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Abstract

In this thesis, we give algorithms to plan the motion of the robot when the

position and shapes of the obstacles are not known precisely, as well as these

obstacles can change dynamically over time. These changes could be to the

number of obstacles, their shape, as well as to their position.

The Robot Motion Planning problem is: Find a valid sequence of actions

of the robot, taking it to the given goal configuration, while avoiding colli-

sions with obstacles. Probabilistic Roadmaps (PRMs) are state-of-art motion

planners solving many hard problems. PRMs make a graph (roadmap) in

the free-space of the robot, and then search for the shortest path in the

roadmap from source to goal. However classical PRMs assume that the en-

vironment is known with perfect accuracy, and does not change over time.

These assumptions are not true in practice.

We first give the Bounded Uncertainty Roadmap (BURM), extending

PRMs to the case when the environment is not known with perfect accuracy:

The coordinates of obstacle vertices are now specified via probability distri-

butions, f(v). The novelty in BURM is that we do not compute the exact

probabilities of collision at robot configurations, but only maintain rough

bounds on them. Bounds are refined to different degrees of resolution in
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different parts of the configuration space of the robot, depending on their

relevance in finding the best path through the roadmap. This makes BURM

quite efficient. Part of these refinements are performed by a hierarchical

subdivision of the geometry of the robot and obstacles, and computing prob-

abilities of collision over these subdomains; while part of it is achieved using

Monte Carlo Integration.

We extend BURM to give the Dynamic BURM (DBURM). Now the

environment can change dynamically, which we model by changing f(v).

After every change, a certain ‘local consistency condition’ may be violated

at some nodes in the roadmap. DBURM identifies the non-consistent nodes

and iteratively makes them consistent. Once all nodes are consistent, the

shortest path is easy to compute. DBURM is shown to be more efficient

than re-running BURM after every change. Similar re-planning algorithms

existed before, but not for the case when edges in the roadmap are annotated

by cost bounds. This is different and more challenging.

Suppose the expected costs of edges, c(e), in a graph are unknown. We

can not always compute definite bounds on c(e) as above, but by sampling the

costs we can compute an interval that contains c(e) with a high probability.

In such a case we can only return a path that is optimal with a high prob-

ability. We give the Probably Approximately Correct BURM (PACBURM)

that makes a further small sacrifice while making a large gain in efficiency:

PACBURM returns a path that with a high probability is close in cost to the

optimal path. Hence PACBURM returns a probably approximately optimal

path. We do not know of any other graph algorithm in AI literature that

computes a probably approximately optimal path in such a setting.
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Chapter 1

Introduction

In the real world many robots need to move in order to perform their task.

Hence in order to achieve the task, we need to plan the motion of the

robot. This plan could be pre-programmed if the robot always stays in a

pre-specified environment, and always executes a known task. However this

is not usually true: Robots keep venturing into new environments and carry

out a variety of tasks that are not known in advance. It is therefore imper-

ative that the robot be able to autonomously plan its motion. The motion

planning problem is: To plan a path getting the robot from its initial configu-

ration to the given goal configuration while avoiding collision with obstacles.

In this thesis we give efficient algorithms for generating motion plans,

when the coordinates of the obstacles in the environment are not known with

perfect precision, and may even change dynamically. Later we generalize

our technique to return a probably approximately optimal path in a graph

where the expected costs of edges are not known precisely. That is, the path

reutrned by the algorithm is within a cost of δ1 of the optimal path, with a

1



2 Chapter 1

probability of (1− δ2), where δ1 and δ2 are small positive numbers.

1.1 The Probabilistic Roadmap Planner and

its assumptions

We first define what we mean by number of degrees of freedom, and the

configuration space of the robot, which are important concepts in motion

plannning. The number of degrees of freedom (dofs) is the minimum number

of parameters required to specify the configuration of the robot. For example

a polygon in 2 dimensions that can translate, has 2 dofs, as its x and y

coordinates are enough to specify its exact configuration. If it could also

rotate, it would have 3 dofs, as we now need to specify the angle as well.

Another example: A robot arm that is fixed at its base, but can rotate at

the wrist and elbow has 2 dofs. If the base could also translate in (x, y, z), it

would have 5 dofs. Each configuration of the robot is represented by a point

in the configuration space, C of the robot. Hence the number of dimenstions

of C equals the number of degrees of freedom of the robot.

The first motion planners were Complete planners. These planners return

a valid path whenever one exists from the source to the goal, and indicate

no path exists otherwise. All known complete planners take time that is

exponential in the number of DOFs of the robot. Known complete planners

are quite inefficient if the robot has more than 4 dofs, and many useful robots

unfortunately do have more than 4 dofs

Probabilistic Roadmap planners (PRM) [44, 45] are probabilistically com-
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plete planners and have been successful in efficiently solving many hard prob-

lems, even for robots with large number of dofs. This efficiency comes from

the fact that PRMs do not attempt an exact representation of the high di-

mensional configuration space, C of the robot. In fact, PRMs approximate

this space with a graph, and then carry out a shortest path search in this

graph from initial to goal node. This graph is known as the ‘roadmap’ in

motion planning literature. PRM first samples C for configurations that are

not in collision. These samples become the nodes of the roadmap. Then

it connects a subset of these nodes by free edges; i.e. the robot would not

collide with an obstacle when carrying out the motion along the edge. These

nodes and edges define the roadmap.

As PRMs represent a high dimensional configuration space by a simple

roadmap, PRMs are going to be very efficient for many motion planning

problems with high dimensional configuration space. However the classical

PRMs make a couple of assumptions that are not true in practice:

1. PRMs assume that the environment is perfectly known. That is, we

know the coordinates of the obstacles with perfect precision.

2. PRMs assume that the environment is static. That is, the environment

is not changing over time.

1.1.1 Sources of imprecision in obstacle coordinates

The imprecision in the obstacle coordinates (point 1 above) comes from a

couple of sources: errors in robot sensors and errors in robot control. The

environment map is constructed by a robot that travels in the given envi-
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ronment, detecting environment features. Hence the coordinates of a given

feature depends on the coordinates of the robot, as well as the readings of

its sensors. Typically neither is known accurately. The position of the robot

can be in error because of wheel slipping and unevenness of the floor, among

other reasons [89]. Therefore the robot does not have precise knowledge of

the distance travelled, and hence its position. The sensors are also prone

to errors: sensors such as sonar range scan, and laser range scan, can have

errors because of limited resolution of the sensors, atmospheric effects, re-

flective surfaces, and others. [89]

These imprecisions imply that rather than assigning exact coordinates to

the detected environment features, we should assign a probability distribu-

tion: Given a feature f , and coordinates (x, y), the probability distribution

specifies the probability that f is at (x, y). There are algorithms such as

Extended Kalman Filters, among others, that are used to specify the feature

coordinates in terms of probability distributions [89].

1.2 Extending the PRMs: the contributions

The simplicity and efficiency of PRMs means, that it would be of great utility

if we can extend the PRMs so that the two assumptions discussed in section

1.1, are no longer made by the algorithms. This is the main aim of this

thesis.

As explained above, we need to specify the coordinates of the environment

features via probability distributions, and there exist algorithms that do so.

We do not implement such algorithms, and assume that an environment
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map with such probabilisitic data is given to us. We model the probabilistic

data by specifying the coordinates of the obstacle vertices by probability

distributions. The reasons for choosing vertices is that the obstacles very

often are, or are modeled as, polygons. Now given a list of vertices of the

polygon where every two adjacent vertices are connected by an edge, the

shape and position of the polygon is completely determined by the position

of the vertices. Hence it suffices to model uncertainty of shape and position,

by assigning uncertainties at the vertices.

We extend the PRM and give a planner, BURM (Bounded Uncertainty

Roadmap) [29] in chapter 3 to plan under imprecisely known environment.

BURM builds a roadmap like PRM, but now the expected cost of traversing

an edge depends on the probabilities of collision when traversing it. The

main contribution of BURM is that rather than computing these probabil-

ities exactly, it keeps an upper and lower bounds on them. The bounds

are refined only if it helps in identifying the optimal path. The refinements

are done partially by Monte Carlo Integration to compute the probabilities,

but partially by dividing the geometry of the robot and obstacle to produce

sub-domains, and then the probability of collision is computed over these

subdomains. This hierarchical refinement is another contribution of BURM.

We also give a planner DBURM (Dynamic BURM) that extends BURM

to environments that can alter. Now in BURM, vertex coordinates are spec-

ified via probability distributions. So we model a change in the environment,

by altering some of these probability distributions. It is important to recom-

pute the optimal path in the roadmap after such a dynamic change, because

the previously computed path may be invalid, or even if it is still valid the
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robot might pay a high cost in terms of collision while traversing it. One

option is to re-run BURM from scratch after every dynamic change. How-

ever there might be a lot of information from our previous runs of BURM,

that was not affected by the dynamic change, and could be reused. DBURM

follows this methodology and repairs the computed shortest path tree, at

only those nodes whose shortest path to goal might have been affected by

the dynamic change. Similar replanning algorithms exist in literature [86, 48]

for usual graphs. The contribution of DBURM is that it gives a replanning

algorithm for the case when edge weights are intervals that can be tightened

by more computation. The reason that they are intervals is because just

like in BURM, we are computing bounds on probabilities of collision, which

induce bounds on the expected cost of traversing the edge.

The BURM and DBURM make a roadmap, where the expected costs

of edges are unknown, but contained in known intervals with probability 1.

These intervals can be tightened by more computations. The idea of keeping

bounds that can be tightened, is useful and general enough to have been dis-

covered and applied in other domains [66]. However in a general scenario, we

can not compute an interval that bounds the expected cost with certainty.

But we can indeed compute an interval that contains the expected cost with

a high probability. In Statistics, such intervals are called as confidence in-

tervals of the expected cost. If the interval bounds the expected cost with

a probability (1 − α), it is called as the (1 − α) confidence interval of the

expected cost.

Suppose that we are given a graph such that the expected costs of edges

are not known, as well as the cost of traversing an edge can vary; for e.g. the
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time taken by a car to traverse a road can vary. In this setting it is natural to

compute confidence intervals of the expected costs of edges. These intervals

may be tightened by taking more samples, and we would like to return a close-

to-optimal path without having to take too many samples. The best we can

do is to return a path that is optimal with a high probability. We introduce

the Probably Approximately Correct BURM (PACBURM) algorithm, that

returns a path p, such that with a high probability p has a cost that is close

to the cost of the optimal path. Hence we sacrifice the quality of the returned

path, but in chapter 5 we show that making just a small sacrifice improves

the running time by up to two orders of magnitude. Currently, we do not

know of any generic algorithm that returns a probably approximately optimal

path, by computing the confidence intervals of expected costs of edges.

1.3 Outline

In the next chapter we give a survey of related work. We give the BURM

algorithm in chapter 3, that finds the optimal path through a roadmap when

the position of obstacles are not known exactly. The BURM algorithm does

not compute the exact edge weights, which depend on an exact computation

of the probability of collision. Rather, it keeps bounds on the edge weights.

These bounds can be refined, but after paying additional computation costs.

The refinements are performed conservatively; only if it helps in identifying

the optimal path. In chapter 4 we give the DBURM algorithm, which is an

extension of the BURM algorithm - now we allow the environment to change

dynamically. After every dynamic change DBURM efficiently recomputes
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the optimal path through the roadmap. Similar re-planning algorithms exist

in literature, but not when the edge weights are intervals. Lastly, in chapter 5

we give the Probably Approximately Correct BURM, that returns a probably

approximately optimal path, in a graph. The setting is that the expected

costs of edges are not known, but we can generate samples of costs. Hence we

can compute (1 − α) confidence intervals of the expected costs. By keeping

on sampling we can hope to tighten these intervals. In this chapter we prove

and show that a small sacrifice in the quality of the returned path, can lead

to a large improvement in the running time.



Chapter 2

Related Work

In this chapter we review the related work. We start with some early tech-

niques in the domain of motion planning, leading to the successful Proba-

bilistic Roadmaps (PRMs). Although PRMs have been quite successful in

solving some difficult motion planning problems, the classic PRMs have two

main drawbacks. PRMs assume:

1. Perfect knowledge of the environment

2. A static environment that does not change.

Our algorithm in chapter 3 extends PRMs to deal with point (1), and the

algorithm in chapter 4 extends PRMs to deal with both (1) and (2). There-

fore we also review other planners that do not assume (1) or (2). However

note that in all the planners that we survey that extend PRMs, the following

idea is missing: Keep bounds on the expected costs of edges rather than

computing them exactly, and hierarchically refine the bounds but only if it

helps in identifying the optimal path. This is the idea used in BURM, and

9
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DBURM extends it for replanning in environments that are non-static.

In section 2.1 we note that motion planning problems are inherently hard,

and mention some early motion planning methodologies. Efforts to develop

planners that were efficient enough to be useful in practice, led to the Prob-

abilistic Roadmap algorithm, which we describe in section 2.2. In section

2.3 we give an overview of motion planners that plan under uncertainty,

in the knowledge of environment, and that in the resulting states of the

robot after executing an action. These planners therefore do not make the

assumption (1) of PRMs above. Our Bounded Uncertainty Roadmap algo-

rithm is most related to planners under uncertainty of environment (sec 2.3.2)

and planners that extend PRMs for uncertainty in environment (sec 2.3.1).

We also review Markov decision processes(MDPs) and partially observable-

MDPs (POMDPs) that are quite general techniques for motion planning

uncertainty, but they are computationally expensive. In section 2.4 we re-

view planners for dynamic environments; that is, these planners do not make

assumption (2) above.

2.1 Early motion planning methodologies

Robot Motion Planning was identified as an area of research in the 1970s.

In the simplest case the planner has to generate motion leading the robot

from its starting configuration to the given goal configuration, while avoiding

colliding with any obstacles. This problem is known to be PSPACE Hard

[77]. This means that solving motion planning may require an unacceptable

amount of time and space for non-trivial problems. Complete planners con-
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struct a motion strategy whenever one exists, and indicate no such strategy

exists otherwise. Because of the PSPACE hardness of the problem, we can’t

expect complete planners to be very efficient. Indeed, all known complete

planners (see [52] for examples) run in time that increases exponentially with

increasing number of degrees of freedom (dofs) of the robot.

Complete planners generally perform poorly on robots with more than

4 dofs, and such robots are widespread in the real world. To solve this we

need to look at incomplete planners, that may have a high rate of success,

but might also fail to generate a valid path even when one exists. Potential

field approach [52] is one such methodology. It gives the obstacles a repulsive

potential, and the goal an attractive potential. The robot is guided by these

attractive and repulsive forces. However the robot can get stuck in local

minima generated by these potential gradients. To alleviate this problem,

randomized sampling was used [3] to attempt to guide the robot out of the

local minimum if it gets stuck: In order to escape the local minimum after

getting stuck, the robot executes small random steps. This led to planners

that use randomized sampling from configuration space to build search trees,

as the following section explains.

2.2 Planning by sampling from configuration

space

The idea of randomized sampling was extended to the whole of planning

process [44, 45]. Before explaining it, we first define the configuration space
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C of the robot. It is the space where each configuration of the robot is

represented as a point. Hence the number of dimensions of C is equal to the

number of dofs of the robot.

In the probabilistic roadmap (PRM), the planner first samples uniformly

at random from C. Given a configuration q, there is a primitive free(q)

which returns true, if and only if q is not in collision with any obstacle.

Samples that are in collision with obstacles are rejected. The other samples

become the nodes of a graph in C. The starting and goal configurations

are also part of the node set. After some number of samples these nodes

are then connected by straight line edges: if two nodes are within a given

radius of each other in C, and if the straight line connector between them is

collision free, then the two nodes are connected by this edge. Hence we now

have a graph with a set of nodes and edges connecting them. This graph in

motion planning literature is called the roadmap. As the nodes and edges of

the roadmap are collision free, any path generated by following edges of the

roadmap, is valid. Hence a valid path is returned by searching for a path in

the roadmap from the start to goal node. Although quite simple, the PRM

has been quite successful, and has efficiently solved many motion planning

problems for robots with large number of dofs.

What PRM does is to avoid exploring C exactly, and represent it by

the much simplified approximation of a roadmap. Note that PRM is not a

complete planner. It is only probabilistically complete: for any given config-

uration space, the probability that a path exists and would not be found by

the PRM, converges to 0 as the number of samples increase.

Sometimes we are interested in performing just a single query on a given
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C. The Rapidly Exploring Random tree(RRT) [50], and the Expansive Space

tree [35], solve this problem by making a tree in the configuration space and

expanding it until the source and destination configurations are connected

[50, 35]. In these techniques a new node is sampled, and then is connected

to an already existing node x in the tree, by a collision free edge. The tree

is therefore ‘pulled’ into unexplored regions of the configuration space, and

the expansion is continued until both the starting and ending configurations

are connected to the tree.

As noted at the beginning of this chapter, one of the two main shortcom-

ings of the classic PRM is the assumption that the environment of the robot

is perfectly known: free(q) can always determine with certainty whether the

configuration q is collision-free or not. However in the real world knowledge

is often imperfect, and therefore we also need to consider seriously the issue

of planning under uncertainty. The source of this imperfection is generally (i)

imperfection in robot sensing and acting. That is robot sensors can not de-

tect the position of objects with perfect precision, nor can they carry out an

action with perfect precision. (ii) imperfect knowledge of the environment.

The next section reviews planners under uncertainty.

2.3 Planning under uncertainty

Motion planning under uncertainty is an important problem in robotics and

has been studied widely [52, 53, 14]. As noted above, in robot motion plan-

ning, uncertainty arises from two main sources: (i) noise in robot control and

sensing and (ii) imperfect knowledge of the environment.
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There were two early approaches to motion planning under uncertainty

in motion and sensing. One was the two phase approach [9, 58] in which the

plan was first constructed assuming no uncertainty. The plan is then locally

patched by inserting complementary actions or sensory readings. It is a bit

restrictive as we can’t be certain if the plan can be locally patched. The

second approach is the preimage backchaining [59]. In this we first identify

the configurations, S, from which a commanded action is guaranteed to reach

the goal. Then we identify the configuration S ′ from where the robot can

reach S. Working iteratively like this, the planner continues until it reaches

the starting configuration. We then have a sequence of commands leading

from the initial to goal. However, the complexity of this method is double

exponential in the number of plan steps [11].

One reason that preimage backchaining is inefficient, is because of the

interaction of motion uncertainty and sensing uncertainty. The goal has

to be reached despite motion uncertainty, and recognized despite sensing

uncertainty. This recursive relationship was noted in [71]. Erdmann [22]

decoupled the two, by assuming that a certain subset of the goal configuration

can be recognized by the robot regardless of the way it was achieved. Another

way is to reduce the uncertainty in robot position by using landmarks as

explained below.

One way of reducing uncertainty in position many practical situations is

the use of landmarks in the environment. For example if a robot can sense

a known building in the environment, then it would reduce the uncertainty

in the current position of the robot [55]. This method has been used along

with preimage backchaining to give more efficient algorithms [54, 8]. In [54]
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the algorithm is polynomial time. The environment has obstacle disks and

landmark disks, and the number of obstacle disks is O(l), where l is the

number of landmark disks. It is also assumed that the robot has perfect

localization in the landmark disks. In [26] the concept of landmarks was

used to introduce the first planner taking into account both uncertainty and

non-holonomic constraints of the robot. In [79] landmarks as well as the

probability that they will be obstructed by moving people etc, is considered.

Hence the robot should go along a path where the successful identification of

landmarks is high, as well as the path reaches the goal in a short distance.

In [28] the robot localizes with help of linear landmarks (such as a wall, as

oppossed to a point landmark such as a building).

2.3.1 Extending sampling based planners for uncer-

tainty

Due to the high success of sampling based motion planners, many algorithms

have attempted extending sampling based planners for uncertainty.

PRMs have been extended for uncertainty [94, 10, 61, 74]. In [74] the

edges of the roadmap are the mean of the ‘belief’ of the current state of the

robot, and are annotated with a covariance matrix - the covariance of the

belief. Hence the roadmap is now in belief space and can use a mixture of

both objectives: short path, and small covariance. This hence extends PRMs

to planning under motion uncertainty. [94, 10, 61] deal with an uncertainty

of the environment and are explained later.

In a PRM under uncertainty, an interesting problem is to find the short-
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est path where the probability of collision is smaller than the user defined

threshold. This is certainly not an easy problem and is proven to be NP-

Hard w.r.t number of nodes [36]. However in [37] it is solved for the case of

a robot with base pose uncertainty. The main idea used there is, if an edge

in the roadmap has a probability of collision beyond a threshold, then any

path containing it, need not be considered.

RRTs have also been extended to deal with motion uncertainty [5, 60, 46,

91, 70]. In [60] the tree is extended by adding nodes just as in RRT. However,

now rather than directly adding an edge between the given two nodes, robot

motion under a given command is simulated several times under different

likely conditions, and the end states noted. The resulting states are grouped

into clusters, and each cluster is treated as a node in the tree. The likeli-

hood of reaching a node can be calculated using the likelihood of being in

the starting conditions, from where the robot can reach that node. The ex-

tension of the tree is biased towards those configurations, q, where there is a

greater probability of reaching q from the starting configuration. This biasing

was given in [91]. In [46] the common technique of Monte-Carlo simulations

is not used, and instead uncertainty is represented using SRSM (stochastic

surface response method [38]). This uses a series of Gaussian random vari-

ables to represent uncertainty. The unknown terrain/robot parameters in

these distributions can be estimated by a limited number of simulation. In

[5], it is assumed that we have the stochastic dynamic and the stochastic

observation model of the robot, and that they can be modeled as Gaussian

noise. Given this information, and a path p, the probability distributions of

the state and control input of the robot along p, are computed during the



17 Section 2.3

planning phase. The method can therefore be used to assess the quality of

a path with respect to a variety of measures. In [88] preimage backchaining

is used to extend RRTs to handle uncertainty. (a) it first generates a tree

in C like the RRT (b) efficient algorithms for computing Lyapanov functions

[39, 69], are used as tools to help compute the preimages – and can be used

even for ‘very complicated dynamical systems’.

2.3.2 Planning under uncertainty in environment

There have been planners for planning when environments are not known

perfectly [21, 94, 10, 61, 65]. In [21] the configuration space is divided into

a grid, and each cell of the grid is annotated with the probability that the

cell is occupied by obstacles. Assuming the uncertainty in robot control

is negligible, one can then find a path with minimum collision cost using

Dijkstra’s or A* algorithm [18, 81]. In [94, 10, 61] the sampling based motion

planning (PRMs, RRTs) is extended to deal with uncertainty. In [10], the

robot is guided to explore those regions of the environment that would result

in a large information gain about the environment and help in constructing

the roadmap, by defining an expected utility of carrying out a given sensing

action. In [61] the position of any vertex of an obstacle is specified only

imprecisely, via probability distributions. A roadmap is then built and the

edges of the roadmap are annotated with the expected cost of traversing

the edge. In order to compute this, the planner also needs to compute the

probability of collision along any edge of the roadmap.
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2.3.3 MDPs and POMDPs

Markov decision processes (MDP) [31, 81] is a principled approach to solve

planning under motion uncertainty. MDPs model reality as follows. Given

the robot in state s, there is a set of actions available to the robot. However

the result of each action is not known with certainty. For example, performing

action a in state s, may lead the robot to state s′ with probability 0.3. To

state s′′ with probability 0.4 etc. These outcome probabilities of each action

in each possible state is known as the ‘transition model’. Given a transition

model, we need to construct a strategy that from any state s, recommends

the action that maximizes expected benefit. For e.g. the robot should take

action a in state s, action a′ in state s2 and so on. The value iteration and

policy iteration algorithms [4, 31] are quite useful in constructing arbitrarily

close approximations to the perfect strategy, in a reasonable amount of time.

