P/ACE MDQ capillary electrophoresis system, Beckman). The CE 

buffer was a 50mM α-cyclodextrin solution with pH maintained at 2.2 by a 20mM 

phosphate buffer. The sample injection time was 7.5s at 0.8 psi and the forward 

separating voltage was 25kV. The permeate concentrations were back calculated by 

subtracting the feed chamber concentration from the original feed solution.   
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Figure 4.1. Schematic diagram of SPE with single cell 

 

4.2.3. Chiral separation by SPE with pre-addition of feed 

The experimental procedures were similar to those described in the previous section 

except that a racemic enantiomer mixture was added, with concentration varying up to 

that of the feed, together with the HSA, into the strip solution. The mixture in the strip 

solution was prepared 4 hours before permeation experiments to ensure equilibrium. The 

difference in the concentration gradients of the two enantiomers across the membrane 

could then be increased from the beginning of the experiment, and in such a way, 

products with higher enantiomeric excess were harvested from the feed chamber.  

 

4.2.4. Chiral separation by SPE in two permeation cells in series 

The setup consisted of two permeation cells in series as shown in Figure 4.2. The 

contents of cell 1 were similar to those used in the single cell test, while the two 

chambers of cell 2 contained HSA solution and phosphate buffer, respectively. The 

protein chambers of the two cells were connected with a circulating pump, such that the 
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solution concentrations of the two chambers could be assumed to be the same. Samples 

were withdrawn periodically from the strip side and analyzed by Capillary 

Electrophoresis.   

 
Figure 4.2. Schematic diagram of SPE with two cells in series 

 

4.2.5. Control experiments of affinity ultra-filtration  

In the affinity ultrafiltration control experiments, 10g/L HSA were added directly to the 

feed solution and formed complexes with enantiomers which were retained by the 

membrane. The permeation experiment was conducted 4 hours after solution preparation 

to ensure equilibrium. Samples were then taken from the strip solution and tested by 

Capillary Electrophoresis.  

 

4.2.6. Mathematical modeling of permeation tests 

Matlab 7.4.0 was used for the calculation of theoretical permeation results. The set of 

standard mass balance and equilibrium equations listed below was solved with the aid of 

the built in function ‘ode45’.   
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where V, A, d, t and C represent the solution volume, membrane effective area, 

membrane thickness, permeation time and concentration, respectively, D denotes the 

apparent diffusion constant derived from experiments, and kL, kL’, kD and kD’ are 

association and dissociation constants between HSA and DL-tryptophan obtained from 

literature sources [35]. The subscripts 1, 2, 3 denote the feed chamber, HSA chambers 

and strip chamber, respectively, while subscripts L, D, CL, CD refer to the L-tryptophan, 

D-tryptophan, HSA, HSA-L-tryptophan complex and HSA-D-tryptophan, respectively.  

  

4.3. Results and discussion 
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The concepts for the enhanced optical resolution of racemic mixtures proposed in this 

paper were tested experimentally using the membrane permeation cells described above.  

In this section, we discuss the overall performance of the three configurations and 

propose ways in which they might be employed industrially.  

 

4.3.1. SPE performance by single cell permeation  

As the concentration gradient was the only driving force in this experiment, the initial 

permeation rates of both enantiomers were similar. However, on formation of the HSA-

tryptophan complexes on the permeate side according to the two equilibrium reactions  

trypLHSAtrypLHSA −−↔−+                                       (A) 

trypDHSAtrypDHSA −−↔−+                                      (B) 

the free enantiomer concentrations in the strip solution were reduced. Since HSA is more 

selective to L-tryptophan, naturally more L-tryptophan was bound to form complexes and 

the free L-tryptophan concentration was reduced to a greater extent than was the D-

tryptophan concentration. A higher concentration gradient of L-tryptophan across the 

membrane was therefore maintained, which resulted in a higher overall permeation flux 

of L-tryptophan, i.e. selectivity of L-tryptophan against D-tryptophan. This effect is 

clearly evident in the data shown in Figure 4.3, calculated using the equations 

%100% ×
+
−

=
LD

LD

CC
CCee                                                   (10) 

α =
QL

QD

=
FL −CL

FD −CD

               (11) 

where ee% represents the enantiomeric excess of the retentate and α is the selectivity of 

the SPE system, defined as the ratio of the flux of L-tryptophan permeating through the 
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membrane to that of D-tryptophan, CL, CD, FL and FD are the L-tryptophan and D-

tryptophan concentrations in the retentate and in the original feed solution, respectively, 

while QL and QD are the fluxes of enantiomers. It is also evident from Figure 4.3 that the 

separation performance increased with an increase in HSA concentration in the strip 

solution, consistent with expectations, because a high HSA concentration shifts the 

equilibrium concentrations in reactions A and B further to the right, such that the 

permeation fluxes of both enantiomers are enhanced. However, due to the stronger 

binding between HSA and L-tryptophan, a preferential concentration decrease of the free 

L-tryptophan prevailed, thus enhancing enantioselectivity.  

 
Figure 4.3. Enantioselectivity and ee% against HSA concentrations in strip with single 

cell SPE 
 

It was also noted that the ee% and selectivity decreased when HSA concentration was too 

high as indicated by the results obtained with 15g/L of HSA. One possible reason could 

be that the binding of D-tryptophan is also greatly enhanced in too great an excess of 

HSA as reflected in the equilibria given in reactions A and B. As a result, the increment 

of D-tryptophan flux across the membrane was steadily maintained while the flux of L-

tryptophan had almost reached its maximum since the free L-tryptophan concentration 
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was close to zero. Hence, we observed that both ee% and selectivity obtained using this 

approach were maximized at an intermediate value of HAS concentration, i.e., further 

improvements in separation performance cannot be achieved by simply increasing the 

HSA concentration. New approaches were designed and are presented in the following 

sections.    

 

4.3.2. SPE performance by single cell permeation with pre-addition of feed 

Although the enantiomers could be partitioned successfully in the experiments outlined 

above, one shortcoming was the low selectivity near the beginning of the experiment 

when both enantiomer concentrations in the permeate side were close to zero and their 

driving forces were similar. The overall selectivity was therefore compromised. A higher 

enantioselectivity would be possible if a difference in driving forces could be induced 

from the beginning of the experiments. Therefore in the subsequent experiments, while 

the HSA concentration in the permeate (or strip) side was maintained at 10g/L, certain 

concentrations of racemic enantiomer mixtures were also added to the permeate side prior 

to the permeation experiment. Under these conditions, the initial driving force (i.e., 

concentration gradient) for the L-tryptophan was higher than that for the D-tryptophan 

since the HSA/L-tryptophan complexes formed preferentially on the permeate side so 

that the actual concentration of free D-tryptophan was higher than the free L-tryptophan 

concentration in the strip solution, as depicted in Figure 4.4.  
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Figure 4.4. Schematic diagram of enantiomer separation with pre-feed addition (upper); 

schematic representation of change in concentration gradient by pre-feed addition 
(bottom). 

 

The permeation results from such experiments are presented in Figure 4.5 (a) (b). It is 

evident that the results support our hypothesis very well as both ee% in the final feed 

solution and selectivity were improved, with a commensurately higher concentration of 

racemic tryptophan in the strip solution. With a higher free D-tryptophan than L-

tryptophan concentration in the permeate side, the reduction in permeation flux of D-

tryptophan was much stronger than that in the flux of L-tryptophan. This agreed well 

with Figure 5(a) which showed a greater increment in D-tryptophan yield from the feed 

chamber, as reflected in its steeper increase with increasing concentration of pre-added 

tryptophan. As a result, both the selectivity of L/D-tryptophan and the ee% of the 

retentate increased with an increase in the concentration of the racemic tryptophan 

mixture added to the permeate side.  
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Figure 4.5. Trends of yield, enantioselectivity and enantiomeric excess (ee%) in single 
cell SPE process with pre-addition of racemic feed in strip. (a) yield of tryptophan from 

feed chamber in 22 hours vs.pre-added tryptophan concentration in strip; (b) selectivity & 
ee% vs. pre-added tryptophan concentration in strip; (c) yield of tryptophan from feed in 
22 hours vs. HSA concentration in strip; (d) selectivity & ee% vs. HSA concentration in 

strip. 
 

The effect of HSA concentration on enantioseparation performance was also studied by 

fixing the pre-added racemic tryptophan concentration at 0.1mM and varying the HSA 

concentration on the permeate side. The results in Figure 4.5 (c) (d) show a generally 

decreasing trend in tryptophan yield from the feed chamber but increasing trends in ee% 

in the final feed solutions and selectivity with HSA concentration, attributed primarily to 

the preferential permeation enhancement of L-tryptophan induced by the complex 

formation with HSA, as explained above. However, the selectivity at the lowest HSA 

concentration was higher than that at other HSA concentrations within the range of 

experiments. This interesting observation may be attributed to competitive binding 

between L-tryptophan and D-tryptophan with HSA in the strip side solution when the 
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HSA concentration (0.035mM) is lower than the pre-added racemic enantiomer 

concentration (0.1mM). Because of the selective binding of HSA with L-tryptophan, the 

permeation of D-tryptophan did not increase as much as that of L-tryptophan, resulting in 

a high selectivity in the L/D-tryptophan separation.     

 

Overall, the effect of HSA addition to the strip solution was to increase the driving force 

for the permeation flux of enantiomers, with a significantly greater enhancement in the 

case of L-tryptophan. On the other hand, the effect of pre-addition of feed in the strip was 

to decrease the permeation flux of enantiomers but more so for D-tryptophan, which 

resulted cooperatively in higher enantioselectivities.   

