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Summary 

This thesis focuses on the development of gradient smoothing operations in the weak 

and strong forms and the application of these methods to model biological systems. The 

work comprises three parts: the first is to apply edge-based smoothed finite element 

method (ES-FEM) in 2D and face-based smoothed finite element method (FS-FEM) in 

3D based on the weak form in the thermal-mechanical models for the hyperthermia 

treatment of human breast, and to formulate the alpha finite element method (αFEM) 

based on the weak form to analyze phase changes in the liver cryosurgery and bioheat 

transfer in the human eye. The second part is to develop the gradient smoothing 

operation in the strong form to formulate a novel piecewise linear gradient smoothing 

method (PL-GSM) and alpha gradient smoothing method (αGSM) for fluid dynamics. 

The third part is to combine the gradient smoothing operation in the weak and strong 

form to develop the immersed gradient smoothing method (IGSM) to solve 

fluid-structure interaction (FSI) problem.  

Traditional finite element method (FEM) has several limitations including 

‘overly-stiff’ and rigid reliance on elements. Through gradient smoothing operations 

in the Galerkin weak form, the stiffness of FEM model can be reduced. The accuracy 

of numerical solutions can then be significantly improved. Numerical examples in 

biological systems such as liver cryosurgery, bioheat transfer in the human eye and 

hyperthermia treatment of the breast have strongly demonstrated that the results 

obtained from gradient smoothing operation in the Galerkin weak form are 

remarkably efficient, accurate and stable. 
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Enlightened by the attractive merits of gradient smoothing operation in the 

Galerkin weak from, the PL-GSM derived from the gradient smoothing operation to 

approximate the derivatives of any function applied directly to the strong form is 

proposed. The PL-GSM is a purely mathematical operation that adopts the piecewise 

linear smoothing function to approximate the gradient of unknown variables. The 

flexibility of the PL-GSM allows it to make use of existing meshes that have originally 

been created for finite difference or finite element methods. The PL-GSM solutions 

show perfect agreements with experimental and literature data in the fluid dynamics.  

Additionally, the alpha gradient smoothing method (αGSM) that combines piecewise 

constant and piecewise linear smoothing functions is proposed in this thesis. In the 

αGSM, the parameter α controls the contribution of piecewise constant and piecewise 

linear smoothing function.  

The immersed gradient smoothing method (IGSM) couples the gradient smoothing 

operation in the weak and strong form to address fluid structure interaction problems. 

The algorithm of IGSM is similar to the immersed finite element method (IFEM). In the 

IGSM, a mixture of Lagrangian mesh for the solid domain and Eulerian mesh for the 

fluid domain is employed. However, the edge-based smoothed finite element method 

(ES-FEM) is used to discretize the solid structure in order to soften the finite element 

model in the solid domain. In the fluid domain, the piecewise linear gradient smoothing 

method (PL-GSM) is employed to solve the modified Navier –stokes equation, which 

reduces the computational cost of finite element method (FEM) without compromising 
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accuracy. Two numerical examples are presented to verify the application of IGSM. All 

the numerical solutions demonstrate that the IGSM is accurate, robust and efficient. 
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Chapter 1   

 

Introduction 

 

1.1 Gradient smoothing operation in the weak form 

1.1.1 Background of weak form in the numerical technique 

Analytical solutions are seldom obtained for partial differential equations 

governing a physical problem. Many numerical methods have been developed to 

obtain approximate solution such as Finite Element Methods (FEM), Finite 

Difference Methods (FDM), Finite Volume Methods (FVM), etc. All numerical 

methods are classified into two groups: direct approach and indirect approach. Weak 

form methods based on an alternative weak form system of equations are indirect 

approaches.   

  The vital idea of a weak form is to determine a global behavior of the entire system 

and then obtain a best possible solution to the problem that can strike a balance for the 

system in terms of the global behavior [1]. There are usually two ways to construct 

weak forms. One is the weighted residual methods, another is the energy principles. 

The Galerkin formulation can be derived from both methods. The weighted residual 

method is a more general and powerful mathematical tool that can be used for 

discretized system equations for many types of engineering problems. The minimum 
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energy potential principle is a convenient tool for deriving discrete system equations 

for FEM and also for many types of approximation methods. 

The discretized equations derived based on the weak form are usually more stable 

and can provide more accurate results. This is because of the well-structured error 

control measures built into the weak formulation, which can produce a stable set of 

algebraic equation and preserves the symmetrical property for irregularly distributed 

nodes [1].  

1.1.2 Introduction of Finite Element Method (FEM) 

The traditional Finite Element Method (FEM) is founded on the variational or 

energy principles of virtual work, Hamilton’s principle, the minimum total potential 

energy principle, and so on [1-2]. The FEM possesses many attractive features and is 

currently the most widely used and reliable numerical approach [2] with many 

commercial software packages available. In the FEM, the physical domain is denoted 

by an assemblage of subdivisions called elements. The governing partial differential 

equations (PDEs) called strong from that requires strong continuity on the field 

variables can be transformed into weak formulations. Once the weak form is 

formulated, the shape function is now created using polynomial functions. The 

stiffness and load vector can be computed when the strain field is calculated. After 

assembling the global matrices/vectors and imposing proper boundary conditions, the 

global equilibrium system of equations governing the problem domain can be 

established and solved.  
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Although the FEM has achieved remarkable progress in the development of 

numerical methods, there are some major issues related to the FEM. The first issue is 

the ‘overly-stiff’ phenomenon of a fully compatible FEM model of assumed 

displacement based on the Galerkin weak form [2], which can cause ‘locking’ behavior 

and poor accuracy in stress solution. In the FEM model, stresses are discontinuous and 

often less accurate. The second issue is that the FEM is limited by the rigid reliance on 

the elements. In large deformation problems, accuracy could be lost due to element 

distortion or even break down during the computation. The third issue is mesh 

generation. Engineers prefer using the triangular or tetrahedral elements because they 

can be generated automatically even for problems with complex geometry. However, 

triangular elements often give solutions of very poor accuracy. 

1.1.3 Concept of gradient smoothing operation in the weak form 

In order to overcome the shortcomings of overly stiff predictions and mesh 

dependency in FEM, many efforts have been made to address these issues, especially 

in the area of hybrid FEM formulation [3, 4]. In 2000, strain smoothing techniques 

applied in the FEM was proposed by the Chen et al. [5]to stabilize the solutions of 

nodal integrated meshfree methods and natural element method [6]. The essential idea 

of gradient smoothing operation in the weak form is to modify the compatible strain 

in the FEM model.  

In the standard FEM model, strain energy is obtained based on the compatible 

strain using the strain-displacement relationship. The discrete system of equation is 
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established by the Galerkin weak form. However, the evaluation of strain energy is 

calculated by the modified strain in the gradient smoothing operations of weak form, 

and a proper energy weak form is used to construct the discretized model. The 

modified strain must be done properly to ensure stability and convergence.   

The formulation of gradient smoothing operation in the weak form is quite similar 

to the FEM. First, the problem domain is discretized into elements. Triangular 

elements for 2D and tetrahedral elements for 3D are preferred. When triangular or 

tetrahedral elements are used, the process for meshing is the same as in the FEM. The 

smoothed strain is constructed via simple surface integration on the smoothing 

domain boundaries without any need for coordinate mapping. The smoothed Galerkin 

weak form is used to establish the discrete linear algebraic system equations instead 

of the Galerkin weak form. The treatment to impose boundary conditions is exactly 

the same as FEM. 

The important outcome of gradient smoothing operation in the weak form is the 

creation of softer models than FEM models. It is noted that there is a number of 

gradient smoothing operations in the weak form due to the types of smoothing 

domains. 

1.1.4 Features and properties of gradient smoothing operation in the 

weak form 

In this thesis, three types of gradient smoothing operations are introduced. The first 

gradient smoothing operation in the weak form is the typical node-based finite 
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element method (NS-FEM) [7]. In the NS-FEM, the smoothing domain associated 

with the node is created by connecting sequentially the mid-edge-point to the central 

points surrounding elements sharing the node. It is found that when a reasonably fine 

mesh is used, the NS-FEM can produce upper bound solutions in strain energy for 

problems with homogeneous essential boundary conditions [7]. Using these bound 

properties of NS-FEM and FEM solutions, one can now effectively certify a numerical 

solution and conduct elegant adaptive analyses for solutions of desired accuracy [7]. 

Moreover, the NS-FEM is immune from volumetric locking and hence works well for 

nearly incompressible materials. However, the NS-FEM model is “overly-soft” 

leading to temporal instability which is observed as spurious non-zero energy modes in 

vibration analysis [7].  

The second gradient smoothing method in the weak form is the alpha finite element 

method (αFEM ) [8-10]. It is a fascinating and attractive idea to obtain exact solution 

in the energy norm using numerical method. The αFEM  makes the best use of 

NS-FEM with upper bound property and FEM with lower bound property. The key 

point in the αFEM  is to introduce an α  coefficient to establish a continuous function 

of strain energy that includes the contributions from the FEM and NS-FEM. When α

=0, the αFEM  is exactly the same as FEM, and the strain energy is underestimated. 

When α =1, the αFEM becomes NS-FEM, and the strain energy is overestimated. 

Using meshes with the same aspect ratio, a unified approach has been proposed to 

obtain nearly exact solution in strain energy for any given linear elasticity problem. 

The formulation ensures varitaional consistency and compatibility of the displacement 
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field, so the αFEM  is always spatially and temporally stable. The αFEM  is very 

easy to implement and apply to practical problems of complicated geometry, because 

existing linear FEM code can largely be utilized.  

The third gradient smoothing operation in the weak form is the edge-based 

smoothed finite element method (ES-FEM) [11, 12]for 2D and face-based finite 

element method (FS-FEM) [12, 13]for 3D. In the ES-FEM, strain smoothing domains 

and the integration are operated over the edge-based (2D) and face-based (3D) 

smoothing domains respectively. The smoothing domain of an edge is created by 

connecting the nodes at two ends of the edge to centroids of two adjacent elements that 

can be triangular, quadrilateral, and even n-sided polygonal elements. The ES-FEM 

and FS-FEM are found to have the following excellent properties: (1) a very 

close-to-exact stiffness: softer than the ‘overly-stiff’ FEM, but stiffer than the 

‘overly-soft’ NS-FEM, (2) both spatial and temporal stability due to the absence of 

spurious non-zero-energy modes, (3) easy implementation without additional degrees 

of freedom, (4) improved accuracy compared to the FEM with the same set of nodes, 

(5) better computational efficiency.    

1.2 Gradient smoothing operation in the strong form 

1.2.1 Background of strong form in the numerical technique 

Strong form equations are those given in the form of PDEs. In fluid mechanics, the 

velocity functions are required to have the second order consistency in the entire 
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problem which is the same as the order of the differentiations in PDEs. Such a 

requirement on consistency for the velocity functions is strong [1].  

Obtaining the exact solution for such a strong form system equation is very hard in 

practical engineering problems. The finite difference method (FDM) which uses the 

finite differential representation (Taylor series) of a function in a local domain can be 

used to solve system equations of a strong form to obtain an approximate solution.  

In the FDM, the derivative is computed with an approximate difference formula 

derived from a Taylor series expansion, using single or multiple block structure mesh. 

The strong form equations are then discretized onto nodes of a set of structure mesh, 

which result in a system of algebraic equations with a banded matrix of coefficients. 

There are many numerical techniques available to obtain the solutions for a system of 

algebraic equations [14]. However, it is very difficult to discretize the boundary 

conditions with the FDM, especially in the case of arbitrary shaped domains [15]. 

Although the FDM may be applied to some slightly complicated geometry, issues 

related to the mapping from physical domain to computational domain complicate the 

process and usually requires additional and tedious mathematical transformations that 

can be more expensive than solving the problem itself in numerical implementation [16, 

17]. 

  In order to tackle the limitations of the FDM, some meshfree methods based on the 

strong form have been developed, such as smoothed particle hydrodynamics (SPH) 

[18, 19], meshfree collocation method [20]  and the least squares radial point 

collocation method (LS-RPCM) [21]. The formulation of meshfree strong form 
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method is quite straightforward and computationally efficient. However, the solutions 

to such meshfree strong methods are often not very stable against the model setting 

and the node irregularity [22]. The accuracy of the result often is dependent on the 

treatment of boundary conditions, node distribution in the problem domain, and the 

selection of the nodes for the function approximation. Therefore, special techniques 

are needed to stabilize the solution [23]. 

1.2.2 Fundamental theories of gradient smoothing operations in the 

strong form 

Inspired by the attractive features of gradient smoothing operations in the weak 

form, the gradient smoothing operations in strong form governing equations for fluid 

problems is proposed [24]. Unlike the Finite Volume Method (FVM) derived from 

physical conservation laws [25], this method based on gradient smoothing operation 

in the strong form works only when Partial Differential Equations (PDEs) are 

available. It is a completely mathematical operation to approximate the spatial 

derivatives in a weighted integral fashion regardless of its physical meaning. Once the 

derivatives are obtained, the procedure of gradient smoothing operation in the strong 

form is as easy as the traditional FDM. 

Similar to the gradient smoothing operation in the weak form, triangular elements are 

primarily used because they can be generated very easily and efficiently. Both regular 

and irregular elements are used in the development of gradient smoothing operation in 

the strong form. The original elements created by triangulation are used as 
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background elements. All the unknown variables are stored at nodes and their 

derivatives at various locations are consistently and directly approximated with 

gradient smoothing operation using a set of properly defined gradient smoothing 

domains. All sorts of gradient smoothing domains are constructed based on these 

background cells [24]. 

 Different smoothing functions (piecewise constant [24], piecewise linear [26] and 

alpha [27]) can be used. Obviously, the numerical treatment becomes more 

sophisticated if the smoothing function is more complicated. In the following section, 

illustration of these three smoothing function is given. 

1.2.3 Brief of various gradient smoothing operations in the strong form 

Based on different types of smoothing function, various gradient smoothing 

operations in the strong form have been formulated. Recently, Liu and Xu [24] have 

proposed piecewise constant gradient smoothing method (PC-GSM). In the PC-GSM, 

it adopts the piecewise constant gradient smoothing function to provide a way to 

approximate the spatial derivatives in a weighted integral fashion. The excellent 

scheme for the PC-GSM has been successfully formulated and applied for simulating 

compressible and incompressible flows; the numerical results have demonstrated that 

the proposed GSM is conservative, conformal, efficient, robust and accurate. The 

PC-GSM works very well with unstructured triangular mesh, and can be used 

effectively for adaptive analysis [28]. 
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In order to enhance the accuracy of PC-GSM further, a novel piecewise linear 

gradient smoothing method (PL-GSM) based on the strong form formulation as an 

alternative to the generalized finite difference method for solving fluid problems is 

presented [26] in this thesis.  Compared with PC-GSM, the PL-GSM adopts the 

linearly-weighted smoothing function in the gradient smoothing domain instead of 

piecewise constant smoothing function. In the PL-GSM，all the unknowns are also 

stored at nodes and their derivatives at various locations are consistently and directly 

approximated. Linearly-weighted gradient smoothing technique is utilized to construct 

first and second order derivative approximations by systematically computing weights 

for a set of nodal points surrounding an interest node. The flexibility of the PL-GSM 

allows it to make use of existing meshes that have originally been created for finite 

difference or finite element methods. The PL-GSM is an excellent alternative to the 

FVM for CFD problems 

The alpha gradient smoothing method (αGSM) which combines the PC-GSM and 

PL-GSM is another novel formulation [27]. In the αGSM, the smoothing function still 

selects the linearly-weighted function. However, the contribution at node in the 

αGSM is 
1

iV
  (

1

iV
is the area of the smoothing domain) instead of zero in the 

PL-GSM. The α value controls the contribution of the PC-GSM and PL-GSM. If α=1, 

the formulation between the PC-GSM and the αGSM is identical. If α=0, the 

smoothing function is constant and the αGSM is the same as PL-GSM. 
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1.3 Gradient smoothing operations coupling with weak and strong form in 

Fluid-structure interaction problem 

Fluid-structure interaction (FSI) problems have been a hot topic in the past few 

decades. In the past, research progress in the development of numerical methods for 

FSI problems has been achieved with the dramatic increase in computer power. Liu et 

al. [29-31]have applied the Arbitrary Lagrangian Eulerian (ALE) to simulate the 

complicated motion of fluid-structure interfaces. Among these numerical methods, the 

process for mesh updating or remeshing is a bottleneck due to high demands on 

computational cost.  

In order to overcome the difficulties in re-meshing process for the moving 

boundary problems at every time step, many alternative methods have arisen to 

address this issue. Peskin [32-34] has proposed the immersed boundary (IB) method 

to analyze blood flow around heart valves. Mohd-Yusof [35] has introduced the 

hybrid Cartesian/immersed boundary (HCIB) method without coupling effects of 

fluids to solids. The IB method is an important turning point in the history of 

numerical methods for FSI problems, which removes the costly mesh updating 

algorithm and makes a great progress in the FSI solver. In the IB method, the Dirac 

delta function plays a prominent role to distribute the interaction force or velocity 

through interpolation. Eulerian meshes for fluids and Lagrangian meshes for solids 

are employed. The main advantage of IB method is its ability to track the interface of 

fluid and structure automatically. However, IB method is very difficult to use in the 

analysis of immersed flexible solids that may occupy volume within the fluid domain 
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under the assumption of immersed fiber-like elastic structure [36-38]. In addition, the 

IB is limited to regular boundaries due to the uniform fluid mesh [36-38]. Recently, 

the immersed finite element method (IFEM) [36-38] has been proposed to eliminate 

the shortcoming of the IB. The mathematical theory is basically based on the IB, but it 

absorbs some works on the extended immersed boundary method (EBIM) [39]. With 

the finite element formulation in both solid and fluid domains, the IFEM can be used 

to analyze the motion and large deformation of incompressible hyper-elastic material 

within an incompressible (or slightly compressible) fluid. Moreover, the proposed 

IFEM adopts the reproducing kernel function to improve the interfacial solutions. 

Inspired by the attractive merits of IFEM and gradient smoothing operations in 

weak and strong form, a novel approach, the immersed gradient smoothing method 

(IGSM) is proposed [40]. The basic concept in the IGSM is quite similar to the IFEM 

[36-38]. Unlike the finite element method in the spatial approximation for solid, the 

edge-based smoothed finite element method (ES-FEM) [11, 12] is applied. For the 

ES-FEM, the smoothed Galerkin weak form [11, 12] that allows incompatible elements 

is used to derive the discretized system equations; numerical integration and gradient 

smoothing operation are applied based on the domains associated with the edges of the 

triangles.  

In the IFEM, the incompressible viscous fluid is solved by the FEM. Various stable 

and powerful finite element procedures, such as Pressure-stabilized Petrov–Galerkin 

(PSPG) formulation [41, 42], streamline upwinding / Petrov-Galerkin (SUPG) 

formulation [43], Galerkin least-square (GLS) [44], bubble function [45], and 
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characteristic-based split (CBS) algorithm [2, 46] have been proposed to improve 

numerical stability. Generally, the FEM can lead to the higher accuracy with the same 

coarse mesh compared with the finite difference method (FDM) and finite volume 

method (FVM). However, the implementation of FEM is much more complicated than 

the FVM and FDM, and the computational time for the FEM is relatively costly. 

Although the FVM is the most popular numerical method in the computational fluid 

dynamics, it has some shortcomings, for example, false diffusion often occurs in the 

numerical solutions using FVM [47], and high order accuracy of solutions is very 

difficult to obtain [48]. In order to balance accuracy and computational cost, the 

piecewise linear gradient smoothing operation has been applied to strong form 

governing equations in the fluid dynamics [26]. Hence, the PL-GSM is employed to 

discretize the fluid domain because it can achieve second order accuracy in the spatial 

approximation and computational efficient [26].  

1.4 Objectives and significance of the study  

This thesis focuses on the development of gradient smoothing operations in the 

weak and strong form to overcome the shortcomings of the FEM, FVM and FDM, 

and combines the gradient smoothing operation in the weak and strong form to solve 

the Fluid-structure interaction problem. Some applications in the modeling of 

biological systems are presented.  Major works reported in this thesis are as follow: 

1. Application of alpha finite element method, edge-based smoothed finite element 

(ES-FEM) and face-based smoothed finite element method (FS-FEM) based on 
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the weak form to establish some biological models including the phase change in 

liver cryosurgery, bioheat transfer in the human eye and thermal-mechanical 

behavior of human breast in hyperthermia treatment. 

2. Development of piecewise linear gradient smoothing method (PL-GSM) based on 

the strong form to solve fluid dynamics problem, and its application to study the 

shear stress in the Abdominal Aortic Aneurysm.  

3. Development of alpha gradient smoothing method (αGSM) based on the strong 

form in the fluid dynamics and application this method to analyze the diseased 

artery of stenosis.  

4. Coupling of the gradient smoothing operation in the weak and strong form to 

develop the Immersed gradient smoothing method (IGSM) for the analysis of 

Fluid-structure interaction (FSI) problems. 

These works will be thoroughly discussed in the following chapters. 

1.5 Organization of the thesis  

The thesis consists of seven chapters and is summarized as follow: 

In Chapter 1, the background of FEM, FDM and FVM are briefly presented. In 

addition, the basic concepts of gradient smoothing operations in the weak and strong 

forms and coupling with weak and strong forms in Fluid-structure interaction problem 

are presented.  

In Chapter 2, the application of edge-based smoothed finite element method 

(ES-FEM) in 2D and face-based smoothed finite element method (FS-FEM) in 3D to 
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analyze thermal-mechanical behaviour in hyperthermia treatment of human breast is 

given.  

In Chapter 3, the applications of the alpha finite element method (αFEM) to solve 

the phase change problems in the liver cryosurgery and bioheat transfer in the human 

eye are presented. In the liver cryosurgery simulation, a fixed grid method using the 

alpha finite element ( αFEM ) formulation is presented to simulate phase 

transformation and temperature field during the cryosurgery process. Other than that, 

computational modeling of the human eye using the αFEM to detect eye abnormalities 

and predict the temperature distribution in the hyperthermia treatments is also 

presented in this Chapter. 

In Chapter 4, the theory of piecewise linear gradient smoothing method (PL-GSM) 

is presented in detail.  The PL-GSM has been tested on the Possion Equation; the 

computational efficiency, accuracy, and stability have been compared with the 

piecewise constant gradient smoothing method (PC-GSM). Furthermore, the PL-GSM 

has been tested by some benchmark examples in the fluid dynamics. Finally, the 

PL-GSM is applied to study the wall shear stress in the Abdominal Aortic Aneurysm. 

In Chapter 5, the alpha gradient smoothing method (GSM) is formulated. The 

main difference among the piecewise constant gradient smoothing method (PC-GSM), 

piecewise linear gradient smoothing method (PL-GSM) and αGSM is the selection of 

smoothing function.  In the αGSM, the α value controls the contribution of PC-GSM 

and PL-GSM. The accuracy and computational time of αGSM, PC-GSM and 

PL-GSM have been compared by Possion Equation. In addition, the proposed αGSM 
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has been tested on one benchmark example. Finally, the αGSM has been applied to 

analyze the flow characteristic in diseased arteries.  

In Chapter 6, the gradient smoothing operations in weak and strong form is 

combined to develop the immersed gradient smoothing method (IGSM) to solve the 

Fluid-structure interaction (FSI) problems. In the IGSM, the structural model is 

created by the ES-FEM; and PL-GSM is adopted to construct the fluid domain. Two 

numerical examples including a falling disk and aortic valve are solved to test the 

validity of the IGSM. 

In Chapter 7, the conclusion and some recommendations for possible future 

research are presented.  
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Chapter 2   

 

Edge-based Smoothed Finite Element Method for 

Thermal-mechanical Problem in the Hyperthermia 

Treatment of Breast 

 

2.1 Introduction of hyperthermia treatment in the human breast 

The modeling of heat transfer in the human body is very important for the 

hyperthermia treatment of tumors. The success of such treatment is strongly dependent 

on accurate prediction of the temperature distribution. Thus, understanding heat 

transfer in the human body is essential to improve such medical treatments. Currently, 

there are many models available to analyze the bioheat transfer in the living tissue [49]. 

However, almost all models are based on Pennes’ bioheat equation. The main 

advantage for Pennes’ model is that only one parameter (perfusion rate) is needed to 

simulate the blood flow in the tissue.  

Recently, hyperthermia treatment has been demonstrated to be effective and has less 

side effects in some cancer treatment. Tang et al [50] has developed a numerical 

method to simulate the temperature distribution in a three-layered skin structure. These 

results are useful for skin and breast cancer treatment. He et al. [51] developed a 

two-dimensional finite element model to analyze the blood flow, temperature and 

oxygen transport in human breast tumor. The main objective of hyperthermia treatment 
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is to raise the surface temperature of the tumor to above 42
o
C without damaging 

healthy tissue [52-54]. The main challenge of hyperthermia treatment is to minimize 

damage to surrounding tissue. During hyperthermia treatment, it is crucial to control 

the amount of energy in order to kill the tumor. Thus, it is very important to obtain the 

entire temperature distribution in the whole domain accurately. Although there are 

several analytical attempts that have been made to solve the Pennes’ bioheat equation 

with very simple geometry [55], it is very hard to obtain the analytical solution for 

most of bioheat transfer problems. During the past several decades, there have been 

many numerical methods proposed to solve the bioheat transfer problems in living 

tissues. Finite difference method (FDM) [56-58] and finite element method (FEM) [59] 

are the well-known numerical methods for solving Pennes’ bioheat problems. The 

FDM is very efficient, but applicable only for very simple geometry. Due to this reason, 

FEM has been proposed to solve to the mechanics problems since 1960’s and has 

achieved remarkable progress [60-62].  The strength of FEM is that it can handle 

complicated geometries. However, there are some major issues related to the FEM, 

such as ‘overly-stiff’ phenomenon of a fully compatible FEM model and the rigid 

reliance on elements. 

In recent years, various meshfree methods have been developed [1, 22, 63]. 

Compared with FEM, numerical treatments in meshfree methods are not confined by 

the elements/cells. Thus, meshfree methods can produce more accurate solution, are 

more flexible in implementation, have higher convergence rate, and are more effective. 

In this Chapter, the edge-based smoothing finite element (ES-FEM) [11] for 2D 
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problems with the strain smoothing performed over the edge-based smoothing domain, 

and the face-based smoothed finite element method (FS-FEM) [13]for 3D problems 

with the strain smoothing performed over the face-based smoothing domain are 

proposed to establish the thermo-mechanical model to analyze thermo-mechanical 

interaction when the human breast is undergoing hyperthermia treatment. Compared 

with the FEM models, the ES-FEM (or FS-FEM) often gives close-to-exact stiffness 

and the solutions are much more accurate and stable both spatially and temporally. In 

the ES-FEM, strain smoothing domains and the integration are operated over the 

edge-based (2D) and face-based (3D) smoothing domains respectively.   

