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On research...

I almost wish I hadn’t gone down that rabbit-hole,

and yet,

and yet,

it’s rather curious,

you know, this sort of life!

-Alice, “Alice in the Wonderland”.

The sole cause of man’s unhappiness is that he does not know

how to stay quietly in his room.

-Blaise Pascal, “Pensées“, 1670

Two kinds of people are never satisfied,

ones who love life,

and ones who love knowledge.

-Maulana Jalaluddin Rumi
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On exploring life and making choices, right and wrong...

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim

Because it was grassy and wanted wear,

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I marked the first for another day!

Yet knowing how way leads on to way

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I,

I took the one less traveled by,

And that has made all the difference. -Robert Frost
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Abstract

Assessing whether a photograph is interesting, or spotting people in conversation

or important objects in an images and videos, are visual tasks that we humans do

effortlessly and in a robust manner. In this thesis I first explore and quantify how hu-

mans distinguish interesting photos from Flickr in a rapid time span (<100ms) and the

visual properties used to make this decision. The role of global colour information in

making these decisions is brought to light along with the minimum threshold of time re-

quired. Camera related Exchangeable image file format (EXIF) parameters are then

used to realize a global scene-wide information based model to identify interesting

images across meaningful categories such as indoor and outdoor urban and natural

landscapes. My subsequent work focuses on how eye-movements are related to the

eventual meaning derived from social and affective (emotion evoking) scenes. Such

scenes pose significant challenges due to the abstract nature of visual cues (faces,

interaction, affective objects) that influence eye-movements. Behavioural experiments

involving eye-tracking are used to establish the consistency of preferential eye-fixations

(attentional bias), allocated across different objects in such scenes. This data has

been released as the publicly-available eye-fixation NUSEF dataset. Novel statistical

measures have been proposed to infer attentional bias across concepts and also to

analyse strong/weak relationships between visual elements in an image. The analy-

sis uncovers consistent differences in attentional bias across subtle examples such as

expressive/neutral faces and strong/weak relationships between visual elements in a

scene. A new online clustering algorithm "binning" has also been developed to infer

regions of interest from eye-movements for static and dynamic scenes. Applications of

the attentional bias model and binning algorithm to challenging computer vision prob-

lems of foreground segmentation and key object detection in images is demonstrated.

A human-in-loop interactive application involving dynamic placement of sub-title text in

videos has also been explored in this thesis.The thesis also brings forth the influence of

human visual perception on recall, precision and the notion of interest in some image

and video analysis problems.
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points in the specified neighbourhood. . . . . . . . . . 112
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44 A comparison of precision, recall and fmeasure varia-

tions between (a) the meanshift based method in [77]

and the binning method presented in this thesis. The

behavior of both methods for smaller neighborhood val-

ues is similar. It changes significantly for larger neigh-

borhood values, where ROI sizes are preserved in the

binning method and result in preservation of precision

scores. On the other hand, recall values fall in the bin-

ning method as compared to [77]. . . . . . . . . . . . 113

45 Clusters obtained with varying neighborhoods over im-

age with weak interactions . . . . . . . . . . . . . . . 114

46 Clusters obtained with varying neighborhoods over im-

age with strong interactions . . . . . . . . . . . . . . . 114

47 (a),(b) and (c) Illustrate shift in HVA shown by the red

dot, as the prominent speaker changes in a video se-

quence. (d),(e) and (f) show the same in a different

video sequence. An interesting event is depicted in

(g),(h),(i), where the HVA shifts from prominent speaker

in (h) to the talking-puppet in (i), which is actually more

meaningful and compelling in the scene. . . . . . . . 117
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48 The graph illustrates spatio-temporal eye-gaze data, it

indicates good agreement of human eye-movements

over 3 different subjects while viewing a video clip, clip

height and width form two axes and a third one is formed

by the video frame display time. Eye fixations are aligned

according to the onset time and each subject is de-

picted using distinct colors. The colored blobs depict

the eye-fixation duration on a ROI in the video stimulus. 118

49 Good agreement of human eye-movements over suc-

cessive views of a video clip, clip height and width form

two axes and a third one is formed by the video frame

display time. Eye fixations are aligned according to the

onset time and each viewing session is depicted us-

ing distinct colors. The colored blobs depict the eye-

fixation duration on a ROI in the video stimulus. . . . . 118
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50 Panels in the top row illustrate important stages in the

interactive framework. (a) A frame from the video stream.

(b) Eye-gaze based ROIs discovered using the video

binning method [46]. The red circle shows current loca-

tion being attended and yellow circles show past ROIs,

the arrows show dominant eye movement trajectories.

(c) An example image region overlayed with motion saliency

computed using motion vector information in the en-

coded video stream. (d) Face saliency map constructed

by detecting and tracking frontal and side profile faces.

Panels in the middle row visualize stages in the dia-

logue captioning framework. (e) Regions likely to con-

tain faces are combined with ROI and likely eye move-

ment paths shown in (f) to compute likely concepts of

human interest. Video frame taken from the movie swades c©UTV

Motion Pictures. . . . . . . . . . . . . . . . . . . . . 125

51 The figure highlights the components described in this

chapter. The current chapter deals with image and

video understanding applications using the framework

developed in chapter 4. . . . . . . . . . . . . . . . . . 126

52 Normalized frequency of occurrence of different EXIF

attributes in our database. Important EXIF attributes

that encode global image information directly or indi-

rectly are highlighted(boxed) in red. . . . . . . . . . . 128
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53 Appropriate subsets of the dataset can be chosen as

positive and negative samples to trian individual prefer-

ences and community preferences. . . . . . . . . . . 128

54 Color-homogeneous cluster (red) obtained from origi-

nal fixation cluster (green) on (a) cat face and (b) rep-

tile. Fixation points are shown in yellow. . . . . . . . . 134

55 Affective object/action localization results for images with

captions (a) A dog’s face .aoi′s : eyes, nose+mouth, face

(b) Her surprised face said it all! aoi′s : eyes, nose +

mouth, face(c) Two girls posing for a photo. aoi′s :

face1, face2)(d) Birds in the park. aoi′s : bird (e)

Lizard on a plate. aoi′s : reptile (f) Blood-stained war

victim rescued by soldiers. aoi’s:blood (g) Two ladies

looking and laughing at an old man. aoi′s : face1, face2, face3

(h) Man reading a book. aoi′s : human, book (i) Man

with a damaged eye. aoi′s : damage (h) Fixation pat-

terns and face localization when the damaged eye is

restored. aoi′s : face . . . . . . . . . . . . . . . . . . 135
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56 Discrimination obtained by the cluster profiling method,

the vertical axis plots accumulated scores for different

images measured using equation 14. Distinct images

have grouped under each of the 4 themes, the plot

represents values over more than 100 images. The

method separates out images with strong visual ele-

ments and interactions affective-red,aesthetic-green and

action-blue from those which have low interaction or

weak visual elements (magenta ). action and affect im-

ages are grouped together by the measure described

earlier in 14, this needs to be investigated further. . . . 137

57 Enhanced segmentation with multiple fixations. The

first row shows the normalized fixation points (yellow).

The red ’X’ denotes centroid of the fixation cluster around

the salient object, while the circle represents the mean

radius of the cluster. Second row shows segmenta-

tion achieved with a random fixation seed inside the

object of interest[60]. Third row contains segments ob-

tained upon moving the segmentation seed to the fix-

ation cluster centroid. Incorporating the fixation distri-

bution around the centroid in the energy minimization

process can lead to a ‘tighter’ segmentation of the fore-

ground, as seen in the last row. . . . . . . . . . . . . . 140
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58 More fixation seeds are better than one- Segments from

multiple fixation clusters can be combined to achieve

more precise segmentation as seen for the (a) portrait

and (b) face images. The final segmentation map (yel-

low) is computed as the union of intersecting segments.

Corresponding fixation patterns can be seen in Fig.15. 141

59 The pseudocode describes details of steps (a) to (d). . 142

60 F measure plot for 80 images showing the improvement

brought about by using multiple fixation seeds for seg-

mentation (d) in comparison to the baseline (a) using

equal number of random locations within the object as

segmentation seeds. The legend is as follows - red

baseline and green - Integration of segments obtained

from multiple sub-clusters. . . . . . . . . . . . . . . . 144
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61 The schema for guiding sliding window based object

detectors using visual attention information. Image pyra-

mid (a) is obtained by successively resizing the input

image I over L levels. Features corresponding to areas

covered by sliding, rectangular windows at each level

li are combined with a template based filter (b) to gen-

erate scores indicating presence of the object. These

are combined over all levels that indicate the presence

of the object. Eye-gaze information is used to extract

Regions of attention (ROIs) (d), which then restrict the

image region for object search. The number of scales

(c) are restricted to a small fraction of possible levels,

using scale information from ROIs (e) is the output from

our method and (f) from a state-of-art detector [23]. . . 145

62 Illustration of the significant reduction in computation

time achieved by constraining the state-of-art object clas-

sifier in [23] using eye-gaze information. . . . . . . . . 150

63 Illustration of the improvement in fmeasure of over 18

% achieved by constraining the object classifier in [23]

using eye-gaze information. fmeasures are recorded

from our method VA and that of [23] attempting to find

the concept person over 150 images. The images were

chosen to capture diversity in number of instances, size,

activity and overall scene complexity. . . . . . . . . . . 151
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64 The panel illustrates outputs at every stage of our at-

tention driven method. (a) Original image of a crowded

street-scene. (b) Manual ground truth annotation boxes

for key objects. (c) Clusters identified from eye-gaze

information, centroids marked by red circles. (d) ROIs

generated based on cluster information. (e) Detected

instances of person class within ROIs, using detector

from [23] marked by yellow boxes. (f) Finally result

detections after filtering for ROI size, marked by red

boxes. (g) Results for the same image from the base-

line detector. . . . . . . . . . . . . . . . . . . . . . . 152

65 (a),(b) Cases where visual attention greatly enhances

performance of the detection system, (e),(f) are the cor-

responding results for (a),(b) from the multi-scale, slid-

ing window method in [23]. (c) A case where attention

directs ROIs away from non-central, but seemingly im-

portant persons. This problem is not faced by the base-

line as seen in (g). (d) Generated ROIs are not good

enough to permit detection, the baseline outperforms

our method in this case as seen in (h). . . . . . . . . 152
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66 Panels in the top row illustrate important stages in the

interactive framework. (a) A frame from the video stream.

(b) Eye-gaze based ROIs discovered using the video

binning method [46]. The red circle shows current loca-

tion being attended and yellow circles show past ROIs,

the arrows show dominant eye movement trajectories.

(c) An example image region overlayed with motion saliency

computed using motion vector information in the en-

coded video stream. (d) Face saliency map constructed

by detecting and tracking frontal and side profile faces.

Panels in the middle row visualize stages in the dia-

logue captioning framework. (e) Regions likely to con-

tain faces are combined with ROI and likely eye move-

ment paths shown in (f) to compute likely locations to

place the dialogue currently in progress. (g) Video se-

quences are dynamic and object motion as well as cam-

era motion cause change in position of the dominant

objects over successive video frames, this combined

with noisy eye-gaze ROIs in turn gives rise noticeable

and annoying jitter. (h) A history of dialogue place-

ment locations is maintained and smoothed over to ob-

tain smooth movements of overlayed dialogue boxes

across the screen. Video frame taken from the movie

swades c©UTV Motion Pictures. . . . . . . . . . . . . 157
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67 Group A part of the subject pool, changes its decision

as the dialogues are restricted to the locations where

they are initialized. On the other hand, subjects in the

larger pool, Group B, do not their change their pref-

erence and consistently report better comprehension

and viewing comfort with static captions. One reason

for such response could be the familiarity and habitua-

tion to static captions through long exposure to current

captioning. . . . . . . . . . . . . . . . . . . . . . . . . 162
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1 Introduction

1.1 Visual media as an artifact of Human experiences

Huge volumes of images and video are being generated as a result of

human experiences and interaction with the environment. These can

vary from personal collections containing thousands of videos and im-

ages, to millions of video clips in communities such as YouTube and

billions of images on repositories such as Flickr or Picasa. It becomes

useful and necessary to automate the process of understanding such

content and enable subsequent applications like indexing and retrieval

[69][84] and query processing, re-purposing for devices with different

form factors [80]. This thesis focuses on the hypothesis that looking at

media and human perception together, is a more holistic way to look

at problems relating to image and video understanding than to try and

understand visual content alone in isolation.

A growing body of research is correlating human understanding of

scenes to the underlying semantics [86][34][46], affect [70][71] and

aesthetics [45]. Early research in image and video analytics focused

almost entirely on low level information to understand visual content,

the shortcomings of such approaches have been discussed elabo-

rately in [83]. A more recent survey has pointed out the importance

of modeling higher level abstractions [69]. This thesis also shows

how understanding abstract information such as semantics and affect,

can lead to improvements in signficantly hard problems in computer

vision[71][45], multimedia indexing and retrieval[70][46] and aspects

of human-media interaction.
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1.2 Brief overview of work presented in this thesis

The focus of this thesis is to get a better understanding of visual per-

ception and attention as people interact with digital images and video.

Chronologically, the first problem was on finding how low level global

and local information in images influence category discrimination and

aesthetic value in images [45]. This work identifies the important role

of color in aesthetics discrimination in pre-attentive time spans and

also established that humans can distinguish simple notions of aes-

thetics even at very short presentation times < 100ms. We also es-

tablish a minimum presentation time threshold for aesthetics discrim-

ination in images. Modeling using global color based features and

SVM classifier training is used to identify aesthetic images from the

publicly available Flickr dataset (manuscript in preparation).

Subsequent work investigates how semantic and affective cues re-

lating to objects and their interactions influence scene semantics in

static and dynamic scenes [70][46]. Eye-tracking is used as proxy for

human visual attention. Preliminary work on free viewing affective im-

ages resulted in world model, that quantifies attentional bias amongst

common and important concepts in social scenes [70]. The atten-

tional bias is measured in terms of fixation duration and frequency

across different concepts in the image. Our dataset named NUSEF,

has now been made public. NUSEF contains images with a diverse

set of visual concepts like faces, people, animals along with a va-

riety of objects with varying degrees of action/interaction commonly

encountered in social scenes. It has already been adopted and cited

by some of the leading research groups in vision science [42][107].
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Novel measures are developed to infer interaction, location and scale

of visual concepts in images using eye-gaze data. These have been

reported in a series of publications [70][46]. Furthermore, an efficient

and robust clustering method for eye-gaze data is developed in the

form of the "binning" [70] algorithm. The binning algorithm can give

a good prior on the location and scale of regions of human interest

(ROIs) in images and video. It compares well against state-of-art in

terms of computational cost, precision and recall over the underlying

visual concepts. The binning method and fusion with image content

based features has given interesting insights as to how a few domi-

nant regions of interest can influence the theme and overall interest-

ingness and semantics of an image (manuscript in preparation). A

framework is developed for fusion of eye-gaze data with bottom-up

low level visual cues like motion and saliency in video streams and

top-down semantic cues from object detectors (manuscript in prepa-

ration). We have encouraging results for video and image content.

Furthermore, we have extended this framework for online human in-

terest prediction as the subject watches a video stream and demon-

strate applications for intelligent on-the-fly placement of foreign lan-

guage captions onto video streams.

The usefulness of the quantitative attentional bias model, interaction

measures and binning algorithm is shown via challenging applica-

tions. Examples include detection of key objects and interactions for

image summarisation, foreground object segmentation for difficult nat-

ural scenes, localisation of text keywords into image content. More re-

cently we have also demonstrated the usefulness of the quantitative
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models and binning for interactive video repurposing.

1.3 The notion of Goodness in visual media processing

A very important problem at this juncture is that of Goodness, a notion

that can encompass popular measures such as precision and recall

in a reliable manner and to human satisfaction. In this thesis I have

explored how human perception can determine the interpretation of

each of these measures. The meaning of interest is explored both

in the context of rapid image categorization[45] and image under-

standing over longer time spans via eye-movements[70]. Precision

and recall are explored in the applications to key object detection[46]

and foreground object segmentation[71]. This can also be seen in

the fact that most mid and high level multimedia problems relating

to image categorization, object segmentation and detection [19], ac-

tion recognition and event detection in images and video remain open

challenges. More abstract problems such as inferring affect, aesthet-

ics and interactions in images and video are even harder. This could

be due to the sensory nature of visual media, evolving mathematical

formulation and lack of complete knowledge of Human visual percep-

tion.

In most images and videos, statistical properties of the scene [88]

and the optical properties of light [26] lend far easily to measurement

and modeling as compared to the human perception of the same. I

have studied some aspects of human visual perception such as rapid

pre-attentive processing in the absence of attention and relationship

between eye-movements and scene semantics. Rapid processing is
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shown for scene classification in basic categories such as (indoor, out-

door, man-made and natural) [52][88], detection of basic categories

such as (faces, animals, cars) [52] and rapid discrimination of inter-

estingness between images of the same semantic theme [45]. Subse-

quent scene-understanding tasks such as identifying key objects and

their relationships, rely on exploration of the Visual scene, and the

phenomenon of Human visual attention (HVA) is an important part of

this process. Eye-movements allow selection of regions of interest in

a scene and detailed understanding of the same. This is a complex

phenomenon and is influenced by learning from past experiences,

current visual input and task-at-hand amongst other factors. Most im-

age and video analysis methods run on different computational prin-

ciples and need not take into account biological phenomenon as long

as it performs satisfactorily. Current state-of-art though, lags signif-

icantly in producing satisfactory results in realistic image and video

understanding problems [19][66].

1.4 Human in the loop, HVA as versatile ground truth

An approach to close the gap between an end-user’s notion of cor-

rectness and that provided by an Image or Video based application,

is to put the Human visual system into the interaction loop at an ap-

propriate stage. Attempts are made in this thesis to demonstrate the

feasibility and effectiveness of involving Human Visual Attention (HVA)

within media processing methods for low, mid and abstract Image and

Video processing tasks.

A similar principle has been employed in the form of Relevance Feed-
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back [106] using manual user feedback, or the use of user interaction

logs to improve content based image retrieval (CBIR) [62]. Machine

learning methods such as active learning [49] have been used for this

purpose.

HVA is a less explored option, both due to lack of knowledge of ex-

act functional role in attention and novelty of eye-gaze in context to

Computer science and Media processing. HVA is an intricate strategy

with an observable overt component that lends to measurement and

a covert component which is hard to measure non-invasively. In this

thesis, Eye-gaze measurements that can be considered as a proxy

for overt (observable) shifts in HVA [37], have been used to enhance

automated scene-understanding.

1.5 Human visual attention and eye-gaze

The central portion of the retinal wall of the eye is called the fovea and

is lined with cone cells meant for color and fine detail processing, the

central region rich in cone cells, or fovea centralis, is surrounded by

rod cells that used for sensing intensity information. Measured density

curves for the rods and cones on the retina as shown in the Figure. 1

show an enormous density of cones in the fovea centralis. Both color

vision and the highest visual acuity are attributed to cone cells in this

region. Visual examination of small detail involves focusing light from

that detail onto the fovea centralis. On the other hand, the rods are

absent from the fovea. Cortical regions in the brain, responsible for

higher visual processing have disproportionate resources allocated

to inputs from the foveal region. Thus the spatial resolution at the

35



Figure 1: Panel illustrates the distribution of rod and cone cells in the retinal wall of the

human eye. The highest acuity is in the central region (fovea centralis) with maximum

concentration of Cone cells. The blind spot corresponds to the region devoid of rods or

cones, here the optical nerve bundle emerges from the eye. http:// www. uxmatters.com/

mt/archives/2010/07/ updating-our-understanding-of-perception-and-cognition-part-i.php.

center of the visual field is quite high. This can be understood from the

visual acuity chart illustrated in Figure 2, frequently used in optometry.

Human’s can identify much smaller characters at the center of the

chart, than at the periphery. The high resolution area corresponding

to the fovea is about the size of one’s thumb nail, as one extends

his/her arm out fully.

