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Abstract

Advances in data acquisition and storage technology have led to the growth of very large

multimedia databases. Analyzing this huge amount of multimedia data to discover useful knowledge

is a challenging problem. This challenge has opened the opportunity for research in Multimedia

Data Mining (MDM), “the process of finding interesting patterns from media data such as audio,

video, image and text that are not ordinarily accessible by basic queries and associated results.” The

motivation of doing MDM is to use the discovered patterns to improve decision making. MDM has

therefore attracted significant research efforts in developing methods and tools to organize, manage,

search and perform specific tasks for data from domains such as surveillance, meetings, broadcast

television, sports, archives, movies, medical data, as well as personal and online media collections.

Existing MDM methods consider either low-level content features (e.g., color, texture

etc.) or high-level text meta-data features (e.g., object, action etc.) for mining purposes. While the

low-level features describe the actual content of the signal data they are unable to provide high level

semantics of the mined data. Such, high level semantics are essential for applications like behavior

analysis, semantic similarity etc. On the other hand, high-level text meta-data (e.g., tags, comments

etc.) are capable of providing semantic interpretation for mining but they are noisy and require

manual effort. However, existing MDM techniques assume that the automatically obtained labels

(e.g., concepts, events etc.) from detectors are accurate. However, in reality detectors label the

events/concepts from different modalities with a certain confidence measure over a time-interval.

Therefore, it is important to consider the uncertainties associated with the detected concepts over

time in the process of multimedia datamining.

This thesis proposes a framework for multimedia datamining which leverages on the prob-

abilistic, temporal and multimodal characteristics of multimedia data. The proposed Probabilistic

Temporal Multimodal (PTM) datamining framework for multimedia applications effectively han-

dles issues like incorporating semantic knowledge, data sparsity in semantic representation of mul-

timedia data, inaccuracy of binary concept detectors, dynamic temporal correlation etc. The utility

of the proposed framework is demonstrated in the following three multimedia applications,
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• Frequent event patterns for group meeting behavior analysis.

• Concept-based near-duplicate video clip clustering for novelty re-ranking of web video search

results.

• Adaptive ontology rule based classification for composite concept detection.

Towards the end of the thesis, we present our conclusions and future research directions.
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Chapter 1

Introduction

In recent years, multimedia data like images, audio, videos, text, graphics, animations,

and other sensory data have grown at a phenomenal rate and are ubiquitous. As a result, not only

the methods and tools to organize, manage and search such data have gained widespread attention

but the methods and tools to discover hidden knowledge from such data have become extremely

important. The task of developing such methods and tools is facing the big challenge of overcoming

the semantic gap of multimedia data. “The semantic gap is the lack of coincidence between the

information that one can extract from the multimedia data and the interpretation that the same

data have for a user in a given situation [129].” But in certain sense datamining techniques are

attempting to bridge this semantic gap in analytical tools. This is because such tools can facilitate

decision making in many situations. Datamining refers to the process of finding interesting patterns

in data that are not ordinarily accessible by basic queries and associated results with the objective of

using discovered patterns to improve decision making [102]. For example, it might not be possible

to easily detect suspicious events using simple surveillance systems. But Multimedia Data Mining

(MDM) tools that perform mining on captured trajectories from surveillance videos, can potentially

help find suspicious behavior, suspects and other useful information.

As shown in the Figure 1.1, earlier multimedia datamining applications (e.g., copy detec-

tion, face detection etc.) were using small scale dataset (e.g., personal photo collection, CT-scan

images of particular disease) and they were limited to classify or cluster the multimedia data like

images or video based on content level analysis. Thus, multimedia datamining research was more

focused on utilizing content level features in a better way to obtain good results for those applica-

tions, sometimes with help of manual rules for evaluation. But, now with exponential growth of

multimedia data and their fascinating applications (e.g., behavior analysis, semantic search and re-

trieval etc.) potential large scale data-sets (e.g., web image and video portals, surveillance data, etc.)
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Figure 1.1: Trends in multimedia datamining application research.
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need to be analyzed at concept (semantic) level. Multimedia datamining research is now focusing

on utilizing high-level (semantic) features in a better way to achieve good result for such fascinating

applications using cross modal correlations, ontology rules etc.

1.1 Issues with existing multimedia datamining

Existing MDM applications are using content level features (e.g., color, texture, shape

etc.) and/or concept level features (e.g., meta-data, objects, actions etc.). Thus, we considered

issues in MDM as (1) Content level multimedia datamining issues and (2) Semantic concept level

multimedia datamining issues.

1.1.1 Content level multimedia datamining issues

Traditional multimedia applications mainly applies datamining techniques like classifica-

tion, clustering, sequence pattern mining on content level (low-level) features. Thus, such multi-

media applications are limited to recognition of gesture (hand or head gestures like “waving hello”,

“goodbye” [34]), concepts ( “person”, “vehicle”, etc. [139]) or categories (“indoor”, “outdoor”, etc.

[140]) and so on. But, just these content level features based multimedia datamining cannot directly

help to discover higher semantic level hidden knowledge. For example, to automatically discover

hidden knowledge from group meeting video corpus [11] like “during the group meeting person

A was actively participating with asking lot of questions to speaker X and person B was not much

active, was looking at the table and watching the clock.” If we have represented meeting videos with

each persons’ actions then we can use sequence pattern mining algorithm to discover such hidden

knowledge describing people’s behavior. Also, the fundamental problem like finding the semantic

similarity between videos as shown with example in Figure 1.2 cannot be effectively done with just

content level features. In Figure 1.2, two videos are representing common semantic meaning that

a person is singing “Lion sleeps tonight” song in front of the web camera inside the room. The

semantic concepts like “indoor”, “singing”, “person” etc. are same in both videos and viewers may

also perceive them semantically similar videos. But, they are very different from the content level

features and may not be identified as semantically similar videos. Thus, there is a need to have

high-level features (semantic features) like concepts, events, objects, actions, composite concepts,

etc. to do semantic level multimedia datamining.
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Video 1 key-frame sequences

Video 2 key-frame sequences

Figure 1.2: Two videos of query “Lion sleep tonight” are shown using their keyframe sequence.

Here, though both videos are not similar at content level but are having similar semantic concepts

and thus viewer will perceive them as semantically similar videos. It contains the similar semantic

information “person singing in front of web camera” under different scene settings.

1.1.2 Semantic level multimedia datamining issues

There can be two possible ways to represent multimedia data with such semantic features

(1) manual semantic meta-data (annotations, tag, titles, comments, location, etc.) and (2) automated

concept detection (concept / event detectors or classifiers developed using content level MDM tech-

niques). It has been shown that the meta-data provided by online users are often inaccurate and

noisy [12], which leads to unsatisfactory performance of MDM. On the other hand providing ac-

curate meta-data with help of experts can be expensive and time consuming. Also, it will not be

scalable as whenever new data is created it needs to be annotated manually. Thus, it is evident that

for mining multimedia data at semantic level we must rely on the power of automated multimedia

concept analysis.

Concept-based multimedia representation consist of automatically detected concept oc-

currences to improve upon the limitations of manually created meta-data was considered first in

[94] as emerging research discipline. For this introduction, we generalize object, event, actions, etc.

as concepts and the reader can think of a concept as a label attached to a (part of a) multimedia

document where all users agree that this label is appropriate. For example, a concept could be a

Flower, a Car or a scene being outdoor. There is a lot of research being conducted for developing

semantic concept detectors [16][132]. These concept detectors learn the concept using a wide va-

riety of suitable training data. Thus, the apparent advantage of using concepts as a feature is that

it can accommodate large scale variation in low-level content features (e.g. color, texture, etc.) be-
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cause of a thorough training phase. But, the performance of concept detectors is often limited. As

a result, the detectors often wrongly decide whether a concept occurs in a video or not. This leads

to poor performance of MDM for such binary concept occurrence based multimedia representation.

In this thesis, we focused on three important issues prohibiting optimal performance of applying

datamining techniques on semantic level multimedia data.

Issue of inaccurate concept representation

Let us consider an example to see the drawback of existing binary concept representation

of multimedia data for mining purposes. To detect “Airplane takeoff” composite concept consider-

ing the rule “IF “airplane,” “sky,” and “ground” instances (a, s, g) occur in a shot AND for a time

interval tas, the airplane is in the sky AND for a time interval tag the airplane is on the ground AND

the time interval tas is after of the interval tag AND the airplane is a moving object, THEN that

“airplane is taking off.” We can pictorially show this rule in Table 1.1. Consider the video clip of

“airplane take-off” illustrated as a sequence of images from (T1 to T8) with the detected concept and

their spatial co-existence or correlation in each image. Here the image sequences T1-T4 and T5-T8

are denoted as time intervals tag and tas, respectively. In the top part of table, the ontology rule

expected a value 1 for existence and 0 for non-existence of the corresponding concept or relation in

the image sequences. The bottom part of the table shows the actual concept detection scores (con-

fidence values) for primitive concepts from “Airplane takeoff” video clip which must match with

the corresponding binary values in the rule. In practice, methods which use binary classifications

assume a positive occurrence if the posterior probability is above 0.5. The selected threshold of 0.5

is justified by decision theory in [20]. As explained in [20] another value may not perform better

to take the binary decision. As per the given rule, image sequences T1 to T4 must have the value 1

representing the existence of concepts Ground and Airplane. But, at image T2 the concept Airplane

has a detection score (0.44 < 0.5 = 0) and at T3 the concept Ground has a detection score (0.3 < 0.5

= 0). Expectation of rule for video to qualify as “Airplane takeoff” concept is not satisfied due to

consideration of threshold based binary representation of multimedia data using inaccurate concept

detectors. Even though these concepts actually did exist.

As shown in the Figure 1.3, two potential reasons for inaccurate concept detection are, (1)

class imbalance problem and (2) semantic gap problem. There are several research efforts to deal

class imbalance problem [28][31][79] and semantic gap problem [80][127][129]. The applicability

and performance of these approaches are limited by their heavy reliance on certain artifacts such as

domain-knowledge and a priori models. Due to the class imbalance problem, semantic multimedia
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Table 1.1: Example illustrating problem with mapping expectations of existing ontology rule to real

world scenarios.

Ontology rule expect concept detection and their

spatiotemporal relations for "airplane takeoff"

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 1 1 1 1 1 1 1 1

Sky 0 0 0 1 1 1 1 1

Ground 1 1 1 1 1 0 0 0

Co-occur(A,S) 0 0 0 1 1 1 1 1

Co-occur(S,G) 0 0 0 1 0 0 0 0

Co-occur(G,A) 1 1 1 1 1 0 0 0

Actual detection score of concepts and their

spatiotemporal relations for "airplane takeoff"

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 0.8 0.44 0.73 0.65 0.36 0.7 0.75 0.41

Sky 0.5 0.32 0.55 0.43 0.63 0.45 0.40 0.9

Ground 0.6 0.5 0.3 0.7 0.5 0.34 0.43 0.2

Co-occur(A,S) 0.7 0.45 0.66 0.4 0.5 0.6 0.3 0.4

Co-occur(S,G) 0.4 0.3 0.2 0.5 0.55 0.3 0.42 0.6

Co-occur(G,A) 0.7 0.46 0.56 0.6 0.46 0.5 0.51 0.2

dataset represented with threshold based binary representation are very sparse. Usually for effective

multimedia datamining dense data-sets are preferred over sparse data-sets [51]. Also, datamining

techniques applied on threshold based binary data may lead to inaccurate knowledge discovery due

to semantic gap problem. Thus, issue of inaccurate concept representation needs high consideration

to develop effective multimedia application using datamining techniques.

Issue of dynamic temporal correlations

To understand the importance of dynamic temporal correlations in multimedia data, let

us make an assumption that we have accurate concept detectors. Thus, issue of inaccurate concept

representation do not exist and once we detect the concepts we can represent them as a text doc-

ument and apply datamining techniques as we apply on text documents. Can we now expect very

good performance of multimedia datamining applications? Answer can be no as shown with an

example in Table 1.2. Let us say we have correctly detected semantic concepts “airplane”, “sky”

and “ground” in 3 video clips. In all the three video clip “airplane” occurred 8 times, “sky” occurred

4 times and “ground” occurred 4 times. Thus all the three documents should be considered simi-
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Figure 1.3: Illustrating two potential reasons for inaccurate concept detection. In part (a), class

imbalance problem is shown with an example that comparatively very few training samples of con-

cept of interest leads to false detection. In part (b), semantic gap is shown with an example having

almost similar color, texture and shape feature representing different semantic concepts (example

here shows a girl and a dog).

lar. But, in reality Video 1 represents “airplane takeoff”, Video 2 represents “airplane landing” and

Video 3 represents “airplane stunt”. Thus, consideration of temporal relationship among semantic

concepts are essential distinguishing quality of multimedia data. We defined it as dynamic temporal

correlation, “if the correlation among semantic concepts vary over time, then their higher level se-

mantic meaning may also vary significantly.” There could be many different possible combinations

of spatio-temporal relations among semantic concepts which leads to different higher level semantic

meaning. But, most of the existing multimedia datamining approaches consider video with detected

binary semantic concepts as a text document. And well known bag-of-words representation or

vector space representation is considered for applying datamining algorithms on such multimedia

data. But, such a representation is not effective for finding semantic similarity between such videos

because detected concepts are not fully accurate and there also exists strong dynamic temporal cor-

relation between semantic concepts. In contrast, the terms that appear in text documents are actually

existing and we may not see much stronger dynamic temporal correlation between text document
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Table 1.2: Example illustrating temporal dynamic correlation.

Video 1

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 1 1 1 1 1 1 1 1

Sky 0 0 0 1 1 1 1 1

Ground 1 1 1 1 1 0 0 0

Video 2

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 1 1 1 1 1 1 1 1

Sky 1 1 1 1 1 0 0 0

Ground 0 0 0 1 1 1 1 1

Video 3

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 1 1 1 1 1 1 1 1

Sky 1 1 0 0 0 1 1 1

Ground 0 0 1 1 1 1 1 0

terms. Thus, we need to consider strong dynamic temporal correlation between semantic concepts

in multimedia data for effective application of datamining techniques on multimedia data.

Issue of multi-modality consideration

Multi-modality is an essential property of multimedia data. The data are often the result

of outputs from various kinds of sensor modalities. Consideration of multiple modality is essential

for robust data representation. For example, if concept like “fire” needs be detected then the visual

modality is the best choice, whereas audio modality should be chosen for detecting the concept

like “shouting”. But, issue with consideration of multiple modality is that, each modality needing

sophisticated preprocessing, synchronization and transformation procedures[3]. Thus, such multi-

modal property can make just text based representations unsuitable for multimedia datamining.

Thus, much of multimedia datamining frameworks do not consider multi-modal representation.

But, consideration of multi-modality is useful for effective application of datamining techniques on

multimedia data.

Thus, there are three major issues that needs to be consider for effective multimedia

datamining applications, (i) issue of inaccurate concept representation, (ii) issue of dynamic tem-

poral correlations and (iii) issue of multi-modality consideration. None of the existing multime-

dia datamining frameworks utilize realistic semantic features for mining purposes which overcome

above described problems.
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Figure 1.4: Difference between traditional multimedia data event sequence and PTM data event

sequence.

1.2 Probabilistic Temporal Multimodal (PTM) datamining framework

In this research work, we propose a novel Probabilistic Temporal Multimodal (PTM)

datamining framework which leverages on the probabilistic, temporal and multimodal character-

istics of multimedia data. As shown in the Figure 1.4, there are three event detectors T1, T2, T3

labeling three different events say A, B and C at different times by extracting features from three

different modalities. While each observation can be represented as (Event label, Start time, End

time) in existing multimedia data representation, in PTM data representation they are represented

as (Event label, Event Probability, Start time, End time). None of the existing work considers

the PTM representation as shown in Figure 1.4. The PTM representation is more realistic and we

can discover more useful and accurate knowledge using this data. We demonstrated that applying

datamining techniques (e.g., classification, clustering and sequence pattern mining) on PTM data
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can provide superior results compared to other existing frameworks of corresponding multimedia

applications. The main motivation for PTM data can be summarized as,

• Probabilistic: To consider the reality that the detected semantic concepts from different

modalities are not obtained with complete accuracy due to the well known semantic gap

problem. The uncertainty in the data is represented as a probabilistic confidence score, which

is computed by event detectors[33]. Thus, using probabilistic weighting we do mining on

more realistic data-sets with less sparsity.

• Temporal: MM data like audio, video has inherent temporal property thus we consider tem-

poral representation to capture their strong temporal dynamic correlations. Also, effective

comparison among video/audio as a whole can be done rather than as video shots/chunks.

• Multimodal: Different types of media possess different capabilities to accomplish various

detection tasks under different contexts. Therefore, in reality we usually have different con-

fidence levels in the evidence obtained based on different media streams for accomplishing

various detection tasks. Consideration of multiple modality can provide dense and accurate

dataset.

Here, the probabilistic characteristic of data cannot be mapped to existing approaches of

probabilistic datamining or uncertainty datamining. Because, actual probabilistic data will have

hard constraints like sum of all probability values should be 1 for a given concept detected with dif-

ferent modality. But, in reality these concept detectors are trained independently and their posterior

probability score is looked as a confidence value for occurrence of concepts for a given modality

data. Also, the kinds of data considered by uncertain datamining are approximation of observation

data falling within certain range or certain kind of good distribution to save data computation and

communication cost [5]. Whereas, the confidence value associated with concept detection is pre-

diction value representing semantic information based on given certain low-level features. These

predictions are not just an approximation from certain range or distribution. Also, the temporal

characteristic of data cannot be mapped to existing approaches where content level features of mul-

timedia data (e.g., motion, shape, color etc.) are represented in time dimension. Because, we are

representing concept level features of multimedia data. Thus, proposed PTM data is unique and not

been researched earlier.

PTM data handles issues discussed earlier like incorporation of semantic knowledge (with

content level features), scalability (with manual annotations), inaccurate concept representation
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(with threshold based binary concept representation), sparsity(with threshold based binary concept

representation), dynamic temporal correlations (with text document based representation for mul-

timedia data) etc. But, we need to develop a mechanism to deal with following challenging issues

arise due to PTM data representation,

• How to utilize and deal with associated confidence or posterior probability of detected se-

mantic concepts for effectively applying datamining techniques on such PTM data?

• How to deal with correlation among the various media streams and dynamic temporal corre-

lation among different semantic concepts?

• How to deal with synchronization issue due to different processing time scales of detectors,

based on media stream they utilize? For example, the face identification system on video data

identifies the person quicker by processing on single image frame than the speaker recognizer

system identifying person using audio data.

Also, other challenging issues arise while we apply each of the specific datamining techniques

like sequence pattern mining, clustering or classification on PTM data. We handled challenging

issues in PTM datamining framework by incorporating novel ways of representing (modeling) PTM

data, utilizing/extending datamining algorithms, developing new methods/techniques and evaluation

parameters to discover effective results for existing/newly proposed multimedia applications. The

utility of proposed framework is demonstrated in the following three multimedia applications,

• Discovery of accurate frequent event patterns for behavior analysis in group meetings using

PTM data sequence pattern mining.

• Concept-based near-duplicate video clip detection based novelty re-ranking of web video

search results using PTM data clustering.

• Adaptive ontology rule based composite concept detection using PTM data classification.

All the above mentioned application are currently in high demand from various domains of multi-

media. But, all of them suffer from problem of incorporation of semantic knowledge, scalability,

inaccurate concept representation, sparsity, dynamic temporal correlations etc., which needs to be

handled by proposed PTM datamining. Thus, we have proposed timely solutions to these multime-

dia applications in the thesis. In following subsections, we summarize the motivation, challenges

and contributions for each of the multimedia applications in scope of the proposed PTM datamining

framework.
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Figure 1.5: Proposed a novel PTM data event sequence pattern mining.

1.2.1 Behavior analysis using PTM data sequence pattern mining

In multimedia application domain like surveillance, television, sports, movie etc. one of

the important multimedia applications is behavior analysis. Analyzing suspicious behavior for se-

curity purpose or analyzing for improvement in games etc. Existing approaches using content level

features and techniques like simple heuristic rules, finite state machines, statistical models (such

as HMM or Bayesian networks) end up with event recognition instead of discovering interesting

frequent pattern of events. They do not really able to discover hidden knowledge from large scale

data-set, which can be effectively done with datamining techniques like sequence pattern mining.

But, the issues mentioned earlier ( e.g., inaccurate concept representation, sparsity etc.) are limiting

the effectiveness of application of sequence pattern mining algorithm on multimedia data.

We utilized PTM datamining framework and represent PTM data event sequences as

shown in the Figure 1.4. There are three event detectors T1, T2, T3 labeling three different events

say A, B and C at different times by extracting features from three different modalities. While each

observation is represented as (Event label, Start time, End time) in existing multimedia data repre-

sentation, in PTM data representation they are represented as (Event label, Event Probability, Start

time, End time). None of the existing work considers the Probabilistic Temporal Multimedia (PTM)

representation as shown in Figure 1.4. The PTM representation is more realistic and we can dis-

cover more useful and accurate knowledge using this data. Motivation for application of sequence
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pattern mining on PTM data can be summarized as,

• Proposed a novel framework for discovering semantic-level hidden frequent event sequences

from multimedia data, that is useful for applications like behavior analysis.

• Handling inaccurate concept representation issue by extending interval based event sequence

mining algorithm to incorporate concepts confidence value to discover novel, more accurate

and informative sequence patterns.

• Overcoming the data sparsity problem with traditional multimedia event sequence data. Due

to such sparsity problem, there were not enough events/concepts to discover interesting fre-

quent event patterns which in turn was responsible for poor application of sequence pattern

mining algorithm on multimedia data.

• Utilizing all of the processed multimodal data for dense and accurate data representation.

Along with some of the generic PTM datamining’s challenging issues we also have to solve follow-

ing specific issues arise for PTM data sequence pattern mining,

• How to handle probabilistic nature of the data such that usability of sequence pattern mining

algorithm is preserved?

• How to resolve redundant symbols generated from different modalities so that it do not gen-

erate redundant frequent patterns?

• How to find subsequences to calculate candidate support such that frequency of the pattern

can be calculated effectively?

• How to generate accurate and useful patterns for behavior analysis?

We have demonstrated the following contributions of proposed PTM data sequence pattern mining

application for behavior analysis,

• Proposed a new representation of multimedia data as PTM data event sequences.

• We have proposed a novel sequence pattern mining algorithm, called Probabilistic Interval

based Event Miner (PIE-Miner), handling probabilistic nature of the data while discovering

accurate frequent sequence patterns from PTM data as shown in Figure 1.5.

• We perform probability fusion to resolve the redundancy among detected events from differ-

ent modalities, considering their cross-modal correlation.
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• Existing sequence pattern mining algorithms have event label level support counting mech-

anism, whereas we have developed novel τ -containment mechanism for event cluster level

support counting mechanism.

• Identifying strong patterns and weak patterns for analyzing the behavior of participants in

group meeting video corpus [11].

• It has been demonstrated that, in cases with limited number of events in traditional data rep-

resentation it was not possible to apply sequence pattern mining algorithm effectively due to

scarcity of events. But, with PTM data representation it is possible to discover the frequent

event patterns.

1.2.2 Concept-based novelty re-ranking using PTM data clustering

Effective search and retrieval of multimedia data on video sharing web-sites (e.g., YouTube,

Yahoo video etc.) is essential. Most of the existing search engines suffer from lack of novelty or

diversity in their top returned results due to content-level or semantic-level near identical videos.

Providing diversity/novelty in search results is very important multimedia application to keep view-

ers interested in such video sharing web-sites [29]. Existing multimedia application of content-level

near-identical videos detection for novelty re-ranking cannot provide semantic level diversity in the

top results. Thus, we proposed a novel multimedia application of concept-based near-identical video

clip (CBNDVC) detection for novelty re-ranking. The proposed PTM data clustering framework

discovers content-level as well as semantic-level near-identical videos to improve novelty/diversity

in the top returned results.

The proposed PTM data clustering framework is shown in Figure 1.6b. We represent PTM

data as the time-series of semantic concept confidence values for a video as shown in Figure 1.6a. To

our knowledge, no other existing works has consider such a representation of a video for multimedia

datamining application. For a given video, semantic concept detection is performed at the shot level.

A video is first partitioned into a set of shots based on editing cuts and transitions between frames,

and then a representative keyframe is extracted to represent each shot. Extracting a representative

keyframe from the middle of a shot, therefore, is relatively reliable for extracting basically similar

keyframes from different near-duplicates. This mapping of video to keyframes reduces the number

of frames that need to be analyzed. A video sequence, denoted as V, is first segmented into N shots

such that V = {s1, s2, . . . , sN}, where si stands for the ith shot of V. Visual feature X such as color

(e.g. 225-dimensional grid color moment [134], 48-dimensional gabor texture and 73-dimension
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Figure 1.6: Difference between traditional multimedia data and PTM data

edge direction histogram) is extracted from each keyframe, thus X = {X1, X2, . . . , XN}. Let

C = {c1, c2, . . . , cM} be a set consisting of M semantic concepts, with ck denoting the kth semantic

concept. Also, let D = {d1, d2, . . . , dM} be the set of classifiers corresponding to the M semantic

concepts, where dk denotes the classifier whose output is a confidence value for concept ck. Given

the visual feature X extracted from shot si, the classifier dk outputs the posterior probability P(ck |
X ) . This posterior probability represents the relevance or confidence of the visual feature X to the

semantic concept ck.

Each of the N shots contains detected confidence values of M semantic concepts. Let

V TS = {vts1, vts2, . . . , vtsM} be a set consisting of M time-series of semantic concepts’ con-

fidence values for N shots of the video V, where vtsi = {P (ci|X1), P (ci|X2), . . . , P (ci|XN )}.
Finally, we construct the dataset as shown in Figure 1.6a using the aforementioned video repre-

sentation as time-series of detected semantic concept confidence values. We assume that detectors

are independent of each other and that each detector emits for each shot a single and real valued

confidence score. Motivation for novelty re-ranking using PTM data clustering is as follows,
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• Existing novelty re-ranking applications do not provide semantic-level diversity in the top

results from semantic perspective. Thus, discovering semantically novel videos in the results

to provide diversity in top results is essential.

• Existing content based clustering suffers from the issue of semantic gap and high dimen-

sionality of low-level multimedia data representation. Thus, there is a need for a method to

discover semantic level near-duplicate video clusters.

• Handling the inaccurate concept representation issue with binary concept comparison based

semantic distance measures. Lack of accurate data at each time instance for a video under

comparison end up with inaccurate similarity calculation.

• Overcoming dynamic temporal issues in existing semantic clustering methods which consid-

ers video clips as text document.

We have resolved the following specific challenges arise for concept-based novelty re-ranking ap-

plication using PTM data clustering,

• How to consider the distance measure to find semantic similarity between video clips repre-

sented as PTM data?

• How to generate semantic clusters while semantic categories are not known and videos been

added or deleted dynamically in ranking results?

• How to transform PTM data, represented as unequal length time-series, for providing scalable

semantic level clustering?

• How to utilize limited number of semantic concepts to do effective semantic clustering of

videos?

We can summarize our contributions for PTM data clustering as follows:

• Proposed an application of Concept-based near-duplicate video clip detection for novelty re-

ranking of web video search results to get content-level as well as semantic-level diversity in

the top results.

• Novel PTM data representation of a video as a time-series of semantic concepts with asso-

ciated confidence values, which help discover semantic similarity between videos effectively

using DTW distance measure.
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• Application of incremental clustering algorithm like COBWEB on PTM data to discover

unknown number of novelty clusters of semantically near duplicate videos while ranking

results changed dynamically.

• Proposed transformation of PTM data from unequal length multivariate time-series to cat-

egorical labels reduces the dimensionality and increases the scalability for semantic level

clustering.

• Application effectively demonstrated the potential to do semantic clustering even with limited

number of semantic concepts. Considering that the concepts are chosen appropriately for the

specific application scenario.

1.2.3 Composite concept detection using PTM data classification

Concept detection is fundamental step for many multimedia applications such as auto-

matic annotation, semantic video indexing and search etc. While state-of-the-art techniques can

detect some of primitive concepts (e.g. “Sky”) with a considerable accuracy, they often fail in case

of a composite concepts (e.g. “Airplane takeoff”) that may consist of more than one primitive con-

cept (e.g. “Airplane”, “Ground”, and “Sky”) occurring together over a period of time. This is due to

the complex nature of spatiotemporal patterns that exist in composite concepts. Many existing tech-

niques found ontologies useful for detecting the concepts and events from visual data with higher

reliability [16]. But, they utilize the ontology rules that are usually static and do not accommodate

the varying co-occurrences of primitive concepts. Also, they suffer from problem of inaccurate con-

cept representation, dynamic temporal correlation etc. Thus, we proposed PTM data classification

framework to: i) detect the composite concepts in a video using the ontology rules with considera-

tion of varying co-occurrences of primitive concepts and ii) update these ontology rules adaptively

based on the detected primitive concepts for accurate composite concept detection.

As shown in the Figure 1.7 the proposed PTM data classification framework is based

on novel paradigm where multimedia datamining (e.g., concept detectors) and ontology rules learn

from each other over time. Such, adaptively learned ontology rules will eventually help in improving

the overall accuracy of composite concept detection. We proposed PTM data classification for

composite concept detection with following motivation,

• Proposed a novel framework with ontology rules and multimedia datamining for detecting

composite concepts from multimedia data. Because composite concepts with complex spa-

tiotemporal patterns are not learned effectively with traditional content-level classifiers.
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Figure 1.7: Proposed paradigm of adaptive learning with multimedia datamining and ontology rule

for PTM data classification.

• Handling inaccurate concept representation issue with existing ontology rule based composite

concept detection. Existing ontology rule based approaches misclassify composite concept

mainly due to inaccuracy of primitive concepts.

• Existing methods enhance primitive concept detection with use of static correlation but not

with the dynamic temporal correlation, which helps ontology rules to effectively detect com-

posite concept.

• Need to adapt with uncertainty in spatiotemporal relations of ontology rules. None of the

existing ontology based composite concept detection approaches have such adaptive mecha-

nism. They fail to detect positive instances whenever detected primitive concept scores do not
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match the ontology rule or detected concept relations do not match spatiotemporal relations

in the ontology rule. It leads to considerable precision but poor recall for existing methods.

We have resolved the following specific challenges that arise for composite concept detection using

PTM data classification,

• How to detect change points for dynamic correlation among primitive concepts, while primi-

tive concept detectors are inaccurate for a given video clip?

• How to improve accuracy of primitive concept detectors using context provided by ontology

rule?

• How to incorporate the knowledge of primitive concept inaccuracy in ontology rule to detect

composite concept accurately?

• How can ontology rules adapt to uncertainty in spatiotemporal relations?

• How to design a framework that allow concept detectors (Multimedia Data Mining (MDM)

framework) and spatiotemporal ontology rules (Ontology framework) to learn from each other

over time?

We can summarize our contribution for PTM data classification as follows,

• We propose a novel mutual learning paradigm of multimedia datamining to adaptively learn

ontology rules.

• Discovering new type of ontology rules called Adaptive Ontology Rules (AOR) significantly

helps in improving the overall accuracy of primitive and composite concept detection.

• Reward and punishment based mechanism is developed to improve accuracy of primitive

concepts using context provided by ontology rules.

• Proposed an algorithm for concept-based change point detection to identify change in dy-

namic correlation among primitive concepts. So, that primitive concepts detection is rewarded

or punished appropriately, which in turn helps increase accuracy of composite concept detec-

tion.

• Developed a SVM based classifier to incorporate the knowledge of primitive concept inac-

curacy and uncertainty of spatiotemporal relations in ontology rule. The learned AOR can

achieve superior recall and precision for composite concept detection and accuracy of primi-

tive concepts when compared to existing methods.
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1.3 Scope and limitation of the proposed PTM framework

Traditional multimedia datamining was more focused on utilizing content level/low-level

features (e.g., color, texture, etc.) in the best possible way to obtain better results for MDM ap-

plications. Objective of the proposed research work in this thesis is to utilize high-level features

(e.g, concepts, objects, actions etc.) in the best possible way to obtain better results for MDM

applications. The scope of our research is to identify potential issues thwarting the MDM appli-

cation performance and propose solutions that demonstrate their utility by superior performance

when compared to existing methods. In particular, we deal with issues like inaccurate concept rep-

resentation, dynamic temporal correlations and consideration of multi-modality. Solution to such

issues are developed within proposed PTM datamining framework in terms of novel representations,

transformations, pattern discovery and interpretation techniques. Utility of the proposed solution is

demonstrated in scope of suitable MDM applications like accurate frequent event patterns for behav-

ior analysis using PTM sequence pattern mining, concept-based near-duplicate video clip detection

based novelty re-ranking using PTM clustering and adaptive ontology rule based composite concept

detection using PTM classification.

In terms of limitations of the proposed research work, we can consider that there can

be large number of semantic concept detectors (10,000++) for MDM applications. However, the

proposed work has considered a limited number of (100+) semantic concepts that are relevant to

considered MDM applications and its corresponding dataset. In future, we can expand the scope of

our work by incorporating large number of concept detectors to make it more robust and generic.

In the proposed work, we have utilized concept detectors trained with features like edged direction

histogram (EDH), Gabor (GBR), and grid color moment (GCM). It could be further enhanced with

SIFT, MoSIFT kind of features. Though, such an enhancement could result in requirement of ad-

ditional computational power. Due to known limitation of concept classifiers generalization across

different domains [17], the accuracy of each of the semantic concept detectors may vary depend-

ing upon the dataset used for MDM application. The scope and limitation of each of the proposed

MDM application is discussed in detail in their corresponding chapters 4, 5 and 6.

The scope of proposed PTM representation as PTM event sequences and time-series is

much larger than just proposed MDM applications, as it can be applicable to any kind of MDM

applications where such semantic level concepts are detected with certain accuracy of trained de-

tectors. Also, the proposed algorithms PIE-Miner and concept based change point detection are not

limited to the proposed MDM application and can be useful to any other MDM application. Appli-
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cability of the proposed techniques like τ -containment for support counting, reward and punishment

mechanism for dynamic correlation and PTM data to categorical data transformation may depend

on the accuracy of concept detectors and the context of application. Considering certain value of

τ that provide useful patterns needs to be decided by the user. Similarly, PTM data to categorical

data transformation mechanism might find DTW based similarity suitable in most of the scenarios

but may need to consider other alternatives based on the application requirements. Also, the reward

and punishment mechanism can be applicable where the context of composite events (e.g., ontol-

ogy rule) are known. Though the proposed PTM datamining framework is instantiated for three

proposed MDM applications its scope can cover large number of MDM applications in general.

1.4 Thesis contributions

The main contribution of this thesis are as follows.

• Application of datamining on multimedia data is still a relatively unexplored area. We spread

awareness on important challenging issues specific to Multimedia Data Mining applications,

(i) inaccurate concept representation, (ii) dynamic temporal correlation and (iii) consideration

of multi-modality. Among this issues, inaccurate concept representation has been never dis-

cuss before by Multimedia Data Mining research community. To our knowledge we are the

first to provide the insight on this issue. Though, the temporal correlations or multi-modality

has been individually dealt with in some of the earlier research. The combination of these

three issue makes it fatal for datamining techniques to get effective outcome for multimedia

applications.