This Chapter is organized as follows: Section 2.2 shows a simple description of the 

Pennes’ bioheat thermal model. Section 2.3 gives the detail formulation of ES-FEM 

and FS-FEM for 2D and 3D problems. Section 2.4 compares the numerical results in 

breast hyperthermia treatment between FEM and ES-FEM. 

2.2 Briefing on Pennes’ bioheat model 

Heat transfer in living tissues involves two mechanisms: blood perfusion and 

metabolism [64]. Both these heat sources regulate temperature distribution in the 

human body. Many models have been developed to describe the thermal transport 

mechanism. The most popular and earliest model developed by Pennes has achieved 

remarkable progress in analyzing bioheat transfer in the human tissue. As suggested 

by Pennes, the thermal energy balance for perfused tissue can be written as [64]: 

( ) b r m

T
c k T Q Q Q

t



    


 2.1 
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The tissue property of breast is listed in the Table 2.1. In the Pennes’ model, the 

main assumption is that the net heat transfer rate between blood and tissue is 

proportional to the product of the volumetric perfusion rate and the difference between 

the arterial blood temperature and the local tissue temperature [64]. The blood acts as a 

locally distributed scalar source when positive, or sink when negative. Hence, the term 

Qb can be expressed as   

( )b b b bQ c T T   2.2 

  It is also commonly assumed that the blood enters the tissue at a temperature Tb and 

immediately comes to the thermal equilibrium with the surrounding tissue. The 

convective term which could give directional property of blood heat source does not 

include in the Pennes’ model. 

  Another assumption in the Pennes’ model is that the arterial blood temperature Tb is 

kept unchanged through the tissue, and the tissue temperature is assumed to be the 

same as the vein temperature.    

Substituting Eq. (2.2) into Eq. (2.1), the Pennes’ bioheat equation can be written as 

( ) ( )b b b r m

T
c k T c T T Q Q

t
 


     


 2.3  

The Dirichlet, Neumann and Robin boundary conditions on 1 2 3,  ,  and    can be 

described as follows:  

T T  
1  Dirichlet boundary 2.4 

1 1 2 2 3 3

T T T
n k n k n k q

x y z


  
   

  
 

2  Neumann boundary 2.5 

)(332211 aTTh
z

T
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x

T
kn 














  

3  Robin boundary 2.6 
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2.3 Formulation of the ES-FEM and FS-FEM 

In this section, the formulations of ES-FEM for 2D and FS-FEM for 3D problems 

using triangular and tetrahedral elements are presented. Because the procedure of 

ES-FEM is similar to FEM, the formulation of FEM based on the standard Galerkin 

weak form [2] is firstly introduced. 

2.3.1 Discretized System Equations 

The weighted residual equation can be expressed by multiplying the governing 

equation (2.1) with a test function w in the entire domain.  

2 ( )

                                                    

t b b b

r m

w cT d w k Td w c T T d

w Q d w Q d

 
  

 

        

    

  

 
 2.7 

Using integration by parts: 

2 3

 ( ) d ( )d

t b b

b b b m r a

c wT d k w Td c wTd

c T Q Q wd wq wh T T

 



  


  

     

     

  

  
 2.8 

The field temperature can be approximated in the following form； 

1

m

i i

i

T


N T  2.9 

where iN  is the shape function, and iT  is the unknown nodal temperature.  In the 

Galerkin weak form, the weight function w  is replaced by shape function N , and the 

standard Galerkin weak form is expressed as: 

2 3 3

 ( ) d d

t b b

b b b m r a

c d k d c d

c T Q Q d q h d h T

 



  


   

      

       

  

   

NT N T N NT

N N N NT N
 2.10 
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In the ES-FEM, the gradient component is replaced by the smoothed item by 

introducing the gradient smoothing technique. Therefore, the smoothed Galerkin weak 

form for Pennes’ bioheat equation can be formulated [63]. 

2 3 3

 ( ) d

t b b

b b b m r a

c d k d c d

c T Q Q d q h d h T d

 



  


   

      

       

  

   

NT N NT N NT

N N N NT N
 2.11 

The discretized system equation can be finally obtained and written in the following 

matrix form: 

      
t t t

    M T K C T F  2.12 

Therefore, the smoothed Galerkin weak form for Pennes’ bioheat equation can be 

formulated. 

k d


   K N N  
The stiffness matrix 2.13 

c d


  M N N  
The mass matrix 2.14 

3

d db bc h
 

     C N N N N  The equivalent damping matrix 2.15 

3 2

( ) + d db b b m r ac T Q Q d h T q 
  

       F N N N  The force matrix 2.16 

There are many techniques to solve the first-order time dependent problems, such as 

forward difference method, backward difference method, Crank-Nicholson method, etc. 

The following section is to develop finite element time stepping. 

Discrete the temperature in time using standard finite element procedure: 

( ) i

i tT N T  2.17 

The shape functions are given by: 
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 




   
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  

 2.18 

Take the derivative of shape function 

1

-1 1
=          nnN N

t t

 

 
 

 2.19 

Multiplying the governing Eq. (2.12) with a test function w  gives  

1
1 1

1 1
0

[ ( ) ( ) ] 0n n n n

n n n nw N N N N d 

      M T T K T T F  
2.20 

Substituting Eq. (2.18) and (2.19) into equation Eq. (2.20) gives 

1 1 1 1
1

0 0 0 0

1

0

( ) ( (1 ) )

                                                                                      0

n nd d
w d w d w d w d

t t

w d

 
     



   
 

 
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

K M T K M T

F

 2.21 

Eq. (2.21) is arranged to become 

1 ˆ( ) ( (1 ))n n

t t
     

 

M M
K T K T F  2.22 

where  

1 1

0 0

1 1

0 0

ˆ         and            
w d w d

wd wd

  


 
 
 

 

F
 F  2.23 

1ˆ (1 )n n    F F F  2.24 

The value of  is determined by the weight function w . Fig. 2.1 illustrates how   

changes with different weight functions. 

From the whole procedure, it is very clear that the formulations of FEM and ES-FEM 

are almost the same. The main difference is the integration procedure to obtain the 

stiffness matrix of Eq. (2.13).  
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After obtaining the nodal temperature from solving Eq. (2.22), the thermal strain 

induced by the variation in temperature becomes the initial strain ε0: 

 0 0x xT T   ε  2D problem 2.25 

 
T

0 0 0 0x y zT T T     ε  3D problem 2.26 

where i  (i=x, y, z) is the thermal expansion coefficient in the ith direction.  The 

relation between the thermal stress and strain can be expressed as  

)( 0εεDσ   2.27 

where σ  and ε  are smoothed stresses and strains, respectively, and D is the matrix 

of material constants for isotropic materials including only Poisson’s ratio v and 

Young’s modulus E:  

2

1 0

1 0                        for 2D problem
1

1
0 0

2

v
E

v
v

v

 
 
 

  


 
 
 

D  2.28 

For 3D problem 

2(1 ) 2 2 0 0 0

2 2(1 ) 2 0 0 0

2 2 2(1 ) 0 0 0

0 0 0 1 2 0 02(1 )(1 2 )

0 0 0 0 1 2 0

0 0 0 0 0 1 2

v v v

v v v

v v vE

vv v

v

v

 
 


 
 

  
   

 
 

 

D  2.29 

In the standard weak formulation, the potential (strain) energy of the 

thermo-mechanical model is expressed in the following form: 
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T T

0

1
( ) d d

2  
    u ε Dε ε Dε  2.30 

where the strains are the compatible strains obtained using the (linear) kinematics 

relation of the strains and the displacements. The variational form is given by: 

T T T

0( ) ( ) d ( ) d ( ) d 0
t

t    
  

       u ε Dε ε Dε u  2.31 

In the formulation, the compatible strain ε in Eq. (2.31) is replaced by the smoothed 

strain ε  that satisfies the generalized (smoothed) Galerkin weak form derived from 

the Hellinger-Reissner’s two-field variational principle. The smoothed Galerkin weak 

form for our thermomechanical problems can be formulated as:  

T T T

0( ) ( ) d ( ) d ( ) d 0
t

t    
  

       u ε Dε ε Dε u  2.32 

The above discretized system equations for thermomechanical problems can be 

expressed in the following matrix form. 

[ ]{ } { }u K d F  2.33 

where 

T du

IJ I J


 K Β DΒ  2.34 

T T

0d d
t

I I It
 

   F Φ Β Dε  2.35 

in which Β  is the smoothed strain matrix obtained through the gradient smoothing 

operation, and the superscript u represents the stiffness matrix associated with the 

displacement field of a given discretization. To obtain the smoothed stiffness matrix of 

thermo-mechanical system, the edge integration scheme with edge-based gradient 

smoothing technique will be used to perform the domain integration, which will be 

discussed in the following Section. The next section will illustrate how to perform the 
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integration process based on the smoothing domains associated with the edges of the 

triangles in 2D or surfaces of tetrahedrons in 3D. 

2.3.2 Numerical integration with edge-based gradient smoothing 

operation 

  This section formulates the gradient smoothing domains of ES-FEM for 2D and 3D 

problems using triangular elements and tetrahedral elements, respectively. The 

formulation is almost the same for any other 2D and 3D n-side polygonal elements as 

long as the simple point interpolation method is used to create the shape functions [22]. 

In the numerical integration of ES-FEM for 2D problems, a mesh of 3-node triangles is 

generated first, which can be done easily and automatically using any mesh generator. 

Afterwards, the problem domain Ω is further divided into N smoothing domains 

associated with edges of the triangles such that Ω1Ω2… ΩN = Ω and Ωi∩Ωj=Ø, i≠j, 

where N is the number of total edges of triangles. As shown in Figure 2.2(a), the 

smoothing domain Ωk for edge k is created by connecting sequentially the end-points of 

edge k to the centroids of the neighbor triangles. Extending the smoothing domain Ωk in 

3D problems, the domain discretization is the same as that of standard FEM using 

tetrahedral elements and the smoothing domain is associated with the faces of 

tetrahedrons. As shown in Fig. 2.2(b), the smoothing domain Ωk for face k is created 

using the neighboring tetrahedral elements by connecting the vertices of the triangle 

(face k) to the centroids of two adjacent elements.  

  The boundary of the smoothing domain Ωk of edge k (or face k) is labeled as Γk and 

the union of all Ωk forms the global domain Ω exactly. To perform the numerical 

integration based on the smoothing domains, Eq. (2.13) can be further rewritten as: 
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( )

1

N
k

k

K K  2.36 

in which 

( ) T

d
k

k

k


 K B B  2.37 

The generalized gradient smoothing technique that works also for discontinuous field 

functions [65] is now applied over the smoothing domain to obtain the smoothed nodal 

gradient for the node of interest xk 

( ) ( ) ( )dx x x x
k

i k i kg g W


    2.38 

where gi is the derivative of the field function (temperature) with respect to xi, and W is 

a smoothing function. For simplicity, a piecewise constant function is used. 

1/
W( )

0

k k

k

k

V 
  



x
x x

x
 2.39 

where d
k

kV


   is the area of smoothing domain for edge k in 2D problems. When 

it comes to 3D problems, the Vk is the volume of smoothing domain for face k.  

The temperature gradient for node k and for any point in the smoothing domain is 

obtained as follows even for discontinuous functions of temperature [65]: 

1
( ) d

k
i k i

k

g Tn
V 

 x  2.40 

which is constant in the smoothing domain k . Using FEM shape functions to 

construct the field function for temperature, the smoothed gradient for node k can be 

written in the following matrix form 

( ) k

k

k I I

I D





 g x Β T  
2.41 
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where Dk is the set of all the nodes used in the interpolation for the field function on 

k . 

 T

1 2g gg  2.42 

1 2
k

T

I I Ib b
      Β  2.43 

1
( ) ( )d

k
Ip I p

k

b n
A 

  N x x  (p=1, 2) 2.44 

For three dimensional spaces, the corresponding forms are given by 

 321

T gggg  2.45 

1 2 3[ ]k
T

I I I Ib b b
   Β  2.46 

1
( ) ( )d

k
Ip I p

k

b n
V 

  N x x  (p=1, 2, 3) 2.47 

where ( )IN x  is the shape function for node I.  

Using Gauss integration along each segment (or each surface triangle for 3D) of 

boundary Γk of the smoothing domain Ωk, the above equations can be rewritten in the 

following summation form as 

1 1

1
( ) ( )

gs
NN

ip r i qr p q

q rk

b w n
A  

 
  

 
  N x x  2.48 

where Ns is the number of segments (or each surface triangle for 3D) of the boundary Γk, 

Ng is the number of Gauss points distributed in each segment(or each surface triangle), 

and wr is the corresponding weight for the Gauss point. The smoothed stiffness matrix 

shown in Eq. (2.13) can be calculated as: 

  T T

d
k

kk k A


  K B B B B  2.49 

It can be easily seen from Eq. (2.49) that the resultant linear system is symmetric and 

banded (due to the compact supports of FEM shape functions), which implies that the 

system equations can be solved efficiently.  
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2.4 Numerical example 

Breast cancer is one of the most prevalent types of cancer. Computer modeling has 

become a powerful tool to analyze bioheat transfer in the breast tumor treatment 

[66-68]. The low-risk of breast cancer can be treated by applying heat therapy on the 

targeted tumor to cure the cancer. Hyperthermia is often used in clinical applications in 

breast tumor control by artificially raising the tissue temperature to gain therapeutic 

benefits. In the hyperthermia treatment, the heat source is localized to the targeted area 

to elevate the temperature to cause the death of cancerous cell [69]. The heat source can 

be microwave, radiofrequency and ultrasound. In order to simplify the problem, the 

detail of heat source is ignored. Thus, the knowledge of the temperature distribution 

and heat transport rates is important in hyperthermia treatments. The goal of this study 

is to evaluate the potential to apply the ES-FEM and FS-FEM to become a viable 

method for breast cancer treatment. Two examples including 2D and 3D for breast 

hyperthermia treatment are presented in this section. In the simulation, we investigate 

the temperature distribution first, and the consequent effect of thermal stress. 

2.4.1 Hyperthermia treatment in 2D breast tumor  

The 2D breast model is shown in Fig. 2.3. The internal heat source is uniformly 

distributed at a small tumor with r=6mm (center of tumor：

0.0138 ,  0.0071x m y m   ). The initial condition is ( , ,0) 37T x y   and the 

boundary condition can be described as: 
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(1) Along the boundary 1  as shown in Fig. 2.3, assuming there is no heat flux in and 

out: 

0
T

k
n





 2.50 

(2) Along the boundary 23  as shown in Fig. 2.3: 

2( )   where 25 C, 10 W/m ,  0.5 W/(m )f f

T
k h T T T h k C

n


     


 2.51 

where  is the convetion coefficient,  is the temperature of cooling mdiumfh T . 

2.4.1.1 Stability analysis with different time integration  

Stability is an important attribute in the numerical analysis. In the section 2.3, a clear 

explanation for different time integration in bioheat transfer is given. The value of   

acts as a knob which controls the method of time stepping algorithm. The external of 

heat source Qr is expressed as follows: 

 5

6

2 10 0 5

1 10 5
r

t t s
Q

t s

   
 

 

 2.52 

In general, the method to check stability is to consider the test problem in the complex 

domain.  

;x x a bi     2.53 

The exact solution is  

         exp exp cos sinx t t at bt i bt       2.54 

In the forward difference method ( 0  ) 

 1

1 1 1i i

i i ix x p x p p     

         2.55 
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The solution is stable if the complex modulus of  is less or equal than 1 

1 1p   2.56 

The region of absolute stability in the forward difference method is the shaded area as 

shown in Fig. 2.4(a). Thus, the forward difference method is conditionally stable 

[70],which implies that numerical results diverge for a certain time step for both FEM 

and ES-FEM model. 

In the backward difference method ( 1  ) 

 
11

1 1

1
1

1

i i

i i ix x p x p
p

    




      


 2.57 

The solution is stable if the complex modulus of  is large or equal than 1.  

1 1p   2.58 

Thus, at the entire left part of the p  plane, the solution for backward difference is 

unconditionally stable as shown in Fig. 2.4(b). This conclusion is still applicable to 

ES-FEM formulation. As outlined in Fig.2.5(a), it is obviously found that the 

temperature at the center of heat source obtained from ES-FEM formulation is still 

stable even for very large time step t=10s. 

In the central difference method (
1

2
  ) 

   1 1

1 1

1
1

2
12 2

1
2

i i i i

i i i i

p
p p

x x x x

p


 

    



 

 



       



 2.59 

Let 0a bi a      

 

 

2

2

2

2

1 11 1
2 21 1 1

11 11
22

a b a bi

a bia b



 
    

      
     
 

 2.60 
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Thus, the central difference is absolutely stable in the entire of left plan as shown in 

Figure 2.4(c). It is noted that the backward and forward difference methods provide 

only a first order accuracy [70]. Although the center difference method (
1

2
  ) has 

second order accuracy, it exhibits some oscillation for certain time steps in the FEM 

formulation [70]. This phenomenon is still observed in the ES-FEM formulation. As 

shown in Fig. 2.5(b), the temperature at the center of heat source obtained from 

ES-FEM begins to oscillate using time step t=0.5s although the numerical results 

converge. 

In order to obtain stable and accurate results, the backward difference is adopted to 

discretize the Eq. (2.12) in both FEM and ES-FEM (or FS-FEM).  

2.4.1.2 Temperature distribution 

The temperature distribution at the whole domain at 10t s  is computed and 

plotted in Fig. 2.6 using the ES-FEM, FEM model and the reference result.  The 

external heat source is expressed as follows: 

 5

5

1.667 10 0 3

5 10 3
r

t t s
Q

t s

   
 

 

 2.61 

It is observed that ES-FEM gives more accurate results than those of FEM using the 

same 3-node triangular mesh and linear shape functions at the heating source location.  

It is also found that the tissue temperature around the heating source is well below 37 , 

which has a great benefit in hyperthermia treatment because the temperature of health 

tissue is below the safe threshold. This is one of the most attractive features why 

internal heating is frequently used to thermally kill tumors in the deep tissue, although it 
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may cause some mechanical injuries [69]. As shown in Fig. 2.6, the highest 

temperature always occurs at the heating source in ES-FEM, FEM and reference 

solutions. Thus, it is necessary to investigate the maximum temperature variation with 

the time at the heating source.  

The maximum temperature history at the center of heating source using ES-FEM and 

FEM is depicted in Fig. 2.7 together with the reference results. It is observed that the 

solution from ES-FEM is much closer to the reference results compared with FEM 

model. More than two degree error in the FEM model is observed, which may cause the 

operation unsuccessfully in the treatment. On the other hand, the computational cost for 

reference model is quite high. Thus, ES-FEM model provides a much better way in the 

simulation in terms of accuracy and computational cost. This again demonstrates the 

ES-FEM is much more accurate than the FEM due to the ‘soften’ property. 

Figure 2.8 presents the temperature distribution along circumference of the tumor in 

counterclockwise direction starting from the left horizontal using FEM, ES-FEM with 

133 nodes, together with the reference using 3546 nodes. It is easily found that the 

solution obtained from ES-FEM agrees very well the reference one compared with the 

FEM model. However, there is a large deviation between the FEM and reference. This 

validates our two-dimensional ES-FEM model for heat transfer problems again. 

2.4.1.3 Thermal deformation 

After the temperature field is obtained, the stress resulted from the thermal expansion 

can be obtained based on Eq. (2.25). It is noted the there is zero displacement along
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0y  . The ES-FEM is then used again to compute the deformational of breast due to 

the thermal loads. The modeling of mechanical stress due to external heat source is 

useful to develop the biological technology in the design of hyperthermia equipment. 

Figure 2.9, 2.10 and 2.11 show the normal stress in x  and y  direction, and the shear 

stress at the center of heating source obtained from both ES-FEM and FEM, together 

with the reference one obtained using irregularly distributed 3546 nodes respectively. It 

can be observed that the present results from ES-FEM are in a better agreement with the 

reference solution compared to those of the FEM when the same mesh is used. This 

shows the effectiveness of the ES-FEM formulation for this 2D thermo-elastic 

problem. 

2.4.2 Hyperthermia treatment in 3D breast tumor  

The simulation of 3D model is much more important to obtain an accurate 

description of temperature for the hyperthermia treatment of female breast model. This 

section presents a 3D model of hyperthermia treatment in female breast to improve the 

2D model mentioned in the previous section using ES-FEM and FEM respectively. It is 

expected that 3D model will provide more accurate prediction in temperature 

distribution. The geometry of 3D breast model is shown in Fig. 2.12. The center of heat 

source is 0.0138 ,  0.0071 ,  0x m y m z m    , and the radius of heat source is 6 mm. 

The type of heat source is expressed as follows: 

 5

6

3.6 10 0 5

1.8 10 5
r

t t s
Q

t s

   
 

 

 
2.62 
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2.4.2.1 Effect of boundary condition 

The boundary condition is essential to predict the temperature distribution accurately. 

Different boundary condition can yield completely different results. Because the 

bottom surface (boundary 1 ) of breast as shown in Fig. 2.12(a) is very difficult to 

define the exact boundary condition in real clinical application, in the following section, 

we discuss the effect for two different boundary conditions.  

Case 1: 0
T

k
n





                                    Case 2: 37 coT   

As the maximum temperature at the center of heating source is very crucial for 

successful hyperthermia treatment, the maximum temperature variation with time for 

two different boundary conditions is presented in Fig. 2.13. As shown in Fig. 2.13, it is 

found that the maximum temperature (reference results) is quite close with each other 

for both cases, which implies maximum temperature does not vary significantly with 

change of boundary condition. This is very important because doctor can operate on the 

patient without concerning too much incorrect result due to the boundary condition. 

Further, the solution obtained from FS-FEM using a coarse mesh agrees very well the 

reference solution compared with FEM using the same mesh. This numerical example 

validates that FS-FEM provides a soft effect to the model and can give more accurate 

solutions compared with FEM. 

Figure 2.14 shows the temperature contours using FS-FEM, FEM with 457 nodes 

and the reference solution with 14916 nodes at time 10t s for case 1.  It is observed 

that the temperature distribution at the breast outer surface obtained using both 
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FS-FEM and FEM are very close to the reference. It is also found the temperature at the 

breast surface is well below 37
o
C which guarantee the tissue under the safety 

temperature. More importantly, the temperature contour around the tumor region 

obtained from the FS-FEM are in a better agreement with the reference ones, compared 

with that of the FEM using the same coarse mesh.  

2.4.2.2 Thermal-elastic deformation 

Thermal-elastic interaction in the 3D breast hyperthermia treatment is investigated 

using the FEM and FS-FEM. In the mechanical model, the bottom surface has zero 

displacement. Since the maximum temperature occurs at the center of heat source, it 

is necessary to investigate the mechanical stress at that point. Fig 2.15, 2.16 and 2.17 

present the normal stress in the x , y and z  directions with the time at the center of 

heating source using FEM and FS-FEM together with reference results using very fine 

mesh (case 1). It is found that the solutions of FS-FEM are closer with the reference 

than those of FEM. This attributes to the “softening” effect of FS-FEM model induced 

by the gradient smoothing technique. This findings show again that FS-FEM works 

well even in the 3D mechanical model compared with FEM. 

2.4.2.3 Computational efficiency 

A comparison study on computational efficiency is now performed on the same Dell 

PC of Inter
®

 Pentium (R) CPU 2.80GHz, 2.00GB of RAM using models of same DOFs. 

The 3D breast model of hyperthermia treatment is tested in this section. The total 
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computational time to complete the solution of reference, FEM and FS-FEM model is 

listed in Table 2.2.  

It is found that total time to obtain the solution in the reference model is 116878 

seconds. This is not acceptable in clinical application in order to control the heat source 

and optimize the damage of tumor in a short time. Although the solution can be quickly 

obtained for coarse mesh (457 nodes) using finite element method, there is a big 

discrepancy in the solutions between the reference and coarse mesh (457 nodes) as 

shown in section 2.4.2. In the operation, even one degree error can affect the treatment. 

The traditional finite element method fails to predict accurate results especially in the 

high gradient regions using the tetrahedral element. This is due to the property of 

‘overly-stiff’ FEM. Although the time to complete the FS-FEM model is slightly higher 

than FEM using the same degree of freedom (457 nodes) as shown in the Table 2.2, the 

solution obtained from FS-FEM model is much more accurate than FEM. The extra 

CPU time for FS-FEM model is to construct the smoothing domain. Therefore, the 

FS-FEM model using coarse mesh is a good candidate replacing the FEM to achieve 

much more accurate results in a short time, which can reduce the cost of operation and 

enhance the efficiency of treatment. 

2.5 Remarks 

In this Chapter, the edge-based smoothed finite element (ES-FEM) in 2D and 

face-based smoothed finite element (FS-FEM) in 3D are formulated to simulate 

hyperthermia treatment in the breast model. The discretized system equations are 
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formulated using the smoothed Galerkin weak form. The numerical integration is 

performed based on the smoothing domains associated with the edge of the triangles in 

2D and face of the tetrahedrons in 3D. Examples of 2D and 3D complex thermoelastic 

problems are analyzed to examine the accuracy, stability and efficiency of ES-FEM and 

FS-FEM. The following remarks can be drawn as follows: 

1) The stiffness of the discretized model in ES-FEM and FS-FEM is reduced 

compared to the FEM.  

2) The ES-FEM using the triangular elements in 2D and FS-FEM using tetrahedral 

elements in 3D are quite stable and accurate. Compared with FEM, there are no 

additional parameters in ES-FEM and FS-FEM. Hence, this method can be 

implemented in a straightforward way. 

3) Different boundary condition defined in section 2.4 for 3D breast hyperthermia 

treatment does not affect the maximum temperature too much.         

4) The degree of freedom for both standard FEM and ES-FEM are exactly the 

same using the same linear mesh, thus the computational cost for both ES-FEM 

and the FEM models are of the same order. 

5) The ES-FEM is triangular elements in two-dimensional and tetrahedral 

elements in three-dimensional problem, and hence is particularly suitable to 

simulate complicated geometry such as human breast.  However, the FEM 

does not like such elements and often gives poor solution of accuracy, 

especially at high temperature gradient region. In the hyperthermia treatment, 
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the temperature changes very fast at the tumor region. Thus, the results obtained 

from FEM using triangular element are poor due to its ‘overly-stiff’ behavior. 
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Figure 2.1:  Shape and weighting functions [70]  
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k

 

k

 

Centroid of triangle Field nodes 
 

(a) Edge-based smoothing domains in 2D problem for gradient smoothing and 

integration are created by sequentially connecting the centroids of the adjacent triangles with 

the end-points of the edge. 

