
Operating System Auditing and
Monitoring

Yongzheng Wu
B.Comp.(Hons.), National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2011

Acknowledgments

I would like to use this opportunity to thank all the people who have helped me make

this thesis possible.

I thank my supervisor, Dr. Roland Yap, who has advised my research ever since my

honours year project. I feel privileged to be led into research of operating system and to

work with him. His broad range of knowledge in many areas has inspired me to look at

problems from different angles.

I thank my coauthors of research papers for their great contributions. They are Dr.

Chang Ee-Chien, Dr. Sufatrio, Felix Halim, Rajiv Ramnath, Dr. Lu Liming and Yu Jie.

It was a pleasant experience working with them. I thank my thesis examiners for the

valuable and detailed comments.

I thank my family for their support throughout my Ph.D. study. Special thanks to

my wife Long Xue for her love; my father Wu Yong for his unconditional kindness; and

my son Wu Jien for the joys brought to me.

I acknowledge the support of Temasek Laboratories through the VISCA research grant;

and the SELFMAN research project. The excellent research facilities of School of Com-

puting, National University of Singapore are also greatly appreciated.

i

Contents

Acknowledgments i

Summary v

1 Introduction 1

1.1 Motivation . 2

1.2 Main Contributions . 6

1.3 Thesis Organization . 10

2 Background and Related Work 11

2.1 Windows Issues . 11

2.1.1 Closed Source . 11

2.1.2 Super User Account . 12

2.1.3 Software Management . 13

2.1.4 Binaries . 14

2.1.5 Other Issues . 16

2.2 System Monitoring . 17

2.2.1 printf, Casual Debugging . 19

2.2.2 Traditional Syslog . 19

2.2.3 ptrace and /proc . 19

2.2.4 Linux Auditing System . 20

2.2.5 Windows Sysinternals . 20

2.2.6 Solaris DTrace . 21

2.2.7 SystemTap . 21

2.2.8 Binary Instrumentation . 22

3 Monitoring Infrastructure 23

3.1 LBox . 26

3.1.1 The Monitor Framework . 27

3.1.2 Security and Monitor Interactions 33

3.1.3 Using Monitors . 37

ii

CONTENTS iii

3.1.4 Implementation Issues . 38

3.1.5 Comparing to DTrace . 40

3.1.6 Experimental Evaluation . 41

3.1.7 Conclusion . 45

3.2 WinResMon . 46

3.2.1 Motivation and Applications . 47

3.2.2 System Design . 49

3.2.3 Implementation . 55

3.2.4 Writing Custom Analyzers . 58

3.2.5 Using WinResMon . 60

3.2.6 WinResMon Overhead . 61

3.2.7 Related Work . 64

3.2.8 Conclusion . 65

4 External Monitoring 66

4.1 Introduction . 66

4.2 The Framework . 69

4.3 Applying the Framework to Malware Detection 71

4.3.1 Methodology . 72

4.3.2 Detecting Malware which Sends Spam Email 75

4.3.3 Detecting DDoS Zombie Attacks 79

4.3.4 Detecting Misuse of Compute Resources 83

4.3.5 Handling Exceptions . 86

4.3.6 Security Discussion . 87

4.4 Application to Access Control and Rate Control 88

4.4.1 Access Control . 88

4.4.2 Rate Control . 89

4.5 Related Work . 90

4.6 Conclusion . 92

5 Visualizing System/Software Traces 93

5.1 Comprehending Module Dependencies and Sharing 95

5.1.1 Related Work . 96

5.1.2 Visualizing Software Dependencies 96

5.1.3 Explaining the Visualizations . 103

5.1.4 Implementation . 104

5.1.5 Comprehending Module Dependencies in Real Software 105

5.1.6 Conclusion . 113

5.2 Visualizing Windows System Traces . 117

iv CONTENTS

5.2.1 Related Work . 117

5.2.2 System and Visualization Design 118

5.2.3 VDP Implementation and Scalability 123

5.2.4 Case Studies . 129

5.2.5 Conclusion . 137

6 Binary Integrity 139

6.1 BinAuth: Secure Binary Authentication 141

6.1.1 Windows Issues . 142

6.1.2 Related Work . 144

6.1.3 BinAuth and Software IDs . 145

6.1.4 Testing . 153

6.1.5 Conclusion . 158

6.2 BinInt: Usable System for Binary Integrity 159

6.2.1 Normal Usage versus Malicious Attacks 159

6.2.2 Related Work . 161

6.2.3 The BinInt Security Model . 163

6.2.4 Implementation . 166

6.2.5 Security Analysis . 167

6.2.6 Evaluation . 168

6.2.7 Conclusion . 171

7 Conclusion 172

7.1 Summary of the Thesis . 172

7.2 Future Work . 174

Summary

Operating system monitoring is an essential method of obtaining information on running

operating systems. The information can be used to understand programs or the operating

system kernel. It can be used to verify correctness of the execution or discover problems

such as performance bottlenecks and security flaws. This thesis presents our monitor-

ing infrastructures and uses them to solve various problems on software comprehension,

software diagnostics and system security.

We first present two monitoring infrastructures, LBox and WinResMon. LBox is a

monitoring infrastructure on UNIX variants such as Linux. It features novel user-level

monitoring and recursive monitoring, which make LBox safe to be used by unprivileged

users in a multi-user environment. It is light-weight as it can be implemented with very lit-

tle kernel patching; while its performance is comparable to state of the art monitoring sys-

tems such as Solaris DTrace. Our second infrastructure, WinResMon, monitors resource

usage in Windows. The closed source nature makes Windows internals obscure. Tradi-

tional system call based monitoring would not make sense because the semantics of system

call names and parameters are not generally understandable. Resource-based monitoring,

in contrast, monitors software behaviour on its resource usages such as file/registry, net-

work and process/thread operations. As an infrastructure, WinResMon supports APIs

which can be used to build tools for system administrators. Our benchmarking shows

that WinResMon is reliable and is comparable to other popular tools.

Our two infrastructures are host-based, i.e. the monitoring system and the monitored

software run in the same host. If the kernel of the host is compromised, which is the

case for Rootkit, the information from the monitor cannot be trusted. We propose ex-

ternal monitoring which obtains information from entities, such as network routers and

environment sensors, that are outside the host. We use the sensors to monitor human

user presence and correlate this information with network traffic to detect malware in

the host. Moreover, we mitigate the impact of malware by limiting its resource usage,

which is done by adapting WinResMon from resource usage monitoring to resource usage

control.

With the large amount of information obtained by our system monitor, we have devel-

oped techniques to visualize it. We use system traces together with function call trace to

v

vi SUMMARY

visualize software module dependencies. As the number of modules can be very large, we

developed a number of “zooming in” techniques including grouping of modules; filtering

by causality; and the “diff” of two dependencies. Our second visualization, named lviz,

discovers patterns and anomalies. It is highly configurable to suit different purposes.

As shown in our case studies, it can be used for software failure diagnostics, analysing

performance issues and other strange behaviours.

Many of the system security problems such as malware stem from the fact that un-

trusted binaries are executed. Since the WinResMon monitoring infrastructure monitors

file system related information flow, we can tackle the binary trustworthiness from the in-

formation flow point of view, similar to the Biba Integrity Model. In short, low integrity

process should not modify high integrity binary and high integrity process should not

load low integrity binary. We achieve this goal in two steps. We first implement a secure

and efficient binary authentication system which only allows binaries in a white-list to

be loaded. We then apply it on our binary integrity security model. The security model

prevents binary related attacks such as DLL planting, drive-by downloading and phish-

ing attacks; while it is usable under typical usage scenarios including software running,

installation, updating and development.

Many parts of the thesis is implemented in Windows because of the great variety of

software and number of users which also attract many attacks. The closed source nature

also makes the monitoring challenging and demanding. However, the ideas can be applied

on other operating systems.

List of Tables

2.1 Classification of Monitoring Systems. “Sec.”, “transp.”, “disc.”, “mand.”,

“instru.”, “Lin.” and “Win.” are abbreviations of Section, transparent,

discretionary, mandatory, instrumentation, Linux and Windows respectively. 18

3.1 open(2) micro-benchmark on Linux. All times are in seconds. 42

3.2 open(2) micro-benchmark on Solaris 10 43

3.3 connect(2) micro-benchmark . 43

3.4 Macro-benchmarks . 44

3.5 Intercepted system calls . 58

3.6 Performance comparison on file and registry access (n operations in seconds) 63

3.7 Performance of process creation (in seconds) 64

3.8 Performance of macro-benchmarks (in seconds) 64

4.1 Overview of malware detection rules using changepoint detection. 73

4.2 Detection time of different spam worms. (Detection threshold N = 120

emails in t = 6 hours at user presence, and N = 1 during user absence.) . 76

4.3 Detection time of spam worms, using rate based detection, moving average

detection, and changepoint detection . 77

4.4 Rules for email detection . 78

4.5 Detection time of DDoS attacks of different attack patterns 82

4.6 Detection time of CPU intensive activities, using rate based detection,

moving average detection, and changepoint detection (The upper bound

of normal CPU temperature is a = 38.5◦C, and the detection threshold

N = 2400 in t = 30 mins). 85

6.1 Benchmark results showing times (in seconds) and slowdown factors. The

worst slowdown factors for each benchmark scenario are shown with un-

derline, whereas the best are in bold. We define slowdownx = (timex −
timeclean)/timeclean. 157

6.2 Performance overhead . 170

vii

List of Figures

1.1 Overview of the Contributions . 8

2.1 Binaries loaded when running notepad.exe in Windows XP 16

3.1 A Simple Monitor . 34

3.2 A Tree of Cascaded Monitors . 36

3.3 WinResMon overall system architecture 49

3.4 Example of Log Priorities for Trace Compaction 54

3.5 A sample installer wrapper . 56

3.6 Overview of how the logger works . 57

3.7 A sample analyzer . 59

4.1 The components of the framework . 69

4.2 False detections caused by email rate based spam detection 75

4.3 Samples of user email rate . 76

4.4 Difference in the outgoing packet rate and the net outgoing packet rate (in

packets per second) . 81

4.5 Distribution of the maximum net outgoing packet rate pnet with 13,620

TCP and UDP flows, each flow is observed for 10 minutes during user

presence and absence . 82

4.6 Net outgoing packet rate of the DDoS attack flow in different attack patterns 82

4.7 Correlation of CPU load and CPU temperature 83

4.8 CPU temperature variation when user is absent and present. The user is

absent from 0 to 64,000 second; and present from 64,000 second onwards.

The user is absent left of the vertical dotted line and present to the right

of the line. 84

4.9 CPU temperature variation during various activities. 84

4.10 Correlating attack intensity and CPU temperature. 85

5.1 Dependency graph without (left) and with (right) grouping of programs A

and B with other DLLs D1 to D5 . 98

viii

LIST OF FIGURES ix

5.2 EXE dependency graph of three browsers: IE, Firefox, Opera 99

5.3 DLL dependency graph of wget without grouping 101

5.4 Each function is in its own DLL . 102

5.5 EXE dependency graph of wget . 103

5.6 DLL dependency graph of wget grouped by functionality 103

5.7 EXE dependency graph of the whole system 107

5.8 Software dependency graph of Microsoft Word and OpenOffice Writer . . 109

5.9 DLL dependency graph of Gimp grouped by functionality 110

5.10 DLL dependency graph of Gimp grouped by software vendor 111

5.11 DLL dependency graph of Firefox grouped by software vendor 112

5.12 Diff of DLL dependency graph of Internet Explorer with Flash and without 114

5.13 Projection of the DLL dependency graph of Internet Explorer on Flash . 115

5.14 Two examples of events . 119

5.15 Elements of VDP: axis histograms (Region 1,2); barcodes (3,4); and ex-

tended DotPlot (5). This figure is same as Figure 5.16 with the added

annotation. 120

5.16 Self-comparison event-ordered VDP of xcopy copying 8 files of different

sizes with the following configuration rules: 121

5.17 The alternate zoomed-in view of a blue region in Figure 5.16 showing read-

ing (magenta) and writing (cyan) operations. 124

5.18 Clockwise from top-left: histogram equalization, γ = 1, γ = 1/4 and γ = 4. 124

5.19 Event-ordered VDP comparing cp (x-axis) and xcopy (y-axis) copying the

same files. The configurations are the same as in Figure 5.16. 130

5.20 Time-ordered VDP comparing cp-64k (x-axis) and xcopy (y-axis). The

configurations are the same as in Figure 5.16. 130

5.21 Event-ordered VDP comparing a successful (x-axis) software build process

and a failed (y-axis) one. 132

5.22 Program point event-ordered VDP of project build: pseudo program point

trace (y-axis). 133

5.23 Changing the DP matching rule of Figure 5.21. Left side DP matching rule

is operation; Right side is program name. 134

5.24 Time-ordered VDP comparing two idle systems. a. (left) comparing one

hour interval between two machines; b. (middle) zoom in of Region a2;

c. (right) zoom in of a3. The different DP color intensity in the zoomed

views is caused by histogram equalization. 135

5.25 Time-ordered VDP comparing boot of a clean (Y axis) and a dirty (X axis)

system. 136

5.26 Time-ordered VDP comparing IE7 (x-axis) and Chrome (y-axis) perform-

ing the SunSpider JavaScript benchmark. 137

x LIST OF FIGURES

6.1 SignatureToMac: Deriving the MAC . 148

6.2 Verifier: The Verifier in-kernel authentication process 148

Chapter 1

Introduction

Software is increasingly complex with many interactions among software components

and the operating system. The complex interactions make the software ecosystem hard

to understand. This is further multiplied by the fact that many software products are

closed source. Without proper understanding, many problems arise, such as maintenance

problems, performance problems, software bugs and vulnerabilities. The complexity and

software bugs also increase the attack surface [56], which measures the bugs or features

exploitable by malicious attacks. Monitoring is an effective way to understand these

interactions. Software monitoring is the process of obtaining useful information from

running software. It is used for different purposes and the information obtained is different

according to the purposes:

• Software Comprehension

Monitoring can help software comprehension such as studying the control flow and

module dependency. Monitoring running software can be used to study the dynamic

behaviour which cannot be achieved from static analysis.

• Inspection

We can inspect the expected behaviours in order to verify the correctness of the

execution. Sometimes it is not enough to determine the correctness from the output

in the narrow sense. For example, the correctness of a web server program not only

includes the web page sent to the client, but also the files and databases accessed and

the timing. The correctness of the whole web server host is even more complex. This

can be verified if we know the expected behaviour and can formalize and monitor

it. Similarly, we can look for unexpected behaviours in order to discover problems.

• Diagnosis

In the other direction, if we have a specific problem such as software failure, incorrect

output or performance problems, we can diagnose the problem by studying the

behaviour and locate the root cause. Software log is probably the most useful

1

2 CHAPTER 1. INTRODUCTION

resource for software diagnosis. It is considered as one kind of monitoring, which

we call discretionary monitoring. However, the log may not be available or the

interested information may not be logged. Mandatory monitoring can obtain the

information in this case.

• Security

The access of files and interactions of processes are needed by many security models

such as the Biba Integrity Model [23]. A reliable underlying monitoring system is

essential to implement these security models. Some intrusion detection systems also

work by monitoring malicious behaviours in the operating system.

In the rest of the introductory chapter, we discuss the motivation and challenges in

Section 1.1. We then summarize the main contributions of our research in Section 1.2.

Finally, we outline rest of the thesis in Section 1.3.

1.1 Motivation

We motivate our research by first giving some examples of problems and then showing

how monitoring can help solving them.

1. “DLL Hell”

A software product usually consists of many software modules. A module may

depend on another module in the same software product or a different one. This

dependency is very complex because firstly there are many software products which

include a large number of modules. Secondly, the dependency is not explicitly

specified by the module because it may depend on the configuration and input of

the software. Lastly, different software products may include duplicate or conflicting

modules, which make them overwrite the modules of each other.

Without proper management of the dependencies, many problems arise. For ex-

ample, we cannot determine whether a module can be removed when we uninstall

a software product. The depended modules may not be available or may be in a

incompatible version. The problem is more serious in Windows because of the large

number of software products, which are not properly coordinated. This is known

as “DLL Hell”, where the most common modules in Windows are Dynamic Link

Libraries (DLL).

With a monitoring system that keeps track of module creation and usage, we can

heuristically answer the question whether a module can be removed. In addition,

when software stops working because of a missing or incompatible module, we can

look at the module updating history to identify which software uninstall or update

causes it.

1.1. MOTIVATION 3

2. Software works yesterday, but not now.

We often encounter situations where a program suddenly stops working after config-

uration changes, software updates or some unknown operations. A similar situation

is that the program works in one computer but not in another computer. For ex-

ample, a program may execute very slowly in one of the computers, but not in

others. One way to diagnose this problem it to compare the log or execution trace

of the program. The root cause is probably located at the point where the two trace

deviates.

3. How to tell if a host is compromized?

If a host (including the operating system kernel) is compromized, information from

the host cannot give the answer because the information cannot be trusted. An

analogy is asking a crazy person, “are you crazy?” To solve this problem, we have

to use information outside the host. This is where the idea of external monitoring

comes in. We use the information from network routers and sensors which monitor

CPU temperature, keyboard typing sound and human user presence, etc. in order

to study the host behaviour as a black-box.

4. Which files are infected by virus?

After a user realized that his computer has virus, he wants to know which files or

software are infected by the virus. Anti-virus software commonly looks for infected

files by matching the virus signatures. This technique usually only finds the main

executable of the virus. Other infected files, such as text data files or configuration

files, cannot be identified. The user may also want to know whether files containing

his confidential information are accessed by the virus.

We can monitor the access of files, including creation of executables and read-

ing/writing of files in order to track the propagation of the virus. There are two

caveats for this monitoring. Firstly, the monitoring has to be always-on because

it would be too late to monitor if the files are already infected. This brings the

challenge of maintaining the growing log. Secondly, the infected files are not only

the files directly modified by the main virus executable. The virus may create ad-

ditional executables or use shared libraries to hijack other software, which in turn

hijacks more software. This brings us the idea of information flow tracking in the

system.

5. How to prevent untrusted program from running?

Perhaps we should first ask the question of how to tell if a program can be trusted.

We can apply the solution of the previous question (i.e. based on the source of

the program) and answer it recursively. If all code (machine code, not source code)

4 CHAPTER 1. INTRODUCTION

used by the program comes from trusted programs, we consider the program trusted.

There are other practical considerations with this simple definition. For example,

how to get the initial trusted programs? Is code sufficient? How about data?

Trusted programs can be exploited and behave maliciously.

After identifying trusted and untrusted programs, we can use an access control

system to prevent untrusted programs from running. The access control system can

be implemented in a similar way to our monitoring system, except that the former

prevents the access and the latter reports the access.

Although system monitoring helps solving various of problems, there are many chal-

lenges.

• The interactions may not be well defined or understood, especially when the source

code or proper documentation is not available in operating systems such as Win-

dows. However, we can still discover behaviours such as repeated patterns. Even

when the source code is available, it can be difficult to understand because of its

large size and dependency with other software.

• In quantum physics, the observer changes the system it observers. Software mon-

itoring also have the same problem. The monitoring system itself can inevitably

affect the monitored system in an undesirable way.

• The monitoring system cannot be trusted if the host on which it runs is compro-

mised. Reliable monitoring is always based some assumptions. Most existing mon-

itoring systems rely on the integrity of the operating system kernel. These systems

cannot be used to detect kernel malware such as Rootkit.

• Depending on the level of detail, the system call level trace can be several megabytes

per second and the instruction level trace can be several gigabytes per second.

Moreover, problems such as tracking origin of files require keeping the trace over

sufficiently long period. The huge amount of information is hard to maintain and

analyze.

There are many monitoring systems for UNIX-like operating systems, but very few for

Windows. This is partially because the Windows NT operating system is rather complex

and different from other operating systems. It has many unique features and mechanisms

which impact on understanding, monitoring and security. We briefly introduce them here

and the details are shown later in Section 2.1.

The Windows operating system is a closed source system. This can be seen from

three aspects: Firstly, the kernel is closed source, which makes kernel monitoring very

difficult. Dynamic instrumentation tools like DTrace [26] and SystemTap [73] are not

1.1. MOTIVATION 5

relevant because their probes are specific to code points or functions in the kernel. With-

out understanding the purpose of each function, probes are meaningless. It makes kernel

extension difficult as well. The lack of kernel APIs makes anti-virus developers use undoc-

umented internal functions which is not officially supported by Microsoft and may cease

to work after a Windows update. Unfortunately, there is no officially supported technique

to achieve this. Secondly, the semantic of system calls is closed. Unlike UNIX, programs

do not directly invoke systems in Windows. They call higher level APIs, which may call

some other APIs, which make the system call. The association between higher level APIs

and the systems is complex and again closed. Thirdly, the interaction among the com-

ponents is closed. Windows has microkernel operating system features which make some

tasks, such as networking, printing and graphical interface be partially handled by user

space services. In other words, a process can perform tasks on behave of another process.

This feature can be exploited to circumvent monitoring or security mechanisms.

Windows users typically use the administrator account to perform all tasks. This

is caused by its single-user operating system history and the backward compatibility of

the current version. However, this is against the least privilege principle [79] and makes

malware capable of performing critical operations. Although User Account Control (UAC)

is introduced in recent version of Windows, there are limitations with it.

We use the term binary to denote a file that contains native executable code and

can be directly loaded by the operating system kernel. There are many types of binaries

and they can be loaded and executed in many ways. There are even several version

of the same library kept at the same time in the system for the purpose of backward

compatibility. The different ways of binary loading increases the “attack surface”. For

example, the “DLL planting” attack exploits the DLL search order so as to hijack benign

DLLs with malicious ones. It is surprising that Microsoft consistently releases fixes and

similar attacks consistently reappears [62].

Windows lacks a consistent software management system to manage the installation,

update and removal of software. In any case, other systems may not have a mandortary

software management system. Most software products have their own installers, which

perform installation in different ways. The dependencies and conflicts make binaries in

windows rather “chaotic”. Firstly, it is not possible to systematically tell which software

a binary, or file in general, belongs to. Secondly, the software dependencies are unknown.

There are other features that make monitoring in Windows special. Windows has a

central database called the registry to store all kinds of configurations including operating

system settings, per-user configurations and per-software configurations. There is and API

to access the registry. This enables the monitoring of configuration related behaviour.

6 CHAPTER 1. INTRODUCTION

1.2 Main Contributions

A general monitoring infrastructure needs to be correct, secure, transparent, flexible, and

efficient. By correct, the monitored events must be sound and complete, i.e. no events

should be missed, duplicated or invented. The monitoring infrastructure needs to be

secure in both design and implementation. For example, it should not leak confidential

information to low privilege users. It should be carefully implemented so that malicious

monitored software would not exploit the infrastructure. By transparent, the monitored

software does not need to be changed. Moreover, its execution including output should

be consistent with and without monitoring. By flexible, the infrastructure should be

sufficiently general to handle different problems. For example, an API can be used to

extend the monitored events for future software. A filter language can be used pre-process

events. By efficient, the infrastructure should not introduce too much overhead on the

monitored software. In quantum physics, an observer changes the system it observes.

Similarly, a monitor can bring side effects to the monitored program. Too much overhead

not only slows the system down, but may also make it incorrect.

We have design and implemented two monitoring infrastructures, LBox and WinRes-

Mon. LBox [104] is a monitoring infrastructure on UNIX variants such as Linux. It fea-

tures novel user-level monitoring and recursive monitoring. User-level monitoring means

it is safe to be used by unprivileged users in a multi-user environment. Most traditional

monitoring infrastructures are super-user based, mainly because they are system-wide.

User-level monitoring requires the monitoring system to have user separation, i.e. a user

should not monitor private information of another user. LBox allows hierarchical moni-

toring. For example, program B monitors program A and that the same time, program

C monitors program B. We have implemented LBox in Linux. It is light-weight as it can

be implemented with very little kernel patching; while its performance is comparable to

state of the art monitoring systems such as Solaris DTrace.

Our second infrastructure, WinResMon [76], monitors resource usage in Windows.

The closed source nature makes Windows internals obscure. Traditional system call based

monitoring would not make sense because the semantics of system call names and param-

eters are not generally understandable. Resource-based monitoring, in contrast, monitors

software behaviour on its resource usages such as file/registry, network and process/thread

operations. As an infrastructure, WinResMon supports APIs which can be used to build

tools for system administrators. Our benchmarking shows that WinResMon is reliable

and is comparable to other popular tools.

Our two infrastructures are host-based, i.e. the monitoring system and the monitored

software run in the same host. If the kernel of the host is compromised, which is the case

for Rootkit, the information from the monitor cannot be trusted. We propose external

monitoring [29] which obtains information from entities, such as network routers and

1.2. MAIN CONTRIBUTIONS 7

environment sensors, which are outside the host. We use the sensors to monitor human

user presence and correlate this information with network traffic to detect malware in

the host. Moreover, we mitigate the impact of malware by limiting its resource usage,

which is done by adapting WinResMon from resource usage monitoring to resource usage

control.

With the large amount of information obtained by our system monitor, we have devel-

oped techniques to visualize it. Our first visualization [108] investigates the dependencies

between programs and binaries. As discussed earlier, software often lives in a complex

software eco-system with many interactions and dependencies between different modules

or components. This problem is exacerbated both by the overall system complexity and

its closed source nature in Windows. Even when the source code is available, there are still

interactions with modules which are only in binary form. The visualization uses system

traces from WinResMon and program traces from binary instruction, thus it does not need

to rely on source code. We use the following scenarios to explain how our visualizations

can be used to investigate various aspects of software dependencies: (i) visualizing whole

system software dependencies; (ii) visualizing the interactions between selected modules

of some software; (iii) discovering unexpected module interactions; and (iv) understand-

ing the source of the modules being used. Because of the large number of modules and

their complex dependencies, we developed a number of “zooming in” techniques including

grouping of modules; filtering by causality; and the “diff” of two dependencies.

Our second visualization, lviz [107], is a visualization tool for many different purposes

including software failure diagnostics, analyzing performance issues, anomaly discovery,

etc. The visualization is based on DotPlot, which compares two traces and plot the

common (or different) items. It was early used for analyzing similarities in DNA se-

quences [55]. lviz extends the traditional DotPlot through a number of visual elements

so that we can easily associate the visual representation with events in the trace and iden-

tify the key events. As we will see in a number of case studies, lviz is highly customizable

can be used to look at problems across a large spectrum.

Many of the system security problems such as malware stem from the fact that un-

trusted binaries are executed. Since the WinResMon monitoring infrastructure monitors

file system related information flow, we can tackle the binary trustworthiness from the

information flow point of view, similar to the Biba Integrity Model [23]. In short, low in-

tegrity process should not modify high integrity binary and high integrity process should

not load low integrity binary. We achieve this goal in two steps. We first implement a

secure and efficient binary authentication system [43, 103] which only allows binaries in a

white-list to be loaded. We then apply it on our binary integrity security model [105, 106].

The security model prevents binary related attacks such as DLL planting, drive-by down-

loading and phishing attacks; while it is usable under typical usage scenarios including

software running, installation, updating and development.

8 CHAPTER 1. INTRODUCTION

S4 External Monitoring
External Sensors

Dynamic Instrumentation

Our Contribution

Other Systems

Information Flow

S5.1 Module Dependency
S5.2 Trace Visualization

Visualization

S3.1 LBox
S3.2 WinResMon

Monitoring Infrastructure

S6.1 BinAuth
S6.2 BinInt

Binary Integrity

Figure 1.1: Overview of the Contributions

Figure 1.1 visualizes the contributions and relationships between the work in this the-

sis. The monitoring infrastructures serve as the base in our research. Traces collected by

the monitoring infrastructure along with other information is used in various visualiza-

tions. External sensors gather information which is used to manage and control resources

within and outside a host machine in our external monitoring work. The monitoring

infrastructure records the binary related information flow which is used in our binary

integrity security model.

Many parts of the thesis are demonstrated in Windows with system prototypes because

of the great variety of software and number of users which attract many attacks. The

closed source nature also makes the monitoring challenging and demanding. However,

the ideas can be applied on other operating systems.

The published works included in this thesis are listed below in chronological order.

1. Yongzheng Wu and Roland H.C. Yap. A user-level framework for auditing and

monitoring. In Proceedings of the 21st Annual Computer Security Applications

Conference (ACSAC’05), pages 95–105. IEEE Computer Society, 2005. (in Sec-

tion 3.1)

2. Rajiv Ramnath, Rajiv Sufatrio, Roland H.C. Yap, and Yongzheng Wu. WinRes-

Mon: a tool for discovering software dependencies, configuration and requirements

in Microsoft Windows. In Proceedings of the 20th Conference on Large Installation

System Administration (LISA’06), pages 175–186. USENIX Association, 2006. (in

Section 3.2)

3. Felix Halim, Rajiv Ramnath, Yongzheng Wu, and Roland H.C. Yap. A lightweight

binary authentication system for windows. Trust Management II, pages 295–310,

2008. (in Section 6.1)

4. Yongzheng Wu, Sufatrio, Roland H.C. Yap, Rajiv Ramnath, and Felix Halim. Es-

tablishing software integrity trust: A survey and lightweight authentication system

for windows. In Zheng Yan, editor, Trust Modeling and Management in Digital En-

1.2. MAIN CONTRIBUTIONS 9

vironments: from Social Concept to System Development, chapter 3, pages 78–100.

IGI Global, 2009. (in Section 6.1)

5. Ee-Chien Chang, Liming Lu, Yongzheng Wu, Roland H. C. Yap, and Jie Yu. En-

hancing host security using external environment sensors. In Proceedings of the 6th

International ICST Conference on Security and Privacy in Communication Net-

works (SecureComm 2010), volume 50, pages 362–379. Springer, 2010. (in Chap-

ter 4)

6. Yongzheng Wu and Roland H.C. Yap. The problem of usable binary authentication.

In Proceedings of the 4th International Conference on Secure Software Integration

and Reliability Improvement Companion (SSIRI’10), pages 34–35. IEEE Computer

Society, 2010. (in Section 6.2)

7. Yongzheng Wu, Roland H.C. Yap, and Felix Halim. Visualizing Windows system

traces. In Proceedings of the 5th International Symposium on Software visualization

(SOFTVIS’10), pages 123–132. ACM, 2010. (in Section 5.2)

8. Yongzheng Wu, Roland H.C. Yap, and Rajiv Ramnath. Comprehending module

dependencies and sharing. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering (ICSE’10), volume 2, pages 89–98. ACM, 2010.

(in Section 5.1)

9. Yongzheng Wu and Roland H.C. Yap. Towards a binary integrity system for Win-

dows. In Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security (ASIACCS’11), pages 503–507. ACM, 2011. (in Sec-

tion 6.2)

10. Ee-Chien Chang, Liming Lu, Yongzheng Wu, Roland H. C. Yap, and Jie Yu. En-

hancing host security using external environment sensors. In Special Issue in In-

tentional Journal of Information Security (IJIS), Springer, 2011. (to appear) (in

Chapter 4)

The following are other published works by the author during his doctoral candidature,

that are not related to this thesis.

1. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Security Issues in Small World

Network Routing. In Proceedings of the 2nd IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (SASO 2008), pages 493–494. IEEE

Computer Society, 2008.

2. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Small World Networks as (Semi)-

Structured Overlay Networks. In Workshops Proceedings of the 2nd IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems (SASO Workshops

2008), pages 214–218. IEEE Computer Society, 2008.

3. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Wiki credibility enhancement.

In Proceedings of the 2009 International Symposium on Wikis (WikiSym’09), pages

10 CHAPTER 1. INTRODUCTION

17:1–17:4. ACM, 2009.

4. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Routing in the Watts and Stro-

gatz Small World Networks Revisited. In Workshops Proceedings of the 4th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO Work-

shops 2010), pages 247–250. IEEE Computer Society, 2010.

5. Felix Halim, Roland H.C. Yap and Yongzheng Wu. A MapReduce-Based Maximum-

Flow Algorithm for Large Small-World Network Graphs. In Proceedings of the 2011

IEEE 31th International Conference on Distributed Computing Systems (ICDCS’11),

pages 192–202. IEEE Computer Society, 2011.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives some background knowledge

on operating system monitoring and Windows. We also show and some existing moni-

toring systems and tools. Chapter 3 presents our monitoring infrastructures LBox and

WinResMon. Chapter 4 shows our research on external monitoring. Chapter 5 presents

our two trace visualization works. Chapter 6 shows the binary authentication system and

the binary integrity security model. Finally, Chapter 7 concludes the thesis and points

out directions for future work.

Chapter 2

Background and Related Work

In this chapter, we give some background knowledge on operating systems and monitoring.

In particular, since several parts of the thesis are related to the Windows operating system,

we discuss the issues that are related to monitoring in Windows. After that, we show

some related work on monitoring.

2.1 Windows Issues

The Windows NT operating system is rather complex and different from other operating

systems. It has many unique features and mechanisms which impact on understanding,

monitoring and security. We now discuss some of the these which are related to the thesis.

2.1.1 Closed Source

The Windows operating system is a closed source system. Firstly, the kernel is closed

source. This makes kernel monitoring very difficult. Dynamic instrumentation tools like

DTrace [26] and SystemTap [73] are not relevant because their probes are specific to code

points or functions in the kernel. Without understanding the purpose of each function,

probes are meaningless. It makes kernel extension difficult as well. The lack of kernel

APIs make anti virus developers use undocumented internal functions in a hacking way.

For example, the Kaspersky is known [84] to patch internal kernel functions, which makes

it only work on 32-bit but not 64-bit systems. In our WinResMon (Sec 3.2) work, we

monitor system calls by hooking the kernel dispatch table, which is a well-known system

call monitoring technique, but not officially supported by Microsoft and may cease to

work after a Windows update. Unfortunately, there is no officially supported technique

to achieve this.

Secondly, the semantic of system calls is closed. Unlike UNIX, programs do not

directly invoke systems in Windows. They call higher level APIs, which may call some

other APIs, which make the system call. The association between higher level APIs and

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

the systems is complex and again closed. For example, to open a file in UNIX, one

may call the open(2) system call directly. In Windows, one should call the officially

documented API CreateFile(). CreateFile() calls CreateFileA() which calls the

system call ZwCreateFile(). One may think this is not a problem because we can just

monitor the documented API layer and ignore the system call layer. However, not all

programs follow the documented API. To make reliable monitoring, system call have to

be monitored.

Thirdly, the interaction among the components is closed. Windows has microkernel

operating system features which make some tasks, such as networking, printing and graph-

ical interface be partially handled by user space services. In other words, a process can

perform tasks on behave of another process. This feature can be exploited to circumvent

monitoring or security mechanisms.

2.1.2 Super User Account

The early versions of Windows (Windows 95, Windows 95 and Windows Me) are single

user operating systems, thus do not distinguish normal and super user accounts. Windows

NT introduced the multiple user operating system, which separates user configurations

and introduces normal/super user account. The super user account (also known as ad-

ministrator) has higher privilege and is supposed to only perform administrative tasks

following the least privilege principle [79]. However, in practice, most users choose to use

the super user account, because some software written for older Windows do not work if

running using normal account. Furthermore, the first account created during Windows

2000 and XP installation is by default administrator, thus running normal account is an

opt-in feature and many users are even not aware of using administrator account.

In modern multi-user operating systems, (i) separation of kernel and user context;

(ii) separation of different processes’ address space; and (iii) separation of different users’

configurations are very important concepts of security. When programs run under the

super user account, all these separations are invalidated because the super user is able

to load kernel drivers, modify arbitrary process’s state and arbitrary files. As a result,

the recent versions Windows Vista and Windows 7 introduced User Account Control

(UAC) in order to mitigate the security problems of super user account and promote the

use of normal user account. When a program running in super user account performs

administrative operations (listed below), a UAC prompt is displayed and the user can

choose to authorize or prevent the operation. It is designed to prevent malware from

automatically perform these operations.

• Installing and uninstalling applications

• Installing device drivers

2.1. WINDOWS ISSUES 13

• Installing ActiveX controls

• Installing Windows Updates

• Changing settings for Windows Firewall

• Changing UAC settings

• Configuring Windows Update

• Adding or removing user accounts

• Changing a user’s account type

• Configuring Parental Controls

• Running Task Scheduler

• Restoring backed-up system files

• Viewing or changing another user’s folders and files

There are a few problems with UAC. Firstly, UAC only cares about administrative

operations, which are to do with system settings, but not user settings. Thus, this is

aimed at protecting the system but not the user, i.e. malware which do not modify

system resources are not affected. This is alright from a multi-user security perspective,

which focuses on preventing a user from interfering other users. However, in a single-

user situation, which is mostly the case for Windows PC, it is more relevant to prevent

an application from interfering with other applications of the same user. For example,

UAC cannot prevent malware from stealing web browser cookies or modifying Word

documents. Some software, such as Google Chrome, are by default installed in the user’s

home directory instead of the Program Files directory and is consequently not covered.

UAC does not protect their binaries from being modified. Secondly the protection from

UAC may be illusory — a common complaint is that frequent UAC prompts leads to

users blindly allowing UAC queries [64]. Lastly, the UAC prompt does not give much

information to make a decision, which is essentially whether a particular executable is

trusted for an operation. Most users (including technical ones) would not be able to

decide if the operation should be allowed.

2.1.3 Software Management

A software management system controls the installation, updating and removal of software

in the operating system. Open source OS, such as Linux, commonly uses a package

management system. Examples are the Redhat Package Manager (RPM) for Redhat and

Fedora Linux, the Debian package management system for Debian and Ubuntu Linux.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Mobile operating systems such Apple’s iOS and Google’s Android have similar application

managers.

There is no consistent software management in Windows. Most software products

have their own installers, which perform installation in different ways. They have their

updaters as well. Some check online for update at each execution. Some perform regular

checks, which involves running a service in the background. Probably the only common

thing is that they all register their software removal programs so that the “Add/Remove

Program” tool knows how to remove them.

Without a consistent software management system, binaries in windows is rather

“chaotic”. Firstly, it is not possible to systematically tell which software a binary, or file in

general, belongs to. There is no database to record this relationship as in RPM. The direc-

tory structure is not reliable to figure this out because binaries can be installed anywhere

in general. For example, some software install binaries in the C:\windows\system32

directory which is used to store core system files. Even worse, a software installer can

overwrite binaries installed by another software. Secondly, the software dependencies are

unknown. Package managers such as RPM keeps detailed and accurate package depen-

dencies and conflicts so that when installing a software, it installs its dependencies as

well. Because Windows lacks this knowledge, software tends to bundle its dependencies.

This introduces a lot of duplicates in the system and makes software update difficult.

Even with software management systems, the problems cannot be fully solved because

the systems do not provide mandatory protection. They can only maintain the software

installation under the assumptions that (i) the software package is centrally created and

signed by a single distributer, e.g. RedHat; (ii) software is installed properly using their

tools; and (iii) the installed files are not modified outside the software management system.

However, any of the assumption can be false. There is often some software that is not

included by the distributor, either because it is new or it does not satisfy the distributor’s

requirement. Third party software packages are then made. Examples are the Google

Chrome web browser for most Linux distributions and the Cydia application repository

for Apple’s iOS. These packages can conflict with existing or future first party packages.

Package signature can partially solve the problem, but users usually ignore the signature.

The software management systems do not provide mandatory protection mechanisms to

prevent installed files from being modified. Once the root privilege (or any software

installation equivalent privilege) is acquired, any file from any software can be modified.

2.1.4 Binaries

Parts of the thesis, including module dependency (Section 5.1) and binary integrity

(Chap. 6) focus on binaries in Windows. Throughout the thesis, we use the term bi-

nary to denote a file that contains native executable code and can be directly loaded

2.1. WINDOWS ISSUES 15

by the operating system kernel. There are generally three types of binaries in modern

operating systems. An executable file is the main and firstly loaded binary of a process.

Executable files in Windows are conventionally (not necessarily) given the .exe file ex-

tension. A process loads a single executable file. A dynamic linked library (or DLL)

contains native code which is designed to be shared by different software. A process can

load many DLLs and a DLL can be loaded by many processes. In Windows, DLLs are

usually given the extension .dll, but other extensions such as .ocx, .cpl and .ime exist

as well. A kernel driver can be loaded by the kernel and its code executes in kernel space.

They usually have the .sys extension. We list some of the common binaries and their

conventional extensions below (this list is not intended to be exhaustive):

• Applications (.exe) — the executable associated with a process

• Command files (.com) — legacy executables for the MS-DOS environment

• Dynamic linked libraries (.dll) — libraries loaded implicitly by dependency or

explicitly by LoadLibrary function at runtime

• ActiveX controls (.ocx) — software components which implement the Microsoft

Component Object Model (COM). ActiveX controls are most commonly used by

Internet Explorer. Browser helper objects(BHO) are also an example of ActiveX

controls.

• Device drivers (.drv and .sys) — kernel loadable modules

• Screensavers (.scr) — executables used by Windows to display screensavers

• Control Panel applets (.cpl) — applets for the Control Panel

• Input Method Editors (.ime) — used by the Windows On-screen-keyboard to sup-

port different languages

• Codecs (.acm and .ax) — bundled into Windows and also can be installed by 3rd

party software. The codecs are used for playing audio and video media.

We briefly discuss the binaries loaded when we run notepad.exe, the simplest text

editor of Windows, as shown in Figure 2.1. Binaries with different extensions — .dll,

.drv and .ime — are loaded by the simple text editor. We highlight that avgrsstx.dll,

which is one of the DLLs of the anti-virus software AVG, is “injected” into every processes.

This hacker-style DLL injection technique is not officially supported and is also used

by many malware. This makes some anti-virus software behaves like malware. The

comctl32.dll with long pathname is version 6.0.2600.5512 of the common control DLL,

which keeps several different versions for backward compatibility. The winspool.drv is

the user space component of the printer driver.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

c:\windows\apppatch\acgenral.dll

c:\windows\system32\avgrsstx.dll

c:\windows\system32\imm32.dll

c:\windows\system32\lpk.dll

c:\windows\system32\msacm32.dll

c:\windows\system32\msctf.dll

c:\windows\system32\msctfime.ime

c:\windows\system32\shimeng.dll

c:\windows\system32\usp10.dll

c:\windows\system32\uxtheme.dll

c:\windows\system32\winmm.dll

c:\windows\system32\winspool.drv

c:\windows\winsxs\x86_microsoft.windows.common-controls_

6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\comctl32.dll

Figure 2.1: Binaries loaded when running notepad.exe in Windows XP

Loading of binaries is the most common way to lead code execution. The complexity

of binaries in Windows brings challenges to software understanding and security. We will

see this in more detail in our visualization (Chap. 5) and binary authentication (Chap. 6)

work.

2.1.5 Other Issues

In Windows, the configuration is stored in a central database named the registry. This

includes all kinds of configuration, such as operating system settings like TCP buffer size;

per-user configurations like desktop background; and software configurations like default

font size for Adobe Photoshop. The centrally managed configuration database is a unique1

feature of Windows. UNIX variants usually manage configurations in a per application

basis. Each application keeps its own configuration file (typically a text file in /etc/ or

the home directory). Our WinResMon (Section 3.2) monitors the registry related system

calls. It can monitor program accessing individual settings. If a text based configuration

file is used, this is much more difficult and may require data flow analysis. In this sense,

WinResMon benefits from this feature. In Section 5.2.4, we will use our LViz to study

the software behaviours of accessing configurations by visualizing the log generated by

WinResMon.

Windows has a different way in organizing the file system hierarchy. While UNIX

variants organize the file system in a single tree, Windows adopts the notion of drive

(or volume). Each drive contains a separate file system tree, thus all drives form a file

system forest. Historically, file and directory names are constrained by the 8.3 standard,

i.e. maximum eight letters name with three letters extension. Later versions of Windows

1There are other central configuration systems such as GConf for GNOME applications. However,
they are not as widely adopted as the registry in Windows.

2.2. SYSTEM MONITORING 17

allow longer name, but for backward compatibility, each long file name is automatically

assigned by kernel a 8.3 name, so that it can be accessed by legacy software. For example,

C:\Program Files is equipment to C:\PROGRA~1. This feature is often exploited to

circumvent security systems with file blacklist mechanisms. In the kernel, files are named

in a different way. For example, the user space pathname C:\foo.txt is equivalent

to the kernel space pathname \Device\HarddiskVolume1\foo.txt, depending on the

underlying hard disk and partition layout. Similar to most UNIX flavoured file systems,

symbolic and hard links are supported by the Windows NT file system (NTFS). All these

features make a challenging task to obtain unique identifiers to files. This problem is

answered in our binary authentication work (Section 6.1).

2.2 System Monitoring

Related work of monitoring can be classified in a number of ways. From the enforcement

point of view, we have discretionary and mandatory monitoring. Discretionary monitor-

ing requires that the monitored software actively report to its monitor. The traditional

UNIX syslog is an example of discretionary monitoring. A log entry is generated when

the monitored software calls syslog(3). The naive printf() debugging technique is also

discretionary monitoring. In contrast, mandatory monitoring systems enforce that logs

entries are always generated when certain actions are performed by the monitored soft-

ware. The ptrace(2) interface and Solaris Basic Security Module (BSM) Auditing are

examples of mandatory monitoring. Mandatory monitoring is more suited for security

purpose because of its enforcement. Discretionary monitoring may give more friendly

output since the monitored software knows which pieces are more important.

A correlated classification is transparent/opaque monitoring. In transparent moni-

toring, the monitored software does not need to be adapted and sometimes is not aware

of being monitored; whereas in opaque monitoring, the monitored software need to be

either rewritten and recompiled or transformed manually. The two types of classification

are usually correlated because transparent monitoring is usually mandatory as well, and

opaque monitoring is usually discretionary.

From execution environment point of view, the monitor can be executed in a number

of environments.

• The monitor can be executed in the process (i.e. same address space) of the mon-

itored software. The naive printf() debugging technique belong to this category.

A common technique to monitor API or DLL function calls is to rewrite the to-be-

monitored function with a wrapper function which does the logging and then calls

the actual function. This type of monitor is usually used for debugging purpose,

and not for security, because the monitoring can be circumvented.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

System Enforce Transp. Level Alter OS Sec.

printf disc. opaque user log all 2.2.1

syslog disc. opaque user log POSIX 2.2.2

ptrace(2) mand. transp. kernel alter POSIX 2.2.3

/proc mand. transp. kernel alter Solaris 2.2.3

Linux audit disc. opaque kernel log Linux 2.2.4

FileMon
mand. transp. kernel log Windows 2.2.5RegMon

ProcMon

DTrace both opaque kernel log Solaris 2.2.6

DProbes
both opaque kernel log Solaris 2.2.7

SystemTap

Pin
mand. transp. instru. alter Lin, Win. 2.2.8

DynamoRIO

valgrind mand. transp. instru. alter Linux 2.2.8

Table 2.1: Classification of Monitoring Systems. “Sec.”, “transp.”, “disc.”, “mand.”,
“instru.”, “Lin.” and “Win.” are abbreviations of Section, transparent, discretionary,
mandatory, instrumentation, Linux and Windows respectively.

• In order to prevent circumvention, the monitor can be executed in the kernel (as-

suming the kernel is authentic). The strace utility uses the kernel ptrace(2)

interface to monitor system calls. Most of the related work that we are going to

introduce are kernel based.

• In the same vein, to securely monitor kernel events, the monitor should execute in

a lower level than the kernel, i.e. the hypervisor. Examples are the virtual machine

monitors. The recent Intel and AMD processors support hardware virtualization

features which can virtualize and monitor an unmodified kernel with almost no

performance penalty.

• The instrumentation technique is used to get instruction level monitoring such as

memory load, memory store, and branch events. Section 2.2.8 will discuss this in

detail.

• To get lower level information such as TLB or cache miss rate, hardware monitoring

need to be used.

Another classification is whether the monitoring system is able to alter the execution

of the monitored software. Logging systems such as syslog only record the events, but

do not alter the execution (except perhaps performance overhead). ptrace(2), on the

other hand, can be used to filter system calls or change system call’s arguments.

Before discussing each related work in detail, Table 2.1 lists the classification of them.

2.2. SYSTEM MONITORING 19

2.2.1 printf, Casual Debugging

Directly printing debugging message to console is probably the mostly widely used de-

bugging technique for simple programs, because of its portability and simplicity. In C,

printf is most commonly used for this purpose. Other languages and environments have

similar representatives such as System.out.println in Java and printk in Linux kernel.

However, this technique is not used in more sophisticated software. Despite the reason

that the debugging message can mess up with the actual output, printf lacks the sep-

aration between the monitor and the monitored program. This means that monitoring

output can be modified or removed by the monitored program, thus a bug in the program

can mess up the monitoring output.

2.2.2 Traditional Syslog

Seeing the problem of printf, people developed the syslog framework, which is the most

widely supported logging framework for UNIX-like systems. syslog separates log gener-

ation program and log recording program. It works by letting the log generation program

call the syslog(3) function, which talks to a dedicated daemon syslogd, which receives

and records the log. Kernel messages generated by printk are send to syslogd through

the middle man klogd in a similar way.

Although syslog protect the log from log generator, we consider it as discretionary

monitoring because it requires the monitored program (log generator) to actively call

syslog(3) in order to generate a log message. More specifically, if the monitored program

is compromised, it cannot modify already logged messages, but can suppress or spoof new

log messages.