• We proposed Probabilistic Temporal Multimodal (PTM) datamining framework for multime-

dia applications. PTM datamining framework deals effectively with issues of incorporation

of semantic knowledge, scalability, inaccurate concept representation, sparsity, dynamic tem-

poral correlations and consideration of multi-modality.

• The utility of proposed framework is demonstrated in the following three multimedia appli-

cations,

– Discovery of accurate frequent event patterns for behavior analysis in group meetings

using PTM data sequence pattern mining.

– Concept-based near-duplicate video clip detection based novelty re-ranking of web video

search results using PTM data clustering.
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– Adaptive ontology rule based composite concept detection using PTM data classifica-

tion.

• During development of above applications we discover the following,

– Novel data representations: (1) PTM data interval based event sequences and (2) PTM

data time-series.

– Novel algorithms: (1) Probabilistic Interval based Event Miner (PIE-Miner) and (2)

Concept-based change point detection.

– Novel methods/mechanism: (1) τ -containment mechanism for cluster based support

counting, (2) Reward and punishment mechanism for dynamic correlation, (3) PTM

data to categorical data transformation mechanism for scalability, (4) Mutual learning

paradigm of MDM with ontologies.

– Novel application: (1) Concept-based near-duplicate video detection based novelty re-

ranking.

1.5 Thesis organization

In chapter 2, we present a detailed review of the state-of-the-art multimedia datamining

methods. It gives background on image, video, audio, text and multimodal data preprocessing,

feature extraction and transformation. Also, the application of datamining techniques like clas-

sification, clustering, association rule mining and sequence pattern mining on multimedia data is

discussed. We identify specific problems and discuss current approaches to solve the identified

problems and their limitations. We formulate the problem of PTM datamining. Then we summa-

rize open research issues in the MDM area and list the issues that have been solved with PTM

datamining in this thesis proposal.

Chapter 4 presents the proposed novel framework for performing sequence pattern mining

on probabilistic temporal multimedia event data. We have designed a novel sequence pattern min-

ing algorithm called PIE-Miner to discover more meaningful sequence patterns from PTM data. We

perform probability fusion to resolve the redundancy among detected events from different modal-

ities, considering their cross-modal correlation. Proposed Probabilistic Interval based Event Miner

(PIE-Miner) algorithm has a novel event cluster level support counting mechanism. The experi-

mental results showed that the discovered sequence patterns are novel with confidence information
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associated to each concepts and more useful for behavior analysis application. Existing approaches

faces sparsity problem to find sufficient number of frequent event patterns.

In chapter 5, Concept Based Near Duplicate Video Clip (CBNDVC) detection technique

for novelty re-ranking was proposed with novel PTM data clustering framework. While existing

techniques were limited to “content level near-duplicate video clip detection” we proposed “Seman-

tically Near Duplicate Video Clip detection” making use of the PTM data clustering and re-rank the

top results to increase the content level as well as semantic level novelty. Videos are represented as

a multivariate time-series of confidence values of relevant concepts and thereafter discovery of CB-

NDVC clusters is achieved by incremental conceptual clustering like COBWEB. Obtained results

show higher precision and recall from the user’s perspective.

Composite concept detection is effectively done using PTM data classification framework

described in chapter 6. We proposed a novel paradigm of mutual learning between multimedia

datamining and ontology for discovering Adaptive Ontology Rule (AOR). This new type of ontology

rule AOR incorporate dynamic correlation among primitive concepts with the help from proposed

Concept-based change point detection algorithm. Higher accuracy for primitive concept detection

is achieved with a Reward and punishment based mechanism for confidence refinement. SVM

based classifiers with AOR learning gives superior results for composite concept detection than

other existing composite concept detection methods.

Chapter 7 presents the conclusions and future research directions. This thesis demon-

strated the usefulness of the proposed PTM datamining to fill the research gap in existing multi-

media datamining. We demonstrated superior performance for PTM data sequence pattern mining

application, PTM data clustering application and PTM data classification application. In future,

PTM datamining framework can be applied to various multimedia domain for diverse multimedia

applications. Also, potential of PTM datamining can be enhanced with incorporation and integration

of other supporting techniques.
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Chapter 2

State-of-the-art multimedia datamining

As multimedia datamining is a new research area and it requires background from datamin-

ing as well as multimedia processing domain. We would incorporate background on multimedia,

datamining and multimedia datamining. Then we discuss existing application of datamining tech-

niques on multimedia data and research issues.

2.1 Multimedia datamining background

The typical multimedia datamining process consists of several stages and the overall pro-

cess is inherently interactive and iterative. The main stages of the multimedia datamining process

are (1) Domain understanding; (2) Data selection; (3) Data preprocessing, cleaning and transforma-

tion; (4) Discovering patterns; (5) Interpretation; and (6) Reporting and using discovered knowledge

[102].

The domain understanding stage requires learning how the results of multimedia datamin-

ing will be used so as to gather all relevant prior knowledge before mining. For example, while

mining sports video for a particular sport like tennis, it is important to have a good knowledge and

understanding of the game to detect interesting strokes used by players.

The data selection stage requires the user to target a database or select a subset of fields

or data records to be used for datamining. A proper understanding of the domain at this stage helps

in the identification of useful data. The quality and quantity of raw data determines the overall

achievable performance.

The goal of preprocessing stage is to discover important features from raw data. The

preprocessing step involves integrating data from different sources and/or making choices about

representing or coding certain data fields that serve as inputs to the pattern discovery stage. Such
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representation choices are needed because certain fields may contain data at levels of details not

considered suitable for the pattern discovery stage. This stage is of considerable importance in mul-

timedia datamining, given the unstructured and heterogenous nature and sheer volume of multime-

dia data. The preprocessing stage includes data cleaning, normalization, transformation and feature

selection. Cleaning removes the noise from data. Normalization is beneficial as there is often large

difference between maximum and minimum values of data. Constructing a new feature may be

of higher semantic value to enable semantically more meaningful knowledge. Selecting subset of

features reduces the dimensionality and makes learning faster and more effective. Computation in

this stage depends on modalities used and application’s requirements.

The pattern discovery stage is the heart of the entire datamining process. It is the stage

where the hidden patterns, relationships and trends in the data are actually uncovered. There are sev-

eral approaches to the pattern discovery stage. These include association, classification, clustering,

regression, time-series analysis, and visualization. Each of these approaches can be implemented

through one of several competing methodologies, such as statistical data analysis, machine learning,

neural networks, fuzzy logic and pattern recognition. It is because of the use of methodologies from

several disciplines that datamining is often viewed as a multidisciplinary field.

The interpretation stage of the datamining process is used to evaluate the quality of dis-

covery and its value to determine whether the previous stages should be revisited or not. Proper

domain understanding is crucial at this stage to put a value to the discovered patterns.

The final stage of the datamining process consists of reporting and putting to use the

discovered knowledge to generate new actions or products and services or marketing strategies as

the case may be. This stage is application dependent.

Among the above mentioned stages of datamining process Data preprocessing, clean-

ing and transformation; Discovering patterns; Interpretation; and Reporting and using discovered

knowledge contains the highest importance and novelty from the MDM perspective. Thus, we orga-

nize Multimedia Data Mining State of the Art review as shown in Figure 2.1. The proposed scheme

achieves the following goals,

• Discussion of the existing preprocessing techniques for multimedia data in MDM literature.

• Identifying specific problems encountered during datamining of multimedia data from feature

extraction, transformation and representation and datamining techniques perspective.

• Discuss the current approaches to solve the identified problems and their limitations.

• Identification of open issues in the MDM area.
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Figure 2.1: Multimedia Data Mining State of the Art review scheme

2.1.1 Datamining techniques

Datamining techniques on audio, video, text or image data are generally used to achieve

two kinds of tasks (1) Descriptive Mining: that characterize the general properties of the data in

the database. and (2) Predictive Mining: that perform inference on the current data in order to

make predictions. The following sections are organized by the modality type and mining stages

for each of them. Each modality basically uses classification, clustering, association, time-series or

visualization techniques. We provide an introduction to these basic datamining techniques to get a

better understanding of the content in the following sections.

Mining frequent patterns, associations and correlations

Frequent patterns are the patterns that appear in the dataset frequently. We use this

datamining techniques to accomplish the task of (1) Finding frequent itemsets from large multi-

media datasets, where an itemset is a set of items that occur together. (2) Mining association rules
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in multilevel and high dimensional multimedia data. (3) Finding the most interesting association

rules etc. Following the original definition by Agrawal et al [6] the problem of association rule

mining is defined as: Let I = {i1, i2, ..., in} be a set of n binary attributes called items. Let T be

a database of transactions that contains a set of items such that T ⊆ I . Let D = {t1, t2, ..., tm}
be a set of transactions called the transactional database. Each transaction in D has a unique trans-

action ID and contains a subset of the items in I. A rule is defined as an implication of the form

X ⇒ Y where X,Y ⊆ I and X ∩ Y = Ø. To select interesting rules from the set of all possible

rules, constraints on various measures of significance and interest can be used. The best-known

constraints are minimum thresholds on support and confidence. The support supp(X) of an itemset

X is defined as the proportion of transactions in the data set which contain the itemset. Confidence

can be interpreted as an estimate of the probability P (Y | X),the probability of finding the right

hand side of the rule in transactions under the condition that these transactions also contain the left

hand side [62].

In many cases, the association rule mining algorithms generate an extremely large number

of association rules, often in thousands or even millions. Further, the association rules are some-

times very large. It is nearly impossible for the end-users to comprehend or validate such large

number of complex association rules, thereby limiting the usefulness of the datamining results.

Several strategies have been proposed to reduce the number of association rules, such as generating

only interesting rules, generating only nonredundant rules, or generating only those rules satisfying

certain other criteria such as coverage, leverage, lift or strength [74].

The A-priori and FP-Tree are well known algorithms for association rule mining. A-

priori has more efficient candidate generation process. However there are two bottlenecks of the

A-priori algorithm. One is the complex candidate generation process that uses a lot of the time,

space and memory. Another bottleneck is the multiple scans of the database. Based on the A-priori

algorithm, many new algorithms were designed with some modifications or improvements. FP-Tree

[52], frequent pattern mining, is another milestone in the development of association rule mining,

which removes the main bottlenecks of the A-priori algorithm. The frequent itemsets are generated

with only two passes over the database and without any candidate generation process.

Classification

Classification can be used to extract models describing important data classes or to predict

categorical labels [40]. Such analysis can help provide us with a better understanding of the data

at large. Classification is a two step process. In the first step, a classifier is built describing a
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predetermined set of data classes called the learning step ( or training phase). Here we learn a

mapping or a function, y = f(X), that can predict the associated class label y of a given data X. This

mapping is represented in the form of classification rules, decision trees, or mathematical formulae.

In the second step, the learned model is used for classification on test tuples. The accuracy of

classifier is the percentage of test set tuples that are correctly classified by classifier. Most popular

classification methods are decision tree, Bayesian classifier, support vector machines and k-nearest-

neighbors. The other well known methods are Bayesian belief networks, rule based classifier, neural

network technique, genetic algorithms, rough sets and fuzzy logic techniques etc.

The basic issues that need to be taken care during classification are (1) Removing or

reducing noisy data, irrelevant attributes and effect of missing values for learning classifier. (2)

Selection of distance function and data transformation for suitable representation is also important.

A decision tree is a predictive model, that is a mapping from observations about an item to

conclusions about its target value. Among ID3, C4.5 and CART decision tree algorithms, the C4.5

algorithm [108] is the benchmark against which new classification algorithms are often compared.

A naive Bayesian classifier based on Bayes theorem works well when applied to large databases.

To overcome the weak assumption of class conditional independence of naive Bayes classifier, the

Bayesian belief network is used when required. Probably one of the most widely used classifier

is support vector machines. They can do both linear and nonlinear classification. Another easy to

implement but slow classifier is the k-nearest neighbor classifier. These are the classifiers widely

used in application though, in literature we can find many other classifiers too.

Clustering

Clustering is the process of grouping the data into classes or clusters, so that objects

within a cluster have high similarity in comparison to one another but very dissimilar to objects in

other cluster [51]. The clustering techniques can be organized as partitioning, hierarchical, density

based, grid based and model based methods. Clustering is sometime biased as one can get only

round-shaped clusters and also the scalability is an issue. Using Euclidean or Manhattan distance

measures tends to find spherical clusters with similar size and density, but clusters could be of any

shape. Some clustering methods are sensitive to order of input data and sometime cannot incorporate

newly inserted data. The clustering results interpretability and usability is an important issue. High

dimensionality of data, noise and missing values are also problems for clustering.

K-means [13] clustering is one of the popular clustering technique based on the partition-

ing method. Chameleon and BIRCH [156] are good hierarchical clustering methods. DBSCAN

28



[41] is a density based clustering method. Wavelet transform based clustering WaveCluster [122] is

a grid based method.

Time-series and sequence pattern mining

A time series database consists of sequences of values or events obtained over repeated

measurements in time. Timeseries database is also a sequence database. Multimedia data like

video, audio are such timeseries data. The main tasks to be performed on timeseries data is to find

correlation relationship within timeseries, finding patterns, trends, bursts and outliers.

Time series analysis has quite a long history. Techniques for statistical modelling and

spectral analysis of real or complex-valued time series have been in use for more than fifty years

[24]. The sequence classification (finding patterns) applications have seen the use of both pattern

based as well as model-based methods. In a typical pattern-based method, prototype feature se-

quences are available for each class (e.g. for each word, gesture etc.). The classifier then searches

over the space of all prototypes, for the one that is closest (or most similar) to the feature sequence

of the new pattern. Typically, the prototypes and the given features vector sequences are of different

lengths. Thus, in order to score each prototype sequence against the given pattern, sequence align-

ing methods like Dynamic Time Warping are needed. Time warping methods have been used for

sequence classification and matching [49][110][75]. Another popular class of sequence recognition

techniques is a model-based method that use Hidden Markov Models (HMMs) [109]. Another class

of approaches to discovering temporal patterns in sequential data is the frequent episode discov-

ery framework [85]. In the sequential patterns framework, we are given a collection of sequences

and the task is to discover (ordered) sequences of items (i. e. sequential patterns) that occur in

sufficiently many of those sequences.

2.1.2 Multimedia processing techniques

It is essential to understand background on image, video, audio, text and multimodal

data preprocessing, feature extraction and transformation for developing multimedia datamining

application.

Image data preprocessing techniques

In image data, the spatial segmentation can be done at region and/or edge level based

on the applications requirement. It can be automatic or with manual intervention and should be
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approximate enough to yield features that can reasonably capture the image content. In many image

mining applications, therefore, the segmentation step often involves simple blob extraction or image

partitioning into fixed size rectangular blocks [102]. In some of the image mining applications like

medical image mining noise from the image is removed. For example, the cropping operation can be

performed to remove the background, and image enhancement can be done to increase the dynamic

range of chosen features so that they can be detected easily [111].

Image feature extraction and transformation

Color, edges, shape, and texture are the common image attributes that are used to extract

features for mining. Feature extraction based on these attributes may be performed at the global or

local level.

Color histogram of an image may be obtained at a global level or several localized his-

tograms may be used as features to characterize the spatial distribution of color in an image. Here

one can choose RGB or HSV any suitable color space for feature extraction. Apart from the choice

of color space, histograms are sensitive to the number of bins and position of bin boundaries. They

also do not include any spatial information of colors. [135] proposed color histogram intersection

for matching purposes. Color moments have been proposed in [134] as a more compact repre-

sentation. Color sets as an approximation of the color histogram proposed in [130] are also an

improvement over the global histogram, as it provides regional color information. The shape of a

segmented region may be represented as a feature vector of Fourier descriptors to capture global

shape property of the segmented region or a shape could be described in terms of salient points or

segments to provide localized descriptions.

There are obvious trade-offs between global and local descriptors. Global descriptors are

generally easy to compute, provide a compact representation, and are less prone to segmentation

errors. However, such descriptors may fail to uncover subtle patterns or changes in shape because

global descriptors tend to integrate the underlying information. Local descriptors, on the other hand,

tend to generate more elaborate representation and can yield useful results even when part of the

underlying attribute, for example, the shape of a region is occluded, is missing.

Video data preprocessing techniques

To apply existing datamining techniques on video data, one of the most important steps

is to transform video from non-relational data into a relational data set. Video as a whole is very
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large data to mine. Thus we need some preprocessing to get data in the suitable format for mining.

Video data is composed of spatial, temporal and optionally audio features. All these features can

be used to mine based on applications requirement. Commonly, video is hierarchically constructed

of frames(key-frames), shots (segments), scenes, clips and full length video. Every hierarchical

unit has its own features which are useful for pattern mining. For example, from frames we can

get features like objects, their spatial positions etc whereas from shots we may be able to get the

features like trajectories of object and their motion etc. The features among some hierarchical units

also can be used for mining. Now based on the application’s requirement and structure of video, we

can decide the preprocessing step for video to extract either frames or shots or scenes or clips. For

example the spatiotemporal segmentation can involve breaking the video into coherent collections of

frames that can be processed for feature extraction as a single unit. This is typically done via a shot

detection algorithm wherein the successive video frames are compared to determine discontinuity

along the time axis.

The video structure types like edited video sequences and raw video sequences influence

feature extraction process. For surveillance video like raw video sequences first step is to grouping

input frames to a set of basic units call segment [68]. While for sports video like edited video se-

quences shot identification is the first step [157]. [68] proposed multimedia datamining framework

for raw video sequences, where segmentation is done using hierarchical clustering on motion fea-

tures. The common preprocessing steps can be to extract the background frame, quantizing color

space to reduce noise, calculating the difference between the background frame and new frames,

categorizing frames based on the difference values obtained using some threshold values to decide

each category. This common steps can be configured based on requirements, like instead of color

we want to use some other feature or we may decide to consider the difference between two con-

secutive frames instead of background frame etc. After categorizing of frames we can use these

category labels

Video feature extraction and transformation

Color, edges, shape, and texture are the low level attributes that are used to extract higher

level features like motion, objects etc for video mining from each frames or shot or segment. In

addition to these features, attributes resulting from object and camera motion can also be used for

video mining purpose. The qualitative camera motion extraction method proposed in [157] uses

motion vectors from p-frames to characterize camera motions. We can categorize the video in

3 different types (1) Raw video sequences e.g. surveillance video, they are neither scripted nor
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constrained by rules (2) Edited video e.g. drama, news etc, are well structured but with intra-genre

variation in production styles that vary from country to country or content creator to content creator.

(3) Sports video are not scripted but constrained by rules. We do not cover medical videos (ultra

sound videos including echocardiogram) in our survey.

Audio data preprocessing

With audio data, the temporal segmentation can be either at the phoneme or word level

or the data are broken into windows of fixed size. Dividing into windows of fixed size depends

on application requirements and available data size. Thus remaining is phoneme or text based seg-

mentation. The text based approach also known as large-vocabulary continuous speech recognition,

converts speech to text and then identifies words in a dictionary that can contain several hundred

thousand entries. If a word or name is not in the dictionary, the Large-Vocabulary Continuous

Speech Recognition (LVCSR) system will choose the most similar word it can find. The Phoneme

based approach does not convert speech to text but instead works only with sounds. Based on

the application requirement one of the approach is chosen for example phoneme based approach

is more useful when dealing with foreign terms and names of people and places. There are also

some applications where you may want to first segment out the silence, music, speech and noise

from the source audio for further processing [105][117]. [118] presented a method to separate

speech from music by tracking the change of the zero crossing rate. In Acoustic Speech Recog-

nition systems, one of the commonly encountered problems is the mismatch between training and

application conditions. Solutions to this problem are provided as pre-processing of the speech sig-

nal for enhancement, noise resistant feature extraction schemes and statistical adaptation of models

to accommodate application conditions.

Audio feature extraction and transformation

In the case of audio, both the temporal and the spectral domain features have been em-

ployed. Examples of some of the features used include short-time energy,pause rate, zero-crossing

rate, normalized harmonicity, fundamental frequency, frequency spectrum, bandwidth, spectral cen-

troid, spectral roll-off frequency, and band energy ratio. Many researchers have found the cepstral-

based features, melfrequency cepstral coefficients (MFCC), and linear predictive coefficients (LPC),

very useful, especially in mining tasks involving speech recognition. As far as feature extraction
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is concerned, the main research areas cannot be easily classified in completely distinct categories,

since the cross-fertilization of ideas has triggered approaches that combine ideas from various fields.

Filterbank analysis is an inherent component of many techniques for robust feature ex-

traction. It is inspired by the physiological processing of speech sounds in separate frequency bands

that is performed by the auditory system. Auditory processing has developed into a separate re-

search field and has been the origin of important ideas, related to physiologically and perceptually

inspired features [48][57][59][67][120].

• Mel Frequency Cepstral Coefficients (MFCC): The MFCC are the most commonly used fea-

ture set for ASR applications. They were introduced by Davis and Mermelstein [37]. The

wide-spread use of the MFCC is due to the low complexity of the estimation algorithm and

their efficiency in ASR tasks.

• Subband Spectral Centroids: These features have been introduced by Paliwal et al, [47]. They

can be considered as histograms of the spectrum energies distributed among nonlinearly-

placed bins.

Equally important is the research field based on concepts relevant to speech resonance

(short-term) modulations. Both physical observations and theoretical advances support the existence

of modulations during speech production.

• The Frequency Modulation Percentages (FMP) are the ratio of the second over the first mo-

ment of these signals [38]. These spectral moments have been tested as input feature sets for

various ASR tasks yielding improved results.

• The Modulation Spectrogram: The short and long term modulations are two different con-

cepts of the speech production mechanism. The short-term modulations are studied in time-

windows up to 10-30ms in order to capture the micro-details (very rapid changes) of the

speech signals. On the contrary, long-term modulations examine the temporal evolution of

the speech energy and the corresponding time-windows are in the range of 200-500ms.

• The Dynamic Cepstral Coefficients method [46] attempts to incorporate long-term temporal

information.

• In Relative Spectral Processing (RASTA) [59][60] the modulation frequency components that

do not belong to the range from 1 to 12 Hz are filtered out. Thus, this method suppresses the

slowly varying convolutive distortions and attenuates the spectral components that vary more

rapidly than the typical rate of change of speech.
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• Temporal PatternsTRAP: This method was introduced by Hermansky et al. [61]. The TRAP

features describe likelihoods of sub-word classes at a given time instant, derived from tempo-

ral trajectories of band-limited spectral densities in the vicinity of the given time instant.

The human auditory system is a biological apparatus with excellent performance, especially in noisy

environments. The adaption of physiologically based methods for spectral analysis [48] is such an

approach.

• the Ensemble Interval Histogram (EIH) model is constructed by a bank of cochlear filters

followed by an array of level crossing detectors that model the motion to neural conversion.

• The Joint Synchrony/Mean-Rate model [119][120] captures the essential features extracted

by the cochlea in response to sound pressure waves.

• Perceptual linear prediction (PLP) is a variant of Linear Prediction Coding (LPC) which in-

corporates auditory peripheral knowledge [57][58].

One of the latest approaches in speech analysis are the nonlinear/fractal methods. These diverge

from the standard linear source-filter approach in order to explore nonlinear characteristics of the

speech production system.

• Difference equation, oscillator and prediction nonlinear models were among the early works

in the area [76][107][138].

• Speech processing techniques that have been inspired by fractals have been introduced in

[86][87].

Text data preprocessing

In order to obtain all words that are used in a given text, a tokenization process is required,

i.e. a text document is split into a stream of words by removing all punctuation marks and by replac-

ing tabs and other non-text characters by single white spaces. The set of different words obtained

by merging all text documents of a collection is called the dictionary of a document collection. To

reduce the size of the dictionary filtering and lemmatization or stemming methods are used.

The standard stop word filtering method is to remove words that bear little or no content

information, like articles, conjunctions, prepositions, etc. Furthermore, words that occur extremely

often can be said to be of little information content to distinguish between documents, and also
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words that occur very seldom are likely to be of no particular statistical relevance and can be re-

moved from the dictionary [44]. Lemmatization methods try to map verb forms to the infinite tense

and nouns to the singular form. However, in order to achieve this, the word form has to be known,

i.e. the part of speech of every word in the text document has to be assigned.

Stemming methods try to build the basic forms of words, i.e. strip the plural s from nouns,

the ing from verbs, or other affixes. A stem is a natural group of words with equal (or very similar)

meaning. After the stemming process, every word is represented by its stem. A well-known rule

based stemming algorithm has been originally proposed by Porter [106].

To further decrease the number of words that should be used also indexing or keyword

selection algorithms can be used. In this case, only the selected keywords are used to describe the

documents. A simple method for keyword selection is to extract keywords based on their entropy.

The entropy can be seen as a measure of the importance of a word in the given domain context.

Sometimes additional linguistic preprocessing may be used to enhance the available in-

formation about terms.

• Part-of-speech tagging (POS) determines the part of speech tag, e.g. noun, verb, adjective,

etc. for each term.

• Text chunking aims at grouping adjacent words in a sentence. An example of a chunk is the

noun phrase the current account deficit.

• Word Sense Disambiguation (WSD) tries to resolve the ambiguity in the meaning of single

words or phrases. An example is bank which may have among others the senses financial

institution or the border of a river or lake. Thus, instead of terms the specific meanings could

be stored in the vector space representation. This leads to a bigger dictionary but considers

the semantic of a term in the representation.

• Parsing produces a full parse tree of a sentence. From the parse, we can find the relation of

each word in the sentence to all the others, and typically also its function in the sentence (e.g.

subject, object, etc.).

Text feature extraction and transformation

In text mining the feature extraction usually means identifying the keywords that sum-

marize the contents of the document. One way is to look for words that occur frequently in the

document. These words tend to be what the document is about. Of course, From the remaining
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words, a good heuristic is to look for words that occur frequently in documents of the same class,

but rarely in documents of other classes. In order to cope with documents of different lengths,

relative frequency is preferred over absolute frequency.

Multimodal data Preprocessing

The data analysis granularity level of video can be frame level, shot level, clip level etc

, while for image it can be pixel level, grid level, region level etc., for audio it can be phoneme or

word level or the data are broken into windows of fixed size. Each of them have semantic meaning

within their granularity level of processing unit. Thus, we need to do careful pre-processing for

multimodal data to avoid loss of actual semantic meaning.

Multimodal feature extraction and transformation

The special features of multimodal datamining can be easily seen apart from traditional

single modality features of image, audio or video modality. The image annotations can be consid-

ered very useful feature for cross modal mining for text and image. The subtitles or movie scripts,

Optical character recognition (OCR) text label extracted from videos can be very useful feature for

cross modal mining of video and text. From audio, extracting the speech is semantically very rich.

An important issue with features extracted from multimodal data is how the features

should be integrated for mining. Most multimodal analysis is usually performed separately on each

modality, and the results are brought together at a later stage to arrive at the final decision about the

input data. This approach is called late fusion or decision-level fusion. Although this is a simpler

approach, we lose valuable information about the multimedia events or objects present in the data

because, by processing separately, we discard the inherent associations between different modali-

ties. Another approach for combining features is to represent features from all modalities together

as components of a high-dimensional vector for further processing. This approach is known as early

fusion. The datamining through this approach is known as cross-modal analysis because such an

approach allows the discovery of semantic associations between different modalities [39].

The problem involved in finding such cross-modal correlation discovery is defined as,

“Given n multimedia objects, each consisting of m attributes (traditional numerical attributes, or

multimedia ones such as text, video, audio, time-sequence, etc). Find correlations across the media

(eg., correlated keywords with image blobs/regions; video motion with audio features)” [100]. Their

main motivation was to come up with generic graph based approach to find patterns and cross
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media correlation for multimedia database. It is one of the first approaches in the area, called

Mixed Media Graph MMG. It constructs the graph for associating visual feature from image to their

representative keyword and then find the steady state probability for future mapping. If provided

with good similarity functions, the approach is very fast and scalable. Their approach has not been

explored further. Correlations among different modalities vary based on the content and context

thus it is difficult to get generalizable methodologies for generic cross modal correlation discovery.

2.2 Application of datamining techniques on multimedia data

In this section, we will discuss existing applications of datamining techniques like se-

quence pattern mining, clustering and classification on multimedia data.

2.2.1 Application of classification techniques on multimedia data

Classification is an important form of knowledge extraction, and can help make key de-

cisions. Multimodal classifications are mainly used for event/concept detection purposes. Using

multiple modalities, events like goal detection from soccer videos [31] or commercial detection

from TV program [126] or news story segmentation etc. are more successfully classified than using

the single modalities alone. There are generic classification issues which also need to be considered

for successful multimodal classification.

• Class-imbalance (or rare event/concept detection) problem: the events/concepts of interests

are often infrequent [127].

• Domain knowledge dependence problem: For bridging the semantic gap between low-level

video features and high-level semantic concepts most current researches for event/concept

extraction rely heavily on certain artifacts such as domain-knowledge and a priori models,

which largely limit their extensibility in handling other application domains and/or video

sources [127].

• Scaling Problem: Some good classifiers like SVM etc does not have capability to scale well

as size of training data increases [92]. It needs to be addressed.

[92][31][127] present works on the multimodal classification problem for event detection.

In [31] they perform soccer goal detection with multimodal analysis and decision tree logic. As

they found that traditional HMM cannot identify the goal event and has problem to deal with long
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video sequences, they decided to go for a decision tree based approach. They follow a three step

architecture video parsing, data pre-filtering and datamining. They discover some important features

from video parsing and based on domain knowledge they derive three rules for data pre-filtering to

remove the noisy data. This is novel in terms of thinking from class imbalance problem solution

perspective. They were able to show that 81% of shots can be reduced by applying these rules. Then

C4.5 based decision tree algorithm was used with information gain criteria to recursively determine

the most appropriate attribute and to partition the dataset until labels are assigned. In [92], by using

a pre filtering step with SVM light, they cleaned the dataset in terms of classifying grass and non-

grass scenes. They apply the decision tree only on grass scenes as they have a higher rate (5% of

data) of goal event than the raw data. They derived new mid-level temporal features apart from

raw video and audio features. The distinguishing feature of their work was consideration of cause

and effect as assumption that goal event might be caused by 2 past events and could affect 2 future

events. This assumption was used to capture the interesting goal events within the temporal window

of 5 shots. Though they discovered five new temporal features in final dataset for decision tree based

mining, they have not shown how useful these features are as compared to the low-level features.

They should have compared results using the complete dataset and using only the grass-scene based

cluster to show the effect of class imbalance problem. They proposed the approach in [127] where

they do intelligent integration of distance based and rule based datamining techniques to deal with

the problem of semantic gap and class imbalance without using domain knowledge or relying on

artifacts. Good experiments comparing the performance between different classification approaches

show that the subspace based model is superior than the others.

We highlight some very specific classification issues for multimedia datamining below:

• Multimodal Classifier Fusion Problem: For multimodal data the classifiers can run either on

concatenated single long feature vector of multiple modalities or separately on single modal-

ity and then combine the result. While the curse of dimensionality does not allow for the

first option, the second option needs to apply some well crafted multimodal classifier fusion

technique to be successful [82].

• Multimodal Classifier Synchronization Problem: For example, the speaker identification mod-

ule needs a longer time frame to make reliable estimates than the face recognition module

does, while the latter can make a judgment as soon as a single image is acquired. Conse-

quently, the classification judgments from multimodal classifiers will be fed into the meta-

classifier asynchronously, and a method of appropriately synchronizing them is needed [82].
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Combining multiple classifiers can improve classification accuracy when the classifiers

are not random guessers and complementary to each other. Concatenating the multidimensional

features simply does not scale up. Instead of combining features, another approach is to build a

classifier on each modality independently, and then to combine their results to make the final de-

cision. Using an ensemble of multimedia classifiers has been explored in [82] and [116], which

demonstrated the effectiveness of combining three multimodal classifiers. In [82] and [116] they

developed framework called “meta classification”, which models the problem of combining classi-

fiers as a classification problem itself. They showed the problem formulation of Meta Classification

as reclassification of the judgments made by classifiers. It looks like promising approach for dealing

with multimodal classifier fusion probelm. The results show that it outperforms the traditional ad

hoc approaches like majority voting or linear interpolation and probability based framework.

Majority voting, where each classifier casts one vote towards the overall outcome, and

linear interpolation are among the most common ways of combining classifiers. However, these

methods ignore the relative quality and expertise among classifiers. The weights of classifiers are

assigned either equally (summing all probabilities) or empirically (taking the maximal or minimal

probability). In meta classification, they synthesize asynchronous judgments from multimedia clas-

sifiers into a new feature vector, which is then fed into the meta-classifier. Then they describe the

method of training such a meta-classifier.

Though the authors mentioned that generating long single feature vector is not a good

option to choose due to curse of dimensionality, it is not well justified for many applications. Syn-

thesizing feature vectors for generating feature space for meta classifier is not very well explained in

terms of how it can bring reliability of each modality for task. Though the synchronization problem

is solved to some extent, negative effects of lack of synchronization have not been explained.

Also [81] is based on SVM meta classifier giving good results. [150] found that the use of

learning a set of query-independent weights to combine features sometimes performed worse than a

system that uses text alone, thus highlighting the difficulty of multimodality combination. As differ-

ent queries have different characteristics, they explore query dependent models for retrieval. They

borrow the ideas from text-based question-answering research, a feasible idea is to classify queries

into pre-defined classes and develop fusion models by taking advantage of the prior knowledge and

characteristics of each query class.

[112] proposed VideoMule, a consensus learning approach to solve the problem of multi

label classification for user-generated videos. They train classification and clustering algorithms

on textual metadata, audio and video. Generated classes and clusters are used for building a multi
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label tree which in turn mapped to high dimensional belief graph with probability distribution. The

probability value propagate from labeled nodes in tree to unlabeled nodes and graph becomes stable,

the stable graph denote multi label classes.

2.2.2 Application of clustering techniques on multimedia data

Multimodal clustering can be used as an unsupervised approach to learn associations be-

tween continuous-valued attributes from different modalities. In [45] the authors try to search for

optimal clusters prototypes and the optimal relevance weight for each feature of each cluster. In-

stead of learning a weight for each feature, they divide the set of features into logical subsets, and

learn a weight for each feature subset. Their approach claims to out-perform state of the art in

captioning accuracy.

Domains where neither perceptual patterns nor semantic concepts have simple structures,

unsupervised discovery processes may be more useful. In [149] Hierarchical Hidden Markov Model

(HHMM) is used. An audio-visual concept space is a collection of elementary concepts such as

people, building, and monologue each of which is learned from low-level features in a separate su-

pervised training process. They believe that such mid-level concepts offer a promising direction to

revealing the semantic meanings in patterns, since grouping and post-processing beyond the signal

level is deemed a vital part for the understanding of sensory inputs, and multi-modal perception is

no less complicated than perception in individual senses. They obtained the co-occurrence statistic

C(q;w) for a HHMM label q and a token w by counting the number of times that the state label

q and the word w both appear in the same temporal segment among all video clips. Despite the

convenience of directly using shots as the temporal division on which the HHMM labels are gener-

ated, they find it is beneficial to use story segments in establishing the label-token correspondence.

A few interesting issues not considered in their work are: (1) Using text processing techniques to

exploit the correlations inherent in raw word tokens; (2) Joint learning of the temporal model and

the semantic association to obtain more meaningful labels.