 

(b) For 3D problems, the smoothing domain is created using the neighbor tetrahedral 

elements by connecting vertexes of the triangle (face k) to the centroids of two adjacent 

elements.  

Figure 2.2:  Illustration of construction of smoothing domain for 2D and 3D 

problems 
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Figure 2.3:  Location of heat source uniformly distributed in a small tumor of r=6mm  
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(a) Forward difference scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Backward difference scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Central difference scheme 

 

Figure 2.4: Stability analysis of with different time integration 
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(a) Temperature variation with time at the cente of heat source using backward difference 

scheme in ES-FEM 

 

(b) Temperature variation with time at the cente of heat source using central difference 

scheme in ES-FEM 

 

Figure 2.5: Analysis of ES-FEM stability in backward and central difference scheme 
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Temperature contour for ES-FEM using 288 nodes  

 

Temperature contour for FEM using 288 nodes  

 

Temperature contour for reference results using 3546 nodes 

 

Figure 2.6: Transient temperature distribution at t=10s 
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Figure 2.7:  Maximum temperature variation with time (step time t=0.01s)   

 

 

 

 

 

 

 

 

 

Figure 2.8:  Comparison of temperature distribution along the circumference of tumor  

0 1 2 3 4 5 6 7 8 9 10
37

38

39

40

41

42

43

44

45

46

47

Time (s)

T
e

m
p

e
ra

tu
re

Reference using 3546 nodes

FEM using 133 nodes

ES-FEM using 133 nodes

0 50 100 150 200 250 300 350
41

41.5

42

42.5

43

43.5

44

44.5

45

Degree of angle 

T
e

m
p

e
ra

tu
re

Reference model using 3546 nodes

ES-FEM model using 133 nodes

FEM model using 133 nodes



Chapter 2. Edge-based Smoothed Finite Element Method for Thermal-mechanical Problem in the Hyperthermia 

Treatment of Breast 

47 

 

 

 

Figure 2.9:  Normal stress ( xx ) variation with time at the center of heat source (step 

time t=0.01s)   
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Figure 2.10:  Normal stress ( yy ) variation with time at the center of heat source 

(step time t=0.01s)   

 

 

 

 

 

Figure 2.11:  Shear stress ( xy ) variation with time at the center of heat source (step 

time t=0.01s)   
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a)  Geometry of 3D breast model 

 

 

b)  Location of heat source uniformly distributed in a small tumor of 6r mm  

Center of heat source ( 13.8 , 7.1 , 0x mm y mm z    ) 

Figure 2.12:  Computational domain of 3D model 
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Figure 2.13:  Maximum temperature variation with time (step time t=0.01s)   
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Temperature contour for section X-X using FS-FEM with 457 nodes 

 

Temperature contour for section X-X using FEM with 457 nodes 

 

Temperature contour for section X-X using FEM with 14916 nodes 

 

Figure 2.14: Transient temperature distribution at t=10s for case1 
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Figure 2.15:  Normal stress ( xx ) variation with time (step time t=0.01s)   

 

 

 

 

Figure 2.16:  Normal stress ( yy ) variation with time at the center of heat source 

(step time t=0.01s)   
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Figure 2.17:  Normal stress ( zz ) variation with time at the center of heat source 

(step time t=0.01s)   
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Table 2.1: Tissue property 

c  
Specific heat of tissue 

4200 J/kg C  k  
Thermal conductivity of tissue 

0.5 W/(m )k C  

  Density of Tissue 
31000 kg/m  

b  Blood perfusion rate 
30.5 kg/m  

bc  
Specific heat of blood 

4200 J/kg C  mQ  Metabolism  3450 W/m  

bT  Body core temperature 37  T  Tissue temperature 

aT  
known ambient temperature 

25 C  h  
Ambient heat transfer coefficient 

210W/m  

  thermal expansion 66 10 /°C   Poisson’s ratio 0.3  

E  Elastic modulus 10 GPa  
rQ  External heat source ( 3W/m ) 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Comparison of the CPU time (s) 

model Degree of 

freedom 

Total time to complete 

the solution Reference 14916 116878s 

FEM 457 476s 

FS-FEM 457 587s 
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Chapter 3  

 

Alpha Finite Element Method for Phase Change Problem in 

Liver Cryosurgery and Bioheat Transfer in the Human Eye 

 

3.1 Alpha finite element method (αFEM) in liver cryosurgery 

3.1.1 Introduction of liver cryosurgery 

Traditional treatments for cancer include radiation therapy, chemotherapy and 

surgical removal [71]. However, the side effects of these treatments may seriously 

weaken the patient. Currently, cryosurgery is extensively used in tumor treatments. The 

main advantages of cryosurgery over traditional surgery are that there is minimal 

invasion, little pain, minimal scarring, and low cost. In cryosurgery, the continuous tip 

of a probe directly contacts with the target tumor tissue to introduce extremely low 

temperature resulting damage to the tumor cells. At present, the use of liquid nitrogen is 

the most popular method of freezing lesions. The two mechanisms of injury induced in 

the targeted tissue in cryosurgery are: the immediate effect related to cooling rate and 

solidification also known as vascular injury [72]. When the temperature falls into the 

freezing range, ice crystals form in the extra-cellular spaces. Extracellular 

crystallization cell destruction occurs when the temperature drops to the range of -4
o
C 

and -21
o
C [71]. As freeing continues, the ice crystals grow resulting loss of liquid water, 

http://en.wikipedia.org/wiki/Minimally_invasive
http://en.wikipedia.org/wiki/Minimally_invasive
http://en.wikipedia.org/wiki/Ice_crystal
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which causes cell shrinkage and membrane damage. These deleterious effects of cell 

dehydration are not always lethal to tumor cells [72]. When the cooling rate is very high, 

extracellular ice crystallization has no time to form. In that case, it is the intracellular 

ice that destroys the membrane and organelles [73-77].Vascular injury is also key to 

destroy tumor cells because vasculature is essential for tumor growth [71, 74]. 

The important feature of cryosurgery is that a phase change process occurs in the 

treatment. The direction of ice growth, temperature distribution, and irregular shape of 

frozen region are challenge in cryosurgical simulation [78]. In particular, there is a big 

difference in freezing of ideal materials having fixed freezing points and biological 

tissues. Phase change for biological material occurs over a temperature range between 

-1
o
C and -8

o
C, and lower limit due to the complex condition and inhomogeneity of 

tissues [78-81]. 

In cryosurgery, a number of numerical models to solve phase change problems of 

biological tissue have been proposed. Generally, existing numerical methods for phase 

change can be categorized into two groups: one is front tracking method; another is 

fixed grid method [82-89]. For the front tracking technique, the liquid and solid 

domains are two separate domains where latent heat is treated as a moving boundary 

condition. By the application of energy balance, the velocity and position of the 

interface can be determined [90]. This requires deforming or altering grids, 

transformation or co-ordinates introduction of special algorithms near the phase change 

interface or choosing the space step or the time step so that the interface coincides with 

the grids points [90]. The advantage of front tracking methods is capable to provide 
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accurate prediction of the location of solid-liquid interface, but computer coding can be 

complicated. More importantly, front tracking methods are not suitable for material 

with a finite freezing range [89]. Due to this reason, fixed grid method has become the 

most powerful method in simulation of phase change problem. In the fixed grid method, 

the solid and liquid parts are treated as one single domain where the position of 

interface needs to be specified. The fixed grid method not only has ease implementation, 

but also can handle complex multi-dimensional problem and finite freezing material.  

However, oscillations may occur in the fixed grid method due to the discontinuity in 

effective heat capacity [83, 89]. Another disadvantage of the fixed grid method is that 

isothermal phase change is difficult to handle because the effective heat capacity 

becomes infinite at the freezing point [83]. In order to overcome this problem, a narrow 

temperature range is assumed in the simulation. 

In the fixed grid method, there are several procedures to solve phase change 

problems such as finite difference method (FDM) and finite element method (FEM) 

depending on the discretization process. The main drawback for FDM is the difficulty 

in handling complex geometries. Due to this reason, FEM has gradually replaced FDM 

to solve heat transfer problems. However, FEM has some inherent drawbacks due to its 

strong reliance on the element mesh. In order to overcome the shortcomings of FEM, 

meshfree methods have been developed to circumvent some of the problems and have 

achieved remarkable progress [91-93].  

It is a fascinating idea to obtain exact solution in the energy norm using numerical 

method. For this purpose, a novel alpha finite element method ( αFEM ) using 

triangular elements in 2D and tetrahedral elements in 3D has been developed [8]. The 
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αFEM  makes the best use of NS-FEM with upper bound property and FEM with 

lower bound property. The key point in the αFEM  is to introduce an α  value to 

establish a continuous function of strain energy that includes the contributions from the 

FEM and NS-FEM. When α =0, the αFEM  is exactly the same as FEM, and the 

strain energy is underestimated. When α =1, the αFEM becomes NS-FEM, and the 

strain energy is overestimated. The αFEM is variation consistence. However, the use 

of quadrilateral elements cannot provide the exact solution in certain norms.  

Although different α  value can achieve different solutions in the αFEM , the 

αFEM  is always stable and converges for any α  value. This ensures that no matter 

what the α  value is, the result is still reliable. At this moment, how to “tune” the α  

value in the αFEM  is still an open question. Our earlier works [8] have found for 

many cases that an α [0.4,0.6]  usually achieves much better results compared with 

the standard FEM using the same number of nodes. Although this is not very precise, it 

is very simple to use. In this Chapter, the alpha value is simply fixed at 0.5. 

 

3.1.2 Fundamental of alpha finite element method (αFEM) in phase 

change problem 

3.1.2.1 Model of cryosurgery 

Many bioheat transfer models have been developed to simulate the cryosurgery 

process in liver treatment [94]. In this Chapter, the Pennes bioheat transfer model is still 

used [64] because this model is only one variable (temperature) involved in the 

simulation.  
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2 ( )b bl m

T
c k T c T T Q Q

t
 


     


 3.1 

where  is density of liver; k is the thermal conductivity;   is blood perfusion 

rate; c is the specific heat capacity of liver; cb is the specific heat capacity of blood; Tbl 

is the blood temperature; Qm is the volumetric heat source associated with the 

metabolism; Q is the external volumetric heat source. In cryosurgery, an extremely low 

temperature is used to destroy malignant tissues.  There are several assumptions made 

in the simulation of phase changes in cryosurgery. 

1. Latent heat is constant.  

2. The thermal properties vary at the point of complete phase change from liquid to 

solid. 

3. The density is constant at the solid and liquid region. 

4. At the interface, only heat conduction is involved in the heat transfer. 

5. Blood flow rate is constant when the temperature is above the lower phase 

transition temperature 

6. The metabolism is zero when the temperature is at the freezing range. 

7. Liquid fraction is taken to be a function of temperature only. 

3.1.2.2 Mathematical formulation of phase change problem  

A bounded region is divided into three regions, liquid part 1 , solid region 3  , 

and mushy part 2  as shown in Fig. 3.1.  

Bioheat transfer in the solid is governed by: 
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( ) ( )s s s s s bl m

T
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  


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
 3.2 

Bioheat transfer in the liquid is governed by: 

( ) ( )l l l l l bl m

T
c K T c T T Q Q

t
  


     


 3.3 

Heat balance at the solid / liquid interface is governed by: 

( ) ( ) ( )s l
s l l l s s x l l l

T T
k k h h v h v

n n
  

 
   

 
 3.4 

where ,  s lh h are the enthalpies per unit mass of solid and liquid,  ,   x lv v are the 

velocity of the interface and liquid at the interface. 

Conservation of mass at the interface gives 

 l s x l lv v     3.5 

s l
l x

l

v v
 




   3.6 

Substituting Eq. (3.6) into Eq. (3.4) gives 

s l
s l s x

T T
k k Lv

n n


 
 

 
 3.7 

In this thesis, the density is constant in the whole domain, thus the bioheat transfer at 

the interface is: 

( ) ( )s l
s l

T T s
k k L

n n t


  
 

  
 3.8 

1 2                   for 0 and ( )fT T T t x s t     3.9 

where n is the unit normal on the phase interface (pointing into the liquid), s is the 

velocity of the interface and L is the latent heat per unit mass of solid. For a number of 
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simple geometry and conditions, analytical and approximate solutions to the Stefan 

problem are available [95].  

3.1.2.3 The Enthalpy method 

The essence of the enthalpy method is that the latent heat effect is incorporated into 

the heat capacity which is dependent on the temperature. Thus, a new parameter H 

(enthalpy) is introduced. The enthalpy is defined as the sum of latent and sensible heat 

effect.  

For isothermal freezing, the enthalpy H is defined as:   

( ) ( )                                           ( )

( ) ( ) ( )           ( )

s f

s f f

H T c T dT T T

H T c T dT L c T dT T T



  

 

   



 
 3.10 

In the biological material, there is no single freezing temperature. Thus, a mushy zone 

exists between the solid and liquid part. 

( ) ( )                                                            ( )

( ) ( ) ( ) ( )     ( )

( ) ( ) ( )                             ( )

s s

s f l s l

s l l

H T c T dT T T

H T c T dT L c T dT c T dT T T T

H T c T dT L c T dT T T



   

  

 

     

   



  

 

 3.11 

where Ts is the solidus temperature, Tl is the liquidus temperature. With the above 

definition, the bioheat equation in Eq. (3.1) can be rewritten in terms of enthalpy: 

2 ( )b bl m

H
k T c T T Q Q

t



     


 3.12 

where H is the enthalpy. Assuming a linear release of latent heat over the mushy region, 

the variation of H (T) with temperature is shown in Fig. 3.2: 

Taking the derivative of H, 
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H H T
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 3.13 

The effective heat capacity is expressed as: 

eff

dH
c

dT
  3.14 

Thus, Eq. (3.1) becomes 

2 ( )eff b bl m

T
c k T c T T Q Q

t
 


     


 3.15 

The effective heat capacity, blood perfusion, metabolic heat generation and thermal 

conductivity for different phase region are:  

                                    ( )

                     ( )

                                    ( )

eff s s

eff f s l

l s

eff s l

c c T T

Q
c c T T T

T T

c c T T




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 

   
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 
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 3.19 

3.1.2.4 Finite element formulation for phase change problem  

The discrete equations of the FEM can be obtained by multiplying the governing 

Eq. (3.1) with a test function w in the entire domain [2].  
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Using integration by parts: 

2 3

 ( ) d ( )d
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c T Q Q wd wq wh T T
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In the FEM, the temperature is expressed as the following trial and test function: 

1

  
m

i i

i

T


N T  3.22 

where iN  is the shape function, and iT  is the unknown nodal temperature.  In the 

Galerkin weak form, the weight function w  is replaced by shape function N , and the 

standard Galerkin weak form is expressed as: 

2 3 3

 ( ) d d

eff t b b

b b b m a

c d k d c d

c T Q Q d q h d h T

 



  


   

      

       

  

   

NT N T N NT

N N N NT N
 3.23 

The discretized system equation can be finally obtained and written in the following 

matrix form: 

       
t t t
  M T K C T F  3.24 

Therefore, the smoothed Galerkin weak form for Pennes’ bioheat equation can be 

formulated. 

k d


   K N N  The stiffness matrix 3.25 

effc d


  M N N  The mass matrix 3.26 

3

d db bc h
 

     C N N N N  The equivalent 

damping matrix 
3.27 

3 2

( ) + d dF N N Nb b b m ac T Q Q d h T q 
  

         The force matrix 3.28 
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Eq. (3.24) is numerically solved viaαFEM . The numerical algorithm of αFEM is 

presented in the following section.  

3.1.2.5 Briefing on the node-based finite element method (NS-FEM) 

In this section, a brief of the formulation of NS-FEM is presented. In the NS-FEM, 

the domain discretization is the same as the standard FEM. However, the integration of 

stiffness matrix for NS-FEM in Eq. (3.25) is based on node instead of element, and the 

strain smoothing technique is applied.  It has been found that the NS-FEM works well 

for polygonal elements [24]. Because of its upper bound properties [7], and the ease of 

generating triangular (2D) and tetrahedron (3D) elements for complicated domains,  it 

is used in this work for formulating our αFEM for cryosurgery in the liver and bioheat 

transfer in the human eye. In the numerical integrations of NS-FEM, a mesh of 3-node 

triangles for 2D is firstly generated. This can be performed easily by using any mesh 

generator well-developed for FEM. Based on the triangular mesh, the problem domain 

Ω is further divided into N smoothing domains associated with nodes of the triangles 

such that Ω1Ω2… ΩN = Ω and Ωi∩Ωj=Ø, i≠j, where N is the total number of nodes. 

As shown in Fig. 3.3(a), the smoothing domain Ωk for node k is created by connecting 

sequentially the mid-edge-point to the centroids of the surrounding triangles of the 

node of interest. The boundary of the smoothing domain Ωk is labeled Γk and the union 

of all Ωk forms exactly the global domain Ω. For 3D problems as shown in Fig. 3.3(b), 

the domain discretization is the same as that of standard FEM using tetrahedral 

elements, and the smoothing domains for node k inside cell I are formed by connecting 
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sequentially the mid-edge-points, the centroids of the surface triangles, and the 

centroids of the cell I.  

Using the node-based smoothing operation, the temperature gradient is assumed to 

be the smoothed strain for node k defined by: 

( ) ( )
( ) ( ) ( ) ( )

k k
k sW d W d

 
     ε ε x x T x x  3.29 

where ( )W x is a given smoothing function that satisfies at least the partition of unity 

property. 

( )
( ) 1

k
W d


  x  3.30 

Using the following constant smoothing function: 

( )

( )

( )

1

( )

1

k

k
k

k

x
W S

x




 
 

x  3.31 

where S
(k)

 is the area of cell expressed as: 

( )

( )

( ) ( )

1

1

3

k
e

k

N
k i

e

i

S d S




     3.32 

where Ne is the number of elements around the node k, and ( )i

eS  is the area of the ith 

element around the node k. 

( )

( )
k

n

Ik k I

I N

 ε Β x T  3.33 

where ( )k

nN  is the number of nodes in the influence domain of node k. When linear 

shape functions are used, it is the number of nodes that is directly connected to node k in 

the triangular mesh. ( )i kB x is termed as the smoothed strain matrix on the cell: 

( )

( )

( )
1

1 1
( )

3

k
eN

i
I k e ik

i

S
S 

 B x B  3.34 
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The entries iB  are constant due to the linear shape function used. The assembly of 

stiffness matrix is similar to procedure in the FEM. The entries in sub-matrices of the 

stiffness matrix K in Eq. (3.25) are then expressed as: 

( )

1

N
k

k

K K  3.35 

where the 
( )k

K is the smoothed stiffness matrix associated with the node k. It can be 

calculated from: 

( ) T T

d k

k

k

I kk k S



  K B B B Β  3.36 

It can be easily seen from Eq. (3.36) that the resultant linear system is symmetric and 

banded (due to the compact supports of FEM shape functions), which implies that the 

discretized system equations can be solved efficiently. 

3.1.2.6 The formulation of alpha finite element method 

The αFEM is a combination of NS-FEM and FEM determined by a scaling 

function [0,1] .  The entries in the sub-matrices of the system stiffness matrix 

KαFEM will be the assembly of the entries of those from both the NS-FEM and the FEM. 

In 2D NS-FEM, the area Se of each triangular element is divided into four parts with a 

scale factor α as shown in Fig. 3.4(a): three quadrilaterals scaled by (1 − α) at three 

corners with equal area of e

1

3
V , and the remaining Y-shaped part in the middle of the 

element of area (1-α)Ve. The NS-FEM is used to calculate three quadrilaterals, and the 

FEM is used to calculate the remaining part (Y shape area).  The entries in 

sub-matrices of the system stiffness matrix KαFEM will be the assembly of the entries 
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of those from both the NS-FEM and the FEM. The procedure for assembling the 

stiffness K is as follow: 

αFEM NS-FEM FEM

IJ IJ(l) IJ(k)

1 1

n nN N

l k 

  K K K  3.37 

where eN  is the total number of total elements in the entire problem domain: 

( )

FEM T

IJ(k) I J
e

k d


 K B B  3.38 

   ( , )

( ) ( )NS-FEM

IJ(l) ( ) ( )
k

T

I Jk kk d


 


 K B x B x  3.39 

In which ( , )k

e

 is the area associated the node k and bounded by the boundary ( , )k   

as shown in Fig. 3.5. ( )

e


 
is the Y shape of area. The smoothed strain 

( )

( )k



B x for 

( , )k

e

  is determined by: 

( ) ( )

( ) 2 ( ) ( )

( , ) ( , )
1 1

1 1 1 1
( ) (1 ) ( )

3 3

k k
e eN N

i i
I Ik e i e i kk k

i i

S S
S S



 


 

    B x B B B x  3.40 

The smoothed strain matrix is expressed as: 

( )

( , )

( , ) 2 ( ) 2 ( )

1

1
(1 ) (1 )

3

k
e

k

N
l i k

e

i

S d S S


  




       3.41 

Thus, the stiffness for NS-FEM is expressed as: 

2 ( )

( ) (1 )
T T

NS FEM k
I JIJ k k S  K B B  

3.42 

Which implies that in the coding of αFEM , we can use the original NS-FEM to 

calculate the stiffness matrix and then multiply (
21  ). 

From the formulation ofαFEM , it is seen that αFEM  using a scale factor   that 

controls the contribution of NS-FEM and FEM.  When   varies from 0 to 1, the 

solution of αFEM is continuous combination of the FEM and NS-FEM solutions. 

Further, it is observed that the stiffness matrix of the αFEM  has the same unknowns 

of only the temperature, the same bandwidth and sparsity as that of the standard FEM, 
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and hence the same computational complexity. The 3D αFEM as shown in Fig. 3.4(b) 

can be formulated in the similar way. 

3.1.2.7 Assembly of mass matrix 

The major challenge in the fixed grid method of phase change problem is to 

determine the mass matrix. Based on the expression of mass matrix 

( effc d


  M N N ), it is seen that the latent heat effect is incorporated into the mass 

matrix. If the shape functions used to describe stiffness over the element are the same as 

the mass distribution, then the corresponding mass matrix is regarded as the consistent 

mass matrix. In the lumped mass matrix, it is assumed that the mass is only 

concentrated on the node.  A lot of researchers have discussed the relative merits of 

consistent lumped and lumped mass matrix [2, 96]. The expressions of consistent and 

lumped mass matrix are listed as follow:  

1 1 1

2 4 4

1 1 1

3 4 2 4

1 1 1

4 4 2

eff

consist

c A

 
 
 
 
 
 
 
  

M   

1 0 0

0 1 0
3

0 0 1

eff

lump

c A
 
 


 
  

M  3.43 

A is the area of the triangular element. Many authors claim that the lumped mass matrix 

is a good way to simulate the phase change problem even for a constant specific heat 

capacity in terms of better stability, accuracy and convergence [97, 98]. In an addition, 

the use of a lumped mass matrix can reduce computational cost significantly. Thus, the 

lumped mass matrix is preferred in the simulation. 
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It is easy to integrate the mass matrix in complete liquid, solid or mushy regions 

because they have a constant specific heat value.  The simple approximation of 

specific heat in an element is based on the average temperature. However, this method 

is only valid for alloys with very large finite freezing range [87]. There are some 

difficulties in determining the mass matrix for the elements that contain two or three 

phases. In this case, the effective heat capacity is not a continuous function as shown in 

Figure 3.2. The effective heat capacity may be missed if the average temperature is not 

in the range of the mushy region. On the other hand, the effective heat capacity is 

overestimated if the average temperature is in the mushy region.  A very popular 

smoothing method is to split the moving front into a phase transformation region of 

width 2 by incorporating the latent heat effect into a equivalent heat capacity over the 

range 2  [87]. The numerical is sensitive to range . If the element is not dense or the 

time step is large, the temperature may skip the phase change interval. Additionally, the 

latent heat of the associated volume may be entirely missed if the interface jumps 

across one nodal point in less than one time step [87]. In order to tackle this problem, 

many researchers have proposed the ways to handle the discontinuity of effective heat 

capacity. Del Giudice [99] suggested the orientated direction s of the temperature 

gradient:  

,  ,  

sx sy

eff sx sy

H H TH Tl l
x y ys x

c l l
T T x y

s s s s

                                   
          

       
          

 3.44 

And 
T

s




is defined: 
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22
T T T

s x y

    
    

     
 3.45 

Thus, the effective heat capacity is: 

22
  eff

H T H T

x x y y
c

T T

x y

    
     

    
    

      

 3.46 

Lemmon [99] developed a new method to handle the effective heat capacity: 

1

2 22

22eff

H H

x y
c

T T

x y

     
     

         
     

             

 3.47 

Although the above two methods are good approximations in evaluating the effective 

heat capacity, an additional variable (enthalpy) is introduced to increase the 

computational complexity. Further, the temperature gradient at each step must be 

evaluated in both methods. Here, a simple and accurate method so called ‘nodal 

assembly’ of mass matrix to handle the effective heat capacity is presented.  In the 

FEM, the assembly of mass matrix is based on element. The assembly of mass matrix 

based on the node guarantees that the phase change does not omitted. The principle of 

nodal assembly is the same as the node-based smoothed finite element (NS-FEM) as 

shown in Fig. 3.5. If one or two node’s temperature is in the mushy range, it is not 

necessary to calculate the average temperature. It implies the pre-process to judge the 

element in phase range can be ignored. For numerical integration, the problem domain 

Ω is partitioned into N integration domains Ωk (k=1, 2… N) with one for each node 

based on the background triangular mesh. The integration domain Ωk for node k is 

created by connecting sequentially the mid-edge-points to the centroids of the 

surrounding triangles of node k. According to the node’s temperature, we assign a 
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specific effective heat capacity to a node and multiply the mass matrix.  It is noted 

there is no smoothed technique involved in the assembly of mass matrix. If the effective 

heat capacity is continuous function or constant value, the nodal assembly is the same 

as element assembly. A more accurate method is to find the interface using 

interpolation at each time step, which needs a lot of computational time and is very 

difficult to apply in the computer code. Thus, the nodal assembly of mass matrix not 

only keeps the main feature of fixed grid method, but also can capture the latent heat 

effect. 