MDPs have also been used to extend PRMs to under motion uncertainty

[2]. Here from each node in the roadmap, possible actions of the robot are

simulated many times to construct the transition model. Similar to above,

the transition model specifies the probability of ending at a node n2, given

the action a was performed at node n1. This transition model hence defines

an MDP which can be solved by standard procedures.

For uncertainty in both sensing and motion, or if the map is not known

with perfect precision, MDP is not enough. Because in these cases, the robot

does not know the current state with certainty. Partially Observable MDPs

(POMDPs) [85] extend MDPs to represent this. Here neither the result of

a motion is known with uncertainty, nor the current state. In the field of
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Artificial Intelligence POMDPs were introduced via [12, 40].

In summary POMDPs are similar to MDPs, because now although the

robot does not know its state, it does know its belief state. So we can now

treat belief state in POMDP, the way states are treated in MDP. The belief

state is a probability distribution over all possible states. For example: given

the current observation there is a probability of 0.2 that the robot is in state

1; a probability of 0.4 that it is in state 2 and so on. That is, it is the ‘belief’

about the current state of the robot. Similar to MDP, we wish for an optimal

strategy: given the current belief, the robot should take sensing or motion

actions to reach another belief state. The actions taken by the robot should

be optimal in the sense of maximizing expected reward.

In MDPs each state has a value: the expected reward from this state

onwards, following the optimal strategy. As the states are finite, the values

can be kept in a table and updated by the algorithms. However in POMDPs

the belief is a continuous high-dimensional probability distribution, hence we

can’t treat the beliefs one-by-one and compute their values. However these

value functions are piece-wise linear convex [85]. The number of pieces in this

piecewise-linear function can grow fast as the steps in the planning horizon

increase. Figuring out efficient ways to compute the linear pieces making

this function is hence important, and there have been various algorithms

introduced to compute the non-dominated linear pieces efficiently [83, 63,

13, 12, 97]. After that, the value iteration algorithm from MDP can be

adapted to solve POMDPs as well.

Note that the dimensionality of the belief space is the number of possible

states of the robot which can be quite large. Solving a POMDP exactly is
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indeed exponential in the number of states [68]. The above algorithms hence

are not very efficient on moderate sized number of states. This led to various

approximate POMDP approaches. One of them is the Augmented MDP [79,

80], which compresses the belief space into a more compact representation, by

assuming that the belief can be summarized by a sufficient statistic. Another

class of approximate POMDPs is the point-based POMDPs [73, 98], where

only a small representative set from the belief space is used by the algorithm.

This idea led to the point-based value iteration algorithm [72]. How to choose

these representatives via sampling has also been explored in literature [84,

82, 51]. In [51] an attempt is made to sample only in the sub-space of the

belief space, which is reachable by the optimal strategy. These approximate

POMDPs can now solve some problems efficiently, with tens of thousands of

states. However do note that uncertainty in environment (covered above),

can lead to an infinite number of possible states, and hence POMDPs are

not well suited for those kinds of problems as yet.

2.4 Planning under dynamic changes

We now come to planners that do not make assumption (2) of the PRMs that

were given at the beginning of this chapter: that the environment is static.

In the real world, as the robot moves towards its goal configuration, the

environment may change. If the motion of the obstacles is known, then we

need to consider moving obstacles while planning for the path. On the other

hand if the motion is unpredictable, then it may necessitate re-planning while

executing the plan. That is, when a change is observed, we re-plan a valid
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path from the current position of the robot to goal, before continuing the

robot along the path to goal.

2.4.1 Planning when the motion of obstacles is known

In order for a fail-proof plan to be built before execution, the motions of

the obstacles must be known. Hence we will asssume that for now. As

motion planning is itself a hard problem, one expects motion planning under

moving obstacles to be even harder. Indeed, in [78] it is shown that in

three dimensional workspace, with arbitrary number of rotating obstacles,

the problem is NP-hard if there are no restrictions on the velocity of the

robot, and PSPACE-hard if the velocity modulus is bounded.

To plan under moving obstacles, one has to take time into consideration,

which can be done by adding a time dimension to the configuration space of

the robot. Hence planning is done in this configuration-time-space, called the

CT -space. However there is one additional constraint: the path can never

go backwards along the time axis, as time is irreversible.

Sampling based motion planners for static environment can be extended

to plan in the CT -space; just that we have to be careful not to go back-

wards in the time axis. Planning when the velocity modulus of the robot

is bounded, have also been considered in literature [52, 42]. The velocity-

tuning method [42] is a two-phased approach. Planning is done assuming

static obstacles in the first phase, and then the velocity is ‘tuned’ to avoid

collisions in the second phase. The second phase adapts the visibility-graph

method [52] for static environments. Other approaches adapt the approxi-
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mate cell decomposition [52] for static environments, to problems involving

moving obstacles, both when the robot’s velocity modulus is unbounded, or

bounded.

2.4.2 Adapting graph search methods

So far we have assumed that the motions of the obstacles is known. For the

case that obstacle motions are unpredictable, we need a planning methodol-

ogy that reacts to changes in the environment or to the motion of a given

obstacle. As sampling based planners have been highly successful for plan-

ning under static environment, one could adapt them for the current problem

as well by re-planning the path whenever a change is observed.

2.4.3 Rebuilding the solution if a moving obstacle in-

validates the previous solution

We would need to re-establish our solution, if a moving obstacle invalidates

the previously computed solution. Recall from above that some planners

build a tree in the configuration space, rather than a graph to solve the

query. We gave two references for that. Each of those techniques has been

expanded to deal with the possibility that a moving obstacle may invalidate

the solution.

In [33] the planning is performed for a robot with kinematic and/or dy-

namic constraints, and the obstacles are assumed to be moving with known

trajectory. The planning is performed in the space of configuration × time.

The methodology remains the same as constructing a tree in configuration
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space (see 2.2), just that the tree is now being made in the space conf ×

time. If an obstacle deviates from its expected trajectory, then the planner

is alerted and the path to the goal (in the space of conf × time) is recom-

puted. In dynamic RRT [23] if an obstacle moves, firstly those edges of the

tree are discarded which are now in collision with some obstacle. Then while

keeping the rest of the tree intact, the tree is regrown until a solution is again

found. In [90] planning is done in small incremental steps, and the algorithm

alternates between planning and execution phases. The advantage is that we

do not make much assumptions about the position or trajectory of obstacles,

as planning is now online.

2.4.4 Recalculating an ‘optimal’ path through a roadmap

after dynamic changes

In section 2.4.3 the tree in C was regrown until a valid path from source to

goal was re-established. However in the case of PRMs, even if a solution still

exists through the roadmap after changes in the environment, we may want

to recompute the optimal path through this graph from the start to the goal

configuration; i.e. the path in the graph with the smallest cost. A naive

approach would be to re-run the algorithm from scratch whenever a change

in the environment is observed. A smarter methodology would allow to keep

much of the formerly computed result, and only change those parts of the

solution that got affected by the change in the environment.

In a general form, we want to build an extension to Dijkstra’s [18] algo-

rithm, so that if edge costs alter, the optimal path from source to goal is
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recomputed in an efficient way. This has been done (for e.g. [75, 76, 27]).

Early algorithms treated edge cost increases and edge cost decreases, sepa-

rately, some of them performing one update at a time. In [75] batch updates

could be processed. An experimental study can be found in [17] verifying

that these algorithms are much more efficient than re-running the Dijkstra

algorithm from scratch after changes to edge costs.

In the AI literature, the above ideas were introduced via the Dynamic A*

algorithm and its variants [86, 48, 87, 24]. These algorithms keep a priority

queue of nodes, just like in Dijkstra’s algorithm. However, the difference is

in what nodes go into the queue, and how are they prioritized. If dynamic

changes to the environment are detected, the optimal path from a node x

to goal may get altered, but only for a select few nodes in the graph. The

attempt is therefore for only those nodes to enter the queue, whose optimal

path has possibly altered. Also, the priority of a node in the queue depends on

not just its current estimated cost to goal, but the minimum cost in a certain

history of the node. This is because dynamic changes may have altered the

cost-to-goal of the node in various ways. The Dynamic A* - lite algorithm

[48] notes a consistency condition, which if satisfied at all nodes ensures that

we know the shortest path tree. Hence the idea of these algorithms really is,

to repair this consistency condition only at nodes where it became violated

after the dynamic changes in the environment.

None of the above algorithms however consider imperfect environment

maps, which is what we do in the Dynamic BURM (DBURM) algorithm

(chapter 4). DBURM is closely related to the above algorithms, however

DBURM considers uncertainty of the environment. Next, for efficiency DBURM
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does not calculate the exact probabilities of collision along an edge, but keeps

upper and lower bounds, that are refined if required. Hence edge costs are

represented as intervals rather than values. This interval representation of

costs, makes it much more challenging than the case in the algorithms above.

Also, our local consistency condition is different to the algorithms above.
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Chapter 3

Bounded Uncertainty

Roadmaps

We introduce the Bounded Uncertainty Roadmap (BURM) algorithm, which

extends the Probabilistic Roadmap algorithm to plan the robot path when

the positions of obstacles are uncertain. Such uncertainties often arise be-

cause information about the environment, acquired via robot sensors or en-

vironment map, is not perfectly accurate. The aim is to find a path from

the source configuration to destination, that has a small expected cost of

collision. BURM builds a roadmap in the configuration space of the robot,

and identifies the path through the roadmap that has the least expected cost

of going from source to destination.

Because of uncertainties in position of the obstacles, the expected cost

of a path depends on the probabilities of collision along the path. The main

contribution of BURM is not to compute the exact probability of collision

at a given robot configuration, but to keep bounds on it. Bounds can be

27
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iteratively refined by performing more computation. Bounds at a given con-

figuration are refined only if it help in identifying the optimal path in the

roadmap. Part of this refinement is done by hierarchically dividing the geom-

etry of the robot and obstacles into smaller pieces, giving us subdomains over

which probability of collision is to be computed. Some part of the refinement

is also performed by Monte Carlo Integration.

In our experimental results we compare BURM to the classic PRM; and to

what we call as the Monte Carlo Uncertainty Roadmap (MCURM). MCURM

does not use iterative refinement of probability bounds, hence it attempts to

compute the exact probability of collision along all edges it encounters while

searching for the optimal path in the roadmap. The classic PRM on the other

hand, completely disregards uncertainty. Experiments show that DBURM is

around 150 − 200 times faster than MCURM, and surprisingly only around

3 times slower than PRM, which returns a much more expensive path as it

disregards uncertainty.

In the following section we describe how we extend from a roadmap where

edge costs are known values, to Bounded Uncertainty Roadmap, where edge-

costs are bounded within known intervals. In section 3.3 we define the path

cost function under such a setting. As computing the function exactly is

computationally expensive, we also describe how to reduce the required com-

putation. In section 3.4 we show how to find the optimal path from a given

source to destination in a Bounded Uncertainty Roadmap. The aim is quite

similar to Dijkstra’s shortest path algorithm [18, 15], but now the expected

costs of edges are not known exactly, and we only know that they are con-

tained within given intervals. The intervals can be refined when needed.



29 Section 3.1

The details of how to refine bounds is given in section 3.5. Finally we give

the implementation details and experimental results in sections 3.6 and 3.7

respectively.

3.1 Extending Roadmaps, to Bounded Un-

certainty Roadmap

Probabilistic sampling of configurations from the configuration-space of the

robot, is a highly successful approach for motion planning of robots with

many degrees of freedom. Sampling-based motion planning algorithms typi-

cally assume that input environments are perfectly known in advance. This

assumption is reasonable in carefully engineered settings, such as robot ma-

nipulators on manufacturing assembly lines. However, as robots venture into

new application domains at homes or in offices, environment maps are of-

ten acquired through sensors subject to substantial noise. It is essential for

sampling-based motion planning algorithms to take into account uncertainty

in the environment maps during planning so that the resulting motion plans

are relevant and reliable.

In sampling-based motion planning, a robot’s configuration space C is

assumed to be known and represented implicitly by a geometric primitive

Free(q), which returns true if and only if the robot placed at q does not

collide with obstacles in the environment. The main idea is to capture the

connectivity of C in a graph, usually called a roadmap. The nodes of the

roadmap correspond to collision-free configurations sampled randomly from
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C according to a suitable probability distribution. There is an edge between

two nodes if the straight-line path between them is collision-free.

Now suppose that the shapes or poses of obstacles in the environment

are not known exactly, but are modeled as a probability distribution πC of

possible shapes and poses. Then Free(q) cannot always determine whether

q is collision-free or not: it depends on the distribution of obstacle poses and

shapes. Instead of relying on Free(q), we need to compute the probability

that q is collision-free with respect to πC, and instead of a usual roadmap,

we construct an uncertainty roadmap U by annotating roadmap edges with

probabilities that they are collision-free (Fig. 3.1).

After building the uncertainty roadmap, we process path planning queries

by finding a path in U that has the least expected cost of traversal. The cost

of traversing a path is defined in terms of its Euclidean length, as well as the

number of expected collisions if the robot traverses the path. (see section

3.3).

3.1.1 From Uncertainty Roadmaps to Bounded Uncer-

tainty Roadmaps

Unfortunately, constructing a complete uncertainty roadmap U incurs high

computational cost, as it is difficult to compute collision probabilities effi-

ciently. We use two ideas to overcome this difficulty, which we briefly explain

below, and explain in greater detail in the later sections.

Firstly, observe that a path planning query may be answered without

knowing the complete uncertainty roadmap. Instead of computing the ex-
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Figure 3.1: An uncertainty roadmap. The positions of polygon vertices are
uncertain and modeled as probability distributions. The rectangular boxes
around the vertices indicate the regions of uncertainty. In the insets, for each
configuration marked along a roadmap edge, there are two circles indicating
the upper and lower bounds on the probability that the configuration is
collision-free. The size of the circles corresponds to the probability value.
In region 1, the two circles have similar size, indicating that the probability
bounds are tight.

act collision probabilities for the edges of U , we maintain upper and lower

bounds on the probabilities and refine the bounds incrementally as needed.

We call such a roadmap a bounded uncertainty roadmap (BURM). See the

insets in Fig. 3.1 for an illustration. The key idea of our approach is to eval-

uate uncertainty, represented by the collision probability bounds, at multiple

resolutions in different regions of the configuration space, depending on their

relevance for finding a best path in U . Often, the critical decision of favor-

ing one path over another depends on the uncertainty in localized regions

only, for example, in narrows passages where the robot must operate in close

proximity of the obstacles. It is thus sufficient to evaluate uncertainty ac-

curately only in those regions and only to the extent necessary to choose a

best path. Consider the example in Fig. 3.1. If we want to go form A to A′,
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it is important to evaluate the precise collision probabilities in region 1 in

order to decide whether to take the risk of going through the narrow passage

or to make a detour. Knowing the precise collision probabilities in regions 2

and 3 is much less relevant for this decision. Thus, evaluating collision prob-

abilities at different resolutions hierarchically leads to drastic reduction in

computation time by avoiding unnecessarily computing the exact collision

probabilities.

Secondly, note that computing collision probabilities effectively requires

integrating over a high-dimensional distribution πC of obstacle shapes and

poses. The dimensionality of πC depends on the geometric complexity of

the environment obstacles. Consider, for example, a simple two-dimensional

environment consisting of 10 line segments. Each line segment is specified by

its endpoints, whose positions are uncertain. We then need to integrate over

a distribution of 10× 2× 2 = 40 dimensions! To overcome this difficulty, we

break down the high-dimensional integral into a series of lower-dimensional

ones as we explain in section 3.3.1.

3.2 Modeling Position Uncertainty

Let us start with two-dimensional environments. The obstacles are mod-

eled as polygonal objects, each consisting of a set of primitive geometric

features—line segments for two-dimensional environments. The endpoints of

the line segments may not be known precisely and are modeled as probability

distributions with finite support, such as truncated Gaussians. See Fig. 3.1

for an illustration. In Fig. 3.1 the rectangles around the vertices bound the
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position of the vertex with probability 1. Environment maps of this kind can

be obtained by, for example, feature-based extended Kalman filtering (EKF)

mapping algorithms [89]. For generality, we model the robot in exactly the

same way. In three-dimensional environments, the representation is similar,

but the primitive geometric feature are triangles rather than line segments.

3.3 The Path Cost Function

Given the above representation of the obstacles and the robot, we can con-

struct an uncertainty roadmap U in the robot’s configuration space C. The

nodes of U are configurations sampled at random from C. For every pair of

nodes u and u′ that are close enough according to some metric, there is an

edge in U , representing the straight-line path between u and u′. Recall that

in classic motion planning, sampling-based algorithms construct a roadmap

whose nodes and edges are guaranteed to be collision-free, and the goal is to

find a collision-free path in the roadmap. In our setting, due to the uncer-

tainty, we cannot guarantee that the nodes and edges of U are collision-free,

and there may exist no path that is collision-free with probability 1. So in-

stead, we want to find a path with minimum cost according to a suitable cost

function. A cost function may incorporate various properties of the desired

path. To be specific, our cost function depends on two factors: the collision

probability and the path length. This allows us to trade off the distance that

the robot must travel against the risk of collision.
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3.3.1 The weight of an edge

Definition of W(e)

We define the weight of an edge e in the roadmap as follows:

W (e) = `(e) + E[C(e)], (3.1)

where `(e) is the length of e and C(e) is the cost of collision for e. E[C(e)]

denotes the expected collision cost, and the expectation is taken over πC,

the probability distribution of the obstacle and robot geometry. This cost

function assumes that collision is tolerable and we want to trade off the risk

of collision against the robot’s travel distance. Paths that do not conform to

this assumption, e.g., those that penetrate through the interior of obstacles,

must be excluded.

Reducing Computation of W (e) by (a) Breaking down the inte-

gral into a series of lower dimensional integrals

In the discussion below, we use the terminology of the geometric ‘features’

of robot and obstacles. For the case of 2-dimensional environment, we define

‘features’ as line segments belonging to the robot or obstacle. However, we

remark that the discussion in the rest of this section is independent of how

exactly a feature is defined.

To obtain W (e), we need to calculate E[C(e)]. Doing so directly is ex-

tremely difficult, because it involves computing the probability of collision.

In order to compute the probability of collision at a given configuration,

we need to integrate over πC, a high-dimensional distribution whose dimen-

sionality is proportional to the number of geometric features describing the



35 Section 3.3

obstacles and the robot, as illustrated by the example in section 3.1.1. Fur-

thermore, we must perform this integration for every edge of U . Instead of

this, we break down the integration process into several steps.

We define C(e) as:

C(e) =

∫
q∈e

C(q) dq,

where we slightly abuse the notation and use C(q) to denote the cost of

collision at configuration q. Following the usual practice in sampling-based

motion planning, we discretize the edge e into a sequence of of configurations

(q1, q2, . . . , qn) at a fixed resolution and approximate the integral by

C(e) =
n∑
i=1

C(qi) dq. (3.2)

Hence by linearity of expectation we get E[C(e)] =
∑n

i=1 E[C(qi)]

So far not much has changed as E[C(qi)] involves computing the prob-

abilities of collision, which are high dimensional integrals and difficult to

compute. However, recall that the end-points of the geometric features of

the polygons that make the environment and robot, are modeled as prob-

ability distributions with finite support. Hence we need to integrate over

the poses of only those geometric features of the environment, that are close

enough to the robot at qi, to have a non-zero probability of collision with the

robot. This by itself can drastically reduce the dimensionality of the integral

(and summation). However, we go a step further.

Given the robot in configuration qi, denote the two feature sets by S for

the obstacles and S ′ for the robot. We define the collision cost of the robot

at a given configuration as the sum of collision costs of all pairs of geometric
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features s ∈ S and s′ ∈ S ′. This can model, for example, the preference that

configurations with fewer feature pairs in collision are more desirable. (See

section 3.3.2 for further discussion). In formula, we have

C(q) =
∑

s∈S,s′∈S′

Cs,s′(q), (3.3)

where Cs,s′(q) is the collision cost for the feature pair s and s′ when the robot

is placed at configuration q. Now as E[C(q)] =
∑

s∈S,s′∈S′ E[Cs,s′(q)], hence

when computing the probabilities of collision, we now need to consider only

a pair of geometric features at a time. In 2-dimensional workspace it implies

2 endpoints of 2 line segment; hence an 8-dimensional integral.

Combining Eqs. (3.1–3.3) and using the linearity of expectation, we get

W (e) = `(e)+
∑n

i=1

∑
s∈S,s′∈S′ E[Cs,s′(qi)]. Let Is,s′(q) denote the event that s

and s′ intersect when the robot is placed at q. Then E[Cs,s′(qi)] = αP(Is,s′(q)),

where α is the cost of collision when a pair of features intersect. In practice,

α is adjusted to reflect our willingness to take the risk of collision in order

to shorten the robot’s travel distance. To summarize, the weight of an edge

e is given by

W (e) = `(e) +
n∑
i=1

∑
s∈S,s′∈S′

αP(Is,s′(qi)), (3.4)

and the cost of a path γ in U is the sum of the weights of all edges contained

in γ.

Reducing Computation of W (e) by (b) Maintaining Bounds

To compute the cost of a path, each edge of an uncertainty roadmap U

must carry a set of probabilities P(Is,s′(qi)). Although s and s′ are primi-

tive geometric features of constant size, computing P(Is,s′(qi)) exactly is still
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expensive. If s and s′ are both uncertain, then the computation requires

integration over a distribution of 8 dimensions for two-dimensional features

and 18 dimensions for three-dimensional features. To reduce the computa-

tional cost, we maintain upper and lower bounds on P(Is,s′(qi)) rather than

calculate the exact probability. Thus each edge e of U carries a set of prob-

ability bounds on P(Is,s′(qi)) for each configuration qi ∈ e resulting from the

discretization of e, and for each pair of features s ∈ S and s′ ∈ S ′ at qi. We

call such a roadmap a bounded uncertainty roadmap or BURM for short. The

probability bounds are refined incrementally by subdividing the integration

domain hierarchically when searching for the optimal path.

3.3.2 The definition of cost - is it useful?

Above we defined the collision cost of the robot at a given configuration,

as the sum of collision costs of all pairs of geometric features s ∈ S and

s′ ∈ S ′. But what can C(qi) =
∑n

i=1

∑
s∈S,s′∈S′ C(s, s′) model? Firstly, as

was mentioned before, this can model that configurations with fewer feature

pairs in collision are more desirable. Each robot feature has an importance,

and each collision of this feature with any of the obstacle-features, has a cost.

However one may argue that the cost should depend on not only whether it

collides, but how much of force is exerted on the robot-feature due to the

collision.

We first look at our definition cost-of-collision in a somewhat more generic

way. We are calculating the cost at a given configuration by breaking it down

into feature-pair collisions. Therefore any cost-function that it calculates
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would have the property of being expressable in terms of functions of feature-

pairs. That is: C(q) = g(∪i,jfi,j(s′i, sj)). Here C(q) is the cost of collision at

a configuration, s′i is a feature of the robot, and sj is a feature of the obstacle.

Both g and f denote functions - hence g is a function of all the fi,j. Any

cost-model that is not expressable as above, can’t be (by definition) broken

down into feature-pair considerations. On the other hand if it is expressable

in such a form, then although some details would vary, but we can indeed

break down the computation of C(q) into feature-pair consideration as we

have done in this chapter.