 

4.3.3. SPE performance by two permeation cells in series 

Although fair enantioseparations were attained in the processes described above, they 

were considerably inferior to the optimized affinity ultra-filtration (AUF) systems 

reported by researchers such as Romero and Zydney [22] (selectivity ~ 7). In a typical 

AUF process, the complexes formed by incorporating a large enantioselective binding 

agent into a racemic feed solution can be retained by a membrane with a suitable pore 

size. Consequently, a higher transmembrane flux of the less strongly bound enantiomer is 

achieved, with good ee% in the filtrate and, after the removal of the binding agent, in the 

retentate. For comparison, both AUF and SPE processes were carried out using 10g/L of 

HSA and 0.1mM racemic tryptophan mixtures. The selectivity and ee% in the AUF 

approach can reach up to 3.01 and 62%, respectively, while the maximum selectivity and 

ee% are 1.3 and 20%, respectively, in the SPE approach.  
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To overcome this limitation, we have introduced a novel synergizing strategy by 

connecting an SPE and an AUF unit in series as depicted in Figure 4.2, which in turn 

provides an outstanding enantioseparation performance in comparison to that of each 

respective unit alone. The new approach can integrate the advantages of both SPE and 

AUF systems successfully. In the SPE unit on the left side, the enantiomers first diffuse 

from the feed chamber into the HSA chamber, with a higher permeation flux of L-

tryptophan as discussed in the previous sections. Thus, while the total concentration of L-

tryptophan in the HSA chamber was higher than that of D-tryptophan, the free L-

tryptophan concentration was lower since most of the L-tryptophan was bound to HSA. 

This resulted in a higher concentration gradient of free D-tryptophan than of free L-

tryptophan across the membrane in the AUF unit on the right side. Hence, the output strip 

solution of the AUF unit showed an enantiomeric excess of D-tryptophan, which was 

higher than that of the single SPE and AUF processes operating individually, as shown in 

Figure 4.6.  

 
Figure 4.6. Enantioselectivity and enantiomeric excess with various HSA concentrations 

in central chambers. * AD = Affinity Dialysis 
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Since the free enantiomer concentrations in the HSA chamber were suppressed by the 

complex formation with HSA, the flux into the strip chamber of the AUF unit was 

relatively small; thus the permeate product concentration in the third chamber could be 

assumed to be linear with time, as shown by the straight lines in Figure 4.7. The 

permeability coefficients were therefore calculated from the slopes of these lines using 

the equation   

)( SF CCA
GVdP

−
=                                                   (12) 

where G, V, d and A are the gradient, strip chamber volume, membrane thickness and 

membrane area, respectively. CF and CS are the corresponding enantiomer concentrations 

in the feed and strip chambers. The selectivity is the ratio of the enantiomer permeability 

coefficients, and since other parameter values were the same for both enantiomers, it was 

calculated from the ratio of gradients only. 
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It should be noted that the ee% of the strip solution was calculated instead of that of the 

retentate in the feed chamber as done in the previous section, since the direct product 

from the setup was the strip solution, which had a higher ee%.  Equation (10) was used 

by replacing the retentate concentration with the strip concentration.  
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Figure 4.7. Graphs of tryptophan concentrations over time in the third chamber with the 

HSA concentrations in the central chamber being (a) 1.5 g/L; (b) 5 g/L; (c) 10 g/L; (d) 15 
g/L. 

 

It is expected that the separation performance of the SPE-AUF system would outperform 

the normal AUF system while keeping other conditions equal, as it was observed that 

higher selectivity and ee% of the product were obtained given the same HSA 

concentration of 10g/L. One possible explanation was the instantaneous high HSA to 

enantiomer ratio in the middle protein chamber. In our control AUF experiments, the 

ratio was around 3:2 (0.15mM: 0.1mM) and slowly increased as the enantiomers 

permeated through the membrane; however, this value was much larger in the SPE-AUF 

system. In the HSA chambers, the initial HSA concentration was also 0.15mM while the 

initial tryptophan concentration was zero and slowly increased with time, resulting in a 
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much higher overall HSA to tryptophan ratio. As a consequence, the free L-tryptophan 

concentration in the HSA chamber was maintained always at a very low level due to the 

formation of a complex with HSA. Thus, a high selectivity was achievable due to the low 

permeation of L-tryptophan.  

  

A similar reasoning can be applied to explain the increasing trend in selectivity and ee% 

with higher HSA concentrations in the middle protein chambers. The increased HSA-to-

enantiomer ratio with an increase in HSA concentration in the middle chamber decreased 

the free L-tryptophan concentration in the middle chamber to a greater extent, while the 

free D-tryptophan concentration was less affected due to its weaker complexation with 

the HSA. Hence, the permeation of L-tryptophan into the strip chamber was greatly 

reduced, resulting in a higher enantioselectivity of D-tryptophan over L-tryptophan.  

 

Overall, the complete process can also be viewed as a liquid membrane system where the 

HSA chamber was the liquid membrane with chiral selectors immobilized in the bulk 

solution. However, this process exhibits much higher stability relative to common liquid 

membranes. In this newly proposed process, contamination of the product by the liquid 

membrane solvent was eliminated as DI water was employed as the sole solvent within 

the experiments. The cellulose membrane pore size was about 1 nm, much smaller than 

the size of HSA, and thus contamination by chiral selector leakage was highly unlikely as 

well.  

 

4.3.4. Modeling of permeation processes 
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Since the concentration gradient was the only driving force for transport across the 

membranes, and the cellulose membrane was hydrophilic, membrane fouling was 

negligible in these experiments. The diffusion constant was calculated simply from the 

data of one control experiment. The initial conditions were 0.1mM racemic tryptophan in 

the feed chamber and phosphate buffer without HSA in the strip solution; samples from 

the feed and strip chambers were taken periodically and analysed by Capillary 

Electrophoresis. The set of equations (1) and  (2), together with  

             )( 21
2

2 LL
L CC
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V −=                                      (3’) 
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was used to find D, with an initial D value calculated from the gradient of permeate 

concentration against time, and a built in function ‘fminsearch’, the diffusion constant 

was estimated to be 3.57x10-4 cm2s-1. 

 

The association and dissociation constants between HSA and L,D-tryptophan were 

obtained from the work of Yang and Hage [35]. The validity of these constants, together 

with the calculated diffusion constant, was supported by the close agreement of the a 

priori predictions with experimental results shown in Figure 4.8 for the control affinity 

ultra-filtration experiments. 
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Figure 4.8. Simulated and experimental results of affinity dialysis with 10g/L HSA 

 

A representative simulation of the SPE in series, with a protein concentration of 10g/L, is 

depicted in Figure 4.9, again showing good agreement between the experimental and 

modeling results. This result not only validates the model, but also, to a certain extent, the 

accuracy of the experimental data and the applicability of the SPE system. With this 

model, it would be possible theoretically to optimize the experimental conditions to 

achieve the desired separation performance for any pair of chiral selectors and 

enantiomers as long as their diffusion, association and dissociation constants were 

available.  
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Figure 4.9. Simulated and experimental results of SPE with two cells in series at HSA 

concentration of 10g/L 
 

4.3.5. Design for large scale applications  

As the driving force for the two cells in series design was the concentration gradient only, 

and the effective membrane area in our experiments was small, the overall permeation 

flux was relatively low; thus a simple, direct scale-up would not be suitable for real 

industrial application despite its high enantioselectivity. Inspired by the module designs 

in other applications [57-60], we propose an improved design making use of hollow fiber 

membranes instead; the schematic diagram, which is a modification of that for an 

internally staged permeator [57], is shown in Figure 4.10. The racemic feed and the strip 

solution flow in the lumen side of each of the two separate bundles of hollow fiber 

membranes, while the stream containing the chiral selectors flows on the shell side. This 

design has at least two advantages in comparison to the current experimental setup that 

greatly increase the permeation flux of the enantiomers. First, the total effective 

membrane area of hollow fibers is much larger than that of the flat membranes. Second, 

the hollow fibers in which the feed and strip solutions flow can be closely packed such 

that the diffusion distance of the enantiomers is shortened. Hence this new design can 

lead to a much higher permeation flux while maintaining the enantioselectivity. Moreover, 
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the flow rate and concentration of each stream can be optimized with the aid of 

mathematical modeling by adopting mass balance equations for processes involving 

hollow fiber membranes.    