3.1.2.8 The time discretization 

Although there are many time-stepping algorithms available, in this thesis only 

one-step methods and two-steps methods are discussed. The stability and convergence 

are two important factors in evaluating time stepping schemes. The family of one-step 

methods is characterized as follows:  

1
1

( )
( )( (1 ) )       0 1n n

n n
t

  



      



M T T
K C T T F  3.48 

The above time discretization is referred to as the   method. In the   method,   is 

a parameter that determines the time stepping technique. When 
1

0, ,1
2

  , the time 

stepping scheme becomes Euler-forward, Crank-Nicolson, and backward respectively.  

If 
1

2
  , the numerical results are unconditional stable for non-linear and linear 

problems. In the   method, only the Crank-Nicolson scheme is second order accurate 

in the time step size, and the rest are all first order accurate. However, the   method 

presents oscillation in the temperature field although the numerical results converge. 
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The main reason is the discontinuity of effective heat capacity which results in 

oscillation in the neighborhood of the freezing front. Thus, two-steps methods are 

preferred in the time discretization for phase change problems. The first two-time-level 

scheme was the Lees three-level technique [100]: 

1 1 1 1( )
3 2

n n n nn n n n n

t

        
        

T T T T T
K C M F  3.49 
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3 2 3 3 2

n n nn n n n n
n

n n n n
t t



  

     
        

       

K C M K C K C M
T T T T F  3.50 

Lees three-level method is stable, but the solution exhibited strong oscillatory behavior. 

This is because T defined in Eq. (3.50) is based on the average 1 1

3

n n n  


T T T
T . 

The most general two-steps time discretization is [100]: 

1
1 1

( ) 1 1
( )(( ) ( 2 ) )

2 2

n n
n n na a a

t


 


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 3.52 

Many researchers have found 
1

4
a   works very perfectly in pure solidification 

simulations [100].  The results were found stable and very accurate, and the thermal 

properties should be evaluated at the time step t 
n
[101]. Therefore, in this thesis, we use 

Eq. (3.52) with 
1

4
a   to discretize the time.   



Chapter 3. Alpha Finite Element Method for Phase Change Problem in Liver Cryosurgery and Bioheat Transfer in 

the Human Eye 

73 

 

3.1.3 Numerical example  

3.1.3.1 Case 1: Single probe 

The test problem considered is the freezing of a liver tumor. For small tumors with 

regular shape, a single probe is sufficient to freeze the tumor. For simplicity, the tumor 

is modeled as a sphere of 8mm in diameter. The probe of 2 mm diameter is targeted at 

the center of the tumor. A schematic of the 2D geometry for the liver tumor cryosurgery 

is depicted in Fig. 3.6. The temperature at the outer boundary of the liver is kept 

constant at T=37
o
C. The initial temperature in the tissue is set at 37

o
C. 

The thermal property is listed in Table 3.1. Because the property of the tumor is not 

available, it is taken to be the same as normal tissue in the simulation. The internal 

working process of the probe is very complicated, and it is assumed that the probe 

works as a heat sink. The cooling rate is  
7 32.4 10 W/m s  for 5 seconds. After 5 

seconds, the heat sink is maintained at
8 31.2 10 W/m . Two sets of different meshes, 

coarse mesh with 291 nodes and fine mesh with 12876 nodes are shown in Fig. 3.7.  

The reference model using 12876 nodes are sufficient to capture the physics of the 

problem, because the same numerical results are obtained using more dense nodes 

(19872 nodes). This implies that numerical results have already converged using 12876 

nodes. In order to prevent the recurrence of cancer, the standard cryosurgical technique 

must freeze 10mm beyond the tumor  [71]. Thus, the mesh is dense in the region 

surrounding the tumor in the coarse mesh.  
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It has been well known that the final temperature is a key factor contributing to 

freezing injury during cryosurgery [71, 79-81].  The destructive effects in cryosurgery 

can be classified as two types: one is immediate and another is delayed.  The delayed 

effect is due to the restriction of blood flow. However, the vascular stasis should be 

taken over a few days.  In this thesis, only the immediate effect (direct cell injury) is 

investigated. For direct cell injury, extracellular and intracellular ice crystallizations are 

serious effects to cell viability.  In particular, intracellular ice crystallization is lethal to 

cells. A cell is collapsed due to the excessive stress resulting from volumetric 

expansion of water.  

The temperature profiles at time t=600s for the αFEM  model, together with 

linear FEM and reference solutions are shown in Fig. 3.8. It can be found that, the 

numerical solutions obtained using the present αFEM  are in very good agreement 

with those of the reference ones compared with FEM.  This validates our 

two-dimensional αFEM  model for phase change problem in the bioheat transfer 

process. At the region surrounding the tumor, the temperature changes very fast and 

phase change occurs. However, the FEM model using triangular element gives very 

poor results in this region. This is due to the “overly-stiff” phenomenon of a 

fully-compatible FEM model of assumed temperature based on the Galerkin weak 

form.  As expected, the tissue temperature far away from the tumor is almost 

unchanged compared the region near the probe.  In cryosurgery, minimizing the 

damage to healthy tissue is crucial to determine a successful treatment. From Fig. 3.8, it 

is found that the healthy region of the liver tissue is not affected by the cooling too 
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much.  On the other hand, the temperature along the periphery of the tumor is about 

-90
o
C much lower than the critical temperature (-40

o
C) to kill the tumor.  

Because the temperature at the center of the tumor is the lowest, it is necessary to 

investigate the temperature variation with the time at this point as shown in Fig. 3.9. It 

is found that there are severe oscillations for FEM model using coarse mesh. The 

oscillation is due to discontinuity in the effective heat capacity and thermal properties. 

Additionally, the temperature variation with time predicated by FEM is much larger 

than the reference solution. However, the αFEM  model can avoid the oscillation in 

the simulation as shown in Fig. 3.9. Moreover, the numerical results from αFEM  is 

closer to the reference compared with the FEM. This phenomenon is due to the use of a 

combination of FEM and NS-FEM which gives the model close to exact stiffness. The 

novel formulation of αFEM  has overcome the ‘overly-stiff’ of FEM and ‘overly-soft’ 

NS-FEM, thus it can provide much more accurate results compared with the standard 

FEM.  

Figure 3.10 presents the size and location of ice ball generated by the freezing of 

probe at t=600s. The isothermal surface T=-1
o
C separates the ice ball and unfrozen 

tissue. During the freezing process, the ice ball is developed by the probe. Based on the 

size and location of ice ball obtained from numerical simulation, the clinician can have 

a good understanding of freezing necrosis for a specific probe.  Therefore, the clinician 

can select the correct probe parameters to achieve a desirable lesion size [71, 79-81].  

As shown in Fig. 3.10, the ice ball for the FEM, αFEM and reference is presented. The 

ice ball domains predicted by the FEM, αFEM and reference are listed as follow: 
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39 0 ,  35 75         (FEM model)

40 2 ,  35 76         ( FEM model)

42 3 ,  32.5 78      (reference model)

mm x mm mm y mm

mm x mm mm y mm

mm x mm mm y mm



    

    

    

 

It is easily noticed that the domain of ice ball developed by the FEM model is much 

smaller than that of the reference model, however, the FEM model can predict more 

closely the region compared with the FEM. In Fig. 3.10, it is found that the whole 

region developed by the ice ball exceeds the region of the tumor. The location and size 

of ice ball in medical treatment are very important to control the freezing to maximize 

damage to the tumor cell. These information can minimize the damage to healthy liver 

tissues to avoid an irreversible injury to the neighboring liver tissue due to the over 

freezing.  

The mushy zone (determined by the isothermal T=-8
o
C and T=-1

o
C) predicted by 

theαFEM , FEM and reference is also depicted in Fig. 3.10. As shown in Figure 3.10, 

the mushy zone is marked in green. It is obviously found that the location and size of 

the mushy region is developed by αFEM  which matches very well with the reference 

model compared with the FEM. The information of the mushy zone is beneficial for 

cryosurgeons to plan a specific extent and size of the freezing lesion [79]. 

The destructive mechanisms occurring after the phase transition is also lethal to 

tumor cells in the solid state [72]. The mechanical stress is caused due to the 

temperature gradient during the cooling. Many experiments have shown that the stress 

due to the constrained contraction of the frozen tissues can easily exceed the yield 

strength of the frozen tissues, which results in plastic fracture or deformation [72]. As 



Chapter 3. Alpha Finite Element Method for Phase Change Problem in Liver Cryosurgery and Bioheat Transfer in 

the Human Eye 

77 

 

shown in Figure 3.11, the temperature gradients for the FEM, αFEM  and reference 

model are presented. It is found that the maximum temperature gradient occurs at the 

edge of probe. This is because the edge of probe is the boundary of heat sink. It is also 

expected the temperature gradient at the region far away from the probe is quite small, 

which preserve the property of healthy tissues. From Fig. 3.11, it can be observed again 

that the computed results obtained using the αFEM  are more accurate than that 

obtained from the linear FEM, and closer to the reference, especially in the high 

temperature gradient region. It is well known that triangular elements are not suitable 

for FEM without additional treatment in some cases such high gradient problem due to 

the ‘overly-stiff’ property. Such an “overly-stiff” behavior is responsible for the 

inaccuracy in temperature gradient solutions for triangular mesh. However, the 

αFEM  works very well in triangular elements even in coarse mesh in the numerical 

simulation. More importantly, the triangular element is very easily generated in any 

mesh generator. In an addition, the tissue in the human body is quite complicated, thus, 

the triangular element is a good candidate. 

3.1.3.2 Case 2: Multiple probes  

It is very difficult to control the freezing process for large tumors and irregular 

shape tumors with a single probe. Large tumors with irregular shape are extremely 

tough to destroy due to difficult optimization of cooling rate and location of probes.  

The use of multiple probes facilitates the overlapping of the required frozen areas in the 

treatment of large tumors, and provides a method of destroying the tissue to the desired 
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size and shape in complex tumor ablation [79]. Therefore, it is obvious that the use of 

multiple probes can shorten the time of treatment. However, the use of multiple probes 

may limit the applicability of the thermocouple to measure the tissue temperature, 

which creates some difficulty in monitoring the freezing effect. Thus, numerical 

simulation provides an effective tool to track the tissue temperature responses and 

significantly improve the treatment. In an addition, the treatment parameters can be 

optimized through numerical simulations before the tumor operation [79]. 

Two examples of regular tumor with 12mm diameter and irregular tumor as 

shown in Fig. 3.12 are presented in this section. Three identical probes with 2mm 

diameter are targeted at the tumor. In order to compare the numerical results of FEM 

andαFEM , four sets of mesh for regular and irregular shape tumors are shown in 

Figure 3.13 and 3.14 respectively. The cooling rates for regular and irregular shape 

tumor are 1.410
-7

 W/m
3
s and 1.4410

-7
 W/m

3
s respectively for 5 seconds. After 5 

seconds, the heat sink is constant at 710
-7

 W/m
3
 and 7.210

-7
 W/m

3
 for regular and 

irregular tumors respectively. 
 
Fig. 3.15 present the temperature contours at the time 

t=600s for regular shape of tumor. From Fig. 3.15, it can be clearly found that, 

compared with the numerical solution obtained from standard FEM using the same 

triangular mesh; the present αFEM  solution in temperature is much closer to the 

reference result. The temperature profile predicted by the FEM has a large deviation 

from the reference model. It is obviously shown that the temperature surrounding the 

probe is much lower than the region far away from the probe in Figure 3.15. This is one 

of attractive feature of cryosurgery that the healthy region of the tissue is not damaged. 
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In section 3.1.3.1, it is mentioned that the final temperature is a dominating factor 

affecting the destructive mechanism. The following Fig. 3.16, 3,17 and 3.18 check the 

numerical accuracy by plotting the time history of temperature at sample points A, B, C 

(center of each probe) in the regular shape tumor (shown in Fig. 3.13), for present 

αFEM  and FEM using the same mesh as well as the reference solution with 12974 

nodes. It can be clearly seen that the computed temperatures of A, B, and C obtained 

from αFEM  are closer to the reference results than those of linear FEM using the 

same linear mesh. The αFEM  model so-constructed possesses ‘close to exact’ 

stiffness, and hence can produce more accurate results 

Figure 3.19 describes the temperature contours at the time t=600s for irregular 

shape tumor. In Fig. 3.19, once again, it is clearly found that, the FEM results of 

temperature are much larger than the reference solutions at the tumor domain, while the 

αFEM  solutions are in good agreement with the reference solutions. For irregular 

shape tumor, the temperature far away from the probe also almost keeps unchanged, 

compared with temperature at the domain surrounding the tumor.   However, the 

temperature is more difficult to control in the irregular shape tumor. Thus, accurate 

prediction of temperature distribution, precise treatment planning and optimization of 

cryosurgery process are very important. 

Figure 3.20, 3.21 and 3.22 compare the temperature variation with time at sample 

points D, E, F (center of each probe) in the irregular shape tumor (shown in Figure 2.14) 

for αFEM  and FEM using 322 nodes as well as the reference solution using 11978 
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nodes. As expected, the numerical results from αFEM  is closer to the reference model 

compared with FEM model. 

  In the treatment planning stage, the reference results using very fine mesh for 

both regular and irregular shape tumors took around 25 hours for  Dell PC with Inter
®

 

Pentium (R) CPU 2.80GHz, 2.00GB of RAM . It is well known that accurate 

temperature prediction is crucial in the treatment planning process. Although the 

computation cost is lower for FEM model with coarse mesh (about 2 hours for 322 

nodes), solutions obtained from FEM has a large deviation from the reference. For

αFEM , the most important factor consuming CPU time is the low sparsity in the 

stiffness matrix due to more local nodes used in computing the smoothed strain fields. 

Based on the analysis of section 3.3, it is noted that the αFEM  and FEM have the 

same complexity, the computational time for αFEM  using coarse mesh (322 nodes) is 

about 2.3 hours.  Thus, the αFEM  is a good way to simulate the phase problem in 

cryosurgery to reduce the computational time without losing accuracy.  

The αFEM  is found to be superior to the FEM in terms of computational 

efficiency, accuracy, stability. This is because αFEM  has overcome the drawback of 

NS-FEM with ‘overly-soft’ property and FEM with ‘overly-stiff’ property. More 

importantly, the αFEM  model possesses a “close-to-exact” stiffness and can produce 

exact solutions, in contrast to the “overly-stiff” FEM model that produces lower bound 

solutions, and NS-FEM that produces upper bound lower property[7].  
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3.2 Alpha finite element (αFEM) for bioheat transfer in the human eye 

3.2.1 Mathematical model for human eye 

In this section, the αFEM is formulated to investigate bioheat transfer in the human 

eye such as temperature distribution in the steady state, hyperthermia treatment and 

sensitivity analysis. In order to compare the results of previous work done by others, 

the unit for temperature in this section 3.2 is used Kevin instead of Degree. Figure 3.23 

shows the eye anatomy. The anterior portion of the eye contains the cornea, anterior 

chamber and iris. The posterior portion contains the lens, vitreous and sclera. A, B, C, 

D, and E are points on the corneal surface, anterior of lens, anterior of vitreous, 

posterior of vitreous and the sclera. 

  The Pennes bioheat equation [20] is used to analyze heat transfer in the human eye. 

Since only a small part in the human eye is responsible for blood perfusion and 

metabolic heat generation, these two terms can be neglected. Thus, the final governing 

equation for steady state condition can be written as follow: 

2 0k T Q    3.53 

 

where K is the thermal conductivity of tissue of human eye, T is the temperature of 

tissue of human eye, and Q is external heat source. 

The first boundary condition can be defined as follow: 

 

At the sclera, 

( )bl bl

T
k h T T

n


  


 3.54 
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Here, n is the outward normal direction on the surface boundary, 
blh  is the 

coefficient of ambient convection, and 
blT  is the blood temperature. 

The second boundary condition is at the cornea, where heat is lost to the ambient 

environment 

4 4( ) ( )amb amb amb

T
k h T T T T E

n



     


 3.55 

The three terms on the RHS of the equation denote heat loss due to convection, 

radiation and tear evaporation. ambT ,  ,  , and E  represent the ambient 

temperature, the Stefan Boltzmann constant( 8 2 45.67 10  Wm K   ), Emissivity (0.975) 

and Evaporation rate. The properties of each part of the eye are listed in Table 3.2 

[102]:  

3.2.2 Formulation of the αFEM 

In this section, we first present the formulation of the FEM based on the standard 

Galerkin weak form [2]. The weighted residual equation can be obtained by 

multiplying Eq. (3.53) with a test function w over the entire domain.  

2( ) 0wk T wQ d


    3.56 

Using integration by parts: 

2

3

4 4

 ( )d

(( ( ) ( ) )d

bl bl

amb amb amb

k w Td Q wd wh T T

w h T T T T E

  



      

    

  


 3.57 

The field temperature can be approximated in the following form； 

1

m

i i

i

T


N T  3.58 
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where iN  is the shape function, iT  is the unknown nodal temperature.  In the 

Galerkin weak form, the weight function w  is replaced by the shape function N . 

So the standard Galerkin weak form is expressed as: 

2 3

2 3

4 4

d d  

d ( ( ) )d

bl amb

bl bl amb amb

k d h h Q d

h T T T T E

   

 

         

     

   

 

N T N NT N NT N

N N
 3.59 

The discretized system equation can be finally obtained and written in the following 

matrix form: 

     K M T F  3.60 

where the stiffness, force and mass matrices are given by: 

 

K N Nk d


     3.61 

2 3

3

4

4

d ( )d

d

bl bl amb ambQ d h T T T E

T

  



     

 

  



F N N N

N
 3.62 

2 3

d dbl ambh h
 

     M N NT N NT

 
3.63 

It is noted that the presence of the non linear term in the force matrix can be dealt with 

by using an iterative scheme in the solution.  

In the αFEM, the formulation process for the mass and force matrix is the same as the 

standard FEM procedure. The stiffness in the Eq. (3.61) can be formulated in the 

process of αFEM mentioned in the section 3.1.2.6. 

3.2.3 Numerical results for 2D problem 

In considering hyperthermia treatment of the eye tumor, it is important to calculate 

the temperature distribution in the eye under steady state condition. Figure 3.24 shows 
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the thermal patterns of the eye model using FEM with 151 nodes, αFEM  with 151 

nodes, and FEM with 11113 nodes as reference.  It is observed that numerical results 

obtained from FEM and αFEM  using coarse mesh are in good agreement with the 

reference results. The parameters for steady sate condition are illustrated in Table 3.3: 

The temperatures along the papillary axis at different locations (A, B, C, D, and E 

as shown in Fig. 3.23) are presented in Fig. 3.25. The lowest temperature occurs at the 

corneal surface. This is due to large heat loss to the ambient environment. It is also 

observed that temperature increases along the papillary axis. 

3.2.3.1 Case study 1: Hyperthermia model 

Cancer cells in the eyes can develop into tumors. These cells are often found in the 

eyeball, the eyelids and the orbit. There are largely two types of tumors, known as 

retinoblastoma and melanoma, within the eyes that can badly affect vision. In serious 

cases, eye tumors can spread to other parts of the human body. Thus, it is very 

important to detect eye tumors and give proper treatment at an early stage. There are 

many ways to treat eye tumors. Hyperthermia treatment is often found to be powerful 

and effective. 

The main concern in hyperthermia treatment is to preserve vision and eye structure. 

The size and location of the tumor is a key point to determine this risk. The main 

challenges in hyperthermia models for the human eye are the change in blood flow rate 

and thermal properties. These make it difficult to predict heat transfer in the tissue. 

Heating for hyperthermia can be through microwave heating, ultrasound heating, 
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electrode heating, or thermal dose [103]. Any form of external heating or internal 

heating can be adopted in hyperthermia treatment depending on the heating source. A 

typical medical application in hyperthermia is cancer treatment by selectively attacking 

deep-seated tumors with high temperature [104]. The main feature of hyperthermia 

treatment in the human eye is to increase the tumor temperature up to 315K-319K 

without major effect on the surrounding tissue. It is noted that the ambient temperature 

is kept 273K in the hyperthermia treatment simulation. As shown in Figure 3.26, the 

external heat source is distributed in a small circle with radius r=0.36mm , and the 

power of the heat source is 7 3

rmQ =3.5 10 w/m .  

3.2.3.1.1 Convergence study 

In order to illustrate the novel property of αFEM  , a convergence study is 

conducted by employing three models with 174, 1215 and 2315 uniformly distributed 

nodes as shown in Fig 3.26. The equivalent strain energy norm for heat transfer 

problems [2] is defined as: 

  dU T
gkgT  3.64 

where, in our current case, g  is the smoothed temperature gradient. 

The αFEM makes the good use of lower bound solution of FEM and upper 

bound solution of NS-FEM, thus the exact solution in equivalent strain energy exactly 

falls in the range of the αFEM  with an  α [0,1] . This implies that the exact 

solution in equivalent strain energy can be obtained using the αFEM  using 

triangular elements with α [0,1] . The important property is proven by Liu [8]. 
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Whenα 0 , the αFEM  is exactly the same as the FEM with lower bound property. 

Whenα 1 , the αFEM  becomes the NS-FEM with upper bound property. If  α  

changes from 0 to 1, the solutions of the αFEM  are continuous functions of α  

from the solution of the NS-FEM and that of the standard FEM.  

The exact equivalent strain energy of the test problem is 
5 -32.274 10  Jm K using 

FEM with 12827 nodes. As shown in Fig. 3.27, the equivalent strain energy increases 

with increase of α  for three different set of meshes. Whenα [0.4,0.6] , the energy 

curves for three sets of mesh intercept the exact equivalent strain energy, which 

strongly demonstrates the novel property of αFEM capable of providing the exact 

energy norm. The corresponding temperature solution of the αFEM  using α 0.5  

with the nearly exact energy is also much better than those of either the standard FEM 

or the NS-FEM [8]. 

3.2.3.1.2 Temperature distribution 

The temperature at different locations is plotted in Fig. 3.28 to show the results of 

αFEM , FEM  using a coarse mesh and the reference mesh respectively.  It is 

observed that αFEM  gives more accurate results than FEM using the same 3-node 

triangular mesh and linear shape functions. This validates that αFEM  can provide 

more accurate results. It is also found that the tissue temperature around the heating 

source is around 310K , which is desirable in hyperthermia treatment because it is 

below the critical threshold. This is one of the most attractive features of internal 

heating and it is frequently used to thermally kill tumors in deep tissues, although it 
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may cause some mechanical injuries [56]. As shown in Fig. 3.28, the highest 

temperature always occurs at the heating source in the αFEM  model, FEM model and 

reference model. Thus, it is necessary to investigate the temperature at the heating 

source.  

Figure 3.29 describes the temperature distribution along the circumference of the 

heat source in counterclockwise direction starting from the left horizontal. It is 

observed that the temperature obtained from αFEM  is closer with the reference 

solution compared with FEM.  

Figure 3.30 shows the maximum temperature at the heating source.  Again, the 

αFEM  result is in good agreement with the reference solution. On the other hand, the 

FEM result deviates significantly from the reference result. The predicated maximum 

temperature of αFEM  is about 1.5K away from the reference solution. That of the 

FEM is, however, about 3.2K, when the same mesh is used. We know that even one 

degree difference can make a significant difference in the treatments.  Therefore, the 

improvement of αFEM  on the solution accuracy is very important. Such an 

improvement is achieved by a ‘close to exact stiffness’ property of the αFEM  [8]. 

3.2.4 Numerical results for 3D analysis 

3.2.4.1 Sensitivity analysis 

A similar analysis for the 2D eye model has been done by [102, 105] to study 

various factors determining the temperature distribution within the eye. In this section, 

we extend the 2D model to a 3D model as shown in Fig. 3.31 to identify the key factors 
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affecting the temperature distribution in the human eye and provide some possibilities 

to identify the sickness. It is noted that all other parameters are kept at steady state 

condition when changing the control parameters. Results at five sample points (the 

intersection of the anterior corneal surface with the axis of symmetry), B (anterior of 

lens), C (anterior of vitreous) ，D (posterior of vitreous), E (sclera) are chosen to carry 

out the sensitivity analysis. 

Firstly, the results of temperature contours for the 3D model under steady state 

condition using the FEM, and the αFEM with the same mesh of 620 nodes are plotted in 

Fig. 3.32.  The reference solution obtained using a very fine FEM model with 17386 

nodes is also computed and plotted in Fig. 3.32. As shown in Fig. 3.32, the temperature 

distribution patterns for both FEM and αFEM  match the reference results very well 

under steady state conditions. It is also found that the temperature contour for the 3D 

model is quite similar to the 2D model under steady state conditions. The temperature 

increases from the ocular surface to the sclera along the papillary axis as shown in 

Figure 3.33. The difference between the 2D and 3D model is that the temperature along 

the papillary axis in the 3D model is slightly higher than the 2D model. This is due to 

the extra dimension for heat transfer. 

In the following investigations, the fine mesh of 17386 nodes is used. 

3.2.4.1.1 Effects of evaporation rate 

The cornea surface contains a three-layered structure: a thin mucoid layer, a thick 

aqueous layer and an extremely thin oily layer. The function of the oily layer is to 
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retard evaporation from the eye. Five sets of data are used in this investigation. All the 

test data are between the maximum and minimum values recorded in experiments. 

Results in Table 3.4 have showed that evaporation rate is an important factor 

influencing the temperature distribution. From 30 Wm
-2

 to 230 Wm
-2

, the temperature 

dropped by almost 2K at the corneal surface.  The moisture level in the eyes is 

balanced by tear loss and tears production. Excessive or insufficient evaporation rate 

will break the balance. When this balance is broken, dry spots form on the surface of 

the eyes and cause irritation. Through the measurement of ocular temperature, the 

doctor can check for the symptoms and signs of chronic dry eye.   

3.2.4.1.2 Effects of ambient convection coefficient 

In this section, the effect of ambient convection coefficient is analyzed. As 

mentioned in section 3.2.1, there is heat exchange between the eye and the enviorment. 

The results in Table 3.5 have shown that with increase in the ambient convection 

coefficient, the temperature in the human eye decreases. The temperature at the corneal 

surface is the most sensitive to the variation of the ambient convection coefficient. 

However, the temperature for the inner part of human eye is not affected too much even 

when the ambient convection coefficient increases to the maximum value. 

3.2.4.1.3 Effects of ambient temperature  

At the corneal surface, there is heat loss due to convection and radiation. This is 

strongly related with the ambient temperature. The ambient temperature is also one of 

factors to affect the amount of tears in the eyes. The best way to relieve the symptoms 
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of dry eye is to maintain the eyes moist. In this section, five ambient temperatures listed 

in Table 3.6 are chosen to investigate the effect of the ambient temperature. It is 

observed that there is a significant change at the corneal surface temperature. However, 

there is only slight change in the retinal temperature with change in the ambient 

temperature. 