2.2.3 ptrace and /proc

System call, the interface between user and kernel space, is often monitored for various

purpose. The UNIX ptrace and Solaris /proc [37] are commonly used for system call

monitoring because of their portability. To use ptrace, the monitor calls the ptrace(2)

system call and specifies the process ID of another process to be monitored and waits.

When the monitored process makes a system call, the monitoring process is waked up. The

monitoring process can then check or modify system call parameters or return values. The

Solaris /proc works in a similar way except that instead of calling ptrace(2), it performs

IO controls on the /proc/[pid]/ctl file. A subset system calls can be specified in /proc,

while ptrace must monitor all system calls.

ptrace and /proc are mandatory monitoring systems because the monitored program

cannot evade the monitoring as long as it make the system call. They are transparent

monitoring systems because in general, the monitored program is not aware of the mon-

itoring. Because of this, systems like Janus [93] or Alcatraz [53] use them to do system

20 CHAPTER 2. BACKGROUND AND RELATED WORK

call monitoring. However, this usage is problematic because it is not meant to be a secure

monitoring mechanism, e.g. ptrace was meant to support debuggers. In the Solaris man-

ual pages, ptrace is described as being “unique and arcane”. These kinds of problems and

common pitfalls with user-level system call interposition are discussed by Garfinkel [40],

such as: (i) race conditions between time of check and time of use (TOCTOU), i.e. a

buffer can be modified by another thread; (ii) non-inheritance of tracing, i.e. special

strace hacks in Linux; and (iii) not transparent with respect to setuid/setgid executa-

bles and signals, i.e. ptrace and /proc disable tracing on setuid/setgid executables. In

both ptrace and /proc, when a traced process calls setuid(2), the call will fail because

the tracing process would have insufficient privileges to the setuid process. Because of

their subtleties and intrinsic difficulties, ptrace and /proc are not suitable for general

purpose user-level monitoring although they may be useful in specific situations.

The other serious drawback of ptrace or /proc is that the overhead is considerable,

incurring at least two context switches per traced system call. Our micro benchmarks in

Section 3.1.6 show that this can lead to an order of magnitude slowdown on system call

intensive programs.

2.2.4 Linux Auditing System

The Linux auditing system (also known as lightweight auditing framework) is used to

monitor kernel events such as system calls and file system operations. The system consists

of the kernel space event record producer and the user space event record consumer (i.e.

the audit daemon auditd). At compile time, kernel developers insert audit code into the

kernel. At run time, system administrators control which event and what information to

record using the auditctl tool. All event records are transmitted through netlink sockets

to auditd. The event records are stored in a custom database which can be queried using

the ausearch and aureport tools. The auditing system is incorporated into Linux kernel

since version 2.6.4, and is available in almost all Linux distributions.

The auditing system is a discretionary monitoring system to the kernel because mon-

itoring code is manually inserted by the kernel developer and can be circumvented by

kernel code. However, when used for monitoring system calls of a user program, it can

be considered as mandatory if the kernel is assumed to be authentic. The system only

performs logging and does not alter the execution, thus buffering of event records can be

used to reduce context switches and improve performance.

2.2.5 Windows Sysinternals

FileMon [4] and RegMon [7] are file and registry monitoring tools for Windows, respec-

tively. They monitor operations taking place on the registry or specified file system. A

graphical interface is used to filter and display monitored events in real time. A later

2.2. SYSTEM MONITORING 21

tool named Process Monitor combines features from both tools and adds thread/process

related event monitoring and event filtering. The tools are closed source, so we study

them by monitoring them using our monitoring tool WinResMon (in Section 3.2). We

found that they work by intercepting system calls and making use of the kernel file system

filter API. Upon execution, a kernel driver is created in a temporary directory. The driver

is then loaded into the kernel and start to intercept the kernel operations. A named pipe

is used to transmit event records.

The monitoring tools are standalone GUI programs, which do not provide API to be

used by other software. We have observed that when events are rapidly generated, all

their tools can drop events. The details are covered in in Section 3.2.6.

2.2.6 Solaris DTrace

DTrace [26] is a dynamic tracing framework created on Solaris 10, for troubleshooting

kernel and application problems on production systems. Software developers insert probes

into the code of the software (kernel or user space program) at compile time. System

administrators or users monitor the execution by writing a script in the D language and

associating them with the probes, so that when the software executes over the probes,

the script is executed. There are about 48,000 probes2 in almost all aspects of the kernel.

The D script runs in the kernel and thus reduces the context switch. For example, to

count the number of write(2) system call of a process, an integer variable is declared

and a script which increments it is associated with the syscall::write:entry probe.

Only one context switch is needed to output the final count. To do this using ptrace(2),

a pair of context switch is needed for each write(2) system call.

Having monitoring code dynamically (That is where the D comes from) generated at

runtime and executed in kernel is the key feature of DTrace. This poses a security threat

as well however. To prevent D script from running into infinite loops, loops (or backward

branch in general) and user defined functions are not supported.

2.2.7 SystemTap

SystemTap [73] is developed to bring the idea of dynamic instrumentation in DTrace into

Linux and possibly other UNIX variants. Before we describe SystemTap, let us first look

at its predecessor DProbes [63, 22] and the underlying KProbes [58], which was introduced

earlier than DTrace.

KProbes is a Linux kernel framework which allows dynamic instrumentation of kernel

code. The KProbes API consists of two components, the probe registration functions and

2Since both Solaris kernel and DTrace are in active development, our information is based on its current
status in June 2011. The number of probes is counted by executing “dtrace -l | wc -l” in Solaris 10u9
x86.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

the probe activation functions. The probe registration functions mark points in the code

that can be instrumented. What it actually does is inserting a few nop instructions. The

probe activation functions associate registered code points with probe handlers, which are

called when the code points are executed. What it actually does is rewriting the nop in-

structions with a jump instruction targeting to the handler. There are some optimization

techniques, such as return address rewriting, but the basic idea is the same.

KProbes is not convenient to use because its API are solely in kernel, thus only kernel

developers can use it. DProbes is developed to allow user space program to make use of

the probe activation functions. The way DProbes works is similar to DTrace, where a

compiler is used to compile a script which defines the probe handler, and the compiler

feeds the compiled script to the kernel to execute. What is different is that instead of

compiling into intermediate byte code as in DTrace, DProbes compiles directly into native

machine code which is feed to KProbes’ activation functions. The DProbes language is

rather simple comparing to DTrace. It is written in an assembly-like language, based on

the Reverse Polish Notation. Logic, arithmetic and control flow operations are supported.

To prevent infinite loops, the number of branches is capped.

SystemTap also uses KProbes as the underlying kernel mechanism. It uses a more ad-

vanced C-like language, where functions are supported and a collection of library functions

are provided.

2.2.8 Binary Instrumentation

The above mentioned monitoring systems are targeting at specific code points, which are

usually software specific. Sometimes we need to monitor the instruction level behaviour.

For example, in order to study the control flow of a program, we need to monitor all

branching instructions. We consider there to be three ways to achieve this. The first

way is to emulate the CPU, i.e. implement the CPU in software. The advantage is that

cross architecture emulation is possible, thus it is quite portable. However, emulation

is very slow. The second way is static binary instrumentation. The monitored binary

is translated to add the monitoring code. The resulting binary is executed natively in

the CPU, thus is much faster than emulation. The problem is that static disassembly

in not reliable, especially in the case of variable opcode size and dynamic generated

code. The third way is dynamic binary instrumentation. Each basic block (contiguous

instructions without branches in the middle) is translated just before execution. This is

also known as just-in-time translation. There are a number of dynamic instrumentation

systems available, such as Pin [54], DynamoRIO [25] and Valgrind [68]. In our module

dependency visualization work (Sec 5.1), we monitor all function calls in a program using

Pin.

Chapter 3

Monitoring Infrastructure

System monitoring is an important task on ensuring a correct running system. It can be

used to confirm or verify the correctness of a running system; diagnose system failure;

identify performance problems; and find security problems. As system grows larger and

more complicated, these tasks become more challenging.

A general monitoring infrastructure needs to be correct, secure, transparent, flexible,

and efficient. By correct, the monitored events must be sound and complete, i.e. no events

should be missed, duplicated or invented. In some situation, events can be generated

faster than the monitor can handle. In this case, a choice must be made to either discard

the events or suspend the monitored program. When we monitor for security purpose,

the latter is preferred. However, this could affect the monitored software and sometimes

may even cause dead lock. The Solaris DTrace (Section 2.2.6) adopts the former for

the reliability and performance of the monitored software. We believe that a monitoring

system should let the user make the choice, because different scenarios may have different

trade-off.

The monitoring infrastructure needs to be secure in both design and implementation.

For example, it should not leak confidential information to low privilege users. It should

be carefully implemented so that a malicious monitored software would not exploit the

infrastructure.

There are many definitions on transparency. An early definition can be traced back

to the Popek and Goldberg virtualization requirements [71] on equivalence and efficiency

of virtual machines. Here, we give two definitions, a weaker one and a stronger one.

(i) The monitored software does not need to be adapted (e.g. rewritten or recompiled)

for the monitoring. In other words, the monitoring should work even if the author of

the monitored software is not aware of it. syslog requires the monitored program to

call the syslog(3) function, thus syslog is not transparent in this definition. Monitors

such as DTrace and DProbes require the monitored software to call their probe API.

When they are used to monitor the kernel, they are not considered transparent, because

23

24 CHAPTER 3. MONITORING INFRASTRUCTURE

the kernel has to be rewritten to call their probe API. However, when they are used to

monitor the system calls made by a program, they are considered transparent, because

the program does not need to be rewritten. In this case, DTrace and the kernel as a

whole is considered as the monitor. (ii) The monitoring is undetectable by the monitored

software. The monitor may change the execution environment, which can be detected.

For example, some system call monitors are implemented by patching the user space

dispatching table. They can be detected by examining the table. Other monitors can be

detected by timing analysis. These monitors are not transparent under this definition.

We believe that the former definition is enough for general purpose monitoring. The

latter is too costly, because it either incurs large performance overhead if implemented in

software; or requires special hardware. Moreover, study [75, 41] has shown that existing

software and hardware virtualizers can be easily detected.

By flexible, the infrastructure should be sufficiently general to handle different prob-

lems. For example, an API can be used to extend the monitored events for future software.

A filter language can be used to pre-process events.

By efficient, the infrastructure should not incur too much overhead on the monitored

software. An observer is part of the system and changes the system, similarly, a monitor

can bring side effects to the monitored program. Too much overhead not only slows the

system down, but may also make it incorrect.

In this chapter, we start by giving some background of monitoring techniques and

show some related work. We then propose two general monitoring infrastructures. The

LBox addresses the problem of user-level monitoring. Most traditional monitoring in-

frastructures are super-user based, mainly because they are system-wide. With user-level

monitoring, LBox can be used by all users in a multi-user system, moreover, LBox allows

monitor to be cascading. However, this poses several new challenges. Allowing all users

to do monitoring changes the adversary model because users, unlike administrators, can

be untrusted. If not carefully designed, the monitoring infrastructure can be exploited by

malicious users to obtain confidential information such as other users’ password. Cascade

monitoring allows monitors to be monitored by other monitors. The monitoring infras-

tructure has to prevent infinite message loop-back, which can be caused by, for example,

two monitors generating events for each other.

Our second monitoring infrastructures, WinResMon addresses the problem of exten-

sible resource-based monitoring in Windows. In open source operating systems such as

Linux, both the internal design and system call API are understandable by the developer,

thus system based monitoring makes sense. However, as we discussed in Section 2.1, in

Windows, the native calls are not documented and continuously changing. Though it is

possible to monitor native calls, the output would not be generally understandable. Win-

ResMon addresses the problem from a resource usage point of view. It monitors resource

usage of all processes in the system. Its main use is to inspect resource access, software

25

dependency and maintaince issues. As an infrastructure, it can be used to build tools for

custom queries for system administrators. WinResMon differs from LBox as it provides

whole system monitoring, because the software maintenance problems usually require

global view of the system, and some problems require always-on monitoring for a long

period. LBox is designed to study a single process or a group of processes launched for a

single task, thus the monitoring can be usually isolated to the related processes and the

particular run. Our benchmarking shows that WinResMon is reliable and is comparable

to other popular tools.

26 CHAPTER 3. MONITORING INFRASTRUCTURE

3.1 LBox

Logging and auditing are important operating system facilities used to help monitor

correct system operation and to detect potential security problems. In Unix systems,

logging is traditionally application based. The application itself controls what is being

logged through the system logging mechanism syslog (Section 2.2.2), e.g. security audit

log messages generated by login, su, etc. The drawback of application logging is since

it is under the control of an application which may be compromised or malicious, no

security guarantees are possible. More secure versions of Unix have finer grained auditing

mechanisms to satisfy the Trusted Computer System Evaluation Criteria (TCSEC) or

Common Criteria (CC) security requirements. The Solaris Basic Security Module [69] for

example defines kernel auditing events which can serve to log certain system calls. Such

auditing is typically system-wide on all processes and requires administrator privileges.

Traditional auditing mechanisms are designed mainly for system audit trail purposes.

As such, they are not sufficient for the needs of more demanding security monitoring

applications such as intrusion detection systems (IDS), determining correct application

behavior, detecting improper system usage, etc. In this section, we present an approach

to auditing and monitoring which is sufficiently flexible for a variety of applications. We

provide a kernel extension which enables easy programming of user level (as opposed to

kernel level) monitors for observing the effects of system calls made by specified pro-

cesses of interest. Our philosophy is to separate mechanism from policy. A kernel-level

mechanism provides transparent, secure and efficient monitoring, while the core logic

and functionality is encapsulated in a user-level monitor. Having a user-space monitor

means that we do not have to worry about code safety issues unlike a kernel-level one.

As user-level monitors do not have to be privileged, ordinary users can create/run their

own monitoring tools. We show that general purpose user-level monitors are easy to write

without requiring any knowledge of kernel programming. In the remainder of this section,

we will refer to monitoring as encompassing the concept of auditing and logging.

We provide a number of security guarantees: (i) the selected processes (which can

include their children) cannot circumvent monitoring, we call this mandatory monitor-

ing; (ii) none of the operations/events of interest from the set of monitored processes are

missed, we call this reliable monitoring; and (iii) the monitor cannot escalate its privi-

leges, only exactly the operations/events of processes at the same privilege level can be

monitored. The mandatory and reliable properties are necessary to ensure that a monitor

can be used for security purposes. The last property is important since the user-level

monitors can be unprivileged. Finally we also require that the monitor be transparent

to the monitored processes — thus the act of being monitored has no side effects to

the monitorees. We remark that traditional Unix mechanisms such as ptrace and proc

(Section 2.2.3) do not provide these guarantees.

3.1. LBOX 27

A key objective is that the monitoring mechanism be efficient and scalable. By effi-

ciency, we mean that fine-grained monitoring is possible with low overheads. Scalability

means that the cost of monitoring should be dependent on how much is being monitored

and the amount of information desired. The cost should be controllable by the monitor

so that overhead is commensurate with need. In the end, we want to be able to have sev-

eral fine-grained root-level and unprivileged monitors to be permanently running without

paying too high a price. On one end of the spectrum, we allow for global monitors which

log all interesting events across all processes to disk like an audit log; and on the other

end, the monitor might only be concerned with writes to particular system files from

particular processes and then perform sophisticated analysis.

Consider the following motivating example. Suppose we want to monitor whether a

web server has been attacked, perhaps as part of an IDS. The web server logs cannot

be used since either the server or the logs could be compromised. A traditional auditing

facility like a disk based log would have a number of problems. Firstly, there may be

confidentiality issues in giving the system log to the IDS, the IDS may gain access to

confidential information (assuming it isn’t running as root). Another question is what

happens if the disk log causes the filesystem to run out of space? Add a network IDS to

this scenario will further strain the audit log! One could use ptrace to monitor the web

server but this can have a significant performance penalty and may not ensure mandatory

or reliable auditing.

Our prototype implementation shows that it is possible to to get all these desirable

features in a user-space monitor without requiring special privileges. Furthermore, we

demonstrate an efficient implementation which has low overhead even though the monitors

are in user-space.

3.1.1 The Monitor Framework

A monitor is a user-space process which audits the behavior of other processes. Monitors

are described by two specifications: (a) a process specification defining which processes

to monitor; and (b) event specifications which define what operations to monitor from

those processes. In what follows, we describe the design of our monitoring framework and

portions of the API. The API is actually a user library which provides a convenient in-

terface to the kernel monitoring interface. Instead of documenting the underlying details,

we illustrate by examples.

3.1.1.1 The Monitor Process Specification

An arbitrary collection of processes, not necessarily related by parent-child relationships

can be designated for mandatory monitoring. To allow for flexibility and dynamic process

creation (including children), we use an API for constructing boolean expression in a

28 CHAPTER 3. MONITORING INFRASTRUCTURE

functional lisp-like style which allows easy creation in C. The boolean expression is built

from the following predicates using the following usual boolean operators, AND, OR and

NOT:

1. true/false: For example, a global specification to monitor all processes is simply the

boolean expression true.

2. uid/euid/suid/fsuid (user id): These user identities are used to identify the owner

of a process in different contexts. For example, the fsuid is used during file system

operations. These predicates are true if and only if the user id of the process is same

as the user id specified. Similar predicates are also used for group ids.

3. pid (process id): This predicate is true if and only if the pid of the process is same

as the pid specified. This is used to include or exclude existing processes.

4. childof: This predicate is true if and only if the process specified by the pid is

an ancestor of the current process. Note that we do not distinguish direct child

processes and grandchild processes - so childof can specify a subtree in the process

hierarchy. This can be used to include or exclude both existing processes and

processes which are not yet created.

5. executable: This predicate is true when the executable of the process is the same as

the given pathname. This can be used to include or exclude both existing processes

and processes which are not yet created.

An example of the API (see also Section 3.1.1.4) is to monitor all processes owned by the

user Bob except for process 1468 and its child processes.

proc_spec = lbox_AND(

lbox_UID("bob"),

lbox_NOT(

lbox_CHILDOF(1468)));

Thus, the monitor can be targeted to observe only the activities of particular processes

of interest, ignoring other processes. This helps to reduce monitoring overhead.

3.1.1.2 The Event Specification List

An event specification defines which behaviors of the monitored processes is of interest

to the monitor. Suppose a monitor event expression is S and event e happens. Then

S is triggered when e is an object which matches S and the operation is one which is

compatible with S. The notion of matching and compatibility is specific to the type of

object.

3.1. LBOX 29

A monitor defines a list of all the events of interest. The event specification also defines

the appropriate information to return when an event is triggered. One monitor might

specify that a file event should consist of the inode, canonical pathname and operation

type. Another monitor might only need the operation type, perhaps because the file is

unambiguous and known to the monitor. This helps achieve scalability. In the previous

example, it avoids the need for constructing a canonical pathname and reduces the event

size.

Our events are specified on system resources or objects together with their associated

operations. We feel this is more declarative than a system call approach and makes it

easier to specify the events of interest. We will focus on file objects and briefly mention

other important system objects. Common information which can be specified for all types

of events are:

1. time: This gives the wall clock time of the event.

2. pid: This is the process which performs the operation.

3. type: The operation type which is specific to the object.

All event specifications can specify whether the event is asynchronous and can be

buffered up, or if it is synchronous and needs to be delivered directly to the monitor.

Synchronous events also flush any earlier events which have been buffered. This is anal-

ogous to the PUSH flag in the TCP packet and allows timely delivery of important events

to the monitor.

An event can also specify that reliable monitoring is not needed — this means that the

kernel can choose to drop the event if the event buffer is currently full. This would mean

that the monitored processes do not have to be suspended and thus higher throughput is

obtained at the cost of losing some events.

File Objects: A file event specification consists of:

1. file pathname: The pathname is translated into inode number and device number

pair. For efficiency, this pair is used internally by the kernel as the identifier of the

file.

2. inclusion flag: For directories, we can specify whether we are monitoring the direc-

tory itself, or all files in its subdirectories. For example, one can specify that all

files under /etc are included by using the SELF+SUBDIRECTORIES flag. Alter-

natively, one can specify that only the /etc directory itself is included by using the

SELF flag only.

Another flag, IGNORE, means that we are not monitoring this directory and its

subdirectories. Thus IGNORE can be used for removing files in the existing file

30 CHAPTER 3. MONITORING INFRASTRUCTURE

definition. This is useful because sometimes we want to audit file access outside

some directory. For example, we are interested in the file access outside /var/www

by the web server process. We can combine two file event specifications to achieve

this.

(a) (/, SELF|SUBDIRECTORIES, R|W|X)

(b) (/var/www, IGNORE, R|W|X)

The way multiple file specifications are treated is that when more than one file event

specifications matches the file access, the more specific event – the deeper file event

specification takes precedence.

3. operations: It specifies which operations (read/write/execute) we are interested in.

For example, with a read operation, a file read access event is generated when a

process reads from the file but not for write operations. Note that the execute

operation differs from the executable predicate in the process specification as the

latter is used for process selection.

Operations on the file meta-data such as permissions and access times can be mon-

itored. The same holds for directory operations such as file creation, deletion or

renaming.

When a file is removed (i.e. its reference count becomes 0), all the corresponding file

event specification are also removed. This implies that the number of event specifications

may decrease at run time. For example, suppose initially a monitor has 4 file event

specifications, later there may be only 2 file event specifications. Removing the file event

specification is necessary because an inode number is reusable (like a pid). When a

process A creates a monitor with a read-only specification on the file /tmp/a. Later,

another process B deletes file /tmp/a and creates another file /tmp/b which may have

the same inode number of previous /tmp/a. If the corresponding file event specification

is not removed, the monitor would get an incorrect event.

File events can specify the following information to be returned:

1. inode number and device number: This uniquely identifies a file in Unix systems.

2. operation: This is the type of operation. For example, read, execute or delete.

3. data: the data which is read or written — which allows the monitoring of actual

I/O.

4. canonical pathname: A file can have many possible (absolute) pathnames because of

hard links, symbolic links, the “..” component and different mount points. We thus

return a canonical pathname not containing symbolic links with the same semantics

as realpath(3).

3.1. LBOX 31

Socket Objects: Socket specifications allow the monitoring of network operations and

interprocess communication. An address specification of IP address and port applies for

TCP and UDP sockets with ranges and masks. Special operations specific to sockets

apply such as listen, accept, etc. The return information includes also the file descriptor

and address.

The socket event specification specifies whether the process can use interprocess com-

munication. It can take the following parameters.

1. network family: This can be tcp and udp. Note that Unix socket is not included

here because the address space of Unix socket is quite different from IP address.

2. operation type: This can be create, connect, listen, accept, send and recv.

(a) create: Socket creation event.

(b) connect: Client socket connection event.

(c) listen: Server socket listen event. Note that local address range can be spec-

ified, thus this operation type monitors both bind(2) and listen(2) system

calls.

(d) accept: Server socket accept(2) event. Remote address can be retrieved in

the event.

(e) send and recv: Can be used for monitoring network traffic.

3. address range: This can be an address range of ipv4 ip address + port number. This

only applies to tcp and udp socket and the connect, listen, and accept operation.

In return, besides the common information, the following information can be included.

Note that most of them are specific to operations.

1. file descriptor can be used by the monitor to identify sockets.

2. address is specific to connect(), bind() and accept.

Process Objects: The process event specification defines what kinds of operations on

processes by the monitored processes should be audited. This includes process creation,

signals, setuid operations, prctl. The return information includes the target process id

and signal number for signal operations.

This type of event specifies whether a process may signal other processes or affect

process. Operations include System V IPCs, prctl, ptrace, setuid and fork. The process

policy can take the following parameters.

1. operation type: E.g. fork, signal or prctl.

32 CHAPTER 3. MONITORING INFRASTRUCTURE

2. target process: It applies to signal, prctl and ptrace, because these operations have

a target process. However, the fork and setuid operations do not have a target

process. This parameter is essentially a signed integer.

(a) zero means all processes.

(b) positive number n means a specific process with pid = n

(c) negative number −n means all child processes of a process with pid = n

In return, besides the common information, the following information can be included.

Note that most of them are specific to operations.

1. target pid: Note that, for fork(), this is the pid of newly created process.

2. signal: It is specific to kill().

3.1.1.3 The Monitor Operational Model

In our framework, an auditing monitor is simply a user-level process which is the user-level

monitor. It can be thought of as a logging box in an analogy to a sandbox, hence we ab-

breviate this as lbox. The lbox create(proc spec, event spec, n) is used to designate

the current process to be the lbox monitor which will receive the events generated from

the processes defined by proc spec which trigger the set of events defined in event spec.

One caveat is that we disallow self-referential monitoring (see Section 3.1.2.3).

In our framework, asynchronous events are stored in a kernel buffer of size n defined

at monitor creation time. Asynchronous events can only be received by the monitor when

the buffer becomes full — this can be thought of as flushing the buffered events. To

ensure mandatory monitoring which guarantees that no events are lost, when the monitor

buffer is full, the process generating the event is blocked until the monitor has emptied

the buffer. Processes which are blocked because of the full buffer are also unblocked if the

lbox is deleted explicitly by the monitor, lbox delete(), and also implicitly when the

monitor terminates. Synchronous events also cause the buffer to be flushed. The monitor

can also choose to disable and then re-enable events from the event specification.

We provide a convenient API to read events one at a time, lbox next event() which

abstracts out the low level details. This is simply a library function (in an analogy to

stdio) which actually reads an event buffer up to size n which can contain one or more

events. lbox next event() behaves like a blocking read, it blocks till either the kernel

buffer has filled up and can now be read in one go or if it is flushed. A timeout can also

be specified. Thus, assuming the default of asynchronous events, there are only a small

number of context switches to the monitor with the monitor mostly sleeping until there

are sufficient number of events. However the use of synchronous and timeouts allows the

3.1. LBOX 33

monitor to have finer control and more timely event delivery but can mean more system

overhead.

The monitor API described in this section is actually a user-space library which uses

the monitoring kernel extension. Thus, this particular API is chosen to be which is

reasonably easy to write specifications in a declarative fashion in C. One could of course

build a different user-space library. Even nicer would be a scripting language to make

monitoring even easy, i.e. even a D-like scripting language.

3.1.1.4 An Extended Example

Figure 3.1 illustrates how a monitor is written in our system. For simplicity, we have used

C-like pseudo code to hide some details and have not given the complete program. Error

handling also has been omitted for the most part.

In part 1, two events are to be monitored. Any access to any files starting from the

current working directory including its subdirectories (the SUBDIRECTORIES flag is used

to mean this directory including any file with a path starting from here). We also monitor

whether bash is being executed.

Part 2 defines the process specification which determines which processes are to be

monitored by this monitor. Here we want to monitor process given by pid and all its

children but not if it happens to be the process inetd pid. Also monitor any processes

which happen to have an effective user id which is the same as the user name “apache”.

It should be obvious that this specification specifies some existing processes as well as

potential future processes which are to be monitored.

Part 3 creates a lbox with the process and event specifications. A buffer of size 4096

is specified. Part 4, just collects events for processing by the monitor. It returns when

there is one matching event and doesn’t use timeout.

3.1.2 Security and Monitor Interactions

We now turn to security considerations. Earlier we have looked at mandatory and reliable

(and non-reliable) auditing. There are two other important security components in our

framework.

3.1.2.1 Confidentiality Considerations

As we allow non-privileged users to run their own lbox monitors, it is important to ensure

system confidentiality. We do not allow a non-root user to monitor processes owned by

other users. A corollary of this constraint is that a non-root user u cannot monitor a

setuid (setgid) executable which is setuid (setgid) to user w as long as the effective user

(group) id w is different from u. The dual to this is that a monitor process belonging

34 CHAPTER 3. MONITORING INFRASTRUCTURE

/* open the /proc/lbox file descriptor */

lbox_open(); // implicitly used by library

/* PART 1: create events spec: current directory and exec.

Also need to specify the information to be retrieved. */

lbox_addevent_file(event_spec, ".", SELF|SUBDIRECTORIES,

F_R|F_W|F_X, I_INO|I_DEV|I_PID|I_ACC|I_PATH);

lbox_addevent_file(event_spec, "/bin/bash", SELF, F_X,

I_INO|I_DEV|I_PID|I_ACC|I_PATH);

/* PART 2: create a process specification */

pid = (get root pid of process tree from argv)

proc_spec =

lbox_OR(

lbox_AND(lbox_OR(lbox_PROC(pid), lbox_CHILDOF(pid)),

lbox_NOT(lbox_PROC(inetd_pid))),

lbox_PROC(lbox_EUIDNAME("apache"))

);

/* PART 3: now create the lbox */

lbox_create(proc_spec, event_spec, 4096);

/* PART 4: read and process events. */

for (;;) {

/* -1 is the timeout value which means to block forever */

event = lbox_next_event(-1);

switch (event->type) {

lbox_FILE_EVENT:

event_file = (struct lbox_event_file *)event;

printf("pid=%d, dev=%lu, ino=%lu, access=%d, path=%s\n",

event_file->pid, event_file->dev,

event_file->ino, event_file->access,

event_file->path);

}

}

Figure 3.1: A Simple Monitor

3.1. LBOX 35

to w can monitor such a process from user u when its effective userid is u. This allows

monitors to have separate privileges from the monitored processes.

In contrast, ptrace takes a different approach to maintaining security. Setuid and

setgid programs are not allowed to be traced by ptrace. Thus, ptrace cannot be used

for monitoring while our mechanism can still allow monitoring while maintaining confi-

dentiality.

Consider a process p with original userid u is being monitored in a lbox where the

monitor has userid u. Suppose p changes its effective userid to w, then confidentiality

prevents the events in p to be monitored. To ensure mandatory monitoring, once p (or

its children, if the lbox contains the children) returns its userid back to u, the monitor

can now receive monitored events.

3.1.2.2 The Lbox Policy Daemon

It may be the case that for non-root users, one would like to impose further restrictions

on monitoring. This might be to disallow certain kinds of events from being monitored

or certain processes from being monitors. It could limit monitor usage, e.g. a monitor

quota. Monitor creation policy can be policed by an lbox daemon which is simply another

user-space process. This is an extension of the same philosophy of user-level monitors but

now for the construction of arbitrarily complex monitor access policies.

When a process tries to create a lbox, the kernel passes the lbox specification to the

lbox daemon, and at the same time suspending the process. The lbox daemon then decides

whether or not to allow or deny the request. Furthermore, the lbox daemon is able to

modify the lbox specification. The suspended process can then be woken up, if the lbox

is successful, it now becomes a lbox monitor with possibly a modified specification. The

lbox daemon can also be turned off nor does it need to be present, in which case, a default

policy is applied.

3.1.2.3 Cascading Monitors

It may be the case that one of the processes being monitored is itself a monitor, we

call this cascaded monitors. Cascading auditing gives the maximum flexibility to create

collections of independent monitors as well as an ecology of monitors. For example, the

system administrator can have a global monitor to audit any processes (except itself)

which tries to execute /sbin/su. A user might run a monitor to log all writes from some

of his processes to a particular file.

A collection of monitors can be viewed as a directed acyclic graph (DAG) where the

edges indicate which the monitoring and monitoree relationship. Suppose that instead of

a DAG, we have a cycle, thus a circular monitoring chain. The self-referencing monitoring

will now lead to an ever increasing cascading chain of monitored events which will not

36 CHAPTER 3. MONITORING INFRASTRUCTURE

terminate. For example, suppose monitors A and B are watching each other, then event

a1 triggers monitor B which will generate event b1 for monitor A which will trigger yet

another event a2 and so on. Thus, we require as a system safety condition no self-

referential monitoring. It is interesting to note that DTrace does not prevent this, so

for example, a D program which traces all the write I/O will also monitor the DTrace

process itself. This appears to cause Solaris to freeze in the kernel.

Rather than disallowing the creation of a monitor which may lead to a cycle in the

monitor DAG, we instead remove the monitors which would otherwise create a cycle from

the process specification. This makes sense since a new monitor may not wish to care

about monitors in the system. Furthermore, it can be easier to write a process specification

which is a little looser than to write one which guarantees no cycles. For example, global

monitoring using the process specification, TRUE, should strictly also exclude the monitor

pid.

bash (14560)

bash (15343)

httpd (4010)

httpd (4011)

httpd (4012)

httpd (4013)

init (1)

lb-mon (14940) lb-mon (14941)

lb-mon (15349)

sshd (14012)

sshd:alice (15342)sshd:root (14120)

vim (15350)

(a) Parent-Child Process Tree

bash (14560)

bash (15343)

httpd (4010)

httpd (4011)

httpd (4012)

httpd (4013)

init (1)

lb-mon (14940)
lb-mon (14941)

lb-mon (15349)

sshd (14012)

sshd:alice (15342)

sshd:root (14120)

vim (15350)

(b) Monitor DAG

Figure 3.2: A Tree of Cascaded Monitors

The following example shows a snapshot of a system where a web server is running

and user Alice is using vim. Figure 3.2(a) shows the process tree induced by the parent-

child relationship while Figure 3.2(b) shows the monitor DAG induced by the monitoring

relationship. The following sequence describes the creation of the snapshot given in

3.1. LBOX 37

Figure 3.2:

1. The master web server process 4010 is created.

2. Process 4010 creates 3 worker processes: 4011, 4012, 4013.

3. The root user is logged in through ssh, creating shell(14560).

4. Root first creates a global monitor 14940 to audit file access on /etc/passwd for all

processes (except 14940).

5. Root then creates a monitor 14941 to audit the web server processes.

6. Alice logs in and a shell 15343 is created.

7. Alice creates a monitor 15349 to audit her vim(15350) editor because she want to

know which files are accessed by vim(15350).

Here, two monitors 15349 and 15340 are monitoring the vim(15350) process. Suppose

the vim (15350) process accesses the /etc/passwd file, two file events will be generated

to the two monitors, 15349 and 15340. If vim (15350) accesses another file, then only

monitor 15349 will receive the event.

3.1.3 Using Monitors

We now give some simple examples of using the framework. This examples are only meant

to exemplify the ease of creating a customized auditing monitor and are not meant to be

full blown applications.

3.1.3.1 Testing a possibly untrusted program

This example checks to see if a process is not stealing your PGP keys. The monitor

process first creates the lbox and then a child process which executes the program to be

audited.

proc_spec = lbox_CHILDOF(getpid());

lbox_addevent_file(event_spec,

"/home/alice/.gnupg/secring.gpg",

SELF, F_R, I_ALL);

// create the lbox

if (fork()) {

// do the event processing

} else execl(....);

3.1.3.2 Monitoring the web server

In this example, we want to see whether the web server is working correctly. More

precisely, we want to make sure it is only accessing files inside /var/www.

The process specification can be described as follows:

38 CHAPTER 3. MONITORING INFRASTRUCTURE

proc_spec = lbox_CHILDOF(apach_master_pid);

The event specification is an example of monitoring files outside some directory. We first

make all files to be monitored, then we make all files under /var/www not to be monitored.

Note that the order of the two specifications is not important.

lbox_add_event_file(&event_spec1, "/",

SELF|SUBDIRECTORIES, F_R|F_W, I_ALL);

lbox_add_event_file(&event_spec2,

"/var/www", IGNORE, F_R|F_W, I_ALL);

3.1.3.3 Global Monitoring

Sometimes we need to monitor all actions on a single process; and other times we need to

monitor a single action on all processes. In this example, we want to see if any process is

sending packets to the network 137.132.0.0/255.255.0.0. The process specification is

simply,

proc_spec = lbox_TRUE();

The event specification is the following network event,

lbox_net_connect_ipv4(&event_spec, "137.132.0.0/255.255.0.0");

3.1.3.4 Other Applications

LAFS [98] is a logging and auditing file system where accesses not conforming to a policy

are logged. The policy specification includes a time interval, userid specification, appli-

cation and operation type. A LAFS-like monitor could easily be written. Note that it is

harder to use dtrace to do this LAFS-style tracing because of its system call orientation.

Here we can make use of inheritance in the directory structure.

Finke [38] proposed a monitoring system, which reports when applications did not run

as they were supposed to, e.g. due to some failure. Again, it is easy to write a monitor

which can detect whether tasks ran as scheduled.

3.1.4 Implementation Issues

3.1.4.1 The Hooking Mechanism

We have implemented our prototype as a kernel module for Linux 2.6 kernel. There are

several ways of implementing the monitor mechanism:

1. ptrace() or /proc As discussed earlier, this has many problems and does not

support mandatory or reliable monitoring. A system-call based mechanism is also

not suitable for our object-based orientation.

3.1. LBOX 39

2. In-kernel system call interposition This can suffer from TOCTOU (time of

create time of use) problems. For example, if we are monitoring the write() system

call, a process can change the actual file which the file descriptor points to between

the time when the file descriptor is looked up and the actual file descriptor is used.

This would lead either to missing an event (unreliable) or reporting an incorrect

event (the wrong file). As before, it also does not suit our object-based orientation.

3. Linux Security Module (LSM) We currently use this approach in our prototype

which has a good match with kernel objects. Its also much simpler as LSM hooks

are mostly in the right places. It guarantees mandatory monitoring, and does not

suffer from TOCTOU. However, it does not cover every possible system calls. As

the present prototype focuses initially on events on files, this is sufficient but it does

mean that a full solution cannot be just a module.

3.1.4.2 Matching The File Specification

Matching file event specifications, requires the deeper matching file event specification to

take precedence. To achieve this, the algorithm for checking of a file access is as follows.

1. If the current file is marked SELF, report it (generate event), done.

2. If the current file is marked SUBDIRECTORIES, report it (generate event), done.

3. If the current file is marked IGNORE (neither SELF nor SUBDIRECTORIES),

ignore it, done.

4. If it is the root directory, ignore it, done.

5. Set parent directory as current file.

6. Goto 2.

Suppose we have the following two file event specifications from the previous example:

1. (/, SELF|SUBDIRECTORIES, R|W)

2. (/var/www, IGNORE, R|W)

For the file /var/www/a/b/c, the checking is stopped at /var/www at the third step. For

the file /etc/passwd, the checking is stopped at / at the second step.

To do the upward directory traversal, we make use of the dentry kernel structure.

The upward directory traversal is fast, because in Linux, during the path resolving phase,

all the parent dentry nodes are stored in the dcache.

40 CHAPTER 3. MONITORING INFRASTRUCTURE

3.1.4.3 Performance Tuning Methods

To reduce the overhead of of task switching caused by our auditing system, we introduce an

event buffer so that the monitored process can continue its execution even if it generates

a auditing event. Timeouts and events with a flushing property are used to allow the

monitor to get events even if the buffer is not full. In this sense, the monitor can choose

a trade-off between efficiency and timeliness.

When a system call takes place, we first check whether the process is being monitored.

This check only requires a few instructions. Thus there is very little impact on non-

monitored processes. For monitored processes, the monitor can also be found efficiently.

Thus there is very little impact on a process as long as the number of monitors of the

process is not too large.

3.1.5 Comparing to DTrace

There are some similarities with Solaris DTrace (Section 2.2.6), which was published at

about the same time as this work. Both systems aim to bring minimal side effects to

the monitored program in order to be used on production systems. Both systems have a

flexible in-kernel event filter mechanism. However, there are some key differences.

Firstly, although DTrace does integrate in privileges, it does not have the same security

concerns. DTrace has a all-or-nothing security configuration, i.e. a user is either able to

trace all processes and the kernel (thus obtaining confidential information), or not able

to use DTrace at all. This is because DTrace is designed for system administrators.

LBox is designed for all users in a multi-user environment, thus has to prevent one user’s

information from being monitored by another user.

Secondly, the DTrace implementation requires extensive changes to Solaris, in the

words of the developers, “it was a hell of a lot of work – Bryan Cantrill, Solaris Kernel

Development”. While it is difficult to have portable kernel enhancements, we feel our

approach should be less of a massive change to the kernel type solution and in this sense

is more lightweight and amenable to implementation in different UNIX variants.

Thirdly, as DTrace is meant to minimize impact, it does not provide reliable event

monitoring and can drop events. We believe that both reliable event monitoring and

minimal side effect are important. LBox gives the users the choice in a per-event basis

on this trade off.

Lastly, DTrace allows user supplied code written in the D language to be executed in

kernel. Although there is constrains on what are allowed, this increases the complexity

of the kernel thus poses security threats to the operating system. The sole purpose of

having monitoring code executing in the kernel is to reduce context switches and eliminate

information traffic between user space and kernel space thus improving efficiency. LBox

achieves this by having event buffer to reduce context switches; and flexible event filters

3.1. LBOX 41

to reduce number of events.

3.1.6 Experimental Evaluation

Our prototype Linux implementation makes use of LSM [102] and version 2.6.10 of the

kernel, and thus is convenient to install as it consists of loadable kernel modules. The

interface to the kernel is done through ioctl to a pseudo file system in /proc/lbox.

The lbox API library in Section 3.1.1 gives a more convenient interface that using ioctl

system calls. The PC used here is a Pentium IV 3.0GHz PC with 1G memory.

We want to demonstrate that the framework and prototype system leads to rather

efficient monitoring. Although our prototype is not yet fully optimized, the results do

show that the overheads of monitoring can be very low.

We first use a simple micro-benchmark which gives an indication of worst case over-

heads. The program performs 1000000 open(2) and close(2) calls with a monitor watching

for the file access. We compare the auditing framework in each of the following scenarios:

1. clean kernel: A clean stock kernel.

2. proc miss: The lbox module is loaded in the kernel but no monitors are present.

3. file miss 1/2: A monitor is monitoring the file open but on a different file specifi-

cation. Thus no event is generated. We compare two scenarios. File miss 1, uses a

directory specification without the SUBDIRECTORIES property, thus no directory

traversal is needed. File miss 2 has a file specification which is some non-matching

directory with the SUBDIRECTORIES set. This requires traversing up ancestor

directories up to the root.

4. 0 dir level: The monitor is monitoring a regular file. The benchmark is accessing

the same regular file.

5. 1/2 dir levels: The monitor is monitoring a directory which is 1 or 2 levels deep

containing the file which is being used. For example, the monitor uses the file

specification /1 with SUBDIRECTORIES set. The 2 dir level benchmark opens

the file /1/2/foo. This test investigates the time for directory traversal.

6. no buff: The file event is synchronous which means 1000000 context switches to the

monitor are needed. The benchmark process suspends until the monitor has read

the event

7. ptrace: The comparison is with strace which uses the traditional ptrace mechanism

in Linux.

The open micro-benchmark results are given in Table 3.1 with all times in seconds. The

average and standard deviation is given over 10 runs. As the timings are only measured

42 CHAPTER 3. MONITORING INFRASTRUCTURE

scenario real user sys

clean kernel 1.99± 0.01 0.21± 0.01 1.77± 0.02
proc miss 2.04± 0.02 0.21± 0.01 1.82± 0.03
file miss 1 2.17± 0.01 0.22± 0.01 1.95± 0.02
file miss 2 2.27± 0.01 0.22± 0.01 2.04± 0.02
1 dir level 2.29± 0.01 0.21± 0.01 2.03± 0.02
2 dir levels 2.52± 0.01 0.21± 0.01 2.23± 0.03
3 dir levels 2.56± 0.01 0.20± 0.02 2.31± 0.02
no buff 8.70± 0.04 0.99± 0.08 4.57± 0.16
ptrace 59.04± 0.15 12.90± 0.32 46.11± 0.39

Table 3.1: open(2) micro-benchmark on Linux. All times are in seconds.

with the Unix user/system and real-time mechanism, they are only approximate and are

meant to give an indication of the overheads of monitoring under the different scenarios.

The kernel inspection implementation (proc miss) has negligible overhead (∼ 2%)

over the clean kernel. The file miss 2 test has (∼ 14%) overhead, this is because that

the system needs to travel to the root directory to make sure the file is not monitored.

file miss 1 has a smaller overhead (∼ 9%) because directory traversal is not needed.

When monitoring is synchronous, so events are not buffered (no buff), overhead jumps

substantially to 337%. It is interesting to note that this is still much smaller than ptrace

which has 2866% overhead or about seven times slower than the no buffering case. Using

asynchronous events with buffering (0 dir level) drops the overhead to 15%.

One point of comparison with other systems on Linux would be with Systrace [74]. A

pure comparison is not valid since in our system any event which must be monitored is

eventually passed to the monitor. Systrace, on the other hand, does access control first

can choose between a kernel-level policy or the user-level policy daemon. The kernel-level

policy should entail less work for Systrace simply because the decision is handled only

within the kernel, while the user-level policy is more expensive simply due to the increased

number of context switches. The objectives of the two systems are also different. With

those caveats in mind, the Systrace open micro-benchmark shows a 6.25% overhead over

no monitoring. Our overhead for file miss 1 is a little more at 9%. This makes sense since

for auditing, an event has to cross in two directions: first inwards when it is recorded;

and later back to user-space when it is sent to the monitor. Our implementation is not

yet optimized and we expect also to be able to reduce the overheads further.

Our directory file specifications can be compared against the pathname normalization

of Systrace. The “0-2 dir levels” scenario shows that the overhead of an inherited file

specification is small, the initial overhead of checking a directory is reasonable at 26%

and then a rather small overhead for the next component. The Systrace results show that

each directory component in their specification adds about 1665% additional overhead

over the original open() system call. This is because of the filename normalization done

3.1. LBOX 43

in user-space which is significantly more expensive.

scenario real user sys

direct run 3.84± 0.01 1.04± 0.01 2.80± 0.01
truss 100.32± 0.85 10.12± 0.05 56.71± 0.80
DTrace 8.41± 0.02 1.08± 0.01 7.33± 0.01

Table 3.2: open(2) micro-benchmark on Solaris 10

Table 3.2 shows the test on Solaris for the same hardware with the same benchmark

program. While the baseline for Solaris is slower than Linux, it is reasonable to make

relative comparisons. Truss which uses the proc adds 2510% overhead to the open()

system call and DTrace is significantly more efficient with 119% overhead. The use of

proc allows only the open() system call to be traced rather than all system calls. Even

so, we see that the overhead is considerably higher than in Linux where ptrace traces

every system call. In the DTrace test1, we have allowed DTrace more advantage as the

D program does not return any information to user space, whereas in our system, all the

relevant open()’s are being returned to the user space monitor. The absolute running

time in the DTrace test is 3.67 times of that in our system. The overhead added to the

original system call in DTrace is 7.9 times of that in our system. This is slightly surprising

since DTrace uses dynamic instrumentation (which is hardware dependent) while we use

a simpler static instrumentation which is more expensive but portable. We suspect it is

partly a case of the Linux kernel having less overhead than Solaris.

setting real user sys

clean kernel 0.27± 0.01 0.01± 0.01 0.20± 0.01
monitored 0.28± 0.01 0.01± 0.01 0.20± 0.01

Table 3.3: connect(2) micro-benchmark

Since the open micro-benchmark reuses the same file over and over again, the open

itself becomes quite fast in Linux. We use another micro-benchmark on socket operations

to show the effect of a more expensive system call. The benchmark creates a TCP socket

and connects to a local port. This is repeated for 4000 times and the results are in

Table 3.3. We can see that in an expensive system call, the overhead is not noticeable.

The open micro-benchmark gives a measure of worst-case overhead since the file is

totally cached in memory and in that case, the Linux open code is heavily optimized. It

is also useful to look at applications (macro-benchmarks which do more than just system

calls) which may have moderate to moderately heavy system call usage. Obviously, there

is little point benchmarking CPU bound applications which only have low system call

use. In the macro-benchmarks, we also look at the cost of monitoring I/O (reading and

writing), this is meant to simulate a monitor which might want to examine precisely what

1The D program is “syscall::open:entry { @[execname]=count(); }”

44 CHAPTER 3. MONITORING INFRASTRUCTURE

web server (request/sec) make bash (sec) install Mozilla (sec)

Linux clean 8903.1± 21.8 34.3± 0.2 1.8± 0.1
lbox no I/O, file miss 8773.1± 19.4(1.5%) 34.4± 0.2(0.17%) 1.8± 0.0(0%)
lbox no I/O, file hit 8762.0± 25.6(1.6%) 34.4± 0.2(0.17%) 1.8± 0.0(0.56%)
lbox with I/O 8728.9± 18.4(2.0%) 34.4± 0.2(0.29%) 1.7± 0.1(3.9%)
strace no I/O 3577.6± 8.5(148.9%) 39.6± 0.1(15.3%) 2.2± 0.1(21.1%)
strace with I/O 1981.4± 6.9(349.3%) 100.7± 0.1(293.2%) 23.2± 0.1(1189.4%)

Solaris clean 6889.1± 42.6 43.8± 0.1 1.6± 0.1
DTrace no I/O 6776.2± 53.6(1.7%) 44.4± 0.1(1.4%) 1.6± 0.1(0%)
DTrace with I/O 6326.9± 52.4(8.9%) 44.5± 0.0(1.6%) 1.6± 0.0(0.6%)
truss no I/O 1382.0± 2.0(398.5%) 70.9± 0.0(61.8%) 7.7± 0.0(372.2%)
truss with I/O 1126.7± 4.4(511.5%) 74.6± 1.5(70.2%) 13.4± 0.13(724.7%)

Table 3.4: Macro-benchmarks

an application has done. We have chosen three application benchmarks which are realistic

applications

• apache web server: this is chosen because web server performance is important. For

apache, we measure the average number of requests served per second using the

apache ab benchmark and I/O monitoring is for the http requests (reading) and

http responses (writing).

• make bash: this builds the bash shell.

• install Mozilla: this installs Mozilla. The Linux and Solaris differ. The Linux one

has a custom install program while the Solaris version is simply untar. This means

the results are not comparable except in a relative to each operating system alone.