 
Figure 4.10. Schematic diagram of enantioseparation for industrial application 

(Modified from Li’s work [25]) 
 

4.4. Conclusion  

In our systematic search for efficient enantioseparation processes, we have studied the 

performance of a novel operation, SPE, using three different approaches: single cell 

permeation, pre-addition of feed, and two cells in series permeation. The feasibility of 

SPE was first demonstrated successfully in the single cell permeation system where 

trends in selectivity and ee% were elucidated, but limitations on the overall performance 

were also discovered. These limitations were overcome by the pre-addition of some of 

the feed solution to the strip solution; better performance was achieved and an increase in 

the selectivity and ee% with increasing pre-added feed solution was observed. The 

enantioseparation performance was further enhanced by exploiting the SPE concept using 

two cells in series to give selectivities of up to 9.76 and corresponding enantiomeric 

excesses of up to 75%.  These performance metrics can be improved further by using a 
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more concentrated HSA solution. This impressive performance was also predicted by the 

simulation results. The overall rates of the enantiomeric separation were rather slow in 

the experimental systems studied because of the small membrane areas relative to the 

volumes being treated, this limitation can be readily overcome using hollow fiber 

membrane systems, with two bundles of fibers (for the feed and the stripping solutions) 

being separated by the chiral selector solution in the shell of the module; this new design 

should provide for a greatly increased throughput.  
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Chapter 5. Enantiomeric resolution of tryptophan via stereoselective binding in an 

ion-exchange membrane partitioned free flow isoelectric focusing system 

5.1. Introduction 

Apart from being employed for chiral separations by simple membrane processes as what 

we have presented in the previous chapters, membranes have also been coupled with 

other methods, either conceptually or practically, such as chromatography and 

electrophoresis for better separations. For instance, Wang et al. [61] achieved separation 

of racemic thiopental and tryptophan via membrane chromatography using a poly 

(vinylidene fluoride) (PVDF) membrane absorbed with BSA. Isoelectric focusing with 

the aid of ion exchange membranes is one prominent technology with the potential to 

produce enantiomeric drugs on a preparative scale. Currently, most research done using 

isoelectric focusing (IEF) is for protein separations [45-46, 62], by exploiting the 

different pI values (isoelectric points) of various types of proteins. With the ion exchange 

membranes separating the buffer chambers of various pHs, a charged biomolecule 

migrates under an external electric field until it reaches a buffer chamber of pH 

equivalent to its pI, and then becomes neutral in charge and isolates in this particular 

chamber. Following this theory, the first isoelectric focusing enantiomer separation was 

introduced by Righetti et al. [47] who used β–cyclodextrin as the chiral selector for the 

resolution of dansylated tryptophan and phenylalanine with a pI difference between the 

complexes of only 0.05. Glukhovskiy et al. [63] also demonstrated high separation 

efficiency during isoelectric focusing with immobiline membranes (membrane with a pH) 

in an IsoPrime multi-compartment electrolyzer. However, the high costs of both the 

immobiline membranes and the ampholyte buffer used in these works are significant 
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drawbacks that hinder the scale up of this process. Moreover, the immobiline membranes 

have poor mechanical strength and a short life span, unsuitable for industrial applications 

[64]. We overcome these limitations by developing a free flow isoelectric focusing 

(FFIEF) process making use of cheaper and stronger polymeric membranes and 

phosphate buffer.  

 

In this work, the polymeric membranes were fabricated from sulfonated polyetherketone 

(SPEK) which carries a negative charge and the buffer used was sodium phosphate. 

Instead of using neutral chiral selectors such as cyclodextrins, human serum albumin 

(HSA) was mixed with the tryptophan in the feed chamber. The unbound tryptophan, 

which contained an enantiomeric excess of D-tryptophan, then migrated into the 

permeate chamber under the electric field, whereas the HSA-tryptophan complex 

remained in the feed chamber, in such a way that the enantio-resolution of tryptophan 

was achieved. Thus, different from the IEF processes presented by other researchers, this 

FFIEF process isolated not the HSA-L-tryptophan and HSA-D-tryptophan complexes, 

but the HSA-tryptophan complex and free tryptophan in the feed and permeation 

chambers, respectively.       

 

The feasibility of this process was demonstrated, with a separation factor greater than 4 

using a protein to tryptophan concentration ratio of 0.75. This performance is compared 

with and proven to be superior to other processes such as affinity dialysis (AD), affinity 

ultrafiltration (AUF) and separation permeation enhancement-affinity dialysis (SPE-AD) 

[65]. The separation behavior as affected by the number of buffer chambers and the chiral 
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selectors was investigated in this study. Overall, this new process is a potential candidate 

for chiral separations and worthy of further investigation.   

 

5.2. Experimental  

5.2.1. Materials 

The NEOSEPTA ion exchange membranes used at the anode (CMB C-0346) and cathode 

chambers (AHA A-0182) were purchased from Astom Corp, Japan. Udel P3500NT 

polysulfone (Psf) was provided by Solvay, Germany. For synthesis of SPEK polymer, 

2,2-Bis(4-hydroxy-3,5-dimethyl-phenyl) propane (TMBPA) and 4,4'-

difluorobenzophenone (DFBP) from Tokyo Kasei Kogyo Co. Ltd. and the 50% fuming 

sulfuric acid, dimethylsulfoxide from Wako Junyaku Kogyo Co. Ltd. were used as 

received. Sodium hydroxide pellets, human serum albumin (HSA) and bovine serum 

albumin (BSA) from Sigma Aldrich, disodium hydrogen phosphate, monosodium 

hydrogen phosphate and N-methyl-2-pyrrolidone( NMP) from Merck, phosphoric acid 

and isopropanol (IPA) from TEDIA, α-cyclodextrin from Cyclolab and DL-tryptophan 

from Alfa Aesar, were all reagent grade and used without further purification. For high 

performance liquid chromatography (HPLC) and Capillary Electrophoresis (CE) tests, the 

HPLC grade ethanol from TEDIA and ultra pure water from a ‘Milli-Q plus 185’ pure 

water system were used.  

 

5.2.2. Synthesis of SPEK polymer 

The SPEK polymer was synthesized by Mitsui Chemicals using a method similar to that 

described by Xiao et al [66]. In a five-necked reactor equipped with a nitrogen-
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introducing tube, a thermometer, a reflux condenser and a stirrer, a mixture containing 

480g of DMSO, 120g of toluene, 37.16 g (0.088 mol) of 5,5'-carbonylbis(2-

fluorobenzene sulfonic acid) sodium salt, 28.80 g (0.132 mol) of DFBP, 62.57 g (0.220 

mol) of TMPBA and 36.49 g (0.264 mol) of potassium carbonate was charged, heated to, 

and maintained at 140 ℃ with stirring for 8 h under a nitrogen atmosphere to remove 

water generated by the system. The reaction mixture was then distilled for 2 h to remove 

toluene and diluted by 180 g of NMP after cooling to room temperature. The polymer 

powder was precipitated by discharging the solution into 2000 g of methanol, then 

filtered and washed with water. 109.1g (yield of 91%) of polymer product was collected 

after drying at 80℃ for 10 h and 150 ℃ for 8 h under nitrogen atmosphere. The inherent 

viscosity of the polymer in a solvent (NMP/DMSO) was 82 cm3 g-1, measured at a 

concentration of 0.005 g cm-3 at 35 ℃. 

 

5.2.3. Membrane fabrication  

A polymer solution was prepared by mixing 11.5 wt% SPEK and 11.5 wt% Psf in NMP. 

After degassing overnight, the solution was cast on a non-woven cloth with a casting 

knife of thickness 250 μm. The as-cast membranes were immersed immediately into a 

pure IPA coagulant bath for 15 min and then in pure water overnight. The prepared 

membranes were then post-treated with 0.5 M HCl and thoroughly rinsed with water 

before use.  

   

5.2.4. Membrane characterization 
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The membrane morphology was observed with a JSM-6700F Field Emission Scanning 

Electron Microscope (FESEM) with a resolution of 1.0 nm at 5.0 kV. The membrane 

samples were dried in a freeze drier, fractured in the liquid nitrogen (the non-woven part 

was cut with a blade) and coated with platinum before the FESEM study.  

 

The membrane pore size distribution was characterized by the solute rejection method 

[67]. A series of 200 ppm aqueous solutions were prepared from PEG of molecular 

weight 35 kD and PEO of molecular weights 100, 200 and 300 kD, respectively. Under a 

pressure of 4.0 bars, the concentrations of retentate (Cf) and permeate (Cp) were 

determined with a Shimadzu ASI-5000A total organic analyzer (TOC). The solute 

rejection (R) was calculated using the following equation:  

1001 ×⎟
⎠
⎞⎜

⎝
⎛ −= Cf

CpR                                                    (1) 

A straight line was obtained from the log-normal probability plot of R against rs (m), the 

Stokes radii of the solutes which were calculated based on the average molecular weights 

M (kg/mol) to be: 

557.0121073.16 Mrs ××= −                                               (2) 

and     587.0121044.10 Mrs ××= −                                                (3)  

for PEO and PEG, respectively. The mean effective pore radius μp was determined at 

R=50%, the geometric standard deviation σp was the ratio of rs at R = 84.13% and 50% 

and the molecular weight cut off (MWCO) was obtained at R = 90%. The pore size (dp) 

distribution curve was generated with the following probability density function based on 

the values of μp and σp: 
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The membrane surface charge property was measured by a SurPASS electrokinetic 

analyzer from Anton Paar GmbH, Australia. The membrane was first immersed in a 1M 

NaCl solution overnight prior to the test, then its zeta potential was measured accordingly 

in the pH range of 2.2 ~ 9.7 by manual titration to cover the whole range of pH (4 ~ 8) in 

the FFIEF study.  

 

The ion exchange capacity (IEC) and the degree of sulfonation (DS) were calculated 

from titration results. A piece of the SPEK membrane was first soaked in phosphoric acid 

for 24 h, after rinsing repeatedly with pure water, it was immersed in pure water for 

another 24 h to remove the residual acid. The membrane was then immersed into 25 ml 

of 0.01 M NaOH for 24 h; the remaining NaOH was titrated against phosphoric acid to 

calculate the amount of NaOH reacted with the membrane. The DS and IEC were then 

calculated with the following equations, modified from Guan et al [68]:    

%100
V0.08M-W

V0.196MDS ×
•

•
=                                            (5)  

   
DS81196

DS1000IEC
×+

×
=                                                         (6) 

where W, M and V are the mass of SPEK (g), concentration of NaOH (mol/L) and 

volume of NaOH (ml) reacted with the SPEK, respectively; the 196 and 81 are the 

molecular weights of the PEK repeat unit and the -SO3H, respectively.  
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The IEC values of the commercial anion exchange and cation membranes were estimated 

to be 88.9 meq/ m2 and 55.6 meq/ m2, respectively, by performing a similar experiment 

but applying a different equation as:  

A
VMIEC •

=                                                                (7) 

where A is the membrane area (0.0009 m2). It should be noted that the IECs of SPEK 

calculated with both equation 6 and 7 (by changing the area to sample mass) are the same.  