3.2.4.1.4 Effect of blood temperature 

At the unexposed eye, there is a heat exchange between the blood and the retina. 

Five values, 308, 309, 310, 311 and 312K, are employed to discuss the effect of blood 

temperature. It is noted that blood temperatures of 308, 310 and 312K are undesirable 

for the human eye. The objective of presenting this is to provide the possibility 

detecting sickness based on the ocular temperature [21]. For example, the measurement 

of ocular temperature can provide a quick way to check fever. Based on the ocular 

temperature, the doctor can have a better understanding of patient’s condition and 

prescribe a more effective treatment. From Table 3.7, it is shown that the blood 

temperature is a dominant factor in the temperature distribution in the human eye 

compared with the blood convection coefficient. The temperature dropped by more 

than 3K when the blood temperature varied from 308 K to 312K. It is no wonder that 

the blood temperature plays an important role to regulate the human body’s 

temperature. Changes in blood temperature affect the temperature distribution 

throughout the eye significantly. 
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3.2.4.1.5 Effect of blood convection coefficient 

The blood convection coefficient is determined by the blood flow in the human eye. 

The values of 50, 70, 90, 110 and 120 Wm
-2

K
-1 are employed to assess the importance 

of the blood convection coefficient. From Table 3.8, it is found that the temperature 

variation at each location is minimally affected. The temperature difference between 

the maximum blood convection coefficient and the minimum blood convection 

coefficient is less than 0.5K. 

 From the above analysis, it is found that evaporation, ambient temperature and 

blood temperature are the most important factors dominating the temperature 

distribution in the human eye. These 3D results are the same as finding in 2D reported 

by Scott and Ooi [21, 28]. 

3.2.4.2 Case study 2: Hyperthermia model 

In this section, the 3D human eye of hyperthermia treatment is investigated. A 3D 

model is important to predict the temperature distribution accurately in the 

hyperthermia model. In the 3D model, the heating source is distributed in a small 

sphere with radius 0.6r mm  as shown in Fig. 3.34. The power of heat source is

7 34 10 /rmQ w m  . 

The problem domain is firstly discretized with 1292 regularly distributed nodes, 

based on which the 4-node tetrahedrons are constructed as shown in Fig 3.34. For 

comparison, FEM solutions are also computed using the same tetrahedral mesh. The 
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reference solutions are obtained using FEM with a refined mesh of 17867 regular 

nodes. 

The computed temperature patterns of the whole domain using αFEM are plotted 

in Fig. 3.35, together with linear FEM and reference solutions. As outlined in Figure 

3.35，it can be found that the temperature contours at the corneal surface obtained from 

the αFEM  model are in very good agreement with those of the reference ones 

compared with the FEM model. It is also observed that the lowest temperature always 

occurs at the corneal surface where there is a large heat transfer between the eye and the 

cooling ambient. Fig. 3.36 presents the temperature contour for section X-X obtained 

from FEM, αFEM  and reference model. It is found that the temperature distribution 

at the heat source obtained from FEM has a large deviation from the reference model, 

while theαFEM  still provides more close results to the reference compared with FEM 

at the heating source using the same mesh. This validates our three-dimensional 

αFEM  model for bioheat transfer problems. As shown in Figure 3.36, the location of 

peak temperature is the heating source position. The raised temperature will kill the 

tumor without damaging the healthy tissue. Thus, the accurate prediction of 

temperature at the heating source is crucial to a successful treatment.  

Figure 3.37 presents the peak temperature at the heating source. It is shown that the 

αFEM  results agree well with the reference solutions, and are more accurate than 

those obtained from linear FEM using the same mesh. The difference of predicated 

maximum temperature between the αFEM and the reference solution is about 1.4K. 

That of the FEM is, however, about 3.1K with the same mesh. It is noted that the 
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present αFEM  formulation is derived from the smoothed Galerkin weak form and 

standard Galerkin weak form. The αFEM  model so constructed behaves “softer” 

compared with the FEM model, has “close to exact” stiffness feature and hence 

produces much more accurate results. 

3.3 Remarks 

In this work, two biological models using αFEM are established: one is phase 

change in the liver cryosurgery; another is bioheat transfer in the human eye. From the 

numerical results, the following remarks can be derived as:   

1. Through numerical investigation, it is found that the αFEM achieves very 

accurate results compared to the FEM with the same number of degree of 

freedom. This is because that the αFEM can be made with a good combination 

of lower bound property for FEM and upper bound property for NS-FEM. 

Furthermore, the αFEM is not only spatially stable, but also temporally stable. 

2. The αFEM uses triangular elements in two-dimensional and tetrahedral 

elements in three-dimensional problems, and hence is particularly good for 

very complicated in geometry. However, the triangular and tetrahedral 

elements are not suitable for standard finite element method in certain cases 

without additional treatment such as high temperature gradient.  

3. In the αFEM  model, no additional parameters or degrees of freedoms are 

needed; the system matrices have the same dimension with the FEM model of 

same mesh. Thus, the same computational complexity is expected for both 
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FEM andαFEM . 

4. Based on the sensitivity analysis in the human eye, it has been found that blood 

temperature, ambient temperature and evaporation rate are the most important 

factors affecting the corneal surface temperature.  

5. Last but not least, the measurement of ocular surface temperature of the human 

eye can provide a fast and safe way to detect fever and dry eyes, which can help 

doctors improve the diagnosis and treatment. 
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Figure 3.1: Domain of phase change 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Plot of enthalpy, effective heat capacity against Temperature 
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(a) background triangular cells and nodal smoothing domains for node k in 2D 
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(b) background tetrahedral cells and nodal smoothing domains for node k in 3D 

Figure 3.3: Illustration of smoothing domain in the NS-FEM 
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(a) Combination of triangular element of FEM and NS-FEM in 2D 
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(b) Combination of tetrahedral element of FEM and NS-FEM in 3D 

Figure 3.4: Illustration of smoothing domain in the αFEM 

 

 

 

Figure 3.5: Cell associated with nodes for triangular elements in the αFEM  
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Figure 3.6: Geometry of investigated domain [106] 

 

 

 

 

 

 

 

 

 

 

 

 

Mesh a: 291 nodes 

 

Reference mesh: 12876 nodes 

 

Figure 3.7: Mesh for liver 
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Reference 
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Figure 3.8: Comparison for temperature contour at t=600s 
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(a) Full scale distribution 

 

(b) Zoomed-in distribution 

Figure 3.9: Temperature variation with time at the center of tumor 
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FEM model using 291 nodes 

 

αFEM model using 291 nodes 

 

Reference model 

 

Figure 3.10: Size and location of ice ball 
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 Figure 3.11: Comparison for temperature gradient 
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Regular shape with three probes 

 

Irregular shape with three probes 

 

Figure 3.12: Geometry of liver 
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Figure 3.13: Mesh information for regular shape of tumor 
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Figure 3.14: Mesh information for irregular shape of tumor 
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Figure 3.15: Comparison of temperature contour at time t=600s 
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Figure 3.16: Point A temperature with time for regular shape tumor 

 

 

Figure 3.17: Point B temperature with time for regular shape tumor 
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Figure 3.18: Point C temperature with time for regular shape tumor 
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Reference 
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Figure 3.19: Comparison of temperature contour at time t=600s 
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Figure 3.20: Point D temperature with time for irregular shape tumor 

 

 

 

 

Figure 3.21: Point E temperature with time for irregular shape tumor 
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Figure 3.22: Point F temperature with time for irregular shape tumor 

 

 

 

Figure 3.23: Anatomy of 2D model of eye 
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(a) Temperature contour for alpha FEM using 151 nodes 

 

(b) Temperature contour for FEM using 151 nodes 

 

(c) Temperature contour for reference using 11113 nodes 

Figure 3.24: Temperature contour of 2D eye model under steady condition 
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Figure 3.25: Temperature along horizontal axis from corneal surface 
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Mesh a using 174 nodes 

 
 

Mesh b using 1215 nodes 

 

 

Mesh c using 2315 nodes 

 

 

Mesh d using 12827 nodes 

 

Figure 3.26: Four sets of different mesh with heat source distributed in a small circle 

Center of heat source : x=8.6mm, y=-9.3mm  
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Figure 3.27: Equivalent strain energy 
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(a) Temperature contour for alpha FEM using 174 nodes 
( 0.5)   

 

(b) Temperature contour for FEM using 174 nodes 

 

(c) Temperature contour for reference using 12827 nodes 

Figure 3.28: Temperature contour of 2D eye model under hyperthermia treatment 
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Figure 3.29: Temperature distribution at the heating source 

 

 

Figure 3.30: Comparison for maximum temperature at the heating source 
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Figure 3.31: 3D quarter model of human eye 
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Temperature contour for  FEM  using 620 nodes 

 

Temperature contour for FEM using 620 nodes 

 

Temperature contour for reference using 17386 nodes 

Figure 3.32: Temperature contour of 3D eye model under steady condition 
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Figure 3.33: Temperature along horizontal axis from corneal surface 
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a) Coarse mesh with 1292 nodes for section X-X 

 

 

b) Very fine mesh with 17867 nodes for section X-X 

 

Figure 3.34: Two sets of different mesh with heat source distributed in a small sphere 

Center of heat source : 8.10 ,  8.86 ,  0x mm y mm z mm     
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(a) Temperature contour for FEM  using 1292 nodes 

 

(b) Temperature contour for FEM using 1292 nodes 

 

(c) Temperature contour for reference using 17867 nodes 

Figure 3.35: Temperature contour of 3D eye model under hyperthermia treatment 
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(a) Temperature contour for FEM  using 1292 nodes 

 

(b) Temperature contour for FEM using 1292 nodes 

 

(c) Temperature contour for reference using 17867 nodes 

Figure 3.36: Temperature contour of 3D eye model for section X-X 
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Figure 3.37: Comparison for maximum temperature at the heating source 
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Table 3.1: Thermal properties of liver tissues [80] 

 Unit Value 

Thermal conductivity of the 

unfrozen tissue 

W/m
o
C 0.5 

Thermal conductivity of the frozen 

tissue 

W/m
o
C 2 

Heat capacity of the unfrozen tissue J/m
3 o

C 33.6 10  

Heat capacity of frozen tissue J/m
3 o

C 31.8 10  

Latent heat KJ/kg 4200 

Lower phase-transition temperature 
o
C -8 

upper phase-transition temperature 
o
C -1 

Metabolic rate of the liver W/m
3 

4200 

Body core temperature 
o
C 37 

Density of unfrozen tissue Kg/m
3 

1000 

Density of frozen tissue Kg/m
3
 1000 

Density of blood Kg/m
3
 1000 

 

 

 

 

 

Table 3.2: Properties of the human eye  

 
Thermal conductivity 

(Wm
-1

K
-1

) 
Specific heat Density (kgm

-3
) 

Cornea 0.58 4178 1050 

Aqueous 0.58 3997 996 

Iris 1.0042 3180 1100 

Lens 0.40 3000 1050 

Vitreous body 0.603 4178 1000 

Sclera 1.0042 3180 1100 
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Table 3.3: Parameters under steady state condition 

ambh  Ambient convection coefficient 10 Wm
-2

K
-1

 

blh  Blood convection coefficient 65 Wm
-2

K
-1

 

ambT  Ambient temperature 293 K 

E Evaporation rate 40 Wm
-2

 

blT  Blood temperature 310 K 

 

 

 

 

 

Table 3.4: Effect of evaporation rate 

E (W m
-2

) 
Temperature distribution (K) 

A B C D E 

30 306.87 308.71 309.27 309.82 309.86 

80 306.35 308.49 309.15 309.79 309.83 

130 305.84 308.28 309.03 309.76 309.81 

180 305.32 308.06 308.94 309.73 309.78 

230 304.80 307.85 308.79 309.70 309.76 
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Table 3.5: Effect of ambient convection coefficient 

H (Wm
-2

K
-1

) 
Temperature distribution (K) 

A B C D E 

15 306.67 308.37 309.08 309.77 309.82 

30 304.30 307.61 308.65 309.66 309.73 

50 302.50 306.82 308.20 309.55 309.64 

80 300.59 305.95 307.70 309.43 309.54 

100 299.65 305.50 307.44 309.36 309.49 

 

 

 

 

Table 3.6: Effect of ambient temperature 

T (K) 
Temperature distribution (K) 

A B C D E 

273 303.66 307.38 308.52 309.63 309.71 

278 304.42 307.69 308.70 309.68 309.74 

283 305.19 308.01 308.88 309.72 309.78 

303 308.40 309.34 309.63 309.91 309.93 

308 309.25 309.69 309.82 309.96 309.97 
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Table 3.7: Effect of blood temperature 

T (K) 
Temperature distribution (K) 

A B C D E 

308 305.10 306.80 307.32 307.83 307.86 

309 305.94 307.73 308.28 308.82 308.86 

310 306.77 308.66 309.25 309.81 309.85 

311 307.60 309.59 310.26 310.80 310.84 

312 308.43 310.52 311.17 311.80 311.83 

 

 

 

 

Table 3.8: Effect of blood convection coefficient 

H (Wm
-2

K
-1

) 
Temperature distribution (K) 

A B C D E 

50 306.64 308.53 309.12 309.73 309.77 

70 306.80 308.70 309.28 309.83 309.87 

90 306.89 308.80 309.37 309.88 309.91 

110 306.96 308.87 309.43 309.91 309.94 

120 306.99 308.90 309.45 309.92 309.95 
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Chapter 4  

 

Development of Piecewise Linear Gradient Smoothing 

Method (PL-GSM) in Fluid Dynamics 

 

4.1 Introduction 

Chapters 2 and 3 presented the research efforts related to the use of gradient 

smoothing operations for weak-form governing equations. In such applications, the 

gradient smoothing operation is only adopted as an auxiliary component in the 

development of various meshfree methods. Recently, a piecewise constant gradient 

smoothing method (PC-GSM) for strong-form equations has been developed [24], in 

which the gradient smoothing operation is used to approximate the first and second 

derivatives at different locations and the resultant instantaneous equations are solved 

subsequently. Various discretization schemes for approximating spatial derivatives are 

devised and some efficient and accurate schemes are selected. These schemes for the 

PC-GSM have been successfully formulated and applied for simulating compressible 

flows and heat conduction problems [24]. The previous works have demonstrated that 

the proposed PC-GSM is conservative, conformal, efficient, robust and accurate.  

In this Chapter, a novel piecewise-linear gradient smoothing method (PL-GSM) 

based on the strong form formulation is presented as an alternative to the generalized 

finite difference method for solving fluid problems.  Compared with PC-GSM, the 
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PL-GSM adopts the linearly-weighted smoothing function in the gradient smoothing 

domain instead of the piecewise constant smoothing function. In the PL-GSM，all the 

unknowns are also stored at the nodes and their derivatives at various locations are 

consistently and directly approximated. A Linearly-weighted gradient smoothing 

technique is utilized to determine the first and second order derivative approximations 

by systematically computing weights for a set of nodal points surrounding an interest 

node. The flexibility of the PL-GSM makes use of existing meshes that have originally 

been created for finite difference or finite element methods.   

4.2 Concept of piecewise linear gradient smoothing method (PL-GSM) 

4.2.1 Gradient smoothing operation 

Consider a two dimensional problem to illustrate the gradient smoothing operation. 

The gradients of a field variable U at a point of interest at xi in domain i can be 

approximated in the form of [18, 107] 

( ) ( ) ( )
i

i i iU U U w d


     x x x x  4.1 

Integrating Eq. (4.1) by parts or using divergence theorem gives 

( ) ( ) ( ) ( )
i i

i i iU U w ds U w dV
 

      x x x n x x x  4.2 

where  is gradient operator, and w  is a smoothing function that can be chosen based 

on the required accuracy of the approximation [24].  represents the external 

boundary of the gradient smoothing domain, and n  denotes the unit normal vector on 

, as shown in Fig. 4.1. 

i

i
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In this work, around a node of interest, i, the following piecewise linear smoothing 

function is adopted: 

0 1( ),
( )

0,

i

i

i

w
  

  


ia a x x x
x x

x
 4.3 

where a0 and a1 are matrices of coefficients that are dependent on the geometry of each 

sub-triangle within the smoothing domain of interest. With the Eq. (4.3), the first term 

in the right hand side of Eq. (4.2) vanishes: 

   
i

i iU U w dV


     x x x  4.4 

Analogously with the gradient smoothing operation the second order of derivative is 

expressed as follow: 

   
i

i iU U w dV


       x x x  4.5 

The piecewise linear smoothing function in the PL-GSM is required to satisfy the 

weighted partition of unity [108]: 

 
( )

2

1

1
i

k
i

n

i

k

w dV




  x x  4.6 

The second constrain is that the smoothing function must vanish at the boundary of the 

smoothing domain: 

  0,i iw x x  x  4.7 

The third constrain implies that a constant value of the smoothing function at the node 

of interest. 

  0 ,i i iw a  x x x  4.8 
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4.2.2 Types of smoothing domains 

In the PL-GSM, the values of field functions are stored at nodes that can be 

irregularly distributed in space. By connecting nodes, the problem domain is first 

divided into a set of primitive cells of any shape. Because triangular cells can be 

automatically generated, they are usually preferred. Based on these cells, a smooth 

domain for any point of interest can be constructed. We devise different types of 

smoothing domains for approximating first derivative at different locations. Figure 4.2 

shows three types of gradient smoothing domains, over which spatial derivatives are 

approximated with gradient smoothing operations. The first type of smoothing domain 

is the node-associated gradient smoothing domain (nGSD) for the approximation of 

derivatives at a node of interest. It is formed by connecting the centroids of relevant 

triangles with midpoints of influenced cell-edges. The second is identical to a primitive 

cell, which is used for approximating derivatives at the centroid of the cell, as in the 

cell-centered FVM [109]. It is called centroid-associated gradient smoothing domain 

(cGSD) here. The third is named midpoint-associated gradient smoothing domain 

(mGSD) used for the calculation of the gradients at the midpoint of a cell-edge of 

interest. The preferred mGSD is formed by connecting the end-nodes of the cell-edge 

with the centroids on the both sides of the cell-edge, as shown in Fig. 4.2. 

4.2.3 Determination of smoothing function 

For a two-dimensional case, the piecewise linear smoothing function can be rewritten 

as 
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The coefficients in matrices a, b and c are dependent on the geometry of each 

sub-triangle within the smoothing domain of interest. The matrices of coefficients are 

in the form of  
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Ni represents the total number of edges connected with the node of interest, i. As shown 

in Fig. 4.3, there are totally 2Ni sub-triangles that form the smoothing domain for an 

internal node of interest. For a boundary node, there are (2Ni -2) sub-triangles, 

correspondingly. 

Furthermore, Eq. (4.9) gives 
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The discretization of equations on an inner node is considered first.  

The smoothing function is required to satisfy the weighted partition of unity: 
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Besides, for a sub-triangle of interest, for instance, the triangle imkck, it is further 

assumed that   
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With Eq. (4.13), it is readily obtained that  

,2

3
( )i k i i

i

a w
V

  x x

 
4.16 

where Vi is the total area of the smoothing domain for the node of interest, i. This 

formulation implies that all coefficients in the matrix ai are constant, regardless of 

sub-triangles involved. 

The parameters kib 2,  and kic 2,  for each sub-triangle can then be obtained as the 

solutions to Eq. (4.17) and Eq. (4.18), in the form of  
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It is also noticed that the denominator in Eq. (4.17) and (4.18) relates to the area of the 

sub-triangle imkck, which is 
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Therefore, the following relations hold: 
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where ))(())(( imicicim yyxxyyxx
kkkk
 . It is noticed that if the constitutive 

nodes (i -> mk -> ck) for the sub-triangle imkck obey the right-hand rule sequence,  

will take positive value. Otherwise, it will be negative, as in the sub-triangle imkck-1. 

Therefore, as shown in the previous figure, for the triangle imkck, since 0 , we 

have 
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Analogously, for the (2k-1)
th

 sub-triangle, imkck-1, the relevant coefficients are  
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where ))(())((
1112, imicicimki yyxxyyxxArea

kkkk

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. 

4.2.4 Approximation of first order derivatives 

Eq. (4.4) can be simplified to 
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Eq. (4.24) gives the approximation to the gradients as  
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The integral for function U(x) over each sub-triangle can be simply approximated: 
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Substituting Eq. (4.27) into Eq. (4.25) and (4.26) gives, 
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The function values at midpoints of edges and centroids of triangles can be simply 

approximated with linear interpolation of values at constitutive nodes. 

4.2.5 Approximation of second order derivatives 

Analogously, with the help of linear interpolation in integral calculation, the 2
nd

-order 

derivatives can be approximated as: 
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In the above equations, the gradients at midpoints of edges and centroids of triangles 

can be approximated using either linear interpolation or gradient smoothing operation, 
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as done in PC-GSM with piecewise constant smoothing function. As for the 

approximation with gradient smoothing operation, both piecewise constant and linear 

smoothing functions can be used.  

4.2.6 Relations between PC-GSM and PL-GSM 

As described in previous sections, the PL-GSM adopts the piecewise linear 

smoothing functions and the PC-GSM uses the piecewise constant smoothing functions 

[24]. For PC-GSM, the derivatives are approximated based on the integration over the 

surface of a gradient smoothing domain. On the other hand, they are approximated 

based on the integration over the bounding edges of the domain for PL-GSM. These 

variations are summarized in the Table 4.1.  

4.2.7 Treatment of boundary nodes between PC-GSM and PL-GSM 

The treatment of boundary nodes in the PC-GSM and PL-GSM is quite different. In 

the PL-GSM, values at boundaries are dealt with in the same manner as those on 

internal nodes as described above. In other words, the governing equation is still 

applied onto the boundary nodes for solutions. Therefore, no special treatment on 

boundary nodes is needed. Fig. 4.4 not only illustrates the difference in gradient 

smoothing domain for internal and boundary nodes, but also gives the hint to deal with 

the boundary nodes in the similar way as for internal nodes.  

In PL-GSM, as shown in Fig. 4.4(a), only surface integrals will be involved in the 

approximation of the gradients at boundary nodes, as described above. As dummy 

nodes overlap with boundary nodes, the area marked in red becomes zero. Therefore, 
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only the portion of gradient smoothing domain within the computational domain will 

be used in the approximation. Thus, the boundary nodes will be treated in the same 

manner as what is done for internal nodes. As a result, a consistent treatment is applied 

for all nodes throughout the computational domain. However, the boundary nodes and 

inner nodes must be solved separately in PC-GSM [24].  For example, additional 

effort to search for boundary node must be done before solving the governing equation 

in PC-GSM, which increases computational cost.  

4.3 Stencil analysis 

In this section, analysis of the stencils of supporting nodes for the PL-GSM is 

carried out. The coefficients of influence for a node of interest where derivatives are 

approximated are derived using the PL-GSM and analyzed. The purpose for stencil 

analyses is to verify whether the proposed PL-GSM scheme meets the basic principles 

of numerical discretization.  

4.3.1 Basic principles for stencil assessment 

In the stencil analyses, five basic rules are considered to assess the quality of a 

stencil resulting from a discretization scheme: a) Consistency at each domain face; (b) 

Positivity of coefficients of influence; (c) Negative-slope linearization of the source 

term; (d) The compactness of the stencil; (e) Sum of the coefficients of influence. To 

satisfy condition (a), it requires that the same expression of approximation must be used 

on the interface of two adjacent smoothing domains. In the PL-GSM, when the gradient 

smoothing technique is applied to the gradient smoothing domains, condition (a) is 
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automatically satisfied, meaning that the local conservation of quantities is ensured and 

also for the global conservation once proper boundary conditions are used. Condition 

(b) requires that the coefficient for the node of interest and the coefficients of influence 

must be positive, once the discretization equation is written in the form of

1

i

k k

n

ii i ij j i

k

a U a U b


  . It is also necessary for a good discretization stencil to satisfy the 

condition (c) which relates to the treatment of the source terms. As addressed by 

Patankar [110], it is essential to keep the slope of linearization negative, since a positive 

slope can lead to computational instabilities and physically unrealistic solutions. 

Condition (d) concerns numerical accuracy and efficiency, as commented by Barth [48]. 

The very first layer of nodes surrounding the node of interest should be included in the 

discretization stencil. Moreover, as the stencil becomes larger, not only will 

computational cost increase, but accuracy decreases as less relevant data from further 

away is brought into approximation. Condition (e) further requires that
1

i

k

n

ii ij

k

a a


 . 

Barth [48] proposed a few lemmas to address the necessity of positivity of coefficients 

to satisfy a discrete maximum principle that is key to the design and analysis of 

numerical schemes for non-oscillatory discontinuity (for example, shock). At steady 

state, non-negativity of the coefficients is sufficient to satisfy a discrete maximum 

principle that can be applied successively to obtain global maximum principle and 

stable results. His statements reiterate the importance of condition (b) as mentioned by 

Patankar [110].  
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4.3.2 Stencils for approximated gradients 

The stencil for gradient approximation using linearly-weighted gradient smoothing 

method is first analyzed. The coefficients of influence based on cells of square and 

equilateral triangle shapes with unit length are shown in Fig. 4.5 and Fig. 4.6. 

4.3.2.1 Square cells 

As shown in Fig. 4.5, it is found that this stencil is identical to that of 6-point based 

central-differencing scheme in the FDM. That is to say, when uniform Cartesian 

meshes are used, the PL-GSM is the same as the FDM. However, the PL-GSM still 

works for cells of irregular shapes very well. 

4.3.2.2 Triangular cells 

Figure 4.6 presents the stencil based on cells of equilateral triangle shape. It is 

observed that the stencil is identical to that of interpolation method using six 

surrounding nodes [63]. However, the interpolation method usually fails for irregular 

triangular cells as addressed by Liu[63], but the PL-GSM still performs well, as will be 

demonstrated in the section on numerical examples. This is due to the crucial stability 

provided by the smoothing operation.  

4.3.3 Stencils for approximated Laplace operator 

In the PC-GSM, the use of piecewise constant gradient smoothing function has 

been shown to be robust, accurate and stable [24]. For comparison, the proposed 

schemes of PC-GSM and PL-GSM for stencils in the Laplace operator are presented in 



Chapter 4. Development of Piecewise Linear Gradient Smoothing Method (PL-GSM) in Fluid Dynamics 

139 

 

this section. In order to examine the effects of the piecewise linear gradient smoothing 

function, the schemes using linear interpolation for the midpoint and central point are 

also included in Table 4.2. In this section, compact stencils for the approximated 

Laplace operator 
2 2

2 2

i iu u

x y

  
 

  
for various schemes are carried out.  