HVA is the strategy employed to execute ballistic eye-movements

to align a Region of Interest with the fovea centralis. Each ballistic

movement of the eye called a saccade, is followed by a brief du-

ration of fixation where the eye-gaze holds steady for a short while

to inspect the Region of Interest. This strategy is critical to the lim-

ited capabilities of the Human visual system, as the total visual input

from the environment is too overwhelming and oftentime redundant

in large parts. Though eye-movements appear seemingly involuntary,
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Figure 2: A standard visual acuity chart used to check for reading tests. Humans can

distinguish characters at a much smaller size at the center than at the periphery. http://

people.usd.edu/ schieber/ coglab/IntroPeripheral.html

they can be influenced by (a) high level over-rides, like an explicit

instruction not to look in a particular direction or Inhibition-of-return

phenomenon, where a larger cost is associated with an already ex-

plored spatial location. This again can be over-ridden by top-down

information like semantic importance of a location in the visual field.

This would cause attention to repeatedly revert to the some locations.

1.6 Choice of Eye-gaze to investigate Visual attention

HVA in general and eye-gaze in particular is one of the many non-

conventional sources of information being considered in the research

community. Key attributes of different modalities are presented in

Figs. 34. Being non-invasive spatio-temporal information that is well

correlated to the human visual process, eye-gaze makes an ideal can-

didate for Image and video understanding problems.
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Figure 3: Comparing attributes of different non-conventional information sources. Repre-

sentative values for important attributes of each modality are obtained from [103] (EEG),

[70] (Eye-Gaze), [99][76] (Face detction expression analysis) and [98] (Electrophysiological

signals).

1.7 Factors influencing Visual Attention

In addition to the aspects of visual attention addressed in this pro-

posal, current research in HCI, Behavioral science, media research

has found that beyond the visual properties of any semantic cate-

gory, factors such as our real world model, short term memory and

task/intent in the user’s mind significantly influence Visual attention

and subsequent understanding of an image [44]. This is illustrated in

the following figure, Each of these factors has been shown to influ-

ence visual attention. Visual attention is an important mechanism to

isolate, selected regions of the visual field for more detailed observa-

tion. Hence it is important to acknowledge and if possible control the

38



Figure 4: Additional attributes of different non-conventional information sources, continued

from Fig. 3. Representative values for important attributes of each modality are obtained

from [103] (EEG), [70] (Eye-Gaze), [99][76] (Face detction expression analysis) and [98]

(Electrophysiological signals).

influence of these factors in human-image interaction. For example,

the Short term memory allows remembering most recently encoun-

tered concepts. The practical necessity of modeling the Short term

memory can be seen in past and recent multimedia research focus-

ing on mouse-click sequences [12][58], recent pages visited and even

recent user context from recent user activity in the system [2].

The influence of Task/Intent was illustrated in the seminal research

by Yarbus [53], in which he illustrated significant changes in visual at-

tention when subjects were shown the same visual stimulus, but with

different task while viewing the image. The results from this seminal

research are shown in the following Figure. 6.

The influence of a subject’s Real world model is harder to gauge,
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Figure 5: Different factors that can affect human visual attention and hence, subsequent

understanding of visual content.

as it spans his or her experiential learning, familiarity or expertise

in a domain, cultural and gender based biases and behavioral traits.

Some intuitive scenarios are that attention patterns of a domain ex-

pert or familiarity with a given image will result in very distinct visual

patterns, and will be different from a naïve user. We could measure an

example of this influence in the eye-gaze patterns of male and female

subjects as they viewed images of nude men and women, or nudes in

intimate positions. The gender-bias was observed in terms of the im-

age regions attended. We also observed familiarity/expertise based

bias in attention patterns as subjects were presented the same visual

stimulus in successive trials. Increased subject attention is observed

over most salient/interesting concepts and also to image details that

are ignored in initial presentations. The influence of clinical disor-

ders is out of the scope of this research and is not discussed here,

the focus is on healthy subjects with normal or corrected vision. We

could quantitatively measure and model this for a general image un-

derstanding task in our experiments. We try and control for the influ-
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Figure 6: Some results from Yarbus’s seminal work [53]. Subject gaze patterns from 3

minute recordings, under different tasks posed prior to viewing the painting “An unexpected

visitor” by I.E. Repin. The original painting is shown in the top left panel. The different tasks

posed are as follows, (1) Free examination with no prior task (2) A moderately abstract

reasoning task, to gauge the economic situation of the family (3) To find the ages of family

members (4) Another abstract task, to find the activity that the family was involved in prior to

arrival of the visitor (5) To remember the clothes worn by people (6) To remember positions

taken by people in the room (7) A more abstract task, to infer how long the visitor had been

away from the family.

ence of Short term memory, Real world model of different people and

task-based biases in our experiment. The influence of low-level and

semantic information in images was then brought out through analy-

sis and modeling. The results were also demonstrated by a semantic

concept localization application involving short text captions [70].
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1.8 The role of Visual Saliency

Saliency is popularly used with the notion of Visual Conspicuity like in

the popular Visual saliency model proposed in [38] and more recent

and comprehensive models for videos [3] and images [92]. Earlier no-

tions of Saliency as being bottom-up and being equivalent to pop-out

effects of color or contrast [38] for example, have given way to more

integrated models that bring in cues like curves and shapes [92] or

higher level cues such as key objects [18] and faces [43].

For scenes which lack clear semantics, such as arbitrary shapes, HVA

seems to be motivated by maximizing Information Gain by succes-

sively processing high entropy locations in the Visual field [72]. For

visual input with richer semantics, it has also been shown that Hu-

mans give unequal importance to different objects in natural scenes

[86], the authors also show correlation of this attentional bias with re-

call statistics after the stimulus is removed. Similar, consistent bias

for object categories in social and affective scenes is shown in this

thesis[70]. A combination of this bottom-up and top-down which can

take low and mid level visual cues, influence of objects and some ab-

stract semantics such as affect and action has been shown to account

significantly for HVA strategies [44].

A parallel line of research has focused on modeling scene context.

Context estimation has been shown to be useful in scene under-

standing tasks such as scene classification [88], object detection [91]

and Saliency estimation for image re-targeting and collage generation

[75]. In this thesis, the emphasis is on Eye-movement driven model-

ing and notion of the best foreground or Region of Interest estimate
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for a given task, Context estimation is not dealt with in detail. With

richer semantics and affective semantic content, it becomes harder

for automated methods to reliably estimate visual conspicuity. This

thesis also looks into important categories derived from computer vi-

sion literature, photography and personal media collections, with rich

underlying semantics. Methods are proposed to bring a human-in-

loop to estimate notions such as saliency, semantics and affect in

visual content.

1.9 Semantic gap in visual media processing

The Semantic gap continues to present an important and challeng-

ing problem in image and video analysis, it typically arises from the

disparity between text based and visual descriptions of a concept. Hu-

mans commonly adhere to well formed vocabularies and grammatical

frameworks while describing visual content using text. Most people

can be considered as trained individuals or experts expressing them-

selves. Visual media on the other hand, can be sensory information

representing statistical properties of the environment or intuitive pat-

terns of scene composition. Effects of the semantic gap become more

prominent with increasing abstraction represented by the visual con-

cept, this has resulted in most of current image and video analysis

to be focused on concepts with small semantic gap [55]. Though it

is attractive to work on simple concepts such as simple inanimate ob-

jects (CALTECH 101, 256)[27], faces[56], people[17], etc, many social

scenes exhibit meaningful interaction [71], affect [70] and aesthetics

[14] and present challenging problems for scene understanding.
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The difference in understanding visual and textual representations of

the same concept can lead to the Semantic Gap. Another way that

the Semantic Gap can manifest is between understanding of visual

content at the time of Content-Creation and Content-Consumption;

Figure 7. Visual media based communication will be less ambiguous

and relatively unaffected by semantic gap when content generators

as well as content consumers are expert users having shared domain

knowledge, training, controlled vocabularies, guidelines and prior ex-

perience. On the contrary, naive users interacting through visual me-

dia will face significant problems due to lack of aforementioned as-

pects in Expert-to-Expert communication. Experimental and algorith-

mic methods are proposed in this thesis along with applications to

demonstrate to enhanced image and video understanding. An inter-

disciplinary mix of psycho-physical, behavioral experiments are used

to gain insights into human vision and to improve upon state-of-art in

a variety of important problems relating to understanding of low, mid

level and abstract information in images and videos.

An attempt to address some aspects of the semantic gap has been

made in this thesis the preferences of individual users and communi-

ties for interesting images is studied and modeled in Section 5.1, this

application closes the expert to naive user gap between the Flickr R©system

and users. The naive user to naive user gap is addressed through

use of eye-movements to extract scene semantics of human interet

in the text caption localizationa application Section 5.3 and detecting

foreground regions Section 5.5 and key objects Section 5.6 of human

interest.
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Figure 7: The semantic gap can show up in more than one way. The Intent of an Expert or

Naive content creator can get lost or altered either during encoding into visual content, or

in conversion between media types during the (encode,store,consume) cycle. Effects of the

Semantic gap are more pronounced in situations where Naive users generate and consume

visual media.

1.10 Organization of the Thesis

The Introduction Chapter 1, is followed by the important Contributions

from this thesis in Section 1.11. Relevant literature and state-of-art is

covered as Related Work in Chapter 2. Chapter 2 covers important

references and background literature for aspects of Visual content un-

derstanding, Human Visual Attention and some important multimedia

applications that are addressed in this Thesis. Organization of subse-

quent chapters follows the schematic shown in Fig. 8.

Data pre-processing and experimental protocols to acquire eye-

tracking data and meta-data are explained in chapter 3. The meth-

ods described psychophysical experiments, eye tracking protocols

and choices made for dataset and experiment design. Chapter 4

describes analysis and modeling done using visual content as well
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Figure 8: The schema represents information flow hierarchy and chapter organization in the

thesis. The top layer lists different input modalities that are then analysed in the middle layer

to extract features and semantics related information.

as eye-gaze information. Global image information involved in rapid

aesthetics discrimination in some important categories of images is

also described in chapter 4. This chapter also introduces eye-tracking

methodology and statistical measures to analyses eye fixation infor-

mation. The close relationship of Human Visual Attention (HVA) to

semantics and affect in images is demonstrated by constructing an

Attentional bias model, which captures preferential attention biases

towards some concepts and their relationships. This chapter also in-

troduces the novel binning method to discover ROIs and its extension

to discover dominant interactions in images.

Applications to low and mid level problems in image understanding

are described in chapter 5. An application of text caption localisation,

which exploits attentional bias is presented. Use of eye-gaze and HVA
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to bring about improvements in problems such as object segmenta-

tion and key-object detection are also demonstrated.An interactive,

caption-localisation application is demonstrated for videos.

1.11 Contributions

The main theme of this thesis is understanding the role of percep-

tual mechanisms such as visual attention(HVA) and pre-attentive in-

formation processing for image and video content. Some interest-

ing phenomena relating to understanding scenes and the concepts

therein are taken up in this context. Eye-gaze is exploited to better

understand human perception, behaviour and address computer vi-

sion problems such as segmentation, object detection, inferring inter-

actions and classifying images. There exists a semantic gap between

sensory representation of scenes and the semantics inferred subse-

quently by a human.To summarize, the key contributions of the thesis

are,

• Bringing forth the capability of human vision to rapidly categorize

interesting images in very short time spans.

• Methodology to infer scene semantics in images and videos us-

ing a combination of eye movements and content analysis and

the novel binning algorithm to cluster eye-gaze information, along

with extentions for content fusion.

• Release of experimental data for use by the research community

as the publicly accessible NUS Eye fixation (NUSEF) dataset.

Our effort has already been recognised by leading researchers
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in vision community [42][107] .

• Using eye-gaze to exploring the possibility of interactive applica-

tions with a human-in-loop.
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2 Related Work

2.1 Human Visual Perception and Visual Attention

This chapter explains and summaries phenomena related to Human

Visual perception and relevant to the problems taken up in this thesis.

The Pre-attentive stage and its importance in rapid understanding of

Visual content is discussed. The phenomenon of Human Visual At-

tention is then presented along with its relevance to Image and Video

understanding. Human Visual attention (HVA) is a mechanism em-

ployed by primates to identify a subset of the visual input for further

processing. HVA is believed to optimize the search inherent in vi-

sion. Posner [68] concluded that that visual attention is the result of

processing by a network of anatomical structures including the brain.

It does so by selectively tuning the visual processing network. This

is accomplished by a hierarchy of winner-take-all processes embed-

ded in the visual processing pathway [40]. Compensation for the slow

speed of neuronal circuitry and reduction of scene complexity could

be amongst the important reasons for visual attention [38].

2.2 Eye-gaze as an artifact of Human Visual Attention

Eye-gaze is believed to be a mechanism that brings selected regions

of the visual field to coincide with the foveal region on the retina,

so that finer details can be processed. Many popular models for

HVA inspect image content at multiple scales and information chan-

nels [38][63] and more recent approaches that analyze contour and

color information [92] to compute notions of novelty, surprise or vi-
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sual conspicuity to fine spatio-temporal regions in visual input that

will be chosen by Human Visual Attention (HVA). Similar models for

video, inspect successive frames in a video sequence to compute

surprise [36]. Though these models do not account for top-down in-

fluences of task-at-hand, behavioral influences and personality traits,

similar models have been successfully applied in applications such

as saliency based image retargeting [75] and surveillance video syn-

opsis [102]. HVA is responsible for shifts in spatial attention that are

either observable as eye-movements (overt) or hidden (covert). A sig-

nificant proportion of attentional shifts are in tandem with overt shifts,

measurable as eye-gaze as explored and exploited usefully in this

thesis. It is also possible to have covert shifts in absence of eye-

movements as demonstrated in [32].

The time course of Human image understanding can be categorized

roughly into an early pre-attentive phase (<= 100ms) involving rapid,

global information processing followed by HVA involving eye move-

ments for exploration of the scene. This phase has been shown

to be important in context estimation [64] and precede understand-

ing of local information [57]. The role of global and local features in

image classification has been explored in [101] where usefulness of

global image properties have been verified experimentally and com-

putational modeling is done to bring forth the importance of color in-

formation. Another work that is similar in spirit is [64] where a low-

dimensional representation of global image information shows dis-

crimination for basic scene categories like streets, highways, coast,

etc the authors show how second order statistics can discriminate
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perceptual qualities such as naturalness, openness, roughness, ex-

pansion, ruggedness. Rapidly processed global information has been

shown to act as a prior scene-context for subsequent HVA based ex-

ploration, an example is [65] where authors show how global infor-

mation based contextual priming is a good indicator of key object lo-

cations. Human capability to discriminate between interesting images

from ordinary ones amongst consumer photos in a rapid, pre-attentive

time span has been demonstrated in [45].

Eye-gaze has shown to be significant in local information process-

ing [33]. More interestingly, eye-gaze is influenced significantly by

key objects in a scene as shown in [18], making it very valuable in im-

age understanding. Furthermore, top-down attention appears to dom-

inate while viewing semantically rich and affective images [8], where

authors show that humans preferentially attend to emotional content

(both pleasant and unpleasant). This has been shown to be true even

during the first 500 milliseconds, when emotional and neutral stimuli

are presented simultaneously. Strong correlation of eye-gaze with ab-

stract concepts such as affect and key-object interactions has been

show in [70]. Since eye-gaze is employed to explore key objects and

their parts, it is possible to estimate the scale of key objects that are

gazed at [46]. Eye-gaze analysis can yield rich information like salient

regions of interest in Images [70][46] and video [87]. The sensitivity of

eye movements to motion and low-level saliency in videos has been

exploited in [87] to propose a calibration free method for eye-gaze es-

timation.
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2.3 Image Understanding

Using computers to extract meaning from an uncontrolled set of digital

images remains a significant challenge. The aim of such algorithms

is to enable computers to “See what we see, and understand as we

do” from a digital image or video. This can be seen in recent image

understanding challenges such as the PASCAL VOC [19] with the fol-

lowing results image classification (MAP: 0.4695), object detection

(Mean Accuracy: 17.52 %), object segmentation (Mean Accuracy:

16,77 %) over 20 classes, and in ImageCLEF [67] with the following

results photo annotation (MAP: 0.2812) and wikipedia based image

retrieval (MAP: 0.1388). Automated Image understanding deals with

issues all the way from pixel-level representation, low-level analysis of

local information, mid-level shape information, contours to high-level

tasks of concept detection, context analysis.

Early research focused on low-level feature based Image indexing and

retrieval based primarily on local geometry, color and texture based

image processing leading to features such as salient points, shapes,

global features, etc [83]. Though there has been significant progress

in the last 10 years in Content based Image Retrieval (CBIR), the

Sensory-to-Semantics gap is yet to be bridged satisfactorily [69]. In

computational modeling, an image can be broken down to its con-

text, objects involved, ontological relationships between objects, inter-

object interactions and more abstract concepts like affect and aesthet-

ics. Key references related to these tasks are listed in Tab. 3.

The global context of an image has been estimated using low-level,

52



Task Type of information & Region of Interest References and methods

Global Entire image [64]

Local Small patches [54],[1]

Saliency Image Segments at Multiple scales [38],[92],[87]

Object Detection Image Segments [13],[22],[94]

Aesthetics Image Segments & Entire image [14][51]

Interaction Multiple Image regions [70]

Table 1: Typical tasks accomplished in Automated Image understanding and relevant refer-

ences.

global image statistics in [64], where the authors use Fourier spectrum

analysis followed by Principal component analysis (PCA) to discrimi-

nate between basic natural scene types and underlies the GIST oper-

ator. The method relies on characteristic changes in image gradient

information with changes in the depth, contents and scene-context

of natural and man-made scenes. This kind of low dimensional repre-

sentation of images has been shown to be scalable in inferring context

in millions of images [90]. Global features have also been shown to

be useful in automated image categorization in [100].

Interest points are another interesting and useful construct computed

from low-level pixel information analysis. Local changes of intensity

information in image patches yields features such as Harris corner

points [29], SIFT [54] is the current the state-of-art in interest point

detection. SIFT interest points are locations that show high entropy at

multiple scales, the descriptor is a histogram around the location over

multiple scales and orientations. The generalized Hough transform

is another interest point definition [4] and has been used for object

detection in [25]. Encouraging results on eye-gaze based enhance-
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ments in interest point based representation of objects are shown later

in this thesis.

An important complementary problem in Object detection is that of

segmentation and identification of the object contour. Low-level color

analysis has been used in [16] to identify object and part segments

in a scene. Semi-automated image segmentation has been proposed

in [60] using a single seed location input by a human user. The seed

location must lie within the object boundary, the problem is then mod-

eled as a background separation problem using the graph cuts [5]

method. Our contribution proposes the framework for bringing in eye-

gaze based multiple fixation seeds to [60] and demonstrate superior

segmentation results in challenging scenes.

Another successful low dimensional representation is the histogram-

of-gradients (HOG) approach [13] based on binning gradient infor-

mation in image regions along pre-determined orientations. Comput-

ing the HOG over small image patches characterizes local properties,

and has been used for person [13] and state-of-art generic object de-

tection [22]. Another sliding-window based approach is taken in [94]

where a 3-stage cascade employs increasingly powerful classifiers

starting from linear classifiers to multiple kernel [93] based learners

to reject windows in which objects are not present. Both [22] and [94]

have been state-of-art detectors in the PASCAL VOC detection task

[19]. Generic object detection has also been done using general-

ized Hough based interest points in [25]. A per-category codebook of

generalized Hough based interest points is created along with object-

centroid information from the training images, matches during the de-
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tection phase vote for likely locations of object centroids. The votes

are then summed up into a Hough image and the peaks are then con-

sidered to be successful detections. One significant drawback of the

state-of-art in Object detection is the need for controlled and well cho-

sen training data like the Caltech-256 [27] which has centered, nor-

malized, single-instances of object categories in images. Real-world

scenes with complex background and variations in scale, pose and

depth often confuse state-of-art detection methods and furthermore,

the detectors are agnostic to key-concepts that are important in scene

understanding and recall by humans [86].This thesis attempts to ad-

dress some of these issues in object detection by fusing eye-gaze in-

formation with state-of-art detection in [46]. Encouraging results have

been shown in identifying key objects as well as increasing the accu-

racy and speed of a baseline state-of-art detector [22].

Holistic understanding of a concepts in their inter-relationships can be

captured in the form of ontologies such as the popular WordNet [59].