  

5.2.5. Chiral separation in the FFIEF system 

The enantio-resolution of racemic tryptophan was conducted using the four-chamber 

FFIEF system shown in Figure 5.1 & 5.2. The cathode chamber, bounded by an anion 

exchange membrane, was filled with 0.2 M NaOH and the anode chamber, isolated by an 

cation exchange membrane, was filled with 0.1 M H3PO4. The solution chambers 1 to 4, 

separated by the as-prepared SPEK ion exchange membranes, were injected with 

phosphate buffer solutions of 50 mM concentration and initial pH 4, 4.8, 5.8 and 7.5, 

respectively. The solutions were circulated using a cartridge pump (Masterflex® I/S 

model 7519-06). With the aid of a computer controlled Metrohm auto titrating system, 

the pH values were monitored and adjusted by titrating against the two chambers 1 and 4 

with 0.3 M NaOH and 0.2 M phosphoric acid, respectively. A separation process in a 

two-chamber system was also carried out in a similar manner except that the titrants were 

injected directly to the feed and permeate chambers.    
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Figure 5.1. Schematic diagram of FFIEF setup 

 

 
Figure 5.2. The detail representation of the FFIEF cell 

 

The feed solution in chamber 2 was 0.1 mM racemic tryptophan mixed with a certain 

concentration of proteins (HSA & BSA). Under the electric fields generated by direct 

currents of various magnitudes, between the two circular electrodes made of nickel plates 
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located in the anode and cathode chambers, the free tryptophan migrated into chamber 3 

across the SPEK membrane while the protein-tryptophan complexes were retained by the 

membrane due to both size and charge effects. A UV-Vis spectrometer was also 

employed to monitor the general concentration variation in the chamber 3. For the 

accurate measurement of concentrations of tryptophan, 200 μl of samples were taken 

from the feed solution periodically and analyzed by Capillary Electrophoresis (P/ACE 

MDQ capillary electrophoresis system, Beckman). The CE buffer was a 50 mM α-

cyclodextrin solution of pH 2.2 generated with 20 mM phosphate. The sample injection 

time was 7.5 s at 0.8 psi (5516 Pa) and the forward separating voltage was 15 ~ 25 kV. 

An Agilent 1200 HPLC equipped with a Chirobiotic T from Astec Inc was also used for 

the measurement with the following analytical conditions: a 20:80 wt% ethanol:water 

mixture mobile phase at a flow rate of 0.8 ml/min, column temperature of 298 K and UV 

detection at 214 nm.  

 

5.2.6. Control experiments of affinity dialysis & affinity ultrafiltration  

In affinity dialysis, a mixture of tryptophan and protein was injected into the feed 

chamber of a dialysis cell similar to that presented in our previous work [69], while the 

permeate chamber was filled with buffer of the same concentration. Samples were 

withdrawn from the permeate chamber periodically and analyzed using HPLC.  The SPE-

AD experiment was performed in [65]: two dialysis cells were connected in series; the 

racemic feed and the HSA were injected into the first chamber and the middle chambers 

(2nd & 3rd), respectively. The tryptophan thus diffused through the protein chambers with 

different rates to the 4th chamber, where samples were collected and analyzed in CE. For 
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affinity ultrafiltration, a trans-membrane pressure of 4 bars was employed as the driving 

force instead of just the concentration gradient as in dialysis. The schematic diagram of 

the setup is shown in Figure 3. The filtrate collected periodically from the outlet was 

analyzed with HPLC as well.  

 

5.3. Result and discussion  

5.3.1. Electric properties of the membranes  

The DS and IEC values of the SPEK material are calculated to be 11.2% and 0.55 meq/g, 

respectively, suggesting the successful sulfonation of the PEK polymer, which is further 

proven by the zeta potential measurement of the fabricated SPEK membrane as shown in 

Figure 5.3, since the –SO3H group contributes the negative charges. By increasing the pH, 

more –SO3H groups are ionized to become –SO3
-, hence a more negative zeta potential is 

measured. The curve reaches a plateau after pH 7 when the sulfonyl groups are almost 

fully ionized.   

 
Figure 5.3. The zeta potential of the SPEK membranes 

 

5.3.2. Comparison between FFIEF systems with two and four chambers 
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The pH stabilities of the two systems with two and four chambers are compared using the 

time dependent pH in the various chambers shown in Figure 5.4. Neither system shows 

perfectly horizontal straight lines; however, poorer pH stability in the two-chamber 

system was still observed, as evidenced by the significant decrease in the feed chamber 

pH. Two causes may account for this phenomenon. First, the influx of H+ from the anode 

chamber reduced the pH, which overpowered the pH increment by the NaOH titrant for 

the two chamber system; this was solved by using more concentrated NaOH such that the 

H+ from the anode chamber can be neutralized in time. Another factor was the time lag 

inherent in the system design: the titrant was injected into the reservoir (R1 in Figure 1) 

first before it reached the buffer chamber, such that the total time for thorough mixing 

was prolonged. This may have resulted in addition of either excess or insufficient titrant 

if the titrant was concentrated or dilute, respectively. Thus, coupled with auto-titration, 

manual adjustment was also employed occasionally in the subsequent runs.    
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Figure 5.4. The pH changes with time in (a) the two chambers FFIEF and (b) the four 

chambers system 
 

For results obtained with the four-chamber system shown in Figure 5.4(b), the pH of 

chamber 2 (feed chamber) was kept stable at around 4.8~5.0, and that of chamber 4 at 

7.3~7.5; however, the pH in chamber 3 slowly increased and that of chamber 1 fluctuated 

with time. The instability in chamber 1 was mostly due to the limitation of the equipment 

as discussed above and the slight increment in pH in chamber 3 might have been due to 

the influx of small amount of hydroxide ions originating from the cathode chamber. Such 
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small disturbances in pH gradient can apparently be tolerated by the system since a 

steady trans-membrane flux of tryptophan was recorded by the UV spectroscopy.  

 

The two-chamber system was not only poorer in pH stability, but also less productive as 

the tryptophan flux across the membrane was much lower compared to that in the four-

chamber system. The L-tryptophan and D-tryptophan fluxes calculated using a method 

described in section 2.3 were 0.48 x10-7 mol cm-2s-1 and 1.56x10-7 mol cm-2s-1, 

respectively, about 3 times lower than those obtained with the four-chamber system 

under the same driving force of 80mA operating current (Figure 5.5). The main factor 

responsible for the low fluxes was a decrease in electro-osmotic flow, as a result of 

increasing ionic strength in the feed chamber due to the continuous titration of the H+ 

migrating from the anode chamber; such an effect has been observed in capillary 

electrophoresis (CE) [70-71], the transport characteristics of which are closely analogous  

to those of membrane pores. In the four-chamber system, the titrations were done in 

chambers 1 and 4 such that the ionic strengths of the solutions in the feed and permeate 

chambers were less affected, and thus so was the ionic strength in the pores of the 

membrane partitioning these two chambers. Hence, the four-chamber system resulted in 

higher fluxes and was used in the subsequent tests. 
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Figure 5.5. The variation of permeation fluxes and separation factors with operating 

current in FFIEF with HSA concentrations of 0.0375mM (top) and 0.075mM 
(bottom). 

 

5.3.3. The separation behavior of FFIEF 

The separation behavior of FFIEF was scrutinized in depth by investigating the enantio-

resolution performance changes with varying operating current and protein:tryptophan 

ratio. The change in enantiomeric excess with time was also studied. The performance 

was characterized in terms of two metrics, permeation flux and separation factor, the 

calculation methods for which we presented in section 2.3 & 2.4. 

 

The driving force is often an important factor determining the performance of a 

membrane system. Usually, a large driving force (concentration gradient, pressure, 

voltage, etc) gives higher permeability and lower selectivity. In this section, the effect of 
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the driving force in FFIEF, the operating current, on the separation of tryptophan were 

investigated. As expected, the permeation fluxes of both enantiomers increased with 

operating current as shown in Figure 5.5, in accordance with the transport behavior 

described by Ennis et al. [72] as captured by the following equation:  

pA

ii

V
IC

dt
dC

λ
μ

=                                                             (8) 

where Ci, μ, t, I, VA and λp denote the tryptophan concentration in the feed, mobility, time, 

operating current, volume of feed chamber and conductivity of the fluid in membrane 

pores, respectively. It is clear that an operating current of high magnitude resulted in a 

more rapid change in tryptophan concentration, i.e. in a higher flux. According to this 

relationship, even higher fluxes would be achievable if the system operated with currents 

larger than 120mA. However, the joule heating effect, represented by Joule’s first law Q 

= I2·R·t (where Q, I, R, t are the heat, current, resistance and time, respectively), becomes 

significant with currents above 120mA resulting in an elevated buffer temperature above 

300 K, which has two negative impacts on separation. First, as shown by Yang and Hage 

[35], decreasing trends in equilibrium constants are observed for the binding of HSA to 

both L-tryptophan and D-tryptophan with increasing temperature from 277 to 318 K, 

where the decrease for L-tryptophan binding constants is to a greater extent, such that the 

selectivity of HSA is reduced. Second, the protein may denature at these higher 

temperatures. Hence, the highest current applied in these experiments was 120mA.     