4.3.3.1 Square cells 

The stencils for the approximated Laplace operator with PL-GSM schemes based 

on cells of square shape are shown in Fig. 4.7. As shown in Fig. 4.7(a), scheme I results 

in wide stencils with unfavorable weighting coefficients (zero and negative) due to the 

simple interpolation of gradient at the midpoint and center. Scheme II of PC-GSM and 

scheme III of PL-GSM result in the same favorable and compact stencils in Fig. 4.7(b). 

It demonstrates that the use of gradient smoothing operation is a good alternative for 

approximating the second order derivatives.   

4.3.3.2 Triangular cells 

The stencils analyses of triangular cells are shown in Fig. 4.8. It is observed that 

coefficients at the very first layer of neighbouring nodes are negative as seen in Figure 

4.8(a) for scheme I, which is against the basic condition (b). Scheme II of PC-GSM and 

scheme III of PL-GSM use only the first layer of neighboring nodes with positive 

coefficient as shown in Fig. 4.8(b), which result in the same compact stencil with 

favorable coefficients. This is also due to the constant employment of gradient 

smoothing operations.   
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From the stencil analysis for Laplace operator, it is found that the PC-GSM and 

PL-GSM are able to produce the same favorable coefficients in the discretization. The 

linear interpolation at the midpoint and central point with the PL-GSM in the node has 

the same results. In the following numerical part, comparison of accuracy in the solving 

the Poisson equation with three different schemes as listed in Table 4.2. 

4.4 Numerical example: Poisson equation 

In this study, the proposed PL-GSM is first examined through solving a 

two-dimensional Poisson’s equation as 

2 2

2 2
( , ) (0 1,0 1)

U U
f x y x y

x y

 
     

 
 4.34 

The source conditions and analytical solution are given as follows: 

 ( , ) sin( )sin (0 1,0 1)f x y x y x y       4.35 

   2

1ˆ ( , ) sin sin       (0 1,0 1)
2

U x y x y x y 


     


 4.36 

The contour plot of the analytical solution to the above problem is shown in Fig. 4.9. 

Boundary conditions adopted in simulations are consistent with the corresponding 

analytical solutions. These analytical solutions are used for the evaluation of numerical 

errors in the PL-GSM solutions. 

The Poisson equation is also solved with Dirichlet and Neumann boundary conditions 

as shown in Fig. 4.10. 

To investigate quantitatively the numerical results, two types of error indicators are 

defined as follow: 
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where  and  are predicted and analytical solutions at node i, respectively. This 

type of error is used to compare the accuracy among different schemes.  

The second type of error is the node-wise relative error, which is estimated in the form 

of   

ˆ

ˆ

i i

i

i

U U
rerror

U


  4.38 

The node-wise relative errors distributed over the computational domain are used to 

identify problematic regions in simulations.  

4.4.1 The effect of linear gradient smoothing  

Figure 4.11 illustrates the node-wise relative errors in solving the first Poisson 

problem with schemes I and III respectively. The right triangular mesh with 121 

uniformly distributed nodes is used in this example. The simple linear interpolation of 

gradient at the midpoint and central point has caused saw-smoothed numerical error 

(well-known as checkboard problem), which is consistent with the finding as shown in 

stencil analysis. From Fig. 4.11, the relative error using schemes III has reduced 

significantly. Such an attractive feature can be attributed to the consistent use of 

smoothing techniques in scheme III, which provides the crucial stability and robustness 

of PL-GSM. 

iU ˆ
iU
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4.4.2 Convergence study of the PL-GSM 

Four sets of right triangular cells as shown in Fig. 4.12 are employed to investigate 

the accuracy of three schemes in solving the first Poisson equation.  

Table 4.3 summarizes the numerical errors for different discretization schemes. It 

is obviously found that the use of the gradient smoothing function for approximating 

gradients at non-storage locations always gives more accurate results than the use of 

linear interpolation. Additionally, scheme III with piecewise linear gradient smoothing 

function improved the accuracy of numerical solution significantly compared with 

schemes I and II. 

Another four sets of regular mesh as shown in Fig. 4.13 are used to analyze the 

numerical error against three types of discretization schemes. The numerical errors for 

three schemes are presented in Table 4.4. Again, scheme III with constant use of 

piecewise linear gradient smoothing function always gives higher accuracy than the use 

of linear interpolation in scheme I and piecewise constant gradient smoothing function. 

The numerical results obtained from the linear interpolation at the midpoint and the 

central point are very poor compared with the gradient smoothing operation in schemes 

II and III.  

 To study the convergence property of PL-GSM, four models with regularly 

distributed nodes (131, 478, 1887, 7457 nodes) were analyzed. Evolutions of numerical 

error with averaged nodal spacing for the first Poisson problem are plotted in Fig. 4.14. 

Note that the errors in these plots are evaluated using Eq. (4.37), and the average nodal 

spacing, h, is evaluated using the formula given by Liu [63] in the form of  
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1node

V
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 4.39 

where V and nnode denote the area of the whole computational domain and the total 

number of nodes in the domain, respectively. It is apparent that the averaged node 

spacing decreases as the number of nodes increases. From Fig. 4.14, it can be found that 

the convergence rate is approximately the same in all schemes, because all schemes are 

second order accurate in spatial approximation. 

4.4.3 Condition number and iteration 

The condition number of the global stiffness matrix ( )cond K  is an important 

indicator of numerical stability.  The number of iterations is proportional to the 

condition number when the iteration solver is used to solve the algebraic system 

equation. As shown in Table 4.5, the condition number and number of iterations for 

three schemes in the numerical solution of the first Poisson equation are presented. 

Scheme III has the largest condition number and number of iterations compared with 

the remaining techniques. This is due to the continuous employment of linear gradient 

smoothing operation in the midpoint and central point. 

4.4.4 Effects of nodal irregularity 

To evaluate the influence of mesh irregularities on accuracy, a numerical example 

with regular mesh and irregular mesh will be tested. The irregularly distributed nodes 

are generated based on the nodal irregularity degree defined in the following 

expression: 
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4.40 

where ai, bi and ci, respectively, denote the lengths of cell-edges of a triangular cell, and 

ne stands for the total number of cells in the overall domain. Eq. (40) is derived from the 

formula proposed by Stillinger et al [109] for a single triangle. Using Eq. (40), the 

irregularity vanishes for equilateral triangles and positive for all other shapes including 

isosceles triangles. Fig. 4.15 shows five sets of triangular cells with various 

irregularities, but the same number of nodes. It is obvious that as the irregularity 

increases, the mesh is distorted further.  

Figure 4.16 presents the numerical error with different schemes against the degree 

of irregularity for the second Poisson problem. It is easily found that the numerical error 

obtained from schemes III does not vary too much. However, the numerical error 

obtained from schemes I and II become worse when the irregular meshes are used. 

These crucial findings imply that the present PL-GSM works well even with the 

extremely distorted cells. The interpolation method, however, is known and confirmed 

here to be sensitive to mesh distortions. 

Based on the above analysis, it is concluded the PL-GSM is more accurate than 

PC-GSM although they are both second order accuracy in spatial approximation. In 

addition, the PC-GSM is more sensitive to the distortion of element compared with the 

PL-GSM. Also, the numerical treatment of PL-GSM is easier than the PC-GSM. 

Therefore, the PL-GSM is an excellent alternative to the PC-GSM. 
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4.5 Solutions to incompressible flow Navier-Stokes equations 

4.5.1 Discretization of governing equations 

The Navier–Stokes equations, regarded as the basic governing equations in 

incompressible flow, describe the motion of fluid substances. The sets of equations are 

derived from Newton's second law to denote the conservation of mass, momentum and 

energy. In this thesis, heat transfer is ignored. 

0
u v

x y

 
 

 
 4.41 

xyxxu u u p
u v

t x y x x y

      
    

     
 4.42 

xy yyv v v p
u v

t x y y x y

        
    

     
 4.43 

Written in the conservative form: 

0
u v

x y

  
 

 
 4.44 

 2

xyxx
u pu uv

t x y x y

     
   

    
 

4.45 

 2

yy xy
v pv uv

t y x y x

       
   

    
 

4.46 

where 

,  2 ,  2xy yx xx yy

u v u v

y x x y
      

    
     

    
 4.47 

There is no temporal term in the continuity equation, which violates the hyperbolic 

properties of the whole systems. Thus, it requires additional requirements in numerical 

procedure. In order to maintain hyperbolic behaviors, temporal terms with respect to 

http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Newton%27s_second_law
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pseudo-time are added into the set of the governing equations, together with artificial 

compressibility. 

1
0

p u v

x y

 

 

  
  

  
 4.48 
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     
 

4.49 

 2

yy xy
v pv v uv

t y x y x

    



     
    

     
 

4.50 

Eq. (4.48), (4.49) and (4.50) can be rewritten in the following generic vector form: 

  0c v
t

 
   

 

Q W
F F  4.51 

The relevant variables are defined as: 

1 0

c x v x xx y xy

y x xy y yy

p V

u u uV n p n n

v v vV n p n n



    

    

      
      

           
               

Q W F F

 

4.52 

where x yV un vn  v n , xn  and yn  are the components of the unit outward 

normal vectors in x- and y-directions. 

4.5.2 Convective fluxes, Fc 

The convective effect plays an important role in the momentum of fluid dynamics 

and also causes some difficulty in the spatial discretisation due to the upwinding effect. 

It is quite straightforward to approximate the convective fluxes at the midpoint of the 

cell-edge of interest with the average values at the two constitutive node i and jk. This 

method is easily formulated and works well for low Reynolds number. However, this 

treatment fails if the Reynolds number increases a certain value. In order to overcome 
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this problem, the 2
nd

-order ROE flux differencing splitting upwinding scheme [111] is 

introduced in the simulation. The convective flux with the use of ROE is expressed as 

follows:  

1
( ) ( ) ( ) ( , )( )

2k k k k k k k

R L R L R L

c ij c ij c ij ROE ij ij ij ij

     F F Q F Q A Q Q Q Q
 

4.53 

In Eq. (4.53), 
k

R

ijQ  and 
k

L

ijQ  represent the left and right states. The ROE matrix ROE


A

 

only corresponds to non-positive eigenvalues of the convective flux Jacobian matrix K. 

The convective flux Jacobian matrix K with respect to conservative variables is written 

as follows: 

0 x y

c
x x y

y x y

n n

n V n u n u

n n v V n v

  
  

   
  

F
K

Q
 4.54 

The right eigenvectors r, eigenvalues  and left eigenvectors r
-1 

of the K matrix are 

derived: 

2 3

2 3
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/ /

/ /

y x x

x y x
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4.55 

The speed of pressure wave is expressed as: 2c V   .  

The product of the ROE matrix (
1

ROE

A rΛr ) and the difference between the right 

and left states can be rewritten as  
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 4.56 

ijl  and ijr  (i =1, 3, j =1, 3) are the terms related to the left and right matrices as 

described previously. 

The left and right differences are denoted by:  

k k

R L

ij ijp p p  
,

( ) ( )
k k

R L

ij iju u u    
, 
and ( ) ( )

k k

R L

ij ijv v v      4.57 

In the formulation of second-order ROE upwinding scheme, only negative 

eigenvalues in the matrix  are calculated. Thus, 2 in Eq. (4.56) are eliminated 

because it is a positive value. However, 3 are always required in the computation, 

because it is less than zero. Due to the uncertainty of the 1, the terms related to 1 are 

considered in the computation if 1 < 0. Therefore, Eq. (4.56) can be simplified in the 

process of convective flux. 

The key concept of the ROE method is that all variables occurring in the above 

matrices are based on the averaged values of left and right states at the midpoint of 

interest, ijk.  The 
k

L

ijQ  and 
k

R

ijQ  represented by the left and right state in the ROE 

scheme are calculated by the Barth and Jesperson scheme [112]:  

1

2

1

2

k k

k k k k

L

ij i i ij

R

ij j j ij

   

   

Q Q Q r

Q Q Q r

 4.58 

where 
kijr  is the vector from the node i to jk.  
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The ROE scheme in detail for 2D and 3D case can be found in Whitfield and Taylor 

[113] Shin [114] respectively. Compared with the REO scheme in the compressible 

flow, the limiter function is no longer required in the incompressible flow solver. 

4.5.3 Time Integration 

4.5.3.1 Point implicit multi-stage RK method 

The integration of the temporal terms uses the dual time stepping approach. In the 

dual time stepping approach, the computational process proceeds along a given 

physical time step (t). At the same time, the physical time (t) does not move to the 

next step until the steady-state solutions with respect to pseudo time is pursued, as 

pseudo time is marched by ().Compared to the single global time stepping method, 

the main advantage of dual time stepping approach is to allow larger physical time step 

(t). Further, the dual time stepping approach can lead to faster convergence rate and 

high stability in solution. 

Eq. (4.51) can be rewritten in the residual form with respect to pseudo time as  

*




 



Q
R  4.59 

where 
*

t


 



W
R R  and ( )n n

c v R F F . 

The temporal term with respect to physical time is discretized with 2
nd

-order backward 

differencing scheme in the form of  

1 13 2

2

n n n

t t

   


 

W W W W
 4.60 
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This scheme is stable, which allows large physical time-step to be used in our 

simulation.  

The temporal terms are related to pseudo-time using the explicit multistage 

Runge-Kutta scheme. They are performed as follows:   
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The five stage Runge-kutta method is expressed as follow: 
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The main drawback of explicit scheme is that the physical time step t  is severely 

restricted by the characteristics of the governing equations and the grid geometry. In 

addition, as observed by Arnone et al. [115], such an explicit RK scheme becomes 

unstable for small physical time step.  Melson et al. [116] modified the explicit scheme 

to get rid of the instability by implicitly treating the term 

13

2

n

t





W
 appearing in the 

3-point backward differencing scheme. As a result, the stability region will grow as t  
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decreases. Such a justification results in the following point-implicit multistage 

Runge-Kutta scheme: 
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4.5.3.2  Local time stepping 

The local time stepping for various time steps are adopted in the approximation of 

pseudo-time terms. Compared to the global time step, the local time step allows larger 

physical time step and leads to faster convergence. At any pseudo time (), the local 

time steps, which are varied with local domain volume and local flow characteristics, 

are first evaluated at each node-associated gradient smoothing domain. Then, they are 

used in the proposed multi-stage Runge-Kutta iterative process. The local time step at a 

node, i, of interest is approximated as follows: 

( )

i
i

x y i

V

D
  

  
 4.62 
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where ( ) ( )x i x x i
u c S      , ( ) ( )y i y y i

v c S      and  
2

Re ( )

i

i
x y i

A
D

S S



. The 

constant  takes the value of 4 in the current study. 

The artificial speeds of sound in each dimension are given by 
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 4.63 

The  is artificial compressibility which is somewhat problem dependent. Kwak et al. 

[117] proposed optimal value for   in the range of 0.1 – 10.0 for most of problems. In 

this thesis, 2.0  is used.  

The projected areas of the smoothing domain are calculated as 
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4.64 

 

4.5.4 Steady-state lid-driven cavity flow 

The lid-driven cavity flow is classical benchmark testing case designed to evaluate 

the behavior of algorithms that deal with incompressible viscous flows. In this test, 

incompressible viscous fluid is confined within a square cavity in which only the upper 

edge is allowed to tangentially slide at a prescribed velocity ( u = 1.0 in the current 

study). Meanwhile, non-slip conditions (u = v = 0) are imposed at the rest of the walls. 

Reference pressure is prescribed to be zero at the bottom left corner. Relevant boundary 

conditions used in the test are sketched in Fig. 4.17. The convergence tolerance in this 

example is that the variation of pressure in the two time steps is less than 0.001. 
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Figure 4.18 illustrates the streamfunctions for various Reynolds numbers (Re=100 

and 1000). The transmission of momentum by means of viscosity produces a 

large-scale vortex occurring in the centre, and small vortices at the corners. The details 

about the vertical structures depend highly on Reynolds number. For cases Re = 100, 

the flow is almost symmetric with respect to the central vertical line, as shown in Figure 

4.18(a). As the Reynolds number increases to 1000, the bottom right and left vortices 

begin to develop at low Reynolds numbers. All the above mentioned phenomena 

captured with the proposed PL-GSM solver agrees very well with experimental results 

done by Ghia [118].  

Figures 4.19 and 4.20 present the profiles of u-component along the vertical line 

and v-component along a horizontal line through the centre of the cavity for Re=100 

and 1000 respectively. It is clearly shown the solutions obtained from PL-GSM have an 

excellent agreement with referenced data from Ghia et al. [118]. The important finding 

implies that the PL-GSM can be used to analyze fluid problems with very accurate 

solutions. 

4.6 Application: Blood Flow through the Abdominal Aortic Aneurysm 

(AAA) 

An aneurysm found in a brain capillary, epicardial artery, and the abdominal aorta 

below the rental arteries refers to an abnormal irreversible outward bulging of an artery. 

There are many possible reasons related to this disease: hypertension, cystic medial 

degeneration, mycotic infections, life style, genetic disorder, and atherosclerosis. An 
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abnormal aortic aneurysm (AAA) developed over decades unnoticed is an enlargement 

in the lining of the abdominal aorta. The risk for AAA patient is the rupture of aorta at 

the aneurism, and the possibility of rupture of aorta increases with the size of aneurysm. 

Obviously, aneurysm has to be repaired because of high death rate for AAA patients. In 

general, 5% of men over the age of 60 develop an aneurysm, and only 10% of AAA 

patients have symptoms such as back pain, fainting. Therefore, early detection of AAA 

is very important to save the patients. From the perspective of fluid dynamics, the large 

expansion of the vessel causes the unusual flow characteristics. Thus, we compare the 

flow characteristics between the Abdominal Aortic Aneurysm and normal aorta as 

illustrated in Fig. 4.21, which can help us reveal some important physical phenomenon. 

The inlet boundary condition is prescribed as pulsatile flow with sine wave as 

shown in Eq. 4.65. The pulse period is chosen 1s. 

  23700( ( ) 0.009) sin 3.14 , 0,u abs y abs t v    4.65 

The initial condition is 0.05 / , 0u m s v  . We assume the flow is developed flow 

in the Abdominal Aortic Aneurysm and normal aorta. Fig. 4.22 and 4.23 illustrate the 

velocity contour at time 0.25,  0.5,  0.75,  1t s  representing early systolic 

acceleration, late systolic acceleration, systolic deceleration, and diastole period 

respectively in one complete pulsatile cycle using PL-GSM. The flow characteristic 

between the Abdominal Aortic Aneurysm and normal aorta is quite similar, except the 

domain of aneurism. In the early systolic acceleration, the flow begins to accelerate. 

During the stage of late systolic acceleration，the maximum velocity occurs at the inlet.  

For  0.5,0.75t , the flow begins to decelerate temporally. During late diastole, the 
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inlet velocity decreases to zero to complete one cycle.  It is noticed that the velocity 

decreases sharply in the domain of aneurysm due to the sudden increase of flow area, 

and there is a flow separation and stagnation of flow.  

It is well known that the shear stress is the best indicator of AAA rupture. The shear 

stress along the wall for both Abdominal Aortic Aneurysm and normal aorta at time

0.25,  0.5,  0.75,  1t s  is presented in Fig. 4.24, 4.25, 4.26 and 4.27. As seen from 

these Figures, the shear stresses are much higher at carotid branch than in the common, 

external and internal for both normal aorta and Abdominal Aortic Aneurysm. Also, the 

shear stresses are much higher during systole than during diastole. One important 

phenomenon is that the maximum shear stress occurring at the branch point during 

different time stage in the normal aorta is higher than Abdominal Aortic Aneurysm. 

This is because there is a sudden increase of flow area to reduce the velocity gradient at 

the branch point in the Abdominal Aortic Aneurysm. However, there is a sharp gradient 

of the shear stress at proximal and dismal aneurism zones in Abdominal Aortic 

Aneurysm, which increases the risk of rupture of blood vessel significantly. 

4.7 Remarks 

In the current study, a conservative and efficient gradient smoothing method 

formulated for the strong form of governing equations is developed. The PL-GSM is 

valid for both regular and irregular cells so that it can be readily applied for fluid flow 

problems with arbitrary geometry. It is found that  

 The PL-GSM using triangular elements in two-dimensional space is very simple; 
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no additional parameters or degrees of freedoms are needed, the system matrices 

have the same dimension with the FDM model of same mesh and the method can be 

implemented in a straightforward way with little change to the FDM code 

 The accuracy has improved significantly with the application of linearly-weighted 

smoothing operation instead of linear interpolation. 

 The PL-GSM is not sensitive to distortion of element compared with the PC-GSM. 

 The current PL-GSM is more accurate than the PC-GSM. 
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Figure 4.1: Gradient smoothing domain 

 

 

 

 

 

 

Figure 4.2: Piecewise linear gradient smoothing functions for different types of 

gradient smoothing domains 
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Figure 4.3: Adopted notations and sub-triangulation in the node of i interest 

 

 

 

 

 

 

 

 

 

(a) with dummy nodes                      (b) without dummy nodes 

 

Figure 4.4: Treatment at boundary nodes 
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Figure 4.5: Stencils for approximated gradients ( iU

x




, iU

y




) based on cells in square 

shape 

 

Figure 4.6: The stencil for approximated gradients ( iU
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, iU
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) based on cells in 

equilateral triangle shape 
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a) Scheme I 

 

b) Schemes II and III 

 

Figure 4.7: Stencils for the approximation Laplace operator on the cells in square shape 
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a) Schemes I 

 

 

b) Schemes II and III 

 

Figure 4.8: Stencils for the approximated Laplace operator on the cells in equilateral 

triangular 
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(a) 2D view (b) 3D view 

Figure 4.9: Contour plots of exact solutions to the first Poisson problem 

 

 

 

 

 

 

 

 

 

 

 

        
(a) Computational domain                              (b) Contour plot 

 

Figure 4.10:  Second Poisson equation in study 
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Scheme I 

 
Scheme VIII 

 

Figure 4.11: Contour plots of relative errors on cells 
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a) 11x11 nodes 

 

 b) 21x21 nodes 

 
 c) 41x41 nodes 

 
d) 81x81 nodes 

Figure 4.12: Right triangle element distribution of Poisson’s equation 
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a) 131 nodes 

 
 b) 478 nodes 

  

 c) 1887 nodes 

 

d) 7457 nodes 

Figure 4.13: Regular element distribution of Poisson’s equation 
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Figure 4.14: Convergence property of all schemes 
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0  .05 0.1   0.2   0.3   0.31   

Figure 4.15: Triangular cells with various irregularities 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.16: Numerical errors in solution (schemes I, II and III) to the second Poisson 

Problem 
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(a) Boundary condition 

 

 

(b) Mesh information (8321 nodes) 

 

Figure 4.17: Boundary conditions and grids studied in the lid-driven cavity flow 

problem 
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Re=100 

 

Re=1000 

Figure 4.18: Plots of streamlines for various Reynolds number 
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PL - GSM

Ghia et al

 

Re=100 

 

Ghia et al

PL - GSM

 

Re=1000 

Figure 4.19: Profiles of u velocity along the vertical line x = 0.5 for various Reynolds 

number 
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Ghia et al

PL - GSM

 

Re = 100 

 

Ghia et al

PL - GSM

 

Re = 1000 

Figure 4.20: Profiles of v velocity along the vertical line x = 0.5 for various Reynolds 

number 
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a) Normal aorta 

 

 

b) Abdominal aortic aneurysm 

 

Figure 4.21: Geometrical parameters for normal aorta and abdominal aortic 

aneurysm 
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Time t=0.25s 

 

Time t=0.5s 

 

Time t=0.75s 

 

Time t=1s 

Figure 4.22: Velocity contour ad different stage for normal aorta 
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Time t=0.25s 

 

Time t=0.5s 

 

Time t=0.75s 

 

Time t=1s 

Figure 4.23: Velocity contour at different time stage for Abdominal Aortic Aneurysm 
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Shear stress for normal aorta 

 

 

Shear stress for abdominal aortic aneurysms 

Figure 4.24: Comparison of shear stress at time t=0.25s  
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Shear stress for normal aorta 

 
Shear stress for abdominal aortic aneurysms 

 

Figure 4.25: Comparison of shear stress at time t=0.5s 
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Shear stress for normal aorta 

 

Shear stress for abdominal aortic aneurysms 

 

Figure 4.26: Comparison of shear stress at time t=0.75s 
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Shear stress for normal aorta 

 
Shear stress for abdominal aortic aneurysms 

 

Figure 4.27: Shear stress for abdominal aortic aneurysms 
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Table 4.1: Differences between the PC-GSM and the PL-GSM 

 PC-GSM PL-GSM 

Smoothing 

domain 

Connection between midpoints and 

centroids 

Connection between midpoints and 

centroids 

Smoothing 

functions 
1/

0

ii

i

V
w


 



x

x
 

( ) ( ),

0,      

a b c x

x

i i i i i i

i

x x y y
w

    
 


 

Approximation 

of derivatives 
1

( )
i

i

i

U U nd
V 

   x  

1
( ) ( )

i
i

i

U n U d
V 

     x  

( ) ( )
i

i iU U w dV


     x x x  

( ) ( ) ( )x x x
i

i iU U w dV


        

 

 

 

 

 

 

 

Table 4.2: Spatial discretization schemes for the approximation of derivatives 

Scheme 
Type of 

GSD 

Approximation 

of gradients at 

nodes 

Approximation 

of gradients at 

midpoints 

Approximation of 

gradients at 

centroids 

I nGSD PL-GSM Interpolation Interpolation 

II 
nGSD 

mGSD 
PC-GSM PC-GSM Not required 

III 

nGSD 

mGSD 

cGSD 

PL-GSM PL-GSM PL-GSM 
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Table 4.3: Comparison of numerical errors with scheme I, II and III for the first Poisson 

problem 

No of field 

nodes 

121 441 1681 6561 

ue  

I 7.304E-002 1.781E-002 4.443 E-003 1.112 E-003 

II 1.632 E-002 7.312 E-003 8.338 E-004 3.912 E-004 

III 8.265E-003 2.059 E-003 5.142 E-004 1.285 E-004 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4: Comparison of numerical errors with scheme I, II and III for the first Poisson 

problem 

No of field 

nodes 

131 478 1887 7457 

h 0.0957 0.0479 0.0236 0.0117 

ue  

I 6.928E-002 1.581 E-002 3.322 E-003 8.164 E-004 

II 2.053 E-002 5.211 E-003 1.251 E-003 3.096 E-004 

III 1.288E-002 3.310 E-003 7.900 E-004 1.949 E-004 
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Table 4.5: Comparison of condition number and iteration 

 I II III 

No. 

of 

nodes 

Condition 

number 
Iteration 

Condition 

number 
Iteration 

Condition 

number 
Iteration 

131 2.12E2 93 3.17E2 99 4.56E2 119 

478 8.14E2 207 1.16E3 309 1.62E3 403 

1887 3.25E3 732 5.87E3 1388 7.78E3 1891 

7457 1.21E4 2687 2.13E4 4312 3.88E4 5989 
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Chapter 5  

 

Development of Alpha Gradient Smoothing Method (αGSM)  

 

5.1 Introduction 

In this Chapter, a novel alpha gradient smoothing method (αGSM) based on the 

strong form of governing equations for fluid problem is presented. The basic principle 

of αGSM is that the spatial derivatives at a location of interest are also approximated by 

the gradient smoothing operation. The main difference among the piecewise constant 

gradient smoothing method (PC-GSM) [24], piecewise linear gradient smoothing 

method (PL-GSM) [26] and αGSM is the selection of smoothing function. In the αGSM, 

the α value controls the contribution of PC-GSM and PL-GSM. The αGSM is verified 

by the solving the Poisson equation first. Then the proposed αGSM was tested with one 

benchmark example. All the numerical results have demonstrated that the αGSM is 

accurate, robust and stable, but the computational cost for the αGSM is a big bottleneck. 