More recent and relevant to image understanding is the Imagenet on-

tology [15] which contains over a million images arranged according

to the WordNet hierarchy. This thesis also explores a semi-automated

method of building rich visual concept ontologies that not only encode

part-of relationships, but also preferential attentional-bias between vi-

sual concepts, interaction information between key objects in an im-

age and also affective information [70]. Our data has also been made

publicly available in [71]. Eye-gaze based analysis for Top-down in-

fluence of image semantics manifested in inter-object interaction and

affect is also demonstrated in this thesis [70], [46].
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2.4 Understanding video content

Digital video has become a ubiquitous way of capturing and storing

the myriad variety of events and experiences we encounter. Increas-

ing afford-ability of video capture devices like mobile phones, laptops,

surveillance cameras, hand-held video cameras,etc has resulted in

massive quantities of video content. For example, upload rates for

user-generated videos in Youtube are currently topping 24 hours a

minute, which in other words could be a complete day’s life-blog for an

individual. Broadcast and surveillance video are other systems that

generate huge amount of video on a hourly and daily basis. Once

the basic storage and transmission frameworks are in place, the next

and natural challenge is to make sense of the content, inferring ac-

tions, concepts and more abstract notions such as events and affect

remain open challenges and active research topics. Video summa-

rization involves identification of audio-visual cues that Video under-

standing methods can be categorized based on type of information

source into internal methods that use information only from within the

video stream, external methods that rely completely on other type

of media that is not part of the video stream and lastly hybrid meth-

ods that perform a fusion of information sources including the video

stream being summarized [61].

A popular scenario for video processing are automatic annotation of

video content with concept and event related meta-data. Such an-

notation then enables improved indexing, and in turn, applications

such as video search and summarization [61]. The importance of

these tasks can be seen in the increasing complexity and challenging
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queries in competitions like TRECVID [82] which focuses on quanti-

tative measures such as precision and recall, this complemented by

efforts like VideOlympics [85] which also brings evaluates interactivity

and visualization of video search systems. Another important video

processing task is that of content retargeting to change the resolu-

tion, aspect-ratio and bitrate of video content to suite different deliv-

ery mechanisms. A popular and recent approach is seam-carving [79]

which inserts or removes connected pixel rows and columns to resize

image or video content. Another approach is to use low level saliency

to decide which pixels to keep and which to remove [78]. Saliency in

videos has been explored using low level contrast, gradient and other

features [38] and also using motion cues [3]. An effort has been made

in this thesis to use eye-gaze based saliency for video annotation us-

ing dynamically placed text captions.

2.5 Eye-gaze as a modality in HCI

The use of eye-gaze as an input for operating computing interfaces

has been an active topic of interest in the HCI community [41]. Stud-

ies on the utility of eye-gaze as an indicator of visual attention have

been published by Vertegaal et al. [96, 95]. As the eye muscles are

one of the fastest in the human body and users often tend to look at

a target before initiating manual action. This makes eye gaze one of

the fastest inputs available for computer systems to process. Also,

since users can produce thousands of eye movements without any

fatigue, eye gaze as a communication or control signal can reduce

risk of physical strain or injury. To avoid interruptions from ubiquitous

57



computing devices and to enable computers to communicate better

with humans, Vertegaal proposed Attentive User Interfaces (AUIs)

[97]. Key properties of AUIs include sensing, reasoning and communi-

cating user attention, determining user availability for interruption and

augmenting user attention by magnifying regions of interest while at-

tenuating peripheral detail. Example of an AUI is interactive attentive

art [30], where plasma screens displaying artwork in museums can

highlight areas receiving user attention while darkening areas receiv-

ing little attention. AUIs are particularly useful in reducing the cogni-

tive load of visual information on large displays, as they dynamically

filter user interest information.
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3 Experimental protocols and Data pre-processing

This chapter describes experimental methodology used for different

experiments in this thesis, it covers different ways in which input data

is captured as visualized in Figure 9. Section 3.1 describes the data

collection involved in the problem of interestingness discrimination.

The subsequent section 3.2 describes data collection, preparation for

eye-tracking experiments.

Figure 9: The figure highlights the scope of this chapter in the overall schema for the thesis,

input data is captured via Image/Video content, eye-tracking, manual annotation.

3.1 Experiment design for pre-attentive interestingness discrimination

Rapid scene understanding in the absence of attention is explored

first in this thesis, these experments do not involve eye-tracking and

are behavioural experiments involving human responses to well cho-

sen iamge stimuli.
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3.1.1 Data collection

Image data is crawled from the Flickr R©collection based on keywords

relevant to selected semantic categories. Semantic categories are

drawn from literature and the ones that are well represented in Flickr

are chosen. Using Flickr’s public API, we queried images with key-

words belonging to one of 14 categories, 7 natural, 7 man-made as

per [101] and [64]. The chosen categories are, beach, city-view,

coast, field, forest, high-building, highway, indoor scene, man-made

object, mountain, natural object, portrait, street. A list of keywords is

created by using a bag of words approach using synsets from Word-

Net [59]. The control set of images was downloaded using descend-

ing order of relevance as the ordering criterion, and the interesting set

of images was downloaded using descending order interestingness

as the sorting priority. The relevance order and interstingness order

are computed within the Flickr system and the rank order are treated

as ground truth. In total, we downloaded 9,137 interesting and 16,244

relevant images. Table 2 shows the bag-of-words approach for a few

example categories along with the number of images retrieved and

the number of images that were concluded to be noise and had to be

purged.

We find that subjectivity of users introduced lot of noise in publicly

available social networked media as the words relating to a concept

are often used in different ways, for example “woods” is frequently

used as a name for people, buildings, etc. Such images were filtered

out manually. During the experiment it was also found that the nature

of images is also of concern as it could be offensive or unpleasant
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to users. Details of the images collected and the bag-of-words for 5

representative image categories is shown in Table 2.

Category Bag of words Number of Images Purged images

Forest woods timberland woodland timber grove jungle 531 63

Mountain mount highland hill ridge alp volcano peak 679 110

Field clearing grassland crop harvest paddy cultivation 623 76

Beach shore plage sand seaside 500 76

Indoor Scene interior bedroom office dining kitchen library 753 115

Table 2: Details of Flickr images collected for 5 of the 14 image themes chosen.

The contribution of global and local information towards pre-attentive

discrimination of interestingness is investigated by presenting manip-

ulated versions of images to users and recording user decisions on

whether they find the image interesting. An example manipulation is

illustrated in Figure 10, (a) shows the intact image, (b) global order

in the image is removed by scrambling image blocks, (c) removal of

colour information and (d) removal of local information by blurring the

entire image. This protocol has been followed in [101] to study the in-

fluence of global and local information in image categorization by hu-

mans. Image pairs belonging to a category, one rated as highly aes-

thetic and another as ordinary, are retrieved from the image database

and one of the three manipulations mentioned, is applied to both.

The pair is then shown in succession, in random order for the same

time (time spans ranging from 50 to 1000 milliseconds were experi-

mented with). This is illustrated in Figure 11. A forced choice input

then records the user decision about which of the two images is found
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(a) (b) (c) (d)

Figure 10: Illustration of image manipulation results, (a) intact image, (b) scrambling to

destroy global order, (c) removal of color information (d) blurring to remove local properties,

the color is removed as well as it can contains information about global structure in the

image.

to be interesting. The forced choice ensures input for rapid image

presentations as we find that users might feel they cannot discrimi-

nate between images in a pair, but are unaware that they are capable

of making decisions that are statistically significant.

Figure 11: The short time-span image presentation protocol for aesthetics discrimination is

visualized here, an image pair relevant to the concept apple is presented one after another in

random order. The presentation time for each image in the pair is same and chosen between

50 to 1000 milliseconds. Images are alternated with noise masks to destroy persistence, a

forced choice input records which of the rapidly presented images was perceived as more

aesthetic by the user.

Once the image pairs are presented once in succession at a short

time span, ranging from 50 to 1000 milliseconds, each pair is pre-

sented side-by-side again later as illustrated in Figure 12. The pair is
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then displayed for as long as the user needs to decide on which of the

two is more aesthetic. The user is allowed to reject image pairs which

do not seem relevant to the same concept or are difficult to discrimi-

nate based on aesthetic value. We reject such image pairs for which

the subjects are undecided about interestingness.

Figure 12: The long time-span image presentation protocol for aesthetics discrimination is

visualized here, an image pair relevant to the concept apple is presented side-by-side. The

stimulus is presented as long as the user needs time to decide whether an image clearly

has more aesthetic value than the other.

The data collection and experiment method described above is

used to record human response times and decision error rates and

subsequently to model the role of global and local image informa-

tion in rapid image aesthetics discrimination; Sec. 4.1. The following

section describes data collection methodology for eye-tracking based

experiments.

3.2 Experiment design for Image based eye-tracking experiments

The objective of the next set of experiments is to acquire sufficient

eye-gaze patterns for each of the diverse semantic image categories,

so as to reliably conclude about human visual attention characteris-

tics. Since many factors like the task on hand and subject’s profes-
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sional and behavioral background influence attention during human-

image interaction, we need to carefully address them while designing

our experiments. The experimental data collected during the course

of this thesis is made publicly available as the NUSEF [71] dataset.

The data is also used to quantify the preferential attention to selected

objects and actions in the scene termed as attentional bias in this

thesis.

3.2.1 Data collection and preparation

We chose a diverse and representative set of images with 1024× 768

resolution, close to 800 gray-scale and color images from publicly

available data sets for our experiments. The images contain scenes

and objects captured at varying scale, lighting conditions and viewing

profiles. From among the many images acquired using descriptor tag-

based internet search (where we employed synonym-based query ex-

pansion), the experimental image set was selected based on qual-

ity, resolution and aspect ratio constraints. Images include everyday

scenes from Flickr, aesthetic content from Photo.net, Google images

and emotion-evoking IAPS pictures [50]. Semantic categories include

(i) indoor and outdoor scenes, (ii) close-up and mid-range human and

mammal faces, (iii) portrait images showing face and torso of humans

and mammals, (iv) images containing multiple humans/mammals, (v)

reptiles, (vi) injury and blood, (vii) nudes, (viii) world images contain-

ing living beings and inanimate objects (sky, sand, building, etc.) and

(ix) images depicting action (look, read, etc.). Some exemplar images

used in our experiments are presented in Fig.13, these illustrate the
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diversity of our dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 13: Exemplar images corresponding to various semantic categories. (a) Outdoor

scene (b) Indoor scene (c) Face (d) World image comprising living beings and inanimate

objects (e) Reptile (f) Nude (g) Multiple human (h) Blood (i) Image depicting read action. (j)

and (k) are examples of an image-pair synthesized using image manipulation techniques.

The damaged/injured left eye in (j) is restored in (k).

Furthermore, to study changes in visual attention due to the addi-

tion/deletion of interesting objects to/from an image, we synthesized a

number of image-pairs where affective objects are added or removed

using an image editing tool Figure 13(j),(k). Images from Flickr and

Photo.net are representative of amateur and semi-professional pho-

tographs and are rated by respective user communities and include

popular themes such as landscape, urban scenes, portrait and per-

sonal events. Google images are chosen to get popular images world-

wide for our query concepts. IAPS capture the canonical emotions

such as fear, anger, happy, etc. Together, these images cover the

popular gamut of image categories that a human user or an auto-

mated image processing system may encounter. Furthermore, the

image categories are also a combination of many prior studies on

scene understanding [100], aesthetics rating [14], person detection
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[13] and image retrieval [69].

3.2.2 Participants

Over 75 subjects including research staff, graduate and undergradu-

ate students, aged between 18-35 years (µ =24.9, σ =3.4) were re-

cruited for our visual attention experiments. All participants had nor-

mal or corrected to normal eyesignt and were paid a token fee for

participation.

3.2.3 Experiment design

To avoid task-based priming of visual attention, subjects were sim-

ply asked to view a set of images with no specific objective. This was

done to ensure that any observed attentional-bias is exclusively due to

underlying image semantics. 350 randomly chosen images were pre-

sented for subject viewing, over two passes separated by a 10 minute

break to avoid fatigue. Each image was presented for 5 seconds fol-

lowed by a gray mask for 2 seconds to destroy image persistence.

3.2.4 Apparatus

We used the Erica eye-tracker for our experiments. The system con-

sists of an infra-red sensing camera, placed alongside the computer

monitor, at about 30 inches from the subject. Images were presented

using a 17" LCD monitor with a screen resolution of 1024 x 768 pix-

els (96 dpi). Upon 9-point gaze calibration, the eye-tracker is ac-

curate within the nearest 1o visual angle at 3 feet viewing distance,

translating into an error radius of 5-10 pixels on screen. A dimly lit,
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sound-proof room was used for the experiments to avoid distractions.

The screen coordinates representing locations gazed by subjects over

time are sampled at 30 Hz, and processed to generate a sequence

of fixation points. Each fixation point represents a screen location

where the eye-gaze remains within 2o visual angle for at least 100

milliseconds. Illustrations depicting the calibration, data collection and

visualisation of eye-tracking data are shown in Fig.14 (a),(b) and (c)

respectively.

(a) (b) (c)

Figure 14: Experimental set-up overview. (a) Results of 9 point gaze calibration, where the

ellipses with the green squares represent regions of uncertainty in gaze computation over

different areas on the screen. (b) An experiment in progress. (c) Fixations patterns obtained

upon gaze data processing.

3.2.5 Image content

The NUSEF database was compiled from images that were viewed

by at least 13 subjects (containing a minimum of 50 fixations). Table 3

presents NUSEF’s semantic category-based image distribution, while

Table 4 compares our database to eye-tracking data in [43] and the

Fixation in Faces dataset [11]. Every image was viewed by an aver-

age of 25 subjects and over 57% of the images were viewed by more

than 20 subjects. Therefore, the database provides statistically rich
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Table 3: Image distribution in the NUSEF dataset, organised according to semantic cate-

gories.

Semantic

Category

Image

Description

Image

Count

Face Single or multiple human/mammal faces. 77

Portrait Face and body of single human/mammal. 159

Nude 41

Action
Images with a pair of interacting objects (as

in look, read and shoot).
60

Affect-

variant

group

Group of 2-3 images with varying affect. 46

Other

concepts

Indoor, outdoor scenes, world images com-

prising living and non-living entities, reptile,

injury.

375

ground truth for image understanding applications.

Figure 15 shows the fixation patterns for various semantic image

categories. Fixations are denoted by circles of varying sizes and gray-

levels. The circle sizes are indicative of the fixation duration at the

point-of-gaze, while the gray-levels denote fixation starting time dur-

ing the 5 second image presentation period. Evidently, a majority of

the later fixations are around salient objects/regions even if early fix-

ations may be influenced by other factors (image center, brightness,

etc.). Low-level saliency drives visual attention in contextless indoor

and outdoor scenes (Figure 15(a,b)). As also noted in [43], fixations

are observed around specific regions like the eyes, nose and mouth

for faces (Figure 15(c,d,e,f)). For neutral and smiling faces, atten-

tion is distributed almost equally between the upper (eyes) and lower

(nose+mouth) halves of the face, while fixations are biased towards
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Table 4: A brief comparison between datasets in [43], [6] and [11] with NUSEF [71].

Database

#

images

Average #

viewers per

image

Semantics Remarks

MIT

[43]

1003 15 Everyday

scenes from

Flickr and

LabelMe

Fixations are found

around faces, cars and

text. Many fixations

are biased towards the

center.

CalTech

[11]

303 8 Colour and

grayscale

images of

faces

Fixations are predom-

inantly centred around

faces and parts therein.

NUSEF

[71]

758 25.3 Expressive

face, nude,

action, reptile

and affect-

variant group

Attentional-bias to-

wards salient objects

and object-interactions.

Fixations are strongly

influenced by scene

semantics.

the lower half in highly expressive (angry, surprise, disgust) faces

((Figure 15(d)) (fixation statistics in [70]).

Semantic image categories unique to NUSEF include nudes, ac-

tions such as look, read, shoot, and affect-variant groups, which com-

prise a set of 2-3 images with similar content, but with each image

inducing a different affect (e.g., pleasant, neutral and unpleasant).

Faces attract maximum attention in human and mammal portraits

(Figure 15(i,j,k)), whereas most fixations occur on the body for nudes

(Figure 15(l)). Action images (Figure 15(g,h)) are characterized by

frequent fixation transitions between interacting objects, with more
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n) (o) (p)

Figure 15: Exemplar images from various semantic categories (top) and corresponding

gaze patterns (bottom) from NUSEF. Categories include Indoor (a) and Outdoor (b) scenes,

faces- mammal (c) and human (d), affect-variant group (e,f), action-look (g) and read (h),

portrait- human (i,j) and mammal (k), nude (l), world (m,n), reptile (o) and injury (p). Darker

circles denote earlier fixations while whiter circles denote later fixations. Circle sizes denote

fixation duration.

transitions occurring from the action recipient to the action source

[70] (e.g. Man and book are action source and recipient respectively

in Figure 15(h)). Affect-variant groups allow for a closer analysis of

attentional bias, when objects are introduced/deleted in/from the im-

age. The injured/missing eye in Figure 15(e) attracts the most atten-

tion, while the fixation distribution is more typical when the missing
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eye is replaced using image manipulation techniques in Figure 15(f).

Fixations are observed around living beings in world images Figure

15(l,m), as well as unpleasant concepts such as reptile (Figure 15(o))

and injury (Figure 15(p)).

3.3 Experimental procedure for video based eye-tracking experiments

Two types of experiments have been done in this thesis with video

stimuli, the first is with a standard non-interactive setup involving a

calibration step followed by a session where 3 subjects watch videos

while their eye-movements are tracked. Three chosen clips meet-

ing.avi, friends.avi and sports.avi have 350, 500 and 400 frames re-

spectively. The first two clips have social activity with multiple par-

ticipants and the third is fast paced sports. This information is then

available for offline analysis, this is akin to experiments described ear-

lier with images. Experiments done here are also similar to those in

[35] where 3 human subjects view 15 video clips of natural scenes,

and [9], where video clips are cut into snippets and concatenated to-

gether to minimize semantic relatedness across snippets combined

together. Though similar in spirit, these experiments were done with

the objective of identifying how image information drives HVA. On the

other hand, this thesis focuses on accurate and efficient extraction of

ROI meta-data from eye-gaze information and subsequent use in ap-

plications. We used the Erica eye-tracker for these experiments. As

described earlier, the system consists of an infra-red sensing cam-

era, placed alongside the computer monitor, at about 30 inches from

the subject. Videos were presented using a 17" LCD monitor with a
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screen resolution of 1024 x 768 pixels (96 dpi). Upon 9-point or 12-

point gaze calibration, the eye-tracker is accurate within the nearest

1o visual angle at 3 feet viewing distance, translating into an error ra-

dius of 5-10 pixels on screen. The screen coordinates representing

locations gazed by subjects over time are sampled at 30 Hz, and pro-

cessed to generate a sequence of fixation points. Each fixation point

represents a screen location where the eye-gaze remains within 2o vi-

sual angle for at least 100 milliseconds. This is similar to free-viewing

experiments with image stimuli, the major difference is that eye-gaze

is now recorded as time series information, with sampling frequency

(30 Hz), which is quite close to the video frame rate. This raises chal-

lenges for eye-gaze analysis, and is dealt in Chapter 4.

Figure 16: Illustration of the interactive eye-tracking setup for video. (a) Experiment in

progress (b) The subject looks at visual input. (c) The on-screen location being attended to.

(d) An off-the-shelf camera is used to establish a mapping between images of the subject’s

eye while viewing the video.
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The second type of experiment was to explore a closed loop sce-

nario where eye-gaze information is utilized on-the-fly to manipulate

video stimulus being seen by the subject. Low cost eye tracking us-

ing open source software and webcams or handycams were explored

in the second case. Eye-tracking was done with video clips of 2-5

minute duration, from the theme Television Sitcoms. The clips de-

pict individuals and groups of people interacting in a social setting.

The clips have semantically rich events involving people and objects.

The video clips were resized while preserving the aspect-ratio and

displayed at a resolution of 1024 × 768 pixels on-screen. Figure 16

illustrates the experimental setup for interactive eye tracking, wherein

eye-gaze information is acquired and analysed on-the-fly.

3.4 Summary

This chapter describes the data collection protocol including selection

of visual stimulus, hardware and software used and psychophysics

experiments. Image and video data is chosen in this thesis, to reflect

important themes that humans experience. Visual data is collected

primarily from publicly accessible sources and using as much automa-

tion as possible to counter biases in selection 3.2.1. The experimen-

tal setups for data collection also include very low cost hardware and

software as described in 3.3 . This is done to explore scenarios where

eye-gaze based technology can naturally be made part of existing

computing devices such as laptops, cameras and phones. The data

collection and experimental methods are geared towards generating

results that hold over a diverse collection of visual content.
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4 Developing the framework

The grand goal of automatically understanding semantics, aesthetics

and affect represented by images and videos is made challenging by

the diversity of visual attributes and possibilities of composing differ-

ent visual elements. Pixel-based information in images can represent

rich semantic information relating to objects and their interactions as

can be seen in Figure 18 (e) cat reads book and (f) paper clip scene.

