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Summary

Microwave polarizers are used extensively in commercial and military applica-

tions as they provide an effective means to convert electromagnetic waves from

one polarization state/angle to another desired polarization state/angle. With

the advent of modern communications and scanning array systems in recent

years, the polarization rotator (180◦ microwave polarizer) has found many ap-

plications in commercial and military systems. However, most of the reported

polarization rotators are cumbersome and complex to implement as they are

constructed from multiple layers of linear grids spaced approximately quarter

wavelength apart. In addition, little information on the performance against

oblique incidence and rotation angles are available. In this dissertation, a novel

polarizer rotator design which minimizes the number of rotating mechanism

while maintaining good cross polarization isolation is proposed. The design,

which is based on back-to-back stacking of two 90◦ polarizer incorporated with

a linear grid layer, is simple to implement as it requires no more than two

rotating mechanism. Depending on application, various implementation con-

figurations are possible. A Ku band polarizer rotator based on the proposed

concept was fabricated and characterized for various configurations against dif-

ferent wave incidence and polarization rotation angles. The viability of the

proposed concept is validated by the good agreement between measured results

and prediction.

In addition to a good design concept, it is equally critical that the method
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used for analyzing the microwave polarizer is accurate and efficient. Currently,

the numerical techniques used for the design and analysis of microwave polar-

izers either do not take into account the finite metallization thickness of the

meanderline grid or requires excessive computation time. For microwave polar-

izer operating at high frequencies or constructed from heavy metal cladding,

the omission of grid thickness will result in relative error between the actual

and predicted performance. In this dissertation, a new method for analyzing

microwave polarizer that takes into account the finite metallization thickness

is presented. The method utilizes transverse resonance coupled with general-

ized scattering matrix and singular value decomposition to achieve a highly

efficient algorithm suitable for design optimization routine. Numerical accu-

racy and efficiency of the proposed approach are validated by comparison with

measurement results and finite element method.
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SATCOM . . . . . . . . . . . . . . . . Satellite Communications

SVD . . . . . . . . . . . . . . . . . . . . Singular Value Decomposition

TE . . . . . . . . . . . . . . . . . . . . . Transverse Electric

TEM . . . . . . . . . . . . . . . . . . . Transverse Electromagnetic

TM . . . . . . . . . . . . . . . . . . . . Transverse Magnetic

TW . . . . . . . . . . . . . . . . . . . . Top Wall

VSAT . . . . . . . . . . . . . . . . . . . Very Small Aperture Terminal
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Chapter 1

Introduction

1.1 Overview

Polarizers are used in practice to convert Electromagnetic (EM) waves from

one polarization state/angle to another desired polarization state/angle. The

applications of polarizer are many and varied, ranging over much of the elec-

tromagnetic spectrum from microwave to the optical region. In the microwave

region, polarizers are often used in conjunction with antennas to achieve vari-

ous radiation characteristics which would otherwise be impossible or too costly

to realize. Examples of commercial and military applications where microwave

polarizers are employed include: reduction of aperture blockage and feed mis-

match in Cassegrain antennas [1; 2], conversion of linear to circular polarization

for Satellite Communications (SATCOM) [3], low-inertia and fast mechanical

polarization steering system for seeker antennas [4–6], automatic target recog-

nition system for achieving polarization diversity [7], and reduction of radar

cross-section [8].
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In general, microwave polarizers can be broadly classified into three classes:

(1) 180◦ polarizer, also known as polarization rotator, which rotates a linearly

polarized EM field by an arbitrary angle while maintaining the field’s linearly

polarized state; (2) 90◦ polarizer which converts a linearly polarized EM field

into a circularly polarized EM field and vice versa, and (3) linear grid polarizer

that is used to reject EM field that is non-orthogonal to the grid axis.

To illustrate the usefulness of the microwave polarizer, consider an array

of vertically polarized horn antennas shown in Figure 1.1 below. The horn

array has limited scan range as the width of the waveguide feed section, a,

is typically 0.6 – 0.7 wavelength in length. To overcome this limitation, the

horn antennas can be arranged in a horizontally polarized configuration and

a polarization rotator (180◦ microwave polarizer) employed to achieve a 90◦

polarization angle rotation for the wave emanating from the horn antennas as

shown in Figure 1.2. While the vertically polarized scanning array could also be

realized using a two dimensional array, the use of microwave polarizer, together

with horn array, minimizes the RF losses and implementation complexity.

Vertically polarized wave

Figure 1.1: Vertically polarized horn array
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Horizontally polarized wave

Vertically polarized wave

Figure 1.2: Horn array with microwave polarizer

In recent years, there is also increasing interest to replace conventional reflec-

tor antennas with phased array antenna for mobile satellite communications. In

satellite communications, the satellite operators frequently employ polarization

diversity as one of the means to increase capacity. As such, cross polarization

isolation better than 20 – 25 dB are typically imposed on users transmitting at

maximum allowable power. While 25 dB cross polarization isolation is achiev-

able in reflector antenna, it is a significant challenge for phased array antenna

because the plane of wave incidence does not usually coincide with the antenna

principal planes. While electronic polarization tracking can be implemented,

the prohibitive costs required to realize and implement such a design is likely

to deter its widespread adoption. A more pragmatic approach is to make use of

a polarization rotator (180◦ microwave polarizer) to achieve polarization track-

ing while the phased array antenna handles the beam scanning function. In

this way, costs and complexity can be reduced significantly as the phased array

antenna can be single polarized instead of dual polarized.

Currently, most of the 180◦ polarizers reported in literatures are constructed

from multiple layers of independently rotating linear grids which require com-

plex rotating mechanism to realize. In addition, discussion on design and elec-
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trical performance are mainly confined to normal incidence. Given that scan-

ning array antennas with polarization tracking capabilities are gaining preva-

lence in many commercial and military SATCOM systems, there is a strong

desire for polarization rotator design that is relatively simple to implement and

can function well under both on- and off-axis conditions.

Besides a pragmatic design concept, it is also critical that appropriate nu-

merical methods are developed to model and analyze microwave polarizer. Since

microwave polarizer design is a parametric optimization process that involves

multiple iterations, efficiency is an extremely important criterion besides nu-

merical accuracy. While various authors have dealt with efficient analysis of

microwave polarizers in the past [1; 9–13], the key assumption has always been

that metallization thickness of the grid is assumed to be infinitely thin. For

operating frequency above X-band or when heavy metal cladding is used, this

approximation will result in noticeable discrepancy between the measured and

predicted performance.
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1.2 Contributions

This dissertation strives to solve some of the challenges associated with the

design, analysis and implementation of practical microwave polarizer. The

original contributions arising from the dissertation are,

1. A new method for analyzing microwave polarizer with finite metalliza-

tion thickness through the use of transverse resonance, generalized scat-

tering matrix and singular value decomposition. This method overcomes

the limitations of current techniques, such as network model method,

periodic Green’s function, and grid current approach, by allowing the

thickness of the meanderline grid to be modelled which is otherwise as-

sumed to be zero. The accuracy and efficiency of the proposed method

makes it well suited for use as a microwave polarizer design tool.

2. A novel design concept for 180◦ meanderline polarizer with good cross

polarization isolation that enables up to 45◦ off-axis illumination. The

concept is based on back-to-back stacking of two 90◦ polarizers incorpo-

rated with a linear grid layer. This design is able to achieve good cross

polarization isolation using no more than two rotating layers. Compared

to conventional multiple rotating grids design, the proposed design is an

effective solution for tracking systems which require polarization tuning

capabilities with minimal implementation complexity.

3. Investigation into electrical properties and performance of polarization

rotators. Performance characteristics such as insertion loss and cross po-

larization isolation for different wave incidence angles and vector rotation

are measured and analyzed. Such data, which has not been reported in

open literatures, provides important guideline and performance limits

for use in design of polarizer rotators.
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1.3 Publications

The publications arising from the work in this dissertation are as follows,

1. K. K. Chan, T. W. Ang, T. H. Chio and T. S. Yeo. Accurate Analysis

of Meanderline Polarizers with Finite Thickness Using Mode Matching.

IEEE Trans. Antennas and Propagat., AP-56(11): 3580 – 3585, Novem-

ber 2008.

2. T. W. Ang, Y. Y. Huang and K. K. Chan. Investigation of a Low Profile

Phased Array for Mobile Ku-Band Satcom Terminals. Int. Symp. on

Antennas and Propagat., Macao, China, November 2010.

3. T. W. Ang, K. K. Chan, T. S. Yeo and J. T. Goh. Analysis and Design of

Polarization Rotator. To appear in Asia Pacific Microwave Conference,

Melbourne, Australia, December 2011.

4. T. W. Ang, K. K. Chan and T. S. Yeo. An Efficient Method for An-

alyzing Microwave Polarizer with Finite Grid Thickness. To appear

in Progress in Electromagnetics Research Symposium, Kuala Lumpur,

Malaysia, March 2012.

5. T. W. Ang, T. S. Yeo and K. K. Chan. An Efficient Approach to Root

Finding for Transverse Resonance and Modal Analysis Problems. IEE
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ment of Polarization Rotator with Good Cross-Polarization Isolation.

IEEE Trans. Microwave Theory and Techniques, (manuscript in prepa-

ration)
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1.4 Thesis Organization

This thesis is organized into six chapters. Chapter 1 provides a review of the

work conducted by various researchers on the analysis of microwave polarizer

and design of polarization rotators. Chapter 2 describes a novel polarization ro-

tator design concept that minimizes the number of rotating mechanisms while

maintaining good cross polarization isolation for wave incidence up to 45◦.

Chapter 3 presents the measurement results of a polarization rotator designed

and fabricated using the concept described in Chapter 2. An efficient and accu-

rate method to analyze meanderline polarizer with finite metallization thickness

is presented in Chapter 4. In Chapter 5, validation of the new method against

measurement data and other numerical tools are presented. Finally, concluding

discussion and recommendations for follow-on research are discussed in Chap-

ter 6.

1.5 Literature Review

The first practical microwave polarizer based on printed technology was demon-

strated by Lerner [14]. A 90◦ polarizer was designed and fabricated by Lerner

using three sheets of copper clad fiberglass laminate spaced by fiberglass hon-

eycomb core and photo-etched with strips and rectangular patches. The fab-

ricated polarizer has approximately 20 percent bandwidth with insertion loss

and axial ratio within 0.5 dB and 1.7 dB respectively. However, one problem of

Lerner’s design was the need to fabricate very thin copper traces in the order

of 4–6 thousandth of a wavelength; and such fine tolerances were difficult to

achieve in those days.

In 1966, Stanford Research Institute conceived the meanderline polarizer

and reported the computer program used in the design in 1969 [15]. The con-

cept behind the meanderline polarizer is that it appears to be predominantly
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inductive to one polarization and predominantly capacitive to the orthogonal

polarization. Compared to Lerner’s design at the same bandwidth and center

frequency, meanderline structure is larger in dimension and hence much easier

to fabricate. In addition, meanderline elements are effective over a wider band-

width and scan angle. Expanding on the work of Stanford Research Institute,

Young et al. [16] demonstrated a four layer meanderline polarizer with foamed

plastic spacer that exhibited an axial ratio of better than 1.5 dB at normal

incidence over the 8–12 GHz band. Since the pioneering work by Stanford Re-

search Institute, meanderline element has been widely regarded as the de facto

configuration to use when constructing 90◦ and 180◦ microwave polarizers.

Numerical techniques commonly used to analyze and design microwave po-

larizers can be broadly divided into two categories: network model based tech-

nique [1; 9; 10; 16] and numerical techniques based on periodic formulations

such as Floquet Mode Expansion [11–13; 17] or periodic Green’s function [18–

22]. In network model based technique, the polarizer is modelled using equiv-

alent circuit with lumped inductive and capacitive elements where the values

of the inductors and capacitors are found empirically or numerically. This

technique is conceptually easy to understand and requires relatively little com-

puting resources. Thus, it was used extensively by early researchers designing

meanderline polarizers [14–16; 23–25].

Chu and Lee [10] derived empirical formulas for the admittances of mean-

derline polarizer with respect to the incident frequency and polarization. The

formulas were then used to construct the T -matrix of the equivalent network

model of a multilayer meanderline polarizer. In the paper, only the results for

normal incident plane waves were presented and these showed fair agreement

with the theory developed.

Although network model provides an intuitive way to design meanderline

polarizers, results showed that accuracy of the empirical network model de-
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grades with increasing angle of incidence. According to Chan et al. [12], this is

because network model did not take into account the effect of mode coupling

at each grid interface. The pursuit for better correlation between numerical

models and experiments led some researchers to apply Floquet Mode Expan-

sion Moment Method to the modelling of meanderline polarizer. In Floquet

Mode Expansion method, the incident plane wave is represented using Floquet

mode expansion and the scattering characteristics of the polarizer are obtained

by solving for the currents on the polarizer elements using techniques such as

integral equations, modal analysis, etc. Using full wave analysis, it is possible

to achieve accurate solution for most polarizer configuration.

Compared to the network model method, the Floquet Mode Expansion

method requires significantly more computational resources as the formulation

and solution processes are more rigorous. As practical polarizers deployed in

operational systems are usually constructed from complex multilayered config-

uration in order to meet the bandwidth and scan angle requirements, this was

one of the main reason why practical polarizers designed using Floquet Mode

Expansion method were reported only from the 1990s onward when comput-

ers are sufficiently powerful and affordable to enable design optimization to be

conducted efficiently.

The theoretical foundation for Flouqet Mode Expansion analysis of mean-

derline polarizer can be attributed to the work of Chen [26] and Montgomery

[27]. The problem of scattering by an infinite array of thin plates arranged in

a doubly periodic grid in free space was treated by Chen using Floquet’s theo-

rem and integral equations formulation. Montgomery expanded on the work to

treat the unsymmetrical problem of scattering by an infinite periodic array of

thin conductors on a dielectric sheet. Although Chen and Montgomery did not

apply their techniques to the analysis of meanderline polarizer, the concepts

presented in their publications were later employed by researchers working on
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meanderline polarizer.

One of the first published work on the analysis of meanderline polarizer

using Floquet Mode Expansion technique was by Terret et al. [9]. In the pa-

per, Floquet mode expansion of the incident plane wave and point matching

were used to compute the susceptance of meanderline arrays. Comparison be-

tween the computed and measured susceptance showed good agreement. Sub-

sequently, various authors have published works in support of the accuracy of

this approach [17; 19; 28].

Chan and Gauthier [11]; Chan et al. [12] were one of the first to report a

fabricated broadband widescan meanderline polarizer using modal technique

similar in concept to that described by Montgomery [27]. By representing the

current distribution on the conducting surface as a collection of strip currents

flowing along the meanderline structure, the authors mentioned they are able

to treat a wider variety of configurations. A seven layer meanderline polarizer

was fabricated and the axial ratio and insertion loss were measured to be less

than 2.2 dB and 0.2 dB respectively over the band 4–8 GHz for incident angles

up to 40◦ [12].

In both the network model and Floquet Mode Expansion Moment Method

that have been published to date, the metallization thickness is assumed to

be infinitely thin, this assumption is especially essential for methods based on

the later technique. However, for microwave polarizers with electrically thick

metallization, this assumption will lead to discrepancies between the measured

and predicted polarizer performance.

In the early days, most of the published works on microwave polarizers were

on 90◦ meanderline grids which are used for the conversion between linear and

circular polarization state [2; 3; 10; 12; 14–16; 23]. With the advent of mod-

ern communications and scanning array systems, the 180◦ polarizer has found

many important commercial and military applications although the design of
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such polarization rotators are rarely discussed in detail. Examples include Very

Small Aperture Terminal (VSAT) systems which requires rapid and precise po-

larization tracking to maintain communication link between satellites and mo-

bile ground platforms [29–32], defense systems which make use of polarization

sensing to defeat incoming threats [33; 34], and Cassegrain antennas [35].

To date, the 180◦ polarizers published are mostly based on multiple layers

of linear or straight grids spaced approximately quarter wavelength apart [36–

38]. In such a linear grid polarizer rotator system, the layers are arranged

in various inclination angles to rotate the polarization of a linearly polarized

wave. Depending on the angle of rotation, wave incidence angle and frequency

bandwidth, a complex rotator system is required as three or more independent

rotating polarizer layers are typically needed. Examples include a four grid

design reported by Gimeno et al. [36] and a five layer design by Lech et al. [38]

recently.

Published papers on polarization rotators have little information on the

electrical properties and performance such as cross-polarization discrimination,

frequency bandwidth and mismatch for oblique incidence against rotation an-

gles. Only one paper, published by Wu [39], investigated the use of 180◦ mean-

derline polarizer for rotation of linearly polarized EM wave. Even then, there

are results only for normal incidence and one angle of rotation.

27



Chapter 2

Novel Design of Microwave

Polarizer Rotator

The basic working principle of a meanderline polarizer is illustrated in Fig-

ure 2.1. An incoming EM wave impinging on a meanderline polarizer can be

decomposed into two orthogonal components, i.e. Transverse Electric (TE) and

Transverse Magnetic (TM) components. Through judicious design of the me-

anderline grid, the TE and TM components can be made to undergo a 90◦ or

180◦ relative phase difference after passing through the screen. A 90◦ relative

phase shift will generate a circularly polarized wave while a 180◦ phase shift

will result in a rotation of the polarization angle.

While 90◦ meanderline polarizers are well discussed in literatures [2; 3; 10;

12; 14–16; 23], it is the polarization rotator (180◦ polarizer) that has attracted

many important commercial and military applications in recent years [29–35].

In this chapter, a novel polarizer rotator design for arbitrary rotation of

linearly polarized wave with good cross-polarization discrimination will be pro-

posed. The design minimizes the number of rotating mechanisms required;

leading to less complex rotator and controller network compared to conven-

tional rotators [36–38]. A series of rotator configurations based on this novel
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Figure 2.1: Basic principle of meanderline polarizer

design will be analyzed to quantify their electrical performances.

2.1 Analysis Approach

There exist a number of approaches to analyze periodic structures such as

polarizer screen [10; 12; 13; 16; 24; 28; 40]. This section describes a method,

based on grid current and mode matching techniques, that was used to analyze

and design the polarization rotator.

Microwave meanderline polarizers can be viewed as a form of periodic struc-

ture in which each periodic cell consists of two vertical and three horizontal

metallic strips as shown in Figure 2.2. By assuming the meanderline line po-

larizer to be infinite in extent, an accurate mathematical modelling based on

Floquet’s theorem [41] is applicable to the problem.
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Figure 2.2: Periodic meanderline cell

Using Floquet theorem, the fields above each meanderline periodic cell can

be expressed in terms of a complete orthogonal set of modes termed Floquet

modes. These Floquet modes and the induced current on the meanderline

metallic strips will enable the formulation of the meanderline polarizer bound-

ary value problem in terms of a series of integral equations.

Consider the case of a single layer meanderline polarizer screen illustrated

in Figure 2.3. An EM wave incidenting at an angle (θ, φ) will generate induced

current on the metallic conductors which manifests itself as reflected and trans-

mitted waves. Different scattering characteristics can be generated by changing

the geometrical dimensions of the meanderline.