The last two benchmarks, bash and Mozilla, have also been chosen because these

applications have been used in Alcatraz [53]. For I/O monitoring, we have monitored all

the I/O from the application. The results given in Table 3.4. The results for strace and

truss are only meant to illustrate the additional overhead of I/O since both programs do

reprocess the data and thus do have additional overhead but serves to bound the cost of

ptrace and proc. We see that in all cases, lbox monitoring has very low overheads, below

2% without I/O and less than 4% with complete I/O monitoring of the applications. The

Mozilla install cannot be directly compared since the actual install is different. Even

though these are macro-benchmarks, overhead for ptrace without I/O is significant, at

least 15%. With I/O monitoring, the overhead shoots up. Alcatraz which uses ptrace

has rather high overheads for their system call interception, 43% for a make and 79% for

Mozilla. Their isolation overhead which is a measure of write I/O adds a further 20%.

Our overheads are much smaller (< 4%) but we don’t do isolation.

It is a little surprising that our user-level auditing framework can outperform DTrace

which is an in-kernel tracing mechanism. This is very encouraging and furthermore, we

believe we can still optimize our prototype.

3.1. LBOX 45

3.1.7 Conclusion

We show a user-level auditing framework suitable for general purpose auditing and security

monitoring. We achieve transparent auditing at a fine-grained level of applications while

providing guarantees on the security of the auditing process. We are careful to avoid

problems with privilege escalation and access to information beyond the user’s privileges.

Furthermore, we avoid problems associated with denial of service which can be caused by

self-referential monitoring or tracing.

As our monitors are user-level, the auditing is expressed in terms of operations on

operating system objects and resources. This makes it easy to write a custom monitor

since the semantics is close to that of user code rather than having to understand kernel

internals.

A user-level monitor is desirable given it is safer than an in-kernel one. The question

is whether a user-level monitor is sufficiently efficient. Our framework is designed so

that the cost of monitoring is commensurate with the amount of events and information

needed. Our experiments are very encouraging showing that the overhead is comparable

to in-kernel mechanisms such as DTrace.

Future work includes further system optimizations to make the framework even more

scalable and efficient. We would like to increase the expressivity of the in-kernel mecha-

nisms without incurring more cost and also avoiding executing monitor code in the kernel.

46 CHAPTER 3. MONITORING INFRASTRUCTURE

3.2 WinResMon

The tasks of software maintenance and configuration require a precise understanding of

system resources, the individual requirements of each piece of software, and interdepen-

dencies between every software program on the system. We use the term software main-

tenance to describe the system administration task of ensuring that software on a system

is configured and maintained correctly over time. Examples of software dependencies

include:

• File sharing: including dynamic libraries and external data storage.

• Sharing of software configurations: usually in the form of registry keys in Microsoft

Windows.

• Interprocess communication and synchronization.

Although software maintenance tasks might seem conceptually trivial, they can be

time consuming and difficult, especially in large or complex environments. System ad-

ministrators often rely on documentation and on-line information such as FAQs or forums,

but such information is often incomplete.

As discussed in Section 2.1.3, in various distributions of Linux, software dependency

issues are partly addressed by the use of a package manager. The Red Hat Package

Manager (RPM) [36], for example, records the currently installed packages and the files

required and provided by these packages in a centralized database. RPM checks depen-

dencies before removing a package to ensure that files required by other installed packages

are not removed. Similar checks are done to prevent installing a package which contains

files that conflicts with other existing packages.

In Microsoft Windows, however, software installation can be complex, and the exact

dependencies between different software programs might not be clear. The confusion is

further compounded by many implicit software interdependencies, e.g. registry keys which

are part of shared software configurations. As a result, it is difficult to know whether to

remove a file when uninstalling an application. File removal might lead to problems with

another piece software or might create security vulnerabilities.

When installing two or more programs that share files, one program may cease to

function correctly because the installation of the second blindly overwrote shared libraries

(DLL files). There is also the question of when to perform a major software upgrade.

System administrators may delay upgrading for fear of breaking existing software; yet

such a choice has its own risks.

We present WinResMon, a discovery and system debugging tool for determining a

program’s resource usage as well as the resource usage interactions between multiple

3.2. WINRESMON 47

programs. Our work focuses on Microsoft Windows NT-based operating systems (e.g.

Microsoft Windows XP, Microsoft Windows 2000, Microsoft Windows 2003).2

WinResMon differs from LBox as it provides whole system monitoring, because the

software maintenance problems usually require global view of the system, and some prob-

lems require always-on monitoring for a long period. LBox is designed to study a single

process or a group of processes launched for a single task, thus the monitoring can be

usually isolated to the related processes and the particular run.

3.2.1 Motivation and Applications

We believe that the key to solving the software maintenance problem is to understand the

life cycle of the system and programs therein. We also wish to empower ordinary users,

removing the requirement of knowing every minutiae of Microsoft Windows. Although

WinResMon is not tailored specially for system security, it can also be utilized as a security

auditing tool.

We designed WinResMon to act as both an infrastructure or framework and a system

utility. As a framework, it is extensible, and one can therefore add new functionality

and build customized tools. As a tool, it comes with pre-built modules to answer typical

questions about resource usage and dependencies.

When used as a debugger, WinResMon investigates the current system state, i.e.

which program uses which registry keys, and determines how the system has arrived at

that state. WinResMon accomplishes this by recording information about the evolution of

system software dependencies and resource usage over time. To solve general problems in

software maintenance, WinResMon monitors: files, the registry, and interprocess commu-

nication and synchronization. However, it is not feasible to continuously and permanently

record all changes to the system since the required space would be prohibitive. WinRes-

Mon employs a reasonable compromise by maintaining detailed usage records over the

current time period and a subset of information that can be maintained over the lifetime

of all software in the system.

We illustrate the software maintenance problem with some simple examples. One

attack vector for spyware is to register itself as a start-up program, thereby hiding itself

from the end user. Also consider a music player which may require some sound decoding

libraries. This application only functions correctly with certain versions of the libraries.

Thus, replacing a library can lead to software failure. Various pieces of software may also

conflict, e.g. two mail transfer agents (MTAs) usually do not co-exist.

Some common system administration questions and tasks which WinResMon can

assist with include:

2While an appropriate version of a tool similar to WinResMon could also be of use in UNIX, its value
is much greater in a Microsoft Windows environment.

48 CHAPTER 3. MONITORING INFRASTRUCTURE

1. Can we safely remove a particular DLL file?

Some applications provide shared libraries (DLL files) for use with other applica-

tions. When the system administrator uninstalls an application, she can also choose

to remove the DLLs. Removing a DLL can cause other programs which still use it

to malfunction. On the other hand, blindly retaining all DLLs will cause the system

to keep growing and may create security vulnerabilities. The system administrator

generally lacks adequate information to determine whether another program uses a

shared library. WinResMon can be used to record the utilization of each DLL so

that the system administrator can determine which programs use which DLLs.

2. Why does a program need administrator privilege to run?

Running programs with administrator privilege is discouraged because malware such

as viruses/spyware or poorly written applications can damage the system. However,

some programs may need to run as the administrator without an obvious reason.

WinResMon can detect whether a program needs administrator access. The idea

is to understand the reasons for elevated privileges and configure the system to

limit the use of privileges. If it finds applications that require certain administrator

privileges to function correctly, the system administrator can set up a policy that

restricts the administrator privileges to the needed resources (files, registry keys,

etc). We remark that this approach can be contrasted with confinement systems

such as Systrace [74] in Unix. WinResMon is an auditing tool, it does not confine

system calls, but provides useful input for system administrators to create policies

on resource access which can then be used to limit privileges.

3. Monitoring sensitive registry locations to detect spyware.

Managing the Microsoft Windows registry is difficult due to its complexity. Spyware

often takes advantage of this complexity to bury itself in the registry, making it

difficult for the user to remove it completely. Wang et al. [97] have listed the most

common entry points for spyware to enter a Windows NT system. The following

are some of the configuration settings WinResMon can monitor:

• Autostarts: monitor which programs load on startup.

• Internet explorer hooks: track hooks which define the default search page,

toolbars and browser helper objects (BHO), etc.

• Winlogon: look for applications that hook into system resources.

• Services: monitor services such as automatic startup services (e.g. task sched-

uler) or drivers which are installed as services.

• DLL injection: monitor DLL injection attacks (any application that uses user32.dll

can be hijacked by having a DLL injected into its process space).

3.2. WINRESMON 49

...

...
Trace

generator

Kernel
mode
driver

Query
API

Analyzer 1

Kernel
mode

User
mode

Archiver

User-defined Log Writer 1

User-defined Log Writer 2
User-Log

API

Analyzer 2

Logger

Log
Database

Figure 3.3: WinResMon overall system architecture

• File associations: monitor the registration of file extensions with applications.

For example, .DOC is registered to Microsoft Word.

3.2.2 System Design

The WinResMon system infrastructure shown in Figure 3.3 consists of the following com-

ponents: logger, archiver, query API, and user-log API. The logger generates resource-

access traces which are later used by the analyzer. The archiver performs log com-

paction/summarization of old traces. Query and user-log API provide the interface to

the trace database.

3.2.2.1 The Logger

The logger consists of a system call interceptor and a trace generator module. The system

call interceptor is an in-kernel driver which monitors system calls made by each process

and sends the monitored event information to the trace generator. The trace generator is

a user-space service (daemon) which collects event information sent from the system call

interceptor and generates resource access traces. Ideally, the logger is meant to run all

the time so as to record the entire life cycle of how resources are used by software.3

A log trace file consists of a list of records, each representing an access operation on

one of the following types of resource:

1. File: covering both directories and regular files

2. Registry

3. Process: mainly to record process creation

3One might only run the logger at selected times instead, but this means WinResMon could miss
critical information.

50 CHAPTER 3. MONITORING INFRASTRUCTURE

4. Synchronization objects: which records information on inter-process synchronization

mechanisms provided by Microsoft Windows (mutex, semaphore, event and waitable

timer)

5. IPC: including named pipes and mailslots.

In addition to these five basic resource types, WinResMon also captures system event

information such as: process termination, system boot and shutdown, user login and

logout. Moreover, it also provides a user-log API (described in Section 3.2.2.5) for users

or applications to insert user/application-defined milestone events. One potential usage of

custom events is to demarcate and distinguish the software installation and uninstallation

portions of the log.

A record entry contains common information and specific information relevant to that

record type. The common information consists of: record-type, start-time, end-time4,

process-id, thread-id user-id and the error-code (in the case of failure). We can optionally

record the user space stack trace, which is a list of function return addresses who directly or

indirectly make the system call. This stack trace feature is used in our trace visualization

(Section 5.2). The specific information recorded by different record types are:

1. File:

• absolute path of the file

• file operation: open, read, write, delete or move

• operation-specific information. For open: the access flags. For read and write:

the number of bytes read or written. For move: the new path.

2. Registry:

• absolute path of the registry key

• operation: open-key, query-value, set-value, or delete-key

• operation specific information. For open-key: the access flags. For query-value

and set-value: the type, size, and value of the registry key.

Due to the importance of the registry in software maintenance, WinResMon logs

the actual data changes made to the registry; whereas for file I/O, it is not practical

to record the data.

3. Process:

• absolute path of the executable corresponding to the newly created process

• command line arguments

4The timing is measured in CPU cycles, thus it is very accurate

3.2. WINRESMON 51

• process id of the newly created process.

4. Synchronization objects:

• type of the object: mutex, semaphore, event, or waitable-timer

• name of the object

• operation: create, open, or delete.

We are interested only in objects which have names in the system-wide namespace,

because anonymous and process-wide named objects will not interfere with other

programs, thus they are unrelated to software dependencies.

5. IPC:

• type of the IPC: named-pipe, or mailslot

• name of the IPC

• operation: create, open, delete, send, or receive.

WinResMon records the synchronization objects and IPC operations listed above

since they involve global (system-wide) namespace which could be used by different

programs to interact with each other. One can use WinResMon to uncover the

causes of the following problems:

(a) If process A has created a semaphore s, and process B, which is unaware of

the existence of A, is trying to create a semaphore with the same name s, B’s

operation will fail.

(b) If process A fails to run correctly and semaphore s is not created, then process

B, assuming the existence of A, will fail trying to use s.

6. System event:

• system event type: process-termination, boot, shutdown, user-login, or logout

• any event specific information: path of the executable of the process in the

case of process termination, user name in the case of user login/logout, etc.

7. User defined event:

• the path of the executable of the process generating the event

• a binary string describing the event.

Not all operations need to be logged into the database as some resources are not

significant to record, e.g. the temporary directory, C:\temp. A filter can therefore be used

in the logger to prevent logging resource access of no interest to the system administrator.

52 CHAPTER 3. MONITORING INFRASTRUCTURE

3.2.2.2 The Log database

The log database consists of a number of log files and one distinguished active log to which

the logger records current resource access activity. To maintain reasonable log file sizes,

WinResMon performs a “log switch” to create a new active log for recording subsequent

entries. The old log files are then subject to the log compaction/summarization process

by the archiver. Any of the following conditions can trigger a log switch:

• The size of the current log file reaches the specified Max log size.

• The number of entries in the current log file reaches Max log entries.

• The user manually initiates a log switch process.

3.2.2.3 Archiving Old Traces

As WinResMon logs system activities over a long period of time, the trace becomes very

large. If old traces are discarded, some early yet potentially valuable information, such as

identifying which program first created a file, is lost. An example of important information

is identifying which program first created a file. Since it is necessary to eventually prune

some information to avoid excessively large log files, WinResMon summarizes old trace

files into a “compacted trace database”. This maintains a balance between compactness

and the ability to answer important questions about system resource access.

There are two main issues in performing trace compaction, determining when to initi-

ate the compaction and how to perform compaction on old trace entries. WinResMon uses

a module called the archiver which runs based on a specified Archive interval check

time interval. Upon activation, the archiver compacts previously uncompacted entries

which are older than the specified Old log age. WinResMon employs the following strate-

gies in performing the compaction:

1. Log entry summarization/aggregation

WinResMon can summarize multiple entries with similar information to produce an

aggregated entry in the compacted trace database. It applies the following policies on

various resource types:

• File: multiple read or write operations on the same file are summarized by recording

the time of the first and last operations and the total number of time the operations

were done.

• Registry: multiple query-value operations on the same registry key are aggregated.

Multiple set-value on a key are aggregated only if the values written are identical.

3.2. WINRESMON 53

• IPC: send and receive operations of one IPC object are aggregated by recording

the time of the first and last operations.

When matching a query (described later in Section 3.2.2.4) on an aggregated entry

which records a time interval, WinResMon considers that the entry satisfies the specified

time constraint if one of the values matches the constraint.

2. Selective priority-based entry removal

One strategy to reduce the old traces involves removing entries deemed to be of little

value for answering future questions. WinResMon implements selective entry removal

strategy based on a user-supplied configuration file. The configuration file assigns a

priority to log entries. For example, a log entry for writing a registry key might be

considered more important to keep than one for reading a registry key.

A fragment of an example configuration is shown in Figure 3.4. This example uses

priority values ranging from 1 (least important) to 5 (most important). For each resource

type, configuration entries are matched in a sequential order, and mappings are listed

from most to least specific. It is possible to omit some arguments, i.e. with wildcards. To

simplify the priority assignment, WinResMon classifies file open operations in Microsoft

Windows into one of three modes: RO (read-only), RW (read-write) and WO (write-

only/append). The archiver translates the semantics of each operation from file flags in

the raw log entries to the appropriate values for matching against the configuration.

The existing applications and anticipated usage, together with some general principles,

can be used to derive the priority assignment for the configuration. One general principle

is that “transient information,” such as that those on synchronization objects and IPC,

becomes less relevant after system shutdown and can be given low priority. During the

removal process, all log entries with priority lower than the Lowest priority retained

value will be purged.

3. Auto deletion of old log files

To maintain reasonable storage usage, WinResMon eventually needs to remove entries

deemed too old. The log file whose newest entry timestamp exceeds Max log lifetime

is deleted. If necessary, it is also possible to additionally provide an API function (in a

secure manner) to perform deletion on selected trace entries based on a specified selection

condition.

3.2.2.4 A Query API and Analyzer

We want to support trace analyzers which answer queries solving particular software

maintenance problems. WinResMon therefore provides a query API which can be used

to obtain information from the trace database. One can view the trace as a database and

the provided query API as the query language by which the analyzers extract relevant

information from the database.

54 CHAPTER 3. MONITORING INFRASTRUCTURE

File Section

Format:

Type Action Object Mode Priority

FILE Read * * 1

FILE Write * * 1

File Open C:\Windows\Temp* * 1

File Open C:\Windows\System32* RW|WO 5

File Open C:\Windows\System32* RO 4

File Open C:\Windows* RW|WO 4

File Open C:\Windows* RO 3

File Open C:\Program Files* RW|WO 3

File Open C:\Program Files* RO 2

File Open C:\Documents and Settings\Local Settings\

{Temp*|Temporary Internet Files*} * 1

File Open * RW|WO 2

File Open * RO 1

File Delete C:\Windows\Temp* * 1

File Delete C:\Windows\System32* * 5

File Delete C:\Windows* * 4

File Delete C:\Program Files* * 3

File Delete C:\Documents and Settings\Local Settings\

{Temp*|Temporary Internet Files*} * 1

File Delete * * 2

....

Figure 3.4: Example of Log Priorities for Trace Compaction

The main query API, analogous to an SQL Select command, is trace select([selection

condition], [field projection], [time interval], [output order]), where the caller specifies

the matching condition(s) and fields to return. The selection condition, specified on string

types such as program name and registry key path, takes the form of a regular expression.

Logical operators can be used to combine matching conditions.

Continuing the database analogy, the caller uses projection to specify which fields to

return. For example, suppose one only wants to know the list of programs accessing a

certain file. In other cases, one wishes to know all access operations on the file (i.e. the

order and access time matter). In the former, the analyzer only returns a set of program

names. In the latter, it returns the sequence of all access operations.

We specify time in the format below:

1. “YYYY-MM-DD hh:mm:ss”: an explicit timestamp

2. “-[count][m|h|d]”: a relative time earlier than the current time

3. “OLDEST”: the time of the oldest available entry in the log

4. “NOW”: the current time.

3.2. WINRESMON 55

The time interval is then specified as: “[start time] TO [end time]”.5 Some examples

of time interval definitions are:

• “2006-01-25 11:47:51 TO 2006-08-21 13:41:16”

• “-1d TO NOW” (in the last 24 hours)

• “OLDEST TO -8h” (everything except the past 8 hours).

Output order controls the ordering of query results. It can be either: FORWARD, to list the

oldest entry first or BACKWARD, to show the most recent entry first. The BACKWARD option

is useful to get the k most recent operations.

After obtaining the trace handle from trace select(), one can call trace next (trace handle)

to retrieve the records and trace close(trace handle) to finish retrieval. Some sample an-

alyzer applications using this query API are described in Section 3.2.4.

3.2.2.5 The User-Log API

The user-log API lets applications add their own entries into the log database. As appli-

cations are not allowed to write directly to the log file, custom events are generated using

an ioctl interface to the kernel driver. One use of user-entries includes marking events

related to software installation, making it easier to determine what files and registry keys

are created/modified during installation. This feature also provides a general purpose

logging facility.

The API for user-entries is winresmon userlog(logdata, length). It signals the trace

generator to record the logdata to the log database in binary form. The ownership infor-

mation of a user log entry (i.e. the program pathname and process) is always recorded.

Figure 3.5 shows a simple wrapper for an installer program which generates custom in-

stallation events. In this example, the logdata consists of the name of the software and path

of the installer program. Invoking the wrapper as “C:\ins-wrapper.exe photoshop cs2

H:\setup.exe”, generates logdata containing “INBGH:\setup.exe|photoshop cs2” and “INEDH:\setup.exe|photoshop cs2”.

3.2.3 Implementation

Figure 3.6 gives an overview of how the logger works. The information flow is as follows:

1. A sample program iexplore.exe calls CreateFile("C:\WINDOWS\system32\Macromed\

Flash\Flash8.ocx", READ, ...).

2. This is intercepted by our system call interceptor which passes the parameters to

the original system call handling routine.

5Although an analyzer can include constraints on log’s timestamp as conditions in the selection con-
dition, an explicit time interval specification is less complex.

56 CHAPTER 3. MONITORING INFRASTRUCTURE

#define MAGIC_INSTALL_BEGIN "INBG"

#define MAGIC_INSTALL_END "INED"

int main (int argc, char **argv)

{

char buff[256];

if (argc != 3) {

printf("example: %s software_name c:\...\installer.exe", argv[0]);

exit(1);

}

buff[sizeof(buff)-1] = ’\0’;

_snprintf(buff, sizeof(buff)-1, MAGIC_INSTALL_BEGIN "%s|%s",

argv[2], argv[1]);

winresmon_userlog(buff, strlen(buff));

system(argv[2]); // fork and wait

_snprintf(buff, sizeof(buff)-1, MAGIC_INSTALL_END "%s|%s",

argv[2], argv[1]);

winresmon_userlog(buff, strlen(buff));

return 0;

}

Figure 3.5: A sample installer wrapper

3. The system call handling routine returns the file handle.

4. The handle, together with the system call parameters are then sent to the trace

generator.

5. As the call is successful, the trace generator updates the file handle/path lookup

table. Since "foo" is a relative path, the trace generator concatenates "foo" with

the current directory and add it to the trace.

6. The handle is returned to iexplore.exe and operation continues as per normal.6

3.2.3.1 System call interception

The overview of the logger in Figure 3.6 shows that resource usage is captured by in-

tercepting system calls. As discussed in Section 2.1, this is more complex in practice.

Rather than defining and using the actual system calls, the Microsoft Windows API is

described at a level higher than the operating system using the Win32 API. Although

most programs use Win32, they can use the native API [67] directly. The native system

call interface API is unfortunately not well documented and supported. Furthermore, the

6Step 6 and 4 are independent. Thus, depending on the scheduler, step 6 is not necessarily executed
after step 4.

3.2. WINRESMON 57

iexplore.exe trace generator

syscall dispatcher

syscall interceptor

trace file

?

?
6

66

6

user

kernel

1. CreateFile()

2. pass down 3. return

4. send event

5. log

6. return

Figure 3.6: Overview of how the logger works

view of the operating system at the native API level is not quite the same as at the Win32

level. This means that intercepting system calls at what regular programs might think

of as the Microsoft Windows API is problematic, and there could be discrepancies and

mismatches between API use at the Win32 level and native level. To ensure accuracy,

WinResMon intercepts system calls at the native API level.

WinResMon implements the system call interceptor by means of a kernel driver. The

driver captures system call requests made by a process by “hooking” the native system

calls [9]. Table 3.5 lists the system calls intercepted by WinResMon. We found these to

be the most common system calls arising from file, registry, IPC, synchronization, and

process operations.7

To gather information about processes, WinResMon uses a simpler method. Microsoft

Windows NT exports a set of process callback functions in the kernel space [6]. WinRes-

Mon makes use of PsSetCreateProcessNotifyRoutine() and PsSetLoadImageNotifyRoutine()

which notifies the call back function during process creation or termination.

3.2.3.2 Event handling

When sending the data from the kernel to the user space, it is inefficient to send every

event as it arrives. WinResMon’s implementation therefore makes use of double buffering.

When the size of a buffer reaches a threshold, WinResMon sends the contents of the buffer

to the user space and switches to another buffer to continue logging in the kernel space.

This strategy tries to ensure that most, if not all, events are captured and reduces the

system overhead due to context switching. Again, due to the undocumented nature of

the kernel, we cannot claim to capture all events.

In the prototype implementation, the kernel and user space communicate through

an ioctl mechanism. Ioctls are used to define a protocol to synchronize data transfer

7Since Microsoft Windows is closed source and the native API is only partially documented, it is
difficult to make any guarantees about completeness.

58 CHAPTER 3. MONITORING INFRASTRUCTURE

File
ZwCreateFile opens or creates a new file
ZwOpenFile opens an existing file
ZwDeleteFile deletes a file
ZwReadFile reads from an open file
ZwWriteFile writes to an open file
ZwQuerySystemInformation queries for information internal to the system

Registry
ZwCreateKey opens an existing key or creates it if it does not exist
ZwDeleteKey deletes a key
ZwOpenKey opens an existing key
ZwQueryKey provides metadata of a key
ZwQueryValueKey provides the value of a registry key entry
ZwSetValuekey creates or replaces a registry key’s value entry
ZwDeleteValueKey deletes a registry key’s value entry

Process
ZwTerminateProcess terminates a process and all its threads.

Synchronization Object (Mutex)
ZwCreateMutant creates a mutex or opens an existing mutex
ZwOpenMutant opens an existing mutex

Synchronization Object (Semaphore)
ZwCreateSemaphore creates a semaphore or opens an existing semaphore
ZwOpenSemaphore opens an existing semaphore

Synchronization Object (Event)
ZwCreateEvent creates a new event or opens an existing event
ZwOpenEvent opens an existing event

Synchronization Object (Waitable Timer)
ZwCreateTimer creates a new timer object or opens an existing one
ZwOpenTimer opens an existing timer object

IPC (Named pipe)
ZwCreateNamedPipeFile creates a named pipe

IPC (Mailslot)
ZwCreateMailslotFile creates a mailslot

Table 3.5: Intercepted system calls

between the driver and user level trace generator. WinResMon can also be extended to

as a remote-monitoring tool.

3.2.4 Writing Custom Analyzers

This section demonstrates how to write custom analyzers on top of the WinResMon

framework by means of examples.

• An analyzer to show all the programs which read C:\foo.txt after 2005/1/1 could

use the following query:

trace select("file.path == \"C:\\foo.txt\"",
"prog path",

3.2. WINRESMON 59

"2005-1-1 00:00:00 TO NOW",

FORWARD);.

• A more complicated example asks, “What’s the most recent execution of msnmsgr.exe

before this boot?” First determine the last shutdown time with the query:

trace select("sysevent.type == \"shutdown\"",
"time",

"OLDEST TO NOW",

BACKWARD);

The next query gets the whole process creation event for msnmsgr.exe:

trace select("proc.childname =~

\"/^.*\\msnmsgr.exe$/\"",
NULL,

"OLDEST TO last shutdown time",

BACKWARD);

• Figure 3.7 shows a code fragment from a simple analyzer which searches for all the

registry keys opened by Internet Explorer.

struct trace_struct *handle;

struct trace_entry *entry;

trace_handle = trace_select(

"type==\"registry\" && "

"prog_path=~\"/iexplorer.exe$/\"",

"time, registry.path",

"-1d TO NOW",

FORWARD);

if (trace_handle == NULL)

exit(1);

while ((entry = trace_next(trace_handle)) != NULL) {

printf("time=%s, registry=%s",

entry->fields[0], entry->fields[1]);

}

trace_close(trace_handle);

Figure 3.7: A sample analyzer

WinResMon issues the query with selection type == "registry" && prog path =~

"/iexplorer.exe$/" and projection on time and registry.path. After correctly

obtaining a trace handle, it iterates over all selected records by using trace next().

It prints all the fields, time and registry.path, for each selected trace entry. After

iterating over all relevant records, it closes the handle.

60 CHAPTER 3. MONITORING INFRASTRUCTURE

3.2.5 Using WinResMon

The extended example below shows the use of WinResMon to solve software maintenance

problems.

Yahoo Toolbar adds tabbed browsing to Internet Explorer (IE) and adds various

icons and links from within IE to different Yahoo services. The following walk-through

illustrates monitoring the Yahoo toolbar throughout its entire life cycle. There are three

stages:

1. Installation

The provided installer refuses to run under a standard user account as it needs ad-

ministrator privileges. Upon successful installation under an administrator account,

it creates the following DLLs and keys:

DLLs:

C:\Program Files\Yahoo!\Companion\Installs\cpn\yt.dll

C:\Program Files\Yahoo!\Companion\Installs\cpn\YTabBar.dll

...

Registry keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Yahoo

From our list of sensitive registry locations, we note the following.

Before Installation:

Search Page:

http://www.microsoft.com/isapi/redir.dll?prd=ie&ar=iesearch

Search Bar: -

After Installation:

Search Page:

http://us.rd.yahoo.com/customize/ycomp/defaults/sp/*http://www.yahoo.com

Search Bar:

http://us.rd.yahoo.com/customize/ycomp/defaults/sb/*http://www.yahoo.com/

search/ie.html

Yahoo! Toolbar Helper:

02478D38-C3F9-4EFB-9B51-7695ECA05670 - C:\Program Files\Yahoo!\Companion\

Installs\cpn0\yt.dll

Among the changes made, Yahoo replaced MSN search as the default search engine.

2. Program usage

Since the database is persistent, WinResMon logs all the events associated with

Yahoo and preserves the information even if the system reboots. This helps analyze

the behavior of Yahoo toolbar over a period of time.

http://www.microsoft.com/isapi/redir.dll?prd=ie&ar=iesearch
http://us.rd.yahoo.com/customize/ycomp/defaults/sp/*http://www.yahoo.com
http://us.rd.yahoo.com/customize/ycomp/defaults/sb/*http://www.yahoo.com/search/ie.html
http://us.rd.yahoo.com/customize/ycomp/defaults/sb/*http://www.yahoo.com/search/ie.html

3.2. WINRESMON 61

3. Uninstalling

When uninstalling Yahoo toolbar, WinResMon observes that all the files have been

removed. However, the registry settings it made are left unchanged. As a result,

Yahoo remains the default search engine for the system.

3.2.6 WinResMon Overhead

To measure the performance overhead resulting from constant monitoring of systems with

WinResMon, we first look at some worst case scenarios using micro-benchmarks consisting

of only repeated system calls.

Our micro-benchmarks comprise of: seven benchmarks on file access, five on registry

access, and two on process creation. All of these micro-benchmarks run on a Pentium

4 2.4GHz machine with 512MB running Microsoft Windows XP with SP2. The bench-

marking procedure consists of first running the benchmarks on a clean Microsoft Windows

XP (with SP2) to get the baseline performance. We then run with WinResMon loaded.

Finally, we run with FileMon [4] loaded for file access benchmarks and RegMon [7] loaded

for registry access benchmarks. Each micro-benchmark repeats an operation n times. We

performed each benchmark four times to get the average execution time. Table 3.6 and

3.7 show the average and standard deviation of the execution time in seconds.

The file access benchmarks consist of:

(F1) Open an existing file. The same filename is used every time.

(F2) Create a new file and delete it. A different filename is used every time.

(F3) Read 1 byte from a file. We ensure that the file is large enough so that EOF is never

met for multiple reads.

(F4) Read 4,096 bytes from a file. The file size is a multiple of 4,096. When we reach

EOF, we rewind to the beginning of the file.

(F5) Write 1 byte to a file. We start with an empty file.

(F6) Write 4,096 bytes to a file. When we reach EOF, we rewind to the beginning of the

file.

(F7) Create a new directory and delete it. A different filename is used every time.

The benchmarks for registry access are:

(R1) Open an existing registry key. The same key is used every time.

(R2) Create a new registry key and delete it. A different name is used every time.

62 CHAPTER 3. MONITORING INFRASTRUCTURE

(R3) Create a new volatile registry key and delete it. RegCreateKeyEx is used with the

REG OPTION VOLATILE option.

(R4) Query the value of a registry key. The type REG DWORD is used.

(R5) Set the value of a registry key. The type REG DWORD is used.

The benchmarks for process creation are:

(P1) Create a dummy console process and wait for its termination.

(P2) Create a dummy GUI process and wait for its termination.

Table 3.6 shows the execution time (in seconds) for the file and registry access bench-

marks. In order to avoid any extraneous overhead from the FileMon and RegMon GUI,

the window is always minimized during the experiments. It appears that both FileMon

and RegMon do not capture all the operations during the performed micro-benchmark,

though. For example, during the “Read 1 byte” test, 10M events occurred, but FileMon

only captured about 15K. During the “Create a new file” test, 600K events occurred,

but only about 18K were actually captured. During the “Query value” test, 1M events

occurred, but only 993,938 were actually captured by RegMon. We observe that Win-

ResMon, by contrast, captured all operations in all the tests.

Note that FileMon, RegMon and WinResMon address different goals. FileMon and

RegMon are meant for short term monitoring while WinResMon is designed for long term

use and is therefore always running in the background. These two benchmark comparisons

merely give us a baseline on how WinResMon compares with other, similar monitoring

software.

Table 3.7 shows the results of the process creation benchmark. The console process

in the benchmark creates a dummy child process using the CreateProcess() function and

waits for its termination using the WaitForSingleObject() function. The difference be-

tween a console program and a GUI program is that the GUI program uses the WinMain()

entry function and is linked using the /SUBSYSTEM:WINDOWS option, while the console pro-

gram uses main() and /SUBSYSTEM:CONSOLE. The measured overhead is quite small because

process creation is a slower operation than file or registry access.

We would expect normal programs to have much smaller overhead than that of the

micro-benchmarks because the micro-benchmarks are very system call intensive. Normal

programs, such as our macro-benchmarks, typically make significantly fewer system calls,

spending more time in the application rather than the kernel. Table 3.8 gives some

macro-benchmark results which show the impact of WinResMon on the following normal

programs: WinRAR, gcc, LATEX and Lame. The benchmarks perform the following:

• WinRAR: compress a 150MB file.

3.2. WINRESMON 63

F
il

e
O

p
er

at
io

n
n

C
le

an
W

in
R

es
M

on
F

il
eM

on

(F
1
)

O
p

en
an

ex
is

ti
n

g
fi

le
1
M

20
.4

57
±

0.
24

0
46
.2

66
±

3.
27

1
(1

26
.2

%
)

44
.1

68
±

0
.2

79
(1

16
.0

%
)

(F
2
)

C
re

a
te

a
n

ew
fi

le
1
00

K
53
.0

04
±

2.
53

2
67
.5

39
±

0
.4

69
(2

7
.4

%
)

73
.1

17
±

0
.2

65
(3

7
.9

%
)

(F
3
)

R
ea

d
1

b
y
te

1
0M

14
.2

77
±

1.
08

4
27

8.
17

5
±

14
.2

82
(1

84
8
.4

%
)

10
7.

41
4
±

4.
76

5
(6

52
.4

%
)

(F
4
)

R
ea

d
4
09

6
b
y
te

s
1
0M

41
.2

07
±

0.
13

3
32

8
.2

03
±

34
.8

69
(6

96
.5

%
)

13
8.

81
6
±

0.
79

3
(2

36
.9

%
)

(F
5
)

W
ri

te
1

b
y
te

1
0M

49
.8

24
±

1.
16

0
38

8
.0

50
±

0
.8

37
(6

78
.8

%
)

17
2.

42
2
±

1.
11

4
(2

46
.1

%
)

(F
6
)

W
ri

te
40

96
b
y
te

s
1
0M

11
6
.3

55
±

0
.7

16
44

8
.9

33
±

2
.1

92
(2

85
.8

%
)

21
2
.8

28
±

2.
95

0
(8

2
.9

%
)

(F
7
)

C
re

a
te

a
n

ew
d

ir
ec

to
ry

1
00

K
46
.5

46
±

0.
34

4
57
.7

50
±

9
.5

65
(2

4
.1

%
)

56
.3

95
±

0
.2

82
(2

1
.2

%
)

R
eg

is
tr

y
O

p
er

at
io

n
n

C
le

an
W

in
R

es
M

on
R

eg
M

on

(R
1
)

O
p

en
a
n

ex
is

ti
n

g
ke

y
1
M

10
.3

78
±

0.
03

9
35
.3

24
±

0.
08

0
(2

40
.4

%
)

36
1
.4

38
±

40
.5

04
(3

38
2
.7

%
)

(R
2
)

C
re

at
e

a
n

ew
k
ey

1
00

K
8.

98
0
±

0
.0

37
13
.7

69
±

0
.0

41
(5

3
.3

%
)

13
4
.8

79
±

10
.7

78
(1

40
2
.0

%
)

(R
3
)

C
re

at
e

a
n

ew
te

m
p

ke
y

1
00

K
7.

83
2
±

0
.0

45
12
.7

50
±

0
.0

82
(6

2
.8

%
)

14
2
.9

61
±

12
.8

11
(1

72
5
.3

%
)

(R
4
)

Q
u

er
y

va
lu

e
1
M

1.
46

1
±

0
.0

09
27
.2

03
±

0.
06

1
(1

76
1
.9

%
)

16
6
.3

01
±

4
.4

06
(1

13
82
.7

%
)

(R
5
)

S
et

va
lu

e
1
M

22
.8

90
±

0.
15

3
46
.3

79
±

0.
09

0
(1

02
.6

%
)

18
2.

47
3
±

7.
27

2
(6

97
.1

%
)

T
a
b

le
3
.6

:
P

er
fo

rm
a
n

ce
co

m
p

ar
is

on
on

fi
le

an
d

re
gi

st
ry

ac
ce

ss
(n

op
er

at
io

n
s

in
se

co
n

d
s)

64 CHAPTER 3. MONITORING INFRASTRUCTURE

Process Operation n Clean WinResMon
(P1) Create a console process 10K 35.488± 0.071 37.855± 0.150 (6.7%)
(P2) Create a GUI process 10K 34.641± 0.044 36.938± 0.097 (6.7%)

Table 3.7: Performance of process creation (in seconds)

Test Case Clean WinResMon
WinRAR 224.443± 0.542 226.524± 3.502 (0.9%)
gcc 26.265± 1.219 26.973± 0.968 (2.70%)
LATEX 27.211± 0.473 27.498± 0.981 (1.1%)
Lame 45.631± 0.538 45.662± 0.534 (0.6%)

Table 3.8: Performance of macro-benchmarks (in seconds)

• gcc: compile a 500K-line C program.

• latex: compile a 2,000-page LATEX file into PDF using the pdflatex program.

• Lame: encode a 100M wave file into a mp3 file.

The macro-benchmark results demonstrate that running WinResMon all the time is quite

reasonable under typical usage.

3.2.7 Related Work

From a high level perspective, WinResMon differs from previous systems/tools in that it

is:

• integrated: since it monitors accesses on files and registry under one infrastructure

• extensible: system administrators can write their own custom modules to utilize the

generated log

• geared for log management: system administrators can view resource access activ-

ities generated over time, and inspect their relationships with respect to software

configuration and dependencies.

We briefly mention some other tools/systems below, and highlight the important dif-

ferences with WinResMon.

WinResMon shares the basic monitoring functionalities with FileMon and RegMon

tools (Section 2.2.5). However, WinResMon’s infrastructure is integrated, and its log

database is designed to assist system administrators in inspecting software configuration

and dependencies.

Strace (Section 2.2.3) is a Linux/UNIX tool used to intercept and log system calls

invoked by a process. There is also a Microsoft Windows NT port of strace with sim-

ilar functionality. WinResMon differs from strace in that is focused more on resource

3.2. WINRESMON 65

usage (files, registry, etc) rather than system calls. In Windows, a system call viewpoint

can be confusing since there are multiple levels of APIs which translate into the poorly

documented native API.

Systrace [74] is a UNIX tool for sandboxing untrusted code. Unlike Systrace, which

examines system-call sequences issued by the monitored processes and applies a specific

security policy, WinResMon is meant as a monitoring tool to inspect resource usage and

interactions among programs in a system.

DTrace (Section 2.2.6), SystemTap (Section 2.2.7) and LBox (Section 3.1) are auditing

and instrumentation systems on various UNIX operating systems. They are all event

based auditing systems, performing a specific action only on a specific event. DTrace and

SystemTap allow administrators to dynamically execute supplied code in the kernel when

certain event occurs. LBox allows the kernel to notify a user space program when certain

events happen. Both LBox and WinResMon are designed for monitoring resource usage,

while DTrace and SystemTap are designed for general system call instrumentation.

3.2.8 Conclusion

We presented the motivation, design, implementation and usage of WinResMon. Its main

use is to inspect resource access and software dependency issues in Microsoft Windows

environments. As WinResMon is extensible, system administrators can also build tools

using WinResMon for custom queries and system analysis. Benchmarking shows that

WinResMon is reliable and is comparable to other popular tools.

Future work is to increase the usability and robustness. We would also like to ensure

that logging is as comprehensive as possible taking into account the undocumented and

unsupported nature of the APIs in the Microsoft Windows NT kernel. We would also like

to further increase the efficiency of the logging mechanism.

In Chapter 5, we will show how WinResMon’s log can be explored through visu-

alization. While we have shown how our query API can be used to answer software

dependency questions, in Section 5.1, we will show how we can visualize a particular

type of dependency — module dependency. WinResMon’s log not only can be considered

as a database recording the program-resource relation, but also can be considered as a

trace recording program behaviours. In Section 5.2, we will visualize WinResMon’s log

in order to study program behaviours, including repeated patterns, abnormal events and

behaviour differences, which are useful to discover various of problems.

Chapter 4

External Monitoring

Chapter 3 shows software monitors that execute in the host, which is shared with the

monitored software. We have showed their robustness under the assumption that the

kernel is authentic. However, when the kernel is compromised, the host-based monitoring

cannot be trusted. In this chapter, we propose external monitoring, where information

is collected from monitors external to the host, so that the information can be trusted

even in a compromised host. We show that this can be used to detect malware in a host

if we correlate user interaction with host behaviour, both of which are observable by our

external monitor. In addition, the information of user interaction can be used to guide

resource allocation, thus limiting the resource utilization of malware.

4.1 Introduction

Securing computers against malware is becoming increasingly difficult today. Anecdotes

abound that the survival time of an unpatched PC running Windows XP connected to

the Internet is in the order of minutes [5, 8]. Worms can be quite effective in infecting

systems, e.g. the Conficker worm [82] is estimated to have infected 6% of computers on

the Internet.

Often the goal of the attackers is to infect a host to make it part of a botnet. The

malware may be mostly dormant until it is activated, as such, it can be difficult to detect

that the host is infected. The detection problem is made worse since malware can exploit

rootkit techniques to hide its presence and also any activity. For example, the Mebroot [14]

rootkit infects the master boot record of the hard disk allowing it to infect the Windows

kernel during boot. After that it hides the changes to the master boot record to make it

difficult for antivirus software to detect its presence.

Many security mechanisms are host-based – either part of the operating system or

interact with it. A primary exception is network-based security mechanisms which analyze

network data and traffic. While there are some successes in detecting the presence or

66

4.1. INTRODUCTION 67

activity of malware by network-based security mechanisms, there are many other sources

of information outside the host that are also useful for making detection and security

mechanisms more robust.

We propose a framework which fuses external (with respect to the host machine)

environment information collected by external sensors in decision making to have more

robust and enhanced security mechanisms. We employ the framework to: (i) enhance

intrusion detection; (ii) monitor and control resource usage; and (iii) enhance access and

rate control policies with user presence and out-of-band feedback. The advantage of our

framework is that by using the external sensors, we are able to give reliable security

guarantees even when the host is compromised, i.e. by a rootkit. Our focus will be on

protecting stationary hosts (e.g. workstation) which users work on rather than servers

controlled remotely or mobile laptops.1

We take advantage of the growth in pervasive computing and sensor technology which

provide (relatively) cheap sensors which can take a variety of physical measurements.

These sensors are used in a variety of ways. Firstly, the sensor can be used to measure

resource usage on the host itself, e.g. correlating CPU usage (the resource) with CPU

temperature (the sensor measurement). Secondly, the sensors can be used to measure

the interaction of the host with the environment, e.g. network usage which also includes

sending emails. Thirdly, the sensors can be used to measure environmental information

which is orthogonal to the host, the most important being using sensors to determine

the presence or absence of the user on the host as well as physical user activity such as

keyboard usage. By “user”, we mean the human using the host and although there may

be more than one user, we simply say user.

We are also concerned with maintaining user privacy. While it is possible to obtain

comprehensive user activity information, e.g. user identity and key strokes from surveil-

lance cameras, we focus more on sensors that only provide binary information like the

presence of a user or keyboard activity or other coarse-grained indirect data. However, in

some applications, privacy may not be an issue and part of the security policy, e.g. access

control policies, and we will also present such applications.

Another source of environment information could be from physical security informa-

tion management systems. Such systems are already in-place in many organizations and

could provide relevant environment information whereby user activities can be derived,

e.g. the door entry control system gives evidence that a particular user is in the ma-

chine room. Green buildings may have many sensors which are designed to detect human

presence or activity.

A natural application of our framework is to enhance the security of intrusion detection

1We remark that it is feasible to deal with mobile devices but the framework will need to be more
complex and will need to incorporate authentication features, thus, for simplicity and clarity, we focus on
non-mobile hosts.

68 CHAPTER 4. EXTERNAL MONITORING

systems (IDS). This is because the IDS may be running on the host, as such, it could

be compromised by malware. External sensors, on the other hand, are difficult to be

accessed or compromised by either malware or remote intruders.2 The results of an

environment sensing based malware detector can be correlated with alerts from an IDS

to reduce false positives. While existing IDS may incorporate network traffic information

in gateways which are external to the host, the difference is that we make further use of

other tamperproof sensors and fuse it with user presence and activity.

The following example shows the difference from the network intrusion problem. Con-

sider the case of a single email being sent. At the network level, there is insufficient

information to be able to identify whether it is a spam email generated by malware or a

legitimate email sent by the user. Whereas, in our framework, suppose that the email is

sent in the absence of the user and user activity, it is reasonable to infer that the email

has been sent automatically. Furthermore, in the absence of any additional information,

a default rule to classify this email as spam activity will be reasonably effective and ac-

curate. In this section, we present some application scenarios of malware detection where

a botnet is using malware on the host for: (i) sending spam email; (ii) contributing to

distributed denial of service (DDoS) attacks; and (iii) using the host as a compute engine

for offline dictionary attacks.

A different set of security applications is where the environment information is used

on the host as part of a security mechanism. It can be used to increase the expressivity

of access control and rate control policies by requiring privileged actions on a host to

be correlated with physical user presence and physical activity. This prevents remote

attacks which escalate privileges, e.g. privileged actions can only be performed if the

administrator is present and using the console.

An important property of our framework is that it can be immune to attacks which

compromise the host. Without the fusion of sensor data from the environment surrounding

the host, the attacker can simply hide inside the host or erase traces of an attack or

intrusion. Some malware may even be able to shut down IDSs deployed in the host. A

limitation of our framework is that the sensor data obtained is coarse grained and possibly

noisy. Nevertheless, our experimental evaluations show such coarse data is already useful

in identifying certain mismatches between the host’s and user’s physical activities.

The rest of this chapter is organized as follows. Section 4.2 introduces the framework

of integrating the data from external sources to the access control or intrusion detection

logic. We apply the framework to malware detection in Section 4.3 to demonstrate that

information external to the host enhances the detection of malware activity. The frame-

work is extended to rate and access control applications in Section 4.4. Related work is

discussed in Section 4.5 and Section 4.6 concludes.

2Our focus is on remote attacks rather than attacks with physical system access.

4.2. THE FRAMEWORK 69

4.2 The Framework

Sensors

user
Host

Physical environment

Monitor
Routers

Internet

control/feedback

information flow

Figure 4.1: The components of the framework

Our framework is composed of the following entities illustrated in Figure 4.1: (i) the

host; (ii) user; (iii) external environment; (iv) external sensors; and (v) external monitor.

In this section, the host is a stationary computer which typically includes keyboard,

mouse, hard-disk, CPU, monitor, etc., and is operated through devices such as keyboard

and mouse.

The host, router(s), sensors, monitor and user are situated within an external envi-

ronment. The host interacts with the external environment through its network which

is controlled by some network routers. We assume that all network traffic in and out of

the host is channeled through these routers. Within the external environment, there are

external sensors for collecting measurements from the environment and also the host.

Users in our framework are persons who are directly accessing the computing re-

sources. In order for a user to use the host/computing resources, the user needs to be in

the proximity of the host and interacting with it directly through the keyboard, mouse

and display. We remark that attackers could be accessing the host remotely through a

network connection. Finally, there is an external monitor which collects information col-

lected by the sensors and performs various security functions to make decisions/control

for a security application.

We consider all information processed and stored in the host as internal information.

Potentially, internal information can be manipulated by an adversary if the host is com-

promised. As such, we are more interested in the external information as that is immune

to tampering by an adversary on the host. The external information collected by sensors

can be varied. For example, an infra-red sensor can gather information in the external

environment. It could be used to detect whether a user is sitting in-front of the host’s

70 CHAPTER 4. EXTERNAL MONITORING

display, whereas a sensor installed in the router is an example where the sensor measures

data due to host activity. The three types of information collected by sensors are:

1. Sensors which measure activity on the host: A sensor can measure externally re-

source usage on the host. The host CPU usage can be measured by using the

correlation between CPU workload which leads to higher power consumption thus

causing increases in the processor temperature. For example, the temperature can

be measured using a sensor near the motherboard/processor. As disk drives also

make noises when they are used, a microphone can listen to sounds from the drive;

alternatively, a sensor can measure the disk activity light.

2. Sensors which measure interaction between host and environment: The main in-

teraction we consider between the host and external environment is network traffic

to/from the router. The router can itself be utilised as a sensor to measure network

traffic to/from the host.

3. Sensors measuring user presence/activity: We utilise sensors to detect the presence

of a user at the host. For example, infrared sensors can detect user presence, alter-

natively, pressure or motion sensors can be fitted to the user’s chair. A more reliable

method to measure user presence is to use video captured by a camera [50, 51].

User activity can also be measured by sensors, e.g. a pressure sensor to measure

keyboard typing.