Inferring semantic, aesthetic and affective content are basic tasks that

most humans are able to perform effortlessly and continuously and yet

pose a huge challenge for automated methods. The difficulty arises

from the diverse possibilities of semantics, abstraction and affect that

can be depicted by an image. Figure 18 depicts how pixel content

can depict something as simple as (a) simple texture (b) aesthetic

value from colour and depth (c) strong visual patterns (d) symmetry

and composition and (e)(f) depicting abstract semantics. This chapter

introduces the analysis and modeling visualized in Figure 17, which

then support applications on visual content understanding. The cur-

rent chapter first explores the notion of aesthetics in natural images

and presents evidence for aesthetics discrimination in early vision us-

ing psychophysical experiments. The role of global color information

is also highlighted using results from behavioral experiments and con-

tent based modeling. Human bias to selected objects and actions in

scenes is modeled as the attentional bias, using statistical analysis

over eye-tracking data.

Local image information contained in objects and their relationships
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Figure 17: The schema visualizes the overall organization of the thesis and highlights the

components described in this chapter. The current chapter deals with analysis and modeling

of visual content, eye-gaze information and meta-data.

(a) (b) (c) (d) (e) (f)

Figure 18: The panel illustrates how the arrangemnt of different visual elements in images

can give rise to rich and abstract semantics. Beginning from simple texture in (a), the mean-

ing of an image can be dominated by low level cues like color and depth in (b), shape and

symmetry in (c) and (d). The unusual interaction of cat and book gives rise to an ele-

ment of surprise and rich human interaction and emotions are conveyed through inanimate

paper-clips.

in images also influences image aesthetics. Semantic and Affective

information is investigated in using image context, key concepts and

interactions. Eye-gaze analysis measure for semantics and affect re-

lated analysis are introduced. Insights from analysis of eye-gaze on

manually and automatically annotated images are used to construct

an Attentional bias model that capture preferential attention to im-
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portant concepts and possible interactions or relationships between

them. The model is then used to illustrate the close correspondence

that key concepts and actions in images have with text descriptions of

the image.

4.1 Pre-attentive discrimination of interestingness in the absence of atten-

tion

This section brings forth the human capability to identify aesthetically

pleasing images even when the image stimulus is presented for a brief

time span. The influence of early-vision related global information pro-

cessing for aesthetics discrimination is also demonstrated. Further-

more, attributes such as depth, lighting and saturation that are related

to early vision are captured directly or indirectly in some fields of the

Exchangeable image file format (EXIF) meta-data. We exploit EXIF

information to model some of the pre-attentive global image attributes

and find them to be useful for aesthetics discrimination. Our notion of

aesthetically pleasing in the current context is that of interestingness

as defined in the Flickr R©system. Interestingness indicates whether

an image would be interesting to view amongst others that are rele-

vant to a particular semantic concept [7]. This has been modeled in

Flickr by recording user interaction and recommendation statistics for

images. An example image pair is shown in Figure 19, though both

are relevant to the concept apple, Figure 19 (b) has a much higher

interestingness score and is preferred by Flickr users over Figure 19

(a). Experiments designed for interestingness discrimination involve a

significant component of psychophysics, psychophysics is a branch of
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psychology which quantitatively investigates relations between phys-

ical stimuli and the sensations and perceptions they evoke. The aim

is to explain and model the processes underlying perception. Initial

foundations were laid by the seminal work of the German psycholo-

gist Fechner [20] and subsequently his students.

(a) (b)

Figure 19: Image on the left is a relevant result for the query concept apple. The image on

the right illustrates an image for the same concept that has been viewed preferentially in the

Flickr database.

We investigate the following problems related to aesthetics in im-

ages,

• Can interesting images be discriminated rapidly in pre-attentive

time spans ?

• What role does global and local information play in determining

image interestingness ?

Though human visual attention is an imporatnt part of scene percep-

tion, meaningful eye-fixations usually begin after 100 milliseconds.

The time period between stimulus onset and the first fixation is called

the pre-attentive time span. Global information processing and rapid

scene understanding has been demonstrated during this phase [52].

Global information has been shown to be effective for natural scene
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categorisation [101][64] and also an important precursor for subse-

quent visual exploration of the scene via eye fixations [89].

The aesthetic value of an image can be influenced by both bottom-up

or top-down visual features. Figure 18 illustrates how bottom-up cues

such as color or elements of symmetry can make an image aestheti-

cally pleasing. On the other hand. Figure 18 (e) illustrates top-down

cues such as the unusual juxtaposition of concepts cat, book and ac-

tions look and (f) shows how objects can be used as metaphors to

depict complex events or emotions in aesthetic images.

Aesthetics may not be well captured in simpler meta-data such as

user generated tags or other text content surrounding images on the

web. As current image search relies heavily on such textual meta-

data, significant mis-match can be observed between system gener-

ated ordering for relevant images against ordering by user’s notion

of interestingness. This is illustrated in Figure 20, which visualizes

the lack of correlation in ordering images from Flickr R©for the theme

beach when done based on user interaction data, as compared to

mere textual relevance. Semantic relevance ranking for 2132 images

is plotted against their ranks based on interestingness. The images

are grouped into high, medium and low ranked images according to

interestingness. The clear lack of correlation brings forth the fact that

text based semantic relevance may not capture interestingness in an

effective manner.
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Figure 20: A visualization of the lack of correlation between image ordering based on mere

semantic relevance of tags Vs interestingness in the Flickr system. Semantic relevance

based ordering of 2132 images is plotted against their ranks on interestingness. This illus-

trates the need for methods that can harness human interaction information.

4.1.1 Effectiveness of noise masks in destroying image persistence

Noise masks used in the two experiments ensure that image persis-

tence on the eye does not influence the results for short presentation

of images. This can significantly alter the results for short presentation

spans. This is illustrated in Figure 21 for a user across different pre-

sentation time spans. An overall increase in agreement can be seen

when the noise mask is absent. This is made possible by the persis-

tence of images in the visual system after the presentation stimulus is

removed.

The discrimination accuracy is measured as the agreement be-

tween user decisions made at short-term presentation against a longer-

term presentation of the image pair. The decision made on short-term

presentation,

decisioni,short =







1 , f irst

0 , second
(1)
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Figure 21: Impact of noise masks in reducing the effect of persistence of visual stimulus.

The two plots are agreement between user-decisions made for short term and long term

image pair presentation. It can be seen that image persistence in the absence of the noise

mask significantly increases the overall discrimination capability of the user.

and long term,

decisioni,long =



















1 , left

0 , right

−1 , undecided

(2)

The short-term to long-term decision agreement is modeled as,

agreement =

∑

i{decisioni,short = decisioni,long}
∑

idecisioni,long 6= −1
(3)

The agreement is measured only over trials that are not rejected as

undecidable for long-term presentation decisioni,long 6= −1. The short

term presentation is forced choice and can take only two values, the

participant can also reject an image pair in long term presentations

using a third key-press. Longer presentation spans result in more

reliable decisions as compared to short-term presentations, this can

be seen in Figure 22 which plots the agreement scores for image-pairs

as the short-term presentation time is increased from 50 milliseconds

to 1000 milliseconds and Figure 23 The short term presentation is

kept as a forced-choice experiment, as participants tend to be very
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unsure of their short term decisions and are likely to reject most trials.

Long term decisions on the other hand, give sufficient time to accept

the left or right image as more aesthetic or to reject the image pair.

Figure 22: Improvement in user discrimination as short-term presentation span is varied

from 50 milliseconds to 1000 milliseconds. As expected, users make more reliable choices

amongst the image pairs presented. A presentation time of about 500 milliseconds appears

to be the minimum threshold for reliable decisions by the human observer and can be used

as a threshold for display rate for rapid discrimination of interestingness.

The agreement value stabilizes for most users by 500 milliseconds

and they are able to correctly identify the more aesthetic image from

a pair. Pre-attentive decisions made between 30 to 50 milliseconds

have agreement values over 75% with those made over longer pre-

sentation times, this is well over chance performance. Statistical sig-

nificance using the binomial test also indicates that short-term deci-

sions made by 50 milliseconds onwards, agree with the long term de-

cisions at p = 0.01. Binomial test was done by modeling agreement

and non-agreement of short and long term decisions as two outcomes

of a coin toss. The significance test is then done to essentially find out
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Figure 23: Improvement in user discrimination as short-term presentation span is varied

from 50 milliseconds to 200 milliseconds. A binomial statistical significance test reveals

agreements between short and long term decisions starting from 50 millisecond short term

decisions.

if the coin is biased in favour of agreement. The wide variation at 16

milliseconds indicates lack of discrimination at very short time spans.

High values at 50 milliseconds are followed by a drop at 100 mil-

liseconds before converging to the steady or higher value beyond 500

milliseconds. This could indicate different cognitive process responsi-

ble for short-term and longer-term discrimination.

Pre-attentive time spans are believed to be of the order of 100 mil-

liseconds or lesser, from presentation of stimulus. The contribution of

color towards rapid, aesthetics discrimination is shown in our our ex-

perimental results 24. There is a marked drop of 20 % in the discrimi-

nation capability as color information is removed from images. Global

information also contributes about the same, this can be seen from

the drop of about 15 % in short-term to long-term agreement when

global information is destroyed by scrambling image blocks. Another
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interpretation of agreement of short-term decisions made at 100 mil-

lisecond presentation with long-term decisions is shown in Figure. 25.

Though loss of colour information or loss of global order in the image

result in a similar drop of about 7% in agreement, removal of local in-

formation reduces agreement significantly by more than 20%, this is

surprising as literature suggests a dominant role of global information

in pre-attentive time spans.

Figure 24: The panel illustrates changes in pre-attentive discrimination of image interest-

ingness as image content is selectively manipulated. Removing color channel information

results in a 20 % drop in discrimination capability. A drop of about 15 % in short-term to

long-term agreement when global information is destroyed by scrambling image blocks

To summarize, the important results contributed from above-mentioned

experiments are,

• Color information plays an important role in rapid discrimination

of interestingness in images as shown in Figure 24.

• The minimum time required for such rapid decisions is between
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Figure 25: Agreement of short-term decisions made at 100 millisecond presentation with

long-term decisions. Though loss of colour information or loss of global order in the im-

age result in a similar drop of about 7% in agreement, removal of local information reduces

agreement significantly by more than 20%, this is surprising as literature suggests a domi-

nant role of global information in pre-attentive time spans.

200-300 milliseconds as visualized in Figure 22. This also sets

the fastest refresh rates for such systems to be 3-4 Hz. These

results on global feature based interestingness hold for a diverse

set of image categories such as those in Flickr R©.

• Though prior research has shown how local and global features

influence long term scene categorization, this is the first work to

address a more abstract problem of predicting whether an image

is interesting or not.

4.2 Eye-gaze, an artifact of Human Visual Attention(HVA)

This section explores the use of eye-gaze to systematically infer scene

semantics. The human visual pathway responsible for processing

mid-level information such as shapes and increasingly abstract infor-
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mation relating to objects, inter-object interactions, affect and even

aesthetics. HVA is an important cognitive mechanism to selectively

process portions of the visual abundant visual information available.

Eye-tracking allows the visual system to inspect Regions of interest

(ROIs), which in turn enables subsequent understanding and infer-

ence. In this section, Eye-tracking experiments and content based

modeling is used to gain insights into how humans understand se-

mantics, affect and aesthetics in Images. The eye-tracking experi-

ments provide spatio-temporal data indicating where and in what or-

der are Image locations processed by humans. Eye-movements con-

sist of fixations during which the eye is relatively stationary, transition

from one location of fixation to another is made by a ballistic move-

ment called the saccade. Fixations are typically longer than 100 mil-

liseconds and tend to remain within 1 degree of visual angle sub-

tended by the eye. Fixations indicate the processing of detail in the

fixated location, there is no visual information intake during saccades.

Eye fixation data is spatio-temporal, time series information. Different

visualisations of eye-tracking data are shown in Figure 26 for a human

portrait image.

A caveat at this point is that other cognitive processes like periph-

eral vision, that are parallel and simultaneous to HVA exist. These en-

able context estimation [57] and in-parallel, rapid processing of some

important stimuli such as faces and animals [52].

This section demonstrates the specificity with which humans attend

to key objects and their relationships in images and how this is man-
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(a) (b) (c)

Figure 26: Different parameters extracted from eye-fixations corresponding to an image in

the NUSEF [71] dataset. Images were shown to human subjects for 5 seconds. (a) Fixa-

tion sequence numbers, each subject is color-coded with a different color, fixations can be

seen to converge quickly to the key concepts (eye,nose+mouth) (b) Each gray-scale disc

represents the fixation duration corresponding to each fixated location, gray-scale value rep-

resents fixation start time with a black disc representing 0 second start time and completely

white disc representing 5 second fixation start time.(c) Normalized saccade velocities are vi-

sualized as thickness of line segments connecting successive fixation locations. Gray-scale

value codes for fixation start time.

ifested in eye-tracking data. Appropriately defined measures over

eye-fixation information are used to discover the Attentional bias that

humans show while understanding natural scenes with animate and

inanimate objects in them. Fusion of eye-gaze analysis with an object-

part ontology over our diverse dataset yields quantitative Attentional

bias values that are consistent across different subjects. The exper-

imental insights are then exploited to extract ROIs and their relation-

ships, abstract notions of affect and aesthetics are also investigated.

ROIs discovered by the binning method are put to use in applications

for interactive object segmentation, key-object detection. An exten-

sion of the method also helps in identifying strongly interacting or

related visual elements. A hybrid approach using eye-tracking and

content analysis is used to classify images as affective, aesthetic or
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those having noticeable interactions between their elements.

4.2.1 Description of eye-gaze based measures and discovering Attentional bias

Most semantically rich images can be represented using a number of

regions termed regions-of-interest (ROIs), with each ROI denoting a

unique semantic concept. Eye-fixations occur preferentially over im-

portant concepts, this phenomenon was verified systematically and

also used to quantify the extent this bias and its consistency over hu-

man subjects. The NUSEF [71] dataset was then analysed to answer

the following questions,

• What are the frequently identified key concepts and sub-parts in

themes represented in an image collection such as NUSEF [71]

dataset ?

• What are the preferential attentional bias values for such key con-

cepts ?

• Does this model tell something about interactions between con-

cepts in an image ?

• What does the part-of ontology for concepts in this dataset look

like and what does it tell us about how images are understood by

humans ? ie; What is the world model for this dataset ?

A group of paid volunteers were asked to manually annotate be-

tween 5-10 key concepts in images, this involves indicating bounding

boxes and semantic labels as shown in Figure 27. These volunteers

did not participate in subsequent eye-tracking experiments. The an-

notation was done using the Fixplot tool which is part of the Eyenal
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fixation data analysis software from ASL. The annotators were also

instructed to additionally label any clearly visible sub-parts of the key-

concepts. That way a labeled face would also have eye and mouth

regions labeled, if they were clearly visible. This can be seen in Fig-

ure 27 (a)(d)(e)(f), where as the annotators omitted eye and mouth

labels for (b) and (c). Manual annotation can be noisy and this can

be seen in the large bounding box for face in (d) and smaller than the

true size in (e).

(a) (b) (c)

(d) (e) (f)

Figure 27: Visualization of manual annotation of key concepts and their sub-parts for the

NUSEF [71] dataset. The annotators additionally label any clearly visible sub-parts of the

key-concepts. That way a labeled face would also have eye and mouth regions labeled, if

they were clearly visible. This can be seen in Figure 27 (a)(d)(e)(f), where as the annotators

omitted eye and mouth labels for (b) and (c).

The annotated (bounding-box, semantic label) pairs are then anal-

ysed to discover well supported meronym relations of the form x ⊂ y

between concepts. Here x ⊂ y means, concept x is a sub-part of
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concept y. eg; eyes ⊂ face and face ⊂ human.

x ⊂ y ⇒ {area(x)∩area(y) ≈ area(x)}∧{area(x) < area(y)} (4)

Some frequently occurring meronym relationships in NUSEF [71]

are visualized in Figure 28. This ontology of concepts, then forms the

basis for quantifying attentional-bias amongst concepts.

Figure 28: A visualization of some well-supported meronyms relationships in the NUSEF

[71] dataset. Manually annotated pairs of (bounding-box, semantic label) are analysed for

part-of relationships, also described in Eqn. 4.

The first row of Figure29 shows how face and person images are

represented using a number of rectangular ROIs. The second row in

Figure29 shows the distribution of fixation points (in yellow) among the

ROIs for the various semantic classes for a subject population. Each

fixation point is associated with a (x, y) location, which denotes the

fixation coordinates, as well as a sequence index, Sj, that denotes the

chronological order in which the fixations happened for each image

during the 5 second viewing time. Note that a unique set of Sis are
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associated with every image viewed by each subject. Let n ROIs

{a1, .., an} constitute image I , such that
⋃

ai ⊆ I . As evident from

Figure29, ROIs can overlap, and the ⊆ symbol denotes that some

image regions may be unlabeled.

(a) (b) (c) (d)

(e) (f) (g (h)

Figure 29: Automatically extracted ROIs for (a) normal and (b) expressive face, (c) portrait

and (d) nude are shown in the first row. Bottom row (e-h) show fixation distribution among

the automatically obtained ROIs.

If m subjects have viewed image I , and Di,j denotes the duration for

which subject j has fixated on ai, the representative fixation duration,

Di for concept ai ∈ I , is given by

DiI =
1

m

m
∑

j=1

Di,j (5)

The intuition for this expression is visualized for a hypothetical concept

with three non overlapping sub-parts is visualized in Figure 30.

Generally, the fixation duration Di is also proportional to the num-

ber of fixation points, or the fixation density, within a given ROI. This

measure is useful to compute preferential bias to different concepts
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Figure 30: The figure visualizes how the total fixation time over a concept Di can be ex-

plained in terms of time spent on individual, non overlapping sub-parts. The final ratios are

derived from combined fixations from all viewers over objects and sub-parts in an image.

as shown later in 4.2.2.

Furthermore, given a pair of ROIs (concepts) (al, am) ∈ I , let

TCl,m,j, NFl,j respectively denote the fixation transition count from

al to am and the number of fixations in al for subject j. The represen-

tative conditional probability P (m/l)I , which models the likelihood of

a fixation transition from al to am following a fixation in al is defined as

P (m/l)I =

∑m
j=1(TCl,m,j)

∑m
j=1(NFl,j)

(6)

Hence, P (m/l)I values are probability scores in the interval [[0,1]].

The significance of modeling fixation transition probability between

ROIs can be seen in Figure 31, where a significant share of inter-

fixation transitions is taken up by the strongly interacting ROIs face

and laptop. Interaction amongst concepts results in higher likelihood

of fixation transitions between corresponding ROIs. Equation 6 can

be used to construct a notion of such interaction as shown later in

4.2.4.
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(a) (b) (c)

Figure 31: Panel (b) visualizes fixation transitions between important concepts in the image

(a). The transitions are also color coded with gray scale values representing fixation onset

time, black represents early onset and white represents fixation onset much later in a 5

second presentation time. Visualized data represents eye-gaze recordings from 22 subjects

and is part of the NUSEF dataset [71].(c) Red circles illustrate the well supported regions of

interest, green dotted arrows show the dominant, pair-wise P (m/l)I and P (l/m)I values

between concepts m and l, thickness of the arrows is proportional to the probability values

values.

4.2.2 Bias weight

Concepts relevant to an image are determined by the real-world in-

stance that the image captures. For example, eyes, nose and mouth

are the most relevant concepts in an face image, whereas face and

body are most relevant in a portrait image. Depending on the im-

age semantics, we observe a preferential attentional-bias towards

the salient image concepts.