The meanderline polarizer screen can be viewed as constructed from an array

of identical meanderline cells as shown in Figure 2.4. The fields induced in each

cell by an incident EM wave will be identical except for a phase shift between

adjacent cells. Using Floquet theorem, the problem reduces to the solution

of scattering from a unit cell of meanderline element with periodic boundary

conditions as imposed by the vector Floquet modes. The vector Floquet modes

can then be used to derive the vector TE and TM Floquet modes, where TE and

TM modes have no electric field and magnetic field component in the direction

of propagation (z direction), respectively.
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Figure 2.3: Meanderline polarizer with incident wave

Figure 2.4: Rectangular lattice of meanderline array
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2.1.1 TE modes

Let ξmn(x, y) = Hzmn(x, y) and Ez = 0. The corresponding transverse fields are

then derived from Hzmn by [42],

Ētmn =
jωu

k2
rmn

ûz ×∇tHzmn

and H̄tmn =
jΓmn
k2
rmn

∇tHzmn

where krmn and Γmn are the wavenumbers associated with the propagation

vector k̄,

k2
rmn

= k2
xm + k2

yn = k2 − Γ2
mn

and ∇t = ûx
∂

∂x
+ ûy

∂

∂y
= j(ûxkxm + ûykyn)

To obtain the orthonormalized vector Floquet mode, define :

Ētmn =
ωµ

krmn

Ψ1mn(x, y)

From above,

Ētmn =
jωµ

k2
rmn

(
−ûx

∂ξ

∂y
+ ûy

∂ξ

∂x

)
From the scalar Floquet modes,

Ētmn =
ωµ

krmn

√
1

bd

(
kynûx − kxmûy

krmn

)
ej(kxmx+kyny)

Therefore, the orthonormalized vector TE Floquet mode is given by,

Ψ̄1mn =

√
1

bd

(
kynûx − kxmûy

krmn

)
ej(kxmx+kyny)
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Similarly, ∫∫
Ap

Ψ1mnΨ∗1m′n′ dx dy = δmm′ δnn′

The TE modal admittance is given by,

Y1mn =
Γmn
ωµ

2.1.2 TM modes

Let ξmn(x, y) = Ezmn(x, y) and Hz = 0. The corresponding transverse fields are

then derived from Ezmn by,

H̄tmn =
jωε

k2
rmn

ûz ×∇tEzmn

and Ētmn = −jΓmn
k2
rmn

∇tEzmn

where k2
rmn

= k2
xm + k2

yn = k2 − Γ2
mn

∇t = ûx
∂

∂x
+ ûy

∂

∂y
= j(ûxkxm + ûykyn)

To obtain the orthonormalized vector Floque mode, define :

Ētmn =
Γmn
krmn

Ψ2mn(x, y)

From above,

Ētmn = −jΓmn
k2
rmn

(
ûx
∂ξ

∂x
+ ûy

∂ξ

∂y

)
From the scalar Floquet modes,

Ētmn =
Γmn
krmn

√
1

bd

(
kxmûx + kynûy

krmn

)
ej(kxmx+kyny)
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Therefore, the orthonormalized vector TM Floquet mode is given by,

Ψ̄2mn =

√
1

bd

(
kxmûx + kynûy

krmn

)
ej(kxmx+kyny)

Similarly, ∫∫
Ap

ΨpmnΨ∗pm′n′ dx dy = δpp′δmm′ δnn′

where δpp′ indicated that the TE and TM modes are mutually orthogonal. The

TM modal admittance is given by,

Y2mn =
ωε

Γmn

2.1.3 Integral Equation Formulation

Based on the coordinate axes shown in Figure 2.3, the transverse incident elec-

tric and magnetic field vectors in the negative z-region are given by,

Ē
inc(−)
t (r) = ĒTE

t + ĒTM
t

=
∑
p

∑
m

∑
n

e−jkzmnz

√
bd

e−j(k̄tmn ·r̂t)k̂pmn
√
ηpmna

−
pmn

H̄
inc(−)
t (r) = H̄TE

t + H̄TM
t

=
∑
p

∑
m

∑
n

e−jkzmnz

√
bd

e−j(k̄tmn ·r̂t)
a−pmn√
ηpmn

ẑ × k̂pmn

η1mn =
ωµ

kzmn

, η2mn =
kzmn

ωε

where p = 1 or 2 denotes TE or TM incident wave, respectively.

Similarly, the transverse reflected fields in the negative z-region are given
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by,

Ē
ref(−)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

√
bd

e−j(k̄tmn ·r̂t)k̂pmn
√
ηpmnb

−
pmn

H̄
ref(−)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

bd
e−j(k̄tmn ·r̂t)

b−pmn√
ηpmn

ẑ × k̂pmn

In the positive z-region, the transverse incident electric and magnetic field

vectors are given by,

Ē
inc(+)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

√
bd

e−j(k̄tmn ·r̂t)k̂pmn
√
ηpmna

+
pmn

H̄
inc(+)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

√
bd

e−j(k̄tmn ·r̂t)
a+
pmn√
ηpmn

ẑ × k̂pmn

Similarly, the transverse reflected fields in the positive z-region are given by,

Ē
ref(+)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

√
bd

e−j(k̄tmn ·r̂t)k̂pmn
√
ηpmnb

+
pmn

H̄
ref(+)
t (r) =

∑
p

∑
m

∑
n

e+jkzmnz

√
bd

e−j(k̄tmn ·r̂t)
b+
pmn√
ηpmn

ẑ × k̂pmn

Enforcing the continuity of electric field across the meanderline screen,

Ē
inc(−)
t + Ē

ref(−)
t = Ē

inc(+)
t + Ē

ref(+)
t

∑
p

∑
m

∑
n

e−jkzmnz

√
bd

e−j(k̄tmn ·r̂t)k̂pmn
√
ηpmn(a−pmn + b−pmn)

=
∑
p′

∑
m′

∑
n′

e+jkzm′n′ z

√
bd

e−j(k̄tm′n′ ·r̂t)k̂p′m′n′
√
ηp′m′n′(a+

p′m′n′ + b+
p′m′n′)
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∑
p

∑
m

∑
n

Ψpmn(x, y, 0)(a−pmn + b−pmn) =∑
p′

∑
m′

∑
n′

Ψp′m′n′(x, y, 0)(a+
p′m′n′ + b+

p′m′n′)

Using the orthogonality of Floquet modes,

a−pmn + b−pmn = a+
pmn + b+

pmn (2.1)

The boundary magnetic field must be continuous except at locations of the

current on the meanderline conductors where it will be discontinuous,

ẑ ×
(
−H̄ inc(+)

t + H̄
ref(+)
t

)
− ẑ ×

(
H̄
inc(−)
t + H̄

ref(−)
t

)
= J̄s (2.2)

where J̄s denotes the induced current on the meanderline conductors.

ẑ ×

{
−
∑
p′

∑
m′

∑
n′

e−j(k̄tm′n′ · r̂t)√
bd

ẑ × k̂p′m′n′
√
ηp′m′n′

(a+
p′m′n′ − b+

p′m′n′)

−
∑
p

∑
m

∑
n

e−j(k̄tmn · r̂t)√
bd

ẑ × k̂pmn√
ηpmn

(a−pmn − b−pmn)

}
= J̄s

∑
p′

∑
m′

∑
n′

e−j(k̄tm′n′ · r̂t)√
bd

ẑ × k̂p′m′n′
√
ηp′m′n′

(b+
p′m′n′ − a+

p′m′n′)

−
∑
p

∑
m

∑
n

e−j(k̄tmn · r̂t)√
bd

ẑ × k̂pmn√
ηpmn

(a−pmn − b−pmn) = J̄s × ẑ (2.3)

Taking the vector cross product of Equation (2.3) with Ψ∗quv and integrating

over the area of a periodic meanderline cell at the plane z = 0, the first term
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on the LHS of Equation (2.3) will be,

∫∫
Ap

∑
p′

∑
m′

∑
n′

1√
bd

e−j(k̄tm′n′ · r̂t)√
bd

ẑ × k̂p′m′n′
√
ηp′m′n′

(b+
p′m′n′ − a+

p′m′n′)×Ψ∗quv ds̄ =(
a+
p′m′n′ − b+

p′m′n′

)
√
ηp′m′n′

δp′q δm′u δn′v

Similarly,

∫∫
Ap

∑
p

∑
m

∑
n

1√
bd

e−j(k̄tmn · r̂t)√
bd

ẑ × k̂pmn√
ηpmn

(b−pmn − a−pmn)×Ψ∗quv ds̄ =(
a−pmn − b−pmn

)
√
ηpmn

δpq δmu δnv

Therefore,

(
a+
p′m′n′ − b+

p′m′n′

)
√
ηp′m′n′

+

(
a−p′m′n′ − b−p′m′n′

)
√
ηp′m′n′

=

∫∫
Ap

[(
J̄s × ẑ

)
× Ψ̄∗p′m′n′

]
· ẑ ds

=

∫∫
Ap

J̄s · Ψ̄∗p′m′n′ ds (2.4)

Since there exist only scattered fields from the induced current,

a− = a+ = 0

b−pmn = b+
pmn

Substituting Equation (2.5) into (2.4),

−2
b−pmn√
ηpmn

=

∫∫
Ap

J̄s · Ψ̄∗pmn(x, y, 0) ds

∴ b+
pmn = b−pmn = −

√
ηpmn

2

∫∫
Ap

J̄s · Ψ̄∗pmn(x, y, 0) ds

Alternatively, if there is no incident wave on the positive z-region of the mean-
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derline screen, i.e. a+
pmn = 0, the continuity of electric field implies that,

a−pmn + b−pmn = b+
pmn

From the discontinuity of the magnetic field,

−
b+
pmn√
ηpmn

+
a−pmn − b−pmn√

ηpmn
=

∫∫
Ap

J̄s · Ψ̄∗p′m′n′ ds

−2
b−pmn√
ηpmn

=

∫∫
Ap

J̄s · Ψ̄∗p′m′n′ ds

b−pmn = −
√
ηpmn

2

∫∫
Ap

J̄s · Ψ̄∗pmn ds

The scattered electric field in the negative z-region is then given by,

Ē
ref(−)
t (r) = −

∑
p

∑
m

∑
n

e+jkzmnz

bd
e−j(k̄tmn ·r̂t)k̂pmn

ηpmn
2

∫∫
Ap

J̄s · k̂pmne+j(k̄tmn ·r̂t) ds

On the surface of the meanderline conductors at z = 0, the total electric field

will cease to exist, thereby giving the following integral equation,

Ē
inc(−)
t (r) + Ē

ref(−)
t (r) = 0 r ∈ A′

where A′ is the meanderline conductor area.

∑
p

∑
m

∑
n

e−j(k̄tmn ·r̂t)
√
bd

k̂pmna
−
pmn

√
ηpmn

=
∑
q

∑
u

∑
v

e−j(k̄tuv ·r̂t)

bd
k̂quv

ηquv
2

∫∫
A′
J̄s · k̂quve+j(k̄quv ·r̂t) ds (2.5)

The Integral Equation (2.5) above relates the unknown induced current, J̄s,

to the incident modes, a−pmn, which are known. This unknown current can be

represented as a collection of mesh or linear elements and solved using numerical

techniques such as Boundary Element Method.
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2.2 Proposed Polarization Rotator Concept

The use of multiple layers of linear or straight grids spaced approximately

quarter wavelength apart to realize the 180◦ polarizer has been proposed by

many authors [36–38]. In such a design, each of the linear grids is rotated

slightly with respect to the preceding grid. The polarization of the incident

and transmitted waves are orthogonal to linear grid #1 and #N, respectively.

As the wave passes through each of the linear, grid, the polarization angle of the

wave is rotated by a slight angle as shown in Figure 2.5. The major drawback

for such a design is the need for three or more independent rotating polarizer

layers. This poses significant challenge and complexity to the design of the

rotator control system.

vertically polarized wave

rotated linearly 
polarized wave

linear grid #1

linear grid #N
. . . . . . 

.

Figure 2.5: Conventional polarization rotator

To overcome the complexity of current design, this thesis proposes a po-

larizer rotator design that can: (1) achieve full polarization rotation of ±90◦;

(2) meets the 20 dB cross polarization isolation stipulated for typical satel-

lite communications; and (3) requires no more than two rotating motors to

implement.
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To minimize the number of rotating layers, the polarizer rotator is con-

structed using two multi-layered 90◦ meanderline polarizers cascaded in a back-

to-back configuration. The first 90◦ polarizer will convert the linearly polarized

wave into circularly polarized wave. The wave is converted back to linearly

polarized wave by the second 90◦ polarizer, Figure 2.6. To achieve cross polar-

ization isolation better than 20 dB, a linear grid is incorporated on top of the

back-to-back 90◦ meanderline polarizers.

vertically polarized wave
circularly polarized wave

rotated linearly 
polarized wave

90o polarizer #1

90o polarizer #2

Figure 2.6: Concept of proposed polarization rotator

A number of configurations were derived from this rotator design. Configu-

ration A is based on rotating both 90◦ polarizer in tandem with respect to the

incidence wave. The polarization rotation angle will be twice the angle between

the incident wave and polarizer axis. When the polarizer grid axis is parallel

to the polarization of the incidence wave, there is no net rotation effect.

In Configuration B, the 90◦ polarizer grid #1 is fixed at 45◦ with respect

to the underlying antenna array. By rotating the 90◦ polarizer grid #2, the

circularly polarized wave generated by grid #1 will be converted back to linearly

polarized wave whose angle is dependent on the angular offset between grid #1

and #2. When grid #2 is set to be orthogonal with respect to grid #1, there

will be no polarization rotation effect.
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2.3 Design of Polarizer

The 90◦ meanderline polarizer is the fundamental building block in the con-

struction of the novel 180◦ polarizer. To minimize its thickness, a three layer

design is chosen to realize the 90◦ meanderline polarizer. The polarizer design

is optimized for operating frequency between 10.7 – 12.75 GHz and scan an-

gle from 0◦ to 45◦. The optimization criteria for the polarizer are: reflection

coefficient less than -15 dB and axial ratio better than 2:1.

Design of the microwave polarizer is achieved using parametric optimization

on the grid size, meanderline width, height, and spacing. The process begins

with an initial grid size chosen such that there will be no onset of grating lobes

at the highest frequency of operation and the widest scan angle. The thinnest

meanderline width permitted by fabrication is set as the lower bound constraint.

The final design is obtained using parametric optimization to achieve the best

match for the required relative transmission phase across the frequency band

of operation. The layout of the 3-layer 90◦ polarizer is shown in Figure 2.7 and

the optimized dimensions of the individual grids are illustrated in Figure 2.8

and 2.9.

metallic grid   -   1/2 or 1 oz Cu

dielectric substrate   -   3 mil , er = 3.30

bonding film   -   2.3 mil , er = 3.40

bonding film   -   2.3 mil , er = 3.40

dielectric substrate   -   3 mil , er = 3.30

metallic grid   -   1/2 or 1 oz Cu

bonding film   -   2.3 mil , er = 3.40

bonding film   -   2.3 mil , er = 3.40

dielectric substrate   -   3 mil , er = 3.30

metallic grid   -   1/2 or 1 oz Cu

Rohacell   -   198 mil , er = 1.08

Rohacell   -   198 mil , er = 1.08

Figure 2.7: Geometry of 3-grid 90◦ meanderline polarizer
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Figure 2.8: Dimension of metallic grid #1 and #3 for 90◦ meanderline polarizer
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Figure 2.9: Dimension of metallic grid #2 for 90◦ meanderline polarizer

The reflection coefficient and axial ratio of the 90◦ polarizer are plotted

in Figure 2.10 and 2.11, respectively. The results showed that the reflection

coefficient and worst case axial ratio of 1.6:1 are better than the design tar-

gets. A good reflection coefficient and axial ratio are necessary to minimize

the mismatch and cross-polarization isolation when two of these polarizers are

cascaded together to form the 180◦ polarizer.
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Figure 2.10: Reflection coefficient of 3-grid 90◦ meanderline polarizer

Figure 2.11: Axial ratio of 3-grid 90◦ meanderline polarizer
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2.4 Configuration A

There are two approaches to implement the 180◦ polarizer and these will be

termed Configuration A and B. In Configuration A, both the 90◦ polarizers

are rotated in tandem. A separate linear grid polarizer, which rotates inde-

pendently, can be added to improve the cross polarization isolation. The basic

operation of Configuration A is illustrated in Figure 2.12 below. The 180◦ po-

larizer lies in the X-Y plane while plane of wave incidence is the Y-Z plane. The

polarization of the incident electric field is parallel to the X-axis and the mean-

derline axis is at an angle Ψg with respect to the X-axis. The incident wave is

decomposed into TE and TM components with respect to the meanderline axis.

After passing through the 180◦ polarizer, the TE component is phase shifted

180◦ with respect to the TM component. The resultant wave polarization vector

is inclined at an angle Ψp from the X-axis – where Ψp = 2Ψg.

meanderline axis

X axis

Y axis

incident 
polarization 

vector

resultant
polarization 

vector

ψg

   

ψp

Figure 2.12: Polarizer axes and wave polarization for Configuration A
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The relationship between the output polarization angle Ψp, polarizer #1

axis rotation angle Ψg1 and polarizer #2 axis rotation angle Ψg2, are tabulated

in Table 2.1. Since the two 90◦ polarizers are rotated in tandem, Ψg1 is always

equal to Ψg2 in Configuration A. The linear grid polarizer axis, Ψw , is always

positioned orthognal to output polarization vector. The subsequent sections

will discuss three possible implementations of Configuration A.

Table 2.1: Polarizer rotation angles for Configuration A

Ψp Ψg1 Ψg2 Ψw

-90◦ -45◦ -45◦ -180◦

-67.5◦ -33.75◦ -33.75◦ -157.5◦

-45◦ -22.5◦ -22.5◦ -135◦

-33.75◦ -16.875◦ -16.875◦ -123.75◦

-22.5◦ -11.25◦ -11.25◦ -112.5◦

-11.25◦ -5.625◦ -5.625◦ -101.5◦

0◦ 0◦ 0◦ -90◦

+11.25◦ +5.625◦ +5.625◦ -78.75◦

+22.5◦ +11.25◦ +11.25◦ -67.5◦

+33.75◦ +16.875◦ +16.875◦ -56.25◦

+45◦ +22.5◦ +22.5◦ -45◦

+67.5◦ +33.75◦ +33.75◦ -22.5◦

+90◦ +45◦ +45◦ 0◦
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2.4.1 Configuration A1

The first implementation of Configuration A is to stack the two 90◦ polarizers

and rotate them in tandem above the antenna array to achieve the desired

polarization angle, Figure 2.13. The spacer #1 is constructed from 6.35 mm

thick Rohacell foam.

Figure 2.13: Layout of Configuration A1

The reflection coefficient, cross-polarization isolation and polarization vector

orientation for normal TE and oblique 45◦ TE incidence are plotted in Figures

2.14 – 2.19. It can be seen that by rotating the polarizer between −45◦ to

+45◦, any desired resultant polarization angle can be achieved. The resultant

polarization vector angle, Ψτ , is approximately 2 times the meanderline axis

rotation angle, Ψg. The cross polarization isolation, which drops below 20

dB when the meanderline axis is more than 25◦, is relatively poor given that

the typical cross polarization isolation requirement for SATCOM and VSAT

applications is at least 15 dB for receive and 20 dB for transmit.
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Figure 2.14: Reflection coefficient for normal TE incidence – Configuration A1

Figure 2.15: Cross polarization isolation for normal TE incidence – Configura-
tion A1
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Figure 2.16: Polarizer rotation angles for normal TE incidence – Configuration
A1

Figure 2.17: Reflection coefficient for oblique TE incidence – Configuration A1
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Figure 2.18: Cross polarization isolation for oblique TE incidence – Configura-
tion A1

Figure 2.19: Polarizer rotation angles for oblique TE incidence – Configuration
A1
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2.4.2 Configuration A2

In this implementation, a linear grid polarizer is added on top of the 180◦ po-

larizer to improve the cross polarization isolation, Figure 2.20. This linear grid

will be rotated independently from the underlying 180◦ polarizer and optimized

for normal TE incidence. By positioning the axis of the linear grid to be or-

thogonal to the resultant polarization vector angle, the linear grid acts as a

polarization filter to suppress the cross polarization component from passing

through. Two rotation mechanisms, one for the 180◦ polarizer and the other

for the linear grid, will be required to realize this implementation.

Figure 2.20: Layout of Configuration A2

The reflection coefficient, cross-polarization isolation and polarization vector

orientation for normal TE and oblique 45◦ TE incidence are plotted in Figures

2.21 – 2.26.

It can be seen that while the reflection coefficient for normal incidence is

better than -10 dB (Figure 2.21), the match is poor for oblique 45◦ incidence

(Figure 2.24). Analysis of the polarization vector orientation plots, Figures 2.23

and 2.26, revealed that the resultant polarization rotation angle does not vary

proportionately to the meanderline axis rotation angle for oblique incidence

angle. This is the cause for poor reflection coefficient in Figure 2.24. The
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Figure 2.21: Reflection coefficient for normal TE incidence – Configuration A2

Figure 2.22: Cross polarization isolation for normal TE incidence – Configura-
tion A2
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Figure 2.23: Polarizer rotation angles for normal TE incidence – Configuration
A2

Figure 2.24: Reflection coefficient for oblique TE incidence – Configuration A2
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Figure 2.25: Cross polarization isolation for oblique TE incidence – Configura-
tion A2

Figure 2.26: Polarizer rotation angles for oblique TE incidence – Configuration
A2
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additional linear grid polarizer indeed improves the cross polarization isolation

of the 180◦ polarizer significantly as shown in Figures 2.22 and 2.25. Isolation

better than 30 dB can be achieved throughout the scan angle across the entire

bandwidth.

2.4.3 Configuration A3

This implementation is similar to Configuration A2 except that the position of

the linear grid polarizer is optimized for every polarization rotation angle and

wave incidence angle, Figure 2.27. The reflection coefficient, cross-polarization

isolation and polarization vector orientation for normal TE and oblique 45◦ TE

incidence are plotted in Figures 2.27 – 2.34.