Although we do not exclude the use of surveillance cameras as the environment sen-

sors in our framework, the issue of user privacy must be taken into consideration in an

implementation of the framework. (A recent webcam spying issue highlights the necessity

of dealing with privacy [3]). A microphone not only can detect keyboard activity, but it

can also record conversation among the users. A camera recording the user or display can

also violate workplace privacy policies. For this reason, we do not make use of video in

our experimental evaluation. Hence, we mainly consider binary information on user activ-

ities, such as whether a user is present, or detecting keyboard activities. Such information

can be captured by sensors that are designed or can be converted to give binary output

or other coarse information, which alleviates privacy concerns, e.g. an infra-red sensor

that detects user presence, or a camera that only outputs the detection outcomes. There

are many commercial wireless multi-sensor boards which fit our purposes, e.g. SBT80

from the EasySen [2] contains a number of sensors including infra-red, temperature and

acoustic.

We remark that privacy may not always be an issue. Study [51] shows that users

found continuous video sent to a monitor to be an acceptable trade-off. We will consider

user presence measurements used for access control in Section 4.4.

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 71

All information gathered is channeled to a monitor which makes decisions for par-

ticular security applications. The monitor may also have the ability to control external

resources, e.g. control the network traffic at the router. It could also control some aspects

of the host. The channel between sensors and monitor should be secure, e.g. it should be

not accessible from the Internet to prevent tampering by remote attackers.

Besides wireless sensor networks, many physical security systems can provide relevant

information for our monitor. For example, the door entry control system can give in-

formation about persons who gain access to a machine room, while surveillance cameras

can reliably detect the presence of users near a console or other devices like scanner and

printer. Although physical security systems are costly, an organization could already have

such systems in-place, together with a management system that collects and processes

the data.

4.3 Applying the Framework to Malware Detection

We apply our framework to three malware detection problems by giving prototype mal-

ware detection implementations which detect email spamming, DDoS attack and password

cracking. These are then evaluated with some experiments.

For the proof of concept implementation, we use a simple setup with two kinds of

environment sensors. One sensor detects user presence at the host. Another sensor

records the temperature near the CPU as a proxy for CPU usage. Network traffic of the

host is also monitored at the router.

In our experiments, the malicious activities are carried out by a modified Agobot worm

(also known as Gaobot) [80]. The worm is programmed with three tasks: sending spam

email to other email accounts using the SMTP protocol; carrying out a DDoS attack by

flooding a target with UDP packets; and using the CPU resources on the host to perform

password cracking by hashing a dictionary of possible passwords.

The basic idea behind our detection rule is simple: the patterns of legitimate resource

usage when the user is interacting with the host, is different from that when no user is

present.3 If the malware does not have/use user presence information, its behavior will not

be correlated with the user presence. We divide the time into intervals, in each interval,

the user is either present or absent. A detection algorithm is then applied to each interval

to detect malicious activity. The algorithms we have used are rate based detection, moving

average based detection, or changepoint detection [94, 21]. Other detection algorithms

such as variations of rate based detection algorithms are also applicable [28].

3In this application, we do not distinguish between different users.

72 CHAPTER 4. EXTERNAL MONITORING

4.3.1 Methodology

The methodology for each malware detection application is as follows. For each applica-

tion, we will first present the malware detection model, including the relevant external

sensors and rules to the anomaly detection; then we perform experiments and analysis to

validate the feasibility of our models.

4.3.1.1 Experimental Setup

Our experimental setup consists of 5 hosts in a 100Mbps LAN which is connected to the

Internet through a router. All 5 hosts are running 32-bit Windows XP SP2 with Pentium

4 2.4GHz Processor and 2GB memory. First, we gather normal data from three uncom-

promised hosts for a period of 12 days. Next, we “compromise” one host by installing

the modified Agobot on it and control it from another machine. The compromised host

carries out different activities on demand: generate spam email, start a DDoS attack

and perform password cracking. More experimental details are described in the relevant

section.

Three types of sensor data are collected on the hosts: (i) user presence; (ii) CPU

temperature; and (iii) network traffic. User presence is represented by a binary-valued

time series, indicating whether the user is sitting at the host. We use infrared sensors to

detect user presence. This is more reliable compared to using acoustic sensors to detect

keyboard typing or mouse clicks. One reason is that a user can be simply looking at the

monitor and not doing anything. Another reason is that malware can fool the sensor by

playing back clicks.

The CPU temperature measurement is represented by a real-valued time series giving

the temperature at the processor, which correlates to CPU load. In principle, the CPU

temperature should be measured with a sensor between the CPU heat sink and fan, but

we had difficulty in doing so with our sensor. As a proof of concept, we used the CPU

temperature obtained from the host’s operating system as a proxy.4 We remark that the

sensor data should be measured and sent to the monitor via a secure channel, and thus

our temperature readings is only a simulation to simplify the experiments. For network

traffic, headers of all packets and partial payload passing through the router are logged.

4.3.1.2 Detection Methods

We use three detection methods for each application in this section. We then demon-

strate that the execution of malware can be detected using any of these methods using

our framework. The three detection methods are rate based detection, moving average

detection, and changepoint detection (our modified version of the CuSum algorithm).

4We use the system call IDebugDataSpaces–>ReadMsr() in Windows.

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 73

Malware Threat Rules for triggering alarms

Email Spammer (i) No user is present, and at least one email is sent; or
(ii) A user is present, and changepoint detection decides that

the cumulative sum of email sent exceeds a threshold.

DDoS Zombie Changepoint detection detects the cumulative sum of the net
outgoing packet rate exceeds thresholds for user present and absent

Password Cracker Changepoint detection detects the cumulative sum of
CPU temperature exceeds a certain threshold when user is absent

Table 4.1: Overview of malware detection rules using changepoint detection.

Rate Based Detection The general idea is that the allowable usage rate is dependent

on user presence. When the user is present, the resource usage rate is higher than when

the user is absent.

This metric limits the resource usage rate and uses an application specific threshold

for detection. The specific threshold for a particular application can be determined from

normal usage profiles.

The main advantage of rate based detection is its simplicity. However, the drawback

is that it is very sensitive to the instantaneous rate. Thus, it has potential in having a

high false positive or false negative rate. In addition, the detection threshold is prone to

tampering if it is adaptive.

Moving Average Detection The moving average of xi is defined by the formula below

xi =

{
(
∑i

j=1 xj)/i, 1 ≤ i < n

(
∑i

j=i−n+1 xj)/n, i ≥ n
(4.1)

where n is the number of readings taken into an average measurement. An anomaly is

detected at time i if xi exceeds a chosen threshold that bounds the normal values.

Arguably, moving average is less sensitive to the instant rate surge, thus it reduces

the amount of false positives as compared to rate based detection. If the anomaly starts

at time 1 or prior to the detection phase, the anomaly can be detected in a similar time

to the rate based detection. However, if normal behavior is observed initially for some

time, the alert of abnormal behavior is delayed due to the averaging behavior.

Changepoint Detection The problem of changepoint detection [21] is to detect changes

from normal behavior. We use a customized version of CuSum [70] to do such detection.

In our model, behaviors are described as a real-valued time series x1, . . . , xn. Normal

behavior is estimated to have a value a or smaller. To detect an increase from the normal

74 CHAPTER 4. EXTERNAL MONITORING

behavior, the following cumulative sum Sn is computed.{
S0 = 0,

Sn = Sn−1 + max(0, xn − a), n ≥ 1,

where xn is the observation at time n from the sampling process. The value of a can

either be determined by the system administrator, or by observing samples of normal

behaviors to select the smallest acceptable normal upper bound for xn. If Sn exceeds the

threshold N , a change point is detected at time n and the alarm will be triggered. Note

that a can be exceeded when the normal behavior is violated, so a is a lower detection

threshold for abnormal behavior, Sn is the cumulative sum of the actual signal and N is

the changepoint detection threshold. CuSum can be shown to be optimal under certain

conditions [21]. As it is simple and efficient, it is suitable for real-time processing of

streaming sensor data.

We incorporate a limit t on the accumulation time. This is similar to the moving av-

erage computation, in the sense of monitoring a moving time quantum. Yet it differs from

moving average or rate based detection in that the signal which changepoint detection

monitors is the excess of the rate over the normal upper bound, instead of the rate or the

average rate themselves.

Changepoint detection relies on empirical or administrative thresholds, smart attack-

ers may be able to obtain information on user presence and adapt their behavior accord-

ingly. Our mechanism cannot fully stop such malware, but it effectively mitigates the

malicious activity. Thus, it will still be effective even when the malware uses the similar

information to the sensor.

The specific changepoint detection rules for each of the three applications are sum-

marized in Table 4.1.

The Difference between Changepoint Detection and Rate Based Detection

We use spam detection to show the difference between rate based detection and change-

point detection. Figure 4.2 illustrates situations where rate based detection causes false

positives and false negatives. Occasionally, the user email rate exceeds the spam detection

threshold, causing false alarms, even though the high rate could be due to a transient spike.

On the other hand, spam malware can control its email rate to just below the threshold,

by spreading the operation over a long period of time. Rate based spam detection do not

report such cases correctly, while changepoint detection can. With changepoint detection,

we can set the upper bound of normal email rate as a baseline, e.g. one email per minute,

and then accumulate the excess amount of emails over a time period. Thus, it computes

within a time interval, the area in the graph enclosed below by the baseline and bounded

above by the email rate curve. With changepoint detection, occasional high email rates

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 75

do not cause false alarms, and constant medium email rates cannot evade detection.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

ai
l r

at
e

Time (minute)

False alarms

Missed detections

User email
Spam

Detection threshold

Figure 4.2: False detections caused by email rate based spam detection

4.3.2 Detecting Malware which Sends Spam Email

It is common that botnets are used to send spam email. Spam can be sent out at different

rates. Some worms like Storm and Rustock have been reported to send at lowish rates

of 20 and 33 emails/min, while others can be high, e.g. Srizbi’s rate is 1800 emails/min

[45]. While 20 emails/min is probably too high for humans, malware could also send at

lower rates. We remark that humans might also send email at high rate, e.g. when using

a script to send emails to a group of recipients such as a mailing list.

Our experiment is meant to show spam detection is reliable when the monitor uses

data from external sensors. We also experiment on different modes of sending email,

namely, SMTP-based clients and also webmail clients.

To detect bots that send spam, using our modified CuSum detection, we apply the

following rules: (i) when the user is absent, any outgoing email flags a spamming activity;

and (ii) when the user is present, our detection algorithms are applied on the number of

emails sent. Essentially, if over N emails are sent within a time interval of length t, the

algorithm flags it as spamming activity, where N and t are the two tunable parameters

and carries slightly different meanings in each detection algorithm.

The first rule relies on the fact that emails are usually directly sent to the mail servers

when the user performs “send” in the email client. Any scheduled delay in delivery is

based on the server itself. The actual value of N and t in the second rule can be learned

from the normal traffic for each host. Although the rules are simple, no matter how slow

the spam rate is, we can detect spam when the user is absent. So if a stealthy spam

program sends out only a single email at night, this could slip out unnoticed by normal

76 CHAPTER 4. EXTERNAL MONITORING

Spam worm User present User absent

Storm 6.1 min immediate

Rustock 3.6 min immediate

Srizbi 5 sec immediate

Table 4.2: Detection time of different spam worms. (Detection threshold N = 120 emails
in t = 6 hours at user presence, and N = 1 during user absence.)

email rate based spam detection while we would detect it.

Figure 4.3 shows the typical email activity of a user in a day. About 10 to 20 emails

are sent daily. It shows that our hypothesis that all emails are sent with the user present

is reasonable.

 1

 2

 0 4 8 12 16 20 24

E
m

ai
l r

at
e

pe
r

m
in

ut
e

Time in a day (hour)

Outgoing email rate
User present

Figure 4.3: Samples of user email rate

When we apply CuSum to detect changes in the amount of emails sent when the user

is present, we incorporate a limit on the accumulation time t, and set a = 0, N = 120

and t = 6 hours. The effect is that whenever there is an outgoing email, we accumulate

the count, and no more than N = 120 emails can be sent in 6 hours. If the accumulated

sum exceeds 120, we raise a spam alarm for the host. The allowable average email rate

is three minutes per email. This is already high for a human user, since users do not

consistently send an email every 3 minutes for 6 hours. Using a lower threshold will make

it even easier to detect the spam. When the user is absent, we set N = 1, meaning any

outgoing email indicates that it is spam.

In our experiment, spam is sent from the monitored host using the modified Agobot.

We tested the detection of spam at rates corresponding to Srizbi, Rustock and Storm

worms. We assume the spam emails are sent out at uniform rate. Table 4.2 shows the

detection time when the user is present and absent. Note that threshold N is set on

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 77

Detection Algorithm
Rate Moving Average Changepoint User absent

User present (a=5 emails/min) (a=0)

Storm 16 sec 18 sec ∼ 96 min 8 min immediate

Rustock 10 sec 11 sec ∼ 58.2 min 4.3 min immediate

Srizbi 1 sec 1 sec ∼ 1.1 min 4 sec immediate

Table 4.3: Detection time of spam worms, using rate based detection, moving average
detection, and changepoint detection

the parameter of the accumulated email amount. It is easy to see the detection time is

inversely proportional to the spam rate. Since the spam rate of Srizbi is much higher

than Rustock or Storm, it takes least time to detect. When the user is present, the

detection time of Srizbi is within 5 seconds and about 4 and 6 minutes for Rustock and

Storm respectively. When the user is absent, all three spam worms are detected instantly,

because the detection threshold N = 1 at user absence.

To detect spam using rate based or moving average detection algorithms is straightfor-

ward. Table 4.3 compares the detection time using rate, moving average and changepoint

detection. The detection threshold equals to 1 during user absence for all three algorithms.

When user is present, the acceptable normal email rate is a = 5 emails per minute, and

the detection threshold for changepoint detection is N = 120 emails in t = 6 hours, the

threshold Tr = a+N/t ≈ 6 email per minute for rate based detection, and the threshold

for moving average detection is Tm = 1920 email per 6 hours or 16/3 email per minute

on average.

Table 4.3 shows that using the user presence information, spam detection is signifi-

cantly reduced for all three detection algorithms in the user absence case. In general, the

more aggressive the spam worm, the easier it becomes to detect it. Srizbi is detected in

much more quickly than Rustock or Storm. Comparing the detection time using the three

detection algorithms, we can see that rate based detection is the quickest. However, what

the detection time does not show is that rate based detection is sensitive to the instanta-

neous email rate. Thus, it is more likely to have false alarms than the other two detection

algorithms. If the threshold of rate based detection is set too loose so as to reduce false

positives, this will risk increasing the probability of false negatives. The moving average

detector has a wide variation in detection time which depends on the initial state when

the spam program starts execution. In the worst case, it takes about 1.5 hours to detect

the Storm worm. Changepoint detection can detect all three spam worms in a reasonable

time, and the detection is not sensitive to the instantaneous email rate.

4.3.2.1 Email Detection

We detect the sending of outgoing email is done by matching packets at the router with a

list of signatures. We experiment with SMTP and various webmail protocols. Email sent

78 CHAPTER 4. EXTERNAL MONITORING

SMTP the SMTP request command is MAIL.

The destination IP is in the set of hotmail.com server IPs,
hotmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI starts with /mail/SendMessageLight.aspx?

The destination IP is in the set of netease.com server IPs,
netease.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI ends with &func=mbox:compose

The destination IP is in the set of gmail.com server IPs,
gmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI contains &view=up&act=sm

SquirrelMail A particular HTTP request immediately after an email is sent.

Table 4.4: Rules for email detection

using SMTP protocol is relatively easy to detect, since an SMTP command MAIL indicates

the user is submitting email. Webmail interfaces are more complex. Table 4.4 summarises

the signatures we used to identify emails sent using the following four webmail protocols:

Hotmail, Gmail, NetEase, and SquirrelMail.

For webmail protocols, the destination IP is first matched with a set of possible known

servers relevant for that protocol. Next, we examine the first few bytes of packet payload

to look for a HTTP request method POST. Existence of such a request indicates that

the client is performing some webmail interaction such as submitting email, logging into

the mail server, making a request to retrieve email, requesting for the email listing, or

requesting housekeeping operations. To determine whether the client is sending an email,

different checks are carried out for different mail services. For Hotmail, we look for a URI

that starts with:

mail/SendMessageLight.aspx?.

For NetEase, the request URI ends with:

&func=mbox:compose.

For Gmail, the request URI contains:

&view=up&act=sm.

We remark that Gmail defaults to using HTTPS from late Jan. 2010 but our experiments

were conducted prior to that. However, Gmail can still be configured to simply use HTTP.

We discuss HTTPS webmail later.

The check to detect sending email needs to read the following data inside the HTTP

message for Hotmail, Netease and Gmail: 33 bytes for Hotmail; 64 bytes for NetEase;

and 80 bytes for Gmail. Hence during packet captures, the packet payload to the relevant

webserver IP addresses needs to be logged partially. Detecting email sent with Squirrel-

Mail is less straightforward as the payload is encrypted. We found that immediately after

an email is sent, there is an HTTP GET request in plain text of a large size to fetch the

listing of the current folder. These signatures enable us to identify the sending of email

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 79

reliably. Compared to a typical spam filter that inspects the email content, our method

has less privacy concerns.

To detect email when encrypted webmail is used, we examine the HTTPS traffic

destined to the webmail server. Although we cannot inspect the content of such traffic,

we know that each interaction (check for new mail, compose ...) with the webmail server

requires a one or more packets to be sent. Thus, the outgoing traffic rate, is also an upper

bound on the email sending rate. The same reasoning can also be used to rate limit the

number of emails sent.

We investigate this approach on the HTTPS traffic of Gmail. All of Gmail’s web

components (including Javascript, HTTPXML request, images, and Flash) are from

https://mail.google.com. There are no third party resources except DNS traffic. When

we interact with the Gmail interface, packets from mail.google.com are observed. We

found the packet sizes to vary from a minimum of 40 bytes to a maximum of 1500 bytes,

but each TLS record can be as large as ≈ 214 bytes.

Exceptionally large TLS records are likely part of some email. However, not all emails

contain exceptionally large packets, and piece of email may contain more than one large

packet. We did not find any clear indication of emails sent, in the Gmail’s HTTPS

traffic as sending email and certain other operations, such as checking the inbox, display

similar behavior in the HTTPS traffic. This shows that the detector might be limited

to approximating the email sending rate by the HTTPS traffic rate if no distinguishing

features can be used. We remark that the detection limit on the outgoing data rate of

HTTPS traffic will need to be more generous than the limit when unencrypted email is

used, but it nevertheless can be used as an upperbound on the email spam rate.

4.3.3 Detecting DDoS Zombie Attacks

This experiment deals with detecting zombies which carry out UDP packet flooding for a

DDos attack. In this attack, the compromised host sends out UDP packets to a victim to

consume the victim’s network bandwidth. When the user is absent, legitimate network

traffic rate is low and thus we can potentially detect the malicious UDP packet flood by

observing the traffic rate. However, there could be background processes that generate

network traffic, e.g. automated updates. Another scenario in our experiment is a legiti-

mate P2P program. Unlike the email application, a P2P program can generate network

traffic constantly even when the user is absent. Hence, it is desirable to derive another

feature, instead of the overall rate, to distinguish the UDP flood attack.

We observe that the UDP flood generates one-way traffic, whereas typical legitimate

processes generate two-way traffic. This motivates us to consider the net outgoing packet

rate pnet,

pnet = max(pout − pin, 0),

https://mail.google.com
mail.google.com

80 CHAPTER 4. EXTERNAL MONITORING

where pout and pin are the outgoing and incoming packet rate respectively. We apply

CuSum on pnet, but with a different threshold a when the user is absent and present.

In addition to pnet, we also monitor the ratio r of outgoing packets that are not

responded to,

r = pnet/pout.

We have 0 ≤ r ≤ 1 where r = 1 if the flow has only outgoing packets; and r = 0 if

pout ≤ pin. The excess of pnet over a is accumulated only if r ≈ 1.

Figure 4.4 compares the maximum net outgoing packet rate pnet and the outgoing

packet rate pout of TCP and UDP network flows when the user is present and absent re-

spectively. A flow is identified by a tuple consisting of 〈local IP, remote IP, transport protocol〉.
We do not differentiate port numbers as attackers may open multiple ports to flood the

same victim. Each flow is monitored for 10 minutes. We found this 10 minute obser-

vation window to be sufficiently long, because short lived flows last on average only 2

to 3 minutes, while flows that last for a long time are likely to have their traffic rate

stabilized within this time. Figure 4.4(a) shows the distribution of pnet and pout of 2,351

non-attack TCP flows active during user presence. Over 60% of the flows have the max-

imum pout > 10 packets a minute; whereas less than 5% of the flows have the maximum

pnet > 10. For example, in a sample flow, the maximum pout is 2,443 packets per minute,

but the maximum pnet is as low as 10 packets. Figure 4.4(b), Figure 4.4(c) and Fig-

ure 4.4(d) show the distribution of pnet and pout of 980 TCP flows active during user

absence, of 9484 UDP flows active during user presence and 1506 UCP flows active dur-

ing user absence, respectively. They show that pnet is more stable a quantity than pout

among different flows, regardless of the transport protocol or user presence.

Figure 4.5 shows the distribution of pnet for 13,620 flows. Figure 4.5(a) shows the net

outgoing packet rate is close to 0 for most flows. When the user is present, 35% of the

flows have pnet = 0; and 80% flows have pnet less than 10 packets a minute. When the

user is absent, 90% of the flows have pnet = 0. Figure 4.5(b) shows that the difference in

pnet when user is present and absent, it can be as large as 600 for some flows, so different

upper bounds of normal pnet should be used for user presence and absence and for each

flow.

From Figure 4.5(a), initializing the upper bound of normal pnet to be a = 60 packets

per minute is sufficient for most flows. Parameter a can be lowered by examining the

online traffic. To accumulate the excess of pnet over a, r must be close to 1 and we set

it at 0.95. The threshold to trigger an alarm is N = 800 packets, accumulated over 20

minutes. It ensures an attack flow can be detected if at least 2 UDP packets are sent a

second on average.

Some non-attack flows have large net outgoing packet rate. However, they do not

cause false alarms, because the outgoing packets are responded to, or r is not close to 1.

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 81

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

(a) 2351 active TCP flows during user presence

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

(b) 980 active TCP flows during user absence

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

(c) 9484 active UDP flows during user presence

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

(d) 1506 active UDP flows during user absence

Figure 4.4: Difference in the outgoing packet rate and the net outgoing packet rate (in
packets per second)

In terms of absolute value, pnet = 1278 is high, but its pout = 2, 812, making r = 0.45,

so there is 1 response in about 2 packets, the ratio is reasonable and hence the high net

outgoing packet rate is also accepted.

Figure 4.6 shows the net outgoing packet rate pnet of the attack flow under 3 different

attack scenarios. The upper bound a of normal pnet is 10 and 2 packets a minute for

user present and absent respectively. These bounds are determined from analyzing the

training data of the flow. The attack starts at the 125th minute. For the continuous

attack, pnet sharply increases to around 600. After 1.36 minutes, the alarm is triggered.

The increasing rate attack increases its attack intensity very slowly to delay detection.

This attack might not be detected if the detector adapts to the flow rate in near real

time. Our approach detects the attack in less than 18 minutes, long before the attack

reaches its peak rate. The fluctuating attack in Figure 4.6 constrains the attack intensity,

and releases attack traffic in pulses. This is to avoid detection if average traffic rate or

peak rate is used by the detector. Our approach detects the fluctuating attack within 3

minutes.

The DDoS detections using rate and moving average are also set to be relying on

82 CHAPTER 4. EXTERNAL MONITORING

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

pnet (packets per minute)

User present
User absent

a0 = 60

(a) Distribution of flow net outgoing packet rates

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

Difference in pnet

(b) Difference in the flow rates when user is present
and absent

Figure 4.5: Distribution of the maximum net outgoing packet rate pnet with 13,620 TCP
and UDP flows, each flow is observed for 10 minutes during user presence and absence

Figure 4.6: Net outgoing packet rate of the DDoS attack flow in different attack patterns

Detection Rate Moving Changepoint
Algorithm Avg (min) (min)

Continuous DDoS 1 sec 1.7 1.4

Increasing DDoS 8.3 min 17.8 17.5

Fluctuating DDoS 1 sec 3.6 3

Table 4.5: Detection time of DDoS attacks of different attack patterns

the net outgoing packet rate pnet. The threshold for rate based detection is Tr = a +

N/t, which is 50 packets per minute or equivalent to 5/6 packet a second, when user is

present. The corresponding threshold for moving average detection is Tm = 1000 packets

per 20 minutes. Rate based detection detects continuous and fluctuating DDoS attacks

immediately, since pnet of the attack flow is high. It detects the increasing rate DDoS

attack in 8.3 minutes. Depending on the initial state, moving average detects in seconds

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 83

Figure 4.7: Correlation of CPU load and CPU temperature

to minutes the DDoS attacks of different rate patterns. For continuously high rate DDoS

attack, the detection time ranges from 1 second to 1.7 minutes. For increasing rate attack,

the detection time is the longest, ranging from 15.7 minutes to 17.8 minutes. Whereas for

fluctuating rate attack, the detection time ranges from 1 second to 3.6 minutes. The result

presented in Table 4.5 shows the worst case. Because in our experiments, the detection

has observed a substantially long time of normal behavior before the commence of DDoS

attack, the detection is delayed due to the averaging behavior.

The effect of user presence information in assisting DDoS attack detection is that it

differentiates traffic rates according to user presence, giving a tighter bound on legitimate

traffic rate when user is absent, and it makes the detection more effective.

4.3.4 Detecting Misuse of Compute Resources

Bots are often recruited to invert cryptographic functions to break passwords. Inverting

such functions requires extensive computations which are distributed to the bots. To

detect such activities, we look for increases in the CPU load when the user has been

absent for a while. As CPU load is internal to the host, we rely on CPU temperature as

an indirect measurement which can be obtained by an external sensor.

Figure 4.7 shows the correlation between CPU load and temperature. The correlation

is good but we can see that there is noise and other fluctuations in the measurement.

Thus, this is an example of a sensor measurement which is imperfect and has noise.

Figure 4.8 shows the temperature when a user is present and absent. Note when the

user is absent, the temperature is around 37◦C, with less variability. We measured the

temperature during automated software update and found the temperature increase of

84 CHAPTER 4. EXTERNAL MONITORING

Figure 4.8: CPU temperature variation when user is absent and present. The user is
absent from 0 to 64,000 second; and present from 64,000 second onwards. The user is
absent left of the vertical dotted line and present to the right of the line.

 35

 40

 45

 50

 55

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
P

U
 t
e
m

p
e
ra

tu
re

Time in seconds

Game starts
Matlab starts

Cracker starts
User leave
Threshold

Figure 4.9: CPU temperature variation during various activities.

2-3◦C.

When we employ CuSum to detect the increase in CPU temperature, we can determine

the thresholds a, N and t from CPU temperatures in normal usage. Figure 4.8 shows

normal temperature variations during user presence and absence. From the observation

of Figure 4.8, we set the upper bound of system idle temperature to be a = 38.5◦C. We

set the threshold for the accumulated increase in temperature as N = 2400 in 30 minutes.

This threshold N is chosen to allow software update that increases the CPU temperature

by 2◦C and lasts for 20 minutes.5 We set a grace period of g = 10 minutes at the transition

from user presence to absence, that is, if the changepoint is detected within 10 minutes

after a user leaves, the alarm is not activated.6 For comparison, the thresholds of CPU

temperature for rate based detection is set as Tr = a+N/t = 39.83◦C, and the threshold

5Windows Update may run when the user is absent.
6The grace period is a window for the bot to perform its computation but it is only a small fraction

of the time available to the bot, so it still significantly limits the amount of computation which can be
performed.

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 85

Detection Rate Moving Changepoint
Algorithm (sec) Average (min) (min)

Game 14 11 10.4

Matlab 4 8.5 5.2

Password Cracker 2 7.1 4.5

Table 4.6: Detection time of CPU intensive activities, using rate based detection, moving
average detection, and changepoint detection (The upper bound of normal CPU temper-
ature is a = 38.5◦C, and the detection threshold N = 2400 in t = 30 mins).

Figure 4.10: Correlating attack intensity and CPU temperature.

for moving average detection is Tm = 40◦C. We note that the instantly measured CPU

temperature that our sensor outputs has granularity of degrees.

Figure 4.9 shows the temperature during various computation tasks. Table 4.6 shows

the detection time of computation intensive activities, using different detection methods.

Rate based detection detects the computation activities in seconds; moving average takes

7 to 11 minutes; while changepoint detection has a detection time that is in between. The

changepoints in temperature for playing games and running Matlab are detected 10.4

minutes and 5.2 minutes respectively after they start. Since the user is present or has just

left when the changepoint occurs, the activities are considered initiated by the user and

accepted as normal. The password cracker activity triggers an alarm 4.5 minutes after it

starts. Since the changepoint is detected when user is absent, it is considered as malicious

computation. If the malicious computation executes during user presence, it can be noted

by the user since there could be an overall system slowdown.

Although rate based detection is very quick, it is highly sensitive to false positives

and negatives. When the computation intensive programs start, this clearly causes a sub-

stantial increase in CPU workload which leads to a sudden increase in CPU temperature.

Hence, rate based detection is quick in detecting CPU activity. However, very often, non-

compute intensive programs can temporarily raise the CPU temperatures by 2◦C upon

86 CHAPTER 4. EXTERNAL MONITORING

process startup and return to normal after that. This will cause false positive for a rate

based detector. On the contrary, a moving average detector will treat sudden changes of

CPU temperature as a gradual transition of the average temperature. Thus, the amount

of time it takes to detect can vary significantly, depending heavily on the initial states.

Detection using changepoint is usually more efficient than moving average, and is more

reliable than rate based detection.

We also conducted an experiment which varies the intensity of the CPU usage. This

investigates if the CPU usage can be detected when the malware throttles its computation

at a lower rate. CPU usage is controlled as follows: for each one-second interval, the bot

computes at full speed for x seconds and then sleep for 1− x seconds, where x < 1. We

denote the CPU usage to be 100x% in Figure 4.10. We carry out the attack for 600

seconds (starts at 180 seconds and ends at 780 seconds). Note that after the attacks stop,

the temperature gradually returns to normal. For the password computation running at

100% usage, we detect the change after about 4.5 minutes. For the computation at 20%

usage, we can also detect the change using changepoint detection, if the computation lasts

for more than 20 minutes. To evade detection, the malicious computation can only further

reduce its CPU usage or shorten its execution time. Thus, our system effectively limits

the amount of malicious computation. In contrast, at 20% CPU usage, rate based or

moving average based detectors fail in detecting the misuse of computation resource. The

increase in temperature is so subtle that it is covered up by non CPU intensive programs,

even though it occupies the CPU consistently for a long time.

4.3.5 Handling Exceptions

It is important to also deal with cases where there is exceptional behavior which may

otherwise cause false positives.

4.3.5.1 Scheduled Outgoing Email

If user has a large amount of email to send, and he opts to send them while going for

a coffee break, our system supports that if the user has obtained sufficient email tokens.

The tokens to send email are obtained by directly interacting with the monitor, such as by

solving a CAPTCHA [12] or graphical Turing test to validate that it is a human request.

Several tokens can be obtained in a batch, and the user only needs to solve one puzzle

for validation.

Such a mechanism employing tokens to send emails can be adopted even when the user

is present, as a special way of requesting for additional email quota. The tokens obtained

for sending email when the user is present expire when the user goes away. Similarly, the

tokens allowing the user to send email while he is away expire when the user comes back.

The expiration mechanism reduces the opportunity for spam worms to hijack leftover

4.3. APPLYING THE FRAMEWORK TO MALWARE DETECTION 87

tokens.

4.3.5.2 Scheduled CPU Intensive Programs

We need to handle carefully the case of non-malicious programs that commonly run when

no user is present. Besides system auto-updates, these programs include nightly backup,

nightly virus scan, remote desktop and user scheduled computation. Backup and virus

scan are regular tasks. Their resource consumption can be profiled, in terms of the

start time, duration, and the increase in CPU temperature. Based on our measurement,

system backup only increases the CPU temperature by 1-3◦. Virus scan usually increases

the CPU temperature by 2-3◦. These host profiles are basis of a whitelist kept by the

monitor to suppress false alarms. Even if attacker tries to hide the malware execution by

running it at the same time as these tasks, the excess increase in temperature or duration

will still trigger the alarm.

User scheduled computations may cause irregular behavior. As the execution of sched-

uled computation can be planned ahead, the user simply declares in advance to the mon-

itor, the estimated process start time, duration and CPU load (converted to temperature

increases by the monitor). The monitor suppresses any false alarm within the specified

resource consumption. The user is advised to give a conservative estimation, for it is bet-

ter for the user to intervene if excess resources are consumed, than allowing the attacker

to free ride.

4.3.6 Security Discussion

We further discuss two security considerations.

Communication Channel In view that malware may reside in the hosts, it is impor-

tant that external sensors are able to communicate with the monitor securely so that

the hosts are unable to compromise the integrity, authenticity and confidentiality of the

communication. One solution is to have a separate private network for the sensors, e.g. a

wireless sensor network with the external sensors as the nodes. A cheaper implementation

could tunnel encrypted communication through the host but that would be susceptible to

DOS attacks if the host is compromised. The privacy requirements and the need for a sep-

arate private network fit well with wireless sensor networks equipped with multi-modality

sensors.

Knowledgeable Malware Let us consider the scenarios where (i) the hosts are com-

promised by malware, (ii) the malware knows the system architecture and the detection

algorithms, including the threshold values, and (iii) the external sensors, routers and the

monitor are not compromised. Since the malware resides in the host, it may able to

88 CHAPTER 4. EXTERNAL MONITORING

accurately derive user presence using information from, for example, the keyboard and

mouse. Based on the derived information, the malware can attempt to carry out mali-

cious activities while mimicking normal activities, in order to evade detection. However,

note that to evade detection, the malware is constrained by the detection threshold and

can only utilize resources at a low rate when the user is not present. When the user is

present, although the threshold is higher, the malware risks of being detected by the user.

For example, the user may notice the interactive response is slow on the machine. Fur-

thermore, user presence detection based on information accessible by the host is arguably

less accurate than through specifically designed external environment sensors which add

more constraints on the malicious activities.

4.4 Application to Access Control and Rate Control

Here we investigate how environment information can be useful in controlling and allo-

cating resources. A security policy may require administrators to be physically inside the

machine room to access server consoles and administrative tools. In order to mitigate

malware from sending spam email, we could implement rate control in the router or the

mail server, and the rate limit is based on user presence. In both cases, environment

information is used as a condition to access certain resources. Note that the first case is

on access control, while the second is on rate control.

4.4.1 Access Control

Our framework can be used to implement location-based access control. One location-

based access control scheme was proposed by Ardagna et al. [17] to restrict access to

certain resources based on physical location of the user. In their work, the physical

location is obtained from mobile devices, such as mobile phones carried by users. Our

framework also implements location-based access control, but in a different way. Their

work adopts a user-centric approach where the device is attached to the user and user’s

location is measured in order to figure out which resources can be accessed. We adopt a

resource-centric approach where the device is attached to the resource and user presence

is observed near the resource in order to decide whether to grant the access.

Both approaches have advantages and disadvantages. When there are more resources

than users, the resource-centric approach incurs more cost for the sensors. However, in

the scenarios we discuss, there are likely fewer resources than users or it is closer to a 1:1

ratio. A user-centric approach may not be able to determine location reliably, e.g. GPS

would not work indoors, whereas a resource-centric approach does not have to determine

location.

Our access control policy not only incorporates user presence information but also

4.4. APPLICATION TO ACCESS CONTROL AND RATE CONTROL 89

user activity information. For example, the user activity information can be “the user has

typed some keys”. Enforcement is implemented both on the host and router depending

on the type of the resource. Enforcement implemented on the host implicitly assumes

that malware is not in control of the host and the host decides the access based on

environmental information gathered by the monitor, but the malware cannot affect access

control policies at the environment level. Thus, the monitor and host cooperate, which

is different from the earlier IDS applications where the monitor operates independently

from the host. We give two access control policies to illustrate environment aware access

control:

1. The user can execute the /usr/bin/sudo program only if he is sitting at the host.

This policy is used to mitigate the problem of remote attacks - it requires that

there is a human present before the sudo operation is allowed. This policy has to

be enforced on the host. A remote attacker who does not yet have control of the

host would be prevented from performing actions which could be used to infect the

operating system.

2. The user can send email only if he is sitting at the computer and has mouse or

keyboard activity. This policy is used to prevent malware from sending email while

the user is away. Since user activity is enforced in the policy, it also prevents

sending email while the user is idle, e.g. watching a movie. The intuition is that the

user must have performed some typing or mouse action in order to send an email.

Unlike user presence, which can be thought of as being a continuous signal, mouse

and keyboard input are discrete events which may happen at time points which do

not overlap with the email sending time interval. Thus, the precise meaning of the

policy is “An email can be sent at time t if user presence is observed at that t and

there is mouse or keyboard input between [t −∆, t + ∆]”. This policy is enforced

in the router or the mail server instead of the host and thus provides enforcement

even when the host is compromised.

4.4.2 Rate Control

Previously we showed that abnormal resource usage when the user is absent can be easily

detected under several scenarios. This can be easily extended to controlling the resource

usage rate in the case of activities involving external resources. Two natural scenarios of

external rate control are:

• Shaping Network Traffic

To mitigate computers being used as bots to perform DDoS attacks, the router can

shape network traffic based on user presence information. By limiting the traffic on

flows, this becomes a form of inverse quality of service, providing reduced quality

90 CHAPTER 4. EXTERNAL MONITORING

when the user is not present. If P2P programs are being used, this would save some

network bandwidth, e.g. if the host uses Skype and becomes a Skype supernode, it

could lose its supernode status under the reduced network flow.

• Sending Email

Similarly, the emails could be simply denied when the user is absent. If the threshold

is above zero, then for both webmail and SMTP, the router can simply rate limit

the protocol. Alternatively for an SMTP server, it could quarantine email beyond

the threshold. In both cases, outgoing spam emails are rate limited possibly to zero.

The email rate can also be rate limited when the user is present. The idea is that

email is based on typing and/or mouse clicks. This data can also be recorded using

environmental sensors. The email rate can then be based on a function of the

detected keystrokes and/or mouse clicks.

The framework can make resource rate limiting policies more flexible and usable. The

idea is to have feedback if a usage is too high for a resource. External sensors can then

be used as a secure channel to request a higher resource rate. For example, a monitor on

the host can display the resource usage and warn the user if he is reaching the limit. The

user can have something as simple as a button which is pressed to function as the secure

request channel to obtain more network bandwidth or more emails. A low resolution

camera could also be employed as an out-of-band channel to the monitor where the low

resolution may mitigate privacy concerns. For example, it would be easy for the user to

give hand signals to communicate to the monitor. On the other hand, implementing such

a policy securely is difficult without the help of external environment information.

In the access and rate control application discussed above, to control the resource

utilization, essentially we need to verify whether an entity is “human”. Instead of using

external environment to infer user presence, alternatively, a CAPTCHA could be used.

Using the environment information has the advantage that the users are not interrupted

by the challenges issued by the graphical Turing test.

4.5 Related Work

If we consider a computer host to include the host, the user channel and the network

channel, then host security can be divided into: (i) software security, which ensures the

software running in the host is authentic, e.g. anti-virus [72], system call filtering [74] and

binary authentication [43]; (ii) user security, which ensures the user is authentic, e.g. pass-

word/biometric authentication, physical perimeters and surveillance camera monitoring;

and (iii) network security, which ensures the network communication is authentic, e.g.

personal firewalls [44]. Our approach to enhance host security is substantially different

from the existing designs in three aspects. Firstly, the model we propose fuses data from

4.5. RELATED WORK 91

a few channels of external environment sensors to monitor the host activity. Secondly, as

our model does not require controlling or modifying the host operating system or software,

it is able to provide some level of security even when the host is compromised, rather than

no security. Thirdly, our system detects outbound or on-host malware execution, which

complements intrusion detection.

There are a few works which correlate information from different channels to improve

host security. BINDER [31] correlates user events (user input), process events (process

creation and process termination), and network events (connection request, data arrival

and domain name lookup) to detect malware. Both our malware detection system and

BINDER correlate user presence information and system behaviour to detect malware.

BINDER uses information collected by the user’s machine, which potentially could be

manipulated by the compromised host.

The systems proposed by Gu et al. [42] and Yen et al. [111] detect botnets by analyzing

and correlating network traces. The two systems and our malware detection system use

information from the network router rather than the host in question so as to be able

to deal with the case when the host is compromised and gives false information. The

difference with our malware detection system is that we have user presence and activity

information in addition to network information.

Kumar et al. proposed a system [50, 110, 51] which continuously monitors user’s bio-

metric identity and locks up the computer if it cannot detect the correct user. Both their

system and our access control system use physical user information to provide additional

factor for authentication. There are two main differences between the two. Firstly, our

system only detects user presence information, while their system detects user’s biometric

information which is much stronger but gives less privacy. Secondly, their system runs en-

tirely in the user’s machine, thus it cannot guarantee the authentication once the machine

has been compromised.

There are many works on location-based access control (LBAC) wireless networks [17].

LBAC models assume that the user devices are mobile, their locations are tracked for

service continuity, or verified before granting access. The problem we address is different

in that we are not focused on mobile devices, instead our focus is on utilizing a combination

of environment data to enhance security, such as to detect malware on the host and to

regulate the usage of resources by the host.

There are also theoretical models which fuse information from multiple channels for

intrusion detection. Siraj et al. proposed a method [83] to fuse information using artificial

intelligence techniques. Thomas et al. proposed a probabilistic model [89] to address this

problem. Our work, on the other hand, addresses the physical sensor framework. In

terms of information fusion, we have employed a simple rule based method, however,

other methods could be adopted as well.

92 CHAPTER 4. EXTERNAL MONITORING

4.6 Conclusion

In this section, we proposed a framework that incorporates environment information in

securing host computers in a few ways: by using the environment information as an ad-

ditional source of information for malware detection, or by integrating the environment

information with existing conditions in rate-control mechanisms and access control poli-

cies. We argued that, since the sensors are “external” with respect to the host, they are

difficult to be accessed and tampered by a compromised host. Furthermore, we present

three prototype intrusion detection applications which show that coarse information on

user activities and resource usages is sufficient to provide intrusion detection even with a

compromised host. It is also useful in expressing certain rate-control and access control

policies. We have also identified a few important requirements of the sensors, in par-

ticular, the concerns of user-privacy and the need of a secure channel. Thus, we have

proposed a simple and effective framework for security enhancement which is arguably

safe against compromise by attackers.

The framework also takes advantage of the growing popularity of pervasive computing

and sensor networks. As the trend in cost of wireless multi-modality sensors is decreasing,

applications of our framework are feasible for cost-effective deployment in the near future.

Chapter 5

Visualizing System/Software

Traces

The previous chapters have showed our monitoring systems. They can generate traces

which contain valuable information on the execution of the software. The information

include internal control flow of the program as well as external interaction between the

operating system and other programs. However, the traces can be very large and also

difficult to analyze. We observed that an idle Windows system generates about 800K

events/hour using our WinResMon (Section 3.2). A busy system can generate more than

100M events/hour. Statistics [91] also show that Windows server workloads can generate

as much as 70M events/day, while an idle machine can generate about 1M events/day.

Although much of the interactions between the processes and software in the system is

contained in the trace, in practice, the detail can be overwhelming.

One way to understand very large amount of data is through visualization, which

abstracts information into a graphical form so that it can be more easily perceived by

human. In this chapter, we show two trace visualizations which visualize the traces gen-

erated by our WinResMon prototype. Throughout the chapter, we work on two types of

traces, The system trace records the interaction among the operating system and differ-

ent software. The program trace records the execution of a single program, whose level of

detail can be system call only as in WinResMon, or instruction trace (Section 2.2.8).

Section 5.1 shows our first visualization, which investigates the dependencies between

programs and binaries. Software often lives in a complex software eco-system with com-

plex interactions and dependencies between different modules or components. As we have

discussed in Section 2.1, this problem is exacerbated both by the overall system complex-

ity and its closed source nature in Windows. Even when source is available, there are still

interactions with modules which are only in binary form. The visualization uses system

traces from WinResMon and program traces from binary instruction, thus it does not need

to rely on source code. We use the following scenarios to explain how our visualizations

93

94 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

can be used to investigate various aspects of software dependencies: (i) visualizing whole

system software dependencies; (ii) visualizing the interactions between selected modules

of some software; (iii) discovering unexpected module interactions; and (iv) understand-

ing the source of the modules being used. Because of the large number of modules and

their complex dependencies, we developed a number of “zooming in” techniques including

grouping of modules; filtering by causality; and the “diff” of two dependencies.

Section 5.2 shows our second visualization, lviz, which is a visualization tool for many

different purposes including software failure diagnostics, analysing performance issues,

anomaly discovery, etc. The visualization is based on DotPlot, which compares two traces

and plot the common (or different) items. It was early used for analysing similarities in

DNA sequences [55]. lviz extends the traditional DotPlot through a number of visual

elements so that we can easily associate the visual representation with events in the trace

and identify the key events. As we will see in a number of case studies, lviz is highly

customizable can be used to look at problems across a large spectrum.

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 95

5.1 Comprehending Module Dependencies and Sharing

Software is often made up of a mix of different modules; from system components, to

software from various third parties. One’s software is then part of an eco-system of soft-

ware modules which forms a rich and complex web of relationships. System components

(usually in the form of dynamic link libraries) are also crucial and are usually needed for

a program to function.

As discussed in Section 2.1, Microsoft Windows has a very complex software module

eco-system. In addition, the usage dependency between APIs with the actual software

components delivered as binaries is usually not properly documented. Microsoft software

often makes extensive use of Microsoft software components without much documentation.

While source code may be available, it would not be available for all the relevant software

modules. Some modules are so extensively embedded in the system that they are hard to

study or understand.

This “web of dependencies” between software, means that there can be fragile and

implicit dependencies between all the software installed (past, present or future) on a

system. In Windows, this often leads to software failures when installing or uninstalling

some application. This is colloquially known as “DLL hell” [15].

In this section, our objective is to understand the usage and dependencies between

software modules (executables and DLLs) in Windows. We work purely with binaries

since source is not available for all the components. Furthermore, some software may be

written in more than one language. Even when there is source, it will still interact in

possibly complex ways with other modules which are only in binary form. We propose

two visualizations: EXE dependency graphs and DLL dependency graphs. The first

is useful for comparing several programs against each other, possibly this may include

the involvement of other processes not from those executables. The second is useful

for investigating the interactions between an executable and the DLLs used, as well as,

interactions between the DLLs themselves.

We deal with potential complexity of the visualizations in a number of ways. The

visualizations are simplified either through a compressed dependency graph or through

the simple notion of grouping by function or vendor (but other mappings are possible).

Projection gives a simpler graph giving the interactions which only affect selected modules;

while the diff operation gives the difference between two dependency graphs.

It turns out that both visualizations are simple, yet effective for achieving compre-

hension of module interactions and dependencies of realistic software on Windows. For

example, we give scenarios involving whole system usage from boot to shutdown, under-

standing strange interactions which can occur when software is installed (TortoiseSVN

modules affecting arbitrary software), sharing of modules between different browsers,

understanding module usage in terms of source of the module (vendor perspective), visu-

96 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

alizing usage of different versions of modules for networking, etc. We believe that it is a

good idea for software developers (and even users) to understand the interaction between

modules on a system. This is useful for developing and maintaining robust software.

Furthermore, the complexity of the Windows environment is such that many unexpected

interactions and dependencies can occur without the knowledge of software developers,

administrators and users.

5.1.1 Related Work

Most of the related work on software dependencies makes use of analysis of the source

code. Some of it also makes use of static and dynamic analysis of binaries. Several

works [86, 65] have been proposed to do software testing and analysis on Windows Server

2003 using software dependencies. Zimmermann et al. [112] use graph network analysis

to predict software defect rates on Windows Server 2003. Other tools [99, 100] construct

dependency graphs based on source code.

Salah et al.[77, 78] use dynamic analysis to extract views of software at different levels.

The purpose of their tool is more likely suitable for developers since their use-cases are

tailored for helping them locate areas to be changed. Their method relies on access to

the source code since they rely on instrumentation by adding code to intercept function

entry and exit points.

Our work focuses on understanding interactions of software modules, in terms of the

binaries, as a whole in Windows through various dependency graphs. We deal with

binaries and not with source code. We also deal with the more complex environment of

Windows, e.g. kernel can call user space functions, a form of callback.

5.1.2 Visualizing Software Dependencies

As discussed in Section 2.1.4, there are many kinds of binary files in Windows. We use

the term program to denote the executable, which is usually an EXE file in Windows.

Unlike Unix, Windows has many kinds of binary files containing other software modules.

A non-comprehensive list of the binary files other than EXE is as follows: DLL (dynamic

link libraries), ocx (ActiveX controls, these are commonly used by Internet Explorer), sys

(device drivers, these may be in user or kernel mode), cpl (control panel applets), acm/ax

(multimedia codecs), etc. In this section, we use the term EXE to denote the single main

executable, and the term DLL to denote binaries containing software other than the EXE.

We consider both EXE and DLL files used to be software modules.