  

It is interesting to note in Figure 5.5 that the separation factor is not affected by a high 

operating current and only the permeation fluxes are enhanced, due to the nature of this 

affinity separation process, which is different from processes using chiral selective 
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membranes. In such processes, the membrane achieves separation by either binding to 

one enantiomer or rejecting the other, a large driving force may decrease the separation 

factor by either disassociating the binding of the preferentially bound enantiomer or 

forcing the rejected enantiomer through the membrane. However, in the FFIEF system, 

the ratio of free L-tryptophan to D-tryptophan in the feed chamber is invariant with 

respect to the current applied, and the SPEK membrane shows no preferential interaction 

with either enantiomer, so that the ratio of L-tryptophan to D-tryptophan permeate 

through the membrane is unaffected. The separation factor is therefore almost constant 

with increasing current.  

 

The effect of HSA:tryptophan concentration ratio was also determined in this system. It 

has been shown in our previous work [65] that the selectivity is enhanced by increasing 

the HSA concentration while keeping a constant tryptophan concentration. Similar 

behavior was also observed in the FFIEF process: the separation factor increased from 

about 2.3 to 4.3 when the HSA concentration doubled from 0.0375mM. With a higher 

concentration of HSA, more HSA-tryptophan complexes were formed according to the 

two equations below:   

tryptryp L-HSA  L HSA 1⎯→←+ K                                             (A) 

tryptryp D-HSA  D HSA 2⎯→←+ K                                            (B) 

where K1 and K2 are the equilibrium constants and K1 > K2. Due to its preferential 

binding to HSA, the free L-tryptophan concentration in the feed chamber was reduced to 

a greater extent than was the D-tryptophan concentration. Hence, the trans-membrane 

flux of L-tryptophan was reduced with increasing HSA concentration, while that of D-
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tryptophan was less affected, as shown in Figure 5.6. As a result, the separation factor 

was duly enhanced.  

 
Figure  5.6. The changes of separation factor and flux with the HSA: tryptophan ratio. 

 

Another noteworthy phenomenon observed in the FFIEF processes is the slow reduction, 

the degree to which varied in different experiments, in the enantiomeric excess of the 

permeated tryptophan with time as shown in Figure 5.7. This is partly due to adsorption 

of the biomolecules on the ion exchange membranes. It has been shown that the 

zwitterionic form of the amino acids interacts with the membrane and compromises its 

conductivity [73], as proven by the observation of an increase in voltage during the 

experiment while keeping a constant operating current. Effectively only trace amounts of 

L-tryptophan permeated through the membrane at the beginning. Another factor is the 

slow migration of the HSA-tryptophan complexes into the permeate chamber over long 

experimental times. As these complexes contain higher concentrations of L-tryptophan 

due to stronger binding, the overall enantiomeric excess of D-tryptophan is reduced. To 

solve this problem, ion exchange membranes with optimized pore sizes can be designed, 

which will be discussed in future work.    
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Figure 5.7. The change of ee% with time of one typical experiment conditions: feed 

solution of 0.075mM HSA and 0.1mM tryptophan, operating current of 80mA. 
 

5.3.4. Separation performance of FFIEF compared to other processes 

The enantio-resolution efficiency of the FFIEF process is compared with other processes 

in this section. Using the membranes prepared in the same batch and under exactly the 

same experimental conditions, chiral separation of tryptophan was carried out in FFIEF, 

AD and AUF. The experimental results, together with the values obtained from SPE-AD 

using the same protein concentration [65], are listed in Table 5.1 from which it is clear 

that the best performance is achieved by the FFIEF process.   

Processes Driving force 
Flux (10-7 molcm-2s-1) Separation 

factor L-try D-try 

SPE-AD Concentration 
gradient 1.25 4.64 3.69 

IEF 120mA 2.81 12.26 4.36 

AD Concentration 
gradient 7.56 8.38 1.11 

AUF 4 bars 289 297 1.03 
Table 5.1. Comparison of chiral separation performances of various membrane processes 

with the same protein concentration of 0.075mM. 
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Both AD and AUF give separation factors close to unity; these low values are mostly 

attributable to the lower intrinsic selectivity related to low buffer pH. This phenomenon 

has been reported by many researchers [35, 74]; the optimum separation performance 

was achieved at a high pH of 8.0 ~ 9.0, whereas the separation factor at pH lower than 

5.0 approached unity. Moreover, the binding constants for both L-tryptophan and D-

tryptophan to HSA are also small at lower pH. Thus relatively high concentrations of 

both free L-tryptophan and D-tryptophan are present in the feed chamber, resulting in the 

lower separation factors and higher permeation fluxes observed in AD and AUF. The 

high flux of AUF was mainly due to the direct transport of feed solution across the 

membrane with poor retention under high pressure, different from the diffusion 

mechanism in AD. Moreover, as the hydrodynamic radius of  HSA (7-8nm) [75] was 

smaller than some of the membrane pores, the distribution of which is plotted in Figure 

5.8, the protein was not rejected efficiently in this process; Figure 5.9(a) shows that a 

high concentration of HSA was detected in the permeate chamber. This further decreased 

the enantiomeric excess of D-tryptophan in the permeate chamber, and an even lower 

separation factor than that for AD was obtained.   
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Figure 5.8. (top) Pore size probability density plot of the SPEK membrane; (bottom) 

FESEM images of the ion exchange membrane: top surface (left) and cross 
section (right). 

 

The permeation fluxes in the FFIEF process were more than double those observed in 

SPE-AD. This was to be expected as the transport of the tryptophan was enhanced under 

an electric field. Moreover, the FFIEF even demonstrated a slightly higher separation 

factor than SPE-AD, despite the fact that the latter operates at a much higher pH of 8.6 

and by right should yield better separation results. This is mainly due to the penetration 

and adsorption of the HSA inside the membranes driven by the electric field. Through a 

second stage binding between the tryptophan and HSA in a confined space (membrane 

pores in this case), such that the L-tryptophan is preferentially bound inside the 

membrane and experiences a larger transport resistance, the enantioselectivity can be 

greatly enhanced, as discussed by Wang et al. [55]. Another possibility is that the 

unfolding of the HSA at low pH that loosened the stereo structure at the binding site may 

be intervened by the electric field. However, the detailed mechanism is still unknown and 

need further investigations.  
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Figure 9. The electropherograms of the permeate solutions from (a) AUF at 10 minutes; 

(b) FFIEF with 0.0375mM BSA at 5 hours and (c) FFIEF with 0.0375 HSA at 5 
hours. 

 

Hence, the FFIEF process outperforms other processes as it demonstrates the highest 

selectivity with the same concentration of chiral selectors used, and is the most tolerant to 

relatively larger pore sizes.  

 

5.3.5. Comparison of separation performance using HSA and BSA 

It would be desirable to substitute bovine serum albumin (BSA) for HSA in this FFIEF 

process since it has the same amino acid sequence but much lower cost, provided it did 

not adversely affect the separation performance. However, the resolution efficiency on 

racemic tryptophan using BSA was unsatisfactory; higher fluxes but lower separation 
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factors in comparison with the results of HSA were obtained as shown in Table 5.2. One 

factor accounting for this poor separation efficiency with BSA is its lower intrinsic 

selectivity [76], which resulted in higher concentrations of free tryptophan present in the 

feed chamber with a smaller ratio of free D-tryptophan to L-tryptophan than when HSA 

was used as the chiral selector, such that the fluxes were enhanced but the separation 

factor of D-tryptophan over L-tryptophan was compromised.      

Current Protein conc 
/mM 

Tryp conc 
/mM 

Flux (10-7 molcm-2s-1) Separation 
factor 

L-try D-try 

80mA 
0.0375(BSA) 0.1 5.86 11.3 1.9 

0.0375 0.1 1.52 4.31 2.8 

100mA 

0.0375(BSA) 0.1 4.87 9.76 2.0 

0.0375 0.1 1.33 4.81 3.6 

0.075(BSA) 0.1 8.3 12.0 1.4 

0.075 0.1 1.04 7.47 7.1 
Table 5.2. The chiral separation performance of BSA and HSA. 

 

Another important factor is the smaller hydrodynamic radius of BSA compared to that of 

HSA. As briefly mentioned in previous sections, the protein-tryptophan complexes can 

pass through the membranes under high pressures. It was also found that the protein 

complexes, though mostly retained by the negatively charged membranes, do leak slowly 

across the membrane after some hours under the electric field since both the 

hydrodynamic radii of BSA (4-5nm) [77] and HSA (7-8nm) [75] are smaller than the 

membrane pores. With a smaller radius, a larger number of BSA complexes passed into 

the permeate chamber as evidenced by the larger peak for BSA in Figure 5.9 (b) and (c) 

and the enantiomeric excess of D-tryptophan was more strongly compromised.  
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5.4. Conclusion  

The FFIEF process using SPEK membranes has been applied in the enantio-resolution of 

racemic tryptophan. A four-chamber system was used to investigate the chiral separation 

behavior of FFIEF with HSA as the chiral selector. The separation data are encouraging, 

and are superior to those obtained for processes such as AD, AUF and SPE-AD with key 

parameters unvaried, i.e. using the same concentrations of chiral selectors. Although a 

few drawbacks such as long term stability have surfaced, this process is nonetheless a 

potential new candidate for membrane chiral separation as these issues can be resolved 

by optimizing the experimental parameters through fabricating new membranes and 

changing buffer concentrations and chiral selectors, etc, which will be discussed in future 

works.      

 

5.5. Acknowledgements 

We thank the Singapore-MIT Alliance and the National University of Singapore (Grant 

No.R-279-000-249-646) for funding this project. Special thanks are also due to Dr. 

Natalia Widjojo for her invaluable help.  