As we said above, if C(q) = g(∪i,jfi,j(si, s′j)) then we can indeed break

down the computation of C(q) into feature-pair consideration. One natural

idea is to use this cost function to incorporate ‘force’ exerted on the robot by

the obstacles, as this force can indeed be broken down in the above fashion.

In order to incorporate force exerted on a robot-feature due to a feature-pair

collision, we can define C(q) =
∑

i,j F (i, j), where F is the force exerted

on feature s′i of the robot due to the collision with obstacle feature sj in

the configuration q. The one question remaining is how to define F (i, j) by

looking at the geometry of si and sj at a given configuration.

There can be a few ways to approximate F (i, j) using the geometry of si

and s′j. One way is to define force in terms of penetration of s′i into sj. One

definition of ‘penetration’ for a pair of polygons (or polytopes) in literature

is: the minimum rotational and/or translational distance that would cause

the robot and obstacle to become disjoint [19, 1, 96]. The algorithms in

literature to compute the penetration for convex polygons are reasonably

fast, all running in time less than O(n2) where n is the total number of
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vertices of the two polygons. For our purpose we require the penetration

distance of two line segments in 2D workspace, or of two triangles in 3D

workspace, which are simpler than the generic problem, as well as have a

small total number of vertices.

3.4 Path Planning with BURMs

3.4.1 Overview

Suppose that we are given the (uncertain) geometry of the obstacles and the

robot in the representation described in section 3.2. Our goal is to find a

minimum-cost path between a start configuration qs and a goal configuration

qg. Conceptually, there are two steps, First, we construct a BURM U with

trivial probability bounds by sampling the robot’s configuration space C.

Next, we tighten up the probability bounds incrementally and search for a

minimum-cost path in U .

The first step is similar to the usual sampling-based motion planning

algorithms. We sample a set of configurations from C according to a suitable

probability distribution and insert the sampled configurations along with qs

and qg as nodes of U . We then create an edge for every pair of nodes that

are sufficiently close according to some metric. We filter out those nodes and

edges that are in collision. Here collision is defined with respect to the mean

geometry of the obstacles and the robot, which means that the primitive

geometric features representing the obstacles and the robot are all at their

mean positions. The purpose of filtering is to exclude those paths that cause

the robot to pass through the interior of the obstacles. It is well known that
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the probability distribution for sampling C is crucial, and there is a lot of

work on effective sampling strategies for motion planning. See [14, 34, 53]

for comprehensive surveys. There is also recent work on how to adapt the

sampling distribution when the environment map is uncertain. we do not

address the issue of sampling strategies. BURMs can be used in combination

with any of the existing sampling strategies.

In the second step, we search for a minimum-cost path in U using a variant

of Dijkstra’s algorithm. While Dijkstra’s algorithm deals with path cost, a

BURM contains only bounds on path cost. When there are two alternative

paths, we may not be able to decide which one is better, as their bounds

may “overlap”. To resolve this, we need to refine the probability bounds in

a suitable way. The details are described in section 3.5.

3.4.2 Searching for a Minimum-Cost Path

Given a BURM U , we search for a minimum-cost path in U using a variant

of Dijkstra’s algorithm. A sketch of the algorithm is shown in Algorithm 1.

For each node u in U , we maintain the lower bound K(u) and upper bound

K(u) on the minimum-cost path from qs to u. Recall that every edge e of

U carries a set of probability bounds on Is,s′(qi), for every qi ∈ e resulting

from the discretization of e and every feature pair s ∈ S and s′ ∈ S ′. Let

P(Is,s′(qi)) and P(Is,s′(qi)) denote the lower and upper bounds on the proba-

bility of Is,s′(qi), respectively. Using these bounds, we can calculate the lower

bound W (e) and upper bound W (e) on the edge weight for each edge e ∈ U .

By the definition, K(u) and K(u) can then be obtained by summing up the

bounds on the edge weights. Like Dijkstra’s algorithm, we insert each node
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Algorithm 1 Searching for a minimum-cost path in a BURM.

1: For every node u of a BURM U , initialize the lower and upper bounds
on the cost of the minimum-cost path from qs to u: K(u) = 0, K(u) = 0
if u = qs, and K(u) = −∞, K(u) = +∞ otherwise.

2: Insert all nodes of U into a priority queue Qu.
3: while Qu is not empty do
4: Find in Qu a node u such that K(u) ≤ K(v) for all v ∈ Qu, where

v 6= u. Remove u from Qu.
5: if u = qg then return.
6: for every node v incident to u do
7: Discretize the edge between u and v at a given resolution into a

sequence of configurations qi, i = 1, 2, . . ..
8: For every qi, invoke FindColEvents(qi, S, S

′) to find feature pairs
s ∈ S and s′ ∈ S ′ that are likely to have P(Is,s′(qi)) > 0. For each
such feature pair, set P(Is,s′(qi)) = 0 and P(Is,s′(qi)) = 1, and insert
Is,s′(qi) into Qe.

9: Set Ku(v) = K(u) +W (u, v) and Ku(v) = K(u) +W (u, v).
10: while the two intervals (Ku(v), Ku(v)) and (K(v), K(v)) overlap

do
11: RefineProbBounds(Qe, U, qs, u, v).
12: if Ku(v) < K(v) then
13: Set K(v) = Ku(v) and K(v) = Ku(v).
14: Update Qu, using the new bounds on the cost of the minimum-cost

path to v. Call RefineProbBounds if needed.

u of U into a priority queue Qu, which is implemented as a heap, and then

dequeue them one by one until a minimum-cost path to qg is found. As we

do not know the exact values of expected edge costs, we can not use the path

cost from qs to u as the priority value of u. Instead we use the path cost

bounds (K(u), K(u)) as the priority key. Given two nodes u and v, we say

that u has a higher priority if (K(u) ≤ K(v)). Now this is only possible if

the bound intervals (K(u), K(u)) and (K(v), K(v)) do not overlap. Hence in

our implementation of Qu, if u and v are being prioritized, and their bound

intervals overlap, then the probabilities of collision along the two paths are
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refined until the bounds no longer overlap. At such time we can establish

which node has a higher priority. With such a definition of priority, the node

u with the highest priority in the heap, would satisfy K(u) ≤ K(v) for all

v ∈ Qu where v 6= u, which is the condition on line 4.

As we have mentioned in section 3.3.1, computing collision probabilities

requires integration over a high-dimensional distribution and is very expen-

sive computationally. We use two techniques for efficient computation of the

probability bounds. In line 8 of Algorithm 1, FindColEvents find feature

pairs s ∈ S and s′ ∈ S ′ such that s and s′ are likely to intersect with non-zero

probability, when the robot is placed at qi (see section 3.5.1 for details). For

each such feature pair, we attach an initial probability bound of [0, 1] to the

event Is,s′(qi) and insert Is,s′(qi) into a set Qe as a candidate for probability

bound refinement in the future. Observe that usually, at each configuration,

only a small number of feature pairs are in close proximity and likely to

intersect with non-zero probability. Therefore, this step drastically reduce

the number of collision probability bounds that need to be calculated. To

search for the intersecting feature pairs efficiently, we exploit a hierarchical

representation of the geometry of the obstacles and the robot (see section

3.5.2) and quickly eliminate most of the feature pairs that are guaranteed to

have zero collision probability.

In lines 11 and 14 of Algorithm 1, RefineProbBounds refines probability

bounds. While searching for a minimum-cost path in U , we may encounter

two paths γ and γ′ and must decide which one has lower cost. If the bound

intervals on the cost of γ and γ′ overlap, refinement of the probability bounds

becomes necessary. To do so, we find all events Is,s′(q) in Qe such that q lies
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in an edge along γ or γ′. We then refine the probability bounds on these

events (see Section 3.5.2), until we can determine the path with lower cost.

To focus on the main issue and keep the presentation simple, Algorithm 1

uses Dijkstra’s algorithm for graph search. Informed search, such as the A*

algorithm with an admissible heuristic function, is likely to give better results.

In our case, one possible heuristic function is the Euclidean distance between

two configurations.

3.5 Refining the probability bounds of colli-

sion between feature pairs

In this section we describe our computation of probability bounds. We re-

strict ourselves to the two-dimensional case. The basic idea generalizes to

the three-dimensional case in a straightforward way, but the details are more

involved.

3.5.1 The FindColEvents routine

For the two-dimensional case, FindColEvents (Algorithm 1, line 8) finds

feature pairs s ∈ S and s′ ∈ S ′ that are likely to have intersection probability

P(Is,s′(q)) > 0. Here S is the set of features of the obstacles, and S ′ is the set

of features of the robot, when the robot is placed at configuration q. As in

2-D we define features to be line segments, s and s′ are line segments.

FindColEvents quickly eliminates most of the line segment pairs where

P(Is,s′(q)) = 0. Recall that we model the endpoints of these line segments
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as probability distributions with finite support. Without loss of generality,

we assume that the support regions are rectangular. Let R(s) denote the

endpoint regions for a line segment s and H(s) denote the convex hull of the

endpoint regions. Now if H(s) ∩ H(s′) = ∅, then clearly, the probability of

collision of s and s′ is 0. See Fig. 3.2(a) for an illustration.

(a) (b)

H(s)R(s)

s

s'

Figure 3.2: The line segment pair s and s′ intersect with (a) probability 0
and (b) probability 1. (See also theorem 3.5.1)

H(s)

H(s')

Figure 3.3: A sphere tree over two uncertain line segments.

If S and S ′ contain m and n line segments, respectively, it takes O(mn) time

to check all line segment pairs s ∈ S and s′ ∈ S ′. This is very time-consuming,

as we need to invoke FindColEvents repeatedly at many configurations. To
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improve efficiency, we apply a well-known technique from the collision de-

tection literature and build bounding volume hierarchies over the geometry

of the obstacles and the robot. There are many different types of bounding

volume hierarchies. See [57] for a survey. We have chosen the sphere tree hi-

erarchy, though other hierarchies, such as the oriented bounding box (OBB)

tree, can be used as well. Specifically, we build two sphere trees for S ′ and S,

respectively. Each leaf of a sphere tree contains the convex hull H(s) for a

line segment s, and each internal node v contains a sphere that encloses the

geometric objects in the children of v (Fig. 3.3). Clearly H(s) and H(s′) can

intersect only if their enclosing sphere intersect. It then follows that s and

s′ intersect with non-zero probability only if the spheres enclosing H(s) and

H(s′) intersect. By traversing the sphere trees hierarchically, we can quickly

eliminate most of the line segment pairs that have zero intersection proba-

bility and reduce the cost of checking a quadratic number of line segment

pairs to a much smaller number. We omit the details of constructing sphere

tree hierarchies and traversing them for collision detection, as they are well

documented elsewhere (see, e.g., [57]).

In summary, by exploiting a hierarchical representation, FindColEvents

efficiently identifies most line segment pairs with intersection probability 0

and reduce the trivial probability bound of [0, 1] to [0, 0] for all of them

together. For the remaining line segment pairs, which are usually small in

number, their probability bounds are further refined when necessary (see

next subsection).



46 Chapter 3

3.5.2 Hierarchical Refinement of Collision Probability

Bounds

We now consider the problem of refining the bounds on the intersection

probability P(Is,s′(q)) for some line segment pair s ∈ S and s′ ∈ S ′. To

simplify the notation, we will omit the parameter q and assume that s′ is

translated and rotated suitably.

Computing P(Is,s′) is in essence an integration problem. Let x1 and x2

be the endpoints of s, and let x3 and x4 be the endpoints of s′. Suppose that

xi has probability density function fi(xi) with rectangular support regions

Ri. We can calculate the probability that s and s′ intersect by integrating

over R1 × · · · ×R4:

P(Is,s′) =

∫
R1×···×R4

A(x1, . . . , x4) f1(x1)dx1 · · · f4(x4)dx4, (3.5)

where A(x1, . . . , x4) is an index function that is 1 if and only if s and s′

intersect. In two-dimensional environments, this integral is 8-dimensional.

To evaluate this integral, we decompose the integration domain R1×· · ·×

R4 hierarchically into a set of subdomains such that in each subdomain, the

index function A is constant. By summing up the probability mass associated

with all the subdomains where A is 1, we get the value for P(Is,s′). During the

hierarchical decomposition process, we maintain three lists of subdomains:

(i) subdomains where A is always 1, (ii) subdomains where A is always 0, and

(iii) subdomains where A has mixed values (0 or 1). Interestingly, these three

lists provide an upper bound and a lower bound on P(Is,s′) at any moment

during the decomposition process. Let p1 and p2 be the probability mass
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associated with subdomains in list (i) and (ii), respectively. Clearly, we have

p1 ≤ P(Is,s′) ≤ 1− p2. The probability mass associated with subdomains in

list (iii) is 1 − p1 − p2. It represents the gap between the upper and lower

bounds. To refine the bounds, we simply take a subdomain from list (iii) and

decompose it further until some of the refined subdomains can be assigned

to either list (i) or list (ii).

To decompose an integration domain R1× · · · ×R4, we take a horizontal

or vertical cut on one or more of the endpoint regions Ri and obtain a set

of subdomains R′1 × · · · × R′4 such that R′i is rectangular and R′i ⊆ Ri for

i = 1, 2, 3, 4. Using Theorem 3.5.1 below, we can easily determine whether

the index function A has constant value on a subdomain and assign the

subdomain to the appropriate list.

Theorem 3.5.1 Let s and s′ denote two line segments with uncertain end-

point positions in two dimensions. For a line segment s, let H(s) denote the

convex hull of the end point regions. Let R(s) and R(s′) be the rectangular

end point regions.

(1) If H(s) ∩H(s′) = ∅, then s and s′ intersect with probability 0.

(2) If H(s) ∩ H(s′) 6= ∅, R(s) ∩ H(s′) = ∅, and R(s′) ∩ H(s) = ∅, then s

and s′ intersect with probability 1

Proof To prove part (1), observe that since H(s)∩H(s′) = ∅, line segments

s and s′ has no intersection for all pairs s and s′ whose endpoints lie in

R(s) and R(s′), respectively. This immediately implies that the intersection

probability is 0.
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Now we prove part (2). Let R1, R2, R3, R4 be the four end point regions

(see fig. 3.4). Let’s first assume that there is a pair of intersecting line

segments s1 and s2, where the end-points of s1 lie in R1 and R2, and those

of s2 lie in R3 and R4 as shown.

Figure 3.4: Two colliding segments, when R(s) ∩ H(s′) = ∅, and R(s′) ∩
H(s) = ∅. R(s) are the end point regions R1 and R2. H(s) is their convex
hull. Also, R(s’) are the end point regions R3 and R4. H(s’) is their convex
hull

Let the two vertices of s1 be labelled as a and b as shown in the figure.

Next, keeping a constant, choose any other vertex c as shown. We will now

show that s2 also intersects with ac.

The three points a, b, c define a triangle(we include the possibility of a

degenerate triangle). Note that s2 enters this triangle by intersecting ab, but

s2 also needs to exit this triangle. Else R(s′) would be intersecting abc, which

contradicts the hypothesis that R(s′) ∩H(s) = ∅. Note now that s2 can not

intersect with the segment bc, else R2 would intersect with H(s′) Hence we

conclude that s2 intersects with the only remaining edge of the triangle, ac.
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But c was chosen arbitrarily from R2, hence showing that s2 intersects

with all line segments az, where z ∈ R2. For each z, we can reverse the

argument treating z as we treated a above, to conclude that s1 intersects

with all segments si where the end points of si lie in R1 and R2.

So we conclude, that if s2 intersects one line segment s1, then it intersects

all line segments si as defined above. But now we can reverse the roles of s

and s′ in this argument. Hence, as every line segment si intersects with s2,

each si intersects with all line segments sj, where the end points of sj lie in

R3 and R4. This then shows that if there is one pair of intersecting segments,

then the probability of intersection is 1.

All that needs to be done is to show that such a pair of segments indeed

exists. But that is straightforward. Let p be a point at the boundary of

the intersection of the two convex hulls. p must be a point that belongs

to the boundary of H(s) as well as the boundary of H(s′). Now consider

the boundary line segment of H(s) that contains p, and the boundary line

segment of H(s′) that contains p. These two boundary line-segments hence

are the pair of segments we wanted.

There are various strategies to decompose a rectangular integration do-

main. The main goal is to assign each subdomain to list (i) or (ii) and avoid

unnecessarily decomposing into a large number of tiny subdomains. One

possible decomposition procedure, based on the quadtree [16], always cuts

an endpoint region in the middle either horizontally or vertically (Fig. 3.5a).

This is simple to implement, but does not always results in the best de-

composition, as it may unnecessarily cut a domain into small pieces. Our
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(b)(a)

Figure 3.5: Decomposing the integration domain for intersection probability
calculation. (a) The quadtree-based procedure. (b) Our procedure that takes
into account the geometry of intersecting line segments. The example shows
that after roughly a same number of cuts, our procedure identifies a large
part of the domain for which no further decomposition is needed.

decomposition procedure uses the geometry of the two intersecting line seg-

ments s and s′ to decide where to cut. This results in better decomposition,

but the trade-off is that each decomposition step is slightly more expensive.

To determine how to cut, our procedure enumerates several cases that de-

pend on the relative positions of the endpoint regions and convex hulls for

s and s′. (See 3.6 for more details.) An example decomposition is shown

in Fig. 3.5b. In the experiments, our decomposition procedure usually gives

slightly better performance than the quadtree-based procedure.

An alternative way of evaluating the integral in (3.5) is to perform Monte

Carlo integration [41] by sampling from the integration domain R1×· · ·×R4.

Each sample consists of four points x1, . . . , x4 with xi ∈ Ri. Let Ai be the

value of the index function A for the ith sample, and p be the value of the
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integral in (3.5). Then an estimate of p is given by

pN =
1

N

N∑
i=1

Ai. (3.6)

The values Ai, i = 1, 2, . . . , N are in fact a set of independent and identically

distributed (i.i.d.) random variables. Under a wide range of sampling distri-

butions, the mean of Ai is equal to p. Let VA be the variance of Ai. Note

that Ai has a Bernoulli distribution, and therefore VA ≤ 0.25. By (3.6), pN

is a random variable with mean p and variance VA/N . We can then apply

Chebychev’s inequality and obtain

P
(
|pN − p| ≥ (1/δ)(VA/N)−1/2

)
≤ δ, (3.7)

which implies that pN converges to p at the rate O(N−1/2). More precisely,

for any δ arbitrarily small, we can determine the number of samples, N ,

needed to ensure that the estimate pN does not deviate too much from p. So

instead of maintaining upper and lower bounds on the collision probabilities,

we can choose N large enough to get sufficiently accurate estimates for all the

collision probabilities and find a minimum-cost path with high probability.

Unfortunately, using Monte Carlo integration this way is not efficient (see

Section 3.7), as it uses the same number of samples for estimation everywhere.

An interesting method is to combine probability bound refinement and

Monte Carlo integration. We start by decomposing the integration domain

as described earlier. When the probability mass associated with a subdomain

is small enough, we apply the Monte Carlo method with a small number of

samples to get an estimate and close the gap between the upper and lower
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bounds. Strictly speaking, if we do this, we cannot guarantee that the al-

gorithm finds a minimum-cost path in U . However, if we use a sufficient

number of samples for Monte Carlo integration, we can provide the guar-

antee with high probability. Furthermore, even when the algorithm fails to

find a minimum-cost path, the cost of the resulting path is still a good ap-

proximation to the minimum cost. The reason is that due to the bound

in (3.7), we make a mistake only when two paths have very similar cost.

We use this combined method in our implementation of the algorithm, and

it achieves better performance better than one that uses pure probability

bound refinement.

3.6 Implementation Details

3.6.1 Mixing Monte-Carlo Integration and Hierarchi-

cal Refinement

In our implementation of BURM, we mixed Monte Carlo integration, and

hierarchical refinement of bounds as we now explain. Suppose we are refining

the bounds on the probability of intersection between the segments s and s′.

Initially the bounds are trivial: [0,1]. We refine the bounds by dividing the

integral into subdomains, as explained below. However, if the subdomain has

a probability mass of m ≤ 0.4, then we do not perform any more hierarchical

refinements, but perform m× 100 Monte Carlo simulations to close the gap

on the probability bounds. The proportion of samples that were in collision,

is then taken to be the probability of collision over the subdomain.
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3.6.2 Details of Hierarchical Refinement

We put this in implementation details, as there are various possible hierarchi-

cal refinements. We implemented one, and do not claim it’s the best. Recall

that we perform hierarchial refinement only if the probability of collision is

neither 0 nor 1. Therefore we are going to assume that for the rest of this

section.

Geometrically speaking, hierarchical refinement concerns a pair of hulls of

the end point regions (see fig. 3.2 and theorem 3.5.1). We attempt to divide

the rectangles in such a way, that some of the subdomains have probability of

collision 0, or probability of collision 1. The idea is to make individual checks

cheap to compute, and yet having reasonable heuristics, so that within a few

divisions we can get to subdomains with probability of collision 0 or 1 as

shown in fig. 3.2.

We break it down into three cases. First suppose that some end-point

region R is entirely contained within the hull of the other segment as shown

in fig. 3.6. We are showing just 3 of the 4, end point regions. In figure

(a) we show the distances from R to xmin and xmax. Denote the smaller of

these distances by xdist. We define ydist similarly. If xdist is smaller than

ydist, which is the case in (a), then we divide the two end point regions into

R1, R2, R3 and R4 as shown. Note that this would give us four subdomains:

R1R3 , R1R4 , R2R3 and R2R4. In case (b) ydist is smaller and in this case

we divide along the horizontal axis as shown.

Note that to reduce the combinatorial explosion of the number of sub-

domains, we divide only one of the rectangles as shown above, and do not
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(a) Case 1: xdist ≤ ydist (b) Case 2: xdist > ydist

Figure 3.6: One of the end point regions is contained in the convex hull

divide any other rectangles. If the above case is not true for any of the four

rectangles then we move onto second case as shown in the figure below. Here

one of the rectangles intersects with a line segment that does not belong to

any other end point region as shown in fig. 3.7. The intersecting rectangle is

divided into 3 domains along the dotted lines as shown. Note that in both the

examples shown below, one of the subdomains lies outside the convex hull,

which should help in quickly refining the probability using theorem 3.5.1.

Note that the examples do not cover the case, when the intersecting segment

is along one of the diagonals of the rectangle. In this third case (not shown

in figure), we just divide the rectangle into 4 equal subdomains, each having

half the width and height of the original rectangle.

If both the above cases are false, then there must be two intersecting

rectangles. In this case, we just perform 100×m Monte Carlo simulations to

close the gap on the probability bounds. Here m is the probability mass of

the four rectangles; that is, the probability that the 4 vertices would be in the

4 rectangles. Note that m may not be 1, as we might have reached this case
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after some hierarchical subdivisions. The probability of collision assigned to

this mass is then mncoll/100, where ncoll is the number of samples in which

the two line segments intersected.

(a) Case 1 (b) Case 2

Figure 3.7: End point region intersecting with a segment that does not belong
to any other end point region

3.7 Experiments

To test the effectiveness of our approach, we compared the performance of

our algorithm and with two alternatives. One algorithm, MCURM, is similar

to ours. It also builds an uncertainty roadmap. However, instead of refining

the probability bounds incrementally when necessary, it estimates the exact

probabilities using Monte Carlo integration. In our tests, MCURM uses 100

samples to evaluate each intersection probability P(Is,s(q)). The other algo-

rithm that we compared is Lazy-PRM [6], which does not take into account

uncertainty during planning.

In our tests, all three algorithms use the same sampling strategy, which is

a hybrid strategy consisting of the bridge test and the uniform sampler [32].

