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Abstract

This thesis proposes a new model called the Augmented Linear Inverted Pendulum

(ALIP) for bipedal walking. In this model, an augmented function F is added to the

dynamic equation of the Linear Inverted Pendulum. The role of the augmented function

is to improve the inverted pendulum dynamics by indirectly incorporating the dynamics

of the arms, legs, heads, etc into the dynamics equation. The inverted pendulum dynam-

ics can be easily adjusted or modified by changing the key parameters of the augmented

function. Genetic algorithm is used to find the optimal value of the key parameters of

the augmented function. Our objective is to design a walking pattern that has the highest

stability margin possible.

The proposed ALIP model was used to generate off-line walking pattern for biped robot

in 2D and 3D walking. Simulation results show that the proposed ALIP model is able

to generate highly stable walking patterns. The walking patterns generated using the

proposed approach is more stable than that generated using the LIPM model and GCIPM

(an improved version of the LIPM model) model.

The ankle control strategy was proposed to improve stability margin. In this strategy,

the ankle joint is controlled such that the ZMP stays as close to the middle point of
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SUMMARY ix

the supporting foot as possible. This is obtained by adjusting the ankle pitch and roll

angles based on the ground reaction force information so that the difference between the

ground reaction force at the heel and toe is minimized. Simulation results show that the

proposed method is effective in increasing the stability margin of the bipedal walking

robot.

The proposed ALIP model was also successfully applied to generate online walking

motion in sagittal plane. The online walking algorithm comprises of a proposed function

called the Foot Placement Indicator (FPI). The Foot Placement Indicator (FPI) is an

important part of the online walking algorithm. The role of the FPI is to decide the next

walking steps (how far and how fast to take the next step) during the walking process

based on the current states of the biped robot. Simulation results show that the obtained

online walking motion is highly stable with large stability margin. In addition, the

proposed algorithm is able to compensate for fairly large external disturbances affecting

the walking robot.
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7.5 Kp as a function of xi and ẋi (part 2) . . . . . . . . . . . . . . . . . . . 124
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Chapter 1

Introduction

1.1 Bipedal Locomotion

1.1.1 Definition

Bipedal locomotion is a form of movement where an object (human beings, animals,

machines) moves by means of its two rear/lower limbs, or legs. An object that usually

moves in a bipedal manner is usually known as biped.

There are four types of movements in bipedal locomotion including: Standing, Walking,

Running and Jumping (or Hopping).

• Standing: Staying still on both legs. For human beings and animals the knees are

locked while standing to minimized active control efforts. However, for humanoid

robots the knee joints are usually powered in order to keep this standing posture.
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• Walking: a process where the two feet exchanges support. One foot is in front of

another with at least one foot on the ground at any time.

• Running: a process of feet exchange where one foot in front of another and there are

periods where both feet are off the ground.

• Jumping/Hopping: a process where both legs are contracted and extended to generate

reaction force that moves the object in a desired direction.

Among the four types of movements, probably walking is the most commonly used one.

In this thesis we only focus on the walking motion. Therefore, from now on, bipedal

locomotion is also referred to as bipedal walking.

1.1.2 Why Study Bipedal Locomotion?

Bipedal locomotion has been a topic of great interest of researchers for many years.

There are plenty of reasons why we should study bipedal locomotion. Probably the

key reason is that human beings have always dreamed of building machines that are

similar to themselves (human beings are also bipedal). Since the ancient times, many

people tried to design human-like machines. In 1206, Al-Jazari created hand washing

automata with automatic humanoid servants [68], and an elephant clock incorporating

an automatic humanoid mahout striking a cymbal on the half-hour. In 1495, Leonardo

Da Vinci designed a humanoid automaton that looks like an armored knight, known as

Leonardo’s robot.
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Another reason to study bipedal robots is because of their ability to navigate in rugged

terrains where wheeled robots can not operate. Bipedal locomotion probably takes the

smallest space compared to other types of robots. They can access areas where other

robots can not such as staircases, stepping stones, or very narrow paths. Ideally, they

can operate in a complex environment where human beings live and work. In addition,

bipedal robots can be used in hostile or hazardous places where human beings can not

work in.

Studying bipedal locomotion also gives us insights on how human beings walk [67]. In

the past, when bipedal robots were not available, studies on human walking was done

solely by biomechanics researchers and these research were carried out on human sub-

jects. Nowadays, when supporting technologies for building bipedal robots is well de-

veloped and many advanced bipedal platforms have been built we can conduct research

on human walking using these bipedal platforms. Although there are still differences

in physical structure between bipedal robots and human beings, the basic walking gaits

are similar. Doing research on bipedal robots one can test out different walking behav-

iors and scenarios where can not be done on human beings because of potential danger.

Better understanding of bipedal locomotion would assist us in developing better leg

prostheses for disabled people.

1.1.3 Challenges

Bipedal walking is a challenging control problem because it is a highly non-linear dy-

namics system [76]. Dealing with non-linear dynamics is always a difficult problem
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because it is very complicated and usually very hard to find analytical solution to these

problems. Bipedal walking is also a multi-variable and naturally unstable dynamics.

Another characteristic that makes bipedal walking difficult is limited foot-ground contact[61].

This is a distinctive nature that makes it different from the control of robotics arms.

Since the feet is not fixed to the ground as in robotic arms, it is likely that the supporting

foot/feet would rotate over and cause the robot to fall if too much torque is applied at

the ankle. This means that only limited control action can be applied during walking

motion. The motion of other body parts such as arms, head and trunk must be prop-

erly planned so that they would not caused the robot to deviate from desired trajectories

which may lead to a fall.

Bipedal walking robot is a discretely changing dynamics system. During a walking

cycle, the exchange in feet/foot support causes a change in robot’s dynamics. Due to the

non-continuous property of the dynamics equations, it is challenging to apply traditional

techniques to stabilize the system.

Stability is a critical issue of bipedal walking but there is still no clear and unified crite-

rion of stability so far. One of the commonly used stability criterions in bipedal walking

is the Zero-moment-point [83, 82, 84]. However, this method also has its own disadvan-

tages as it can not guarantee stability in some special cases.
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1.2 Motivation

Bipedal walking research has been around for over thirty years. Many research works

have been introduced to tackle the challenges of bipedal walking. These works can

be classified into the following methods: Model-based approach, ZMP-based approach,

Learning-based approach, Central Pattern Generator approach, and Angular Momentum-

based approach.

Among these approaches, model-based approach seems to be the most comprehensive

and straightforward approach to bipedal gait planning. Model-based approach is an

approach whereby dynamics of the physical robot is modeled using mathematical repre-

sentation. The mathematical representation is also referred to as the dynamic equation

of the system. In order to analyze the system dynamics, it is usually required to solve the

dynamics equation for interested parameters. Once the solution is known, it is straight-

forward to plan the walking gait for bipedal robots. However, due to the high level

of complexity and non-linearity of bipedal walking dynamics, it’s almost impossible

to find analytical solution for the complete dynamics bipedal model. Therefore, many

researchers choose to simplify the dynamics model so that analytical solution can be

obtained.

There are two ways to simplify the dynamics equation. The first way is to linearize

the dynamics equation of complex model at equilibrium points. The advantage of this

method is that the analytical solution can be obtained without having to change the orig-

inal complex dynamic model. However, this method only works well in a limited range
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around the equilibrium point. When the state of the system is far from the equilibrium

point, the solution is not effective anymore. This is not desirable because it reduces

the flexibility of the algorithm. The second way to simplify the dynamics equation is

to use simpler dynamics models. This is done by neglecting the inertia properties, joint

friction, actuator dynamics of some parts of the robot such as legs or arms. One good ex-

ample of this method is the Linear Inverted Pendulum model [38, 37, 40]. In this model,

the dynamics of bipedal walking robot is modeled as one point mass attached to the tip

of the inverted pendulum. The dynamics of arms and legs are ignored in this model.

The mathematical representation of this dynamic model is very simple and it is easy and

straightforward to find analytical solution for the dynamic equation. The advantage of

this model is that analytical solution can be obtained easily and this solution is a general

solution applicable to any state of the robot. However, since this model is too simple, it

may not be easy to control the robot to follow the desired reference trajectory generated

using this approach if the difference between this model and the actual physical robot is

too big.

In view of the above analysis, the Model-based approach would be an excellent and

promising approach if one could find a simple dynamic model yet be able to take into

account (directly or indirectly) more complete dynamic behaviors. If such a model is

available then the gait planning task is simple and straightforward. Moreover, various

dynamic behaviors can be derived and implemented easily based on this model. There-

fore, in this thesis, we are strongly interested in finding such a model.
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1.3 Objective and Scope

The objective of this thesis is to construct a comprehensive and effective method of

walking gait synthesis for bipedal robot. The walking gait obtained by the proposed

method must allow the robot to achieve a stable 3D dynamic walking and fulfill the

following walking requirements:

• It should be applicable for real-time implementation. • It should be applicable to

bipeds of different mass and length parameters. • It should be able to compensate for

large external disturbances.

The scope of this thesis is restricted to bipedal walking on level ground along a straight

path. The external disturbance caused by the unevenness of the terrain will not be con-

sidered. Instead, an external force is applied on the robot’s body to test the effectiveness

and robustness of the algorithm.

1.4 Approach

This section briefly explains how the motivation presented in the last section can be

realized and implemented. It is desirable to have a dynamic model not too complex so

that analytical solution can be obtained and at the same time not too simple so that some

important dynamics will not be ignored.

In bipedal walking literature, the well known Linear Inverted Pendulum model proposed

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



1.4 Approach 8

by Kajita et al.[39, 34, 37] is a simple and effective model to describe bipedal walking

motion. The dynamic equation of this model can be solved analytically without using

any linearization technique. This model provides useful dynamic insights which are vital

for planning bipedal walking gaits. However, since the Linear Inverted Pendulum model

is a very simplified model of bipedal walking robot, the desired walking gait generated

using this model may not be easy to realize if the difference between the dynamic model

and the actual robot is significant.

In this thesis, a new model called the Augmented Linear Inverted Pendulum (ALIP) [11]

is proposed. An augmented function F is added to the dynamic equation of the Linear

Inverted Pendulum. The role of the augmented function is to improve the inverted pen-

dulum dynamics such that the disturbance caused by the un-modeled dynamics (legs

and arms, etc.) is minimized. The augmented function has two key parameters whose

values are changeable. When the key parameters change, the dynamic equation changes

accordingly. Genetic algorithm [17] is used to find the optimal value of the key param-

eters. The objective of our proposed method is to achieve the highest stability margin

for bipedal walking. It is noted that full dynamics of the robot is considered when com-

puting the stability margin during the optimization process. Therefore, it is reasonable

to say that the proposed ALIP model is closer to the actual physical model compared to

the Linear Inverted Pendulum model because dynamics of arms and legs are indirectly

considered through the use of the augmented function.

The proposed ALIP model is applied to plan the offline walking gait for humanoid robot.

Both 2D and 3D walking are considered. To further enhance stability, the ankle control
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strategy is introduced. In this strategy, the ankle joints are used to adjust the feet angles

to make sure the foot/feet is in full contact with the ground.

The proposed ALIP model is also successfully applied to generate online walking gaits.

In this thesis, the online walking algorithm is based on the centre of mass (COM) ve-

locity information. This is because velocity is one of the most important factors deter-

mining the stability of bipedal walking. Indeed, the magnitude of the COM velocity

would determine how far and how fast the swing leg must swing in order for the robot

to stay balanced and maintain desired walking speed. When the step length is constant,

the higher the walking speed, the smaller the step time (the swing leg must swing faster)

and vice versa. When the step time is constant, the higher the walking speed, the larger

the step length the robot must take to capture balance. To test the effectiveness of the

algorithm, disturbance force is exerted on the robot during the walking process.

1.5 Targeted Biped Robot

This section describes the bipedal robot used to test our proposed method. The robot’s

name is HUBIRO (see Figure 1.1). The robot’s height is 1.7m, total weight 86.59kg.

HUBIRO has a total of 28 degrees of freedom (DOF) of which 6 DOFs at each leg (Hip

Pitch, Hip Roll, Hip Yaw, Knee Pitch, Ankle Pitch, Ankle Roll), 6 DOFs at each arm,

2 DOFs at the waist and 2 DOFs at the neck. The biped has a rotary angular position

sensor at each DOF. In the simulation model, it is assumed that the robot has a single

axis gyroscope fixed to the body which can provide the body posture information (body
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Figure 1.1: Picture of HUBIRO

Figure 1.2: Basic dimensions of HUBIRO
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Table 1.1: Specifications of HUBIRO.
Description Value
Total Mass 86.59 kg
Body Mass 54.49kg
Thigh Mass 4.69kg
Shank Mass 8.63kg
Foot Mass 2.73kg
Body’s Principle Moment of Inertia
x-axis 0.89kgm2

y-axis 0.46kgm2

z-axis 1.25kgm2

Thigh’s Principle Moment of Inertia
x-axis 0.19kgm2

y-axis 0.02kgm2

z-axis 0.19kgm2

Shank’s Principle Moment of Inertia
x-axis 0.95kgm2

y-axis 0.03kgm2

z-axis 0.95kgm2

Foot’s Principle Moment of Inertia
x-axis 0.02kgm2

y-axis 0.01kgm2

z-axis 0.02kgm2

Hip Spacing 0.23m
Thigh Length 0.42m
Shank Length 0.42m
Ankle Height 0.11m
Foot Length 0.34m
Foot Width 0.144m

pitch, roll, yaw angles). Each foot has four force sensors at the bottom to measure the

ground reaction forces on the robot. The joints of the robot are driven by electrical

brushless DC motors.

The basic dimensions of the robot are shown in Figure 1.2. The specifications of the

robot is presented in Table 1.1.
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1.6 Simulation Tools

In this thesis, two dynamic simulation software are used. The first one is Yobotics

Simulation Construction Set or Yobotics in short (http:www.yobotics.com) developed

by Yobotics Inc. and the second one is Webots developed by Cyberbotics Ltd. Yobotics

is used to simulate 2D walking motion while Webots is used to simulate 3D walking.

The reason for this is because Yobotics supports 2D simulation (Webots doesn’t) and

Webots is better compared to Yobotics in terms of 3D simulation.

1.6.1 Yobotics

The Yobotics Simulation Construction Set is a full-featured software package for easily

and quickly creating simulations of robots, bio-mechanical systems, and mechanical de-

vices. The Simulation Construction Set is easy to use, yet powerful for creating complex

simulations of robotic devices. Arbitrary control can be added to these devices as each

degree of freedom automatically has a simulated actuator associated with it.

The dynamic interaction between the biped and the terrain is established by specifying

four ground contact points (two at the heal and two at the toe) beneath each of the

feet. The ground contacts are modeled using three orthogonal spring-damper pairs. If

a contact point is below the terrain surface, the contact model will be activated and

appropriate contact force will be generated based on the parameters and the correct

deflection of the ground contact model.
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One good point about Yobotics is that it allows user to simulate dynamics in 2D space.

The dynamics is activated on the Sagittal plane and freezed on the Frontal plane. In this

thesis, we will use Yobotics to simulate 2D walking. This is recommendable because

doing simulation in 2D is much simpler compared to 3D simulation yet it still help us to

test the effectiveness of the algorithm. We only move on to 3D simulation when the 2D

one works well as expected. Doing this can save us a lot of time.

1.6.2 Webots

Webots is a professional mobile robot simulation software package. It offers a rapid

prototyping environment, that allows the user to create 3D virtual worlds with physics

properties such as mass, joints, friction coefficients, etc. The user can add simple pas-

sive objects or active objects called mobile robots. These robots can have different

locomotion schemes (wheeled robots, legged robots, or flying robots) [85].

Webots simulation engine uses virtual time, thus making it possible to run a simulation

often much faster than real robots. Webots utilizes the Open Dynamics Engine (ODE),

a powerful tool, to perform accurate physical simulation.

A great advantage of Webots is that it allows users to specify the bounding objects for

collision detection. The contact surface of the foot/feet can be represented by a bounding

box. Therefore, the contact between the foot and the ground is a surface contact, a more

realistic contact compared to the four-point-contact used in Yobotics.

In this thesis, we will use Webots for 3D simulation tasks.
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1.7 Contributions of this PhD thesis

The contributions of this thesis are:

(1) The proposal of a new dynamic model for bipedal walking called the Augmented

Linear Inverted Pendulum (ALIP).

(2) The application of the proposed dynamic model ALIP for generating reference

walking patterns for bipedal robots. The reference walking patterns are applied in

both 2D and 3D walking experiments.

(3) The analysis of the effect of the speed and mass of the swing leg on the stability

of bipedal walking robots.

(4) The demonstration of the generality of the proposed walking algorithm when dif-

ferent specifications of the bipedal robots are used.

(5) The development of an online walking algorithm that can adapt well with the

changes in walking speed and external disturbances.

(6) The demonstration of the effectiveness of the ankle strategy used to increase sta-

bility for bipedal walking.

1.8 Thesis Outline

Chapter two presents the literature review of the bipedal walking research which is

related to the work in this thesis. The bipedal walking research are classified into groups
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based on the approaches used.

Chapter three describes in details some simple dynamic models of bipedal walking

such as Inverted Pendulum, Linear Inverted Pendulum, Gravity-compensated Inverted

Pendulum. These models are closely related to the proposed approach in this thesis.

Advantages and disadvantages of these approaches will also be discussed.

Chapter four presents in details the formulation of the proposed model called the Aug-

mented Linear Inverted Pendulum (ALIP). The proposal of the ALIP model is one of

the most important contributions in this thesis. This model is used to generate walking

gaits for humanoid robots.

Chapter five shows how the proposed model ALIP can be applied for generating 2D

offline walking patterns. In this chapter, the computation of the Zero-moment-point

(ZMP), an important stability criterion in bipedal walking, is also presented. In addition,

the application of the genetic algorithm to find optimal value of key parameters is also

mentioned in details. To improve stability margin, the ankle pitch strategy was adopted.

Finally, some simulation results are reported to prove the effectiveness of the proposed

method.

Chapter six describes the application of the proposed ALIP model in frontal plane and

the extension to 3D walking gait generation. This chapter also illustrates how one could

utilize the ankle roll joints to control the ZMP so that better stability can be achieved.

Chapter seven illustrates the application of the proposed ALIP model to generate online

walking gaits in sagittal plane. The Foot Placement Indicator (FPI), an important part
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of the algorithm, is presented in details. The effectiveness of the proposed algorithm is

proved through two walking simulations (with and without external disturbances).

Chapter eight concludes this thesis and proposes some possible directions for future

studies.
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Chapter 2

Literature Review

Bipedal walking research has been around for decades. Inspired by the success of build-

ing autonomous bipedal walking machines, more and more walking algorithms have

been developed and improved by researchers around the globe. Bipedal walking algo-

rithms can be classified into the following methods:

• Model-based Method

• ZMP-based Method

• Learning-based Method

• Central Pattern Generator Method

• Passive Dynamics Walking Method

• Angular-Momentum-based Method
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In the following subsections, brief reviews of each method will be presented.

2.1 Model-based Method

In this approach, mathematical model of the biped robot is extracted from its intrinsic

dynamic characteristics. Due to the complexity and non-linearity of biped models, most

of the dynamic equations of these models do not have analytical solutions. Therefore,

many researchers tend to simplify biped models to simpler ones such as inverted pen-

dulum, linear inverted pendulum, double-pendulum model, etc. which are massless-leg

models neglecting inertia properties of the legs, joint friction, link flexibility, actuator

dynamics, etc. Whereas others try to linearize dynamic equations of the complex models

at equilibrium points so that analytical solutions could be achieved.