Automatic identification of temporal structures from video is an interesting topic for both

for the theoretical problems on learning in multi-modality and applications on multimedia content

organization. Whenever we discover temporal structures using unsupervised approach, we need to

evaluate them to make sure that it is a useful structure. Then such important structures represents

events and can be use for learning and indexing. An important problem could be the automated

evaluation of discovered temporal structures. Solutions to unsupervised structure discovery address
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two objectives in one pass: finding a statistical description of the structure and locating the corre-

sponding segments in the sequence.

In [18], the authors present multi-modal and correspondence extensions to Hofmann’s

hierarchical clustering/aspect model for learning the relationships between image regions and se-

mantic correlates (words). Each cluster is associated with a path from a leaf to the root. Nodes close

to the root are shared by many clusters, and nodes closer to leaves are shared by few clusters. Hierar-

chical clustering models do not model the relationships between specific image regions and words

explicitly. However, they do encode this correspondence to some extent through co-occurrence

because there is an advantage to having topics collect at the nodes.

Another multimodal clustering approach in [126] divided each video into Ws-minute

chunks, and extracted audio and visual features from each of these chunks. Next, they apply

k-means clustering to assign each chunk with a commercial/program label. They intend to use

content-adaptive and computationally inexpensive unsupervised learning method. The idea of de-

parture from stationarity is to measure the amount of ”usual” characteristics in a sequence. They

form a global window that consists larger minutes of video chunks, and a local window with just

one video chunk. Computation of a dissimilarity value from the histogram is based on the Kullback-

Liebler distance metric. Dissimilarity based on comparison with global and local window is good

idea but finding their sizes for effective computation will vary. For labeling as program or commer-

cial they needed rule based heuristics which might not be generic and scalable.

The approach in [45] is to extract representative visual profiles that correspond to fre-

quent homogeneous regions, and to associate them with keywords. A novel algorithm that performs

clustering and feature weighting simultaneously is used to learn the associations. Unsupervised

clustering is used to identify representative profiles that correspond to frequent homogeneous re-

gions. Representatives from each cluster and their relevant visual and textual features are used to

build a thesaurus. Their assumption is that, if word w describes a given region Ri, than a subset of

its visual features would be present in many instances across the image database. Thus, an associa-

tion rule among them could be mined. They claim that due to the uncertainties in the images/regions

representation duplicated words, incorrect segmentation, irrelevant features etc. standard associa-

tion rule extraction algorithms may not provide acceptable results. This is not properly supported

as they have not shown any strong evidence against or provided the logical reason for.

[141] proposed the cross-reference reranking (CR-Reranking) strategy for the refinement

of the initial search results of video search engines. CR-Reranking method contains three main

stages: clustering the initial search results separately for different modality, ranking the clusters by
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their relevance to the query, and hierarchically fusing all the ranked clusters using a cross-reference

strategy. The fundamental idea of CR-Reranking is that, the semantic understanding of video con-

tent from different modalities can reach an agreement. The proposed re-ranking method is sensitive

to the number of clusters due to the limitation of cluster ranking. While existing clustering methods

typically output groups of items with no intrinsic structure [91] discovers deeper relations among

grouped items like equivalence and entailment using cross-modal clustering. The work pointed out

that, existing clustering methods mostly link information items symmetrically but two related items

should be assigned different strength to link each other.

One of the multi-modal clustering application in [155] reveals common sources of spam

images by two-level clustering algorithm. The algorithm first calculates the image similarities in a

pair-wised manner with respect to the visual features, and the images with similarities sufficiently

high are grouped together. In the second level clustering, text clues are also considered. A string

matching method is used to compare the closeness of texts in two images, which is used as a criterion

to refine the clustering results from the first level clustering. Though they did not use synergy

between two modalities, exploiting it through some association rule mining algorithm could enhance

the effectiveness of results.

2.2.3 Application of sequence pattern mining techniques on multimedia data

As video and audio are continuous media, one of the potential forms of the pattern can be

sequential pattern (patterns that sequentially relates the adjacent shots). To extract meaningful pat-

terns from extremely large search space of possible sequential patterns, we need to impose various

constraints to eliminate unlikely search area. It is mainly useful for multimodal event detection and

thus in turn for indexing and retrieval. As the temporal information in a video sequences is critical

in conveying video content, temporal association mining has been proposed in literature. In [28]

the authors proposed hierarchical temporal association mining approach based on modification to

traditional Association Rule Mining(ARM). The advantage of their work was to provide automatic

selection of threshold values of temporal threshold and support and confidence. But due to pattern

combinatorial explosion problem, people also suggest some non traditional ARM from the neural

network area, named as Adaptive Resonance Theory in [70].

For event detection or classification, it is required to know the event model before hand

but association mining can discover the patterns and then use it for classifying/labeling videos.

It is therefore better approach than hidden Markov models, classification rules or special pattern

detections. The work in [157] is novel in its attempt to do sequence association mining to assign
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class labels to discovered associations for video indexing purpose. They first explore visual and

audio cues that can help bridge the semantic gap between low-level features and video content. They

do video association mining and discuss algorithms to classify video associations to construct video

indexing. Once they generate the symbolic streams from different modalities, they either need to

combine the streams or treat the streams separately. To find the co-occurrence of patterns that appear

in multiple streams, symbol production synchronization is required for combining into single stream

and find periodic patterns. The proposed association mining nicely handles the problem but the

question that arises here is, multimedia data streams do not generate same amount of symbols in the

same amount of time. Symbols from video shot and words from audio clip need to be synchronized

in some way for creating the relational database for mining purposes. If we consider them as one

stream, some information may be lost. Though they use visual, textual, audio and metadata features,

they did not show any special usage of multimodal fusion to enhance the knowledge discovery

process. Though algorithms have been proposed with nice set of low level and mid level feature set,

no meaningful discovered patterns are shown in their results [157].

Similarly in the series of papers [89][124][125], the aim is to show the importance of

temporal constraint as temporal distance and temporal relationship. Applying Temporal Distance

Threshold (TDT) and Semantic Event Boundary (SEB) constraints on extracted raw level metadata

help to effectively extract Cinematic Rules and Frequent semantic events. For example, frequent

patterns say SM1-SM1 represent “two continuous shots with human voice”, SM1MV0 represent “a

shot with human voice and no direction of movement” and MV0-MV0 represent “two continuous

shots with no direction of movement”. The considerably high recall values for these patterns indi-

cate that characters talk to each other and hardly move in most of the talk event in this movie. They

are not enforcing any rules based on domain knowledge ( e.g. interview events of news videos has

a shot where an interviewer followed by interviewee is repeated. ) thus it is kind of extraction of

semantic patterns from rule independent videos.

They extracted raw level features from audio and video shot keyframes using MP-factory

and OpenCV. Then they cluster the raw level data and assign the labels based on clusters to dis-

criminate the frames more efficiently. The intuition behind using semantic level meta data is that,

we can get some semantic level knowledge. E.g. by considering the color histogram level data it

is difficult to interpret the obtain knowledge for higher level semantics, but by clustering this his-

togram and labeling them as category (water, snow, fire etc.) we can interpret the mined results

at a semantic level. One nice idea they use is that ”semantic content represented by two symbols

occurring at same time point is completely different from that of two symbols occurring at different
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time points.” Discriminating temporal relationship as parallel or sequential was a good idea. They

did parallel processing for the mining, which is good for multimedia datamining algorithms as it is

always computationally expensive.

In [124] they pointed out that the Semantic Event Boundary (SEB) and video shot bound-

ary relationship is not stable. It is rigid to consider that there are many shots within a semantic event,

shot may not convey a semantic event of interest though it is within given semantic event boundary.

As there could be cases where a shot contains many semantic boundaries ( e.g. surveillance video

is just one shot with many semantic events whereas in movies battle scenes are made of many small

shots.) Semantic Event Boundaries are very difficult to find automatically, and finding it manually is

laborious. Temporal Distance Threshold (TDT) is also expected from the user and it is hard to judge

without good domain knowledge. They did not attempt to reduce the dimensionality of generated

multi-dimensional categorical streams. It could significantly make sequential pattern mining task

faster.

In [79] which is a continuation of the work done in [127], they considered that the class

imbalance can be addressed by learning more positive instances. Here, the authors used association

rule mining to learn more about positive and negative instances and then use that knowledge for

classification. They apply some heuristics to give better classification based on the concept they

wanted to learn. For example, the weather related concept has high number of negative instances so

they included more negative rules in the weather classifier. Such rules are learned from association

mining so no domain knowledge dependence is incurred for detecting the rules. Again such heuris-

tics are not guaranteed to give good results. It is possible to learn such heuristics automatically from

the available statistical information in dataset.

HMNews proposed in [93] has a layered architecture. At the lowest level it has feature

extraction, shot/speaker detection/clustering, and natural language tagging. At the aggregation layer

association mining tools used for the generation of the multimodal aggregations. Final layer provide

search and retrieval services. In [88] proposed multi-modal motif mining method to model dialogue

interaction of doctor and patient. They exploit a Jensen-Shannon Divergence measure to solve the

problem of combinatorially very large pattern generation and extracted important patterns and mo-

tifs. In [55][56] Multi-Modal Semantic Association Rule (MMSAR) is proposed to fuse keywords

and visual features automatically for Web image retrieval. It associates a single keyword to several

visual feature clusters in inverted file format. Based on the mined MMSARs in inverted files, the

query keywords and the visual features are fused automatically in the retrieval process.
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2.3 Summary of contribution of thesis over state-of-the-art

Based on the observed research gap in the state-of-the-art multimedia datamining appli-

cations we can summarize the contribution of thesis in the following way.

• None of the current research works focus on obtaining a realistic feature representation for

mining purposes. For example, some of the techniques try to extract the raw level feature

then cluster or classify them and assign the labels to generate the categorical dataset. The

derived categorical labels are approximate. Thus, these labels should have some probability

associated with them to represent the approximation factor in order for it to be a more realistic

data representation. We are the first to focus on such consideration for accurate concept

representation for multimedia datamining applications.

– Using such accurate representation we enable frequent event sequence pattern mining

which was not been explored much due to sparsity of sequence dataset with binary

representation of semantic concepts. Since such sparse dataset was not able to generate

useful sequence patterns, no applications like behavior analysis were developed. Thus,

using PTM sequence pattern mining we demonstrated the potential of such applications

in chapter 4.

– Due to binary representation it was inaccurate to calculate distance (in turn cluster the

videos) between varying length videos with semantic concepts occurring similarly over

time period. But, with consideration of accurate confidence value more accurate dis-

tance measures can be possible which in turn allows for better clustering applications.

We utilize PTM time series representation to demonstrate such semantic level clustering

for generating semantically novel clusters in chapter 5.

– With inaccurate binarization of semantic concepts detected in video clips their mapping

to expected ontology rules were ineffective and in turn reduces the composite concept

detection accuracy or classification. We fill such gap with consideration of original

confidence value and adaptively learn them and incorporate in ontology rule for better

classification in chapter 6.

• State-of-the-art efforts discovers the cross modal correlation and synergy between different

modalities and semantic concepts. But, there are not many examples showing the significant

ways of exploiting such correlation knowledge for multimedia datamining applications. Most

works deal with low level raw data from each individual modality.
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– Instead of fusing such multimodal observations and generating single binary decision

we fuse them and generated single but more robust observation with confidence value

and keep the dataset dense for applying sequence patterns mining on such robust dataset

in chapter 4.

– While many of detected semantic concepts were considered for clustering at semantic

level without considering their dynamic temporal correlations. We considered time-

series of such concepts and discovered similarity of confidence with which all such con-

cepts occur in the videos over time to consider them semantically similar and discovered

concept-based near-duplicate clusters in chapter 5.

– Existing static correlation techniques do not incorporate context based on which the cor-

relations among concepts vary. But, we considered such context using detected concept-

based change point in videos and enhance concept detection confidence based on their

correlations. Thus, exploit such dynamic correlations for improving the classification

application accuracy in chapter 6.

• There is not much research work showing that if we have significant prior knowledge about

the relationships between context, content, and semantic labels, so we can use them to sub-

stantially reduce the hypothesis space to search for the right model. Also, the ontology based

approach looks promising but is not much explored for multimodal datamining.

– We utilize such prior knowledge of semantic labels and context (meeting) to discovered

useful behavioral patterns in group meetings using frequent event sequence patterns in

chapter 4.

– In novelty re-ranking based on the query context and based on the observation of se-

mantic diversity among the retrieved results we utilize selected semantic concept labels

to discover the potential concept-based near-duplicate videos and provided novelty re-

ranking for each query in chapter 5.

– We utilize ontologies, semantic labels, context and actual detection from content for

effectively detect composite in chapter 6.

In the next chapter we will detail the PTM datamining framework and open research issues discov-

ered in multimedia datamining.
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Chapter 3

PTM datamining framework and open

research issues

Due to the redundancy, ambiguity, heterogeneity of multimodal data, we have identified

the issue of the use of realistic multimedia data for mining purposes. Multimedia systems utilize

multiple types of media such as video, audio, text and even RFID for accomplishing various detec-

tion tasks. Different types of media possess different capabilities to accomplish various detection

tasks under different contexts. Therefore, we usually have different confidence levels in the evidence

obtained based on different media streams for accomplishing various detection tasks.

None of the state of the art works in multimodal datamining utilize realistic features for

mining purposes. They assume that the semantic labels can be obtained accurately. The reality is

that the extracted features (labels and tags) from different modalities are not obtained with 100%

accuracy. This is due to the well known semantic gap problem. There needs to be a way to represent

such information with certain probabilistic weighting to do mining on more accurate datasets. In

this chapter we will proposed PTM datamining framework and identify the challenging issues that

needs to be resolved for effective applications of PTM datamining and multimedia datamining in

general.

3.1 Proposed PTM datamining framework

There exists different components to proposed PTM datamining framework. In proposed

PTM datamining we have focused on the components relevant to pattern discovery techniques like

sequence pattern mining, clustering and classification. Particularly we are focusing on the required
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PTM datamining framework
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Figure 3.1: Proposed PTM datamining framework.

representations, transformations, pattern discovery and interpretation techniques for PTM datamin-

ing. While components for low level feature extraction and primitive concept detections are adopted

from existing methods as proposed in [139] and they are widely utilize for Text Retrieval Confer-

ence Video (Trecvid) retrieval evaluation [95] challenges. In Figure 3.1, we will illustrate briefly

each of the component of PTM datamining framework and details of proposed novel techniques for

each of the components are described in corresponding MDM applications developed in chapters 4,

5 and 6.

Low level feature extraction and concept detectors: As first step of video processing

we extract the keyframes from videos. If the videos considered are edited then we use Fraunhofer

Institute and Dublin City University teams shot boundary detector and then consider middle frame

of the shot as the keyframe. otherwise, for the unedited videos keyframes are extracted every ∆t

seconds. Three low-level visual features: edged direction histogram (EDH), Gabor (GBR), and grid

color moment (GCM) are extracted from each keyframes and Columbia374 trained SVM models

for suitable concepts are applied as per the guideline in [151].

Representation: The representation stage involves integrating data from different sources

and/or making choices about representing or coding certain data fields that serve as inputs to the
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pattern discovery stage. This stage is of considerable importance in multimedia datamining. In

PTM framework we proposed two novel representations PTM event sequence in chapter 4 and

PTM time-series of concept confidence values in chapter 5 and 6.

Transformation: It is an important component as multimedia data are often the result of

outputs from various kinds of sensor modalities with each modality needing sophisticated prepro-

cessing, synchronization and transformation procedures. We have described proposed transforma-

tion technique for such multimodal data in chapter 4. Also, transformation of PTM time-series to

categorical data is described in chapter 5 to reduces the dimensionality and increases the scalability

for unequal length videos. Whereas another transformation techniques were proposed in chapter 6

for robust knowledge discovery.

Pattern discovery: It is the component where the hidden patterns, relationships and

trends in the data are actually discovered. As PTM data has novel representation it may not be

possible for many existing algorithms to process such data directly. Thus, we proposed a novel

pattern discovery algorithm like PIE-Miner for sequence pattern mining as in chapter 4. Also, we

apply novel transformations techniques on proposed PTM time-series representation in chapter 5

and then applied existing pattern discovery algorithm like COBWEB for clustering.

Interpretation: To evaluate the quality of discovered pattern and its utility for proposed

applications we proposed novel interpretation techniques or modified existing. As the discovered

frequent event sequence patterns from PTM data are unique compared to existing sequence pattern

mining methods we proposed novel interpretation with notion of strong and weak patterns and tau-

containment in chapter 4. Whereas novel interpretation of concept-based near-duplicate videos for

novelty re-ranking is done in chapter 5. Similarly, novel discovered Adaptive ontology rules are

utilized for interpreting composite concepts in chapter 6.

Reporting and using discovered knowledge: Finally reporting and putting to use the

discovered knowledge to generate new applications like semantic level novelty re-ranking in chapter

5. Also, the traditional behavior analysis applications or ontology rule based composite concepts

detection application are expanded in terms of kind of knowledge discover from group meeting

behavior analysis with novel patterns in chapter 4 and novel Adaptive ontology rule discovery in

chapter 6.

Problem Definition of PTM datamining: Let S be a multimedia system designed for

accomplishing a set of detection tasks Tr = {T1, T2, . . . , Tr}, r being the total number of de-

tection tasks. The multimedia system S utilizes n ≥ 1 correlated media streams. Let M =
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{M1,M2, ...,Mn} be the set of n correlated media streams. Let L = {l1, l2, . . . , lr} be the se-

mantic labels output by the various detectors Tr.

For 1 ≤ i ≤ n, let 0 < pMit
j < 1 be the probability of label lMi

j output by the detector

Tj based on individual ith media stream at time t. The time is represented by starting time and

ending time, representing the duration of symbol existence in the stream. pMit
j is determined by

first extracting the low level content features from media stream i and then by employing a detector

(e.g. a trained classifier) on it for the task Tj . The dataset generated with such multimedia system is

called as ”probabilistic temporal multimodal dataset”. Thus, we obtain a set of n correlated labeled

streams correspond to the n media streams: L = {L1, L2, . . . , Ln}
where L1 = {(lM1

1 , pM1t
1 ), (lM1

2 , pM1t
2 ), . . . , (lM1

r , pM1t
r )}

L2 = {(lM2
1 , pM2t

1 ), (lM2
2 , pM2t

2 ), . . . , (lM2
r , pM2t

r )}
Ln = {(lMn

1 , pMnt
1 ), (lMn

2 , pMnt
2 ), . . . , (lMn

r , pMnt
r )}

In the following subsections we will look at multimodal datamining problems arising on

our probabilistic temporal multimodal dataset.

3.2 Open research issues mining probabilistic temporal multimodal

data

Input: Assume that we have N correlated multimedia streams MN that generate LN set

of symbols with p
Mjt
i probability associated with each of the symbol during time t. The correlation

among media streams influences how the probabilities with which symbols are generated can be

utilized. The time stamps represents the temporal relationship between symbols. The time stamps

for the similar symbol, generated from different streams, can be different due to different speeds

of the detector in the corresponding stream. Here, we are trying to give a generic view of the

probabilistic temporal multimodal dataset. The typical dataset looks as shown in Fig. 3.2. This

dataset resembles a real world surveillance dataset or group meeting dataset or movie dataset used

for mining application. In all these applications the intention is to discover interesting knowledge

from involved objects and their interactions and behaviors.

Output: Discovering interesting knowledge from these streams. It can be interesting

correlations among symbols or streams, frequent patterns, associations, casual structures among set

of items, clusters, outliers or classes hidden in given data streams.
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Figure 3.2: A sample Probabilistic Temporal Multimodal Dataset

3.2.1 Sequence pattern mining of PTM data

We are given a probabilistic temporal multimodal dataset D as described in section 3.1.

We identify new problems for doing sequence pattern mining on dataset D by scrutinizing the orig-

inal problem statement of sequence pattern mining given in [7].

Definition: Let I = {(lM1
1 , pM1t

1 ),. . ., (lM1
r , pM1t

r ),(lM2
1 , pM2t

1 ), . . ., (lM2
r , pM2t

r ), . . ., (lMn
1 , pMnt

1 ),

. . ., (lMn
r , pMnt

r )} be called items. An itemset is a non-empty set of items. A sequence is an ordered

list of itemsets. Denoting a sequence s by ⟨s1s2s3 . . . sn⟩ where sj is an itemset. We also call

sj an element of the sequence. We denote an element of a sequence by ([lM1
2 , pM1t

2 ] ,[lM2
3 , pM2t

3 ]),

([lM1
2 , pM1t

2 ], [lM2
3 , pM2t

3 ]) , . . . , ([lM1
r , pM1t

r ]), where lMi
j , pMit

j is an item enclose in ’[ ]’. A sequence

represent the items in their temporal order. An itemset is considered to be a sequence with a single

element.

(1) Probabilistic Nature of Data : Given customer transaction database say D’ in [7], it

is clear that the rows in dataset D are not analogous to concept of transactions as in D’. Because

each modality(audio, video, etc.) has generated probabilistic symbols in D while the symbols in D’

are deterministic. So, the first problem identified is to consider the probabilistic nature of data for

mining. As generalized sequence pattern methods are developed considering deterministic data they

cannot efficiently mine the patterns from probabilistic temporal multimodal dataset D.

(2) Synchronization of Correlated data streams : The constraint that no customer has

more than one transaction with the same transaction time may not be satisfied here, as the speed

with which the probabilistic symbols are generated from different modalities are different. Even

using a windowing technique for considering certain temporal interval as transactions we cannot

guarantee that the symbols timing do not overlap between two different transactions. Thus, the
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second problem is to synchronize the different streams of probabilistic symbols to find a valid trans-

action boundary.

(3) Redundant symbol resolution in sequence patterns : The problem encountered here

is due to multimedia data’s property of redundancy. The constraint that items can occur only once

in an element of a sequence is violated for D. Different modalities might generate similar symbols

with different or same probabilities. This problem may also lead to confusing sequence patterns

like ⟨ {(X,0.3),(X,0.9),(A,0.5)} {(X,0.3)} {(X,0.5)} {(X,0.7)} ⟩ where X generated from different

modalities at different times but we cannot interpret them unless we incorporate the modality knowl-

edge here. These symbols may differ in probability associated with them and definitely the modality

which has generated them. Thus, to deal with this problem we need to come up with mechanisms

to incorporate these probabilities and knowledge of modalities which has generated these symbols.

This also leads in direction of finding the correlation between these modalities to effectively handle

the problem.

(4) Finding subsequences to calculate support parameter : We can see the problem in

defining that sequence ⟨a1a2a3 . . . an⟩ is a subsequence of another sequence ⟨b1b2b3 . . . bn⟩ for the

dataset D. Once a mechanism for finding subsequence is discovered, the support for a sequence is

defined as the fraction of total data-sequences that ”contain” this sequence.

Problem Definition: Sequence pattern mining for Probabilistic temporal Multimodal

dataset Given a probabilistic temporal multimodal dataset D of data sequences, the problem of

mining sequential patterns is to find all sequences whose support is greater than the user-specified

minimum support. Each such sequences represents a sequential pattern, also called frequent se-

quence.

3.2.2 Association rule mining of PTM data

The problems encountered while mining sequential pattern from probabilistic temporal

multimodal dataset D do exist for association rule mining from D.

Definition: Let I = {(lM1
1 , pM1t

1 ), . . ., (lM1
r , pM1t

r ), (lM2
1 , pM2t

1 ), . . ., (lM2
r , pM2t

r ), . . .,(lMn
1 , pMnt

1 ),

. . ., (lMn
r , pMnt

r )} be called items. Let X be a set of some items in I. Transaction t satisfies X if for

all items in X are present in t. Here, again the concept of transaction in dataset D is not properly

defined. An association rule means an implication of the form X ⇒ (lMk
r , pMkt

r ) where X is a set

of some items in I and (lMk
r , pMkt

r ) is single item in I that should not be present in X. The rule

X ⇒ (lMk
r , pMkt

r ) is satisfied in the set of transactions T with the confidence factor 0 < c < 1 iff at

least c% of transactions in T that satisfy X also satisfy (lMk
r , pMkt

r ).
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(1) Symbol matching :In X ⇒ (lMk
r , pMkt

r ) X might have repeated symbols and also

(lMk
r , pMkt

r ) can be similar as the symbols repeated in X. If we use the term symbol for lr only. This

violates the original definition of association rule mining given in [6], that lr cannot be a symbol in

X. But, if we consider (lMk
r , pMkt

r ) as a symbol, it may differ in probability associated with it and the

modality which has generated it and then it is difficult to match the symbols. Thus, to deal with this

problem we need to come up with mechanism to incorporate this probability feature and knowledge

of modalities which has generated these symbols while efficiently able to compare them.

Problem Definition: Association rule mining for Probabilistic temporal Multimodal

dataset Given a probabilistic temporal multimodal dataset D of data sequences, the problem of

association rule mining is to generate association rules like X ⇒ (ij , P rj) that satisfy user specified

support and confidence parameters.

3.2.3 Clustering of PTM data

Given M number of PTM data objects, the task is to discover K number of clusters such

that, each of the discovered cluster has L number of semantic concepts with temporal pattern P

within the cluster and pattern P do not occur in remaining K-1 clusters.

3.2.4 Classification of PTM data

Given M number of PTM data objects, the task is to discover U number of temporal

patterns of L or less number of semantic concepts such that it describe the class label R.

3.2.5 Multimodal fusion of PTM data

Most multimedia analysis is usually performed separately on each modality, and the re-

sults are brought together at a later stage to arrive at final decision about the input data. Although

this is a simpler approach, we lose valuable information about the multimedia events or objects

present in the data because, by processing each modality separately, we discard the inherent associ-

ations between different modalities. Combining all the multimodal features together is not feasible

due to the curse of dimensionality issue. Thus, there is a need for efficient way to apply mining

techniques on multimodal data keeping the inherent correlation among different modalities intact.

Let us consider M1= {a11, a12, . . . , a1i } , M2= {a21, a22, . . . , a2j} and M3= {a31, a32, . . ., a3k},
where M1, M2 and M3 are three different modalities with i,j and k number of attributes respec-

tively. Considering these streams together increases the dimensionality and thus mining becomes

54



inefficient. While handling of M1, M2 and M3 separately for mining may lead to loss of informa-

tion. For example, a12 and a31 together can best classify certain event, but now if we consider them

separately and then combine the decisions from each of them, then we cannot utilize the inherent

association between these modalities.

3.2.6 Media stream synchronization of PTM data

Data analysis granularity level of video can be frame level, shot level, clip level, while

for image it can be pixel level, grid level, region level, for audio it can be phoneme or word level

or the data are broken into windows of fixed size. This granularity level is called processing unit of

its corresponding modality. There is a semantic meaning associated for each modality within their

processing unit. Each media type has different level of complexity and speed for analyzing their

processing unit. Thus, before applying mining technique on such multimodal data we need to align

them temporally and semantically. It is a difficult problem to perform such synchronization or find

an alignment among different modalities.

For the given media streams say M1, M2 and M3 each of them have different processing

units say pr1, pr2 and pr3 and the corresponding time for computing on them is t1, t2 and t3 thus

the time at which they may identify the symbol after computing over the processing unit may be

different for each of them. It is not guaranteed to predict the temporal gap between them because

pri and ti are not static. For example, if M1 is a video stream and processing unit is pr1 shot level.

Then the size of each shot may vary and thus their corresponding time for processing varies. These

leads to the problem of deciding the boundaries for combined multimodal data, in its consideration

as datamining processing unit say transaction or tuple.

3.2.7 High-dimensionality and scalability

Multimedia data is voluminous and it can have very large set of features. Considering

example of sequential pattern mining, we need to extract sequential patterns from long categori-

cal streams generated from the ’m’ different modalities. The task is challenging because search

space of possible sequential patterns is extremely large. For m-dimensional multimodal data stream

with each component stream containing n kinds of symbols has O(nmk)possible sequential pat-

terns of time length k. Similarly for association rule mining, classification or clustering, the high-

dimensionality and scalability is an issue. Thus, there is a need for efficient way of reducing dimen-

sions and handling longer categorical data streams.
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3.2.8 Automatic attribute construction techniques

Attribute construction is one of the most appealing area for multimodal datamining as it

can help reduce dimensionality by combining different features to represent as one feature. Generat-

ing new features combining features from different modalities can also better capture the correlation

property among the different media types. There is also the possibility that the new derived attribute

is semantically more meaningful than its corresponding individual attributes. Usually the new at-

tributes are constructed based on the domain knowledge. It can be challenging problem to come up

with automated attribute discovery from a given set of attributes.

Again consider M1, M2 and M3 being three different modalities with i,j and k number of

attributes respectively. Let us assume that combining a12 and a31 together can give us a new attribute

say a1,31,2 which can best classify a certain class of events. Thus we can reduce the dimensionality

and can do more efficient mining.

3.2.9 Knowledge representation

For the discovered image or video patterns to be meaningful, they must be presented

visually to the users [148]. This translates to Image/Video pattern representation issue. How can

we represent the image/video pattern such that the contextual information, spatial information, and

important image characteristics are retained in the representation scheme?

3.2.10 Domain knowledge dependence

Much of the multimedia datamining approaches extract semantic patterns only using rule

dependent methods, where there are apparent rules associated with semantic events. For example,

in the interview events of news videos, a shot where an interviewer appears, followed by that of an

interviewee, is repeated one after the other [99]. Similarly, in goal events on ball game videos, the

score in the telop changes after audiences cheers and applause occur [157]. Also, in surveillance

videos recorded with fixed cameras, if an object actively moves, the difference between two con-

secutive frames is clearly large [98]. Like this, these apparent rules tell what kind of raw level data

should be used to extract semantic patterns in rule-dependent methods. Thus, the extracted semantic

patterns are not previously unknown but previously known. These rule dependent algorithms are not

robust and extendible. There is a need for discovering robust and generic rule independent method

for multimodal datamining.
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3.2.11 Class imbalance

For classification purposes the multimedia data sometimes have class-imbalance( skewed

data distribution ) problem [28]. For example, if we are trying to mine interesting events from sports

video or suspicious events from surveillance video. There is very little set of training data for the

interesting events as compare to the remaining large set of normal or uninteresting data. In other

words, as the text mining has the steps like stop word removal, word stemming etc for noise removal

and maintaining the relevant bag of words for mining, we usually do not properly know the noise

characteristics for multimedia data like image, audio or video before hand. Thus we might end up

with noisy data as part of the training dataset.

3.2.12 Knowledge integration for iterative mining

The one of the major issue we can observe in current state of the art is of knowledge repre-

sentation and utilization of that knowledge to enhance the next iteration of mining algorithms. It can

be assumed that on each iteration if we utilize the obtained knowledge and if we feed that knowl-

edge back into system it will be able to generate more semantically meaningful knowledge than

the previous mining iteration. Here, there are two major directions in which research is needed (1)

adaptive knowledge representation mechanism which can be expanded on each iteration of mining

algorithm to incorporate the acquired new knowledge and (2) Feedback and integration mechanisms

that can efficiently utilize the acquired knowledge of current iteration into future iterations. Even

the knowledge can be from external resources like ontology which can help guiding the mining

process.

3.2.13 Synchronous cross modal mining

The new problem from multimodal data can be seen as synchronous cross modal mining.

For example, face recognition systems can identify from video frames and output the decision with

certain probability. While speaker recognition systems are still doing the recognition tasks. Is

there a possible way to transfer the information discovered by face recognition system to speaker

recognition system and vice a versa? The problem is not similar to late fusion or early fusion. Here,

we are trying for synchronous fusion dynamically. Such mining can help for fast and more robust

knowledge discovery. But it is hard to come up with algorithms which can be adaptive to such

synchronous knowledge while the mining is being done.
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There are lot of domains like surveillance, medicine, entertainment, etc. where multime-

dia datamining techniques are explored. Audio mining, video mining and image mining have each

established its own place as separate research field. Most of the research focus is on detection of

concepts in multimedia content. In the literature, novel techniques for feature extraction and new

attribute discovery perspective have been proposed but very few work consider multimodal mining

algorithms. The main bottleneck found is the semantic gap due to which existing mining algorithms

suffer from scalability issues. The existing techniques do not utilize cross-modal correlations and

fusion practices from multimedia systems research. There are not many generic frameworks for

multimedia datamining, many existing works are more domain specific.

We did the literature survey for the state of the art in multimedia datamining. On doing the

survey for image mining, video mining and audio mining, we realize that multimodal datamining

has the potential to deal with semantic gap problem. After surveying the multimodal datamining

literature, we identified that PTM datamining is essential to overcome existing drawbacks of MDM.

We listed issues specific to PTM datamining in section 3.2.1 to section 3.2.4. Remaining issues are

common to both at certain level but with the advantage to PTM data that it can easily utilize rich

information to overcome the current MDM limitations more effectively.
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Chapter 4

PTM data sequence pattern mining for

frequent event patterns

Existing sequence pattern mining techniques assume that the obtained events from event

detectors are accurate. However, in reality event detectors label the events from different modal-

ities with a certain probability over a time-interval. In this chapter, we consider for the first time

Probabilistic Temporal Multimedia (PTM) Event data to discover accurate sequence patterns. PTM

event data considers the start time, end time, event label and associated probability for the sequence

pattern discovery. As the existing sequence pattern mining techniques cannot work on such realistic

data, we have developed a novel framework for performing sequence pattern mining on probabilistic

temporal multimedia event data. We perform probability fusion to resolve the redundancy among

detected events from different modalities, considering their cross-modal correlation. We propose

a novel sequence pattern mining algorithm called Probabilistic Interval based Event Miner (PIE-

Miner) for discovering frequent sequence patterns from interval based events. PIE-Miner has a new

support counting mechanism developed for PTM data. Existing sequence pattern mining algorithms

have event label level support counting mechanism, whereas we have developed event cluster level

support counting mechanism. We discover the complete set of all possible temporal relationships

based on Allen’s interval algebra. The experimental results showed that the discovered sequence

patterns are more useful than the patterns discovered with state of the art sequence pattern mining

algorithms.
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4.1 Introduction

Advances in multimedia acquisition and storage technology have led to tremendous growth

in very large and comprehensive multimedia databases. Analyzing these large amounts of multime-

dia data to discover useful knowledge is a challenging problem. This problem has opened the

opportunity for research in Multimedia Data Mining (MDM). Datamining refers to the process of

finding interesting patterns in data that are not ordinarily accessible by basic queries and associated

results with the objective of using discovered patterns to improve decision making. Traditionally,

datamining has been applied to well-structured data, the kind of data that resides in large relational

databases. Such data have well-defined, non-ambiguous fields that makes it amenable to mining.

The spatial, temporal, storage, retrieval, integration, and presentation requirements of multimedia

data are significantly different from those of traditional data.

Mining of multimedia data is more involved than that of traditional business data because

multimedia data are unstructured by nature. There are no well-defined fields of data with precise

and nonambiguous meaning, and the data must be processed to arrive at fields that can provide

content information about it. Such processing often leads to non-unique results with several possible

interpretations. In fact, multimedia data are often subject to varied interpretations even by human

beings. Another difficulty in mining of multimedia data is its heterogeneous nature. The data are

often the result of outputs from various kinds of sensor modalities with each modality needing

sophisticated preprocessing, synchronization and transformation procedures[3].

None of the state of the art works in multimedia datamining utilize realistic features for

mining purposes. They assume that the semantic labels can be obtained accurately. The reality is

that the extracted labels and tags from different modalities are not obtained with 100% accuracy.