Figure 2.27: Layout of Configuration A3

The reflection coefficient for both normal and oblique 45◦ incidence are now

better than -10 dB, Figure 2.29 and 2.32. The cross polarization isolation

achieved is also better than 40 dB throughout the scan angle across the entire

bandwidth. Similar to Configuration A2, two rotation mechanisms are required.
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Figure 2.28: Reflection coefficient for normal TE incidence – Configuration A3

Figure 2.29: Cross polarization isolation for normal TE incidence – Configura-
tion A3
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Figure 2.30: Polarizer rotation angles for normal TE incidence – Configuration
A3

Figure 2.31: Reflection coefficient for oblqiue TE incidence – Configuration A3

56



Figure 2.32: Cross polarization isolation for oblqiue TE incidence – Configura-
tion A3

Figure 2.33: Polarizer rotation angles for oblique TE incidence – Configuration
A3
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Figure 2.34: Linear grid rotation angles for oblique TE incidence – Configura-
tion A3

2.5 Configuration B

In Configuration B, the 90◦ polarizer #1 is fixed with its meanderline axis

rotated 45◦ with respect to the linear polarization of the antenna array to

generate a circularly polarized wave. The 90◦ polarizer #2 is then positioned on

top of polarizer #1 and rotated freely to convert the circularly polarized wave

back into linearly polarized wave with the polarization vector at the desired

orientation. Similar to Configuration A, a linear grid polarizer can be added

to improve the cross polarization isolation. Three possible implementations of

Configuration B will be discussed in the following sections.

2.5.1 Configuration B1

This is the basic implementation of Configuration B where only one rotation

mechanism is required to achieve polarization rotation, Figure 2.35. The spacer

#1 is constructed from 6.35 mm thick Rohacell foam. The relationship between
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the meanderline polarizer’s axes and wave polarization is illustrated in Figure

2.36. The relationship between the desired polarization direction – Ψp, 90◦

polarizer #1 rotation angle – Ψg1, and 90◦ polarizer #2 rotation angle – Ψg2,

is tabulated in Table 2.2. The reflection coefficient, cross-polarization isolation

and polarization vector orientation for normal TE and oblique 45◦ TE incidence

are plotted in Figures 2.37 – 2.42.

Figure 2.35: Layout of Configuration B1

X axis

Y axis

incident 
polarization 

vector

desired
polarization 

vector

ψT

   

ψp

ψg2

actual
polarization 

vector

ψg1 = 45o

polarizer #1
(fixed)

polarizer #2

Figure 2.36: Polarizer axes and waves polarization for Configuration B
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Table 2.2: Polarizer rotation angles for Configuration B1

Ψp Ψg1 Ψg2 Ψw

-90◦ -45◦ -45◦ -180◦

-67.5◦ -45◦ -22.5◦ -157.5◦

-45◦ -45◦ 0◦ -135◦

-33.75◦ -45◦ +11.25◦ -123.75◦

-22.5◦ -45◦ +22.5◦ -112.5◦

-11.25◦ -45◦ +33.75◦ -101.5◦

0◦ -45◦ +45◦ -90◦

+11.25◦ -45◦ +56.25◦ -78.75◦

+22.5◦ -45◦ +67.5◦ -67.5◦

+33.75◦ -45◦ +78.75◦ -56.25◦

+45◦ -45◦ +90◦ -45◦

+67.5◦ -45◦ +112.5◦ -22.5◦

+90◦ -45◦ +135◦ 0◦

Figure 2.37: Reflection coefficient for normal TE incidence – Configuration B1
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Figure 2.38: Cross polarization isolation for normal TE incidence – Configura-
tion B1

Figure 2.39: Polarizer rotation angles for normal TE incidence – Configuration
B1
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Figure 2.40: Reflection coefficient for oblique TE incidence – Configuration B1

Figure 2.41: Cross polarization isolation for oblique TE incidence – Configura-
tion B1
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Figure 2.42: Polarizer rotation angles for oblique TE incidence – Configuration
B1

The results showed that the minimum cross polarization of this configuration

is only 10 dB. Although only one rotation mechanism is required, the cross

polarization isolation is insufficient to meet the operational requirement for

VSAT applications.

2.5.2 Configuration B2

In this implementation, a linear grid polarizer is aligned at 45◦ with respect

to the meanderline polarizer #2. The linear grid and polarizer #2 are rotated

in tandem to convert the circularly polarized wave back into linearly polarized

wave, Figure 2.43. Similar to Configuration A2 and A3, the motivation for in-

troducing the linear grid is to suppress the orthogonal polarization component.

The relationship between the desired polarization direction – Ψp, 90◦ polarizer

#1 rotation angle – Ψg1, 90◦ polarizer #2 rotation angle – Ψg2, and linear grid

polarizer rotation angle – Ψw are tabulated in Table 2.3.
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Figure 2.43: Layout of Configuration B2

Table 2.3: Polarization rotation angles for Configuration B2

Ψp Ψg1 Ψg2 Ψw

-90◦ -45◦ -45◦ -180◦

-67.5◦ -45◦ -22.5◦ -157.5◦

-45◦ -45◦ 0◦ -135◦

-33.75◦ -45◦ +11.25◦ -123.75◦

-22.5◦ -45◦ +22.5◦ -112.5◦

-11.25◦ -45◦ +33.75◦ -101.5◦

0◦ -45◦ +45◦ -90◦

+11.25◦ -45◦ +56.25◦ -78.75◦

+22.5◦ -45◦ +67.5◦ -67.5◦

+33.75◦ -45◦ +78.75◦ -56.25◦

+45◦ -45◦ +90◦ -45◦

+67.5◦ -45◦ +112.5◦ -22.5◦

+90◦ -45◦ +135◦ 0◦

The reflection coefficient, cross-polarization isolation and polarization vec-

tor orientation for normal TE and oblique 45◦ TE incidence are plotted in

Figures 2.44 – 2.49.
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Figure 2.44: Reflection coefficient for normal TE incidence – Configuration B2

Figure 2.45: Cross polarization isolation for normal TE incidence – Configura-
tion B2

65



Figure 2.46: Polarizer rotation angles for normal TE incidence – Configuration
B2

Figure 2.47: Reflection coefficient for oblique TE incidence – Configuration B2
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Figure 2.48: Cross polarization isolation for oblique TE incidence – Configura-
tion B2

Figure 2.49: Polarizer rotation angles for normal TE incidence – Configuration
B2
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Figures 2.45 and 2.48 showed that the linear grid polarizer has improved

the cross polarization isolation to better than 25 dB across the scan range.

Due to the mis-alignment between the resultant polarization vector angle and

linear grid polarizer, the mismatch loss of this configuration is only –5 dB for

oblique incidence. This mis-alignment is not corrected in this configuration as

the linear grid polarizer is rotating in tandem with polarizer #2.

2.5.3 Configuration B3

By introducing an additional degree of freedom to the linear grid polarizer as

shown in Figure 2.50, the mismatch loss in Configuration B2 can be improved

by allowing the linear grid to be optimally aligned with respect to the resultant

polarization vector. The relationship between the desired polarization direction

– Ψp, 90◦ polarizer #1 rotation angle – Ψg1, 90◦ polarizer #2 rotation angle –

Ψg2, and linear grid polarizer rotation angle – Ψw are tabulated in Table 2.4.

The optimized reflection coefficient, cross-polarization isolation and polariza-

tion vector orientation for oblique 45◦ TE incidence are plotted in Figures 2.51

– 2.54.

Figure 2.50: Layout of Configuration B3
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Table 2.4: Polarization rotation angles for Configuration B3

Ψp Ψg1 Ψg2 Ψw

-90◦ -45◦ -45◦ -179◦

-67.5◦ -45◦ -22.5◦ -140◦

-45◦ -45◦ 0◦ -117◦

-33.75◦ -45◦ +11.25◦ -109◦

-22.5◦ -45◦ +22.5◦ -112.5◦

-11.25◦ -45◦ +33.75◦ -96◦

0◦ -45◦ +45◦ -90◦

+11.25◦ -45◦ +56.25◦ -84◦

+22.5◦ -45◦ +67.5◦ -77.5◦

+33.75◦ -45◦ +78.75◦ -71◦

+45◦ -45◦ +90◦ -63◦

+67.5◦ -45◦ +112.5◦ -38◦

+90◦ -45◦ +135◦ +1◦
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Figure 2.51: Reflection coefficient for oblique TE incidence – Configuration B3

Figure 2.52: Cross polarization isolation for oblique TE incidence – Configura-
tion B3
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Figure 2.53: Polarizer rotation angles for normal TE incidence – Configuration
B3

Figure 2.54: Linear grid polarizer rotation angles for normal TE incidence –
Configuration B3
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2.6 Design Summary

The performance summary for the six configurations is tabulated in Table 2.5

below. The worst case performance listed in the table is evaluated over the

10.7 – 12.75 GHz frequency band and 180◦ polarization rotation range. For

standalone antenna or an array requiring only small scan angle, configuration

B2 can provide a cross polarization isolation of at least 40 dB with the use of

a single rotation mechanism. Compared to conventional design which requires

multiple rotating layers [36–38], the 180◦ polarizer design presented here is much

simpler to control and implement in operational systems. For wide scanning

array, configuration A3 and B3 will be able to achieve at least 30 dB cross

polarization isolation through the use of one additional rotation mechanism.

In this chapter, a novel design approach for polarization rotator with good

cross polarization isolation is presented. By cascading two 90◦ meanderline

polarizers and incorporating a linear grid polarizer, a polarization rotator with

at most two rotating layers can be realized.

Table 2.5: Summary of design performance for various configurations

Type No. of
Rotating
Mechanism

Worst Case Reflection
Coefficient (dB)

Worst Case Cross-Polar
Discrimination (dB)

Θ = 0◦ Θ = 45◦ Θ = 0◦ Θ = 45◦

A1 1 -11.6 -11.0 -16.6 -15.7

A2 2 -11.3 -6.0 -50.3 -32.0

A3 2 -9.1 -8.3 -45.6 -39.8

B1 1 -10.7 -10.3 -16.4 -9.6

B2 1 -8.4 -4.6 -41.1 -28.3

B3 2 -8.4 -8.2 -41.1 -33.2

72



Chapter 3

Fabrication and Measurement of

Polarization Rotator

Fabrication and measurement were carried out to validate the concept of the

novel polarization rotator described in Chapter 2. The objectives were to as-

certain the feasibility of the concept as well as to explore the challenges related

to the realization and characterization of such a polarization rotator.

3.1 Design and Fabrication

Based on the concept proposed in Chapter 2, a polarization rotator designed

for operation in Ku-band was constructed using two identical 90◦ polarizers

and a 250 mil thick Rohacell 31 HF foam arranged in a stacked configuration

as illustrated in Figure 3.1.

Each of the 90◦ polarizers was constructed from 3 layers of meanderline

grids whose dimensions are shown in Figure 3.2. All the grids were etched on

3 mil thick Dupont Pyralux substrate with 17.5 µm thick copper (0.5 oz). To

minimize the effect of edge diffraction during off-axis measurement, an 18 inch

wide substrate – which was the maximum substrate size that the fabrication
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house can handle, was used for this design, Figure 3.3. There were 32 holes

and slots created on the substrates and spacer to enable rotation of the grids

in steps of 11.25◦. A fabricated meanderline grid etched on Dupont Pyralux

substrate is shown in Figure 3.4. The 90 layers◦ polarizer is then realized by

stacking the 3 meanderline grids in the configuration illustrated in Figure 3.5.

90° meanderline polarizer #1

90° meanderline polarizer #2

rohacell 31HF spacer - 250 mil

Figure 3.1: Construction of polarization rotator

30 mil 46 mil

8 mil

8 mil

76 mil

14
1.

2 
m

il

13
0.

8 
m

il28
0 

m
il

meanderline axis

30 mil 46 mil

8 mil

8 mil

76 mil

91
.5

 m
il

18
0.

5 
m

il

28
0 

m
il

Grid #1 and #3

Grid #2

Figure 3.2: Dimensions of meanderline grids for 90◦ polarizer
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Figure 3.3: Substrate outline of meanderline grid layer

Figure 3.4: Etched meanderline grid on Dupont Pyralux substrate
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metallic grid   -   1/2 or 1 oz Cu

dielectric substrate   -   3 mil , er = 3.30

dielectric substrate   -   3 mil , er = 3.30

metallic grid   -   1/2 or 1 oz Cu

dielectric substrate   -   3 mil , er = 3.30

metallic grid   -   1/2 or 1 oz Cu

Rohacell   -   198 mil , er = 1.08

Rohacell   -   198 mil , er = 1.08

Figure 3.5: Construction of 90◦ meanderline polarizer

Due to the size of the fabricated substrate, which was 18 inches wide, it was

difficult to achieve even adhesion of the epoxy between the substrate and spacer

foam, Figure 3.6. To ensure the layers were tightly bound, an octagon support

frame was constructed to bind the substrates and spacer foam, Figure 3.7. The

assembled polarization rotator is shown in Figure 3.8

uneven adhesion of epoxy

Figure 3.6: Uneven adhesion of epoxy on substrate
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Figure 3.7: Mechanical frame for mounting polarization rotator

Figure 3.8: Assembled polarization rotator with octagon frame
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3.2 Measurement Setup

The polarization rotator was mounted on a tripod for measurement in an ane-

choic chamber as shown in Figure 3.9. A 2–18 GHz circular quad ridge horn

was used as the transmit antenna, Figure 3.10. The receiving antenna is a small

vertically polarized Ku-band scanning array placed approximately 1 inch be-

hind the polarization rotator, Figure 3.11. During measurement, the octagon

mounting frame was covered with ECCOSORB LS-20 absorber to minimize

scattering from the metallic surfaces and edges, Figure 3.12. Plan view of the

measurement setup in anechoic chamber is shown in Figure 3.13.

Figure 3.9: Polarization rotator mounted on tripod in anechoic chamber
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Figure 3.10: Transmit antenna – circular quad-ridged horn

Figure 3.11: Receive antenna – scanning array
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Figure 3.12: Setup of polarization rotator during measurement

Figure 3.13: Plan view of measurement setup in anechoic chamber
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3.3 Measurement Results

3.3.1 90◦ Polarizer

The axial ratio of the underlying 90◦ polarizer was measured using the rotating

probe technique [43]. As plotted in Figures 3.14 and 3.15, the measured axial

ratio of the polarizer for both 0◦ and 45◦ scan are better than 2.5 dB from 10.7

– 12.75 GHz and compares well with predicted results.

Figure 3.14: Measured versus computed axial ratio of 90◦ polarizer – 0◦ scan

Figure 3.15: Measured versus computed axial ratio of 90◦ polarizer – 45◦ scan
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3.3.2 Scanning Array with Mechanical Frame

A pattern measurement of the scanning array antenna in the presence of the me-

chanical frame was carried out at 11.7 GHz to obtain the baseline results with-

out the polarization rotator. The measured co-polarized and cross-polarized

patterns of the array for 11 scan angles in the azimuth plane (-45◦, -40◦, -30◦,

-20◦, -10◦, 0◦, 10◦, 20◦, 30◦, 40◦ and 45◦) are plotted in Figure 3.16. The magni-

tudes are normalized to the peak gain for each beam. The results showed that

the array antenna has a cross polarization isolation of approximately 25 dB

in the H-plane. Subsequent pattern measurements involving the polarization

rotator will be normalized to the peak gain measured at each scan angle.

Figure 3.16: Measured H-plane beam patterns of scanning array in the presence
of mechanical frame for various scan angles
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3.3.3 Configuration A1

In Configuration A1, the two 90◦ meanderline polarizers are rotated in tandem

to achieve polarization rotation, Figure 3.17. Using the coordinate reference

from Figure 2.12, the resultant polarization rotation angle, Ψp, is twice the angle

between the incident polarization vector and meanderline axis, Ψg. Figures 3.18

and 3.19 plots the resultant polarization angle against normalized magnitude

for 0◦ and 45◦ incidence, respectively. Comparison with simulation results in

Figures 3.20 and 3.21 show that the measured polarization rotation angles agree

very well with the predicted 2Ψg relationship.

Figure 3.17: Polarization rotator concept for Configuration A1

Figure 3.18: Measured polarization rotation angles for Configuration A1 – 0◦

incidence
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Figure 3.19: Measured polarization rotation angles for Configuration A1 – 45◦

incidence

Figure 3.20: Comparison of simulated versus measured polarization rotation
angles for Configuration A1 – 0◦ incidence
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Figure 3.21: Comparison of simulated versus measured polarization rotation
angles for Configuration A1 – 45◦ incidence

The performance of the polarization rotator with respect to various scan an-

gles was characterized by measuring the co-polarized and cross-polarizer beam

patterns of the scanning array from +45◦ to -45◦. The results are then normal-

ized to the measurement without the polarization rotator.

The beam patterns for polarization rotation of 0◦ and 90◦ are plotted in

Figures 3.22 and 3.23, respectively. The results showed that the measured

beam patterns were very close to the standalone array measurement. The

average insertion losses for 0◦ and 90◦ polarization rotations are 0.1 dB and

0.8 dB, respectively. This indicates that the polarization rotator is relatively

well matched for all polarization rotation angles within the scan angle of ±45◦

incidence.

It was also observed that the cross-polarization isolation of the polarization

rotator deteriorates as the rotator rotates from 0◦ to 45◦. This agrees with the

prediction in Section 2.4.1 which showed that the cross-polarization isolation for

this configuration degrades with increasing scan angle and polarizer rotation.
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Figure 3.22: Measured beam patterns for Configuration A1 – 0◦ polarization
rotation

Figure 3.23: Measured beam patterns for Configuration A1 – 90◦ polarization
rotation

86



3.3.4 Configuration A2

In Configuration A2, a linear grid is incorporated on top of the two 90◦ mean-

derline polarizers as shown in Figure 3.24. The objective of this design is to

achieve improvement in cross-polarization isolation over that of Configuration

A1. As in the case for Configuration A1, the resultant polarization rotation

angle, Ψp, is twice the angle between the incident polarization vector and me-

anderline axis, Ψg.

Figure 3.24: Polarization rotator concept for Configuration A2

Figures 3.25 and 3.26 plot the resultant polarization angle against normal-

ized magnitude for 0◦ and 45◦ incidence, respectively. Similar to the case of

Configuration A1, the measured resultant polarization rotation angles were very

close to the predicted angles, Figures 3.27 and 3.28.

The performance of the polarization rotator with respect to various scan an-

gles was characterized by measuring the co-polarized and cross-polarizer beam

patterns of the scanning array from +45◦ to -45◦. The results are then normal-

ized to the measurement without the polarization rotator.

The beam patterns for polarization rotation of 0◦ and 90◦ are plotted in Fig-

ures 3.29 and 3.30, respectively. The results showed that the measured beam

patterns were very close to the standalone array measurement with an insertion

loss of 0.1 dB and 0.6 dB for polarization rotation of 0◦ and 90◦, respectively.

This indicates that the polarization rotator is relatively well matched for all po-
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larization rotation angles within the scan angle of ±45◦ incidence. As predicted

in Section 2.4.2, the average cross-polarization isolation of this configuration is

better than 30 dB for ±45◦ incidence across polarization rotation angles.

Figure 3.25: Measured polarization rotation angles for Configuration A2 – 0◦

incidence

Figure 3.26: Measured polarization rotation angles for Configuration A2 – 45◦

incidence
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Figure 3.27: Comparison of simulated versus measured polarization rotation
angles for Configuration A2 – 0◦ incidence

Figure 3.28: Comparison of simulated versus measured polarization rotation
angles for Configuration A2 – 45◦ incidence
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Figure 3.29: Measured beam patterns for Configuration A2 – 0◦ polarization
rotation

Figure 3.30: Measured beam patterns for Configuration A2 – 90◦ polarization
rotation

90



3.3.5 Configuration B1

In Configuration B1, one of the 90◦ meanderline polarizers is fixed with its

meanderline axis rotated 45◦ with respect to the linear polarization of the an-

tenna array while the second 90◦ meanderline polarizer is rotated to achieve

the desired polarization rotation angle, Figure 3.31. The predicted relationship

between polarizer axes and polarization angle is listed in Table 2.2.

Figure 3.31: Polarization rotator concept for Configuration B1

Figures 3.32 and 3.33 plot the resultant polarization angle against nor-

malized magnitude for 0◦ and 45◦ incidence, respectively. In agreement with

the simulation results, the measured resultant polarization rotation angles at

oblique 45◦ incidence exhibit a slight non-linear relationship against rotation

angle of polarizer #2, Figures 3.34 and 3.35.

