
Solving Empty Result Problem in
Keyword Search over Relational

Databases

Masters Thesis

Hu Junfeng

hujunfeng@comp.nus.edu.sg

supervised by

Associate Professor Chan Chee Yong

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

April 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48653853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Keyword search over relational databases provides a simple and intuitive query

interface for normal users to retrieve information from databases. Most of the

existing keyword search systems for relational databases use foreign key refer-

ences to connect tuples. In this case, an answer to a keyword query is typically

a joining network of tuples that are connected via a series of foreign key refer-

ences, and contain all the keywords in the query. However, if no such joining

network of tuples exists, which means foreign key relationship fails to connect

tuples to cover all the keywords, no result would be returned to users. This

problem is called the empty result problem, which usually would disappoint

the user. Instead of returning nothing, in this thesis, we propose a solution to

automatically find approximate answers that contain all the keywords in the

query.

i

Acknowledgement

I would like to take this opportunity to show my deepest gratitude to people

who help and support me. Without them, I would not have been able to finish

my thesis.

First of all, I would like to thank my supervisor Prof. Chan Chee Yong for

his continuous support, guidance and patience with me. During my work with

him, Prof. Chan showed his highly professionalism and very strong knowledge.

I have learned a lot from him.

I would also like to thank my parents who love and support me in all kinds

of ways even when I could not be around them for most of the time.

Last but not the least, I would like to thank all the superiors involved in

the evaluation of this thesis. I appreciate them taking their precious time to

evaluate my work. I take all responsibility for any errors or inadequacies that

may remain in this work.

ii

Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 Related Work 4

2.1 Basic Concepts . 4

2.2 KWS-R Engine . 6

2.2.1 Graph-Based KWS-R . 7

2.2.2 Schema-Based KWS-R . 12

2.3 KWS-R Ranker . 16

2.3.1 Ranking Methods in Graph-Based KWS-R 16

2.3.2 Ranking Methods in Schema-Based KWS-R 18

2.3.3 Discussion . 21

2.4 Empty Result Problem in Conventional Relational Databases . . 21

2.5 Tuple Similarity . 24

3 Empty Result Problem In KWS-R 26

3.1 Answer Model . 27

3.2 Ranking Methods . 29

3.3 Similarity Measure . 31

3.4 Similarity Index . 32

iii

3.5 Query Processing . 35

3.5.1 MPJNT Generation Algorithm 35

3.5.2 ExpandTuple Algorithm 36

3.5.3 ProgressiveExpandTuple Algorithm 39

4 Experiments 41

4.1 Data Set . 42

4.2 Query Set . 42

4.3 Metrics . 43

4.4 Implementation . 44

4.5 Results . 45

5 Conclusions And Future Work 50

6 Appendix 58

6.1 Queries . 58

6.2 Comparison of ExpandTuple and ProgressiveExpandTuple 61

iv

List of Tables

3.1 Product Table of Term “database” 34

6.1 Queries for the IMDb dataset . 59

6.2 Queries for the Wikipedia dataset 60

v

List of Figures

2.1 Comparison of Different Systems of KWS-R 7

4.1 Comparison of Number of top-1 answers that are relevant for all

queries for each dataset. Higher bars are better. 45

4.2 Comparison of Mean reciprocal rank for all queries for each dataset.

Higher bars are better. 46

4.3 Comparison of Running Time of Traditional KWS-R and Empty

Result KWS-R . 47

4.4 Comparison of ExpandTuple and ProgressiveExpandTuple 48

vi

Chapter 1

Introduction

Keyword Search (KWS) is a simple and flexible query interface. The popu-

larization of web search engines made keyword search become one of the most

acceptable search manner for normal users. Naturally, people want to bring

keyword search interface into relational databases, which has conventionally

use Structured Query Language (SQL). From end users’ perspective, Keyword

Search over Relational Databases (KWS-R) has several benefits over traditional

SQL queries. First, users do not need to know the underlying schema of the

database. Second, users do not need to learn the complex SQL syntax and cre-

ate numerous complicated SQL statements for a simple query. Powered with

keyword search interface, relational databases would be much more useful to

new users, especially for those without any database background.

The current approach to KWS-R is modeling the database as a directed data

graph, in which nodes are tuples and edges are foreign key references between

tuples. An answer to a keyword query is a subgraph of the data graph that

contains all the keywords in the query. If the data graph is connected, which

means every pair of distinct tuples in the graph can be connected by a sequence

of foreign key references, the user will be guaranteed to have an answer if all

keywords are contained in some tuples. However, this is not always true, es-

pecially when modeling a complex database in real world. Instead of a single

1

connected graph, it is more likely that a number of distinct graphs will be con-

structed. For example, we use two datasets in our experiments: IMDb (516MB,

6 relations, 1,673,074 tuples) and Wikipedia (550MB, 6 relations, 206,318 tu-

ples). Both datasets are from a framework proposed by Coffman et al. [6] for

evaluating keyword search in relational databases. The data graph of the IMDb

dataset consists of 317 disconnected graphs, while the data graph of Wikipedia

also has 19 disconnected graphs. Therefore, it is likely that given a query, tuples

that contains keywords are distributed across many graphs, and no single graph

contains all keywords.

Even if we can find a graph that contains all keywords, there is also another

problem. For the data graph of the IMDb dataset, the average length of the

shortest path between any two tuples is 21. Given two tuples, the distance

between them could be so long that it is meaningless to connect all these tuples

into results, and it is also very costly to do so in existing KWS-R systems. There

is usually a limit of the size of results. A typical size limit would be less than

10 tuples. Therefore, even in a graph that contains all keywords, there possibly

does not exist a subgraph of tuples that contain all keywords where its size is

less than the limit.

In both cases, no result would be returned to the user. This problem is

called the empty result problem. Empty results usually disappoint the user

and reduce the usability of the system, because it does not provide any useful

information. The cause of the empty result problem is that there is only one type

of connection, i.e., foreign key reference, to represent the relationship between

tuples in databases.

Therefore, the essential idea of our solution to the empty result problem is

add a new type of relationship that connects tuples from disconnected graphs.

We use the tuple similarity as the new relationship to connect tuples. In other

words, two tuples are connected if they are similar. With the new relationship,

we present an algorithm that find a connection between partial answers, each

of which only contains a portion of keywords in the query, but they together

2

contain all keywords. Then connected partial answers are combined to form

final answers.

In the rest of the thesis, we first discuss related work in Section 2. In Section

3, we formally define the empty result problem and present our solution. We

show our experiment to evaluate the effectiveness of our solution in Section 4

and conclude the thesis in Section 5.

3

Chapter 2

Related Work

The background of our work is keyword search over relational databases. In the

following sections, we will go through the fundamentals of KWS-R. Among the

existing systems of KWS-R, the architectures typically can be divided into two

main components:

1. An Engine that generates candidate answers.

2. A Ranker that ranks candidate answers by evaluating the scoring func-

tion.

We discuss the basic concepts in Section 2.1, and the engines of KWS-R

in existing solutions in Section 2.2 and 2.3, and finally the rankers of KWS-

R in Section 2.4. Another related work is the general empty result problem

in relational databases. Existing works towards this problem are discussed in

Section 2.5. We also discuss the related work about tuple similarity in Section

2.6.

2.1 Basic Concepts

Keyword search was first popularized in text search. It is a very different context

from relational databases. In text search, the data is a set of documents/web

4

pages with little structure; while in KWS-R, the data is a list of tables, where

each table consists of tuples, and each tuple consists of attributes. In other

words, they are highly structured. In text search, an answer to a query is simply

a document, while in KWS-R, an answer is more complex. In the literature,

the most widely used answer model is a list of joined tuples, proposed in [1, 17].

We formally define the data model, the answer model and the query model in

KWS-R as follows.

Data Model

A relational database R is considered as a directed graph G(V,E). Each

tuple ti in R corresponds to a node ti in V ; each foreign key reference

from ti to tj corresponds to an edge ti → tj in E. Without any ambiguity,

in the rest of the thesis, we use tuple and node interchangeably to refer

a tuple in R or a node in G. The schema of R is also considered as a

directed graph GS(VS , ES). Each relation is a vertex and each primary-

foreign key reference between two tables represents an edge. G is called

the data graph while GS is called the schema graph.

Query Model

A m-keyword query Q is a set of keywords of size m, {k1, k2, · · · , km}.

A node in G that contains at least one of the keywords in Q is called a

keyword node, or keyword tuple. A node that do not contain any keywords

in Q is called a free node, or free tuple.

Answer Model

A list of joined tuples is defined as a Joining Network of Tuples (JNT) in

[17].

Definition 1 (Joining Network of Tuples). A joining network of tuples

in a data graph is a graph of tuples where each edge presents a foreign key

reference between the tuples at two ends of the edge.

In the data graph G for a relational database R, a JNT is actually a

5

subgraph of G. For a query Q, the result of Q is a set of all possible JNTs

that contain all the keywords in Q. According to different semantics, more

constraints will be applied on JNTs for them to be in the final results. We

will discuss these constraints very soon.

2.2 KWS-R Engine

In the last decade, KWS-R has been intensively studied in the database com-

munity. A lot of algorithms and systems are proposed, however almost all of

them fall into the following two categories:

1. Graph-Based KWS-R To materialize the data graph G in memory and

find the satisfied JNTs using graph algorithms;

2. Schema-Based KWS-R To use the schema graph GS to find all the

subgraphs of GS , that would possibly generate satisfied JNTs in G, then

convert these candidate subgraphs into SQL queries, and finally evaluate

SQL queries on the underlying DBMS.

Among existing systems, BANKS [4], BANKS2 [20], BLINKS [14], Min-Cost

[9], Golenberg [11], Kimelfeld [22], ObjectRank [3, 16], EASE [24], Progressive

[23, 25], and Community [35] are Graph-Based. DBXplorer [1], DISCOVER

[17], DISCOVER2 [15], Sayyadian [37], Liu [26], SPARK [27], and Xu [39] are

Schema-Based. S-KWS [29, 30] and PowerDB [34] use both approaches in their

systems.

Besides two different ways of designing algorithms, the system evaluation is

also emphasized differently among these works. Many works [9, 11, 22, 23, 25, 35]

mainly focus on the efficiency of their systems, while some [26, 39] works only

improve the effectiveness of KWS-R. There are also many works [4, 20, 14, 24,

3, 27, 15] taking both efficiency and effectiveness into consideration. Figure 2.1

shows the comparison of these systems in the two dimensions. Note that this

figure compares the main focus of their work on KWS-R, but not compare their

6

algorithms. An interesting observation is that most Graph-Based systems focus

on efficiency and no work is dedicated to effectiveness; however, there are two

dedicated works in effectiveness in Schema-Based KWS-R, though efficiency is

still the main consideration of most Schema-Based systems.