We ran the algorithms on each test case and repeated 30 times independently.
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The performance statistics reported here are the averages of 30 runs. In each

run, the three algorithms used the same set of sampled configurations. So

the performance difference results from the way they find a minimum-cost

path in an (uncertainty) roadmap rather than random variations in sampling

the configuration space.

In the figures below the boxes around the vertices mark the support

regions of the probability distributions modeling the endpoint positions of

line segments forming the obstacle boundaries.

The test results are shown in figures 3.8 , 3.9 and Table 3.1. In test en-

vironments 1–3, the robot has a rectangular shape and only translates. In

these three tests, the environments are similar. The robot essentially chooses

between two corridors to go from the start to the goal position. The main

differences among the tests are (i) the level of uncertainty in the obstacle

geometry and (ii) the robot start position. In test environment 1 figure (fig

3.8(a)), the uncertainty level is low and roughly the same everywhere. So the

robot chooses the upper corridor, based mainly on the path length consid-

eration. However, it is interesting to observe that although a shortest path

with respect to the path length normally touches obstacle boundaries, our

minimal-cost path stays roughly in the middle of the corridor. It does so

to avoid collision due to the uncertainty in obstacle geometry. In test envi-

ronment 2, the upper corridor has substantially higher uncertainty than the

lower corridor. On balance, it is better for the robot to choose the slightly

longer, but safer lower corridor (fig 3.8(b)). In test environment 3, the uncer-

tainty in obstacle geometry remains the same as that in test environment 2,
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s g

(a) Test environment 1.

s g

(b) Test environment 2.

Figure 3.8: Test Environments 1 and 2
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s g

(a) Test environment 3.

s

g

(b) Test environment 4.

Figure 3.9: Test Environments 3 and 4
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Table 3.1: Performance statistics.

Test Env. No. Nodes Cost Time (s)
BURM MCURM Lazy-PRM BURM MCURM Lazy-PRM

1 300 700 699 786 15.1 3,132 5.9
2 300 742 742 1,063 19.3 2,893 5.9
3 300 761 760 961 19.4 3,016 5.1
4 500 544 542 706 18.6 2,878 9.4

but the start position for the robot moves higher. The robot again decides

to go through the upper corridor, because despite the higher collision risk of

the upper corridor, it is much shorter than the lower corridor (fig 3.9(a)).

In test environment 4, the robot can both translate and rotate. To reach

its goal, the robot can either take the risk of collision and squeeze through

the narrow passage or make a long detour. It is not obvious which choice

is better. The answer depends, of course, on the cost of collision. In this

case, the robot decides to take the riskier, but shorter path (fig 3.9(a)).

Interestingly, our algorithm finds two paths of similar cost, depending on the

set of sampled configurations. One path veers to the right (fig 3.9(b)) when it

approaches the obstacle near the lower entrance to the narrow passage, and

the other veers to the left. This is in fact not surprising, because regardless

of whether the path veers to the the left or right, the uncertainty that the

path encounters remains similar and the path length does not differ by much.

Now let us look at the performance statistics. For each test case, Table 3.1

lists the number of nodes in the (uncertainty) roadmap, the running times,

and the cost of the paths found by the three algorithms.

BURM and MCURM find paths with almost the same cost. BURM is,
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however, 140–200 times faster. This clearly demonstrates the advantage of

the approach of evaluating uncertainty hierarchically at multiple resolutions.

The comparison between BURM and Lazy-PRM is even more interesting.

As expected, BURM finds paths with lower cost as it takes uncertainty into

account during planning. However, it is somewhat surprising that BURM

is not much slower than Lazy-PRM: BURM is only 2-3 times slower than

Lazy-PRM, while it is at least 140 times faster than MCURM. The reason is

that uncertainty comes into play in deciding the best path when the robot

operates in close proximity of the obstacles. This usually happens in lo-

calized regions of the configuration space only. BURM takes advantage of

this by maintaining bounds on collision probabilities rather than calculating

the exact probabilities. It refines these bounds incrementally by exploiting

bounding volume hierarchies built over the geometry of the obstacles and

the robot and by hierarchically decomposing the integration domain for col-

lision probability calculation. The running time comparison with Lazy-PRM

provides further evidence on the advantage of our approach.

To better understand the behavior of BURM, we applied it to an envi-

ronment similar to that in tests 1-3 and varied the uncertainty level in the

obstacle geometry. The resulting bounded uncertainty roadmaps are shown

in Fig. 3.10 (at the end of the chapter). The edges of the roadmaps are

colored to indicate how tight the associated collision probability bounds are.

The roadmap in Fig. 3.10a serves as a reference point for comparison. The

uncertainty is low in both the upper and lower corridors, and the collision

probability bounds are refined to various degrees. As the uncertainty gets

higher in the upper corridor, the collision probability bounds there are tight-
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ened to differentiate the quality of the paths (Fig. 3.10b). It is also interesting

to observe that the upper corridor is not explored as much, because the paths

in the lower corridor are far better. Finally, as the uncertainty in the lower

corridor also increases, both corridors must be explored, and the collision

probability carefully tightened in order to determine the best path.

Bounded uncertainty roadmaps can be used with any existing sampling

strategies. To demonstrate this, we performed additional tests by varying the

sampling strategy used and the number of nodes in the uncertainty roadmap.

We tried two additional strategies: the uniform sampler and the Gaussian

sampler [7]. For all sampling strategies, as the roadmap size increases, the

running time increases correspondingly. Two plots of representative results

are shown in Fig. 3.11 (at the end of the chapter). They indicate that the

cost of the minimum-cost path found decreases with the roadmap size up to

a certain point and then stabilizes. So one way of minimizing the path cost

is to run our algorithm in an “anytime” fashion by gradually adding more

nodes to the roadmap. The effect of different sampling strategies is more

pronounced in more complex environments. In test environment 2, when the

number of roadmap nodes is sufficiently large, the results obtained by the

different sampling strategies are comparable. When the number of nodes

is small, the Gaussian sampler does not behave very well, as it biases sam-

pling towards the obstacle boundaries, resulting in high collision cost. In the

more complex test environment 4, which contains several narrow passages,

the hybrid bridge test and the Gaussian sampler have clear advantages over

the uniform sampler. Just as in classic motion planning, effective sampling

strategies for constructing uncertainty roadmaps are important and require
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further investigation.

3.8 Summary

In this chapter we introduced the notion of a bounded uncertainty roadmap

and used it to extend sampling-based algorithms for planning under uncer-

tainty in environment maps. BURM builds a roadmap and then finds the

optimal path through the roadmap, like the classical PRM. However due to

the uncertainty, the cost of an edge now depends on probabilities of collision.

In order to evaluate the probabilities of collision we need to evaluate a

high dimensional integral the dimensionality of which is equal to the number

of vertices in the envrionment and robot. The main idea is to make this

computation much more efficient. It is performed by firstly breaking down

the high dimensional integral into a series of low dimensional integral. And

then, we maintain bounds on the probabilities of collisions, rather than com-

puting the exact values. The bounds are refined only if it helps in identifying

the optimal path. Some part of this refinement is achieved by hierarchi-

cally dividing the geometry of the robot and environment into subdomains,

over which probability of collision is to be computed. While some of the

refinements use Monte Carlo Integration.

The cost of collision at a configuration is defined as the sum of the cost

of feature-pair collisions. Here a feature pair consists of a colliding pair of

features, one from the robot and the other from the obstacle. Hence when

calculating probabilities BURM needs to consider only a pair of features at
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a time, greatly reducing the dimensionality of the integral. We remark that

for as long as the cost of collision at a configuration, is defined in such a way

so that it can be expressed in terms of feature-pair collision, the basic idea

of considering only one pair of features at a time would work.

Given a feature pair, the bounds on the probability of collision are hier-

archically refined by geometric considerations. The probability of collision is

computed by dividing the integration domain into subdomains. This division

is done in such a way so as to make it likely that the probabilities of colli-

sion in some of these subdomains would be trivial; i.e. either 0 or 1. This

makes it possible to close the gap on the probability bounds. After some

iterations of this geometric division, the rest of the gap is closed by Monte

Carlo integration.

Our approach greatly improves planning efficiency. Experimental results

have demonstrated that it is highly effective, and up to a 150-200 times better

than MCURM, which uses Monte Carlo integration to compute probabilities

of collision for every feature pair, for the robot configurations along the edges

that are explored when searching for the optimal path. Also, BURM is

only around 3 times slower than the classical PRM, which does not consider

uncertainty at all and hence returns a much more inferior path in terms of

cost-of-collision.
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(a)

(b)

(c)

Figure 3.10: Color-coded BURMs. Red, gray, and blue-green marks
edges with tight, intermediate, and loose collision probability bounds,
respectively. Bright green marks edges with collision probability 0.
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Figure 3.11: The change in the cost of the minimum-cost path found as a
function of the sampling strategy and the number of nodes in the uncertainty
roadmap.
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Chapter 4

The Dynamic BURM: Path

Planning in a Dynamic

Environment with an Imperfect

Map

Probababilistically sampling a robot’s configuration space is a powerful ap-

proach for motion planning of robots with many degrees of freedom. However,

sampling-based motion planning algorithms often assume a known static en-

vironment, as well as perfect robot control and sensing. In practice, an

environment map constructed from sensor data is often inaccurate, and the

environment changes over time. It is essential for motion planner algorithms

to take into account such environment uncertainties and generate plans that

are robust during the execution.

To deal with inaccurate environment maps, the previous chapter intro-

67
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duced the Bounded Uncertainty Roadmap (BURM). Like most sample based

planners, BURM builds a roadmap in the robot’s configuration space, and

finds the optimal path in the roadmap. For efficiency, BURM does not cal-

culate expected costs of edges exactly, but maintains bounds on them. These

bounds can be refined with more computation.

In this chapter, we introduce the Dynamic BURM algorithm (DBURM),

which extends BURM to a dynamic environment: The obstacles can change

position and shape over time. Hence DBURM builds a roadmap and identifies

the optimal path in it, when the information about the position and shapes of

obstacles has uncertainty, as well as these position and shapes can change over

time. These changes are modeled by changing the probability distributions

that specify the coordinates of obstacle vertices.

As BURM maintains bounds on the expected costs of the edges, we can

consider edge weights to be intervals containing the expected costs. Now

in DBURM we no longer assume that the environment is static. A change

to the environment can alter the expected costs of some edges, invalidating

the correctness of the corresponding intervals, as the previously computed

intervals may no longer contain the expected cost.

In conclusion, our problem can be put as: come up with a graph search

algorithm that finds the optimal path, when the edge weights are refinable

intervals that contain the expected costs of edges, and the expected costs can

alter dynamically. The difference from BURM is that now expected costs can

alter dynamically.

One way to solve the problem is to re-run BURM whenever a change in

the environment is detected. However DBURM attempts at a more efficient
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solution by locally ‘repairing’ the shortest path tree rather than recomputing

it from scratch. We first extend the (known) local-consistency conditions

of graphs whose edge weights are values, to graphs whose edge weights are

intervals: if all nodes are locally consistent, then the shortest path tree is

easy to construct. DBURM only considers the non-consistent nodes, ‘repairs’

their consistency, and re-establishes the solution. This is a common strategy

that has also been applied in D* algorithm and its variants [86, 48, 87, 24].

However in DBURM we face the added challenge that the edge weights are

now intervals rather than values, which makes it more difficult to identify

the non-consistent nodes, as well as repair their consistency.

Our experimental results show that DBURM is a more efficient option,

than re-running of BURM. In most experiments, DBURM refines the bounds

by 1.5 to 2 times less, before identifying the optimal path in the roadmap.

4.1 Overview of the chapter

The rest of the chapter is organized as follows. The next two sections are:

Problem Description and Algorithm Overview. From section 4.4 it gets more

detailed. In section 4.4 we motivate the definition of local consistency condi-

tion in DBURM, which is an extension of the consistency conditions in the

usual graphs where edge-costs are values. Section 4.5 goes into the details by

giving the formal definition of the consistency conditions, and then proving

that if all nodes are locally consistent, then the shortest path tree is easy

to construct. Section 4.6 gives the DBURM algorithm and proves that it

terminates, and at that time the shortest path tree has been computed. In
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section 4.7 we show how to make DBURM more efficient by terminating it

earlier: before the entire shortest path tree has been computed, but after

having found the optimal path from the given source to destination. In the

end we give experimental results and conclusion.

4.2 Problem Description

We assume that the robot has a 2-D map of the environment. The obstacles

in the environment are modeled as polygons, whose shapes and positions are

not known exactly. Each vertex of a polygonal obstacle is represented as a

probability distribution with finite support (Fig. 3.1). This representation is

general and makes no assumption on the parametric form of the distribution.

If the vertex distribution follows a specific parametric form, e.g., Gaussian,

we can further exploit it for computational efficiency. For simplicity, the

robot is modeled in the same way.

In our setting, the vertex distributions in the map may change for two

reasons: the robot receives new sensor information to refine the map, and the

obstacles move. Either way, the map is updated to reflect these changes, as

soon as they occur. The robot’s objective is to reach a specified goal location

by following an “optimal” path based on the current map. The cost of a

path accounts for both the path length and the robot’s risk of colliding with

obstacles. In this work, we focus on computing the optimal path efficiently

and assume that the map is updated suitably using standard methods [89].
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4.3 Algorithm Overview

Similar to BURM (chapter 3), DBURM builds a roadmap U in the robot’s

configuration space C. Each node of U represents a robot configuration sam-

pled at random from C, and each edge represents a straight-line path between

two nodes that are sufficiently close to each other according to a suitable met-

ric. The expected cost, ŵ(e) of travering edge e is defined as :

ŵ(e) = `(e) + E[c(e)], (4.1)

where `(e) is the length of the straight-line path represented by e and E[c(e)]

is the robot’s expected collision cost while traversing this path. The expected

value must be computed with respect to the joint vertex distribution, which

is simply the cross-product of the distributions for the individual vertices

and is 2n-dimensional for a map with n obstacle vertices. Calculating the

expected value with respect to such a high-dimensional probability distri-

bution may incur a prohibitive computational cost, but we can nevertheless

do it efficiently by taking advantage of reasonable indpendence assumptions

and evaluating the expected value hierarchically at multiple resolutions. (see

chapter on BURM).

The cost of a path γ in U is the sum of the weights for the edges along γ.

Our goal is to find a minimum-cost path from the robot’s current position

to the goal. There are two interesting challenges here.

First, we do not want to compute the edge weights of U exactly. As noted

earlier, doing so incurs high computational cost. Instead, we construct up-

per and lower bounds, i.e., an interval, on the collision probability for each
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edge e. This leads to corresponding bounds on the expected collision cost

E[c(e)]. We initalize the collision probability interval as [0, 1]. While search-

ing for the optimal path, we may tighten up these intervals when necessary

by performing additional computation. (See the BURM chapter for further

details.)

Second, we do not want to recompute the optimal path afresh whenever

the environment map changes. We certify an optimal path by establishing a

set of local consistency conditions at the nodes of U . A node is consistent,

if it satisfies the local consistency condition. An optimal path is found, if

all the nodes are consistent. When the environment map changes, we place

all the inconsistent nodes into a queue. We dequeue these nodes one by one

and make them consistent. However, the processing may cause other nodes

to become inconsistent, and we must identify these additional nodes and

queue them up for future processing. This idea of incremental computation

is complicated by the fact that the exact edge weights in U are not known

exactly and are represented as intervals. To re-establish consistency, we

may need to tighten up some of these intervals and must select them with

care to avoid unnecessary tightening and wasted computation. Indeed, one

distinguishing feature of DBURM is to combine incremental computation

with BURM’s interval representation of uncertain environment maps.

As BURM is basically a graph where edge-weights are intervals, in the

next two sections we extend the local consistency conditions of the usual

graphs, to the DBURM setting: when the edge-costs are intervals.
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4.4 Attempting to extend the local consis-

tency conditions of the usual graphs

Our purpose here is to extend the local consistency conditions from the usual

graphs where edge weights are values, to graphs where edge weights are

intervals. The local consistency conditions for the usual graphs is a known

result[48]. Each node x maintains an estimate of the cost-to-go, c(x): the

estimated cost of the optimal path from x to goal. This estimate is correct

if all nodes satisfy the local consistency conditions.

c(x) =

 0 if x = goal;

miny{w(x, y) + c(y)} otherwise.

Here w(x, y) is the weight of the edge connecting the nodes x and y.

There are two problems in carrying over: c(x) = miny{w(x, y) + c(y)} in

its exact form to DBURM. The first one is easy: in our case the edge weights

are intervals, so we first need to define what it means to add two intervals,

and take the min element from a set of intervals. We do so in section 4.4.1.

The second problem is algorithmic: we can not enforce an equality of intervals

like above, without significant computational overhead. As edge weights are

constantly being tightened by DBURM, in order to enforce equality above,

each time we would have to propagate the tightened edge weight through

the graph: tightening of w(x, y) implies updating c(x), which in turn implies

updating c(.) for other nodes, etc.

Fortunately as we will see, a weaker consistency condition suffices. We

first define some interval arithmetic.
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4.4.1 Operations on intervals

In DBURM the edge weights, W (e), and estimated cost-to-go, C(x) are

intervals. Note that we indicate intervals by upper case alphabets.

As W (e) are intervals that bound the expected cost of traversing the edge,

we want to define interval addition, so that adding the W (.) of edges along

a path, give the bounds on the expected cost of traversing the path. This is

straightforward: Let X be the interval (a, b) and Y be the interval (c, d). By

X + Y we denote the interval (a+ c, b+ d)

Definition : W(edge) and W(path)

By W (x, y) we denote the weight (interval) of the edge connecting nodes

x and y. Similarly if p is a valid path to goal, we define W (p) as:
∑

e∈pW (e).

Here the sum is taken over the edges in the path. If p is not a valid path to

goal, we define W (p) =∞.

Note that the weight above is with an upper-case W and represents an

interval. As we are assuming bi-directional edges, there is no difference be-

tween W (x, y) and W (y, x).

Given a set of cost-intervals, S, how would we choose that interval in S,

which represents the smallest expected cost? Let X and X denote the upper

bound and lower bound of the interval X. If S is a set of intervals then

X = min{S}, if X ∈ S and X ≤ Y for all other Y ∈ S. If there is no such

element in S, then a minimum element for S is not well-defined.

In the section to follow, the important equation is eqn no. 4.3, and the

main theorem is theorem 4.5.1.
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4.5 The Local Consistency Condition

We first state the local consistency condition for the usual graphs; when edge

weights are values. Here w(x, y) denotes the weight of the edge connecting

nodes x and y. We assume that the edge weights are strictly greater than 0.

We say that a node x is locally consistent if it satisfies the following equation.

c(x) =

 0 if x = goal;

miny{w(x, y) + c(y)} otherwise.
(4.2)

This is the same equation as given before but we stated here again for

easy reference.

It is a known result that if all nodes are locally consistent then c(x) equals

the cost of the shortest path from x to goal. Hence one could easily construct

the shortest route by defining for every node x, π(x) = arg miny{w(x, y) +

c(y)} if miny{w(x, y) + c(y)} <∞, and setting π(x) = ∅ otherwise. Then for

every node x that has a path to goal x→ π(x)→ π2(x) . . . goal would be an

optimal path from x to goal.

Definition : Local Consistency A node x is said to be locally consistent

if it satisfies the following equation.

C(x) = [0, 0] if x = goal, else

C(x) ⊇ miny{W (x, y) + C(y)} (4.3)

Here C(x) is an estimate of an interval that contains the expected cost
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of the optimal path from x to goal; similar to the concept of c(x) above.

By ⊇, we mean that C(x) is an interval containing the min interval. We

assume that W (x, y) > 0 for all edges (x, y), and that the min interval above

is well-defined.

Note that if the min interval in equation 4.3 is not well defined, then

x is non-consistent by definition. The importance of ‘local consistency’ to

the computation of the shortest path tree, can be understood by reading the

statement of theorem 4.5.1

Next we need to define the notion of an optimal path from x to goal, when

edge weights are intervals. So far we have used the notion that the optimal

path is the path with the least expected cost of traversal. The definition

below is a bit different, but is equivalent if the expected cost of every edge e,

is contained within its edge weight-interval, W (e), which is what we assume

in BURM and DBURM.

Definition : optimal path

Suppose we assign each edge e, with a cost w(e) such that w(e) ∈ W (e).

Define w(path) =
∑

e∈pathw(e). Then popt is an optimal path from x to goal

if w(popt) ≤ w(p2) under any such cost assignment, where p2 is any path in

the graph from x to goal.

Note that as W (e) bounds the mean-cost of traversing the edge e, an

optimal path from x to goal, is also a path from x to goal with the smallest

expected-cost of traversal.

We defined π(x) at the beginning of section 4.5 such that if x has a

path to goal, then the path (x, π(x), π2(x) . . .) is an optimal path from x
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to goal. Motivated by this, we would define π(x) below for the case when

edge weights are intervals. At a given point in time in DBURM, the path

(x, π(x), π2(x) . . .) may not be the optimal path from x to goal, but we’ll

show that when the algorithm terminates, it’s indeed the optimal path for

nodes of interest.

But first, we need to figure what properties should π(x) satisfy so that

the sequence of π(.) above does trace out an optimal path. For that we have

theorem 4.5.1. Below, when we say that an interval I = ∞, we mean that

I = [∞,∞]. We choose this notation for brevity. Note that if I2 ⊇ I1, and

I1 =∞ then I2 =∞ as well.

Definition If π(x) = y, we say that y is a parent of x.

Theorem 4.5.1 Suppose all nodes are locally consistent. Let π(x) = ∅ if

x = goal. Otherwise let π(x) = arg miny{W (x, y)+C(y)} if this min interval

6=∞, and π(x) = ∅ otherwise.

We claim that the edges connecting nodes to their parents make a shortest

path tree. That is, x, π(x), π2(x) . . . goal is an optimal path from x to goal, if

a path from x to goal exists. If no such path exists, then π(x) = ∅.

The proof depends on some lemmas which are given immediately after

the proof of the theorem. We chose this sequence just to give the main result

as quickly as possible.

Proof The claim is trivially true for the goal node. If x 6= goal, then by

lemmas 4.5.3, 4.5.4, 4.5.5, the sequence π(x), π2(x) . . . exists iff x is in the

same connected component as the goal, and this sequence always ends at
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the goal node. This means that π(.) = ∅ for all nodes which are not in the

same connected component as the goal. As nodes that are not in the same

component as the goal, have no path to goal, the statement of the theorem

is satisfied for such nodes.

What remains is to prove the statement of the theorem for nodes that

are in the same connected component as the goal. Let W (x, y) be any edge

weight and w(x, y) ∈ W (x, y). For each edge (x, y) choose w(x, y) arbitrarily

from W (x, y). Let p(x) be the path x, π(x), π2(x) . . . goal. Next, define

c(x) =
∑

(x,y)∈p(x)w(x, y).

Consider now the same graph, but with edge costs as w(x, y) and cost

estimates at a node x being c(x). Therefore we now have the usual graph

where edge costs are values. Also note, that we did not change any π(.)

when going from the original graph to this new graph. All nodes hence

satisfy c(x) = w(x, π(x)) + c(π(x)). All that we now need to show is

that the conditions in (1) are satisfied at all nodes in this connected com-

ponent. Because then all nodes would be consistent by (1), as well as

π(x) = arg miny{w(x, y) + c(y)}. This would show that if we instantiate

the edges with any cost value taken from within their cost-intervals, the set

of π(.) still define a shortest path tree.