This is due to the well known semantic gap problem. The uncertainty in the data is represented as

a probabilistic confidence score, which is computed by event detectors[33]. Thus, we use proba-

bilistic weighting to do mining on more realistic datasets. We illustrate the problem with an exam-

ple. Multimedia systems utilize multiple types of media such as video, audio, text and even RFID

for accomplishing various detection tasks. Different types of media possess different capabilities

to accomplish various detection tasks under different contexts. Therefore, in reality we usually

have different confidence levels in the evidence obtained based on different media streams for ac-

complishing various detection tasks. As shown in the Figure 4.1a there are three event detectors

T1, T2, T3 labeling three different events say A, B and C at different times by extracting features

from three different modalities. Each observation is represented as (Event label, Start time, End
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Temporal multimedia data

Detector T1
(Video)

Detector T2
(Audio)

Detector T3
(Text)

A,s1,t1 A,s2,t2 A,s3,t3

B,s1,t1 B,s2,t2

C,s1,t1 C,s3,t3C,s2,t2

Time Event label, start time, end time

(a) Traditional Multimedia data

Probabilistic temporal multimedia (PTM) data

Detector T1
(Video)

Detector T2
(Audio)

Detector T3
(Text)

A,0.3,s1,t1 A,0.5,s2,t2 A,0.9,s3,t3

B,0.7,s1,t1 B,0.6,s2,t2

C,0.2,s1,t1 C,0.8,s3,t3C,0.3,s2,t2

Time Event label, event Probability, start time, end time

(b) Probabilistic temporal multimedia data

Figure 4.1: Difference between traditional multimedia data and PTM data

time) in temporal multimedia data representation. None of the existing work considers the Prob-

abilistic Temporal Multimedia (PTM) representation as shown in Figure 4.1b. Each observation

is represented as (Event label, Event Probability, Start time, End time). The PTM representation

is more realistic and we can discover more useful and accurate knowledge using this data. The

challenging problem is to do mining on such PTM data. The basic issues with PTM datamining are,

• How to utilize and deal with associated confidence or probability of the semantic tags?

• How to deal with correlation among the various media streams?

• How to deal with synchronization issue due to different processing time scales of detectors,

based on media stream they utilize? For example, the face identification system on video data

identifies the person quicker by processing on single image frame than the speaker recognizer

system identifying person using audio data.

In this chapter, we have developed a novel framework for performing multimedia datamining on

probabilistic temporal multimedia data. Sequence pattern mining aims to discover useful relations

that are hidden among events. We propose a novel sequence pattern mining algorithm called Prob-

abilistic Interval based Event Miner (PIE-Miner) for discovering frequent temporal patterns from

interval based events. Our contributions are:

• Introduction of PTM data for mining.

• Development of a novel framework for PTM datamining.
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• A novel sequence pattern mining algorithm with a new support counting mechanism.

The rest of the chapter is organized as follows. Section 2 describes the literature survey. Section 3

provides basic definitions and detailed problem description, Section 4 presents the design of PIE-

Miner. Section 5 presents experimental results and discovered pattern interpretation. We conclude

in Section 6 with a summary and an outline of future work.

4.2 Related work

We surveyed papers from classification, clustering, association and sequence pattern min-

ing for multimedia data in section 2. Among all the surveyed paper we observed certain common

weaknesses and that helped us understand the problem with existing datamining techniques. We

discuss in detail the work on sequence pattern mining here.

Sequence pattern mining: The work in [157] is novel in its attempt to do sequence asso-

ciation mining to assign class labels to discovered associations for video indexing purpose. They

first explore visual and audio cues that can help bridge the semantic gap between low-level fea-

tures and video content. They do video association mining and discuss algorithms to classify video

associations to construct video indexing. Once they generate the symbolic streams from different

modalities, they either need to combine the streams or treat the streams separately. To find the

co-occurrence of patterns that appear in multiple streams, symbol production synchronization is

required for combining into single stream and find periodic patterns. The proposed association min-

ing elegantly handles the problem but the question that arises here is, 1) generated symbols may

not be accurate and 2) multimedia data streams do not generate same number of symbols in the

same amount of time. Symbols from video shot and words from audio clip need to be synchro-

nized in some way for creating the relational database for mining purposes. If we consider them as

one stream, some information may be lost. Though they use visual, textual, audio and metadata fea-

tures, they did not show any special usage of multimedia fusion to enhance the knowledge discovery

process[157].

Similarly in the series of papers [124][125], the aim is to show the importance of temporal

constraint as temporal distance and temporal relationship. Applying Temporal Distance Threshold

(TDT) and Semantic Event Boundary (SEB) constraints on extracted raw level metadata help to

effectively extract Cinematic Rules and Frequent semantic events. For example, frequent patterns

say SM1-SM1 represents “two continuous shots with human voice”, SM1-MV0 represents “a shot

with human voice and no direction of movement” and MV0-MV0 represents “two continuous shots
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with no direction of movement”. The considerably high recall values for these patterns indicate

that characters talk to each other and hardly move in most of the talk event in this movie. But

again the generated symbols like MV0 etc are not accurate. They are just labeled from the clusters

obtained with certain assumptions. They extracted raw level features from audio and video shot

keyframes using MP-factory and OpenCV. They cluster the raw level data and assign the labels

based on clusters to discriminate the frames.

There has been a stream of research on mining sequential patterns [7][85][103]. These

works assume that events have zero duration. However, events in many real world applications have

durations, and the temporal relationships among these events are often complex. These relationships

are modeled using a hierarchical representation that extends Allen’s interval algebra [71][101][144].

It is clear that all sequence pattern mining algorithms use certain semantic level symbols for mining

purpose. The intuition behind using semantic level meta data is that, we can get some semantic

level knowledge. E.g. by considering the color histogram level data it is difficult to interpret the

obtained knowledge for higher level semantics, but by clustering this histogram and labeling them

as category (water, snow, fire etc.) we can interpret the mined results at a semantic level.

However, none of the current research works focus on obtaining a realistic label and tag

representation for mining purposes. For example, one technique is to extract the raw level feature

then cluster or classify them and assign the labels to generate the categorical dataset. The derived

categorical labels are approximate. Thus, these labels should have some probability associated with

them to represent the approximation factor in order for it to be a more realistic data representation.

There is some recent work in mining frequent patterns from uncertain data [2], but it is not consid-

ered from the semantic perspective of multimedia data. Another issue we observe is that, there have

been efforts in multimedia analysis research to discover the cross modal correlation and synergy

between different modalities [39][100][123]. But in multimedia datamining literature, there are not

many examples showing the significant ways of exploiting such correlation knowledge for mining.

Most works deal with low level raw data from each individual modality. Thus, considering both

of the observed problems, we design a novel framework for multimedia datamining where realistic

data can be mined with cross modal correlations.

4.3 Problem Definition

In this section, we first give basic definitions of terms used for framework, Table 4.1 with

summary of notations used and then we define the problem of datamining on PTM dataset. We then
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analyze the research issues involve with mining such data. We also define the problem of sequence

pattern mining on PTM data. We are trying to mine the higher level semantic events from the atomic

level events dataset using sequence pattern mining. The definitions of terms used are as follows,

Event: Event is a physical reality that consists of one or more living or non-living real

world objects (who) having one or more attributes (of type) being involved in one or more activities

(what) at a location (where) over a period of time (when)[14].

Atomic Event: Atomic event is an event in which exactly one object having one or more

attributes is involved in one activity[14].

Compound Event: Compound event is the composition of two or more different atomic

events[14].

Higher level semantic event: Compound event with certain temporal relationships, cer-

tain frequency and associated probability is considered as higher level semantic event.

Each event E in an event list EL has a temporal relation with all the other events in the

list. Table 4.2 shows the 13 temporal relations defined by Allen[9] that can occur between any

two interval-based events Ei and Ej , i ̸=j. A new composite event E is formed when a temporal

relation R is applied to two events Ei and Ej . We denote E = (Ei R Ej). The start and end times

of E are given by min {Ei.s,Ej .s} and max {Ei.e,Ej .e} respectively. Temporal pattern mining of

such interval based events can be very useful[101]. We present the algorithm to discover frequent

sequence patterns from PTM events dataset. We use the probabilistic information to make candidate

generation process more efficient for the A-priori based sequence pattern mining algorithms. It will

show the advantage of having more realistic data for multimedia datamining.

4.3.1 Probabilistic Temporal Multimedia Datamining

We now introduce a data representation for multimedia data which has not been explored

earlier in the literature. This representation is more realistic and interesting to use for datamining

purposes.

Definition (PTM: Probabilistic Temporal Multimedia Data) Let S be a multimedia sys-

tem designed for accomplishing a set of “r” concept event detection tasks T = {T1, T2, . . . , Tr}.
The multimedia system S utilizes n ≥ 1 correlated media streams, M = {M1,M2, ...,Mn}. Let

L = {l1, l2, . . . , lr} be the semantic labels output by the various detectors T . For 1 ≤ i ≤ n, let

0 < pMit
j < 1 be the probability of label lMi

j output by the detector Tj based on individual ith

media stream at time “t”. The time duration of an event existence is represented by starting time

“st” and ending time “et”. pMit
j is determined by first extracting the low level content features from
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Table 4.1: Summary of notation

Notation Meaning / Interpretation

E Event Object with (label, probability, start time, end time)

E.label Type of event e.g. writing, nodding, A, B, e etc.

E.probability Confidence with which event is correctly detected

E.s or “st” Starting time of the event

E.e or “et” Ending time of the event

Ei Denotes the ith event

EL Collection of events sorted by start time followed by end time in an ascending order

∥EL∥ Number of events in the list

S Multimedia system

r Number of concepts / events detected in multimedia system S

T Set of r concepts / event detectors in S

n Number of correlated media stream in S

M Set of n correlated media streams in S

L Set of r event / concept labels in S

pMit
j Probability of event lMi

j output by detector Tj based on Mi media stream at time “t”

D Probabilistic Temporal Multimodal(PTM) dataset

I Probabilistic Temporal Multimedia Sequences(PTMS) dataset

s ⟨ s1 s2 s3 . . . sn ⟩ sequence of event labels

γ ⟨ γ1,γ2, . . ., γ3 ⟩ sequence of associated probability values ∈ p
Mjt
i

τ Parameter representing probability difference threshold

P(ejt |M i
t ) Denote the probability of the occurrence of atomic event ej at time t based on media

stream M i
t

P (M i
t |ejt) Denote the probability or confidence in media stream M i

t based on atomic event ej

at time t
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Table 4.2: Temporal relation between events

Relation Interval Inverse

Algebra Relation

Ei Before Ej (Ei.e < Ej .s) After

Ei Meet Ej (Ei.e = Ej .s) Met-by

Ei Overlap Ej (Ei.e > Ej .s) ∧ (Ei.e < Ej .e) ∧ (Ei.s < Ej .s) Overlapped-by

Ei Start Ej (Ei.s = Ej .s) ∧ (Ei.e < Ej .e) Started-by

Ei Finish Ej (Ei.e = Ej .e) ∧ (Ei.s > Ej .s) Finished-by

Ei During Ej (Ei.s > Ej .s) ∧ (Ei.e < Ej .e) Contain

Ei Equal Ej (Ei.s = Ej .s) ∧ (Ei.e = Ej .e) Equal

media stream “i” and then by employing an detector (e.g. a trained classifier like SVM) on it for the

detection task Tj . The dataset generated with such multimedia system is called as “PTM dataset”.

Thus, we obtain a set of “n” correlated labeled streams correspond to the “n” media streams:

L = {L1, L2, . . . , Ln}where, L1 = {(lM1
1 , pM1t

1 ), (lM1
2 , pM1t

2 ), . . ., (lM1
r , pM1t

r )} , L2 = {(lM2
1 , pM2t

1 ),

(lM2
2 , pM2t

2 ), . . ., (lM2
r , pM2t

r )} , Ln= {(lMn
1 , pMnt

1 ), (lMn
2 , pMnt

2 ), . . .,(lMn
r , pMnt

r )}. The problem of

PTM datamining can be defined as,

Input: Assume that we have “n” correlated multimedia streams Mn that generate Ln set of symbols

with p
Mjt
i probability associated with each of the symbol during time t. The correlation among

media streams influences the probabilities with which symbols are generated. The time stamps

represents the temporal relationship between symbols. The time stamps for the similar symbol,

generated from different streams, can be different due to different time scales of the detector in the

corresponding stream. Here, we are trying to give an abstract of the PTM dataset. The dataset re-

sembles a real world surveillance dataset or group meeting dataset or movie dataset used for mining

application.

Problem Definition PTM Data Mining: Given a PTM dataset D, the problem is to dis-

cover interesting knowledge from these streams. It can be interesting correlations among symbols

or streams, frequent patterns, associations, clusters, outliers or classes hidden in given data streams.

We provide the problem description of sequence pattern mining on PTM data in the next

subsection. In this chapter, we do not consider the other datamining problems such as classification,

clustering etc. techniques. We will consider them in our future work.
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Figure 4.2: Issues with sequence pattern mining on PTM data

4.3.2 Sequence pattern mining issues on PTM data

We are given a PTM dataset D as described in section 4.1. We identify new problems

for doing sequence pattern mining on dataset D by generalizing the original problem statement of

sequence pattern mining given in [7].

Definition (PTMS:Probabilistic Temporal Multimedia Sequences) Given a set of items

I = {(lM1
1 , pM1t

1 ),. . ., (lM1
r , pM1t

r ), (lM2
1 , pM2t

1 ), . . ., (lM2
r , pM2t

r ), . . ., (lMn
1 , pMnt

1 ), . . ., (lMn
r , pMnt

r )}.
A sequence of length n > 0, called n-PTMS, is a tuple P = (s,γ), where s= ⟨ s1 s2 s3 . . . sn ⟩, is

called the sequence of event labels∈ lMj

i and γ = ⟨ γ1,γ2, . . ., γ3 ⟩ is called the associated probability

values ∈ p
Mjt
i .

A sequence represents the items in their temporal order. Example of PTMS can be seen

in Figure 4.2. Set of detectors are labeling different events with certain probability over a time

period. The labels have certain temporal relationships which can be mined as PTMS. Following are

the issues described in detail to understand the problem of sequence pattern mining on probabilistic

temporal multimedia data as shown in Figure 4.2.

How to use sequence pattern mining algorithms to work on probabilistic nature of data

? Given customer transaction database say D’ in [7], it is clear that the rows in dataset D are

not analogous to concept of transactions as in D’. Because each modality(audio, video, etc.) has

generated probabilistic symbols in D while the symbols in D’ are deterministic. So, the first prob-

lem identified is to consider the probabilistic nature of data for mining. As generalized sequence

pattern methods are developed considering deterministic data, they cannot mine the patterns from

probabilistic temporal multimedia dataset D.
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How to synchronize different correlated data streams of probabilistic symbols to find

valid transaction boundaries ? As we can see in the Figure 4.2, event C with probability 0.8 occurs

in one of the detector utilizing video stream whereas a similar event C with probability 0.6 occurs

in another detector utilizing audio stream. Due to different processing units and computational

complexities of algorithms utilized for detectors, generated event labels of same event can be of

different time periods and probabilities. Thus, the constraint as in traditional sequence mining that,

no customer has more than one transaction with the same transaction time may not be satisfied here,

as the time scale with which the probabilistic symbols are generated from different modalities are

different. Thus, the second problem is to synchronize the different streams of probabilistic symbols

to find a valid transaction boundary.

How to resolve redundant symbols generated from different modalities ? The problem

encountered here is due to multimedia data’s property of redundancy. The constraint that items can

occur only once in an element of a sequence is violated for D. Different modalities might gener-

ate similar symbols with different or same probabilities. This problem may also lead to confusing

sequence patterns like ⟨{(X, 0.3), (X, 0.9),(A, 0.5)} {(X, 0.3)}{(X, 0.5)}{(X, 0.7)}⟩ where X

generated from different modalities at different times but we cannot interpret them unless we incor-

porate the modality knowledge here. These symbols may differ in probability associated with them

and definitely the modality which has generated them. Thus, to deal with this problem we need to

come up with mechanisms to incorporate these probabilities and knowledge of modalities which

has generated these symbols. This also leads in direction of finding the correlation between these

modalities to effectively handle the problem.

How to find subsequences to calculate candidate support? We can see the problem in

defining that the sequence ⟨a1a2a3 . . . an⟩ is a subsequence of another sequence ⟨b1b2b3 . . . bn⟩ for

the dataset D. Once a mechanism for finding subsequence is discovered, the support for a sequence

is defined as the fraction of total data-sequences that ”contain” this sequence.

The τ -containment mechanism can make support counting possible for PTMS’s. Defini-

tion (τ -containment (≼τ )) Given a n-PTMS P1 = (s1, γ1) and a m-PTMS P2 = (s2, γ2) with n ≤
m, and a probability difference threshold τ , we say that P1 is τ -contained in P2, denoted as P1 ≼
P2, if and only if there exists a sequence of integers 0 ≤ i0 < i1 < . . . < in ≤ m such that,

1. ∀ 0 ≤ k ≤ n s1,k ⊆ s2,ik

2. ∀ 1 ≤ k ≤ n | γ1,k - γ2,k | ≤ τ

As special cases, when condition 2 holds with the strict inequality we say that P1 is strictly

τ -contained in P2, denoted with P1 ≼τ P2, and when P1 ≼τ P2 with τ = 0 we say that P1 is exactly
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contained in P2. Finally, given a set of PTMSs Ds, we say that P1 is τ -contained in Ds (P1 ≼τ Ds)

if P1 ≼τ P2 for some P2 ∈ Ds. Essentially, a PTMS P1 is τ -contained into another one, P2, if the

former is a subsequence of the latter and its probability does not differ too much from those of its

corresponding itemsets in P2. In particular, each itemset in P1 can be mapped to an itemset in P2.

For example, P1=(A,0.3) and P2=(A,0.7) for given τ=0.2 does not hold the τ -containment property,

because condition 1 is satisfied (A ⊆ A) but the condition 2 (| 0.3 - 0.7 | > τ ) is not satisfied.

Whereas P1=(A,0.3) and P2=(A,0.4) for given τ=0.2 the τ -containment property holds true. Now,

frequent sequential patterns can be easily extended to the notion of frequent PTMS:

Definition (τ -support, Frequent PTMS) Given a set Ds of PTMS’s, a probability thresh-

old τ and a minimum support threshold smin ∈ [0, 1], we define the τ -support of a PTMS P as

τ − supp(P ) =
|P ∗ ∈ Ds||P ≼ P ∗|

|Ds|
(4.3.1)

and say that P is frequent in Ds if τ -supp(P) ≥ smin. The support for a sequence P is defined as the

fraction of total data-sequences P ∗ that ”contain” this sequence.

It should be noted that a simple frequent sequence say X with only event labels may be

frequent but not their corresponding PTMS P = (s,γ) due to highly dispersed probability values, thus

not allowing any single probability value to be close (i.e., similar) enough to a sufficient number

of them. Thus we may miss many frequent patterns. Introducing probability in sequential patterns

gives rise to a novel issue: the raw set of all frequent PTMS is highly redundant, due to the existence

of several very similar and thus practically equivalent probabilities for the same event sequence.

Example Given the following toy database of PTMSs:

(A,0.5 Overlap B,0.3 Overlap C,0.4)

(A,0.6 Overlap B,0.4 Overlap C,0.3)

(A,0.1 Overlap B,0.2 Overlap C,0.2)

(A,0.2 Overlap B,0.2 Overlap C,0.2)

Here, (A Overlap B Overlap C) is a frequent sequence with all support values smin, where smin

∈ [0, 1]. But neither of the (A,0.5 Overlap B,0.3 Overlap C,0.4) or (A,0.1 Overlap B,0.2 Overlap

C,0.3) or remaining two are not frequent for smin > 0.25. However, we can see that considering

(A,0.5 Overlap B,0.3 Overlap C,0.4) ∼= (A,0.6 Overlap B,0.4 Overlap C,0.3)

for τ = 0.1 and if we have smin = 0.5 both of sequences (A,0.5 Overlap B,0.3 Overlap

C,0.4) and (A,0.6 Overlap B,0.4 Overlap C,0.3) are considered frequent. Of course, (A,0.7 Overlap

B,0.7 Overlap C,0.8) ̸= (A,0.1 Overlap B,0.1 Overlap C,0.1) for τ = 0.1 and smin = 0.5. Thus, for

the given τ = 0.1 and smin = 0.5 all the four patterns turn out to be frequent. We have thus devised
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a novel support counting mechanism that can handle this situation. A natural step towards a useful

definition of frequent PTMSs, then, is the summarization of similar probability values (relative to

the same sequence) into a single one. Therefore, in the rest of the chapter we will focus our attention

on the problem of discovering representative frequent PTMSs, defined as follows:

Definition (Representative Frequent PTMSs:) Given a set Ds of PTMS’s, a probability

threshold τ and a minimum support threshold smin ∈ [0, 1], and algorithm RepCand(Ds, s, τ , smin)

that returns a set of representative probabilities for corresponding event label sequence P, we say

that P = (s, γ) is a representative frequent PTMS in Ds if:

τ − supp(P ) ≥ smin and γ ∈ RepCand(Ds, s, τ, smin) (4.3.2)

Clearly, a key parameter of the definition is algorithm RepCand, that determines which annotations

can be representative. In the next section the general problem of finding representative frequent

PTMSs is discussed, and a reasonable solution is outlined. In particular, we define RepCand as a

clustering algorithm applied to the probabilities extracted from the input dataset.

Problem Definition: Sequence pattern mining for PTM dataset Given a PTM dataset D

of data sequences, the problem of mining sequential patterns is to find all sequences whose support

is greater than the user-specified minimum support. Each such sequences represents a sequential

pattern, also called frequent sequence.

At this stage we do not consider certain user defined constraints and parameters, like min-

gap and max-gap time constraints, a taxonomy T and a user specified sliding window size, used

for state of the art sequential pattern mining algorithms for transactional databases. Each of these

parameters needs to be modified or rethought for using them on dataset D. We will detail these in

the next section.

4.4 PIE-Miner: Probabilistic Interval-based Event Miner

PIE-Miner is designed to solve the problem described in the section 4.2. We illustrate the

functioning of PIE-Miner with an example and algorithms in this section. PIE-Miner is a two stage

algorithm, Stage-1 does sophisticated preprocessing for PTM event data and stage-2 does candidate

generation with support counting. The example and algorithms explaining the stage-1, stage-2 are

shown in Figure 4.4, Figure 4.6 and Figure 4.3, Figure 4.7 respectively.
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Algorithm PIE-Miner Stage-1

Input: PTM data D, Temporal window tw, FusionPara

Output: PTM transactional dataset Ds

1: while D ̸= ϕ do

2: T ′← GenerateTransaction(D,tw)

3: end while

4: for all ( transaction T ∈ T ′) do

5: Ds← ProbabilityFusion(T ,FusionPara)

6: end for

7: return Ds

Figure 4.3: PIE-Miner Preprocessing Stage-1 Algorithm

4.4.1 PIE-Miner stage-1

We have a stream of PTM data as shown in the Figure 4.4. PIE-Miner’s preprocessing

stage does two tasks (1) Finds valid transaction boundaries and (2) Resolves redundant symbols

using probability fusion. As shown in Figure 4.3, we are given with PTM data D which needs to be

transformed into suitable format for mining in stage-2. In the section 4.2 we mentioned the issue

to synchronize the different streams of probabilistic symbols is to find a valid transaction boundary.

This issue needs to be taken care of during the preprocessing stage. It is not very straight forward

to provide the solution to this problem. Selection of temporal window parameter is one of the way

to handle the issue. Currently PIE-Miner expects the user to provide the temporal window size

parameter for chunking the data stream to convert it into format similar to transactions database.

The complete PTM data is converted into transactions of size equal to the temporal window.

Probability Fusion

Once we have generated such transactions, the next step is to resolve redundant symbols.

Due to the multimedia data’s property of redundancy, different detectors could have generated the

same event labels with different probabilities at different times from different modalities in the

multimedia data stream. Thus, we will have similar event labels but with different probabilities

within a transaction. This redundancy leads to useless sequence pattern generation like ((A,0.3

overlaps A,0.5) meets A,0.4), where event A is detected from different detectors from different
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Figure 4.4: PIE-Miner Preprocessing stage-1

modalities. We solve this issue below, using the information assimilation framework proposed in

[14].

As per the information assimilation framework, Mn = {M1, M2, . . ., Mj} of n media

streams. The system outputs local decisions with confidence P(ej |Mi), where 1 ≤ i ≤ n , 1 ≤
j ≤ r, about an atomic event ej . Along a timeline, as these probabilistic decisions are available,

they iteratively integrate all the media streams using a Bayesian approach. P(ejt | M i−1
t ) denoted

probability of the occurrence of atomic event ej at time t based on media streams M1, M2, . . .,

Mi−1. The updated probability P(ejt | M i
t ) (i.e. the overall probability after assimilating the new

stream Mi,t at time instant t) was iteratively computed as given below:

P (ejt |M i
t ) = αiP (ejt |M i−1

t )P (M i
t |ejt) (4.4.1)

where αi is a normalization factor. They assign weights to different media streams based on their

confidence information. If we have more confidence in a media stream, a higher weight is given to

it. They use the LOGP (logarithmic opinion pool) since it satisfies the assumption of conditional

(content-wise) independence among media streams which is essential to assimilation. And derived

the assimilation model that combines the probabilistic decisions based on two sources M i−1 (i.e. a
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Figure 4.5: Confidence Fusion example assigning new confidence, start time and end time for event

label

group of i-1 streams) and M i (i.e. an individual ith stream) is given as follows:

Pi =
(Pi−1)

Fi−1(pi)fieγt
(Pi−1)Fi−1(pi)fieγt + (1− Pi−1)Fi−1(1− pi)fieγt

(4.4.2)

where Pi =P(ejt |M i
t ) and Pi−1 =P(ejt |M i−1

t ) are the probabilities of occurrence of atomic event

ej using M i and M i−1 , respectively, at time instant t. pi = P(ejt | Mi,t) is probability of the

occurrence of atomic event ej based on only ith stream at time instant t. Similarly, Fi−1 and fi

(such that Fi−1 + fi = 1) are the confidence in M i−1 and M i, respectively. The computation of

confidence for a group of media streams are known based on the type of event and assumed to be

given to us at this stage. The γt is the agreement coefficient between two sources M i−1 and M i.

The limits -1 and 1 represent full disagreement and full agreement, respectively, between the two

sources. The γt parameter is provided by the user to PIE-Miner. From the example in Figure 4.5

we can see the calculation for new confidence value, new start time and new end time for fused

event label. In the example we considered the agreement coefficient value γt as 1 and media stream

confidences Fi−1 and fi both 0.5. Then we applied the confidence fusion formula as shown in the

Equation 4.4.2. If there are “k” labels of an event to be fused we consider the following formula for

fusing the start time “s” and end time “e” for new fused event,

E.s = min(E.s1, E.s2, . . . , E.sk )
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E.e = max(E.s1, E.s2, . . . , E.sk)

The example in Figure 4.5 shows how the confidence and temporal values are fused for redundant

event labels. After the confidence fusion for atomic events, we can remove the redundant symbols

from the input data stream. Thus in turn removing possible redundant sequence patterns in advance.

The confidence fusion incorporates the correlation among different modalities. Thus, we have much

robust data after preprocessing ready for applying the PIE-Miner for extracting the sequence pat-

terns.

T− threshold= 0.1, Support = 0.5

Figure 4.6: PIE-Miner candidate generation and support counting stage

4.4.2 PIE-Miner stage-2

There are two main tasks in stage-2 (1) Candidate Generation and (2) Support Counting.

PIE-Miner’s candidate generation is similar to the A-priori based method and the support counting

has the novel clustering based approach. The main problem is to find the representative frequent

PTMSs. Stage-2 of PIE-Miner is iterative. As seen in the Figure 4.7, the algorithm iterates as long

as new candidate patterns are generated for next iteration. The parameter k represents the length of

sequence pattern. In each iteration, we increase the length by one. Stage-2 begins with candidate

set of 1-frequent patterns obtained from the clusters with cardinality ≥ supportmin. We describe

the details of clustering the candidates and counting their support below. GenerateCandidate()
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Algorithm PIE-Miner Stage-2

Input: Frequent k − 1 pattern clusters CL(k−1)

Output: Candidate k pattern set

1: L1← Large 1-itemsets that appear in clusters with cardinality ≥ supportmin

2: k← 2

3: while Lk−1 ̸= ϕ do

4: Ck ← GenerateCandidate(Lk−1)

5: for all ( transaction t ∈ D) do

6: Cluster CLi← τ − Containment(Ck,t,τ )

7: for all candidates Ck ∈ CLi do

8: candidate[Ck]← CLi

9: cardinality[CLi]← cardinality[CLi] + 1

10: end for

11: end for

12: end while

13: for all Clusters CLi ∈ CL do

14: if (cardinality[CLi] ≥ supportmin) then

15: Lk ← Ck ∈ CLi

16: end if

17: end for

18: k← k + 1

19: return Lk

Figure 4.7: PIE-Miner candidate set generation and support counting stage
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is similar to the A-priori based candidate generation[7] procedure, taking k-1 length patterns as

input and join them suitably to create k-length patterns. The main difference is that the k-1 length

patterns are taken from clusters with k-1 length pattern frequent clusters. These k-length patterns

will be tested for required minimum support criterion and filtered as frequent k-length patterns.

The generated frequent patterns are input for next iteration of algorithm to find longer sequence

patterns. This is the task of candidate generation procedure. Once we have found the candidate

patterns, next task is to see how many instances in dataset has this pattern. Thus we try to find the

candidate pattern as a subsequence in all the given dataset. τ−Containment( ) is the procedure for

finding the subsequence using the defined τ -containment (≼τ ) as operator for matching symbols as

explained with example in section 4.2. The τ represents the confidence difference threshold, which

is user specified value within [0, 1].

Clustering If the candidate pattern and mapped transaction pattern satisfy τ−Containment

conditions, then the mapped transaction pattern is added to the cluster represented by candidate pat-

tern. We can see the clustering process in Figure 4.6. All the elements within the clusters will be

within τ confidence value distance from the confidence value of the corresponding cluster represen-

tative. The clusters are created for all generated candidate patterns. As we add the element to the

cluster we increment their cardinality.

Support Counting, once all the candidate patterns have generated the clusters, we com-

pare the cardinality of each cluster against the supportmin value. If the cardinality is greater than

the supportmin value, we consider the cluster as frequent cluster and all the elements in the cluster

are considered frequent. We add the elements from the frequent cluster to candidate pattern set.

The algorithm terminates on returning a null candidate pattern set. The novelty in our new support

counting mechanism is:

• Current sequence pattern mining algorithms have support counting for every individual event

label, whereas we count support for cluster of labels.

• Each cluster representative label contributes to patterns discovered from all the labels con-

tained within the cluster thus it is computationally more complex.

• There is no other approach found in literature doing cluster sequences support counting.
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4.5 Experimental results and interpretations

Temporal interval based event sequence mining algorithms are extensions of event se-

quence mining algorithms. Similarly, PTM sequence datamining algorithm is an extension of in-

terval based event sequence mining algorithms, with probability value associated to events within

the time interval. Thus, the PIE-Miner is extension of state of the art sequence pattern mining al-

gorithms. In this experimental section we show usefulness of PIE-Miner by comparing its results

with one of the event sequence pattern mining algorithm FP-Growth [53] and interval based event

sequence mining algorithm IE-Miner [101] and TPrefixSpan [144].

4.5.1 Dataset description

We run experiments on synthetic dataset and real world dataset.

Synthetic Dataset generated using IBM Quest Market-Basket Synthetic Data Generator

[69]. We illustrate the generic properties and significance of PIE-Miner over other event sequence

and interval based event sequence pattern mining algorithms. In particular, the evaluation of Asso-

ciation Rule Mining and sequence pattern mining algorithms is often tackled empirically using data

generated by the QUEST program from the IBM Quest Research Group[69]. The QUEST program

was originally designed for generating synthetic customer transactions dataset[7], which is an event

sequence dataset. The QUEST program was modified to generate interval based event sequences

in[101] and in other interval based event sequence mining experiments. We also use the IBM data

quest generator to create a synthetic event sequences and analyze the behavior of our algorithms.

We generated the PTM event sequence dataset with event label, event start time, event end time and

randomly generated probability value associated with each event, maintaining the constraint that

start time is greater than the end time for each event. We choose the parameter T (the number of

event labels) equal to 500 for IBM data quest program. We run experiments for different value of τ

and support to analyze the behavior of the PIE-Miner.

Real world Dataset (a) TRECVID 2005 news video dataset [95] and (b) AMI [11] group

meetings multimodal dataset. Using real world dataset we will illustrate the usefulness of patterns

discovered using PIE-Miner over other event sequence and interval based event sequence pattern

mining algorithms.

TRECVID 2005/2006 benchmark has typically focused on evaluating, at most, 20 visual

concepts, while providing annotation data for 39 concepts. It has 277 news videos from six different

news channels with a total duration of 150 hours. Columbia University has released a set of 374
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semantic concept detectors [139] (called Columbia374) with the ground truth, the features, and

the results of the detectors based on baseline detection method in TRECVID2005/2006. We use

confidence score values for some of selected semantic concepts detected using Columbia374’s SVM

based concept detectors for generating our PTM dataset. These concepts are detected for each of

the keyframes. We use starting and ending time for these semantic concepts as identified with

Fraunhofer Institute and Dublin City University team’s shot boundary detector.

The AMI dataset has rich set of manually and automatically annotated events from mul-

tiple modalities. We consider the atomic events of different Hand Gestures, Head Gestures, Spo-

ken Words, Movements and Focus of Attention during the meeting annotated manually from these

database [11]. Currently we consider 4 group meetings with team of 4 members. Since we do

not have the event detector’s probabilities, we at present randomly generate the probability associ-

ated with each event label. We use a 100 seconds temporal window for mining sequence patterns.

The AMI group meeting rooms include capture of both audio and videos that show individuals

in detail and ones that show what happens in the room in general. We can do different kinds of

meeting analysis using it. It has got data for each individual person’s behavior during the meeting

through dedicated video, audio, text and other sensor devices. It also has group level data captured

in form of audio, video and text. Using sequence pattern mining we can discover different kinds of

knowledge, Single Person behavior analysis: For the given Hand Gestures, Head Gestures, Spoken

Words, Movements and Focus of attention. We can extract patterns like (Hand Pointing ’overlaps’

“What” ’meets’ Standing), where Hand Pointing is a hand gesture, “What” is a word and Standing

is a movement. These patterns can be used to classify whether the person was actively participating

in the meeting or not. These temporal patterns can help finding some interesting events like the

important questions asked by someone in the meeting or answered by someone. Multiple Persons

behavior analysis: The patterns that we expect to discover here are like (Person1 say Yes ’overlaps’

Person2 say Yes ’meets’ Person3 say No) which can tell us about the group dynamics of the team.

4.5.2 Experimental results on synthetic dataset

We obtained four different sized synthetic dataset using IBM QUEST dataset generator.