 

 

 



86 
 

Chapter 6. The exploration of the nature of the driving forces on the enantiomer 

resolution performance 

6. 1. Introduction 

Cellulose acetate (CA) is the first material for membrane fabrication by phase inversion 

technology in 1960s [78], and has wide application in water treatment and purification 

via various membrane processes, i.e. ultrafiltration, nanofiltration, reverse osmosis and 

forward osmosis [79-82], etc. And with suitable functionalization [83] and molecular 

imprinting [84] treatment, it has also been used for chiral separation. In this work, instead 

of using chiral recognition molecules such as proteins or cyclodextrins, a common 

polymer, chitosan (CS) which shows enantioselective absorption of amino acid resolution 

[39-40], is for the first time employed in the functionalization of the cellulose acetate 

membranes. This replacement brings the advantages of low material cost, low toxicity 

comparing with crown ether for instance, and better stability considering the denaturation 

involved in biomolecules such as enzymes and albumin proteins.   

The enantiomeric resolution of tryptophan using the CS functionalized CA membranes 

have been carried out in three systems utilizing different driving forces, namely electric 

field, concentration gradient and hydraulic pressure. The highest enantiomeric excess 

(ee%) above 90% is obtained in the concentration driven process and interestingly, a 

permeating solution with a reversed ee% (L-trp rich) of -19% is resulted in the electric 

field driven process. Similar behavior is also observed in the resolution of phenylalanine. 

The effects of membrane fabrication protocols, functionalization and other experimental 

conditions are also investigated in this study. Overall, we have proven the feasibility of 

the as-prepared membrane in enantiomeric resolution and understand its different 
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separation behaviors under various driving forces, which can contribute significantly to 

the current chiral separation studies.   

 

6.2. Experimental  

6.2.1. Materials 

The dense ion exchange membranes used at the anode and cathode chambers were 

purchased from Astom, Japan. The cellulose acetate (CA-389-30) and chitosan (CS) 

polymer were purchased from Eastman Chemical Company and Sigma, respectively. 

Sodium hydroxide pellet and glutaraldehyde from Sigma Aldrich, disodium hydrogen 

phosphate, monosodium hydrogen phosphate, and formamide from Merck, acetone, 

phosphoric acid and acetic acid from TEDIA, cyanuric chloride from Tokyo Kasei 

Kogyo Co. Ltd and DL-tryptophan from Alfa Aesar were all reagent grade and used 

without further purification. For analysis done with the high performance liquid 

chromatography (HPLC), the HPLC grade ethanol from TEDIA and ultra pure water 

from a ‘Milli-Q plus 185’ pure water system were used.  

 

6.2.2. Membrane fabrication  

A polymer dope solution was prepared by dissolving 23 wt% CA in pure acetone. It was 

then cast on a non-woven cloth with a casting knife of thickness 250 μm after degassing 

overnight. The as-cast membrane was allowed for solvent evaporation for a short time 

before immersing into the pure water coagulation bath. The membrane was then washed 

several times with and stored in pure water before further post-treatments.  
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6.2.3. Membrane functionalization 

The CA membrane was immersed in a 3 wt% cyanuric chloride solution (solvent is 50:50 

xylene-dioxane) for 40 minutes and then in 2.5wt% chitosan aqueous solution for 20 

hours. After rinsing with a 0.1M acetic acid solution, the grafted chitosan was then 

crosslinked with a 2.5% glutaraldehyde solution. All reactions were carried out at room 

temperature.   

 

6.2.4. Membrane characterization 

The element ratio on the membrane surface was analyzed by an X-ray photoelectron 

spectrometer (AXIS His spectrometer from Kratos Analytical Ltd, England) using a 

monochromatized Al Kα X-ray source (1486.6 eV photon) at a constant dwell time of 

100ns and a pass energy of 40 eV. The anode voltage and current were 15kV and 10mA 

respectively while the pressure in the analysis chamber was kept lower than 5.0e-8 Torr. 

The photoelectron takeoff angle was 90° with respect to sample surface and the X-ray 

penetration depth was about 5-7nm.    

The surface morphology of the membranes was analyzed in a Nanoscope IIIa AFM from 

the Digital Instruments Inc. For each membrane, an area of 1 µm × 1 µm was scanned 

using the tapping mode at a rate of 1 Hz. The membrane morphology was also observed 

with a JEOL JSM-5600LV Scanning Electron Microscope (SEM) prior to which the 

membrane samples were first dried in a freeze drier, fractured in the liquid nitrogen (the 

non-woven part was cut with a blade) and then coated with platinum using a JEOL JFC-

1300 Platinum coater.  
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6.2.5. Enantiomer resolution tests 

The enantiomeric resolution of tryptophan was carried out in three setups with different 

driving forces, namely pressure driven, concentration gradient driven and electric field 

driven processes. In the pressure driven mode, a dead-end static permeation cell as shown 

in Figure 6.1 was employed. A pressure of 8 bars was supplied from a compressed air 

cylinder to drive the racemic mixture of tryptophan in the feed chamber across the 

membrane located at the bottom of the cell; the permeate solution at the outlet was 

collected and analyzed in an Agilent 1200 HPLC. A Chirobiotic T HPLC column from 

Astec Inc was used in the measurement with the following analytical conditions: a mobile 

phase containing 20:80 wt% ethanol:water mixture at a flow rate of 0.8ml/min, a column 

temperature of 298K and the UV detection at 214nm.  

 
Figure 6.1. the schematic diagram of the pressure driven process. 

 

For the concentration gradient driven process, the racemic tryptophan feed and a buffer of 

the same concentration were injected into the feed and permeate chambers of a 

permeation cell shown in [69]. Solutions in both chambers were stirred with Teflon 
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impellers connected to an overhead stirrer (CAT R18, M. Zipperer GmbH, Staufen, 

Germany) at 200 rpm. Samples of 100 µl were withdrawn from the permeate chamber 

periodically and analyzed in HPLC as well. 

A free flow iso-electric focusing (FFIEF) system as shown in Figure 2 was employed in 

the performance test of the electric driven process. The anode chamber and cathode 

chambers were filled with 0.1M H3PO4 and 0.2M NaOH solutions, respectively; while 

the solution chambers 1 and 2, separated by the functionalized cellulose acetate 

membranes with the non-woven surface facing the cathode, were filled with 50 mM 

phosphate buffer solutions with the initial pHs of 3 and 8 respectively. The racemic 

tryptophan feed was injected in the chamber 1. Both buffer solutions were circulated with 

a cartridge pump (Masterflex® I/S model 7519-06) and the positively charged molecules 

were driven by the electric field generated with a Bio-Rad power Pac HV 5000. The 

solution pH values were monitored and adjusted with the aid of a computer controlled 

Metrohm auto titrating system with a 0.3M NaOH and a 0.2M phosphoric acid as the 

titrants, respectively. Samples were collected from the chamber 2 periodically and 

analyzed in HPLC as well. The permeation fluxes j, separation factor SP and 

enantiomeric excess ee% were calculated using the following equations:  

A t
VC  j i

i=                                                              (1) 
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where the C, V, A and t denote the concentrations in the product, volume of the permeate 

chamber, membrane effective area and experimental time, and the substrate D and L 

denote the D-trp and L-trp.  

 
Figure 6.2. the schematic diagram of the electric driven process. * CEM: cation exchange 

membrane; AEM: anion exchange membrane 
 

6.2.6. Computer experiments  

The total minimized energy of each molecular structure was calculated with the aid of the 

Material Studio 4.3 Visualizer software package from Accelrys Inc. First, the tryptophan 

molecules, the copper complexes and the chitosan polymer chains were constructed with 

the builder visualizer directly and optimized by the Discovery module with the pcff force 

field to get the equilibrium state structures at minimized energies. Second, an amorphous 

cell comprising of chitosan polymer chains and free tryptophan molecules were generated 
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using the Amorphous module to simulate the interactions between L,D-tryptophan and 

chitosan; the minimized energies were then calculated by Discovery module in pcff force 

field.  

 

6.3. Result and discussion  

6.3.1. Membrane characterization  

The functionalization of chitosan on the cellulose acetate membrane surface is proven by 

the XPS analysis and the results are tabulated in Table 6.1. The nitrogen atomic 

percentage content of the unmodified CA membrane analyzed by XPS is 0 since there is 

not any nitrogen atom in the CA polymer chain. However, the atomic percentage ratio 

increases to 0.5 after the membrane reacts with cyanuric chloride, the molecular structure 

of which has three nitrogen atoms in its aromatic ring. This increment in nitrogen content 

shows that the cyanuric chloride has been attached to the membrane surface. Further 

increase in nitrogen content to 0.9 has been observed on the membranes after chitosan 

functionalization, indicating the successful grafting of chitosan polymers onto the 

membrane surface as the chitosan also contains nitrogen atom. The increase in carbon 

and the decrease in oxygen contents are mainly due to the glutaraldehyde in the post 

treatment which has a high carbon to oxygen ratio.   

Membrane C% O% N% 

CA23- unmodified 65.1 34.9 0 

CA23- *CC activated 65.9 33.6 0.5 

CA23- chitosan modified 72.6 26.5 0.9 
Table 6.1. The element ratio on the membrane surface by XPS analysis. 

*CC = cyanuric chloride 
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The changes in the membrane morphology have been demonstrated by the AFM 

observation shown in Figure 6.3.  The membrane surface becomes rougher after reaction 

with cyanuric chloride and regular nodules are observed after chitosan functionalization. 