Kajita et al. [40] derived an ideal massless-leg biped model called the Linear Inverted

Pendulum Mode (LIPM). In this model, the center of gravity (COG) of the body moves

horizontally and the horizontal motion of the COG can be expressed by a simple linear

differential equation. They introduced the term ”potential energy conserving orbit” to

describe this class of trajectories. The obtained dynamic equation has analytical solution

which can be used directly for walking gait planning. To make the walking motion

robust, they proposed attitude control using local feedback and adaptive support leg

exchange. This approach was successfully applied to bipedal robots walking on rugged

terrain [37], and 3D walking pattern generation [34, 31].

Park et al. [56] improved the LIPM by introducing the term ”Gravity-Compensated
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Inverted Pendulum Mode” (GCIPM). Their approach takes into account the gravity of

the swing leg to generate biped locomotion patterns. The walking trajectory generated

by this approach is more stable than the one generated by the LIPM method.

Suzuki et al. [77] proposed a trajectory planning method which incorporates two kinds

of inverted pendulum which are the linear inverted pendulum (LIPM) and the normal

inverted pendulum with constant leg length (IPM-C). The switching mode is necessary

to switch the control between LIPM and IPM-C. The simulation shows that this method

is more efficient compared to the method using only one type of inverted pendulum.

The great advantage of these inverted pendulum-based methods is that the dynamic

model is simple hence it is easy to get analytical solution. It is quite easy and straight-

forward to design the trajectory once the analytical solution is obtained. However, since

the model is too simple it may cause problem when controlling the real biped due to the

significant difference between the model and the real robot. Additional control strategies

are usually adopted to make the walking possible.

When leg’s inertia is not negligible, it needs to be included in the biped model. Acrobot

model [74, 51] is one of the famous models that includes the leg’s inertia. It is a double

pendulum model without actuation between the ground and the base link. The Acrobot

dynamics are complex enough to yield a rich source of nonlinear control problem, yet

simple enough to permit a complete mathematical analysis.

When more dynamics of the robot such as leg’s inertia, joint friction, actuator, etc are

taken into account, the overall dynamic equations become very nonlinear and compli-
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cated. To deal with this problem, linearization approach is usually adopted to simplify

these dynamic equations.

Miura et al. [47] built a 3D walking biped that had three links and three actuated degrees

of freedom: one at each of the hip roll joints and one for fore and aft motion of the legs.

The ankle joint were limp. In order to design walking controller, the authors proposed

a linearized dynamic model with the assumption that the motions about the roll, pitch

and yaw axes were independent. And the yaw motion was assumed negligible. The

state feedback control laws were formulated after selecting a set of feasible trajectories

for the joints. The control laws generate compensating inputs for the reference control

inputs and ensured the convergence of the actual trajectories to the desired trajectories.

One disadvantage of this method is that the motion space had to be constrained to a

smaller one because the linearized model is only valid in a limited range.

2.2 ZMP-based Method

The concept of ZMP (Zero Moment Point) was first introduced by Vukobratovic et al.

[83] in 1970. ZMP is a stability index of dynamic walking for biped robot. It is defined

as the location on the ground where the total moment generated from the ground reaction

forces has zero moment about two axes that lie in the plane of the ground. Takanishi et

al. [80], Hirai et al. [22], Fujimoto et al. [16] proposed methods of walking pattern syn-

thesis based on the ZMP, and demonstrate walking motion with real robots. Basically,

these approaches first design a desired ZMP trajectory, then derive the torso motion to
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realize the desired ZMP trajectory. However, since the change of the ZMP due to the

torso motion is limited, not all desired ZMP trajectories will be realizable.

Huang et al. [24] proposed a method to plan a walking pattern consisting of a foot

trajectory and a hip trajectory. The ZMP was used as an index to evaluate stability of

the biped robot. The complete foot trajectory was generated using a third-order spline

interpolation which taken into account the foot constraints. Similarly, the hip trajectory

was generated using a third-order spline function. Some of the key parameters of the

hip trajectory was allowed to vary in a certain ranges. The optimal values of these

parameters were optimized in such a way that the resulting trajectory has the highest

stability margin.

Yang et al. [87, 88] proposed a method for bipedal walking gait generation based on

a Truncated Fourier Series Formulation with coefficients tuned by Genetic Algorithm.

This method allows the adjustment of the stride-frequency, step-length real-time. The

ZMP is used as a stability criterion to ensure the feasibility of the planned walking gaits.

Shih et al. [70] proposed an approach optimizing the biped walking trajectory that can

be used as a reference trajectory for control. The biped is modeled as a kinematic chain

of 13 links connected by 12 joints. The inverse kinematics of the biped is derived for the

specified positions of the body and feet. The aim is to optimize the location of the ZMP.

Specifically, they minimize the deviation between the ZMP and the center of shape of

the supporting area by considering the position of the body as free variables.

Park et al. [57] proposed a method to reduce the motion range of the trunk by generating
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a designed trajectory of the ZMP. The trajectory is determined by a fuzzy logic based on

the leg trajectories that are arbitrarily selected. The resulting ZMP trajectory is similar

to human’s one and the ZMP continuously moves forward. The proposed approach is

simulated on a 7-DOF biped robot. Simulation results show that the proposed ZMP

trajectory increases the stability of the locomotion and thus resulting in reduction of

motion range of the trunk.

Kajita et al. [33] presented a method called Preview Control of Zero-Moment-Point.

In this method, the dynamics of a biped robot was modeled as a running cart on a

table. With this model, the ZMP was easily treated. They adopted the preview control

theory that uses the future references to design the ZMP tracking servo controller. It was

shown that a preview controller can be used to compensate the ZMP error caused by the

difference between a simple model and the precise multibody model.

ZMP is widely used as a criterion for dynamic stability of biped robot by many re-

searchers. The good points about ZMP-based method are that it is a well defined

methodology to prove stability and easy to implement in a real robot. However, it also

has some disadvantages. Firstly, there is a need to be able to modify on-line the desired

trajectory and this is not simple at all. Furthermore, the use of ZMP requires that the

robot has feet (foot/feet is a physical structure that provides at least 2 contact points

(2D) or 3 contact points (3D) between the robot’s leg and the ground). In addition, this

criterion is not applicable in the flight phases during the running motion.
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2.3 Learning-based Method

Learning approach is usually used when little knowledge of the system is known or

dynamic model of the system is too complicated. It is also used to modify nominal

behaviors generated based on a simplified model.

Miller [45] designed a learning system using neural networks for a biped that was ca-

pable of learning the side-to-side and front-to-back motion. With the help of several

control strategies, the neural networks learn to provide feedforward control to the joints.

The biped had a slow walking gait after training.

Mori et al. [49] presented a reinforcement learning (RL) method for a central pattern

generator (CPG) controller. In this study, they proposed a learning scheme for a CPG

controller called a CPG actor-critic model, whose learning algorithm is based on a policy

gradient method [42]. They applied their RL method to autonomous acquisition of biped

locomotion by a biped robot simulator. Although the simulation was successful, a lot

of training episodes were still required. Therefore, it is difficult to apply the method

directly to real robots; it is necessary to develop a more efficient algorithm which enables

the robot to learn faster.

Chew [6, 5] used Q-learning (one type of reinforcement learning) algorithm to learn the

key parameters of the swing leg control task so that speed control can be achieved. In

order to reduce the complexity of the walking system, the divide-and-conquer approach

was used. 3D bipedal walking was broken down into motion controls in the transverse,

sagittal and frontal planes. Each of these was then considered individually. By dividing
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the walking task into subtasks, the learning time can be significantly reduced. In addi-

tion, the local speed control based on the stance ankle was adopted to supplement the

control algorithm. To globally control the walking speed, swing leg control strategies

were used. This was done by learning the appropriate swing time and step length so that

stable walking at desired speeds can be achieved. In this study, the CMAC (Cerebel-

lar Model Articulation Controller) was used as a function approximator for Q-learning.

By applying the mentioned control algorithm, 3D walking motion was successfully ob-

tained in flat and uneven terrains.

Benbrahim and Franklin [3] proposed a control algorithm using a ”melting pot”. The

melting pot is a central controller that uses the experience of other peripheral controller

in order to learn an average control policy. The central controller was pre-trained to

provide nominal trajectories to the joints. The peripheral controllers intervene only

when they consider that the controller’s action violates their individual control policies.

The central controller and some of the peripheral controllers in this study use adaptive

CMAC (Cerebellar Model Articulation Controller) neural networks. The desired walk-

ing pattern is defined by a set of constraints. The robot learns to execute movements that

satisfy all of these constraints. No dynamic model of the robot system was required in

the implementation. The proposed approach has one disadvantage is that it is required to

pre-train the central controller using the nominal joint trajectories. This task is usually

not easily obtained.

Morimoto et al.[50] proposed a model-based reinforcement learning algorithm for biped

walking in which the robot learns to appropriately place the swing leg. This decision
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is based on a learned model of the Poincare map of the periodic walking pattern. The

model maps from a state at the middle of a step and foot placement to a state at next

middle of a step. They also modified the desired walking cycle frequency based on

online measurements. To estimate appropriate walking cycle timing they used phase

oscillators.

The advantage of learning-based methods is that there is no need to derive and solve

nonlinear, complicated dynamic equations of the robot systems. However, since not

much dynamic information is available, the learning agents must spend a huge amount

of trials and errors before achieving desired behaviors. A large memory is then required

to store all the states. Therefore, the effectiveness of the method depends on how to

decompose the control task and at which level of the control learning is applied. It is

also dependent very much on the performance index chosen.

2.4 Central Pattern Generator

Biological bipeds such as birds, humans have excellent ability to walk with high sta-

bility, adaptability, and agility. Therefore, many researchers have been trying to ex-

plore biological bipeds in order to extract good algorithms applicable to bipedal robots

[20, 19, 21, 66, 28, 65, 14]. Basically, the normal procedure comprises of the following

steps. First, the behaviors of the biological system are observed and analyzed. Then,

mathematical models and hypotheses for the behaviors are proposed. Lastly, those mod-

els are verified through simulations and/or experiments.
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Grillner [69] found from experiments on cats that the signal controlling the muscles

to perform coordinated walking motion was generated by the spinal cord. Based on

this finding, he hypothesized a Central Pattern Generator (CPG) which is a network of

neurons in the spinal cord.

The concept of CPG has inspired many researchers to adopt it for bipedal locomotion

[79, 78, 64, 53, 52]. Most of the studies use a system of coupled nonlinear equations

to generate signals for the joint trajectories of bipeds. Taga et al. [79] proposed a new

principle of sensorimotor control of legged locomotion in an unpredictable environment

on the basis of neurophysiological knowledge and a theory of nonlinear dynamics. Sta-

ble and flexible locomotion is realized as a global limit cycle generated by a global

entrainment between the rhythmic activities of a nervous system composed of coupled

neural oscillators and the rhythmic movements of a musculo-skeletal system. Coordi-

nated movements were generated by dynamic interactions among the nervous system,

the musculo-skeletal system and the environment.

Huang et al. [25, 26, 27] studied the coordination between neural oscillators in CPG

and applied to bipedal walking gait planning. By using the entrainment property of the

neural oscillator, they developed a method which uses the difference between oscillator’s

output and desired output to adjust the inner states of neural oscillators. A CPG structure

with coordination between neural oscillators was proposed to control the bipedal robot.

The robot can walk stably and robustly even under external disturbing forces acting on

the robot during walking.

Nakanishi et al. [52] introduced a framework for learning biped locomotion using dy-
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namical movement primitives based on non-linear oscillators. Their ultimate objective

is to establish a design principle of a controller in order to achieve natural human-like

locomotion. They suggested dynamical movement primitives as a central pattern gener-

ator (CPG) of a biped robot. Demonstrated trajectories were learned through movement

primitives by locally weighted regression, and the frequency of the learned trajectories

were adjusted automatically by a novel frequency adaptation algorithm based on phase

resetting and entrainment of coupled oscillators.

The advantages of CPG approach are that it doesn’t require exact knowledge of the

robot’s model, the CPG has the ability to recover smoothly after a perturbation. In

addition, no complicated control input is required and the non-linear oscillators on which

the CPG is based are simple and local elements. However, the CPG approach also has

drawbacks. Firstly, there are many parameters to be tuned. Another disadvantage is that

it is difficult to find a set of parameters that enable entrainment of the overall system.

Furthermore, it is difficult to change the behavior or add more behaviors.

2.5 Passive Dynamics Walking

Passive dynamics was first introduced by Tad McGeer [43, 44] in 1990. It was inspired

by a bipedal toy that had the ability of walking down a slope without using any actuator

system. The toy rocked left and right in a periodic motion. When a leg is lifted in the

process, it could swing freely forward and arrived in a forward position to support the

toy for the next half period of the motion. If the slope is within a certain range, a stable
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limit cycle behavior can be achieved. When this happens, the work done on the toy by

the gravitational force equals the energy loss by the biped.

Passive walking has one interesting advantage is that it can achieve a minimum energy

gait without active control. However, it also has some disadvantages like the sensitivity

to parameter variations [43], such as, the mass distribution, joint friction, etc. During

physical implementation, iterative tuning is usually required before a successful imple-

mentation can be achieved. Moreover, it is still not clear how it can be implemented for

other terrains like level ground, rugged surfaces, etc.

More and more research on passive dynamics walking are being done nowadays [41,

48, 55]. In the future, there should be more studies on how to utilize the advantages

of passive dynamics to reduce energy consumption of actuated bipedal robots. It will

be very effective since all biped robots operating on different terrains must have actua-

tors. Then, the question is how to minimize the energy consumption. Utilizing passive

dynamics in combination with other approaches may be a good choice.

2.6 Angular-Momentum-based Method

In recent years, some researchers turn their attention to angular momentum with the

hope to find a more generalized stability criterion for bipedal walking [18, 32, 59, 60, 1].

Goswami et al. [18] proposed a new method to recapture balance of bipedal robots

based on a fundamental principle of mechanics which states that the resultant external
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moment on a system, computed at its CoM, is equal to the rate of change of its centroidal

angular momentum ḢG. A bipedal robot is rotationally stable if the external forces and

moments sum up to a zero centroidal moment or the angular momentum of the system

is conserved (ḢG = 0). Based on this idea, he proposed three control strategies to regain

balance which are (1) enlarging the support polygon, (2) moving the centre of gravity G

and (3) changing the ground reaction force (GRF) direction.

Kajita et al. [32] proposed a new control method called Resolved Momentum Control in

which the total linear/angular momenta is first specified and then the whole body motion

of the humanoid robot was derived to obtain that desired momenta. The whole body

motion was calculated from a given momentum reference by using a pseudo-inverse

of the inertia matrix. Using this method, they could generate the kicking and walking

motions which were successfully tested on the actual humanoid robot HRP-2.

Motivated by biomechanical studies on human walking, Popovic et al. [59] hypothe-

sized that spin angular momentum in human walking is highly regulated by the central

nervous system (~S ≈ 0), where ~S is the total angular momentum. They tested this hy-

pothesis by computing the total spin angular momentum and the rotational effects of

that momentum using kinematic gait data measured from a human test subject and a

morphologically realistic human model. Based on this hypothesis, they derived the non-

linear coupling between the ground reaction force, center of mass position (CM) and

center of pressure location (CP). Employing this relationship, they proposed a method

to rapidly generate biologically realistic CP and CM reference trajectories.

Angular-Momentum-based approaches seems to work fairly well. However, walking
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with Minimized Spin Angular Momentum is not a necessary condition for stable walk-

ing. In fact, one can walk while freely changing his angular momentum by thrashing

his upper body’s mass around. Minimizing spin angular momentum is also not a suffi-

cient condition for stable walking, as a biped robot may fall over while maintaining an

angular momentum of zero.

2.7 Summary

In the above subsections, research on dynamic bipedal walking was classified into dif-

ferent groups. The classification was done based on the ways researchers solve gait

planning problem. Researchers either relied on the dynamic model of the biped (Model-

based), or learning and intuition (Learning-based), or stability criterions (Angular-momentum-

based and Zero-moment-based) to design walking gait for biped.

The Model-based approach would be a comprehensive and excellent approach if one

could find a not too complex model yet still be able to represent nonlinear dynamic

behaviors. If such a model is available then the gait planning task is quite simple and

straightforward. Moreover, various dynamic behaviors can be derived easily from the

model. The problem is that a complete model is usually too complex to analyze and it’s

not easy to get exact model information such as mass distribution and inertia terms.

The ZMP-based approach is a well defined methodology and easy to implement in a

real robot. However, it also has disadvantages. This method requires that the biped

robot must have feet. This is quite limited because there are robots without feet but still
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can walk stably. Furthermore, this approach can not be applied to running or jumping

motions.

The Learning-based approach is interesting because stable walking motion can be ob-

tained without the need to derive and solve complex dynamic equations. However, in-

tuition is still required to speed up the learning rates. Also, choosing of performance

measure for a good walking behavior can be tricky sometimes. Besides, learning ap-

proach can become intractable if there are too many learning agents.

The Central Pattern Generator (CPG) approach is good at generating periodic walking

patterns. However, there is no good reason why the walking gait must be periodical.

There are times when human walking is not periodic such as walking over obstacles or

walking on random stepping stones. The disadvantage of this method is that there are

many parameters to be tuned and it is difficult to find a set of parameters that enable

entrainment of the overall system.

The Angular Momentum-based method can be a good method to generate human-like

walking gaits (in terms of angular momentum regulation). However, it is not quite clear

how minimizing angular momentum related with stable walking. This question need

to be explored further. The good thing about minimizing angular momentum is that it

gives a reserve in spin angular momentum which can be utilized to help recover from a

push or other disturbances [62].
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Chapter 3

Simple Models of Bipedal Walking

This chapter presents the analysis of some simple models of bipedal walking including

the Linear Inverted Pendulum Model (LIPM) and the Gravity-compensated Inverted

Pendulum Model (GCIPM). The advantages and disadvantages of these methods will

be discussed. In addition, in this chapter, the effect of the swing leg’s dynamics on the

robot’s dynamics is studied. Results show that when the swing leg’s mass is big enough

(say more than 10% of the body mass), the effect of the swing leg’s dynamics can not be

ignored. Or when the swing leg’s speed is high, the swing leg’s dynamics has significant

effect on the whole robot dynamics.
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3.1 Linear Inverted Pendulum Model (LIPM)

The Linear Inverted Pendulum Model (LIPM) was adopted by researchers [13, 36, 35,

15, 63, 11, 37, 38, 40, 30] to design bipedal walking gaits. In this model, the total mass

of the robot is assumed to be concentrated at one point called the Center of Mass (CoM).

The CoM’s height is assumed to follow a linear path by controlling the knee joint. The

legs are assumed massless. For level ground walking, the height is kept constant. The

length of the beam representing the leg is variable. The Linear Inverted Pendulum Model

is shown as in Fig. 3.1. Assuming that the ankle torque is zero, the dynamic equation of

the model is as follows:

ẍ =
g
zo

x (3.1)

where x is the horizontal coordinate of the point mass from the vertical plane that passes

through the ankle joint; z0 is the body’s constant height; g is the gravitational constant

(see Fig. 3.1).