The four different datasets have different number of event sequences 475, 1376, 2345 and 4690

respectively, with average number of 3 to 15 events in each sequence. We consider three different

support values as {0.02, 0.03, 0.05}. Three different values for parameter τ are chosen for PIE-

Miner as {0.2, 0.4, 0.6}.
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In the first set of experiment to show the significance of PIE-Miner, we choose minimum

support as 0.02 and τ as 0.2 for running PIE-Miner. We removed time interval and confidence value

from four different datasets and choose minimum support as 0.02 for running FP-growth. Similarly,

we removed just confidence value from four different datasets and choose support as 0.02 for run-

ning IE-Miner and TPrefixSpan. The result in Figure 4.8a shows the number of sequential pattern

discovered using these algorithms. We can see that for FP-growth very large number of frequent

patterns generated which is a problem. It is difficult to identify useful patterns from such a large

number of patterns. While the number of patterns generated by PIE-Miner, TPrefixSpan and IE-

Miner is of the order of hundreds, the number of patterns by FP-growth is of the order of hundred

thousand. Another problem is that the patterns discovered using FP-growth do not have any tempo-

ral relation thus we lose important information about the temporal relationship between events. We

can see that IE-Miner, TPrefixSpan and PIE-Miner generate moderate number of frequent patterns

compared to FP-growth and thus it is comparatively easy to discover useful patterns. Sometimes

for certain support values IE-Miner or TPrefixSpan will generate very less number of patterns but

by adjusting τ , PIE-Miner can generate moderately higher number of patterns as shown in Figure

4.8b. It is an advantage of PIE-Miner over IE-Miner and TPrefixSpan that, we can choose differ-

ent τ value and can generate different number of frequent patterns for fixed support value. Also

the patterns discovered with PIE-Miner has additional information regarding the confidence value

associated with each event within the temporal interval, which can be useful based on application

requirement.

In the second set of experiments, we analyze the properties of PIE-Miner. From Figure

4.8c it is evident that as we increase the value of τ the number of frequent patterns discovered

increases. But one should be careful to select the τ value. Selecting a large τ ( say 0.9 ) or a small τ

close to 0.0 value loses the purpose of probabilistic event labels. We observe that if τ -containment

criteria is not applied, then there are no frequent patterns discovered for data with diverse symbols.

But keeping the τ value within certain limit is important to avoid being flooded with many sequential

patterns. Also Figure 4.9c shows that we can generate moderate amount of frequent patterns for

different support values. Thus, we can conclude here that PIE-Miner can generate moderate number

of frequent patterns compared to other state of the art algorithms and it has additional information

of confidence value incorporated in patterns which is useful for multimedia application in particular

as demonstrated in the experiments below.
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Figure 4.8: Result comparison of PIE-Miner,IE-Miner,TPrefixSpan and FP-growth

4.5.3 Experimental results on real world dataset

We present experiments and analysis of results on TRECVID 2005 video dataset and AMI

meeting dataset in following subsections.

Experiments on TRECVID 2005 dataset

In our first experiment on TRECVID 2005 news video dataset [95] we created PTM

dataset for each video. We got posterior probability score from three different visual feature based

detectors Edged direction histogram, Gabor and Grid color moment. So we have (277 × 3) dataset

corresponding to 277 news videos. In each of these datasets we choose four semantic concepts Ur-

ban, US Flag, White House and Walking . Each transaction or a row of the dataset has these four

concepts detected for three consecutive shots. In other words we have a temporal window of three

consecutive shots.

We have three different datasets for each video. Once we have such datasets we perform

probability fusion to resolve the redundant symbols. Here, all the three dataset have same shot

boundary (starting and ending time) for corresponding events. We achieve three times reduction in

redundancy with such a fusion method compared to original dataset from three different modalities.

80



0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Video Number

N
u
m

b
e
r
 
o
f
 
E

v
e
n
t
s
 
P

r
o
c
e
s
s
e
d

PTM event sequence dataset vs Binarized event sequence data

PTM event sequence data

Binarized event sequence data

(a) video ♯ vs. ♯ of events

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Video Number

N
u
m

b
e
r
 o

f 
T

r
a
n
s
a
c
ti
o
n
s
 P

r
o
c
e
s
s
e
d

PTM event sequence dataset vs Binarized event sequence data

PTM event sequence data

Binarized event sequence data

(b) video ♯ vs. ♯ of transactions

0 0.01 0.02 0.03 0.04 0.05 0.06
0

100

200

300

400

500

600

Support Value

N
u

m
b

e
r
 o

f 
F

r
e

q
u

e
n

t 
P

a
tt
e

r
n

 G
e

n
e

r
a

te
d

Graph of PIE−Miner effect of Support value on generated freqeunt patterns

(c) Support vs. ♯ of Patterns

Figure 4.9: Comparison of PTM event sequence dataset vs Binarized event sequence dataset

Now each video will have a single dataset representing it. We have 277 dataset after the fusion for

corresponding 277 news videos.

Traditionally such PTM dataset might be converted to binary decision about the positive

occurrence of the event/concept if the posterior probability is above 0.5 [10]. Then the frequent

sequence patterns are discovered using event sequence pattern mining or interval based event se-

quence pattern mining algorithms. We can see from Figure 4.9a that there are very few events

remaining after considering binary decision about the positive occurrence of event/concept. Bina-

rized sequence dataset that is used with traditional event sequence pattern mining and interval based

sequence pattern mining algorithm just processes 15% of total data generated. Thus we need PTM

event sequence pattern mining algorithm for processing 100% of data. In Figure 4.9b though the

number of transaction in Binarized event sequence dataset looks similar to the transactions in PTM

event sequence dataset the average length of sequence is just 2 events for Binarized dataset whereas

12 events for PTM dataset. Thus, PTM dataset can discover more useful knowledge from mining a

more accurate and more informative dataset.

Experiment on AMI meeting dataset

Using the AMI meeting dataset we would like to show the semantic usefulness of the

discovered frequent patterns from PTM event sequence dataset.
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Defining the usefulness criteria: By semantically useful patterns, we mean the level of

knowledge conveyed through the discovered sequence pattern. Using the existing event sequence

mining algorithms, the pattern discovered are in the form of Writing → Nodding → Pointing or

((Writing overlap Nodding) overlap Pointing) in case of interval based event sequence mining,

whereas the sample patterns we discover are,

1. (Writing0.9 overlap Nodding0.2 overlap Pointing0.5)

2. (Writing0.8 overlap Nodding0.9 overlap Pointing0.7)

3. (Writing0.4 overlap Nodding0.4 overlap Pointing0.9)

4. (Writing0.1 overlap Nodding0.1 overlap Pointing0.2)

We can see that patterns discovered with PIE-Miner are more fine grained than the other sequence

pattern mining algorithms. There can be many possible scenarios associated with pattern Writing

→ Nodding→ Pointing or ((Writing overlap Nodding) overlap Pointing), which can be interpreted

using PIE-Miner’s discovered patterns. We interpret the above sample patterns to show that discov-

ered patterns are more meaningful. Interpretation of pattern 1 can be that when the detector labels

an event as Nodding with probability value 0.2 the chances are high that the actual event occurred is

Writing. The detectors may misclassify events under certain circumstances. Table 4.3[115] shows

the statistics for meeting events detectors. It appears plausible that Writing event has been misclas-

sified as Nodding event in this scenario. One more interesting scenario occurs when we see sample

Table 4.3: Sample Event classification table

Events writing pointing standing sitting nodding

writing 471 19 0 0 42

pointing 0 68 1 0 3

standing 1 1 9 0 0

sitting 0 0 2 255 0

nodding 8 7 7 22 43

pattern 2 and 4. Confidence values for events in pattern 2 are high whereas in pattern 4 they are very

low. Thus, we can discriminate these patterns as strong patterns vs weak patterns. Interpretation of

a strong pattern is straightforward, but the interpretation of weak patterns can be more challenging

and interesting. The weak patterns might be conveying the events for which we do not have robust

event detectors in the system. Thus, getting such detailed knowledge about the new events can also

help develop new detectors using these weak patterns. Also, we can say that if certain patterns have
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very low confidence values, then we can ignore them and that way we can generate a smaller set of

candidate patterns. Such optimizations can be of great help for large datasets.

Table 4.4: Some of discovered sequential patterns with PIE-Miner for AMI data with smin = 0.03

and τ = 0.3

Person A’s frequent Patterns Person C’s frequent Patterns

(Total 4762 discovered frequent patterns ) (Total 7013 discovered frequent patterns )

1. (you0.7 FINISHBY comma0.1) 9. question0.3 BEFORE concord signal0.4

2. (what0.4 BEFORE uh0.5 ) 10. question0.3 BEFORE concord signal0.4

3. (uh0.7 FINISHBY MED0.4 ) 11. question0.3 FINISHBY personPMA0.4

4. (uh0.2 FINISHBY comma0.5) 12. question0.6 FINISHBY personPMA0.5

Person B’s frequent Patterns Person D’s frequent Patterns

(Total 4862 discovered frequent patterns ) (Total 3786 discovered frequent patterns )

5. concord signal0.3 FINISHBY placetable0.3 13. personIDC0.7 FINISHBY placeslidescreen0.4

6. concord signal0.3 FINISHBY personIDC0.7 14. personPMA0.3 BEFORE placetable0.5

7. concord signal0.3 FINISHBY personIDC0.8 15. placetable0.7 STARTS no comm head0.3

8. concord signal0.3 FINISHBY personPMA0.3

Using the AMI meeting data we discover some useful behavioral patterns. Consider the

set of IS1008a meetings with four persons (A,B,C and D). We discover distinct frequent patterns

to represent each person’s behavior in the meeting. The person C was discovered with the distinct

pattern of questioning behavior as shown in the Table 4.4. There were totally 7013 frequent patterns

discovered in total for person C, but among them we put the event labels which has the maximum

combination of frequent patterns. Thus in the case of person C, he has the maximum question la-

beled frequent patterns. Whereas for Person B, out of 4862 patterns the majority of the patterns

are concord signal0.3. It looks like he was agreeing with the speaker and others during the meeting

but not many questions or words came from him. The person D had the majority of patterns of

looking at table and persons, thus he may be very non-interactive in the meeting. And the person

A with lots of authoritative patterns like you , what, uh, etc. thus he must be the person in charge,

handling the meeting. On analyzing the results, we realize the important property of PIE-Miner that

it boosts the majority pattern and attenuates the minority patterns. It is very difficult to differenti-

ate between such majority frequent patterns and minority frequent patterns for traditional support

counting mechanism but not with PIE-Miners̀ using majority counting mechanism. We can see that
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τ -containment works as a High Pass Filter that gradually boosts the high frequency patterns and

reduces the low frequency patterns. The obtained results are thus very useful in understanding the

social dynamics of the meeting.

In this chapter, we examined the importance of mining more realistic data for knowledge

discovery. We are the first to introduce the Probabilistic Temporal Multimedia (PTM) dataset for

datamining purpose. We have designed a novel sequence pattern mining algorithm called PIE-

Miner to discover more meaningful sequence patterns from PTM data. We demonstrated the utility

of discovered knowledge which is not possible to discover through existing sequence pattern mining

algorithms.
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Chapter 5

PTM data clustering for novelty

re-ranking

State-of-the-art Near-Duplicate Video Clip (NDVC) detection for novelty re-ranking uses

non-semantic low-level features (color/texture) to detect and eliminate “content based NDVC” and

increases content level novelty in the top results. However, humans may perceive video as near

duplicate from a semantic perspective as well. In this chapter, we propose Concept Based Near

Duplicate Video Clip (CBNDVC) detection technique for novelty re-ranking. We identify “semantic

NDVC” making use of the semantic features (events/concepts) and re-rank the top results to increase

the content level as well as semantic level novelty. Videos are represented as a multivariate time-

series of confidence values of relevant concepts and thereafter discovery of CBNDVC clusters is

achieved by conceptual clustering. Obtained results show higher precision and recall from the

user’s perspective.

5.1 Introduction

A large number of duplicate and near-duplicate videos exist on different video sharing

web-sites. Duplicates exists at content level and/or semantic level. Thus, current web video searches

return content level near identical videos and/or semantically near identical videos in the top results.

It is important to detect these content level near identical videos as they are generated by republish-

ing, reusing, reformatting or reediting existing materials and cause a threat to the site owners in

terms of wasted disk space. Furthermore, users have to spend significant amounts of time to find

the videos they need and are subjected to repeated viewing of similar copies of videos (content level

and/or semantically near identical videos) which have been viewed previously. Also, the users
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might not be able to see novelty in the top results even after detection and elimination of content

level near identical videos due to the remaining semantically near identical videos. Thus, they

have to browse through a long list of videos to find the variety of videos retrieved in response to

their query. This process is extremely time-consuming, particularly for web videos, where the users

need to watch different versions of duplicate or near-duplicate videos streamed over the Internet

[145]. To avoid getting swamped by such content level or semantically near-duplicate videos, ef-

ficient near-duplicate video detection and re-ranking is essential for effective search, retrieval, and

browsing.

An ideal solution to the problem would be to return a list which not only maximizes

recall and precision with respect to the query, but also novelty (or diversity) of the query topic.

This problem is generally referred to as novelty re-ranking (or sub-topic retrieval) in information

retrieval (IR). Unfortunately, the text-based techniques from IR cannot be directly applied to dis-

cover video novelty. For instance, text keywords and user-supplied tags attached to web videos are

usually abbreviated and imprecise. Also, most videos lack the web link structure typical in HTML

documents which can be exploited for finding sub-topic relatedness. It is evident that for finding

content level novelty and semantic level novelty among the relevant videos, we must rely on the

power of video content and concept analysis. There has been considerable research effort put into

near-duplicate detection for novelty re-ranking using video content based analysis. In contrast, not

much work using video concept based analysis has been done. In this chapter, we address the prob-

lem of Concept Based Near Duplicate Video Clip (CBNDVC) detection for novelty re-ranking of

web video search results using concept based analysis of videos. We interchangeably use the terms

“traditional NDVC” for “content based NDVC” and ”CBNDVC” for “semantic NDVC”.

Existing works define the problem of NDVC detection for novelty re-ranking as “Given a

list of videos ranked according to text relevance, novelty re-ranking aims to provide novel videos by

eliminating all near-duplicate videos [65],” where NDVC is defined as “Near-duplicate web videos

are identical or approximately identical videos close to the exact duplicate of each other, but dif-

ferent in file formats, encoding parameters, photometric variations (color, lighting changes), editing

operations (caption, logo and border insertion), different lengths, and certain modifications (frames

add/remove). A user would clearly identify the videos as essentially the same [145].” Solutions

proposed are using hierarchical approach combining global signature based on color histogram and

local feature based pair-wise keyframe comparison [145] and then integrating content and contex-

tual information to further improve the efficiency [146]. They consider one seed video as the most

relevant video for the given user query and compare the near duplicate criteria against the content
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of the seed video. The result is seen as two clusters, one cluster that contains near duplicates of the

seed video and another that contains videos that are not near duplicates of seed video (novel video

cluster). These approaches mainly focus on “content based NDVC” detection and elimination in

order to achieve content level novelty re-ranking.

To the best of our knowledge, there is no work which aims to do “CBNDVC detection

for novelty re-ranking of web video search results.” Thus, no formal definition of CBNDVC for

novelty re-ranking exists in the literature. We define the problem of CBNDVC detection for novelty

re-ranking as : “Given a list of M videos ranked according to text relevance, novelty re-ranking

aims to discover K semantically and content level novel CBNDVC clusters, and provides a novel

representative video from each cluster in the top results,” where we define “CBNDVC” as, “Videos

which contain identical or approximately identical semantic information, with similar/dissimilar

time duration and in which a set of relevant semantic concepts of user’s interest occur such that

user would perceive them similar irrespective of some variation in concept properties like color,

texture, time, pose, position, size, posture etc.” CBNDVC also covers the criteria mentioned for near

duplicates in traditional definition of NDVC [145].

Figure 5.1 shows an example to illustrate the importance of “CBNDVC detection for nov-

elty re-ranking.” In this figure, we show representative key-frames of the result videos taken from

the CC WEB VIDEO data-set [1]. Let us consider that video (a) to (h) are ranked at 1 to 8 posi-

tions in the returned result list for the query “India driving.” We need to do novelty re-ranking to fill

the top 3 rank positions. Existing content based NDVC detection technique for novelty re-ranking

will assign video (a) to the first rank position as it is the seed video. It will delete video (b) from

second rank position because it is traditional NDVC for the seed video (a). Video (c) is assigned to

second rank position and video (d) will be assigned to third rank position because they are not the

traditional NDVC for the given seed video (a). Even after the elimination of traditional NDVCs, the

discovered novelty re-ranking list contains CBNDVCs. The videos (a), (c) and (d) are CBNDVCs

and they contain approximately identical semantic information about “people driving vehicles in

Indian cities with heavy traffic,” whereas the ideal novelty re-ranking result after detection of tradi-

tional NDVC and CBNDVC should have videos (a), (e) and (g) assigned to the rank positions 1, 2

and 3 respectively. This is because videos (a), (e) and (g) can be considered as representative videos

from three content level and semantically novel CBNDVC clusters. The first CBNDVC cluster of

videos (a) to (d) represents semantic information for “people driving vehicles in Indian cities with

heavy traffic.” The second CBNDVC cluster of videos (e) to (f) represents semantic information for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Example representing CBNDVC from users’ perspective vs. traditional NDVC. Key-

frames from results corresponding to the query “India Driving” shown as videos (a) to (h). Video

(a) is the seed video, video (b) is traditional NDVC, (c) to (h) are not traditional NDVC but they are

taken at different times and places by different people. There exist CBNDVCs among videos (a) to

(h) for users’ perceived semantically novel category 1: “people driving vehicles in Indian city with

heavy traffic” for videos (a) to (d), category 2: “driving along the seashore” for videos (e) to (f) and

category 3: “driving through Indian village roads” for videos (g) to (h)
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“driving along the seashore in India”. The third CBNDVC cluster of videos (g) to (h) represents

semantic information for “driving through Indian village roads.”

Based on the above example we can summarize the differences, advantages and shortcom-

ings of traditional NDVC detection and the proposed CBNDVC detection for novelty re-ranking.

The main advantage of using CBNDVC detection for novelty re-ranking is that the top result may

contain many more novel videos relevant to the query than achieved with traditional NDVC. For ex-

ample, as on May 2011, a popular video sharing web-site like YouTube returns about 9,560 videos

for the query “India driving.” Among its top 20 videos, 19 are of the semantic category “people driv-

ing vehicles in Indian city with heavy traffic” while one video is of the semantic category “animated

tutorial for driving.” Videos of other semantic categories like “driving along the seashore in India”,

“driving through an Indian hill station”, “driving through an Indian village roads”, etc. are ranked

much behind in the list. If too many top results are from one semantic category, users will have very

little insight into the variety of semantically novel videos returned from a query. Compared to the

results collected from YouTube in 2006 for the same query “India driving,” the number of content

based NDVCs have drastically reduced in the top results. Thus, we can say that video sharing web

sites are already benefitting from content based NDVC detection for novelty re-ranking and it can

be enhanced further using CBNDVC detection for novelty re-ranking. The major differences and

the related advantages and disadvantages for traditional NDVC and CBNDVC are summarized in

Table 5.1.

There are two challenging problems involved in semantic NDVC based novelty re-ranking.

The first one is, finding semantic similarity between videos is a challenging research problem. There

is a lot of research for developing semantic concept detectors or event detectors [132]. These con-

cept or event detectors learn the concept or event using a wide variety of suitable training data. Thus,

the apparent advantage of using concepts as a feature is that it can accommodate large scale variation

in low-level video features (e.g. color, texture, etc.) because of a thorough training phase. Though

the accuracy of concept detectors depends on many factors, the confidence score or posterior proba-

bility of the detected concept can give a concise description of the content [10] [22]. The confidence

score can be seen as an indicator of the likelihood that the current shot contains the concept in ques-

tion. Semantic similarity for finding NDVC, considering the traditional approach of semantic video

signatures [121] with binary representation for existence of concepts in the video, might not be

accurate. Binary representation may skew semantic similarity due to detector inaccuracies. For ex-

ample, binary representation of a concept X for 4 key-frames of video:1 is {0, 0, 1, 1} and of video:2

is {1, 1, 0, 0}, considering confidence value threshold as 0.5. While the actual confidence values for
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Table 5.1: Summarizing the differences, advantages and shortcomings of existing content based

NDVC and proposed CBNDVC for novelty re-ranking.

Traditional NDVC Proposed CBNDVC

(1) Low-level features like color, texture, lo-

cal point descriptor etc. are used.

(1) High level semantic features like concepts,

events, actions etc. are used.

Advantage: Accurate and easy to extract Advantage: Incorporate users’ perspective and

semantic information

Shortcoming: cannot incorporate users’ per-

spective or semantic information

Shortcoming: Requires complex training

phase, otherwise concept detection can be in-

accurate

(2) Two clusters are discovered (1) NDVCs of

seed video and (2) not NDVCs of seed video

(2) Many novelty clusters are discovered based

on selected concepts

Advantage: Addition and deletion of videos

can be handled easily.

Advantage: Effective re-ranking can be

achieved with content level and semantical

level novelty clusters.

Shortcoming: Not effective re-ranking

achieved with content level or semantical

level novelty

Shortcoming: Addition and deletion of videos

requires careful handling as change in clusters

and cluster representative videos may occur.
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concept X, detected by the concept detector, for video:1 is {0.45, 0.49, 0.50, 0.51} and for video:2

is {0.50, 0.51, 0.49, 0.48}. In binary representation, distance between video:1 and video:2 can be

calculated as (|0− 1|+ |0− 1|+ |1− 0|+ |1− 0| = 4), whereas considering the confidence value

representation the distance is (|0.45−0.50|+ |0.49−0.51|+ |0.50−0.49|+ |0.51−0.48| = 0.11).

Given that video:1 and video:2 are content level near identical copies, due to variation in photomet-

ric parameters, encoding parameters or editing operations it has little difference in confidence value

of the detected concept. In binary representation, due to rigid threshold value, the distance between

videos will be large even though actual distance should be less, as they are content level near identi-

cal copies. Thus, we considered confidence score (posterior probability) based video representation

for finding semantic similarity between videos.

Second, how do we generate semantically novel clusters of semantic NDVC when the se-

mantic categories are not known and videos have been added or deleted dynamically ? How do

we know that the resulting clusters have novelty? Here, novelty cluster means each cluster repre-

sents unique information different from the information contained in other clusters. Incremental

conceptual clustering methods accept a stream of objects that are assimilated one at a time. A pri-

mary motivation for using incremental systems is that knowledge may be rapidly updated with each

new observation, thereby sustaining a continual basis for reacting to new stimuli [43]. Conceptual

clustering enables a series of further activities related to dynamic settings: 1) concept drift: i.e.

the change of known concepts w.r.t. the evidence provided by new annotators that may be made

available over time; 2) novelty detection: isolated clusters in the search space that are required to be

defined through new emerging concepts to be added to the knowledge base [42].

We use concept detectors to detect existing concepts in the key-frames of each video shot.

Users may perceive videos as semantic NDVC if the set of concepts happening over a time period

in videos are with similar concept confidence values. We represent a video as a time-series of these

detected concepts with their associated posterior probability values. As event detectors may not be

fully accurate, we do not use a threshold value to get a binary decision for deciding the occurrence

of concept. Instead, we consider their confidence or posterior probability values in the time-series

representation of the video. All the videos are processed using the same concept detectors to get

unbiased concept detection. For semantic NDVC detection our aim is to group the videos with

similar semantic content. It is possible to get more than one cluster of semantic NDVCs, where

each cluster represents some novel semantic content.

Our contributions in this work are,

• Extending the problem of NDVC from content based NDVC to semantic NDVC.
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• Increasing content level as well as semantic level novelty in re-ranked results of web video

search. Generation of novelty clusters of semantically near duplicate videos for novelty re-

ranking of video results.

• Novel representation of video as time-series of events / concepts with associated confidence

values. Comparison of binary semantic concept signature vs. proposed semantic video repre-

sentation for concept-based NDVC clustering.

• Application of conceptual clustering on multivariate time-series data.

In section 5.2, we describe the related work. Proposed method is presented in section 5.3. We do

the evaluation of experimental results in section 5.4.

5.2 Related Work

In this section, we describe the past works related to the following three main contribu-

tions made in this work: (1) NDVC detection, (2) Novelty re-ranking of web video search results

and (3) Conceptual clustering.

5.2.1 NDVC detection

NDVC problem can be dealt with at different levels of feature representation with their

associated pros and cons:

• Global level content based feature approaches [30] [153]: Global compact and reliable fea-

tures generally referred to as signatures or fingerprints which summarize the global statistic

of low-level features e.g color, motion and ordinal signature and prototype-based signature.

The matching between signatures is usually through bin-to-bin distance measures. They are

faster compared to the other two approaches mentioned below, but are limited to identifying

almost identical videos, and can detect minor editing in the spatial and temporal domain.

• Shot level content based feature approaches [145]: Commonly, a video is first partitioned into

a set of shots based on editing cuts and transitions between frames, and then a representative

keyframe is extracted to represent each shot. The matching between low-level features of

keyframes can be done with a variety of matching algorithms such as dynamic time warping

[4], as well as maximal and optimal bipartite graph matching etc. It can detect some copies

92



with simple to moderate levels of editing assuming content in keyframes is not changed dra-

matically. Most approaches indeed focus on keyframe level duplicate detection as they are

computationally faster than a region level feature based approach and more accurate than the

global level feature based approaches.

• Region level content based feature approaches [8] [77]: Each of the frames or keyframes is

segmented into regions, and a set of color, texture and shape features are computed for each

region. Regions can be as simple as square blocks of certain size or it can be salient local

regions detected over image scales, which locate local regions that are tolerant to geometric

and photometric variations [84]. It can detect near duplicates in a more sophisticated way.

The real challenge is involved in the algorithm to match and when it scales to too many local

points for efficient comparison between two frames.

• Shot level concept based feature approaches [121]: a video is first partitioned into a set of

shots and then a representative keyframe is extracted to represent each shot. Each shot is de-

noted by binary concept signature, absence equalling 0 and presence equalling 1, of semantic

concepts. The matching between binary concept signature of keyframes can be done with

sliding window algorithms. Video copy detection aims at determining whether a given query

video sequence appears in a target video sequence, and if so, at what location. It can detect

some of the copies with simple to moderate levels of editing assuming content in keyframes

is not changed dramatically.

A majority of existing works in NDVC detection have considered only low-level features.

There are important research work on understanding near-duplicate videos from a user centric ap-

proach in [19] [29]. Where they found the evidence that users perceive as near-duplicates videos

that are not alike but which are visually similar and semantically related [29]. But, these works are

mainly focus on understanding the user perception for near duplicate video and thus they do not

provide actual solution to the problem of semantic NDVC detection. In [121], authors used binary

concept signatures, but errors in binary classifications are frequent and the knowledge that a shot

contains certain concept with a certain confidence cannot be exploited for semantic comparison ac-

curately [10]. Also, their aim was limited to identifying content level near identical copies of the

query video’s subsequences in other videos. All of the existing NDVC algorithms fall under the

content based NDVC definition whereas we propose a more informative solution from a user’s per-

spective that produces the novelty clusters of semantic NDVCs generated based on their semantic

concepts’ confidence value over time.
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5.2.2 Novelty re-ranking

Earlier methods of video search re-ranking were proposed to improve the initial list of

results returned through a text-based search, based on the assumption that visually similar videos

should have close ranking scores [64][83][137][12]. While they have shown significant precision

improvements over text-based video searches, they have the problem of many near-duplicate re-

sults before enough novel videos are found [66]. Thus, recently a novelty re-ranking mechanism

was proposed with the assumption that near duplicate video clips should be removed to increase

the novelty in the top results [145][146]. We have shown the different existing methods proposed

for near duplicate detection in section 5.2.1. Among which sophisticated local features like local

interest points (or keypoints) extracted from keyframes are expected to be effective [145]. How-

ever, a keyframe typically has hundreds or more interest points, each of which is represented by

high dimensional feature vectors. Comparing a large number of local interest points between two

keyframes is computationally very expensive for a long list of videos. Thus, to guarantee effective

near-duplicate detection while meeting the speed requirements for large-scale video collections, a

hierarchical method is proposed for novelty re-ranking in [145], which utilizes both global sig-

natures and local keypoints for detecting near-duplicate web videos. And then a novel solution

integrating content and contextual information is proposed to further improve efficiency [146].

But, none of these novelty re-ranking methods considers semantic level novelty re-ranking

as we propose here in this chapter. Also, none of the algorithms consider the dynamic nature of

video-sharing web-sites. In propose algorithm the newly added or deleted video either decides to

create a new cluster, merge to an existing cluster or it may split an existing cluster. Other approaches

compare the query video clips to a particular seed video and categorize it as near duplicate of that

seed video [145] or generate query videos after applying predefined transformations to a part of the

original video [121]. None of the above mentioned NDVC algorithms discover different conceptual

categories, but simply classify as near duplicate or no near duplicate of the seed video.

5.2.3 Conceptual clustering

Clustering analysis is one popular datamining technique used to find patterns and groups

in video data. Most existing methods for clustering focus on finding the optimum overall parti-

tioning. However, these approaches cannot provide any descriptions of the clusters. Conceptual

clustering not only partitions the data, but generates resulting clusters that can be summarized by

a conceptual description. For example, COBWEB is an incremental clustering algorithm based on
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probabilistic categorization trees. However, pure COBWEB [43] only supports nominal attributes.

It cannot be used for abstracting numeric data. To incorporate numeric values, extensions of the

COBWEB algorithm are proposed, such as COBWEB/3 [90], ECOBWEB [114], AUTOCLASS

[27], Generality-based conceptual clustering (GCC)[136], and Error-based conceptual clustering

(ECC)[32]. However, they are not suitable for video data due to spatial and temporal character-

istics, and high-dimensional attributes. In the proposed method, we transform multivariate time

series of concept confidence values into suitable categorical data to do COBWEB clustering. To our

knowledge this is the first time conceptual clustering is done for video data considering semantic

features.

5.3 Proposed Concept-Based Near-Duplicate Video Clip (CBNDVC)

detection method

We describe proposed Concept Based Near Duplicate Video Clip (CBNDVC) detection

based method for novelty re-ranking in this section.

5.3.1 Scope and assumptions

The scope of research here is to propose a CBNDVC detection method for novelty re-

ranking of web video search results. The proposed method is not the search and retrieval algorithm

or video search engine but a method to discover sub-topics within given query’s video search results

for novelty re-ranking purposes. Here, we assume that displaying representative videos from each

category in the top results helps users browse through novel results faster. Note that the perception

of novel categories may vary from user to user. Also, the discovered novel categories depend on

the discriminating power of a concept and number of selected relevant concepts. The trade-off here

is to achieve diversity/novelty from users’ perspectives while maintaining low computational cost.

There exist many concept detectors. The experimental results confirm that a few thousand semantic

concepts could be sufficient to support high accuracy video retrieval systems [54]. However in our

task, we are looking at the result of a specific query, thus it is possible to drastically reduce the num-

ber of concepts required to do meaningful video comparison at concept level. There is an interesting

research question about how to translate query topic to identify sets of relevant concept detectors?

[132]. In [131][143], ontology reasoning is used to automatically select the set of relevant concepts

for the query from a given set of concept detectors. Such research can be use to identify potential

sets of concept detectors of users’ interest automatically for the given query. However, our research
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focus here is not to identify sets of concepts of users’ interest automatically so we will find these

manually for each query in the proposed work.

5.3.2 Overview CBNDVC framework

Figure 5.2 shows the overall procedure for the proposed CBNDVC detection technique.

The proposed method receives the original ranking list from the video search engine for certain

query. Also, proposed method needs Relevant Concept Set for a given query. We define the Relevant

Concept Set as a finite set of semantic concepts (relevant to the posed query), chosen either manually

or automatically, considered for comparison of videos. Thus, if most of the concepts of the Relevant

Concept Set occur similarly in both videos, then they are considered as CBNDVCs. The seed video

is considered as the first input video and after all required processing it initiates the conceptual

clustering. All the videos from the ranking list are processed one by one in order and incrementally

conceptual clustering progresses. If new videos are added to the ranking list by a video search

engine’s indexing mechanism then they are also supplied as input videos and assigned to suitable

clusters. Similarly, if any videos are deleted from the original ranking list then appropriate cluster

changes are considered by conceptual clustering.

The proposed method consists of three sequential steps: Video representation as a time-

series of semantic concept confidence values, video matching using time-series of their semantic

concepts’ confidence values and generation of novelty conceptual clusters of videos. As shown in

Figure 5.2, semantic concept detection is performed at the level of shots; therefore, the input video

sequence is first divided into shots. Next, key frames are extracted for each shot. Semantic concepts

are detected for each shot by classifying the visual features of the key frames (i.e. by mapping the

visual features on one of the predefined semantic concepts).

In the next step, similarity is measured between a new input video’s semantic time-series

and the stored seed video’s semantic time-series. We transform the similarity measurement into a

suitable format for conceptual clustering of videos. In the last step, using the conceptual cluster-

ing algorithm, we determine the suitable cluster for the current input query video in the conceptual

cluster hierarchy. We process all the input videos as per the above procedure. In the end, we will

have one cluster containing CBNDVCs of the seed video and other novelty clusters containing CB-

NDVCs representing the different novel categories. Our technique handles insertion and deletion of

new videos at any stage by making corresponding changes in cluster hierarchy. Detailed descrip-

tions for each of the three steps in the overall procedure will be given in the following subsections.
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Figure 5.2: Proposed method for Concept based near duplicate video detection

5.3.3 PTM Video Representation

As mentioned in section 5.1, one of the main challenges for CBNDVC detection is finding

semantic similarity between videos. By considering the color histogram or other low level data it

is difficult to interpret the obtained knowledge for higher level semantics, but by using machine

learning techniques we can use low level features to detect the presence of high-level features and

can interpret the mined results at a semantic level. Here, semantic concepts are events, which a

user can judge the occurrence or absence of, for example Outdoor and Singing. Semantic concepts

are also often referred to as High Level Features, because of their meaning to humans. They are

also referred to as visual concepts, because of their predominant occurrence in the visual part of the

video.

Semantic concept detection in video has been perceived as a pattern recognition problem.

Given pattern −→x (e.g. color moment, color histogram etc.), part of a shot i, the aim is to obtain

a probability measure, which indicates whether semantic concept ωj (e.g. Outdoor) is present in

shot i. In pattern recognition, the strict definition of a probability depends on many factors and

97



assumptions. Hence, it cannot form the basis of comparison between different methods. Therefore,

probability is utilized as a confidence value, defined as p(ωj | −→x ) [133]. In practice, Support Vector

Machine (SVM) with Platt’s conversion method is used to obtain such confidence value. SVM

classifiers thus trained for ωj , result in an estimate p(ωj | −→x ,−→q ), where−→q represents the parameters

of the SVM.

For many applications, the concept detectors for these semantic concepts are assumed

to be binary classifiers with threshold value as 0.5, which differentiate between presence (0.5 or

greater) and absence (lesser than 0.5) of concept. As explained with video 1 and video 2 semantic

distance example in section 5.1 it is desirable to consider the confidence value for more accurate

comparison. We advocated this in our earlier work [22], that detected high-level features should be

represented with their concepts associated posterior probabilities or confidence values to overcome

inaccuracies of binary classification for multimedia datamining purpose. Also, employing confi-

dence value for datamining can give the additional information for certain shot containing certain

concept with a certain confidence value which can help accurate matching of semantic similarity.

For CBNDVC detection, we need to match the semantic concepts along the time axis.