The performance of the polarization rotator with respect to various scan an-

gles was characterized by measuring the co-polarized and cross-polarizer beam

patterns of the scanning array from +45◦ to -45◦. The results are then normal-

ized to the measurement without the polarization rotator.

The beam patterns for polarization rotation of 0◦ and 90◦ are plotted in

Figures 3.29 and 3.30, respectively. The insertion loss for 0◦ and 90◦ polarization

rotation are 0.1 dB and 0.9 dB, respectively. In agreement with the prediction

in Section 2.5.1, the worst case cross-polarization isolation of this configuration

is about 9 dB for oblique 45◦ incidence.

91



Figure 3.32: Measured polarization rotation angles for Configuration B1 – 0◦

incidence

Figure 3.33: Measured polarization rotation angles for Configuration B1 – 45◦

incidence
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Figure 3.34: Comparison of simulated versus measured polarization rotation
angles for Configuration B1 – 0◦ incidence

Figure 3.35: Comparison of simulated versus measured polarization rotation
angles for Configuration B1 – 45◦ incidence
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Figure 3.36: Measured beam patterns for Configuration B1 – 0◦ polarization
rotation

Figure 3.37: Measured beam patterns for Configuration B1 – 90◦ polarization
rotation
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3.3.6 Configuration B2

In Configuration B2, a linear grid is attached on top of the rotating 90◦ mean-

derline polarizer in Configuration B1, Figure 3.38. The objective is to improve

the cross-polarization isolation as the polarizer rotates to convert the polariza-

tion angle. The predicted relationship between polarizer axes and polarization

angle is listed in Table 2.3.

Figure 3.38: Polarization rotator concept for Configuration B2

Figures 3.39 and 3.40 plot the resultant polarization angle against normal-

ized magnitude for 0◦ and 45◦ incidence, respectively. The measured resultant

polarization rotation angles for normal and oblique incidence were very close

to the predicted angles, Figures 3.41 and 3.42.

The performance of the polarization rotator with respect to various scan an-

gles was characterized by measuring the co-polarized and cross-polarizer beam

patterns of the scanning array from +45◦ to -45◦. The results are then normal-

ized to the measurement without the polarization rotator.

The beam patterns for polarization rotation of 0◦ and 90◦ are plotted in Fig-

ures 3.43 and 3.44, respectively. The results showed that the measured beam

patterns were very close to the standalone array measurement. The insertion

loss for 0◦ and 90◦ polarization rotation are 0.1 dB and 0.8 dB, respectively.

In agreement with the predicted results in Section 2.5.2, the better than 25 dB
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cross polarization isolation is a significant improvement over that of Configu-

ration B1.

Figure 3.39: Measured polarization rotation angles for Configuration B2 – 0◦

incidence

Figure 3.40: Measured polarization rotation angles for Configuration B2 – 45◦

incidence
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Figure 3.41: Comparison of simulated versus measured polarization rotation
angles for Configuration B2 – 0◦ incidence

Figure 3.42: Comparison of simulated versus measured polarization rotation
angles for Configuration B2 – 45◦ incidence
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Figure 3.43: Measured beam patterns for Configuration B2 – 0◦ polarization
rotation

Figure 3.44: Measured beam patterns for Configuration B2 – 90◦ polarization
rotation
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3.4 Summary

In this chapter, a polarization rotator based on the concept presented in Chap-

ter 2 was fabricated and measured. The versatility of the concept was demon-

strated by measurements which showed that the various configurations were

able to achieve polarization rotation for wave incidence within ±45◦ with an

insertion loss of less than 1 dB. For the configurations tested, only one rotating

layer was required to realize the polarization rotator instead of the multiple

rotating grids in conventional design. The incorporation of a linear grid main-

tained the cross polarization isolation to levels required for VSAT applications.

In the fabrication and assembly process of the polarization rotator, a number

of important lessons on the implementation of microwave polarizers were gained,

1. The alignment of the grid layers is critical for high frequency design. At

Ku-band, a 1◦ phase error will result in a 0.15 dB change in axial ratio.

2. The substrate and copper thickness should be as thick as possible to

minimize warping of the grid layer. Alignment and bonding gets easier

with increasing rigidity of grid layer.

3. For multi-layer polarizer with diameter larger than 10 inches, the use

of epoxy should be avoided as it will be difficult to maintain bonding

consistency over a large area.

4. For measurement of polarizer with low axial ratio (< 1.5 dB), the metal-

lic surfaces and edges of the mounting structure can have a significant

impact on the accuracy of the measurement if they are not shielded

probably with microwave absorbers.

99



Chapter 4

Accurate and Efficient Analysis

of Microwave Polarizer with

Finite Metallization Thickness

One of the key assumptions in the Grid Current approach, presented in Chap-

ter 2, is that the meanderline grid is infinitely thin. For electrically thick

metallization, such as in free-standing grid or high frequency operation, this

assumption will result in discrepancies between measured and predicted perfor-

mance as the thickness have a significant impact on the differential transmission

phase. Please see Section 5.4 for more details.

To analyze a meanderline grid with finite thickness, a new formulation based

on Transverse Resonance approach [44; 45] and Generalized Scattering Matrix

(GSM) technique [46; 47] is proposed. Instead of modeling the periodic cell by a

section of the meanderline conductor (Figure 4.1) in the grid current approach,

the meanderline polarizer is represented as a periodic structure whose unit cell

is shown in Figure 4.2 below.

The space bounded by two adjacent rows of meanderline grid can be viewed

as a uniform cylinderical waveguide in the z-axis direction with meanderline
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Periodic Boundary

Meanderline Conductor

Figure 4.1: Periodic cell in grid current approach

Meanderline Conductor

Meanderline Waveguide

Periodic Boundary

Figure 4.2: Periodic cell in new approach

cross-section in the transverse direction, Figure 4.3. This waveguide is hence-

forth termed the Meanderline Waveguide (MLG). By solving for the fields in
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this MLG, instead of the induced current on the meanderline conductors, the

transmission and reflection characteristics of the meanderline grid can be deter-

mined. The configuration for a typical meanderline periodic cell is represented

in Figure 4.4.

Figure 4.3: Meanderline Guide Bounded by Conductors

To solve for the fields in the MLG, modal analysis is chosen as it is com-

putationally efficient and based directly on the solution of Maxwell’s equations

with the appropriate boundary conditions. Under normal incidence, EM wave

impinging on the periodic cell can generate Transverse Electromagnetic (TEM),

TE and TM modes in the MLG depending on the incident wave polarization.

Since the MLG is symmetric about the Center Wall (CW), only the field rep-

resentation in Region I, II and III need to be solved.

The Top Wall (TW) and Bottom Wall (BW) of the MLG are modelled

as Pecfert Electric Conductor (PEC). For normal TE incidence, the Left Wall

(LW), Right Wall (RW), and CW are Perfect Magnetic Conductor (PMC).

Under normal TM incidence, LW, RW, and CW are PEC walls. For the MLG

with magnetic side walls, TEM, TE and TM modes need to be determined.

While TE and TM modes need to be determined for the MLG with electric

side walls.
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Figure 4.4: Configuration of meanderline polarizer unit cell

4.1 TEM Meanderline Waveguide Modes

TEM modes in the MLG only exist for TE wave incidence because the bound-

ary conditions at LW and RW are PMC. For TM wave incidence, boundary

conditions for the LW and RW are PEC and the MLG can be viewed as a

rectangular waveguide – which does not support TEM mode propagation.

4.1.1 Derivation of TEM modes

The transverse electric field vector in the MLG can be derived from the scalar

magnetic potential,

ēm = −∇tΦ(x, y)
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From the constitutive eqution,

∇ · D̄ = ε∇t · ēm = 0

⇒ ∇2
tΦ(x, y) = 0 (4.1)

Equation (4.1) is the familiar Laplace equation encountered in electrostatic

problems. The boundary conditions for Region I, II and III are then given by,

Region I :

Ex(x, 0) = 0 , Ex(x, d1) = 0 , Hy(0, y) = 0

Φ(x, 0) = 0 , Φ(x, d1) = 1

Region II :

Ex(x, h) = 0 , Ex(x, h+ d2) = 0

Φ(x, h) = 0 , Φ(x, h+ d2) = 1

Region III :

Ex(x, h) = 0 , Ex(x, h+ d3) = 0 , Hy(Tx/2, y) = 0

Φ(x, h) = 0 , Φ(x, h+ d3) = 1

Solving the Laplace Equation (4.1) subject to the boundary conditions given

above, the transverse field components in the MLG are given as,
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Region I :

EI
x = −∇xΦ(x, y)×√η0

= −√η0

[
∞∑
l=1

Al

(
lπ

d1

)
sin

(
lπy

d1

)
sinh

(
lπx

d1

)]

EI
y = −∇yΦ(x, y)×√η0

= −√η0

[
1

d1

+
∞∑
l=1

Al

(
lπ

d1

)
cos

(
lπy

d1

)
cosh

(
lπx

d1

)]

HI
x =

1

η0

(
−EI

y

)
=

1
√
η0

[
1

d1

+
∞∑
l=1

Al

(
lπ

d1

)
cos

(
lπy

d1

)
cosh

(
lπx

d1

)]

HI
y =

1

η0

(
EI
x

)
=

1
√
η0

[
−
∞∑
l=1

Al

(
lπ

d1

)
sin

(
lπy

d1

)
sinh

(
lπx

d1

)]

Region II:

EII
x =−√η0

[
∞∑
m=1

(
mπ

d2

)
sin

(
mπ

d2

(y − h)

)[
Bm cosh

(
mπ

d2

(x− w1)

)
+ Fm sinh

(
mπ

d2

(x− w1)

)]]
EII
y =−√η0

[
1

d2

+
∞∑
m=1

(
mπ

d2

)
cos

(
mπ

d2

(y − h)

)[
Bm sinh

(
mπ

d2

(x− w1)

)
+ Fm cosh

(
mπ

d2

(x− w1)

)]]
HII
x =

1
√
η0

[
1

d2

+
∞∑
m=1

(
mπ

d2

)
cos

(
mπ

d2

(y − h)

)[
Bm sinh

(
mπ

d2

(x− w1)

)
+ Fm cosh

(
mπ

d2

(x− w1)

)]]
HII
y =− 1

√
η0

[
∞∑
m=1

(
mπ

d2

)
sin

(
mπ

d2

(y − h)

)[
Bm cosh

(
mπ

d2

(x− w1)

)
+ Fm sinh

(
mπ

d2

(x− w1)

)]]
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Region III:

EIII
x = −√η0

[
∞∑
n=1

Dn

(
nπ

d3

)
sin

(
nπ

d3

(y − h)

)
sinh

(
nπ

d3

(
x− Tx

2

))]

EIII
y = −√η0

[
1

d3

+
∞∑
n=1

Dn

(
nπ

d3

)
cos

(
nπ

d3

(y − h)

)
cosh

(
nπ

d3

(
x− Tx

2

))]

HIII
x =

1
√
η0

[
1

d3

+
∞∑
n=1

Dn

(
nπ

d3

)
cos

(
nπ

d3

(y − h)

)
cosh

(
nπ

d3

(
x− Tx

2

))]

HIII
y = − 1

√
η0

[
∞∑
n=1

Dn

(
nπ

d3

)
sin

(
nπ

d3

(y − h)

)
sinh

(
nπ

d3

(
x− Tx

2

))]

To solve for the unknown coefficients [A], [B], [D] and [F], the fields Ey and Hy

are matched at x = w1 and x = w1 + w2, boundaries between Region I, II and

Region II, III.

4.1.2 Solution to TEM coefficients

Field matching at Junction I, II

Since the tangential electric field, Ey, must be continuous across the junction

between Region I and II,

EI
y(x = w1, y) = EII

y (x = w1, y) where 0 ≤ y ≤ d1

Limiting the number of basis functions in Region 1 and 2 to L and M terms

respectivity,

EI
y(x = w1, y) = −√η0

[
1

d1

+
L∑
l=1

Al

(
lπ

d1

)
cos

(
lπy

d1

)
cosh

(
lπx

d1

)]

EII
y (x = w1, y) = −√η0

[
1

d2

+
M∑
m=1

Fm

(
mπ

d2

)
cos

(
mπ

d2

(y − h)

)]
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Therefore,

−√η0

[
1

d1

+
L∑
l=1

Al

(
lπ

d1

)
cos

(
lπy

d1

)
cosh

(
lπx

d1

)]

=


−√η0

[
1
d2

+
∑M

m=1 Fm

(
mπ
d2

)
cos
(
mπ
d2

(y − h)
)]

for h ≤ y ≤ d1

0 for 0 ≤ y ≤ h

Multiplying by cos
(
kπy
d1

)
and integrating from y = 0 to d1,

1

d1

∫ d1

0

cos

(
kπy

d1

)
dy +

L∑
l=1

Al

(
lπ

d1

)
cosh

(
lπw1

d1

)
×

∫ d1

0

cos

(
lπy

d1

)
cos

(
kπy

d1

)
dy =

1

d2

∫ d1

0

cos

(
kπy

d1

)
dy +

M∑
m=1

Fm

(
mπ

d2

)
×∫ h+d2

h

cos

(
mπ

d2

(y − h)

)
cos

(
kπy

d1

)
dy

It can be easily shown that,

∫ d1

0

cos

(
kπy

d1

)
dy = 0

and ∫ d1

0

cos

(
lπy

d1

)
cos

(
kπy

d1

)
dy =


0 if l 6= k

d1
2

if l = k

Simplifying:

Al

(
lπ

2

)
cosh

(
lπw1

d1

)
=

1

d2

∫ h+d2

h

cos

(
lπy

d1

)
dy +

M∑
m=1

Fm

(
mπ

d2

)
×∫ h+d2

h

cos

(
mπ

d2

(y − h)

)
cos

(
lπy

d1

)
dy (4.2)
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Equation (4.2) can be expressed into a linear system:

[CI ][A] = [GII ] + [QII ][F ]

where [A] – L× 1 column matrix for the unknown cofficients Al

[B] – M × 1 column matrix for the unknown cofficients Bm

[CI ] – L× L diagonal matrix with CI
l,l =

lπ

2
cosh

(
lπw1

d1

)
[GII ] – L× 1 column matrix with GII

l =
1

d2

∫ h+d2

h

cos

(
lπy

d1

)
dy

[QII ] – L×M matrix with QII
l,m =

mπ

d2

∫ h+d2

h

cos

(
mπ

d2

(y − h)

)
×

cos

(
lπy

d1

)
dy

Similarly, the tangential magnetic field is continuous across the junction be-

tween Region I and II,

HI
y (x = w1, y) = HII

y (x = w1, y) where h ≤ y ≤ h+ d2 (4.3)

Limiting the number of basis functions in Region 1 and 2 to L and M terms

respectivity,

HI
y (x = w1, y) =

1

−√η0

[
L∑
l=1

Al

(
lπ

d1

)
sin

(
lπy

d1

)
sinh

(
lπx

d1

)]

HII
y (x = w1, y) = − 1

√
η0

∞∑
m=1

Bm

(
mπ

d2

)
sin

(
mπ

d2

(y − h)

)
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Multiplying Equation (4.3) by sin
(
kπ
d2

(y − h)
)

and integrating from y = h to

h+ d2,

L∑
l=1

Al

(
lπ

d1

)
sinh

(
lπx

d1

)∫ h+d2

h

sin

(
lπy

d1

)
sin

(
kπ

d2

(y − h)

)
dy =

∞∑
m=1

Bm

(
mπ

d2

)∫ h+d2

h

sin

(
mπ

d2

(y − h)

)
sin

(
kπ

d2

(y − h)

)
dy

Simplifying,

Bm =
L∑
l=1

Al

(
lπ

d1

)
· sinh

(
lπx

d1

)
·
(

2

d1

)(
2

mπ

)
×∫ h+d2

h

sin

(
lπy

d1

)
sin

(
mπ

d2

(y − h)

)
dy (4.4)

Equation (4.4) can be expressed into a linear system:

[B] = [RII ]T + [SI ][A]

where [RII ] – L×M matrix with RII
l,m =

2

d1

2

mπ

∫ h+d2

h

sin

(
lπy

d1

)
×

sin

(
mπ

d2

(y − h)

)
dy

[SI ] – L× L diagonal matrix with SIl,l =

(
lπ

2

)
sinh

(
lπw1

d1

)

Field matching at Junction II, III

The same procedure discussed above is applied to the junction between region

II and III. Matching of the electric field will yield,

Dn

(nπ
2

)
cosh

(
nπw3

d3

)
=

1

d2

∫ d2

0

cos

(
nπy

d3

)
dy +

M∑
m=1

(
mπ

d2

)
×[

Bm sinh

(
mπw2

d2

)
+ Fm cosh

(
mπw2

d2

)]
·
∫ d2

0

cos

(
mπy

d2

)
cos

(
nπy

d3

)
dy
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Expressing the equation into linear algebra form:

[CIII ][D] = [GIII ] + [QIII ]T
{

[SII ][B] + [CII ][F ]
}

where [D] – N × 1 column matrix for the unknown cofficients Dn

[F ] – M × 1 column matrix for the unknown cofficients Fm

[GIII ] – N × 1 matrix with GIII
n =

1

d2

∫ d2

0

cos

(
nπy

d3

)
dy

[QIII ] – M ×N matrix with QIII
m,n =

2

d2

∫ d2

0

cos

(
mπy

d2

)
cos

(
nπy

d3

)
dy

[SII ] – M ×M diagonal matrix with SIIm,m =
(mπ

2

)
sinh

(
mπw2

d2

)
[CII ] – M ×M diagonal matrix with CII

m,m =
(mπ

2

)
cosh

(
mπw2

d2

)
[CIII ] – N ×N diagonal matrix with CIII

n,n =
(nπ

2

)
cosh

(
nπw3

d3

)

Similary, matching the magnetic field at Juntion II, III gives,

(
mπ

d2

)[
Bm sinh

(
mπw2

d2

)
+ Fm cosh

(
mπw2

d2

)]
=

−
N∑
n=1

Dn

(
nπ

d3

)
sinh

(
nπw3

d3

)∫ d2

0

sin

(
nπy

d3

)
sin

(
mπy

d2

)
dy

Expressing the equation into linear algebra form:

[CII ][B] + [SII ][F ] = −[RIII ][SIII ][D]
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where [RIII ] – M ×N matrix with RIII
m,n =

2

d3

∫ d2

0

sin

(
mπy

d2

)
×

sin

(
nπy

d3

)
dy

[SIII ] – N ×N diagonal matrix with SIIIn,n =
(nπ

2

)
sinh

(
nπw3

d3

)

The unknown TEM coefficients, [A], [B], [D] and [F ], can then be solved

from the system of linear equations obtained through field matching at the

two junctions in the MLG. The four linear equations obtained in the previous

section are,

[CI ][A] = [GII ] + [QII ][F ] (4.5)

[B] = [RII ]T [SI ][A] (4.6)

[CIII ][D] = [GIII ] + [QIII ]T
{

[SII ][B] + [CII ][F ]
}

(4.7)

[CII ][B] + [SII ][F ] = −[RIII ][SIII ][D] (4.8)

Re-arranging Equation (4.7),

[D] = [CIII ]−1
{

[GIII ] + [QIII ]T [SII ][B] + [QIII ]T [CII ][F ]
}

(4.9)

Substituting Equation (4.9) into (4.8)

[CII ][B] + [SII ][F ] = −[RIII ][SIII ][CIII ]−1
{

[GIII ] + [QIII ]T [SII ][B]+

[QIII ]T [CII ][F ]
}

(4.10)

[F ] = −[γ]−1[RIII ][SIII ][CIII ]−1[GIII ]− [γ]−1[δ][B] (4.11)
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where

[γ] = [SII ] + [RIII ][SIII ][CIII ]−1[QIII ]T [CII ]

[δ] = [CII ] + [RIII ][SIII ][CIII ]−1[QIII ]T [SII ]

Substituting Equation (4.6) into (4.11),

[F ] = −[γ]−1
{

[RIII ][SIII ][CIII ]−1[GIII ] + [δ][RII ]T [SI ][A]
}

(4.12)

Subsituting Equation (4.12) into (4.5), the solution for all the TEM coefficients

can be solved using the following equations,

{
[CI ] + [QII ][γ]−1[δ][RII ]T [SI ]

}
[A] =

[GII ]− [QII ][γ]−1[RIII ][SIII ][CIII ]−1[GIII ] (4.13)

[B] = [RII ]T [SI ][A] (4.14)

[F ] = −[γ]−1
{

[RIII ][SIII ][CIII ]−1[GIII ] + [δ][RII ]T [SI ][A]
}

(4.15)

[D] = [CIII ]−1
{

[GIII ] + [QIII ]T
{

[SII ][B] + [CII ][F ]
}}

(4.16)

4.1.3 Normalization TEM coefficients

To ensure the power propagating through the MLG is unity, the A, B, F and

D coefficients need to be normalized by the total power flowing through the

guide. The power flowing through a waveguide is given by the integral of the

Poynting vector:

Power, P̄ =

∮
s

Ē × H̄∗ dŝ

By integrating the electric and magnetic fields across each region, the normal-

ization power for Region I, II and III are given by Equation (4.17), (4.18) and
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(4.19), respectively.