BANKS
BANKS2Graph-Based

KWS-R

Schema-Based
KWS-R

Efficiency Effectiveness

Min-Cost
Golenberg
Kimelfeld
Progressive
Community

S-KWS
PowerDB

Sayyadian
DBXplorer
DISCOVER

BLINKS
ObjectRank
EASE

SPARK
DISCOVER2

Xu
Liu

Figure 2.1: Comparison of Different Systems of KWS-R

2.2.1 Graph-Based KWS-R

Graph-Based keyword search over relational databases is introduced in BANKS

[4], and later many works [35, 34, 24, 16, 20, 14, 3, 9, 11, 22, 23, 25, 29, 30, 8]

adopt this approach. These Graph-Based KWS-R systems assume that the data

graph G is materialized in the memory.

There are at least four semantics of JNTs proposed based on Graph-Based

KWS-R: Steiner tree semantics [4, 20], distinct root semantics [14], distinct core

semantics [35], and r-radius Steiner graph semantics [24].

Steiner Tree Semantics

Given a m-keyword query Q, for each keyword ki in Q, we can find all the

keyword nodes in the data graph G that contain ki. We denote such set

7

of keyword nodes as Ki, for each ki. In this semantics, an answer JNT is

a minimal rooted directed tree containing at least one keyword node from

each Ki. It may also contains free nodes, and is therefore a Steiner tree

[18].

The problem with the Steiner tree semantics is that it may result in du-

plicate JNTs. Consider an answer JNT tk11 ← t4 ← tk22 → t5 → tk33

as an example, where tk11 , t
k2
2 , t

k3
3 are keyword nodes containing k1, k2, k3

respectively, and t4, t5 are free nodes. Obviously, here tk22 is the root.

Since every two tuples that have a forward edge also have a backward

edge and a rooted directed tree has only one root, we actually have four

more answer JNTs for these five tuples: tk11 → t4 → tk22 → t5 → tk33 ,

tk11 ← t4 ← tk22 ← t5 ← tk33 , tk11 ← t4 → tk22 → t5 → tk33 , and

tk11 ← t4 ← tk22 ← t5 → tk33 , where the roots are tk11 , tk33 , t4, and t5

respectively. However all the five JNTs are the same from users’ perspec-

tive. In general, for every answer JNT T with |T | nodes, there are |T |

duplicates of T , each of which have one of the nodes in T as the root.

Therefore, in the Steiner tree semantics, there can be as many as O(2|E|)

JNTs theoretically, where |E| is the number of edges in G.

Distinct Root Semantics

BLINKS [14] proposes the distinct root semantics that does not suffer

from the issue of the Steiner tree semantics. It overcomes the duplicate

problem by defining a distinct root for each JNT. Specifically, an answer

JNT, assuming that tr is the root, satisfies the following conditions: (1)

the answer contains at least one keyword node from each Ki; (2) among

all the keyword nodes tkij for each ki, one of tkij is chosen such that the

distance from the root tr to this tkij is minimum; (3) the minimum distance

is less or equal to a user given parameter Dmax. Intuitively, the further a

keyword node is away from the root node, the less interesting it is, so the

last condition is used to limit the number of answers.

8

The benefit of this semantics is that for each root node, there is only one

JNT that satisfies the condition. Consider the above example and suppose

t1 is the root. If the nearest keyword node containing k3 is another node t6,

for example in a path tk36 ← tk11 , then the nearest keyword node containing

k2 is still tk22 . In that case, the JNT tk11 → t4 → tk22 → t5 → tk33 will not

contribute to the results, but tk36 ← tk11 → t4 → tk22 does. In theory, there

are at most |V | number of JNTs in the final results, where |V | is number

of nodes in G.

Obviously, the distinct root semantics produces a subset of results that

the Steiner tree semantics does. The former reduces the number of results

by limiting the results to one answer for each node that is deemed the

root node. It removes many duplicate answers and also avoid the “hub”

problem, where one node connects to many keyword nodes and become

the root of a huge number of answers. Users may not be interested in all

the answers from the “hub”, but only the most concise and informative

one as the distinct root semantics gives.

Distinct Core Semantics

However, people also argue that what if users want more information than

that a single rooted tree can provide. Hence, more complex semantics, like

Distinct Core Semantics, are proposed to show users more information.

In Distinct Core Semantics, an answer JNT is a multi-center subgraph of

G, called a community [35], which is defined on a set of keyword nodes.

Specifically, the set of nodes V in a community is a union of three subsets,

Vk ∪ Vc ∪ Vp, where Vk is a set of keyword nodes that contain at least

one node from each Ki, Vc is a set of center nodes that for each center

node tc ∈ Vc, the distance from tc to every tk ∈ Vk is less or equal to a

user given parameter Dmax, and Vp is a set of nodes that appear on the

shortest paths from each tc ∈ Vc to each tk ∈ Vk. The set of edges in a

community consist of all the edges that appear on the shortest paths from

9

each tc ∈ Vc to each tk ∈ Vk.

Given a community, the set of keyword nodes Vk is called the core, as Vk

uniquely determines the community by definition. In other words, there

are no two communities that share the same core.

In contrast to the distinct root semantics, this semantics does not add

any new answers in terms of combinations of keyword nodes. However, a

community does provide new information by adding all the center nodes

with regard to the same set of keyword nodes, i.e., the core. For each

possible set of keyword nodes Vk, the distinct root semantics gives a single

root/center that connect all of them, while the community of Vk actually

combines all the single rooted trees of the same Vk into one subgraph. [35]

believes that such combination presents more interesting information.

r-radius Steiner Graph Semantics

Inspired from the Steiner tree problem, EASE [24] introduced the r-radius

Steiner graph to model keyword search problem over relational databases

as well as semi-structured data (e.g., XML) and unstructured data (e.g.,

text documents).

In this semantics, an answer JNT becomes a r-radius Steiner graph, which

is defined as follows. First, the centric distance between a node t in G and

a subgraph G′ of G is the maximum value among the shortest distances

from t to any node in G′. Second, the radius of a subgraph G′ is the

minimum value among the centric distances between any node in G to

G′. Third, a r-radius graph has exactly the radius of r. Finally, for a

keyword query Q, the r-radius Steiner graph is the r-radius graph that

contains at least one keyword node from Ki. (EASE do not require that

it must contain all the keywords in Q, however for consistency with our

discussion, we only consider the situation that the results contain every

keyword, i.e., AND semantics of keyword search.) As in a Steiner tree, it

may also contain free nodes.

10

The r-radius Steiner graph semantics also does not add any new answers

in terms of keyword nodes. However, as the distinct core semantics, it

adds more nodes related to a set of keyword nodes. In contrast to the

distinct core semantics, which uses the center nodes to extend its answers,

this semantics includes all the nodes that fall in the same r-radius graph

as the set of keyword nodes do. This is like a new relationship that tuples

are connected. Therefore, for a given set of keyword nodes, additional

tuples followed by the relationship may provide users more information.

For each semantics, a particular algorithm is designed to search for results.

In the following, we describe algorithms under the Steiner tree semantics and

the distinct root semantics, since these are the most classical algorithms in

Graph-Based KWS-R.

BANKS search for JNTs (Steiner tree semantics) using the backwards search

algorithm. BANKS first find all the keyword nodes in the data graph G, using

a inverted index. Recall that Ki denotes the set of keyword nodes containing

keyword ki in Q. Let K be the set of all Ki. The backwards search algorithm

runs |K| copies of Dijkstra’s single source shortest path algorithm concurrently,

with each keyword node in Ki being the source. Every time a node is visited,

it records the source node and the keywords of the source. Once a node v

has been visited by all the keywords, a new result is found by constructing a

rooted directed tree with v as the root and all the reverse paths to the sources.

This is a simple description of the algorithm. The problem to find the optimal

Steiner tree is known to be NP-hard. Therefore, the top result of BANKS is

only an approximation of the optimal Steiner tree. The results found using

the backwards search algorithm is also not complete, as it only considers the

shortest path from the root of a tree to nodes containing keywords.

The backwards search algorithm would potentially visit an unnecessarily

large number of nodes if (1) the query contains some frequently occurring key-

word (e.g., database in DBLP); (2) some node has a large number of incoming

edges. BANKS2 [20] overcome this issue by introducing bidirectional search

11

algorithm that search the data graph both backwards, as in backwards search

algorithm, from keyword nodes, and forwards from potential roots that are vis-

ited by backwards searching algorithms. BLINKS [14] further accelerates the

search processing by reducing the search space through a bi-level index of the

data graph. A bi-level index is a precomputed two-level index built by first par-

titioning graph, and then building indexes inside partitions as well as an index

of partitions.

2.2.2 Schema-Based KWS-R

Given that relational databases are modeled as graphs, it is natural to solve

KWS-R using graph algorithms. However, by that way, we abandon all the

functionalities provided by today’s sophisticated database management sys-

tems. Therefore, the Schema-Based approach, on the other hand, utilizes the

schemas of relational databases to translate a keyword query into a series of

SQL statements, afterwards which are executed directly on the DBMS to re-

trieve the results. DISCOVER [17] and DBXplorer [1] are the first two systems

that use the Schema-Based approach, which is later adopted by many works

[15, 26, 27, 29, 37, 39]. Compared to DISCOVER, DBXplorer is much sim-

pler, because it only allows exact match between a keyword and an attribute

value, and it also does not consider cases in which two tuples are from the same

relation. Therefore, we mainly discuss DISCOVER in the rest of the section.

In DISCOVER, a relational database is still modeled as a data graph G as

Graph-Based KWS-R does, but the data graph G is never materialized and only

remains as conceptual. However, the schema graph GS , which is never used in

Graph-Based KWS-R, is materialized to generate Candidate Networks, which

are to be defined very soon.

There are only one semantics of JNT used as answers in Schema-Based

KWS-R. It is called Minimal Total Joining Network of Tuples (MTJNT), which

is defined as follows.

Definition 2 (Minimal Total Joining Network of Tuples). A minimal total JNT

12

is a JNT that satisfies the following two conditions: (1) it is total, which means

it contains all the keywords in the query Q, and (2) it is minimal, which means

it will not be total if any node is removed.

In fact, MTJNT is the same as the Steiner tree semantics in Graph-Based

KWS-R. A node in MTJNT with degree of 1 is called a terminal node. By

definition, MTJNT has a nice property that each terminal node contains at

least one distinct keyword, because if a terminal node only contains keywords

that other nodes have, it can be removed, which contradicts the definition of

MTJNT. This property is very helpful in pruning Candidate Networks.