Finally, the αGSM has been applied to analyze the flow characteristic in the diseased 

artery regarding the stenosis.  
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5.2 Theory of alpha gradient smoothing method (αGSM) 

5.2.1 Brief of piecewise constant gradient smoothing method (PC-GSM)  

In the piecewise constant gradient smoothing method(PC-GSM), the smoothing 

function is derived as follow [24]:  

1/

0

ii

i

V
w


 



x

x
 

5.1 

where Vi is the smoothing area of i.  

Recall the gradient smoothing operation for approximating gradients at a node of 

interest, i, in the form of  

( ) ( ) ( ) ( )
i i

i i iU U w ds U w dV
 

      x x x n x x x  5.2 

Using Eq. (5.1), the right-side second term in Eq. (5.2) vanishes and Eq. (5.2) then 

becomes  

1

i
i

i

U U ds
V 

   n  
5.3 

Analogously, by successively applying the gradient smoothing technique for 2
nd

-order 

derivatives [26-27], the Laplace operator at xi can be approximated as  

1
( )

i
i

i

U Uds
V 

    n  
5.4 

 

5.2.2 Concept of alpha gradient smoothing method (αGSM) 

Similarly, there are three types of smoothing domains used for the spatial 

discretization: midpoint-associated GSD (mGSD), centroid-associated GSD (cGSD), 

and node-associated GSD (nGSD) for the approximation of node interest as shown in 



Chapter 5. Development of Alpha Gradient Smoothing Method (αGSM) 

184 

 

Fig. 5.1(a), (b) and (c) respectively. The cGSD connecting relevant centroids of 

triangles with the midpoints of relevant cell-edges is constructed to determine the 

gradients at the centroid of the cell, and the mGSD connecting the end-nodes of the 

cell-edge of interest is used for the calculation of the gradients at the midpoint of a 

cell-edge of interest.   

For a two-dimensional case, the piecewise linear smoothing function is still used in 

the αGSM: 

( ) ( ) ( )i i i i i iw x x y y     x x λ β γ  5.5 

However, the smoothing function does not vanish at the node  

1
( )

k km m i

i

w w
V

  x x  
1

( )
k kc c i

i

w w
V

  x x  
5.6 

where iV
 
is the area of smoothing domain for nGSD. The parameter   ranges  0,1 .  

Comparatively, in the piecewise linear gradient smoothing method (PL-GSM):  

( ) 0
k km m iw w  x x  ( ) 0

k kc c iw w  x x  5.7 

The smoothing function is also required to satisfy the weighted partition of unity: 

   
(2 1) (2 )

1

1x x x x
i

k k
i i

N

i i

k

w dV w dV


 


    
  

    
5.8 

And the smoothing function must be equal to a constant value at the node of interest: 

( )x x λi i iw    5.9 

With Eq. (5.6), (5.8) and (5.9), it is readily obtained that  

 ,2

3
( ) 1i k i i

i

w
V

    x x  5.10 

This formulation implies that all coefficients in the matrix iλ  are constant, regardless 

of sub-triangles involved. 
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Furthermore, the gradients of the smoothing function can be obtained by simply 

differentiating Eq. (5.5) as 

 
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 
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 

β

γ

 5.11 

Thus, the parameters ,2i k  and ,2i k  for each sub-triangle k kic m as shown in Figure 

5.2 can then be obtained as the solutions to Eq. (5.11) in the form of  

 ,2
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5.12 
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x x

V x x y y x x y y
 


 
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5.13 

The parameter ,2 1i k   and ,2 1i k   in the sub-triangle 1k kim c   can be obtained in the 

same way. 

5.2.3 Approximation of spatial derivatives 

5.2.3.1 Approximation of first order derivatives at nodes 

Thus, the gradient of filed variable at a point of interest using the αGSM can be 

formulated as follows: 
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With 
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ijk k k

L R L L R R

x x x x ij xij ij ij
L L L L n L n        5.16 
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( ) ( ) ( ) ( )

ij
k k k

L R
L L R R

y y y y ij yij ij ij
L L L L n L n        5.17 

where ( )L

xn , 
( )L

yn , ( )R

xn and 
( )R

yn  are the components of the unit outward normal vectors 

in x- and y- directions on the two edges located at the left and right hand sides of the edge 

i – j. The ( )

ij

LL  and 
( )R

ijL  represent the lengths of two straight edges along the smoothing 

boundary located at the left and right hand sides of the edges as shown in Fig. 5.2. 

The integral of  U x  over sub-triangular can be approximated:  

   
1

3 k k k k
k k

i m c im c
im c

U dV U U U A


   x  
5.18 

Substitute Eq. (5.18) into Eq. (5.14) and (5.15), the first order of derivative is expressed: 
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 5.20 

5.2.3.2  Approximation of first order derivatives at midpoints and centroids  

Similar to the discretization at nodes mentioned previously, the gradients at the 

midpoint and centroids can also be formulated using the gradient smoothing technique.  

The smoothing function in the mGSD can be written as follow: 

( ) ( ) ( )i i i i i iw x x y y     x x a b c  5.21 
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Based on constrain in Eq. (5.6), (5.8) and (5.9), the coefficient ia , ib  and ic  can be 

solved: 

 ,

3
( ) 1i k i i

m

a w
V

   x x  
5.22 

where Vm is the total area of the smoothing domain for the midpoint. The coefficient 

ib  and ic  in the sub-triangle 
k kic m can be obtained:
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Therefore, the gradient at the nodes is expressed as follows: 
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where the face vectors of the two respective domain-edges: 

     
( ) ( )

( ) ( ) ( ) ( )

k kk kk k k

L R
x x x L L R R

m m m x c m xc mij ij ij
L L L L n L n        5.27 

     
( ) ( )

( ) ( ) ( ) ( )

k kk kk k k

L R
x x L L R R

y m m y c m yc mij ij ij
L L L L n L n        5.28 

where ( )L

xn , 
( )L

yn , ( )R

xn and 
( )R

yn  represent the components of the unit outward normal 

vectors in x- and y- directions on the two edges located at the left and right hand sides of 

the edge kc – km . The ( )

ij

LL  and 
( )R

ijL  denote the two components of the lengths of two 
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straight edges along the smoothing boundary located at the left and right hand sides of 

the edges as shown in Fig. 5.3.  

Similarly, the smoothing function in the cGSD as shown in Fig. 5.4 can be written: 

( ) ( ) ( )i i i i i iw x x y y     x x d e f  5.29 

Similarly, the coefficient di, ei and fi can be obtained: 

 ,

3
( ) 1i k i i

c

d w
V

   x x  
5.30 

where the Vc is the area for the smoothing domain of centroid. 
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Therefore, the gradient at the centroid is expressed: 
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5.34 

where x

cL  and y

cL are the two components of a respective face vector for a cGSD 

on interest as shown in Fig. 5.4. 
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5.2.3.3  Approximation of second order derivatives 

Analogously, using linear interpolation in integral calculation, the second order 

derivatives in the node can be approximated: 
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5.36 

In the Eq. (5.35) and (5.36), the gradient at the node, midpoint and centroid can be 

obtained from section 5.2.3.2.  

5.2.4 Relations between PC-GSM, PL-GSM and αGSM 

As described in previous sections, the αGSM also adopts the piecewise linear 

smoothing functions. However, the contribution at the node in the whole smoothing 

domain is 
1

iV
  instead of zero as shown in Fig.5.5. In the PL-GSM, although the 

linearly smoothing function is also used to discrtize the spatial derivative, the 

contribution from node is zero. In the PC-GSM, the weight function is constant in the 

whole smoothing domain. As a result, the α value acts as a knob which control the 

contribution of PC-GSM and PL-GSM. When the α=1, the smoothing function is 

constant in the αGSM, thus the αGSM becomes PC-GSM.  When the α=0, the αGSM 

is the exactly same as PL-GSM. Those difference and similarity are summarized in 

Table 5.1. 



Chapter 5. Development of Alpha Gradient Smoothing Method (αGSM) 

190 

 

Thus, it is seen that the PC-GSM and PL-GSM are special formulations of αGSM 

respectively. The main difference for these three methods is the selection of smoothing 

function. Obviously, the computational cost for the αGSM is higher compared with the 

PC-GSM and PL-GSM; however, the αGSM can obtain better accuracy compared with 

the PC-GSM and PL-GSM.  The main challenge of the αGSM is to determine the α 

value. Based on our research experience, the  0.1,0.3  usually achieves the better 

results. In this thesis, α=0.2 is adopted in the simulation. 

5.3 Numerical example 

5.3.1 Solution of Poisson equation 

In this section, Poisson equation is solved with our αGSM, PC-GSM and PL-GSM 

code. The following Poisson equation is considered:  

2 2

2 2
( , ) (0 0.5,0 1)

U U
f x y x y

x y

 
     

 
 

5.37 

( , ) 2x y x yU e f x y e      5.38 

The four sets of mesh as shown in Fig.5.6 are used to examine the accuracy of αGSM. 

The numerical error defined in this Chapter is the same as Eq. (4. 37) in Chapter 4. 

This type of error is used to compare the accuracy among different schemes.  

Table 5.2 summarizes the errors with the number of nodes adopted to discretize the 

problem field. It is clear to show that errors obtained from all schemes reduce as the 

number of nodes increases. The use of combination of piecewise constant and linear 

smoothing function gives the highest accuracy. However, the computational cost for 

the αGSM is also higher compared with the PC-GSM and PL-GSM. 
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The convergence rate for these three schemes is plotted in Fig. 5.7. As shown in 

Figure 5.7, it is obviously found that the convergence rate is approximately the same in 

all schemes, because all schemes are second order accuracy in spatial approximation. 

5.3.2 Solutions to incompressible Navier-Stokes equations 

In this section, the steady-state flow over a sudden backstep is presented.  It is 

assumed that a fully developed laminar flow velocity profile is imposed at the flow 

entrance with a parabolic distribution function. The fluid flows through the channel 

bounded by the top and bottom walls and exists at the other end. The boundary 

conditions adopted in this case are schematically illustrated in Fig.5.8.  

For this benchmark problem, several cases with different Reynolds numbers from 

100 to 800 have been studied. Because of the sudden change of the cross section, a 

re-circulation zone will be formed right behind the backward facing step. The main 

flow will reattach to the wall on the step side at certain distance down stream the step. 

As the Reynolds number increases, the re-circulation zone enlarges. Meanwhile, on the 

wall opposite side to the step and further down stream, a low pressure region is 

gradually forming with the increasing of the Reynolds number. As shown Fig.5.9, The 

streamline obtained by the αGSM solver captures such change very well. In addition, a 

secondary vortex attached to the top wall occurs in the downstream region if the 

Reynolds number becomes 800, as illustrated in Fig.5.9(c). If Reynolds number is 

greater than 800, no steady-state solutions can be found in current practice becasue of 

the oscillation of induced vortices.  
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The major criterion to compare with experimental data is the size of the 

re-circulation region (characterized by the re-attachment length) as a function of flow 

Reynolds number based on the inlet bulk velocity. Figure 5.10 compares the attained 

reattachment lengths of the recirculating zone right behind the backstep with 

experimental data from Armaly et al. [119], the least-squares finite element results 

from Jiang [120], a meshfree smoothed least-square solutions from Song et al. [121], 

PL-GSM solution and αGSM solutions. Among all schemes, the αGSM solver gives 

the most accurate prediction amongst different methods considered here, and agrees 

well with the experimental data. 

The computational efficiency is a hindrance for the αGSM.  In this example, the 

numerical results obtained from the αGSM have not been improved significantly in 

comparison with the PL-GSM, but the overall computational time for the GSM is 

almost twice than PL-GSM.  

5.3.3 Application of αGSM for solution of pulsatile blood flow in diseased 

artery 

In this section, a two dimensional of wall shear stress for blood flow in the normal 

aorta and abnormal aorta with stenosis vessel using the αGSM is presented. The partial 

occlusion is a very common anomaly in blood circulation due to stnotic obstruction. 

The vessel with stenosis is an abnormal narrowing. Stenosis blocks and prevents the 

supply of nutrition and oxygen to the tissue and organs. An important quantity to be 

analyzed in hemodynamic is the wall shear stress, a difficultly measurable variable in 

vivo because of the arising with the moving wall. Many authors mentioned that the 
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high shear stress is one of factors in the development of atherosclerotic lesions and 

endothelial damage [122], and play an important role in the natural history of the 

disease as well. In the presence of a narrowing, the flow exhibits a resistance and 

hence an increasing of the shear stress.  

A fully developed flow is assumed at the inflow. The tangential and normal stresses 

are zero (stress free condition). The entering flow is pulsatile with a typical sine wave 

as shown in Fig. 5.11. The period for one cycle is 1 second. The blood density and 

viscosity is 1050 kg/m
3
, 0.0033uN/m respectively. The 2D geometries for normal aorta 

and abnormal aorta with the stenosis vessel are shown in Fig.5.12 [123]. 

Figure 5.13, 5.14 and 5.15 depict the shear stress along the upper and lower wall 

located at the region  23 106x mm   shown in Fig. 5.12 at early systolic 

acceleration
1

t= T
4

, systolic acceleration
1

t= T
2

and systolic deceleration
3

t= T
4

. From 

Figure 5.13, 5.14 and 5.15, it is easily observed that the shear stress in the abnormal 

aorta surrounding the stenosis is much higher in comparison with the normal aorta at all 

stages, which increases the possibility of rupture of vessel significantly. In addition, it 

is noticed that the shear stress increases very fast when approaching the stenosis throat, 

corresponding to the high value of the velocity gradient, and the shear stress gradually 

decreases beyond the stenosed vessel region. The maximum shear stress occurs in the 

stenosis throat, which is consistent with observations of maximum velocity in this 

region. As expected, the shear stress near the stenosis throat is the largest during the 

systolic peak flow at
1

t= T
2

, corresponding to the maximum inlet velocity.  
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5.4 Remarks 

The proposed αGSM based on the combination of the PC-GSM and PL-GSM has 

resulted in a new form in approximating the spatial derivatives. Although the αGSM 

can improve the accuracy of PC-GSM and PL-GSM, the computational cost for the 

αGSM is very high. If the precision requirement in the engineering problem is not so 

strict, the αGSM is not preferable compared with the PC-GSM and PL-GSM. In 

addition, the selection of α value still remains an open question. How to build the 

relationship between the numerical accuracy and the α value is a challenging task, 

which could be another interesting topic in the future research. Therefore, it is 

concluded that the proposed αGSM does not show outstanding advantages than the 

PC-GSM and PL-GSM. As a whole, the PL-GSM is still the most preferable scheme in 

terms of computational cost and accuracy.  
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Figure 5.1: Smoothing function for different types of gradient smoothing domains 
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Figure 5.2: Adopted notations and sub-triangulation in the nGSD of αGSM 
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Figure 5.3: Adopted notations and sub-triangulation in the mGSD of αGSM 
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Figure 5.4: Adopted notations and sub-triangulation in the cGSD of αGSM 
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Figure 5.5: Illustration of smoothing function in the PC-GSM, PL-GSM and αGSM 
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a) 72 nodes 

 

b) 244 nodes 

 

c) 963 nodes 

 

d) 3741 nodes 

Figure 5.6: Element distribution of Poisson’s equation 
 



Chapter 5. Development of Alpha Gradient Smoothing Method (αGSM) 

199 

 

 

Figure 5.7:  Convergence rate 
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Figure 5.8: Geometrical and boundary conditions for the flow problem over a 

sudden backstep 
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Re = 400 

 

Re = 600 

 

Re = 800 

Figure 5.9: Plots of streamlines for various Reynolds number 
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Figure 5.10: Predicted reattachment length ratios varied with Reynolds number 
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Figure 5.11: Input velocity Profile 
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Figure 5.12: Normal and abnormal ascending aorta [123] 
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Figure 5.13: Wall shear stress at time t=
1

T
4

 

 

Figure 5.14: Wall shear stress at time t=
1

T
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Figure 5.15: Wall shear stress at time t=
3

T
4
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Table 5.1: Comparison of the PC-GSM, PL-GSM and αGSM 

 Smoothing domain Smoothing function 

PC-GSM nGSD, mGSD,  

1

0

i

i

i

x
Vw

x




 
 

 

PL-GSM 

nGSD, mGSD, 

cGSD 

 

   

0 1

0

0 0
k k

i i

i

m i c i

x
w

x

w w

   
 



   

a a x x

x x x x

 

αGSM 

nGSD, mGSD, 

cGSD 

 

   

0 1

0

1 1
k k

i i

i

m i c i

i i

x
w

x

w w
V V

 

   
 



   

a a x x

x x x x

 

 

 

 

 

Table 5.2: Errors and time consumed in different schemes  

Errors/Time Consumed 

No. of nodes PC-GSM PL-GSM αGSM 

72 1.83E-2/1.23s 1.47E-2/1.56sec 1.43E-2/2.96sec 

244 4.59E-3/2.10s 3.76E-3/2.44sec 3.73E-3/4.78sec 

963 9.44E-4/3.10sec 8.12E-4/3.76sec 8.10E-4/6.56sec 

3741 2.07E-4/20.15sec 1.88E-4/28.33sec 1.87E-4/50.23sec 
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Chapter 6  

 

Development of Immersed Gradient Smoothing Method 

(IGSM) 

 

6.1 Introduction  

Immersed finite element method (IFEM) [36-38] is a landmark in the development 

of numerical method to address the fluid-structure interaction problem. In the IFEM, 

both fluid and solid domains are modeled with the finite element methods (FEM), and 

the interaction force is distributed through the interpolation process. Because the 

computational cost for the finite element method (FEM) in the fluid is very high, the 

piecewise linear gradient smoothing method (PL-GSM) [26]developed in the Chapter 4 

is applied to discretize the fluid domain in order to increase the computational 

efficiency. Furthermore, the accuracy of IFEM model is lost in the large deformation of 

solid once the element is distorted. Thus, the edge-based smoothed finite element 

method (ES-FEM) [11, 12]developed in the Chapter 2 is adopted to solve the solid 

domain. The immersed gradient smoothing method (IGSM) which has combined the 

gradient smoothing operation in the weak and strong form has the similar algorithm in 

the numerical procedure with the immersed finite element method (IFEM) as illustrated 

in the following section. 
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6.2 Brief of immersed finite element method for fluid-structure   

interaction  

Consider a two dimensional deformable structure completely immersed in a fluid 

domain as shown in Fig. 6.1. It is assumed that the fluid exists everywhere in the whole 

domain . Hence, an Eulerian fluid mesh f  is adopted in the computation because 

the fluid spans over the entire domain ; whereas a Lagrangian mesh is constructed for 

solid domain s .  

s f    6.1 

s f    6.2 

The sub-domain overlapped by the solid domain s  and fluid domain f  is 

denoted as   with a closed fluid-structure interface. In the construction of mesh for 

both fluid and solid domain, the two sets of mesh are not required being coincided as 

illustrated in Fig. 6.2. This is because the two sets of mesh are independent. 

In the fluid domain, the velocity v and pressure p are the unknown variable, whereas 

in the solid domain, the nodal displacement is defined as s s s u x X . In a continuum, 

the inertial force of a particle is balanced with the derivative of the Cauchy stress and 

the external force on the continuum: 

,

,

ij j

ext s

s s iu f    6.3 

where s , 
,ij js  and ,ext s

if  are the density for solid, stress related to the internal 

stress and external force applied respectively.  

The virtual work in the solid domain done by the solid is derived by a test function s

iv : 
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,

, 0
ij j

s

s ext s

i s s iv u f d  


    
   6.4 

Add the artificial fluids to the Eq. (6.4) without destroying of system equation. 

   
,, ,

, 0
ij j ijj

s
jijf f

s ext s

i s s f f iv fu du     


        
   6.5 

where f  and 
,ij jf are the density for the fluid and  the Cauchy stress in the fluid 

domain: 

 
, , ,ij jf i i jj j ijp v v      6.6 

Rearrange the Eq. (6.5) to obtain the following expression: 

     , , ,

, 0
ij j ij j ij js s

s ext s s

i s f s f i i f fv u f d v u d       
 

        
    6.7 

The first term in the Eq. (6.7) is the work done by the solid domain minus the work done 

by the artificial fluid. The second term denotes the work done by the artificial fluid in 

the overlapping domain. 

The interaction force is defined: 

,ij j

FSI

i f ff u    6.8 

The weak formulation is: 

 
,

0
ij j

s

s FSI

i f f iv u f d  


     6.9 

Substitute Eq. (6.9) into Eq. (6.7), the following weak form for the solid is obtained as 

follow: 

   
, ,

,,

ij j ij j
s s

s FSI s

i

s ext s

i s s f i iv u f vd f    
 

       
    6.10 

The ,FSI s

if is the interaction force applied to the solid. 

The external force applied to the solid in the solid domain: 

 ,ext s

i s ff g    6.11 

Therefore, the fluid-structure interaction force within the solid domain is defined: 
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   
, ,

,

ij j ij j

FSI s

i s f s f s ff u g             6.12 

Hence, the governing equation for the solid domain can be derived: 

     
, ,

, 0
ij j ij j

FSI s

s f s f s f iu g f             6.13 

In the fluid domain, the virtual work for the fluid domain is expressed as follow: 

 
,, , 0

ij j
f

f

i f i t j i j fv v v v d  


    
   6.14 

Add the work done by the artificial fluid to the Eq. (6.14) 

 

 

,

,

,

, ,

, ,

                                     0
ij j

f

s

ij j

f

i f

f FSI f

i f i t j i j f i

i t j i j f

v

v v v v

v f d

d

v v

  

  





   

    











 

6.15 

Combine the two integral into the whole domain:  

 
,

,

, , 0
ij j

f FSI f

i f i t j i j f iv v v v f d  


     
   6.16 

Hence, the governing equation for the fluid domain can be derived as follow: 

, 0i iv   6.17 

 
,

,

, , 0
ij j

FSI f

f i t j i j f iv v v f      6.18 

From the above equation, it is obviously noticed that the only difference between the 

standard Navier-Strokes equation and the Eq. (6.18) is the additional term FSI

if . This 

force is equivalent to the external force imposed to the fluid domain. The detail concept 

of the immersed finite element method is available [36]. In the following section, the 

piecewise linear gradient smoothing method (PL-GSM) for fluid domain and 

edge-based smoothed finite element method (ES-FEM) for solid part are briefed. 



Chapter 6. Development of Immersed Gradient Smoothing Method (IGSM) 

210 

 

6.3 Piecewise linear gradient smoothing method (PL-GSM) for 

incompressible flow 

6.3.1 Brief of governing equation 

  As derived above, the governing equations of incompressible viscous fluid flow can 

be expressed in the conventional Navier-Stokes equation with the additional 

interaction force. The Eq. (6.17) and (6.18) can be rewritten as the following 

vector-form:  

  , 0FSI f

c v
t


   



T
F F F  

6.19 

The relevant quantities are: 

* * , ,

,

1 0 0

T F F F F

F

x

y

f

FSI f FSI f

f c f x v x xx y xy

FSI f

f f y x xy y yy

V

u u V n p n n

v vV n p n n



   

   

      
      

            
              

 6.20 

where  

* *

, 2 , 2xy yx xx yy

u v u v

y x x y
      

    
     

    
 

6.21 

*

x yV u n vn   v n  6.22 

The velocity u in the fluid domain is marked u
*
 in order to differentiate the 

displacement u in the solid domain. 

Because there is no temporal form in the continuity equation which violates the 

hyperbolic properties of the system, temporal terms are added into the Eq. (6.19) with 

the artificial compressibility [124].  

  , 0FSI f

c v
t

 
    

 

Z T
F F F  

6.23 
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The relevant components are 

* * * , ,

,

1 0 0

, , , , x

y

f

FSI f FSI f

f f c f x v x xx y xy

FSI f

f f f y x xy y yy

p V

u u u V n p n n f

v v vV n p n n f



    

    

        
        

               
                  

Z T F F F

 

6.24 

Here  is pseudo time step, t is physical time step. 

In the time integration, the governing equation can be written in the following residual 

form with respect to the pseudo time   

*

t

  
     

  

Z T
R R  

6.25 

where  

,( ) FSI f

c v  R F F F  6.26 

In the pseudo time step, explicit multi-stage Runge-Kutta (RK5) method [48, 125] is 

used. The second order of three level backward differencing technique is applied to 

approximate the physical time step [125]. 