The module dependencies are naturally visualized using a directed graph where a

directed edge from a node representing binary A to another node representing binary B

indicates that there is a dependency, namely that code in A makes use of code in B. (We

see later why there is the phrasing “node representing a binary” in Section 5.1.2.1). Given

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 97

this classification of binaries, there are three possible types of dependencies:

• EXE-DLL:

This type of dependency represents the fact that a program uses a DLL. For example,

iexplore.exe depends on mshtml.dll.

• DLL-DLL:

DLLs can have dependencies among themselves. For example, one of Mozilla’s UI

libraries xul.dll depends on the SQLite database library sqlite3.dll.

• EXE-EXE:

Programs may also depend on other programs. This arises when a process which is

an instance of program Pa creates another process which is an instance of program

Pb. We also visualize this with an edge from Pa to Pb (thicker blue edge). The label

of an edge indicates the number of times Pa creates Pb.

In this work, we are concerned with determining and visualizing these dependencies at

runtime, when the software (and there may be multiple EXEs) run. I.e. the dependencies

are based on dynamic runtime behaviours instead of the static code structure. Instead of

using a single visualization to show the three kinds of dependency together, we propose two

visualizations which are meant to serve different purposes. The first type of visualization,

called EXE dependency graph, shows the EXE-DLL and EXE-EXE dependencies. The

second type of visualization, called DLL dependency graph, shows the EXE-DLL and

DLL-DLL dependencies. The EXE-DLL dependencies are different between the EXE

dependency graph and the DLL dependency graphs, i.e. they have different definitions

and visualizations.

5.1.2.1 EXE Dependency Graph

We first define what we mean by EXE-DLL and EXE-EXE dependency in an EXE De-

pendency Graph.

Definition 1 An EXE-DLL dependency in an EXE dependency graph is when process a

running executable x loads binary y. We say that x has an EXE-DLL dependency on y.

In Windows, a binary can be loaded explicitly by the LoadLibrary() API, or implicitly

by the IMPORTS file header. Both of these lead to EXE-DLL dependencies.

Definition 2 An EXE-EXE dependency in an EXE dependency graph is when process a

running executable x creates a new process b which is running executable y. We say that

x has an EXE-EXE dependency on y.

98 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

D1

D2

D3

D4

D5

A

B

D1

D2

D3

D4

D5

A

B

Figure 5.1: Dependency graph without (left) and with (right) grouping of programs A
and B with other DLLs D1 to D5

EXE-EXE dependencies give a form of parent-child relationship. However, is not the

same as the process hierarchy graph since the process hierarchy is about processes and

the EXE-EXE dependency is on files. Furthermore, as we will see in the visualization,

there is only one node for every program and there can be cycles.

We are mostly concerned with dependencies between different executables, hence, we

omit self-loops if there is an EXE-EXE dependency between x and itself. We remark that

in Windows, process creation is achieved in the WIN32 library with the CreateProcess()

API (there is an implicit dependency that kernel32.dll relies on ntdll.dll), whereas

in Unix, a combination of the fork() and execve() system calls are used.

The EXE dependency graph visualization is motivated by scenarios when we want to

understand: (i) what various software modules have in common; and (ii) where they are

different. Furthermore, a program may depend on a number of other programs to do its

work.

The EXE dependency graph has two kinds of nodes, files which are EXEs, are denoted

by ellipses, while files which are DLLs, are denoted by rectangles (Figure 5.1). EXE-EXE

and EXE-DLL dependencies are represented by blue and black directed edges respectively.

In general, the EXE dependency graph forms a general graph rather than a DAG since

programs can mutually depend on one another (this is a generalization of a call graph to

the process level).

In a direct visualization of EXE-EXE and EXE-DLL dependencies, a directed edge

between node x and y denotes that there is the dependency between file x and file y,

e.g. see the left graph in Figure 5.1. This straightforward direct visualization is usually

too complex to be manageable as it often has too many nodes and edges simply because

there are many dependencies in Windows. For example, in a fresh Windows install, the

C:/windows/system32 directory alone can contain more than a thousand DLLs; while in

a Windows system with more software installed, there can be several thousand DLLs. A

simple program such as notepad.exe loads more than 30 DLL files.

Thus, a more effective visualization is needed. We propose a compressed dependency

graph with fewer nodes. This is obtained by grouping the DLL nodes according to the

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 99

EXEs which lead to that dependency, i.e. incoming edges to the binary file. More

specifically, Let the set of all EXEs with a dependency on DLL x be the program set

of x. We group all binaries whose program sets are the same. Figure 5.1 shows the

dependency graph without grouping (left) and with grouping (right).

Since files often come from particular directories which are either system directories

or program directories and there are different binary types, we further group files so that

the files with the same directory and same file type are in one node, e.g. label 4 in

Figure 5.2 which shows the dependencies from DLLs which match with the pathname

/windows/system32/*.dll (note that we have used the forward ‘/’ for pathnames).

firefox.exe

[/program files/mozilla firefox/*.dll]
f reeb l3 , j s3250 , mozcr t19 , nspr4 , nss3 , nssckbi , nssdbm3,

nssut i l3 , p lc4 , p lds4, smime3, sof tokn3, sql i te3 , ss l3 , xpcom,
xul

[/program fi les/mozil la f irefox/components/*.dl l]
b rowserd i rprovider , b rwsrcmp

[/windows/system32/*.dl l]
c ryptu i , dbghelp , r iched20, winrnr

/windows/sys tem32/macromed/ f lash /npswf32 .d l l

[/windows/system32/*.dl l]
iph lpapi , shdocvw, wldap32, xpsp2res

[/windows/system32/*.dl l]
advapi32 , c lbca tq , comdlg32, comres , c rypt32 , dnsapi , gdi32 ,

hne tc fg , i e r tu t i l , imagehlp , imm32, kerne l32 , mid imap, mlang ,
msacm32 , msasn1 , mscms , msc t f , ms img32 , msvc r t , mswsock ,

ne tapi32 , normal iz , n td l l , o le32 , o leaut32 , rasadhlp , rpcr t4 ,
schanne l , secur32 , se tupap i , she l l32 , sh lwapi , u r lmon, use r32 ,
use renv , usp10 , ux theme , ve r s ion , win ine t , w inmm, win t rus t ,

ws2_32, wsock32, ws2help , wshtcpip

[/windows/system32/*.drv]
msacm32, wdmaud , winspoo l

/windows / sys tem32/msc t f ime . ime

/windows/winsxs/x86_microsoft .windows.common-controls_. . . /comctl32.dl l

o p e r a . e x e

[/program fi les/opera/*.dll]
opera , spe l l check

/program f i les /opera /program/plugins /npswf32.dl l

/windows/sys tem32/ r saenh .d l l

/windows/sys tem32/psapi .d l l

i exp lo re . exe
[/program f i les / in ternet explorer /* .dl l]

cus t sa t , i eproxy

/program f i les /microsof t v isua l s tudio 9 .0 /common7/ ide /pr iva teassembl ies /microsof t .v isua ls tudio .qual i ty tools . recorderbarbho90.d l l

[/windows/system32/*.dl l]
ac txprxy, apphelp , a t l , browselc , browseui , comct l32, cscdl l ,
cscu i , davc ln t , dc iman32, ddraw, ddrawex, dx tmsf t , dx t rans ,

ieapf l t r , i e f rame, iepeers , i eu i , imgut i l , j sc r ip t , mshtml ,
ms i , ms imt f , ms l s31 , msv1_0 , msvcr71 , n tmar ta , pngf i l t ,

r asap i32 , rasman, r tu t i l s , saml ib , sensap i , shdoc lc , shg ina ,
sxs , tapi32, vbscr ip t , xmll i te

/windows/sys tem32/macromed/ f lash / f lash10c .ocx

/windows/winsxs/x86_microsoft .vc90.crt_. . . /msvcr90.dll

/windows/winsxs/x86_microsoft .windows.gdiplus_. . . /gdiplus.dl l

��
���1

1

����
2

3

�����)

4

����9
5

-5

�����9
5

Figure 5.2: EXE dependency graph of three browsers: IE, Firefox, Opera

DLL Dependency Graph We define what we mean by EXE-DLL and DLL-DLL

dependency in a DLL Dependency Graph. The DLL dependency graph is for a single

process, so in the definitions below we can assume that process a is running executable

x.

100 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Definition 3 An EXE-DLL dependency in a DLL Dependency Graph is when there is

a control transfer from code in executable x to code in DLL y. We say that x has an

EXE-DLL dependency on y.

Definition 4 A DLL-DLL dependency in a DLL Dependency Graph is when there is a

control transfer from code in DLL x to code in DLL y. We say that x has a DLL-DLL

dependency on y.

A DLL dependency graph shows how the code in DLLs depend on each other. The

motivation is that a DLL often has a certain functionality, so the graph also illustrates the

use of that functionality in an abstract fashion. Furthermore, DLLs can depend on each

other in a complex fashion which is shown by this graph. For example, DLL dependency

graph can show how a DLL can have a hidden dependency because it relies on other DLLs

for certain functionality.

The DLL dependency graph shows module dependencies during execution of a pro-

gram. In the graph, the nodes are either the single EXE or DLLs. An edge from node x

to node y represents a module or executable in x calling some code in module y. We also

call this as x uses y. Typically this means x calls a function in y. The label of an edge

(weight) represents the number of invocations, i.e. the number of calls from x to y. Note

that it is possible for DLL x to use DLL y and also for y to use x during the execution.

In this case, the edge between node x and y is bidirectional. In the visualization, we use

a thick line without any arrow. The edge weight is the sum of number control transfers

in both directions.

A direct visualization of the DLL dependency graph is often too complex, because

there can be too many binaries used during an execution. For example, Figure 5.3 shows

the graph for a small program wget. The graph has too many nodes and edges to be read.

Larger programs generate even more complex graphs, thus we need a way to reduce the

size of the graph. We use a simple idea that the visualization can be abstracted in two

ways by grouping. One way of grouping is to group binaries which have a related function

in the same node, for example, we can group Windows DLLs which deal with networking

together. Another way of grouping is to think of the source of the binary, so this could

be a way of grouping by software vendor. For example, we can also group binaries which

are from Adobe together.

The DLL dependency graph shows actual control flow dependency. The EXE de-

pendency graph, on the other hand, only shows what DLLs are loaded. Obviously, in

a DLL dependency graph, if there is a path from executable x to the node representing

DLL y (due to grouping), then there will be a direct edge in the EXE dependency graph

between x and the node representing y (due of grouping). However, an edge in the EXE

dependency graph does not imply that there is such a path in the DLL dependency graph,

simply because a DLL might be loaded but not called. It is useful to be able to tell that

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 101

mswsock

ntdl l

109

dnsap i

8

kerne l32

62

m s v c r t

2

advap i32

1 9

ws2_32

1 6

wsh tcp ip9

winrnr

2

s e c u r 3 28

wldap32

36

r s a e n h

80

p n r p n s p

66

r a s a d h l p

4

psap i

6

4

winnsi

1

9

2

50

1 0

4

90

iphlpapi
1

r p c r t 4

3 1

5 6 2 9

w g e t
1 3 1 2

n laap i

1 1

20 2

335

1 4 7 6

7 0 1

6

29

2

3

1

dhcpcsvc
1 1

6

1

2 0 7

1 4

n e t a p i 3 2

32

2 1

6

6

1

38

49

1 8

4 0 1 6

382

20

7 1

1 6

1 7 8 5

4

4

100

u s e r 3 2

3

wsock32

1 2

3

3

1

6

1

246

3

7 0 1

3

7 3
6

299

2

n a p i n s p

2 4

1 8

1 2

1

5

1 0

5

1

4 4 5

381

3

dhcpcsvc6

8

6

1

1 2

36

Figure 5.3: DLL dependency graph of wget without grouping

a DLL y is not actually called, although y is loaded. Such a DLL y is labeled with the

notation *y* in the DLL dependency graph and is not connected to any other nodes.

To further simplify the visualization, DLLs can have initialization code. So control

flow between EXE and DLLs due to initialization increases the complexity of the graph.

We allow for the visualization to ignore dependencies which arise due to initialization

which can reduce some of the edges in the graph. Note that this can lead to some nodes

being disconnected from the graph, and in some cases, those nodes will be treated as

nodes which are not called, i.e. labelled as *y*. Our visualization can choose to either

ignore DLL initialization or to take it into account.

102 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

void main (void) {

A();

B(1);

}

void C (void) {}

void D (void) {}

void A (void) {

B(0);

}

void B (int i) {

if (i) D();

else C();

}

Figure 5.4: Each function is in its own DLL

5.1.2.2 Other DLL Dependency Graphs

In addition to the basic DLL dependency graph, we developed two types of DLL depen-

dency graphs obtained through diff and projection operations.

Sometimes we want to compare two executions of the same executable or module.

For example, we want to identify which additional binaries are used when we browse a

web page with Adobe Flash versus browsing without Flash. We can then conjecture that

those additional binaries are related to the Flash component. We also want to know which

additional module invocations/dependencies are incurred by Flash. To visualize this, it

is useful to define the graph difference between the two graphs, which we call diff. The

diff of graph A and B, denoted by A−B, is essentially subtracting graph B from A. The

result is that only edges that appear in A but not in B appear in the resulting diff graph.

A DLL x which only appears in A but not in B is annotated as +x+.

Sometimes we want to focus on a specific binary - or a group of binaries. For example,

we want to know which binaries are used by the cryptography library crypt32.dll, and

correspondingly, which binaries use crypt32.dll. We want to determine not only which

binaries are directly used, but also those which are indirectly used. We propose the

projected DLL dependency graph for this purpose. In the graph projected on a set of

binaries S, only binaries that are used by S or binaries that use S either directly or

indirectly are shown. Note that this is not the same as finding connected components

containing S in the dependency graph. Instead, the projection looks at the control flow

chain during execution and selects all the DLLs which have S in its path. Since projection

removes edges from the original graph, we have the option to keep DLLs which are not

in the projection but are used (this makes sense under grouping) and we label the node

as #y#

The example in Figure 5.4 illustrates the difference between projection and connected

components in the graph. The program has five functions which are in DLL modules of the

same name. Suppose we project on A.dll. Only main.exe uses A.dll directly. A.dll uses

B.dll (directly) and C.dll (indirectly). D.dll is used by B.dll but never by A.dll at

runtime. Thus, the projection on A.dll does not contain D.dll even though it is reachable

from A.dll in the DLL dependency graph. The resulting graph is “main→A→B→C”.

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 103

5.1.3 Explaining the Visualizations

w g e t . e x e

/windows/sys tem32/wsock32.dl l

/windows/sys tem32/apphe lp .d l l

. . .

/windows/sys tem32/rasadhlp .d l l

/windows/sys tem32/wshtcpip .d l l

Figure 5.5: EXE dependency graph of wget

We illustrate the two dependency graphs on a small example, namely, the wget pro-

gram downloading an https page. Figure 5.5 shows the EXE dependency graph for wget.

wget loads 34 DLLs, but the figure only shows 4 of them for simplicity. The EXE de-

pendency graph is meant for comparing multiple EXE’s to show grouped dependencies.

When there is only a single EXE in the graph, it reduces to a single level tree. Figure 5.7,

5.2 and 5.8 are EXE dependency graphs with multiple EXEs.

[reg i s t ry]
advap i32

[kernel]
ke rne l32

ntdl l

4 1 3 1

[rpc]
r p c r t 4

7 1

[crypto]
r s a e n h

20

4 4

[crt]
m s v c r t

1

[gui]
u s e r 3 2
gdi32
usp10

3

[wge t]
w g e t

4
3

[ne twork]
dnsap i

iphlpapi
mswsock

...
wsock32

dhcpcsvc
dhcpcsvc6

winnsi
wldap32

1 3 2

340

1 2 5 5

69

80

[appcompa t]
n a p i n s p

apphelp

1

5

2 7

5

3 0 9 7

826

7 0 1

1 7 7 9

Figure 5.6: DLL dependency graph of wget grouped by functionality

Figure 5.3 shows the DLL dependency graph for wget without grouping; while Fig-

ure 5.6 shows it grouped by functionality. The edge weights are the number of control

104 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

transfers between DLLs or EXEs. As we can see, Figure 5.6 is much more compact

because the nodes have been grouped according to the function of the modules.

We manage the assignment of files to groups with a database which is used by the

visualization program. A table in the database has three fields: binary, grouping method

and group name. Each binary file is assigned to a group under each grouping method.

For example, the binary user32.dll is assigned to the gui functionality group. As there

is no single source of information for all the binaries, we mainly searched on the Internet

for information using the binary’s name. We also used the DLL’s exported functions and

file version metadata as heuristics.

For vendor grouping, the assignment of most binaries was done automatically using

the “Company” information embedded in the file version metadata. In some cases, some

binaries do not have metadata, so a manual process was used. One can also have other

and multiple mappings beyond the two which we used. In this work, we only used a

common mapping for functionality and vendor mappings in all the dependency graphs.

The grouping process as a whole is relatively static and can mostly be done once so while

some manual effort is needed to create an initial database, the database may only need

to be updated infrequently.

Figure 5.3 shows the interactions between the various DLLs used by wget. It illustrates

that a small program already gives a complex dependency graph. As such, it may be more

useful to check some specific details. Figure 5.6 gives a “big picture” of the dependencies

in wget in terms of how the various functional components interact. We see that a number

of DLLs are loaded but not used in our https download (files of the form *x*).

5.1.4 Implementation

Implementation of the visualizations entails collecting traces when binaries are loaded

and tracking of function call and return. Binary loading information is obtained using a

modified version of WinResMon [76], which makes use of a kernel driver to obtain what

binaries are loaded by a process as it runs and what child processes are created. The EXE

dependency graph is created from the WinResMon trace file into a dependency graph in

Graphviz [35] format and rendered by dot in Graphviz.

The system trace from WinResMon is very robust and allows for continuous full sys-

tem tracing if so desired. It can also trace a large portion of the system boot (Sec 5.1.5.1).

It also works with software which employs self-modifying code and other malware tech-

niques to defend against virtual machines, debuggers and code instrumentation such as

Skype. Thus, it can handle many more cases than with a more detailed instruction

instrumentation or interpretation approach, as is done with PIN below.

The DLL dependency graph is built from a runtime control flow trace from function

calls and returns during execution. We employ PIN [54] which instruments the binary

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 105

to allow monitoring of the control flow during execution of call and return instructions

when a process runs saving these events into a trace file. The trace is then analyzed to

generate a DLL dependency graph in GraphViz format.

The DLL dependency graph only needs instrumentation of the call instructions which

is straightforward. DLL projection, however, requires tracking of the control flow of both

call and return instructions. The full call/return tracking is more complex than one

would expect under Windows because one has to handle: non-local goto’s from setjmp()

and longjmp(), exception handling, kernel callbacks and multithreading. For example, a

naive implementation which matches counts of call and return instructions will fail when

a longjmp() is used since that means that some function does not return. We make use

of stack and return address matching to do this tracking.

In Windows, execution can be interrupted to switch to a new context. When exe-

cution in the new context completes, execution of the original context resumes. There

are a number of reasons why the context changes such as: asynchronous procedure call

(APC), kernel callbacks (kernel calls a user function) and structured exception handling.

Thus, context switching has to be tracked to avoid matching call and return from dif-

ferent contexts. We remark that the start of a context switch can be obtained in PIN

but not when the context terminates. Instead, termination is observed by watching the

NtCallbackReturn and NtContinue system calls. Context switching can be cascaded,

thus, we maintain the unfinished contexts in a stack.

We generate a trace file to record the call/return control flow. The trace records

events such as function calls/returns, thread creation/termination, context switching,

binary loading and system calls. This allows us to analyze the execution trace in many

ways to generate different graphs.

The DLL initialization in Windows is identified by the special DLL entry function

DllMain which is called when a DLL is loaded. To remove the control flow effect due to

DLL initialization, we remove all calls which are due to execution of DllMain.

5.1.5 Comprehending Module Dependencies in Real Software

We now give some usage scenarios which demonstrate how our visualizations make it

easier to understand the web of dependencies of software in Windows. The dependencies

shown are from programs runs in each example and show how programs and binaries used

in those runs relate to one another. The figures in this chapter are all scalable and thus

can be magnified in the PDF to see more detail and we encourage readers to do so. In this

section, the files in some nodes in the graphs are abbreviated to (. . .) to make it easier to

fit the graphs in the thesis. We use red circled numbers with arrows to point to certain

parts in the graphs so that we can refer and discuss them in the thesis. These annotations

are not part of the visualization. All the DLL dependency graphs remove dependencies

106 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

due to DLL initialization. One could choose also to see DLL initialization dependencies,

as removal would not make sense for DLLs which do significant work in the initialization.

5.1.5.1 System Boot

Figure 5.7 shows the EXE dependency graph for a boot-to-shutdown cycle for a fresh

Windows XP install. The machine was booted and automatically logged in, then logged

off, and shutdown. One might expect that the processes form a process tree but that is

not the case because some of the processes (e.g svchost, winlogon, services) start before

our monitoring tool (WinResMon) does. Looking at the big picture of the startup and

shutdown process, it can be seen that some DLLs are shared by many programs. For

example, kernel32 and gdi32 (highlighted by 6) are used by almost all programs. This

is expected since some system calls would use kernel32 while GUI programs would use

gdi32. On the other hand, some DLLs are used exclusively by one program (e.g. odbc32

8 is used only by explorer 7). This is somewhat surprising leading to the question

why odbc32, the database query interface, is used by explorer.

5.1.5.2 Comparing Web Browsers

Figure 5.2 shows the EXE dependency graph for three browsers: Internet Explorer, Firefox

and Opera. Each browser displays a YouTube page to play a video till completion.

The scenario is intended to show the dependencies of the binaries used by the three

programs with similar function but different source code base. The visualization shows

the commonalities and differences between the software modules in the three browsers.

It also shows dependencies on other software which is not part of the browser code base

and which comes in through the use of browser extensions or plugins, e.g. Adobe Flash.

This example shows the compressed EXE dependency graph with grouping. We see

that grouping makes the graph easier to visualize. Firstly, the grouped version is much

smaller in size. Secondly, it is easier to identify which binaries are shared by the same

programs. Some observations are discussed below:

• 1 , 2 and 3 show the DLLs used exclusively by Firefox, Opera and Internet

Explorer respectively. Opera does not have many of its own DLLs. On the other

hand, Firefox uses its own DLLs (in /program files/mozilla firefox) for many

features. In the case of Internet Explorer, the ownership of the DLLs are less clear

since most of the DLLs used come from the system32 directory. This may be due

to the deeper integration of Internet Explorer with Windows.

• 4 shows the common binaries shared by all three browsers. It is not surprising that

a large number of binaries are shared. This is because most of the major Win32

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 107

wmiprvse . exe

/windows/sys tem32/ncobjapi .d l l

[/windows/system32/wbem/*.dl l]
fas tp rox , wbemcomn, wbemprox , wbemsvc , wmiut i l s

/windows/sys tem32/wbem/f ramedyn .d l l

/windows/sys tem32/wtsapi32 .d l l

[/windows/system32/*.dl l]
c fgmgr32 , d iges t , msapsspc , msnsspc , msvcr t40 , p sap i , s channe l ,

secur i ty , wmi

[/windows/system32/wbem/*.dl l]
c imwin32, wmipcima

/windows/sys tem32/comct l32.d l l

/windows/sys tem32/ne tap i32 .d l l

/windows/apppatch/acgenra l .d l l

[/windows/system32/*.dl l]
m s a c m 3 2 , s h i m e n g , w i n m m

[/windows/system32/*.dl l]
c lbca tq , comres

/windows/sys tem32/xpsp2res .d l l

/windows/sys tem32/msvcp60.d l l

[/windows/system32/*.dl l]
c r y p t 3 2 , m s a s n 1

/windows/sys tem32/wins ta .d l l

[/windows/system32/*.dl l]
advapi32, gdi32, imm32, kernel32, lpk, msvcr t , n td l l , o le32,

o leau t32 , rpcr t4 , secur32 , she l l32 , sh lwapi , use r32 , userenv ,
u s p 1 0 , u x t h e m e , v e r s i o n

/windows/winsxs/x86_microsoft .windows.common-controls_. . . /comctl32.dl l

[/windows/system32/*.dl l]
dnsap i , n td sap i

/windows/sys tem32/wldap32.dl l

/windows/sys tem32/se tupap i .d l l

[/windows/system32/*.dl l]
ws2_32 , ws2he lp

svchos t . exe

1

wuauc l t . exe

1

[/windows/system32/*.dl l]
mswsock, wsock32

/windows/sys tem32/winspool .drv

[/windows/system32/*.dl l]
imageh lp , w in t rus t

[/windows/system32/*.dl l]
c lusapi , rasadhlp , resut i l s , s fc_os , winrnr

[/windows/system32/*.dl l]
a t l , hne tc fg , wshtcp ip

[/windows/system32/*.dl l]
cab ine t , mspa tcha , w inh t tp , wuaueng , wups

/windows/sys tem32/wups2 .d l l

[/windows/system32/*.dl l]
ac t iveds , ads ldpc , apphe lp , au thz , b rowser , co lbac t , comsvcs ,

dssenh , i caap i , ipna th lp , ms i , ms t l sap i , msxml3 , mtxc lu ,
ne tc fgx , powrprof , rasd lg , regapi , r saenh , sec logon , sens ,
s fc , s rsvc , sxs , te rmsrv , t rkwks, vssapi , w32t ime, wscsvc ,

wuap i , wuauserv

[/windows/system32/wbem/*.dl l]
essc l i , ncprov , r epdrvfs , wbemcons , wbemcore , wbemess , wmiprvsd ,

wmisvc

v m w a r e s e r v i c e . e x e

/windows/system32/shfolder .d l l

/windows/winsxs/x86_microsoft .vc80.crt_. . . /msvcr80.dll

/windows/sys tem32/ iphlpapi .d l l

/windows/sys tem32/ icmp.dl l

a lg . exe

spoolsv .exe

/windows/sys tem32/ne t rap .d l l

/windows/sys tem32/saml ib .d l l

[/windows/system32/*.dl l]
cnbjmon, ine tpp , loca lsp l , p j lmon, spoolss , t cpmon, tpvmmon,

tpvmw32, usbmon, win32sp l

/windows/sys tem32/spool /pr tprocs /w32x86/ tpwinprn.dl l

/windows/sys tem32/esen t .d l l

winlogon.exe

logonui .exe

1

[/windows/system32/*.dl l]
c ryp tne t , davc ln t , d rp rov , e s , kbdus , ne tu i0 , ne tu i1 , n t l anman ,

rasap i32 , rasman , sc lgn t fy , sensap i , t ap i32 , tpsvc , vmhgfs

[/windows/system32/*.dl l]
duse r , ms img32 , o leacc , shg ina

/windows / sys tem32/msc t f ime . ime

exp lore r . exe

[/windows/system32/*.dl l]
comdlg32 , mpr , msgina , odbc32 , odbc in t

v m w a r e u s e r . e x e

/windows/sys tem32/n tmar ta .d l l

s e rv i ce s . exe

1

1

�
�

6

PPq
7 �

�	

8

Figure 5.7: EXE dependency graph of the whole system

108 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

API calls are implemented in those binaries, e.g. msacm32.drv and wdmaud.drv,

are the audio drivers that all browsers use to play the video.

• 5 shows the different ways that each browser runs Flash. In Internet Explorer,

Flash is installed as an ActiveX control flash10c.ocx. Firefox and Opera both use

npswf32.dll, the Flash plugin for Netscape. We discover that the same DLL is

duplicated in different directories.

5.1.5.3 Word Processor

Figure 5.8 shows the software dependency graph for Microsoft Word (Office 2003) and

OpenOffice Writer (OpenOffice 2.4). In this test, we opened a .DOC file, i.e. a Microsoft

Word document with both programs. We describe some of the observations from Fig-

ure 5.8:

• 9 shows the main OpenOffice program swriter.exe. As OpenOffice Writer is

composed of 4 individual programs it exhibits more complex dependencies than

Word which is only a single program winword.exe.

• 10 shows the common binaries between Word and Writer. As expected, most of

the common binaries are in the system32 directory as most of the Win32 APIs are

implemented in those common binaries. We can observe that both Word and Writer

use version.dll. This DLL contains the APIs for checking the version number of

a binary. Possibly both programs use this DLL to check the operating system and

binary versions and then decide to enable or disable certain features.

• 11 and 12 show all the binaries used by Word and Writer respectively. It can be

seen that Writer uses many of its own DLLs.

• 13 shows that there are two versions of comctl32.dll (these are with different

pathnames). This is possibly related with the use of version.dll mentioned above.

Windows probably uses a different version of the same file depending on the infor-

mation provided by version.dll.

• 14 shows the Windows application compatibility DLLs being loaded. This is pos-

sibly because Windows is checking whether there are any special compatibility flags

for Writer. Some examples of such flags are running a program under an older

version of Windows and running with a lower display resolution.

5.1.5.4 Gimp

GIMP is an open source image manipulation program. Like many open source software,

it uses libraries from various sources. In this experiment, we executed GIMP without

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 109

so
ff

ic
e.

bi
n

st
cl

ie
nt

_w
ra

pp
er

.e
xe

1

/p
ro

gr
am

 f
il

es
/o

pe
no

ff
ic

e.
or

g
2.

4/
pr

og
ra

m
/m

sv
cr

71
.d

ll

[/
w

in
do

w
s/

sy
st

em
32

/*
.d

ll]
cl

bc
at

q,
 c

om
re

s,
 m

sc
tf

, m
si

m
g3

2,
 n

et
ap

i3
2,

 o
le

32
, o

le
au

t3
2,

se

tu
pa

pi
, u

se
re

nv
, u

xt
he

m
e,

 x
ps

p2
re

s

/w
in

do
w

s/
sy

st
em

32
/w

in
sp

oo
l.d

rv

/w
in

do
w

s/
sy

st
em

32
/m

sc
tf

im
e.

im
e

/w
in

do
w

s/
sy

st
em

32
/v

er
si

on
.d

ll

[/
w

in
do

w
s/

sy
st

em
32

/*
.d

ll]
ad

va
pi

32
, c

om
ct

l3
2,

 g
di

32
, i

m
m

32
, k

er
ne

l3
2,

 lp
k,

 m
sv

cr
t,

nt
dl

l,
rp

cr
t4

, s
ec

ur
32

, s
he

ll3
2,

 s
hl

w
ap

i,
us

er
32

, u
sp

10

/w
in

do
w

s/
w

in
sx

s/
x8

6_
m

ic
ro

so
ft

.w
in

do
w

s.
co

m
m

on
-c

on
tr

ol
s_

...
/c

om
ct

l3
2.

dl
l

[/
pr

og
ra

m
 f

il
es

/o
pe

no
ff

ic
e.

or
g

2.
4/

pr
og

ra
m

/*
.d

ll
]

av
m

ed
ia

68
0m

i,
ba

se
gf

x6
80

m
i,

be
he

lp
er

.u
no

, b
oo

ts
tr

ap
.u

no
,

co
m

ph
el

p4
m

sc
, c

on
fi

gm
gr

2.
un

o,
 c

pp
u3

, c
pp

uh
el

pe
r3

m
sc

, d
ep

lo
ym

en
t6

80
m

i.u
no

,
de

pl
oy

m
en

tm
is

c6
80

m
i,

dn
d,

 e
m

se
r6

80
m

i,
fi

le
ac

c,
 f

il
te

rc
on

fi
g1

,
fs

st
or

ag
e.

un
o,

 f
tr

an
sl

, f
w

e6
80

m
i,

fw
i6

80
m

i,
fw

k6
80

m
i,

fw
l6

80
m

i,
fw

m
68

0m
i,

go
68

0m
i,

gu
es

sl
an

g6
80

m
i,

he
lp

li
nk

er
68

0m
i,

i1
8n

is
ol

an
g1

m
sc

,
i1

8n
po

ol
.u

no
, i

18
nu

til
m

sc
, i

cu
dt

36
l,

ic
ui

n3
6,

 ic
uu

c3
6,

j6

80
m

i_
g,

 jv
m

ac
ce

ss
3m

sc
, j

vm
fw

k3
, l

da
pb

e2
.u

no
, l

ib
cu

rl
,

lib
db

42
, l

ib
te

xt
ca

t,
lib

xm
l2

, l
ib

xs
lt,

 ln
g6

80
m

i,
lo

ca
le

be
1.

un
o,

lo

ca
le

da
ta

_e
n,

 m
cn

tt
yp

e,
 m

sc
i_

un
o,

 m
sv

cp
71

, n
sl

da
p3

2v
50

,
ol

ea
ut

ob
ri

dg
e.

un
o,

 p
ac

ka
ge

2,
 p

ur
pe

nv
he

lp
er

3m
sc

, r
ef

le
ct

io
n.

un
o,

re

g3
, s

al
3,

 s
al

he
lp

er
3m

sc
, s

ax
.u

no
, s

b6
80

m
i,

sf
x6

80
m

i,
so

t6
80

m
i,

sp
el

l6
80

m
i,

sp
l6

80
m

i,
sr

tr
s1

, s
tl

po
rt

_v
c7

14
5,

 s
to

cs
er

vi
ce

s.
un

o,

st
or

e3
, s

vl
68

0m
i,

sv
t6

80
m

i,
sv

x6
80

m
i,

sw
68

0m
i,

sw
d6

80
m

i,
sy

sd
tr

an
s,

 s
ys

m
gr

1.
un

o,
 tk

68
0m

i,
tl

68
0m

i,
uc

b1
, u

cb
he

lp
er

4m
sc

,
uc

pe
xp

an
d1

.u
no

, u
cp

fi
le

1,
 u

no
xm

l6
80

m
i,

un
sa

fe
_u

no
_u

no
,

up
da

te
fe

ed
.u

no
, u

pd
ch

k.
un

o,
 u

tl
68

0m
i,

uu
i6

80
m

i,
vc

l6
80

m
i,

vo
s3

m
sc

, x
cr

68
0m

i,
xo

68
0m

i,
xs

to
r

[/
w

in
do

w
s/

sy
st

em
32

/*
.d

ll]
fa

ul
tr

ep
, m

pr
, p

sa
pi

, w
in

st
a,

 w
s2

_3
2,

 w
s2

he
lp

, w
so

ck
32

, w
ts

ap
i3

2

/p
ro

gr
am

 f
il

es
/o

pe
no

ff
ic

e.
or

g
2.

4/
pr

og
ra

m
/u

w
in

ap
i.d

ll

so
ff

ic
e.

ex
e

1

/w
in

do
w

s/
sy

st
em

32
/s

hi
m

en
g.

dl
l

sw
ri

te
r.

ex
e

1

/w
in

do
w

s/
sy

st
em

32
/a

pp
he

lp
.d

ll

w
in

w
or

d.
ex

e

[/
pr

og
ra

m
 f

il
es

/c
om

m
on

 f
il

es
/m

ic
ro

so
ft

 s
ha

re
d/

of
fi

ce
11

/*
.d

ll
]

m
so

, r
ic

he
d2

0

/p
ro

gr
am

 f
il

es
/c

om
m

on
~1

/m
ic

ro
s~

1/
sm

ar
tt

~1
/f

na
m

e.
dl

l

/p
ro

gr
am

 f
il

es
/c

om
m

on
~1

/m
ic

ro
s~

1/
sm

ar
tt

~1
/1

03
3/

st
in

tl
.d

ll

[/
w

in
do

w
s/

sy
st

em
32

/*
.d

ll]
at

l,
li

nk
in

fo
, m

si
, m

sv
cp

60
, n

ts
hr

ui
, o

le
ac

c,
 s

xs

� � � � ��

9

�
�

�
�
�

� �)

10

10

10

X
X
XXy

11

12

BBBBM

�
�
�
�
�*

13

AAAK

X
X
X Xz

14

F
ig

u
re

5
.8

:
S

o
ft

w
a
re

d
ep

en
d

en
cy

gr
ap

h
of

M
ic

ro
so

ft
W

or
d

an
d

O
p

en
O

ffi
ce

W
ri

te
r

110 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

[o
le]

o
le

3
2

o
le

a
u

t3
2

[rp
c]

rp
c

rt4

2

[reg
istry

]
a

d
v

a
p

i3
2

1
5

9
[se

tu
p

]
m

si
m

siltcfg
se

tu
p

a
p

i

8

[sh
ell]

sh
d

o
c

v
w

sh
ell3

2
sh

lw
ap

i

2
6

7
4

[p
rin

ter]
w

in
sp

o
o

l

2
0

[p
a

n
g

o
]

lib
p

an
g

o
-1

.0
-0

lib
p

an
g

o
cairo

-1
.0

-0
lib

p
an

g
o

ft2
-1

.0
-0

lib
p

an
g

o
w

in
3

2
-1

.0
-0

[fo
n

t]
fre

e
ty

p
e

6
lib

fo
n

tco
n

fig
-1

4
1

0
3

[im
a

g
e

]
lib

b
ab

l-0
.0

-0
lib

cairo
-2

lib
p

n
g

1
2

-0
*

jp
eg

6
2

*
*

lib
rsv

g
-2

-2
*

4
8

2
2

0

[g
im

p
]

lib
co

lo
r-selecto

r-cm
y

k
lib

co
lo

r-selecto
r-w

ater
lib

co
lo

r-selecto
r-w

h
eel

...
lib

g
im

p
th

u
m

b
-2

.0
-0

lib
g

im
p

w
id

g
ets-2

.0
-0

4
7

9

[g
tk

]
in

tl
lib

g
d

k
-w

in
3

2
-2

.0
-0

lib
g

d
k

_
p

ix
b

u
f-2

.0
-0

lib
g

tk
-w

in
3

2
-2

.0
-0

lib
p

ix
b

u
flo

ad
er-p

n
g

lib
w

im
p

7
4

6
8

1

4
3

9

[g
lib

]
lib

g
io

-2
.0

-0
lib

g
lib

-2
.0

-0
lib

g
m

o
d

u
le-2

.0
-0

lib
g

o
b

ject-2
.0

-0
lib

g
th

read
-2

.0
-0

2
9

2
2

7
6

g
im

p
-2

.6
2

2
3

6
2

0

[secu
rity

]
se

c
u

r3
2

[x
m

l]
lib

ex
p

at-1
*

lib
x

m
l2

-2
*

1

1
0

1
9

7
5

[in
p

u
t]

im
m

3
2

*
p

e
n

u
sa

*
*

sk
ch

u
i*

2

[g
u

i]
c

o
m

c
tl3

2
g

d
i3

2
u

se
r3

2
u

sp
1

0
u

x
th

e
m

e
*

co
m

d
lg

3
2

*
*

m
sim

g
3

2
*

6
2

4
9

0

6
0

3
2

3

[a
tk

]
lib

atk
-1

.0
-0

1

[v
ersio

n
]

v
e

rsio
n

[c
o

m
]

c
lb

c
a

tq

1
7

2

[c
o

lo
u

rm
g

m
t]

ic
m

3
2

m
sc

m
s

*
lib

lcm
s-1

*

4

3
2

1

6
6

5

1
2

7

1

[u
se

re
n

v
iro

n
m

e
n

t]
u

se
re

n
v

1
0

[in
p

u
tm

g
r]

m
sc

tf

6

9
9

8
0

4
2

3
6

0
8

[filech
eck

er]
sfc_

o
s

*
sfc*

3
6

4
6

9
4

8
4

7
0

1
0

2
8

6
1

8

[la
n

g
u

a
g

e
]

lp
k

1
6

2
7

2
5

4

4
3

8
9

1
1

1
4

3

2
6

6

3
3

7

4

8

[a
p

p
c

o
m

p
a

t]
a

p
p

h
e

lp

4

1
3

0
9

6
8

6

6
8

1
5

3
7

9

1

2
9

7
9

5

1

3
6

[n
etw

o
rk

]
m

sw
so

c
k

w
in

h
ttp

w
s2

_
3

2

1
3

6
8

4

7

4

3

9

[c
o

m
p

re
ssio

n
]

zlib
1

1
2

6
9

[g
eg

l]
a

d
d

affin
e

b
ilateral-filter

b
o

x
-b

lu
r

...
w

rite-b
u

ffer
x

o
r

2

4
5

9
2

4
1

3
0

6

1
0

6
2

3

5
9

5
0

7
0

9
1

4
5

1

5
4

1
7

2
0

7
7

2
5

6

5
5

B BM1
5

BBBN

16
AAU

1
7

@
@R

18

-
19

F
igu

re
5
.9

:
D

L
L

d
ep

en
d

en
cy

grap
h

of
G

im
p

grou
p

ed
b
y

fu
n

ction
ality

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 111

[a
tk

]
li

b
at

k
-1

.0
-0

[g
li

b
]

li
b

g
io

-2
.0

-0
li

b
g

li
b

-2
.0

-0
li

b
g

m
o

d
u

le
-2

.0
-0

li
b

g
o

b
je

ct
-2

.0
-0

li
b

g
th

re
ad

-2
.0

-0

9

[g
im

p
]

li
b

co
lo

r-
se

le
ct

o
r-

cm
y

k
li

b
co

lo
r-

se
le

ct
o

r-
w

at
er

li
b

co
lo

r-
se

le
ct

o
r-

w
h

ee
l

..
.

li
b

g
im

p
w

id
g

et
s-

2
.0

-0
[p

a
n

g
o

]
li

b
p

an
g

o
-1

.0
-0

li
b

p
an

g
o

ca
ir

o
-1

.0
-0

li
b

p
an

g
o

ft
2

-1
.0

-0
li

b
p

an
g

o
w

in
3

2
-1

.0
-0

4
7

9

[i
m

a
g

e
]

li
b

b
ab

l-
0

.0
-0

li
b

ca
ir

o
-2

li
b

p
n

g
1

2
-0

*
jp

eg
6

2
*

*
li

b
rs

v
g

-2
-2

*

4
3

9

[g
tk

]
in

tl
li

b
g

d
k

-w
in

3
2

-2
.0

-0
li

b
g

d
k

_
p

ix
b

u
f-

2
.0

-0
li

b
g

tk
-w

in
3

2
-2

.0
-0

li
b

p
ix

b
u

fl
o

ad
er

-p
n

g
li

b
w

im
p

7
4

6
8

1

[m
ic

ro
so

ft
]

..
.

7
2

6
2

0

2
9

2
2

7
6

g
im

p
-2

.6

2
2

3
6

2
0

[f
o

n
t]

fr
e

e
ty

p
e

6
li

b
fo

n
tc

o
n

fi
g

-1

4
1

0
3

4
8

2
2

0

[x
m

l]
li

b
e

x
p

a
t-

1

4
3

8
9

2
6

7
7

7

5
9

6
0

9

[z
li

b
]

zl
ib

1
1

2
6

9

1

1
0

1
9

7
5

6
0

3
2

9
9

2
8

3
7

7
1

6
9

[g
eg

l]
a

d
d

af
fi

n
e

b
il

at
er

al
-f

il
te

r
..

.
w

ri
te

-b
u

ff
er

x
o

r
4

5

2

6
0

7

9
2

4
1

1
2

1
8

7
9

1
3

0
9

6
8

6

6
8

1
5

3
7

9

2
8

3
3

9
3

4

1
0

6
2

3

4
5

1

5
4

1
7

5
9

5
0

7
0

5
5

5
1

7
0

4
0

2
0

7
7

2
5

6

20

�
�
�*

2
1

22

F
ig

u
re

5.
10

:
D

L
L

d
ep

en
d

en
cy

gr
ap

h
of

G
im

p
gr

ou
p

ed
b
y

so
ft

w
ar

e
ve

n
d

or

112 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

[svn]
_tbl_simple.so

intl3_svn
libapr_tsvn

libapriconv_tsvn
libaprutil_tsvn

tortoisesvn
utf-8.so

windows-1252.so

[microsoft]
advap i32
a p p h e l p

a u d i o e n g
...

1 4 1 5

[firefox]
browserd i rp rov ider

b r w s r c m p
firefox

.. .
x p c o m

xul

4 4 2 2 6 4 1

[adobe]
npswf32

1 8 4 2 8 5

1 1 0 2

Figure 5.11: DLL dependency graph of Firefox grouped by software vendor

opening any files. We want to see how GIMP uses various libraries and the interactions

between them.

Figure 5.9 shows GIMP grouped by functionality while Figure 5.10 shows GIMP

grouped by software vendor. GIMP is large but quite modular. The bulk of the DLLs

used are from the GEGL, GTK and GLIB frameworks. It also uses the Windows GUI

APIs (e.g., gdi32, comctl32) extensively.

Figure 5.9 is larger than Figure 5.10 but is still understandable using the functional

grouping, e.g. gimp (15 and 20) uses the [gegl] (16 and 21) image processing

modules, which in turn uses the [gtk] (17 and 22) windowing module. The remaining

DLLs are not used very much.

Figure 5.10 is interesting because it shows that many different software vendors/providers

are used in GIMP. Microsoft is also prominent but is expected since GIMP is running on

Windows and uses the Win32 API. The presence of so many different software vendors

could also make troubleshooting difficult since it might be difficult to determine which

vendor is responsible if GIMP behaves in unexpected ways. Figure 5.10 also shows one of

the advantages of open source software, namely, reuse. The binaries belonging to GIMP

only turn out to be quite small and GIMP prefers to rely on existing frameworks like

gtk (GUI) and GEGL (image processing). From Figure 5.9, we can see that the network

module (18) is only used by the [glib] library directly and the compression module

(19) is only used by the image modules directly. This observation may simplify some

software debugging and maintenance scenarios, i.e. reducing the set of modules to be

examined.

5.1.5.5 Firefox: Plug-ins and a Surprise

Firefox allows extensions through its own plug-in architecture. Figure 5.11 shows the

DLL dependency graph of Firefox as grouped by vendor. We find a node for Adobe. This

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 113

is because npswf32 is the Flash plugin for firefox.

We discover a surprising node - the svn vendor group (shown in bold font) which is

to do with the TortoiseSvn interface to SubVersion (the version control system). Tortois-

eSvn is unrelated to either Firefox plugins or addons. Thus, one might find its presence

strange, when Firefox is being executed. The explanation lies in the way the Tortoise

shell extension behaves in Windows. TortoiseSvn injects its DLLs into the Explorer shell

process when Windows starts. When explorer runs a process, the TortoiseSvn DLLs are

also loaded into the new process. The fact that there is interaction with a module which

is not part of the Firefox can mean that a bug in that module can also affect Firefox.

This can be concern for software developers.

5.1.5.6 Adobe Flash in Internet Explorer

This scenario is to understand the interaction of Adobe Flash in the Internet Explorer

browser. The strategy used here is to compare two DLL dependency graphs, Inter-

net Explorer opening a website with flash content and Internet Explorer showing the

about:blank page since about:blank page is the most minimal webpage for Internet

Explorer, Figure 5.12 shows the difference (diff) between these two graphs. The DLLs

marked with +x+ are the extra DLLs loaded when Flash is played. Most of these extra

DLLs fall into the network 23 , multimedia 24 , DirectX 25 and Flash 26 categories.

To further investigate the interactions resulting from the Flash module, we project

the visualization on flash10c.ocx which is the Flash ActiveX control. Figure 5.13 shows

the projected graph. We can see that Flash 27 is interacting with the browser and

multimedia modules. The DLLs marked with #x# neither use flash10c.ocx nor are

they used by flash10c.ocx. In the network 28 group, we can see that wsock32 is

marked by #x# but ws2 32 is not. Windows has many network modules as shown in

the network group. Wsock32 is an older version of the winsock modules whereas ws2 32

is the newer version. This means the Flash player only uses the latest version of winsock

rather than the older version which is closer to the Unix socket API. However, the older

version is still used by some other modules because otherwise wsock32 would have been

labelled as *x*. The EXE dependency graph of the three browsers also shows that both

winsock modules are loaded by all three browsers. The difference with projection is that

projection is more precise and shows the interaction between the Flash module with the

particular network module.

5.1.6 Conclusion

The two visualizations EXE dependency and DLL dependency graphs are just two ways

to visualize software module dependency using execution traces. We can have other

different visualizations using the traces. For example, instead of using binaries as basic

114 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

[u
se

re
n

v
iro

n
m

e
n

t]
+

u
s

e
re

n
v

+

[k
ern

el]
k

e
rn

e
l3

2
n

td
ll

[n
etw

o
rk

]
+

d
a

v
c

ln
t+

+
d

n
sa

p
i+

+
d

rp
ro

v
+

h
n

e
tc

fg
...