The general idea of finding MTJNTs in tables is that firstly it uses the schema

graph GS to find all the joining networks of relations that possibly generate

MTJNTs; secondly, it evaluates these candidate joining networks of relations to

retrieve all the satisfied MTJNTs. GS is a graph of relations RS = {R1, R2, . . . }

of the relational database R. For each relation Ri ∈ RS , Ri will contribute a

tuple to an answer MTJNT if and only if Ri contains some keywords in the

query. We define Expanded Schema as follows.

Definition 3 (Expanded Schema). For a relation S and a set of keyword K ⊆

Q, the expanded schema S{K} is a subset of S containing tuples that contain

exactly all the keywords in K, no more, no less.

For example, assuming Q = {k1, k2, k3}, S{k1, k3} is the set of tuples that

contain only k1, k3 but no k2. For convenience, S{} is the set of all free tuples

in S. Thus, for each relation Ri ∈ RS , there are in total 2|Q| expanded schemas,

where |Q| is the number of keywords in the query. In the above example,

Q = {k1, k2, k3}, there are eight expanded schemas for S, that is, S{}, S{k1},

S{k2}, S{k3}, S{k1, k2}, S{k2, k3}, S{k1, k3}, S{k1, k2, k3}.

We then define Expanded Schemas Graph and Candidate Network (CN) as

follows.

Definition 4 (Expanded Schemas Graph). For a schema graph GS and a query

Q, an expanded schemas graph GES(Q) is constructed by (1) nodes are the

13

expanded schemas that are not empty; (2) every two nodes have an edge iff their

corresponding relations have an edge in GS.

Definition 5 (Candidate Network). A candidate network is a subgraph of ex-

panded schemas graph GES(Q) that satisfies two conditions: (1) it is total, which

means it contains all the keywords in Q; (2) it is minimal, which means it will

be not total if any node is removed.

Intuitively, a candidate network is a joining network of relations that pos-

sibly generate MTJNTs. Observe that CN has a similar definition as MTJNT.

Actually, CN can be considered as the projection of MTJNT onto the expanded

schema.

With these definitions, we move on to discuss the query processing of Schema-

Based KWS-R. There two main steps:

1. Candidate Networks Generation. In this step, first, an expanded

schema graph GES(Q) is built from the schema graph GS and the query

Q. From GES(Q), a set of candidate networks is generated, which is

required to be complete and duplicate-free.

2. Candidate Networks Evaluation. With input of CNs, this step creates

a SQL execution plan, which is then executed on the DBMS to obtain the

results.

The key challenge of the candidate networks generation is that the set of

CNs must be complete and duplicate-free. By complete, the set of CNs gener-

ates all the MTJNTs. By duplicate-free, every two CNs are not isomorphic to

each other. DISCOVER produces a complete and duplicate-free set of CNs by

enumerating all subgraphs of GES(Q) that does not violate any pruning rules.

Three pruning rules used in DISCOVER are listed as follows.

1. Prune duplicate CNs.

2. Prune CNs that are not minimal, i.e., CNs having a leaf node of form

Ri{}, which does not contain any keywords.

14

3. Prune CNs that are of formRi{K1} ← Rj{K2} → Ri{K3}, whereK1,K2,K3 ⊆

Q and K1 6= K2 6= K3. Note that in such form, a primary key is defined

in Ri and a foreign key is defined in Rj pointing to the primary key. Any

tuple in Rj{K2} that has a foreign key referring to a tuple in Ri must

point to the same tuple in Ri. However, the same tuple cannot appear in

two different sets, as Ri{K1}∩Ri{K3} = ∅. As a result, CNs of this form

cannot generate valid MTJNTs.

DISCOVER’s algorithm [17] enumerates all subgraphs in a breath-first traver-

sal of GES(Q). Specifically, the algorithm first randomly pick a keyword k ∈ Q,

and start traversals from all the nodes (expanded schemas) in QES(Q) that con-

tains k. In each round, a subgraph is pruned if it satisfies the pruning conditions,

otherwise it is outputted as a new CN if it contains all keywords, otherwise it

is expanded for by adding an adjacent node in GES(Q) to a node of it. There

is also a parameter Tmax to limit the size of CNs, because it is not meaningful

if CN is too large in size.

Actually, in DISCOVER, duplicate CNs are removed through a post-processing

step, but cannot be avoided in the breadth-first traversal algorithm. Markowetz

et al. [29] propose an improved algorithm that guarantees to generate duplicate-

free CNs directly. The basic idea is to enumerate subgraphs in a unique pre-order

traversal.

The second phase is to evaluate the candidate networks, i.e., converting

candidate networks into query trees and creating a SQL execution plan. A naive

plan is to simply create SQL queries for each candidate network and run the

queries independently. This method has a big performance problem, because

candidate networks typically share same join subexpressions, and thus same

join operations might be run many times. Therefore, an efficient execution plan

should store the common join expressions as intermediate results and reuse

them whenever possible. Unfortunately, in DISCOVER [17], the problem of

finding the optimal execution plan is proved to be NP-complete. DISCOVER

gives a greedy algorithm that produces a near-optimal execution plan, using two

15

heuristics: (1) subexpressions shared by most CNs should be evaluated first; (2)

subexpressions that generate small number of results should be evaluated first.

2.3 KWS-R Ranker

Ranking results is one of the major challenges in keyword search over relational

databases, because the number of results usually will be very large, and the

user is only interested in a small number of the most relevant results. In the

literature, people have proposed several ways to rank the results. In this section,

we show these ranking methods in KWS-R.

Although JNT is used as an answer to a keyword query in both Graph-Based

KWS-R and Schema-Based KWS-R, the ranking methods of them are different.

Graph-Based KWS-R mostly uses a ranking method that are based on graph,

such as PageRank, because with the whole data graph in memory, it is easy to

consider the weight of a node or an edge globally. For example, computing the

number of incoming edges of a node is easy in Graph-Based KWS-R, however it

is difficult in Schema-Based KWS-R. On the other hand, Schema-Based KWS-

R mostly uses IR-style ranking method, that is to consider the actual values

of tuples in the databases. IR-style method can also be used in Graph-Based

KWS-R.

2.3.1 Ranking Methods in Graph-Based KWS-R

BANKS [4] consider that tuples and edges in an answer JNT are usually not the

same importance, therefore they assign weights to each node (PageRank-style,

for example, the PageRank of a node is defined recursively and depends on the

number and PageRank metric of all incoming nodes. A note that is connected to

by many nodes with high PageRank receives a high rank itself.) and each edge

(based on how related the two tuples are), and then combine them to compute

a final score for ranking.

In BANKS, the overall score of an answer is defined by three parts: (1) an

16

expression of the overall score of all the nodes in the answer JNT; (2) an ex-

pression of the overall score of all the edges in the answer JNT; (3) combination

of (1) and (2) to get the overall score of the answer JNT.

For node weights, in BANKS, each node u in the graph is assigned a weight

N(u) reflecting the prestige of the node. Specifically, N(u) is defined to be a

PageRank-style function of the indegree of u. The overall score of nodes is

Nscore =
∑

log(1 +N(u)/Nmax),

for each u in the answer JNT, where Nmax is the maximum node weight in the

graph.

For edge weights, a forward edge u→ v is assigned a weight wuv based on the

strength of the foreign key reference between the two relations. BANKS assumes

the strengths of foreign key references are manually judged by domain experts

or database administrators. For example, the link between Papers and Writes

would have stronger connection than the link between Papers and Cites. For

a backward edge u L99 v, the weight is wvu = wuv log2(1 + indegree(v)). The

overall score of edges is

Escore =
1

1 +
∑

log(1 + wuv/wmin)
,

for each forward and backward edge in an answer JNT, where wmin is the

minimum edge weight in the graph.

For the final part, BANKS presents several ways for combination, either by

addition or by multiplication. Let T be an answer JNT and Q a query, the

scoring functions used in BANKS are:

Score(T,Q) = (1− λ)Escore+ λNscore or

Score(T,Q) = Escore ∗Nscoreλ

17

where λ is a factor to control their relative weightage.

ObjectRank [3] proposed another more complicated node weights. Instead

of only considering the global and static importance of nodes (as PageRank),

ObjectRank additionally considers the relevance of nodes to the keyword query.

In other words, a node is assigned a higher weight if it is more related to the

keyword query.

2.3.2 Ranking Methods in Schema-Based KWS-R

Early work on keyword search over relational databases, like DBXplorer [1] and

DISCOVER [17], mainly focus on the efficiency of the query system and simply

rank the results by the size of MTJNTs. DISCOVER2 [15] first introduce the

state-of-the-art Information Retrieval (IR) techniques into the ranking strategies

on KWS-R, since IR-style ranking methods is widely used in document/web

search. Later Liu et al. [26] suggest several sophisticated improvements to

the ranking formula in DISCOVER2. More recently SPARK [27] improved the

IR-ranking formula based on the idea of virtual document, which essentially

consider JNTs as small documents. JNTs generated from the same CN are

considered belong to a same collection of documents. Xu et al. [39] furthermore

enhanced the formula by considering different relevance between the query and

each relation.

Simple Way

Both DBXplorer and DISCOVER rank the results by the size of tuple trees.

Let T be an MTJNT and let Q be a query, the score function is:

Score(T,Q) =
1

size(T)

Intuitively, the smaller size of a tuple tree, the stronger connection of the tuples

in the tuple tree.

IR-Style Method

18

Given a query and a collection of documents, IR systems assign a score for

each document as an estimation of the document relevance to the given query.

The widely used model to compute such a score is the Vector Space Model,

in which each text (both documents and queries) is represented as a vector

of terms, which could be a keyword or a phrase. A similarity (usually a dot

product function) between a document vector D and a query vector Q can be

computed as the ranking score.

DISCOVER2 [15] first applies IR-style ranking methods into the computa-

tion of ranking scores on keyword search over relational databases. They con-

sider each column as a collection and each value in the column as a document.

Specifically, let T be a MTJNT and {D1, D2, · · · , Dm} be all column values in

T and let Q be the keyword query. DISCOVER2 uses a TF-IDF function to

define the score, which is shown as follows:

Score(T,Q) =

∑
Di∈T Score(Di, Q)

size(T)
(2.1)

Score(Di, Q) =
∑

w∈Di∩Q

1 + ln(1 + ln(tf))

(1− s) + s dl
avdl

ln
N + 1

df
(2.2)

where, for each word w, tf is the frequency of w in Di, df is the number of

column values with word w in Di’s column, dl is the size of Di in characters,

avdl is the average size of column values, N is the total number of values in

Di’s column, and s is a constant (usually 0.2).