Thus the thickness of the chitosan layer covering the membrane surface is not uniform 

throughout, which is shown more clearly by a larger picture from the SEM observation in 

Figure 6.3 (d). It can be concluded from these observations that the chitosan aggregates 

function more as an absorber to tryptophan than a uniform membrane that controls both 

the adsorption and diffusion of the tryptophan. Thus the enantiomeric separation is 

mainly achieved by the higher absorption of the more strongly bound enantiomer (L-trp) 

at the membrane surface, which results in the decrease in the free L-trp concentration in 

the feed chamber and therefore the lower transmembrane flux of L-trp than that of D-trp.   
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Figure 6.3. The membrane surface morphology analysis by AFM (a) and (b) cellulose 
acetate membrane before and after chitosan functionalization, respectively; (c) and (d) 
SEM picture of membranes before and after chitosan functionalization, respectively 

 

6.3.2. The comparison of different driving forces in enantiomeric separation  

The representative results by the separation processes employing various driving forces 

are depicted in Figure 6.4. Significant differences in L-trp and D-trp concentrations in the 

permeate solution are observed in both the pressure and concentration gradient driven 

processes. The most interesting phenomenon observed is the reversed selectivity: the 

permeate solutions are D-trp rich for the pressure driven and concentration gradient 

driven processes, but L-trp rich in electric field driven process. It has been discussed in 

literature [40] that the chitosan selectively binds to L-trp, such that the concentration of 
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L-trp near the membrane surface is suppressed by binding with chitosan and results in an 

enantiomeric excess of D-trp diffusing through the cellulose acetate membrane. Thus the 

permeate solution should be rich in D-trp and a positive enantiomeric excess value should 

be obtained for all the three processes. However, the negative enantiomeric excess 

obtained in the electric field driven process suggests a more complicated situation in this 

process.  

 
Figure 6.4. The chromatograms of the permeate solution collected in processes utilizing 
various driving forces. Membranes used are CA23-0.5 with feed concentrations of 0.5 

mM racemic tryptophan. 
 

Molecular simulations using material studio are employed to explain this phenomenon. 

First, two cells comprising of the chitosan polymer chain and the single L-trp and D-trp 
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and the tryptophan are generated using the inbuilt module ‘amorphous cell’, the 

equilibrium state are then calculated by simulating the minimized energy. The energies 

calculated correspond to the bonding between the chitosan and tryptophan: the lower the 

value, the stronger the interactions and the larger tendency to be retained by the 

membrane. As shown in Table 6.2, the minimized energy of L-trp with chitosan is lower, 

indicating the selective interaction between L-trp and chitosan, hence L-trp is more likely 

to be retained by the membrane, resulting in a D-trp rich (positive ee %) permeate in the 

pressure driven and concentration driven processes. However, in the electric field driven 

process, the tryptophan molecules also experience the electric field, other than the 

interaction with the chitosan polymer chains.  As discussed by Bielski and Tencer [29], a 

force is thus exerted on and tends to align the tryptophan molecules in the direction of the 

electric field, with the amino end pointing towards the cathode. The interaction between 

the chitosan and the tryptophan is therefore disturbed by the electric field. Instead of 

directly simulate this effect (due to the limitation of our current software), we 

investigated the extreme case where the electric field is strong enough to align the 

tryptophan molecules completely by setting the amino end of the tryptophan in the 

amorphous cells in one direction and calculate the minimized energies. Comparable 

minimized energies for L-trp and D-trp are obtained, suggesting the electric field can 

decrease the L-trp binding selectivity of the chitosan polymer, since the enantiomers are 

no longer in their most appropriate positions for interaction with chitosan. Fig. 6.5 shows 

the simulated amorphous cells of D-trp with chitosan without external disturbance (left) 

and with the D-trp oriented in the extreme case (right).    
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Figure 6.5. The amorphous cell structures of chitosan polymer chains with randomly 

oriented D-trp (left) and oriented D-trp (right) in Material Studio. 
 

Complex Total energy 
(kcal/mol) Complex Total energy 

(kcal/mol)

CS-D-trp (random) 2879 CS-D-trp (oriented) 1267 

CS-L-trp (random) 2226 CS-L-trp (oriented) 1278 

 
Table 6.2. The simulated total energy of chitosan-tryptophan amorphous cells and copper 

complexes. 
 

Another factor that can possibly affect the selectivity is the trace amount of copper ions 

present in the buffer chambers that originated from the electrolysis of the copper at the 

electrode connections. Wang et al [39] investigated the stability of the complexes formed 

by the copper ions and tryptophan and found the stability is in the order of Cu-D-trp < 

Cu-L-trp < Cu-DL-trp. It is argued in [39] that at high copper ion concentrations, the 

most stable complex Cu-DL-trp is formed and the enantioselectivity is not affected; 

however, at low copper ion concentrations, the Cu-L-trp is more preferentially formed. 

The initial copper ion concentration is zero and slowly builds up with time, and thus the 

majority of the complexes present in the feed chamber is Cu-L-trp in the first few hours 
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of the experiment. As this complex carries higher positive charge and is subjected to a 

larger electric driving force, higher diffusion rate of L-trp is resulted so that the permeate 

solution becomes L-trp rich. Hence, a negative ee% is obtained in the electric field 

driving process, different from the other two processes.  

We also calculated the minimized energies of the copper complexes and the chitosan 

polymer, using the similar simulation method described above, where the tryptophan 

molecules are changed to their complexes respectively. The minimized energy of CS-Cu-

L-trp is found to be 6163 kcal/mol, lower than that of CS-Cu-D-trp which is 6845 

kcal/mol, this founding further substantiate [39] that Cu-L-trp complexes is preferentially 

formed inside the polymeric membranes.     

One point to note in the electric field driven process is that the separation factor slowly 

decreases with experimental time as shown in Figure 6.6. This is mainly due to two 

reasons. The first is migration of the racemic tryptophan, though the rate is slower than 

the complexes, from the feed chamber across the membrane. With longer experimental 

time, an increasing amount of free racemic tryptophan is present in the permeation 

chamber such that the ee% of product is reduced with time. Second, the buildup of 

copper ions in the feed chamber due to electrolysis favors the Cu-DL-trp complex 

formation at higher copper concentrations. The critical copper sulfate concentration for 

the selectivity reverse is discovered by Wang et al to be 0.16g/L when the initial 

tryptophan concentration is 5mM. In this particular experiment, the copper ion 

concentration build up rate in the feed is estimated, with the aid of capillary 

electrophoresis, to be 0.014g/ (L·h) and the initial tryptophan concentration is 0.5mM. So 
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the racemic complex formation starts after approximately one hour and decreases the 

separation factor, which approaches unity after about 5 hours.  

 
Figure 6.6. The changes in separation factor and enantiomeric excess with time in the 

electric driven process. The functionalized membrane is CA23-3 and operating current is 
50mA. 

 

It is also noteworthy that the enantiomeric separation performance of the concentration 

gradient driven processes is higher than that of the pressure driven process. This is 

expected since a large driving force usually results in poorer selectivity [83]. More 

efficient interaction between the chitosan and the tryptophan molecules is possible when 

the process is only driven by the concentration gradient and no extra forces are involved. 

For the tryptophan solution driven through the membrane under a hydraulic pressure, 

there may not be enough time for an efficient bonding to be established for all the 

tryptophan molecules. Hence a better selectivity is achieved by the concentration gradient 

driven process.   

 

6.3.3. The effect of experimental conditions on separation performance 
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A control membrane without any chemical modification is tested in the electric driven 

process and insignificant selectivity was observed, in comparison with that obtained by 

the functionalized membrane (Table 6.3). It shows that the pristine cellulose acetate has 

poor enantioselectivity towards tryptophan which, is in accordance with the literature [83] 

that only functionalized cellulose membranes exhibit enantioselectivity to amino acids 

despite the chiral centers in its polymer chains. Similar result has also been generated in 

the pressure driven process where an enantiomeric excess of 5% is obtained with the 

unmodified membrane.  

Membrane Modified I 
(mA) 

Feed 
Conc 
(mM) 

Flux (10-7 mmolcm-2s-1) 
ee% 

L-try D-try 

CA23-0.5 no 50 0.5 8.4 ± 0.8 8.5 ± 0.9 0 ± 1 

CA23-0.5 yes 50 0.5 6.2 ± 1.5 5.2 ± 1.9 -12 ± 6 

CA23-0.5 yes 80 0.5 8.2 ± 1.8 6.5 ± 1.8 -12 ± 1 

CA23-0.5 yes 50 0.1 0.64 ± 0.07 0.45 ± 0.05 -17 ± 2 

 
Table 6.3. The separation performance of electric field driven process under various 
conditions. *CA23-0.5 means the dope concentration is 23% and evaporation time is 

0.5minute. 
 

The enantioselectivity is not significantly affected by increasing the operating current but 

the permeation fluxes are enhanced as shown in Table 6.3. The molecules in the buffer 

chambers experience a higher electric driving force when the operating current is 

increased; the transport rate and hence the permeation fluxes are therefore enhanced. 

Also, similar to the argument for the difference between concentration driven and 

pressure driven process in the previous section, the binding of the tryptophan molecules 
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to the chitosan is compromised; however, this only renders the L-trp sorption selectivity 

of the membrane that decreases the preferential absorption of L-trp which, is actually a 

positive contribution to the overall separation in the electric driven process, where the 

transport of L-trp through the membrane is favorable. Furthermore, the formation of 

copper complexes in the buffer chamber is less affected, so that the enantioselectivity is 

comparable to the process operating with a lower current.     

The effect of the racemic feed concentration is also investigated (Table 6.3). Lower 

permeation fluxes are observed as expected, moreover, a slightly higher enantiomeric 

excess is also obtained with a diluted feed. At a lower feed concentration, the amount of 

uncomplexed tryptophan is also less such that the migration of the free tryptophan across 

the membrane, which compromises the enantiomeric purity in the permeation chamber as 

discussed in the precious section, is at a much slower rate. Thus a larger enantiomeric 

excess is maintained by a decreased feed concentration.  