N I
e =

2w1

d1

+
L∑
l=1

A2
l

(
lπ

2

)
sinh

(
2lπw1

d1

)
(4.17)

N II
e =

2w2

d2

+
M∑
m=1

(mπ) sinh

(
mπw2

d2

)[
(B2

m + F 2
m) cosh

(
mπw2

d2

)
+

2BmFm sinh

(
mπw2

d2

)]
(4.18)

N III
e =

2w3

d3

+
N∑
n=1

D2
n

(nπ
2

)
sinh

(
2nπw3

d3

)
(4.19)
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4.2 TE Meanderline Waveguide Modes

The TE meanderline waveguide modes are defined for the case where the electric

field has no component in the z-axis propagation direction.

4.2.1 Derivation of TE Modes

The TEz modes can be derived from a magnetic Hertzian potential Π̄ = ûzΠh

by means of Collin [48]:

Ē = −jωµ0∇× Π̄h

H̄ = k2
0Π̄h +∇∇ · Π̄h = ∇×∇× Π̄h

Assuming solution for Π̄h is of the form:

Π̄h = ûzψh(x, y)e±Γz

The scalar potential ψh satisfies the 2D Helmholtz equation:

∇2
tψh + k2

cψh = 0 where k2
c = k2

0 + Γ2

The electric and magnetic field vectors can be expressed as,

H̄ = ∇×∇× Π̄h

= ûx

(
±Γ

∂ψh
∂x

e±Γz

)
+ ûy

(
±Γ

∂ψh
∂y

e±Γz

)
− ûz

(
∂2ψh
∂x2

+
∂2ψh
∂y2

)
e±Γz

Ē = −jωµ0∇× Π̄h

= ûx

(
−jωµ0

∂ψh
∂y

e±Γz

)
+ ûy

(
jωµ0

∂ψh
∂x

e±Γz

)
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The scalar TEz wave impedance is then given by:

ZTE =

∣∣∣∣ExHy

∣∣∣∣ = −
∣∣∣∣EyHx

∣∣∣∣
=
jωµ0

Γ

Solution for the magnetic Hertzian potential can be found by enforcing the

appropriate boundary conditions in each of the MLG region. The fields in each

of region can then be expressed in terms of the respective Hertzian potential.

TE mode for Region I

The scalar potential in Region I can be found by enforcing the following bound-

ary conditions:

EI
x(x, y = 0) = 0

EI
x(x, y = d1) = 0

Solution for the scalar potential is then given by:

ψIh(x, y) = B cos

(
lπy

d1

)
e−Γz

By transverse resonanace, the scalar potential in Region I can be re-formulated

in the transverse x-direction,

ΨI =
L−1∑
l=0

[
−aIl e−jk

I
xlx + bIl e

jkIxlx
]

cos

(
lπy

d1

)
e−jkzz
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The TEz field components in Region I are:

Ex = −∂ψ
I

∂y
=

L−1∑
l=0

[
−aIl e−jk

I
xlx + bIl e

jkIxlx
] lπ
d1

sin

(
lπy

d1

)
e−jkzz

Ey =
∂ψI

∂x
=

L−1∑
l=0

[
aIl e
−jkIxlx + bIl e

jkIxlx
]
jkIxl cos

(
lπy

d1

)
e−jkzz

Hx =
1

ZTE
(−Ey) = − kz

ωµ

L−1∑
l=0

[
aIl e
−jkIxlx + bIl e

jkIxlx
]
jkIxl cos

(
lπy

d1

)
e−jkzz

Hy =
1

ZTE
(Ex) =

kz
ωµ

L−1∑
l=0

[
−aIl e−jk

I
xlx + bIl e

jkIxlx
] lπ
d1

sin

(
lπy

d1

)
e−jkzz

Hz =
k2
c

jωµ

L−1∑
l=0

[
−aIl e−jk

I
xlx + bIl e

jkIxlx
]

cos

(
lπy

d1

)
e−jkzz

where k2
c = kIxl

2
+

(
lπ

d1

)2

TE mode for Region II

Using the same approach in the previous section, the scalar potential in Region

II is derived to be,

ΨII =
M−1∑
m=0

[
aIIme

jkIIxmx
′ − bIIme−jk

II
xmx

′
]

cos

(
mπ

d2

(y − h)

)
e−jkzz

where the relative origin (x′, y′) is located at (x = w1, y = 0).
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The TEz field components in Region II are:

Ex = −∂ψ
II

∂y
=

M−1∑
m=0

[
aIIme

jkIIxmx − bIIme−jk
II
xmx
] mπ
d2

sin

(
mπ

d2

(y − h)

)
e−jkzz

Ey =
∂ψII

∂x
=

M−1∑
m=0

[
aIIme

jkIIxmx + bIIme
−jkIIxmx

]
jkIIxm cos

(
mπ

d2

(y − h)

)
e−jkzz

Hx =
1

ZTE
(−Ey) = − kz

ωµ

M−1∑
m=0

[
aIIme

jkIIxmx + bIIme
−jkIIxmx

]
jkIIxm cos

(
mπ

d2

(y − h)

)
e−jkzz

Hy =
1

ZTE
(Ex) =

kz
ωµ

M−1∑
m=0

[
aIIme

jkIIxmx − bIIme−jk
II
xmx
] mπ
d2

sin

(
mπ

d2

(y − h)

)
e−jkzz

Hz =
k2
c

jωµ

M−1∑
m=0

[
aIIme

jkIIxmx
′ − bIIme−jk

II
xmx

′
]

cos

(
mπ

d2

(y − h)

)
e−jkzz

where k2
c = kIIxm

2
+

(
mπ

d2

)2

TE mode for Region III

Similar to Region I and II, the scalar potential in Region III is derived to be,

ΨIII =
N−1∑
n=0

[
aIIIn ejk

III
xn x′ − bIIIn e−jk

III
xn x′

]
cos

(
nπy′

d3

)
e−jkzz

where the relative origin (x′, y′) is located at (x = w1 + w2, y = h).
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The TEz field components in Region III are:

Ex = −∂ψ
III

∂y′
=

N−1∑
n=0

[
aIIIn ejk

III
xn x′ − bIIIn e−jk

III
xn x′

] nπ
d3

sin

(
nπy′

d3

)
e−jkzz

Ey =
∂ψIII

∂x′
=

N−1∑
n=0

[
aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

]
jkIIIxn cos

(
nπy′

d3

)
e−jkzz

Hx =
1

ZTE
(−Ey) = − kz

ωµ

N−1∑
n=0

[
aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

]
jkIIIxn cos

(
nπy′

d3

)
e−jkzz

Hy =
1

ZTE
(Ex) =

kz
ωµ

N−1∑
n=0

[
aIIIn ejk

III
xn x′ − bIIIn e−jk

III
xn x′

] nπ
d3

sin

(
nπy′

d3

)
e−jkzz

Hz =
k2
c

jωµ

N−1∑
n=0

[
aIIIn ejk

III
xn x′ − bIIIn e−jk

III
xn x′

]
cos

(
nπy′

d3

)
e−jkzz

where k2
c = kIIIxn

2
+

(
nπ

d3

)2

4.2.2 Solution for TE Coefficients

To solve for the unknown TE coefficients, field matching is first carried out

at the two step junctions to derive the individual scattering matrix of each

junction. Next, the scattering matrix of the individual junctions and connecting

waveguide sections are cascaded to obtain the overall scattering matrix of the

MLG. Finally, the boundary conditions at both ends of the MLG – LW and

CW, are imposed to obtain the characteristic equation for which the unknown

coefficients can be solved.
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Field matching – Junction I, II

The tangential electric field Ey in Region I and II is,

EI
y =

L−1∑
l=0

[
aIl + bIl

]
jkIxl cos

(
lπy′

d1

)
e−jkzz for 0 ≤ y′ ≤ d1

EII
y =


M−1∑
m=0

[
aIIm + bIIm

]
jkIIxm cos

(
mπ

d2

(y′ − h)

)
e−jkzz for h ≤ y′ ≤ h+ d2

0 for 0 ≤ y′ ≤ h

Equating the fields in Region I and II,

L−1∑
l=0

[
aIl + bIl

]
kIxl cos

(
lπy′

d1

)
=



M−1∑
m=0

[
aIIm + bIIm

]
kIIxm cos

(
mπ

d2

(y′ − h)

)
for h ≤ y′ ≤ h+ d2

0 for 0 ≤ y′ ≤ h

Multiplying by cos
(
kπy′

d1

)
and integrating from y′ = 0 to d1,

L−1∑
l=0

[
aIl + bIl

]
kIxl

∫ d1

0

cos

(
kπy′

d1

)
cos

(
lπy′

d1

)
dy′ =

M−1∑
m=0

[
aIIm + bIIm

]
kIIxm

∫ h+d2

h

cos

(
kπy′

d1

)
cos

(
mπ

d2

(y′ − h)

)
dy′

Using othorgonality of cosine function, the equation can be simplified to,

[
aIl + bIl

]
· kIxld1 =

M−1∑
m=0

[
aIIm + bIIm

]
· kIIxmd2 ·

2

εd2

∫ h+d2

h

cos

(
lπy′

d1

)
×

cos

(
mπ

d2

(y′ − h)

)
dy′

where ε =


1 for l 6= 0

2 for l = 0
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In matrix form,

[KI
x]
{

[aI ] + [bI ]
}

= [Q][KII
x ]
{

[aII ] + [bII ]
}

where [aI ] – L× 1 column matrix for unknown coefficients aIl

[bI ] – L× 1 column matrix for unknown coefficients bIl

[aII ] – M × 1 column matrix for unknown coefficients aIIm

[bII ] – M × 1 column matrix for unknown coefficients bIIm

[KI
x] – L× L diagonal matrix with KI

xl,l =

√
k2
c −

(
lπ

d1

)2

· d1

[KII
x ] – M ×M diagonal matrix with KII

xm,m =

√
k2
c −

(
mπ

d2

)2

· d2

[Q] – L×M matrix with Ql,m =
2

εd2

∫ h+d2

h

cos

(
lπy′

d1

)
×

cos

(
mπ

d2

(y′ − h)

)
dy′

Similary, the tangential magnetic field Hz in Region I and II are,

HI
z =

k2
c

jωµ

L−1∑
l=0

[
−aIl + bIl

]
cos

(
lπy′

d1

)
e−jkzz

HII
z =

k2
c

jωµ

M−1∑
m=0

[
aIIm − bIIm

]
cos

(
mπ

d2

(y′ − h)

)
e−jkzz

Equating the fields in Region I and II,

L−1∑
l=0

[
−aIl + bIl

]
cos

(
lπy′

d1

)
=

M−1∑
m=0

[
aIIm − bIIm

]
cos

(
mπ

d2

(y′ − h)

)
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Multiplying by cos
(
kπ
d2

(y′ − h)
)

and integrating from y′ = h to h+ d2,

L−1∑
l=0

[
−aIl + bIl

] ∫ h+d2

h

cos

(
kπ

d2

(y′ − h)

)
cos

(
lπy′

d1

)
dy′ =

M−1∑
m=0

[
aIIm − bIIm

] ∫ h+d2

h

cos

(
kπ

d2

(y′ − h)

)
cos

(
mπ

d2

(y′ − h)

)
dy′

Using othorgonality of cosine function, the equation can be simplified to,

[
aIIm − bIIm

]
=

L−1∑
l=0

[
−aIl + bIl

] 2

εd2

∫ h+d2

h

cos

(
mπ

d2

(y′ − h)

)
cos

(
lπy′

d1

)
dy′

where ε =


1 for l 6= 0

2 for l = 0

In matrix notation,

[aII ]− [bII ] = [Q]T
{

[bI ]− [aI ]
}

Field matching – Junction II, III

The tangential electric field Ey in Region II and III are,

EII
y =


M−1∑
m=0

[
aIIm + bIIm

]
jkIIxm cos

(
mπy′

d2

)
e−jkzz for 0 ≤ y′ ≤ d2

0 for d2 ≤ y′ ≤ d3

EIII
y =

N−1∑
n=0

[
aIIIn + bIIIn

]
jkIIIxn cos

(
nπy′

d3

)
e−jkzz for 0 ≤ y′ ≤ d3
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Equating the fields in Region II and III,

N−1∑
n=0

[
aIIIn + bIIIn

]
kIIIxn cos

(
nπy′

d3

)
=



M−1∑
m=0

[
aIIm + bIIm

]
kIIxm cos

(
mπy′

d2

)
for 0 ≤ y′ ≤ d2

0 for 0 ≤ y′ ≤ d3

Multiplying by cos
(
kπy′

d3

)
and integrating from y′ = 0 to d3,

M−1∑
m=0

[
aIIm + bIIm

]
kIIxm

∫ d2

0

cos

(
kπy′

d3

)
cos

(
mπy′

d2

)
dy′ =

N−1∑
n=0

[
aIIIn + bIIIn

]
kIIIxn

∫ d2

0

cos

(
kπy′

d3

)
cos

(
nπy′

d3

)
dy′

Using othorgonality of cosine function, the equation can be simplified to,

[
aIIIn + bIIIn

]
· kIIIxn d3 =

M−1∑
m=0

[
aIIm + bIIm

]
· kIIxmd2 ·

2

εd2

∫ d2

0

cos

(
nπy′

d3

)
×

cos

(
mπy′

d2

)
dy′

where ε =


1 for n 6= 0

2 for n = 0

In matrix notation,

[KIII
x ]

{
[aIII ] + [bIII ]

}
= [R][KIII

x ]
{

[aII ] + [bII ]
}
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where [aIII ] – N × 1 column matrix for unknown coefficients aIIIn

[bIII ] – N × 1 column matrix for unknown coefficients bIIIn

[KIII
x ] – N ×N diagonal matrix with KIII

xn,n =

√
k2
c −

(
nπ

d3

)2

· d3

[R] – N ×M matrix with Rn,m =
2

εd2

∫ d2

0

cos

(
mπy′

d2

)
×

cos

(
nπy′

d3

)
dy′

Similary, the tangential magnetic field Hz in Region II and III are,

HII
z =

k2
c

jωµ

M−1∑
m=0

[
−aIIm + bIIm

]
cos

(
mπy′

d2

)

HIII
z =

k2
c

jωµ

N−1∑
n=0

[
aIIIn − bIIIn

]
cos

(
nπy′

d3

)

Equating the fields in Region II and III,

M−1∑
m=0

[
−aIIm + bIIm

]
cos

(
mπy′

d2

)
=

N−1∑
n=0

[
aIIIn − bIIIn

]
cos

(
nπy′

d3

)

Multiplying by cos
(
kπy′

d2

)
and integrating from y′ = 0 to d2,

M−1∑
m=0

[
−aIIm + bIIm

] ∫ d2

0

cos

(
kπy′

d2

)
cos

(
mπy′

d2

)
dy′ =

N−1∑
n=0

[
aIIIn − bIIIn

] ∫ d2

0

cos

(
kπy′

d2

)
cos

(
nπy′

d3

)
dy′
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Using othorgonality of cosine function, the equation can be simplified to,

[
−aIIm + bIIm

]
=

N−1∑
n=0

[
aIIIn − bIIIn

]
· 2

εd2

∫ d2

0

cos

(
nπy′

d3

)
cos

(
mπy′

d2

)
dy′

where ε =


1 for n 6= 0

2 for n = 0

In matrix notation,

[bII ]− [aII ] = [R]T
{

[aIII ]− [bIII ]
}

S-Parameter for Junction I,II

From field matching of the TEz electric and magnetic fields at the junction

between Region I and II,

[KI
x]
{

[aI ] + [bI ]
}

= [Q][KII
x ]
{

[aII ] + [bII ]
}

(4.20)

[aII ]− [bII ] = [Q]T
{

[bI ]− [aI ]
}

(4.21)

Omitting the paranthesis for clarity, Equation (4.21) can be re-expressed as,

bII = aII −QT (bI − aI) (4.22)

Substituting Equation (4.22) into (4.20),

KI
x(aI + bI) = QKII

x (aII −QT (bI − aI) + aII)

I(aI + bI) = [KI
x]−1QKII

x (2aII +QTaI −QT bI)
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Letting,

[P ] = [KxI]−1[Q][KxII]

[I] – L× L unit matrix

[U ] – M ×M unit matrix

⇒ [I + PQT ]bI = (PQT − I)aI + 2PaII

∴ bI = (I + PQT )−1(PQT − I)aI + 2(I + PQT )−1PaII

Subsitituting Equation (4.20) into (4.21),

aII − bII = QT (PaII + PbII − aI − aI)

(U +QTP )bII = 2QTaI + (U −QTP )aII

∴ bII = 2(U +QTP )−1QTaI + (U +QTP )−1(U −QTP )aII

Thus, the overall S-matrix of Step Junction B for TE mode is,

[SA11] = {[I] + [P ][Q]T}−1{[P ][Q]T − [I]}

[SA12] = 2 · {[I] + [P ][Q]T}−1[P ]

[SA21] = 2 · {[U ] + [Q]T [P ]}−1 · [Q]T

[SA22] = {[U ] + [Q]T [P ]}−1{[U ]− [Q]T [P ]}
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S-Parameter for Junction II,III

From field matching of the TEz electric and magnetic fields at the junction

between Region II and III,

[KIII
x ]

{
[aIII ] + [bIII ]

}
= [R][KIII

x ]
{

[aII ] + [bII ]
}

(4.23)

[bII ]− [aII ] = [R]T
{

[aIII ]− [bIII ]
}

(4.24)

Omitting the paranthesis for clarity, Equation (4.24) can be re-expressed as,

bII = aII +RT (aIII − bIII) (4.25)

Substituting Equation (4.25) into (4.23),

KIII
x (aIII + bIII) = RKIII

x (aII + aII +RTaIII −RT bIII)

aIII + bIII = [KIII
x ]−1RKIII

x (2aII +RTaIII −RT bIII)

Letting,

[H] = [KxIII]−1[R][KxII]

[U ] – M ×M unit matrix

[V ] – N ×N unit matrix

⇒ [V +HRT ]bIII = 2HaII + (HRT − V )aIII

∴ bIII = 2(V +HRT )−1HaII + (V +HRT )−1(HRT − V )aIII
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Subsitituting Equation (4.23) into (4.24),

bII − aII = RT (aIII −HaII −HbII + aIII)

(U +RTH)bII = (U −RTH)aII + 2RTaIII

∴ bII = (U +RTH)−1(U −RTH)aII + 2(U +RTH)−1RTaIII

Thus, the overall S-matrix of Step Junction B for TE mode is,

[SB11] = {[U ] + [R]−1[H]}−1 · {[U ]− [R]T [H]}

[SB12] = 2 · {[U ] + [R]T [H]}−1 · [R]T

[SB21] = 2 · {[V ] + [H][R]T}−1 · [H]

[SB22] = {[V ] + [H][R]T}−1 · {[H][R]T − [V ]}

4.3 TM Meanderline Waveguide Modes

4.3.1 Derivation of TM Modes

The TMz modes can be derived from a electric Hertzian potential Φ̄ = ûzΦm

by means of Collin [48]:

ēm = −∇tΦm

h̄m = ẑ0 × ēm

The scalar TMz wave impedance is then given by:

ZTM =

∣∣∣∣ExHy

∣∣∣∣ = −
∣∣∣∣EyHx

∣∣∣∣
=

Γ

jωε
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Solution for the magnetic Hertzian potential can be found by enforcing the

appropriate boundary conditions in each of the MLG region. The fields in each

of region can then be expressed in terms of the respective Hertzian potential.