We seek to model this attentional-bias for concept ai (for the sake

of simplicity, we simply refer to concepts through ROIs) through the

bias weight measure, denoted by wi. If Pi is the parent concept for

ai as given by the hierarchical relationship between real-world con-

cepts(e.g., face is the parent concept for eyes), the ROI for Pi con-
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tains ai in I . If Si denotes the set of Ni images containing ai, the bias

weight, wi for concept ai is defined as,

wi =
1

Ni

∑

∀I∈Si

DiI

DPiI

(7)

Since Di is essentially characterized by the fixation density within

ai, a large value of wi indicates that visual attention is biased towards

concept ai. The bias weight wi for a concept ai can be learned by

sampling the fixation densities corresponding to ai from a sufficiently

large number of training images. Upon learning the wi’s correspond-

ing to many ai’s, it would be possible to predict the attentional-bias for

each ai in an image where many ai’s co-occur.

To illustrate, typical wi values computed from training images for

the semantic image categories shown in Figure29 are shown in Ta-

ble.5. Considering faces as an example, we can see how the wi’s vary

for the eyes and nose+mouth regions for normal (neutral and smiling

faces) and expressive (angry, surprise, disgust) faces. For normal

faces, the fixation densities around the eyes and nose+mouth regions

are roughly equal, as observed from training statistics. However, in

faces showing pronounced facial deformations around the lower part

of the face, the fixation density in the nose+mouth region is higher,

resulting in a higher wi value for the nose+mouth region in expressive

faces. This phenomenon can be observed from Figure29(a),(b).

Similarly, while human visual attention is specific to faces in por-

traits, the trend reverses for nudes, i.e., considerably higher fixation

densities are observed on the body in nudes. This semantic category-

dependent variation in attentional-bias can be exploited to distinguish

between different semantic categories corresponding to the same par-
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ent class.

Category #Images Concept- wi

World 30 living beings- 0.4, inanimate- 0.1

human/mammal 50 face- 0.75, body - 0.19

Nude 20 face- 0.22 body - 0.62

Normal faces 50 eyes- 0.37,nose+mouth- 0.4

Expressive faces 48 eyes- 0.35,nose+mouth- 0.5

Look,Read,Shoot 60 mean(P (m/l)I)− 0.4

Table 5: Computation of wi for ai’s corresponding to the semantic image categories shown

in Figure29.

4.2.3 Attentional bias model synthesis from fixation data

As illustrated in Table 5, we empirically observe that high values of

Di and P (m/l)I correspond to preferentially attended objects and ac-

tions respectively. From labeled image ROIs, we first construct the

attentional bias model as an ontology tree incorporating hierarchical

relationships between world concepts. For example, a partial ontol-

ogy for NUSEF [71] is shown in (Figure28). Preferential attention is

then learning for a particular concept, from images where it attracts

significant eye-fixations, and also co-occurs with other concepts in the

world ontology. Each concept in the complete ontology is associated

with the bias weight wi, which measures preferential attention to it

against other concepts at the same hierarchy level and is depicted in

blue in Figure32.
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Figure 32: Attentional bias model. A shift from blue to green-shaded ellipses denotes a

shift from preferentially attended to concepts having high wi values, to those less fixated

upon and have lower wi. Dotted arrows represent action-characteristic fixation transitions

between objects. The vertical axis represents decreasing object size due to the object-part

ontology and is marked by Resolution.

World images, which represent a collection of living and inani-

mate objects, are used to infer that living beings are preferentially

attended to. Face grabs attention in normal humans/mammals, while

the body is substantially affective and hence, preferentially attended

in nude images. Within the face, nose and mouth correspond to a

higher wi, especially for expressive faces. As expected, many pref-

erentially attended concepts like blood or nude are also affective in

nature. The attentional bias model is a richer and more complete no-

tion of saliency as it captures the influence of top-down and bottom-up

cues in an image. This is also the benchmark to compare against au-

tomated saliency detection methods that involve one or more of the

following, low-level image information [39], semantic objects and their

relative importance [86][43], and possible affect and interaction [70] in
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the scene. Application of the attentional bias model to localize con-

cepts from text captions accompanying images is demonstrated later

in this thesis. This model is also useful in any task that requires image

saliency and captures the influence of both top-down and bottom-up

cues in scenes.

4.2.4 A basic measure for interaction in Image concepts

We define action images as those that characterized by a noticeable

interaction between the source and recipient (Figure34(a,b) and Fig-

ure31). Let image I with n ROIs the representative interaction mea-

sure Int(l,m)I , which builds on equation 6 and models the interaction

between each key ROI pair al, am, is defined as,

Int(l,m)I = P (m/l)I + P (l/m)I (8)

When there is a strong interaction observed between a pair of enti-

ties (concepts), extensively high number of eye-gaze transitions are

observed between the entity-pair as illustrated by the man looks at

laptop image (Figure 31), resulting in high Int(l,m)I values. The inter-

action measure is visualised in 33 . A more robust method to detect

interaction in images is presented later in 4.3.3.
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(a) (b) (c)

Figure 33: Panel (a) visualizes fixation transitions between important concepts in the im-

age, transitions are color coded with gray scale values representing fixation onset time,

black represents early onset and white represents fixation onset much later in a 5 second

presentation time. Visualized data represents eye-gaze recordings from 22 subjects and is

part of the NUSEF dataset [71].(b) Red circles in the cartoon illustrate the well supported re-

gions of interest, green dotted arrows show the dominant, pair-wise P (m/l)I and P (l/m)I

values between concepts m and l, thickness of the arrows is proportional to the probability

values values. (c) Visualization of normalized Int(l,m)I values depicting the dominant in-

teractions in the given image, a single green arrow marks the direction and magnitude of

inferred interaction.

4.3 Estimating Regions of Interest in Images using the ‘Binning’ algorithm

In this section, we describe the ’binning’ algorithm that we adopt to au-

tomatically determine spatially distinct ROIs based on time-sequence

information. To the best of our knowledge, the proposed algorithm

is one of the first attempts to exploit timing information associated

with fixations. We demonstrate that the binning algorithm is particu-

larly useful for determining the presence of key objects, and can be

extended to discover inter-object interactions using eye-fixation data.

Humans exhibit exploratory behavior as they observe scenes. Ma-

jority of fixation transitions occur between locations corresponding to

distinct ROIs in the image. This gives rise to an almost bi-partite re-

97



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 34: Action vs multiple non-interacting entities. Exemplar images from the read and

look semantic categories are shown in (a),(b). (c),(d) are examples of images contain-

ing multiple non-interacting entities. In (e)-(h), the green arrows denote fixation transitions

between the different clusters. The thickness of the arrows are indicative of the fixation

transition probabilities between two given ROIs.

lation between ROIs representing distinct concepts. We exploit this

property of eye-gaze to discover and bound ROIs in an image. Our

method discriminates saccades made between ROIs against those

made within the same ROI and generates clusters having bi-partite

relation with each other. The intuition for this algorithm is visualized

along with an actual result in Figure 35.

Successive saccades are seldom on the same ROI, this is explained

by the inhibition-of-return phenomenon [48] and is used as a con-

straint to discover the bi-partite relationships mentioned earlier. Inhi-

bition of return (IOR) refers to the observation that the speed and ac-

curacy with which an object is detected are first briefly enhanced for
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perhaps 100-300 milliseconds after the object is attended, and then

detection speed and accuracy are impaired (for perhaps 500-3000

milliseconds). IOR is believed to promote exploration of new, previ-

ously unattended objects in the scene during visual search or foraging

by preventing attention from returning to already-attended objects.

(a) (b) (c)

Figure 35: The binning algorithm. Panels in the top row show a representative image (top-

left) and eye-fixation information visualized as described earlier in 26, followed by abstrac-

tion of the key visual elements in the image. The middle row illustrates how inter-fixation

saccades can be between the same ROI (red arrow) or distinct ROIs (green arrow). The

bottom row illustrates how isolating inter-ROI saccades enables grouping of fixation points

potentially belonging to the same ROI into one cluster. The right panel in the bottom row is

an output from the binning algorithm for the chosen image, ROIs clusters are depicted using

red polygons and the cluster centroid is illustrated with a blue disc of radius proportional to

the cluster support. Yellow dots are eye-fixation information that is input to the algorithm.
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Algorithm 4.1: BINNINGMETHOD(FixationData S)

bins← [NULL];BinAdj ← [NULL][NULL]
for each Sj ∈ S

do
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

prevBin← null

if isempty(bins)

then

bins.create()

bins(1).add(Sj)

prevBin← 1
else

foundBin← bin closest to Sj

prevBin← foundBin

if dist(foundBin, Sj) > neighbourhood

then

newBin← bins.addNewBin()

bins(newBin).add(Sj)

BinAdj(prevBin, newBin).addEdge()

prevBin← newBin
else

if foundBin 6= prevBin

then

bins(foundBin).add(Sj)

BinAdj(prevBin, foundBin).addEdge()
else

if foundBin == prevBin

then

bins(foundBin).add(Sj)

return (bins,BinAdj)
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The binning procedure is summarized in Algorithm 4.1. The algo-

rithm works as follows, given a set of P fixation points, the binning

algorithm assigns them to N bins. The algorithm begins with NULL

bins, and bins are created with time, based on the spatial distribution

of fixation points, i.e., any fixation point Sj is assigned to it’s closest

bin, based on Euclidean distance to the bin centroid. However, if there

is no bin within Dthresh distance from Sj, a new bin is created with Sj

as its member. Fixation points are added to bins based on the fol-

lowing criterion: If Sj is assigned to bink, the algorithm will attempt to

assign Sj+1 one of the remaining N − 1 bins that are within Dthresh

distance of Sj+1, and will not be assigned to bink. If there is no bin

within Dthresh distance from Sj+1, a new bin is created with Sj+1 as its

member. If Sj+1 is within Dthresh of bink, membership count of bink

is incremented and it’s assumed that the subject’s eye-gaze hasn’t

transitioned to another ROI in the image. The choice of Dthresh is an

indicator of the scale of objects occurring in images, in the current im-

plementation, it is set heuristically for typical sizes of objects and their

parts. Sj being assigned to binl, and Sj + 1 to binm is equivalent to a

fixation transition between ROIs al and am. The BinAdj matrix, which

stores the number of transitions between bins l,m∀ l,m = 1..N , is up-

dated after the assignment of each Sj. Transitions from bink to itself

are ignored. The bin that contains the most Sj ’s corresponds to the

most salient image concept.

ROI discovery over some representative image themes is illus-

trated in Figure 36. Red polygons outline the ROI clusters, the ROIs

often have good overlap with the underlying semantic concept, object
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or part.

(a) (b) (c)

Figure 36: Panels illustrate how ROIs identified by the the binning method correspond to

visual elements that might be at the level of objects, gestalt elements or abstract concepts.

(a) ROIs correspond to the faces involved in the conversation and the apple logo on the

laptop.(b) Key elements in the image solitary mountain and the two vanishing points one on

the left where the road curves around and another where the river vanishes into the valley.

Vanishing points are strong perceptual cues. (c) Junctions of the bridge and columns are

fixated upon selectively by users and are captured well in the discovered ROIs.

4.3.1 Performance analysis of the binning method

The binning method Algorithm 4.1 requires a distance computation

to each existing bin, for every fixation point to be binned and can be

seen in the nested for loop pair in Algorithm 4.1. In the worst case,

there can be as many bins as there are fixation points. Hence, it offers

an O(n2) time complexity and O(n) storage complexity for n fixation

points.

The performance of the method is influenced by the neighborhood

chosen in Algorithm 4.1, as well as the number of eye-gaze traces

corresponding to an image. The evaluation is done by computing

precision, recall and f-measure scores of eye-gaze based ROIs and

comparing them with human annotated ground truth. 5 annotators

were given randomly chosen images from the NUSEF dataset [71],
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the annotators assign white to foreground regions and the black to

the background. Annotators used the GIMP R©tool to identify the ob-

ject boundaries and assign white to foreground regions and black to

background regions respectively. The eye-gaze based ROIs and seg-

mentation ground truth is visualized in Figure 37. Evaluation of the

binning method and another mean-shift based method [77], are pre-

sented in the following sections. In this thesis, evaluations are done

using at least 120 randomly chosen images from amongst a pool of

over 1000 images from public datasets [71], [43]. The number of im-

ages chosen is comparable or larger than the recent, corresponding

reported analysis tasks such as eye-gaze based clustering [70] and

computer vision tasks such as segmentation [71] and object detection

[46]. The large pool of images and statistically significant number of

human subjects gives a reliable insight into the behavior of the chosen

methods.

We find that images can contain one or more objects of interest

and this was captured during the manual annotation task. Some seg-

mentation maps with one or more ROIs are illustrated in Figure 38.

The images chosen for evaluation have a diversity in the number of

number ROIs, location and scale of objects.

We combine precision and recall against the baseline using an

fmeasure score computed over eye-gaze based ROIs with respect

to human annotated ground-truth (gtruth) foreground regions as illus-

trated in Figures 38 and 37 as,
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(a) (b) (c)

Figure 37: Visualization of eye-gaze based ROIs obtained from binning and the correspond-

ing manually annotated ground truth for evaulation (a) Original image (b) Eye-gaze based

ROIs (c) Manually annotated ground truth for the corresponding Image. 5 annotators were

given randomly chosen images from the NUSEF dataset [71], the annotators assign white

to foreground regions and the black to the background.

Figure 38: Visualization manually annotated ground truth for randomly chosen images from

the NUSEF dataset [71]. The images can have one or more ROIs.

fmeasure =
2 ∗ precision ∗ recall

precision+ recall
(9)

Precision and recall for each box are,

precision =
eye− gazeROIs ∩ gtruth

eye− gazeROIs
(10)
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recall =
eye− gazeROIs ∩ gtruth

gtruth
(11)

Here, eye−gazeROIs∩gtruth is computed by pixel-wise boolean

AND operation between the eye-gaze ROIs and manual ground truth

as shown in Figure 37 (b) and (c) respectively.

A representative result for 15 subjects per image is shown in Figure

39. The binning method is conservative in assigning fixation points

into bins, the chosen points are usually well within the object bound-

ary and so is the corresponding enclosing convex hull ROI. This is a

good strategy to reduce false positives in subsequent applications for

the ROIs, such as eye-gaze based foreground estimation or guiding

object detectors to find key objects. We find that f-measure scores

Figure 39: Performance of the binning method for 50 randomly chosen images from the

NUSEF dataset. The binning method employs a conservative strategy to select fixation

points into bins, large proportion of fixation points fall within object boundary. This results

in higher precision values as compared to recall. An f-measure of 38.5% is achieved in this

case.
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for ROIs stabilise as the number of subjects per image crosses 20

subjects. This can be seen in Figure 40.

Figure 40: Performance of the binning method as the number of subjects viewing an image

is increased from 1 to 30. The neighbourhood value is chosen to be 130 pixels to discrim-

inate between intra-object saccades and inter-object saccades. The precision, recall and

consequently f-measure are approximately even at 20 subjects.

Reliable estimates of ROI positions and sizes can be obtained by

group statistics over groups of subjects. At the same time, an im-

portant question is how precision and recall of eye-gaze based ROIs,

when the eye-gaze data available is from one or a few subjects. A

single person interacting with video or image content is important for

personalization and interactive scenarios. This is indeed true and can

be seen in Figure 41 (a). The low score is mainly due to the small

areas of eye-gaze ROIs and hence poor recall for the corresponding

visual concept. This shortcoming can be improved upon by growing

eye-gaze based ROIs using content based image segmentation. The

active segmentation method [60] is employed for this purpose. Active

segmentation relies on an input fixation seed to detect the boundary
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of underlying visual concept. This is an appropriate choice for seg-

mentation as the method does not propose a method to acquire the

input fixation seeds. For the current implementation, ROI centroid is

chosen as a fixation seed for active segmentation and the resultant

segment is then combined with the original eye gaze based ROI us-

ing the pixel-wise OR operation.

We observe that individual users visit similar ROIs, albeit in differ-

ent sequence. This means that the binning method can still infer the

location of ROIs, but cannot reliably estimate the extent of the re-

gions. Since eye-fixations are due to underlying visual concepts, we

use content based analysis to improve estimates of the ROIs. Figure

41 shows the significant increase of more than 2.3 times in f-measure,

using this strategy.

(a) (b)

Figure 41: Panels illustrate precision, recall and fmeasure of the binning method for 1 sub-

ject with (a) eye-gaze information alone, and (b) when eye-gaze ROI information are grown

using active segmentation [60]. A simple fusion of segmentation based cues with eye-gaze

ROIs gives an improvement of over 230% in f-measure as shown underlined with the dotted

red lines above the graphs.
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The neighborhood used to discriminate between intra-object and

inter-object saccades is an important parameter in the binning method.

Larger neighborhoods reveal coarser structures explored by the sub-

ject’s eye-gaze, this is illustrated in Figure 42. Neighborhood values

≤ 25 result in the formation of very small clusters. Few of the small

clusters formed, have sufficient membership to be considered as an

ROI. These small clusters are well within the object boundary result-

ing in high precision (≥ 70%) and low (≤ 30%) recall. The cross over

point for neighbourhood = 80 is due to a combination of factors in-

cluding stimulus viewing distance, natural statistics of the images and

typical eye-movement behavior. Larger neighborhood values result in

large, coarse ROIs which can be bigger than the object and include

noisy outliers. This causes reduction in precision as well as that in

recall.

4.3.2 Evaluation of the binning with a popular baseline method

The mean-shift based clustering method by Santella et. al. [77] is

chosen for comparison with the binnnig method. Though different in

implementation details, the overall objectives of [77] are similar to the

binning method. Namely,(a) to group eye-gaze fixations into mean-

ingful clusters, (b) to be data driven and not depend on initial ran-

dom guesses and (c) consistency and robustness in the results. The

method in [77] groups eye-fixations by assigning labels to each fixa-

tion point and then moving them to the nearest dominant group using

the mean-shift algorithm [24]. More specifically, each fixation point s is
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Figure 42: Small neighborhood values result in the formation of very small clusters and

few of those have sufficient membership to be considered as an ROI. The clusters are well

within the object boundary resulting in high precision > 70% and low < 30% recall. The cross

over point for neighbourhood = 80 is due to a combination of factors including stimulus

viewing distance, natural statistics of the images and typical eye-movement behavior. Larger

neighborhood values result in large, coarse ROIs which can be bigger than the object and

include noisy outliers. This causes reduction in precision as well as that in recall.

moved to a new location p(s) that is a weighted mean of the distances

of s to all its neighbors sj.

p(s) =

∑n
j=1 σ × |s− sj| × sj
∑n

j=1 σ × |s− sj|
(12)

|s− sj| being the euclidean distance between s and sj. The impor-
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tant stages in [77] are presented in Algorithm 4.2,

Algorithm 4.2: MEANSHIFTCLUSTERINGSANTELLA(FixationData S)

comment: Initialise one position for each fixation point in S

comment: This is the 0 th iteration

for each sj ∈ S

do

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

y0j ← sj

k ← 0

while convergence

do

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

comment: Apply meanshift iteratively for k th iteration

for each sj ∈ S

do






ykj ← p(yk−1j)

k ← k + 1

comment: Return result from most recent iteration

S ← {yk1, ..., y
k
j, ..., y

k
N}

return (S)

Salient features of the method in [24] are compared against the
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binning method in Table. 6.

Feature Binning method Santella et. al. [77]

Clustering principle Discovering bi-partite structures Meanshift based

Time complexity O(n2) O(iterations× n2)

Storage requirement O(n) O(n)

Notion of neighborhood near / far saccade threshold mean-shift neighborhood

Iterative One pass, not iterative Iterates till convergence

Table 6: A comparison of the salient features of [24] with those of the binning method

proposed in this thesis.

One important difference beteween the two methods is the way of

moving or assigning an eye gaze point to its appropriate cluster. This

is visualised in Figure 43. The meanshift method (b) effectively re-

places the new point sj with the weighted mean of all points in the

specified neighbourhood. This process repeats iteratively over all

points, till they gather around the mode of each cluster. The process

avoids initial random guesses like in the popular k-means clustering

method. On the other hand, the binning method (b) orders existing

bins according to distances to their centroids from sj and then finds

the bin containing a gaze point very close to sj.

The two algorithms are compared for precision, recall and f-measure

over a diverse variety of images. The number of subjects per image is

set to 21, which is sufficient for both algorithms to give consistent and

robust eye-gaze based ROIs. Increasing the neighborhood parame-

ter in [77] results in identification of coarse structures and larger ROI

sizes. Smaller values of the neighborhood result in smaller ROIs con-

tained within objects and consequently low recall and high precision.
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(a) (b)

Figure 43: The binning method (a) orders existing bins according to distances to their cen-

troids from sj and then finds the bin containing a gaze point very close to sj . On the other

hand, the mean-shift based method in [77] replaces the new point sj with the weighted

mean of all points in the specified neighbourhood.