If the initial horizontal position and velocity xi and ẋi are given, the trajectory of the

body’s CoM is presented by an analytical solution of (3.1) as follows:

x(t) = xi cosh(t/Tc)+Tcẋi sinh(t/Tc) (3.2)

ẋ(t) = (xi/Tc)sinh(t/Tc)+ ẋi cosh(t/Tc) (3.3)

where Tc =
√

z0/g.
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Figure 3.1: The linear inverted pendulum model of humanoid robot. m is the total mass
of robot, τ is the ankle torque

Equations (3.2) and (3.3) are usually used to to generate nominal trajectory for the

robot’s body. The swing foot placement can then be planned according to the nomi-

nal body’s trajectory.

Multiplying both sides of (3.1) by ẋ and integrating it, we have

1
2

ẋ2− g
2z0

x2 = constant = E (3.4)

Kajita et al. [39] called E the orbital energy. The first term of (3.4) represents kinetic

energy per unit mass of the body’s CG. The second term represents the potential energy

caused by the force field (gravity in this case) that subjects a force of (g/z0)x on the unit

mass located at x.

Fig. 3.2 shows the phase plane trajectories characterized by the value of the orbital
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Figure 3.2: Phase plane trajectories.

energy. When E > 0, the body swings from the minus side to the plus side of the x axis

or vice versa. E = 0 represents the equilibrium state (x = 0, ẋ = 0), the state swinging

toward the equilibrium point, or the state swinging out from that point. When E < 0, the

body never passes the point x = 0. In this case, the orbits have a turning point at which

the velocity of the body is zero.

3.2 Gravity-compensated Inverted Pendulum Model

In the Linear Inverted Pendulum Model (LIPM), it is assumed that the legs are massless.

When applying the LIPM to generate nominal trajectories for a real biped robot, there

are two possible situations. If the swing leg’s mass is very small compared to the total

body’s mass, the nominal trajectory can be easily realized. In contrast, if the swing leg’s

mass is not negligible compared to the total body’s mass, the nominal trajectory may
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not be realized and the resulting walking motion may deviate from the desired walking

motion.

Park et al.[56] improved the LIPM by introducing the term Gravity-Compensated In-

verted Pendulum Mode (GCIPM). In this model, the biped robot is considered as a

two-mass model: one point mass m represents the swing leg and one point mass M rep-

resents the rest of the body including the stance leg (see Fig. 3.3). Similar to the LIPM,

the body mass M is assumed to move horizontally and maintain a constant height of

Z0. The ankle torque is assumed to be limp. From this model, the moment equation is

derived as follows:

MẌZ0−MgX +mẍz−mz̈x−mgx = 0 (3.5)

where X and x are the horizontal coordinates of the body’s mass M and the swing leg’s

mass m, respectively; g is the gravity constant. (3.5) can be rewritten as follows:

Ẍ−ω2X = F(t) (3.6)

where F(t) = γ(gx+ xz̈− zẍ), γ = m/M/Z0 and ω =
√

g/Z0.

The function F(t) represents the dynamics effect of the swing leg on the CG (Centre of

Gravity) motion. If the trajectory of the swing leg is given, its influence to the whole

robot’s dynamics and the inverted pendulum motion of the CG can be determined.

Different choice of the foot trajectory (x(t), z(t)) would result in different F(t) and thus
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Figure 3.3: The GCIPM of biped robot. m is the swing leg’s mass, M is the total mass
of the body excluding the swing leg’s mass.

different trajectory of the body’s CG. In order to show a particular solution of (3.6), the

swing foot trajectory is chosen as follows:

x(t) =−Scos(ω f t) (3.7)

z(t) =
h f

2
[1− cos(2ω f t))] (3.8)

where S is the stride length, h f is the maximum swing foot’s height, the stride frequency

ω f = π/T , T is the one step period.

If T and h f were chosen such that h f ω f ¿ g, the function F(t) in (3.6) becomes

F(t)≈−γgScos(ω f t) (3.9)

which means that the dynamics of the swing leg is dominated by its gravity term. The
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solution of Eq. (3.6) is then determined as

X(t) = C1eωt +C2e−ωt +η cos(ω f t) (3.10)

with

C1 =
1
2
(X(0)+1/ωẊ0−η) (3.11)

C2 =
1
2
(X(0)−1/ωẊ0−η) (3.12)

η =
βgS

ω2 +ω2
f

(3.13)

where variables X(0) and Ẋ(0) are the initial position and the initial velocity, respec-

tively, of the CG of the biped robot.

3.3 Effects of The Swing Leg

In this section, the dynamic effect of the swing leg on the whole robot dynamics is

studied. A simple two-point-mass model similar to the above GCIPM is used (see Fig.

3.4). The point mass M represents the total mass of the whole robot except for the swing

leg. The point mass m represents the mass of the swing leg. In this model, unlike the

LIPM, the ankle torque is not assumed limp, which means ankle joints are equipped

with actuators. Since ankle joint is available, the robot must have feet. Let us assume

that the length of the feet is 20cm and the ankle joint is located in the middle point of

the feet.
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Figure 3.4: The two-point-mass model of biped robot. m is the swing leg’s mass, M is the
total mass of the body excluding the swing leg’s mass, xZMP is the horizontal position of
the ZMP. xg, zg are the horizontal and vertical positions of the body’s CG, respectively.
x f , z f are the horizontal and vertical positions of the swing foot, respectively.

To examine the effect of the swing leg’s dynamics on the whole robot dynamics we

implement two tests: (1) the effect of the mass of the swing leg on the zero-moment-

point (ZMP) trajectory (and thus stability margin); and (2) the effect of swing foot’s

speed on the ZMP trajectory.

In this study, the nominal trajectory of the body’s CG (the point mass M in this case) is

generated using equations (3.2) and (3.3) of the LIPM. The nominal foot trajectory is

generated using (3.7) and (3.8).

The zero-moment-point of the system in Fig. 3.4 is computed as follows:

xZMP =
∑N

i=1 mi(z̈i +g)xi−∑N
i=1 miẍizi

∑N
i=1 mi(z̈i +g)

(3.14)
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with m1 = M, m2 = m, N = 2, x1 = xg, x2 = x f , z1 = zg, z2 = z f , we have

xZMP =
M(z̈g +g)xg +m(z̈ f +g)x f −Mẍgzg−mẍ f z f

M(z̈g +g)+m(z̈ f +g)
(3.15)

• Test 1: The effect of the swing leg’s mass on the robot dynamics

In this test, different values of the swing leg’s mass are used to study how the change

of the swing leg’s mass affect the whole robot dynamics. For no particular reason, the

input parameters are chosen as follows: the body mass M = 50 kg, the values of the

swing leg’s mass used in this test are m = 0,3,6,9 kg. The walking step length S = 0.3

m, the walking step time T = 1 s. For the sake of simplicity, the nominal trajectory is

planned such that it is periodically repeatable which allows us to plan the trajectory for

one walking step only. The following steps will be repeated in the same manner. With

the above inputs, the nominal body’s CG trajectory is obtained as shown in Fig. 3.5.

The nominal swing foot trajectory generated using (3.7) and (3.8) is shown in Fig. 3.6.

Once the body’s CG trajectory and foot trajectory are known, the ZMP trajectory can

be computed based on (3.15). Fig. 3.7 shows the resulting ZMP trajectory for different

values of m. We can see that, when m = 0 (the model becomes the LIPM model) the

ZMP is always located at O (the ankle joint location). Since the ZMP is located at O, the

ankle torque is zero. This is consistent with the LIPM model which has the assumption

that the ankle torque is limp. It can also be seen from the figure that when the swing

leg’s mass m increases, the ZMP trajectory tends to deviate from the middle point O. The
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Figure 3.5: The nominal body’s CG trajectory when step length S = 0.3 m, step time
T = 1 s. The upper figure shows the horizontal position trajectory while the lower one
shows the horizontal velocity of the body’s CG. The velocity at the start (t = 0) and end
(t = kT are equal to ensure the continuity condition of velocity when the walking motion
is repeated.
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Figure 3.6: The nominal foot trajectory with step length S = 0.3m and step time T = 1s.
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Figure 3.7: The computed ZMP trajectories when different values of swing leg mass are
used. The thick solid line shows the ZMP trajectory when m = 0kg, the thin dashed
curve represents the ZMP when m = 3kg, the thick dashed-dotted curve represents the
ZMP trajectory when m = 6kg and the thin solid curve represents the ZMP trajectory
when m = 9kg.
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bigger the swing leg’s mass m, the more the ZMP trajectory deviates from the point O.

This is not desirable because the more the ZMP is away from the point O, the smaller the

stability margin. Stability margin is defined as the shortest distance from a point on the

ZMP trajectory to the boundary of the stable region. In 2D case, the stable region is the

distance from the heel to the toe of the supporting foot while in 3D case the stable region

is the support polygon of the supporting foot/feet. When m = 0 kg, the stability margin

is equal to 10 - 0 =10 cm (the shortest distance from foot heel/toe to the ZMP trajectory,

with foot length 20cm). When m = 3 kg (or 6% of the body mass), the stability margin

is 10 - 2 = 8 cm. When m = 6 kg (or 12% of the body mass), the stability margin is 10

- 3.9 = 6.1 cm. When m = 9 kg (or 18% of the body mass), the stability margin is 10 -

5.2 = 4.8 cm.

From the above result, it is obvious that when the swing leg mass is big enough (say

more than 10% of the body mass), the dynamics of the swing leg has a significant effect

on the robot’s dynamics. Therefore, when m is big enough, the swing leg’s dynamics

should not be neglected.

• Test 2: The effect of the swing time on the robot dynamics

In this test, we aim to examine the effect of the swing foot’s speed on the whole dy-

namics of the biped robot. The body mass M, the walking step length S are kept the

same as in test 1. The swing leg’s mass m = 3kg. The nominal body’s CG and foot

trajectories are planned using the same method as in test 1. To test the effect of swing

leg’s speed on the whole robot, the step time T will be altered. Fig. 3.8 shows the ZMP

trajectories when the different swing times were used. It can be seen from the figure

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.4 Summary 44

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

−0.05

0

0.05

0.1

Time (s)

X
zm

p 
(m

)

Toe

Heel
T = 0.6
T = 0.4 

T = 0.2
S1S2

S3

Foot Toe

Foot Heel

Figure 3.8: The computed ZMP trajectories when different values of swing time were
used. The continuous solid curve represents the resulting ZMP trajectory when the
swing time T = 0.6 s. The dashed curve represents the resulting ZMP trajectory when
T = 0.4 s and the dotted-dashed curve represents the resulting ZMP trajectory when
T = 0.2 s. Two thick solid horizontal line represents the Foot Toe and Foot Heel, which
are the stable region for 2D walking. S1, S2, S3 are the stability margins obtained when
the swing time equal to 0.6s, 0.4s and 0.2s, respectively.

that when T = 0.6 s, the stability margin S1 = 7.7 cm, when T = 0.4 s, the stability

margin S2 = 7.2 cm, when T = 0.2 s, the stability margin S3 = 4.7 cm. This means

that when the swing time reduced (or swing speed increased), the stability margin is

reduced. When the swing speed is high enough, the swing leg dynamics become more

important and should not be ignored.

3.4 Summary

The Linear Inverted Pendulum Model (LIPM) is a very useful model to analyze bipedal

walking. It has compact analytical solution which allows straightforward walking gait
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planning. The conservation of orbital energy during walking is an interesting finding

which can be used to support walking pattern planning. However, this model also has its

own disadvantage. Since the whole robot is modeled as a point mass inverted pendulum,

dynamics of independently moving parts like swing legs and arms are not considered,

these un-modeled dynamics may act as a disturbing effect which deviate the robot from

desired walking motion.

The Gravity-compensated Inverted Pendulum Model (GCIPM) takes into account the

gravity term of the swing leg dynamics. This results in a more complete model compared

to the LIPM method. According to [56], the walking gait generated using the GCIPM

method is more stable than the one generated using the LIPM method. Therefore, the

GCIPM method is a good improvement of the LIPM method. The GCIPM method has

the advantage of a simple method whose dynamic equation can be solved analytically.

However, this model is still not complete since only gravity term of the swing leg is

considered. The inertial terms whose impact on robot’s dynamics is significant is still

not considered.

The effect of swing leg dynamics on bipedal walking was studied in this section. Two

tests were used for this purpose. In the first test, the swing leg’s masses were changed

from small to big values to see how the swing leg’s mass affects the robot’s dynamics.

In the second test, the swing time of the swing leg was changed to see how swinging

speed affects the whole robot’s dynamics. Results show that when the mass of the swing

leg or the swinging speed or both are big enough, the dynamic effect of the swing leg

can not be ignored.
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Chapter 4

Augmented Linear Inverted Pendulum

(ALIP) Model

4.1 Introduction

As discussed in Chapter 2, there are several ways to design bipedal walking patterns.

Among them, the model-based approach is one of the few comprehensive and effective

approaches. This approach has several advantages. Firstly, it is based on traditional

dynamic analysis which is well-defined, systematic and reliable. Secondly, as long as

the dynamic equation can be solved analytically, it is straightforward to design desired

walking gaits. However, this approach also has drawbacks. It is usually not easy to

get exact dynamic information such as the center of mass (COM) position, moment of

inertia of each link of the robot. Moreover, bipedal walking is a highly nonlinear, multi-
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variable dynamic system whose dynamic equation can not be solved analytically most of

the time unless some simplification or linearization techniques are used [72, 46, 75, 71].

The Linear Inverted Pendulum Model (LIPM) presented in Chapter 3 is a well known

model-based approach using simplification technique. The dynamic equation of this

model can be solved analytically without using any linearized assumptions. Although

the model is very simple, it provides useful dynamic insights which are vital for de-

signing bipedal walking gaits. When the effect of un-modeled dynamics (swing legs,

arms, etc.) is negligible, the nominal trajectories generated using the LIPM method can

be tracked fairly well. However, when the un-modeled dynamics is not negligible, it

maybe quite challenging to control the real biped robot to follow the desired trajectory.

Therefore, it is vital that the swing leg dynamics should be included in the dynamic

model.

Park et al.[56] improved the LIPM by introducing the term Gravity-Compensated In-

verted Pendulum Mode (GCIPM). Their approach takes into account the gravity of the

swing leg to generate biped locomotion pattern. The walking trajectory generated by this

approach is more stable than that of the LIPM. However, this method only considers the

gravity term of the swing leg while the inertia terms are not considered.

In this thesis, we further improve the LIPM by proposing a new model called Augmented

Linear Inverted Pendulum (ALIP). The proposed model must satisfy the following re-

quirements: it should be as simple as possible; the dynamic equation of the model must

have analytical solution; the dynamics of the swing leg must be considered.
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In this model, an augmented function F is added to the dynamic equation of the Lin-

ear Inverted Pendulum. The role of the augmented function is to adjust the inverted

pendulum’s dynamics such that the disturbance caused by the un-modeled dynamics is

minimized. The inverted pendulum’s dynamics can be easily adjusted or modified by

manipulating the key parameters of the augmented function. Our objective is to design

a walking pattern that has the highest stability margin possible. In this study, the Zero-

Moment-Point (ZMP)[83, 81] is used as a stability criterion for dynamic walking. The

desired walking motion with maximized stability margin is achieved by optimizing the

key parameters of the augmented function using the genetic algorithm (GA). The advan-

tage of this method is that the disturbance caused by the un-modeled dynamics (swing

legs, arms, etc.) is minimized during the optimization process. When the disturbance

caused by un-modeled dynamics is minimized, better walking gait can be achieved. De-

tailed description of the proposed model is presented in the next section.

4.2 Augmented Linear Inverted Pendulum Model

Many researchers have been using the Linear Inverted Pendulum Model to generate

nominal walking patterns[32]. Fig. 4.2 shows an example of reference hip trajectory

generated using the LIPM equation (3.1) with step length S = 0.3 m, step time T = 1 s.

Ideally, if there is no disturbance (caused by the un-modeled dynamics such as legs or

arms, foot impact and other external forces) this reference motion can be well tracked

and the zero-moment-point (ZMP) stays exactly at the ankle joint position. However, in

most cases, at least one of these disturbances is present. These disturbances may cause
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Figure 4.1: A sample hip trajectory generated using the LIPM where step length S = 0.3
m, step time T = 1 s.

the resulting motion to deviate from the reference motion.

In order to reduce or compensate for the disturbances caused by un-modeled dynamics,

there are two possible solutions: i) use the ankle torque to force the robot to follow

the reference motion[37, 38]; and ii) modify the reference motion of the center of mass

(COM) so that the disturbing effect caused by un-modeled dynamics is minimized. The

first solution works well when the disturbance caused by the un-modeled dynamics is

small. However, when the effect of the un-modeled dynamics is big enough, the refer-

ence motion may not be realized because the ankle torque required exceeds the accept-

able limit. Whereas, if we can somehow modify the COM reference motion (second

solution) in such a way that it is in harmony with legs and arms’ motions, a better walk-

ing motion can be achieved. By ”harmony” we mean that the motions of arms and legs

have very little or no disturbing effect on the reference motion.
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In this study, the determination of whether one trajectory is better than the other is based

on the stability margin criterion. A trajectory is better than another one if it has larger

stability margin. And by this way, we define that a trajectory having larger stability

margin means that the disturbing effect on the reference motion caused by arms and

legs dynamics is less.

One way to modify the reference trajectory is to modify the dynamic equation (3.1). In

this study, we propose to modify the dynamic equation (3.1) by adding an augmented

function F to the right hand side of the equation. The dynamic equation is as follows:

ẍ =
g
zo

x+F (4.1)

where the augmented function F has the following characteristics:

• F is continuous and able to make gradual change to the dynamics of the inverted

pendulum model in (4.1).

• F must satisfy the condition that Equation (4.1) can be solved analytically.

• F should be as simple as possible.

• The value of F can be changed by changing some key parameters.

We call the dynamic model described by Equation (4.1) the Augmented Linear Inverted

Pendulum (ALIP) model. The purpose of adding the function F to the inverted pendu-

lum equation is to give us the possibility to change or modify the dynamics equation

(3.1) so that better trajectories can be generated. The function F works as a bridge link-
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ing the un-modeled dynamics to the linear inverted pendulum dynamics. This will be

explained in more details in the next section.

It can be seen that the dynamic equation (3.1) of the Linear Inverted Pendulum Model

is a special case of the second-order ordinary differential equation

ẍ+bẋ+ cx = 0 (4.2)

where a = 1, b = 0, c =−g/z0.

Equation (3.1) is the mathematical representation of the LIPM, a highly simplified

model of bipedal walking robots. We suspect that Equation (4.2), a more general math-

ematical representation compared to (3.1), might be richer in representing the dynamics

of bipedal walking.We propose to choose the augmented function F to be

F = kpx+ kvẋ (4.3)

where kp and kv are the constant parameters.

Substitute (4.3) into (4.1), we have

ẍ =
g
zo

x+ kpx+ kvẋ (4.4)

Equation (4.4) can be re-written as follows:

ẍ+bẋ+ cx = 0 (4.5)
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Figure 4.2: A sample hip trajectory generated using the LIPM where step length S = 0.3
m, step time T = 1 s.

where b =−kv, c =−kp−g/z0.