1 13 2

2

n n n n

t t

   


 

T T T T
 

6.27 

6.3.2 Spatial approximation using PL-GSM  

In the PL-GSM, the convective and viscid flux can be approximated with the 

piecewise linear gradient smoothing operation. Based on the gradient smoothing 

operation in the strong form, the first and second order derivatives of unknown variable 

v in the Eq. (6.24) is expressed [26]: 

   
i

i iv v x w dV


     x x  6.28 

   
i

i iv v x w dV


      x x  6.29 
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The linear smoothing function w 

 
 0 1 ,  x

0 x

i i

i

i

w
   

  


a a x x
x x  6.30 

For brevity, the detail derivation of first and second order derivative  [26] is ignored 

in this section. As shown in Fig. 6.3, the node i, the 1
st
-order derivatives of the field 

variable v are given by: 

1,2 ,2 1

1

1 1
( ) ( ) ( ) ( ) ( ) ( )

3 3
x x x x x x

i

k k k k

N

i
i m c i k i m c i k

k

v
v v v v v v

x
 

 



  
               

  6.31 

1,2 ,2 1

1

1 1
( ) ( ) ( ) ( ) ( ) ( )

3 3
x x x x x x

i

k k k k

N

i
i m c i k i m c i k

k

v
v v v v v v

y
 

 



  
               

  6.32 

The 2
nd

-order derivatives are obtained with linear gradient smoothing operation and 

given in the following form 

1

2

,22
1

,2 1

( ) ( )( )1

3

( ) ( )( )1
                                        

3

                                                

x xx

x xx

i

k k

k k

N
m ci i

i k

k

m ci
i k

v vv v

x x x x

v vv

x x x









    
      

     

    
   

     



                

 

    

6.33 

1

2

,22
1

,2 1

( ) ( )( )1

3

( ) ( )( )1
                                        

3

x xx

x xx

i

k k

k k

N
m ci i

i k

k

m ci
i k

v vv v

y y y y

v vv

y y y









   
    

    

    
   

     


 

    

6.34 

And  

,2 ,2

3 3
( ) / 2,  if 0; ( ) / 2,     if 0;

3 3
( ) / 2,     if 0; ( ) / 2,  if 0;

                        ( )( ) ( )( )

k k k k

k k k k

k k k k

c m c m

i i

i k i k

c m c m

i i

m i c i c i m i

y y x x
V V

y y x x
V V

x x y y x x y y

 

 

 



 
     
 

  
     
  

     

 

    

6.35 
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  where i denotes the node of interest and jk is the other end-node of the cell-edge 

linked to node i (See Fig. 6.3). km denotes the midpoint of the cell-edge of interest, and 

kc  represents the centroids of triangular element. vn, vm and vc denote values of the 

field variable at nodes, midpoints of cell-edges and centroids of triangular cells, 

respectively. The parameters ,2 1i k  and ,2 1i k  can be obtained in the similar way . 

In virtue of the above analysis, the flow chart to analyze the incompressible flow is 

summarized as follow: 

1. Set initial condition of the fluid 

2. Distribute the fluid structure interaction force from solid to the fluid 

3. Set the artificial time   and physical time step t 

4. Iterate all the unknown variables within one physical time. If the process converges, 

the change in the unknown between two successive iterations should be smaller 

than a given tolerance 

5. Update the fluid variables  

6. Interpolate the velocity from fluid domain to solid domain and go to step 2 to 

proceed to next physical time step 

6.4 Formulation of Edge-based smoothed finite element (ES-FEM) in 

the large deformation of structure mechanics 

6.4.1 Discrete governing equation 

In the present ES-FEM, discretized system equation is formulated based on the 

smoothed Galerkin weak form that can be derived as follows. The devolved weak form 

is first obtained by multiplying Eq. (6.13) with a test function w in the solid domain: 
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    , 0
s

s

ij FSI s

s f i s f i

j

w u g f d
x


   



 
       

  
  

6.36 

The integration domain is changed from current configuration 
s

 to initial 

configuration 
0s

 in the total Lagrangian formulation. Because the fluid and the solid 

are incompressible, the Jacobian determinant is 1. Hence, the weak form of the total 

Lagrangian is expressed: 

   
0

, 0
s

s

ij FSI s

s f i s f i

j

P
w u g f d

x
   



 
       

  
  

6.37 

where the first Piola-Kirchhoff stress: 

1 s

ij ik kjP JF   6.38 

Integration by part of Eq. (6.37): 

   
0 0 0

0

,                                                                0

s s s

s

s f i ij s f

FSI s

i

w u d wP d w gd

wf d

   
  



    

  

  


 6.39 

In the above weighted residual form, the field variable displacement can be expressed 

in the approximate form: 

1

m

i i

i

u u


 N Nu  
6.40 

In the standard Galerkin weak form, the shape function N is also used as the weight 

function w and the weak form for solid can be obtained as: 

   
0 0 0

0

,                                                                                    0 

s s s

s

s f s f

FSI s

i

d d gd

d

   
  



    

 

  



N Nu NP N

Nf
 

6.41 

The force is balanced by the inertial force, internal force, external force and interaction 

force. 
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,s FSI

in ex  Mu f f f  6.42 

where  

0s
in d


 f NP  The internal force matrix 6.43 

 
0

T d
s

s f 


   Μ N N  The mass force matrix 6.44 

 
0s

ex i s f gd 


   f N  The external force matrix 6.45 

0

, ,

s

FSI s FSI s

i i d


  f Nf  The interaction force matrix 6.46 

It is noted the formulation for external force vector inf  and mass matrix Μ in the 

ES-FEM are exactly the same as the FEM. Many existing methods can be used to solve 

the second order time dependent problems, such as the Newmark method, the 

Crank-Nicholson method, and so on. In this thesis, central difference time step is used: 

Velocity at time step n: 

 1

1

2
i i

t
 


u u u

 

6.47 

Acceleration a time step n: 

 0.5 0.5

1
i i

t
  


u u u

 

6.48 

where the two velocity terms in Eq. (6.48) can be written similarly (half-step forward 

and backward) in terms of ui-1, ui and ui+1. Hence, it can be shown that: 

 1 1

1
2

2
i i i

t
   


u u u u

 

6.49 

Substitute the Eq. (6.49) into (6.42), 

  ,

1 1

1
2

2

FSI s

i i i in ex
t

     


M u u u f f f
 

6.50 
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6.4.2 Evaluation of internal nodal force using ES-FEM 

The isotropic hyperelastic Neo-Hookean material is employed. The hyperelastic 

materials are characterized by the existence of a stored energy function:  

    1 2 3, , , ,I I I C X X X  6.51 

where the invariants of C : 

1 11 22 33tr :I C C C    C I C  6.52 

2 tr :I  CC C C  6.53 

2

3 detI J C  6.54 

And 

 
1

 
2

ij ij ijE C    6.55 

For isotropic cases, the second Piola-Kirchhoff stress tensor can be written as: 

31 2

1 2 3

 =2 =2 2 2ij

ij

II I
S

E I I I

          
  
       C C C C

 6.56 

Introducing the following derivatives: 

2 131 2, 2 ,
II I

J  
  

  
I C C

C C C
 6.57 

Therefore, the second Piola-Kirchhoff stress can be written: 

2 1

,1 ,2 ,32 4 2S J      I C C  6.58 

where 

, , 1,2,3i

i

i
I


  


 6.59 

In this thesis, the stored energy function in the ES-FEM model is expressed as follow: 
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       
2

0 0 0

1 1
( ) 3

2 2
InJ InJ trace      C C  6.60 

where J  and C are the determinant of the smoothed deformation gradient and the 

smoothed deformation gradient respectively, 0  and 0 are the Lame constants in the 

linearized theory. 

 detJ F  6.61 

The second smoothed Piola-Kirchhoff stress S  can be evaluated in the following way: 

 1 1

0 0InJ 
 

  S C I C  6.62 

where the first smoothed Piola-Kirchhoff stress P  can be evaluated through the 

relationship between the first and second Piola-Kirchhof stress: 

P SF  
6.63 

In the ES-FEM, the smoothed deformation gradient associated with edge k based on 

the smoothed domain can be defined as: 

( ) ( ) ( )

1 1
( ) ( ) ( )

k k kk s s

k k

X X d X d d
A A  

        F F φ F u I  6.64 

The smoothing domain s

k  associated with the element edge k can be created by 

connecting two endpoints of the edge to centroids of adjacent elements as shown in 

Figure 6.4. 

( )kφ x  is a given smoothing function that satisfies the following requirements: 

( ) 1
s
k

k d


  φ x  6.65 

1/ ,
( )

0,

s s

k k

k s

k

A x

x

 
 


φ x  6.66 

where s

kA  is the area of the smoothing domain s

k  and is calculated by 
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1

1

3

sd

s
k

n
s e

k i

i

A d A




     6.67 

where sdn  is the number of elements surrounding the edge k and s

kA  is the area of 

the 
thj  element around the edge k. It can be observed from Fig. 6.4, that 1sdn   

when edge k is the boundary edge and 2sdn   when edge k is the inside edge. 

In the dynamic analysis, the consistent matrix is used.  

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 03 3

0 0 0 0 1 0

0 0 0 0 0 1

e e

s s i s s it A t A 

 
 
 
 

   
 
 
 
 

M I  6.68 

e

iA  is the area of element; s  and st  are the mass density and the thickness of the 

element respectively. The diagonal form of the lumped mass matrix in solving 

transient dynamics problems results the superiority in terms of efficiency compared 

with the consistent mass matrix. The use of lumped mass matrix provides a softer 

model meaning the eigenvalues obtained will be smaller than those obtained using the 

consistent mass matrix for the same model [126]. 

The numerical procedure to obtain the interaction force using the ES-FEM is briefly 

given as follows: 

1. Divide the domain into a set of elements and obtain information regarding node 

coordinates and element connectivity. 

2. Search the adjacent elements and the smoothing domain k associated with each 

edge k. 

3. Loop over all the elements and evaluate the external force vector of the element by 
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Eq. (6.43) and inertial force by Eq. (6.45), and assemble force vector into the global 

force vector. 

4. Loop over all the edges: 

(a) Compute the smoothed deformation gradient F  using Eq. (6.64). 

(b) Evaluate the second smoothed Piola-Kirchhoff stress using Eq. (6.62) 

(c) Calculate the first smoothed Piola-Kirchhoff stress through the Eq. (6.63). 

5. Implement essential boundary conditions. 

6. Solve the system equations to obtain the interaction force based on Eq. (6.42). 

6.5 Construction of Finite Element Interpolation 

The fluid structure interaction (FSI) force plays an important role in the momentum 

of fluid domains. In this chapter, procedure in the distribution of interaction force to 

the fluid is presented. As shown in Fig. 6.5 (a), the initial configuration for the fluid 

and solid is given; the solid is completely immersed in the fluid. The solid and fluid 

domains are represented by two independent elements, which are not required to be 

coincident. After that, solve the fluid –structure interaction (FSI) force for the solid 

using the Eq. (6.42) as shown in Fig. 6.5 (b) independently.  The interaction force 

from the solid domain can be distributed to its surrounding fluid in the following way 

as outlined in Fig. 6.5 (c): 

 
,

,

s

FSI s
FSI f s d


  f f x x

 
6.69 

where  s x x is the interpolation function, which is related to the distance between 

the fluid and solid nodes. Several constrains must be imposed on the interpolation 
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function. First, the continuity of velocity and force in the interface of fluid-solid must 

be satisfied; second, the interpolation function must be completed and reproducible 

[127]: 

  1x y dy



   

6.70 

And the reproduced function is: 

    ( )u y x y dy u x



   

6.71 

where x and y are the solid and fluid domain respectively. 

Based on the above requirements, there are many ways to generate the interpolation: 

1) Reproducing Kernel function 

2) Discretized Dirac delta function 

3) Finite Element interpolation 

The most frequent method in the interpolation function is a discretized Dirac delta 

function in the original immersed boundary method developed by [32-34]. However, 

this technique is difficult to apply in the infinitesimally small grids because it 

numerically thickens the fluid-structure interface and reduce the accuracy in the 

interpolation process. Alternatively, Liu and Zhang [36-38] proposed the reproducing 

kernel function to deal with the nonuniform meshes in order to enhance interfacial 

solutions. In the reproducing kernel function, additional parameter is introduced to 

control the support size of solid and fluid interface. However, at least four layers in 

the support domain are needed to induce a smoothed or smeared velocity at the 

interface, which is not desirable if more accurate interfacial solution is required. 

Recently, Wang and Zhang [127] developed the FEM interpolation to map the 
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velocity and interaction force from fluid domain to solid domain or from solid domain 

to fluid domain. The FEM interpolation can overcome some problems of the discrete 

Dirac delta function and reproducing kernel function, such as thickening the 

fluid-structure interface, difficulties when solid is close to fluid boundary, requiring 

explicitly imposing solution jumps at the interface and so on. The FEM interpolation 

is capable to produce a sharper interface because it only needs one element layer. 

Thus, the FEM interpolation is used in this thesis.  

In order to map the interaction force from the solid to the fluid nodes, a searching 

algorithm is required to carry out to identify the corresponding fluid element which a 

solid node resides in at the configuration of time step n+1 . During the searching 

process, there are three cases needed to identify as outlined in Fig. 6.6. 

The criteria to judge different cases is illustrated as follow: Assume there is an 

arbitrary solid point sx  with a coordinate ( ,s sx y ) and a triangular element consisting 

of three nodes in the fluid domain 1x , 2x  and 3x with area 123 . The coordinate for 

these three nodes is labeled as: ( 1 1,x y ), ( 2 2,x y ) and ( 3 3,x y ). Three triangular areas 

constructed by 1 2 1 3 2 3, ,s s sx x x x x x x x x are denoted by
3

1

.
i

  In the case 1:

3 3

123

1 1

 and all 0
i i 

      , which implies sx  is inside of the fluid triangular 

element. In the case 2:
3 3

123

1 1

 and any 0
i i 

      , which indicates that sx  is on 

the edge of fluid element; In the case 3: 
3

123

1

 
i

   , which proves that sx  is  

outside  of the element. In the interpolation process, only the first and second cases 
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are required to consider. Due to the motion of the solid, this searching procedure has 

to be carried out at every time step.  

The interpolation must meet the reproducing conditions: 

3

1

1  e

n

n

N



 

6.72 

3 3

1 1

   e e s e e s

n n n n

n n

N x x N y y
 

  
 

6.73 

Therefore: 

NQ K  6.74 

where 

   , 1s s s sx y x yK
 

6.75 

1 1

2 2

3 3

1

1

1

x y

x y

x y

 
 

  
 
 

Q

 

6.76 

And 

    
1

, ,s s s sx y x y


N K Q
 

6.77 

So the interactions force for the fluid: 

, ,

1 1

FSI f FSI s

i n iN f f
 6.78 

After 1

f

nv   at time step 1n  for the fluid is obtained, the velocity for the solid can be 

achieved using finite element interpolation again:  

1

s f

n n K K fs

K

N  v v x

 
6.79 

The detail procedure in the finite element interpolation can be found [127]. 

In summary, the whole procedure for the solution of Immersed Gradient Smoothed 

Method is illustrated as Fig. 6.7: 
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6.6 Numerical Example 

6.6.1 Soft Disk falling in a viscous fluid 

In this section, a soft disk falling in a viscous fluid under the gravity as shown in 

Figure 6.8 is examined using the Immerse Gradient Smoothing Method (IGSM). The 

density for the fluid and solid is 1kg/ m
3 

and 3kg/m
3
 respectively. The Young 

Modulus for the solid is 4 21.2 10  N/m  , and the Poisson ratio is 0.3. Two sets of 

viscosity for the fluid are examined. The material properties and size of channel are 

summarized in Table 6.1. Zero initial conditions are assumed. The acceleration of 

gravity g=9.8  is applied in the y direction. Non-slip conditions are assumed on the 

left, right and bottom boundaries of the fluid domain. On the top boundary the 

velocity is free and the pressure is set to be zero.  

Due to the gravity effect acting on the solid, the soft disk accelerates and moves 

downward. Because the length of fluid channel is much bigger than the size of wall 

disk, the wall effect is ignored. The drag force increases if the velocity of disk is 

faster. Once the gravity force is equivalent to the dragging force, the disk arrives at a 

constant value.  

In order to investigate the accuracy of the immersed gradient smoothing method 

(IGSM), the constant velocity for the rigid disk in the viscous fluid obtained from 

Clift [128] is presented for comparison. The empirical terminal velocity for the rigid 

under the gravity is expressed as follow: 

  2 2 4
2 2

ln 0.9157 1.7244 1.7302
4 2

s f gR W R R
v

R W W

 



       
         

         

6.80 
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Two types of mesh are used: one is coarse mesh (259 nodes for solid, 8326 nodes 

for fluid); another is fine mesh (802 nodes for solid, 26832 nodes for fluid). Figure 6.9 

illustrates the vertical velocity for different meshes atμ=0.4 . It is obviously noticed 

that the numerical solutions obtained from the IGSM using the coarse mesh agree 

very well with the results from the IFEM using the fine mesh. Furthermore, more fine 

mesh leads to the solution approaching the reference solution. However, the result 

from IFEM model using coarse mesh has a large deviation with the reference solution, 

which verifies the validity and accuracy of the proposed IGSM. Fig. 6.10 shows the 

contours of the pressure and vertical velocity at the steady state. This obviously shows 

that the pressure and velocity are symmetrical with the midplane. 

Figure 6.11 presents the history of vertical velocity at μ=0.5 . Once again, the 

numerical results obtained from the IGSM using the coarse mesh is very close to the 

reference solution and results obtained from the IFEM using very fine mesh. Once the 

fluid viscosity increases, the drag force acting on the disk increases. Hence, the steady 

velocity decreases compared with μ=0.4  as shown in Fig. 6.9. The contours of the 

pressure and vertical velocity at the steady state are presented in Fig. 6.12. Again, the 

pressure and velocity are also symmetrical with the midplane. 

6.6.2 Aortic Valve Driven by a Sinusoidal Blood Flow  

  This example is to analyze the motion, time-dependent deflection of a thin flexible 

body in a pulsatile blood flow [129]. This type of problem is very important to study the 

opening and closing behavior of aortic heart valves in reality, which exist complicated 
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interactions between heart valve leaflets, aorta and blood flow [130]. A two 

dimensional representation of the aortic valve is presented in Fig. 6.13. The valve is 

able to rotate around its point of attachment. A cylindrical cavity is present behind the 

disc, which is modeled version of the physiological sinus of Valsalva.  The 

membranous hinge connects the valve and the rigid channel together. The bending 

moment in the direction of closed position is caused by the hinge. The material 

properties and parameters are summarized in Table 6.2. Initially, the blood and leaflet 

is at rest. A sinusoidal input velocity with amplitude of 0.1 m/s, consistent with 

parabolic distribution function, is applied at the inlet as shown in Fig. 6.14. No slip 

condition is applied on the top and bottom channel. The fluid is assumed to be 

Newtonian, incompressible and laminate. The free outlet conditions for the fluid are 

applied. 

  The motion of leaflet in the numerical model using the IGSM is presented in Figure 

6.15. The leaflet is pushed upward when the inlet velocity increases gradually. Once the 

inlet velocity decreases, the leaflet is pushed downward. This motion of the leaflet 

repeats itself for every cycle. The sequence of movements obtained from the IGSM 

follows the same motion as the one obtained from [131]. Therefore, the capabilities of 

the IGSM to solve the fluid-structure interaction are demonstrated by this example 

again. 

 The proposed IGSM has captured the motion and deformation of simple two 

dimensional heart valve model successfully with ultra-accuracy. In real case, the 

natural valve consists of three flexible leaflets, which are constituted within the 
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expandable aortic root [132]. Although the two dimensional model is not sufficient to 

analyze the realistic case, the model can be used to test the current method in predicting 

the interaction behavior of such systems as a first step towards full three dimensional 

numerical models in heart valves. The present IGSM can straightforward be extended 

to three dimensional models.  

6.7 Remarks 

In this chapter, a two dimensional immersed gradient smoothing method (IGSM) is 

developed to solve the fluid structure interaction problems. Basically, the procedure of 

IGSM includes three parts: edge-based smoothed finite element method (ES-FEM) 

solves the non-linear solid, piecewise linear gradient smoothing method (PL-GSM) is 

applied to analyze the fluid domain, and distributing the interaction force through the 

finite element interpolation. Two numerical examples are used to verify the validity of 

IGSM. Based on the numerical solutions from IGSM, the following remarks can be 

derived as: 

a) The ES-FEM model with triangular elements in structural mechanics is softer 

than the traditional FEM model. The employment of ES-FEM can provide 

more accurate solutions without additional parameters or degrees of freedoms 

than the standard FEM. This is due to the edge-based gradient smoothing 

operation applied in the ES-FEM producing close-to-exact stiffness in the 

model. 

b) The employment of PL-GSM in the fluid domain is able to provide second 
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order accuracy in spatial approximation [25]. Furthermore, the implementation 

of PL-GSM is quite straightforward and easier than the FEM. Hence, the 

efficiency of PL-GSM is higher than the FEM. 

c) The combination of gradient smoothing operation in weak and strong form 

with distinct feature has successfully solved the complicated fluid structure 

interaction problem. The comprehensive tests repeatedly prove that the 

proposed IGSM are remarkably accurate, robust, flexible, efficient, and stable. 
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Ω

 Figure 6.1: The Eulerian coordinates in the computational domain 
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Figure 6.2: Illustration of independent mesh for fluid and solid 
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Figure 6.3: Illustration of gradient smoothing domain 
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Figure 6.4: Triangular elements and the smoothing domains (shaded areas) associated 

with edges in ES-FEM 
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Figure 6.5: Procedure to distribute the interaction force to the fluid domain 
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Figure 6.6: Three cases in the searching process 
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Figure 6.7：Flow chart in the Immersed Gradient Smoothing Method 
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W=2
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d=0.25

 

Figure 6.8: A soft disk falling in a viscous fluid (not to scale) 

 

 



Chapter 6. Development of Immersed Gradient Smoothing Method (IGSM) 

234 

 

 

Figure 6.9: Velocity history at μ=0.4  
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(a) Pressure 

 

(b) Vertical Velocity 

Figure 6.10: Pressure and vertical velocity contours at the steady state (μ=0.4 ) 
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Figure 6.11: Velocity history at μ=0.5  
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(a) Pressure 

 

(b) Vertical Velocity 

Figure 6.12: Pressure and vertical velocity contours at the steady state (μ=0.5 ) 
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Figure 6.13: Two-dimensional model of aortic valve [130] 

 

 

 

 

 

 

 

 

 

Figure 6.14: Inlet velocity profile 
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(a) t/T=0 

 

(b) t/T=0.2 

 

(c) t/T=0.4 

 

(d) t/T=0.6 

 

(e) t/T=0.8 

 

(f) t/T=1 

Figure 6.15: Leaflet motion and fluid velocity profile 
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Table 6.1: Fluid and soft disk properties 

Fluid Domain Soft Disk 

W=2m, H=5m, R=0.125m Young Modulus 4 2E 1.2 10  N/m   

Density 
31 kg/mf   Density 33 kg/ms   

Viscosity μ=0.4 Pa s  or μ=0.5 Pa s  Poisson ration 0.25   

 

 

 

 

 

 

 

 

 

 

Table 6.2: Material properties 

Blood Domain Leaflet Domain 

W=20mm, L=120mm Poisson Ration 0.3   

Density 
3=1050kg/mf  Density 

3=890kg/ms  

Viscosity  =0.0033 Pa s  Young Modulus 4 21.2 10  N/mE    
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Chapter 7 

 

Conclusions and recommendations 

 

7.1 Conclusion remarks 

In this thesis, gradient smoothing operations in the weak and strong form have been 

developed. Some bioengineering models including bioheat transfer in the human eye, 

hyperthermia treatment in the human breast, phase change in the liver cryosurgery, 

diseased artery, and heart valve have been established based on the newly developed 

methods mentioned in this thesis. Through the studies, the following conclusions are 

drawn: 

1) The αFEM is equipped with a scaling factor α that controls the contribution of 

NS-FEM and FEM. The selection of a good approximation α is still an open 

topic. Generally,  α 0.45:0.65 for 2D and  α 0.60:0.80 are recommended 

based on the research experience without mathematical proof. In liver 

cryosurgery, the αFEM formulation in the fixed grid method captured the 

interface of solid and liquid more accurately than the standard FEM. The 

numerical results obtained from FEM using triangular element are poor, 

especially in the high temperature gradient. Furthermore, the application of 

αFEM achieves very accurate results compared to the FEM with the same 

number of degree of freedom in the bioheat transfer in the human eye with very 
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complicated structure. Additionally, the αFEM  model provides a fast, 

accurate and safe way to detect fever and dry eyes, which can help the doctor to 

improve the diagnosis and treatment  

2) The ES-FEM using the triangular elements in 2D and FS-FEM using tetrahedral 

elements in 3D are quite stable and accurate in thermal-mechanics models of 

hyperthermia treatment of human breast compared with the standard FEM. The 

edge-based smoothed in 2D and face-based in 3D soften the model to achieve 

‘close to exact’ stiffness. Compared with FEM, there are no additional 

parameters in ES-FEM and FS-FEM. Hence, this method can be implanted in a 

straightforward way. Thus, the model created by the ES-FEM and FS-FEM is 

good option to predict the temperature distribution and mechanical response in 

the hyperthermia treatment of human breast. 

3) The PL-GSM using triangular elements in two-dimensional space is very simple; 

no additional parameters or degrees of freedoms are needed, the system matrices 

have the same dimensions as the FDM model of same mesh and the method can 

be implemented in a straightforward way with little change to the FDM code. 

Compared with the piecewise constant gradient smoothing method (PC-GSM), 

the PL-GSM is more accurate, stable and not sensitive to distortion of element. 

4) The proposed αGSM is a generalized formulation of PL-GSM and PC-GSM. 

When the α=0, the αGSM becomes PL-GSM, when the α=1, the GSM is the 

same as PL-GSM. Although the GSM can achieve more accurate result, the 

computational time is too high compared with the PC-GSM and PL-GSM. 
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Hence, the αGSM does not exhibit any outstanding advantages than the 

PC-GSM and PL-GSM in terms of computational efficiency. 

5) The combination of gradient smoothing operations in weak and strong form 

gave rise to the immersed gradient smoothing method (IGSM) with distinct 

feature to solve the complicated fluid structure interaction problem successfully. 

The employment of ES-FEM in the solid model is a good alternative in the 

large deformation. The PL-GSM applied in the fluid model has reduced the 

computational cost without losing the computational accuracy. The 

comprehensive tests repeatedly prove that the proposed IGSM is remarkably 

accurate, robust, flexible, efficient, and stable. 

7.2 Recommendations for future work 

Based on the work presented in the thesis, the following aspects are recommended 

for future research: 

(1) Further study is performed to improve the gradient smoothing operation in the 

weak and strong form. For instance, selection of α in the αFEM is a challenge 

task through the mathematical theory. Currently, α is just based on research 

experience and lack of mathematical proof. Furthermore, high-order smoothing 

functions could be used in the strong form to create more accurate model in the 

fluid dynamics. 

(2) The gradient smoothing operations in the weak and strong form have 

formulated ES-FEM, αFEM, PL-GSM, αGSM and IGSM. Such methods have 
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successfully solved the model in the biological systems. It should be extended 

to the application in more sophisticated bioengineering systems. In addition, 

development of robust commercial software based on the gradient smoothing 

operations in the weak and strong form to treat special problems is also an 

imminent task for research. 

(3) It is necessary to develop the IGSM to solve the fluid-structure interaction (FSI) 

problem in three dimensional domain. Therefore, it is more realistic to apply the 

IGSM to analyze the interaction behavior in the three dimensional heart valve 

model. It should be straightforward to extend the 2D IGSM to 3D IGSM. 
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