Therefore,a video should be represented by a time-series of semantic concepts in it. A time-series

is an ordered sequence of observations. Although the ordering is usually through time, particularly

in terms of some equally spaced time intervals, the ordering may also be taken through other di-

mensions, such as space [142]. We consider video to be represented as time series of its discovered

concept confidence values. Each of the detected semantic concept confidence values is considered

as an observation and its corresponding shot length is considered as the time dimension. The CB-

NDVC detection problem is not limited to traditional content level one-to-one keyframe matching

or matching within small window size, but to the semantically identical videos where one-to-one

matching may not be possible as videos can be of varying length and have diverse content leading

to the different number of shots. Thus, video representation should be flexible to match concepts

between videos that are not alike but are visually similar and semantically related.

We construct the time-series of semantic concept confidence values for a video as shown

in Figure 5.3. For a given video, semantic concept detection is performed at the shot level. A

video is first partitioned into a set of shots based on editing cuts and transitions between frames,

and then a representative keyframe is extracted to represent each shot. Extracting a representative

keyframe from the middle of a shot, therefore, is relatively reliable for extracting basically similar

keyframes from different near-duplicates. This mapping of video to keyframes reduces the num-

ber of frames that need to be analyzed. A video sequence, denoted as V, is first segmented into
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Figure 5.3: Video representation as time-series of Semantic concept confidence value

N shots such that V = {s1, s2, . . . , sN}, where si stands for the ith shot of V. Visual feature X

such as color (e.g. 225-dimensional grid color moment [134]) is extracted from each keyframe, thus

X = {X1, X2, . . . , XN}. Let C = {c1, c2, . . . , cM} be a set consisting of M semantic concepts,

with ck denoting the kth semantic concept. Also, let D = {d1, d2, . . . , dM} be the set of classi-

fiers corresponding to the M semantic concepts, where dk denotes the classifier whose output is a

confidence value for concept ck. Given the visual feature X extracted from shot si, the classifier dk

outputs the posterior probability P(ck | X ) . This posterior probability represents the relevance or

confidence of the visual feature X to the semantic concept ck.
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Each of the N shots contains detected confidence values of M semantic concepts. Let

V TS = {vts1, vts2, . . . , vtsM} be a set consisting of M time-series of semantic concepts’ con-

fidence values for N shots of the video V, where vtsi = {P (ci|X1), P (ci|X2), . . . , P (ci|XN )}.
Finally, we construct the dataset as shown in Figure 5.3 using the aforementioned video represen-

tation as time-series of detected semantic concept confidence values. We assume that detectors

are independent of each other and that each detector emits for each shot a single and real valued

confidence score.

5.3.4 PTM Video matching

To find all near-duplicate/similar keyframes in two videos, the traditional method was

used to exhaustively compare each keyframe pair, in which the time complexity is the product of

the number of keyframes in two videos. Another approach is to compare with the corresponding

keyframes in another video within a certain sliding window, in which case the knowledge of window

size is required [145]. We represent video as a time-series of their semantic concepts’ confidence

values, thus the video matching problem is now reduced to a M-dimensional time-series matching

problem. CBNDVC aims at determining if a given query video’s time-series of M semantic con-

cepts’ confidence values are similar to the seed video’s time-series of corresponding M semantic

concepts’ confidence values.

Using the video representation defined in section 6.3.1, we now describe our video match-

ing method in a formal manner. The query and seed video time-series V TSq and V TSs are defined

as follows: V TSq = {vtsq1, vts
q
2, . . . , vts

q
M}, where vtsqi = { P (ci | Xq

1 ),P( ci | Xq
2 ), . . . ,P(ci |

Xq
L )} is the time-series of ith semantic concept confidence values for L keyframes in query video

V TSq. And V TSs = {vtss1, vtss2, . . . , vtssM},where vtssi = { P (ci | Xs
1 ),P( ci | Xs

2 ), . . . ,P(ci |
Xs

N )} is the time-series of ith semantic concept confidence values for L keyframes in seed video

V TSs.

To find a measure of similarity between given time-series representation we can either

choose Euclidean distance or dynamic time warping (DTW). We choose to calculate DTW measure

between vtsqi and vtssi for i = {1, 2, . . . ,M}. Euclidean distance is a very brittle distance measure

[72]. Dynamic time warping (DTW) is a much more robust distance measure for time series, allow-

ing similar shapes to match even if they are out of phase in the time axis [72]. The DTW is more

suitable in our context because the given videos can be of different formats, encoding parameters,

photometric variations (color, lighting changes), editing operations (caption, logo and border inser-
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tion), different lengths and certain modifications (frames add/remove), and may not look alike, thus

their keyframes and in turn their concept confidence values may be distorted along the time axis.

We have two time-series, vtsqi and vtssi , of length m and n respectively. To align two

sequences using DTW, we construct an m-by-n matrix where the (pth, tth) element of the matrix

contains the distance d(vtsqp,vtsst ) between the two points vtsqp and vtsst (i.e. d(vtsqp,vtsst ) = (vtsqp−
vtsst )

2 ). A warping path W, is a contiguous set of matrix elements that defines a mapping between

vtsqi and vtssi . The kth element of W is defined as wk = (i, j)k so we have:

W = w1, w2,. . .,wk, where max(m,n)≤ k < m+ n− 1

There are exponentially many warping paths, however DTW considers the path that minimizes the

warping cost,

DTW (vtsqi , vts
s
i ) = min

√√√√ k∑
k=1

wk. (5.3.1)

We normalize these DTW values to the interval [0, 1]. Where 0 represents exact match between two

time-series and 1 represents no match between two time-series.

DTW (vtsq1, vts
s
1) =

 0 if vtsq1 match exactly with vtss1

1 if vtsq1 do not match at all vtss1

We compute the DTW distance between seed video and query video for each of the M

semantic concepts from the Relevant Concept Set and store the distance between seed video V TSs

and query video V TSq as,

dvideo(V TSq, V TSs) = {DTW (vtsq1, vts
s
1), DTW (vtsq2, vts

s
2),. . . , DTW (vtsqM , vtssM )}

These normalized DTW values are transformed into categorical labels as follows,

Label(vtsq1, vts
s
1) =


High, if 0 ≤ DTW(vtsq1,vtss1) ≤ (1/3)

Med, if (1/3) ≤ DTW(vtsq1,vtss1) ≤ (2/3)

Low, if (2/3) ≤ DTW(vtsq1,vtss1) ≤ 1.00

Figure 5.4 describes the semantics represented as a categorical dataset after transformation

of multivariate time series. We have the attributes as semantic concepts in Relevant Concept Set =

{ Outdoor, Person, Room, Running, Singing, Talking, Standing, Stadium, Dancing }. For each

of the video objects in the dataset of a certain query, the label assigned to the concept attribute is

High if the time-series of semantic concept confidence value for the given query video matches well

with the time-series of the corresponding concept confidence values of the seed video. Similarly,

video objects have the attribute value assigned as Medium or Low if the match with time-series of
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Figure 5.4: Example categorical dataset generated from transformation of multivariate time-series

corresponding concept confidence of the seed video is not good or not at all matching. For example,

the seed video will always have all the attribute values as High because it will always match well

with itself. All other videos are represented using their conceptual comparison against the seed

video.

The main motivation behind transformation of numerical distance value to categorical

label was to have a suitable categorical dataset as shown in figure 5.4. On such a dataset it is

feasible to apply a conceptual clustering algorithm like COBWEB (as explained in the following

section) to get novelty concept clusters of content based near duplicate videos. In Figure 5.5, Videos

{1, 6, 212} of query 2 resulting from the dataset [1] are represented for their dancing, person and

room concepts’ confidence value time series.
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(a) Video 1 Dancing T.S (b) Video 1 Person T.S (c) Video 1 Room T.S

(d) Video 6 Dancing T.S (e) Video 6 Person T.S (f) Video 6 Room T.S

(g) Video 212 Dancing T.S (h) Video 212 Person T.S (i) Video 212 Room T.S

Figure 5.5: Videos {1, 6, 212} of query 2 from the dataset are represented for their concepts danc-

ing,person and room concepts confidence value time series
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5.3.5 Conceptual clustering of multivariate time series of videos

For CBNDVC detection for novelty re-ranking the goal is to discover as many novel

clusters as possible, not just cluster of single seed video and their near duplicates, but all possible

novel videos and their near duplicates using given Relevant concept set. The problem of CBNDVC

datasets is that we do not know the possible number of novelty clusters in advance. The system is

incremental, and new videos can be added and deleted. Also, we need a characteristic description

for an identified group to infer the concept represented by the cluster. COBWEB [43] is one such

conceptual clustering algorithm that matches most of the requirements for the proposed CBNDVC

detection. Unlike conventional clustering that identifies groups of similar objects, conceptual clus-

tering finds characteristic descriptions for each group, where each group represents a novel category

or class. Its quality is not solely a function of the individual objects. Rather, it incorporates factors

such as generality and simplicity of the derived concept description [51].

We made important modifications to the existing COBWEB conceptual clustering algo-

rithm such that the data as shown in Figure 5.4 can be processed to completely satisfy the proposed

method’s requirements. The concept of cluster representative did not exist in the COBWEB algo-

rithm. We enable COBWEB to incorporate the notion of cluster representative, which is to identify

the video representing the concept of the cluster in the best possible way compared to other videos

residing in the same cluster.

Algorithm for Conceptual Clustering of Multivariate Time-series: Here, we introduce

the conceptual clustering algorithm COBWEB along with an example (dataset in Figure 5.4) and

describe the required changes made to the algorithm. Whereas some iterative distance-based clus-

tering algorithms, such as K-Means, go over the whole dataset until convergence occurs, COBWEB

works incrementally, updating the clusters video by video. COBWEB creates hierarchical cluster-

ing in the form of a classification tree. The leaves of the tree represent every individual concept, the

root node represents the whole dataset and the branches represent the hierarchical clusters within

the dataset. The total number of clusters can be as many as the total number of video objects in the

given dataset, if all the videos are having significantly different concepts within them and thus in

turn none of them is CBNDVC video.

COBWEB starts with a tree consisting of just the root node (seed video). From there,

instances are added one by one, with the tree being updated accordingly at each stage. When a

video instance is added, there are four possible actions: (1) Classifying the video object into an

existing class (2) Creating a new class (3) Combining two classes into a single class (merging) and
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Seed 
Cluster

H H H H H H H H H

H H H H H H H H H

L L L M H L L H H

L L L M H L L H H

Novelty1 
Cluster

Root

Figure 5.6: Conceptual cluster generated for example dataset in Figure 5.4. One CBNDVC cluster

of seed video is discovered as Seed Cluster and another Novelty1 cluster which is semantically

different from seed video. Here H = High, M = Medium and L = Low represents attribute values.

(4) Dividing a class into several classes (splitting). The Algorithm 1 will choose the action with the

biggest Category Utility (CU), defined by the following function:∑n
k=1 P (Ck)[

∑
i

∑
j P (Ai = Vij |Ck)

2 −
∑

i

∑
j P (Ai = Vij)

2]

n
(5.3.2)

Where Vij is a potential value of attribute Ai in our example data. We have Vij = {High, Medium,

Low} and Ai = {Outdoor, Person, Room, Running, Singing, Talking, Standing, Stadium, Dancing

}, i = {1,2,. . .,9} semantic concepts from the Relevant Concept Set. And q is the number of nodes,

concepts or categories forming a partition {C1, C2, , Cq} at a given level of the tree. For our example

data in Figure 5.6 we see q = 2 at level 1 Seed Cluster and Novelty1 cluster. Category Utility is the

increased amount of the expected number of attribute values that can be correctly estimated from

a partition. This expected number is P (Ck)[
∑

i

∑
j P (Ai = Vij |Ck)

2 and the expected number

of correct estimates without such knowledge is the term
∑

i

∑
j P (Ai = Vij)

2. Category Utility

rewards intra-class similarity and inter-class dissimilarity where:

• Intra-class similarity is the probability P(Ai = Vij | Ck). The larger this value is, the greater

the proportion of class members that share this attribute-value pair will be. Hence the class

members are more predictable. For our example in Figure 5.6, Seed Cluster is expected to

have P(Ai = High | Seed Cluster) = 1 for i = {1,2,. . .,9} because all the videos are CBNDVC

to seed video and thus have high match for all the attributes.

• Inter-class dissimilarity is the probability P(Ck | Ai = Vij). The larger this value is, the fewer

objects in contrasting classes will share this attribute-value pair. It is more likely that the
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pair belongs to a certain class. Thus, we will have P(Seed Cluster | Ai = High) = 1 for i =

{1,2,. . .,9}.

We modified the COBWEB data structure for storing the video objects such that we can

update the cluster representative whenever new video is added or old video is deleted. When the

Algorithm 1 chooses one of the four actions for video object clustering, we update the cluster

representative if required. We consider the length of video as one important feature to consider

it as a Conceptual Cluster Representative. We find length as an important feature because we are

looking for conceptually near duplicate videos. Thus longer videos with similar concept distribution

of concepts from the Relevant Concept Set are assumed to have some other concepts contained in

them. Even if these extra concepts in longer videos may be useful or not useful, we can consider

longer videos as better representatives for the conceptual cluster. Each of the conceptual clusters

have videos kept in descending order of their lengths, thus the top video is with the highest length

and considered as cluster representative. Of course, these cluster representatives do not guarantee

best audio and video quality but definitely possess a better representation of a cluster’s concepts

within them.

5.4 Experiments and results

The aim of the experiments here is to show: (1) Results of proposed CBNDVC detection

for novelty re-ranking (2) Comparing results of proposed method with content based NDVC detec-

tion for novelty re-ranking and binary concept based NDVC detection for novelty re-ranking. We

discuss the discovered results in the following subsections.

5.4.1 Dataset description

To test our approach, we conducted experiments on the near duplicate video clip detection

dataset from [1]. The dataset contains 24 selected queries designed to retrieve the most viewed and

top favorited videos from YouTube. Each text query was issued to YouTube, Google Video, and

Yahoo! Video respectively. Videos with a time duration over 10 minutes were removed from the

dataset. The final data set consists of 12,790 videos and its 398,015 keyframes retrieved after shot

boundary detection and keyframe selection procedures. The seed video list is also provided, where

the most popular video was selected as the seed video for each query. The ground truth file was

generated considering the content based NDVC defined in [145], their assessors labeled the videos

with a judgment (redundant or novel compared to seed video).
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Algorithm 1 COBWEB conceptual clustering for novelty cluster generation
Input: Categorical dataset

Output: Novelty clusters

1: Cobweb(N: Node, I:Instance)

2: if N is a terminal node then

3: Create-new-terminals(N, I)

4: UpdateNodeProbability(N, I)

5: else

6: UpdateNodeProbability(N, I)

7: for each child C of node N do

8: Compute the utility for placing I in C.

9: N1 = the node with the highest utility U1

10: N2 := the node with the second highest U2

11: UNew := the utility for creating a new node for I

12: UMerge := the utility for merging N1 and N2

13: USplit := the utility for splitting N1

14: UMax := Max(U1, UNew,UMerge, USplit)

15: if U1 == UMax then

16: Cobweb(N1, I) {place I in category N1}.
17: else if UNew == UMax then

18: Nnew = new Node(I)

19: else if UMerge == UMax then

20: NMerge = Merge(N1, N2, N)

21: Cobweb(NMerge, I)

22: else if NSplit == UMax then

23: Split(N1, N)

24: Cobweb(N, I)

25: end if

26: end for

27: end if
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NDVC dataset in [1] did not have ground truth for possible semantically novel categories

for each query and label for each video with their corresponding semantic category. To evaluate

the performance of proposed CBNDVC detection method for novelty re-ranking, we extended the

existing NDVC dataset [1] by generating the ground truth of semantically novel categories for each

query and labeling each video for their corresponding semantic category. Two assessors were asked

to watch a return list of videos for each query (all 12,790 videos) and label each video with a

suitable category for the query. As shown in Table 5.3, assessors gave a set of concepts for each

query that influenced them to perceive the videos as semantically near identical and generate a list

of semantically novel categories for each query. Though we are not able to show all the different

categories perceived by assessors for each of the queries due to space limitation. We show an

example in Table 6.1, illustrating the ground truth of traditional NDVC detection method and ground

truth for the proposed CBNDVC detection method. The assessors were also requested to identify

the representative videos (videos that should appear in the final top ranking result list for the query)

from each of the identified semantic categories for each query.

Query # cate-

gories

Set of concepts for each query that influenced assessors to perceive

videos under semantically novel categories

1 The lion

sleeps

tonight

11 ANIMAL, CARTOON, CROWD, DANCING, DRIVING,

OUTDOOR, PERSON, ROAD, ROOM, SINGING, SPEAK-

ING TO CAMERA, STADIUM, STAGE, STILL IMAGE,

TEXT ON ARTIFICIAL BACKGROUND

2 Evolution

of dance

6 ANIMATION, CROWD, DANCING, DAYTIME OUTDOOR, EN-

TERTAINMENT, FURNITURE, MOONLIGHT, NIGHTTIME,

PERSON, ROOM, SEA, SPEAKING TO CAMERA, STAGE,

STILL IMAGE, TEXT ON ARTIFICIAL BACKGROUND

3 Fold shirt 4 DOGS, FACE, FURNITURE, GROUP, HEAD AND SHOULDER,

OVERLAID TEXT, PERSON, ROOM, SCENE TEXT, SCI-

ENCE TECHNOLOGY, SKY, STANDING, STILL IMAGE, SIT-

TING, TEXT ON ARTIFICIAL BACKGROUND

4 Cat mas-

sage

5 ANIMAL, CHARTS, DANCING, DOGS, OVERLAID TEXT, PER-

SON, SINGING, SITTING, TALKING, WALKING

5 Ok go

here it

goes again

7 CROWD, DANCING, ENTERTAINMENT, GYM, PEO-

PLE MARCHING, PERSON, SINGING, SPEAKING TO CAMERA,

STADIUM, STUDIO WITH ANCHORPERSON, URBAN
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Query # cate-

gories

Set of concepts for each query that influenced assessors to perceive

videos under semantically novel categories

6 Urban

ninja

9 BUILDING, NON UNIFORMED FIGHTERS, PERSON,

SCENE TEXT, SPORTS,STANDING, STILL IMAGE , SUPER-

MARKET, WALKING RUNNING, WEAPONS

7 Real life

Simpsons

14 ANIMATION, BEACH, CAR, CARTOON, DANCING, ENTERTAIN-

MENT, FOOTBALL, GIRL, STAGE, TALKING, WALKING

8 Free hugs 6 BUILDING, CROWD, FLOWERS, HANDSHAK-

ING, OVERLAID TEXT, PARKING LOT, PER-

SON, SHOPPING MALL, STREET, SUPERMARKET,

TEXT ON ARTIFICIAL BACKGROUND

9 Where

the hell is

Matt

12 SCIENCE TECHNOLOGY, SKY, DAYTIME OUTDOOR, ENTER-

TAINMENT, NIGHTTIME, PERSON, CROWD, HOUSE, STAGE,

URBAN

10 U2 and

green day

8 CARTOON, CROWD, ANIMAL, DANCING, DRIVING,

OUTDOOR, PERSON, ROAD, ROOM, SINGING, SPEAK-

ING TO CAMERA, STADIUM, STAGE, STILL IMAGE,

TEXT ON ARTIFICIAL BACKGROUND

11 Little su-

perstar

14 ASIAN PEOPLE, ROOM, DANCING, TALKING, SITTING, STAGE,

ANIMATION, TEXT ON ARTIFICIAL BACKGROUND

12 Napoleon

dynamite

dance

11 CROWD, DANCING, ANIMATION, DAYTIME OUTDOOR, EN-

TERTAINMENT, FURNITURE, MOONLIGHT, NIGHTTIME,

PERSON, ROOM, SEA, SPEAKING TO CAMERA, STAGE,

STILL IMAGE, TEXT ON ARTIFICIAL BACKGROUND

13 I will sur-

vive Jesus

4 CITY, DANCING, OUTDOOR, OUTER SPACE, OVERLAID TEXT,

PERSON, ROAD, SEA, SINGING, SKY, URBAN, VEHICLE

14 Ronaldinho

ping pong

3 ACTOR, ANIMATION, DANCE, FOOTBALL, PERSON, RUNNING,

SPORTS, STADIUM, TEXT ON ARTIFICIAL BACKGROUND,

WALKING

15 White and

Nerdy

9 ANIMAL, CARTOON, CROWD, DANCING, DRIV-

ING, OUTDOOR, ROAD, ROOM, SINGING, SPEAK-

ING TO CAMERA, STADIUM, STAGE, STILL IMAGE,

TEXT ON ARTIFICIAL BACKGROUND
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Query # cate-

gories

Set of concepts for each query that influenced assessors to perceive

videos under semantically novel categories

16 Korean

karaoke

5 ASIAN PEOPLE, CARTOON, CROWD, DANCING, DRIVING,

OUTDOOR, PERSON, ROAD, ROOM, SINGING, SPEAK-

ING TO CAMERA, STADIUM, STAGE, STILL IMAGE,

TEXT ON ARTIFICIAL BACKGROUND

17 Panic at

the disco

I write

sins not

tragedies

7 CROWD, DANCING, ANIMATION DAYTIME OUTDOOR, EN-

TERTAINMENT, FURNITURE, MOONLIGHT, NIGHTTIME,

PERSON, ROOM, SEA, SPEAKING TO CAMERA, STAGE,

STILL IMAGE, TEXT ON ARTIFICIAL BACKGROUND

18 Bus uncle 14 BUS, CROWD, FIGHTING, HANDSHAKING, HEAD AND

SHOULDER, MALE ANCHOR, NON UNIFORMED FIGHTERS,

PERSON, SPEAKING TO CAMERA, STAGE,

STILL IMAGE, STUDIO WITH ANCHORPERSON,

TEXT ON ARTIFICIAL BACKGROUND

19 Sony

Bravia

7 ANIMATION, BUILDING, CELL PHONES, CHEERING, CROWD,

EXPLOSION FIRE, OBSERVATION TOWER, OUTDOOR, OVER-

LAID TEXT, PERSONS, SKY, STAGE, STILL IMAGE

20 Changes

Tupac

5 ACTOR, ANIMATION, NEWS STUDIO, OFFICE, OVER-

LAID TEXT, PERSON, SPEAKING TO CAMERA, STREET,

TEXT ON ARTIFICIAL BACKGROUND

21 Afternoon

delight

7 ANIMAL, CARTOON, CROWD, DANCING, OUTDOOR,

PERSON, SINGING, SKY, SPEAKING TO CAMERA, STA-

DIUM, STAGE, STILL IMAGE, STREET, SUPERMARKET,

TEXT ON ARTIFICIAL BACKGROUND

22 Numa

Gary

8 ANIMATION, CROWD, DANCING, DAYTIME OUTDOOR, EN-

TERTAINMENT, FURNITURE, MOONLIGHT, NIGHTTIME,

PERSON, ROOM, SEA, SPEAKING TO CAMERA, STAGE,

STILL IMAGE, TEXT ON ARTIFICIAL BACKGROUND

23 Shakira

hips don’t

lie

11 ACTOR, ANIMATION, CROWD, DANCING, DAY-

TIME OUTDOOR, ENTERTAINMENT, FURNITURE,

MOONLIGHT, NIGHTTIME, PERSON, ROOM,

SPEAKING TO CAMERA, STAGE, STILL IMAGE,

TEXT ON ARTIFICIAL BACKGROUND
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Query # cate-

gories

Set of concepts for each query that influenced assessors to perceive

videos under semantically novel categories

24 India driv-

ing

14 ROAD, TRAFFIC, VEHICLE, SEA, MOUNTAIN, PERSON,

HAND, FACE, TREES, URBAN, DIRT GRAVEL ROAD,

SCIENCE TECHNOLOGY, SPORTS, STREETS,

TEXT ON ARTIFICIAL BACKGROUND

Table 5.3: Ground truth of set of concepts for each of 24 queries that influenced assessors to perceive

the videos as semantically near identical and generate a semantically novel categories for each query.

5.4.2 Performance metrics

Rand Index [113] is used to evaluate the performance of discovered semantically novel

clusters with the proposed CBNDVC detection technique. If P is a pre-specified (e.g., assessor

given) novelty cluster structure for query Q with N retrieved results and is independent from the

novelty cluster structure C discovered with proposed CBNDVC detection technique, then the eval-

uation of C by external criteria is achieved through comparing C to P. Considering a pair of videos

Vi and Vj , there are four different scenarios based on how Vi and Vj are placed in C and P:

1. N11: the number of video pair Vi and Vj that are in the same cluster in both C and P.

2. N00: the number of video pair Vi and Vj that are in different clusters in both C and P.

3. N01: the number of video pair Vi and Vj that are in the same cluster in C but in different

clusters in P.

4. N10:the number of video pair Vi and Vj that are in different clusters in C but in the same

cluster in P.

Intuitively, N11 and N00 can be used as indicators of agreement between C and P, while N01 and

N10 can be used as disagreement indicators. A well known index of this class is the Rand Index

[113], defined straightforwardly as:

RI(C,P) = (N00 +N11)/

(
N

2

)
(5.4.1)

The Rand Index lies between 0 and 1. It takes the value of 1 when the two clustering results are

identical, and 0 when no pair of points appear either in the same cluster or in different clusters in

both clusterings.
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Table 5.2: In first part of the table, statistics and description is shown from Wu et.al. for query:

“The lion sleeps tonight” as per traditional definition of NDVC. The second part of the table shows

statistics and description of potential semantically novel categories perceived by assessors as per the

definition of proposed CBNDVC.

Example of traditional NDVC

NDVC and

Non-NDVC

Cluster

Type of Match # of

Videos

Cluster 1

Exactly duplicate 58

Similar video 229

Different version 13

Major change 07

Long version 34

Cluster 2
Dissimilar video 451

Video does not exist 20

Total videos 812

Example of proposed CBNDVC

Cluster # Semantic novelty represented within cluster # of

Videos

Cluster 1 Animated hippo or cartoons dancing on lion sleeps tonight 364

Cluster 2 Stage shows performing lion sleeps tonight song 87

Cluster 3 Animation stories playing the song in background 32

Cluster 4 Homemade videos of person singing and dancing on lion sleeps

tonight

143

Cluster 5 Some outdoor actions like driving on the song etc 110

Cluster 6 Slide show with lyrics of the song or some images 56

Video does not exist 20

Total videos 812
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In order to evaluate the performance of novelty re-ranking, we use the novelty mean av-

erage precision (NMAP) [65] [145] to measure the ability to re-rank relevant web videos according

to their novelty. The NMAP measures the mean average precision of all tested queries, considering

only novel and relevant videos as assessor given ground truth set. In other words, if two videos are

relevant to a query but semantically and/or visually near identical to each other, only the first video

is considered as a correct match. For a given query, there are total of H videos in the collection that

are relevant to the query. Assume that the method only retrieves the top R candidate novel videos

where ra is the number of novel videos seen so far from rank 1 to a. The NMAP is computed as:

NMAP =
(
∑R

a=1 ra/a)

H
. (5.4.2)

The value of NMAP is in the range of 0 to 1. A value of 0 means all videos in the top-R list

are CBNDVC of each other. In contrary, a value of 1 indicates that all top-R ranked videos are

semantically and visually novel.

5.4.3 Preprocessing results

For the proposed CBNDVC detection technique we considered available sets of concept

detector models trained by LIBSVM from [139]. Table 5.3 shows a list of semantic concepts (maxi-

mum of 15 numbers of concepts for each query) selected by assessors to discover CBNDVC clusters

for each query. There are a total of 75 unique concepts used for the experiment (total 24 queries).

The overall accuracy of these concept detectors on our dataset is illustrated in Figure 5.7. For testing

the accuracy of each concept detector, we considered 40 ranked keyframes for each concept having

20 positive examples and 20 negative examples. There are in total 75 unique concepts, but some of

them happen together in the same keyframe, thus altogether we annotated 1,827 unique keyframes.

Though the accuracy of some of the concept detectors is very low, overall, combination of the con-

cept confidence values in the time-series comparison helps us achieve considerable results as shown

in the following sections.

5.4.4 Results of proposed CBNDVC detection

The main intention of the proposed CBNDVC detection technique is to automatically

discover the semantically novel clusters of CBNDVCs. Here, discovered CBNDVC clusters are

expected to be similar to the clusters identified by human assessors considering users’ perspective

for a given set of concepts. Table 5.4 shows statistics for Assessor given novel CBNDVC clusters
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Figure 5.7: Overall accuracy of selected concept detectors

and Discovered clusters using proposed CBNDVC detection technique. We choose Rand Index as a

performance metric for cluster validation to find out if derived clusters with the CBNDVC detection

technique are meaningful in comparison with assessor given ground truth categories. High values

of rand index approaching 1 show that discovered CBNDVC clusters by the proposed technique are

considered novel from users’ perspective too and these clusters contain semantically near identical

videos as per users’ concepts of interest.

# Traditional NDVC

GT

CBNDVC

GT

Discovered novelty clusters through proposed CBNDVC

detection technique

RI

for

CB-

NDVC

1 Seed NDVC(341),

NoN-Seed(448)

11 Seed CBNDVC(417), N1(81), N2(33), N3(180), N4(71) 0.58

2 Seed NDVC(124),

NoN-Seed (456)

6 Seed CBNDVC(180), N1(149), N2(82), N3(81), N4(88) 0.89

3 Seed NDVC(194),

NoN-Seed (229)

4 Seed CBNDVC(408), N1(15) 0.71

4 Seed NDVC(162),

NoN-Seed(182)

5 Seed CBNDVC(310), N1(2) 0.57

5 Seed NDVC(94),

NoN-Seed(302)

7 Seed CBNDVC(121), N1(106), N2(178), N3(116) 0.46
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6 Seed NDVC(45),

NoN-Seed(726)

9 Seed CBNDVC(54), N1(146), N2(253), N3(42), N4(276) 0.68

7 Seed NDVC(154),

NoN-Seed(211)

14 Seed CBNDVC(168), N1(14), N2(51), N3(26), N4(62),

N5(44)

0.66

8 Seed NDVC(37),

NoN-Seed(502)

6 Seed CBNDVC(89), N1(114), N2(102), N3(86), N4(62),

N5(44)

0.4

9 Seed NDVC(23),

NoN-Seed(211)

12 Seed CBNDVC(51), N1(21), N2(22), N3(12), N4(36),

N5(56), N6(8), N7(5), N8(23)

0.53

10 Seed NDVC(52),

NoN-Seed(245)

8 Seed CBNDVC(123), N1(19), N2(52), N3(26), N4(68),

N5(9)

0.48

11 Seed NDVC(59),

NoN-Seed(278)

14 Seed CBNDVC(98), N1(11), N2(16), N3(28), N4(9),

N5(13), N6(24), N7(6), N8(18), N9(53), N10(14), N11(6),

N12(41)

0.69

12 Seed NDVC(146),

NoN-Seed(735)

11 Seed CBNDVC(234), N1(201), N2(56), N3(79), N4(32),

N5(61), N6(58), N7(21), N8(35), N9(104)

0.81

13 Seed NDVC(387)

,NoN-Seed(29)

4 Seed CBNDVC(402), N1(1), N2(3), N3(5), N4(5) 0.85

14 Seed NDVC(72),

NoN-Seed(35)

3 Seed CBNDVC(88), N1(4), N2(6), N3(4), N4(5) 0.79

15 Seed NDVC(696),

NoN-Seed(1075)

9 Seed CBNDVC(752), N1(221), N2(132), N3(341), N4(90),

N5(84), N6(151)

0.82

16 Seed NDVC(20),

NoN-Seed(185)

5 Seed CBNDVC(29), N1(78), N2(98) 0.41

17 Seed NDVC(201),

NoN-Seed(446)

7 Seed CBNDVC(321), N1(33), N2(69), N3(116), N4(19),

N5(89)

0.83

18 Seed NDVC(80),

NoN-Seed(408)

14 Seed CBNDVC(104), N1(66), N2(21), N3(97), N4(34),

N5(23), N6(143)

0.46

19 Seed NDVC(202),

NoN-Seed(364)

7 Seed CBNDVC(268), N1(205), N2(31), N3(62) 0.77

20 Seed NDVC(72),

NoN-Seed(122)

5 Seed CBNDVC(91), N1(9), N2(20), N3(68), N4(6) 0.82

21 Seed NDVC(54),

NoN-Seed(395)

7 Seed CBNDVC(72), N1(55), N2(31), N3(69), N4(10),

N5(6), N6(7), N7(81), N8(118)

0.43

22 Seed NDVC(32),

NoN-Seed(390)

8 Seed CBNDVC(142), N1(27), N2(212), N3(41) 0.54
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23 Seed NDVC(234),

NoN-Seed(1088)

11 Seed CBNDVC(378), N1(447), N2(274), N3(218), N4(5) 0.72

24 Seed NDVC(26),

NoN-Seed(261)

14 Seed CBNDVC(85), N1(123), N2(32), N3(4), N4(10),

N5(33)

0.47

Table 5.4: Statistics for 24 queries with content based NDVC ground truth (GT), assessor given user

perceived semantically novel clusters’ ground truth (GT) and discovered CBNDVC clusters (Seed

CBNDVC(), N1(), N2(), ... , N14()) through proposed CBNDVC detection technique is shown. Rand

Index RI shows the value validating quality of discovered CBNDVC clusters.

The results show that overall the performance of the proposed conceptual clustering for

CBNDVC detection is considerable in comparison with given ground truths except in some cases.

For example, in the results of query 8 we can observe that even though the number of CBNDVC

clusters discovered by the proposed technique and given in the ground truth are the same, the rand

index value is not 1, but low compared to many other results. The main cause for this discrepancy is

due to accuracy and selection of concepts, because out of 10 selected concepts, 7 concepts’ detectors

had very low accuracy and the user had limited choice for selecting concepts from the pool of the

available concept detector set. Whereas some of the queries like query 17 and query 12 which had

selected 15 concepts with better detector accuracy discovered better results. Even query 20 had

better results with just 9 selected concepts. So, one important observation we can make here is

that the number of selected concepts may not solely determine the results. Instead we may get the

best results when selected concepts in the Relevant Concept Set has good discriminating power for

corresponding conceptual categories and the set of concept detectors has high accuracy. Selecting

a large number of less accurate concepts may not give better results; sometimes there are just a

few relevant concepts with good accuracy of concept detectors and a few novel categories demand

choice of concepts be kept to a minimum. For query 21, more number of clusters are discovered

than expected in the ground truth, but their rand index value is smaller. There were 15 concepts

selected with a combination of good detectors, but still the clusters are not matching well with

users’ expected categories.

The problem with poor CBNDVC detection in some cases can be interpreted in a similar

way to the problem with poor NDVC detection. The cause of poor NDVC detection is that the com-

bination of variations of encoding parameters, photometric variations or editing operations reduce

content level similarity to the point of videos being considered non NDVC. Similarly for CBNDVC

combination of variation in concepts, concepts’ properties or concept detector accuracies can lead
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to the point of videos being considered non CBNDVC. In the query results all these concepts hap-

pen together but the ways in which they occur can have major impact on their perception. Perhaps

there should be some concept detectors which can give not only concept existence confidence value,

but the information on some concept facets as well. Even given that the some concept appears in

several videos, undetected facets of the concept may have strikingly different perceptual impacts on

different users. We can conclude that in most of the queries proposed, proposed technique was able

to discover satisfactory results.