Solving the second-order linear differential equation (4.4), we have the following cases:

• If b2−4c > 0:

x(t) =
x(0)r2− ẋ(0)

r2− r1
er1t +

ẋ(0)− x(0)r1

r2− r1
er2t (4.6)

where x(0), ẋ(0) are the initial horizontal position and velocity, respectively. r1, r2 are

real roots of the auxiliary equation and are determined as below:

r1,2 =
−b±

√
b2−4c

2
(4.7)

ẋ(t) =
x(0)r2− ẋ(0)

r2− r1
r1er1t +

ẋ(0)− x(0)r1

r2− r1
r2er2t (4.8)
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Since r1, r2 are functions of kp and kv, x(t) is also function of kp and kv.

• If b2−4c = 0:

x = [ẋ(0)− rx(0)]tert + x(0)ert (4.9)

ẋ = [ẋ(0)− rx(0)](1+ tr)ert + x(0)rert (4.10)

where r =−b/2.

• If b2−4c < 0:

x = [x(0)cos(β t)+
ẋ(0)− x(0)α

β
sin(β t)]eαt (4.11)

ẋ = ẋ0 cos(β t)eαt +
α ẋ0− (α2 +β 2)x0

β
sin(β t)eαt (4.12)

where α =−b/2, β =
√

4c−b2/2.

In summary,

x(t) =





x(0)r2−ẋ(0)
r2−r1

er1t + ẋ(0)−x(0)r1
r2−r1

er2t , if ∆ > 0

[ẋ(0)− rx(0)]tert + x(0)ert , if ∆ = 0

[x(0)cos(β t)+ ẋ(0)−x(0)α
β sin(β t)]eαt , if ∆ < 0

(4.13)
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ẋ(t) =





x0r2−ẋ0
r2−r1

r1er1t + ẋ0−x0r1
r2−r1

r2er2t , if ∆ > 0

[ẋ0− rx0](1+ tr)ert + x0rert , if ∆ = 0

ẋ0 cos(β t)eαt + α ẋ0−(α2+β 2)x0
β sin(β t)eαt , if ∆ < 0

(4.14)

where b =−kv, c =−kp− g
zo

and ∆ = b2−4c.

Now let’s show that adding the function F in the form of (4.3) will result in better (larger

stability margin) walking trajectories. The trajectories generated using equations (3.1)

and (4.4) will be compared in terms of stability margin. The better trajectory would

have larger stability margin.

Without loss of generality, we consider the case when kv = 0 (or F = kpx). Reference

walking trajectories generated using the LIPM method (Eq. (3.1)) and the proposed

ALIP method (Eq. (4.4) will be compared at different walking step-length S and step-

time T . Once the reference trajectory is known, it is straightforward to compute the

zero-moment-point (ZMP) trajectory. And from the ZMP trajectory it is easy to compute

stability margin. Note that each reference trajectory generated using the ALIP method

is optimized by finding the optimal value of kp so that the stability margin is maximized.

Figure 4.3 shows the comparison of stability margin of the trajectories generated using

the LIPM method and the proposed ALIP method. The comparison was made at differ-

ent step-lengths (S) and step-times (T ). Each pair of S,T corresponds to a trajectory. In

this figure, each case corresponds to a value of S, i.e. case 1: S = 0.1 m; case 2: S = 0.2

m; case 3: S = 0.3 m; case 4: S = 0.4 m. For each case, the step-time T = 0.2,0.3, ...,1

sec. It can be seen from the figure that the trajectories generated using the proposed
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Figure 4.3: Comparison of stability margin of the trajectories generated using the ALIP
method (circle-marked curve) versus trajectories generated using the LIPM method
(star-marked curve). The comparison is made at different step-lengths S and step-times
T .

method ALIP always has larger stability margin than that of the LIPM method. The

corresponding optimal value of kp and kv for each pair of S,T is shown in Fig. 4.4.

Equations (4.13) and (4.14) will be used to plan reference trajectory for humanoid robot.

Fig. 4.5 shows some sample trajectories generated using these equations when different

values of kp and kv were used. Fig. 4.5 also shows that the function F is able to make

gradual change to the LIPM dynamics.

The proposed augmented function F satisfies all the required characteristics because:

1. F is able to make gradual change to the inverted pendulum dynamics by gradually

changing the parameters kp and kv; 2. Equation (4.1) can be solved analytically; 3. The

function F is simple; 4. F can be changed by changing the key parameters kp and kv.
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Figure 4.4: The optimal value of kp and kv when S = 0.1, S = 0.2, S = 0.3, S = 0.4

4.3 Determination of the Augmented Parameters

As mentioned earlier, the purpose of adding the augmented function F is to adjust/modify

the Linear Inverted Pendulum dynamic equation so that better walking trajectories can

be achieved. The modification of the dynamic equation is done by manipulating the

parameters kp, kv of the augmented function F . The optimal value of kp and kv is deter-

mined using the genetic algorithm (GA) [17]. The objective of GA is to maximize the

stability margin to tolerate for external disturbances during walking.

The optimal value of kp and kv is dependent on many factors. When the step length

and step time are fixed, different robots (different height, mass distribution, etc.) would

have different optimal values of kp and kv. Or the same robot would have different
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Figure 4.5: Some sample trajectories generated using equations (4.13) and (4.14). The
trajectories are numbered in sequence from 1 to 7 and each trajectory corresponds to
a set value of kp and kv. When kp = 0, kv = 0 (trajectory 1 - the thick solid curve), the
trajectory generated using our proposed approach will be the same as that generated
using Kajita’s method (LIPM). It can be seen that, the effect of kp is to change the degree
of curvature of the trajectory (see curve 2 and 3). Whereas, the effect of kv is to offset
the trajectory vertically (curve 4 and 5).

.
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sets of optimal value of kp and kv for different values of step length and/or step time.

This is disadvantageous because whenever the step length, step time or robot’s physical

properties (height, mass distribution, etc.) change, the optimal value of kp and kv must

be recomputed. However, it is understandable and acceptable because there is no such

trajectory that is optimal for any robot or any step length and step time.

Although it is unrealistic to find general description of kp and kv for all biped robots at

various walking conditions, it is possible to find general description of kp and kv for a

specific robot operating at different values of step length and step time. This will be

explained in more details in the next chapter.
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Chapter 5

Off-line Walking Gait Planning in

Sagittal Plane

This chapter describes the application of the proposed ALIP model to design walking

gait for biped in sagittal plane. The hip trajectory is planned using the dynamic equa-

tion of the proposed ALIP model. The foot trajectory is planned using the polynomial

interpolation method. The effectiveness of the proposed method is verified through two

simulations. In this chapter, the genetic algorithm, an optimization tool used in finding

the optimal values of the augmented parameters kp, kv is also presented.
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Figure 5.1: The flowchart of the proposed algorithm. GN is the Generation Number,
GNmax is the maximum Generation Number, kp and kv are the key parameters (from
Equation 4.3) to be optimized
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5.1 The Proposed Algorithm

This section describes the structure of the optimization algorithm whose objective is to

find the optimal values of the key parameters kp and kv. As shown in Fig. 5.1 the inputs

to the algorithm are the desired step length S, the desired velocity V (or we can chose the

desired step time T as an input), and the parameters of the genetic algorithm (GA) such

as crossover rate, mutation rate, population size, maximum generation number GNmax.

The maximum generation number GNmax is chosen by trial and error. GNmax should be

large enough to make sure that GA converges after GNmax generations.

In the beginning of the algorithm, GA generates the initial population (or a set of initial

solutions). Each individual of the population corresponds to one solution of kp and kv.

Given the value of kp and kv, the hip trajectory can be computed. The foot trajectory

is determined based on the desired step length and step time. Once the hip and foot

trajectories are known, inverse kinematics is used to compute the reference joint angles.

These joint angles information is sent to the robot’s controller to control the robot to

follow the desired walking pattern. Based on the position, acceleration and mass and

inertia information of each part of the robot, the Zero Moment Point (ZMP) position

can be computed. Once the ZMP is known, it is straightforward to evaluate the fitness

function. The value of the fitness function of all the individuals are used to generate

the next generation of solution. The next generation is generated by GA operations

including reproduction, crossover and mutation. The process repeats until the maximum

generation number GNmax is reached. The output of the algorithm is the optimal value

of kp and kv.
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In the following sections, the planning of hip trajectory and foot trajectory, genetic op-

erations and the computation of the ZMP will be presented in detail.

5.2 Hip Trajectory

The hip trajectory is planned using equations (4.13) and (4.14). x(t) and ẋ(t) are func-

tions of time and the parameters kp and kv. Different choice of (kp, kv) results in different

hip trajectory. Our objective is to find the optimal value of kp and kv such that the re-

sulting walking gait has highest possible stability margin. Equations (4.13) and (4.14)

can be rewritten as follows:

x(k)
f =





r2er1T−r1er2T

r2−r1
x(k)

i + er2T−er1T

r2−r1
ẋ(k)

i , if ∆ > 0

[erT − rTerT ]x(k)
i +TerT ẋ(k)

i , if ∆ = 0

[cos(βT )− α
β sin(βT )]eαT x(k)

i + sin(βT )
β eαT ẋ(k)

i , if ∆ < 0

(5.1)

ẋ(k)
f =





r1r2(er1T−er2T )
r2−r1

x(k)
i + r2er2T−r1er1T

r2−r1
ẋ(k)

i , if ∆ > 0

−Tr2erT x(k)
i +(1+ rT )erT ẋ(k)

i , if ∆ = 0

−α2+β 2

β sin(βT )eαtx(k)
i +[cos(βT )+ α

β sin(βT )]erT ẋ(k)
i , if ∆ < 0

(5.2)

where b = −kv, c = −kp− g
zo

and ∆ = b2− 4c; x(k)
i and ẋ(k)

i are the initial horizontal

position and velocity of the COM at the start of the kth step, respectively; x(k)
f and ẋ(k)

f

are the final horizontal position and velocity at the end of the kth step, respectively; v(k)
i

and v(k)
f are the initial and final velocity of kth step, respectively. T is the time spent for

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.2 Hip Trajectory 63

� ���

��

��

��

� � �

�

� ���

��
� ������

�� �� =

� ���

��

� ���

��
� ���

��
� ���

��

� � �

Figure 5.2: Two consecutive steps in the sagittal plane are illustrated. In step 1, the
body travels from A to B in the single-support phase (only one foot supports the robot),
while the swing foot travels from D to F. The double support phase (two feet support the
robot) is assumed to be instantaneous. In step 2, the body travels from B to C while the
swing foot travels from E to a new point in front

the body to travel from initial position x(k)
i to final position x(k)

f .

In this thesis, to demonstrate the effectiveness of the proposed ALIP model, two types

of walking gaits will be considered: i) Repetitive walking gait and ii) Non-repetitive

walking gait. In the following subsections, detailed description of these two types of

gaits will be presented.

5.2.1 Repetitive Walking Gait

Repetitive walking gait is the type of gait whose walking motion repeats exactly the

same after each walking step. For this type of walking motion, we only need to plan the

walking gait for one step, the following steps are repeated the same. The step length S
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Figure 5.3: One full step of repetitive walking gait. The body travels from A to B in
the single-support phase the T seconds, while the swing foot travels from C to D. The
double support phase is assumed to be instantaneous

and step time T would be the same for every walking step. Fig. 5.3 shows one step of

repetitive walking gait.

In order to have a continuous repetitive walking motion, the following continuity condi-

tions must be imposed:





x(0) = xi

x(T ) = x f = S + xi

ẋ(0) = ẋ(T ) (velocity continuity condition)

(5.3)

Fig. 5.4 shows a sample of a repetitive walking gait. In the figure, five consecutive

steps are shown with step time T = 0.5 s, step length S = 0.3 m. Note that the origin of
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Figure 5.4: A sample of repetitive walking gait is illustrated. Five consecutive steps
are shown with step time T = 0.5 s, step length S = 0.3 m. The upper graph shows the
body’s COM position vs time, the lower graph shows the body’s COM velocity vs time

the coordinate frame is placed at the stance leg ankle.

5.2.2 Non-repetitive Walking Gait

In contrast to repetitive walking gait, non-repetitive walking gait does not repeat walking

motion after very step. Indeed, every walking step can be different with different step

length or step time. This class of walking trajectory is commonly seen when the robot is

walking on uneven terrains, avoiding obstacles, walking over random stepping stones,

etc. Human walking seems to be repetitive but it’s actually non-repetitive because there’s

always differences (small or big) between each walking step. Fig. 5.5 shows a sample

of non-repetitive walking gait. Five consecutive walking steps are shown. The upper
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Figure 5.5: A sample of non-repetitive walking gait is illustrated. Five consecutive steps
are shown with constant step time T = 0.5 s and varied step length and kp = 10, kv = 1

graph shows the body’s COM position versus time, the lower graph shows the body’s

COM velocity versus time. It can be seen that the step length and velocity profile are

different for each step. Note that the trajectory illustrated in Fig. 5.5 is just a sample

trajectory to show what a non-repetitive trajectory looks like, not the optimal one. The

optimal trajectory will be presented in the simulation results section.

5.3 Foot Trajectory

One popular method of designing the foot trajectory is to use the polynomial interpola-

tion method. The order of the polynomial is decided based on the number of constraints.

Fig. 5.6 gives an illustration of the swing foot trajectory. The swing foot starts from
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point A on the ground, go through the middle point B and ends at point C. Let’s denote

T as the total time for the foot to travel from A to C. T1 is the time needed to travel from

A to B. T1 can be determined by assuming that it is linearly proportional to T in terms of

distance traveled. The position and velocity constraints in horizontal axis are as follows:





x f (0) = xA

x f (T1) = xB = 0

x f (T ) = xC

ẋ f (0) = 0

ẋ f (T ) = 0

(5.4)

where xA, xB and xC are the given horizontal coordinates of the points A, B and C,

respectively. The time T1 can be determined as follows:

T1 = γT =
AO
AC

T =
xO− xA

xC− xA
T (5.5)

Since there are five constraints, a forth-order polynomial should be enough to describe

the swing foot motion. Therefore, the foot trajectory can be written in the following

form:

x f (t) = a4t4 +a3t3 +a2t2 +a1t +a0 (5.6)
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Figure 5.6: The swing foot trajectory is illustrated as the solid curve ABC. At each step,
the swing foot starts from A, a starting point on the ground, to B, a via point in the
middle and finally to C, the ending point on the ground

The coefficients computed based on the above constraints are as follows:





a4 = (2γ3−3γ2)(xC−xA)−xA
γ4T 4−2γ3T 4+γ2T 4

a3 = 2(xA−xC)
T 3 −2a4T

a2 =−2a4T 2−1.5a3T

a1 = 0

a0 = xA

(5.7)

where γ = xO−xA
xC−xA

.
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The position and velocity constraints in vertical axis are as follows:





z f (0) = zA = 0

z f (T1) = zB = h f

z f (T ) = zC = 0

ż f (0) = 0

ż f (T ) = 0

(5.8)

Similarly, there are five constraints, a forth-order polynomial is good enough to describe

the foot trajectory:

z f (t) = b4t4 +b3t3 +b2t2 +b1t +b0 (5.9)

The coefficients are determined as follows:





b4 = h f
γ4T 4−2γ3T 4+γ2T 4

b3 =−2b4T

b2 =−b4T 2−b3T

b1 = 0

b0 = 0

(5.10)
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Figure 5.7: The simple robot model showing the mass distribution of each link of the
robot

5.4 The Zero Moment Point (ZMP)

The concept of the ZMP was originally introduced by Vukobratovic in 1969. The ZMP

is the location on the ground where the net moment generated from the ground reaction

forces has zero components about the two axes that lie in the plane of the ground [83,

81]. The ZMP stability criterion states that the ZMP of a biped robot must be constrained

within the convex hull of the foot/feet support area to ensure stability. The ZMP can be

computed using the following formula:

xZMP =
∑7

i=1 mi(g+ z̈i)xi−∑7
i=1 miẍizi−∑7

i=1 Iiyω̇iy

∑7
i=1 mi(g+ z̈i)

(5.11)
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Figure 5.8: Stable region and stability margin in sagittal plane

yZMP = ∑7
i=1 mi(g+ z̈i)yi−∑7

i=1 miÿizi +∑7
i=1 Iixω̇ix

∑7
i=1 mi(g+ z̈i)

(5.12)

where mi is the mass of link i (Fig. 5.7). (Iix, Iiy)T is the inertia vector of link i,

(ωix,ωiy)T is the angular velocity vector of link i, g is the gravitational acceleration,

(xzmp,yzmp,0) is the coordinate of the ZMP, and (xi,yi,zi) is the coordinate of the center

of mass of link i on the absolute Cartesian coordinate system.

The stability margin is defined as the minimum distance from the ZMP trajectory to the

boundary of the stable region (Fig. 5.8). The stability margin is maximum when the

ZMP stays at the center of the stable region. In this thesis, we aim to find the walking

pattern that has the largest possible stability margin.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.5 Genetic Algorithm Implementation 72

5.5 Genetic Algorithm Implementation

5.5.1 Introduction to Genetic Algorithm

Genetic Algorithm (GA)[17] is a famous optimization algorithm developed by John

Holland and his colleagues at the University of Michigan. One advantage of using

GA over other algorithms is that this technique performs the search at different points

simultaneously in the searching space rather than at one point. This helps to solve the

problem of local optima. The other advantage of GA is that this algorithm performs the

search using the fitness value as the only information. It does not require any function

differentiation, so the problem of discontinuity can be avoided.

GA is usually used when dealing with complicated and highly nonlinear problems where

analytical solutions are not available. Since bipedal walking is a highly nonlinear system

with many degrees of freedom, quite a number of research works in this field adopted

GA as an optimization tool to find optimal solution. Capi et al.[4], Arakawa et al.[2]

proposed off-line trajectory planning methods for bipedal walking using GA to find the

optimal key parameters of the walking gait. In these studies, minimum energy consump-

tion is used as a criterion to guide the search. Dau et al.[8] applied GA to optimize the

key parameters of the walking trajectory such that energy-efficient and stable walking is

achieved. And many other research works [7, 29, 54, 86, 9, 10, 58, 73] used GA as an

optimization tool for bipedal walking gait generation.

Initially, a population of individuals is generated randomly. GA will test each individual
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Figure 5.9: Crossover operation

in the population and return a corresponding fitness value. Based on these fitness values,

GA’s operations will be performed to generate a new generation which contains evolved

individuals. These operations include reproduction, crossover and mutation.

Reproduction: During the reproduction (or selection) phase, the individuals with higher

fitness values will have higher chance to be reproduced. This operation is done by

putting each individual into a slot in a roulette wheel. The size of the slots is proportional

to the fitness value of the individuals. After each spinning of the wheel, one individual

will be selected. This operation ensures that the new generation is better than the old

one.

Crossover: After the reproduction, the individuals in the new generation will be mated

randomly to perform crossover operation. In this phase, each pair of randomly selected

individuals will exchange their ”genes”, which is a portion of the coded string. Through

this process of genes exchanging, new individuals are generated based on the existing

individuals. The crossover operation can be illustrated in Fig. 5.9.

Mutation: The mutation operation occasionally modifies some specific bits in the string

to try new solution. This operation sometimes brings in better individuals, but some-
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Figure 5.10: Mutation operation

times also destroys good individuals. So the probability for this operation to happen is

usually controlled at low rates. Fig.5.10 illustrates this mutation operation.

5.5.2 GA’s Variables

As mentioned in the previous chapter, the parameters kp, kv of the augmented function

F are critical for improving the dynamic equation so that better walking trajectories can

be generated. Since these two parameters are so important, their optimal value will be

optimized using genetic algorithm. Therefore, the GA’s variables used in this study are

kp and kv.