While DISCOVER2 straightforwardly applies IR-style methods, Liu et al.

[26] propose four normalizations of the formulas, considering more the inherent

structures of relational databases. For example, the intuition behind one of the

normalizations using size(T) in Equation (2.1) is that a MTJNT with more

tuples tends to contain more terms and higher term frequencies. However, for

a multi-keyword query, the relevant answers usually involves multiple tuples,

each of which contains a subset of the query keywords. Such complex tuple

trees deserve higher score than tuple trees with a single tuple, which contains a

19

small set of query keywords. Therefore instead of using the raw size(T), they

use the normalized Nsize(T), defined as follows:

Nsize(T) = (1− s) + s ∗ size(T)

avgsize

where avgsize is the average size of tuple trees.

Both DISCOVER2 and Liu’s system consider each attribute value as a doc-

ument and all attribute values in the same column as a collection of documents.

SPARK [27] however suggests to model the whole MTJNT as a document and

all MTJNTs generated from same CN as a collection of documents. They use

the similar formula to compute a score for each MTJNT. In SPARK’s experi-

ments, the new ranking method is shown to have a substantial improvement of

the quality of search results.

Furthermore, Xu et al. [39] improve SPARK’s method by introducing query

semantics into ranking. DISCOVER2, Liu’s system, and SPARK all use the

TF-IDF scoring function, which is to compute the relevance between a keyword

query and “documents” from a “document” collection. The only difference

between these systems is the definition of a “document” and a “document”

collection. The first two systems use an attribute value as a document and

a column of values as a document collection, while SPARK use a MTJNT as

a document and a CN as a document collection. Observe that in each case,

there are many document collections, i.e., many columns and many CNs. The

TF-IDF scoring function only compute a document’s relative relevance to the

query in the document collection it belongs to. However, different document

collections have different level of importance to the query. In KWS-R, a final

score of MTJNT should reflect the importance of the CN it belongs to. To

achieve that, a concept of query semantics is defined as follows: The semantics

of a query is the relation preference of the keywords. For example, given a query

“Hristidis, database”, which contains an author name “Hristidis” and a research

area “database”, it shows that the user wants to search a research paper about

20

database that was written by an author with “Hristidis” in his name. In this

case, the semantics of the query is {author, paper}. It is easy to compute the

semantics of a query, because one can simply use the IR-style method to find

the most relevant relation for each keyword. Therefore, the system could go on

to computes the relevance between each CNs and the semantics of the query,

and integrate this relevance to the final scores of answers.

2.3.3 Discussion

To rank the results, a relevant score must be assigned for an answer , as we can

see in all the methods. Different methods utilize different information provided

by a MTJNT and the whole database. DISCOVER and DBXplorer use the

property of a MTJNT. BANKS’s method captures the different prestiges of

each node and each edge, given their different positions in the network of the

whole database graph. IR-Style method, on the other hand, looks into the actual

text values of tuples in a MTJNT and compute the similarity between these text

values and the keywords in the query. Moreover, the recent improvements of

IR-Style method leverage the inherent structures in relational databases.

It is difficult to tell which method will return more relevant and interesting

results to the user. Simple method might be already good enough, while more

complicated method might have more stable results but also be more costly.

2.4 Empty Result Problem in Conventional Re-

lational Databases

In database research, there has been many works on the empty result problem

in general. However, most of them study the problem in the context of the

conventional query paradigm, where a query is a SQL statement and an answer

is a table of tuples; while we study the empty result problem in the context of

keyword query, where a query is a set of keywords and an answer is a joining

network of tuples. In this section, we discuss how these works are different from,

21

or related to ours.

Existing solutions to the empty result problem basically answer the following

two questions:

1. Why does a particular query returns an empty set of answers?

2. How could the system return something useful to the user instead of noth-

ing?

Early works [32, 33] in the literature mainly focus on the first question. For

most solutions, the query is executed first. If no answer satisfies the query, the

system goes back and looks for the reason, which could be a “wrong” query

given by the user, for example, a query with an non-existing schema, or the

database really does not have matching data. In our case (keyword search),

the cause of empty result is much simpler, that is, there does not exist a series

of foreign key references that could connect a set of tuples, which contain all

keywords in the query. Moreover, it is less likely that the user would give a

“wrong” query, because it is only a list of keywords. Therefore, given these two

reasons, we are more interested in the second question.

Later on, people are interested in automatically [2, 5] or interactively [31, 21]

returning useful results when no results is found for the query, which in effect

answers the second question. Kießling et al. [21] propose an extension to the

standard SQL, called Preference SQL, which basically extends SQL by providing

the user an interface to specify soft constraints, for example, “price AROUND

1000.” Compared to exact queries, i.e., using the standard SQL, such queries

with soft constraints is less likely to generate empty answers. However, for

our case, changing the query interface is not a desirable solution, because the

simplicity of the query interface is the most important feature of keyword search,

which should be preserved.

Alternatively, Mishra et al. [31] introduce a model that enables the user

to interactively refine the query. In their system, if a query generates few or

no answers, the user could relax one or more predicates on the fly to get more

22

answers. In keyword search, the only way to relax the query is to remove one or

more keyword, however we are more interested in finding results that contains

all keywords. In our case, it is possible that all keywords have matching tuples

in the database, but the reason of empty answers is there exists no set of tuples

that are connected via foreign key references and contains all keywords as a

whole. Therefore, for now, we do not consider query relaxation in our work.

In Information Retrieval, the results of a document query are usually ranked

and the most relevant documents are returned. Inspired by this, Agrawal et al.

[2] and Chaudhuri et al. [5] adapt the ranking techniques from IR to handle

both empty answers and many answers scenarios in relational database systems.

In the case of empty answers, their system automatically generates a ranked

list of approximately matching tuples. To achieve that, first, a similarity is

defined between any tuple and the query. It can be based on vector space

model [2] or probabilistic model [5]. Then, for a SQL query that generates

empty answers, the system retrieves and finds tuples that are most relevant

to the query, according to their similarities. Preprocessing and index are used

to speed up the computation of similarity, and query workload is leveraged

in similarity model to improve the quality of the results. To our knowledge,

their work is most relevant to ours. However, in addition to the different query

paradigms as mentioned above (SQL vs keyword), our work is also distinct from

theirs in other ways. First, we consider an answer in the final results should

contain all the keyword in the query, while in [2, 5], a tuple in the results may

not satisfy all the predicates in the query, as long as it has very high similarity to

the query. Second, we define not only the similarity between any tuple (actually,

in our case, it is a joining tuple graph) and the query, but also the similarity

between any two tuples.

23

2.5 Tuple Similarity

Another related work is tuple similarity problem, which has been intensively

studied in many areas, like data cleaning, or data integration. These works [10]

attempt to match two tuples from same or different databases that actually refer

to the same real world object. The existing solutions can be divided into two

categories: learning-based approaches and distance-based approaches. Learning-

bases approaches use probabilistic models or machine learning techniques to

“learn” how to match the tuples. However, these methods must rely on good

training data. In contrast, distance-based approaches only rely on distance

metrics to match similar tuples. Any tuple similarity measure can be used in

our solution, however a typical database does not always have a good training

data for tuple similarity, we are more interested in the distance-based approach,

which can always be applied to a database.

The basic idea of the distance-based method is that, given a tuple, it first

computes the similarity between this tuple and others, based on some distance

function, and then defines a matching threshold to find the most similar tuples.

Many similarity metrics have been developed to measure the similarity of two

tuples. There are mainly two categories: edit-based metrics [13, 19] and token-

based metrics [36]. Edit-based metrics, like edit distance and q-gram distance,

work very well for typographical errors. However these metrics often fail to deal

with rearrangement of words. Token-based metrics compensate for this kind of

problem. Cohen [7] introduced WHIRL system to first adopt IR technique, the

cosine similarity with TF/IDF weighting scheme, to measure the similarity of

two tuples. Later Gravano et al. [12] extended the TF/IDF metric by using

q-grams instead of words, in order to handle spelling errors. We adopt Cohen’s

metric in our problem, because for our problem, we are interested in finding

similar tuples that may contain several same words; these tuples possibly provide

same information to users. Handling spelling errors is costly and make the

similarity function more complex. Therefore, we simply assume no spelling

24

errors in the database.

Two tuples to be matched may or may not have same structure. For tuples

with same structure, we can just compare each individual field in two tuples

and combine all the similarity scores to obtain a total score for the whole tu-

ples. However, when two tuples do not have same structure, it is impossible to

compute the similarity in this way. A simple approach is that we just consider

the whole tuple as a single field, and then use appropriate metrics to compute

the similarity. Since we adopt the cosine similarity in Cohen [7], we do not lose

much information in this approach, because this metric only rely on the word

frequencies but not the positions of words.

25

Chapter 3

Empty Result Problem In

KWS-R

The empty result problem in KWS-R presents the scenario that we cannot find

an answer which contains all the keywords in the query. The limitation of the

graph model of relational databases is that there is only one type of connection

(foreign key reference) to represent the relationship between tuples. If two

keyword tuples cannot be connected via a series of foreign key references, there

is no way that the two tuples appear in the same answer. Therefore, no answer

will be returned for a query, if the database does not have a set of keyword

tuples that (1) cover all the keywords and (2) are connected via foreign key

references. Instead of returning nothing, it is better to return something that

will be meaningful to the users in some way. Both Graph-Based KWS-R and

Schema-Based KWS-R have the empty result problem, since they both use the

graph model and consider only foreign key references. In this work, we focus

on Schema-Based KWS-R. For Graph-Based KWS-R, the solution in this paper

cannot be applied directly; therefore, it remains as a further work.

We consider only AND semantics for keyword search, which must return

answers containing all the keywords. There is also OR semantics, which returns

26

answers that contain at least one but not necessarily all the keywords. OR

semantics can be regarded as a trivial solution to the empty result problem,

however it is more interesting and more challenging to consider AND semantics

while solving this problem.

Our solution is based on tuple similarity. The basic idea is that a new rela-

tionship is added for tuples in the database, in addition to foreign key reference,

such that when tuples cannot be connected by foreign key references, they can

be connected by the new relationship. We introduce Similarity Connection for

two tuples as follows.

Definition 6 (Similarity Connection). Given two tuples ti, tj ∈ V , where V is

the set of nodes in G, ti is connected to tj by similarity, iff the similarity score

w of ti and tj is larger than a predefined threshold θ.

Note that the similarity connection is symmetrical. If ti is connected to tj

with a similarity score w, tj is also connected to ti with the same similarity

score w.