A point of difference between [77] and the binning method is for larger

neighborhood values, the binning method ROIs do not keep increas-

ing in size unlike the mean-shift based method. This helps keep the

ROI size close to object contour and high precision values are main-

tained. On the contrary, ROI sizes keep increasing and lead to falling

precision in [77]. A comparison of the precision, recall and fmeasure

performance of the two methods is presented in Figure 44.

4.3.3 Extending the binning algorithm to infer Interaction represented in static im-

ages

Since the binning algorithm keeps track of the number of fixation tran-

sitions between each of the image ROIs, it is especially useful for

automatically inferring strong object interactions from images. This

is especially interesting because it is extremely difficult to infer object
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(a) (b)

Figure 44: A comparison of precision, recall and fmeasure variations between (a) the mean-

shift based method in [77] and the binning method presented in this thesis. The behavior of

both methods for smaller neighborhood values is similar. It changes significantly for larger

neighborhood values, where ROI sizes are preserved in the binning method and result in

preservation of precision scores. On the other hand, recall values fall in the binning method

as compared to [77].

interactions such as look, by applying computer-vision based tech-

niques on image or video data.

The binning method relies on identifying fixation transitions be-

tween important concepts in images. Important concepts in images

are attention grabbing and human subjects quickly detect their pres-

ence and possible relationships. This brings about another interesting

and useful property of images having visual elements with strong rela-

tionships. Namely, interacting ROIs are preserved even as the neigh-

borhood is changed in the binning method. This is a consequence

of most saccades being devoted to exploring these key regions and

their relationships. An example can be see by contrasting the loca-

tions of dominant interacting pairs in Figure 46 with Figure 45. There

is significant change in the locations, sizes and number of ROIs dis-
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covered when the neighborhood values are changed all the way from

a very small neighborhood corresponding to 0.5◦ which can lead to

many clusters, to a very large one of 5◦ where all fixation points end

up in the same ROI.

Figure 45: Clusters obtained with varying neighborhoods over image with weak interactions

Figure 46: Clusters obtained with varying neighborhoods over image with strong interactions

The change in ROIs and their interactions is accumulated over

these neighborhoods and gives a measure of how strong the possi-

ble interactions in images are. Images with strongly interacting visual
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elements lead to minimal changes in the ROIs and fixation transitions

between them. An 10 × 10 interaction matrix A is constructed corre-

sponding to fixation transitions between ROIs with large membership

of fixation points, at each value of the neighborhood n. Each of the

10x10 tiles corresponds roughly to the average ROI size that we dis-

cover over the NUSEF [71] dataset. Entries in the interaction matrix

correspond to fixation transitions between the corresponding ROIs as

observed from the eye-tracking data. The interactions follow the defi-

nition given earlier in Eqn. 8. ie; every A(i, j) is nothing but Int(l,m)I

defined as,

Int(l,m)I = P (m/l)I + P (l/m)I (13)

The accumulated change in interaction matrix is measured as,

5
∑

n=0.5

A(n+ step)− A(n) (14)

Where A(n+step)−A(n) is the magnitude of element wise difference

between the interaction matrix values at successive values of neigh-

borhood n and step is the increment in neighborhood for the binning

method.

4.4 Modeling attentional bias for videos

This section shows how eye-gaze can be used as an indicator of HVA

when subjects free-view videos. An illustrative experimental result to

motivate the idea is shown in Figure 47. Simlar to the attentional

bias model for images as described earlier, the model for video is

also based on eye-gaze analysis. Our framework is tailored for online

estimation of human interest using eye-gaze based ROIs. These are
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then used in a closed-loop, interactive application. Some interesting

questions in this context are,

• Can eye-gaze information be used to indicate reliable and useful

ROIs in video content ?

• Are they different from conventional motion based [3] and object-

based [43] saliency in videos ?

• Will an eye-gaze based attentional bias model hold over different

subjects, or successive views over the same video content ?

The first two questions are addressed by Figure 47, it illustrates

how HVA follows key-objects(important actors) and interesting events

closely, these are difficult to infer from content analysis. This can be

a valuable cue for a video summarization or re-targeting system.

Consistency of eye-gaze over different subjects as well as succes-

sive views of the same content is illustrated in Figures 49 and 48

respectively. Three different subjects were shown the same video clip

and eye-movements recorded, the corresponding fixations are visu-

alized in Figure 49, good agreement can be seen over preferentially

fixated regions (larger circles). A representative result from 5 succes-

sive views of a meeting room discussion clip in Figure 48, events of

interest in the video result in longer eye-fixations and can be seen in

the larger coloured circles.

4.4.1 video-binning : Discovering ROIs and propagating to future frames

Our framework maintains the recent past history of viewing to an-

ticipate ROIs for video frames in the near future. We observe that
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Figure 47: (a),(b) and (c) Illustrate shift in HVA shown by the red dot, as the prominent

speaker changes in a video sequence. (d),(e) and (f) show the same in a different video

sequence. An interesting event is depicted in (g),(h),(i), where the HVA shifts from prominent

speaker in (h) to the talking-puppet in (i), which is actually more meaningful and compelling

in the scene.

significant objects and their interaction in the recent past also play a

key role in the immediate future video frames. This is a reasonable

assumption for the duration of a short video scene or event spanning

few seconds or more. In such scenes, main elements are likely to

remain same and the the video frame rate is sufficient to capture their

dynamics. It is important to note here that video editing can bring

about abtrupt changes at shot boundaries, this might include change

in foreground and background content. Our current strategy is to de-

tect such shot boundaries and reset the ROI position to the center

or bottom of the screen. Our evaulation shows this to be a satisfac-
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Figure 48: The graph illustrates spatio-temporal eye-gaze data, it indicates good agreement

of human eye-movements over 3 different subjects while viewing a video clip, clip height and

width form two axes and a third one is formed by the video frame display time. Eye fixations

are aligned according to the onset time and each subject is depicted using distinct colors.

The colored blobs depict the eye-fixation duration on a ROI in the video stimulus.

Figure 49: Good agreement of human eye-movements over successive views of a video clip,

clip height and width form two axes and a third one is formed by the video frame display

time. Eye fixations are aligned according to the onset time and each viewing session is

depicted using distinct colors. The colored blobs depict the eye-fixation duration on a ROI

in the video stimulus.
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tory strategy for video themes such as dramas and operas and sports

commentaries.

In a video scene a few key objects compete for user attention, one

of which is selected and brought to the center of our visual field. Thus

the ROI is one amongst few candidates in the dynamic scene. We

extend the basic binning method [46] to work over a moving window

of time and discover ROIs. More formally,

For a buffer of b gaze points, let the buffer of gaze points at time t

be Gt, forming the framework’s short term memory,

Gt = {gt−b, ..., gt−k, ..., gt} (15)

For our current setup with the ERICA c©eye-tracker, the gaze sampling

rate matches the video frame rate. Hence, we have one gaze point

for every video frame being processed.

Now, due to camera motion as or object motion, the position of

key objects changes between successive video frames. This in turn

means that gaze points gt−b, ..., gt−1 may have drifted away from the

current location of the objects of interest. A content based cue that

can indicate the extent by the visual concepts underlying the buffered

eye-gaze points shift, would be very useful at this juncture. Such a cue

can help in aligning past eye-gaze points in the buffer, back onto the

corresponding visual concept in the current frame. We use bottom-up

motion vector cues from video to propagate eye-gaze points through

gt−b, ..., gt−1 prior to running video-binning. Motion vector information

is ubiquitous in compressed video and readily available at the video
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decoder. Averaged motion vector based shiftsmvt−k are computed for

each gt−k ∈ Gt, over a neighborhood equal to the size of the average

ROI in the current video stream.

The pre-computed motion vector information MV exists in the video

clips,

mvt−k ∈MV (16)

A point to note here is that mvk is a recursively computed value

over motion vector shifts in frames t−k, ..., t−b. As motion vectors are

generated using macroblock similarity and do not have any semantic

connotation large motion vector shifts are unreliable and we drop such

gaze points. The updated eye-gaze buffer Gt is then passed as input

to the binning method. This is also a novel notion of grouping eye gaze

points together, unlike conventional definition of eye fixations, which

are groups of gaze points falling within 1o visual angle over a duration

of 100 milliseconds or more and are termed as an eye fixation. Our

motion vector based update is described in Algorithm 4.4.

Let ROIst be the output ROIs from binning, these are not always

co-incident on the object of interest, which in our case are faces. This

could be due to a combination of factors including calibration errors in

the eye-tracker, personal biases on attending to faces, ambient noise

in eye-gaze signal. We re-align eye-gaze based ROIs by using face

detection and tracking as a top-down cue. Frontal and profile faces

are detected using OpenCV based routines. For the current frame-

work, face tracks are maintained by preserving face positions the the

location of detection for the duration of the time window giving the set
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of face tracks,

ft ∈ Ft (17)

This simple notion of a track holds across the moving, time window

buffer. The detection routines give many false positives, as can be

seen in Figure 66 (d). This is compensated by the specificity of eye

gaze based ROIs, human subjects seldom look away from face re-

gions in social videos, this makes ROIs a very good prior to identify

the current face track. We construct a face saliency map for each

frame as shown in 66 (c) and search for face tracks in the vicinity of

each eye-gaze based ROI. The neighborhood is a dynamic parame-

ter and is taken to be 1/3 rd the average distance between eye-gaze

based ROIs (ROImean) corresponding to past few seconds of video.

This in effect is assuming that key objects such as faces and people

can be up to 1/3rd the inter-object distance. The face saliency based

update is described in Algorithm 4.5.
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Algorithm 4.3: VIDEOBINNING(Gt)

ROIs← [NULL]

comment: Motion vectors based gaze point update

UpdateMotionV ectors(Gt,MV )

comment: Call binning method

ROIs← binning(Gt)

comment: Align ROIs to closest face track

ROIs← UpdateFaceTracks(ROIs, Ft)

return (ROIs)
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Algorithm 4.4: UPDATEMOTIONVECTORS(Gt,MV )

for each gt−k in Gt

do
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totalShift← 0

for i← 1 to k

do
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comment: Retrieve MV information for gt−i

(mvt−i.x,mvt−i.y)← motion vector for gt−i

comment: Add motion vector shift to gt−i

gt−i.x← gt−i.x+mvt−i.x

gt−i.y ← gt−i.y +mvt−i.y

totalShift← (gt−i.x+ gt−i.y)/2

comment: Reject gt−i if large MV based update

if totalShift > ROImean

then

reject(gt−i)

return (Gt)
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Algorithm 4.5: UPDATEFACETRACKS(ROIst, Ft)

for each roi ∈ ROIst

do
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trackDist←∞

roi.face← NULL

for each ft ∈ Ft

do
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comment: Align roi to closest face track

comment: falling in thresh 1/3rd inter-ROI dist.

if (trackDist <|| ft, roi.face ||

& || ft, roi.face ||< neighbourhood)

then trackDist←|| ft, trackDist ||

roi.face← ft

{

return (ROIst)

An important point to note here is that, when video-binning is ap-

plied on Gt, motion vector update would already are applied on gt.

This is the estimation step that anticipates the position of the next

gaze point gt+1 that will come next. Applications such as dynamic

captioning, which use the updated Gt will thus place the content on

the estimated position of eye-gaze for the next frame. The video-

binning method is summarized here in the following pseudocode,
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(a) (b) (c)

(d) (e) (f)

Figure 50: Panels in the top row illustrate important stages in the interactive framework.

(a) A frame from the video stream. (b) Eye-gaze based ROIs discovered using the video

binning method [46]. The red circle shows current location being attended and yellow circles

show past ROIs, the arrows show dominant eye movement trajectories. (c) An example

image region overlayed with motion saliency computed using motion vector information in

the encoded video stream. (d) Face saliency map constructed by detecting and tracking

frontal and side profile faces. Panels in the middle row visualize stages in the dialogue

captioning framework. (e) Regions likely to contain faces are combined with ROI and likely

eye movement paths shown in (f) to compute likely concepts of human interest. Video frame

taken from the movie swades c©UTV Motion Pictures.

4.5 Summary

This chapter describes the statistical analysis and algorithms that can

be used to infer scene semantics. The analysis and computational

model for detection of interesting images is described first, followed

by description of statistical and algorithmic analysis of eye-movement

data. The framework developed in this chapter is put to use in the

applications presented in subsequent chapters.
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5 Applications to Image and Video understanding

This chapter presents a variety of applications that harness a com-

bination of eye-gaze, content analysis and meta-data for image and

video understanding. The applications are highlighted in the overall

schema as shown in Figure 5.

Figure 51: The figure highlights the components described in this chapter. The current

chapter deals with image and video understanding applications using the framework devel-

oped in chapter 4.

The first application is based on insights from pre-attentive image

classification 5.1 and does not employ eye-movements. Subsequent

applications use statistical models built from eye-movements or algo-

rithms to process eye-movement data.

5.1 Automatically predicting pre-attentive image interestingness

The insights gained from behavioural experiments for interestingness

discrimination in Flickr R©images is now put to use to build a model for

interestingness prediction, it is important to note that the pre-attentive
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stage does not involve eye-fixations. The first approach to build a

model of the user’s perception of aesthetics in images has been done

using EXIF information accompanying digital images. This novel ap-

proach has also been tried out in context to scene classification in

[81]. Global image features hence turn out to be important attributes

in basic tasks such as scene categorization and aesthetics discrimi-

nation. This thesis shows results relating to aesthetics discrimination

[45], other groups have shown its role in scene-classification [101],[64].

Frequently occurring EXIF fields in our dataset were extracted (high-

lighted in Figure 52), some of these encode global image information

directly or indirectly. These attributes were used to train two types of

classifier models, the first type models personalized preference, ie; an

individual user’s notion of an aesthetic image. The second type mod-

els community-preference which is the notion of an entire community,

like the community of Flickr users. The former model is termed as a

personal-agent and the latter as a community-agent

Training data for the models consists of positive examples made up

of highly interesting images and negative examples from semantically

relevant, less interesting images. Both types of images are selected

such that they are accompanied with EXIF information. Positive ex-

amples are taken from the top of the interesting list and the negative

examples are taken from images which are low in the interesting list,

but have good relevance scores. This is done to ensure that the neg-

ative examples are still semantically relevant. The training scheme is

visualized in Figure 53.
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Figure 52: Normalized frequency of occurrence of different EXIF attributes in our database.

Important EXIF attributes that encode global image information directly or indirectly are

highlighted(boxed) in red.

Figure 53: Appropriate subsets of the dataset can be chosen as positive and negative

samples to trian individual preferences and community preferences.

The effectiveness of the agents is verified by performing SVM re-

gression in the Weka environment (SVMreg, polynomial kernel, ex-

ponent=1) with 10
1 cross-validation and 1

3 split with over 2100 images

containing EXIF information.The community agent yields an accuracy

of 65% on classification between image with High and Low aesthetics
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scores. This is statistically significant, as a correct decision places

the image in the set of positive examples, which typically represent

a small fraction ≤ 10% of the total images for that semantic theme.

Thus random selection would yield success rates close to just 10%.

Training the community agent with images from different users avoids

the excessive influence from any particular user. The personal agent

is trained from portions of the community training data belonging to

the same user. This ensures that the positive and negative samples

represent the preferences of a single user. Results for three user

agents trained for Flickr members who have significant contribution in

Flickr for the concepts chosen in our database, are shown in Figure 7.

Flickr User Id #Images Accuracy achieved

25056484@N00 130 60%

37985559@N00 123 53%

78779687@N00 157 55%

Table 7: The accuracy achieved by a personalized model trained for individual user’s aes-

thetics preference.

The correlation value and accuracy obtained is limited compared

to earlier work like [14] where authors use extensive content based

features. The motivation of these experiments is to demonstrate that

EXIF based classification adds value to any classification scheme.

Though the accuracy values appear close to chance (50%) for a 2-

class problem, in reality the number of classes is very large as we are

modeling the individual’s notion of aesthetics amongst a thousands of

users in the system.
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The experiments and analysis in this section establish the following

facts,

• Humans can rapidly discriminate whether a briefly shown image

will be interesting over a longer span of viewing. From Flickr R©data,

the visual properties of such images co-incide well with simple

notions of aesthetics.

• Since eye-movements do not set in within pre-attentive time spans,

the interestingness discrimination is done largely without under-

sting detailed image semantics.

• The minimum presentation time for such discrimination is about

50 milliseconds.

Subsequent sections describes applications that exploit either statis-

tical models constructed from eye-movement data, or algorithms that

can analyze eye-movements over images and videos.

5.2 Applications of Attentional bias to image classification

The insights from attentional bias wi is now used for a sequence of

2-class classification problems, namely normal vs expressive face,

portrait vs nude image categories. The interaction measure Int(l,m)I

is used for action vs non-action image classification. For classifying

face and person images, automated detectors are necessary to infer

the respective ROIs. However, for action images, where the interact-

ing entities are spatially separated, concept detectors are redundant.

This is owing to the fact that while concept detectors can only identify

that there is a ‘Man’ and ‘Book’ for Fig.34(a), the presence or absence
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of inter-entity interactions has to be purely determined using gaze in-

formation.

The methodologies for determining ROIs automatically in face and

person images are the same as described earlier. For images in

which a face is detected and eyes have been localized, attention-

bias weights for eyes and nose+mouth are computed using Eq.(3).

Similarly, upper-body and face detectors are used to identify face and

body ROIs for person images.

For classification, we perform leave-one-out cross-validation, i.e.,

all but as training data, while the chosen one is used as test data. The

training data is then used to learn representative wi/Int(l,m)I for the

classes involved (Int(l,m)I is employed for action images only) This

process is repeated until all images are chosen for the test data. Ta-

ble.8 presents the classification results for the face and person im-

ages. An overall accuracy of 69.6% and 60.2% are obtained for the

face and person classes respectively. The classification is done based

on thresholds for wi/Int(l,m)I values obtained in earlier analysis.

Category Instances Correctly Accuracy

Classified

Normal Face 37 28 0.76

Expressive Face 25 15 0.6

Nude 32 18 0.57

Person 36 23 0.63

Table 8: Combining concept detectors and fixations to classify face and person images.

Results obtained for 70 action images are presented in Tab. 9.

Overall, correct classification is achieved for 62.5% of the images.
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Category Instances Correctly Accuracy

Classified

Action 34 21 0.62

No Action 36 23 0.63

Table 9: Using eye-gaze information to classify for Action and No Action social scenes.

5.3 Application to localization of key concepts images

Image understanding remains an unsolved problem, despite the many

advances in computer vision. Description of natural images involves

automated segmentation and recognition of the various scene objects

appearing at multiple scales and orientations, which has inspired La-

belMe [74]. Difficulty in determining image objects (concepts) from

visual content has necessitated image retrieval algorithms [28] to rely

on associated keywords and captions for image search. Noise asso-

ciated with text-based image retrieval led to the development of Su-

pervised Multiclass labeling (SML) [10], which segments and labels

unknown images by applying gained knowledge on the extracted ’bag

of features’. However, the algorithm requires extensive training and

fails to address the semantic gap. An urn model for object recall is

used in [86] to establish the importance of some scene objects, even

in simple scenes. Also, observations made from eye-gaze statistics

in [18] suggest that humans are attentive to interesting objects in se-

mantically rich photographs.

This problems is similar in spirit to [73], where caption text and image

segments are combined to localize the subject of a natural image. On

the other hand, we focus on localizing attention grabbing and emotion

evoking concepts in images. Contrary to the notion that human sub-
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jectivity influences the choice of interesting scene objects, we observe

that consistently fixated upon by a majority of subjects. These con-

cepts may correspond to individual objects or interactions between

two objects (actions). The attentional bias model for world encodes

world ontology as a tree, whose vertex weights denote concept impor-

tance. This helps localize the most important and affective concepts

corresponding to the caption of an unlabeled image.

5.3.1 Steps followed

The proposed method for localizing and labeling affective objects/actions

in unlabeled images consists of the following steps:

• Determining affective image concepts from caption analysis and

affect model- We assume noise-free and concise captions for

unlabeled images, which list the key image objects and actions

(Fig.55). The list of noun /verb /adjective image concepts are au-

tomatically determined from the caption using the Lingua::Tagger

package, and mapped to the closest affect model concepts using

Wordnet [21]. The caption concepts corresponding to the high-

est wi values and their hierarchy are determined using the affect

model.