+
w

so
c

k
3

2
+

[crt]
m

sv
c

r7
1

m
sv

c
rt

[reg
istry

]
a

d
v

a
p

i3
2

[sh
ell]

sh
d

o
c

v
w

sh
e

ll3
2

+
sh

g
in

a
+

sh
lw

ap
i

*
sh

d
o

clc*

[b
ro

w
ser]

b
ro

w
se

u
i

+
ie

p
e

e
rs

+
ie

x
p

lo
re

+
jsc

rip
t+

m
sh

tm
l

+
m

s
h

tm
le

d
+

*
b

ro
w

selc*

[secu
rity

]
+

sa
m

lib
+

+
sc

h
a

n
n

e
l+

se
c

u
r3

2

[la
n

g
u

a
g

e
]

m
la

n
g

m
sls3

1

[se
n

s]
+

s
e

n
s

a
p

i+

[lo
g

o
n

]
+

m
s

g
in

a
+

[m
u

ltim
e

d
ia

]
+

w
in

m
m

+

[o
le]

o
le3

2
o

le
a

u
t3

2

[w
in

scrip
th

o
st]

+
v

b
sc

rip
t+

[d
irectx

]
+

d
d

ra
w

+
+

d
d

ra
w

e
x

+
+

d
x

tm
s

ft+
+

d
x

tra
n

s+
+

*
d

c
im

a
n

3
2

*
+

[im
a

g
e

s]
+

im
g

u
til+

+
p

n
g

filt+

[g
u

i]
c

o
m

c
tl3

2
g

d
i3

2
sx

s
u

se
r3

2
u

x
th

e
m

e
+

*
c

o
m

d
lg

3
2

*
+

[flash
]

+
fla

sh
1

0
c

+

[v
ersio

n
]

+
v

e
rsio

n
+

[rp
c]

rp
c

rt4

[co
m

]
+

a
tl+

c
lb

c
a

tq
cscu

i
*

co
m

res*

23

� � ��

2
4

X
X
XXz

25

X
X
XXz

26

F
ig

u
re

5.12:
D

iff
o
f

D
L

L
d

ep
en

d
en

cy
grap

h
of

In
tern

et
E

x
p

lorer
w

ith
F

lash
an

d
w

ith
ou

t

5.1. COMPREHENDING MODULE DEPENDENCIES AND SHARING 115

[o
le

]
o

le
3

2
o

le
a

u
t3

2

[c
rt

]
m

sv
c

rt
#

m
s

v
c

r7
1

#

1
6

2

[r
eg

is
tr

y
]

a
d

v
a

p
i3

2

2
5

9

[g
u

i]
g

d
i3

2
sx

s
u

se
r3

2
u

x
th

e
m

e
#

c
o

m
c

tl
3

2
#

*
co

m
d

lg
3

2
*

2
9

[l
a

n
g

u
a

g
e

]
m

la
n

g
m

sl
s3

1

3

[s
ec

u
ri

ty
]

sc
h

a
n

n
e

l
se

c
u

r3
2

#
sa

m
li

b
#

4
7

[v
er

si
o

n
]

v
e

rs
io

n

[c
o

m
]

c
lb

c
a

tq
#

c
sc

u
i#

*
co

m
re

s*

3
0

8

8
4

6
6

2

[m
u

lt
im

e
d

ia
]

w
in

m
m

[n
et

w
o

rk
]

u
rl

m
o

n
w

in
in

et
w

s2
_

3
2

#
d

a
v

c
ln

t#
#

d
n

s
a

p
i#

..
.

#
w

sh
tc

p
ip

#
#

w
so

c
k

3
2

#
1

9
6

[f
la

sh
]

fl
as

h
1

0
c

1
5

5
8

5 4

1
2

6
6

4
6

1
5

2
2

2

3

[s
h

el
l]

sh
d

o
c

v
w

sh
e

ll
3

2
sh

lw
ap

i
#

s
h

g
in

a
#

*
sh

d
o

cl
c*

1
4

7

6
8

1

1

4
2

4

9
2

2
5

2
7

3

[a
tl

]
a

tl

[b
ro

w
se

r]
b

ro
w

se
u

i
ie

x
p

lo
re

js
cr

ip
t

m
sh

tm
l

#
ie

p
e

e
rs

#
#

m
s

h
tm

le
d

#
*

b
ro

w
se

lc
*

1
0

[d
ir

ec
tx

]
d

d
ra

w
d

d
ra

w
e

x
d

x
tm

sf
t

d
x

tr
a

n
s

*
d

ci
m

an
3

2
*

1
2

3
4

1
7

5
4

1
8

0
1

9

5

4
6

0
2

2
6

5
9

7
8

1
3

1
7

8
4

5

[w
in

sc
ri

p
th

o
st

]
v

b
sc

ri
p

t

4
7

1
9

9
0

5
5

7

2

1
1

3
0

8

2
4

1
2

1
0

3
7

1
0

7
4

2
4

0

2
4

1
3

7

4
0

2
7

� � ��28

F
ig

u
re

5.
13

:
P

ro
je

ct
io

n
of

th
e

D
L

L
d

ep
en

d
en

cy
gr

ap
h

of
In

te
rn

et
E

x
p

lo
re

r
on

F
la

sh

116 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

units, we can use functions to visualize more fine grain behaviour. This makes the graph

much more complex because there are many more functions than binaries. We can use

similarity grouping, diff and projection to “zoom in” on specific regions. Because we

utilize instrumentation of binaries, we can also visualize other runtime properties of the

code. For example, visualize the CPU time used by different modules, and scale the nodes

in the graph so that the area of each node is proportional to the time (or instructions)

spent in the binaries represented by the node.

Although we have focused on visualizations, the traces which are collected contain a

wealth of information. A workflow for software comprehension can also make use of the

trace data in addition to the visualization. The trace data is at a fine grain level but is

hard to understand. Thus, the visualization gives a roadmap for investigating the traces.

We have demonstrated that software dependencies in Windows are quite complex even

when looking at the coarse grain level of software components packaged into binaries and

executables. Our tools give an effective way of extracting and visualizing the software de-

pendencies and interactions between binaries. We show that even with the complexity of

actual Windows software, it is possible to analyse whole system interaction, understand

how modules are used and shared, and also discover potential unexpected or unusual

interactions/modules. Such an understanding is also useful for software developers, sys-

tem administrators and also users, to manage the software ecosystem on Windows and

to deal with the problems which arise from module updates and potential “DLL hell”

repercussions.

Module dependency visualization is not limited to Windows, as dynamically linked

libraries are common in many operating systems. The idea can also be extended to

interpreted languages such as Java to study the dependencies of classes.

5.2. VISUALIZING WINDOWS SYSTEM TRACES 117

5.2 Visualizing Windows System Traces

Software is increasingly complex with many interactions with other software and the op-

erating system. The previous visualization shows the complexity in the aspect of module

dependency. Other factors include persistent state interaction, inter-process communica-

tion, networking, etc. This complicates understanding software/component behavior and

diagnosing problems or performance. As discussed in Section 2.1, the close source nature

of Microsoft Windows (or simply, Windows) exemplifies this trend. Suppose our task is

to understand/diagnose/debug some software on Windows. Ideally, system/software doc-

umentation or source code analysis would give the answer. In practice, however, this may

not be workable either due to lack of source or overall system complexity being too high.

An orthogonal approach to address this issue is by examining detailed system behavior.

Recently, there are a number of monitoring systems which give detailed system traces

such as DTrace [26] for Solaris, DProbes [63, 22] for Linux and Flight Data Recorder [91]

and WinResMon (Section 3.2) for Windows. However, as shown earlier in this chapter,

the system traces can be very large and also difficult to analyze.

We propose lviz, a visualization tool for understanding such large and complex system

traces. lviz has a number of visualizations. In the thesis, we focus on the visualization

which we call VDP. It consists of a number of inter-connected sub-visualizations: an

extended DotPlot; two Axis Histograms; and one or more barcodes. The VDP can be

flexibly configured for different purpose. In Section 5.2.2.2, we show the design and

configurations of VDP. In Section 5.2.3, we show that the prototype of lviz is efficient

and can handle large system traces with real-time response. For example, a trace of size

120MB with 558K events is loaded in under 3 seconds and after that it can be interactively

displayed/zoomed in around 0.5 seconds. The VDP can be used on different traces and

for different purpose by using different configurations. In Section 5.2.4, we use some case

studies to show that VDP can be used for solving performance problems, program failure

diagnosis and finding execution patterns/anomalies.

5.2.1 Related Work

SeeSoft [34] visualizes general log files by zooming out lines of text logs and coloring

them by message types. SeeLog [33] visualizes Unix accounting trace files by plotting

events by time and process. SeeLog can be viewed as a restricted variant of the VDP

visualization. Magpie [20] is a performance analysis tool designed for web servers. It uses

collected system events including file I/O, computation, thread scheduling and network

to analyze the resources usage of HTTP requests. BootVis [1] is a visualization tool to

tune Windows booting plotting resource use versus time.

Bodic et al. [24] propose another visualization tool for web servers. It shows frequency

of different HTTP requests and highlight anomalies that may indicate site failures. VDP

118 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

on the other hand is a general trace visualizer but it can be used for similar diagnosis (see

Section 5.2.4.5). TuningFork [19] is a trace analysis tool for real-time systems including

visualizing unsatisfied real time constraints in real-time systems.

EVolve [95] is a visualization framework for understanding Java program by visual-

ization execution traces from the JVM and has a DotPlot visualization. However, VDP

uses an extended DotPlot (see Section 5.2.2.2) and generates different visualizations (see

Figure 5.23 on page 134) depending on its configuration. lviz is designed to scale for

large traces and to be efficient to meet user interaction needs. Voigt et al. [92] propose

a visualization method which correlates class method invocation, object invocation and

time. To correlate methods and objects, it places objects and methods on each axis and

draw dots to represent the method-access-object relationship. Cornelissen et al. [30] pro-

pose two visualizations, massive sequence and circular bundle views, to examine execution

traces. The massive sequence view visualizes a trace by placing each event as rectangles

according to its invoking software module (X-axis) and time (Y-axis). The circular bundle

view visualizes software module interactions by arranging modules into a tree and draw

two-module interaction as a curve along the path in the tree. These visualizations are

different as they do not compare events nor work with closed source software.

5.2.2 System and Visualization Design

We describe the design of lviz, a system for visualizing Windows system traces. We

emphasize that the visualization proposed is not specific to Windows as traces from other

operating systems can be used as well. lviz can be easily adapted to read traces in

other format, which make it friendly to other monitoring systems such as DTrace and

SystemTap.

5.2.2.1 System Traces

Our objective is to visualize detailed system traces. In the rest of the section, we will

shorten system trace to simply trace. Our traces are obtained with WinResMon (Sec-

tion 3.2) which captures all operations performed by the Windows kernel from all pro-

cesses.

A WinResMon trace consists of four classes of events due to operations on processes,

files, network and the registry. An event contains the following properties: (the example

events in Figure 5.14 use the ordering below)

• PID/TID is the ID of the process/thread which performs the operation.

• Program name is the pathname of the program binary.

• Group and User name of the process.

• Start and end times of the event.

• Operation type is specific to the event. Some examples are given below.

5.2. VISUALIZING WINDOWS SYSTEM TRACES 119

1268 1732 "C:\WINDOWS\System32\svchost.exe" "NT AUTHORITY\SYSTEM"
1098307213586 1098307319878 file create "\Device\HarddiskVolume1\WINDOWS\
Prefetch\NET1.EXE-029B9DB4.pf" access=0x120089, share=0x0, attr=0x0, cd=0x1,

co=0x60, si=0x1 STATUS SUCCESS

204 960 "C:\WINDOWS\system32\cmd.exe" "GROUP\USER" 1101551207684

1101551216008 reg queryvalue "\Registry\Machine\Software\Policies\Microsoft
\Windows\Safer\CodeIdentifiers" handle=0x78, name="LogFileName", t=0x0, l=0

STATUS OBJECT NAME NOT FOUND

Figure 5.14: Two examples of events

• Operation parameters: The semantics depends on the operation type, e.g. re-

source pathname, file access flags, etc.

• Return value from the operation is either success or an error number explaining

why the operation failed.

• Call stack trace of the process which generated the event. In this work, we use the

deepest function call from the corresponding executable, i.e. excluding functions in

libraries, but one could also use the full stack trace. This information is useful to

associate a program point in the application code with the event.

Examples of events are file operations, e.g. file create, file close and file read; registry

operations, e.g. reg setvalue; process operations, e.g. thread create; and network oper-

ations, e.g. socket bind. Pathnames of files and registry keys are recorded as operation

parameters. Additional information depending on the specific operation is also recorded.

For example, file create, which represents both opening an existing file and creating a

new file, the operation parameters include the pathname of the opened or created file,

access flags, file attributes, creation disposition (create new, open existing, etc.) and

other Windows operating system specific information. Figure 5.14 shows two examples

of events. WinResMon can optionally capture the data associated with an event. (see

Section 5.2.4.5 which uses network packet data)

5.2.2.2 Trace Visualization

Visualizations for traces need to be able to compress a lot of detail and yet be usable for

illustrating many different kinds of system behavior ranging from understanding system

administration to debugging to performance evaluation. In order to meet such a wide

range of needs, we will see that the visualization should be adaptable and configurable to

show specific aspects for a given purpose. It must also be able to scale at different detail

levels.

Our visualizations use color for greater visual bandwidth as well as customization

flexibility. We support both RGB and CMY color modes. The RGB color mode dis-

plays events on a black background and is appropriate if the visualization is displayed on

monitors to make it easy to see events. For printed output, a CMY mode, which uses

120 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Figure 5.15: Elements of VDP: axis histograms (Region 1,2); barcodes (3,4); and extended
DotPlot (5). This figure is same as Figure 5.16 with the added annotation.

subtractive color, tends to be easier to see. In the thesis, being in print format, we use

the CMY mode and try to minimize the use of yellow due to its closeness to white.

A binary DotPlot is a black & white image where each axis denotes a sequence of

events. The color of a dot (or pixel) at position (i,j) is black when the two events

at position i and j from the corresponding sequence match, and white otherwise. The

rationale for a binary DotPlot is to visualize event similarity between two sequences. It has

been used for comparing DNA sequences [55], visualizing the structure of music [39] and

investigating data formats and binaries [46]. DotPlots can be used to do self-comparison

by comparing a sequence with itself or to compare two different sequences.

Here, we develop a novel DotPlot based visualization which is extensible and can be

configured for many uses. Our visualization, which we call VDP, consists of a number

of sub-visualizations: an extended DotPlot (or simply, DP in the rest of the section), two

Axis Histograms, and some barcodes. Figure 5.15 gives an overview of all the elements:

(i) the DP (region 5); (ii) the x-axis histogram (region 1) and y-axis histogram (region 2);

and (iii) the x-axis barcodes (region 3) and y-axis barcodes (region 4). A larger diagram

of the same visualization highlighting various details is in Figure 5.16.

An important aspect of the VDP is that it is intended to be extensively customizable.

Thus, it gives rise to a family of visualizations. In Section 5.2.4, we show how to apply

and customize the VDP for different purposes. The elements of a VDP as follows.

DP: Our DP visualization extends a binary DotPlot in a number of ways. Since a

trace can be long, several events are aggregated together into a single pixel in a window.

DotPlots which contains aggregated events are drawn as grayscale images which are then

colored using the DP coloring rules for customizing the appearance. Normalization or

histogram equalization (see Section 5.2.3) is applied on the image so that the color in-

5.2. VISUALIZING WINDOWS SYSTEM TRACES 121

Figure 5.16: Self-comparison event-ordered VDP of xcopy copying 8 files of different sizes
with the following configuration rules:

DP match : operation + parameter (pathname)
DP color : magenta → source; cyan → destination;

black → other
Bar1 color : black → file operation
Bar2 color : black → source/destination files
Bar3 color : black → registry operation

tensity fits in a displayable range. Our extended DotPlots (see region 5 in the center of

Figure 5.15) can be drawn with event-ordering, time-ordering or time-duration-ordering.

In an event-ordered DP, the events are plotted in sequence as they occur in the trace. In

a time-ordered DP, the events are plotted in time order according to the start time of the

event. Furthermore, each pixel in the visualization can contain several events as there may

be many events occurring close to each other. Time-ordering differs from event-ordering

in that it can be sparse and allows empty gap if there are no events in a particular time

interval. Furthermore, in event-ordering, the number of events in a pixel is constant,

whereas in time-ordering, some pixels do not contain any event while other pixels may

have many events. In a time-duration-ordered DotPlot, the events are plotted in a similar

way to time-ordering except that the events will be plotted as a rectangular region with

dimensions corresponding to its duration obtained from the corresponding events on each

axis. Time-ordering, on the other hand, plots an event as a single dot.

DP Matching Rules: Unlike a binary DP, our extended DP can look quite different

depending on how matching and coloring rules are specified. The DP matching rule spec-

ifies whether two events match. The specification allows for matching on the properties

of an event, e.g. PID/TID, program name, operation type, etc. (see Section 5.2.2.1)

122 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

It essentially allows any combination of information about the event in the trace. For

example, matching based on program name + operation type + resource name will give a

different visualization from just matching on resource name alone.

DP Coloring Rules: The DP matching rule is used for defining how a DP matches

an event. Given an event which matches the DP matching rule, the DP color rule specifies

what color to display for that event. There can be multiple DP color rules, we use the

first matching rule and there is also a default color if no earlier rules match. A binary

DotPlot, on the other hand, is only in monochrome.

The visualization can be further customized by specifying the colors so as to combine

multiple colors taking into account either RGB or CMY color modes. This gives flexibility

to emphasize or hide any kind of information in the trace. For example, in the RGB mode,

the DP color rules can specify that events which are file operations are colored red, registry

operations to be blue, and network operations to be green. Note that the DP color rule

matches independently of the DP matching rule, e.g. the DP match can be on operation

type while the DP color rule could be on program name.

When combining colors, it is easier to use a RGB mode which is more intuitive.

However, in the thesis, CMY is used on all figures. One way is to use CMY as 3 orthogonal

dimensions which would allow 3 different properties to be visualized. For example, a cyan

pixel in a DP could mean the events all have property A and an adjacent magenta pixel

would be a different property B. Intersection or union of properties, e.g. property A and

B, allows cyan and magenta to combine giving blue. Another way is to simply color

properties using custom colors. Our examples mainly use the first method.

Barcodes and Barcode Coloring Rules: The barcode sub-visualization acts as a

one-dimensional ruler for the trace on the associated axis, hence its name. It visualizes

characteristics of events in a single trace. Region 3 and 4 in Figure 5.15 show X and Y

axis barcodes. The purpose of the barcodes is to visualize multiple aspects of the trace

and allow that to be correlated to the associated event in the DP.

Barcodes are colored using barcode coloring rules similar to DP coloring rules. For

example Figure 5.16 (see Section 5.2.4.1) colors the barcode by resource type. Multiple

barcode coloring rules can be specified. Since barcodes are useful to show properties of

the events, there can be more than one barcode. Each barcode has its own set of coloring

rules, (see Figure 5.16) which has 3 different barcodes stacked on the X and Y axis. In the

thesis, we number the barcode from inside (top or left depending on the axis) to outside,

i.e. barcode 1 means the inner most barcode.

Axis Histograms: The axis histogram sub-visualization serves as another kind of

ruler for each of the traces on the X and Y axis, see region 1 and 2 in Figure 5.15,

providing time-event correlation information to the traces. It consists of ticks (small blue

square on the outer edge) representing unit time intervals and an associated histogram.

Ticks are evenly distributed in a time-ordered or time-duration-ordered VDP but can be

5.2. VISUALIZING WINDOWS SYSTEM TRACES 123

irregularly distributed in an event-ordered VDP, since there may be many or few events

within a unit time interval. Closely spaced ticks in an event-ordered VDP mean low event

frequency.

The histogram component (see region 1 in Figure 5.16) is used to visualize the density

of events or time of the trace. The histogram in a time-ordered or time-duration VDP

represents the number of aggregated events. In an event-ordered VDP, it represents the

total time taken (recall that an event has start and end time) on the aggregated events.

5.2.2.3 A VDP Example

Figure 5.16 illustrates the event-ordered VDP of a trace of running xcopy to copy two

directories with files of different sizes. The VDP uses self-comparison of the xcopy trace

with the DP matching rule on operation and parameter (resource pathname). The VDP

configuration consisting of a DP ordering, DP matching rule, DP coloring rules and bar-

code coloring rules is given in the caption of the figure. The non-white regions inside the

DP show when xcopy is using the same resource with the same operation and parame-

ter. Its color represents the resource. Each blue square is the aggregated visualization

effect from copying a file (see Section 5.2.4.1). The file sizes are apparent from the sizes

of the small (region 3 and 5) and big (region 4 and 6) blue squares. We can see that

file operations are performed at the start (barcode 1), but those files are neither source

nor destination files (barcode 2). Registry operations are performed relatively quickly

compared to file operations, because the blue ticks in the histogram above region 2 are

spaced further apart than the blue ticks above region 4 and 6. Further discussion on this

example is in Section 5.2.4.1.

The DP user interface allows exploration of the trace by zooming in This allows us to

see quite different detail from an aggregated view. We can see the effects of visualizations

at different scales, Figure 5.16 shows the aggregate behavior which is a different picture

from the magnified view in Figure 5.17 which shows the individual file operations in xcopy.

Zooming creates a new window as one may want to see many different detail levels at

the same time. Clicking inside the DP selects a pixel to give more details of the events

aggregated in that pixel. When the mode is event-ordering, the events displayed are those

events contained in that pixel. Whereas with time-ordering or time-duration-ordering, the

events are those events which intersect in time with the time interval represented by that

pixel.

5.2.3 VDP Implementation and Scalability

There are two important challenges in implementing VDP in lviz. Firstly, traces are

usually much larger than the size of the screen. The challenge is to be able to still have

usable visualizations given that there will not be sufficient pixels to show every event.

124 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Figure 5.17: The alternate zoomed-in view of a blue region in Figure 5.16 showing reading
(magenta) and writing (cyan) operations.

Figure 5.18: Clockwise from top-left: histogram equalization, γ = 1, γ = 1/4 and γ = 4.

Secondly, rendering a VDP on large traces needs to be sufficiently fast to meet interactive

UI needs (i.e sub-second response). Finally, our implementation takes advantage of par-

allelism given the trend in multi-core processors. In this section, we describe an effective

and efficient implementation which meets these challenges.

Consider a trace with N events and a display window size with width W and height

H. For large traces, e.g. N = 106, clearly N � W and N � H, and a binary DotPlot

with two traces of N = 106 corresponds to an image with 1012 pixels (terrapixel). Our

VDP visualization aggregates multiple events into a single pixel, normalizing it to RGB

intensities between 0 . . . 255. Unlike a digital photo, the intensity of a pixel could be

up to N , since aggregating events could end up with all of them in a single pixel which

could easily exceed 255. lviz provides two options to deal with this issue by borrowing

ideas from image processing. The first is to simply normalize the values. We extend

normalization to include gamma correction, i.e. given an input value x, the output value

y is mapped using the equation y = x1/γ (pure normalization corresponds to γ = 1.0).

The second option is histogram equalization which is a well-known technique in image

processing.

5.2. VISUALIZING WINDOWS SYSTEM TRACES 125

Figure 5.18 shows our xcopy example visualized with various normalization options.

In this example with an event-ordered VDP, the intensity of a pixel shows how many

matching events there are in the DP. We see that histogram equalization (the default) is

usually effective in allowing matching burst events (high intensity) to seen together with

spread out events (low intensity). While smaller γ shows details of the high intensity

events, larger γ shows low intensity events.

Most of the cost of rendering a VDP has to do with various forms of matching:

applying DP matching, DP coloring and barcode rules. We can optimize the rendering

to reduce matching costs by pre-processing the traces. lviz performs the pre-processing

steps when reading the traces. Subsequent visualizations such as zooming in then make

use of the pre-computed results of the pre-processing phase.

An event in the raw trace is simply a string. The pre-processing steps involves reducing

an event to a digest value as a more compact representation for DP matching to operate

on and also pre-computing the results of various coloring rules. Each event is represented

as a hash value which we call a digest. The digest helps to speed up event comparisons as

comparing digest values of events is much faster than the corresponding string comparison,

e.g. string matching is slow as the strings of an event property often have a long common

prefix such as absolute pathname. The digest of an event is computed based on the DP

matching rule that specifies how to tell if events are considered similar (Section 5.2.2.2).

For example, if the matching rule is program name + operation type + resource name,

the digest of the event is a hash on those three properties of the event in that order. We

will refer to all the events having the same digest under the set of DP matching rules as

a digest group. Thus, the number of digest groups in a trace is equal to the number of

distinct hash values. Note that an event can only belong to one digest group and the hash

function should be good enough to be effectively collision free so that two events which do

not match (according to the DP matching rule) are not hashed to the same digest group.

It is common that the pattern in a coloring rule only needs a string match. Since there

can be many color rules, we want to avoid applying to the matching events one rule at

a time. We instead employ the Aho-Corasick’s string matching algorithm [13] to compile

all the rules (the string patterns) into a single automaton. This allows us to identify the

color in a single pass rather than multiple passes for each rule.

The two pre-processing steps above are performed once and cached in memory for later

use when rendering the VDP. The VDP rendering has to be fast as it is used interactively

for real-time browsing which entails zooming in on a region within the DP. As the number

of events in a trace, N , grows in order of hundreds of thousands, the naive DP Algorithm 1

takes O(N2) becomes infeasible. To simplify our illustration, we assume both logs have

the same number of events. We developed a new DP rendering algorithm which scales

well to large traces.

The core of new DP rendering algorithm is based on two observations. The first

126 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Input: LX [0 . . . N − 1] as log X; and LY [0 . . . N − 1] as log Y
Output: 2D array S[0 . . .W − 1, 0 . . . H − 1] as pixel intensity

zero fill S;
for x← 0 to N − 1 do

for y ← 0 to N − 1 do
if LX [x] matches LY [y] then // based on DP matching rule

S[xW/N, yH/N] + +
end

end

end

Algorithm 1: Naive O(N2) Algorithm

Input: LX [0 . . . N − 1] as log X; and LY [0 . . . N − 1] as log Y
Output: Associative array DX [d] whose key d is the digest of an event and value

is a set of integers representing indexes of events in LX whose digests are
d. Similarly for DY [d].

for x← 0 to N − 1 do
d← digest(LX [x]) ; /* digest() calculates the digest based on the DP

matching rule */

insert x to the set DX [d]
end
for y ← 0 to N − 1 do

d← digest(LY [y]);
insert y to the set DY [d]

end
Algorithm 2: Preprocessing step to get digest group

observation is that for each matching event, a certain intensity value can be added incre-

mentally. Two events are considered a match if they are in the same digest group. Events

in different digest groups will never match thus will never be rendered. The incremental

algorithm effectively processes only the events that contribute to the visualization and

prunes all other events. Consider digest group Di which has Si events. It can be pro-

cessed in time O(S2
i) and the result for this digest group can be added incrementally to

the end result. This significantly reduces the number of matching comparisons needed

from O(N2) down to
∑G

i=1 S
2
i where G is the number of digest groups in the trace. Al-

gorithm 2 pre-process the two logs LX and LY into digest groups stored in associative

arrays DX and DY . This preprocessing step takes O(N) time and is executed only once.

Algorithm 3 iterates each digest group and accumulates the number of matches.

However, in the worst case, a digest group Si can be as large as N . This drawback

leads us to the second observation which gives an optimization for the case when the digest

group size is large. It exploits the fact that N > W × H and often also N � W × H.

Consider a digest group with Si events. The intensity (color) for each event in that group

5.2. VISUALIZING WINDOWS SYSTEM TRACES 127

Input: DX [d] and DY [d] from Algorithm 2
Output: 2D array S[0 . . .W − 1, 0 . . . H − 1] as pixel intensity

zero fill S;
foreach digest d do

foreach x in DX [d] do
foreach y in DY [d] do

S[xW/N, yH/N] + +
end

end

end
Algorithm 3: New algorithm for large screen size

Input: DX [d] and DY [d] from Algorithm 2
Output: 2D array S[0 . . .W − 1, 0 . . . H − 1] as pixel intensity

zero fill S;
foreach digest d do

declare temporary integer array SX [0 . . .W − 1] and SY [0 . . . H − 1];
zero fill SX and SY ;
foreach x in DX [d] do SX [xW/N] + + ;
foreach y in DY [d] do SY [yH/N] + + ;
for w ← 0 to W − 1 do

for h← 0 to H − 1 do
S[w, h]← S[w, h] + SX [w]× SY [h]

end

end

end
Algorithm 4: New algorithm for small screen size

can be recorded as its projection on the X and Y axis of the window. This is easily done

by keeping track of the color intensities in two arrays with size W and H respectively in

O(Si) time. Therefore, the resulting DP on a window of size W ×H can be drawn based

on the projected intensities in O(Si +W ×H) time, as shown in Algorithm 4.

Both algorithms can be combined together to get the best of both worlds, which gives

a DP rendering time complexity of
∑G

i=1min(S2
i , Si +W ×H), as shown in Algorithm 5.

That is, for each digest group Si that satisfies S2
i < Si +W ×H, the O(S2

i) algorithm is

used; otherwise, the O(Si +W ×H) algorithm is used to obtain a sub-image. Adding the

intensities of all the sub-images of all digest groups gives the final image.

We illustrate the complexity of the algorithm to process N = 106 events. The worst

case is when the number of digest groups G is 103 and each digest group has size 103.

Suppose the window screen size is 1000 × 1000. Then the first O(S2) algorithm is used

giving GS2 = 109 operations. If the window size is resized to 600× 400, then the second

O(S+W ×H) algorithm is used giving G(S+WH) = 2.41×108 operations. This is much

128 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Input: DX [d] and DY [d] from Algorithm 2
Output: 2D array S[0 . . .W − 1, 0 . . . H − 1] as pixel intensity

zero fill S;
foreach digest d do

α if |DX [d]| × |DY [d]| < |DX [d]|+ |DY [d]|+W ×H then
foreach x in DX [d] do

foreach y in DY [d] do
S[xW/N, yH/N] + +

end

end

else
declare temporary integer array SX [0 . . .W − 1] and SY [0 . . . H − 1];
zero fill SX and SY ;
foreach x in DX [d] do SX [xW/N] + + ;
foreach y in DY [d] do SY [yH/N] + + ;
for x← 0 to W − 1 do

for y ← 0 to H − 1 do
S[x, y]← S[x, y] + SX [x]× SY [y]

end

end

end

end
Algorithm 5: Combined algorithm from 3 and 4. (Line α can be further tuned with
some constant factors)

faster than the naive algorithm which would take O(1012) operations. The best case is

achieved when each digest group only contains one event. This means G = 106 and the

number of operations is GS2 = 106. Another good case is when there is only one digest

group, so S = 106 and the number of operations is G(S +W ×H) = 1.24× 106.

lviz is multi-threaded to make use of multi-core processors. The pre-processing steps

and rendering algorithms can be easily parallelized. The events in the trace can be

split up into several sub-traces and the pre-processing can be applied to each sub-trace

independently and in parallel. We implemented and tested the rendering algorithm using

OpenJDK 1.6.0 18 (64bit) on an Intel Core i7-960 3.20GHz machine with 12G RAM.

An uncompressed 120MB trace file with 558K events took 2.8 seconds to read and finish

the two pre-processing steps using 8 threads. To see the effectiveness of parallel pre-

processing, it took 6.0 seconds, when the execution is single-threaded. In our rendering

algorithm, each digest group can be processed independently and in parallel as there is

no dependency between digest groups. We also render all the sub-components of a VDP,

the DP, barcodes, and histograms in parallel. It took about 0.5 seconds to render the

trace where the DP has 550K events on both axis. Thus, lviz can process large traces

with sufficient real-time response when the user interactively zooms/resizes the VDP or

5.2. VISUALIZING WINDOWS SYSTEM TRACES 129

changes the histogram.

To speed up subsequent runs, lviz creates a cache containing the results of the pre-

computations of the digest, DP color, barcodes color of each event since they require the

most computation and are the bottleneck of the system. The cache avoids recalculating

the digest and the coloring rules every time the program is run. This cache is rebuilt if

the corresponding rules change. Loading from the cache skips the pre-computation steps

and cuts down the trace loading time to 1.3 seconds. The speedup is more significant

when the matching and coloring rules are more complicated.

5.2.4 Case Studies

The following case studies show how lviz can be used to understand system behavior and

to solve system or application problems. We first use a well understood task, file copying,

to familiarise the reader with VDP. We then use a software compilation example to show

how VDP can be used for software failure diagnosis. We use two visualizations on whole

system traces to understand how the operating system works and examine performance

problems. Lastly, we use VDP to examine performance problems in a browser benchmark.

These examples also illustrate that the VDP visualization is highly customizable and in

practice, one could use many different visualizations on the same trace.

The notation Bar n refers to the nth barcode. The configuration of each visualization

is described in the corresponding figure caption.

5.2.4.1 Comparing File Copying Programs

We use an example of a simple program and operation, namely, file copying using xcopy,

to explain various aspects of the VDP visualization. Figure 5.16 shows a self-comparison

event-ordered VDP of xcopy copying 8 files with sizes 1MB, 10KB, 10MB, 100KB, 1MB,

10KB, 10MB and 100KB and in that given order. A self-comparison VDP has a 45◦

diagonal line from top-left to bottom-right corner because events on the diagonal always

match. The structure of the files being copied is visible as blue squares in Region 3, 4, 5

and 6 which show copying the first 1MB and 10MB, then the second 1MB and 10MB files.

It is interesting to see the effect of scale on the visualization. At this scale, which shows

everything, the relative file sizes are also visible for the large files. The smaller 10KB and

100KB files are too small to be seen at this scale but are visible when zoomed in. By

correlating Bar1 and Bar2, we find that there are some file related operations in the early

phase, but those files are neither source nor destination files of xcopy. This might seem

surprising. To answer that question, we click on Region 7, which shows that the files in

question are DLLs. Thus, the top-left region shows xcopy loading DLLs.

Bar3 shows that Region 2 has many registry operations which might be surprising for

a file copying task. The histogram spike at Region 1 shows that some events at the end of

130 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

the trace take a long time. Figure 5.17 is a zoomed-in view to one of the blue squares in

Figure 5.16. The checkerboard-like pattern shows alternating read (magenta) and write

(cyan) operations which is what we expect for file copy. Since cyan + magenta = blue,

this explains that the blue squares in Figure 5.16 represents reading from source files

and writing to destination files. We see also that visualizations at different scales can be

used for different purposes. The extreme magnification in Figure 5.17 shows the actual

operations but may be too detailed a view for the overall picture which emerges at the

other extreme in Figure 5.16.

Figure 5.19: Event-ordered VDP comparing cp (x-axis) and xcopy (y-axis) copying the
same files. The configurations are the same as in Figure 5.16.

Figure 5.20: Time-ordered VDP comparing cp-64k (x-axis) and xcopy (y-axis). The
configurations are the same as in Figure 5.16.

5.2. VISUALIZING WINDOWS SYSTEM TRACES 131

In general, a VDP is used with two traces rather than a single trace as in a self-VDP.

Figure 5.19 compares cp (x-axis: a Windows version of GNU cp) and xcopy (y-axis)

copying the same 8 files. The VDP is much wider than its height, giving wide blue

rectangles instead of blue squares (Figure 5.19 versus Figure 5.16). Thus, cp performs

many more operations than xcopy. To investigate further, zooming in and examining

individual events, we find that each read and write operation uses a buffer size of 4K,

while xcopy uses 64K. This means that cp has 16 times more read and write operations

than xcopy. This is consistent with the width-height ratio in the visualization.

In order to compare the performance of cp and xcopy, we can use a time-ordered VDP.

Changing the visualization to a time-ordered one (not shown) shows that cp runs slower

than xcopy though less than 16x. We then modified cp to obtain another version cp-64k

which uses 64K buffers. Figure 5.20 shows the time-ordered VDP comparing cp-64k

(x-axis) and xcopy (y-axis). From Region 2, we can see that copying of the largest file

is performed in about the same time in both programs. However, xcopy has a slow

initialization (as shown in Figure 5.20 Region 1 which includes the registry operations in

Figure 5.16 Region 2), which causes xcopy to be slower in total than cp-64k.

5.2.4.2 A Software Build Case Study

We now apply visualization to diagnose program failure. In Figure 5.21, we compare a

successful software project build with a failed one to explain the failure. The project

consists of 4 C files, a header file and a makefile. We use nmake.exe from Visual Studio

to build the project. To deliberately cause failure, one of the C files is changed to be

unreadable.

We first explain what the visualization shows. From the Bar2 of x-axis, we can see

4 cl.exe processes (4 cyan regions), which tallies with the number of C files. There is

one invocation of link.exe (magenta), occurring at the end of the trace. By correlating

Bar2 and Bar3, we see that cl.exe processes first read a C file (tiny blue bar in region 7)

and then read a number of header files (long magenta bar in region 8). Different cl.exe

processes read a different number of header files, see sizes of regions 3, 4, 5, 6 differ.

In a self-comparison VDP, there will be a 45◦ diagonal line from top-left to bottom-

right corner. Figure 5.21 shows a 45◦ diagonal (Label 1) with some breaks, from the start

to region 2, near the end of the failed build (y-axis). It shows that the traces are basically

similar till the failure point when the build terminates. By zooming in (not shown), we

see that the failure occurs at the third invocation of cl.exe, just before reading the C

file. Thus, the VDP shows how file I/O works in the build and we use this to identify

a failed build. One might argue that the compiler’s error message is a better solution.

However, firstly, not all software give detailed error message like the compiler in this case.

Secondly, due to software bugs, the error message could be wrong, while the system trace

132 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Figure 5.21: Event-ordered VDP comparing a successful (x-axis) software build process
and a failed (y-axis) one.

DP match : program + operation + value (pathname)
DP color : black → any
Bar1 color : black → nmake.exe

Bar2 color : cyan → cl.exe; magenta → link.exe

Bar3 color : cyan → reading .c files;
magenta → reading .h files

5.2. VISUALIZING WINDOWS SYSTEM TRACES 133

Figure 5.22: Program point event-ordered VDP of project build: pseudo program point
trace (y-axis).
DP match: program name + program point; DP color: black → any; Barcode coloring
rules are the same as in Figure 5.21; Bar3 in y-axis is undefined as the pseudo trace does
not have operation type.

reports the actual underlying issues.

The build example is reused to show a visualization of the code structure of cl.exe in

Figure 5.22. We use a pseudo trace (y-axis) consisting of the program name concatenated

with its program point in the binary (an instruction address) which is sorted by program

name and address. The program point comes from the stack walk corresponding to the

event and corresponds to the latest return address in the stack trace coming from the

executable or earliest DLL. The x-axis trace is as before in Figure 5.21.

Region 1 and 2 show two invocations of cl.exe having similar patterns. In fact, all 4

invocations follow the same pattern which can be broken up into three main components:

region 5, 6 and 4. By zooming in and looking at the events, we infer that region 5 and 6 is

in the initialization phase of the compiler, which include loading of DLL files and reading

configurations from the registry. Region 6 is the reading of a large DLL rsaenh.dll. By

looking at Bar3, region 3 and 4 are the reading of C and header files. As different C files

have different header includes, region 3 and 4 have different widths. The fine squiggles

in region 3 and 4 represent three different file operations: open, read and close. For each

header file, there is one file open and close event, with a differing number of file read

operations depending on the file size. This makes the squiggles irregular. Since this VDP

is based on program points, it shows directly the structure of the function calls. Thus,

it visualizes the code while Figure 5.21 compares the operations due to system calls. It

is also different from the source code visualization [52] and we do not need to rely on

availability of source code.

The configurations play an important role in a VDP. Figure 5.23 shows two VDPs

which are visually different from each other and also Figure 5.21 but they are all visu-

alizations of the same underlying trace. The VDPs in Figure 5.23 and Figure 5.21 only

differ in the DP matching rule and the rest of the configuration is the same. The left

side VDP in Figure 5.23 uses only the event operation as the DP matching rule. It can

be used to highlight same or different operations. The right side VDP uses the program

name, and can be used to show different programs used in the project build process.

134 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

Figure 5.23: Changing the DP matching rule of Figure 5.21. Left side DP matching rule
is operation; Right side is program name.

5.2.4.3 Visualizing Idle System Traces

Previous examples compared the trace of particular programs (or to understand how a

program behaves using a self-similarity VDP). We now show that visualization can also

be useful for system traces as a whole – a system trace is the complete trace of the entire

operating system for a period of time.

When Windows is idle (i.e. no user interaction), system services and system processes

still run. We want to visualize whether such services and programs have (some expected)

periodic behavior. Figure 5.24a (left) shows a time-ordered VDP from two different idle

machines for an hour at different times. The size of the x and y-axis traces are 851528 and

652713 events respectively. The configuration is described in the figure caption. Bar1 and

Bar2 show which events belong to the four most active programs: lsass.exe is the Local

Security Authority Subsystem Service which enforces security; svchost.exe runs various

services; explorer.exe is the graphical shell; and wuauclt.exe is windows auto-update

service. Bar3, Bar4 and Bar5 show the operation types.

Figure 5.24 shows periodic structure which appears fractal-like. Bar1 and Bar2 in

Figure 5.24a show that events from lsass.exe, svchost.exe and explorer.exe occur

continuously in the traces but wuauclt.exe only occurs during a short period of time.

Since this is time-ordering and the trace is one hour, we can conclude that wuauclt.exe

occurs for about 7 minutes. (Bar2’s magenta region spans about 2 ticks in the histogram

and there are 20 ticks in total.) During this short period, we can see that a lot of events

occur, because the histogram at Region a1 and a4 have peaks. We select two obvious

regions to study the structure: Region a2 which is zoomed in Figure 5.24b and Region

5.2. VISUALIZING WINDOWS SYSTEM TRACES 135

Figure 5.24: Time-ordered VDP comparing two idle systems. a. (left) comparing one
hour interval between two machines; b. (middle) zoom in of Region a2; c. (right) zoom
in of a3. The different DP color intensity in the zoomed views is caused by histogram
equalization.
DP match: program + operation; DP color: cyan → file; magenta → registry; yellow
→ others; Bar1 color: cyan → lsass.exe; magenta → svchost.exe; Bar2 color: cyan →
explorer.exe; magenta → wuauclt.exe; Bar3 color: black → file; Bar4 color: black → reg-
istry; Bar5 color: cyan→ network, magenta→ process & thread creation & termination.

a3 zoomed in Figure 5.24c.

We turn to the zoom in Figure 5.24b. Bar1 and Bar2 in Figure 5.24b show more

clearly that explorer.exe (Region b5 and b6) runs more frequently than lsass.exe

(Region b4 and b3). Thus, we see two kinds of periodic events. The numerous dots such

as Region b2 are the more frequent periodic events from explorer.exe while the darker

and less frequent dots such as Region b1 come from lsass.exe. Although explorer.exe

runs more frequently, the event frequency histogram at Region b7 and b8 shows that

lsass.exe has more events each time, hence Region b1 is darker than b2. The white

portions and together with the histogram show that there are no other events in these

portions of the idle trace.

We have covered the periodic events in Figure 5.24a except for Region a3. To explain

Region a3 and its zoom in Figure 5.24c, we notice the cyan in Bar5 (network events)

shows more activity. Selecting those network events we find the program is wuauclt.exe

(Windows update) – both machines run Windows update at different time points explain-

ing the increase in network events. The dark Region c1 shows that many of the events are

the same in both machines in Windows update. These events are file read and write to

C:\windows\softwaredistribution\datastore\datastore.edb (the Windows update

database). Other bursts of events in Region c2 are generated by svchost.exe (it runs

various Windows services) which operates on registry keys related to windows installation.

This example shows that different machines not synchronized to each other have com-

136 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

mon periodic patterns and behavior. We note that as we used idle traces, the frequency

of events will be low and a direct visualization is quite faint. As such, VDP employs

equalization on the image to make the low frequency events more visible.

5.2.4.4 System Boot

Figure 5.25: Time-ordered VDP comparing boot of a clean (Y axis) and a dirty (X axis)
system.
DP match: program + operation + parameter; DP color: black → any; Bar1 color: cyan
→ Google Desktop; magenta → AVG; Bar2 color: black → any program except Google
Desktop and AVG; Bar3 color: black → file operation on Windows system directories.

In Figure 5.25, we use lviz to investigate system boot and try to identify possible

factors causing a system to boot slowly. To do this, we use a time-ordered VDP to

compare a clean system which is known to boot quickly with a (dirty) system which has

many programs installed and boots slowly.

We see that the clean system boots much faster than the dirty system as the height is

much shorter than the width. Whenever Bar2 on the x-axis is not black, the AVG (AVG

antivirus) or Google Desktop is responsible for events. We see that most of the events in

the dirty boot are due to AVG or Google Desktop. We can also see from comparing Bar2

with Bar3 that the dirty system has other installed programs running which are not in

Windows directories.

Even ignoring other programs outside the Windows directories, the slowdown is also

due to extra work by programs in Windows directories. We can see that this because

some of the white DP gaps match up with black portions in Bar2 (program from Windows

directory), e.g. Region 1. This can be caused by the modification of the Windows system

by third party programs, e.g. installing new services which are running in svchost.exe,

and adding new registry keys or files which will be scanned by windows programs. To

find out the details, we can focus on Windows built-in programs which are identified by

Bar3. Vertical gaps in the Windows built-in program region identify the additional work

done by the Windows built-in programs in the dirty system. By clicking in Region 1, we

found out that the gap is caused by svchost (the generic processes for services) since the

new software installed uses svchost to run some services.

5.2. VISUALIZING WINDOWS SYSTEM TRACES 137

5.2.4.5 Web Browser Benchmark

Figure 5.26: Time-ordered VDP comparing IE7 (x-axis) and Chrome (y-axis) performing
the SunSpider JavaScript benchmark.
DP match: operation; DP color: cyan → file; magenta → registry; yellow → network
operation; Bar1 color: cyan → benchmark start time; magenta → benchmark end time;
Bar2 color: black → HTTP GET event.

We use time-ordered VDP (Figure 5.26) to investigate the SunSpider JavaScript

benchmarks on two web browsers, Internet Explorer 7 (IE7) and Google Chrome. The

benchmark consists of 26 different tests repeated for 5 times. Since the browser fetches

a web page for each test, we use the HTTP GET1 event (shown in Bar2) to mark the

beginning of each test. By looking at the time-ordered DP, we know that Chrome is about

three times faster than IE7 in total and also in each test. From Bar2, we can also observe

that some tests (followed by long white gap, pointed by marker 1) take much longer time

than others. By clicking on those events, we found out the slow ones to be all string

operation2 benchmarks. We conclude that one reason why IE7 is slower than Chrome is

due to string operations.

5.2.5 Conclusion

The objective of this work is twofold. Firstly, we show that visualization can be beneficial

for problems in software understanding and diagnosis. We demonstrate this for traces

with a single program as well as with several programs and a complete system trace.

Secondly, we show that a DotPlot-based visualization, VDP, is effective in visualizing

a range of problems. One feature which distinguishes lviz is that as we work at the

operating system level with system and stack traces, we do not need source code of

the software. We believe that the range of understanding and diagnosis applications

1To mark HTTP GET events, we need to turn on network data I/O collection and use a suitable
regular expression as the barcode coloring rule. The start and end events are marked by matching the
two URLs.

2The URLs are /perf/sunspider-0.9/string-base64.html, /perf/sunspider-0.9/string-

tagcloud.html, and /perf/sunspider-0.9/string-validate-input.html

/perf/sunspider-0.9/string-base64.html
/perf/sunspider-0.9/string-tagcloud.html
/perf/sunspider-0.9/string-tagcloud.html
/perf/sunspider-0.9/string-validate-input.html

138 CHAPTER 5. VISUALIZING SYSTEM/SOFTWARE TRACES

shows that visualization of operating system traces is an interesting approach. It also

complements other kinds of analysis such as program analysis and data mining.

Our VDP visualization is only one general purpose visualization. There are some other

problems where dependency visualizations (Section 5.1) or special variants of VDP would

be more appropriate. For example, to understand resource usage, a special kind of VDP

with resources and traces overlaid with resource lifetimes would give more information

than a regular VDP. We have not taken advantage of source code and this can further

enhance the visualization but it would need monitoring infrastructure which can correlate

execution with the source. We also remark that although we do not make use of source

code, we see that visualizations using program points can be used to understand how the

code works (at the native code level).

We have developed the VDP tool for Windows because such visualizations are more

beneficial given the closed source nature and system complexity of Windows. However,

VDP is not reliant on a particular monitoring infrastructure as the input trace format is

very simple. The same visualization ideas can be applied to other systems with a rich

source of execution traces, e.g. UNIX variants.

Chapter 6

Binary Integrity

Securing Windows is a challenge because of its large attack surface which can lead to many

ways where binaries (Section 2.1.4) can be loaded and subsequently executed. Many of the

system security problems such as malware stem from the fact that untrusted binaries are

executed. This is further complicated by software in Windows having many interactions

on binaries such as automatic online updates, installing third party plugins, hijacking

system libraries and creating temporary binaries. These interactions are often not well

understood or specified. With the help of our monitoring infrastructure (Section 3.2)

on the interactions with binaries, we can tackle the security problems from the binary

integrity point of view. Binaries are the only type of files that contain native code which

can be directly loaded by the operating system. Many security attacks such as USB drive

propagated virus and drive-by downloads are directly targeted on binaries. Most other

attack methods such as buffer overflows and social engineering are usually performed

together with introducing malicious binaries so that the attacks can be persistent to the

system. The term binary integrity means binaries in the system should be trusted by the

user. In this chapter, we present our security system which ensures binary integrity in

Windows.

The security system has two goals. Firstly, the security objective is to ensure the

use of trusted binaries and maintain their integrity. This protects against attacks which

attempt to modify or remove binaries commonly used in malware or denial of service

attacks. We prevent malware attacks which rely on getting a malicious executable to

be run or a malicious DLL to load. In addition, we prevent the malware from being

persistent.

Secondly, the security mechanism needs to be usable with typical software in binary

form. It needs to be compatible with the software life cycle of software in the system, i.e.

software may be installed, then used, then updated, and finally uninstalled. Portions of

installed software, e.g. DLLs, may be shared with other software. Ideally, the security

mechanism should be (mostly) transparent to this software life cycle. While it may not be

139

140 CHAPTER 6. BINARY INTEGRITY

possible to be completely transparent/compatible for arbitrary binaries, it should support

the mechanisms used by typical software. We remark that as we are concerned with

closed source and binaries, approaches which change the process of installation/update,

usually requiring (some source code), are not relevant. Clearly, there is a tradeoff between

security and usability – we seek a practical middle ground with improved security while

being compatible with typical software.