In the rest of this section, we first introduce the answer model used in our

solution, then we define the ranking function for the results. We also describe

the similarity measure that are adopted in the solution and show a modified

inverted index that accelerates the search of similar tuples. Finally, we propose

an algorithm that find the answers to the empty result problem efficiently.

3.1 Answer Model

Generally speaking, for a user who queries a database by keywords, he or she

expects a result that satisfy the following two criteria:

1. The result contains all the keywords in the query.

2. The result is a single integrated piece of information. For example, it

could be a graph of tuples, which are connected by foreign key reference;

27

or it could be a set of tuples, which are not connected, but these tuples

together provide some information.

The first criterion is straightforward. The second one means that the result

is not several isolated pieces of information. For example, for a keyword query

“database Agrawal Chaudhuri” in DBLP, the user is likely to look for one

single paper about database that is co-authored by Agrawal and Chaudhuri, or

two separate papers, one is from Agrawal and the other is from Chaudhuri, but

they are both about database. However, the user is less likely to expect a paper

about database from Agrawal and another paper from Chaudhuri that is totally

unrelated to Agrawal’s paper. Users are interested in the information that has

connections.

Therefore, to consider some results that are still interesting to the user, even

if the system fails to find an answer in the traditional way, we still have to follow

the two criteria.

Remember in Schema-Based KWS-R, GES(Q) denotes a expanded schemas

graph. In the empty result problem, for a GES(Q), there is no actual candidate

network (containing all the keywords) but only a set of partial candidate net-

works, which also cannot generate MTJNTs but only tuple trees that contain

a partial set of keywords. We formally define Partial Candidate Network and

Minimal Partial JNT as follows.

Definition 7 (Partial Candidate Network (PCN)). A partial candidate network

is a subgraph of GES(Q) that contains at least one but not all the keywords in the

query, and it is impossible to remove any node from it and make the remainder

contain the same set of keywords as before.

Definition 8 (Minimal Partial Joining Network of Tuples (MPJNT)). A min-

imal partial JNT is a JNT that contains at least one but not all the keywords

in the query, and it is impossible to remove any node from it and make the

remainder contain the same set of keywords as before.

28

Similar to CNs and MTJNTs, MPJNTs are generated by evaluating PCNs,

and PCNs can be considered as the projection of MPJNTs onto the expanded

schema. Given a list of all MPJNTs, a subset of MPJNTs will be interesting

to the user, if they together contain all keywords and they are also connected

in some way. Both MPJNTs and JNTs can be connected by similar tuples or

foreign key references. Therefore, we define the connection of two JNTs.

Definition 9 (Connection of Two JNTs). A JNT τi is connected to a JNT τj

iff there is a tuple ti in τi that is connected to a tuple tj in τj by similarity, or

there is ti in τi that is connected to a tuple tj in τj by a foreign key reference.

Hence, an answer model to the empty result problem is defined as follows:

Definition 10 (Answer to Empty Result Problem). An answer A to the empty

result problem is a connected network of MPJNTs and JNTs that contains all

the keywords in the query, and it is impossible to remove any MPJNT from A

and make the remainder still contain all the keywords.

Note that in an answer A, two MPJNTs can be directly connected, or can

be connected through a JNT that does not contain any keywords.

3.2 Ranking Methods

A ranking method is required by the system to return the most interesting

answers first, as the number of possible answers could be very large. In Section

2.3, we discussed ranking methods that are proposed in the literature for KWS-

R; however, these methods cannot be directly used in the empty result problem,

because the answer models in the two problems are different.

For the empty result problem, we have two main components in the an-

swer model to consider for a ranking function: (1) MPJNTs and (2) the edges

connecting MPJNTs. For MPJNTs and JNTs, we consider them as a small

document and adapt the IR-Style scoring function in Xu et al. [39]. Hence,

each MPJNT and JNT has a score Score(τi) with regard to the keyword query.

29

The scores of the edges between MPJNTs are more complicated. For the sake of

simplicity, we consider an answer with only two MPJNTs τ1 and τ2. For more

than 2 MPJNTs, the connection of any two connected MPJNTs would be one

of the following ways. There are in total three ways that the two MPJNTs are

connected:

1. τ1 and τ2 are directly connected by a similarity edge.

2. τ1 is connected to a JNT τ3 by a similarity edge , and τ2 is connected to

τ3 by a foreign key edge.

3. τ1 and τ2 are both connected to a JNT τ3 by similarity edges.

We have two types of edges: similarity edges and foreign key edges. These two

edges are not equally important in an answer; foreign key edge is stronger than

similarity edge. The weight of the similarity edge is just the similarity score of

the two corresponding tuples. A value between 0 and 1 (Details of the similarity

measure of two tuples are discussed in the next section). Therefore, we simply

assign a same weight of 1 to every foreign key edge. As a result, 2) can be

considered as a special case of 3).

For an answer A, let T = {τ1, τ2, · · · , τn} denote all MPJNTs and JNTs, and

let E = {e1, e2, · · · , em} denote all similarity edges and foreign key edges that

connect MPJNTs and JNTs. Hence, we have the following scoring function:

Score(A, Q) =

∑
ei∈E(Score(τi,l) + Score(τi,r))× Sim(ei)

N
(3.1)

where τi,l and τi,r are the two JNTs or MPJNTs that are connected by ei,

Sim(ei) is the similarity score of two tuples that connected by ei, and N is

the total number of edges in A including foreign key edges inside MPJNTs and

JNTs.

30

3.3 Similarity Measure

In the literature, there are many ways of defining the similarity of two tuples in

the database. Any similarity definition can be used in our solution, however a

different similarity definition would result in different answers. Given a specific

database, how to choose a good similarity definition that makes the system

perform efficiently and generates good results also remain as a further work. In

this paper, we use the cosine similarity with TF-IDF weighting in our work,

because of two reasons: (1) Many works [15, 27, 39] about ranking results of

Schema-Based KWS-R use IR-style ranking formula, which is also based on

TF-IDF weighting; (2) the cosine similarity of two tuples is independent of the

schema of the two tuples, so even two tuples from different tables can have a

similarity score.

In cosine similarity, we consider a tuple in the database as a small document,

which consists of the values of attributes in the tuple. Therefore, the database is

considered as a collection of small documents. In the vector space model, tuples

in the database are represented as term vectors. For example, we have a tuple

as follows in the database:

title authors

Keyword search in relational

databases: a survey

Jeffrey Xu Yu, Lu Qin, Lijun

Chang

This tuple is considered as a small document by combining the values of at-

tribute “title” and “authors.” Thus, this tuple can be represented by the vector

as follows.

{keyword:0.083, search:0.083, relational:0.083, databases:0.083,

survey:0.083, jeffrey:0.083, xu:0.083, yu:0.083, lu:0.083,

qin:0.083, linjun:0.083, chang:0.083 }

Each component of the vector is actually a key/value pair. Keys are the terms

in the tuple, and the value of each key is the weight of the term. For each vector,

31

the number of dimensions is the total number of terms in all the documents.

However, we omit terms that have zero value, because vectors will be multiplied.

There are many methods to define weights of terms. The above example gives

a simple weighting method, the term frequency, which is the occurrence of the

term divided by the total number of terms in the tuple. Since every term in

this example only occur once, their values are the same, 1/12 = 0.083. The

most popular weighting method is TF-IDF weighting, which combines the term

frequency and the inverse document frequency.

Therefore, for two tuples ti and tj , assuming their term vectors are V (ti)

and V (tj), the similarity of ti and tj is defined as:

Sim(ti, tj) =
V (ti) · V (tj)

|V (ti)||V (tj)|
(3.2)

Sim(ti, tj) is a cosine value, and 0 ≤ sim(ti, tj) ≤ 1. When Sim(ti, tj) = 1, ti

and tj are the same; when Sim(ti, tj) = 0, ti and tj are totally different in terms

of words, meaning no overlap of the two term vectors.

The effect of the denominator of Equation 3.2 is the length normalization of

the vectors V (ti) and V (tj). Therefore, we can rewrite Equation 3.2 as:

Sim(ti, tj) = v(ti) · v(tj) (3.3)

where

v(ti) =
V (ti)

|V (ti)|
, v(tj) =

V (tj)

|V (tj)|

v(ti) and v(tj) are called the unit vector of V (ti) and V (tj). Hence the similarity

of two tuples is actually the dot product of their unit vector.

3.4 Similarity Index

It is critical to find similar tuples efficiently in our solution. Essentially, there

are two phases in searching similar tuples for a given tuple: (1) computing the

32

similarity score between the query tuple and other tuples, and (2) ranking the

result tuples according to the similarity scores. Because of the similarity mea-

sure we choose, the two phases are very similar to keyword search for documents

in Information Retrieval [28]. The latter is basically to retrieve the top-k docu-

ments ranked by the similarity score between the keyword query and documents.

In our case, the query tuple is considered as a keyword query and the rest of

tuples in the database are the documents to be retrieved. Therefore, we can use

the technique in keyword search for documents to find similar tuples efficiently.

The key idea of searching similar tuples efficiently is to compute the simi-

larity score while traversing the inverted index. For a query term, an inverted

index can quickly return a list of tuples that contain this term. A tuple is sim-

ply stored by its ID, which is called a posting in the inverted index. The list of

tuples returned for a term is also called the postings list of this term.

Algorithm 1 shows the procedure that utilizes an inverted index to efficiently

find the similar tuples. We walk through the postings in the inverted index

for the terms in the query q, accumulating the total score for each document.

Specifically, for each term t in the query q, we first fetch the postings list for t

using the inverted index. For each tuple d in posting list, we multiply the values

of term t in q and d. This product is added to the score of tuple d. Finally,

given these scores, the K highest-scoring tuples are returned.

Algorithm 1 SimTuple(q)

1: Scores[N] = 0 // record the scores of each tuple
2: for each query term t in q do
3: wq,t = value of term t in the vector of q
4: fetch postings list for t
5: for each tuple d in postings list do
6: wd,t = value of term t in the vector of d
7: wtq,d = wq,t × wd,t
8: Scores[d] += wtq,d
9: end for

10: end for
11: return Top K components of Scores[]

In Algorithm 1, we still need to compute the product of the values of each

33

1 (0.08) 2 (0.13) 3 (0.25) . . .
1 (0.08) 0.0064 0..0104 0.02 . . .
2 (0.13) - 0.0169 0.0325 . . .
3 (0.25) - - 0.0625 . . .

.

Table 3.1: Product Table of Term “database”

term t in q and d (line 7). The multiplication is expensive, especially the mul-

tiplication of two floating point values. To eliminate the multiplication and

improve the algorithm, we consider to pre-compute the products of every pair

of all possible values for each term, and store these results as a product table.