In the proposed method concept detection, time-series generation and transformation to

categorical data is considered to be done off-line. For time efficiency the only thing that is done

online is conceptual clustering whenever new videos are added or old videos are deleted, or when the

results of some new query are first clustered. Whenever video is added to the original ranking list,

COBWEB has to identify optimal CU for existing clustering by placing the newly added video to a

suitable cluster. This partial re-clustering time depends on how many videos are already clustered.

Clustering methods like k-means might be more expensive as they restart the complete clustering if

new videos are added. Conceptual clustering for 500 videos may around 90 to 150 seconds if they

are already transformed to categorical data format for a limit of 15 attributes. But large amounts

of time (around 20 hours for a given dataset) are spent on low-level feature extraction from large

numbers of keyframes and then the application of concept detectors over them.

5.4.5 Comparison of clustering results

We compare the proposed CBNDVC detection for novelty reranking with traditional

NDVC detection for novelty re-ranking as in [145] and with BIN-CBNDVC binary concept sig-

nature based method proposed in [121]. For BIN-CBNDVC, we use value 0 = concept does not

exist, if detected confidence value ≤ Threshold value of 0.5, otherwise 1 = concept exist. Most of

methods using binary classifications assume 0.5 is an optimal Threshold value. This is justified by

decision theory in [20]. The purpose of comparison with the traditional NDVC detection method is

to get insight into the improvement in results from users’ perspective with the proposed CBNDVC

detection method. The purpose of comparing with BIN-CBNDVC is to find more suitable video

representation for semantically near identical video detection tasks. For BIN-CBNDVC, we ran the

experiment considering 0.5 as a threshold value for determining the existence of a concept in a given

keyframe to get a result for binary representation. In Figure 5.8, the comparison clearly shows the

proposed CBNDVC detection method as a winner compared to traditional NDVC detection and BIN-

CBNDVC. So we can say the goal to find semantically near identical video groups and semantically

117



0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Number

R
an

d 
In

de
x

Rand index comparision among CBNDVC, NDVC, BIN−CBNDVC

CBNDVC

NDVC

BIN−CBNDVC

Figure 5.8: Comparison of rand index value among proposed CBNDVC detection technique, tradi-

tional NDVC technique and binary representation based CBNDVC detection technique

novel categories can be achieved with more effectiveness using the proposed CBNDVC approach.

Though traditional NDVC detection approach does not perform any better than the CBNDVC de-

tection approach, it still has considerable rand index. The main reason for that could be the way

the dataset has been generated here. The most popular video queries are considered those which

have maximum number of near duplicates. As we know that the traditional definition of NDVC is

covered under CBNDVC, semantically near identical clusters containing seed videos will also have

as many visually near identical video in the same cluster as possible. This in turn makes queries 4,

13 and 19 to have rand index greater than proposed CBNDVC detection technique with 59%,94%

and 73% visually near identical videos respectively. Significant improvement due to the proposed

CBNDVC detection technique can be seen in all other queries, particularly queries 2,6,12,15 and

17 which do not have a large number of content level (visually) near identical videos but have many

semantically near identical videos.

BIN-CBNDVC can also achieve somewhat better performance than traditional NDVC

from semantically similar perspective. Though in queries like 3, 13 and 19 it has lower rand in-

dex value than the traditional NDVC due to the large number of content level near duplicates. The

surprising observation is that BIN-CBNDVC usually generates more clusters than identified by as-

sessors. Even some of the traditional NDVCs are distributed in different clusters in the case of

binary CBNDVC detection technique. A potential reason could be consideration of threshold value.
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Because of the threshold value, in some cases distance can increase drastically even from minor dif-

ferences in confidence value. For example, concept X in video1’s keyframe has been detected with

the confidence value of 0.45 and in video2’s keyframe it has detected a confidence value of 0.51,

but due to the threshold the distance between them will be |0− 1| = 1. Even though we have DTW

based distances many of the near duplicate videos will have an almost similar number of keyframes

and they will have to go through pair-wise comparison. The BIN-CBNDVC approach finds large

distances between such near duplicates for some concepts and ends up creating more clusters for

such cases.

5.4.6 Comparison of novelty re-ranking results

The traditional NDVC based novelty re-ranking removes visually near identical videos

to the given seed video query from the results and all other videos will shift up the positions of

deleted NDVCs [145]. But the proposed method tries to identify all novel categories of semantically

near identical videos and provide users with representative videos from each semantically novel

cluster in the top results. The objective of novelty re-ranking here is to bring forward novel videos

and push back less informative, visually and/or semantically identical videos. We do not perform

elimination of CBNDVCs considering the video sharing web-site scenarios, where the identified

videos are not copyright infringing or in any way malicious. Users will not be happy if videos they

upload are deleted by the system automatically. Traditional NDVC detection and elimination cannot

guarantee novelty/diversity from a semantic perspective, because they do not consider existence of

other semantically or visually near identical videos apart from the visually near identical videos

of the seed video. Thus, they may not be able to list the videos from all the semantically novel

categories in the top 20 or 30 ranks.

To evaluate the performance of novelty re-ranking, we compare the re-ranking results

based on (a) proposed CBNDVC detection method and (b) traditional NDVC detection method

[145]. For evaluation the comparison with just one traditional method is sufficient as all other

state-of-the-art methods fall under content level NDVC (traditional NDVC) detection based novelty

re-ranking category. Thus, state-of-the-art methods may have different accuracy for detecting the

content level NDVC but that may not help discover semantically novel categories. The performance

comparison up to top 30 search results is illustrated in Figure 5.9. Figure 5.9a shows how many

semantically novel categories are represented in the top 30 list of the proposed method compared

to the traditional method. And Figure 5.9b shows NMAP measure for novelty re-ranking for top 5,

top 10, top 15 and top 30 results using proposed method and traditional method [145].
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Figure 5.9: Figure 5.9a shows total number of conceptual categories identified by human assessors

for each query video. Among identified categories how many of these categories are contained in

results within the top 30 positions for traditional NDVC and CBNDVC. Figure 5.9b shows NMAP

comparison between traditional NDVC detection for novelty re-ranking [145] and the proposed

CBNDVC detection for novelty re-ranking for top 5, top 10, top 15 and top 30 results.
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As expected, CBNDVC detection based novelty re-ranking outperforms traditional NDVC

detection based novelty re-ranking in terms of overall NMAP and discovered categories for each

query. Even though for some of the queries we see that the traditional NDVC has comparative

number of categories contained within top 30 results but their overall NMAP is very low even for

top 5 results. Main reason is that traditional NDVC detection method does not rank according to

semantically novel categories and thus contains videos of different categories and are scattered in

the ranking list. Whereas overall NMAP for proposed method is higher as it lists cluster represen-

tatives from each of the discovered semantically novel categories in the top results. Of course, as

we increase top R result consideration the NMAP for proposed method decreases due to limited

number of discovered categories. Even in ground truth, highest number of category is 14 only for

some queries. So, the value of NMAP for top-15 and top-30 are lower than top-5 and top-10. It is

possible to achieve higher NMAP if actual dataset with more semantically novel categories is used

and more number of relevant concepts are used for clustering. Proposed method is scalable with

such increase in novel categories and relevant concepts. Thus, we demonstrate the superiority of

CBNDVC detection based novelty re-ranking compared to the traditional NDVC detection based

novelty re-ranking by listing more conceptually diverse/novel videos in the top list.

The problem of Near-Duplicate Video Clip (NDVC) detection is quite important, as well

as challenging. One can say that the traditional NDVC problem has only been considered from

a purely syntactic perspective. In this chapter, we consider the NDVC problem from the seman-

tic perspective. Semantic perspective helps generate more novel / diverse results from the users’

perspective, which is more desirable for novelty re-ranking of web video search results. In the

experiments section, we demonstrated that conceptual clustering for multivariate time-series of se-

mantic concept confidence values generated novelty clusters for CBNDVC. These novelty clusters’

representatives as the top video results are found to be superior from an end users perspective.
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Chapter 6

PTM data classification for composite

concept detection

Concept detection in videos is essential for many applications such as semantic video

indexing and search etc. While state-of-the-art techniques can detect primitive concepts (e.g. “Sky”)

with a good accuracy, they often fail in case of a composite concepts (e.g. “Airplane takeoff”) that

may consist of more than one primitive concept (e.g. “Airplane”, “Ground”, and “Sky”) occurring

together over a period of time. This is due to the complex nature of spatiotemporal patterns that exist

in composite concepts. Further, existing techniques for concept detection exploit the ontology rules

that are usually static and do not accommodate the varying co-occurrences of primitive concepts. In

this chapter, we propose a reward and punishment based method to: i) detect the composite concepts

in a video using the given ontology rules and ii) update these ontology rules adaptively based on the

detected primitive concepts. The proposed approach advocates for concept detectors and ontology

to learn from each other over time, which will eventually help in improving the overall accuracy of

composite concept detection. Experimental results show the effectiveness of the proposed method.

6.1 Introduction

Automatic semantic concept detection is a fundamental step for effective video annota-

tion, retrieval and mining. Typically concept detectors learn the mapping between a set of low-level

visual features (local descriptors, color, texture, etc.) and a concept from examples. Much effort

has been devoted to extending the number of different concept classifiers and improving concept

detection accuracy. State-of-the-art concept detection is measured by average precision range from

less than 0.1 (for composite concepts such as “People marching” and “Airplane takeoff”) to above
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0.6 (for primitive concepts such as “Face”) [17]. Here, composite concept refers to a concept that

contains more than one primitive concepts. Lower accuracy of composite concept detection can be

due to the complex changes in visual appearances or motion patterns, which is usually difficult to

learn just using low-level visual features.

Ontologies are often found useful for detecting the concepts and events from visual data

with higher reliability [16]. Ontologies may consist of concept lexicons (set of concepts or term e.g.,

“face”, “people”), concept properties (features like color, texture), concept relations (e.g., “spatial”,

“temporal”) and instances of concepts. Existing concept detection techniques exploit the ontology

rules about the spatiotemporal relations among primitive concepts; however, such rules are usually

static and they do not accommodate the varying co-occurrences of primitive concepts. In existing

approaches, spatiotemporal relationships between concept occurrences are analyzed so as to distin-

guish between scenes and events and to provide a more fitting and complete description [15, 17].

Here, spatiotemporal ontology rules are either created by human experts or learnt using First Order

Inductive Learner (FOIL) techniques or similar description logic techniques. The major drawback

of such approaches is that they cannot handle real world scenarios well. The main reason behind

this is their unreasonable assumption that, in all the instances of composite concept’s video (1) Con-

cept detectors have detected primitive concepts with full accuracy and (2) Spatiotemporal relation

among primitive concepts always exist.

To illustrate these two problems let us consider an example of the “Airplane takeoff”

composite concept, with ontology rule derived using the FOILS algorithm in [17],

Airplane(?a) ∧ Sky(?s) ∧Ground(?g)

HasBoundingBox(?a, ?aBox)∧

HasBoundingBox(?s, ?sBox)∧

HasBoundingBox(?g, ?gBox)∧

Spatial : BoxOverlapsBox(?tas, ?aBox, ?sBox)∧

Spatial : BoxIsInBox(?tag, ?aBox, ?gBox)∧

Temporal : After(?tas, ?tag) ∧MovingObject(?a)

→ AirplaneIsTakingOff(?a)

This rule can be translated to a simple sentence as: IF “airplane,” “sky,” and “ground”

instances (a, s, g) occur in a shot AND for a time interval tas, the airplane is in the sky AND for

a time interval tag the airplane is on the ground AND the time interval tas is after of the interval
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Table 6.1: Example illustrating problem with mapping expectations of existing ontology rule to real

world scenarios.

Ontology rule expect concept detection and their

spatiotemporal relations for "airplane takeoff"

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 1 1 1 1 1 1 1 1

Sky 0 0 0 1 1 1 1 1

Ground 1 1 1 1 1 0 0 0

Rel(A,S) 0 0 0 1 1 1 1 1

Rel(S,G) 0 0 0 1 0 0 0 0

Rel(G,A) 1 1 1 1 1 0 0 0

Actual detection score of concepts and their

spatiotemporal relations for "airplane takeoff"

T1 T2 T3 T4 T5 T6 T7 T8

Airplane 0.8 0.44 0.73 0.65 0.36 0.7 0.75 0.41

Sky 0.5 0.32 0.55 0.43 0.63 0.45 0.40 0.9

Ground 0.6 0.5 0.3 0.7 0.5 0.34 0.43 0.2

Rel(A,S) 0.7 0.45 0.66 0.4 0.5 0.6 0.3 0.4

Rel(S,G) 0.4 0.3 0.2 0.5 0.55 0.3 0.42 0.6

Rel(G,A) 0.7 0.46 0.56 0.6 0.46 0.5 0.51 0.2

tag AND the airplane is a moving object, THEN that “airplane is taking off.” We can illustrate this

ontology rule in a tabular form as shown in Table 6.1. Consider the video clip of “airplane take-off”

illustrated as a sequence of images from (T1 to T8) with the detected concept and their spatial co-

existence or correlation in each image. Here the image sequences T1-T4 and T5-T8 are denoted as

time intervals tag and tas, respectively. In the top part of the Table 6.1, the ontology rule expected

a value 1 for existence and 0 for non-existence of the corresponding concept or relation in the

image sequences. The bottom part of the table shows the actual concept detection scores (posterior

probability) from “Airplane takeoff” video clip which must match with the corresponding binary

values in the ontology rule. We can consider a posterior probability threshold as 0.5 to convert

the detected posterior probability value to a binary value. In practice, methods which use binary

classifications assume a positive occurrence if the posterior probability (detection score) is above

0.5. Selected threshold of 0.5 is justified by decision theory in [20]. As explained in [20] another

value may not perform any better to take the binary decision.

Let us try to analyze the reason behind the failure of this ontology rule to detect the

“Airplane takeoff” concept. As per the given ontology rule, image sequences T1 to T4 must have the

value 1 representing the existence of concepts Ground and Airplane. But, at image T2 the concept
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Airplane has a detection score (0.44 < 0.5 = 0) and at T3 the concept Ground has a detection score

(0.3 < 0.5 = 0). Thus, concept detection scores do not satisfy the expectation of ontology rule to

qualify as “Airplane takeoff” concept due to inaccurate concept detectors for the concepts Airplane

and Ground even though these concepts actually did exist. This is the first problem, “Concept

detectors cannot detect primitive concepts with full accuracy,” that is not considered in existing

ontology rule based composite concept detection approaches. One may suggest that, as in [154]

usual ontology based concept refinement approaches consider that Airplane and Ground have high

correlation and thus boost the detection score of Airplane and Ground if one of them exists in the

image. But, this kind of static correlation fails here. We can see in the ontology rule that image

sequences T4 to T8 must contain the concept Airplane but not the concept Ground. Thus, there is a

need for a mechanism that can refine the confidence value of the primitive concepts considering the

ontology rule.

Similarly, the second problem, “Spatiotemporal relation among primitive concepts do

not always exist in all the instances of composite concept,” can be explained using the example

shown in Table 6.1. As per the rigid ontology rule, spatial coexistence relation within time interval

tag between the concepts Ground and Airplane is Rel(A,G) = 1, between Airplane and Sky is

Rel(A,S) = 0 and between Ground and Sky is Rel(G,S) = 0. Now, either due to change of

context (e.g., Ground was not actually captured in the video as plane was taking off from the ship)

and/or due to inaccurate concept detectors (e.g., detectors were trained on different example images

of Ground concept than the images present for test), the detection score of concept Ground within

time interval tag is below 0.5 threshold. Thus, assign the value 0 to this instance of Ground. Which

in turn changes the detection score of spatial coexistence relation to Rel(A,G) = 0. This results in

a test sample mismatch as per rigid ontology rules even though it is actually an “Airplane take-off”

video. The second problem could occur either due to the first problem or due to a change of context.

Here, spatiotemporal relation is the actual ontology rule. Thus, there is a need for mechanism to

refine ontology rules considering actual context (in terms of present concepts).

Thus, ontology rule based composite concept detection approach should have a mecha-

nism to consider dynamic correlation among primitive concepts, to handle inaccuracy of primitive

concept detectors and to deal with uncertainty in spatiotemporal relations. None of the existing on-

tology based composite concept detection approaches have such a mechanism. They fail to detect

positive instances whenever detected primitive conceptsścores do not match the ontology rule or

detected concepts’ relations do not match the spatiotemporal relations in the ontology rule. This

leads to considerable precision but poor recall for existing methods.
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To overcome these limitations the following issues need to be resolved,

• How to detect dynamic correlation among primitive concepts? Dynamic correlations can

be defined as the correlations that vary over time and context. We need to detect appropriate

change points in time wherever such correlations among primitive concepts change. As detec-

tion of primitive concepts is inaccurate, finding such change points is difficult. To the best of

our knowledge there does not exist a method in literature that can handle such concept-based

change point detection.

• How to enable the ontology rule to handle the inaccuracy of primitive concept detection?

Here, two issues need to be handled: (i) improve the accuracy of primitive concept detec-

tion and (ii) incorporate knowledge of concept detection inaccuracy in ontology rules. To

solve issue (i), we need to have a concept confidence refinement mechanism that considers

dynamic correlations and spatiotemporal rules appropriately. To solve issue (ii), we need a

learning mechanism (e.g., statistical methods, datamining) that can extract the knowledge of

how accuracy of concept detection changes over time and context.

• How does the ontology rule adapt to uncertainty in spatiotemporal relations? This also needs

a learning mechanism that can extract the knowledge of how spatiotemporal relations may

change due to detection inaccuracy or changes in the context.

In this chapter we define a novel type of ontology rules called Adaptive Ontology rules

(AOR), that can adapt to dynamic correlations, primitive concept detection inaccuracy and uncer-

tainty in spatiotemporal relations. A novel methodology to discover AOR is proposed. The most

important challenge to design such a methodology is that it must allow concept detectors (Multime-

dia Data Mining (MDM) framework) and spatiotemporal ontology rules (Ontology framework) to

learn from each other over time, because the above mentioned issues are dependent on each other.

For example, dynamic correlation depends on concept detection accuracy, whereas concept detec-

tion accuracy depends on spatiotemporal rules and dynamic correlations. Figure 6.1 represents a

paradigm for MDM with ontologies, where traditional practices in MDM with ontologies either

enhance datamining results with incorporating ontological knowledge or ontologies are generated

using datamining. The proposed methodology shifts from these traditional paradigms and proposes

a new paradigm where both ontologies and MDM enhance each other to achieve the task.

We develop a new method for concept-based change point detection to dynamic correla-

tion among primitive concepts. To improve the accuracy of primitive concepts, we devise a Reward
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Figure 6.1: Different paradigm for Multimedia Data Mining (MDM) with ontologies, (a) MDM

learns from ontology, (b) Ontology is learned with help of MDM, (c) MDM and ontology both

learn from each other. We proposed a new paradigm shown in (c) which is more appealing than

existing paradigms as shown in (a) and (b).

and Punishment based mechanism for concept confidence refinement. We learn AOR using an

Support Vector Machine (SVM) based classifier over evolving confidence scores of primitive con-

cepts and their spatiotemporal relations within each interval to handle uncertainty and inaccuracy.

We considered nine different composite concepts to detect using the proposed method on a dataset

with real world scenarios and of considerable size. We compared our results with state-of-the-art

methods’ results. Experimental results for the detection of composite and primitive concepts shows

superior performance compared to existing ontology based concept detection methods.

In sum, our main research contributions in this chapter are:

• Defining new type of ontology rules called AOR.

• A novel methodology to discover AOR with new mutual learning paradigm of MDM with

ontologies.

• An algorithm for Concept-based change point detection.

• Adaptation of Reward and punishment based mechanism for primitive concept confidence

refinement.

• Developing SVM based classifier to learn AOR for composite concept detection.

• Achieved superior recall and precision for composite concept detection and accuracy of prim-

itive concepts compared to existing methods.

In rest of the chapter, Section 6.2 presents a survey of the related literature. We describe

the proposed methodology in Section 6.3. Experiments and results are presented in Section 6.4.
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6.2 Related work

Work on ontology based composite concept detection can be categorized based on the

level at which the ontology reasoning is done. Mainly reasoning can be done on schemas, concept

instances, spatiotemporal relations and description logic.

Reasoning over concepts at schema level: Many researchers have proposed integrated

systems where the ontology provides the conceptual view of the domain at the schema level, and

appropriate classifiers play the role of observers of the real world sources and classify an observed

entity or event in a concept of the ontology. Once the observations are classified, the ontology is ex-

ploited to provide an organized semantic annotation and establish links between concepts. In [154],

authors have defined an ontology to provide a structure to the LSCOM-lite lexicon, using pairwise

correlations between concepts and hierarchical relationships, to refine primitive concept detection

of SVM classifiers. In [128], authors proposed a method to annotate rare events / concepts based on

a set of rules that use low-level and middle-level features. Though this is a common methodology

for ontology based concept detection, important temporal relationships among primitive concepts

to detect composite concepts are not considered and neither is ontology refined based on learning

new context for composite concepts.

Reasoning over concept instances: Ontologies provide structural and content-based de-

scriptions of multimedia data. The inclusion of data instances in the ontology requires some mecha-

nism for the management of the ontology evolution. A solution was presented in [21], using generic

and domain specific descriptors, identifying visual prototypes as representative elements of visual

concepts and introducing mechanisms for their updating, as new instances of visual concepts are

added to the ontology; the prototypes are used to classify events and objects observed in video

sequences. In addition to the work in [21], [35] also includes instances of visual objects in the

ontology. They have used as descriptors qualitative attributes of perceptual properties like color

homogeneity, low-level perceptual features like component distribution, and spatial relations. Se-

mantic concepts have been derived from color clustering and reasoning. These approaches have the

limitation that computational complexity and decidability of reasoning are not guaranteed.

Reasoning over spatiotemporal relations among concepts: In an attempt of having richer

annotations, some researchers have explored the spatiotemporal relationships between concept oc-

currences are analyzed to provide a more precise and comprehensive description. In [15], the authors

defined a soccer ontology and applied temporal reasoning with temporal description logic to per-

form event annotation in soccer videos. Such methods have defined rules that are created by human
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experts. Thus, these approaches are not practical for defining a large set of rules. To overcome this

problem, [17] proposed an adaptation of the First Order Inductive Learner technique to learn rules

exploiting the knowledge embedded in the ontology. Concepts’ relationship of co-occurrence and

the temporal consistency of video data are used to improve the performance of individual concept

detectors. But, dynamic correlation, inaccuracy of primitive concept detection and uncertainty of

spatiotemporal relations are not considered.

Ontology evolution with reasoning over description logic: Ontology evolution is defined

as the timely adaptation of an ontology to changing requirements and consistent propagation of

changes to dependent artifacts [26]. Reasoning over concepts at schema level and spatiotemporal

relations assumes that ontology rules are static and once ontology is defined they do not change in

terms of concepts and their relationships. In cases of reasoning over concept instances, ontology

evolution is considered at certain level using evolution in low-level visual features. Thus it can be

more erroneous or difficult to interpret automatically. Some authors attempt to consider high-level

features as primitive concepts and apply description logic to evolve the ontology [26, 25]. These ap-

proaches also suffer from the problem of inaccurate concept detection and spatiotemporal relations.

Also, their focus is on adding unknown concepts and relations in ontology, not the detection of

composite concepts. Proposed ontology evolution at this stage does not attempt to evolve the ontol-

ogy rule by adding new primitive concepts but it attempts to evolve the rule in terms of confidence

values of concepts and relations.

In proposed work we try to combine advantages of reasoning over spatiotemporal re-

lations, concept instances and certain levels of ontology evolution to obtain potential results for

concept detection. In Table 6.2, we compare different aspects of the proposed method with exist-

ing relevant ontology based approaches for composite concept detection. Considered aspects are,

(A1) methods that have ontology rules which can adapt to learn detection inaccuracy and uncer-

tainty of spatiotemporal relations, (A2) methods considering precise concept confidence instead of

binary values for decision on concept existence, (A3) reasoning over concepts at schema level, (A4)

reasoning over concept instances, (A5) reasoning over spatiotemporal relations among concepts

and (A6) methods with consideration of dynamic correlations. We can observe that, the proposed

method incorporates almost all aspects that are not found together in existing methods.
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Table 6.2: Comparison of different aspects of existing ontology based approaches and proposed

approach. Here,Xis for presence, 7is for absence of aspect and X7for partial presence of aspect in

approach.

Method Adaptive Precise Concepts Concept Spatio- Dynamic

ontology concept at schema instances temporal concept

rule confidence level relations correlation

[128, 154] 7 7 X 7 7 7

[21, 35] 7 7 7 X 7 7

[15] 7 7 7 X X 7

[17] 7 7 7X 7 X 7

[26, 25] 7 7X 7X 7 7 7

[36, 104] 7 7X 7 7 7 7

Proposed X X 7X X X X

6.3 Proposed Methodology

We propose a methodology to discover AOR and develop a classifier for such AOR to de-

tect composite concepts. The proposed methodology assumes that the user has chosen the composite

concept X to detect, relevant videos for learning concept X and the initial ontology rule for detecting

X. The initial ontology rule is either defined by human experts or learnt by state-of-the-art methods

proposed in [17]. Ontology rule having n number of primitive concepts C = {C1,C2,. . .,Cn} and

k number of spatiotemporal relationships ST = {ST1,ST2,. . .,STk} to perform the composite con-

cept X detection task. As we identified the research gap with such ontology rules in Section 6.1, the

proposed methodology attempts to fill the gap.

As shown in Figure 6.2, the proposed methodology has two important tasks (1) Discovery

of AOR from each video and (2) Learning a classifier using AOR for composite concept detection.

While AOR are discovered for each of the videos, the classifier is learned over all of the discovered

AORs.
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Figure 6.2: Proposed framework for AOR discovery and learning.

6.3.1 AOR discovery

Following steps are applied on each videos to discover the AOR given the initial ontology

rules for composite concept.

Video processing and representation

In the proposed methodology we mainly consider ontology rules with high-level features

(e.g., “Airplane”, “Sky”) and their relationships for edited or unedited videos for composite concepts

like “Airplane take-off”, “Person enters the shop”, etc. Thus, it is suitable to extract the keyframes

every ∆t seconds and consider each keyframe as a processing unit for unedited videos. Segment-

ing edited videos into shots and taking a representative keyframe of each shot is considered as a

processing unit. Then, we extract low-level features like color, texture and shape from each of the

frames. Concept detectors use these low-level features to detect the presence of the high-level fea-

tures mentioned in ontology rules. But these binary classifiers, with some threshold value, which

only differentiate between presence and absence of concept are inaccurate for matching and mul-

timedia datamining purpose. As advocated in [23], video consisting of sequence of frames with

detected high-level features should be represented with their high-level features’ / concepts’ asso-

ciated posterior probabilities or confidence values to overcome such inaccuracies for multimedia
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datamining purpose. Thus, each keyframe t is represented with confidence value 0 < pi,t < 1,

where 1 ≤ i ≤ n of ith primitive concept from set C and correlation score 0 < γti,j < 1, where

1 ≤ i, j ≤ n of ith and jth primitive concepts’ spatiotemporal relation.

Concept-based change point detection

The initial ontology rule contains certain spatiotemporal relations which help identify

the composite concept. But, there is a need for a mechanism to discover temporal boundaries

corresponding to the spatiotemporal relations in a given video clip with such composite concepts.

As shown in “Airplane takeoff” example earlier, the time interval tas (airplane is in the sky) occurs

after the time interval tag (airplane is on the ground). To detect if “Airplane takeoff” occurs in

a given test video we need to first find the potential time interval tas and tag. Then, we need to

confirm that within these time intervals specified spatial relationships hold true. A simple approach

could be to identify the change points where the relationships among the primitive concepts occur.

But as we can see in Figure 6.3 the challenging issue is that detected primitive concepts (red, green

and blue lines) are inaccurate (and not matching with corresponding expected lines) and thus, so is

finding a change in such concepts’ relationships. We develop a mechanism to identify such time

intervals using given primitive concepts.

As shown in Figure 6.3, the problem can be considered as concept-based change point

detection. For the given example, change points can be T1 and T2 and their corresponding concep-

tual video segments are [S,T1], [T1,T2] and [T2,E]. Usually Cumulative Sum (CUSUM)

Chart [97] based or Hidden Markov Model (HMM) [73] based techniques are used for change point

detection or video segmentation in literature. HMM based models need large training data and it

could be computationally expensive. CUSUM based techniques do not utilize knowledge from a

given ontology rules to identify the required change points. Here, the problem is different from

traditional change point or video segmentation as we already know certain spatiotemporal relations

and are interested in identifying their corresponding time intervals. Also, detected primitive con-

cepts are not fully accurate. Thus, we devise a mechanism incorporating the knowledge of given

ontology rule and inherent inaccuracy of the detected primitive concepts to detect required change

points and in turn, their suitable time intervals.

Once we have probabilistic temporal video representation as described in Section 6.3.1

and an initial ontology rule, we proposed a sliding window based algorithm for concept-based

change point detection. Let us illustrate the strategy for the example of “Airplane take-off” con-

cept’s video. A window w with size K will consider K consecutive keyframes. Each keyframe is
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Figure 6.3: Example considering composite concept “Airplane take-off” video clip, 001 to 008

represents the key-frames from the video clip and their corresponding concept detection values

plotted as (red line for Airplane, green line for Ground, blue line for Sky) on time axis. Also,

expected detection of primitive concepts Airplane, Sky and Ground within time interval tas = [S,T1],

tasg=[T1,T2] and tag=[T2,End] are shown.

represented by a detection score of each of the primitive concepts. Spatiotemporal ontology rule

provides knowledge regarding the order of potential time intervals and existence of corresponding

primitive concepts within those time intervals. We utilize this knowledge to develop rule based

change point detection mechanism.

We have C = {C1,C2,. . .,Cn}, n number of primitive concepts and ST = {ST1,ST2,. . .,STk},
k number of spatiotemporal relations among concepts. Mapping these k spatiotemporal relations to

l time intervals, such that the change points T1 < T2 < T3 < . . . < Tl and their corresponding set

PC = {PC1,PC2,. . .,PC l} containing positive concept sets and set NC = {NC1,NC2,. . .,NC l}
containing negative concept sets for each corresponding time intervals. For each time interval z ∈ l

we have a set of positive concepts PCz that should occur in the interval z and a set of negative

concepts NCz that should not occur in the interval z. PCz has j number of concepts from primitive

concept set C and NCz has remaining n-j concepts. We convert confidence scores of concept i at

tth keyframe 0 < pi,t < 1 to binary value based on 0.5 as threshold, Pi,t = 0 if 0 < pi,t < 0.5

otherwise Pi,t = 1. Thus, at tth keyframe in zth interval we calculate value of PCz
t and NCz

t as
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below,

PCz
t =

j∏
i=1

Pi,t , NCz
t =

n∏
i=j+1

Pi,t (6.3.1)

Each time we slide the window w by 1 keyframe. Thus, we have maximum number of computation

windows | w |= Vlength−K, where Vlength = total number of keyframes in the video. There are K

consecutive keyframe sequences in each of wth windows and w.start represents keyframe number

of the first keyframe in the wth window. Considering PCWw,z as the total number of positive

instances of PCz
t in window w and NCWw,z as the total number of positive instances of NCz in

window w,

PCWw,z =
w.start+K∑
t=w.start

PCz
t , NCWw,z =

w.start+K∑
t=w.start

NCz
t (6.3.2)

The value of PCWw,z and NCWw,z help us determine conceptual change point for corresponding

time interval. We detect the change of time interval z to y as:

change(z, y) =

 1, if PCWw,z ≤ (K/2) or NCWw,z > (K/2)

0, otherwise

Here, change(z,y) = 1 indicates that within wth sliding window, time interval z ends and time interval

y begins. We can consider w.start+(K/2) keyframe as approximate change point. We can discover l

such change points in the video. As we detect change from the time interval z to y, the corresponding

concepts PCz and NCz change to PCy and NCy. Based on the relevant number of concepts

for PCy, the value of j changes. We can change the order of the concepts in the concept set

C every time we change the time interval to make sure the first j concepts belong to PCy and the

remaining n-j concepts belong to NCy. Also, window w will slide by 1 keyframe if change(z,y) = 0,

otherwise it will slide by (K/2) keyframes to begin processing for the next interval detection. Using

the proposed concept-based change point detection algorithm 2, we detect the suitable temporal

intervals for the ontology rule and devise a Reward and Punishment based refinement mechanism.

Reward and punishment based refinement

As shown in Figure 6.3 for “Airplane takeoff” concept, detected primitive concepts and

in turn their spatiotemporal relations are usually inaccurate and uncertain. If we train a classifier

for the composite concept on such imprecise data we may not get good detection accuracy. Thus,

it is important to reduce inaccuracy and uncertainty by refining the detected confidence scores of

primitive concepts and spatiotemporal relations, which in turn improves the accuracy of composite
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Algorithm 2 Concept-based change point detection
Input: C, ST, K, l, {PC1,PC2,. . .,PC l}, {NC1,NC2,. . .,NC l}
Output: Detected change-points

1: z = 1

2: while z ≤ l do

3: PCz = {C1,C2,. . .,Cj}
4: NCz = {Cj+1,Cj+2,. . .,Cn}
5: for each window w of size K do

6: for each keyframe t in window w do

7: PCz
t = (P1,t × P2,t × . . .× Pj,t).

8: NCz
t = (Pj+1,t × Pj+2,t × . . .× Pn,t)

9: PCWw,z = PCWw,z + PCz
t .

10: NCWw,z = NCWw,z + NCz
t .

11: end for

12: if PCWw,z < (K/2) or NCWw,z ≥ (K/2) then

13: change-point detected at (w.start+(K/2)) keyframe.

14: if z ̸= last change-point l then

15: process next temporal interval z = z + 1

16: get new set PCz = {C1,C2,. . .,Cj}
17: get new set NCz = {Cj+1,Cj+2,. . .,Cn}
18: end if

19: end if

20: end for

21: end while
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concept detection. Once we have detected concept-based change points correctly then we need a

mechanism to utilize the knowledge from the ontology rule, in terms of expected confidence scores

for primitive concepts over different time intervals and their dynamic correlations, for better re-

finement. Existing techniques [154] for primitive concepts’ confidence score refinement considers

static pairwise correlations, so they cannot be used for refinement considering dynamic correlations.

We are inspired by the reward and punishment mechanism employed in learning multi-sensor con-

fidence evolution [63]. Their work focuses on detection of event using multiple modalities, whereas

we are detecting a composite concept considering multiple primitive concepts. We have modified

the reward and punishment mechanism significantly in a suitable way for our purpose here.

The reward and punishment mechanism is centered around the idea that composite con-

cept detection considers decisions of relevant primitive concepts and their spatiotemporal relation-

ships over time. These decisions may provide similar evidences as expected in ontology rules or

contradictory to the expectation in ontology rules. For example, in “Airplane take-off” the initial

ontology rule expects Airplane and Ground concepts to occur over interval tag and do not expect

concept Sky to occur during this interval. However, due to imprecision of detectors or change in

context we get contradictory evidence in some of the keyframes within time interval tag. These may

lead to a decrease in confidence of detecting a composite concept. On the other hand, if expected

evidence is obtained then it may increase the confidence in detecting composite concepts. Thus,

considering the differences of opinions among participating primitive concepts and their spatiotem-

poral relations, we propose a reward and punishment mechanism to refine the confidence of (1)

primitive concepts and (2) their spatiotemporal correlations.