5.5.3 The Fitness Function

In genetic algorithm, fitness function is the core of the searching mechanism. It has the

role of guiding the search such that desired performance could be achieved. The objec-

tive that we want to achieve is reflected through the fitness value. Therefore, choosing

the right fitness function is fundamentally important. Desired performance may not be

obtained if the fitness function is not properly defined.
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In bipedal walking, stability is probably the most critical concern of all researchers in

this field. Indeed, this is true because after all the primary objective of biped robots is to

move stably from one point to another without falling. Walking robots also need to be

robust against external disturbances (such as being pushed, walking on uneven terrains,

etc). As such, walking trajectories with highest possible stability margin is desirable. In

this study, stability margin is being maximized through the fitness function. As defined

earlier, stability margin is the shortest distance from the ZMP trajectory to the boundary

of stable region. In sagittal plane, stability margin is the shortest distance from the ZMP

trajectory to either the toe or heel of the supporting foot/feet. With the objective to

maximize stability margin, the cost function is described as follows:

Ω = Max{
∣∣xmin

zmp−d
∣∣ ,

∣∣xmax
zmp−d

∣∣} (5.13)

where Ω is the cost function; d is the horizontal distance measured from the ankle joint

to the middle point of the foot; xmin
zmp, xmax

zmp are the minimum and maximum ZMP position

in one walking step, respectively (see Fig. 5.11). Note that in this study the ZMP is

computed based on the full dynamics of the real biped. Therefore, we can make sure

that swing leg and arms dynamics are included in the trajectory planning process which

helps to minimize the disturbing effects of arms and legs. The origin O of the coordinate

system is placed at the ankle joint as shown in Fig. 5.11.

In order to maximize stability margin, the cost function CF must be minimized. Since

in genetic algorithm, the fitness function is always being maximized, the fitness function
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Figure 5.11: The supporting foot is shown. The origin O of the coordinate system is
placed at the ankle joint

can be formulated as follows:

Φ =
1

Ω+δ
=

1
Max{

∣∣xmin
zmp−d

∣∣ ,
∣∣xmax

zmp−d
∣∣}+δ

(5.14)

where δ is a constant positive number to ensure that the fitness function Φ is always

definite even when the cost function Ω is zero.

5.6 Simulation Results

5.6.1 Repetitive Walking Motion

In this simulation experiment, repetitive walking motion is considered. The specifica-

tions of the simulated biped was taken from a biped named HUBIRO. Table 1.1 summa-
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rizes the specifications of the biped robot. The basic dimensions of the robot are shown

in Figure 1.2. In this section, the walking motion is done in sagittal plane (2D walking).

For no particular reasons, the input parameters were chosen as follows: step length

S = 0.35m, step time T = 0.8s. Genetic algorithm (GA) is used to determine the op-

timal value of kp and kv. The GA’s parameters were chosen as follows: Number of

Generations is 100, Population size is 200, Crossover rate is 0.8 and Mutation rate is

0.02.

In order for GA to start the optimization process, we need to define the ranges for the

variables kp and kv. After some simple checks we found that when kp < −100 or kp >

100 the obtained trajectory is unstable (the ZMP stays outside the stable region) for any

value of kv. When kv <−50 or kv > 50 the obtained trajectory is always unstable for any

value of kp. Therefore, we select the ranges for kp and kv as follows: −100≤ kp ≤ 100

and −50≤ kv ≤ 50.

Since the walking motion is repetitive, the trajectory of every step will be the same.

Therefore, we only need to plan the foot and hip trajectory in one step. The other steps

will be repeated the same.

The optimization algorithm used to find the optimal values of kp and kv is shown in Fig.

5.1. GA converged after about 35 generations (see Fig. 5.12). The optimal value of the

parameters kp and kv are kp = 7.591, kv = −0.7346. The computation time for the GA

optimization is 665 seconds. Once kp and kv are determined, the hip trajectory can be

computed using (5.1), (5.2) and boundary conditions (5.3). Fig. 5.13 shows the resulting
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Figure 5.12: Averaged Fitness value of each generation is shown. It can be seen from
the figure that GA converged after 35 generations

hip trajectory obtained by the proposed method ALIP. The difference between the hip

trajectory obtained using ALIP model and the other two models (LIPM and GCIPM) is

illustrated in Fig. 5.14.

Fig. 5.15 shows a comparison of the resulting ZMP trajectories obtained using three

different methods (LIPM, GCIPM and ALIP). The thick solid continuous curve is the

ZMP trajectory obtained using ALIP model while the dashed-curve is the ZMP trajec-

tory obtained using GCIPM and the circle marked continuous curve is the ZMP trajec-

tory obtained using the LIPM. It can be seen from the figure that the ZMP trajectory

generated using the GCIPM method stays closer to the center of stable region compared

to that of the LIPM method. This means that the walking trajectory generated using the

GCIPM method has larger stability margin compared to the LIPM method. It can also be

seen from the figure that the ZMP trajectory obtained using the proposed ALIP method

stays closer to the center of the stable region compared to the ZMP generated using the
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Figure 5.13: The resulting optimal hip trajectory is shown. The upper graph shows the
position trajectory xh of the hip while the lower graph shows the velocity trajectory
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Figure 5.14: Hip trajectories obtained using different models
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Figure 5.15: ZMP trajectories obtained when different methods were used. The thick
solid continuous curve shows the ZMP trajectory when ALIP method was used. While
the circle marked continuous curve shows the resulting ZMP trajectory of the robot when
the LIPM was used. And the dashed-curve shows the ZMP trajectory obtained using the
GCIPM. The two thin continuous staircase-shaped curves show the stable boundaries

GCIPM method. In conclusion, the ZMP trajectory generated using the proposed ALIP

method stays closest to the center of stable region which means it has the highest stabil-

ity margin. In sagittal plane, stability margin is defined as the shortest distance from a

point on the ZMP trajectory to either the Heel or Toe of the supporting foot. This result

shows that the walking gait generated using ALIP model is significantly more stable

than that generated using the LIPM and the GCIPM. Fig. 5.16 and Fig. 5.17 show the

resulting joint angle trajectories of the right leg and left leg, respectively. Fig. 5.18

shows the stick diagram of the obtained walking motion with repetitive gait.
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Figure 5.16: Joint angles of the right leg
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Figure 5.17: Joint angles of the left leg
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Figure 5.18: Stick diagram of the simulated biped with repetitive walking gait. Only the
right leg is shown and the image sequence is captured at 0.04 s apart.

5.6.2 Non-repetitive Walking Motion

In this experiment, non-repetitive walking motion is considered. Basically, non-repetitive

walking is a type of walking motion that is not constrained to repeat itself every step.

The non-repetitive walking gait is planned for six continuous walking steps as shown in

Fig. 5.19. From the standing position A, the robot starts to walk for a few steps (the

body moves from A to B, B to C, C to D, D to E, and from E to the stopping position

F). The reference trajectory of the hip is planned based on the step time and the desired

velocity vi(i = 0,1,2, ...6) at the end of step i. The step time T of each step is chosen

to be T = 0.8 s (it is not required to choose the step time of every step to be the same.

However, in this study, it is chosen to be the same for simplicity sake). The desired

velocity profile of the COM is chosen as follows: v0 = 0, v1 = 0.3, v2 = 0.6, v3 = 0.8,

v4 = 0.6, v5 = 0.3, v6 = 0 (m/s).
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Figure 5.19: Illustration of some steps of non-repetitive walking sequence

Since every step the step length and velocity profile is different, the dynamics of each

walking step is also different. Therefore, for each step jth there should be a correspond-

ing set of optimal value of the key parameters kp j, kv j ( j = 1,2, ...6). Genetic algorithm

was used to find the optimal value of kp j and kv j. The obtained optimal values for each of

six walking steps are as follows: step 1: kp1 =−1.719, kv1 = 2.184; step 2: kp2 = 6.516,

kv2 =−0.4563; step 3: kp3 = 6.566, kv3 =−0.3916; step 4: kp4 = 5.985, kv4 =−0.51;

step 5: kp5 = 5.469, kv5 = −0.6846; step 6: kp6 = 15, kv6 = 1.612. Once the param-

eters kp and kv are known, the optimal reference hip trajectory can be easily computed

using the equations 5.1 and 5.2. The optimal reference hip trajectory of non-repetitive

walking motion is shown in Fig. 5.20. Fig. 5.21 shows a comparison of the ZMP trajec-

tories generated using three different approaches (LIPM, GCIPM and ALIP). The thick

solid curve shows the ZMP trajectory generated using the proposed ALIP method. The

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.6 Simulation Results 84

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

Time (s)

xh (m)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

Time (s)
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Figure 5.20: The obtained optimal hip trajectory of six steps non-repetitive walking
motion. The upper graph shows the hip position trajectory and the lower graph shows
the hip velocity profile.
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Figure 5.21: Comparison of the resulting ZMP trajectories generated using three meth-
ods LIPM, GCIPM and ALIP. The thick solid curve shows the ZMP trajectory generated
using the proposed ALIP method. The thin solid curve and the dotted continuous curve
show the ZMP trajectories generated using the GCIPM method and the LIPM method,
respectively.

thin solid curve and the dotted continuous curve show the ZMP trajectories generated

using the GCIPM method and the LIPM method, respectively. It can be seen from the

figure that the ZMP trajectory generated using the GCIPM method stays closer to the

center of the stable region. This means that the walking gait generated using the GCIPM

method has higher stability margin compared to that generated using the LIPM method.

It can also be seen from the figure that the ZMP trajectory generated using the pro-

posed ALIP method stays much closer to the center of the stable region compared to the

ZMP trajectory generated using the GCIPM method. Therefore, it can be concluded that

the walking gait generated using the proposed method has the highest stability margin

among the three mentioned methods. Fig. 5.22 and 5.23 show the resulting joint angle
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Figure 5.22: From top to bottom are the joint trajectories of the hip, knee and ankle
joints of the RIGHT leg.

trajectories of the right and left legs, respectively. Fig. 5.24 shows the stick diagram of

the simulated walking motion captured at 0.04 s apart.

5.6.3 Increase Stability Using Ankle Pitch Strategy

Biomechanics studies have shown that human beings use the ankle joint as one of the

strategies to maintain balance during walking. In their study, Horak and Nashner[23]

discovered that human subjects in their experiments utilized the ankle joint to counter

the external disturbance and maintain balance. Inspired by this finding, in this study we

aim to explore the ankle control strategy to improve walking stability.

For a stable bipedal walking motion, the zero-moment point (ZMP) and the Center of
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Figure 5.23: From top to bottom are the joint trajectories of the hip, knee and ankle
joints of the LEFT leg.

Pressure (COP) are the same. In this case, the ZMP (or COP) can be computed based

on the ground reaction force on the walking robot. The simulated biped has four force

sensors attached at the bottom of each foot (two at the toe and two at the heel) to measure

the ground reaction force. In sagittal plane, the reaction force are as shown in Fig. 5.25.

If the reference coordinate system is placed as in Fig. 5.25, the location of the COP (or

ZMP) can be determined as follows:

xZMP = xCOP =
F2∗L f

F1+F2
(5.15)

where xZMP, xCOP are the horizontal location of the ZMP and COP, respectively; F1

and F2 are the total ground reaction force at the heel and the toe, respectively; L f is the

length of the foot.
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Figure 5.24: The stick diagram of the non-repetitive walking motion simulation. The
images are captured at 0.04 s apart.
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Figure 5.25: Ground reaction force acting on the robot. F1 is the total reaction force at
the Heel, F2 is the total reaction force at the Toe, COP is the location of the Center of
Pressure.
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It is desirable that the ZMP stays as close to the middle point of the foot as possible (the

closer the ZMP to the middle point of the foot, the higher the stability margin). Based

on the equation 5.15, the ZMP is at the middle point only when F1 = F2. Therefore,

to control the ZMP position, one could manipulate the magnitude of the reaction forces

F1, F2 by controlling the angle position of the ankle joint. The controller is proposed

as follows:

θa = θ re f
a +δθa = θ re f

a +Ka(F1−F2) (5.16)

where θa is the ankle joint angle to be controlled, θ re f
a is the reference ankle joint angle

computed based on the reference trajectory, δθa is the compensation amount to be added

to the ankle joint, Ka is the ankle gain.

The controller in (5.16) is applied to the same repetitive walking simulation presented

in section 5.6.1 to check the effectiveness of the proposed controller. Fig. 5.26 shows

a comparison of ZMP trajectories obtained with and without applying the ankle control

strategy. The thin continuous curve shows the resulting ZMP trajectory obtained without

using ankle compensation strategy while the thick continuous curve shows the ZMP

trajectory obtained when the ankle compensation strategy is applied. It can be seen from

the figure that in the case when the ankle compensation strategy is adopted the ZMP

trajectory obtained stays closer to the middle of the stability region (the area formed

by the upper bound and the lower bound). This means that the proposed ankle control

strategy helps improve the stability margin.
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Figure 5.26: Comparison of ZMP trajectory between the two cases: With and without
using ankle compensation strategy described in (5.16). The thin continuous curve shows
the resulting ZMP trajectory obtained without using ankle compensation strategy while
the thick continuous curve shows the ZMP trajectory obtained when the ankle compen-
sation strategy is applied.
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Chapter 6

Gait Planning in Frontal Plane and 3D

Walking Simulation

This chapter describes the implementation of the proposed model in the frontal plane. It

is assumed that the motion in the three orthogonal planes can be independently treated.

The motion planned in the frontal plane is combined with the sagittal motion to create

3D dynamic walking. In this chapter, the Ankle Roll Control Strategy is used to improve

stability margin in the frontal plane.

6.1 Frontal Plane Motion Planning

The 3D motion of the walking robot is divided into three orthogonal planes (sagittal

plane, frontal plane and transverse plane). It is assumed in this study that the motion
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in these three planes are independent. The motion planning on the sagittal plane was

already presented in chapter 5 hence it will not be repeated here. In the transverse plane,

the main concern is the body orientation in the yaw direction. Since in this thesis, we

only consider straight forward walking motion, the control task in the transverse plane

becomes a simple task of controlling the desired yaw angle of the body to be zero. In

this section, the focus is on the planning of the walking pattern in the frontal plane.

Equations (5.1) and (5.2) are used to plan the hip trajectory in the frontal plane. These

equations are rewritten below with the variable x replaced by the variable y.

y(t) =





r2er1t−r1er2t

r2−r1
y0 + er2t−er1t

r2−r1
ẏ0, if ∆ > 0

[ert − rtert ]y0 + tert ẏ0, if ∆ = 0

[cos(β t)− α
β sin(β t)]eαty0 + sin(β t)

β eαt ẏ0, if ∆ < 0

(6.1)

ẏ(t) =





r1r2(er1t−er2t)
r2−r1

y0 + r2er2t−r1er1t

r2−r1
ẏ0, if ∆ > 0

−tr2erty0 +(1+ rt)ert ẏ0, if ∆ = 0

−α2+β 2

β sin(β t)eαty0 +[cos(β t)+ α
β sin(β t)]ert ẏ0, if ∆ < 0

(6.2)

where b = −kv, c = −kp− g
zo

and ∆ = b2− 4c, α = −b/2, β =
√

4c−b2/2, r1,2 =

−b±
√

b2−4c
2 ; y0 and ẏ0 are the initial horizontal position and velocity of the COM at the

time t0, respectively; y(t) and ẏ(t) are the position and velocity at the time t, respectively.

Figure 6.1 shows the motion of the robot’s COM in the frontal plane in one walking step.

The origin O of the reference coordinate system Oxyz is placed at the ankle joint of the

supporting leg. This means Oxyz is placed at the right ankle when the right leg is the
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Figure 6.1: Projections of the motion of the inverted pendulum on frontal and horizontal
planes

supporting leg and at the left ankle when the left leg is the supporting leg. When two

legs are supporting legs, the coordinate system is placed at the ankle joint of the trailing

leg.

In frontal plane, the stable region is defined by the lower bound and upper bound as

shown in Fig. 6.2. In single support phase, the lower bound is the outer edge of the

supporting foot (Fig. 6.2), the upper bound is the inner edge of the supporting foot. In
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Figure 6.2: Definition of stable region in the frontal plane

double support phase, the lower bound is the outer edge of the right foot while the upper

bound is the outer edge of the left foot.

To obtain the optimal hip trajectory in frontal plane, the key parameters kp and kv need

to be optimized. The optimization algorithm for finding the optimal kp and kv is similar

to that used in the sagittal plane. In this 3D simulation experiment, we will use the same

inputs as in the repetitive walking case presented in chapter 5. For reader’s convenience,

the inputs are repeated here as follows: Step length S = 0.35m, Step time (the time

needed to take one step) T = 0.8s. Genetic algorithm (GA)is used to determine the

optimal value of kp and kv. The GA’s parameters were chosen as follows: Number of

Generations is 100, Population size is 200, Crossover rate is 0.8 and Mutation rate is

0.02.

The optimization algorithm used to find the optimal values of kp and kv is shown in Fig.

5.1. GA converged after about 40 generations. The optimal value of the parameters
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Figure 6.3: The obtained reference hip trajectory in the frontal plane. Only two walking
steps is shown

kp and kv are kp = 7.614, kv = −0.0851. The total computation time is 664 seconds.

Once the optimal value of kp and kv are known, the resulting optimal hip trajectory in

the frontal plane can be computed based on the equations (6.1) and (6.2). Fig. 6.3

shows the obtained optimal hip trajectory in the frontal plane. The resulting ZMP tra-

jectory in frontal plane is shown in Fig. 6.4. The thin continuous curve is the resulting

ZMP trajectory obtained using the proposed method of trajectory planning. The thick

continuous curve in square-wave shape is the upper bound of the stable region. The

thick dashed curve in square-wave shape is the lower bound of the stable region. The

two foot-centered lines are the longitudinal straight lines located at the middle of each

foot. The closer the ZMP trajectory (in the frontal plane) to these foot-centered lines,

the higher the stability margin . It can be seen from the figure that the resulting ZMP

trajectory always stays inside the stable region and very close to the foot-centered line.
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Figure 6.4: The resulting ZMP trajectory in the frontal plane.

This means that the obtained walking motion is stable with high stability margin.

Fig. 6.5 shows a comparison of ZMP trajectories generated using three different meth-

ods (ALIP, LIPM and GCIPM) in the frontal plane. It can be seen from the figure that

the ZMP trajectory obtained using the GCIPM method stays closer to the foot-centered

line compared to the ZMP trajectory obtained using the LIPM method. In addition,

the ZMP trajectory obtained using the proposed ALIP method stays closer to the foot-

centered line compared to that obtained using the GCIPM method. This means that the

proposed method results in more stable walking trajectory compared to the LIPM and

GCIPM methods.