For example, if term “database” has values: 0.08, 0.13, 0.25, 0.37, . . . , each of

which appears in one or more vectors. In other words, we list all the distinct

values for term “database” that appears in all vectors. We can construct a

product table of term “database” as shown in Table 3.1.

We also need to store the indexes of corresponding values in the inverted

index. For example, in the postings list of term “database,” if a vector has

value of 0.13 for this term, we store the column of this value in the product

table with this vector.

Given product tables and the modified inverted index, we need to change

Algorithm 1 to leverage these auxiliaries. The new version is shown in Algo-

rithm 2. In line 3 and line 6, indexes of values are retrieved instead of values

themselves. In line 7, we lookup the product table of term t for the product,

instead of computing it on the fly.

Algorithm 2 can be further improved by compressing the product tables.

Note that Algorithm 2 is only useful if Products(·) could retrieve the result

in the corresponding product table faster than the multiplication operation of

two floating point values. Therefore, the product tables must be in the memory.

However, since every term that appears in the database requires a product table,

and each term may have many different values, in the worst case, the number

of product tables and the size of product table can be very large so that they

cannot be fitted in the memory.

34

Algorithm 2 SimTuplePT(q)

Require: Products(term,i1,i2), which retrieve the item of index (i1,i2) in
term’s product table.

1: Scores[N] = 0 // record the scores of each tuples
2: for each query term t in q do
3: iq,t = index of term t’s value in the vector of q
4: fetch postings list for t
5: for each tuple d in postings list do
6: id,t = index of term t’s value in the vector of d
7: wtq,d = Products(t, iq,t, id,t)
8: Scores[d] += wtq,d
9: end for

10: end for
11: return Top K components of Scores[]

However, for the purpose of ranking the tuples, we are really interested in the

relative, rather than absolute, scores of the tuples in the database. The product

table thus can be compressed by reducing the number of distinct values. In

other words, we break the range of the values into a small number of intervals,

and for each pair of intervals, we compute the average of products of value

pairs that fall in the two intervals. The product table only contain the average

product for every pair of intervals. In this way, the size of product table could

be largely reduced.

3.5 Query Processing

To find answers in the empty result situation, we need to first obtain all the

MPJNTs, and then find similar tuples among these MPJNT to connect them.

For the first phase, we modified algorithms used in Schema-Based KWS-R

[17, 29]. For the second phase, we introduce two new algorithms to search

for answers.

3.5.1 MPJNT Generation Algorithm

In Section 2.2.2, we discuss two phases to find MTJNTs in Schema-Based KWS-

R: CN generation and CN evaluation. Similarly, there are two phases to find

35

MPJNTs: PCN generation and PCN evaluation. Since CN evaluation and PCN

evaluation are essentially the same process, which is evaluating a graph of ex-

panded schemas to generate a graph of tuples, we use the same algorithm from

CN evaluation for PCN evaluation. However, for PCN generation, we cannot

use the same algorithm [29] from CN generation, because a CN contains all the

keywords while a PCN does not. Fortunately, it is easy to modify the algorithm

to generate PCNs. To do that, we only need to remove its the acceptance con-

dition, which is that a CN contains all the keywords. (Actually, the acceptance

condition would never be satisfied, because we are in the empty result situa-

tion.) At the end, the set of subgraphs left, which have not been pruned, is the

set of final PCNs.

3.5.2 ExpandTuple Algorithm

After all MPJNTs are generated, we begin to search for combinations of MPJNTs

by using similar tuples. To do that, we introduce ExpandTuple, as shown in Al-

gorithm 3. A list of MPJNTs is denoted by T = {τ1, τ2, · · · , τn}, which are

ranked by the number of keywords they contain. Specifically, τ1 contains the

largest number of keywords, while τn contains the least. A heap H is also main-

tained to track the ranking of the results. Therefore, the key of H is the ranking

score of the results computed by Function 3.1.

In order to find connections between MPJNT, for each MPJNT τi from T ,

we attach to τi the most similar tuple of each tuple in τi (line 4 to line 9).

Intuitively, it is like expanding the MPJNT by similarity connection to cover

more tuples in the database. After one expansion, we check the following three

things:

1. If the expanded τi already contains all the keywords, it is removed from

T and added to H. (line 10 to line 13)

2. Otherwise, if τi can be combined with some MPJNTs in T , we combine τi

with the one that contains largest number of keywords. Two MPJNTs can

36

be combined iff they have common tuples, the same tuples that appear in

both MPJNTs. (Two MPJNTs originally must have no common tuples,

but after the expansion of one MPJNT, they might have common tuples.)

If the newly combined MPJNT contains all the keywords, it is added to

H; otherwise, it is added to T . (line 14 to line 24)

3. If τi in T cannot be combined any MPJNT in T , then for each newly

attached similar tuples, we search for foreign key connection to all the

tuples in T . Connect τi to the MPJNT with largest number of keywords

if there is any. If the newly connected MPJNT contains all the keywords,

it is added to H; otherwise, it is added to T . (line 25 to line 36)

In step 3, the length of the foreign key connection is limited by a predefined

threshold γ. In our experiment, we set γ = 1, because when γ > 1, the algorithm

is very slow. It could be a future work to improve the algorithm when γ > 1.

If T is not empty, we repeat the expansion process again. For each tuple,

the next most similar tuple is attached. We keep on expanding the tuple trees

in T iteratively until T is empty.

Whenever an answer is found, we need to minimize it before adding it to H,

line 11, 18 and 29 in Algorithm 3. During expansions of the tuple tree, many

similar tuples are attached to it. Some similar tuples contribute to the answer,

because they contain keywords that the original tuple tree do not have, or they

are the common tuples of two or more MPJNTs. However, other similar tuples

are not that important, so those similar tuples should be removed from the

answer before it is added to H. Therefore, we minimize answers by removing

these tuples.

To analyze the complexity of ExpandTuple, let the average number of tuples

in all the MPJNTs be m, and the number of MPJNTs be |T |. In experiments,

we pre-compute the similar tuples for each tuple in the database using Sim-

TuplePT, therefore line 5 costs constant time. Thus, the time complexity for

each expansion is O(m). In both line 14 and line 25, in the worst case, we

37

Algorithm 3 ExpandTuple(T)

Require: T : List of MPJNTs ranked in descending order of the number key-
words they contain.

Require: H: the result heap
1: H ← ∅
2: while T 6= ∅ do
3: τi ← first MPJNT in T
4: for each tuple t in τi do
5: tnb ← next similar tuple returned by SimTuplePT(t)
6: if tnb has not been attached to τi then
7: τi ← τi tnb
8: end if
9: end for

10: if τi contains all keywords then
11: minimize τi
12: H ← H ∪ τi
13: T ← T − τi
14: else if τi can be combined with at least one MPJNT in the rest of T

then
15: τj ← the one with largest # of keywords from all MPJNTs that can be

combined
16: combine τi and τj into τ ′i
17: if τ ′i contains all keywords then
18: minimize τ ′i
19: H ← H ∪ τ ′i
20: else
21: T ← T + τ ′i
22: end if
23: T ← T − τi
24: T ← T − τj
25: else if τi can be connected to at least one MPJNT in the rest of T then
26: τj ← the one with largest # of keywords from all MPJNTs that can be

connected
27: connect τi and τj into τ ′i
28: if τ ′i contains all keywords then
29: minimize τ ′i
30: H ← H ∪ τ ′i
31: else
32: T ← T + τ ′i
33: end if
34: T ← T − τi
35: T ← T − τj
36: end if
37: end while
38: return H

38

need to check each tuple in τi with all tuples in the rest of T . Therefore,

the time complexity for the two parts is O(m · (|T | − 1) · m). And the mini-

mization of MPJNT costs O(m). The total time complexity of ExpandTuple is

O(|T | · (m + m2 · (|T | − 1) + m)), which is O((m · |T |)2). Thus, ExpandTuple

could be slow when |T | is large. Unfortunately, |T | is usually very large, and it

is exponential growth with the number of keywords. Therefore, we design the

second algorithm ProgressiveExpandTuple to improve the performance.

3.5.3 ProgressiveExpandTuple Algorithm

ProgressiveExpandTuple is a progressive algorithm, which means it returns re-

sults progressively. Instead of searching for results after all MPJNTs are found,

it starts searching as soon as possible and return the results whenever it finds

one. It also updates the final results according to the scores of old and new

results.

The main idea is that we add this procedure into the PCN evaluation al-

gorithm, in which it is triggered whenever a new MPJNT is found. As shown

in Algorithm 4, it accepts a heap T of MPJNTs as a parameter, which con-

tains all the MPJNTs that are found so far and have not been processed by

ExpandTuple. If T contains all the keywords, it processes T by sending it to

ExpandTuple. Then it adds the results of ExpandTuple to the result heap, and

present it to users. Note that T will be cleared when it is processed by Expand-

Tuple. ProgressiveExpandTuple will be triggered again when a new MPJNT is

found in the PCN evaluation algorithm.

Note that the results found by ProgressiveExpandTuple are different from

that found by ExpandTuple. ProgressiveExpandTuple finds results from a small

set of MPJNTs, while ExpandTuple finds results from all MPJNTs. The for-

mer is locally optimized, and the latter is globally optimized. As shown in the

experiments, ExpandTuple provides results with better quality than Progres-

siveExpandTuple does, however, ProgressiveExpandTuple returns results faster

than ExpandTuple does. It is the trade off between the quality and the speed.

39

Algorithm 4 ProgressiveExpandTuple(T)

Require: T : A heap of MPJNTs ranked in descending order of the number
keywords they contain. It contains MPJNTs that are found so far and have
not been processed by ExpandTuple.

Require: H: the result heap
1: if T contains all keywords then
2: H ← ExpandTuple(T)
3: end if
4: Present H

40

Chapter 4

Experiments

The effectiveness evaluation of keyword search over relational databases remains

as an open challenge [38]. In the literature, several works [39, 27, 26, 15] mainly

focus on the effectiveness of KWS-R. However, there are many problems in their

experiments of effectiveness evaluations, as pointed out in [38]. For example,

first, queries in the experiments are generally formulated by the authors them-

selves, but self-authored queries usually have a strong potential bias, since it

is very easy to choose queries that are favorable to their own algorithms than

others’. Second, query sets are not reusable such that it is difficult to compare

the results from experiments to experiments.