TM mode for Region I

The scalar potential in Region I can be found by enforcing the following bound-

ary conditions:

EI
z (x, y = 0) = 0

EI
z (x, y = d1) = 0

Solution for the scalar potential is then given by:

ΦI
m(x, y) = A sin

(
lπy

d1

)
e−Γz

By transverse resonanace, the scalar potential in Region I can be re-formulated

in the transverse x-direction,

ΦI =
L∑
l=1

[
aIl e
−jkIxlx + bIl e

jkIxlx
]

sin

(
lπy

d1

)
e−jkzz
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The TMz field components in Region I are:

Ex = −∂φ
I

∂x
=

L∑
l=1

[
aIl e
−jkIxlx − bIl ejk

I
xlx
]
jkIxl sin

(
lπy

d1

)
e−jkzz

Ey = −∂φ
I

∂y
=

L∑
l=1

[
−aIl e−jk

I
xlx − bIl ejk

I
xlx
] lπ
d1

cos

(
lπy

d1

)
e−jkzz

Ez =
k2
c

jωµ

L∑
l=1

[
aIl e
−jkIxlx + bIl e

jkIxlx
]

sin

(
lπy

d1

)
e−jkzz

Hx =
1

ZTM
(−Ey) =

ωε

kz

L∑
l=1

[
−aIl e−jk

I
xlx − bIl ejk

I
xlx
] lπ
d1

cos

(
lπy

d1

)
e−jkzz

Hy =
1

ZTE
(Ex) =

ωε

kz

L∑
l=1

[
aIl e
−jkIxlx − bIl ejk

I
xlx
]
jkIxl sin

(
lπy

d1

)
e−jkzz

where k2
c = kIxl

2
+

(
lπ

d1

)2

TM mode for Region II

Using the same approach in the previous section, the scalar potential in Region

II is derived to be,

ΦII =
M∑
m=1

[
aIIme

jkIIxmx + bIIme
−jkIIxmx

]
sin

(
mπ

d2

(y − h)

)
e−jkzz

The TMz electric field components in Region II are:

Ex = −∂φ
II

∂x′
=

M∑
m=1

[
aIIme

jkIIxmx
′ − bIIme−jk

II
xmx

′
]
jkIIxm sin

(
mπ

d2

(y′ − h)

)
e−jkzz

Ey = −∂φ
II

∂y′
=

M∑
m=1

[
−aIImejk

II
xmx

′ − bIIme−jk
II
xmx

′
] mπ
d2

cos

(
mπ

d2

(y′ − h)

)
e−jkzz

Ez =
k2
c

jωε

M∑
m=1

[
aIIme

jkIIxmx
′
+ bIIme

−jkIIxmx′
]

sin

(
mπ

d2

(y′ − h)

)
e−jkzz

where k2
c = kIIxm

2
+

(
mπ

d2

)2
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The TMz magnetic field components in Region II are:

Hx =
1

ZTM
(−Ey) =

ωε

kz

M∑
m=1

[
aIIme

jkIIxmx
′
+ bIIme

−jkIIxmx′
] mπ
d2

×

cos

(
mπ

d2

(y′ − h)

)
e−jkzz

Hy =
1

ZTE
(Ex) =

ωε

kz

M∑
m=1

[
−aIImejk

II
xmx

′
+ bIIme

−jkIIxmx′
]
jkIIxm×

sin

(
mπ

d2

(y′ − h)

)
e−jkzz

TM mode for Region III

Similar to Region I and II, the scalar potential in Region III is derived to be,

ΦIII =
N∑
n=1

[
aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

]
sin

(
nπy′

d3

)
e−jkzz

where the relative origin (x′, y′) is located at (x = w1 + w2, y = h).

The TMz electric field components in Region III are:

Ex = −∂φ
III

∂x′
=

N∑
n=1

[
−aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

]
jkIIIxn sin

(
nπy′

d3

)
e−jkzz

Ey = −∂φ
III

∂y′
= −

N∑
n=1

[
aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

] nπ
d3

cos

(
nπy′

d3

)
e−jkzz

Ez =
k2
c

jωµ

N∑
n=1

[
aIIIn ejk

III
xn x′ + bIIIn ejk

III
xn x′

]
sin

(
nπy′

d3

)
e−jkzz

where k2
c = kIIIxn

2
+

(
nπ

d3

)2
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The TMz magnetic field components in Region III are:

Hx =
1

ZTM
(−Ey) =

ωε

kz

N∑
n=1

[
aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

] nπ
d3

cos

(
nπy′

d3

)
e−jkzz

Hy =
1

ZTE
(Ex) =

ωε

kz

N∑
n=1

[
−aIIIn ejk

III
xn x′ + bIIIn e−jk

III
xn x′

]
jkIIIxn sin

(
nπy′

d3

)
e−jkzz

4.3.2 Solution to TM Coefficients

Similar to the case for TE modes, the unknown TM coefficients can be solved by

field matching at the two step junctions to derive the overall scattering matrix

of the MLG. Boundary conditions at both ends of the MLG – LW and CW,

are then imposed to obtain the characteristic equation for which the unknown

coefficients can be solved.

TM modes – Junction I, II

The tangential electric field Ez in Region I and II at the junction between

Region I and II are,

EI
z =

L∑
l=1

[
aIl + bIl

]
sin

(
lπy′

d1

)
e−jkzz for 0 ≤ y′ ≤ d1

EII
z =


M∑
m=1

k2
cm

jωε

[
aIIm + bIIm

]
sin

(
mπ

d2

(y′ − h)

)
e−jkzz for h ≤ y′ ≤ h+ d2

0 for 0 ≤ y′ ≤ h

Equating the fields in Region I and II,

L∑
l=1

[
aIl + bIl

]
sin

(
lπy′

d1

)
=



M∑
m=1

[
aIIm + bIIm

]
sin

(
mπ

d2

(y′ − h)

)
for h ≤ y′ ≤ h+ d2

0 for 0 ≤ y′ ≤ h
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Multiplying by sin
(
kπy′

d1

)
and integrating from y′ = 0 to d1,

L∑
l=1

[
aIl + bIl

] ∫ d1

0

sin

(
kπy′

d1

)
sin

(
lπy′

d1

)
dy′ =

M∑
m=1

[
aIIm + bIIm

] ∫ h+d2

h

sin

(
kπy′

d1

)
sin

(
mπ

d2

(y′ − h)

)
dy′

Using othorgonality of sine function, the equation can be simplified to,

[
aIl + bIl

]
=

M∑
m=1

[
aIIm + bIIm

]
· 2

d1

∫ h+d2

h

sin

(
lπy′

d1

)
sin

(
mπ

d2

(y′ − h)

)
dy′

In matrix form,

[aI ] + [bI ] = [Q]T
{

[aII ] + [bII ]
}

where [aI ] – L× 1 column matrix for unknown coefficients aIl

[bI ] – L× 1 column matrix for unknown coefficients bIl

[aII ] – M × 1 column matrix for unknown coefficients aIIm

[bII ] – M × 1 column matrix for unknown coefficients bIIm

[Q] – M × L matrix with Qm,l =
2

d1

∫ h+d2

h

sin

(
lπy′

d1

)
×

sin

(
mπ

d2

(y′ − h)

)
dy′
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The tangential magnetic field Hy in Region I and II at the junction between

Region I and II are,

HI
y =

ωε

kz

L∑
l=1

[
aIl − bIl

]
· jkIxl · sin

(
lπy′

d1

)
e−jkzz

HII
y =

ωε

kz

M∑
m=1

[
−aIIm + bIIm

]
· jkIIxm · sin

(
mπ

d2

(y′ − h)

)
e−jkzz

Equating the fields in Region I and II,

L∑
l=1

[
aIl − bIl

]
· kIxl · sin

(
lπy′

d1

)
=

M∑
m=1

[
−aIIm + bIIm

]
· kIIxm · sin

(
mπ

d2

(y′ − h)

)

Multiplying by sin
(
kπ
d2

(y′ − h)
)

and integrating from y′ = h to h+ d2,

L∑
l=1

[
aIl − bIl

]
· kIxl ·

∫ h+d2

h

sin

(
kπ

d2

(y′ − h)

)
sin

(
lπy′

d1

)
dy′ =

M∑
m=1

[
−aIIm + bIIm

]
· kIIxm ·

∫ h+d2

h

sin

(
kπ

d2

(y′ − h)

)
sin

(
mπ

d2

(y′ − h)

)
dy′

Using othorgonality of sine function, the equation can be simplified to,

[
−aIIm + bIIm

]
· kIIxm · d2 =

L∑
l=1

[
aIl − bIl

]
· kIxl ·

2

d1

·
∫ h+d2

h

sin

(
lπy′

d1

)
×

sin

(
mπ

d2

(y′ − h)

)
dy′

In matrix notation,

[KII
x ]
{

[bII ]− [aII ]
}

= [Q][KI
x]
{

[aI ]− [bI ]
}

where [KI
x] – L× L diagonal matrix with element KI

xl,l = kIxl · d1

[KII
x ] – M ×M diagonal matrix with element KII

xm,m = kIIxm · d2
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TM modes – Junction II, III

The tangential electric fields Ez in Region II and III are,

EII
z =


M∑
m=1

k2
cm

jωε

[
aIIm + bIIm

]
sin

(
mπy′

d2

)
e−jkzz for 0 ≤ y′ ≤ d2

0 for d2 ≤ y′ ≤ d3

EIII
z =

N∑
n=1

k2
cn

jωε

[
aIIIn + bIIIn

]
sin

(
nπy′

d3

)
e−jkzz for 0 ≤ y′ ≤ d3

Equating the electric fields in Region II and III,

N∑
n=1

[
aIIIn + bIIIn

]
sin

(
nπy′

d3

)
=



M∑
m=1

[
aIIm + bIIm

]
sin

(
mπy′

d2

)
for 0 ≤ y′ ≤ d2

0 for 0 ≤ y′ ≤ d3

Multiplying by sin
(
kπy′

d3

)
and integrating from y′ = 0 to d3,

N∑
n=1

[
aIIIn + bIIIn

] ∫ d3

0

sin

(
kπy′

d3

)
sin

(
nπy′

d3

)
dy′ =

M∑
m=1

[
aIIm + bIIm

] ∫ d2

0

sin

(
kπy′

d3

)
sin

(
mπy′

d2

)
dy′

Using othorgonality of sine function, the equation can be simplified to,

[
aIIIn + bIIIn

]
=

M∑
m=1

[
aIIm + bIIm

]
· 2

d3

·
∫ d2

0

sin

(
mπy′

d2

)
sin

(
nπy′

d3

)
dy′
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In matrix notation,

[aIII ] + [bIII ] = [E]T
{

[aII ] + [bII ]
}

where [E] – M ×N matrix with element Em,n =
2

d3

·
∫ d2

0

sin

(
mπy′

d2

)
×

sin

(
nπy′

d3

)
dy′

The tangential magnetic field Hz in Region II and III are given by,

HII
y =

ωε

kz

M∑
m=1

[
aIIm − bIIm

]
· jkIIxm · sin

(
mπy′

d2

)

HIII
y =

ωε

kz

N∑
n=1

[
−aIIIn + bIIIn

]
· jkIIIxn · sin

(
nπy′

d3

)

Equating the fields in Region II and III,

M∑
m=1

[
aIIm − bIIm

]
· kIIxm · sin

(
mπy′

d2

)
=

N∑
n=1

[
bIIIn − aIIIn

]
· kIIIxn · sin

(
nπy′

d3

)

Multiplying by sin
(
kπy′

d2

)
and integrating from y′ = 0 to d2,

M∑
m=1

[
aIIm − bIIm

]
· kIIxm ·

∫ d2

0

sin

(
kπy′

d2

)
sin

(
mπy′

d2

)
dy′ =

N∑
n=1

[
bIIIn − aIIIn

]
· kIIIxn ·

∫ d2

0

sin

(
kπy′

d2

)
sin

(
nπy′

d3

)
dy′
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Using othorgonality of sine function, the equation can be simplified to,

(
−aIIm + bIIm

)
· kIIxm · d2 =

N∑
n=1

(
bIIIn − aIIIn

)
· kIIIxn · d3 ·

∫ d2

0

sin

(
mπy′

d2

)
×

sin

(
nπy′

d3

)
dy′

In matrix notation,

[KII
x ]
{

[aII ]− [bII ]
}

= [E][KIII
x ]

{
[bIII ]− [aIII ]

}
S-Parameter for Junction I,II

From field matching of the TMz electric and magnetic fields at the junction

between Region I and II,

[aI ] + [bI ] = [Q]T
{

[aII ] + [bII ]
}

(4.26)

[KII
x ]
{

[bII ]− [aII ]
}

= [Q][KI
x]
{

[aI ]− [bI ]
}

(4.27)

Omitting the paranthesis for clarity, Equation (4.26) can be re-expressed as,

bI = QT (aII + bII)− aI (4.28)

Substituting Equation (4.28) into (4.27),

bII − aII = (KII
x )−1QKI

x(aI −QTaII −QT bII + aI)
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Letting

[P ] = [KxII]−1[Q][KxI]

[I] – L× L unit matrix

[U ] – M ×M unit matrix

⇒ [U + PQT ]bII = 2PaI + (U − PQT )aII

∴ bII = 2(U + PQT )−1PaI + (U + PQT )−1(U − PQT )aII

Subsitituting Equation (4.27) into (4.26),

aI + bI = QT (aII + PaI − PbI + aII)

(I +QTP )bI = (QTP − I)aI + 2QTaII

∴ bI = (QTP + I)−1(QTP − I)aI + 2(QTP + I)−1QTaII

Thus, the overall S-matrix of Step Junction A for TM mode is,

[SA11] = {[Q]T [P ] + [I]}−1{[Q]T [P ]− [I]}

[SA12] = 2 · {[Q]T [P ] + [I]}−1[Q]T

[SA21] = 2 · {[U ] + [P ][Q]T}−1[P ]

[SA22] = {[U ] + [P ][Q]T}−1{[U ]− [P ][Q]T}
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S-Parameter for Junction II,III

From field matching of the TMz electric and magnetic fields at the junction

between Region II and III,

[aIII ] + [bIII ] = [E]T
{

[aII ] + [bII ]
}

(4.29)

[KII
x ]
{

[aII ]− [bII ]
}

= [E][KIII
x ]

{
[bIIII ]− [aIIII ]

}
(4.30)

Omitting the paranthesis for clarity, Equation (4.29) can be re-expressed as,

bIII = ET (aII + bII)− aIII (4.31)

Substituting Equation (4.31) into (4.30),

aII − bII = (KII
x )−1E(KIII

x )(ETaII + ET bII − 2aIII)

Letting

[F ] = [KII
x ]−1[E][KIII

x ]

[U ] – M ×M unit matrix

[V ] – N ×N unit matrix

⇒ [U + FET ]bII = [U − FET ]aII + 2FaIII

∴ bII = [U + FET ]−1[U − FET ]aII + 2[U + FET ]−1FaIII
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Subsitituting Equation (4.30) into (4.29),

aIII + bIII = ET (aII + aII − FbII + FaIII)

(V + ETF )bIII = 2ETaII + (ETF − V )aIII

∴ bIII = 2(V + ETF )−1ETaII + (V + ETF )−1(ETF − V )aIII

Thus, the overall S-matrix of Step Junction B for TM mode is,

[SB11] = {[U ] + [F ][E]T}−1{[U ]− [F ][E]T}

[SB12] = 2 · {[U ] + [F ][E]T}−1[F ]

[SB21] = 2 · {[V ] + [E]T [F ]}−1[E]T

[SB22] = {[V ] + [E]T [F ]}−1{[E]T [F ]− [V ]}

4.4 Determination of Cutoff Wavenumbers

To solve for the MLG cutoff wavenumbers – kc, the Transverse Resonanace

Approach is applied to the step junction S-matrices that are derived in Sections

4.2.2 and 4.3.2. The transverse resonance solution is applied by considering the

equivalent microwave network of the MLG in the direction transverse to the

wave propagation vector, kz, as shown in Figure 4.5.

[SI,II] [SII,III]

Region I Region II Region III

LW
 (

 P
EC

 /
 P

M
C 

)

CW
 (

 P
EC

 /
 P

M
C 

)

Figure 4.5: Equivalent microwave network of meanderline polarizer unit cell
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For normal incidence, the modes generated in the MLG are symmetric about

the center wall. Hence, the boundary conditions on the left and center walls

of the MLG will be represented by PEC and PMC. The S-matrices of the

individual waveguide sections and step junctions can be cascaded into an overall

GSM, Figure 4.6.

( [ SM
11 ] [ SM

12 ]

[ SM
21 ] [ SM

22 ])
aL

bL

aC

bC

LW
 (

 P
EC

 /
 P

M
C 

)

CW
 (

 P
EC

 /
 P

M
C 

)

Figure 4.6: GSM representation of meanderline polarizer unit cell

The MLG network can then be represented by the following GSM,

[bL]

[bC ]

 =

[SM11 ] [SM12 ]

[SM21 ] [SM22 ]


[aL]

[aC ]


where aL and bL denote transverse propagating waves on the left of the MLG

while aC and bC represent transverse propagating waves on the right. Depend-

ing on the boundary conditions on LW and RW, the transverse propagating

waves are governed by the following equality,

PEC : [bL] = −[aL] and [bC ] = −[aC ]

PMC : [bL] = [aL] and [bC ] = [aC ]
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Therefore, the GSM of the MLG can be expressed in the form,

[DL] [0]

[0] [DC ]


[aL]

[aC ]

 =

[SM11 ] [SM12 ]

[SM21 ] [SM22 ]


[aL]

[aC ]



⇒

[SM11 ]− [DL] [SM12 ]

[SM21 ] [SM22 ]− [DC ]


[aL]

[aC ]

 =

[0]

[0]

 (4.32)

where [DL], [DC ] are diagonal matrices with diagonal elements being −1 and

+1 when the end boundary condition is PEC and PMC, respectively.

For non trivial solution, the LHS matrix in Equation (4.32) is singular at the

mode cutoff wave numbers, kc. Traditional method such as bi-section technique

[49] can be applied to determine the roots for the MLG [50]. An accurate and

efficient approach to finding the roots will be discussed in subsequent section.

4.5 Least Square Approximation

For each of the valid cutoff wave number identified using the bracketing and

bisection method, the least square approximation [49] to Equation (4.32) is

employed to solve for the unknown coefficients [aL] and [aC ] associated with

each kc.

To perform the least square approximation, the first unknown coefficient

of the column matrix [aL] is set to 1. The first column of the characteristic
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equation can then be transferred over to the right hand side,



C1,1 C1,2 · · · C1,K

C2,1 C2,2 · · · C2,K

...
...

. . .
...

CK,1 CK,2 · · · CK,K





aL1
...

aLM

aC1
...

aCN


=


0

...

0



where K = M +N . Let aL1 = 1


C2,1 C2,2 · · · C2,K

...
...

. . .
...

CK,1 CK,2 · · · CK,K





aL2
...

aLM

aC1
...

aCN


=


C1,1

...

C1,K



[C][A′] = [B]

Multiplying both sides of the equation by [C]T ,

([C]T [C])[A′] = [C]T [B] (4.33)

The normal equation (4.33) can then be solved to obtain the coefficients [aL]

and [aC ].

4.5.1 Normalization of Coefficients

To ensure the power propagating through the MLG is unity, the coefficients [aL]

and [aC ]need to be normalized by the total power flowing through the guide.

142



The normalization factor is computed from the integration of the Poynting

vector over each of the region in the MLG.

MLG Region I - TE mode

The integration of the Poynting vector over Region I of the MLG can be evalu-

ated in closed form for both the cases of propagating (kIxl > 0) and evanescent

(kIxl < 0) transverse modes.