The angle trajectories of the right hip, knee and ankle joints are shown in Fig. 6.6. The
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Figure 6.5: Comparison of the resulting ZMP trajectories in the frontal plane obtained
using three different methods. The continuous thick curve shows the resulting ZMP
trajectory obtained using the proposed method ALIP. The continuous thin curve and
dash-dotted curve are the resulting ZMP trajectories obtained using the GCIPM and
LIPM methods, respectively.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.2 Improve Stability Margin Using Ankle Roll Strategy 99

0 2 4 6 8 10 12
−1

−0.5

0

hi
p 

pi
tc

h
(r

ad
)

0 2 4 6 8 10 12
−0.1

0

0.1
hi

p 
ro

ll
(r

ad
)

0 2 4 6 8 10 12
−1

0
1

x 10
−3

hi
p 

ya
w

(r
ad

)

0 2 4 6 8 10 12
0.5

1

1.5

kn
ee

(r
ad

)

0 2 4 6 8 10 12
−1

−0.5

0

an
kl

e 
pi

tc
h

(r
ad

)

0 2 4 6 8 10 12
−1

−0.5

0

an
kl

e 
ro

ll
(r

ad
)

Time (s)

Figure 6.6: The joint angle trajectories of the hip, knee and ankle joints of the right leg

ground reaction force on the right foot is shown in Fig. 6.7. The upper graph shows

the ground reaction forces acting on the toe and heel of the right foot while the lower

graph shows the total ground reaction force (at toe and heel) acting on the foot. The

resulting hip velocity is shown in Fig. 6.8. Fig. 6.9 shows the stick diagram of 3D

walking motion. The images are captured at 0.08s apart.

6.2 Improve Stability Margin Using Ankle Roll Strategy

In Chapter 5 the Ankle Pitch Strategy was successfully used to improve stability margin

in the sagittal plane walking. In this section, similar control strategy is applied to control
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Figure 6.7: The ground reaction force acting on the right foot
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Figure 6.8: The joint angle trajectories of the hip, knee and ankle joints of the right leg
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Figure 6.9: The stick diagram of 3D walking motion. The images are captured at 0.08s
apart. The direction of walking is the same as the arrow direction in the figure

the motion in the frontal plane.

In the frontal plane, the roll angle of the ankle joint is used to control the ZMP position.

The roll angle of the ankle joint is controlled based on the ground reaction force infor-

mation (see Fig. 6.10). At the bottom of each foot there are four force sensors (two at

the toe and two at the heel) used to measure the ground reaction force. In the sagittal

plane, the reaction forces are as shown in Fig. 5.25 where Fout is the total reaction force

at the outer toe and the outer heel and Fin is the total reaction force at the inner toe and

the inner heel. If the reference coordinate system is placed at the outer edge of the foot

as shown in Fig. 6.10, the location of the COP (or ZMP) can be determined as follows:

yZMP = yCOP =
Fin ∗d f

Fin +Fout
(6.3)
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where yZMP, yCOP are the lateral location of the ZMP and COP, respectively; d f is the

width of the foot.

The control objective is to make the ZMP stays as close to the middle of the foot (y =

d f /2) as possiblie. This can be achieved by applying the following controller:

θar = θ re f
ar +δθar = θ re f

ar +Kar(Fout −Fin) (6.4)

where θar is the ankle joint’s roll angle to be controlled, θ re f
ar is the reference ankle

joint’s roll angle computed based on the reference trajectory, δθar is the compensation

amount added to the ankle joint’s roll angle to control the ZMP, Kar is the ankle roll

gain.

The controller in (5.16) is applied to the same repetitive walking simulation presented

in Section 5.6.1 to check the effectiveness of the proposed controller. The ankle roll

gain Kar = 0.015 is determined by trial and error. Fig. 6.11 shows a comparison of

ZMP trajectories obtained with and without applying the proposed ankle roll strategy.

It can be seen from the figure that the ZMP trajectory obtained with ankle roll strategy

stays closer to the foot-centered line which implies a higher stability margin achieved.

This result proves the effectiveness of the proposed ankle roll controller. In this method,

choosing the right gain Kar is important. If the chosen gain is not good, it may lead to

even worse result. However, the good news is that since there is only one parameter to

be tuned, it can be easily determined using a few trial and error steps.

Simulation results show that it is possible to improve stability margin by adjusting the
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Figure 6.10: Ankle roll compensation
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Figure 6.11: Comparison of ZMP trajectories in two cases: with and without applying
the ankle roll control strategy

ankle joint. Although controlling the ankle joint is just a local method, it does help to

improve stability of bipedal walking.

6.3 Summary

In this chapter, the 3D walking algorithms were established based on the assumption

that the motions in the sagittal, frontal and transverse planes could be independently

considered. The successful implementations of the algorithms indirectly validated this

assumption and the proposed method.

In Section 6.1, the planning of the hip trajectory in the frontal plane was presented. The

proposed model ALIP was again used to plan the hip trajectory. Genetic algorithm was
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also used to find the optimal parameters kp and kv in the frontal plane. Simulation results

demonstrate that the proposed ALIP method was successfully applied for 3D walking

pattern generation. In addition, the results also show that the proposed ALIP model

yields better results (generate more stable walking gaits) compared to the LIPM and

GCIPM models.

Section 6.2 illustrated how one could utilize the ankle joint angles to control the ZMP

and hence improve stability margin. A simple controller based on the ground reaction

force information was proposed to adjust the ZMP (or COP) position. The objective

of the controller is to move the ZMP as close to the middle of the foot as possible.

Successful implementation of the controller shows that the ankle joints can actually be

used to improve walking stability.
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Chapter 7

Online Walking Motion in Sagittal

Plane

7.1 Introduction

In Chapter 5 and 6, the walking motions are planned offline. Offline planning means that

the walking gait is planned beforehand and is then played back without any adjustment

to the gait. This method is still used to generate walking motion for many humanoid

robot nowadays. The offline planning method works fairly well in the condition that the

walking terrain is flat, well known with little or no external disturbance affecting the

biped robot. However, when the walking terrain is uneven and the external disturbance

is large and uncertain, the offline walking trajectory is not suitable anymore. In this

study, we aim to develop a walking algorithm that is able to adapt better to changes in
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walking environment. And the robot should have the ability to compensate for large

external disturbances. In order to adapt well with the changes in walking environment,

the robot controller must take sensor feedbacks and use it to adjust the walking gait

during walking process. A walking algorithm that is able to automatically adjust the

walking gaits during walking process to adapt with the changes in walking condition is

called online walking algorithm.

In bipedal walking, stability of walking (or the ability to maintain balance without

falling down) is probably the most important issue to be solved. There have been many

bipedal research works addressing the stability issue. Bipedal researchers proposed var-

ious strategies to attain walking stability. It is widely accepted by many researchers in

both robotics and biomechanics that there are generally three strategies for maintaining

bipedal walking balance. For small disturbances, the strategy is to control the center of

pressure (CoP) by controlling the ankle joint (therefore this strategy is also called ankle

strategy). For larger disturbances where the ankle strategy is not effective anymore, the

second strategy called hip strategy is used. In the second strategy, a moment is cre-

ated about the center of mass (CoM) to compensate for disturbances. The compensated

moment is created by controlling the hip joints therefore this strategy is called the hip

strategy. For even larger disturbances, the strategy is to take an appropriate step in order

to maintain balance.

In this thesis, we are interested in creating trajectories that can tolerate large distur-

bances. To achieve this objective it is suggested that the third strategy (taking a step)

should be used. Taking an appropriate step would greatly help to capture balance. In-
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deed, during the process of walking, if encountered by disturbances, the robot must

decide how far and how fast the swing leg should take a step in order to capture balance.

If the step length is constant, the robot must take a faster step when the body’s velocity

is increased and a slower step when the body’s velocity is decreased in order to capture

balance. If the step time is constant, the robot must take a longer step when the body’s

velocity is increased and a shorter step when the body’s velocity is decreased. There-

fore, it is critical to know how fast (step time) and how far (step length) the step is so

that the robot could maintain balance with highest stability margin.

7.2 Online Walking Algorithm

As mentioned in Section 7.1, in this thesis we aim to develop a walking algorithm that

is able to control the desired walking speed and tolerate large external disturbances.

Based on the observations of human walking and previous research works [63, 60], it

is agreed that in order to maintain balance under large disturbances, the swing leg must

take one or several steps to compensate for the sudden change in momentum caused by

the disturbances. The key question is ”what is the best (or optimal) way to take a step?”

There can be several answers to this question depending on which criteria being used.

If energy consumption is the first priority then minimization of energy consumption can

be used as a criterion to decide the next step of walking. If stability is the first priority

then maximization of stability margin can be used as a criterion.

To decide the next walking step, there are two parameters to be determined which are
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step length S and step time T . There are three scenarios for determining the step length

and step time. In the first scenario, the swing time is fixed and the step length is to be

determined such that the walking criterion is optimized. This scenario happens when

the actual foot placement or step length is not important (such as in the case of level

ground walking). In the second scenario, the step length is fixed and the step time is

to be determined. For this case, the actual foot placement or step length is important

(such as in the case of walking on stairs or stepping stones...). In the third scenario, the

two parameters step length and step time are to be determined at the same time. This

scenario is more flexible and can be applied to many types of terrains. The simulation

of these three scenarios are similar, therefore, in this thesis we only consider the second

scenario as a demonstration of the proposed method.

In biped walking, two important state variables are the position (x) and velocity (ẋ or

v) of the center of mass (COM). Therefore, these two state variables will be used to

determine the next walking step in our method. Figure 7.1 shows one step walking in

the sagittal plane. The body travels from A to B according to the following equations

(based on ALIP model):

x(t) =





r2er1t−r1er2t

r2−r1
xi + er2t−er1t

r2−r1
ẋi, if ∆ > 0

[ert − rtert ]xi + tert ẋi, if ∆ = 0

[cos(β t)− α
β sin(β t)]eαtxi +

sin(β t)
β eαt ẋi, if ∆ < 0

(7.1)
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Figure 7.1: One sample step of walking in the sagittal plane is illustrated. The body
travels from A to B while the swing foot travels from C to D. xi, vi are the initial position
and velocity of the COM, respectively. x f , v f are the final position and velocity of the
COM, respectively. S is the step length.

ẋ(t) =





r1r2(er1t−er2t)
r2−r1

xi + r2er2t−r1er1t

r2−r1
ẋi, if ∆ > 0

−tr2ertxi +(1+ rt)ert ẋi, if ∆ = 0

−α2+β 2

β sin(β t)eαtxi +[cos(β t)+ α
β sin(β t)]ert ẋi, if ∆ < 0

(7.2)

where kp and kv are real constants. b = −kv, c = −kp− g
zo

and ∆ = b2− 4c; zo is the

constant height of the COM; xi and ẋi are the initial horizontal position and velocity

of the COM at the start of the step, respectively; x(t) and ẋ(t) are the final horizontal

position and velocity at time t.
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It is desirable to have a function that is able to predict the next walking step based on the

current walking states. We call such a function the Foot Placement Indicator (FPI).

The FPI would determine the next step based on a defined criteria. Since stability is

the most critical factor in biped walking, it is chosen as the criterion guiding the Foot

Placement Indicator. The function FPI must be able to determine the next step quick

enough for online walking.

The inputs of the Foot Placement Indicator are the state variables xi and ẋi. The outputs

of the FPI are dependant on the scenarios. For instance, if the step length is fixed (sce-

nario 1), the outputs will be the step time T and the parameters kp, kv. If the step time

is fixed (scenario 2), the outputs will be the step length S and the parameters kp and kv

(see Fig. 7.2).

The construction of the Foot Placement Indicator will be presented in details in the next

section. For now, let’s assume that the Foot Placement Indicator is available. Fig. 7.3

shows the diagram of the proposed online walking algorithm. The inputs to the Foot

Placement Indicator (FPI) are the position xi and velocity ẋi of the robot’s COM, which

are the feedback information taken from the sensors of the robot. The outputs of the FPI

are the step time T and the parameters kp, kv. The hip trajectory and foot trajectory of

the next walking step can be determined once the input parameters (which are T , kp, kv,

xi and ẋi) are known. Once the hip and foot trajectories in Cartesian space are known,

an Inverse Kinematics is required to compute the desired joint angle trajectories. And

these joint angles information will be used by the position controller to control the robot.

It can be seen from the diagram that the hip and foot trajectories are generated online
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Figure 7.2: Foot Placement Indicator
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Figure 7.3: Diagram of the Proposed Online Walking Algorithm
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based on the updated states of walking (xi and ẋi). In this algorithm, the robot is able

to compensate for external disturbances without knowing the magnitude, location and

direction of the external disturbances. The algorithm only needs to know the position

and velocity of the robot’s COM to determine the next walking step.

In the next section, the construction of the Foot Placement Indicator will be presented

in details.

7.3 Foot Placement Indicator (FPI)

7.3.1 Formulation of the FPI

As mentioned in the previous section, the Foot Placement Indicator (FPI) is an important

part of the proposed online walking algorithm. The function of the FPI is to decide the

next walking steps (how far and how fast to take the next step) during the walking

process based on the current states of the biped robot. The inputs and outputs of the FPI

are shown in Fig. 7.2. In order for the FPI to determine the next walking step, there must

be a criterion guiding it. There are usually a few common ways to choose the guiding

criterion. It can be minimization of energy consumption, or maximization of stability

margin or minimization of applied joint torques or the combination of these criteria.

If energy consumption is the most important factor then the criterion can be minimiza-

tion of energy consumption. If stability is the most important factor then maximization

of stability margin can be used as the guiding criterion. If joint torques applied at the
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joints are of important concern then minimization of applied joint torque can be used as

the guiding criterion.

In this study, our objective is to design a good walking trajectory that is highly stable

and can compensate for large external disturbances. This suggests that stability issue

would be the most important factor. Therefore, in this study, maximization of stability

margin is chosen to be the guiding criterion of the Foot Placement Indicator.

When the step length is fixed (scenario 1), the inputs of the FPI are xi and ẋi and the

outputs are T , kp and kv (see Fig. 7.2). Since there is no clear analytical relation between

the outputs and the inputs, the optimal values of the outputs (T , kp and kv) will be

determined using genetic algorithm (GA). The cost function of the GA algorithm is as

follows:

Ω = Max{
∣∣xmin

zmp−d
∣∣ ,

∣∣xmax
zmp−d

∣∣}+w
∣∣v f − vd

∣∣ (7.3)

where Ω is the cost function; d is the horizontal distance measured from the ankle joint

to the middle point of the foot; xmin
zmp, xmax

zmp are the minimum and maximum ZMP position

in one walking step, respectively (see Fig. 5.11); w is the weighting factor; v f is the

velocity of the COM at the end of walking step; vd is the desired velocity of the COM.

Our objective is to have a trajectory that has maximum stability margin. In order to

maximize stability margin, the cost function Ω must be minimized. Since in genetic

algorithm, the fitness function is always being maximized, the fitness function can be
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formulated as follows:

Φ =
1

Ω+δ
=

1
Max{

∣∣xmin
zmp−d

∣∣ ,
∣∣xmax

zmp−d
∣∣}+w

∣∣v f − vd
∣∣+δ

(7.4)

where δ is a constant positive number to ensure that the fitness function Φ is always

definite even when the cost function Ω is zero. With the proposed fitness function, the

genetic algorithm would maximize stability margin and control the velocity to a desired

one (vd) at the same time.

For each set of input (xi, ẋi), GA will find a corresponding set of output (T , kp, kv) that

maximizes the fitness function. We are interested to know whether the output is unique

for a given set of input. The answer can be found by repeatedly running the GA many

times (say 100 times) with different parameters used (e.g. crossover and mutation rates,

population size) for a given set of input. In addition, to make sure that the algorithm

does not end up with a local optimal solution, the size of the initial population should

be chosen large enough. If the output is the same for all the times, it means that there is

only one unique set of optimal output for a given set of input. We have done this checks

for a large range of input data and found that for a given set of input, there is only one

set of optimal output.

The purpose of building the Foot Placement Indicator (FPI) is that for any given set

of input (xi, ẋi), the FPI would be able to analytically compute the output (T , kp and

kv). However, deriving the analytical relation between the output and the input in a

direct way is impossible due to the highly complex and non-linear nature of the rela-
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tion. Therefore, we propose to use interpolation technique to find the analytical relation

between input and output. Each output parameter is considered as a function of the

input parameters. This means that the output parameters can be described as follows:

T = f1(xi, ẋi), kp = f2(xi, ẋi), kv = f3(xi, ẋi). The functions f1, f2 and f3 are constructed

using interpolation technique. Since f1, f2 and f3 each has two variables, we will use

the Tensor Product Splines to construct these functions. Tensor Product Splines is an

popular and effective way to construct two-variable functions. In the next section, the

Tensor Product Splines approach will be presented.

7.3.2 Tensor Product Splines

The problem of function estimation for a two-variable function can be described as

follows: given values zr, r = 1, ...,m, of the independent variable z, corresponding to

values (xr,yr) ∈ D, r = 1, ...,m, of the independent variables x and y, fit to the zr a

function z(x,y) := z(x,y;θ) of known form but containing a vector θ of n disposable

parameters, to be determined such that z(xr,yr)' zr. It is noted that the functional form

of z(x,y) is assumed immaterial.

In this thesis, tensor product splines [12] was used to obtain function approximation.

The tensor product splines is defined as follows: Consider the strictly increasing se-

quences a = λ0 < λ1 < · · ·< λg < λg+1 = b and c = µ0 < µ1 < · · ·< µh < µh+1 = d.

The function s(x,y) is called a bivariate (tensor product) spline on R = [a,b]× [c,d],

of degree k > 0 in x and l > 0 in y, with knots λi, i = 0,1, ...,g + 1, in the x-direction
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and µ j, j = 0,1, ...,h + 1, in the y-direction. The dimension of tensor product spaces

is dim(ηk,l) = (g + k + 1)(h + l + 1). By introducing additional boundary knots λ−k ≤

λ−k+1≤ ··· ≤ λ−1≤ λ0 = a; b = λg+1≤ λg+2≤ ··· ≤ λg+k ≤ λg+k+1 and µ−l ≤ µ−l+1≤

· · · ≤ µ−1 ≤ µ0 = c; d = µh+1 ≤ µh+2 ≤ · · · ≤ µh+l ≤ µh+l+1 every spline s(x,y) ∈ ηk,l

then has a unique representation

s(x,y) =
g

∑
i=−k

h

∑
j=−l

ci, jNi,k+1(x)M j,l+1(y) (7.5)

where the Ni,k+1 and M j,l+1 are the normalized B-splines defined on the λ and µ knot

sequences respectively. The B-splines Ni,k+1 is as follows

Ni,k+1(x) = (λi+k+1−λi)
k+1

∑
j=0

(λi+ j− x)k
+

Πk+1
l=0
l 6= j

(λi+ j−λi+l)
(7.6)

where

(λi+ j− x)k
+ =





(λi+ j− x)k, if λi+ j ≥ x,

0, if λi+ j < x,

(7.7)

The B-splines M j,l+1 is computed in the same way as Ni,k+1.

The coefficients ci, j of the B-splines are determined using the Least-squares optimiza-

tion method. The algorithm minimizes the following index

δ̃ =
m1

∑
q=1

m2

∑
r=1

(zq,r− s(xq,yr))2 (7.8)
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The tensor product splines combined with the least squares optimization method will be

used to compute the functions f1, f2, f3 of the Foot Placement Indicator.

7.3.3 Computation of the FPI

In this section, the tensor product splines will be used to compute the output parameters

of the FPI. The input parameters of the FPI are xi and ẋi. The output parameters of the

FPI are T (step time), kp and kv. For a given set of input (xi, ẋi), there is a corresponding

set of optimal output (T , kp, kv).

The relation between the output parameters and the input parameters are described as

T = f1(xi, ẋi), kp = f2(xi, ẋi), kv = f3(xi, ẋi). The functions f1(xi, ẋi), f2(xi, ẋi), f3(xi, ẋi)

are estimated using the function approximation method in (7.5). In order to apply the

formula in (7.5), the data values of input parameters are specified at the nodes of a

rectangular mesh, i.e. the data values zq,r is corresponding to data points (xq,yr), q =

1, ...,m1; r = 1, ...,m2.