Similar trends in the effect of the feed concentration are observed in the pressure driven 

and concentration driven processes as well, as shown in Figure 6.7, but with different 

reasons. The enantiomeric excesses of both processes show decreasing trends with 

increasing feed concentrations. For both process, the selectivity is closely related to the 

ratio of free D-trp to L-trp concentrations in the feed chamber, i.e.  

DCSF

LCSF

LF

DF

C0.5C
C0.5C

 
C
C  SP

−

−

−
−

=→                                               (4) 

trp-L-CS  trp-L  CS ⇔+                                                  (5) 

trp-D-CS  trp-D  CS ⇔+                                                  (6) 

where the substrate F, CS-L and CS-D represent the feed, L-tryp and D-tryp complexes with 

chitosan, respectively. For the same concentration of chitosan, a more concentrated feed 
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results in higher concentrations of both free enantiomers in the solution where the 

increment of L-trp concentration is to a greater extent since there is insufficient mount of 

chitosan for preferentially binding. Mathematical modeling for similar concentration 

gradient driven separation processes has also been carried out in our earlier studies [48], 

and the enantioselectivity is found to decrease with increasing feed concentrations for all 

concentrations of grafted chiral selector. Moreover, as discussed in the above section, 

Figure 6.7 also shows that the separation performance of the concentration driven process 

is generally higher than the pressure driven process which reinforces our previous 

argument.  

 
Figure 6.7. The enantiomeric resolution performance changes with concentration of feed 

in both pressure and concentration driven processes. Membrane used is CA23-0.5. 
 

Another crucial factor for better selectivity is the solvent evaporation time during the 

membrane fabrication process. It is clear from Figure 6.8 that the separation factor of a 

membrane without evaporation is close to unity, much poorer than that obtained with 

membranes undergone solvent evaporation. As the solvent in the dope is acetone, which 

is very volatile and evaporates fast in ambient conditions, the cellulose acetate 
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concentration at the membrane surface after evaporation increases, resulting in the 

formation of a denser surface with smaller pores, evidenced by the approximately 40 

times lower solution permeation flux associated with a membrane undergone 3 minutes 

evaporation (0.016 L m-2h-1bar-1 compared with 0.64 L m-2h-1bar-1). The low selectivity is 

mainly due to the insufficient binding between the tryptophan and the chitosan which is 

accounted from two angles. First, the bonding cannot be fully established as the time of 

interaction is insufficient given the much higher permeation flux. Second, due to the 

larger pore sizes, the tryptophan molecules can pass through the membrane without any 

interaction with the chitosan, and no bonds are established; this is also supported by our 

previous studies [48, 69]. A shorter evaporation time of 0.5 minutes during the membrane 

fabrication process has also been tried and the separation performance is similar as shown 

in Figure 6.8 while the permeation fluxes are slightly increased, suggesting that an 

evaporation time of 0.5 minute is sufficient for a good selectivity. Similar results are also 

obtained in the pressure driven process. The membrane prepared without evaporation 

shows a separation factor of 1.1 and ee% of 6.5, however, the separation factor and ee% 

increases to 5.5 ± 0.9 and 68 ± 5, respectively, if the membrane undergoes 0.5 minute of 

evaporation.  
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Figure 6.8. Enantiomeric resolution performance with respect to evaporation time in 

electric field driven separation. membrane used is CA23-0.5. 
 

6.3.4. Enantiomeric separation performance of phenylalanine    

Chiral separation tests have also been performed using phenylalanine and the 

characteristics of the separation performance shown in Table 6.4 is similar to that of 

tryptophan. While the enantiomeric excess of pressure and concentration driven 

processes is positive, negative enantiomeric excess is observed for electric driven 

separation process, suggesting more L-phe passing through the membrane under the 

electric field. Also, the highest ee% is obtained in the concentration driven process, 

similar to the results obtained using tryptophan. This suggests that the phenomenon 

observed is not limited to tryptophan, and possibly has broader applications.  
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Processes Driving force 
Flux (10-7 mmol cm-2s-1) 

ee% 
L-Phe D-Phe

electric field 50 mA 2.42 0.42 -70 

concentration 
gradient 0.5 mM 1.15 2.55 38 

pressure 8 bars 0.9 1.6 28 
 

Table 6.4. Separation of phenylalanine with the membrane CA23-0.5 in various processes. 
 

6.4. Conclusion  

The current study demonstrates the enantioseparation performance of the chitosan 

functionalized cellulose acetate membrane in processes utilizing various driving forces, 

including concentration gradient, hydraulic pressure and electric field. Due to the 

preferential absorption of L-trp to the chitosan, high enantiomeric excess of D-trp over L-

trp above 90% are obtained in the concentration driven process and that achieved by the 

pressure driven process is 60-70%; interestingly, a negative ee%, indicating preferential 

permeation of L-trp, is resulted in the electric driven process, mainly due to the 

preferential permeation of the charged L-trp complexes formed with copper ions under 

the electric field and the orienting force generated by the electric field that disturbs the 

selective absorption of the chitosan. Moreover, similar behavior is also observed in the 

resolution of racemic phenylalanine, suggesting a wider impact of this phenomenon. 

Hence, the further works will be focused on the more accurate control of the copper ion 

concentrations by modifying the electrical parts and inject known amount of copper 

sulfate in the anode and feed chambers. Also, the integration of the pressure and electric 

driven processes may yield better separation results.   



106 
 

Besides, both the solvent evaporation before coagulation and chitosan functionalization 

are proven essential for good selectivity by comparing performance against the control 

membranes without the respective preparation procedures. The separation factors of all 

the three processes decrease with increasing racemic feed concentrations due to different 

mechanisms. It is also discovered that in the electric driven process, the operating current 

has less effect on the separation factor but the permeation fluxes, while the accumulation 

of copper ion with experimental time can decrease the separation factor.  
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Chapter 7. Conclusion & recommendation  

Through the intensive studies on chiral separations by preparing and functionalizing 

various chiral selective membranes and designing innovative membrane systems, a more 

in-depth understanding of the chiral separation understanding is obtained, such as the 

effects of the position, location and concentrations of chiral selector on the separation 

efficiency, the change in selectivity with various driving force, the integrations of 

different systems, etc. Overall, we can draw a few conclusions from this study: 

1. Membranes with superior selectivity are fabricated by functionalization with 

chiral selector and its derivatives (chapter 3), or chiral selective polymer materials 

(chapter 6); also, innovative membrane systems such as SPE (chapter 4) & FFIEF 

(chapter 5) are designed and proved to perform better than the existing processes 

such as AD and AUF. Hence, we have successfully met the objectives of this 

project.  

2. The membrane functionalized with a chiral selector can exhibit chiral selectivity 

as shown in chapter 3 and 6.  

3. Chapter 3: the position of the chiral selector at the membrane surface, which is 

controlled by the spacer arm length, affects the chiral separation efficiency. The 

longer the spacer, the further the chiral selector from the membrane surface, the 

more difficult to form a defect free chiral selector layer and hence the lower the 

separation factor.  

4. Chapter 3: the selectivity of a chiral selector can be increased by strengthening the 

one or more of its interaction with the chiral molecules, e.g. by deirivatization that 

enhances the steric hindrance effect.  



108 
 

5. Chapter 4: the location of the chiral selector in a membrane system also plays an 

important role. By injecting the chiral selector in the permeate chamber instead of 

mixing with the racemic feed, chiral selectivity is still realized with enhanced 

permeation.  

6. Chapter 4: the integration of two membrane systems may yield better results just 

as the case in the SPE-AD setup. (chapter 4) 

7. Chapter 5: the utilization of a FFIEF system opens new windows in chiral 

separation and shows better separation performance than other systems such as 

AD and AUF under similar conditions.  

8. Chapter 6: the type of driving forces not only affects the permeation flux, but also 

the selectivity in some of the processes. The example in chapter 6, that shows a 

reverse in selectivity by switching the driving force from pressure to electric field, 

suggests that a thorough understanding and control of all the process parameters is 

essential for a good separation performance.  

 

However, despite the achievement above, we have also realized a few difficulties of 

chiral separation with membrane processes and thus present a few suggestions and 

recommendations for future endeavours.  

1. The membrane processes are still low in selectivity in general and not suitable for 

commercial application in the near future. This difficulty is partially embedded in 

the nature of the membrane process, in comparison to HPLC process for example, 

the theoretical number of separation stages of a membrane process is much 
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smaller as it may only contain a very thin layer of chiral selective material 

whereas the HPLC columns are a few orders longer.  

2. Because of the above, the selectivity of the chiral selector is very important in 

membrane processes. One of the research directions in membrane separation will 

be to search, synthesize and modify chiral selectors with superior selectivity.   

3. It has also been observed that the membrane structure does play an important role 

in chiral separations. Only membranes with a suitable pore size can demonstrate 

the optimum separation. Thus techniques that can better control the membrane 

pore sizes shall also be investigated.  

4. It has also been noticed in this study that the separation factor may deteriorate 

with time due to factors such as the saturation of binding with chiral selectors in 

the membranes. Two suggestions are hence proposed: a membrane system with 

chiral selectors that rejects one of the enantiomers rather than binding the other 

may be favourable as it circumvents the saturation problem; membrane systems 

that facilitate the transport of one enantiomer such as the supported liquid 

membrane should receive more attention for long term performance.  

5. The FFIEF system that makes use of the difference in pI values of the enantiomer-

chiral selector complexes can be one of the promising preparative technique in 

chiral separation, provided if we can have more accurate and precise engineering 

tools such as the auto-titrating system, better ion exchange membrane design and 

chiral selectors that can result in larger difference in pIs.  
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