∮
S1

Ē × H̄∗ · dŝ =

∫ d1

0

∫ 0

−w1

[
EI
x ·HI

y

∗ − EI
y ·HI

x

∗]
dx dy

For the case of propagating transverse mode (kIxl > 0):

∴ EI
x ·HI

y

∗
=

L−1∑
l=0

[(
−aIl e−jk

I
xlx + bIl e

jkIxlx
lπ

d1

sin

(
lπy

d1

))]
×[

k∗z
ωµ

(
−aIl

∗
ejk

I
xlx + bIl

∗
e−jk

I
xlx
) lπ
d1

sin

(
lπy

d1

)]

∴ EI
y ·HI

x

∗
=

L−1∑
l=0

[(
aIl e
−jkIxlx + bIl e

jkIxlxjkIxl cos

(
lπy

d1

))]
×[

− k
∗
z

ωµ

(
aIl
∗
ejk

I
xlx + bIl

∗
e−jk

I
xlx
)

(−jkIxl) cos

(
lπy

d1

)]

∴
∫ d1

0

∫ 0

−w1

EI
x ·HI

y

∗
=

L−1∑
l=0

(
k∗z
ωµ

)
·
(
lπ

d1

)2

·
∫ d1

0

∫ 0

−w1

sin2

(
lπy

d1

)
·

[
|aIl |2 + |bIl |2 − aIl bIl

∗
e−2jkIxlx − aIl

∗
bIl e

2jkIxlx
]

dx dy

∴
∫ d1

0

∫ 0

−w1

EI
y ·HI

x

∗
=

L−1∑
l=0

(
− k

∗
z

ωµ

)
·
∣∣kIxl∣∣2 · ∫ d1

0

∫ 0

−w1

cos2

(
lπy

d1

)
·

[
|aIl |2 + |bIl |2 + aIl b

I
l

∗
e−2jkIxlx + aIl

∗
bIl e

2jkIxlx
]

dx dy
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The integrals
∫ d1

0
sin2

(
lπy
d1

)
dy,

∫ d1
0

cos2
(
lπy
d1

)
dy and

∫ 0

−w1
e±2jkIxlx dx can be

evaluated in closed form to give,

∫ d1

0

sin2

(
lπy

d1

)
dy =


d1
2

when l 6= 0

0 when l = 0

∫ d1

0

cos2

(
lπy

d1

)
dy =


d1
2

when l 6= 0

0 when l = 0∫ 0

−w1

e±2jkIxlx dx = e∓jk
I
xlw1 · sin(kIxlw1)

kIxl

For the case of evanescent transverse mode (kIxl < 0):

∴ EI
x ·HI

y

∗
=

L−1∑
l=0

[(
−aIl e−|k

I
xl|x + bIl e

|kIxl|x
lπ

d1

sin

(
lπy

d1

))]
×[

k∗z
ωµ

(
−aIl

∗
e−|k

I
xl|x + bIl

∗
e|k

I
xl|x
) lπ
d1

sin

(
lπy

d1

)]

∴ EI
y ·HI

x

∗
=

L−1∑
l=0

[(
aIl e
−|kIxl|x + bIl e

|kIxl|x
∣∣kIxl∣∣ cos

(
lπy

d1

))]
×[

− k
∗
z

ωµ

(
aIl
∗
e−|k

I
xl|x + bIl

∗
e|k

I
xl|x
) ∣∣kIxl∣∣ cos

(
lπy

d1

)]

∴
∫ d1

0

∫ 0

−w1

EI
x ·HI

y

∗
=

L−1∑
l=0

(
k∗z
ωµ

)
·
(
lπ

d1

)2

·
∫ d1

0

∫ 0

−w1

sin2

(
lπy

d1

)
·

[
|aIl |2e−2|kIxl|x + |bIl |2e2|kIxl|x − aIl bIl

∗ − aIl
∗
bIl

]
dx dy

∴
∫ d1

0

∫ 0

−w1

EI
y ·HI

x

∗
=

L−1∑
l=0

(
− k

∗
z

ωµ

)
·
∣∣kIxl∣∣2 · ∫ d1

0

∫ 0

−w1

cos2

(
lπy

d1

)
·

[
|aIl |2e−2|kIxl|x + |bIl |2e2|kIxl|x − aIl bIl

∗ − aIl
∗
bIl

]
dx dy
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The integral
∫ 0

−w1
e±2|kIxl|x dx can be evaluated in closed form to give,

∫ 0

−w1

e±2|kIxl|x dx =
±1

2 |kIxl|

[
1− e∓2|kIxl|w1

]

MLG Region II - TE mode

Similar to Region I, the integration of the Poynting vector over Region II of

the MLG can be evaluated in closed form for both the cases of propagating

(kIxl > 0) and evanescent (kIxl < 0) transverse modes.

∮
S2

Ē × H̄∗ · dŝ =

∫ h+d2

h

∫ w2

0

[
EII
x ·HII

y

∗ − EII
y ·HII

x

∗]
dx dy

For the case of propagating transverse mode (kIIxm > 0):

∫ h+d2

h

∫ w2

0

EII
x ·HII

y

∗
=

M−1∑
m=0

(
k∗z
ωµ

)
·
(
mπ

d2

)2

·
∫ h+d2

h

∫ w2

0

sin2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2 + |bIIm |2 − aIIm bIIm I

∗
e2jkIIxmx−

aIl
∗
bIl e
−2jkIIxmx

]
dx dy

∫ h+d2

h

∫ w2

0

EII
y ·HII

x

∗
=

M−1∑
m=0

(
− k

∗
z

ωµ

)
·
∣∣kIIxm∣∣2 · ∫ h+d2

h

∫ w2

0

cos2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2 + |bIIm |2 + aIIm b

II
m

∗
e2jkIIxmx+

aIIm
∗
bIIme

−2jkIIxmx
]

dx dy
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For the case of evanescent transverse mode (kIIxm < 0):

∫ h+d2

h

∫ w2

0

EII
x ·HII

y

∗
=

M−1∑
m=0

(
k∗z
ωµ

)
·
(
mπ

d2

)2

·
∫ h+d2

h

∫ w2

0

sin2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2e2|kIIxm|x + |bIIm |2e−2|kIIxm|x−

aIIm b
II
m

∗ − aIIm
∗
bIIm
]

dx dy

∫ h+d2

h

∫ w2

0

EII
y ·HII

x

∗
=

M−1∑
m=0

(
− k

∗
z

ωµ

)
·
∣∣kIIxm∣∣2 · ∫ h+d2

h

∫ w2

0

cos2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2e2|kIIxm|x + |bIIm |2e−2|kIIxm|x+

aIIm b
II
m

∗
+ aIIm

∗
bIIm
]

dx dy

MLG Region III - TE mode

Similar to Region I and II, the integration of the Poynting vector over Region

III of the MLG can be evaluated in closed form for both the cases of propagating

(kIIIxn > 0) and evanescent (kIIIxn < 0) transverse modes.

∮
S3

Ē × H̄∗ · dŝ =

∫ h+d3

h

∫ w3

0

[
EIII
x ·HIII

y

∗ − EIII
y ·HIII

x

∗]
dx dy

For the case of propagating transverse mode (kIIIxn > 0):

∫ h+d2

h

∫ w2

0

EIII
x ·HIII

y

∗
=

N−1∑
n=0

(
k∗z
ωµ

)
·
(
nπ

d3

)2

·
∫ h+d3

h

∫ w3

0

sin2

(
nπy

d3

)
·

[
|aIIIn |2 + |bIIIn |2 − aIIIn bIIIn

∗
e2jkIIIxn x−

aIIIn

∗
bIIIn e−2jkIIIxn x

]
dx dy
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∫ h+d3

h

∫ w3

0

EIII
y ·HIII

x

∗
=

N−1∑
n=0

(
− k

∗
z

ωµ

)
·
∣∣kIIIxn

∣∣2 · ∫ h+d3

h

∫ w3

0

cos2

(
nπy

d3

)
·

[
|aIIIn |2 + |bIIIn |2 + aIIIn bIIIn

∗
e2jkIIIxn x+

aIIIn

∗
bIIIn e−2jkIIIxn x

]
dx dy

For the case of evanescent transverse mode (kIIxm < 0):

∫ h+d3

h

∫ w3

0

EIII
x ·HIII

y

∗
=

N−1∑
n=0

(
k∗z
ωµ

)
·
(
nπ

d3

)2

·
∫ h+d3

h

∫ w3

0

sin2

(
nπy

d2

)
·

[
|aIIIn |2e2|kIIIxn |x + |bIIIn |2e−2|kIIIxn |x−

aIIIn bIIIn

∗ − aIIn
∗
bIIIn

]
dx dy

∫ h+d3

h

∫ w3

0

EIII
y ·HIII

x

∗
=

N−1∑
n=0

(
− k

∗
z

ωµ

)
·
∣∣kIIIxn

∣∣2 · ∫ h+d3

h

∫ w3

0

cos2

(
nπy

d2

)
·

[
|aIIIn |2e2|kIIIxn |x + |bIIIn |2e−2|kIIIxn |x+

aIIIn bIIIn

∗
+ aIIIn

∗
bIIIn

]
dx dy

MLG Region I - TM mode

Similar to TE mode for Region I, the integration of the Poynting vector over

Region I for TM mode can be evaluated in closed form for both the cases of

propagating (kIxl > 0) and evanescent (kIxl < 0) transverse modes.

∮
S1

Ē × H̄∗ · dŝ =

∫ d1

0

∫ −w1

0

[
EI
x ·HI

y

∗ − EI
y ·HI

x

∗]
dx dy
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For the case of propagating transverse mode (kIxl > 0):

∫ h+d2

h

∫ w2

0

EI
x ·HI

y

∗
=

L∑
l=1

(
ωε

k∗z

)
· kIxl

2 ·
∫ d1

0

∫ −w1

0

sin2

(
lπy

d1

)
·

[
|aIl |2 + |bIl |2 − aIl bIl I

∗
e−2jkIxlx − aIl

∗
bIl e

2jkIxlx
]

dx dy

∫ d1

0

∫ −w1

0

EI
y ·HI

x

∗
=

L−1∑
l=0

(
−ωε
k∗z

)
·
(
lπ

d1

)2

·
∫ d1

0

∫ −w1

0

cos2

(
lπy

d1

)
·

[
|aIl |2 + |bIl |2 + aIl b

I
l I
∗
e−2jkIxlx + aIl

∗
bIl e

2jkIxlx
]

dx dy

For the case of evanescent transverse mode (kIxl < 0):

∫ d1

0

∫ −w1

0

EI
x ·HI

y

∗
=

L−1∑
l=0

(
ωε

k∗z

)
·
∣∣kIxl∣∣2 · ∫ d1

0

∫ −w1

0

sin2

(
lπy

d1

)
·

[
|aIl |2e−2|kIxl|x + |bIl |2e2|kIxl|x − aIl bIl

∗ − aIl
∗
bIl

]
dx dy

∫ d1

0

∫ −w1

0

EI
y ·HI

x

∗
=

L−1∑
l=0

(
−ωε
k∗z

)
·
(
lπ

d1

)2

·
∫ d1

0

∫ −w1

0

cos2

(
lπ

d1

)
·

[
|aIl |2e−2|kIxl|x + |bIl |2e2|kIxl|x + aIl b

I
l

∗
+ aIl

∗
bIl

]
dx dy

MLG Region II - TM mode

Similar to Region I, the integration of the Poynting vector over Region II of

the MLG can be evaluated in closed form for both the cases of propagating

(kIIxm > 0) and evanescent (kIIxm < 0) transverse modes.

∮
S2

Ē × H̄∗ · dŝ =

∫ h+d2

h

∫ w2

0

[
EII
x ·HII

y

∗ − EII
y ·HII

x

∗]
dx dy
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For the case of propagating transverse mode (kIIxm > 0):

∫ h+d2

h

∫ w2

0

EII
x ·HII

y

∗
=

M∑
m=1

(
ωε

k∗z

)
· kIIxm

2 ·
∫ h+d2

h

∫ w2

0

sin2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2 + |bIIm |2 − aIIm bIIm I

∗
e2jkIIxmx−

aIIm
∗
bIIme

−2jkIIxmx
]

dx dy

∫ h+d2

h

∫ w2

0

EII
y ·HII

x

∗
=

L∑
m=1

(
−ωε
k∗z

)
·
(
mπ

d2

)2

·
∫ h+d2

h

∫ w2

0

cos2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2 + |bIIm |2 + aIIm b

II
m

∗
e2jkIIxmx+

aIIm
∗
bIIme

−2jkIIxmx
]

dx dy

For the case of evanescent transverse mode (kIIxm < 0):

∫ h+d2

h

∫ w2

0

EII
x ·HII

y

∗
=

M∑
m=1

(
ωε

k∗z

)
·
∣∣kIIxm∣∣2 · ∫ d1

0

∫ −w1

0

sin2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2e2|kIIxm|x + |bIIm |2e−2|kIIxm|x−

aIIm b
II
m

∗ − aIIm
∗
bIIm
]

dx dy

∫ h+d2

h

∫ w2

0

EII
y ·HII

x

∗
=

M∑
m=1

(
−ωε
k∗z

)
·
(
mπ

d2

)2

·
∫ h+d2

h

∫ w2

0

cos2

(
mπ

d2

(y − h)

)
·

[
|aIIm |2e2|kIIxm|x + |bIIm |2e−2|kIIxm|x+

aIIm b
II
m

∗
+ aIIm

∗
bIIm
]

dx dy

MLG Region III - TM mode

Similar to Region I and II, the integration of the Poynting vector over Region

III of the MLG can be evaluated in closed form for both the cases of propagating
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(kIIIxn > 0) and evanescent (kIIIxn < 0) transverse modes.

∮
S3

Ē × H̄∗ · dŝ =

∫ d3

0

∫ w3

0

[
EIII
x ·HIII

y

∗ − EIII
y ·HIII

x

∗]
dx dy

For the case of propagating transverse mode (kIIIxn > 0):

∫ d3

0

∫ w3

0

EIII
x ·HIII

y

∗
=

N∑
n=1

(
ωε

k∗z

)
· kIIIxn

2 ·
∫ d3

0

∫ w3

0

sin2

(
nπy

d3

)
·

[
|aIIIn |2 + |bIIIn |2 − aIIIn bIIIn

∗
e2jkIIIxn x−

aIIIn

∗
bIIIn e−2jkIIIxn x

]
dx dy

∫ d3

0

∫ w3

0

EIII
y ·HIII

x

∗
=

N∑
n=1

(
−ωε
k∗z

)
·
(
nπ

d3

)2

·
∫ d3

0

∫ w3

0

cos2

(
mπ

d2

(y − h)

)
·

[
|aIIIn |2 + |bIIIn |2 + aIIIn bIIIn

∗
e2jkIIIxn x+

aIIIn

∗
bIIIn e−2jkIIIxn x

]
dx dy

For the case of evanescent transverse mode (kIIIxn < 0):

∫ d3

0

∫ w3

0

EIII
x ·HIII

y

∗
=

N∑
n=1

(
ωε

k∗z

)
·
∣∣kIIIxn

∣∣2 · ∫ d3

0

∫ w3

0

sin2

(
nπy

d3

)
·

[
|aIIIn |2e2|kIIIxn |x + |bIIIn |2e−2|kIIIxn |x−

aIIIn bIIIn

∗ − aIIIn

∗
bIIIn

]
dx dy

∫ d3

0

∫ w3

0

EIII
y ·HIII

x

∗
=

N∑
n=1

(
−ωε
k∗z

)
·
(
nπ

d3

)2

·
∫ d3

0

∫ w3

0

cos2

(
nπy

d3

)
·

[
|aIIIn |2e2|kIIIxn |x + |bIIIn |2e−2|kIIIxn |x+

aIIIn bIIIn

∗
+ aIIIn

∗
bIIIn

]
dx dy
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4.6 Coupling of Floquet Modes to Waveguide

Modes

To compute the scattering characteristics of the meanderline polarizer, solution

for the coupling of MLG modes to free space Floquet modes will be developed

in this section. Figure 4.7 illustrates the coupling between MLG and free space,

the coupling can be solved by matching the tangential electric and magnetic

fields at the junction between MLG and free space.

Bmlg

Amlg Afs

Bfs

U mode V mode

MLG Free Space

1 2

x = 0

Y

Z

Figure 4.7: Meanderline Waveguide to Free Space Junction

151



The electric and magnetic fields in the MLG can be represented by summa-

tion of waveguide modes,

Ēmlg =
U∑
u=1

(
Amlgu e−jkzz +Bmlg

u ejkzz
)
ēmlgu ·

√
ηmlgu

H̄mlg =
U∑
u=1

(
Amlgu e−jkzz −Bmlg

u ejkzz
)
h̄mlgu · 1√

ηmlgu

where Amlgu , Bmlg
u − modal coefficients

ēmlgu − normalized vector tangential electric field mode

h̄mlgu − normalized vector tangential magnetic field mode

ηmlgu − characteristic impedance of uth waveguide mode

In free space, the electric and magnetic field is represented by summation

of Floquet modes,

Ēfs =
V∑
v=1

(
Afsv e

jkzz +Bfs
v e
−jkzz

)
ēfsv ·

√
ηfsv

H̄fs =
V∑
v=1

(
Afsv e

jkzz −Bfs
v e
−jkzz

)
h̄fsv ·

1√
ηfsv

where Afsv , B
fs
v − modal coefficients

ēfsv − normalized vector tangential electric field mode

h̄fsv − normalized vector tangential magnetic field mode

ηfsv − characteristic impedance of vth Floquet mode

Matching the tangential electric field at the meanderline waveguide – free space

junction in Figure 4.7:

U∑
u=1

(
Amlgu +Bmlg

u

)
ēmlgu ·

√
ηmlgu =

V∑
v=1

(
Afsv +Bfs

v

)
ēfsv ·

√
ηfsv
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Taking the inner product of h̄fs∗w with both sides and integrating over free space

grid interface Sfs:

U∑
u=1

√
ηmlgu

(
Amlgu +Bmlg

u

)
·
∫∫

Sfs

(ēmlgu × h̄fs∗w ) · ẑ ds =

V∑
v=1

√
ηfsv
(
Afsv +Bfs

v

) ∫∫
Sfs

(ēfsv × h̄fs∗w ) · ẑ ds

Applying orthogonality of Floquet modes,

Afsv +Bfs
v =

U∑
u=1

(
Amlgu +Bmlg

u

)
·

√
ηmlgu

ηfsv

∫∫
Smlg

(ēmlgu × h̄fs∗v ) · ẑ ds

In matrix notation,

[
Afs] + [Bfs

]
= [H]

([
Amlg] + [Bmlg

])
Matching the tangential magnetic field at the meanderline waveguide – free

space junction in Figure 4.7:

U∑
u=1

(
Amlgu −Bmlg

u

)
h̄mlgu ·

√
1

ηmlgu

=
V∑
v=1

(
−Afsv +Bfs

v

)
h̄fsv ·

√
1

ηfsv

Taking the inner product of ēfs∗w with both sides and integrating over free space

grid interface Smlg:

U∑
u=1

√
1

ηmlgu

(
Amlgu −Bmlg

u

)
·
∫∫

Smlg

(ēmlg∗w × h̄mlgu ) · ẑ ds =

V∑
v=1

√
1

ηfsv

(
−Afsv +Bfs

v

)
·
∫∫

Smlg

(ēmlg∗w × h̄fsv ) · ẑ ds
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Applying orthogonality of waveguide modes,

Amlgu −Bmlg
u =

V∑
v=1

(
Bfs
v − Afsv

)
·

√
ηmlgu

ηfsv
·
∫∫

Smlg

(ēmlg∗u × h̄fsv ) · ẑ ds

In matrix notation,

[
Amlg]− [Bmlg

]
= [R]

([
Bfs]− [Afs

])

4.7 Root Finding Optimization

For any numerical technique to be a practical design tool, computation effi-

ciency is one of the key requirement. In this section, the computation time

required for various stages of meanderline analysis will be profiled. It will be

shown that the root searching process dominates majority of the CPU time in

a design cycle. An approach based on Singular Value Decomposition (SVD)

and Golden Ratio Search (GRS) technique will be presented. Benchmarking

showed that this proposed approach can reduce the root search time by half.

4.7.1 Profiling of Meanderline Polarizer Analysis

The flowchart for a meanderline polarizer analysis is illustrated in Figure 4.8

below. The key routines are root search, computation of coefficients, coupling

coefficients, GSM computation. To determine the computational resources re-

quired, profiling simulation was carried out for a 3-layer polarizer whose dimen-

sions are given in Table 4.1 and layout depicted in Figure 5.5.
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Yes

No

Determine TE & TM
MLG cutoff wavenumbers

Compute TEM, TE & TM Coefficients

Compute MLG - Free Space Coupling

Cascade GSM

Compute GSM of Interface

Last Layer ?

Figure 4.8: Flowchart of meanderline polarizer analysis

Table 4.1: Meanderline parameters for profiling analysis

(unit=inch) Tx Ty w1 w2 w3 d1 d2 d3

Grid #1, #3 0.15 0.277 0.0325 0.01 0.0325 0.267 0.124 0.267

Grid #2 0.15 0.277 0.0325 0.01 0.0325 0.267 0.08 0.267
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metallic grid   -   1/2 Cu

dielectric substrate   -   2 mil , er = 3.25

bonding film   -   1.5 mil , er = 2.32

bonding film   -   1.5 mil , er = 2.32

dielectric substrate   -   2 mil , er = 3.25

metallic grid   -   1/2 Cu

bonding film   -   1.5 mil , er = 2.32

bonding film   -   1.5 mil , er = 2.32

dielectric substrate   -   2 mil , er = 3.25

metallic grid   -   1/2 Cu

Rohacell   -   133 mil , er = 1.08

Rohacell   -   133 mil , er = 1.08

Figure 4.9: Layout of 3-layer meanderline polarizer for profiling simulation

A computer running on Intel Core 2 Duo T8100 2.1GHz CPU with 3GB of

DRAM was used for this analysis. Although the processor is dual core, only a

single CPU is utilized during the profiling. No code parallelization is carried

out to minimize distortion of results due to parallelization issues such as load

balancing, latency and bandwidth.