Genetic algorithm (GA) was used to find the optimal value of the output parameters.

The fitness function of the GA is as shown in (7.4). The desired velocity at the end

of each step is chosen to be vd = 0.8m/s. For scenario 1, the step length is fixed at

S = 0.35m. The ranges of the input parameters are chosen big enough to compensate

for large external disturbances. In this thesis, the ranges of xi and ẋi are chosen as

follows: −0.26≤ xi ≤ 0.0 and 0.3≤ ẋi ≤ 1.4. These ranges were chosen to satisfy two

conditions: (1) must be able to compensate for large disturbances and (2) maintain the
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gracefulness of the walking posture. The optimal value of kp obtained using GA are

presented in tables 7.1, 7.2 and 7.3. For each table, the bolded leftmost column is the

value of xi, the bolded first row is the value of ẋi. The rest of the data is the value of kp

corresponding to xi and ẋi. For instance, in Table 7.1, when xi =−0.11 and ẋi = 0.4, we

have kp = 2.414.

Since the range of the initial velocity (0.3 ≤ ẋi ≤ 1.4) is quite big, there will be cases

where the difference between initial velocity and the desired velocity vd is too big (say

when xi = 0.3 and vd = 0.8). It is not recommended to have a trajectory where the initial

velocity is too far from the desired one in one walking step. Therefore, the velocity range

is divided into three parts: part 1 (ẋi ≤ 0.5), part 2 (0.5≤ ẋi ≤ 1.2) and part 3 (1.2≤ ẋi).

Part 2 is closer to the desired velocity and part 1, 3 are farther to the desired velocity. To

obtain a smooth walking motion, the following strategy is adopted:

• if the initial velocity xi falls into part 1 (or part 3), then it would take two steps

to achieve the desired walking speed (vd = 0.8m/s). The first step tries to control the

velocity (v f ) to a value in part 2 (but close to part 1 (or part 3) to make sure the difference

between the initial velocity and velocity at the end of each step is not too big). The

second step tries to control the body velocity to the desired velocity.

• if the initial velocity xi falls into part 2, it would take only one step to achieve the

desired walking speed.

To compute the parameter kp as function of the parameters xi and ẋi, the interpolation

technique using tensor product splines was used. Applying Equation (7.5), the parame-
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Table 7.1: Optimal value of Kp obtained when −0.17≤ xi ≤ 0.0 and 0.3≤ ẋi ≤ 0.5

ẋi
0.3 0.35 0.4 0.45 0.5

xi

-0.17 -4.325 -3.521 -1.971 -1.048 -0.3773
-0.14 -3.051 -1.656 -0.4725 1.432 2.26
-0.11 -1.264 0.895 2.414 3.86 5.051
-0.08 2.601 4.788 6.128 8.864 9.989
-0.05 8.988 11.94 13.26 13.6 13.86
-0.02 14.57 22.05 22.4 20.91 19.96
0.00 33.05 34.82 34.29 32.68 29.16

Table 7.2: Optimal value of Kp obtained when −0.26≤ xi ≤ 0.0 and 0.5≤ ẋi ≤ 1.2

ẋi
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

xi

-0.26 -2.431 -0.9 1.017 3.103 4.729 5.701 6.897 6.194
-0.23 -1.179 1.212 3.034 4.851 6.16 6.873 6.888 6.731
-0.2 0.2527 3.513 5.271 6.634 7.801 7.943 7.44 7.518
-0.17 2.828 5.764 7.239 8.382 8.91 8.753 8.641 8.758

-0.155 4.475 6.56 8.165 9.282 9.641 9.619 9.597 9.766
-0.14 6.009 7.84 9.256 9.906 10.37 10.63 10.96 10.82

-0.125 7.231 9.099 10.36 11.13 11.56 11.99 12.14 12.17
-0.11 8.674 9.261 11.87 12.38 12.99 13.35 13.7 14.13

-0.095 10.03 12.21 13.58 14.06 14.66 14.8 15.59 15.83
-0.08 12.4 14.23 15.34 16.21 16.78 17.55 18.18 19.16

-0.065 14.76 16.66 18 18.99 19.04 19.96 20.97 22.21
-0.05 18.18 20.01 21.2 22.2 22.74 24.33 25.45 25.34
-0.02 28.44 30.4 31.47 32.03 32.78 34.18 34.49 35.76
-0.00 43.65 43.98 41.77 44.14 45.82 46.26 39.08 41.04
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Table 7.3: Optimal value of Kp obtained when −0.26≤ xi ≤ 0.0 and 1.2≤ ẋi ≤ 1.4

ẋi
1.2 1.25 1.3 1.35 1.4

xi

-0.26 7.957 8.341 8.231 8.967 9.983
-0.23 8.838 9.656 10.81 11.08 10.98
-0.2 11.12 11.67 13.49 13.37 12.99

-0.17 14.9 16 16.49 16.49 17.27
-0.155 17.07 17.16 18.06 18.9 18.94
-0.14 18.72 20.39 20.77 20.83 21

-0.125 20.3 22.78 22.84 22.72 23.6
-0.11 24.14 24.85 25.74 26.22 26.36

-0.095 28.47 29.31 29.83 30.17 30.23
-0.08 33.71 34.32 35.08 33.53 34.78

-0.065 38.04 39.55 41.1 38.75 40.66
-0.05 44.12 45.81 47.92 40.89 38.59
-0.02 45.2 51.79 48.9 46.38 48.79
0.00 48.59 55.62 52.41 49.42 42.02

ter can be written in the same form

kp(xi, ẋi) =
g

∑
i=−k

h

∑
j=−l

ci, jNi,k+1(ẋi)M j,l+1(xi) (7.9)

where M j,l+1 and Ni,k+1 are computed using (7.6); the coefficients ci, j are determined us-

ing the least-squares optimization method. Cubic splines were chosen for the B-splines

(k=4, l=4).

The interpolation result for kp = f2(xi, ẋi) is follows:

• if ẋi ≤ 0.5 (part 1)

k1
p(xi, ẋi) =

3

∑
i=−4

1

∑
j=−4

Ckp1
i, j Ni,k+1(ẋi)M j,l+1(xi) (7.10)
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Figure 7.4: Kp as a function of xi and ẋi (part 1)

where

Ckp1
i, j =




−4.3250 −4.4399 −1.2617 −0.9207 −0.3773

−3.4950 −1.6047 −5.3038 4.5243 2.1657

−2.4993 −1.7503 4.2647 −0.4068 2.2424

1.3654 4.8748 1.5194 12.1031 10.3849

12.7725 11.9353 18.1202 13.0058 14.2879

8.4961 23.6004 21.3204 18.2375 18.9124

33.0500 35.3817 34.6683 32.4417 29.1600




(7.11)

The plot of k1
p is shown in Fig. 7.4.

• if 0.5≤ ẋi ≤ 1.2 (part 2)

k2
p(xi, ẋi) =

10

∑
i=−4

4

∑
j=−4

Ckp2
i, j Ni,k+1(ẋi)M j,l+1(xi) (7.12)
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where

Ckp2
i, j =




−2.4310 −1.5863 0.1711 3.1457 4.9498 5.7543 7.9417 6.1940

−1.4557 0.2903 1.1622 4.1485 5.0796 6.5581 7.2294 6.3633

−0.9356 1.2388 3.6270 6.0939 7.8632 8.5845 5.4281 7.1631

1.6713 5.3812 6.5587 7.3747 8.6375 7.6700 8.5474 8.0188

4.0489 5.8284 7.0435 9.6696 9.5258 9.4380 8.7372 9.5081

6.0401 6.5085 9.5773 9.4557 10.3296 10.3251 11.5247 10.7244

7.0963 10.1504 9.5242 11.4125 11.3929 12.3529 11.8433 11.9291

8.8036 4.8199 13.0808 11.9136 13.1256 13.5789 13.6657 14.3774

9.7274 12.7970 13.6799 13.8698 14.8832 13.6947 16.5864 15.3311

12.7255 13.7913 14.8094 16.3106 16.8583 18.8296 18.0967 19.6332

14.9822 16.8023 18.1233 20.1442 18.7768 20.1772 21.6188 22.8228

22.2938 23.5696 23.7421 25.1803 27.0873 32.2310 31.4982 28.2469

28.6891 29.9498 34.6247 33.2311 33.0643 34.1135 36.8177 39.5136

43.6500 47.2123 38.9252 44.7093 45.4627 49.5008 31.4771 41.0400




(7.13)

The plot of k2
p is shown in Fig. 7.5.

• if ẋi ≥ 1.2 (part 3)

k3
p(xi, ẋi) =

10

∑
i=−4

1

∑
j=−4

Ckp3
i, j Ni,k+1(ẋi)M j,l+1(xi) (7.14)
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Figure 7.5: Kp as a function of xi and ẋi (part 2)

where

Ckp3
i, j =




7.9570 8.7813 7.3493 9.4440 9.9830

8.0675 12.4290 9.6785 9.6201 11.3167

9.4007 2.7864 14.6557 12.8726 9.9143

13.2441 17.2523 17.2937 12.8513 16.3351

16.6716 14.7269 16.6929 19.4530 18.4070

18.8278 20.5103 21.2811 20.6789 20.6744

19.6092 24.0120 22.1707 21.9380 23.6400

24.2654 23.1174 26.4740 26.1436 26.0331

28.1608 29.8736 28.6581 31.4567 30.3961

34.5469 32.9975 39.2186 30.0745 34.2328

38.2142 38.8518 45.6566 38.8221 44.7736

53.1822 44.7952 77.9440 26.2867 28.2728

40.2251 61.0931 30.2047 54.2850 62.6457

48.5900 59.8528 49.7483 50.2906 42.0200




(7.15)
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Figure 7.6: Kp as a function of xi and ẋi (part 3)

The plot of k3
p is shown in Fig. 7.6.

The results of the functions T(xi, ẋi) and kv(xi, ẋi) are presented in the Appendix.

7.4 Simulation Results

7.4.1 Online Level Walking With No Disturbance

In this section, simulation results of the online level walking in the sagittal plane is

presented. In this experiment, it is assumed that there is no disturbance during the

process of walking. The specifications of the simulated biped were taken from the biped

HUBIRO(see Fig. 1.1). Yobotics (http://yobotics.com/), a dynamic simulator, was used

to simulate the walking algorithm.

The simulation is done with the following input parameters: the desired step length
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is S = 0.35m (scenario 1), the desired velocity at the end of each step is vd = 0.8m/s.

Since the step length is fixed, the inputs to the Foot Placement Indicator are xi and ẋi and

the outputs to be determined are the step time Ti and the parameters kp and kv. Applying

the proposed algorithm shown in Fig. 7.3, the online walking motion was successfully

achieved. Firstly, the Foot Placement Indicator (FPI) function is built in advance by

using the Tensor Product Spline interpolation technique. The construction of the FPI

function is done off-line. The FPI function is in analytical form, therefore, it can give

the output almost instantaneously which is suitable for real-time simulation.

Fig. 7.7 shows the simulation data of the obtained online walking motion where Ti is the

time of one walking step computed by the FPI, ẋhip is the resulting velocity profile of the

hip, xre f
hip is the computed reference hip trajectory which is updated every walking step,

xi is the measured position of the COM at the beginning of each step, ẋi is the measured

velocity of the COM at the beginning of each step. It can be seen from the figure that

the velocity at the end of each step (v f ) is close to the desired velocity (vd
f = 0.8m/s).

Unlike the off-line walking motion where the reference trajectory is fixed, in this on-

line walking simulation the reference trajectory of each step is computed based on the

feedback information (xi and ẋi) therefore the reference trajectory is more adaptive to

environment changes. The step time Ti of each step ith is also changing from step to

step depending on the states of walking. Fig. 7.8 shows the resulting ZMP trajectory

of the obtained walking motion. It can be seen from the figure that the ZMP trajectory

stays very close to the middle of the stable region which means that the stability margin

is very close to the maximum value. Therefore, it can be concluded that the obtained
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Figure 7.7: The obtained simulation data for online walking motion without external
disturbance
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Figure 7.8: The resulting ZMP trajectory of the online walking simulation. The thick
solid curve is the upper bound of the stable region, the dashed curve is the lower bound
of the stable region and the thin solid curve is the ZMP trajectory.

walking motion has a high degree of stability. Fig. 7.9 shows the joint-angle trajectories

of the online walking robot. The stick diagram of the walking motion is shown in Fig.

7.10.

7.4.2 Online Level Walking Under Disturbance

In the previous section, the effectiveness of the proposed online walking algorithm was

presented through the simulation results of walking motion on flat terrain without ex-

ternal disturbance. In this section, to examine the robustness of the proposed walking

algorithm, the walking robot is put under large external disturbance.

The input parameters are kept the same as in the previous section i.e. the desired step

length is S = 0.35m, the desired velocity at the end of each step is vd = 0.8m/s. Let’s
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Figure 7.9: The joint-angle trajectories of the online walking robot
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Figure 7.10: The stick diagram of the obtained online walking motion. The images are
captured at 0.04 s apart. Only the right leg is shown.
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Figure 7.11: Disturbance force Fd acting on the robot’s trunk

call the external disturbance force Fd acting on the robot’s trunk in the duration of ∆Td

seconds (Fig. 7.11). For a given value of ∆Td , there is a maximum value of Fd that

the robot can tolerate without falling down. Table 7.4 shows the maximum value of the

disturbance force allowed for various time period ∆Td . From the table, it can be seen

that the longer the disturbance time, the smaller the disturbance force the walking al-

gorithm can compensate. This suggests that disturbance effect on a walking robot not

only attributed to the magnitude of disturbing force but also the duration of disturbance.

In other words, disturbance effect is caused by a combination of disturbing force and

the duration of disturbance (Disturbance effect = Fd ∗∆Td = Change of linear momen-

tum). Therefore, to determine whether a disturbance is large or small we use the change

in linear momentum as a measure. A disturbance is considered ”large” if the change

in momentum caused by the disturbance is equal or greater than 50% of the walking

robot’s momentum. In this section, detailed results of the case when ∆Td = 0.5s will be

presented.
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Figure 7.12: The obtained simulation data for online walking motion under external
disturbance Fd = 75N during a period of ∆Td = 0.5s. The duration of disturbance is
indicated using two vertical lines as shown in the figure

Table 7.4: Maximum disturbance force Fmax
d allowed for different period of time ∆Td

∆Td 0.1 0.2 0.3 0.4 0.5
Fmax

d 310 165 115 92 75
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Figure 7.13: The resulting ZMP trajectory of the biped walking robot under disturbance
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Figure 7.14: The resulting joint angle trajectories of the biped robot under disturbance
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Figure 7.15: The stick diagram of the online walking motion under large disturbance.
Images are captured at 0.04s apart. Online the right leg is shown.

As shown in table 7.4, when ∆Td = 0.5s the maximum disturbance force that the robot

can compensate is Fmax
d = 75N. This means that the proposed walking algorithm can

compensate for the change in momentum (caused by the disturbance) of ∆Pd = Fd ∗

∆Td = 75 ∗ 0.5 = 37.5Nm/s. Whereas the momentum of the walking robot is P =

m∗ v̄ = 86.59∗0.4 = 34.63Nm/s (v̄ = 0.4m/s is the average velocity). We have ∆Pd/P =

37.5/34.63 = 1.08 = 108%. This means that the change in momentum caused by the

external disturbance is 108% times greater than the robot’s momentum. Therefore, we

can conclude that the proposed walking algorithm can compensate for fairly large exter-

nal disturbance. Fig. 7.12 shows the obtained simulation data for online walking motion

under external disturbance Fd = 75N during a period of ∆Td = 0.5s. It can be seen from

the figure that right after the disturbance the velocity increases almost double and the

stepping time Ti reduces sharply (almost one half). This result makes sense because

after disturbance the velocity increases a lot and when the body’s velocity increases the
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robot must take faster step (shorter step time) in order to catch up with body’s velocity.

It can also be referred from the figure that after about two walking steps the robot is able

to return to desired velocity profile.

Figure 7.13 shows the resulting ZMP trajectory of the biped walking under disturbance.

It can be seen that the ZMP always stay inside the stable region and the stability margin

reduces during and just after disturbance. After disturbance the robot is able to maintain

a high stability margin walking motion as can be seen from the figure. Fig. 7.14 shows

the joint angle trajectories of the bipedal walking under disturbance. The stick diagram

of the online walking motion under disturbance (Fd = 75N, ∆Td = 0.5s) is shown in

Fig. 7.15. From this figure we can see clearly how the walking gait changes when

disturbance occurs.

7.5 Summary

In this chapter, the proposed Augmented Linear Inverted Pendulum (ALIP) model was

used to generate online walking motion. Our objective is to generate a robust walking

algorithm that is able to regulate walking speed and tolerate large disturbances. To serve

this objective, a function called Foot Placement Indicator (FPI) was proposed. The role

of the FPI is to decide the next walking step based on current walking states so that the

walking robot could maintain balance and walking speed even under large disturbance.

The inputs of the FPI are the position (xi)and velocity (ẋi) of the COM at the beginning

of each step. For the outputs of the FPI, there are two cases. If the step length is fixed,
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the outputs are the step time T , and the parameters kp, kv. If the step time is fixed, the

outputs are the step length S and the parameters kp, kv. The FPI is constructed using the

Tensor Product Splines combined with the least square optimization method. Each of

the output parameters are considered as a function of the input parameters (xi and ẋi).

The proposed online walking algorithm was successfully applied to the simulation of a

life-sized biped robot named HUBIRO in sagittal plane. The first simulation was done

for normal walking condition on flat terrain. Simulation results show that a smooth and

highly stable walking motion was obtained. For each walking step, the FPI quickly com-

pute the optimal value of the parameters kp, kv and the step time T based on the walking

states xi, ẋi. In the second simulation, the walking robot was put under large external

disturbance to test the robustness of the algorithm. An external disturbance force Fd was

applied to the COM of the robot from behind in a period of ∆Td seconds. Simulation

results show that the proposed walking algorithm is able to compensate for a maxi-

mum disturbance force Fd = 75N applied in a period of ∆Td = 0.5s. This disturbance

is considered large because it causes a 108% change in linear momentum of the walk-

ing robot. This disturbance caused a double increase in velocity at the end of disturbed

period. Simulation result shows that the biped robot adapts well with this disturbance

by computing the appropriate stepping time to capture balance and quickly bring the

robot to normal walking condition (after one walking step). When the disturbed time

is reduced to ∆Td = 0.1s, the proposed walking algorithm is able to compensate for a

maximum disturbance force of Fd = 310N.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

The ultimate purpose of this thesis is to introduce a simple yet effective dynamic model

for biped walking. One popular simple biped model used widely by many researchers is

the Linear Inverted Pendulum Mode (LIPM). Unfortunately, in this model the dynamics

of the legs (arms) was not considered. This thesis tried to analyze the effects of the

dynamics of the legs on the whole robot dynamics. Simulation results show that the

effect of the legs is significant especially when the leg’s mass is big or when the swinging

speed is high.