Now to prove that conditions in (1) are indeed satisfied. Let z be a

node in the same component as the goal. By lemma 4.5.2, c(z) ∈ C(z)

for all such nodes. Therefore, w(x, y) + c(y) ∈ {W (x, y) + C(y)}. Now

as we defined π(x) = arg miny{W (x, y) + C(y)}, it means that π(x) =

arg miny{w(x, y)+c(y)} as well. As we assigned c(x) = w(x, π(x))+c(π(x)),

this shows that c(x) = miny{w(x, y) + c(y)}. Hence the nodes satisfy the
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consistency conditions in (1).

Lemma 4.5.2 Suppose all nodes are locally consistent, and that π(x) is de-

fined as in theorem 4.5.1. If (x, π(x), π2(x) . . .) leads to goal, then with c(x)

and w(x) as defined in the proof of theorem 4.5.1, c(x) ∈ C(x).

Proof We prove by induction along the path (x, π(x), π2(x) . . . goal). We

start from goal and go towards x.

The statement is obviously true for the goal node, as C(goal) = [0, 0] by

definition. Now suppose that the statement is true for π(y), i.e. c(π(y)) ∈

C(π(y)). Hence we have (i) By local consistency, C(y) ⊇ W (y, π(y)) +

C(π(y)), (ii) w(y, π(y)) ∈ W (y, π(y)) and (iii) c(π(y)) ∈ C(π(y)). Hence

w(y, π(y)) + c(π(y)) ∈ C(y). As we assign c(y) = w(y, π(y)) + c(π(y)), this

proves that c(y) ∈ C(y). Hence by induction, the statement is true for all

nodes in the path (x, π(x), π2(x) . . . goal).

Lemma 4.5.3 Suppose all nodes are locally consistent, and that π(x) is de-

fined as in theorem 4.5.1. We claim the sequence π(x), π2(x), π3(x) . . . can

not have any loops. That is, no node repeats twice in this sequence.

Proof By contradiction. As C(x) ⊇ W (x, π(x)) + C(π(x)). Hence C(x) ≤

W (x, π(x)) + C(π(x)) ≤ W (x, π(x)) +W (π(x), π2(x)) + C(π2(x)) etc. Con-

tinuing in the same way, if we have a loop such as:

(x, π(x), π2(x), . . . , x), then we get

C(x) ≤ W (x, π(x)) +W (π(x), π2(x)) +W (π2(x), π3(x)) . . .+ C(x)

As W (x, y) > 0 for all edges, this is a contradiction.
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Lemma 4.5.4 Suppose all nodes are locally consistent, and that π(x) is de-

fined as in theorem 4.5.1. If π(x) 6= ∅, then the sequence π(x), π2(x), π3(x) . . .

must end at the goal.

Proof We prove by contradiction. Suppose π(x) 6= ∅, and that the sequence

π(x), π2(x) . . . does not end at the goal. By lemma 4.5.3 this sequence can

not have any loops. Hence if the sequence does not end at the goal, then it

ends at some last node z 6= goal. Now π(z) = ∅, hence C(z) =∞. But then

C(π−1(z)) = ∞ for all nodes in π−1(z). Similarly for π−2(z). Continuing

backwards in this way, we conclude that C(x) = ∞. But in such a case we

assign π(x) = ∅. Contradiction.

Lemma 4.5.5 Suppose all nodes are locally consistent, and that π(x) is de-

fined as in theorem 4.5.1. If x 6= goal, then π(x) = ∅ iff x is not in the same

connected component as the goal.

Proof x is not in the same connected component =⇒ π(x) = ∅, has been

proved by the above two lemmas. (because the sequence of π(.) pointers can

not have any loops and must end at the goal).

We only need to prove: π(x) = ∅ =⇒ x is not in the same connected

component as the goal. We prove the contrapositive. That is, x is in the

same connected component as the goal =⇒ π(x) 6= ∅.

We prove by induction. First consider all nodes which are one hop away

from goal. It would suffice to show that for each such node x there exists

a node y such that C(y) 6= ∞, and W (x, y) 6= ∞. Because in such a case,

the min interval in equation 4.3 can not be ∞. For the nodes one hop away
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from the goal, such a node is the goal as C(goal) = [0, 0]. Therefore if x is

one hop away from goal, C(x) 6=∞ and hence π(x) 6= ∅.

Now suppose that the result is true for all nodes within n hops of the

goal. But then if a node x is n+ 1 hops away, then it is a neighbor of some

node y which is n hops away. Then applying similar reasoning as above, we

conclude that for all nodes n+ 1 hops away from goal, π(x) 6= ∅.

4.6 The DBURM algorithm

In the previous section we showed that if all nodes are consistent and π(x) sat-

isfies certain properties, then x → π(x) → π2(x) . . . goal is an optimal path

from x to goal. Motivated by this we define a parent pointer π(x) for each

node x. At a given time it may not be satisfying the properties in theorem

4.5.1. However we will eventually prove that when the algorithm terminates,

all π(.) do indeed satisfy those properties, and hence x, π(x), π2(x) . . . is an

optimal path from x to goal.

Definition : The path p(x)

For any node x, we define p(x) as the path x, π(x), π2(x) . . .

We first give the offer(x, y) routine. Note that this routine is quite similar

to the relax(x, y) as defined in Dijkstra’s algorithm in popular texts. However

we chose the name ‘offer’ as we believe it is a more natural choice of words.

In offer(x, y), x offers the path y → x → π(x) → π2(x) . . . goal to y. y may

select this path by setting π(y) = x. However it selects the offer only if the

cost of its current path p(y), is more than that of the offered path.
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It would not make much sense to perform all the computations in offer(x, y)

if π(y) = x is already true, and therefore we don’t do that (see line 1 of offer())

Algorithm 2 offer(Node x, Node y)

1: if π(y) = x then
2: return.
3: Let poffered be the path y → p(x).
4: collect the edges constituting poffered and p(y).
5: if The interior of the intervals W (poffered) and W (p(y)) intersect then
6: Tighten the intervals W (poffered) and W (p(y)) until the interiors of the

two intervals do not intersect.
7: for All nodes z along poffered and p(y) do
8: Update C(z) : Set C(z) = W (p(z)), if p(z) is a path to goal. Else

set C(z) =∞ and π(z) = ∅.
9: if W (poffered) < W (p(y)) then
10: Set π(y) = x and C(y) = W (y, x) + C(x)

On line no. 8 above, we update the cost-intervals, C(.) of all nodes along

the two paths. In the case we find that one of those paths does not end at

goal, we set π(.) = ∅. Note that the π(.) sequence can not have any loops.

This is because before we change π(y) above, we narrow the two W (path)

until they do not intersect. A loop therefore would imply that W (p′) ≤ W (p),

where p is a path, and p′ is a path that is a strict subset of path p. As we

assume that W (e) > 0 for all edges e, this is a contradiction.

Hence the only way that the path does not lead to goal is that it is of

the following type: (x, π(x) . . . πn(x), ∅), where πn(x) 6= goal. In this case

some edges in the graph must have become invalid, so that the weights of

those edges are now ∞. This change had been propagated to πn(x) (as

πn+1(x) = ∅). but not to the other nodes in that path. Whenever we find

such a path on line 9, we set π(.) of all the nodes in the path to ∅.
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Note that in offer() we are comparing W (.) of the paths, which is the sum

of the W (e) where e is an edge in the path. Therefore we need line 4 above

to know the W (path), as well as to able to tighten the bounds on line 7 (see

section 3.5 for details of how we tighten the bounds). Below is the DBURM

algorithm.

Definition We say that a node y is a neighbor of node x, if W (x, y) 6=∞.

Algorithm 3 DBURM

1: make roadmap.
2: Set C(x) =∞, π(x) = ∅ for all nodes.
3: Set C(goal) = [0, 0] and insert goal node into queue
4: while Robot is not at goal do
5: while queue is not empty do
6: Remove a node x from queue
7: For all nodes z ∈ p(x), set C(z) = W (p(z)) if p(z) is a path to goal.

Else set C(z) =∞, and π(z) = ∅.
8: offer(y, x) for all neighbors y of x
9: offer(x, y) for all neighbors y of x
10: For all nodes z such that π(z) = x, set C(z) = W (z, x) + C(x),
11: While running lines 6-10, for all nodes z 6= x, if C(z) changed at

some point such that Cnew(z) 6⊆ Cold(z). Then insert z into queue.
12: while no changes are observed and robot is not at goal do
13: Move the robot along p(r), which is the path r → π(r) →

π(π(r)) . . . goal.
14: Reinitialize W (edge) for all edges that could be affected by the en-

vironment change, and insert all nodes adjacent to these edges into
queue.

We would like to show that when the queue in DBURM becomes empty

then all nodes satisfy the hypothesis of theorem 4.5.1. That is: (i) all

nodes are locally consistent. (ii) π(x) = ∅ if x = goal. Otherwise π(x) =

arg miny{W (x, y) +C(y)} if this min interval 6=∞, and π(x) = ∅ otherwise.
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If this is indeed true, then the conclusion of theorem 4.5.1 would also be true,

and for any node x, p(x) would be the optimal path from x to goal.

Definition We say that a cost interval, W (or C) has been modified , if the

bounds of W change such that Wnew 6⊆ Wold.

Cost-modification in our setting has a similar role to cost-modification in

D* and Dijkstra. For one, note that in DBURM algorithm above, we insert

a node x into queue when C(x) modifies . In order to prove our desired claim

given above, that p(x) is the optimal path from x to goal when the queue

becomes empty, we begin with the following two lemmas.

(Note that the statement of all lemmas and theorems assumes that the

state of execution is not ‘inside’ the while loop on line 5.)

Lemma 4.6.1 Suppose that the cost is ‘inconsistent’ between a parent-child

in the following way: Let π(y) = x, and suppose C(y) 6⊇ W (y, x) + C(x).

Then x must be on queue.

Proof We prove the contrapositive: Suppose π(y) = x , and that x is not

on queue. Then C(y) ⊇ W (y, x) + C(x).

Note that whenever C(y) is updated, the condition C(y) = W (y, π(y)) +

C(π(y)) is true immediately afterwards (see line 8 of offer() and line 10 of

DBURM). Now we always update C(y) if π(y) changes. So the previous time

we updated C(y) we had: C(y) = W (y, x) + C(x). Let this time be t. It

suffices to prove that W (y, x) and C(x) have not modified since t.

There could be many iterations of the while loop on line 5, when this

node x was the one chosen for removal on line 6. Let Lx be the most recent
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iteration of such iterations. It is clear that t′ < t, as x updates C(.) for all

its children on line 10. As x has not entered the queue since t′ by definition

of t′, W (y, x) and C(x) have not modified since t′. Otherwise x would be

reinserted into the queue. Hence W (y, x) and C(x) have not modified since

t. This proves the lemma.

Definition : Reject

We say that x ‘rejects’ a path offer from y when

1. π(x) = y, but then π(x) is updated so that π(x) 6= y. (Hence x

preferred another option).

2. We perform offer(y, x), and at the end of this offer we have π(x) 6= y.

Therefore y does not become the parent of x despite offering the path

to x. To be specific, in this case, we define the ‘time’ of rejection as

the time at the end of this offer(y, x).

Lemma 4.6.2 Let x be a node. Assume x was inserted into queue at some

time, but currently neither x nor y is on the queue. We claim if π(x) 6= yi,

then C(x) ≤ W (x, yi) + C(yi)

Proof As x was inserted into queue, x must have been removed from queue

as well. x may have been selected for removal (on line 6 of DBURM) in

several iterations. Let Lx be the last such iteration. Let t be the time at the

end of line 7 in Lx. We will follow what happened in Lx.

Note that C(x) = W (p(x)) after line 7. As none of the edge-weights

W (x, y) can modify inside the loop starting on line 5 of DBURM, W (p(x))

can only become tighter after line 7. Hence, for as long as p(x) does not
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change, C(x) can not increase. On the other hand, if p(x) changes to a new

path, then the upper bound of that new path is even smaller. We conclude

that C(x) can not increase during Lx after executing line 7.

Let yi be any neighbor such that π(x) 6= yi, and ti be the most recent

time when x rejected the offer from y. It is clear that ti > t. As C(x) has

been non-increasing since t, we conclude:

Ccurr(x) ≤ W ti
(x, yi) + Cti

(yi)

By Ccurr or Wcurr we denote the respective intervals ‘now’ (at the current

time). We claim that the above inequality is still true, in the sense:

Ccurr(x) ≤ W curr(x, yi) + Ccurr(yi)

This is because of the three points below:

1. C(x) is non-increasing since ti.

2. W (x, yi) has been non-decreasing since ti. This is because W (x, yi) has

not modified since ti, else x would be inserted into queue. Contradicting

the definition of Lx.

3. C(yi) has been non-decreasing since ti. This is because C(yi) has not

modified since ti. Note that if ti occurred inside an iteration where

yi was chosen for removal from queue, then ti occurred on line 9, and

C(y) can not modify after taking the best offer() on line 8. Hence if
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C(yi) decreases after ti, then as C(y) would modify outside such an

iteration, yi would be inserted into queue at a time t′ > ti. As yi is

currently not in queue, it would be removed from queue at a still later

time. This contradicts that ti was the last time when x rejected the

path offer of yi.

This proves the claim .

We now prove an important result of this section. Note the similarity

between the statement of this theorem and that of 4.5.1.

Lemma 4.6.3 Suppose x 6∈ Q, as well as none of its neighbors are on queue.

Then x is locally consistent. Also, π(x) = ∅ if x = goal. Otherwise π(x) =

arg miny{W (x, y) +C(y)} if this min interval 6=∞, and π(x) = ∅ otherwise.

Proof We break it down into two cases.

CASE (A)

First suppose that x was never inserted into queue. Hence C(x) never

modified , and hence C(x) = ∞, and π(x) = ∅. This also means that the

neighbors of x never offered a path that had a cost < ∞. Now by lemma

4.6.4, C(y) = ∞. Hence we conclude that C(y) = ∞ for all neighbors y of

x. Also as x was never inserted into queue C(x) = ∞, and π(x) = ∅. Its

straightforward to verify that x satisfies the conclusion of the theorem in this

case.

CASE (B)

Now we assume that x was inserted at some time into queue. By lemma
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4.6.2, if π(x) 6= yi, then:

C(x) ≤ W (x, yi) + C(yi) (4.4)

First suppose π(x) = ∅, then it must be that C(x) = ∞. (Whenever we

update C(x) 6= ∞, then we set π(x) to the relevant neighbor). Collecting

these conclusions we get: C(x) =∞, π(x) = ∅, and C(x) ≤ W (x, yi) +C(yi)

over all neighbors yi of x. It is easy to verify that x satisfies the statement

of the theorem.

Now suppose π(x) 6= ∅. We need to show that C(x) ⊇ C(π(x)) +

W (x, π(x)). But as x and π(x) are not in queue, by lemma 4.6.1 this is in-

deed true. Because of inequality 4.4 above, we can now conclude C(π(x)) +

W (x, π(x)) = argminy{C(π(y)) +W (y, π(y))}. This proves the claim

Lemma 4.6.4 If x has never been inserted into the queue, and y is a neigh-

bor of x, then C(y) =∞

Proof By contradiction. Suppose C(y) 6=∞.

1. y must have entered the queue as C(y) modified . As y is currently not

in queue, y was removed.

2. y may have been selected for removal (on line 6 of DBURM) in several

iterations. Let Ly be the last such iteration. Now the edge weights

can not modify to cost of ∞ inside Ly. Also no edge weight W ( , y)

has modified since after Ly. Else y would be inserted into queue again,

contradicting the definition of Ly. Hence x has remained a neighbor of

y ever since line 6 of Ly.
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Hence y must have offered a path to x on line 9 of Ly. Therfore it must

be that C(y) =∞ and π(y) = ∅ at the end of line 8 of Ly. Now C(y) can not

modify after line 8 in Ly (as y has already looked at all offers, p(x) remains

constant after line 8). Hence C(y) = ∞ at the end of Ly. As C(y) has not

modified since (else y would be inserted once more into queue), C(y) is still

∞. Contradiction.

Now we come to a main theorem in this chapter.

Theorem 4.6.5 DBURM is correct and terminates, regardless of the order

in which we dequeue the nodes (line 6).

Proof Lemma 4.6.3 shows that if the queue becomes empty, then the hy-

pothesis of theorem 4.5.1 is satisfied, and hence x, π(x), π2(x) . . . defines the

optimal path from x to goal, or π(x) = ∅ if no such path exists. Hence

DBURM is correct.

We claim that the loop on line 5 of DBURM must terminate. This is

because whenever a node x leaves the queue, C(x) = W (p(x)). Hence if x

enters the queue again, C(x) must have modified . As weights of edges do

not modify inside the loop on line 5, C(x) will modify only if p(x) changes to

a strictly better path (Note the strict inequality on line 12 of offer()). This

can happen only a finite number of times. Eventually x must stop entering

the queue. Applying this reasoning over all nodes in the graph, proves the

claim.
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4.7 Terminating the while loop on line 5 ear-

lier

Many times what we are interested in, is to have the optimal path from a

given source node, to the goal. In such a case it could be quite inefficient

to compute the shortest path tree in its entirety. Maybe we could start

computing the shortest path tree, and then stop the process as soon as we

know that the optimal path from the given source has been successfully

computed. But how would we know that?

Many graph search algorithms like Dijkstra’s and D* keep a queue of

nodes (we also do in DBURM), and a key k(x) is defined for every node in

the queue. In Dijkstra and A*, once minx∈queue k(x) > c(src), where c is the

estimated cost-to-go and src is the source node, then the optimal path from

src has already been computed.

4.7.1 Defining a key, k(x) for every node x

Motivated by the above we also define a key, k(x) for every node. Our

motivation is to terminate the graph-search algorithm (the while loop on

line 5) earlier; once we know that p(src) is an optimal path from src to goal,

where src is the source node. Therefore minx∈Q k(x) should indicate that

no offer from any nodes in the queue can now be made that can potentially

improve the current path p(src) from source to goal. Hence, intuitively, the

value minx∈queue k(x) should handle the following aspects:

1. It should lower bound the path with the least cost, that can be offered
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by any node in the queue. Hence we would expect W (p(x)) or C(x) to

feature in the definition of the key.

2. But note that in a dynamic setting W and/or C is not enough to know

the least cost that can be offered. For example, it might be that x

rejected a path from y of cost 8, because at that time p(x) had a cost

7. However as we are in a dynamic setting, the edge costs along p(x)

may have increased since then. It could be that now C(p(x)) = 9.

So x should look in its neighborhood (note line 8 in DBURM), and

get the offer from y again. Therefore, we also need to keep track of

the path costs that were rejected before, but now maybe good enough

to be accepted. Now whenever x rejects an offer from y, we have

C(x) ≤ W (x, y) +W (p(y)). Therefore we can expect a certain history

of values of C(x) to feature in the definition of k(x), in order to lower

bound the offers from neighbors of x.

Now we give a formal definition for the key. We first define h(x); a certain

history of the values of C(x).

Definition : h(x)

Consider those iterations of the while loop (on line 5), when the given node

x was chosen for removal on line 6. There could be several such iterations.

Let Lx be the most recent of such iterations. Let t be the time when we just

finished executing line 7 in Lx, or t = −∞ if there was no such iteration. We

define h(x) as the minimum value of C(x) since t.

Note that if x is currently in queue, then h(x) is smaller than the smallest

value of C(x) since x most recently entered the queue.
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The reason that line no. 8 features in the above definition is, because we

want to keep track of the smallest outdated value of C(x) that might have

been used to update the children of x; i.e. those nodes z where π(z) = x.

The important fact is: if C(z) ≤ h(x), then π(z) 6= x.

Definition : k(x)

k(x) = min{h(x), C(x)} (4.5)

We defined k(x) is to terminate the while loop on line 5 before the queue

becomes empty, but after the optimal path from the source node has been

found. That is when DBURM terminates, the path p(src) should be the

optimal path from src to goal. Define k as : k = minx∈queue k(x). We

claim that DBURM remains correct if we terminate the while loop on line 5

earlier by changing line 5 to: while(k(src) ≥ k). That is, once this condition

becomes false, we can terminate the while loop as p(src) is the optimal path

from src to goal. We prove this result later in theorem 5.8.2, as almost a

corrollary of the correctness of the more general PACBURM in chapter 5.

4.8 Experiments

In this section, DBURM refers to Algorithm 2 improved with the priority

queue described in Section 4.7
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4.8.1 The BURM* algorithm

We compare DBURM to BURM*, an improved version of BURM for dy-

namic environments. BURM is designed for static environments. Whenever

a change in the environment map occurs, it re-initializes all the collision

probability intervals to [0, 1] and computes the optimal path afresh. How-

ever, this may be unnecessary as the change may be local and only affect a

small subset of collision probability intervals. To improve computational ef-

ficiency, BURM* identifies these intervals in a conservative manner and only

re-initializes them to [0, 1], while retaining the values of other intervals. If

the edge is far enough form the environmental change so that its cost can’t

be affected, the weight (interval) W (e) of the edge is retained.

4.8.2 Results

We tested DBURM in five different environments with robots having up

to four degrees of freedom. DBURM substantially outperformed BURM*

in Test 1–4. DBURM did not perform as well in Test 5, leading to the

observation that the priority order in the queue interacts with the inter-

val representation of an uncertain environment representation in interesting

ways.

The environments in the figures are shown with small boxes around the

vertices of the obstacles. These boxes indicate the finite support of the vertex

distributions: the underlying position of the vertex could be anywhere in the

box. The probability distributions used were ‘gaussian-type’: the probability

mass was highest in the center of the box, and tailed off towards the edges.
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The gray obstacles shown in the figures, are the ones we get when all the

vertices placed at the mean positions of their respective distributions.

The algorithms would first solve the query in the initial environment,

and compute the optimal path. Then as the robot is traveling along its

path, changes would be made to the environment, forcing the algorithm to

recompute the optimal path to goal.

Experiments 1 and 2

The environment and robot for these experiments are shown in figs 4.1(a)

and (b). The robot has 2 degrees of translation. It is shown as a thin rod on

the left and the right side of the environments, which are the starting and

goal configurations of the robot respectively.

The difference between the environments of 4.1(a) and 4.1(b), are the

sizes of two vertex distributions in the lower passage. In figure 4.1(b) there

is an increased uncertainty (bigger boxes) around two of the vertices (see

arrows in fig 4.1).

In experiment 1 the starting environment was 4.1(a), and the dynamic

change to the environment led to 4.1(b). In experiment 2 it was the other

way round. Therefore in experiment 1 the uncertainty increased, and in

experiment 2 it decreased. The robot would go via the lower passage, and

the dynamic change was made just before the robot would pass over the two

vertices mentioned above (see the two arrows in fig 4.1(a) and (b)).

Results are shown in table 4.1. All results are the average over 30 runs.

‘Nodes’ is the average number of nodes that were inserted into the priority
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(a) Lower uncertainty at the two vertices indicated
by the arrows

(b) Higher uncertainty at the two vertices indicated
by the arrows

(c) Experiment 3: Robot with 2 dofs. The passage
indicated by the arrow was blocked before the robot
entered it.

(d) Experiment 4: Robot with 4 dofs. The passage
indicated by the arrow was blocked before the robot
entered it.

Figure 4.1: Environments for the first four experiments
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queue. ‘CCs’ are the collision checks: the number of segment-segment inter-

section tests (×105) performed by the algorithms to tighten the edge weight

intervals, W (e), in the roadmap. In these experiment the CCs are directly

proportional to the amount by which W (e) were tightened. Hence CC’s indi-

cate the amount of additional information required by the algorithm before

identifying the optimal path. (For details of how intersection tests are used

to tighten W (e), refer to BURM (chapter 3). Time T (s), given in seconds,

is the time taken to compute the desired path from the current to the goal

configuration after the dynamic changes.