This chapter is organized as follows. In Section 6.1, we first present BinAuth which

achieves the first goal. BinAuth can be used in a relatively static environment where the

binaries rarely change or binary changes are well managed by the system administrator.

The aim is to have a reliable and efficient security mechanism to authenticate binaries.

We then extend it in Section 6.2 to make it more usable in a general non-static setting.

Our new system BinInt allows easy installing and updating software while still prevent

untrusted software from running.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 141

6.1 BinAuth: Secure Binary Authentication

Malware such as viruses, trojan horses, worms, remote attacks, are a critical security

threat today. A successful malware attack usually also modifies the environment (e.g. file

system) of the compromised host. Many of the system security problems such as malware

stem from the fact that untrusted code is executed on the system. We can mitigate

many of these problems by ensuring that code which is executed only comes from trusted

software providers/vendors and the code is executed in the correct context. In this section,

we show that this can be efficiently achieved even on complex operating systems such as

Windows. Our system provides two guarantees: (i) we only allow the execution of binaries

(in the rest of the section, we refer to any executable code stored in the file system as

a binary) whose contents are already known and trusted — we call this authenticating

binary integrity; and (ii) as binaries are kept in files, the pathname of the file must match

its content — we call this authenticating binary location. Binary integrity authentication

ensures that the binary has not been tampered with, e.g. cmd.exe is not a trojan. Binary

location authentication ensures that we are executing the correct executable content.

A following extreme example illustrates location authentication. Suppose the binary

integrity of the shell and the file system format executables are verified. If an attacker

swaps their pathnames, then running a shell would cause the file system to be formatted.

In this section, we refer to binary authentication to mean when both the binary’s data

integrity and location are verified.

Most operating systems can prevent execution of code on the stack due to buffer

overflow, e.g. NX protection. Combining stack protection with binary authentication

makes the remaining avenues for attack smaller and more difficult. Binary authentication

is also beneficial because it is even more important for the operating system to be protected

against malicious drivers and the loading of malware into the kernel.

Most work on binary integrity authentication is on Unix/Linux [16, 101, 90]. How-

ever, the problem of malware is more acute in Windows. There are also many types of

executable code, e.g. executables (.exe), dynamic linked libraries (.dll), ActiveX controls,

control panel applets, and drivers. In this section, we focus on mandatory binary authen-

tication of all forms of executables in Windows. Binaries which fail authentication cannot

be loaded, thus, cannot be executed. We argue that binary authentication together with

execute protection of memory regions (e.g. Windows data execution prevention) provides

protection against most of the malware on Windows.

A binary authentication needs to be flexible to operate under different scenarios. Our

prototype signs binaries using a HMAC [49], which is more lightweight than having to rely

on PKI infrastructure, although it can also make use of it. The authentication scheme

additionally allows for other security benefits. Not only is it important to authenticate

software on a system but one also needs to deal with the maintenance of the software over

142 CHAPTER 6. BINARY INTEGRITY

time. Nowadays, the number of discovered vulnerabilities grows rapidly [27]. This means

that binaries on a system (even if they are authenticated) may be vulnerable. This leads

to a vulnerability management and patching problems. We propose a simple software ID

system leveraging on the binary authentication infrastructure and existing infrastructures

such as DNS and certificate authorities to handle this problem.

Windows has the Authenticode mechanism [59]. In Windows XP version and earlier,

it alerts the users of the results of signature verification under a few situations. However,

it is not mandatory, and can be easily bypassed. The Windows Vista UAC mechanism

makes use of signed binaries but it only deals with EXE binaries. It is also limited to

privilege escalation situations. One common drawback of existing Windows mechanisms is

that they do not authenticate the binary location. Moreover, requiring PKI infrastructure

and certificates, we believe, is too heavy for a general purpose mechanism.

The main contribution of this work is that we believe that it provides the first com-

prehensive infrastructure for trusted binaries for Windows. This is significant given that

much of the problems of security on Windows stems from inability to distinguish between

trusted and untrusted software. It provides mandatory authentication for the full range

of binaries under Windows, and goes beyond authenticated code in XP and Vista. We

also protect driver loading which gives increased kernel protection. Our scheme provides

mandatory driver authentication which 32-bit Windows does not, and can be integrated

with more flexible policies which 64-bit Windows does not support. We also analyze the

security of our system. Our benchmarking shows that the overhead of comprehensive

binary authentication can be quite low, around 2%, with a caching strategy.

6.1.1 Windows Issues

We showed previously the complexities and challenges in Section 2.1. We now discuss

below some special problems of Windows which make it more difficult to implement binary

authentication than in other operating systems such as Unix. Windows NT (Server 2000,

XP, Server 2003, Vista) is a microkernel-like operating system. Programs are usually

written for the Win32 API but these are decomposed into microkernel-like operations.

However, Windows is closed source — only the Win32 API is documented and not the

microkernel-link API. The mapping from Win32 API to system calls can be complicated

in some cases. For example, the CreateProcess() function in Win32 API creates a child-

process given an executable file. This function calls four1 system calls. Our prototype

makes use of both the documented and undocumented kernel infrastructure. However, it

is not possible to make any guarantees on the completeness of the security mechanisms

(which would also be a challenge even if Windows was open source). Some of the specific

issues in Windows which we deal with are:

1It is based on our observation. There can be more system calls invoked in other conditions.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 143

• Proliferation of Binary Types: It is not sufficient to ensure the integrity of

EXE files. In Windows, binaries can have any file name extension, or even no ex-

tension. Some of the most common extensions include EXE (regular executables),

DLL (dynamic linked libraries), OCX (ActiveX controls), SYS (drivers), DRV (drivers)

and CPL (control panel applets). Unlike Unix, binaries cannot be distinguised by an

execution flag. Thus, without reading its contents, it is not possible to distinguish

a binary from any other file.

• Complex Process Execution: A process is created using CreateProcess()

which is a Win32 library function. However, this is not a system call since Win-

dows is a microkernel, and in reality this is broken up at the native API into:

NTCreateFile(), NTCreateSection(), NTMapViewOfSection(), NTCreateProcess(),

NTCreateThread(). Notice that NTCreateProcess() at the microkernel level per-

forms only a small part of what is needed to run a process. Due to this, it is more

complex to incorporate mandatory authentication in Windows.

• DLL loading: To load a DLL, a process usually uses the Win32 API, LoadLibrary().

However, this is broken up in a similar way to process execution above.

• Execute Permissions: Many code signing systems, particularly those on Linux

[16, 90], implement binary loading by examining the execute permission bit in the

access mode of file open system-call. The same mechanism, however, does not work

in Windows. Windows programs often set their file modes in a more permissive

manner. Simply denying a file opening with execute mode set when its authentica-

tion fails, will cause many programs to fail which are otherwise correct on Windows.

Instead, we need to properly intercept the right API(s) with correctly intended op-

eration semantics to respect Windows behavior.

Compared to other open platforms, Windows potentially also makes the issue of locat-

ing vulnerable software components more complicated. A great deal of binaries created

by Microsoft contain an internal file version, which is stored as the file’s meta-data. The

Windows update process does not indicate to the user which files are modified. Moreover,

meta data of the modified file might still be kept the same. Thus, it is difficult to keep

track of files changes in Windows. More precisely, one cannot ensure whether a version of

a program Pi remain vulnerable to an attack A. It is rather difficult for a typical admin-

istrator who examines vulnerability information from public advisories to trace through

the system and pinpoint the exact affected components. Our software naming scheme,

associates binaries with their version and simplifies software vulnerability management.

144 CHAPTER 6. BINARY INTEGRITY

6.1.2 Related Work

Tripwire [48] is one of the first to do file integrity protection but is limited as it in user-

mode program and checks file integrity off-line. It does not provide any mandatory form

of integrity checking and there are many known attacks such as: file modification in

between authentication times, and attacks on system daemons (e.g. cron and sendmail)

and system files that it depends on [18, 85].

There a number of kernel level binary level authentication implementations. These are

mainly for Unix such as DigSig [16], Trojanproof [101] and SignedExec [90], which modify

the Unix kernel to verify the executable’s digital signature before program execution.

DigSig and SignedExec embed signatures within the ELF binaries. For efficiency, DigSig

employs a caching mechanism to avoid checking binaries which have been verified already.

The mechanism is similar to ours here but we need to handle the problems of Windows.

It appears that DigSig provides binary integrity authentication but not binary location

authentication.2 In this section, we examine the implementation issues and tradeoffs for

Windows which is more complex and difficult than in Unix.

Authenticode [59] is Microsoft infrastructure for digitally signing binaries. In Windows

versions prior to Vista, such XP with SP2, it is used as follows:

1. During ActiveX installation: Internet Explorer uses Authenticode to examine the

ActiveX plugin and shows a prompt which contains the publisher’s information

including the result of the signature check.

2. A user downloads a file using Internet Explorer: If this file is executed using the

Windows Explorer shell, a prompt is displayed giving the signed the publisher’s

information. Internet Explorer uses an NTFS feature called Alternate Data Streams

to embed the Internet zone information –in this case, the Internet– into the file.

The Windows Explorer shell detects the zone information and displays the prompt.

This mechanism is not mandatory and relies on the use of zone-aware programs,

the browser and GUI shell cooperating with each other. Thus, it can be bypassed.

Since Authenticode runs in user space, it can be bypassed in a number of ways, e.g.

from the command shell. It is also limited to files downloaded using Internet Explorer.

Only the EXE binary is examined by Authenticode, but DLLs are ignored. One possible

attack is then to put malware into a DLL and then execute it, e.g. with rundll32.exe.

Furthermore, Authenticode relies heavily on digital certificates. Checking revocation such

as Certificate Revocation Lists (CRL) may add extra delay including timeouts due to the

need to contact CA. In some cases, this causes significant slowdown.

2Mechanisms based solely on signatures embedded in the binaries do not have sufficient information
for binary location authentication. For example, one could replace ls with rm, where both binaries are
signed.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 145

The latest Windows Vista improves on signed checking because User Account Control

(UAC) can be configured for mandatory checking of signed executables. However, this is

quite limited since the UAC mechanism only kicks in when a process requests privileged

elevation, and for certain operations on protected resources. UAC is not user friendly since

there is a need for constant interactive user approval. Vista does not seem to prevent the

loading of unsigned DLLs and other non EXE binaries. The 32-bit versions of Windows

(including Vista) do not checked whether drivers are signed. However, the 64 bit versions

(XP, Server 2003 and Vista) require all drivers to be signed (this may be too strict and

restrict hardware choices).

The closest work on binary authentication in Windows is the Emu system in by Schmid

et al. [81]. They intercept process creation by intercepting the NtCreateProcess system

call. It is unclear whether they are able authenticate all binary code since trapping at

NtCreateProcess is not sufficient to deal with DLLs. No implementation or performance

benchmarks are given, so it is unclear how if their system is efficient.

6.1.3 BinAuth and Software IDs

We now present our binary authentication system, BinAuth. We want a lightweight binary

authentication scheme which can work under many settings without too much reliance

on other infrastructure. Furthermore, it should help in the management of binaries,

and incur low overhead. Management of binaries includes determining which binaries

should be authentic, dealing with issues arising from disclosed vulnerabilities, and software

patching.

6.1.3.1 Software ID Scheme

We complement binary authentication with a software ID scheme meant to simplify binary

management issues. The idea is that a software ID associates a unique string to a partic-

ular binary of a software product. The software ID should come either from the software

developer or alternatively be assigned by the system administrator. The key to ensuring

unique software ID, even among different software developers, lies on the standardized

format of the ID. We can define software ID as follows:

Software ID ::= 〈 opcode tag || vendor ID || product ID || module ID || version ID〉. 3

Here, || denotes string concatenation. Opcode tag distinguishes different naming conven-

tion, eg. Software ID and Custom ID defined below.

Ideally, we want to be able to uniquely assigning vendor IDs to producers of software

which can make the software ID unique. This problem in practice might not be as difficult

3Module ID suffices to deal with software versioning. Having a separate version ID, however, is useful
to easily track different versions (or patched versions) of the same program.

146 CHAPTER 6. BINARY INTEGRITY

as it sounds since it is similar to domain name registration or the assignment of Medium

Access Control addresses by network card manufacturers. One can leverage on existing

trust infrastructures to do this. For example, the responsibility for unique and well

known software IDs can be assigned to a Certificate Authority (CA), which then define

the vendor ID as 〈 CA ID || vendor name 〉. Alternatively, one might be able to use the

domain name of the software developer as a proxy for the vendor ID.

A software ID gives a one to one mapping between the binary and its ID string. This

is useful for dealing with vulnerability management problems [88]. Suppose a new vulner-

ability is known for a particular version of a software. This means that certain binaries,

providing that they correspond to that software version may be vulnerable. However,

there is no simple and standard way of automatically determining this version informa-

tion. Once we have software IDs associated with binaries then one can check the soft-

ware ID against vulnerability alerts. The advisory may already contain the software ID.

Automatic scanners can then be used to tie-in this checking with the dissemination of

vulnerability alerts to automatically monitor/manage/patch the software in an operating

system. General management of patches in an operating system can also be done in much

the same way.

In the case where no software ID comes with a software product, one can alternatively

derive one. It can be constructed, for instance, using the following (coarse-grained) string

naming:

Custom ID ::= 〈 opcode tag || hash(vendor URL + product name + file name + salt) 〉.

The salt expands the name space to reduce the risk of a hash function collision.

6.1.3.2 BinAuth System Architecture

In the following discussion, we assume here that binaries already come tagged with a

software ID. During the BinAuth set-up, preferably done immediately after the targeted

binary installation, we generate the Message Authentication Code (MAC) values for each

binary. In the case where binaries are digitally signed by its developer, then we verify

the signature and then generate the MAC for each binary. Thus, only one public-key

operation needs to be done at install time. We choose to use a keyed hash, the HMAC

(Hash-based MAC) algorithm [49], so there is a secret key for the administrator. This

is mainly to increase the security of the stored hashes. To authenticate binary integrity

for any future execution of the code, only the generated HMAC needs to be checked. In

what follows, we mostly write MAC which already covers the choice of HMAC.

One way of storing the generated MAC is by embedding it into the binary. However,

doing so may interfere with file format of the signed binaries and may also have other

complications. We instead use an authentication repository which stores all the MAC

values of authenticated binaries with their pathnames. During the boot-up process, the

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 147

kernel creates its own in-memory data structures for binary authentication from it. We

ensure that the repository is protected from further modification except under the control

of the authentication system to add/remove binaries.4 We can also customize BinAuth

on a per user basis rather than system-wide which is a white-list of binaries approved for

execution. In the case, when the initial binary does not have a digital signature, then the

administrator can still choose to approve the binary and generate a MAC for it.

There are two main components of the system: the SignatureToMac and Verifier.

The SignatureToMac maintains the authentication repository, Digest file, consisting of

〈path, MAC〉 tuples. The Verifier is a kernel driver which makes use of Digest file and

decides whether an execution is to be allowed.

SignatureToMac Once software is installed on the system, Figure 6.1 shows how Sig-

natureToMac processes the binaries:

1. Checks the validity of the binary’s digital signature. If the signature is invalid, then

report failure.

2. It consults the user or system administrator whether the software is to be trusted or

not (this is similar to the Vista UAC dialog but only happens once). Other policies

(possibly mandatory) can also be implemented.

3. It generates the MAC of the binary (including software ID string) using a secret

key, Hashing key, to produce software digest. The Hashing key is only accessible by

the authentication system, e.g. obtained on bootup.

4. It adds an entry for the binary as a tuple 〈path name, software digest〉 into the

Digest file repository and informs the Verifier. The repository is protected against

modification. Note that because the entries are signed, the repository can be read

for other uses, e.g. version control and vulnerability management.

Verifier The Verifier performs mandatory binary authentication — it denies the ex-

ecution of any kind of Windows binary which fails to match the MAC and pathname.

There are two general approaches for the checking. One is cached MAC which avoids

generating the MAC for previously authenticated binaries. The other is uncached MAC

which always checks the MAC. As we will see, they have various tradeoffs. The cached

MAC implementation needs to ensure that binaries are unmodified. Hence, the Verifier

monitors the usage of previously authenticated files on the cache, and removes them from

the cache if it can be potentially modified.

4Further security can be achieved by integrating binary authentication with a TPM infrastructure. We
do not do so in the prototype as that is somewhat orthogonal.

148 CHAPTER 6. BINARY INTEGRITY

signature SignatureToMac
MAC

(software_digest)

Digest_File

Hashing_KeyBinary

software_id

Figure 6.1: SignatureToMac: Deriving the MAC

Load binary
Is its path in

the table

Deny

Is it in a network

shared drive?

Calculate the MAC

of the binary

Allow

Is the

Authenticated

bit set?

Does the MAC of the

binary matches its MAC

in the table

Set the

Authenticated bit

Deny Allow

Yes

No

Yes

No

Yes

No

Yes

No

Figure 6.2: Verifier: The Verifier in-kernel authentication process

The core data structure of the Verifier component can be viewed as a table of tuples in

the form 〈Kernel path, FileID, MAC, Authenticated bit〉 representing the allowed binaries.

It is indexed on Kernel path and FileID for fast lookup. The fields are as follows:

• The Kernel path is Windows kernel (internal) pathname representation of a file.

In Window’s user space, a file can have multiple absolute pathnames, due to: (i)

8.3 file naming format, e.g. “C:\Program Files\” and “C:\progra∼1\” are the

same; (ii) symbolic links (reparse points is similar); (iii) hard links; (iv) volume

mount points; or (v) the SUBST and APPEND DOS commands. The Kernel path is a

unique representation for all the possible pathnames. When the system loads 〈path

name, software digest〉 from Digest file during the startup, path name is converted

to Kernel path since all subsequent checks by Verifier in the kernel all use the latter.

• The FileID is a pair of 〈device name, NTFS object ID〉. The device name is a Win-

dows internal name to identify a disk or partition volume. For instance, the device

name HarddiskVolume1 usually refers to C:\. The NTFS object ID is a 128-bit

length number uniquely identifying a file in the file system volume. This is not the

same as UNIX inode number because it is optional. It by default does not exist and

is created on demand. The Verifier uses the FileID to identify the same file given

more than one hard link. This prevents an attacker from creating a hard link for

modifying a binary without invalidating the binary cache. The FileID values will

be queried from the system and filled into the table during system boot.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 149

• The MAC is same as a software digest entry in Digest file. Our prototype imple-

ments the HMAC-MD5 [49], HMAC-SHA-1 and HMAC-SHA-256 [32] hash algo-

rithms.5

• The Authenticated bit remembers whether the binary has been previously authenti-

cated. It is initially set to false, and set to true after successful authentication.

Figure 6.2 shows the authentication process when a binary executes/loads:

1. It checks if the binary’s Kernel pathname exists in the table. If not, then deny the

execution and optionally log the event. A notification is accordingly sent to the

user.

2. It the file is on a network shared drive, goto step 4. The MAC is always recomputed

as we cannot keep track of modification to files on network shares.

3. If the Authenticated bit is set go to step 7.

4. It performs MAC algorithm operation on the binary.

5. If the resulting MAC doesn’t match with the MAC stored in the table, execution is

denied.

6. It sets the Authenticated bit of the binary.

7. It passes the control to the kernel to continue the execution.

To control binary execution, we intercept the section creation action (NtCreateSection()

system call) which is better than:

• Intercepting file opening (NtCreateFile() and NtOpenFile()). This would need

to authenticate any file opened with with execute access mode. As discussed in

Section 6.1.1, however, this introduces unnecessary overheads and can cause some

correct programs to fail if the files do not pass authentication. There are also techni-

cal difficulties to distinguish between process creation and regular file IO operations,

which is not always easy given its microkernel nature.

• Intercepting process creation (NtCreateProcess()). This method is not effective

for our purpose. Firstly, we cannot use it to control DLL loading. Secondly, it is

more difficult to get the pathname of the binary because process creating is broken

down into microkernel operations.

It turns out that since all code from any kind of binary needs to have a memory section

to execute, it suffices to intercept NTCreateSection().

5Due to recent concerns which show weaknesses and attacks against MD5 [96], we also have stronger
hash functions, namely SHA-1 and the stronger SHA-256.

150 CHAPTER 6. BINARY INTEGRITY

Input: FilePath

if FilePath is in NTFS then
FileID := GetFileID(FilePath) ; /* FileID can be NULL */

if FilePath is in the table then
Entry := LookupTableByPath(FilePath);
if FileID = NULL then

/* This can happen when the file is deleted and created

again */

Entry.FileID := CreateFileID(FilePath) ; /* generate a new FileID

and update the table */

else if FileID != Entry.FileID then
/* This can happen when the drive is unmounted, then id

changed off-line and re-mounted */

Entry.FileID := FileID
end
Entry.Authenticated := false

else if FileID != Entry.FileID then
Entry := LookupTableByID(FileID);
Entry.Authenticated := false

end

else if (FilePath is in FAT) and (FilePath is in table) then
Entry := LookupTableByPath(FilePath);
Entry.Authenticated := false

end
Procedure UponModification(FilePath)

The cached MAC verifier needs to ensure that binaries which have been already au-

thenticated are not modified. However, the uncached verifier will not need to perform file

monitoring. A binary with pathname P is considered modified, if the following occurs:

• P is created: Hence, we monitor system call NtCreateFile() and NtOpenFile().

• P is opened with write access mode: the previous two system calls are also inter-

cepted for this purpose. 6

• Another file is renamed to P : We monitor file renaming (NtSetInformationFile(

FileRenameInformation)) system call.

• A drive containing P is mounted: We monitor drive mounting IRP MJ VOLUME MOUNT.

Note that we do not need to monitor file deletion since we only care about executing

correct files but not missing files. The details of file modification monitoring are given in

Procedure UponModification.

6An alternative way is to monitor the file (block) writing operation (NtWriteFile()). However, it is
less efficient because file block writings take place more frequently than file openings as one opened file
for modification might be subject to multiple block writings. Furthermore, it cannot capture file-memory
mapping.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 151

Upon modification of P , we reset the Authenticated bit of binary P , and update

the FileID in the table if it is changed. Should FAT file system be used, pathname

is used to identify the binary as FileID is not supported but neither are hard and

soft links. Since FileID is optional and can be removed, we monitor FileID removal

(NtFsControlFile(FSCTL DELETE OBJECT ID)) and deny the removal if the FileID is in

the table. Due to the semantics of NTFS, our use of FileID can coexist with other

applications using it.

If additional hardware and infrastructure is available to support secure booting, such

as the Trusted Platform Module (TPM) initiative, the system can benefit from increased

security. Offline attacks would have to first attack the TPM. The Hashing key can also

be stored securely by the TPM.

6.1.3.3 Security Analysis

The security of BinAuth relies on the strength of the chosen hash functions (MD5, SHA-1,

SHA-256) as well as the HMAC algorithm. Thus, we assume that any change in a binary

can be detected through a changed MAC.

In our authentication on binary with digital signature, the subsequent invocations

using MAC verification is sufficient to ensure the authenticity of the binary. In other

words, MAC authentications “preserve” the previously established properties of BinAuth

derived from digital signature. A subtlety comes when the certificate expires or is revoked

at some point in time after SignatureToMac. We view that the question of whether one

should keep trusting the binary for execution depends on one’s level of trust on certificate

expiration/revocation. If the certificate expiration or revocation means that the public

key must no longer be used, but the fact that previously established goodness binary

properties still hold, then we can keep trusting the binary for execution (as long as we

still believe the issuer).

Here we discuss some possible attacks to the authentication system. All the attacks

except the last two target the caching system. More precisely, the attacker attempts to

modify an already authenticated binary without causing the Authenticated bit to be set

to false.

• Manipulating symbolic links: The attacker can use the path S which is a sym-

bolic link of an authenticated P to indirectly modify P and subsequently execute

P . However, the modified file will not be executed successfully, because Windows

kernel resolves symbolic links to real paths. More precisely, the symbolic link S is

resolved to the real path P . As a result, the Authenticated bit of P will be set to

false. When P is executed, its MAC will be recalculated and it will not pass the

authentication.

152 CHAPTER 6. BINARY INTEGRITY

• Manipulating hard links: The attacker can create a hard link H on an already

authenticated file P and then modifies the file using path H. This attack will not

succeed because we use FileID to identify files. H has the same FileID as P , thus

the Authenticated bit will be set to false. Note that this attack will not succeed in

FAT file system either, even though we cannot use FileID. This is because hard link

is not supported in FAT.

• Manipulating FileID: Recall that FileID consists of device name and NTFS

object ID. The latter is optional and thus can be removed. The attacker can remove

the NTFS object ID, and then performs the previous attack. We handle this attack

by denying NTFS object ID removal on authenticated files. This is implemented by

monitoring the file system control event FSCTL DELETE OBJECT ID

• Remote File Systems: Since we cannot keep track of modification on a network

shared file system, we do not cache the authentication. More precisely, the MAC

of the binary is always calculated upon loading. Same applies to removable media

such as floppy in which we cannot keep track of modification of files.

• Memory Mapped Files: The modification of memory mapped files cannot be

monitored by system calls because system calls are not used. However, to map a

file in memory for writing, a process has to firstly open the file for writing. Bin-

Auth clears the Authenticated bit upon this operation, thus after the modification

is finished, its MAC will be recalculated upon loading. During the binary is mem-

ory mapped, it cannot be loaded because Windows requires modification lock upon

loading.

• TOCTTOU: TOCTTOU stands for Time-Of-Check-To-Time-Of-Use. It refers to

race condition bugs in access control systems where the resource is changed between

the time of checking the resource and the time of using the resource. In the BinAuth

context, the binary may be modified after the time it is authenticated and before

the time it is executed. However, we observed that all binaries are exclusive-write-

locked when it is opened. That means binaries cannot be modified from the time it

is opened to the time it is closed. Also note that the file is authenticated after it is

opened and before it is executed. As a result, binaries cannot be modified during

TOCTTOU.

When the binary is in a network shared volume, i.e. SMB share, and the write-lock

is not properly implemented in the SMB server, an attacker is able to modify the

binary after authentication. However, we have observed that both Windows and

Samba implement write-lock properly. Thus the attack is only possible when the

SMB server is compromised. One way to prevent this is to disallow binary loading

from SMB share.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 153

• Driver Loading: BinAuth authenticates all binaries including kernel drivers. This

means all drivers are authenticated thus driver attacks such as kernel rootkits and

malware drivers can be prevented.

• Offline Attack: An offline attack means modification of the file system when

Windows is not in control. For example, boot another operating system or remove

the disk drive for modification elsewhere. Such an attack will require physical access

to the machine. Offline attack can corrupt data or change programs/files and affect

the general functioning and we cannot prevent that. What we can do is to ensure

the integrity of executable code and other data loaded in memory for processes.

We assume that the kernel is still secure, i.e. authentication occurs early in the

boot. We also assume that kernel functioning is not impaired, e.g. deleting some

system files does not cause the kernel to have an exploitable vulnerability.

Since the hashing key is not stored in the machine, it is not available to the attacker.

The attacker can still change the digest file and the binaries, however, MACs of mod-

ified binaries cannot be produced without the hashing key. Thus modified binaries

cannot be executed when the system is online.

6.1.4 Testing

We test our implementation in terms of the protection it provides and the overhead it

incurs. The following test is performed on a machine with Intel Core 2 Duo processor

and 2GB of memory, running Windows XP SP2.

6.1.4.1 Protection

We test our prototype on various binary execution mechanisms in Windows. We try

different mechanisms to load a binary not in the authentication repository. In the following

text we use the term invalid binary to denote that. We remark that all the mechanisms

succeed when the binary is valid (i.e. matches the authentication repository).

• cmd and Explorer shells

Running an invalid binary in the cmd and Explorer shells fails with an error

“Application is not a valid Win32 application”. This would also cover cases such

as the social engineering file extension attack.

• driver loading

It is not possible to load invalid drivers. Using the net start command to load an

invalid driver fails with the error “The specified driver is invalid”.

154 CHAPTER 6. BINARY INTEGRITY

• service loading

Invalid services cannot be started. Using the Services tab in the Microsoft man-

agement console to start the service fails with the error “The dependency service or

group failed to start”.

• shell extensions

We tested the TortoiseSVN, AudioShell and FLV extensions. TortoiseSVN en-

hances Explorer to interface to the Subversion revision control system with a con-

text menu usable by right clicking any directory or file in Explorer. AudioShell is

a MP3 tag previewer that is activated by mouse-over on audio files in Explorer. FLV

is a codec which displays Flash video.

If the DLLs for the shell extensions are invalid, they do not load. Thus, the

TortoiseSVN context menu was missing and the AudioShell mouse-over is no longer

shown. We tested the use of Explorer to open a folder containing FLV (Flash video)

files. If the FLV codec, flvsplitter.ax, is valid, Explorer scans the directory, dis-

playing a thumbnail for each FLV file. When the codec is invalid, Explorer does

not display any thumbnails and displays the same icon as files with unrecognized

extensions. We remark that in many cases, users are not aware that shell extensions

are running and may think that the features are part of Explorer.

• Browser Helper Objects (BHO)

As web browsers are one of the main targets of malware, it is important to con-

trol what binaries are loaded in the browser. We tested the Flash player control,

Flash10a.ocx, for Internet Explorer. If the control is invalid, webpages with flash

content do not work as IE is blocked from loading the Flash control. However, the

rest of the page content is displayed.

• PATH manipulation

An attacker may change the PATH environment variable or DLL search order to

substitute system executable or DLL with a malicious one. This is prevented no

matter what the search order is, as long as the malicious executable or DLL is

invalid.

6.1.4.2 Performance Overhead

We examine the three factors which impact on system performance: (i) Verifier checking

upon binary loading (execution); (ii) file modification monitoring; and (iii) binary set-

up during the SignatureToMac process. The first two above are the most important as

they directly affect user’s waiting time for process execution and affect overall system

operation. The tests here are meant to determine the worst case overhead as well as

average overheads.

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 155

We use micro and macro benchmarks to test the upper bound and real-life performance

overhead respectively. Each benchmark is run five times. As we want to investigate the

effect of the cached Verifier, each benchmark is run with caching and without caching.

When caching is enabled, we ignore the result of the first run because the overhead of

authentication overhead is already shown in the uncached case. Even if we count the

first run, its impact will be very small because some of the microbenchmarks run for 10K

times, so the authentication overhead becomes negligible.

To see the difference of using different hashing algorithms, we implement and bench-

mark three algorithms: MD5, SHA-1 and SHA-256. Only MD5 and SHA-256 are shown

in Table 6.1 as the results of SHA-1 are always between these. When caching is enabled,

results of different hashing algorithms are not distinguished (shown as Cached-MAC in the

table), because binaries are not require MAC checking during the benchmark. The reason

is that the first run is ignored, and the binaries are not modified during the benchmark.

To see the difference with digital signature based authentication system, we also com-

pare the performances of our scheme against the Microsoft official Authenticode utility

called Sign Tool [61], and another Sysinternals (now acquired by Microsoft) Authenti-

code utility Sigcheck [60]. Note that the two tools are user-mode programs. They are

there to illustrate the difference between non-mandatory strategies used with Authenti-

code with our in-kernel mandatory authentication.

The first two benchmarks investigate system performance under two scenarios:

1. Micro-benchmark: The micro-benchmark aims to measure the worst case per-

formance overhead incurred by the scheme. Note that this is primarily intended to

measure the authentication cost but not other overhead, which is done by the last

file modification microbenchmark. Here, we have two micro-benchmark scenarios.

(a) EXE Loading: This executes the noop.exe program, a dummy program that

immediately exits, for 10K times. This scenario measures the overhead for au-

thenticating the EXE file. The benchmark program first calls CreateProcess(),

and waits for the child process’ termination using the WaitForSingleObject()

function. We use different binary sizes (40KB, 400KB, 4MB and 40MB, only

the 40K and 40MB results are displayed) for noop.exe to see how executable

size impacts performance.

(b) DLL Loading: The second scenario executes the load-dll.exe program

for 100 times. This scenario is used to find out how the number of loaded

DLLs impacts the performance. Program load-dll.exe loads 278 standard

Microsoft DLLs with a total file size of ∼75MB. The size of the load-dll.exe

itself is 60KB. Note that in Windows, the bulk of code is often in DLLs which

is why the EXE file may be small, e.g. Open Office has over 300 DLLs.

156 CHAPTER 6. BINARY INTEGRITY

2. Macro-benchmark: The macro-benchmark measures overhead under a typical

usage scenario. Our benchmark is to create the Windows DDK sample projects

using the build command. In each test run, 482 C/C++ source files in 43 projects

are built. This benchmark is chosen as it is deterministic, non-interactive, creates

many processes and uses many files.

We benchmark Sign Tool and Sigcheck in the following fashion. We first sign

noop.exe and load-dll.exe using Sign Tool’s signing operation. We then measure

the execution time of authenticating and executing the two programs. For the macro-

benchmark, we replace each development tool in the DDK (i.e. build.exe, nmake.exe,

cl.exe and link.exe) with a wrapper program which first authenticates the actual devel-

opment tool and then invokes it. For the micro-benchmark, we consider two settings: (i)

EXE only; and (ii) all binaries (EXE + DLL). The macro-benchmark, however, only tests the

EXE case. This is because, during the macro-benchmark, many programs are invoked,

and each program each invocation may dynamically load a different set of DLLs. Thus, it

is hard to keep track of what DLLs are loaded, and it is unfair to simulate with all DLLs

used.

The results are given in Table 6.1 but we have not shown “noop 400K” and “noop

4M” because they are bounded by the results of “noop 40K” and “noop 40M”. Other

results not shown are that the overhead is approximately linear with respect to the file

size, e.g. the results of the All-binaries/Uncached/SHA-256 benchmarks are 40K:30.42s,

400K:85.43s, 4M:598.0s, 40M:9302s.

We can see that the overhead of Signtool and Sigcheck makes it unusable if DLLs

are to be checked (352x slower on load-dll). If only EXE are checked, then at least

40% overhead and based on the load-dll benchmark, one could expect about an order

of magnitude worse if all DLLS are checked. Of course, using these tools would incur

additional overhead from creating a process and the main purpose is just to show the

difference between what can be done in user-mode versus in-kernel. We can see that all

the uncached-MD5/SHA256 are considerably faster than Signtool and Sigcheck.

Authenticating only EXE, the difference between uncached has overheads around 8%

while cached brings this down to very small, around 2%x and almost neglible in the

load-dll benchmark (0.02%). Note that as uncached overhead is quite small, the results

are dominated by non-determinism in timing measurements. Moving to all DLLs (EXE +

DLL), we can see the effect of Windows programs using many DLLs (more code in DLL

than EXE). The overhead incurred by caching is still small while uncached can grow to

between 20-40% depending on the hash algorithm. Note that the uncached overhead is

applicable for files which cannot be cached.

The final microbenchmark investigates the tradeoffs between cached and uncached

verification. Caching means that MAC verification is amortized over executions but has

6.1. BINAUTH: SECURE BINARY AUTHENTICATION 157

M
ic

ro
-B

e
n

ch
m

a
rk

M
a
c
ro

-
B

e
n

ch
m

a
rk

A
u

th
e
n
ti

c
a
ti

o
n

n
o
o
p

40
K

n
o
o
p

40
M

l
o
a
d
-
d
l
l

b
u
i
l
d

S
y
st

e
m

ti
m

e
sl

ow
d

ow
n

ti
m

e
sl

ow
d

ow
n

ti
m

e
sl

ow
d

ow
n

ti
m

e
sl

ow
d

ow
n

C
le

a
n

2
2.

76
−

30
.0

7
−

45
.3

2
−

66
.2

6
−

E
X

E
O

n
ly

:
S
i
g
n
t
o
o
l

2
82

2
11

63
7%

48
50

16
03

3%
73
.4

9
62
.1

6%
97
.0

0
46
.3

9%
S
i
g
c
h
e
c
k

1
72

0
74

57
%

56
29

18
62

3%
62
.8

2
38
.6

2%
11

0
.5

66
.7

2%
U

n
ca

ch
ed

-M
D

5
2
5.

96
14
.0

8%
21

50
70

52
%

45
.3

4
0.

05
%

70
.8

5
6
.9

3%
U

n
ca

ch
ed

-S
H

A
25

6
3
0.

29
33
.0

7%
90

05
29

85
1%

45
.3

4
0.

05
%

71
.7

9
8
.3

5%
C

ac
h

ed
-M

A
C

2
3.

20
1
.9

3
%

30
.6

3
1
.8

8
%

45
.3

3
0
.0

2
%

67
.6

2
2
.0

6
%

A
ll

B
in

a
ri

e
s:

S
i
g
n
t
o
o
l

11
86

7
52

04
3%

14
03

0
46

56
5%

16
01

8
35

24
4%

−
−

S
i
g
c
h
e
c
k

4
28

3
18

77
2%

61
86

20
47

8%
12

54
8

27
58

7%
−

−
U

n
ca

ch
ed

-M
D

5
2
6.

10
14
.6

7%
38

81
12

81
1%

12
8.

8
18

4
.1

%
79
.3

1
19
.6

9%
U

n
ca

ch
ed

-S
H

A
25

6
3
0.

42
33
.6

7%
93

02
30

83
9%

20
1.

3
34

4
.0

%
91
.8

0
38
.5

5%
C

ac
h

ed
-M

A
C

2
3.

25
2
.1

4
%

30
.5

8
1
.7

2
%

45
.3

5
0
.0

7
%

67
.8

8
2
.4

5
%

T
a
b

le
6.

1:
B

en
ch

m
a
rk

re
su

lt
s

sh
ow

in
g

ti
m

es
(i

n
se

co
n

d
s)

an
d

sl
ow

d
ow

n
fa

ct
or

s.
T

h
e

w
or

st
sl

ow
d

ow
n

fa
ct

or
s

fo
r

ea
ch

b
en

ch
m

ar
k

sc
en

a
ri

o
ar

e
sh

ow
n

w
it

h
u
n

d
er

li
n

e,
w

h
er

ea
s

th
e

b
es

t
ar

e
in

b
ol

d
.

W
e

d
efi

n
e
sl
ow
d
ow
n
x

=
(t
im
e x
−
ti
m
e c
le
a
n
)/
ti
m
e c
le
a
n
.

158 CHAPTER 6. BINARY INTEGRITY

added overhead from monitoring file modification, while uncached is the opposite. Our

micro-benchmark opens a file for writing 100K times to measure the worst case overhead

incurred by file modification monitoring. We have 3 experiments: (i) a clean system

without BinAuth; (ii) BinAuth with cache and the modified file is a binary; and (iii)

BinAuth with cache and the modified file is not a binary.

The results for the file modification micro-benchmark show that for BinAuth with a

cache, it doesn’t matter whether the file being written to is a binary or not. Both cases

incur about 60% overhead compared to a clean system. Since BinAuth with no-cache has

no overheads for file modifications, this means that under some usage scenarios where

file modification is very high, the uncached strategy may be preferable over cached even

when Verifier overhead is higher.

6.1.5 Conclusion

We have shown BinAuth, a comprehensive system which authenticates both content and

pathname for Windows to ensure that only trusted binaries are executed. Unlike other

operating systems, Windows poses significant challenges. We show that it is possible to

ensure that only trusted binaries can be loaded from files for execution. This can also be

combined with a simple software ID scheme which simplifies binary version management,

and dealing with vulnerability alerts and patches. BinAuth is lightweight and integrates

well with PKI and trust mechanisms without having to rely on them. The overheads of

our prototype are quite low when caching is used. In the case of workloads with heavy

file modifications, an uncached strategy might be preferable. The overheads are still low

in this case, since the system overhead will be dominated by I/O rather than binary

authentication, so the overall binary authentication would still be low as a percentage of

overall system overhead. In summary, although this is a prototype, it significantly adds

to the security of any Windows system but at the same time is sufficiently flexible so that

it can be tailored for different usage scenarios.

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 159

6.2 BinInt: Usable System for Binary Integrity

The previous section showed BinAuth, a reliable and efficient system to authenticate

binaries in Windows. It is designed for environments where the binaries are relatively

static, i.e. the binaries rarely change or the changes are well managed by the system

administrator. However, in systems such as personal machines, it is common for binaries

to change. In particular, users can install or uninstall software; The software can perform

automatic updates periodically; and some software creates temporary binaries.

In this section, we first look at the dynamics of binaries and compare it with attacks

in Section 6.2.1. We then discuss the related work in Section 6.2.2. After that, we

present a new security model for binaries called BinInt in Section 6.2.3. It provides a

number of modes for operation: default, install and temporary trusted modes. BinInt

provides protection (in default mode) against a broad range of binary-based attacks. In

Section 6.2.4, we show the implementation and in Section 6.2.5, we analyze the security of

our model. In Section 6.2.6, we evaluation BinInt in terms of performance and usability.

Our system is efficient and has negligible overhead in default and temporary trusted

modes. In install mode, our benchmarks show ∼12% overhead which is reasonable since

the use of install mode is infrequent.

6.2.1 Normal Usage versus Malicious Attacks

A security model must be able to distinguish malicious attacks from normal software

usage. We firstly look at typical software usage scenarios in the software life cycle, namely

running, installing, updating and developing a software. We then look at some attacks

which exploit binaries whose behavior is similar to the normal usage scenarios.

The most common scenario is that of running a software. Normal usage typically

involves loading binaries, reading/writing data files and possibly the creation of child

processes. It is, however, not common for binaries to be created or modified. We high-

light that binaries can come from various (3rd party) sources. For example, Windows

Explorer (Windows GUI shell) loads 3rd party DLLs to provide shell extensions. The

shell extensions are used to preview images or video, to add a control panel component,

to customize file icons and context menus, etc. Another example is anti-virus software

which forces its DLLs to be loaded by all processes, e.g. avgrsstx.dll from the AVG

anti-virus software.

Installing software involves creating binaries and data files. Installers downloaded from

the Internet are typically packed as self-extracting archives, which unpack themselves into

a temporary directory and launch from there. This unpack-and-run behaviour is also

observed in the normal running of some software, e.g. many Sysinternals tools unpack

a kernel driver into a temporary directory and then load it.

There are a number of software update mechanisms. Microsoft Windows Update

160 CHAPTER 6. BINARY INTEGRITY

employs a dedicated service (daemon process) to check, download and apply updates. In

this case, the updater is completely separate from the software being updated. Other

software, such as Mozilla Firefox and Sun JDK, employ a self-update mechanism. We

use Firefox to illustrate the mechanism. Firefox checks online if there is a new version

available and downloads the update as a compressed archive file. After downloading,

Firefox invokes the updater as a helper process and terminates itself. The updater process

reads the downloaded archive and updates firefox.exe and other files if necessary. When

updating is finished, the updater re-launches Firefox (firefox.exe) and terminates itself.

The helper process technique is usually used because in Windows, a binary cannot be

written to when it is loaded by another process.

Software development means that binaries have to be created. For example, to debug

a software using an IDE, the IDE firstly builds the program and then runs it. Thus the

IDE creates or modifies binaries then executes them.

We now turn to some common attacks that involve binary loading or modification.

Furthermore, these attacks use binary vulnerabilities in trusted programs. We highlight

how the attacks behave in a similar fashion to the normal usage scenarios described earlier

and the security mechanism needs to distinguish between normal usage versus an attack.

6.2.1.1 Running Unintended Executables

A common attack is to employ social engineering techniques to get the user to run a mal-

ware executable. However, the attack can be more subtle and exploit features of various

applications to hide the executable. For example, by default, Windows Explorer hides file

extensions. Consider a malware postcard.jpg.exe where the icon of the malware also

looks like a photo. The user is then fooled into thinking it is a JPEG image and click

it for viewing in Windows Explorer. The malware could execute its payload and then

display the photo. Thus, the user would probably think this is just the normal display

of a JPEG image. Notice that the behaviour of both a direct or file extension social

engineering attack is similar to the regular software running scenario.

6.2.1.2 Application Data with Embedded Binaries

Malware binaries can be embedded within documents. A recent vulnerability in PDF

readers [87] illustrates this attack where a legal PDF file containing an embedded exe-

cutable. When the PDF file is viewed, the PDF viewer (e.g. Acrobat) also automatically

executes the embedded executable. Notice that the behavior in the attack resembles the

unpack-and-run in the normal installation scenarios.

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 161

6.2.1.3 DLL Attacks

DLL attacks typically exploit some feature of an application to inadvertently load a mali-

cious DLL. The “carpet bomb” [10] attack involves bugs of two different browsers. Safari

had a feature7 which downloaded files onto the user’s desktop automatically. Internet

Explorer had a bug where certain DLLs are specified by the file name rather than a full

pathname. By combining the behavior of Safari and Internet Explorer, a malicious web-

site can execute arbitrary code on a machine that visits the site. It is surprising to see

that this vulnerability where applications do not use a sufficiently qualified path when

loading DLLs has recently re-surfaced (in Aug 2010) as “binary planting” attacks [62].

In some cases, an application has features to execute binaries. This can be exploited.

A vulnerability [11] in handling Windows Help files in Internet Explorer was recently

discovered. A malicious web page can cause Internet Explorer to load a malicious WinHelp

(.hlp) file from an arbitrary path. WinHelp also has a feature to allow loading of arbitrary

DLLs. The bug and the feature together enable a malicious website to execute arbitrary

code on the client.

The recent Stuxnet worm [57] also uses a DLL attack. Interestingly, Windows 7

does not even give a UAC warning with this attack. Stuxnet exploits a vulnerability in

Windows Explorer which displays an icon for shortcut files by using a DLL specified in

the shortcut.

All above attacks load existing malicious DLLs which could be accidentally down-

loaded/copied or exist in a network drive. Once the DLL is in place, the behaviour of the

attacks is similar to the regular software running scenario.

6.2.2 Related Work

6.2.2.1 Isolation Models

Isolation can be used to prevent malware from changing other parts of the system. A

straight forward form of isolation is to have multiple independent systems or virtual

machines (VM). This is useful for protecting one application against another though

it might not protect against the PDF and WinHelp attacks discussed in Section 6.2.1

which are against the applications themselves. There is also the question of whether it

is effectively feasible to run each software within its own VM. On the one hand, this by

definition also prevents sharing which is incompatible with the use of implicit sharing by

software in Windows and may be incompatible with system services and utilities. It also

means a loss of usability since data is not sharable between applications. The isolation

also leads to high maintenance cost of updating all VMs against vulnerabilities as there

are multiple copies of the same software or library. On the other hand, using isolation

7Apple did not consider it as a bug.

162 CHAPTER 6. BINARY INTEGRITY

separately on each software can also have significant system overheads since large numbers

of virtual machines need to be run.

One-way isolation is a form of isolation which lets untrusted programs run in a sandbox

where they can read from the trusted base system but modifications are confined to the

sandbox. In one-way isolation, processes can be executed in isolation domains, other

processes are executed normally in the base system. The semantics of file access is modified

such that an isolated process can read files in the base system but when it tries to modify

them, a private copy is duplicated from the base system and subsequent modification is

applied on the private copy. Special care must be taken to handle file deletion so that

files in the base system are not accessed.

Kato et al. proposed an one-way isolation system named SoftwarePot [47], whose main

purpose is to allow software to securely circulate among different hosts. Secure circulation

means that software in the sandbox should not interfere with the base system. A security

policy specifies files visible to the sandbox, path mapping from base system to sandbox,

system calls allowed and network addresses allowed to interact. Liang et al. proposed

another one-way isolation system named Alcatraz [53]. The main difference between

SoftwarePot and Alcatraz is that the latter enables modification from the sandbox to be

committed to the base system.

The problems of one-way isolation are similar to that of virtual machines, namely,

that isolation is the opposite of sharing. Other than that, one-way isolation protects

the integrity of non-isolated system from attackers in the isolated system, but it does

not protect the integrity of the isolated system. There are many forms of interactions

between the sandbox and the base system, such as file system access, networking and

IPC (including local sockets, pipes, process synchronization mechanisms, signals, window

messages, etc.). The first two forms are easier to sandbox because their semantics are

known. However, IPC is application dependent and can be complicated and undocu-

mented. Even if only considering documented ones, it would take too much effort to

implement filters for different IPC protocols (e.g. shared memory, pipe, CORBA, D-Bus,

SunRPC etc.). SoftwarePot does not discuss IPC and Alcatraz simply disallows some

forms of IPC. However, IPC is important and cannot be ignored. For example, the X

window system, is implemented as local sockets; the Windows GUI requires (undocu-

mented) IPC to the smss.exe and csrss.exe processes. Some services are implemented

as IPC such as service management and domain name resolution in Windows, PulseAudio

(the sound system in Linux), and syslog (the UNIX logging service). Simply allowing and

denying them will lead to either insecure sandboxing or unusable software.

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 163

6.2.2.2 Signed Binaries

There are systems [43, 16, 101, 90, 66] that only allow signed binaries to be loaded

or executed. In these systems, signature of binaries are either embedded in the files

themselves or signed by a third party, such as the administrator and stored in a secure

database. Executing or loading are only allowed if the signature can be verified.

There are three basic problems with signed binaries. Firstly, the security relies on

the trust of the signing keys. If key is leaked, the trust is broken. For example, the

Stuxnet worm [57] uses signed drivers with real certificates which are trusted by Windows.

Secondly, revocation checking is expensive as it cannot be done locally and furthermore

may not be timely. Lastly, we cannot assume that all software vendors sign their binaries.