• Concept localization through recursive fixation clustering- Fixa-

tions on the unlabeled image are used to localize ROIs corre-

sponding to the affective caption concepts. In general, n affective

concepts correspond to n distinct fixation clusters, which are de-

termined via hierarchical clustering. Color-based JSEG segmen-

tation [16] enables refinement of fixation clusters, which are noisy.
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(a) (b)

Figure 54: Color-homogeneous cluster (red) obtained from original fixation cluster (green)

on (a) cat face and (b) reptile. Fixation points are shown in yellow.

A more accurate localization of the ROIs is possible by retaining

only those cluster points that correspond to homogeneous color

segments (Fig.54). For some concepts like face, ROI localization

for sub-concepts in the hierarchy is achieved through recursive

fixation clustering, where the largest cluster within the original

cluster corresponds to the most affective sub-concept.

• ROI-based post-processing for action localization- Upon localiza-

tion of ROIs corresponding to affective objects, actions can be in-

ferred from extensive fixation transitions between interacting ob-

jects, as described in Section 2.2.

5.3.2 Results

Localization of italicized objects and actions from textual image cap-

tions is demonstrated in Fig.55. Blue rectangles in (Fig.55(a),(b))

correspond to face sub-concepts localized through recursive fixation

clustering. For action images (Figs.55(g),(h)), the action direction

(dotted red arrow) and object labels therefrom, are inferred from the

assumption that maximum fixation transitions occur from the least af-

fective to the most affective object. For the ROIs localized in Fig.55(h),
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 55: Affective object/action localization results for images with captions (a) A

dog’s face .aoi′s : eyes, nose + mouth, face (b) Her surprised face said it all! aoi′s :

eyes, nose + mouth, face(c) Two girls posing for a photo. aoi′s : face1, face2)(d) Birds

in the park. aoi′s : bird (e) Lizard on a plate. aoi′s : reptile (f) Blood-stained war vic-

tim rescued by soldiers. aoi’s:blood (g) Two ladies looking and laughing at an old man.

aoi′s : face1, face2, face3 (h) Man reading a book. aoi′s : human, book (i) Man with a

damaged eye. aoi′s : damage (h) Fixation patterns and face localization when the damaged

eye is restored. aoi′s : face

CP2,1I = 0.351 and CP1,2I = 0.071, which enables assignment of

labels to AOI1, AOI2 as man and book respectively. The look direc-

tion in Fig.55(g) is inferred similarly (CPp,qI = 0.361). While labels

assigned in multiple object and action images may not always be cor-

rect, the accuracy of gaze-based labeling can improve tremendously

when used along with object recognition algorithms. For a representa-

tive set of 50 unlabeled images, correct labeling of affective concepts

from image caption text is achieved with 80% accuracy using the at-

tentional bias model. Localization to a wrong ROI is considered as a

failure, the method works best for face images.
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5.4 Applications of interaction discovery to image classification

Use of the binning method to identify important visual elements and

possible relationships between them has been described earlier in

Section 4.3.3. The binning method 4.3 can be used to compute scores

that indicate the presence of strong visual elements. The accumula-

tion of scores is described earlier in Eqn. 14 in the previous chapter 4.

100 images were chosen at random covering the themes action, aes-

thetic, affective and neutral. The images were chosen from NUSEF

[71].

Lower values are observed on average for images having strong vi-

sual elements and interactions. Fig. 56 shows good separation of

images with strong visual elements and interactions from the themes

action, aesthetic, affect plotted in red, green and blue respectively, in

contrast to the high values observed for images with weakly interact-

ing elements as shown in the magenta plot. Separating out different

themes like affect and action from the former type is part of future

work.

5.5 Application of ROIs discovered using the binning method, Image seg-

mentation

ROIs discovered using the binning method can be used to segment

out foreground objects of human interest. An algorithm for automat-

ically segmenting the image region containing a fixation point is de-

scribed in [60]. Employing the fixation point as a representative seed

for the foreground object, the set of boundary edges around the fix-

ated region are computed through energy minimization in polar space
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Figure 56: Discrimination obtained by the cluster profiling method, the vertical axis plots

accumulated scores for different images measured using equation 14. Distinct images have

grouped under each of the 4 themes, the plot represents values over more than 100 im-

ages. The method separates out images with strong visual elements and interactions af-

fective-red,aesthetic-green and action-blue from those which have low interaction or weak

visual elements (magenta ). action and affect images are grouped together by the measure

described earlier in 14, this needs to be investigated further.

to produce promising results. While the authors claim that the fixa-

tion can be any random point in the object’s interior, no methodology

is provided to automatically select fixation points. On the contrary, a

manually annotated point is taken as the fixation seed. Using acquired

fixation patterns, we (i) propose a mechanism to automatically se-

lect the fixation seed and (ii) show how viewer’s exploratory behavior

can be exploited to generate multiple fixation seeds for segmentation,

thereby contributing to a tremendous improvement in segmentation

performance.
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(a) To determine whether the segmentation performance of [60] is

indeed stable and accurate irrespective of the fixation location,

we obtained the output segments for 20 randomly selected fix-

ation seeds from within the hand-drawn segmentation maps for

80 NUSEF images. The baseline segmentation performance is

determined as the mean value of the fmeasure for the 20 seg-

ments obtained from the random seeds. The fmeasure, which is

used as a measure of the segmentation performance accuracy,

is defined similar to Equation 9.

(b) Considering the set of all fixation points for a given image, a char-

acteristic fixation seed is generated as the centroid of the largest

fixation cluster. This allows for the fixation seed to be computed

automatically from real fixation data, and since the NUSEF con-

tains statistically rich fixation data, the segmentation output for

this characteristic seed, should be more stable than that obtained

with a random fixation. Also, as seen from Figs.57 and 58, the

centroid of the largest fixation cluster generally lies within the

salient object, and therefore, the segmentation output with the

centripetal fixation seed should be comparable to that obtained

in (a). As seen from Fig.57 (rows 2 and 3), using the centroid

seed can sometimes produce a more desirable segmentation.

The largest fixation cluster is computed as follows. In order to

account for the fixation duration at every fixated location, each

fixation is weighted by the minimum fixation duration in order to

generate a corresponding number of ‘normalized fixation points’

within a Gaussian kernel around the fixation location (this is the

138



inverse of how a fixation is computed). Agglomerative hierarchi-

cal clustering is then employed to remove outliers and retain 90%

of the original points based on Euclidean distance from the clus-

ter center.

(c) As fewer fixations are observed as we travel radially away from

the centroid, the fixation distribution around the centroid can be

used as a reliable estimate of the foreground expanse. We re-

computed the output segmentation by incorporating this informa-

tion in the energy minimization process. In particular, we re-

initialize the labeling cost U(.), so that all edge pixels at a dis-

tance greater than rt from the centroid are deemed to be outside

the foreground, i.e., Up(lp = 0) = D and Up(lp = 1) = 0 ∀p

such that, rp ≥ rt. Setting rt = 2rmean, where rmean is the mean

cluster radius from the centroid, works well for most images in

practice. Incorporating fixation distribution information in the en-

ergy minimization process leads to a ‘tighter’ and more accurate

foreground segmentation for difficult cases where the foreground-

background similarity is high (Fig.57, fourth row).

(d) Penalizing the spread of the ’inside’ region beyond rt can at times,

force the graph-cut algorithm to limit the foreground boundary at

textural edges. In such cases, integrating the segmentation maps

obtained from sub-clusters within the main cluster can lead to the

optimal segmentation (Fig.58). From the main fixation cluster,

we again employ agglomerative clustering to discover all sub-

clusters that have a minimum membership (at least 5% of the

total fixations) and whose centroids are separated by a minimum
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distance (100 pixels). The segmentation map for each cluster is

computed as in (c), and we compute the final segmentation map

as the union of segments that have at least 10% overlap.

Figure 57: Enhanced segmentation with multiple fixations. The first row shows the nor-

malized fixation points (yellow). The red ’X’ denotes centroid of the fixation cluster around

the salient object, while the circle represents the mean radius of the cluster. Second row

shows segmentation achieved with a random fixation seed inside the object of interest[60].

Third row contains segments obtained upon moving the segmentation seed to the fixation

cluster centroid. Incorporating the fixation distribution around the centroid in the energy

minimization process can lead to a ‘tighter’ segmentation of the foreground, as seen in the

last row.
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(a)

(b)

Figure 58: More fixation seeds are better than one- Segments from multiple fixation clusters

can be combined to achieve more precise segmentation as seen for the (a) portrait and (b)

face images. The final segmentation map (yellow) is computed as the union of intersecting

segments. Corresponding fixation patterns can be seen in Fig.15.

The pseudo-code summarizing the steps involved in (a), (b), (c) and

(d) is provided in the pseudocode described in panel 59.

Performance evaluation to evaluate the effect of (a), (b), (c) and (d)

was done on 80 NUSEF images, each comprising only one salient

object. The data essentially corresponded to the following semantic

categories- Face, portrait, world and nude, and included a number of

challenging cases, where the foreground and background are visually

similar.

As mentioned previously, the fmeasure is used for evaluating seg-

mentation accuracy. For the baseline method, the mean fmeasure

for the segmentation outputs produced from 20 random seeds was

computed, while in all of (b), (c) and (d), a single segmentation out-

put is produced for which the fmeasure is computed. The fmeasure
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Figure 59: The pseudocode describes details of steps (a) to (d).

scores for segmentation procedures (a), (b), (c) and (d) are tabulated

in Table 10.

Table 10: Performance evaluation for segmentation outputs from (a), (b), (c) and (d).

Procedure fmeasure (mean ± variance)

(a) 0.6 ± 0.05

(b) 0.59 ± 0.06

(c) 0.60 ± 0.04

(d) 0.66± 0.04
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The fmeasure scores for (a), (b) and (c) are found to be almost

similar. While the fixation seeds for (a) were randomly picked from

the hand-segmented ground truth, the seeds for (b) and (c) were au-

tomatically obtained from the fixation data. The fact that the segmen-

tation performance obtained from all three procedures are compara-

ble implies that our methodology for determining the fixation seed is

valid. While incorporating the fixation distribution information in the

segmentation method can isolate the foreground more accurately for

difficult cases (shown in Fig.57), it also causes the graph-cut algo-

rithm to draw the boundaries along the edges closest to the fixation,

sometimes leading to inefficient segmentation. Nevertheless, this de-

ficiency can be overcome by considering overlapping segments ob-

tained from multiple fixation clusters whose centers are sufficiently far

away from one another, as in (d).

Fig.60 presents the fmeasure plots for segmentation procedures

(a) and (d). Clearly, the segmentation performance obtained using

multiple fixation seeds is better than that obtained from a random

fixation point for most images. This is because segments are con-

servatively computed in the multi-fixation seed case using the cluster

spread as a cue, and then integrated to produce the final segmen-

tation map. However, in some cases where spurious segments are

picked up, the segmentation performance using multi-fixation seeds

also falls. Overall, a significant 10% improvement in segmentation

performance is obtained on using multiple seeds obtained from ac-

tual fixation data for segmentation as against a random fixation seed.
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Figure 60: F measure plot for 80 images showing the improvement brought about by using

multiple fixation seeds for segmentation (d) in comparison to the baseline (a) using equal

number of random locations within the object as segmentation seeds. The legend is as fol-

lows - red baseline and green - Integration of segments obtained from multiple sub-clusters.

5.6 Application of ROIs discovered using the binning method, guiding object

detectors

Object detection in natural images remains an open challenge in com-

puter vision, despite some success in detecting faces, people and

other important generic concepts in recent PASCAL VOC challenges

[23]. Performance of state-of-art detectors is far behind the practical

needs of image-understanding systems that attempt to index, tag or

summarize natural images. We present a novel way to demonstrate

the effectiveness of human eye-gaze and using it to guide a state-of-

art object detector. The general schema of a sliding window based

detector and guidance using eye-gaze information is shown in Fig. 61

Sliding window based object detectors are essentially image classi-
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Figure 61: The schema for guiding sliding window based object detectors using visual at-

tention information. Image pyramid (a) is obtained by successively resizing the input image

I over L levels. Features corresponding to areas covered by sliding, rectangular windows

at each level li are combined with a template based filter (b) to generate scores indicating

presence of the object. These are combined over all levels that indicate the presence of

the object. Eye-gaze information is used to extract Regions of attention (ROIs) (d), which

then restrict the image region for object search. The number of scales (c) are restricted to

a small fraction of possible levels, using scale information from ROIs (e) is the output from

our method and (f) from a state-of-art detector [23].

fiers. The classifier is used to exhaustively inspect rectangular regions

over successively scaled down versions of the input image. Classifica-

tion performed over each window generates detection scores, these

scores are then combined across multiple scales to give image re-

gions with maximum likelihood for presence of the object. Lacking

prior knowledge of the location or size of key objects in the image,

object detectors search exhaustively through an exponentially large

search space of windows. For example, a 1024 × 768 image con-

sumes 15-20 seconds to be searched in totality by the [23] detector

on a standard PC (Pentium Core 2 Duo, 2 Ghz, 2 Giga bytes RAM).
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Similar time durations are taken by other detectors such as [94]. We

demonstrate the effectiveness of visual attention information captured

by eye-gaze, to guide a state-of-art detector [23]. We also show an

improvement in precision and recall within an interactive time-span of

a few seconds.

5.6.1 Using eye-gaze based ROIs

ROIs generated from eye-gaze data are passed as input to the object

detector.The first level of reduction of the search space is achieved by

limiting the search within ROIs obtained from eye-gaze information.

The detector is then limited to operate on a fraction of the scales in

the image pyramid that is illustrated in Fig. 61. The scales chosen are

the ones where the sliding window size is close to the size of ROIs.

This, in turn, is close to the size of the object itself.

More formally, trained model is a filter F of size w × h. Let H be the

feature pyramid extracted from the successively resized images as

illustrated in Fig. 61 and pos(x,y,l) be a position (x,y) in the l th level

of the pyramid. The score of F at pos(x,y,l) then is

F *ψ(H, pos, w, h), (18)

where,

ψ(H, pos(x, y, l), w, h) (19)

is the vector obtained by concatenating feature vectors in the w × h

sub-window at level l. The final likelihood is then obtained by com-

bining scores so obtained across different levels. The exact score
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generation and combination strategy varies across specific detector

implementations and is not governed by our method. Feature extrac-

tion, pyramid construction and likelihood generation follows the imple-

mentation in [23].

In the following sections, we describe our approach to solve some

challenging problems encountered while using eye-gaze information

to guide object detectors. We begin by describing our approach for

good ROI size estimation, this is followed by the case where ROIs

capture key object parts and object size needs to be inferred by a

sum-of-parts approach. Finally we address the cases in which state-

of-art detection can give positive detection for multiple categories over

the same ROI.

5.6.2 ROI size estimation to reduce false positives and low relevance detections

A template based object detector operating at multiple scales is prone

to lot of false positives. Some examples can be seen in Fig. 65

(e) and (f) where many false detections of size different from that of

the object are returned by [23]. Such false positives can arise due

to non-object image regions responding to template based matching

as classification progresses through different levels of the image pyra-

mid. It then becomes important to make a correct choice of levels in

the pyramid.

For every ROI that is passed to the object detector, we enforce scale

selection by choosing levels l such that l ⊆ L and area of resized ROI

is close to the sliding window area at these levels,

area(l)

w × h
≈ 1 (20)
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The effectiveness of this approach is demonstrated in Fig. 65 (a) & (b)

where most detections are very close to actual size of object of inter-

est. An example of the significant improvement that is made possible

by the right combination of ROI size and scale selection is illustrated

in Fig. 65 (b) where both objects of interest are correctly identified by

our method. This is in contrast to Fig. 65 (f) where the detector from

[23] fails to detect the objects, but also throws up many false posi-

tives. Selecting a few levels in the image pyramid starting from a ROI

is akin to creating a partial pyramid with finer grained resizing scales.

This enables detection of objects at sizes that would be missed out in

the larger image pyramid. A badly estimated ROI however inevitably

leads to negative results as shown in Fig. 65 (d).

We address the problem posed by less relevant instances of ob-

jects that are not central to the meaning of the image. For example

in Fig. 65 (a) & (e), one can expect that the woman is the key object

in the image and people in the background do not contribute equally

for image-understanding. Another example is Fig. 64 (a) where man

& woman appear to be key objects. This is confirmed from eye-gaze

clusters across many subjects as shown in Fig. 64 (c). This is fur-

ther reinforced by manual ground truth annotation boxes for person

by human annotators asked to identify interesting and key objects. By

localizing object search to eye-gaze based ROIs, we are able to im-

prove the quality of detection as illustrated in Fig. 64 (g) against that

by [23] in Fig. 64 (h).
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5.6.3 Multiple ROIs as parts of an object

The relatively uncontrolled nature of our dataset presents objects and

their parts at different scales. Though good estimation of ROI sizes

as described in the previous section helps restrict detector search

space and reduce false positives in detection results, it doesn’t ad-

dress the problem of object-scale estimation. For this purpose, we

assume each ROI to either be one key part of an object or the entire

object itself. Thus each object Oj can be represented by a combina-

tion one or more ROIk detected from eye-gaze data. We generate a

set of candidate meta-ROIs from combinations of one or more ROIs.

The object detector is then run over each of these meta-ROIs, suc-

cessful detections with high scores on these meta-ROIs help infer the

presence and correct scale of an object. Good results were obtained

using this strategy for objects with large sizes, such as person where

different parts were identified as an ROI and the detector is able to

identify the whole as opposed to the parts.

5.6.4 Experimental results and Discussion

We demonstrate the applicability of our method using the generic ob-

ject detector in [23], which has been the top performing system in the

recent PASCAL VOC 2009 challenge [23]. A diverse set of images

capturing a variety of object at different scales, have been chosen

from IAPS, Flickr, Photo.net and Google search results. These rep-

resent affective, consumer, amateur photography and web images.

Eye-gaze data has been obtained from human free-viewing experi-

ments over 2000 such images over a variety of themes. A subset of
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200 images is chosen for evaluation from person, dog, cat and bird

concepts.

Fig.62 illustrates the computation times taken by our method (red)

as compared to the baseline (green) to detect the concept person in

close to 150 natural images. The images are social scenes with vary-

ing number people in many poses, at different depths-of-field. We ob-

tain a significant improvement of 80% over the baseline as illustrated

in Fig. 62.
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Figure 62: Illustration of the significant reduction in computation time achieved by constrain-

ing the state-of-art object classifier in [23] using eye-gaze information.

We combine precision and recall against the baseline using an

fmeasure score computed over detection boxes (bbox) with respect

to human annotated ground-truth (gtruth) boxes using definitions in

Equations 10,11 and 9 respectively.

The evaluation over 150 images from the concept person yields a

18% improvement in fmeasure as illustrated in Fig. 63.
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Figure 63: Illustration of the improvement in fmeasure of over 18 % achieved by constrain-

ing the object classifier in [23] using eye-gaze information. fmeasures are recorded from

our method VA and that of [23] attempting to find the concept person over 150 images. The

images were chosen to capture diversity in number of instances, size, activity and overall

scene complexity.

Our method is independent of the application that the ROI boxes

are put to and in this case the specific object-detector employed within

the ROI boxes. We demonstrate this by running the method over

the classes person, dog/cat, bird and use the ROI boxes generated

from eye-gaze data as detections by a hypothetical detector. The

fmeasure is evaluated and yields interesting and satisfactory scores

as illustrated in Table.11.

5.7 Applying video binning to Interactive and online dynamic dialogue lo-

calisation onto video frames

Dialogues are obtained from the public domain Opensubtitles.org, the

dialogues are in English and are time-stamped. After ROI discov-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 64: The panel illustrates outputs at every stage of our attention driven method. (a)

Original image of a crowded street-scene. (b) Manual ground truth annotation boxes for key

objects. (c) Clusters identified from eye-gaze information, centroids marked by red circles.

(d) ROIs generated based on cluster information. (e) Detected instances of person class

within ROIs, using detector from [23] marked by yellow boxes. (f) Finally result detections

after filtering for ROI size, marked by red boxes. (g) Results for the same image from the

baseline detector.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 65: (a),(b) Cases where visual attention greatly enhances performance of the de-

tection system, (e),(f) are the corresponding results for (a),(b) from the multi-scale, sliding

window method in [23]. (c) A case where attention directs ROIs away from non-central,

but seemingly important persons. This problem is not faced by the baseline as seen in (g).