Table 4.1: DBURM vs BURM* (experiments 1 & 2)

Experiment 1 Experiment 2
Algo Nodes CCs T(s) Nodes CCs T(s)

DBURM 122 7.5 2.31 123 2.4 0.84

BURM* 219 11.3 3.24 221 5.6 1.70

The results show that DBURM performs measurably better than BURM*

in both CCs as well as time. In the second experiment, DBURM takes less

than half the number of CCs and around half as much of time.

Experiments 3 and 4

In these experiments we block a narrow passage on the path of the robot,

just before the robot would enter the passage. The robot had to go from

the start configuration shown at the left end of figures 4.1(c) and 4.1(d),

to the goal configuration at the other end of the environment. The arrows

in figure 4.1(c) and 4.1(d) indicate the narrow passage that was blocked.
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Table 4.2: DBURM vs BURM* (experiments 3 & 4)

2 dof robot 4 dof robot
Algo Nodes CCs T(s) Nodes CCs T(s)

DBURM 237 2.1 1.42 231 4.0 2.43
BURM* 379 5.8 2.26 372 6.7 2.85

The figures also show the optimal paths computed both before and after the

blocking of the passage. As can be seen the robot was forced to go from the

passage towards the lower half of the environment after the upper passage

was blocked.

Figure 4.1(c) shows the experiment with a robot with two degrees of

freedom, while figure 4.1(d) shows the experiment with a robot with 4 de-

grees of freedom. In the case of the 4-dof robot, the figure also shows the

configurations of the robot along the paths.

The results are in table 4.2. DBURM performs measurably better in these

experiments. Note again that DBURM clearly performed lesser CCs, with

almost 3 times lesser number of CCs in the experiment with 2-dof robot.

Experiment 5

In this experiment we give an example of where DBURM could perform

worse. The robot has 3 degrees of freedom; 2 for translation and 1 for

rotation. The robot had to go from the horizontal position towards the top

of the environment (see fig 4.2), to the horizontal position at the bottom

as shown. The starting environment for this experiment is the same as in

chapter 3, figure 3.9(b). However, for the dynamic change, we block the
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Table 4.3: Performance statistics for experiment 5

DBURM BURM*
Nodes CCs T(s) Nodes CCs T(s)

172 9.3 29.9 293 7.7 28.1

critical narrow passage on its path, forcing the robot to go the longer way

after this dynamic change to the environment.

Figs 4.2(a) and 4.2(b) also show the roadmaps explored by the algorithms.

Red edges are those whose cost-intervals were tightened by the algorithms.

Gray are those that were too far from any obstacle, and the probability-of-

collision was easily assigned as 0 without much computations.

Note the two compartments on the top right hand side of the environment:

DBURM explored more edges than BURM*. Why? Recall that DBURM

does not tighten the W (.) or C(.) intervals while prioritizing on queue. Hence

there is only a partial order of intervals on the queue. In other words, if x is

at the head of the queue, W (x) may not be the min W (.) interval amongst

the nodes on queue (see definition of min under Interval Operations in 4.4).

DBURM also had to perform more CC’s than BURM* (see table 4.3).
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(a) DBURM: Roadmap after dynamic change

(b) BURM*: Roadmap after dynamic change

Figure 4.2: Experiment 5
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4.9 Summary

In this chapter we presented the DBURM algorithm for path planning in a

dynamic environment with an imperfect environment map. DBURM builds

on top of the BURM algorithm of chapter 3 which was for imperfect maps

but in a static environment. Hence like BURM, DBURM builds a roadmap

in the robot’s configuration space, and then identifies the optimal path in

the roadmap.

Like BURM, the expected costs of edges are not calculated exactly, but

only the upper and lower bounds of the costs are maintained. These bounds

are refined conservatively; only if such information is useful in identifying

the optimal path in the roadmap. Hence we can consider edge weights to be

intervals, that contain the expected cost of the corresponding edge.

We first extended the local consistency condition from the usual graphs

where edge weights are values, to graphs where edge weights are intervals.

The local consistency condition, if satisfied by all nodes in a graph, implies

that the shortest path tree has been computed. We extended that condition

to a graph where edge costs are intervals, and proved similarly: that if all

nodes are locally consistent then the shortest path tree has already been

computed.

We then presented the DBURM algorithm for path planning in a dynamic

environment with an imperfect environment map. DBURM maintains inter-

val bounds on a robot’s collision probabilites and tightens up the bounds,

when necessary, to identify an optimal path. When an envionment change

invalidates a previously optimal path, DBURM updates the path and re-
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establish its optimality by “repairing” the local consistency condition at a

selected subset of roadmap nodes. One distinguishing feature of DBURM is

to combine this incremental computation with the interval representation of

uncertain environment maps.

We compared DBURM to BURM* which is a smart re-running of BURM.

BURM* re-runs BURM after a dynamic change in the environment is ob-

served. However BURM* maintains the cost bounds of those edges in the

roadmap, whose cost could not have been affected by the given dynamic

change. Hence it does not need to refine those bounds all over again. Nev-

ertheless, in most of our tests, DBURM outperformed BURM* by 1.5 to 2

times in terms of time taken. In most experiments DBURM also refined

the cost bounds by 1.5 to 2 times less before identifying the optimal path.

We also gave one example in which DBURM did not perform as good and

explained the cause for the underperformance. Like some other replanning

algorithms, DBURM does not immediately discard the estimated cost to go,

C(x) after the dynamic change, and uses the former C(x) to prioritize the

nodes on the queue. If the new costs, and the former costs happen to be

very different, then this prioritization may end up looking at more nodes

than required. This possible disadvantage is also shared by other replanning

algorithms [86, 48].
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Chapter 5

PACBURM : Efficiently finding

a Probably Approximately

Optimal path

It happens many times that we are given a graph but we do not know the ex-

pected costs of edges. Typically the problem is solved by running simulations

- the traversal of edge e is simulated n number of times, hence generating

a sample of n costs that were incurred when traversing e. These average

of these samples is usually taken as the expected costs of e, ŵ(e). However

accurately speaking, this is not true. We can at best only compute an in-

terval that bounds ŵ(e) with a probability of (1 − α), where α > 0. Such

an interval is called as the (1 − α) confidence interval of ŵ(e). The general

situation we are considering is that we do not know the expected costs of

edges, but we can generate a sample of costs incurred. These samples may

be available due to historical data, or may be obtained by simulations. The

103
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problem is to return a useful path in this situation.

The idea is not to take too many samples, while returning a path that

with a high probability, is the optimal path. By optimal path, we mean

the path with the least expected cost. Further, if we allow the graph search

algorithm a ‘tolerance’, we can return a path that is close in cost to that

of the optimal path, with a high probability. Introducing such tolerance

would be a useful idea if the error incurred is small, while gain in efficiency is

large. We introduce this tolerance in our algorithm and both our theoretical

analysis, as well as experimental results, show that this is indeed a very useful

idea. As mentioned above, the usual idea of running simulations generates

a (1 − α) confidence interval, and therefore our idea of ‘tolerance’ can be

used to reduce the number of simulations we need, while the path returned

remains of an acceptable quality. We do not know of another algorithm that

returns a close-to-optimal path, by computing the confidence intervals of the

expected costs of edges.

In this chapter we give the Probably Approximately Correct BURM

(PACBURM), which returns a path ppac, that can be characterized as follows.

Define the underlying optimal path, popt, as the path with the least expected

cost from source to goal. Let |E| be the number of edges in the graph. Then

with probability (1 − α)|E|, ŵ(ppac) − ŵ(popt) ≤ Lε. Here ŵ is the expected

cost, L is the number of edges in the optimal path, popt, and ε is the level of

tolerance that was used. Note that L can be trivially bounded by |V |, the

number of nodes in the graph. The tolerance ε, and the confidence level α,

can be made arbitrarily small, but leads to increasing the running time of

the algorithm.
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In our experiments the value of (1 − α)|E| is maintained at > 0.90. The

results indicate that by introducing the tolerance, ŵ(ppac) − ŵ(popt) can be

maintained to within 1-5% of ŵ(ppac), while the running time gets reduced

by up to two order of magnitude.

5.1 Introduction

In the DBURM algorithm, the expected cost of traversing an edge is not

known accurately, and the edges are annotated with an interval, W (e), that

contains the expected cost of traversing e. Usually however we can only

obtain a (1 − α) confidence interval of the expected cost, where α > 0. For

example we may want to find out the expected time taken for a car to traverse

a road. If we are given samples of time taken by cars to traverse the road,

we can compute (1 − α) confidence interval of the expected time taken. As

another example, consider that we want to find the expected cost of collision

for a robot on traversing an edge e. In order to do so we may run simulations

and gather sample data of costs incurred. Again, using these samples we can

generate a (1− α) confidence interval of the expected cost of traversing e.

Therefore we need to make changes to DBURM so that it handles the

case when W (e) is the (1 − α) confidence interval of the expected cost of

edge e. Like many graph algorithms we also assume that the edge weights

are positive. In our setting this translates to: The lower bounds of the

confidence intervals are positive.

With such an algorithm we could claim that when the algorithm termi-

nates: The path that the algorithm returns is the optimal path from s to
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goal, if for every edge e, ŵ(e) ∈ W (e). That is, the expected cost of e is

contained within its confidence interval. By making α sufficiently small, we

can claim that the path returned is optimal with a high probability. However

experiments indicate that such an algorithm can take a long time to run.

In order to make things faster we introduce a ‘tolerance’ ε. In graph search

algorithms there is usually a subroutine where we compare the costs of two

paths p1 and p2 and choose the better path. In the context of PACBURM we

would take samples and hence tighten the interval costs of p1 and p2, until

the two intervals do not intersect in their interior. After that it would be

easy to choose the path with lesser cost. However, when using a tolerance

of ε, PACBURM tightens the intervals, until the intersection of the two

intervals has a width of ≤ ε. This tolerance is bound to improve efficiency,

as narrowing confidence intervals needs a lot of samples, if the width of the

confidence interval is already small - although we would sacrifice the quality

of the returned path.

We now quantify the quality of the path returned by PACBURM. Let ppac

be the path returned, and popt be the optimal path; the path with the least

expected cost from source to goal. Let ŵ(p) denote the expected cost of path

p. We later show that with probability (1 − α)|E|, ŵ(ppac) − ŵ(popt) ≤ Lε,

where L is the number of edges in the optimal path, and |E| is the total

number of edges. Therefore PACBURM returns a path that is probably

approximately optimal. Trivially, L can be bounded by |V |, the number of

nodes in the graph. However this is only a theoretical limit, and experiments

show that the actual regret is much smaller than |V |ε. The tolerance ε, and

confidence level α, can be made arbitrarily small but leads to increasing the
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running time of the algorithm.

In our experiments (1 − α)|E| is maintained reasonably high at > 0.90.

The experiments indicate that by introducing the tolerance ε, the efficiency

can improve by two orders of magnitude, while ŵ(ppac) − ŵ(popt) is kept to

within 5% of ŵ(ppac).

5.2 Overview of the Chapter

We first give related work in section 5.3. In section 5.4 we give the offer() sub-

routine of PACBURM. It is in this section that the tolerance ε gets defined,

a key idea in searching for the probably approximately optimal path. Next,

in section 5.5 we give the main PACBURM algorithm. The fact that the

algorithm terminates with probability 1 is proved in section 5.6, while the

statements and proofs about the quality of the path returned by PACBURM,

are in section 5.7. We postponed the correctness result of DBURM in chapter

4. As all theorems and proofs of PACBURM carry to DBURM as well, we

easily prove the correctness and termination of DBURM in section 5.8. We

then give the experiments in section 5.9. In the last section we give a short

summary of the chapter.

5.3 Related Work

With PACBURM algorithm we generalize our BURM and DBURM algo-

rithms, and consider the general situation of searching for an optimal path

in a graph where edge weights are confidence intervals of the expected cost
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of the edge. We review some of the other techniques where edge costs are

annotated with intervals.

5.3.1 Fuzzy shortest path problem

Shortest path problem when edge costs are not known precisely, has been

studied in the domain of Fuzzy Set Theory [95]. In fuzzy set theory mem-

bership of an element x, to a set A, is denoted by a membership value. The

greater the value the more the ‘belongness’ of x to A. Note that usually we

only have two possibilities: x ∈ A and x 6∈ A. Hence the indicator function of

the set A, A(x), which in non-fuzzy theories takes only the value 0 (if x 6∈ A),

and 1 (if x ∈ A), would now take values from the range [0, 1]. Translating it

to our problem, if an edge weight w is not known with certainty then it can

be thought of as a fuzzy number – which is a fuzzy set with some reasonable

restrictions on its indicator function [20]

Fuzzy shortest path problem was first studied in [20]. The problem was

solved by defining what it means to take a minimum over a set of fuzzy num-

ber, and adapting Floyd’s and Bellman-Ford algorithms [15] for the usual

graphs, to the fuzzy scenario. But the minimum path length may not corre-

spond to any real path in the given graph. The problem was circumvented

by redefining the problem slightly [47]. Now the shortest path length was

a fuzzy number, but each value in the fuzzy set with positive membership

grade corresponds to some path in the graph.

With the difficulties as above in formulation of fuzzy shortest path, one

could restrict attention to an interval [67], which is a type of fuzzy number.
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In [67] an ordering of intervals was defined using both the centers, as well as

width of the intervals. Namely, given intervals A and B, with centers ac, bc,

and widths aw, bw respectively, the definition was: A �α,β B ⇔ bc − ac ≥

α(bw − aw) and bc− ac ≥ β(bw − aw). Then an algorithm was given to find a

minimal element amongst the paths in the graph from source to destination.

In [93], given an edge e in the graph, the weight of e was a fuzzy number

as before, but its indicator function was defined using the 1− α confidence-

interval based on past statistical data of the edge weight. This indicator

function was shaped like a triangular distribution, whose value was zero

outside the confidence interval, and whose peak was at c, the statistical

mean of the past data. These fuzzy numbers were ‘de-fuzzified’, by defining

an average over the indicator function. Hence the problem was reduced to

the classical shortest path problem and solved.

5.3.2 Robust shortest paths

Suppose we don’t know the edge costs precisely, but know the intervals con-

taining the costs. Sometimes we are interested in the shortest path according

to the robust, or the robust deviation criterion [49]. The ‘robust’ path crite-

rion, is to find the path that minimizes the maximum path length between the

origin and destination nodes, across all possible realizations of edge weights.

The problem in its general form is NP-Complete [49]. The ‘robust deviation’

criterion is to find the path p that minimizes, the maximum difference be-

tween the length of p and the shortest path in the graph, over all possible

realizations of the data. In other words, p minimizes the maximum regret.
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The robust deviation criterion is also NP-Hard [99]. Despite the hardness

of the problem algorithms exist [64, 43], that solve for the robust deviation

problem.

5.4 Defining tolerance: The offer() sub-routine

5.4.1 Recalling some definitions

We first recall some definitions. Each edge e is annotated with an interval

W (e). In the context of PACBURM, W (e) is a (1−α) confidence interval of

the expected cost of traversing e. Given any interval W , we denote the upper

bound by W and the lower bound by W . Given a path p to goal, we define

W (p) =
∑

e∈pW (e). This sum of intervals is defined by taking the respective

sums of the upper and lower bounds; in other words: W (p) =
∑

e∈pW (e)

and W (p) =
∑

e∈pW (e). In the case that p is a sequence of edges that does

not end at the goal, we define W (p) = [∞,∞]. Given any node x, π(x) is

the parent of x. During the execution of PACBURM, the current estimate

of the optimal path from x to goal is the path p(x) = (x, π(x), π2 . . . goal),

and is continually updated. Lastly, for every node x, we maintain an interval

C(x) which is an estimate of W (p(x)).

5.4.2 The offer() subroutine

Recall that in DBURM the offer(x, y) subroutine compares the costs of two

paths from y to goal. It then updates the parent pointer of y, π(y) = x, if

doing so reduces the cost of p(y). In order to determine which of the two
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competing paths has the smaller cost, DBURM narrows the W (.) intervals

of the two paths until the two intervals do not overlap. At such a time it is

easy to choose the path with the smaller cost: If p1 and p2 are the two paths

under comparison, then p1 has the smaller cost if W (p1) ≤ W (p2).

Narrowing the (1−α) confidence intervals to such an extent can be quite

expensive, and this fact is indeed borne out by our experimental results. A

natural idea is to allow a ‘tolerance’ of ε: if the two intervals are intersecting

over a sub-interval of width ≤ ε, then PACBURM should immediately choose

the ‘better’ path without further tightening of intervals.

Of course with this ε tolerance, we can’t be sure which of the two paths

has the smaller cost, so we do as follows. Let p1 and p2 be the two paths

under comparison. If W (p1) ≤ W (p2) + ε then p1 is considered as the path

with the smaller cost. It is possible that both p1 and p2 satisfy this criterion.

Now note line 9: we change the pointer π(y) if poffered can be considered as

the better path; however the current path, p(y), can not be considered as

the better path. This is to avoid needlessly changing the parent pointers.

On line 6 we take more samples. The way we implement this is by choos-

ing that edge e ∈ poffered ∪ p(y), which has the greatest width of W (e). We

then take a pre-specified number of samples from the cost distribution of e,

before going back to the condition on line 5.
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Algorithm 4 offer(Node x, Node y)

1: if π(y) = x then
2: return.
3: Let poffered be the path y → p(x).
4: collect the edges constituting poffered and p(y).
5: if The interior of the intervals W (poffered) and W (p(y)) intersect then
6: Attempt to tighten the intervals W (poffered) and W (p(y)) by taking

more samples, until either W (poffered) ≤ W (p(y)) + ε OR W (p(y)) ≤
W (poffered) + ε.

7: for All nodes z along poffered and p(y) do
8: Update C(z) : Set C(z) = W (p(z)), if p(z) is a path to goal. Else

set C(z) =∞ and π(z) = ∅.
9: if W (p(y)) > W (poffered) + ε then
10: Set π(y) = x and C(y) = W (y, x) + C(x)

5.5 Probably Approximately Optimal path with

PACBURM

In this section we give the Probably Approximately Correct BURM (PACBURM)

algorithm.

Line 5 expresses the termination condition for the while loop. Each node

in queue is assigned a key, k(x), and k is the minimum key value among all

the nodes on queue. src is the source node. The definition of k(x) is the

same as in chapter 4. The definition would be repeated again in section 5.7.

On line 8 of PACBURM, x is improving its path, p(x), by looking at the

offers of its neighbors. Then on line 9, x attempts to improve the paths, p(y),

of its neighbors by offering its current path to its neighbors.

Other than the fact that PACBURM uses an updated version of offer()

(given earlier), PACBURM is basically DBURM but when the edge weight

intervals, W (e), are (1 − α) confidence intervals of the expected cost. The
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Algorithm 5 PACBURM

1: make roadmap.
2: Set C(x) =∞, π(x) = ∅ for all nodes.
3: Set C(goal) = [0, 0]
4: insert goal node into queue
5: while (C(src) > k) do
6: Remove a node x from queue
7: For all nodes z ∈ p(x), set C(z) = W (p(z)) if p(z) is a path to goal.

Else set C(z) =∞, and π(z) = ∅.
8: offer(y, x) for all neighbors y of x
9: offer(x, y) for all neighbors y of x
10: For all nodes z such that π(z) = x, set C(z) = W (z, x) + C(x),
11: While running lines 6-10

1. For all nodes z 6= x, if C(z) modified between lines 6-10 then
insert z into queue.

2. if C(x) increased on line 8, or C(x) modified on line 9, insert x
back into queue.

3. If W (e) modified for some edge e, insert the nodes adjacent to e
into the queue.
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important difference is that α 6= 0. This calls for a couple of changes to

DBURM, which are points 2 and 3 on line 11. Recall the definition of modify .

An interval W (.) is said to modify if it changes in a way so that Wnew 6⊆ Wold.

We now give an intuitive reasoning for line 11 below.

1. As the edge weights are (1 − α) confidence intervals, they may mod-

ify while sampling. That is, Wnew(e) 6⊆ Wold(e) for some edge e. In

DBURM this could happen only when there were dynamic changes to

the environment, at which point we would insert the nodes adjacent to

e into the queue. In PACBURM we have to be prepared for this event

at all times (see condition 3 on line 11).

2. Note that when updating the value of C(x), we always set C(x) =

W (p(x)). Now suppose the W (e) intervals, where e is any edge, are

only getting tighter as we sample. Then C(x) is non-increasing during

line 8, as p(x) may change but only if we find a path with a smaller cost.

Also, C(x) can only get tighter on line 9, as p(x) can not change on

line 9, and W (p(x)) can only get tighter. However, as our assumption

is false and confidence intervals are not always getting tighter, these

two properties might be violated. If so, we can no longer be sure that

x has chosen the best ‘offer’ from its neighbors. Hence we insert x back

into the queue. (see condition 2 of line 11).

Note that in point (1) above, what we are saying is that dynamic changes

can happen in PACBURM all the time. This is why we extended PACBURM

from DBURM rather than BURM, as BURM does not handle the case of

dynamic changes. Most of the rest of the chapter is dedicated to proving
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the termination and correctness of the PACBURM algorithm. Namely, that

PACBURM ‘almost surely’ terminates. And when PACBURM terminates,

then with a high probability, the path returned, p(src), has an expected cost

that is close to the cost of the optimal path.

5.6 Termination of PACBURM

The main results of this section are theorems 5.6.6 and 5.6.7. These are:

that PACBURM terminates when the underlying distributions of edge costs

have a bounded support; and that PACBURM ‘almost surely’ terminates if

the distributions have unbounded support, but finite population variance.

PACBURM samples edge costs, in attempt to tighten the (1 − α) con-

fidence intervals of the expected cost of edges. The question of whether

PACBURM terminates, can be transformed to the easier of question of

whether PACBURM terminates when W (e) intervals are not changing any

more. In other words the relevant confidence intervals are narrow enough, so

that PACBURM does not need to sample any more.

In the first subsection we prove termination when W (e) are not changing.

In the second subsection we explore the question of when would W (e) stop

changing. In the final subsection we give the main termination theorems.

5.6.1 Termination when W (e) are not changing

Theorem 5.6.1 PACBURM terminates in a finite number of iterations if

the intervals W (e) are not changing.

Proof Suppose the bounds of W (e) are not changing for every edge e.



116 Chapter 5

Recall that ε is the tolerance in offer(). Define p1 to be a strictly better

path than p2, if W (p1) −W (p2) ≤ ε, and W (p2) −W (p1) > ε. Denote this

relation by p1 <ε p2. Note that in offer(), we update the path p(y) only if we

find a strictly better path (line 9 of offer() ).

Suppose x is the node removed from queue on line 6. At the end of this

iteration C(x) = W (p(x)), as we make this update at the end of every offer().

Now x would be inserted again into the queue, only if Cnew(x) 6⊆ Cold(x) at

some point. As W (e) and W (path) for any given e and path are not changing,

these conditions can become true only if p(x) is updated to a strictly better

path.

Hence x would be re-inserted only if x finds a strictly better path to goal.

By lemma 5.6.2 below, <ε relation can not contain any cycles. Therefore x

would find a strictly better path to goal only a finite number of times. So

eventually x stops entering the queue. The reasoning is true for all nodes,

and hence the queue eventually becomes empty, and the condition on line 5

becomes false.

First we note that <ε relation as defined in the proof of theorem 5.6.1

is indeed not transitive. As an example, take ε = 0.2, and consider the

intervals, a = [1, 1.4] , b = [1.1, 1.2] , c = [0.1, 1.3]. Now note that c <ε b,

and b <ε a. However c 6<ε a. Nevertheless <ε is a non-cyclical relation which

is all we needed in the proof of the theorem above.