Recently, Coffman et al. [6] propose a framework for evaluating keyword

search over relational databases. Essentially, they provide datasets, queries and

a set of relevant results as the ground truth for evaluation, and they follow

the best practice from the establishment of frameworks like TREC. However,

we cannot directly use Coffman et al.’s framework in our solution, because we

need queries that do not return answers in the traditional keyword search in

relational databases. Nevertheless, we reuse the ground truth that are provided

in the framework. We generate empty result queries from the original queries in

the framework, such that the ground truth of the original queries can be used

to assess the relevance of the results for the empty result queries. Therefore,

41

a result for an empty result query is relevant iff the result contains all the

information that is in the relevant answer for the original query of the empty

result query. More details are discussed later.

Our experiment evaluates the effectiveness and the performance of the sys-

tem. For the effectiveness, we want to find out how the results are relevant to

the query. For the performance, we want to show what is the overhead to use

our system to find answers when the query generates empty results originally.

4.1 Data Set

Two datasets from the framework [6] are used, IMDb and Wikipedia. The size

of IMDb dataset is 516MB, and it has 6 relations and 1,673,074 tuples in total.

The size of Wikipedia dataset is 550MB, and it has 6 relations and 206,318

tuples in total.

4.2 Query Set

As mentioned above, we reuse the ground truth in the framework [6], and there-

fore we generate our query set from the queries in the framework [6]. For a

original query and its corresponding relevant result, our target is to find a new

query with the intent that is similar to the original intent as close as possible,

and it also returns empty results in the traditional KWS-R system. The basic

idea is to replace one keyword in the old query with a new keyword so that the

new query meets those goals.

At first, we wrote a program, based on simple heuristics, that automatically

generates empty queries from original ones. Specifically, for an original query

Q = {k1, k2, . . . , km}, it first gets a relevant result in the ground truth. Next,

it randomly picks a keyword ki in Q, and find a tuple ts that is similar to the

tuple in the result that contains ki. Then it searches for a keyword kj in ts such

that all tuples that contain kj cannot form a new result with the rest of the

42

tuples in the original result, because either they are not connected, or the size

of the tuple tree exceeds the size limit of results. If kj is found, then Q with

ki being replaced by kj is the new query. Otherwise, a new keyword ki in Q is

picked, and the process is repeated until a satisfied kj is found.

There are two problem with this program. First, it is not efficient. It takes

long time to generate one query. Second, most importantly, the new replacement

keyword is usually not related to the old keyword or the rest of keywords in the

query. Therefore, the intent of the new query is not guaranteed to be similar to

the original intent.

Finally, we manually generate new queries by replacing keywords by their

synonyms until the new queries are actually empty queries. It is more time-

consuming, but it guarantees that the new queries have the similar intents with

the original ones’, so that it is appropriate to use the ground truth from the

framework in our experiments.

We generate 50 queries for each data set. In the framework [6], there are 50

queries for each IMDb and Wikipedia datasets. However, some queries contain

only one keyword, and we cannot generate new queries from them, because

for our system, queries should contain at least two keywords. Therefore, we

generate more than one new queries for some original queries. 50 queries for

each databases are listed in Appendix 6.1.

4.3 Metrics

To measure the effectiveness of our system, we adopt two metrics used in the

previous study [27]:

1. Number of top-1 answers that are relevant. We run all the queries,

and take the top-1 answer for each query, then compare it with the relevant

answers of that query. It is the number of queries for which the first answer

is relevant.

2. Mean reciprocal rank. For each query, we select the most relevant

43

answer in its results list. If the position of the most relevant answer is r,

then the reciprocal rank of that query is: 1/r. The mean reciprocal rank

of all the queries Q is:

1

|Q|

Q∑
i=1

1

ri

To calculate both metrics, we retrieve the top 10 results for our system. The first

metric measures the quality of top 1 answers while the second metric measures

the quality of top 10 answers.

4.4 Implementation

Since our work is based on Schema-Based KWS-R system, we implement it by

ourself as described in Section 2.2.2. CN generation process is implemented

according to a pre-order traversal algorithm proposed in Markowetz et al. [29].

CN evaluation process is implemented according to DISCOVER [17]. We use

Xu et al. [39]’s ranking method in our Schema-Based KWS-R system, as it is

the most advanced IR-style ranking method for Schema-Based KWS-R.

We assume that the databases are not frequently updated (inserting or delet-

ing tuples), in which case similar tuples for each tuple are not changed frequently.

Therefore, we pre-compute top 10 similar tuples for each tuples in the databases.

Instead of searching for similar tuples on the fly, we can fetch similar tuples very

quickly by just looking up a pre-computed table. However, it is very expensive

to pre-compute the similar tuples for the entire database in terms of both time

and space. We use about 25.5 hours to compute the table for IMDb dataset and

about 18 hours for Wikipedia dataset. The time depends on both the number

of tuples and the size of tuples while the size of pre-computed table only de-

pends on the number of tuples. For IMDb, the pre-computed table is 149MB;

for Wikipedia, it is 26MB. Therefore, our solution is not flexible for databases

that are updated frequently. Incremental updates on the indexes remains as a

further work.

44

We implements both ExpandTuple and ProgressiveExpandTuple algorithms.

In both cases, we use the same ranking methods discussed in Section 3.2 for

ranking the final results.

Our experiments setup is a PC with Intel Core Duo CPU 2.33 Ghz and 4 GB

memory, running 32-bit Window 7 Professional Operating System. We use Post-

greSQL 8.4 as our database management system. Our system is implemented

in Java and communicated with PostgreSQL through JDBC interface.

4.5 Results

 0

 10

 20

 30

 40

 50

IMDb WikipediaN
um

be
r

of
 T

op
-1

 A
ns

w
er

s
T

ha
t A

re
 R

el
ev

an
t

Dataset

ExpandTuple
ProgressiveExpandTuple

Figure 4.1: Comparison of Number of top-1 answers that are relevant for all
queries for each dataset. Higher bars are better.

Figure 4.1 and Figure 4.2 summarize the effectiveness of our system. Figure

4.1 shows the number of top-1 answers that are relevant for all queries for each

dataset. When using ExpandTuple algorithm, for IMDb dataset, there are 7

of 50 top-1 answers that are relevant, while there are 13 of 50 top-1 answers

for Wikipedia dataset. When using ProgressiveExpandTuple, IMDb dataset

45

 0

 0.2

 0.4

 0.6

 0.8

 1

IMDb Wikipedia

M
ea

n
R

ec
ip

ro
ca

l R
an

k

Dataset

ExpandTuple
ProgressiveExpandTuple

Figure 4.2: Comparison of Mean reciprocal rank for all queries for each dataset.
Higher bars are better.

only has 1 of 50 relevant top-1 answer, and Wikipedia dataset has 4 of 50

relevant top-1 answers. Therefore, ExpandTuple provides better results than

ProgressiveExpandTuple does.

There is no existing system that solves the empty result problem for KWS-R,

we don’t have other systems to compare. However, in [6], there is a comparison

of top-1 relevant answers for all traditional KWS-R system, and the average

number is 28. Although it is based on different query set and dataset, it can

be used as a reference. Our system is not as effective as traditional KWS-R

systems, but it indeed is capable to return the most relevant answers for some

queries.

Figure 4.2 shows the mean reciprocal rank for all queries for each dataset.

With ExpandTuple, for IMDb dataset, the mean reciprocal rank is 0.42, while

for Wikipedia dataset, it is 0.65. It shows our system is capable to return rele-

vant answers. ProgressiveExpandTuple again has lower mean reciprocal ranks

than ExpandTuple in both datasets.

46

In both figures, the metrics of Wikipedia dataset are higher than that of

IMDb dataset. The difference, however, depends on various factors, such as

query set, size of the dataset or schema of the database. We use different query

sets for two datasets, therefore, it is hard to tell the real reason. Nevertheless,

one possible reason is that for Wikipedia, tuples tend to contain more text than

that in IMDb, and our similarity connection is more useful when tuples contain

more text.

 0

 2

 4

 6

 8

 10

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

R
un

ni
ng

 T
im

e
(s

ec
)

Query

KWS-R
ExpandTuple

ProgressiveExpandTuple

Figure 4.3: Comparison of Running Time of Traditional KWS-R and Empty
Result KWS-R

For comparison, we also implement the traditional KWS-R. Figure 4.3 shows

the performance of our system. When evaluating the performance, our goal is

to show how much overhead the user would get when using our system to find

answers when empty results is found originally. For simplicity, we randomly

choose 10 queries out of 50 to show in Figure 4.3. They are good representation

of overall performance. For each query, the running time is the time from the

beginning to when the very first result is returned. The traditional KWS-R

and empty result KWS-R with ExpandTuple algorithm do not progressively

47

return answers, but empty result KWS-R with ProgressiveExpandTuple algo-

rithm does. As shown in Figure 4.3, empty result KWS-R with ExpandTuple

take time of 1.5 to 2.5 times more than traditional KWS-R does. In other words,

when no result is returned for the original query, the user need to wait 0.5 to

1.5 times more time before he or she could get an answer from our system.

It is not very long, but ProgressiveExpandTuple reduces the waiting time of

the first answer as shown in Figure 4.3. Empty result KWS-R with Progres-

siveExpandTuple algorithm requires the user to wait much less to get answers.

ProgressiveExpandTuple improves the user experience in items of response time.

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

Figure 4.4: Comparison of ExpandTuple and ProgressiveExpandTuple

Figure 4.4 compares ExpandTuple and ProgressiveExpandTuple, and shows

how ProgressiveExpandTuple algorithm reduces the response time and improves

the user experience. ExpandTuple does not return answers until it finds all of

them, therefore the time when the user gets the first answer is the same as the

time he or she gets the first 10 answers. ProgressiveExpandTuple, on the other

hand, progressively returns answers, therefore it starts searching results as soon

48

as possible, and returns the results whenever it finds them. In this way, as

shown in Figure 4.4, the time the user gets the first answer is much earlier that

the previous approach.

However, we also notice that the time the user gets the fist 10 answers is

actually greater in ProgressiveExpandTuple than in ExpandTuple. One of the

explanation is that there is an overhead to start searching results as soon as

possible. However, it is the trade off to have better response time.

49

Chapter 5

Conclusions And Future

Work

Keyword search in relational database attracts a lot of attentions in the database

community over past decade. Most of fundamental work has been done. For ex-

ample, an answer for a keyword search is no longer a table of records as in results

for SQL queries. Instead, it is a graph of tuples that are connected by foreign

key references. To find such an answer, the database is considered as a directed

graph, in which nodes are tuples and edges are foreign key references. Since

there are existing algorithms in graph theory, people proposed solutions based

on graph algorithms to find answers for keyword queries. They are categorized

as Graph-Based KWS-R systems [4, 20, 14, 9, 11, 22]. Some other people, on

the other hands, proposed solutions based on the existing technologies of tradi-

tional databases, especially the schemas table that all databases have. They are

categorized as Schema-Based KWS-R systems [1, 17, 15, 37, 26, 27, 39]. In both

kinds of systems, however, if the system cannot find tuples that contain all the

keywords and also are connected by foreign key references, then no result will

be returned. We call it empty result problem. Empty result problem happens

firstly when the database is not totally connected. In other words, the data

50

graph of the database consists of many disconnected small graph instead of a

single large graph. Secondly, even if tuples that contain all keywords are in a

single graph, it also happens when tuples are very far away so that the size of

final answer would be too large to be meaningful to the users.