The total CPU time required to perform the analysis is 75.6 secs and the

percentage breakdown for various subroutines in the analysis are plotted in

Figure 4.10. The profiling revealed that the root search algorithm accounts for

more than 80% of the total CPU time in an analysis cycle. The total memory

required to perform the analysis is less than 30 MByte and can be easily handled

by modern personal computers. For the algorithm to be a practical design tool,

low CPU time is critical as this will lend itself well to optimization routines.
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Figure 4.10: Profile of typical meanderline polarizer analysis

The conventional approach to finding the roots of a meanderline guide is

to track the complex determinant of the characteristic equation while incre-

menting the cutoff frequency, kc, in small steps. When the real and imaginary

part of the complex determinant is zero, the kc is flagged as a valid root (cut-

off frequency) for the meanderline waveguide. Although the concept appears

intuitively simple, this method suffers from a number of deficiencies.

A plot of the complex determinant against kc for the TE meanderline waveg-

uide modes is shown in Figure 4.11. It can be seen that the real and imaginary

part of the determinant fluctuate incoherently across frequencies. Both the real

and imaginary components of the determinant need to be tracked as it is not

necessary that both values will exhibit zero crossing characteristics, Figure 4.12.

Many iterations are thus required to discern the valid roots from the multitude

of false positives. In addition, a small ∆kc is also necessary in order not to miss

any valid roots which can be spaced very closely apart – such as the adjacent

roots 145.278 and 145.381. However, a small ∆kc will increase the number

of computations required. An adaptive ∆kc could reduce the number of com-
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putations but the unpredictable fluctuation would make such implementation

difficult. The complexity of tracking both the real and imaginary components,

coupled with the small ∆kc, resulted in the root search algorithm accounting

for more than 80% of the total CPU time in an analysis cycle.

Figure 4.11: Complex determinant versus cutoff wavenumber for TE meander-
line waveguide modes

Figure 4.12: Incoherent behaviour and closely spaced roots for TE meanderline
waveguide modes
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4.7.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a powerful factorization technique

for dealing with matrices that are either singular or numerically very close to

singular [51; 52]. Since the characteristic equation is singular at all valid kc, the

SVD will be a very efficient alternative for determining the cutoff frequencies

of the meanderline waveguide.

By definition, the SVD of the m×m complex characteristic matrix M is a

factorization of the form,

M = UΣV ∗

where U is an m×m complex unitary matrix, Σ is an m×m diagonal matrix

with non-negative real numbers on the diagonal, and V ∗ is an m×m complex

unitary matrix. The diagonal entries Σj,j of Σ are known as the singular values

of M.

Using the previous meanderline polarizer, the singular value Σm,m of the

characteristic equation for the meanderline waveguide is plotted against the

kc, Figure 4.13. The results revealed that the behavior of Σm,m is very well

behaved compared to the complex determinant in Figure 4.11. In addition,

the minima of Σm,m indicates location of possible roots for the characteristic

equation. Finally, there are two distinct orders of magnitude in the minima of

the singular values, those larger than 10−5 and those smaller than 10−7.

To compare the use of SVD against Bisection method, the singular values

and complex determinant are plotted together in Figure 4.14. Using SVD, the

false root around 141.2 can easily be classified. Four valid roots between 144 –

147 are distinguished by their singular values which are less than 10−7.
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Figure 4.13: Singular value versus cutoff wavenumber for TE meanderline
waveguide modes

Figure 4.14: Singular value and complex determinant versus cutoff wavenumber
for TE meanderline waveguide modes

160



4.7.3 Golden Ratio Search

The golden ratio search (GRS) is a technique for finding the extremum of a func-

tion by successively narrowing the range of values inside which the extremum

is known to exist [49]. The concept for a single iteration is illustrated in Figure

4.15. For a minima is bounded between x1 and x3, the function values, f(x2)

and f(x4), at two other points, x2 and x4, are first evaluated. If f(x4) is less than

f(x2), it implies that the minima is bounded within the region between x3 and

x3. Whereas, the minina is bounded between x1 and x4 if f(x4) is greater than

f(x2). In either case, the new search range is now narrowed and the process

repeated until a required accuracy for the mimina is achieved.

f(x1)

x1 x3x2 x4

c

a b

f(x2)

f(x4)

f(x3)

Figure 4.15: Golden section search

The choices of x2 and x4 can be arbitrary but if they are chosen such that

the same proportion of spacing is maintained throughout the iteration, it will

ensure that the point x2 will not be too close to either x1 or x3. In addition,

the interval will be reduced by the same constant proportion in each step. To

maintain the same proportion of spacing,
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c

a
=
a

b
(4.34)

c

b− c
=
a

b
(4.35)

The two simultaneous equations will yield the following constraint,

b

a
=
a

c
= ϕ

where ϕ is the well known golden ratio:

ϕ =
1 +
√

5

2
= 1.618033988...

The GRS method is a robust and efficient method in which only one function

evaluation is required after the first iteration. The reduction in search range is

38.2% after each iteration and independent of the function behavior.

4.7.4 SVD–GRS Implementation

To compute the value of the minima, it is necessary to first bound the minima

within a range of kc. This is easily accomplished by detecting a negative to

postive change in the gradient of Σm,m. Once this range is identified, the GRS

method described previously is employed to converge to the local minimum

singular value. The order of magnitude of the minima value will then indicate

if the singular value is a valid root.

The relatively smooth varying nature of Σm,m lends itself well to adaptive

search technique in which the step size ∆kc is proportional to the value of

Σm,m. Once a minimum is identified, the singular value at the location can be

efficiently tested to determine if it is a valid or false root.

Using the 3-layer meanderline polarizer in Figure 5.5 and Table 4.1, the total

162



time taken to compute the valid roots are plotted for both the Bisection and

SVD–GRS method in Figure 4.17. While this SVD–GRS method requires an

additional step of computing for the singular values, the reduction in number of

iterations and use of adaptive ∆kc almost halved the time required to analyze

the meanderline polarizer.

Figure 4.16: Profile of Bisection and SVD–GRS methods

To verify that this root finding approach is scalable with the complexity of

the problem, the total CPU time taken to analyze the meanderline polarizer is

plotted against an increasing number of MLG modes used to model the prob-

lem. The results plotted in Figure 4.17 showed that this SVD–GRS approach

achieved speed improvement consistently even as the complexity of the problem

increases.
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Figure 4.17: CPU time versus number of MLG modes

In summary, the SVD–GRS method improves the efficiency of the root

search algorithm by making use of characteristic equation’s singular values in-

stead of direct tracking of the complex determinant. The advantages of this

approach are (1) better differentiation between false and real roots, (2) faster

convergence due to well behaved response around the roots of the characteris-

tic equation, and (3) ease of incorporating adaptive search technique to further

improves computational efficiency.
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Chapter 5

Validation of Proposed

Numerical Technique

The theoretical formulation of the proposed techique presented in Chapter 4 was

verified through comparison with other numerical techniques and measurement

data reported in open literatures.

5.1 Meanderline Waveguide Cutoff Frequencies

Each of the meanderline cutoff wavenumber constitutes a MLG mode used to

represent the field distribution in the unit cell. To verify the accuracy of the

proposed formulation in determining the cutoff wavenumbers, results of the

cutoff frequencies for the meanderline waveguide cross section illustrated in

Figure 5.1 were compared against results obtained using the Finite Element

Method (FEM). The dimensions of the meanderline waveguide cross section

were based on the meanderline grids published by Terret et al. [9].

Table 5.1 lists the first 10 cutoff frequencies computed using the two meth-

ods. Both the proposed technique and FEM showed very good agreement with

each other. On a computer equipped with Intel 2.1 GHz T8100 CPU, the time
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0.955

0.25
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RW

X

9.91

9.91

3.05

PEC

PEC

unit = mm

Figure 5.1: Dimensions of meanderline waveguide

taken to compute the cutoff frequencies using the proposed technique is 8 secs

while FEM requires 44 mins.

Table 5.1: Cutoff frequencies for waveguide illustrated in Figure 5.1

Cutoff Frequency (GHz)

Mode No. Proposed Technique FEM

1 14.1 14.0

2 22.1 22.0

3 30.5 30.5

4 45.2 45.2

5 58.6 58.4

6 63.4 63.2

7 68.6 68.3

8 72.7 72.7

9 74.7 74.5

10 77.7 77.6
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5.2 Single Layer Polarizer

The theoretical formulation presented in chapter 4 was verified by predicting

the transmission phases of meanderline grids printed on a dielectric substrate

as shown in Figure 5.2. Measurement results for two such grids were published

by Terret et al. [9]. The dimensions of both grids are listed in Table 5.2.

A metallization thickness of 0.036 mm (1.4 mil), which is equivalent to 1 oz

copper, is assumed as the grid thickness was not published by the author. The

transmission phases and the differential phase shift of the TE00 and TM00 modes

for Grid A are plotted in Figure 5.3.

w1

w2
w3

Tx

Ty
h

td

tg

SubstrateMeanderline grid

Figure 5.2: Geometry of meanderline polarizer by Terret et al.

Table 5.2: Dimensions of meanderline grids

(unit=mm) Tx Ty w1 w2 w3 h td tg

Grid A 4.32 10.16 0.955 0.25 0.955 3.05 0.254 0.036

Grid B 4.32 10.16 0.915 0.33 0.915 3.73 0.254 0.036
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Figure 5.3: Differential phase shift of TE00 and TM00 modes for Grid A

For the simulation, the highest MLG cutoff wavenumber required for con-

vergence is approximately 3.3 rad/mm. This yields 40 MLG modes for the

PMC sidewalls and 32 MLG modes for the PEC sidewalls. To generate these

MLG mode, the number of functions used in region I, II and III is L = 13, M

= 9 and N = 13, respectively. The number of free space Floquet modes used

to compute the scattering characteristics was 138, corresponding to a highest

cutoff wavenumber of approximately 4.4 rad/mm. To ensure proper convergent

behavior, the number of field expansion functions in both grids were chosen

such that the mode ratio between the regions is as close as possible to the

height ratio of the MLG step junctions [53–57]. The result using the proposed

method compares well with published measurement data by Terret et al. [9]

and FEM simulation using ANSYS HFSS, Figure 5.3. A total of 12 frequency

points were simulated on a computer equipped with Intel 2.1 GHz T8100 CPU.

The proposed method and FEM took 24 secs and 310 secs, respectively. The

amount of computer memory utilized was 6 MB for the proposed method and

95 MB using FEM.
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For Grid B, 32 and 33 MLG modes were used for the case of PMC and PEC

sidewalls, respectively. The number of expansion functions in the 3 regions are

13, 8 and 13. Similar to Grid A, 138 free space Floquet modes were used to

compute the scattering characteristics. The differential phase shift measured

by Terret et al. [9] is compared against results computed using the technique

proposed in chapter 4 and FEM solution obtained using ANSYS HFSS. The

results in Figure 5.4 showed that the proposed technique exhibits very good

agreement with measurement data and FEM solution. Between the proposed

method and FEM, the difference is less than 1 degrees.

On a computer equipped with Intel 2.1 GHz T8100 CPU, the time and

memory required to compute the results using the proposed technique were

22 secs and 6 MB. In contrast, FEM took 370 secs and 105 MB.

Figure 5.4: Differential phase shift of TE00 and TM00 modes for Grid B
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5.3 Multi-Layer Polarizer

To evaluate the accuracy of the proposed method for multi-layered polariz-

ers. The axial ratio of a microwave polarizer for LEO satellite communications

was computed and compared with measurement results published by [3]. The

polarizer was constructed from three layers of meanderline grid separated by

Rohacell spacers, Figure 5.5. The dimensions of the individual grid geometries

are tabulated in Table 5.3 with Grid #1 and #3 being identical.

Table 5.3: Dimensions of multi-layer polarizer grids

(unit=mil) Tx Ty w1 w2 w3 h

Grid #1, #3 150 277 32.5 10 32.5 143

Grid #2 150 277 32.5 10 32.5 187

The three meanderline grids were etched on polyimide substrates and bonded

to two layers of support foam using epoxy. The material thickness and proper-

ties of the polarizer constituents are tabulated in Table 5.4.

Table 5.4: Composition of multi-layer polarizer

Layer Material Thickness Permittivity

grid copper 0.7 mil –

substrate polyimide 2 mil 3.25

epoxy prepreg 1.5 mil 3.4

support rohacell 133 mil 1.08
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metallic grid # 1

dielectric substrate # 1

epoxy

epoxy

dielectric substrate # 2

metallic grid # 2

epoxy

epoxy

dielectric substrate # 3

metallic grid # 3

w1

w2
w3

Tx

Ty
h

Support

Support

Figure 5.5: Geometry and structure of multi-layer polarizer

Simulation was conducted using three numerical techniques: the technique

proposed in Chapter 4, the finite element method, and the moment method.

Using the proposed technique, the highest MLG cutoof wavenumber required for

convergence was approximately 6.69 rad/mm. For TM incidence, this yielded

83, 81 and 83 MLG modes for Grid #1, #2 and #3, respectively. For TE

incidence, Grid #1, #2 and #3 were represented by 90, 88 and 90 MLG modes,

respectively. The number of waveguide functions used in Region I, II and II of

Grid #1 and #3 was L = 15, M = 7 and N = 15, respectively. For Grid #2,

the number of waveguide functions used in Region I, II and II of Grid #1 and

#3 was L = 15, M = 4 and N = 15, respectively. A total of 242 and 274 free

space Floquet modes were used to compute the scattering characteristics for

TM and TE incidence, respectively.

The finite element and moment method computations were carried out us-

ing ANSYS HFSS and ANSYS Designer, respectively. For the finite element

method, adaptive meshing and Floquet ports were employed to model the multi-

layer polarizer. With the convergence criteria set to be less than 0.02, solutions

for adaptive meshing at three different frequencies (30, 40, and 50 GHz).
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The on-axis axial ratio computed using the proposed technique, finite ele-

ment method, and moment method are compared with measurement data [3]

in Figure 5.6. The results showed that solution computed using the proposed

technique has good agreement with the measured data and moment method

solution. It is also interesting to note that the finite element method solution,

which showed discrepancies at higher frequencies, appeared to converge towards

the measured data when the adaptive meshing frequency was increased from

30 to 50 GHz. The probable reason is the difficulty in modeling thin metalliza-

tion thickness accurately in the presence of relatively thick dielectric layers and

conductor width.

On a computer equipped with Intel 2.1 GHz T8100 CPU, the proposed

method took an average of 38 secs per frequency point and 50 MB of memory.

In comparison, the finite element method using 30 GHz mesh required 420 secs

per frequency point and approximately 750 MB of memory. Using 50 GHz

mesh, the finite element method required 6700 secs per frequency point and

2.7 GB of memory.

Figure 5.6: Measured and computed axial ratio of multi-layer polarizer
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5.4 Effect of Grid Metallization Thickness

In this section, the effect of grid metallization thickness on single layer and

multi-layer polarizer are investigated. Standard copper weights of 0.5-, 1.0-

, 2.0- and 4.0-oz will be analyzed. The corresponding relationship between

copper weight and metallization thickness is tabulated in Table 5.5.

Table 5.5: Copper weight versus metallization thickness

Copper weight Metallization thickness

(oz) (mil)

0.5 0.7

1.0 1.4

2.0 2.8

4.0 5.6

5.4.1 Single Layer Polarizer

The two single layer polarizers discussed in Section 5.2 are analyzed for grid

thickness tabulated in Table 5.5. The differential phases of the two grids are

shown in Figures 5.7 and 5.8. For every 0.5-oz increase in copper weight,

the differential phase shift increases by approximately 0.25 degree. Similar

responses were obtained when the polarizers are solved using FEM, Figures 5.9

and 5.10. The increase in differential phase shift due to metallization thickness

becomes problematic, if not corrected, in a multi-layer low axial ratio polarizer

design.
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Figure 5.7: Effect of grid thickness on differential phase of Grid A – proposed
method

Figure 5.8: Effect of grid thickness on differential phase of Grid B – proposed
method
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Figure 5.9: Effect of grid thickness on differential phase of Grid A – FEM

Figure 5.10: Effect of grid thickness on differential phase of Grid B – FEM
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5.4.2 Multi-layer Polarizer

The axial ratio of the multi-layer polarizer for different grid metallization thick-

ness are plotted in Figure 5.11. For frequencies below 13.5 GHz, the axial ratio

of this polarizer can be improved by using copper weight of 1-oz. However, at

higher frequencies, changing the copper weight from 0.5-oz to thicker metal-

lization can degrade the axial ratio by up to 1.5 dB. Unlike the case for single

layer polarizer, the relationship between metallization thickness and axial ra-

tio / differential phase shift for a multi-layer polarizer is not straightforward.

Therefore, an analysis method that can account for the finite grid thickness is

especially important in order to achieve an optimized polarizer design. From

the perspective of both numerical accuracy and computational efficiency, the

proposed method is well suited to be a synthesis and analysis tool for microwave

polarizer design.

Figure 5.11: Effect of grid thickness on axial ratio of multi-layer polarizer
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Chapter 6

Conclusions and Future Work

Effective design and implementation of microwave polarizers are important

given the wide-ranging applications of polarizer in both commercial and mil-

itary systems. This thesis presents research work on two important aspects:

novel design of polarization rotator which is practical to implement and devel-

opment of a numerical approach for accurate and efficient analysis of polarizer.

Polarization rotators, which are very useful in systems that requires polar-

ization tracking capability, are complex and cumbersome to realize in practice

because conventional design requires multiple rotating layers to achieve arbi-

trary rotation of polarization angle. A design that minimizes the number of

rotating layers has far ranging impact as it will significantly reduce the overall

system complexity. In this thesis, a polarization rotator design that utilizes

two 90◦ polarizers and a linear grid constructed in a stacked configuration is

proposed. This novel design can achieve arbitrary polarization rotation angle

using one and at most two rotating layers while providing up to 25 dB cross po-

larization isolation required for VSAT applications. The viability of this design

has been validated through simulation and measurement.

Effective design of microwave polarizer requires both accurate and efficient

numerical modelling. Accuracy minimizes the number of fabrication iterations
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required and efficiency determines the number of optimization cycle that can

be carried out within a given schedule. For high performance microwave po-

larizer that demands good axial ratio performance, approaches based on grid

current or moment method are unable to account for the finite thickness of the

grid metallization; and it was shown that metallization thickness does have an

impact on the performance of the polarizer.

To model the finite metallization thickness, methods such as the popular

finite element method could theoretically be used. However, it was shown that

as the number of grid layers increases, the computational time required using

the finite element method increases tremendously. The reason is because the

ratio of spacer to grid thickness is approximately two orders of magnitude and

this requires very dense meshing around the grid metallization.

In this thesis, a new technique that utilizes transverse resonance technique

coupled with singular value decomposition and generalized scattering matrix

is proposed. The meanderline grids are first modelled as periodic finite length

waveguides. Transverse resonance and SVD are then applied to determine the

mode cutoff frequencies of the waveguides. GSM is then used to compute the

interactions of both propagating and evanescent waveguide modes with the free-

space Floquet modes. Comparison with measurements and FEM simulations

showed that the proposed method is an accurate and efficient technique for the

analysis and design of microwave polarizer.
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6.1 Recommendations for Future Work

There is a constant need for better microwave polarizers as these are very cost

effective solutions compared to alternatives such electronic polarization tuning.

While this thesis has addressed challenges in polarizer design and analysis, there

are a number of areas that can be investigated to further the work developed

in this thesis,

1. Optimization of polarizer design. Today, design optimization algorithms

are still mainly confined to variants of parametric search routines. Inves-

tigation and development of design rules will be very useful for achieving

either faster convergence or better performing polarizers.

2. Analysis for off normal incidence. The proposed new technique for anal-

ysis of polarizer with finite metallization thickness is currently limited

to on axis incidence. Extension to off axis incidence by including phase

shift boundary conditions will enable design of microwave polarizer for

scanning array.

3. Exploitation of additional degree of freedom. To date, all polarizer de-

signs are based on the optimization of planar structures such as me-

anderline and linear grids. The additional degree of freedom that is

now available from the proposed technique in this thesis can potentially

enable development of higher performance microwave polarizer.
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