Lemma 5.6.2 Assume W (e) intervals are not changing. Then <ε relation

as defined in the proof of theorem 5.6.1 can not contain any cycles.
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Proof First we prove that it doesn’t contain any 3-cycles. The proof for

n-cycles, for any given integer n, is an easy extension of this proof.

We prove by contradiction. Suppose p1 <ε p2 and p2 <ε p3. Also, suppose

that p3 <ε p1.

As p1 <ε p2, we get:

(i) W (p1)−W (p2) ≤ ε (ii) W (p2)−W (p1) > ε

As p2 <ε p3, we get:

(iii) W (p2)−W (p3) ≤ ε (iv) W (p3)−W (p2) > ε

As p3 <ε p1, we get:

(v) W (p3)−W (p1) ≤ ε (vi) W (p1)−W (p3) > ε

Let |W (p2)| denote the width of the interval W (p2). Adding the width of

W (p2) to equation (v) we get:

(W (p3)−W (p2)) + (W (p2)−W (p1)) ≤ ε+ |W (p2)|

⇒ 2ε < ε+ |W (p2)|

⇒ |W (p2)| > ε
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On the other hand, adding the width |W (p2)| to equation (vi) we get:

(W (p1)−W (p2)) + (W (p2)−W (p3)) > ε+ |W (p2)|

⇒ 2ε > ε+ |W (p2)|

⇒ |W (p2)| < ε

As |W (p2)| can not be both greater and less than ε, this gives a contra-

diction, hence proving that there are no 3-cycles.

The proof that there are no n-cycles, for any given n, is very similar.

Suppose p1 <ε p2 <ε p3 <ε . . . pn−1 <ε pn <ε p1. Now take the two equations

defining pn <ε p1. Rather than adding W (p2) as we did above, we would now

add
∑n−1

i=2 W (pi). Adding
∑n−1

i=2 |W (pi)| to the equation W (pn)−W (p1) ≤ ε

we get:

(W (pn)−W (pn−1)) + . . . (W (p2)−W (p1)) ≤ ε+
n−1∑
i=2

|W (pi)|

=⇒ (n− 1)ε < ε+
n−1∑
i=2

|W (pi)|

=⇒
n−1∑
i=2

|W (pi)| > (n− 2)ε (5.1)

On the other hand when we add
∑n−1

i=2 |W (pi)| to the equation W (p1)−

W (pn) > ε, we get:
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(W (p1)−W (p2)) + . . . (W (pn−1)−W (pn)) > ε+
n−1∑
i=2

|W (pi)|

=⇒ (n− 1)ε > ε+
n−1∑
i=2

|W (pi)|

=⇒
n−1∑
i=2

|W (pi)| < (n− 2)ε (5.2)

Together it implies that
∑n−1

i=2 |W (pi)| is both less than and greater to

(n− 2)ε. A contradiction.

5.6.2 When do W (e) stop changing?

We proved that if the edge costs are not sampled, then PACBURM termi-

nates in a finite number of steps. This leads to the question, when does the

algorithm stop sampling costs of a given edge.

Denote the width of an interval W by |W |. Recall that ε is the tolerance

we are using in PACBURM. We denote the number of vertices in the graph

by |V |. We first observe the following.

Lemma 5.6.3 The cost of edge e is not sampled if |W (e)| ≤ ε/|V |. Hence

W (e) does not change once |W (e)| ≤ ε/|V |.

Proof In the offer() sub-routine, when comparing the costs of paths p1 and

p2, we sample the cost of that edge ek ∈ (p1∪p2), whose width |W (ek)| is the

greatest. However if this greatest width is ≤ ε/|V |, then |W (p1)| and |W (p2)|

are both ≤ ε. Hence W (p1) and W (p2) can not overlap in a subinterval with

width greater than ε. But in such a case, offer() chooses the ‘better’ path
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without sampling. This shows that if |W (ek)| ≤ ε/|V |, then its cost is not

sampled.

By the lemma above, we have changed the question ‘Do W (e) stop chang-

ing in a finite time?’ to ‘Do we have |W (e)| ≤ ε/|V | for all edges e, after

some finite time?’ The answer to this question depends on the way confi-

dence intervals, W (e) are being computed. If the width of W (e) for every e

converges to 0, then PACBURM would terminate.

For simplicity, we assume that the (1 − α) confidence intervals are ap-

proximated by the popular technique: [x̄− zα
2
. S√

ns
, x̄+ zα

2
. S√

ns
]. Here S is

the sample variance, ns is the number of samples, and x̄ is the sample mean.

zα
2

is the usual notation for value of the inverse CDF of Standard Normal

distribution at α/2. Therefore in PACBURM W (e) would be equal to this

interval.

We consider two cases: (a) Probability distributions of edge costs have

bounded support (b) Probability distributions have unbounded support, but

a finite variance.

Lemma 5.6.4 The width of the interval [x̄−zα
2
. S√

ns
, x̄+zα

2
. S√

ns
] converges

to 0 at a rate of O(1/
√
ns) if the distribution has bounded support.

If the distribution has unbounded support and finite population variance,

then this width ‘almost surely’ converges to 0. In other words, given any

positive number δ, there exists an integer N , such that after N samples,

pr(|W | > δ) < δ. Here |W | denotes the width of the interval above.

Proof If the distribution has bounded support then the sample variance S

is bounded. It is straightforward to see that the width of the interval in that
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case is proportional to 1/
√
ns.

If the distribution has unbounded support, then the sample variance can

be made arbitrarily large. However that happens with a probability measure

of 0: By lemma 5.6.5 below, S ‘almost surely’ converges to σ. Here σ is the

population variance, and is a finite number. Hence the width of the interval

almost surely converges to Kσ/
√
ns, which converges to 0 as ns increases.

The conclusion follows.

==============================

Following is a definition, and the lemma that was used in the proof of

theorem 5.6.4.

Definition (Convergence in Probability) Let {Xn} be a sequence of

random variables and let X be a number. We say that Xn converges in

probability to X if for all ε > 0

limn→∞ P (|Xn −X| ≥ ε) = 0. If so, we write Xn
P−→ X

Next we quote a known result (see pp. 206 of [30])

Lemma 5.6.5 Let S2
n be the sample variance after n samples. Assume

E(x21) < ∞, where E(x21) is the expected value of the square of one sam-

ple. Then S2
n

P−→ σ2.

==============================

5.6.3 The main Termination theorems

As above, for this section we assume that the confidence interval W (e) is

approximated by the interval: W (e) = [x̄−zα
2
. S√

ns
, x̄+zα

2
. S√

ns
]. As above,
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we consider two cases (a) The probability distribution has bounded support

(b) The distribution has unbounded support but finite variance.

Theorem 5.6.6 Suppose the distributions of the edge costs have bounded

support, and that confidence intervals are approximated by the interval W (e) =

[x̄− zα
2
. S√

ns
, x̄+ zα

2
. S√

ns
]. Then PACBURM terminates.

Proof A direct result of the first part of lemma 5.6.4.

Inthe case of unbounded support but finite variance, by lemma 5.6.4, the

width |W (e)| converges almost surely to 0. We hence get the following result.

Theorem 5.6.7 Suppose that the underlying cost distributions of edges can

have unbounded support, but finite population variance. Also that W (e) =

[x̄− zα
2
. S√

ns
, x̄+ zα

2
. S√

ns
]. Then PACBURM almost surely terminates.

Proof We know that the width of each W (e) converges in probability to

0. That is, for every edge ei, there exists a number ni, such that after ni

samples of cost of ei, pr(|W (ei)| ≤ ε/|V |) > (1− δ)1/|V |. Therefore by lemma

5.6.3, W (ei) stops changing after ni samples with a probability of (1−δ)1/|V |.

This is true for every edge. Hence after
∑

i ni samples, with a probability

of at least (1 − δ), the width of every W (e) is ≤ ε/|V |. Hence by theorem

5.6.1 PACBURM terminates in a finite number of steps after taking
∑

i ni

samples.

5.7 Quality of path returned by PACBURM

Having dealt with termination of PACBURM we now want to find out the

quality of the path returned when PACBURM terminates. This section is
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devoted to proving theorem 5.7.1 (and hence corrollary 5.7.2), which are

given below.

Let ŵ(path) be the expected cost of traversing the path. Let popt be the

optimal path: the path from source to goal with the least expected cost. Let

L be the number of edges in popt, and ε be the tolerance that we are using in

offer(). Recall that the returned path by PACBURM is p(src), a path from

src to goal. In this section we prove the following theorem.

Theorem 5.7.1 Suppose that W (e) are the (1 − α) confidence intervals of

the mean cost of edge e. Then when PACBURM terminates, with probability

of at least (1− α)|E| we have: ŵ(p(src))− ŵ(popt) ≤ Lε.

Note that L above can be trivially bounded by n, the number of nodes

in the graph, so we have as corollary:

Corollary 5.7.2 Suppose W (e) are the (1 − α) confidence intervals of the

mean cost of edge e. Then when PACBURM terminates, with probability of

at least (1− α)|E| we have: ŵ(p(src))− ŵ(popt) ≤ nε, where n is the number

of nodes in the graph.

5.7.1 Proof

In order to prove theorem 5.7.1 we prove the following which easily implies

the statement of theorem 5.7.1.

Theorem 5.7.3 Suppose to each edge e we assign a weight w(e), such that

w(e) ∈ W (e). Let ppac be the path returned by PACBURM. Then for any
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path palt from src to goal, w(ppac)− w(palt) ≤ Lε, where L is the number of

edges in palt.

For the remainder of this section, s is the source node, ppac is the path

returned by PACBURM, palt is an alternate path from s to goal, L is the

number of edges in palt. For definitions of p(x), C(x), π(x) and W (.), see

section 5.4.1. We also suppose that PACBURM has terminated, and we

have assigned a cost w(e) ∈ W (e) for each edge e. w(path) is defined as∑
e∈pathw(e).

Note that when PACBURM terminates, ppac = p(s). The reason for

introducing the extra term ppac would become clear below.

===========

Idea of the proof: Suppose we change p(s) after termination of PACBURM

by changing some of the parent pointers π(.). Note that we need to change at

most L parent pointers to make p(s) = palt. Now when we compare two path

in offer(), we choose the better path within a tolerance of ε. This implies that

if ‘relevant’ paths have been compared, then each time we change a pointer

π(.), the cost of w(p(s)) would reduce by at most ε. Hence if all ‘relevant’

paths have been compared, then indeed w(ppac)− w(palt) ≤ Lε.

However, if the latest costs of all ‘relevant’ paths have not been compared,

then we can’t use the above reasoning. But in this case some of the nodes

along these paths would be on queue. Now if a node is on queue, then a path

containing that node, can not have a small cost. Therefore in this case too,

we will show that the regret can be bounded by Lε.

===========
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We are going to break the proof of 5.7.3 into three sub-cases. Case (A) is

when for every node x in palt, p(x) does not contain any node on the queue.

In the language used above, this is the case when “all relevant paths have

been compared.”

CASE (A)

We begin by a lemma which bounds the improvement of w(p(s)) when

we change a single parent pointer.

Lemma 5.7.4 Suppose when PACBURM terminates, p(x) and p(y) do not

contain any nodes on queue. Now if we change π(x) and assign π(x) = y.

Then w(p(x)) ≤ w(pnew(x))+ε. Here pnew(x) is the update path of p(x) after

we change π(x).

Proof By corollary 5.7.12, if p(x) and p(y) do not contain any nodes on

queue, and π(x) 6= y, then W (p(x)) ≤ W (x, y) + W (p(y)) + ε. This implies

the statement of the lemma.

Now we claim the following.

Theorem 5.7.5 If for every node x in palt, p(x) does not contain any nodes

on queue, then w(ppac) ≤ w(palt) + Lε.

Proof We will use the idea in 5.7.4. In this graph we would change enough

parent pointers π(.) so that p(s) changes from ppac to palt. Note that we need

to change at most L pointers. For let palt be the path zL, zL−1, zL−3 . . . z1, g,

where zL is the source node, s and g is the goal node. Now change the

pointers sequentially and one by one as follows: π(z1) = goal ; π(z2) = z1
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; π(z3) = z2 . . . π(zL) = zL−1. Note that by doing it in this sequence, we

will never introduce a loop in the graph. Also note, that at the end of these

changes, p(s) = palt.

Denote by pnew(zi), the path p(zi) after i updates to the π(.) pointers in

the sequence of updates. We now prove by induction that in the sequence

above, when we change the pointer π(zn) to π(zn−1), then w(pold(zn)) ≤

w(pnew(zn)) + nε.

The base case is proved in 5.7.4, when we make just a single change:

π(z1) = goal. Now suppose that the above statement is true after n − 1

pointer updates. When PACBURM terminated, by corrolary 5.7.12, w(pold(zn)) ≤

w(zn−1, zn)+w(pold(zn−1))+ε. By the inductive hypothesis, after n−1 pointer

updates we have w(pold(zn−1)) ≤ w(pnew(zn−1))+(n−1)ε. This easily implies

that by changing π(zn) = zn−1, we would have w(pold(zn)) ≤ w(pnew(zn))+nε

For Case(A) we have assumed that for every node x in palt, p(x) does not

contain any nodes on queue. Before going on to the other cases, we note if

PACBURM terminates only when queue becomes empty, then the hypothesis

that p(x) does not contain any nodes on queue, would be true for every node

x. Hence the above would be the only case applicable.

We now go on to other cases when palt does not satisfy the stated hy-

pothesis above. That is, for the remaining cases, palt contains a node x, such

that p(x) includes some nodes on queue. We recall the definitions of h and

k(x). We sort the nodes in the queue based on their key k(x).

Definition : h(x) Consider those iterations of the while loop (on line 5),
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when the given node x was chosen for removal on line 6. There could be

several such iterations. Let Lx be the most recent of such iterations. Let t

be the time when we just finished executing line 7 in Lx, or t = −∞ if there

was no such iteration. We define h(x) as the minimum value of C(x) since t.

Definition : k(x)

k(x) = min{h(x), C(x)} (5.3)

Definition k This is defined as the minimum value of k(x) amongst all nodes

on queue.

CASE (B) Suppose we traverse from goal, backwards towards source,

along palt. For the current case we are going to assume that the first node

along this traversal that does not satisfy the hypotheses in (A), is in queue.

Let this node be y. Let palt be the path s→ . . . y → x . . . g. That is, x is the

next node after y towards goal. Note that by definition of y, x satisfies the

hypotheses of case (A).

Subcase I:

For this subcase, suppose when PACBURM terminated π(y) = x. As p(x)

does not include any nodes on queue, p(y) includes no nodes (other than y)

on queue. By lemma 5.7.6 we know C(y) ⊇ W (p(y)). Therefore, C(y) ≤

W (p(y)). Secondly, by lemma 5.7.9 when the while loop terminates, p(s) does

not include any nodes on queue, and hence by lemma 5.7.6 W (p(s)) ≤ k. So

we get W (p(s)) ≤ k ≤ C(y) ≤ W (p(y)).

Note that the nodes in pnew(x) satisfy the hypotheses in (A). Therefore

w(p(x)) ≤ w(pnew(x)) + (L − 1)ε, because pnew(x) contains at most L − 1
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edges. We now obtain

W (p(s)) ≤ W (pold(y))

≤ w(y, x) + w(p(x)) (because π(y) = x)

≤ w(y, x) + w(pnew(x)) + (L− 1)ε

≤ w(palt) + (L− 1)ε

⇒ w(p(s))− w(palt) ≤ Lε

As the path that PACBURM returns is w(p(s)), the last line easily implies

the result.

Subcase 2:

Now suppose π(y) 6= x. Let p2 = y → p(x). Now by theorem 5.7.8,

h(y) ≤ W (p2) + ε. As y ∈ queue this means, k ≤ W (p2) + ε. From subcase I

of case (B) we know W (p(s)) ≤ k. So we get W (p(s)) ≤ k ≤ W (p2) + ε. We

now get,

W (p(s)) ≤ W (palt) + ε

= w(p(x)) + w(y, x) + ε

≤ w(pnew(x)) + (L− 1)ε+ w(y, x) + ε

≤ w(palt) + Lε

⇒ w(p(s))− w(palt) ≤ Lε
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The second last line follows because pnew(x) ∪ (y, x) ⊂ palt.

CASE (C) The only remaining possibility is as follows. Let y be the

first node along palt as we traverse backwards from goal to src, that does not

satisfy the hypotheses of case (A), as well as it is not on queue. Hence there

must be a node along p(y) that is on queue.

Again suppose that palt = s . . . y → x . . . goal. Note that in this case

π(y) 6= x (Else x can not satisfy the hypotheses of case (A) - contradiction).

Now let p2 = y → p(x). We observe the following three facts:

1. By lemma 5.7.9, C(y) ≥ k.

2. By lemma 5.7.8, h(y) ≤ W (p2) + ε.

3. As y 6∈ queue, by lemma 5.7.10 C(y) = h(y).

Hence we get, k ≤ C(y) = h(y) ≤ W (p2) + ε. From subcase I of case (B)

we know W (p(s)) ≤ k. Hence just like the subcase II in case (B), we get

W (p(s)) ≤ k ≤ W (p2) + ε. The remaining analysis is identical to subcase II

of (B).

The three cases (A), (B), (C) together, hence prove theorem 5.7.3, and

hence theorem 5.7.1.

5.7.2 Lemmas Used

In this section we prove a few results that were quoted in the proof of theorem

5.7.1. Note that the statement of all lemmas and theorems assumes that the

state of execution is not ‘inside’ the while loops. That is, the program is just

about to start a new iteration on line 5. For definnitions of some terms refer
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to 5.4.1. For definitions of h(x), k(x), k, refer to section 5.7. Recall that an

interval W is said to modify, if it changes in a way such that Wnew 6⊆ Wold.

We first observe that the proof of lemma 4.6.1 carries to PACBURM

without change; i.e. it remains identical. Hence we can use lemma 4.6.1 for

our results.

Lemma 5.7.6 If p(x) is a path to goal, and p(π(x)) does not include any

nodes on queue, then C(x) ⊇ W (p(x)).

Proof We prove by lemma 4.6.1 and induction along p(x). The statement of

the theorem is certainly true if x = goal, as C(goal) = W (p(goal)) = [0, 0].

Now assume that the statement is true for π(x) and we would like to show

that this implies that it is also true for x.

By inductive hypothesis C(π(x)) ⊇ W (p(π(x)). As π(x) 6∈ queue, by

lemma 4.6.1, C(x) ⊇ W (x, π(x)) + C(π(x)). Hence C(x) ⊇ W (x, π(x)) +

W (p(π(x))) = W (p(x))

In the proofs below when we say x offers a path to y we mean performing

offer(x, y). When we say that y rejects the path from x, we mean that

π(y) 6= x at the end of offer(x, y). Or when π(y) = x, is updated to π(y) 6= x.

Also given a node x, by Lx we denote the most recent iteration of the

while loop on line 5 when x was the node chosen for removal on line 6. By

tx we denote the time when we just finished executing line 7 in the iteration

Lx.

Lemma 5.7.7 If x 6∈ queue, and π(y) 6= x then h(y) ≤ W (y, x) +C(x) + ε.
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Proof For each neighbor x of y, such that π(y) 6= x, either y rejected the

path from x at some point, otherwise such a path was never offered.

Suppose x never offered a path to y, then x never left the queue. So either

x never entered the queue, and hence C(x) =∞. Or x is still in queue, which

contradicts the hypothesis of the lemma. Hence we conclude that if y never

rejected the path from x, then the statement of the lemma is satisfied as

C(x) =∞

Hence suppose that y rejected the path from x at some point. Define ti

as the most recent time when y rejected the path from x. Hence at time ti

we had:

Cti(y) ≤ W ti
(y, x) + Cti

(x) + ε

Here ε is the maximum tolerance allowed in offer(), and the subscripts ti

denote the cost-intervals at time ti.

Note that ti > ty, as immediately after ty, y looks at all offers from its

neighbors on line 8. As h(y) is the minimum value of C(y) since ty, and

ti > ty, we have: h(y) ≤ Cti(y). Therefore h(y) ≤ W ti
(y, x) + Cti

(x) + ε.

It suffices to prove now that W (y, x) and C(x) have not modified since ti.

But note that ti must have occurred after line 8 in Lx, as x offers its path to

all neighbors on line 9. Now C(x) or W (y, x) can’t modify after line 8 of Lx,

else x would be inserted back into the queue, contradicting the definition of

Lx. This implies W (y, x) and C(x) have not modified since ti.

Lemma 5.7.8 If p(x) does not include any nodes on queue, and π(y) 6= x

then h(y) ≤ W (y, x) +W (p(x)) + ε.
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Proof Note that if p(x) is not a valid path to goal, then we defined W (p(x))

as∞, and the statement of the theorem is true. So we consider only the case

when p(x) is a valid path to goal.

We know by lemma 5.7.7 that h(y) ≤ W (y, x) +C(x) + ε. All that needs

to be shown is that C(x) ≤ W (p(x)). This is true by lemma 5.7.6

Lemma 5.7.9 If p(x) includes a node on queue, then C(x) ≥ k

Proof The conclusion is trivial if x ∈ queue; or if π(x) = ∅ (and hence

C(x) =∞). So assume x 6∈ queue and πn(x) is the first node from x to goal

along p(x), that is on queue. We claim:

C(x) > C(π(x)) . . . > C(πn−1(x)) > Cold(π
n(x)) ≥ k(πn(x)) ≥ k

Let t′ be the time when we most recently performed the update C(πn−1(x)) =

W (πn−1(x), πn(x)) +C(πn(x)). By Cold above we denote the cost-interval at

the time t′.

Now to prove the above. Till we reach πn−1 none of the nodes are on

queue. Hence we can use lemma 4.6.1 to keep on concluding the above

inequalities, until (and including) the inequality C(πn−2(x)) > C(πn−1(x)).

As no update of C(πn−1) could have been performed since t′, we also conclude

the next inequality: C(πn−1(x)) > Cold(π
n(x)).

Now it suffices to prove Cold(π
n(x)) ≥ k(πn(x)). Recall that h(πn(x))

is defined as the minimum value of C(πn(x)) since a certain time t. It is

easy to verify that t′ > t (see line 10 of PACBURM). Therefore h(πn(x)) ≤

Cold(π
n(x)). As k(πn(x)) ≤ h(πn(x)) by definition, we get: k(πn(x)) ≤
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h(πn(x)) ≤ Cold(π
n(x)). The last inequality follows from the definition of k.

Lemma 5.7.10 If y 6∈ queue, then C(y) = h(y).

Proof C(y) has been non-increasing since time ty, the end of line 7 of Ly.

Else y would be inserted into queue again contradicting the definition of Ly.

As h(y) is defined as the minimum value of C(y) since ty, we get C(y) = h(y).

Lemma 5.7.11 Suppose p(x) and p(y) do not contain any nodes on queue,

and that π(x) 6= y. Then C(x) ≤ W (x, y) + C(y) + ε.

Proof If x and y were never inserted into the queue, then C(x) = C(y) =∞

and the statement is true. So we can assume that at least one of the nodes

was inserted into queue. As currently x and y are not in queue, the nodes

must have been removed.

Let t be the most recent time when offer(y, x) ended. Note that y was

a neighbor of x during this most recent offer(y, x). Else the edge weight

W (x, y) must have modified and x and y would be inserted into queue. This

contradicts the definition of t. Our basic argument below rests on the fact

that x or y could not have been inserted into queue after t, as that would

contradict the definition of t.