A more important difference is that most signed binary schemes are not intended to deal

with the software lifecycle issues which we are concerned with. Another difference is

that signed binaries only ensures that the binaries are not modified but may not prevent

deletion.

Self-signed executables Self-signed executables [109] is a different approach to signed

binaries which allows for software updates. In their proposal, all binaries are embedded

with their signatures signed by the software vendor. Unlike the previous signed binary

systems, the assumption is that any binary which has been signed can be trusted. Using

the observation that binaries are usually updated by a newer version from the same vendor

as the original, binary updating is allowed if the signature can be verified with the same

public key.

The self-signed executables system binds paths with keys. Once bound, the key cannot

be changed, even when the file is removed. An attacker can also sign malware as long as

it is the first software installed with that path. Alternatively, this can constitute a denial

of service attack since an attacker binding the path first would disallow future correct

software to be installed at that path. As deleted files leave behind a stub, the number of

stubs will monotonically increase over time. This can lead to yet another denial of service

attack to exhaust storage.

In order to compare the signatures between the old and new copy, semantics of file

writing has to be changed such that writing is applied on a shadow copy and later updated

atomically. This can break software that assumes normal POSIX semantics.

6.2.3 The BinInt Security Model

In Section 6.2.2, we discussed a number of existing security models. While those models

can be used to provide security for binaries, the main drawback is that they do not cover

the usage spectrum across the software lifecycle nor do they handle all the typical attack

scenarios mentioned. We now present a new security model for binaries which we call

164 CHAPTER 6. BINARY INTEGRITY

BinInt. This model combines file integrity together with aspects of signed binaries and

isolation to give a binary security mechanism which addresses usability in the software

lifecycle. We remark that while we focus on Windows, this model has general applicability

to other operating systems.

We are cognizant that a security mechanism should provide the desired form of pro-

tection in practice for the intended system usage. Full two-way isolation protects the host

against malware in the VM but may not protect against other attacks. More importantly,

it does not protect the software running in the VM from malware. This is why our model

combines a number of features together to provide binary integrity. We focus solely on

integrity and security of binaries as want to preserve compatibility with existing software

(in Windows) while allowing implicit sharing. Our model should not be considered as a

sole security mechanism and is meant to be used with other security mechanisms, e.g.

ACLs or MAC, IDS, etc.

Our goals are three fold. Firstly, to prevent attacks exploiting vulnerabilities which

load untrusted binaries. Secondly, to ensure integrity of binaries. This both prevents mal-

ware from being installed on the system and prevents denial of service attacks which delete

binaries. Thirdly, we want to achieve a middle ground between usability and security. Any

changes to system usage should not be onerous and existing software should (mostly) be

able to run, including closed source binaries. While it is impossible to guarantee that all

unmodified software can still function normally together with a security mechanism, our

goal is that it should work in practice for typical software. Thus, frequent tasks, such as

running and updating benign software, should be (mostly) transparent. Other infrequent

tasks, such as software installation and removal, can be a little different but should not

cause much inconvenience. As the mechanism should be applied to all processes, it should

only have small overheads especially for frequent tasks.

We now describe our BinInt model. All processes are in one of the following execution

modes: d-mode (default mode), i-mode (install mode) and t-mode (temporary trusted

mode). Intuitively, d-mode corresponds to running already installed software, while i-

mode is for installing/updating software. Special cases for running software which needs

to dynamically create and load binaries but is not a software install are handled by t-

mode, e.g. building and running binaries in an IDE or dynamic temporary binaries as in

Sysinternals tools.

Each process and binary is associated with a software domain, which relates the pro-

cess or binary to a particular installed software. The idea is that we may use the name of

a particular software or the software vendor as the software domain. A special software

domain ⊥ denotes binaries which do not have a valid software domain. Binaries whose

software domain is not ⊥ are called b-valid.

Now we describe the BinInt model using the following rules. Rules 1–2 enforce loading

of binaries; rules 3–6 enforce creation, modification, and deletion of binaries; and rules

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 165

7–8 define the execution modes for processes.

R1 A d-mode process cannot load b-invalid binaries, i.e. can load only b-valid binaries.

Intuitively, this means that untrusted binaries cannot be loaded by normal processes.

R2 An i-mode or t-mode process can load all binaries.

R3 A d-mode or t-mode process cannot modify or delete b-valid binaries, i.e. can modify

or delete only b-invalid binaries. Intuitively, this means that trusted binaries cannot

be modified by normal processes.

R4 An i-mode process can modify or delete a b-valid binary if their software domains

are the same. It can also modify or delete b-invalid binaries. Intuitively, this means

that an installer or updater should update only its own binaries.

R5 A new binary created by d-mode or t-mode process is b-invalid.

R6 A new binary created by i-mode process is b-valid and the binary’s software domain

is the same as the process. This rule together with rule R5 means that only an

installer should create binaries. Instead of completely preventing normal process

from creating binaries, we choose to label those binaries b-invalid. This is because

it is not possible to determine during file operations whether a file is a binary or

not.

R7 When the system is booted, the initial process(es) run in d-mode. When a new process

is created, the execution mode and software domain inherits from its parent process.

There are two mechanisms to change the mode and domain. The first mechanism is

execution mode policy, which maps the path of an EXE to a corresponding execution

mode and software domain. When a new process is created, the path of the EXE is

checked against the execution mode policy to find the execution mode and software

domain. We require that the EXE should be b-valid. If no such mapping is found in

the execution mode policy, it inherits the execution mode and software domain of its

parent process. The execution mode policy is defined by a protected configuration

file.

R8 The other mechanism changes the mode and domain of a running process by perform-

ing a special operation similar to a system call. In order to ensure that only the user

with appropriate privileges can change the execution mode and software domain,

the operation is authenticated with a password sent to the kernel. We have imple-

mented a sudo-like utility called modetrans using this operation. modetrans takes

the password from the user and executes a user-specified program in a user-specified

execution mode and software domain. Although modetrans is a command-line pro-

gram, a more user friendly GUI version can be implemented to integrate with the

Explorer shell, so that the user can right-click an EXE and choose “run in install

mode”.

166 CHAPTER 6. BINARY INTEGRITY

Both execution mode policy and modetrans are used to run an EXE in a specified

execution mode and software domain. The execution mode policy is preferred if

the EXE should always run in that execution mode and software domain. For

example, since the Windows auto-updater wuauclt.exe should always run in i-mode

and with “Microsoft” software domain, the execution mode policy should have an

entry which maps C:\windows\system32\wuauclt.exe to i-mode and “Microsoft”

software domain. Modetrans has an option to require that the EXE is b-valid before

execution. This is useful when we want to guarantee that the installer is trusted

before it is allowed to create new trusted binaries.

6.2.4 Implementation

We implemented BinInt in Windows XP. We have a kernel driver that intercepts binary

loading, file modification and some other operations.

In Sec 6.2.3, we assume all file modifications are under the control of the operating

system kernel. This assumption can be invalid in some cases. When the system mounts

a network shared file system, (e.g. through SMB) an attacker can change the binaries

outside the system. We call these unmonitorable binaries. An attacker can change local

binaries when the system is offline, or change binaries in removable media when it is offline.

To prevent these attacks, we use file signatures to detect modification. We keep signatures

of all b-valid binaries in the binary signature database, which is similar to BinAuth.

Information in the database includes path, signature, software group, modification history

and other meta data. We also generate logs of how binaries were used. Log maintenance

is done outside the kernel. The database can be used to by tools to analyze binary

dependencies, trace the origin of a binary, etc.

For unmonitorable b-valid binaries, their signatures are updated immediately after

they are updated and verified every time when their labels are accessed. For binaries that

just come online, we verify the signatures once for each binary and cache the result. We

adopt a lazy way of updating their signatures in order not to affect performance.

The kernel driver also maintains the signatures of binaries and labels of processes and

binaries. When a binary f is loaded by a process p running in d-mode, f ’s needs to be

checked whether it is b-valid. We intercept the native call NtCreateSection, which is a

necessary step in binary loading. Checking whether f is b-valid is achieved by calculating

the signature of the contents of f and match against the signature database, if f is loaded

for the first time since boot or f is in an unmonitorable media. Otherwise, the software

domain of f can be looked up using its path. Paths are normalized into the internal kernel

path to disambiguate 8.3 filename, long file name and symbolic links. For NTFS, we use

object ID to disambiguate hard links. If binary f is b-invalid, the loading will be denied,

thus NtCreateSection fails.

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 167

The rest of the implementation deals other modes and maintaining integrity of bina-

ries. If the process is in i-mode or t-mode, the checking will be bypassed and the loading

will always be allowed. When a process p tries to open a b-valid binary f with write

permission, (i.e. try to modify) the open operation is only allowed if p is in i-mode and

the software domain of p and f are the same. As there is no distinguishing feature of a

binary, other than its format, we need to immediately test whether or not the file is a

binary by reading the file header which makes i-mode more costly than other modes. We

also modify the semantics of Windows slightly so that files opened for writing in i-mode

are in exclusive mode to simplify signature creation. We do not expect this to be a major

restriction as the installer is likely to be creating files sequentially. When p closes the

file handle of f , the file contents is now complete and f ’s signature will be re-computed

and the signature database will be updated accordingly. The signature re-computation

is done immediately if f is in un-monitorable media. Otherwise, it is lazily performed

at any time before system shutdown since its only needed on next boot. Note that, to

remove or rename a file in Windows, a process has to open the file with write permission

first.

We do not prevent creation of new binaries, but new binaries created by processes in

d-mode or t-mode will not be b-valid and thus cannot be loaded in d-mode.

Process creation is intercepted using the kernel API PsSetCreateProcessNotifyRoutine

to inherit e-mode and s-domain to child processes. The systemcall-like modetrans oper-

ation is implemented as a IOCTL (I/O control).

A software installer may launch several helper programs from the main one. This is

why child processes inherit their parent process’ mode and domain. However, there are

exceptions where installer processes are not child (or descendant) processes of the first

installer process. MSI (Windows Installer) is a generic installation engine for installing

and updating software on Windows. It is commonly used for Microsoft and non-Microsoft

software. MSI makes use of a service (daemon) process to perform installation. The

service process is always running and is not part of the process hierarchy of the original

installer. We handle this by monitoring the communication channel, a named pipe \Pipe\

Net\NtControlPipeX, between the installation process and the MSI service. When an

i-mode process triggers the service to start installation, the service is switched to i-mode

with the same domain as the triggering process. When the installation terminates, the

service is switched back to d-mode. The MSI service is used exclusively so that there is

no interference between concurrent requests.

\Pipe\Net\NtControlPipeX
\Pipe\Net\NtControlPipeX

168 CHAPTER 6. BINARY INTEGRITY

6.2.5 Security Analysis

We analyse the security provided by BinInt model. We assume8 the operating system

kernel together with our BinAuth kernel driver is trusted.

Security of d-mode:

Most processes run in d-mode, thus its security is very important. The primary properties

in d-mode are: b-invalid binaries cannot be loaded; b-valid binary cannot be modified;

and binaries created are b-invalid. The consequence is that a d-mode process cannot

introduce new binaries to d-mode processes including itself. This prevents download-

and-run or download-and-load attacks. It is also not possible to delete d-valid binaries.

Security of i-mode:

A privilege escalation is required to transition from d-mode to i-mode using modetrans.

Thus, malware cannot directly do this, i.e. our implementation requires user authentica-

tion. However, users might make mistakes or social engineering attacks can be used.

There are two cases to consider. If the malware is installed in a new software domain,

the malware cannot modify existing b-valid binary, thus their integrity is assured. How-

ever, the malware can install new binaries which may be loaded into existing software as

in the DLL hijacking attacks described in Section 6.2.1. The partial order extension can

prevent this if the trust level of the malware is lower than the existing software. Similarly,

the signing extension can also prevent this since the malware may not be able to sign the

files or it might be denied by revocation or whitelist. We remark that as the binary

signature database and logs describe binary usage and loading relationships, malicious

behavior can be detected and also be removed more easily.

If the malware is installed in an existing domain, the same arguments apply. However,

unlike the UAC privilege escalation mechanism in Windows, the binary database can be

used to explain whether an executable is connected to the software in the existing domain.

Security of t-mode:

Similar to i-mode, t-mode is requires authentication for the privilege escalation. In terms

of side effects, it behaves like d-mode, a t-mode process cannot modify b-valid binaries,

thus a malicious t-mode process cannot introduce new binaries to d-mode processes.

However, t-mode processes can load b-invalid binary. This enables them to introduce

new binaries to themselves. However, if they want to persist in the system (survive after

reboot), they have to lure the user to authenticate and run them in t-mode or i-mode, as

they would not be able to execute in d-mode.

8The external monitoring shown in Chapter 4 can be used to detect some attacks when the assumption
is false.

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 169

6.2.6 Evaluation

We now evaluate the system based on its usability in the software usage life cycle and its

performance overhead.

6.2.6.1 Usability Evaluation

We tested our system on the main elements of the software usage life cycle – installation,

running and uninstallation of the following software: Internet Explorer 8, Winamp (music

player), Yahoo Messenger (instant messaging client), Firefox, Google Chrome, Adobe

Acrobat Reader and Java Development Kit. We describe the observations from the binary

database and logs for the software tested.

Internet Explorer 8 (IE8) tests Microsoft software installation. We choose the “Mi-

crosoft” software domain to install IE8 to on a Windows XP SP2 machine. No problem

was observed during installing and running IE8. The Windows auto-updater handles

the update of all Windows related software including IE8. We defined the updater,

wuauclt.exe, in the execution mode policy to run in i-mode. Thus, it updates transpar-

ently.

The Winamp installer uses its own Nullsoft installer. No problem was observed during

running and uninstalling Winamp. Yahoo Messenger uses a network-based install where

the installer is a small initial installer which downloads a much larger installer. The

installer tries to upgrade the Flash ActiveX plugin flash.ocx if it is not the latest

version. This action is blocked because the software groups do not match. However,

this is not really a problem as the Flash plugin can be updated separately. We noticed

that a YahooAUService.exe service is created for auto-update. In order for the auto-

update to work, we should add YahooAUService.exe to the execution mode policy to

run in i-mode with the “Yahoo” s-domain.

No problem was observed during Firefox installation. An updater.exe in Firefox

handles updates and also needs to be added to the execution mode policy. No problem

was observed for Google Chrome. Adobe Acrobat Reader and Java Development Kit use

the MSI engine which is handled transparently without any user interaction.

We have chosen software which cover a range of mechanisms for installation, unin-

stall, and update. We found that all the software life cycle aspects are usable with little

effort needed and in some cases, completely transparently. Auto-updates such as Yahoo

Messenger and Firefox have to be listed in the execution mode policy for them to work.

This can be done manually immediately after installation if the user knows which pro-

gram does the update. It can also be done at the first time the updater performs the

updates. In this case, the user will be notified about the attempt to modify binaries and

the information from the binary database is sufficient for understanding how to set the

execution mode policy.

170 CHAPTER 6. BINARY INTEGRITY

workload environment running time overhead

build

base 59.0± 2.0s
d-mode 58.7± 1.8s −0.5%
t-mode 59.8± 1.3s 1.4%
i-mode 60.3± 1.9s 2.2%

archive

base 41.4± 1.4s
d-mode 40.0± 2.2s 3.4%
t-mode 42.2± 0.8s 2.0%
i-mode 46.1± 1.1s 11.4%

javascript

base 1257.7± 21.1ms
d-mode 1257.3± 25.2ms −0.0%
t-mode 1249.5± 26.1ms −0.7%
i-mode 1247.9± 15.8ms −0.8%

Table 6.2: Performance overhead

6.2.6.2 Performance Evaluation

The performance overhead of our system is caused by system call interception as described

in Section 6.2.4. The objective of the performance evaluation benchmark is to test the

overhead of the modes with the base system, a vanilla unmodified Windows XP SP3. The

machine is a VMWare virtual machine running Intel Core 2 Duo 2.33GHz CPU (with one

core allocated to VMWare) and 512MB memory. We use the following test cases: software

build (building putty, a SSH client, with 86 C files) using Visual Studio command line

interface, WinRAR archive extraction (extracting the Linux kernel source code), and

the SunSpider JavaScript Benchmark in Firefox. The three test cases are chosen to test

process creation, I/O operations and a CPU workload respectively as these are the main

sources of overheads in our prototype. Each test case is performed in the base system

(without our system), d-mode, t-mode and in i-mode. Each test case in each environment

is performed 5 times to calculate the mean and standard deviation.

Table 6.2 shows the result of the tests. Except for the archive extraction test in i-

mode, all the average performance overheads are small. In most cases, the overhead is

smaller than the standard deviation9. While individual runs have some small differences,

we conclude that with the exception of the archive test, the performance can be considered

to be similar to the base system.

The 11.4% overhead of the i-mode archive case shows the additional costs of i-mode

when the workload is mostly file writing. Although the extracted files are not binaries,

the system has to check whether or not they are binaries. Since software installation

usually happens infrequently, we are less concerned with efficiency of i-mode as long as it

is still reasonable.

9This is caused by environmental factors such as caches, etc., and in some others it is even negative
(slightly faster)

6.2. BININT: USABLE SYSTEM FOR BINARY INTEGRITY 171

The performance overhead of BinInt is in general higher than BinAuth, because BinInt

pays additional cost of maintaining and updating the binary signature database, whereas

BinAuth has a static database. In addition, BinInt needs to track the execution modes

and software domains of processes and files.

6.2.7 Conclusion

We have presented a binary security model which caters to the dynamic use of binaries

within the software life cycle while protecting against attacks in default mode and giving

isolation between software domains in install mode. Our prototype is efficient and usable

while protecting a broad range of binary loading/execution mechanisms in Windows.

We found our system to be mostly transparent in usage on typical Windows software

throughout its software lifecycle. Thus, BinInt is a practical solution which gives a good

tradeoff between usability and security to protect binaries on Windows. Comparing to

UAC, we believe that our model provides better protection especially for user-owned

binaries, while having better user experience in terms of interference (security prompt).

Our model can also be combined with other security mechanisms such as file system access

control and user privilege separation.

Chapter 7

Conclusion

This chapter concludes this thesis. We summarize the contributions of this thesis in

Section 7.1, and discuss some future directions in Section 7.2.

7.1 Summary of the Thesis

In this thesis, we propose our monitoring frameworks: LBox and WinResMon. The

information collected by them can be used to solve many problems including software

comprehension, fault diagnosis and system security. Based on the frameworks, we devel-

oped two visualizations: module dependency visualization and lviz. As the frameworks

are resource-based, we can easily adapt them to control the access of resources in system

and apply them on system security. Our binary integrity system prevents loading of un-

trusted binary by monitoring file access in the operating system. To detect malware when

the operating system kernel is possibly compromised, we correlate information gathered

from external sensors and network routers.

LBox We show our user-level monitoring framework LBox. User-level monitoring dif-

fers from traditional super user operated monitoring in that user-level monitoring can

be safely used by all users without worrying about confidentiality and denial-of-service

problems. LBox also allows cascading of monitors. Comparing state of the art monitoring

frameworks such as Solaris DTrace and SystemTap, LBox does not allow user supplied

script to run in kernel space. This reduces the complexity and more importantly reduces

the chances of introducing security bugs of compromising the kernel. To compensate

the flexibility of in-kernel script, LBox provides a fine-grained event filtering API. Our

experiments are very encouraging showing that the overhead is comparable to in-kernel

mechanisms such as DTrace.

172

7.1. SUMMARY OF THE THESIS 173

WinResMon We presented the motivation, design, implementation and usage of Win-

ResMon. Its main use is to inspect resource access and software dependency issues in

Microsoft Windows environments. As WinResMon is extensible, system administrators

can also build tools using WinResMon for custom queries and system analysis. Bench-

marking shows that WinResMon is reliable and is comparable to other popular tools.

External Monitoring When the operating system kernel is compromised, information

collected from the host cannot be trusted. We propose a framework that incorporates ex-

ternal information from sensors in securing host computers. Since the sensors are external,

they are difficult to be accessed and tampered by a compromised host. The framework

can be applied to detect malware and also mitigate the impact of a compromised host.

Our experiments show that our framework can successfully detect three types of malware:

email spammer, DDoS zombie and password cracking zombie. The framework also takes

advantage of the growing popularity of pervasive computing and sensor networks which

make it feasible for cost-effective deployment in the near future.

Module Dependency Visualization We have demonstrated that software dependen-

cies in Windows are quite complex even when looking at the coarse grain level of software

components packaged into binaries and executables. Our module dependency visualiza-

tion gives an effective way of extracting and visualizing the software dependencies and

interactions between binaries. We show that even with the complexity of actual Windows

software, it is possible to analyse whole system interaction, understand how modules are

used and shared, and also discover potential unexpected or unusual interactions/modules.

Such an understanding is also useful for software developers, system administrators and

also users, to manage the software ecosystem on Windows and to deal with the problems

which arise from module updates and potential “DLL hell” repercussions.

LViz We present a DotPlot-based visualization for studying execution traces. We use

examples to show that LViz is flexible to look at a wide range of problems. As the

traces can be very large, LViz is implemented to be efficient and responsive for interactive

use. We have developed the VDP tool for Windows because such visualizations are more

beneficial given the closed source nature and system complexity of Windows. However,

VDP is not reliant on a particular monitoring infrastructure and the same visualization

ideas can be applied to other systems with a rich source of execution traces, e.g. Unix.

BinAuth We performed a study on the feasibility of mandatory software component

authentication. Our approach uses a lightweight authentication technique using message

authentication code. According to our benchmarks, we found that using a cache reduces

the overhead as it reduces the number of repeated authentication requests. Based on

174 CHAPTER 7. CONCLUSION

these benchmarks, we can conclude that our mandatory authentication can be added to

Windows without significant overhead. We have also introduced the concept of “software

naming”. The idea behind this is to uniquely identify a file. We have mentioned a

few applications for this idea. Given the security benefits of binary authentication and

software naming, and only small overhead incurred even on complex OS like Windows,

we envisage that the presented results can better convince the OS and user community

alike to start deploying them more universally in realizing secure software distribution

and execution.

BinInt Based on BinAuth, we propose BinInt, a security model which caters to the

dynamic use of binaries within the software life cycle while protecting against attacks in

default mode and giving isolation between software domains in install mode. Our pro-

totype is efficient and usable while protecting a broad range of binary loading/execution

mechanisms in Windows. We found our system to be mostly transparent in usage on

typical Windows software throughout its software lifecycle. Thus, BinInt is a practical

solution which gives a good tradeoff between usability and security to protect binaries on

Windows. Our model can also be combined with other security mechanisms.

7.2 Future Work

In future work of monitoring infrastructures include functional extensibility and perfor-

mance optimization. More types of events such as internal state changes and low level

hardware operations (hard drive, keyboard and mouse) can be included. As multi-core

CPUs becoming more common, we can optimize the implementation to make use of them.

We can apply our framework in the cluster or cloud computing setting, and have query

API to aggregate information from multiple hosts. Log compression can benefit from the

high redundancy of the logs. We can have an operating system independent abstraction

which make it easier to port for future operating systems.

Our binary integrity model, BinInt, focuses on binaries only. However, securing only

binaries may not be sufficient. For example, the attacker can modify Java class files to

change the behaviour of java programs. The same applies to shell scripts and configuration

files. We can generalize BinInt to protect the integrity of any kind of file. The difficulty

is that data files are much more dynamic than binaries. Unlike binaries which are only

changed during install, update and removal of the software, data files are usually changed

much more frequently. This makes direct use of d-mode for data files unusable. More fine

grained policies can be applied for data files.

Bibliography

[1] Bootvis. http://www.techrepublic.com/article/step-by-step-use-bootvis-

to-improve-xp-boot-performance/5034622.

[2] Easysen SBT80 product page. http://www.easysen.com/SBT80.htm.

[3] FBI investigates allegations webcam used to monitor student. http:

//articles.cnn.com/2010-02-20/justice/laptop.suit_1_webcam-district-

court-laptop.

[4] Filemon for Windows. http://technet.microsoft.com/en-us/sysinternals/

bb896642.

[5] The myth of the four-minute windows survival time. http://www.edbott.com/

weblog/?p=2071.

[6] Process and thread manager routines. http://msdn.microsoft.com/en-us/

library/ff559917.aspx.

[7] Regmon for Windows. http://technet.microsoft.com/en-us/sysinternals/

bb896652.

[8] Unpatched PC “survival time” just 16 minutes. http://www.informationweek.

com/news/showArticle.jhtml?articleID=29106061.

[9] Windows NT system-call hooking. http://www.ddj.com/184410109.

[10] Safari carpet bomb. http://www.oreillynet.com/onlamp/blog/2008/05/

safari_carpet_bomb.html, 2008.

[11] CVE-2010-0483. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2010-0483, 2010.

[12] L.V. Ahn, M. Blum, N.J. Hopper, and J. Langford. CAPTCHA: Using hard AI prob-

lems for security. In Proceedings of the 22nd International Conference on Theory

and Applications of Cryptographic Techniques (EUROCRYPT’03), pages 294–311.

Springer-Verlag, 2003.

175

http://www.techrepublic.com/article/step-by-step-use-bootvis-to-improve-xp-boot-performance/5034622
http://www.techrepublic.com/article/step-by-step-use-bootvis-to-improve-xp-boot-performance/5034622
http://www.easysen.com/SBT80.htm
http://articles.cnn.com/2010-02-20/justice/laptop.suit_1_webcam-district-court-laptop
http://articles.cnn.com/2010-02-20/justice/laptop.suit_1_webcam-district-court-laptop
http://articles.cnn.com/2010-02-20/justice/laptop.suit_1_webcam-district-court-laptop
http://technet.microsoft.com/en-us/sysinternals/bb896642
http://technet.microsoft.com/en-us/sysinternals/bb896642
http://www.edbott.com/weblog/?p=2071
http://www.edbott.com/weblog/?p=2071
http://msdn.microsoft.com/en-us/library/ff559917.aspx
http://msdn.microsoft.com/en-us/library/ff559917.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896652
http://technet.microsoft.com/en-us/sysinternals/bb896652
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://www.ddj.com/184410109
http://www.oreillynet.com/onlamp/blog/2008/05/safari_carpet_bomb.html
http://www.oreillynet.com/onlamp/blog/2008/05/safari_carpet_bomb.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0483
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0483

176 BIBLIOGRAPHY

[13] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6):333–340, 1975.

[14] K. Alkio. Mbr rootkit, a new breed of malware. http://www.f-secure.com/

weblog/archives/00001393.html, 2008.

[15] R. Anderson. The end of DLL hell. MSDN Magazine, 2000.

[16] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy. DigSig: Runtime au-

thentication of binaries at kernel level. In Proceedings of the 18th USENIX Confer-

ence on Large Installation System Administration (LISA’04), pages 59–66. USENIX

Association, 2004.

[17] C.A. Ardagna, M. Cremonini, E. Damiani, S.D.C. di Vimercati, and P. Samarati.

Supporting location-based conditions in access control policies. In Proceedings of the

2006 ACM Symposium on Information, Computer and Communications Security

(ASIACCS’06), pages 212–222. ACM, 2006.

[18] E. Arnold. The trouble with tripwire: Making a valuable security tool more efficient.

http://www.securityfocus.com/infocus/1398, 2001.

[19] D.F. Bacon, P. Cheng, and D. Grove. Tuningfork: a platform for visualization and

analysis of complex real-time systems. In Companion to the 22nd ACM SIGPLAN

Conference on Object-oriented Programming, Systems and Applications Companion

(OOPSLA’07), pages 854–855. ACM, 2007.

[20] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request ex-

traction and workload modelling. In Proceedings of the 6th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’04), pages 18–18. USENIX

Association, 2004.

[21] M. Basseville and I.V. Nikiforov. Detection of abrupt changes: theory and applica-

tion. Prentice Hall, 1993.

[22] S. Bhattacharya. Dynamic probes — debugging by stealth. In Proceedings of

Linux.Conf.Au, 2003.

[23] K.J. Biba. Integrity considerations for secure computer systems. Technical report,

MITRE CORP BEDFORD MA, 1977.

[24] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel, G. Tolle,

J. Hui, A. Fox, M.I. Jordan, et al. Combining visualization and statistical analysis

to improve operator confidence and efficiency for failure detection and localization.

In Proceedings of the Second International Conference on Autonomic Computing

(ICAC’05), pages 89–100. IEEE Computer Society, 2005.

http://www.f-secure.com/weblog/archives/00001393.html
http://www.f-secure.com/weblog/archives/00001393.html
http://www.securityfocus.com/infocus/1398

BIBLIOGRAPHY 177

[25] D.L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipu-

lation. PhD thesis, Massachusetts Institute of Technology, 2004.

[26] B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal. Dynamic instrumentation of

production systems. In Proceedings of the USENIX Annual Technical Conference

(USENIX ATC’04)), pages 2–2. USENIX Association, 2004.

[27] CERT. Cert statistics. http://www.cert.org/stats/.

[28] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

Computing Surveys (CSUR), 41(3):1–58, 2009.

[29] E.C. Chang, L. Lu, Y. Wu, R.H.C. Yap, and J. Yu. Enhancing host security using

external environment sensors. In Proceedings of the 6th International ICST Con-

ference on Security and Privacy in Communication Networks (SecureComm’10),

volume 50, pages 362–379. Springer, 2010.

[30] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J.J. van Wijk, and A. van

Deursen. Understanding execution traces using massive sequence and circular bun-

dle views. In Proceedings of the 15th IEEE International Conference on Program

Comprehension (ICPC’07), pages 49–58. IEEE Computer Society, 2007.

[31] W. Cui, R.H. Katz, and W. Tan. Design and implementation of an extrusion-based

break-in detector for personal computers. In Proceedings of the 21st Annual Com-

puter Security Applications Conference (ACSAC’05), pages 361–370. IEEE Com-

puter Society, 2005.

[32] D. Eastlake and T. Hansen. US secure hash algorithms (SHA and HMAC-SHA).

Technical report, RFC 4634, July, 2006.

[33] S.G. Eick and P.J. Lucas. Displaying trace files. Software Practice and Experience,

26(4):399–409, 1996.

[34] S.G. Eick, M.C. Nelson, and J.D. Schmidt. Graphical analysis of computer log files.

Communications of the ACM, 37(12):50–56, 1994.

[35] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz — open

source graph drawing tools. In Graph Drawing, pages 594–597. Springer, 2002.

[36] M. Ewing and E. Troan. The RPM packaging system. In Proceedings of the First

Conference on Freely Redistributable Software, 1996.

[37] R. Faulkner and R. Gomes. The process file system and process model in UNIX

System V. In Proceedings of the 1991 Winter USENIX Conference, 1991.

http://www.cert.org/stats/

178 BIBLIOGRAPHY

[38] J. Finke. Process monitor: Detecting events that didn’t happen. In Proceedings of

The 16th Large Installation Systems Administration Conference (LISA’02), pages

145–153, 2002.

[39] J. Foote. Visualizing music and audio using self-similarity. In Proceedings of the

seventh ACM International Conference on Multimedia, pages 77–80. ACM, 1999.

[40] T. Garfinkel. Traps and pitfalls: Practical problems in system call interposition

based security tools. In Proceedings of the Network and Distributed Systems Security

Symposium (NDSS’03), 2003.

[41] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Compatibility is not trans-

parency: VMM detection myths and realities. In Proceedings of the 11th USENIX

Workshop on Hot Topics in Operating Systems (HotOS’07), page 6. USENIX As-

sociation, 2007.

[42] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter: Detecting

malware infection through ids-driven dialog correlation. In Proceedings of 16th

USENIX Security Symposium, page 12. USENIX Association, 2007.

[43] F. Halim, R. Ramnath, Y. Wu, and R. Yap. A lightweight binary authentication

system for windows. Trust Management II, pages 295–310, 2008.

[44] K. Ingham and S. Forrest. A history and survey of network firewalls. University of

New Mexico, Tech. Rep, 2002.

[45] J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy. Studying spamming

botnets using botlab. In Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation (NDSI’09), pages 291–306. USENIX Associa-

tion, 2009.

[46] D. Kaminsky. Black ops 2006. Blackhat USA, 2006.

[47] K. Kato and Y. Oyama. Softwarepot: An encapsulated transferable file system

for secure software circulation. Software Security – Theories and Systems, pages

217–224, 2003.

[48] G.H. Kim and E.H. Spafford. The design and implementation of tripwire: A file

system integrity checker. In Proceedings of the 2nd ACM Conference on Computer

and Communications Security (CCS’94), pages 18–29. ACM, 1994.

[49] H. Krawczyk, M. Bellare, and R. Canetti. RFC2104: HMAC: Keyed-hashing for

message authentication. Internet RFCs, 1997.

BIBLIOGRAPHY 179

[50] S. Kumar, T. Sim, R. Janakiraman, and S. Zhang. Using continuous biometric veri-

fication to protect interactive login sessions. In Proceedings of the 21st Annual Com-

puter Security Applications Conference (ACSAC’05), pages 441–450. IEEE Com-

puter Society, 2005.

[51] G. Kwang, R. Yap, T. Sim, and R. Ramnath. An usability study of continuous

biometrics authentication. Advances in Biometrics, pages 828–837, 2009.

[52] G. Lefebvre, B. Cully, M.J. Feeley, N.C. Hutchinson, and A. Warfield. Tralfamadore:

unifying source code and execution experience. In Proceedings of the 4th ACM

European Conference on Computer Systems (EuroSys’09), pages 199–204. ACM,

2009.

[53] Z. Liang, W. Sun, VN Venkatakrishnan, and R. Sekar. Alcatraz: An isolated

environment for experimenting with untrusted software. ACM Transactions on

Information and System Security (TISSEC), 12(3):1–37, 2009.

[54] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In ACM SIGPLAN Notices, volume 40, pages 190–200.

ACM, 2005.

[55] J.V. Maizel and R.P. Lenk. Enhanced graphic matrix analysis of nucleic acid and

protein sequences. Proceedings of the National Academy of Sciences of the United

States of America, 78(12):7665, 1981.

[56] P. Manadhata and J.M. Wing. An attack surface metric. In Proceedings of the

USENIX Security Workshop on Security Metrics (MetriCon’06). USENIX Associ-

ation, 2006.

[57] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho. Stuxnet under

the microscope. http://ece.wpi.edu/~dchasaki/papers/Stuxnet_Under_the_

Microscope.pdf, 2010.

[58] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, and M. Hi-

ramatsu. Probing the guts of KProbes. In Proceedings of the 2006 Linux Symposium,

2006.

[59] Microsoft. Authenticode. http://technet.microsoft.com/en-us/library/

cc750035.aspx.

[60] Microsoft. Sigcheck download page. http://technet.microsoft.com/en-us/

sysinternals/bb897441.

http://ece.wpi.edu/~dchasaki/papers/Stuxnet_Under_the_Microscope.pdf
http://ece.wpi.edu/~dchasaki/papers/Stuxnet_Under_the_Microscope.pdf
http://technet.microsoft.com/en-us/library/cc750035.aspx
http://technet.microsoft.com/en-us/library/cc750035.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897441
http://technet.microsoft.com/en-us/sysinternals/bb897441

180 BIBLIOGRAPHY

[61] Microsoft. Signtool. http://msdn.microsoft.com/en-us/library/aa387764.

aspx.

[62] Microsoft. Binary planting attacks. http://www.microsoft.com/technet/

security/advisory/2269637.mspx, 2010.

[63] R.J. Moore. A universal dynamic trace for Linux and other operating systems. In

Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,

pages 297–308. USENIX Association, 2001.

[64] S. Motiee, K. Hawkey, and K. Beznosov. Do windows users follow the principle of

least privilege?: investigating user account control practices. In Proceedings of the

Sixth Symposium on Usable Privacy and Security (SOUPS’10). ACM, 2010.

[65] N. Nagappan and T. Ball. Using software dependencies and churn metrics to predict

field failures: An empirical case study. In Proceedings of the First International

Symposium on Empirical Software Engineering and Measurement (ESEM’07), pages

364–373. IEEE Computer Society, 2007.

[66] S. Nanda, W. Li, L.C. Lam, and T. Chiueh. Foreign code detection on the win-

dows/x86 platform. In Proceedings of the 22nd Annual Computer Security Applica-

tions Conference (ACSAC’06), pages 279–288. IEEE Computer Society, 2006.

[67] G. Nebbett. Windows NT/2000 native API reference. Sams, 2000.

[68] N. Nethercote and J. Seward. Valgrind:: A program supervision framework. Elec-

tronic notes in theoretical computer science, 89(2):44–66, 2003.

[69] Oracle. System Administration Guide: Security Services. Part IV: Auditing and

Device Management.

[70] E.S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[71] G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable third gener-

ation architectures. Communications of the ACM, 17(7):412–421, 1974.

[72] G. Post and A. Kagan. The use and effectiveness of anti-virus software. Computers

& Security, 17(7):589–599, 1998.

[73] V. Prasad, W. Cohen, F.C. Eigler, M. Hunt, J. Keniston, and B. Chen. Locating

system problems using dynamic instrumentation. In Proceedings of the 2005 Ottawa

Linux Symposium, volume 2, pages 49–64, 2005.

[74] N. Provos. Improving host security with system call policies. In Proceedings of the

12th USENIX Security Symposium, pages 18–18. USENIX Association, 2003.

http://msdn.microsoft.com/en-us/library/aa387764.aspx
http://msdn.microsoft.com/en-us/library/aa387764.aspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx

BIBLIOGRAPHY 181

[75] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators. In Pro-

ceedings of the 10th International Conference on Information Security (ISC’07),

Lecture Notes in Computer Science, pages 1–18. Springer, 2007.

[76] R. Ramnath, S. Sufatrio, R.H.C. Yap, and W. Yongzheng. WinResMon: a tool

for discovering software dependencies, configuration and requirements in Microsoft

Windows. In Proceedings of the 20th Conference on Large Installation System Ad-

ministration (LISA’06), pages 175–186. USENIX Association, 2006.

[77] M. Salah and S. Mancoridis. A hierarchy of dynamic software views: From object-

interactions to feature-interactions. In Proceedings of the 20th IEEE International

Conference on Software Maintenance (ICSM’04), pages 72–81. IEEE Computer

Society, 2004.

[78] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta. Scenario-driven dynamic

analysis for comprehending large software systems. In Proceedings of the European

Conference on Software Maintenance and Reengineering (CSMR’06), pages 71–80.

IEEE Computer Society, 2006.

[79] J.H. Saltzer and M.D. Schroeder. The protection of information in computer sys-

tems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[80] C. Schiller, S. Fogie, C. DeRodeff, and M. Gregg. Infosecurity 2008 threat analysis.

Syngress Publishing, 2007.

[81] M. Schmid, F. Hill, AK Ghosh, and JT Bloch. Preventing the execution of unau-

thorized win32 applications. DARPA Information Survivability Conference and

Exposition, 2:1175, 2001.

[82] Panda Security. Six percent of computers scanned by Panda Security are infected by

the Conficker worm. http://press.pandasecurity.com/news/six-percent-of-

computers-scanned-by-panda-security-are-infected-by-the-conficker-

worm/, 2009.

[83] A. Siraj, R.B. Vaughn, and S.M. Bridges. Intrusion sensor data fusion in an intel-

ligent intrusion detection system architecture. In Proceedings of the 37th Annual

Hawaii International Conference on System Sciences (HICSS’04), volume 9. IEEE

Computer Society, 2004.

[84] Skywing. Anti-virus software gone wrong. http://uninformed.org/index.cgi?

v=4&a=4, 2006.

[85] M. Slaviero, J. Kroon, and M.S. Olivier. Attacking signed binaries. In Proceedings

of the 5th Annual Information Security South Africa Conference (ISSA’05), 2005.

http://press.pandasecurity.com/news/six-percent-of-computers-scanned-by-panda-security-are-infected-by-the-conficker-worm/
http://press.pandasecurity.com/news/six-percent-of-computers-scanned-by-panda-security-are-infected-by-the-conficker-worm/
http://press.pandasecurity.com/news/six-percent-of-computers-scanned-by-panda-security-are-infected-by-the-conficker-worm/
http://uninformed.org/index.cgi?v=4&a=4
http://uninformed.org/index.cgi?v=4&a=4

182 BIBLIOGRAPHY

[86] A. Srivastava, J. Thiagarajan, and C. Schertz. Efficient integration testing using

dependency analysis. Microsoft Research, TechReport MSR-TR-2005-94, 2005.

[87] D. Stevens. Escape from PDF. http://blog.didierstevens.com/2010/03/29/

escape-from-pdf, 2010.

[88] Sufatrio, R.H.C. Yap, and L. Zhong. A machine-oriented integrated vulnerability

database for automated vulnerability detection and processing. In Proceedings of

the 18th USENIX Large Installation Systems Administration Conference (LISA’04),

pages 47–58, 2004.

[89] C. Thomas and N. Balakrishnan. Improvement in intrusion detection with ad-

vances in sensor fusion. IEEE Transactions on Information Forensics and Security,

4(3):542–551, 2009.

[90] L. van Doorn, G. Ballintijn, and W.A. Arbaugh. Signed executables for Linux.

Technical Report CS-TR-4259, University of Maryland, 2001.

[91] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee, Y.M. Wang, and

R. Roussev. Flight data recorder: monitoring persistent-state interactions to im-

prove systems management. In Proceedings of the 7th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI’06), pages 117–130. USENIX

Association, 2006.

[92] S. Voigt, J. Bohnet, and J. Dollner. Object aware execution trace exploration.

In Proceedings of the IEEE International Conference on Software Maintenance

(ICSM’09), pages 201–210. IEEE Computer Society, 2009.

[93] D.A. Wagner. Janus: an approach for confinement of untrusted applications. PhD

thesis, Department of Electrical Engineering and Computer Sciences, University of

California, 1999.

[94] H. Wang, D. Zhang, and K.G. Shin. Detecting SYN flooding attacks. In Proceedings

of the 21st Annual IEEE International Conference on Computer Communications

(INFOCOM’02), 2002.

[95] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. Hendren, and C. Ver-

brugge. Evolve: an open extensible software visualization framework. In Proceedings

of the 2003 ACM Symposium on Software Visualization (SoftVis’03), pages 37–ff.

ACM, 2003.

[96] X. Wang and H. Yu. How to break MD5 and other hash functions. Proceedings

of the 24nd International Conference on Theory and Applications of Cryptographic

Techniques (EUROCRYPT’05), pages 19–35, 2005.

http://blog.didierstevens.com/2010/03/29/escape-from-pdf
http://blog.didierstevens.com/2010/03/29/escape-from-pdf

BIBLIOGRAPHY 183

[97] Y.M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.W. Wu, Y. Huang, and S.Y.

Kuo. Gatekeeper: Monitoring auto-start extensibility points (ASEPs) for spyware

management. In Proceedings of the 18th USENIX Conference on Large Installation

System Administration (LISA’04), pages 33–46. USENIX Association, 2004.

[98] C. Wee. LAFS: A logging and auditing file system. In Proceedings of the Annual

Computer Security Applications Conference (ACSAC’95), pages 231–240, 1995.

[99] N. Wilde, R. Huitt, and S. Huitt. Dependency analysis tools: reusable compo-

nents for software maintenance. In Proceedings of the International Conference on

Software Maintenance (ICSM’89), pages 126–131. IEEE Computer Society, 1989.

[100] M. Wilhelm and S. Diehl. Dependency viewer — a tool for visualizing package

design quality metrics. In Proceedings of the 3rd IEEE International Workshop

on Visualizing Software for Understanding and Analysis (VISSOFT’05), page 34.

IEEE Computer Society, 2005.

[101] M.A. Williams. Anti-trojan and trojan detection with in-kernel digital signature

testing of executables. http://www.net-security.org/dl/articles/sigexec.

pdf, 2002.

[102] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux security

modules: General security support for the Linux kernel. In Proceedings of the 11th

USENIX Security Symposium, pages 17–31. USENIX Association, 2002.

[103] Y. Wu, Sufatrio, R.H.C. Yap, R. Ramnath, and F. Halim. Establishing software

integrity trust: A survey and lightweight authentication system for windows. In

Z. Yan, editor, Trust Modeling and Management in Digital Environments: from

Social Concept to System Development, chapter 3, pages 78–100. IGI Global, 2009.

[104] Y. Wu and R.H.C. Yap. A user-level framework for auditing and monitoring. In

Proceedings of the 21st Annual Computer Security Applications Conference (AC-

SAC’05), pages 95–105. IEEE Computer Society, 2005.

[105] Y. Wu and R.H.C. Yap. The problem of usable binary authentication. In Proceedings

of the 4th International Conference on Secure Software Integration and Reliability

Improvement Companion (SSIRI’10), pages 34–35. IEEE Computer Society, 2010.

[106] Y. Wu and R.H.C. Yap. Towards a binary integrity system for Windows. In Proceed-

ings of the 6th ACM Symposium on Information, Computer and Communications

Security (ASIACCS’11), pages 503–507. ACM, 2011.

http://www.net-security.org/dl/articles/sigexec.pdf
http://www.net-security.org/dl/articles/sigexec.pdf

184 BIBLIOGRAPHY

[107] Y. Wu, R.H.C. Yap, and F. Halim. Visualizing Windows system traces. In Proceed-

ings of the 5th International Symposium on Software Visualization (SoftVis’10),

pages 123–132. ACM, 2010.

[108] Y. Wu, R.H.C. Yap, and R. Ramnath. Comprehending module dependencies and

sharing. In Proceedings of the 32nd ACM/IEEE International Conference on Soft-

ware Engineering (ICSE’10), volume 2, pages 89–98. ACM, 2010.

[109] G. Wurster and PC van Oorschot. Self-signed executables: Restricting replacement

of program binaries by malware. In Proceedings of the 2nd USENIX Workshop on

Hot Topics in Security (HotSec’07), page 8. USENIX Association, 2007.

[110] R.H.C. Yap, T. Sim, G.X.Y. Kwang, and R. Ramnath. Physical access protection

using continuous authentication. In Proceedings of the IEEE Conference on Tech-

nologies for Homeland Security (HST’08), pages 510–512. IEEE Computer Society,

2008.

[111] T.F. Yen and M. Reiter. Traffic aggregation for malware detection. Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 207–227, 2008.

[112] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on

dependency graphs. In Proceedings of the 30th International Conference on Software

Engineering (ICSE’08), pages 531–540. ACM, 2008.

	Acknowledgments
	Summary
	1 Introduction
	1.1 Motivation
	1.2 Main Contributions
	1.3 Thesis Organization

	2 Background and Related Work
	2.1 Windows Issues
	2.1.1 Closed Source
	2.1.2 Super User Account
	2.1.3 Software Management
	2.1.4 Binaries
	2.1.5 Other Issues

	2.2 System Monitoring
	2.2.1 printf, Casual Debugging
	2.2.2 Traditional Syslog
	2.2.3 ptrace and /proc
	2.2.4 Linux Auditing System
	2.2.5 Windows Sysinternals
	2.2.6 Solaris DTrace
	2.2.7 SystemTap
	2.2.8 Binary Instrumentation

	3 Monitoring Infrastructure
	3.1 LBox
	3.1.1 The Monitor Framework
	3.1.2 Security and Monitor Interactions
	3.1.3 Using Monitors
	3.1.4 Implementation Issues
	3.1.5 Comparing to DTrace
	3.1.6 Experimental Evaluation
	3.1.7 Conclusion

	3.2 WinResMon
	3.2.1 Motivation and Applications
	3.2.2 System Design
	3.2.3 Implementation
	3.2.4 Writing Custom Analyzers
	3.2.5 Using WinResMon
	3.2.6 WinResMon Overhead
	3.2.7 Related Work
	3.2.8 Conclusion

	4 External Monitoring
	4.1 Introduction
	4.2 The Framework
	4.3 Applying the Framework to Malware Detection
	4.3.1 Methodology
	4.3.2 Detecting Malware which Sends Spam Email
	4.3.3 Detecting DDoS Zombie Attacks
	4.3.4 Detecting Misuse of Compute Resources
	4.3.5 Handling Exceptions
	4.3.6 Security Discussion

	4.4 Application to Access Control and Rate Control
	4.4.1 Access Control
	4.4.2 Rate Control

	4.5 Related Work
	4.6 Conclusion

	5 Visualizing System/Software Traces
	5.1 Comprehending Module Dependencies and Sharing
	5.1.1 Related Work
	5.1.2 Visualizing Software Dependencies
	5.1.3 Explaining the Visualizations
	5.1.4 Implementation
	5.1.5 Comprehending Module Dependencies in Real Software
	5.1.6 Conclusion

	5.2 Visualizing Windows System Traces
	5.2.1 Related Work
	5.2.2 System and Visualization Design
	5.2.3 VDP Implementation and Scalability
	5.2.4 Case Studies
	5.2.5 Conclusion

	6 Binary Integrity
	6.1 BinAuth: Secure Binary Authentication
	6.1.1 Windows Issues
	6.1.2 Related Work
	6.1.3 BinAuth and Software IDs
	6.1.4 Testing
	6.1.5 Conclusion

	6.2 BinInt: Usable System for Binary Integrity
	6.2.1 Normal Usage versus Malicious Attacks
	6.2.2 Related Work
	6.2.3 The BinInt Security Model
	6.2.4 Implementation
	6.2.5 Security Analysis
	6.2.6 Evaluation
	6.2.7 Conclusion

	7 Conclusion
	7.1 Summary of the Thesis
	7.2 Future Work