(d) Generated ROIs are not good enough to permit detection, the baseline outperforms our

method in this case as seen in (h).
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Category Fmeasure-VA Fmeasure-VOC

Person 0.3 0.34

Bird 0.41 NA

Cat or Dog 0.43 NA

Table 11: Evaluation of the visual attention guided ROIs against human annotated ground

truth. The object detector is not run in ROIs and instead the entire ROI is considered to

be a detection, this experiment illustrates the meaningfulness of the ROIs generated by our

method against human annotated ground truth boxes for different concepts in our database.

This is especially significant in cases like bird and cat/dog, where the baseline detector fails

completely.

ery and propagation using video-binning as described in Algorithm

4.3, the next step is to identify suitable locations to render dialogue

text. Eye-gaze is a noisy signal, so are the bottom-up motion vec-

tors and top-down face tracks, this in turn brings instability to ROIs

positions detected over successive frames. Resultant jittery dialogue

placement can be extremely annoying. Hence, the dynamic caption-

ing system maintains a history of past positions where a particular

dialogue is rendered and averages these values to generate stable

dialogue positions.

Dialogue position initialization is very important in dynamic caption-

ing, as wrongly positioned dialogues not only confuse the viewer, but

also distract badly as they drift into the correct position eventually

by virtue of the dialogue position buffering just described. We ex-

ploit inter object relationships or interactions that are exposed during

video-binning, an example has been visualized in 66 (f). We choose

dialogue positions near ROIs, in a manner that the dialogue will not

intersect eye-movement trajectories seen in the recent past. This is
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done because meaningful stimuli such as text will interfere in normal

exploratory eye movements occurring between ROIs. This is quite dif-

ferent from the approach in [31], where low level saliency is used to

position text to the left, right or top of a detected face. We are in the

process of evaluating the impact of this strategy. After computation

of optimal display location, dialogue content is overlayed on the video

frame as a dialogue blurb. The video frame is then displayed to the

subject and eye-gaze data tracked. The system is implemented in the

Visual C++ R©environment using the ERICA R©development toolkit.

5.7.1 Data collection

Video data has been chosen from Youtube R© to represent a variety

of themes based on three parameters, extenuate of activity involved,

spoken language in the video and whether the video has been shot

indoors or outdoors. The original video clips are of 5 minutes duration.

The clips were normalized and re-encoded to have either a 640 pixel

height or 480 pixel width, without altering the aspect ratio. Video clips

were of sufficient quality for subjects to identify details such as lip

movements. All clips are social scenes.

5.7.2 Experiment design

The experiment was designed in two stages. In the first stage, the

subjects watch one of 3 variants of a video clip,

• Original video clip with audio track original.

• Video with static caption at the bottom of the video frame s-

caption.
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Video clip Theme Location Language Activity level

mmtat Animated clip Outdoor English medium to high

jbdy Comedy scene Indoor Hindi high

dotrc Social scenes Indoor and Outdoor Mandarin low to high

village Social scenes Outdoor Hindi medium to high

hockey Sports, Hockey Outdoor Hindi medium to high

goal Sports, Soccer Outdoor English medium to high

Table 12: Description of the video clips chosen for evaluation of the online framework and

applications. The clips were obtained from the public domain and normalized to a 5 minute

duration. The clips were chosen from amongst social scenes, to have variety in the theme,

indoor and outdoor locations, spoken language and extent of activity in the video clip.

• Video with interactively rendered dynamic captions using online

eye-gaze information d-caption.

Subjects are shown 9 to 10 clips of 5 minute duration over an hour

long session, a short break is given between successive clips. The

clips are ordered in random fashion to avoid systematic biases. Af-

ter watching each clip, the users are asked to rate each clip on their

overall understanding of the clip and in case of captioned clips, the

utility of text captions in their understanding of the clip in case of a

captioned clip. At the end of this phase of the experiment, the users

also give their preference of the captioning strategy. Subjects also

give their feedback on the overall interestingness of the clips and any

drawbacks or advantages seen in the captioning methods. Video clips

are shown randomly in one of the following modes described in Table.

13
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Mode Number of views Manipulation Motivation

original 60 Both audio & video, no caption comparison baseline

s-caption, blurb 25 s-caption, blurb comparison baseline

d-caption, blurb 29 d-caption, blurb evaluation

s-caption, no blurb 41 s-caption, text only comparison baseline

d-caption, no blurb 40 d-aption, text only evaluation

Table 13: Different modes in which video clips were shown to subjects during evaluation of

the online, interactive captioning framework. The first 8 participants were shown captions

with opaque or semi-transparent blurbs, subsequent participants saw text-only dialogue

captions.

5.7.3 Evaluation of user attention in captioning

For objective evaluation, we measure two parameters to assess changes

in the subjects behavior while watching the baseline closed captioned

video and that in the eye-gaze driven dynamic captioning. The first

measures overlap between eye-gaze ROIs in the two modes, the sec-

ond measures proportion of eye-fixations allotted to ROIs and caption

content respectively. In the case where the subject knows the lan-

guage being spoken in the video clips, the second parameter can be

treated as a measure of distraction due to the caption.

Subjects are asked the following subjective questions are to as-

sess their comprehension of the video clip and effectiveness of the

captioning strategies,

• Is eye-gaze driven placement easier and more natural to follow

and understand ? (5 more natural, 1 not as good as original)

• Were captions presented at appropriate locations in video (5 help-

ful, 1 annoying)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 66: Panels in the top row illustrate important stages in the interactive framework. (a)

A frame from the video stream. (b) Eye-gaze based ROIs discovered using the video bin-

ning method [46]. The red circle shows current location being attended and yellow circles

show past ROIs, the arrows show dominant eye movement trajectories. (c) An example

image region overlayed with motion saliency computed using motion vector information in

the encoded video stream. (d) Face saliency map constructed by detecting and tracking

frontal and side profile faces. Panels in the middle row visualize stages in the dialogue

captioning framework. (e) Regions likely to contain faces are combined with ROI and likely

eye movement paths shown in (f) to compute likely locations to place the dialogue currently

in progress. (g) Video sequences are dynamic and object motion as well as camera mo-

tion cause change in position of the dominant objects over successive video frames, this

combined with noisy eye-gaze ROIs in turn gives rise noticeable and annoying jitter. (h) A

history of dialogue placement locations is maintained and smoothed over to obtain smooth

movements of overlayed dialogue boxes across the screen. Video frame taken from the

movie swades c©UTV Motion Pictures.

5.7.4 Results and discussion

We explore some important results and insights in this section. The

online framework is taken up first, followed by the captioning applica-

tion. We then describe the results from evaluation of video summaries
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and story boards.

5.7.5 The online framework

The online framework has low computational cost, making it possible

to performs dynamic captioning on-the-fly at 25 frames per second,

as the user watches the video. We are currently detecting frontal

and side profile faces beforehand using OpenCV R©, this makes the

overhead for face track maintenance and Algorithm 4.4.1 to within

10 milliseconds per frame. Overheads on dialogue placement and

rendering are negligible, we plan to incorporate online face detection

using ROIs discovered from video-binning as priors for location. The

entire framework and dialogue captioning was implemented in C++

for efficiency and Windows R©GDI api’s were used for rendering. The

moving window buffer of gaze points and dialogue position buffers

are stored internally as run time data structures for speed. We eval-

uated dialogues with and without blurbs (surrounding boxes). Both

static (s-caption) and dynamic (d-caption) captions were rendered

with opaque, semi-transparent (black text on white blurb) and text-only

(gray text) modes and sans serif fonts were used for easy readability.

5.7.6 Lessons from dynamic captioning

Blurbs in captioning interfere with the subjects understanding of the

visual scene. This was reported in [31], but severity is was more

for subjects capable of hearing and having conventional exposure to

video content.We collected subject feedback about the overall exper-

iment from users and found a majority objected to the presence of a
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blurb box.

More importantly, we find that dynamic captioning can introduce a

considerable cognitive overload of tracking two important targets, one

visual in nature and another having text content. Contrary to the idea

that a dialogue rendered near the speaker would aid in comprehen-

sion [31], we find that a better strategy for dynamic captioning is to

initialize the caption at a good location and keep it there, instead of

letting it float across the screen with the speaker. Though counter-

intuitive, this can also be seen on comparing comprehension scores

of 3.2 for dynamic caption with only initialization, as compared to 1.1

for dynamic caption with movement of blurb in the Table. 14. An

additional set of clips were generated by asking subjects to indicate

ideal dialogue placement using a mouse as proxy for eye-gaze. This

input was then used to initialize the position of dialogues for subse-

quent viewing by other subjects. Five participants were chosen for

this task and were part of the overall subject pool. Clip comprehen-

sion and overall subjective feedback improved as the dialogues were

constrained to the location of initialization and furthermore as the ini-

tialization locations were previously input manually.

We also explored the notion of manually initialized dynamic caption

positions by getting subjects to indicate caption placement locations

using the mouse as proxy for eye-gaze. It turns out that replaying

these positions for other subjects gives an improved score of 3.8 for

dynamic captioning that are closer to 4.4 for static captioning as seen

in Table14. This is a significant improvement from a score of 1.1 for

dynamic captioning with dialogue movement. Hence, the main chal-
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lenge in dynamic captioning might not really be to follow key speak-

ers, but reduce interference with the user’s cognitive process. This

might be a potentially important aspect to consider for any application

aiming to introduce dynamic visual content into videos, such as ad-

vertisement logo insertion [105], etc. The overall comprehension was

reported to be best for static captions, but on doing further analysis

we discovered the possible influence of long-term habituation to static

captions. This is explored next.

Mode Number of clips Avg. Clip comprehension

d-caption, initialize and track, no-blurb 21 1.1 out of 5

d-caption, initialize only, no-blurb 19 3.2 out of 5

d-caption, manual placement, no-blurb 10 3.8 out of 5

s-caption, no-blurb 41 4.4 out of 5

Table 14: Changes in clip comprehension when text caption placement in constrained in

different ways. A clip is counted only once for the mode in which it is shown for the first

time in a subject’s viewing list. Floating dialogue captions were found to be very annoying

and subjects also report that it hindered their comprehension. This is also visible in the

comprehension value for the first row. The clip comprehension and overall subject feed-

back improved as the dialogue captions were restrained to the initialization locations. An

additional manual placement mode was generated by using the mouse as a proxy for eye-

movements and this improved the user feedback and comprehension slightly.

5.7.7 Effect of captioning on eye movements

On analyzing eye gaze patterns for s-caption and d-caption modes,

we obtained interesting insights as to why subjects experience high

cognitive load and interference in dynamic captioning. This analysis

was done on no-blurb captioning to avoid additional influence of the
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blurb itself on eye movements. Our initial impression was that the dy-

namic caption movement across screens might cause visual artifacts

such as flicker. On the surface, eye movements in dynamic caption-

ing appear to be more natural and closer to that, while viewing the

original video clip. On the other hand, s-caption causes frequent eye

movements to the bottom of the video frame where static captions

are rendered. We discover that floating dynamic attract user attention

very significantly, possibly due to the importance of the text content.

Text based visual saliency has also been pointed out earlier in [11].

We compute the fraction of eye movements attracted by dialogue text

in contrast to eye movements between ROIs. In effect we measure

the proportion eye-movements allotted to tracking and understanding

dialogue content. On analyzing 75 random clips, 25 from s-caption,

25 from d-caption, initialize and track and 25 from d-caption, initial-

ize only modes respectively. The results show that 39.7 % of gaze

points are drawn to the dialogue box in d-caption, initialize and track

as compared to only 12 % for static caption as seen in Table. 15.

In our implementation, we also avoided the influence of such eye-

movements by rejecting those classified as ROI to dialogue or vice

versa and relying only on inter ROI eye movements for clustering.

5.7.8 Influence of habituation on subject experience

Another big challenge for captioning is the long term habituation to

static captions and this is difficult to overcome even using the man-

ual placement. Interestingly, we find two distinct behaviors amongst

our user group as illustrated in Figure 67. The first group (Group A,
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Mode Mean fraction value Std deviation

d-caption, initialize and track, no-blurb 0.397 0.124

d-caption, manual placement, no-blurb 0.31 0.16

s-caption, no-blurb 0.12 0.04

Table 15: Dynamic caption strategies draw significant amounts of user attention as can be

seen from the fraction of eye movements spent on exploring dialogue boxes. This can be

seen in the high fraction of gaze points taken up by dialogue boxes in column 2.

14 subjects) always prefers the static captioning. The second group

(Group B, 5 subjects) on the other hand changes its preference as

the dynamic captioning is changed from online initialization of dia-

logue positions (d-caption manual), to those indicated previously by

other users using a mouse d-caption manual . in our subjects and the

preferences of these two groups is illustrated in the chart shown in the

following Figure 67.

Figure 67: Group A part of the subject pool, changes its decision as the dialogues are

restricted to the locations where they are initialized. On the other hand, subjects in the

larger pool, Group B, do not their change their preference and consistently report better

comprehension and viewing comfort with static captions. One reason for such response

could be the familiarity and habituation to static captions through long exposure to current

captioning.
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6 Discussion and Future work

Important insights and results and possible directions of future work

arising from this thesis, are discussed in this section.

6.1 Discussion of important results

Rapid and global image perception is shown to be possible for inter-

estingness discrimination in an image [45]. This is an intriguing result

because it means humans can very quickly infer whether an image

would be interesting for viewing. It is also useful for systems that are

prone to have a high recall for a semantic query, but low precision

or agreement with the user’s notion of interestingness. The role of

intensity and color information at local and global scales has been

quantified. Our experimental results also bound the minimum display

rate of about 2-5 Hz Figure 22 at which such discrimination can be

done by humans [45]. Modeling these properties as image features

can be evaluate or even modify the interestingness or aesthetic qual-

ity of an image. Some effort towards this has been done in [104],

but this work expects users to manually input ROIs and their relative

priority in image. This is a promising area of work and richer image

analysis combined with aesthetics model can give useful applications

to photography and image content based retrieval.

The close relationship between eye-movements and abstract seman-

tics in visual content has been shown in this thesis via the attentional

bias model [70], also visualized in Fig. 32. Top down influence of af-

fective content has also been quantified and represented in the atten-
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tional bias model. This can allow non-intrusive, interactive generation

meaningful tags for visual content [70]. Eye-fixations have also been

shown to be consistent across subjects and can be seen in the appli-

cations presented in [70] and [71], this data has also been distributed

along with visualization routines in [71]. The consistency of atten-

tional bias across important image themes has been demonstrated

via a sequence of classification results on important categories such

as faces, people and actions as shown in Tables 8,9 respectively, in

Chapter 5.

For useful applications like dialogue localisation, it is important to find

ROIs in visual content in a robust and time-efficient manner. A binning

algorithm has been presented for this in Chapter 4. Our method iden-

tifies important visual components along with its location and rough

estimate of size, it also gives an indication of the attentional bias in the

scene. The novel algorithm is biologically motivated and implements

the concept of inhibition-of-return in eye-movements [48]. This gives

far superior clustering results than simple euclidean distance based

clustering on eye-gaze data. This algorithm has also been extended

to identify dominant and stable visual elements in an image, this is

a multi scale analysis of eye-gaze information and does make use of

any prior knowledge of scale of objects, depth of scene, etc. This has

been shown to give promising results for classification of image into

themes related to interaction and aesthetic composition in Fig. 56 in

chapter 5.

Eye movements have been used to improve the performance of state-

of-art foreground segmentation[71] and object detection[46] algorithms.
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These applications also show how human perception and the alloca-

tion of attention, can influence groundtruth for such applications and

in-turn change the interpretation of precision and recall. Online and in-

teractive scenarios for dynamic caption localisation and low cost eye-

tracking setups have been explored successfully in chapter 5 and also

set the stage for a whole new host of scenarios where visual attention

can be utilized.

It is important to note a few important limitations and assumptions

underlying the work in this thesis. Flickr R©is assumed to contain rep-

resentative images of natural and man-made scenes encountered in

daily life and this in turn enables the results on pre-attentive discrimi-

nation of interestingness to generalize natural and urban scenes. The

attentional bias model assumes scenes that are representative of nor-

mal events in the world and the statistical results do not apply for

unusual objects such as a very conspicuous inanimate object (eg;

building) near a human. The attentional bias model, results on inter-

action modeling and localization of verbs such as look,etc, apply to the

NUSEF dataset[71]. Freewiewing experiments assume that the user

does not have fatigue and uncommon biases for the content shown.

6.2 Future work

Though the work on pre-attentive discrimination of interesting images

establishes the minimum time threshold, it doesn’t explain the influ-

ence of different manipulations on changes in observed human re-

sponse times. There is scope for extension of the computational

model using global and local image information to predict human deci-
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sions on interestingness. The NUSEF dataset is a valuable resource

for exploring visual saliency in social and affective scenes, I want to

develop a novel saliency model mimic human attentional bias and

also address the more challenging problem of predicting the timing

and sequence of eye-movements in such images. Our ongoing re-

search has already delved into the influence of depth information on

eye movements and this has the potential to shed more light on how

we understand scenes in the real world. I am also exploring new

applications for gaze based interactive scenarios eg; interactive ad-

vertising as part of my ongoing work. The role of eye-movements in

key-object detection and foreground segmentation has been explored

in separate problems in this thesis, an interesting direction is to com-

bine these two stages in a single hybrid framework. Other tangential

directions of research arising out of this thesis are to analyze Pupillary

dilation, which is an accompanying behavioural signal that comes out

of eye-tracking experiments. My ongoing work has showed its useful-

ness for affective video analysis [47] and this has potential for further

research.

From a more basic scientific perspective, eye-movements have the

potential to helps us understand mechanisms involved in visual ob-

ject categorization (segmentation, recognition and context analysis)

and attention. Eye-tracking offers a valuable non-invasive source of

information to understand how local and global image information play

a role in these visual tasks and I am exploring these as part of my cur-

rent and future research directions.
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I want to express my gratitude to the writers and poets of today and 
yesteryears for allowing me the liberty to explore their thoughts and 
emotions. To the wonderful solitude of Wang Wei, the turmoil of Du Fu, 
the unbashed joy of Li Bai and to Vikram Seth who introduced me to 
them. 

South and north of my house lies springtime water,
And only flocks of gulls come every day,
The flower path's unswept: no guests.
The gate is open: you are the first one to come this way,
The market's far: my food is nothing special,
The wine, because we are poor, is an old brew,
Across the fence to drink it with us two.

- Du Fu, The visitor, 300 Tang poems (quán táng sh )*ī

I will not ever see my friend again.
Day after day Han waters eastward flow.
Even if I asked of the old man, the hills
and rivers would seem empty in Caizhou
- Wang Wei, Grieving for Meng Haoran, 300 Tang poems (quán táng sh )*ī

A pot of wine among the flowers,
I drink alone, no friend with me.
I raise my cup to invite the moon.
He an my shadow and I make three.

The moon does not know how to drink;
My shadow mimes my capering;
But I'll make merry with them both-
And soon enough it will be Spring.

I sing – the moon moves to and fro,
I dance – my shadow leaps and sways.
Still sober, we exchange our joys.
Drunk – and we'll go our seperate ways.

Let's pledge – beyond human ties – to be friends,
And meet where the Silver River ends.

- Li Bai, Drinking alone with the Moon, 300 Tang poems (quán táng sh )*ī

* Reproduced from Vikram Seth's translation of these classic Tang poems  



in his book “Three Chinese Poets”, Faber and Faber, London, 1992

to Kobayashi Issa, for seeing profoundness in the commonplace, and 
seeing beauty in the immense pain thrown on him by life,

Do not kill 
the housefly,
it rubs its hand it rubs it feet in prayer.

- Kobayashi Issa, About the housefly.

Outliving them,
outliving them all,
ah,
the cold!

− Kobayashi Issa, Grieving for the loss of his wife and children

to Robert Frost for giving meaning to devotion,

The heart can think of no devotion,
Greater than being shore to ocean.
Holding the curve of one position,
Counting an endless repetition. 

- Robert Frost, On devotion.

to Rumi, who understood love far greater than I do,

Your task is not to seek for love,
 but merely to seek and find,
 all the barriers within yourself,
 that you have built against it.

− Maulana Jalaluddin Rumi, On finding love

and finally to writers whose work and insights are far greater than what I 
can quote or describe, I just feel lucky to have crossed paths with your 
work through these years.