In this thesis, we proposed a solution to empty result problem by adding a

new type of connection. Our solution use the similarity between two tuples as

a second connection. In addition to the foreign key references, the similarity

increases the possibility of connection of any two tuples in the database. The

basic idea of our solution is that we first find all the graphs of tuples that

contain only a portion of keywords in the query, called partial results. We then

use similar tuples to expand partial results. Finally we find combinations of

the expanded results that contain all the keywords. Our system is triggered

whenever a keyword query generates empty results in the traditional KWS-R

system.

To define the similarity of two tuples, we consider each tuple as a small

document. We use TF-IDF weighing technology from Information Retrieval

to convert each tuple into a term vector. Finally the cosine value of two term

vectors is computed as the similarity of the two corresponding tuples. In order to

quickly find similar tuples, we also build indexes that are modified from inverted

indexes to boost searching time. We design two algorithms, ExpandTuple and

ProgressiveExpandTuple to find similarity connection between partial results,

and return those combinations of partial results that contain all keywords. To

rank the results, we modified the IR-style ranking function in Schema-Based

KWS-R [39].

We also conduct experiments to evaluate the effectiveness and the perfor-

mance of our system. From the experiments results, we show that although our

system is not guaranteed to return very high quality results for every query, it

is capable of finding the most relevant answers for some queries and the average

quality of top 10 answers is also good. Moreover, our system takes only 0.5

to 1.5 times extra time to search for results when the empty result problem

51

happens.

One possible future work is improving the performance of the algorithms.

Another interesting topic is the definition of the similarity between tuples. The

current definition is not applied to every database. Is there a more general

definition or for a specific database, can we have a better definition of similarity?

This could also be a future work. For databases that are updated frequently,

incremental update to similarity indexes is also very important, because it is

expensive to pre-compute indexes. Therefore, it is also a good topic to work on

in the future.

52

Bibliography

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: a system for keyword-

based search over relational databases. In Proceedings of the 18th Interna-

tional Conference on Data Engineering, pages 5 –16, 2002.

[2] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of

database query results. In CIDR, 2003.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: authority-

based keyword search in databases. In Proceedings of the 30th International

Conference on Very Large Data Bases, pages 564–575, 2004.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using banks. In Proceedings

of the 18th International Conference on Data Engineering, pages 431 –440,

2002.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic ranking

of database query results. In Proceedings of the Thirtieth International

Conference on Very Large Data Bases. VLDB Endowment, 2004.

[6] J. Coffman and A. C. Weaver. A framework for evaluating database key-

word search strategies. In Proceedings of the 19th ACM international con-

ference on Information and knowledge management, CIKM ’10, pages 729–

738, New York, NY, USA, 2010. ACM.

53

[7] W. W. Cohen. Integration of heterogeneous databases without common

domains using queries based on textual similarity. In Proceedings of the

1998 ACM SIGMOD International Conference on Management of Data,

1998.

[8] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on external

memory data graphs. In Proceedings of the VLDB Endowment, volume 1,

pages 1189–1204, 2008.

[9] B. Ding, J. Xu Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding

top-k min-cost connected trees in databases. In Proceedings of the 23rd

International Conference on Data Engineering, pages 836–845, 2007.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record

detection: A survey. IEEE Trans. on Knowl. and Data Eng., 2007.

[11] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in

complex data graphs. In Proceedings of the 2008 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 927–940, 2008.

[12] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an

rdbms for web data integration. In Proceedings of the 12th International

Conference on World Wide Web, 2003.

[13] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Uni-

versity Press, 1998.

[14] H. He, H. Wang, J. Yang, and P. Yu. Blinks: ranked keyword searches on

graphs. In Proceedings of the 2007 ACM SIGMOD International Confer-

ence on Management of Data, pages 305–316, 2007.

[15] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style key-

word search over relational databases. In Proceedings of the 29th Interna-

tional Conference on Very Large Data Bases, pages 850–861, 2003.

54

[16] V. Hristidis, H. Hwang, and Y. Papakonstantinou. Authority-based key-

word search in databases. ACM Transactions on Database Systems,

33(1):1–40, 2008.

[17] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in rela-

tional databases. In Proceedings of the 28th International Conference on

Very Large Data Bases, pages 670–681, 2002.

[18] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem.

North-Holland, 1992.

[19] M. Jaro. Advances in record-linkage methodology as applied to matching

the 1985 census of tampa, florida. Journal of the American Statistical

Association, 84(406):414–420, 1989.

[20] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and

H. Karambelkar. Bidirectional expansion for keyword search on graph

databases. In Proceedings of the 31st International Conference on Very

Large Data Bases, pages 505–516, 2005.

[21] W. Kießling and G. Köstler. Preference sql - design, implementation, expe-

riences. In Proceedings of the 28th International Conference on Very Large

Data Bases, pages 990–1001. VLDB Endowment, 2002.

[22] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in

keyword proximity search. In Proceedings of the 25th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, pages

173–182, 2006.

[23] G. Li, J. Feng, F. Lin, and L. Zhou. Progressive ranking for efficient key-

word search over relational databases. In Proceedings of the 25th British

National Conference on Databases, pages 193–197, 2008.

[24] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an effective 3-in-1

keyword search method for unstructured, semi-structured and structured

55

data. In Proceedings of the 2008 SIGMOD International Conference on

Management of Data, pages 903–914, 2008.

[25] G. Li, X. Zhou, J. Feng, and J. Wang. Progressive keyword search in

relational databases. In Proceedings of the 25th International Conference

on Data Engineering, pages 1183 –1186, 2009.

[26] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in

relational databases. In Proceedings of the 2006 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 563–574, 2006.

[27] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in re-

lational databases. In Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data, pages 115–126, 2007.

[28] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008.

[29] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on relational

data streams. In Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data, pages 605–616. ACM, 2007.

[30] A. Markowetz, Y. Yang, and D. Papadias. Keyword search over relational

tables and streams. ACM Transactions on Database Systems, 34(3):1–51,

2009.

[31] C. Mishra and N. Koudas. Interactive query refinement. In EDBT, 2009.

[32] A. Motro. Query generalization: a method for interpreting null answers.

In Proceedings from the first international workshop on Expert Database

Systems, pages 597–616, 1986.

[33] A. Motro. Seave: a mechanism for verifying user presuppositions in query

systems. ACM Transactions on Information Systems, 4(4):312–330, 1986.

56

[34] L. Qin, J. Yu, and L. Chang. Keyword search in databases: the power of

RDBMS. In Proceedings of the 35th SIGMOD International Conference on

Management of Data, pages 681–694, 2009.

[35] L. Qin, J. Yu, L. Chang, and Y. Tao. Querying communities in relational

databases. In Proceedings of the 25th International Conference on Data

Engineering, pages 724 –735, 2009.

[36] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., New York, NY, USA, 1986.

[37] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient keyword

search across heterogeneous relational databases. In Proceedings of the

23rd International Conference on Data Engineering, pages 346 –355, 2007.

[38] W. Webber. Evaluating the effectiveness of keyword search. IEEE Data

Engineering Bulletin, 33(1):55–60, March 2010.

[39] Y. Xu, Y. Ishikawa, and J. Guan. Effective top-k keyword search in rela-

tional databases considering query semantics. APWeb/WAIM 2009 Inter-

national Workshops, pages 172–184, 2009.

57

Chapter 6

Appendix

6.1 Queries

Table 6.1 shows the 50 queries for IMDb dataset that are used in our experi-

ments. Table 6.2 shows the 50 queries for Wikipedia dataset.

58

washington teaching ball clint fighting waitress

john stomach will jackie japan

ford empire roberts people world

tom jobs depp guitarist keith

go wind space wars

africa lover god rings

sound euphony magic of oz

the note book vietnam gump

precious bride coppola father

atticus lawyer jones professor

james bourne rick paris

gunman kane hannibal mills

bates robert bloch vader samurai

wicked west magic ratched joker

apparently my dear i don’t give a damn i’m going to make him an offer he can’t reject

i’m going to give him an offer he can’t reject toto i’ve a feeling we’re not in kansas any more

here is looking at you child hamill vader

forrest 2004 henry fonda you my ours character

russell crowe bullfight spiner star alien

hepburn boardway fiction clouseau detective

name ryan rabbit rocky arnold

name ryan red rocky alois

name sky net back ford lucas western

sean connery alexander reeves brother manga

dean jones carlo indiana jones 1989 robot wars

Table 6.1: Queries for the IMDb dataset

59

explorer probe rocks rhapsody

1755 lisbon collapse building nuba wood

entertain circus street leap year explorer louis

scott north pole monty flying circle

british east india fire mountain globalization english

india antiquity plateau worldwise english

bird white black chicken yuhuangge chongqing china district beijing

kindle basin brazil gas tungsten arc welding metallic shield

bezos basin brazil gas tungsten arc welding metal shell

moorhen gallinula chik england france hawfinch

hilda of whitby christmas saint roman eifel civilization building

fsa finance services agent armstrong china circle france

fall apart history 1989 breakdown of powers

hongkong landmark finance china takashi tezuka fable

atlantic japan eastern battle george edward fascistic

19 galveston galveston typhoon

dover steep edge rock somalia battle

william pitt junior russia union casualties world war ii

dam lake patriot nonrational number

mona lisa model spanish swine

exxon valdez oil wasteweir einstein special relation

pridefulness and prejudice author nuclear numbers lanthanides

smallpox efficacious web AlleborgoBot

mwuser weapon hiroshima worldwise developing world bank

england rugby city speak civilization

Table 6.2: Queries for the Wikipedia dataset

60

6.2 Comparison of ExpandTuple and Progres-

siveExpandTuple

The following 10 figures shows that the comparison of ExpandTuple and Pro-

gressiveExpandTuple for the 10 queries we use in our experiments. We can

notice that in 9 of 10 queries, ProgressiveExpandTuple uses more time than

ExpandTuple to return the first 10 results, although it returns the first 1 result

much faster than ExpandTuple does.

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

61

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

62

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

63

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

64

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

65

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Results

ProgressiveExpandTuple
ExpandTuple

66