This thesis proposed a new model for bipedal walking called ”The Augmented Linear

Inverted Pendulum (ALIP)”. In this model, an augmented function F is added to the

dynamic equation of the Linear Inverted Pendulum. The role of the augmented function
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is to improve the inverted pendulum dynamics by indirectly incorporating the dynam-

ics of the arms, legs, heads, etc into the dynamics equation. The inverted pendulum

dynamics can be easily adjusted or modified by changing the key parameters of the

augmented function. Genetic algorithm is used to find the optimal value of the key pa-

rameters of the augmented function. Our objective is to design a walking pattern that

has the highest stability margin possible. Stability margin is computed based on the

Zero-moment-point (ZMP) information. The proposed ALIP model was used to gener-

ate off-line walking pattern for biped robot in 2D and 3D walking. Simulation results

show that the proposed ALIP model is able to generate highly stable walking patterns.

The walking patterns generated using the proposed approach is more stable than that

generated using the LIPM model and GCIPM (an improved version of the LIPM).

To further improve the stability margin, an ankle control strategy was proposed. In this

strategy, the ankle joint is controlled such that the ZMP stays as close to the middle point

of the supporting foot as possible. This is obtained by adjusting the ankle pitch and roll

angles based on the ground reaction force information so that the difference between the

ground reaction force at the heel and toe is minimized. Simulation results show that the

proposed method is effective in increasing the stability margin of the bipedal walking

robot.

The proposed ALIP model was also successfully applied to generate online walking

motion in sagittal plane. The online walking algorithm comprises of a proposed function

called the Foot Placement Indicator (FPI). The Foot Placement Indicator (FPI) is an

important part of the online walking algorithm. The role of the FPI is to decide the
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next walking steps (how far and how fast to take the next step) during the walking

process based on the current states of the biped robot (position xi and velocity ẋi of the

COM). The inputs of the FPI are the walking states xi, ẋi and the outputs are the key

parameters kp, kv and the step time T (if the step length is fixed) and the step length

(if the step time is fixed). Each of the output parameters is constructed as a function of

the inputs xi, ẋi using the tensor product spline interpolation method. Simulation results

show that the obtained walking motion is highly stable and adaptive to the changes in

walking conditions. The simulated biped robot is able to compensate for fairly large

disturbance force (disturbance force Fd = 75N applied in a period of ∆Td = 0.5s - this

disturbance caused a 108% change in linear momentum of the walking robot which

is considered big). The proposed online walking algorithm is able to compensate for

large external disturbance because the foot placement is computed regularly based on

the two important walking states xi and ẋi. Indeed, when the foot placement of the

next step is decided based on the current position and velocity of the COM, the robot

is able to place the swing foot at the right time and right place to ”catch up” with the

increase (or decrease) in walking speed and hence compensating for the change in linear

momentum. This simulation result further confirms the point that taking an appropriate

step is an effective way to maintain balance when encountered large disturbances.

The proposed method ALIP was proved to generate more stable walking pattern than

that generated using the LIPM and GCIPM methods. However, no method is perfect

and the ALIP method is not exceptional. The disadvantage of the proposed method

is that when the walking parameters (such as step length, step time) or the physical

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



8.2 Future Works 139

properties of the robot (such as mass distribution, inertia moments) are changing the

optimization process needs to be run again. This is reasonable because it is impossible

to have one unique optimal solution problems with different inputs.

8.2 Future Works

Based on the results of this study, there are still several things to be done to make the

complete picture of the proposed method. In this section, we propose some of the pos-

sible works to be done in the future.

The ultimate goal of bipedal walking researchers is to build robots that can walk on

various types of terrains like human walking. This means that the robots must be able

to walk on flat terrains, uneven terrains, staircases, slopes, etc. In this thesis, all of

the simulations were done on flat terrain so far. It is a natural extension to add the

uneven terrain walking simulation to further test the effectiveness and robustness of the

proposed method. For uneven terrain walking, the ankle joint must be able to adapt

quickly to the sudden change of the walking surface. Using a compliant ankle joint may

help to increase stability for walking robot.

Besides the rough terrain walking, the biped should also have the capability to change its

walking direction while walking. All of the simulations in this thesis so far only consider

the case of walking on a straight line. In order for the robot to operate and implement

complex tasks it is a must that the robot is able to control its walking direction.
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So far, 3D walking simulation was achieved for off-line walking. For online walking

motion, only 2D simulation was reported. It is necessary to extend this online algorithm

to 3D walking. The extension should be straightforward and similar to 2D walking. The

same algorithm used for sagittal plane can be applied for frontal plane. For 3D online

walking, however, will be more challenging because the motion in the sagittal plane

may affect the motion in the frontal plane if the two motion are not well coordinated.

The Foot Placement Indicator (FPI) is an important part of the online walking algorithm.

The role of the FPI is to determine the next walking step (how far and how fast to take the

next step so that the walking motion has the highest stability). This thesis only considers

the cases when either the step length of the step time are fixed. It should be interesting

to consider the case when both of the step length and step time are not fixed. This means

that the FPI would determine both step length and step time for the next walking step

concurrently.
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APPENDIX

8.3 The Optimal Values of T and Kv

ẋi
0.3 0.35 0.4 0.45 0.5

xi

-0.17 1.575 1.491 1.73 1.751 1.442
-0.14 1.547 1.596 1.568 1.702 1.751
-0.11 1.322 1.685 1.87 1.418 1.24
-0.08 1.428 1.407 1.168 1.309 0.9513
-0.05 1.203 1.107 0.9216 0.7586 0.6548
-0.02 0.6845 0.6548 0.5733 0.5511 0.5214
0.00 0.5926 0.5084 0.4663 0.4382 0.4312

Table 8.1: Optimal Values of T (part 1)
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ẋi
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

xi

-0.26 1.295 1.175 1.151 1.161 1.091 0.9155 0.8383 0.6839
-0.23 1.277 1.248 1.181 1.126 0.9717 0.7751 0.6628 0.5856
-0.2 1.144 1.281 1.112 0.9015 0.775 0.6488 0.5645 0.5154

-0.17 1.137 1.21 0.922 0.747 0.6347 0.5505 0.5014 0.4593
-0.155 1.166 1.129 0.8105 0.6845 0.5807 0.5214 0.4695 0.4399
-0.14 1.181 0.8875 0.719 0.6067 0.5365 0.4873 0.4452 0.4101

-0.125 0.9958 0.7956 0.6548 0.5585 0.4992 0.4547 0.4176 0.388
-0.11 0.8549 0.8875 0.5996 0.5154 0.4663 0.4242 0.3961 0.368

-0.095 0.7734 0.6178 0.5436 0.4769 0.4325 0.3954 0.3732 0.3509
-0.08 0.6628 0.5645 0.4944 0.4452 0.4028 0.375 0.3469 0.3259

-0.065 0.6252 0.5214 0.4547 0.4102 0.3732 0.3509 0.3287 0.3065
-0.05 0.5365 0.4663 0.4171 0.382 0.354 0.3259 0.3048 0.2908
-0.02 0.4522 0.3891 0.354 0.3259 0.3048 0.2842 0.2694 0.2546
-0.00 0.382 0.3399 0.3189 0.2908 0.2697 0.2546 0.2546 0.2398

Table 8.2: Optimal Values of T (part 2)

ẋi
1.2 1.25 1.3 1.35 1.4

xi

-0.26 0.5214 0.499 0.4992 0.4695 0.462
-0.23 0.4844 0.4547 0.4473 0.4325 0.4176
-0.2 0.4251 0.4102 0.4102 0.3954 0.3806

-0.17 0.388 0.3806 0.3732 0.3584 0.3509
-0.155 0.3732 0.3584 0.3509 0.3435 0.3361
-0.14 0.3509 0.3435 0.3361 0.3287 0.3213

-0.125 0.3287 0.3287 0.3213 0.3065 0.3065
-0.11 0.3139 0.3065 0.2991 0.2916 0.2842

-0.095 0.2991 0.2916 0.2842 0.2768 0.2768
-0.08 0.2842 0.2768 0.2694 0.2694 0.262

-0.065 0.2694 0.262 0.2546 0.2546 0.2472
-0.05 0.2546 0.2472 0.2398 0.2472 0.2472
-0.02 0.2472 0.2324 0.2324 0.2398 0.2249
0.00 0.2398 0.2249 0.2249 0.2249 0.2324

Table 8.3: Optimal Values of T (part 3)
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ẋi
0.3 0.35 0.4 0.45 0.5

xi

-0.17 1.443 1.128 1.022 0.7094 0.3895
-0.14 1.129 0.8486 0.5043 0.326 -0.147
-0.11 0.6825 0.2527 -0.2357 -0.58 -0.9585
-0.08 -0.2161 -0.8 -1.259 -1.965 -2.045
-0.05 -2.07 -2.807 -3.12 -3.105 -3.11
-0.02 -3.435 -4.927 -4.828 -4.963 -5.011
0.00 -8.238 -7.879 -7.659 -7.425 -7.168

Table 8.4: Optimal Values of Kv (part 1)

ẋi
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

xi

-0.26 1.999 1.672 1.44 1.21 0.853 0.443 0.0794 -0.358
-0.23 1.891 1.686 1.266 0.8584 0.394 0.038 -0.372 -0.721
-0.2 1.672 1.486 0.929 0.433 -0.01 -0.418 -0.775 -1.112

-0.17 1.486 0.9683 0.36 -0.096 -0.506 -0.863 -1.22 -1.545
-0.155 1.313 0.514 0.0744 -0.389 -0.751 -1.137 -1.454 -1.813
-0.14 0.971 0.292 -0.199 -0.626 -1.022 -1.4 -1.735 -2.053

-0.125 0.565 -0.079 -0.548 -0.927 -1.132 -1.686 -2.026 -2.358
-0.11 0.1697 -1.056 -0.907 -1.259 -1.657 -2 -2.387 -2.729

-0.095 -0.333 -0.76 -1.271 -1.635 -2.02 -2.363 -2.79 -3.154
-0.08 -0.7045 -1.242 -1.684 -2.109 -2.465 -2.885 -3.247 -3.657

-0.065 -1.459 -1.842 -2.226 -2.636 -2.965 -3.421 -3.846 -4.256
-0.05 -1.967 -2.441 -2.88 -3.325 -3.73 -4.161 -4.592 -4.974
-0.02 -4.333 -4.563 -4.96 -5.311 -5.733 -6.184 -6.56 -7.039
-0.00 -7.187 -7.216 -7.245 -7.678 -8.114 -8.47 -8.123 -8.651

Table 8.5: Optimal Values of Kv (part 2)
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ẋi
1.2 1.25 1.3 1.35 1.4

xi

-0.26 0.5458 0.4103 0.1551 0.0989 -0.015
-0.23 0.1551 0.095 -0.0354 -0.1905 -0.3578
-0.2 -0.0696 -0.2161 -0.3822 -0.5348 -0.7143

-0.17 -0.4359 -0.6227 -0.8217 -0.9707 -1.149
-0.155 -0.6996 -0.857 -1.051 -1.242 -1.437
-0.14 -0.9536 -1.158 -1.364 -1.56 -1.75

-0.125 -1.227 -1.524 -1.725 -1.842 -2.111
-0.11 -1.634 -1.85 -2.062 -2.26 -2.448

-0.095 -2.136 -2.359 -2.565 -2.758 -3.029
-0.08 -2.766 -2.982 -3.195 -3.414 -3.635

-0.065 -3.474 -3.718 -3.972 -4.136 -4.392
-0.05 -4.358 -4.619 -4.885 -4.875 -4.993
-0.02 -6.057 -6.615 -6.634 -6.659 -6.99
0.00 -7.484 -8.161 -8.07 -7.985 -7.523

Table 8.6: Optimal Values of Kv (part 3)
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8.4 Function Estimation of T and Kv

8.4.1 Function estimation of the step time T

• if ẋi ≤ 0.5 (part 1)

T 1(xi, ẋi) =
5

∑
i=−2

3

∑
j=−2

CT 1
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.1)

where

CT 1
i, j =




1.5750 1.4910 1.7300 1.7510 1.4420

1.5470 1.5960 1.5680 1.7020 1.7510

1.3220 1.6850 1.8700 1.4180 1.2400

1.4280 1.4070 1.1680 1.3090 0.9513

1.2051 1.1088 0.9230 0.7594 0.6553

0.6965 0.6739 0.5873 0.5659 0.5332

0.5926 0.5084 0.4663 0.4382 0.4312




(8.2)

The plot of T 1 is shown in Fig. 8.1.

• if 0.5≤ ẋi ≤ 1.2 (part 2)

T 2(xi, ẋi) =
10

∑
i=−4

4

∑
j=−4

CT 2
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.3)
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Figure 8.1: T as a function of xi and ẋi (part 1)

where

CT 2
i, j =




1.2950 1.1772 1.1303 1.1764 1.1208 0.7946 0.8762 0.6839

1.4117 1.1231 1.1062 1.3400 1.0895 0.6720 0.7127 0.6035

1.1107 1.5684 1.2911 0.9656 0.8339 0.6710 0.5124 0.5550

1.1451 1.2453 1.1310 0.7338 0.6906 0.4870 0.5554 0.4641

1.1265 1.6440 0.7333 0.7497 0.5602 0.5333 0.4307 0.4521

1.2534 0.8779 0.7691 0.5878 0.5377 0.4679 0.4386 0.4088

0.9769 0.6810 0.7151 0.5495 0.4961 0.4389 0.4003 0.3888

0.8409 1.4399 0.4870 0.5327 0.4609 0.4081 0.3905 0.3664

0.7896 0.4037 0.6178 0.4600 0.4337 0.3696 0.3768 0.3535

0.6272 0.6638 0.4803 0.4516 0.3943 0.3736 0.3223 0.3220

0.6477 0.4962 0.4672 0.3975 0.3581 0.3398 0.3232 0.3022

0.3755 0.4656 0.3724 0.3600 0.3518 0.2757 0.2638 0.2764

0.5011 0.3656 0.3612 0.3088 0.2846 0.2775 0.2646 0.2428

0.3820 0.3387 0.3341 0.2887 0.2694 0.2437 0.2636 0.2398




(8.4)
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Figure 8.2: T as a function of xi and ẋi (part 2)

The plot of T 2 is shown in Fig. 8.2.

• if ẋi ≥ 1.2 (part 3)

T 3(xi, ẋi) =
10

∑
i=−4

1

∑
j=−4

CT 3
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.5)
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where

CT 3
i, j =




0.5214 0.4815 0.5366 0.4422 0.4620

0.5175 0.4908 0.4601 0.4406 0.4331

0.4443 0.3900 0.4437 0.4076 0.3941

0.3941 0.4016 0.4070 0.3545 0.3604

0.3807 0.3592 0.3555 0.3415 0.3405

0.3527 0.3479 0.3314 0.3357 0.3211

0.3269 0.3317 0.3396 0.2860 0.3103

0.3144 0.3073 0.2912 0.2960 0.2788

0.2988 0.2926 0.2912 0.2639 0.2800

0.2832 0.2827 0.2540 0.2819 0.2607

0.2661 0.2624 0.2478 0.2478 0.2397

0.2371 0.2454 0.1870 0.2693 0.2604

0.2536 0.2254 0.2416 0.2472 0.2015

0.2398 0.2203 0.2286 0.2220 0.2324




(8.6)

The plot of T 3 is shown in Fig. 8.3.
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Figure 8.3: T as a function of xi and ẋi (part 3)

8.4.2 Function estimation of the parameter Kv

• if ẋi ≤ 0.5 (part 1)

k1
v(xi, ẋi) =

3

∑
i=−4

1

∑
j=−4

Ckv1
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.7)

where

Ckv1
i, j =




1.4430 1.0368 1.2622 0.5267 0.3895

1.3133 1.1899 0.8077 0.5280 0.0895

0.8510 1.0693 −0.8478 0.6231 −0.4467

0.2275 −0.6649 −0.0281 −2.9834 −2.0847

−3.2525 −2.9608 −5.1313 −2.3995 −3.1378

−1.7519 −5.6874 −2.8141 −5.5356 −5.0012

−8.2380 −7.9103 −7.6923 −7.3410 −7.1680




(8.8)
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Figure 8.4: Kv as a function of xi and ẋi (part 1)

The plot of k1
v is shown in Fig. 8.4.

• if 0.5≤ ẋi ≤ 1.2 (part 2)

k2
v(xi, ẋi) =

10

∑
i=−4

4

∑
j=−4

Ckv2
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.9)
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where

Ckv2
i, j =




1.9990 1.7435 1.5032 1.2486 0.8550 0.2705 −0.0118 −0.3578

2.0100 2.2193 1.2779 1.1849 0.2681 0.4404 −0.6834 −0.5389

1.7572 1.4930 1.6232 0.5195 0.4543 −0.6866 −0.4227 −0.9672

1.5435 2.0553 0.4908 0.2639 −0.5500 −0.5894 −1.3931 −1.3294

1.4309 0.4783 0.4180 −0.4467 −0.5303 −1.3696 −1.3495 −1.7712

1.0133 0.3578 −0.0134 −0.5293 −1.2105 −1.3779 −1.9175 −2.0170

0.5518 0.6820 −0.4642 −1.0418 −0.7473 −2.2136 −1.9010 −2.3420

0.2210 −2.6818 −0.3512 −1.2678 −1.8218 −2.0004 −2.5979 −2.7214

−0.4190 0.2780 −1.3780 −1.5584 −2.0136 −2.3857 −3.0350 −3.1462

−0.5847 −1.4138 −1.4227 −2.1828 −2.4775 −3.1706 −3.2698 −3.6750

−1.8033 −1.7555 −2.2107 −2.7555 −2.9598 −3.6978 −4.1484 −4.3861

−2.0515 −2.9767 −3.2893 −4.0590 −4.7403 −5.1116 −5.5151 −5.6986

−5.0221 −4.4960 −5.3927 −5.4855 −5.8505 −6.6003 −7.2148 −7.5474

−7.1870 −7.3592 −6.9371 −7.7042 −8.0834 −8.8869 −7.5241 −8.6510




(8.10)

The plot of k2
v is shown in Fig. 8.5.

• if ẋi ≥ 1.2 (part 3)

k3
v(xi, ẋi) =

10

∑
i=−4

1

∑
j=−4

Ckv3
i, j Ni,k+1(ẋi)M j,l+1(xi) (8.11)
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Figure 8.5: Kv as a function of xi and ẋi (part 2)

where

Ckv3
i, j =




0.5458 0.5982 −0.0735 0.1692 −0.0150

0.1905 0.2160 0.1208 −0.1547 −0.2113

0.0680 0.0283 −0.0834 −0.3782 −0.5528

−0.2412 −0.3750 −0.7948 −0.8218 −0.9402

−0.6373 −0.7032 −0.9831 −1.1737 −1.3668

−0.9402 −1.0403 −1.2855 −1.6833 −1.7029

−1.1895 −1.4676 −1.8977 −1.7006 −2.1368

−1.6251 −1.7286 −1.9834 −2.3788 −2.3723

−2.1139 −2.2773 −2.6133 −2.7279 −3.0641

−2.8072 −2.9537 −3.1596 −3.5698 −3.6158

−3.5997 −3.7284 −4.2739 −4.2844 −4.6592

−5.3812 −5.3040 −6.4756 −5.2916 −5.3285

−6.2243 −7.3145 −6.4659 −7.1224 −7.9580

−7.4840 −8.4276 −7.8732 −8.1061 −7.5230




(8.12)
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Figure 8.6: Kv as a function of xi and ẋi (part 3)

The plot of k3
v is shown in Fig. 8.6.
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