First suppose that π(x) 6= y at time t. Therefore, C(x) ≤ W (x, y) +

C(y) + ε at time t. Note that t would have happened when x or y was being

removed from the queue. If it was x, then it would have happened on line 8.

If it was y then it was on line 9. In the latter case, neither C(x) nor C(y)
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have modified since t, else they will be inserted again into queue. Hence the

inequality is still true. In the case when offer(y, x) happened on line 8, C(x)

could not have increased since t, and C(y) has not modified since t (else the

node would be inserted again into queue). Again we see that the inequality

must still be true.

Now suppose that at time t, π(x) = y. Then π(x) must have been updated

to π(x) 6= y at a time t′ > t. Without loss of generality, assume t′ is the most

recent such time. At t′ the inequality C(x) ≤ W (x, y) + C(y) + ε would be

true. Now at t′, C(x) 6= ∞, else we must have updated C(y) = ∞ at some

time after t, and y would be inserted into queue again.

Therefore at time t′, π(x) = z,where z 6= y, and this must have happened

in offer(z, x). Now offer(z, x) can happen when either x is getting removed

or when z is getting removed. In the latter case, C(x) and C(y) have not

modified since t′, and hence the inequality is still true. In the former case,

C(x) can not increase after t′, and C(y) can not modify since t′. Hence again

we see that the inequality must still be true.

Note that in the statement of the above theorem, we can now easily

change C(x) and C(y) to W (p(x)) and W (p(y)), which gives the following

corollary.

Corollary 5.7.12 Suppose p(x) and p(y) do not contain any nodes on queue

and π(x) 6= y. Then W (p(x)) ≤ W (x, y) +W (p(y)) + ε

Proof By lemma 5.7.6, C(x) ⊇ W (p(x)) and C(y) ⊇ W (p(y)). Also, by

lemma 5.7.11, C(x) ≤ W (x, y) + C(y) + ε. Combining these two, gives the

result.
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5.8 Termination and Correctness of DBURM

In chapter 4 we postponed the proof of the correctness of DBURM when the

queue is prioritized by the key k(x) (section 4.7). We are now in a position

to give its proof.

One could verify that all proofs that we have given in this chapater carry

to DBURM algorithm without change, as the algorithms are almost identical.

We note the following:

1. Points 2 and 3 on line 11 of PACBURM are redundant in the DBURM

setting, as these events can not happen in the while loop on line 5 of

DBURM. This is because in this while loop, edge weights W (e) can not

modify . With points 2 and 3 on line 11 removed, it makes the while

loops on lines 5 of DBURM and PACBURM, identical.

2. Edge weights in DBURM can indeed modify , but outside the while

loop on line 5. Whenever W (e) modifies we insert the nodes adjacent

to e, into the queue. The fact that we are inserting these nodes into

the queue in a different place in the code, does not change any of the

proofs in this chapter. The proofs use the fact that we are inserting the

nodes, only the following way: “ ... W (x, y) could not have modified

since time t, else x would have been inserted into the queue, which

contradicts ...”.

Hence the theorems that we proved for PACBURM carry over to DBURM.

However in DBURM, the tolerance ε = 0. We hence have the following the-

orems:
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Theorem 5.8.1 DBURM terminates.

Proof The intervals W (e) in DBURM can only become narrower, and after

a pre-specified number of samples, N , the width of W (e) becomes 0. In other

words, W (e) becomes a value. Now we can use theorem 5.6.1 to conclude

that DBURM terminates.

Theorem 5.8.2 When DBURM terminates, the path returned, p(src) has

the least expected cost amongst all paths from src to goal.

Proof We know theorem 5.7.1 is also valid for DBURM. However for DBURM,

in the statement of theorem 5.7.1, we should set α = 0, and ε = 0. This gives

us the desired result. Now to explain why should we set them to 0.

Let ŵ(e) denote the expected cost of traversing the edge e. We set α = 0,

as the intervals W (e) in DBURM contain ŵ(e), with certainty (probability

1). And we set ε = 0, as the tolerance is 0 in DBURM.

5.9 Experiments

For reference in the ensuing paragraphs, we first recall the statement of

theorem 5.7.1:

Theorem 5.7.1: Suppose that W (e) are the (1 − α) confidence inter-

vals of the mean cost of edge e. Then when PACBURM terminates, with

probability of at least (1− α)|E| we have: ŵ(p(src))− ŵ(popt) ≤ Lε.

Here ŵ(p(src)) is the expected cost of the path returned by PACBURM,

and ŵ(popt) is the expected cost of the optimal path from source to goal - i.e.
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the path with the least expected cost. Also |E| is the total number of edges

in the graph.

We quickly recall the basic working principle of PACBURM. The edge

weights, W (e) are (1−α) confidence intervals of the expected cost of the edge

e. When comparing two paths, PACBURM narrows the two cost intervals

until the intervals do not intersect in their interior (if ε = 0). These intervals

are narrowed by taking more samples. The algorithm can be made faster in

two ways: (a) Allow the intervals to intersect by a length of ε. (b) Choose

a larger value of α. In some sense, both of these options are shrinking the

intervals, so that separating out the intervals becomes easier for PACBURM.

There are two aims of these experiments.

1. Firstly, to show that when we vary the tolerance level ε, the time re-

quired to search for the path reduces by around two orders of magni-

tude. Also, the error incurred, ŵ(p(src))− ŵ(popt), remains small.

2. Secondly, to show that varying the confidence level (1−α), surprisingly,

is not equally beneficial to running time. For example by varying (1−α)

from (1− 10−6) to (1− 10−3), the running time does improve - it runs

twice as fast. However this is still not comparable to what we observe

when varying ε.

Note that α = 10−3 and α = 10−6 are very different scenarios. Recall that

in theorem 5.7.1 we stated that we can be sure of our statement only with

a probability of (1 − α)|E|, where |E| is the number of edges in the graph.

Now as an example, taking |E| to be 5000 we get, (1 − 10−3)|5000| = 0.006

and (1− 10−6)|5000| = 0.995.
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We explain now why changing α is not that beneficial. Although the

two values of α above lead to very different probabilities, but the confidence

intervals are not impacted by as much. When α = 10−6, the confidence

intervals are about 1.5 times wider than when α = 10−3. This difference

is significant when the confidence intervals are wide. However if we have

taken enough samples, and the confidence intervals are already narrow, then

allowing a tolerance of ε is much more effective. Also, it is when the intervals

are already narrow that narrowing them further takes a large number of

samples - it is these tight comparisons that we want to make faster, and ε

tolerance achieves that.

5.9.1 Computing an upper bound of ŵ(p(src))− ŵ(popt)

We will call ŵ(p(src))− ŵ(popt) as ‘regret’.

As we vary the ε in the experiments we will show that regret remains

small. By theorem 5.7.1 one could bound it by nε where n is the number

of nodes, but as that is an over estimate, in this sub-section we will explain

how we compute a much tighter bound.

When PACBURM terminates, each edge has an edge weight W (e), which

is a confidence interval of the expected cost of the edge. From the statement

of theorem 5.7.1, we know we can assume that the expected cost of traversing

every edge, ŵ(e), is such that ŵ(e) ∈ W (e).

With this assumption in place, we compute an upper bound of regret as

follows. Denote for any interval W , its upper bound by W , and its lower

bound by W . After PACBURM terminates, it returns the path p(src) from
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source to goal. We then assign a value w′(e) to every edge, such that w′(e) =

W (e), if e ∈ p(src). And w′(e) = W (e) otherwise. We then run Dijkstra’s

algorithm to compute the shortest path p′, from source to goal in this graph.

And finally we compute (w′(p(src)) − w′(p′)). We claim this is an upper

bound of the maximum regret because:

w′(p(src))− w′(p′) ≥ w′(p(src))− w′(popt) ≥ ŵ(p(src))− ŵ(popt)

The first inequality is true as p′ is the optimal path when we assign edge

weights w′(e). The second inequality is basically true because ŵ(e) ∈ W (e).

We give a more detailed reasoning below.

Lemma 5.9.1 ŵ(p(src))− ŵ(popt) ≤ w′(p(src)− w′(popt)

Proof The inequality can be proved by contradiction. Suppose that ŵ(p(src))−

ŵ(popt) > w′(p(src) − w′(popt). Now ŵ(p(src)) − ŵ(popt) =
∑

s1 ŵ(ei) −∑
s2 ŵ(ei). Here S1 is the set of all edges such that e ∈ p(src), e 6∈ popt, and

the S2 is the set of edges where e ∈ popt, e 6∈ p(src). But w′(e) ≥ ŵ(e) for all

e ∈ S1; and w′(e) ≤ ŵ(e) for all e ∈ S2, and we reach a contradiction.

Hence (w′(p(src))−w′(p′)) is an upper bound of maximum regret, as we

earlier claimed.

5.9.2 Graph Generation

We generated nodes sampled at random. The source and the goal nodes

were not fixed but were chosen randomly for each individual run, as we want
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to show that PACBURM performs better under a variety of circumstances.

The nodes were generated in an ‘environment’ shown below. Here the nodes

and edges were accepted only if they were not in collision with the gray

colored obstacles. We introduced the environmet to provide structure to the

graph. We also ran experiments over ‘graphs without environment’ but are

not including the results, as the results remained very similar.

The distribution of the edge costs, was a truncated Gaussian distribu-

tion. For each edge, the mean of this distribution was a random number

between the Euclidean length of the edge, and 4 times the Euclidean length.

The variance was a random number between 0 and 1/3 × the mean of the

distribution. As we assume positive edge costs, this Gaussian distribution

was truncated to force positive samples at all times: if a sample from the

gaussian distribution < 10−6, then we assume that the sample had a value

of 10−6. This is to ensure that we have ‘positive’ edge weights at all times.

Figure 5.1: Environment over which the graph was generated
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Table 5.1: Varying ε with 1000 nodes
ε regret frac. regret T(s)

0.10 0.00 0.0000 191.70
1.00 0.10 0.0001 5.75
10.00 3.87 0.0039 0.76
20.00 13.01 0.0107 0.50
50.00 56.81 0.0637 0.29

5.9.3 Experimental Results

In this section, all numbers quoted in the tables are averages over 30 runs.

Varying ε

Table 5.1 is the result when we generated 1000 nodes in the graph. α was

maintained at 10−5. As the number of edges were always between 5000

and 6000, we get (1 − α)|E| ≥ 0.94 for the probabilistic part of theorem

5.7.1. By regret we mean the upper bound of ŵ(p(src)) − ŵ(popt), as dis-

cussed before. The value frac. regret is fractional regret and defined as:

regret/W (p(src)).The running time in seconds is in the column T(s). As can

be seen, the percentage error goes up from 0% to 6.4%, but the running time

improves by more than two orders of magnitude.

Table 5.2 gives similar results but when the number of nodes in the graph

= 4000. For these experiments we used α = 10−6. As the number of edges

in the graphs always remained less than 90, 000, we get (1 − α)|E| ≥ 0.91.

Again, we obtained similar results to before. Increasing ε allows to reduce

time by around two orders of magnitude, while maintaining a small fractional



142 Chapter 5

Table 5.2: Varying ε with 4000 nodes
ε regret frac. regret T(s)

0.1 0.02 0.0001 270.14
1.00 0.34 0.0008 24.94
10.00 12.71 0.0226 9.85
20.00 30.55 0.0462 5.22
50.00 77.17 0.1140 2.81

regret.

Varying α

Here we show that when we vary α, the advantage to running time is not as

much, as when we varied ε. For each of ε = 1.0, 10, 20, 50, in the experiments

above, we experimented with α = 10−3, 10−4, 10−5, 10−6. However, we will

tabulate only with ε = 1.0, as that is where changing α made the greatest

impact. For the other values of ε there was almost no change in the running

time, as we varied α.

Denote the number of edges in the graph by |E|. As before we ran on two

graphs; one with 1000 nodes, and one with 4000 nodes. In the former case

we noted that |E| ≥ 5000, and in the latter |E| ≥ 85000. Hence as we vary

α from 10−3 to 10−6, we have (1− α)|5000| varying from 0.007 to 0.995. Also

(1−α)|85000| varies from 1.16×10−37 to 0.92. Hence there is a vast change in

the probabilistic part of the statement in theorem 5.7.1. Yet the advantage

to running times is not as much.

As the regret always remained fairly close to 0 (because we are using a

small ε), we are not tabulating that value below. The column T(s)1000 is
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Table 5.3: Varying α
(1− α) T(s)1000 T(s)4000

0.999 3.41 17.26
0.9999 4.52 19.48
0.99999 5.67 22.12
0.999999 6.81 24.63

the running time when we generated 1000 nodes, and T(s)4000 is with 4000

nodes.

As can be seen the time did improve but not as markedly as when we

varied ε. The reason for this has been discussed at the beginning of this

section. Namely that PACBURM compares two path costs by narrowing the

cost intervals of the two paths, until the intervals no longer intersect (if ε = 0).

In order to make things more efficient we can ‘shrink’ these two intervals.

When the confidence intervals are already narrow, choosing a smaller value of

α would not shrink the intervals further by too much. However ε-tolerance,

can be considered as always shrinking each of the two intervals by an amount

of ε/2.

5.10 Summary

In this chapter we considered the problem of finding an optimal path through

a graph, when the expected edge costs are unknown, but costs can be sam-

pled. Hence sampling the cost we can compute a (1− α) confidence interval

of the expected cost of an edge. We gave the PACBURM algorithm, which
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is a generalized version of the DBURM algorithm (chapter 4), and finds a

probably approximately optimal path in this setting.

When comparing the costs of two paths, we would be comparing two

intervals. DBURM keeps sampling until the two intervals do not overlap in

their interiors, at which times it is straightforward to pick the path with the

‘smaller’ cost. These comparisons can be made quicker if the intervals are

shrunk. There are two ways to do this (a) Use a smaller value of confidence,

(1 − α). (b) Allow an ε tolerance - i.e. allow the intervals to overlap over a

subinterval of length ≤ ε. In some sense, both these options are ‘shrinking’

the two intervals, so that the intervals can be separated out more easily.

We worked along the latter option, ε-tolerance. We proved that PACBURM

returns a path that is within a cost of Lε of the optimal path, with a prob-

ability of (1− α)|E|. Here |E| is the number of edges in the graph, and L is

the number of edges in the optimal path. We also proved that PACBURM

terminates with probability 1, if the underlying cost distributions have finite

variance.

In the experiments, we showed that by varying ε, we can keep the ‘frac-

tional regret’ to 1% in one experiment, and 5% in the other, while the running

time decreases by 50-100 times. Here by ‘regret’ we mean the difference in

expected costs, of the returned path, and that of the (ground truth) optimal

path. The same kind of impact however was not achieved when we varied α.

The reason being that when the intervals are already narrow, a (reasonable)

change in ε can shrink the intervals by a greater amount than a (reasonable)

change in α. Hence a larger value of ε is more likely to shrink the two narrow

intervals by enough, so that they are separated, and we don’t need to sample
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any more. As it takes a lot of additional samples to narrow the confidence

intervals even further when they are already narrow, varying ε gives a much

greater advantage to efficiency, than varying α.

The ideas in this chapter are applicable to any planner that uses Monte

Carlo simulations to compute the expected cost of an edge. These simulations

can be used to compute confidence intervals of the expected costs. The ε-

tolerance can then be used to reduce the number of simulations we need, while

the path returned remains of an acceptable quality. On the other hand, we

can use the analysis of this chapter to assess the quality of the returned path

as well.
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Chapter 6

Conclusion

Robot motion planning is a PSPACE hard problem. Nevertheless sampling

based planners, such as the PRM [44, 45], have managed to solve many plan-

ning problems involving robots with a large number of degrees of freedom,

in a reasonable amount of time. PRMs build a roadmap (graph) in the con-

figuration space of the robot, and then find an optimal path through this

roadmap. However classical PRM assumes perfect information about the en-

vironment. This assumption is not usually true, as environments are usually

not known with perfect precision. Also classical PRM assumes a static envi-

ronment. In chapters 3 and 4 we gave the BURM and DBURM algorithms to

find an optimal path through the roadmap when the environment is dynamic

and the information about the environment is imprecise.

In chapter 3 we gave the BURM algorithm which finds an optimal path,

when the environment map is imperfect: we do not know the exact position

of the obstacles. In such a case, the expected cost of traversing a path in the

roadmap depends on the probabilities of collision when the robot traverses the

147
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path. Calculating these probabilities is computationally prohibitive. BURM

tackles this by not computing the probabilities of collision exactly: it only

computes bounds on the probability. The bounds on the probability of col-

lision at a given configuration are refined hierarchically, using geometry to

divide the domain of integration into subdomains, and then computing the

probabilities of colliision over the subdomains. The refinments are performed

conservatively, only if required to identify the optimal path. We compared

BURM to MCURM that uses pure Monte Carlo Integration to compute the

probabilities of collision; it does not refine the bounds hierarchically, and

does not keep bounds but computes the probabilities exactly. BURM out-

performed MCURM by more than 2 orders of magnitude.

In chapter 4 we extended BURM to the Dynamic BURM algorithm

(DBURM), which can handle dynamic changes in the environment. Simi-

lar to BURM, we do not compute the exact expected cost of an edge, but

bound it within an interval, which can be made tighter with more compu-

tation. Hence in DBURM, edge weights are intervals. DBURM is related

to dynamic graph algorithms, which search for shortest path in a graph effi-

ciently after some edge weights have altered – these algorithms are already

hard to understand and prove [86, 56, 25]. As in our case edge weights are

intervals, it was even more challenging to efficiently recompute the optimal

path after a dynamic change. A second option is to re-run BURM after ev-

ery dynamic change. In the experiments DBURM outperformed ‘re-running

BURM from scratch’ option in most of the experiments. DBURM used 1.5

to around 3 times lesser number of collision checks when refining probability

bounds. Hence DBURM required lesser information before identifying the
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optimal path. In most of the experiments, DBURM was 1.5 to 2 times more

efficient in terms of running time as well.

In a variety of situations, we do not know the expected costs of edges

exactly, but we can sample the costs. The samples are usually taken in

the guise of Monte Carlo simulations. Accurately speaking these samples

can help us calculate the confidence intervals of the expected costs, but not

the exact expected cost. Hence we can only return a path that has the least

expected cost with a high probability. That is the returned path is the optimal

path with a high probability. Going a step further, we can return a path that

is probably approximately optimal. That is, with a high probability, pr, the

expected cost of the returned path, is within a small distance, δ, from the

optimal path.

By decreasing pr or increasing δ, we can make the graph search algorithm

run faster. In chapter 5 we generalized the DBURM algorithm to give the

Probably Approximately Correct BURM (PACBURM). We showed that we

can return a path much faster by just a slight increase in δ. That is, with

a small sacrifice in the quality of the path returned, the running time can

be reduced by a lot. This is potentially applicable to any graph search

algorithm, where the exact costs are unknown - by agreeing to bear a small

error, the number of samples that we require before identifying the ‘probably

approximately’ path, can be reduced drastically. Also, if we use for the

classical way of using the average of N simulations to calculate the expected

cost of edges, we can use the reasoning in chapter 5 to quantify the quality

of the path that is being returned, by bounding pr and δ in such a setting.
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6.1 Summary of Contribution

The main running theme in this thesis is: How to efficiently return a (prob-

ably approximately) optimal path, when the edge costs in the graph are not

known precisely, but the precision can be iteratively improved by paying ad-

ditional computation cost. The above problem is induced by planning the

motion of the robot in an environment which is non-static, as well as the po-

sitions of the obstacles are not know with perfect accuracy. The graph that

is made in the configuration space of the robot, is known as the roadmap in

motion planning literature. The contribution can be summarized as three

points.

1. When the environment map is not precise, we need to calculate the

probabilities of collision of the robot, in order to compute the expected

cost of a path. The first contribution is the idea of not computing the

exact probabilities, but to compute bounds on it. These bounds can

be refined by more computations. However BURM refines a bound,

only if it helps in identifying the optimal path. Part of this refinement

was done by using geometry of the robot configuration alone (which

is another contribution), and part of it was done by Monte Carlo In-

tegration. This led to efficiently finding the optimal path through the

roadmap.

2. Giving a graph search algorithm that efficiently recomputes the optimal

path after a dynamic change to the environment, when edge weights

are intervals. This is the DBURM algortihm. Similar algorithms have

been given before, but not when edge weights are intervals. The reason
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that they are intervals, is that we are not computing the exact expected

costs of edges (see point (1) above). Rather, we compute bounds on

the expected costs. These bounds can be refined by more computation.

Hence the expected costs are within a refinable interval. The aim is to

pay little computation cost on narrowing the intervals, while still being

able to identify the optimal path after a dynamic change.

3. In a more general scenario, given an edge e in the graph, we may not

know the expected cost, ŵ(e), of the edge, however we can sample the

costs of e. From statistics we know, that using these sample costs we

can compute an interval that bounds ŵ(e) with probability (1 − α),

where α > 0. Such an interval is called as the (1 − α) confidence

interval of ŵ(e). By generalizing our previous algorithms, we gave the

PACBURM algorithm that efficiently returns a path, that is probably

approximately optimal in this setting. To our knowledge, a graph search

algorithm that efficiently returns a close-to-optimal path by computing

confidence intervals of expected costs, has not been given before. This

has two potential uses. Firstly by sacrificing the quality of the path

returned by a small amount, we can return a path much faster. This is

borne out by our experiments. Secondly we can assess the quality of the

path returned using the analysis in that chapter. Note that the usual

assumption that Monte Carlo simulations give us the exact expected

cost of edges, is not true: it can only give us the confidence interval of

the expected cost. These ideas are therefore applicable to all planners

that use simulations, (i) to either reduce the number of samples we
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need while keeping the returned path of an acceptable quality or (ii)

assess the quality of the returned path.

6.2 Future directions

The methodology of BURM can be applicable to other problems in motion

planning which were not considered in this thesis. For example, we could

consider the case of moving obstacles whose trajectories in the near future,

are known with some amount of imprecision. Here it would be important

for BURM to be able to compute the results fast enough, so that the robot

can quickly execute its motion. Another possibility is to mix BURM and

MDP together: suppose we have the transition model for the MDP, but lack

complete information about the cost of executing a given action. This cost

could be dependent on the probability of collision while executing the action.

Here again we could use the idea of hierarchical refinement of probability

estimates as we did in BURM.

We did not pay much attention to adapting the sampling of nodes, during

the construction of the roadmap. There are lots of possibilities. For example,

the sampling could be guided by the cost function: if the cost of collision is

prohibitive, then the samples should be far from the obstacles etc. It would

be interesting to compare the quality of the path returned by BURM under

different sampling techniques. For dynamic environments, such as for the

DBURM algorithm, sampling for nodes after a dynamic change can be even

more useful.

The PACBURM algorithm finds a probably approximately optimal path



through the graph, when expected costs of edges are unknown, but we can

take samples to tighten the (1−α) confidence intervals of the expected costs.

The path returned by PACBURM, has a cost within δ of the optimal path,

with probability pr. We would like δ to be low, and pr to be high. In chapter

5 we focussed on proving a tight upper-bound on δ once PACBURM has

terminated. However the bounds on pr were quite naive: pr ≥ (1 − α)|E|,

where α is the confidence level used, and |E| is the total number of edges in

the graph. It should be possible to come up with better bounds for pr as

well, which would allow us to use a smaller value of (1 − α), and yet have

a high bound on pr. Also, we only proved that PACBURM terminates with

probability 1 : at worst it can run for ever, but such scenarios happen with a

probability measure of 0. By making a few more assumptions, or introducing

more variables, it should be possible to give the efficiency of PACBURM in

terms of O(f(n)) notation, where n is the size of the graph.
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