Reward and Punishment for primitive concepts: At tth keyframe in the image sequence

we get pi,t as concept Ci’s confidence score. We know that it could be imprecise and thus we need to

refine it using (a) Reward(pi,t, z) value obtained based on corresponding correlation with concepts

from PCz if Ci belongs to the positive concept set in time interval z and (b) Punish(pi,t, z) value

obtained based on corresponding correlation with concepts from NCz if concept Ci belongs to the

negative concept set in time interval z.

Reward or Punish(pi,t, z) =

 Reward(pi,t, z), if Ci ∈ PCz

Punish(pi,t, z), if Ci ∈ NCz

Now, how much we should reward or punish the corresponding concepts’ confidence score depends

on current confidence score pi,t and the observed correlation λz
i,m of the concept Ci with other

concepts Cm in corresponding time interval z. For the first video λz
i,m is considered 0.1 or 0.9 based

136



on the assumption that ideal situations occurs initially with

λz
i,m =

 0.9, if Ci, Cm ∈ PCz or Ci, Cm ∈ NCz

0.1, Otherwise

We add the Reward(pi,t, z) value and subtract the Punish(pi,t, z) value, to refine the concept

confidence score. Equation (6.3.3) considers logistic function to decide how much reward or pun-

ishment to assign for the concept Ci based on the correlations λz
i,m and confidence score pi,t.

Reward(pi,t, z) orPunish(pi,t, z) = −(1− pi,t) ∗ log(1/λz
i,m − 1) (6.3.3)

Thus the refined confidence score at the tth keyframe instance in z time interval for concept Ci is,

p′i,t = pi,t ±Reward(pi,t, z) orPunish(pi,t, z) (6.3.4)

After updating the primitive concepts’ confidence scores we now refine the correlation among con-

cepts using the following reward and punishment mechanism.

Reward and Punishment for spatiotemporal correlation among concepts: Spatiotemporal

correlation λz
i,m(t) of the concept Ci with other concepts Cm in corresponding time interval z at tth

keyframe instance also needs to be refined. For this, we use refined detection scores to approximate

current correlation λ′z
i,m based on a threshold value of 0.5,

λ′z
i,m =


1, if Ci, Cm ∈ PCz and PCz = 1

1, if Ci, Cm ∈ NCz and NCz = 1

0, if Cm ∈ NCz , Ci ∈ PCz

0, if Ci ∈ NCz , Cm ∈ PCz

We also utilize the previous correlation λz
i,m(t − 1) to enhance temporal influence over the spa-

tiotemporal co-existence correlation. Also, the weighting factors α and 1 − α are assigned to the

current and past correlations. We update λz
i,m(t) as follows,

λz
i,m(t) = (1− α) ∗ λz

i,m(t− 1) + α ∗ λ′z
i,m (6.3.5)

Thus, we keep the refined concept confidence score and spatiotemporal correlation based on knowl-

edge achieved from ontology rules. Using these refined confidence scores we derive AOR.

AOR Discovery

Main motivation behind discovering AOR is to have ontology rule with the knowledge of

dynamic correlation among primitive concepts, inaccuracy of primitive concept detectors and un-

certainty in spatiotemporal relations. Reward and punishment mechanism help to refine primitive
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concepts’ confidence scores and their correlations’ confidence scores. Though the refined confi-

dence scores will not be fully accurate yet they become more coherent with given ontology rule.

Thus, it will be reliable to apply statistical learning method on such coherent data to learn the pat-

terns (e.g., confidence evolution: how the confidence value for each concepts and their correlations

evolve over time?) from it. Once such knowledge is learned, we incorporate such knowledge into

initial ontology rule to derive an Adaptive Ontology Rule (AOR). Let us consider an example of

“Airplane take-off” concept. Total 50 training videos are processed and detection score for “Air-

plane,” “Sky,” and “Ground” concepts are obtained for each keyframe. Then, we detected interval

[S,T1], [T1,T2] and [T2,E] as explained in Section 6.3.1. If we consider concept Ci = “Sky” in

interval [S,T1] for a total of n videos, then average confidence value is calculated as,

AV G(Sky, [S, T1]) =

n∑
1

(
∑T1

t=S p′Sky,t/|[S, T1]|)
n

(6.3.6)

Similarly, average confidence values of each primitive concept and spatiotemporal relation within

each interval is calculated. These evolved confidence values for “Airplane take-off” are incorpo-

rated in AOR for each “Concepts’ / Relations”’ (C/R) as ¡ AVG(C/R, [S,T1]), AVG(C/R, [T1,T2]),

AVG(C/R, [T2,E]) ¿. Thus, the discovered AOR for “Airplane take-off” composite concept can be

written as,

Airplane(?a) < 0.76, 0.68, 0.60 > ∧Sky(?s :) < 0.46,

0.63, 0.84 > ∧Ground(?g :) < 0.87, 0.53, 0.36 > ∧

Spatial : Co− occurrence(?tas, ?a, ?s) < 0.43, 0.55, 0.79 > ∧

Spatial : Co− occurrence(?tag, ?a, ?g) < 0.79, 0.55, 0.50 > ∧

Spatial : Co− occurrence(?tsg, ?s, ?g) < 0.52, 0.58, 0.44 > ∧

Temporal : After(?tas, ?tag)

→ AirplaneIsTakingOff(?a)

Here, we illustrated the AOR discovery for our running example of “Airplane take-off”. It can be

applicable to any other composite concept with such spatiotemporal ontology rule. Also, along with

average values for confidence scores for C/R we consider parameter τ , a matching value interval

around average confidence value. The value of parameter τ is user given, which can be selected

either experimentally or with knowledge of initial accuracy of primitive concept detectors. They are
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useful while matching AOR for the test video. In the results section 6.4, we will see the effectiveness

of such AOR for composite concept detection.

6.3.2 Learning classifier

AOR discovered above can do composite concept detection on the test sample as will

be explained in 6.4.4. But it has limitations in terms of selecting a suitable threshold parameter

τ . Also, for cases where variations in confidence score within temporal intervals have different

patterns, consideration of just one average value may not be suitable. Thus, we develop an SVM

based classifier to overcome this limitation and learn AOR in a more robust way.

Each video is represented as a time series of concepts’ confidence values and spatiotem-

poral relations’ confidence values. Instead of considering complete length of a time series (which

is equal to total number of keyframes in video) for analysis purposes, we consider time series from

each time interval (identified as per ontology rule). This helps us analyze confidence evolution of

concepts and relations in each interval. It could be more effective as we see that confidence values

evolve differently in different intervals, we are attempting to detect composite concepts which have

complex changes in different primitive concepts within them. To our knowledge none of the existing

time-series datamining approaches consider such methodology for composite concept detection.

We consider concepts and their spatiotemporal relation’s confidence scores within each

time interval as Multi-variate Time Series (MTS). For different videos, length of temporal inter-

vals is different so that we have a variable length MTS. SVM usually handle fixed length patterns

only. Therefore, we consider extracting fixed length features from MTS and make them suitable for

the SVM classifier. There are many dimensionality reduction techniques, such as discrete fourier

transform, discrete wavelet transform, piecewise aggregate approximation etc. We choose Princi-

ple Component Analysis (PCA) because it captures correlations and spot redundancies better than

other techniques [78]. Our MTSs have high correlation and redundancy within them, thus PCA help

reduce the dimensionality and achieve fixed length feature vectors. For l number of time intervals

and PC number of principle components we will have l× PC number of features to train on SVM.

Selection of PC can be done using heuristics: First PC number of principle components whose

variances represent 95% of total variance are chosen [152]. To prevent the over-fitting problem we

consider the G-fold cross-validation procedure. We first divide training set into G subsets of equal

size. Sequentially one subset is tested using a classifier trained on the remaining G-1 subsets.
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6.4 Experiments and results

We demonstrate the results achieved at each stage of the methodology and try to provide

their pros and cons compared to existing methods. Experiment is performed to detect nine different

composite concepts: (1) Airplane takeoff from ground, (2) Airplane landing on the ground, (3) Per-

son entering into a store , (4) Swimmer diving into swimming pool, (5) Person bungee jumping, (6)

Airplane takeoff from ship (battleship) in the water, (7) Airplane landing into water, (8) Car getting

into the parking lot and (9) Car going out of the parking lot. Other related works [17] [154] have

considered a similar kind of composite concepts for detection purpose and experiments have been

done on a similar size of dataset. Also, we refine the detection of ten different primitive concepts:

Airplane, Daytime outdoor, Ground, Person, Sky, Store, Swimmer, Swimming pool, Under water,

Water scape.

6.4.1 Dataset description

We downloaded total 600 videos from www.youtube.com, where 98, 78, 65, 58, 72, 64,

50, 61, 54 videos are of 9 selected composite concepts respectively. Some of these videos are edited

manually to get selected composite concept out from long videos with other content. Keyframes are

extracted every 2 seconds from each video. Three visual features: edged direction histogram (EDH),

Gabor (GBR), and grid color moment (GCM) are extracted from each keyframes and Columbia374

trained SVM models for suitable concepts are applied as per the guideline in [151]. Ground truth of

temporal interval (keyframe number representing start and end of temporal interval corresponding

to spatiotemporal relation considered in initial ontology rule) is annotated by human assessor for

each video. Also each keyframe is annotated for the primitive concepts and each video is annotated

for containing composite concept.

Ontology data description: For each of the 9 composite concepts, initial spatiotemporal

ontology rules are defined considering available concepts from the Columbia374 [151] concept de-

tectors set. Here, we do not provide generic ontology or domain ontologies, but the spatiotemporal

ontology rules for detecting composite concepts. We have already defined rules for Airplane take-

off. For remaining concepts we directly give an AOR which contains confidence evolution along

with the original ontology rule.
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Table 6.3: Here, parameter values for temporal interval detection experiment are shown. We use A

= Airplane, S = Sky, G = Ground, P = Person, ST = Store, SW = Swimmer, SP = Swimming

pool, D = Daytime outdoor, U = Under water and W = Water scape as abbreviations. Parameter

PCW, NCW and K are explained in Section 6.3.1.

Concept Interval I Interval II Interval III K
PCW NCW PCW NCW PCW NCW

Airplane takeoff from ground {A,G} {S} {A,S,G} {} {A,S} {G} 6

Airplane takeoff from ship {A,SH} {W,S} {A,SH,W,S} {} {A,S} {W,SH} 6

Airplane landing on the ground {A,S} {G} {A,S,G} {} {A,G} {S} 6

Airplane landing into water {A,S} {W} {A,W,S} {} {A,W} {S} 5

Person entering into store {ST} {P} {ST,P} {} N/A N/A 8

Swimmer diving into the swimming pool {SW,SP} {U} {SW,U} {SP} N/A N/A 3

Person bungee jumping {P,D} {G,W} {P,G,W,D} {} N/A N/A 4

Car getting into the parking lot {PA} {C} {PA,C} {} N/A N/A 5

Car going out of the parking lot {PA,C} {} {PA} {C} N/A N/A 5

6.4.2 Change point detection results

In Table 6.3, we show selected parameters for each of the composite concepts’ temporal

interval detection experiment. Parameter PCW and NCW is selected based on the spatiotemporal

relation among primitive concepts in the given ontology rule. Parameter K is tuned according to

length of different temporal intervals for different composite concepts. We use larger value of K

for composite concepts with longer temporal intervals. In ground truth, keyframes are annotated

manually by human assessor wherever change point occurs according to spatiotemporal relation

mentioned in the ontology rule. We compare obtained result of our temporal interval detection

algorithm using precision and recall as evaluation parameters. Precision is defined as proportion

of correctly estimated changes found among the detected change-points. Recall is defined as pro-

portion of actual change-points that have been correctly estimated. We used a ±(K/2) keyframe

tolerance for deciding whether a change-point has been correctly estimated. Size (K/2) is chosen

because in our algorithm we are considering (K/2)th keyframe within wth match window as change

point. In Table 6.4, we show results in terms of precision, recall and average length of each temporal

interval. We could not compare our results with other methods because, as per our knowledge there

does not exist any method which attempts to detect concept-based spatiotemporal change points.
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Table 6.4: Results of our algorithm to detect concept-based spatiotemporal change point for com-

posite concepts. Average length of each temporal interval is shown as number of keyframes (kfs)

along with precision and recall values obtained for different composite concepts.

Concept Average Length of Interval Precision Recall

I (kfs) II (kfs) III (kfs)

Airplane takeoff from ground 33 6 12 0.84 0.73

Airplane takeoff from ship 26 5 9 0.69 0.61

Airplane landing on the ground 10 14 24 0.76 0.6

Airplane landing into water 7 15 30 0.52 0.64

Person entering into store 27 9 N/A 0.88 0.82

Swimmer diving into the swimming pool 5 8 N/A 0.72 0.85

Person bungee jumping 6 9 N/A 0.83 0.75

Car getting into the parking lot 15 5 N/A 0.70 0.66

Car going out of the parking lot 17 4 N/A 0.79 0.65

6.4.3 Reward and punishment based concept confidence refinement results

Five different composite concepts, containing some combination of primitive concepts

from the pool of ten primitive concepts mentioned above are taken. First, we have detected these

primitive concepts in their relevant composite concept videos using columbia374 [151] concept

detectors as mentioned in Section 6.4.1. As we know that detection accuracy of these detectors is

not very good, we use reward and punishment based strategy to exploit the dynamic spatiotemporal

correlations from ontology rules to refine concept detection scores. We evaluate these detection

scores on ground truth annotated by human annotators for each keyframe for primitive concepts in

their corresponding composite concept videos.

We consider keyframes from the ground truth for each of the primitive concept and check

how many of them have an initial confidence score of above 0.5. As mentioned earlier in section

6.1 confidence score of 0.5 is considered as threshold value to decide existence (above 0.5) or

non-existence (below 0.5) of concept. Table 6.5 shows the number of keyframes in the ground

truth for each of the primitive concept. Precision and recall are two central criteria to evaluate the

performance of concept detection. As we are refining the confidence score of primitive concepts,
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Table 6.5: Number of keyframes for each primitive concepts in ground truth.

Concept Kfs Concept Kfs Concept Kfs Concept Kfs

Airplane 8864 Car 3216 Daytime outdoor 1178 Ground 5155

Person 1767 Swimmer 853 Swimming pool 349 Store 2490

Ship 985 Sky 3726 Under water 514 Water scape 668

Figure 6.4: Comparing initial accuracy of detecting primitive concepts’ vs. accuracy achieved after

applying reward and punishment strategy on primitive concepts’ confidence scores.

we are interested to see the effect on accuracy. Here, accuracy will be (positively detected instances

/ all positive instances), which is the same as recall.

As shown in Figure 6.4, after applying reward and punishment on confidence score ac-

cording to spatiotemporal ontology rule, we achieved much higher accuracy for primitive concepts.

We can observe that accuracy of weak detectors is increased much more than some of the initially

strong detectors. Reward and punishment strategy boosts weak detectors’ confidence score with

help from strong detectors’ confidence score. The major reason for a large increment in weak de-

tectors’ accuracy is because all instances with initial confidence scores below 0.5 are enhanced and

became positive instances. While for strong detectors, instances already with confidence score over

0.5 are positive instances but that do not reflect in an increased accuracy.
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6.4.4 AOR discovery and composite concept detection results

We have already described AOR discovered for “Airplane take-off” in Section 6.3.1. Table

6.6 has AORs discovered for the remaining eight composite concepts. Once we have obtained

AOR, there are two different ways to do composite concept detection. In one method we derive

AOR for test sample and match the obtained average confidence values for each of the concepts

and spatiotemporal relations within each temporal interval considering τ parameter for matching.

For example, if the average confidence value for concept Airplane in interval [S,T1] is 0.76 as per

discovered AOR and τ parameter is 0.2 then a matching value interval around the average confidence

value is [0.56, 0.96]. And a test sample with corresponding average confidence value falling within

such an interval is considered to be matching with AOR. For every matching confidence value, we

give value 1 and for every non-matching confidence value we give value 0. Then, a fraction of total

number of such confidence values matching and total matched values is considered as composite

concepts’ confidence score.

Another method for composite concept detection uses SVM based classification. Here,

we refine confidence values using reward and punishment for test video and then extract the PCA

features and supply, for testing, to the trained SVM classifier. For “Airplane Takeoff” and “Airplane

landing”, we consider a combined dataset for training. Whereas, for “Takeoff” classifier “Landing”

is considered a negative training sample and vice versa. Thus, such a classifier will have high

discrimination power among such confusing composite concepts. Similarly, “Person entering into

store”, “Swimmer diving in swimming pool” and “Bungee Jumping” are considered together. The

main reason for this combination is the number of time intervals given in their ontology rule. The

one with similar number of intervals will have similar number of features to train and test on SVM

classifiers. Results of both the proposed methods are compared with other state-of-the-art methods

for composite concept detection. They are discussed as follows.

Result comparison

We considered a total of 5 different methods’ results to compare: (1) Binary concept

detection based method (BIN CD), (2) Precise concept detection based method (PRE CD), (3)

FOILS based method (FOILS CD), (4) AOR based concept detection (AOR CD) and (5) SVM

based method using AOR (SVM AOR CD). Among these approaches the first three methods gen-

eralize most of the existing ontology based composite concept detection approaches and the last two

methods are our methods.
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Table 6.6: Discovered AOR for 8 composite concepts.

Airplane takeoff from ship

Airplane(?a:) < 0.62,0.70,0.58 > ∧ Ship(?sh:) < 0.57,0.48,0.01 > ∧
Sky(?s:) < 0.38, 0.73,0.89 > ∧ Water scape(?w:) < 0.67,0.63,0.21 > ∧

Spatial : Co-occurrence(?tas, ?a, ?s) < 0.47, 0.71, 0.82 > ∧
Spatial : Co-occurrence(?tash, ?a, ?sh) < 0.59, 0.53, 0.12 > ∧
Spatial : Co-occurrence(?tsw, ?s, ?w) < 0.41, 0.65, 0.40 > ∧

Temporal: Before(?tash,?tas)∧ Overlap(?tash,?tsw) ∧ After(?tas,?tsw)

→ Airplane Is Taking Off From Ship(?a)

Airplane landing on the ground

Airplane(?a:) < 0.56,0.71,0.78 > ∧ Sky(?s:) < 0.76,0.61,0.54 >

∧ Ground(?g:) < 0.47,0.83,0.86 > ∧
Spatial : Co-occurrence(?tas, ?a, ?s) < 0.72, 0.56, 0.49 > ∧
Spatial : Co-occurrence(?tag, ?a, ?g) < 0.43, 0.51, 0.80 > ∧
Spatial : Co-occurrence(?tsg, ?s, ?g) < 0.32, 0.79, 0.74 > ∧

Temporal: After(?tag,?tas) ∧ After(?tsg,?tas)

→ Airplane Is Landing(?a)

Airplane landing into water

Airplane(?a:) < 0.73,0.71,0.78 > ∧ Sky(?s:) < 0.88,0.81,0.75 >

∧ Water scape(?w:) < 0.51,0.79,0.92 > ∧
Spatial : Co-occurrence(?tas, ?a, ?s) < 0.78, 0.76, 0.77 > ∧

Spatial : Co-occurrence(?taw, ?a, ?w) < 0.54, 0.72, 0.80 > ∧
Spatial : Co-occurrence(?tsw, ?s, ?w) < 0.63, 0.80, 0.87 > ∧

Temporal: Before(?tas,?taw) ∧ Overlap(?tas,?tsw) ∧ After(?taw,?tsw)

→ Airplane Is Landing On Water(?a)

Person entering in store

Store(?st:) < 0.73,0.75 > ∧ Person(?p:) < 0.34,0.67 >

Spatial : Co-occurrence(?tpst, ?p, ?st) < 0.44, 0.71 > ∧
Temporal: After(?tpst,?st)

→ Person Into Store(?p)

Swimmer diving in swimming-pool

Swimmer(?sw:) < 0.48,0.51 > ∧ Swimming pool(?sp:) < 0.40,0.17 >

∧ Under water(?u:)< 0.13,0.45 >

Spatial : Co-occurrence(?tswsp, ?sw, ?sp) < 0.42, 0.21 > ∧
Spatial : Co-occurrence(?tswu, ?sw, ?u) < 0.28, 0.50 > ∧

Temporal: After(?tswu,?tswsp)

→ Swimmer Dive In Swimming pool(?sw)

Person bungee jumping

Person(?p:) < 0.78,0.67 > ∧ Daytime outdoor(?d:) < 0.83,0.70 >

∧ Water scape(?w:)< 0.39,0.61 > ∧ Ground(?g:)< 0.41,0.65 >

Spatial : Co-occurrence(?tpd, ?p, ?d) < 0.79, 0.66 > ∧
Spatial : Co-occurrence(?twg, ?w, ?g) < 0.34, 0.62 > ∧

Spatial : Co-occurrence(?tpdwg, ?tpd, ?twg) < 0.53, 0.64 > ∧
Temporal: Before(?tpd,?tpdwg)

→ Person Bungee Jumping(?p)

Car getting into the parking lot

Car(?c:) < 0.43,0.82 > ∧ Parking lot(?pa:) < 0.72,0.57 >

Spatial : Co-occurrence(?tcpa, ?c, ?pa) < 0.47, 0.68 > ∧
Temporal: After(?tcpa,?pa)

→ Car Get Into Parking(?c)

Car getting out of the parking lot

Car(?c:) < 0.79,0.17 > ∧ Parking lot(?pa:) < 0.51,0.64 >

Spatial : Co-occurrence(?tcpa, ?c, ?pa) < 0.62, 0.20 > ∧
Temporal: After(?pa,?tcpa)

→ Car Getting Out Parking(?c)
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Figure 6.5: Precision values.
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Figure 6.6: Recall values.

BIN CD: Most of the ontology rule based methods derive a spatiotemporal rule and then

assume the binary match on test data. We convert initial confidence scores of primitive concepts

based on 0.5 threshold into a binary representation without applying our proposed method to do

composite concept detection.

PRE CD: Here, we do not apply the reward and punishment mechanism to refine the

primitive concepts’ confidence value and directly after temporal interval detection we derive average

values as shown in AORs and do concept detection.

FOILS CD: For the concept “Airplane takeoff”, “Airplane landing” and “Person entering

in store” precision and recall results given in [17] are compared. As these methods use FOILS

algorithm we call it FOILS CD method for result comparison. For other composite concepts like

“bungee jumping”, “swimmer diving in swimming pool” etc. there does not exist ontology based

composite concept detection using such a method. In Figure 6.5 and Figure 6.6, we can see the

results in terms of precision and recall value comparison respectively. The average of recall is

0.65 for all 5 approaches while average of precision is 0.79 for all 5 approaches. But, when we

look at average of individual approaches it is visible that the SVM AOR CD approach with 0.91

(average of recall) and 0.88 (average of precision) has performs better than all other approaches.

The performance of BIN CD with 0.30 (average of recall) and 0.68 (average of precision) is as

poor as PRE CD with 0.39 (average of recall) and 0.70 (average of precision). Poor performance

of BIN CD is obvious due to inaccurate concept detectors and uncertain spatiotemporal relations.
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Poor performance of PRE CD compared to AOR CD 0.82 (average of recall) and 0.79 (average of

precision) conveys the point that consideration of confidence value without Reward and Punishment

based refinement do not give good result. Simple AOR developed using initial confidence scores’

average values cannot perform well. The reason behind better performance of SVM AOR CD

over AOR CD can be that SVM has better discrimination power among positive and negative test

cases than the average value based approach. FOILS CD shows a more comparable performance

with SVM AOR CD than AOR CD but when we look at the dataset on which high performance is

achieved we realize that it has very short video clips with no noisy data. Their performance was

degraded drastically on real world video clips with noisy data. Our approach is more intuitive and

easy to implement. It achieves overall superior performance than other approaches.

In this chapter, we proposed a novel methodology considering a new paradigm of mutual

learning between multimedia datamining and ontology for defining and discovering AOR. These

newly defined AOR enable ontology rules to incorporate dynamic correlations with the help from

our Concept-based change point detection algorithm. Higher accuracy for primitive concept detec-

tion is achieved with a Reward and punishment based mechanism for confidence refinement. SVM

based classifiers with AOR learning gives superior results for composite concept detection than

other existing methods.
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Chapter 7

Conclusion and future work

Application of datamining on multimedia data is still a relatively unexplored area. In this

thesis we study the important challenging issues specific to Multimedia Data Mining applications,

(i) inaccurate concept representation, (ii) dynamic temporal correlation and (iii) consideration of

multi-modality. Among this issues, inaccurate concept representation has been never discussed

before by the Multimedia Data Mining research community. To the best of our knowledge we are

the first to provide some insights on this issue. Though the temporal correlations or multi-modality

has been individually dealt with in some of the earlier research, the combination of these three issue

makes it exceedingly difficult for datamining techniques to obtain effective outcomes for multimedia

applications.

Thus, we proposed the Probabilistic Temporal Multimodal(PTM) datamining framework

which deals effectively with issues of incorporation of semantic knowledge, scalability, inaccu-

rate concept representation, sparsity, dynamic temporal correlations and consideration of multi-

modality. The utility of proposed framework is demonstrated in the chapters 4, 5 and 6.

Chapter 4 presents the proposed novel framework for performing sequence pattern min-

ing on probabilistic temporal multimedia event data. We have designed a novel sequence pattern

mining algorithm called PIE-Miner with event cluster level support counting mechanism to discover

more meaningful sequence patterns from PTM data. The discovered frequent event sequences with

associated confidence values were utilized for individual behavior analysis in AMI group meeting

dataset with notion of weak and strong patterns. The existing approaches faces sparsity problem to

find sufficient number of frequent event patterns.

In chapter 5, we proposed “Semantically Near Duplicate Video Clip detection” by mak-

ing use of the PTM data clustering and re-ranking the top results to increase the content level as

well as semantic level novelty. A novel PTM data video representation, multivariate time-series of
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confidence values of relevant concepts, is proposed. And its utility is demonstrated with discovery

of CBNDVC clusters using transformation technique to make application of incremental conceptual

clustering scalable for unequal length PTM data. Obtained results show higher precision and recall

from semantic perspective.

Composite concept detection is effectively done using PTM data classification framework

described in chapter 6. We proposed a novel paradigm of mutual learning between multimedia

datamining and ontology for discovering Adaptive Ontology Rule (AOR). This new type of ontology

rule AOR incorporate dynamic correlation among primitive concepts with the help from proposed

Concept-based change point detection algorithm. Higher accuracy for primitive concept detection

is achieved with a Reward and punishment based mechanism for confidence refinement. SVM

based classifiers with AOR learning gives superior results for composite concept detection than

other existing composite concept detection methods.

Table 7.1: Evaluation of overall PTM datamining framework

PTM datamin-

ing application

Non-PTM

method

Performance of

non-PTM method

PTM method Performance of

PTM method

Sequence pattern

mining

Binarized

event se-

quence

Average event

sequence length

2 and total data

utilization 15%

PTM event se-

quence

Average event se-

quence length 12

and total data uti-

lization 100%

Clustering BIN CBNDVC Average Rand In-

dex 0.49

CBNDVC Average Rand In-

dex 0.64

Classification BIN CD Average Recall

0.30 and Average

Precision 0.65

SVM AOR CD Average Recall

0.90 and Average

Precision 0.88

Superior performance of each of the proposed multimedia application has been obtained

when compared with the state-of-the-art methods. Also, the evaluation of overall PTM datamining

framework can be seen in the Table 7.1. We have explicitly compared the results of proposed

PTM datamining framework with non-PTM framework to get insight into utility of proposed PTM-

datamining framework.

Thus, we can summarize the thesis contributions shown in the Figure 7.1 as follows,

• Introduction of “inaccurate concept representation” to multimedia datamining research.
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Figure 7.1: Contributions of proposed PTM datamining framework.

• Proposed Probabilistic Temporal Multimodal(PTM) datamining framework for handling is-

sue of incorporation of semantic knowledge, scalability, inaccurate concept representation,

sparsity, dynamic temporal correlations and consideration of multi-modality.

• Demonstrated effective application of PTM datamining for three important multimedia appli-

cations,

– Discovery of accurate frequent event patterns for behavior analysis.

– Concept-based near-duplicate video clip detection based novelty re-ranking of web video

search results.

– Adaptive ontology rule based composite concept detection.

• During the development of above PTM datamining applications, we developed the following

novel data representations, algorithms, methods/mechanism, application and paradigm,
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– Novel data representations: (1) PTM data interval based event sequences and (2) PTM

data time-series.

– Novel algorithms: (1) Probabilistic Interval based Event Miner (PIE-Miner) and (2)

Concept-based change point detection.

– Novel methods/mechanism: (1) τ -containment mechanism for cluster based support

counting, (2) Reward and punishment mechanism for dynamic correlation, (3) PTM data

to categorical data transformation mechanism for scalability and (4) Mutual learning

paradigm of MDM with ontologies.

– Novel application: (1) Concept-based near-duplicate video detection based novelty re-

ranking.

7.1 Future research directions

In the proposed PTM datamining framework, we have incorporated notion of uncertainty

associated with semantic concepts. In future, it might be interesting to extend the proposed PTM

datamining framework with incorporation of uncertainty associated with temporal interval of event

occurrence. There could be some multimedia application for which critical timing information

matters the most and thus representing temporal interval accurately is essential. Also, the PTM

framework can be expanded considering spatial location of the primitive concepts within images

(key-frames) which can become useful to enhance certain level of semantic similarity comparison

when the location of concept appearing may have effect on its semantic meaning.

In Chapter 4, we have designed a novel PTM data sequence pattern mining algorithm

called PIE-Miner to discover more meaningful sequence patterns. As the discovered patterns are

novel in terms of their associated confidence value, it opens the potential research direction for de-

veloping inference techniques on such frequent event patterns based on the application requirement.

For example, we utilized the notion of weak and strong patterns for behavior analysis. Similarly,

for some automatic event annotation application or indexing application it may be interesting to

develop different notion to utilize such novel patterns. It might also be possible to incorporate some

probabilistic inference on such frequent probabilistic event patterns to analyze them.

We represented video as a time-series of semantic concept confidence values in chap-

ter 5. Such representation can be helpful for any research requiring semantic similarity for video

datamining. This representation can also be used for audio data with consideration of audio concept

detectors’ confidence values. In case of images, it might be possible to convert spatial location or-
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der as temporal order and represent images with similar time-series of detected semantic concepts

confidence value to do semantic similarity based image datamining.

Proposed work of Adaptive Ontology Rule (AOR) discovery in chapter 6 can also be

useful for automatic concept annotation by adding new spatiotemporal rules automatically based

on inaccuracy and uncertainty of primitive concepts and their correlations. For example, if AOR

for “airplane take-off” detected that “ground” concept in test video is not justifying the available

ontology rule with spatiotemporal correlation among “airplane”, “ground” and “sky”. But, the oc-

currences of concept “airplane” and “sky” is in coherence with AOR for “airplane take-off”. Thus,

there is possibility that “airplane take-off” event has occurred. But, now AOR should automatically

investigate based on the generic ontology structure, alternative to primitive concept “ground” that

can make “airplane take-off” event possible? Then, it should predict and investigate the possibility

of event being “airplane might be taking-off from warship in water” and learn AOR for new com-

posite concepts automatically. Proposed PTM data classification can also be applied for composite

concept detection in audio or image data with modality specific consideration. For example, im-

age data may have only spatial relation but not the temporal relation and audio data may have only

temporal relation but not the spatial relations.

Another future direction of proposed research work can be to consider domain specific

applications. Proposed framework for PTM datamining has, (1) PTM data classification, (2) PTM

data clustering and (3) PTM data sequence pattern mining modules. In this thesis, we have demon-

strated utility of them for specific application and on data-set from specific domain (e.g., PTM data

clustering and classification on web video data-set and PTM data sequence pattern mining on group

meeting data). But, it can be easily applied to different multimedia domains and many interesting

applications can be developed using PTM datamining framework. We will illustrate the possibility

of some of the potential applications from various domains using PTM datamining framework. We

will mainly focus on following three domains,

• Surveillance domain: Important requirement for surveillance domain is to either identify

some suspicious activity for security purpose or to improve operation/efficiency of business

for revenue purpose by analyzing surveillance data. Surveillance can be done in many dif-

ferent places. For example, government premises like prison or entertainment places like

casinos, shopping malls and important buildings or places like parking lot and roads or high-

ways.
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• Broadcasting domain: Important requirement for broadcasting domain is to discover some

interestingness or hidden knowledge that can be utilized for revenue generation or quality

enhancement purposes. For example, sports video, films, news etc.

• Online multimedia collections: Important requirement for online media collection is to dis-

cover interesting knowledge or hidden properties of that can be utilized to engage viewers

and deploy revenue generating applications based on viewers.

Application of PTM data sequence pattern mining based behavior analysis on various domains

Surveillance domain: It can be possible to identify suspicious activity considering any

non-frequent event patterns as suspicious and generating the alarm in such security environment

like prison etc. In case of some frequent event patterns of customer in casinos, malls or shops like

environment, it can be categorized as VIP customer or trouble making customer or normal visitor

etc. Broadcasting domain: It can be interesting to identify frequent event patterns from sports game

and analyze the strategy by players or teams. Similarly, frequent event pattern sequences can be

useful for deciding the interestingness of particular program. Online multimedia collections: Based

on frequent event patterns content may be indexed and provided in search results or personalized

for viewers. Thus, frequent event patterns discovered with PTM datamining can be useful in many

application domains.

Application of PTM data clustering based CBNDVC detection on various domains

Surveillance domain: It could be very helpful to browse through semantically novel clus-

ters generated for such huge amount of surveillance data. Broadcasting domain: In broadcasting

domain such semantically novel clusters could be very helpful for daily work. For example, if ed-

itor or director wants to make trailer or highlights of the program then he can see browse through

different semantic cluster of video shots and choose semantically novel shots for making trailer

or highlight of the program. Such process can also be automated for video summarization or au-

tomatic trailer/highlight generation using some rules. Online media collection: We have already

demonstrated the application as novelty re-ranking for semantic-level and content-level diversity in

top results.
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Application of PTM data classification based composite concept detection on various domains

Surveillance domain: In case, ontological rules for suspicious event is known then it can

be detected with proposed PTM data classification framework. Broadcasting domain and Online

media collection: Both will need such composite concept detection for indexing, search and retrieval

purposes.

Potential application integrating proposed PTM datamining framework

One of the potential application of proposed PTM datamining framework can be develop-

ment of “Semantic level multi-modal search engine”. Though, search engines can be much complex

and needs many more component than the proposed classification, clustering or sequence pattern

mining. Also, multimedia analytics applications utilizes integration among classification, clustering

and sequence pattern mining. For example, intelligent surveillance systems on international air-

ports cannot just rely on the captured visual data and priori models of suspicious behavior detection

but they should utilized (1) semantic level communication between humans and surveillance sys-

tem with help of semantic indexing and query generation engine, (2) PTM data classification and

sequence mining for more accurate suspicious events detection with consideration of user knowl-

edge and feedback, (3) utilize PTM data classification techniques to learn complex spatiotemporal

patterns which are difficult to learn just with low-level feature, (4) effective HCI mechanism to

collaborate between surveillance system and humans to take immediate action and (5) integration

of context based on location, time and knowledge from different sources (humans, ontology etc.)

with raw captured data is useful for effectively analyzing real world scenarios by extending PTM

classification framework.

Thus, we can surmise that there are a large number of multimedia applications that can

benefit from the proposed PTM datamining framework.
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