

Founded 1905

WEARABLE ROBOTIC SYSTEM FOR INTERACTIVE

DIGITAL MEDIA

WANG BIN

(B.Eng., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

 II

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all the sources of information which have been used

in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Wang Bin

10 Apr 2012

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Shuzhi Sam

Ge who has inspired me into this research direction and guided me throughout the

whole journey.

I would also like to give my sincere thanks to my co-supervisor Professor Tong Heng

Lee for his guidance, teach and support to my research.

I would like to appreciate the support and helpful discussions on my research work

from Dr He Wei, Mr Zhang Qun, Dr Tao Pey Yuen, Ms He Peiwen and Mr Bian

Haojie from the Edutainment Robotics Lab, Department of Electrical and Computer

Engineering, the National University of Singapore (NUS). Same thanks go to Mr

Benny Jaya and Ms Joleen Seto from Portege Pte Ltd for the support on the

experiments of this thesis.

Last but not least, I would also like to give my special thanks to my family who have

given me unyielding support.

 IV

Summary

This thesis studies the design and development of Wearable Robotic System (WRS)

for Interactive Digital Media (IDM). WRS is defined as a wearable device system

that user can wear on the body and use motion and gesture to interact with the digital

contents naturally on computer. The research work includes design and development

of a wearable robotic system for human gesture and motion detection, design and

development of a wireless Universal Serial Bus (USB) plug-and-play device to

interface to computer, and development of an interactive Taichi game played by WRS

for exercises.

The current solutions of Human Computer Interface (HCI) that people use in daily

life mainly include flat keyboard, joysticks and mouse. This research work mainly

contributed on developing a wearable robotic system to improve the current HCI on

mobility and interactivity and provide computer game players with intuitive,

interactive, immersive and convenient user experiences.

� The first part of the thesis focuses on the design and development of an

embedded system of wearable robotic sensory device for human motion and

gesture capture. A mathematical model for gesture recognition is proposed and

experiments are set up to investigate on the proposed model. This part of the

thesis also illustrates on the detail process on the design and implementation of a

wireless USB cross platform plug and play human-machine interfacing device

such that the system can work wirelessly and does not need users to install

additional driver.

 V

� Second part of the thesis focuses on developing of an interactive Taichi game on

computer to be played by the wearable robotic system developed in this project.

The aim is to develop an interactive digital application to illustrate the

application of WRS. A complete development cycle for creating interactive

digital contents on WRS is elaborated. A total of 20 game testers participated the

game play testing and the game play scores are discussed.

 VI

Contents

DECLARATION II

ACKNOWLEDGEMENTS III

LIST OF FIGURES IX

LIST OF SYMBOLS XII

CHAPTER 1. INTRODUCTION 13

1.1. Overview 13

1.2. Problem Statement and Motivation 14

1.3. Objective 15

1.4. Contributions 17

CHAPTER 2. LITERATURE REVIEW 19

2.1. State of Art Solutions 20

2.2. Wireless Communications 22

2.2.1. Comparison of Existing Wireless Technology 23

2.3. Cross Platform and Plug Play implementation through USB 26

2.3.1. HID libraries Integration Algorithms Design 27

2.3.2. Intellectual Property Protection 30

CHAPTER 3. DEVELOPMENT OF WEARABLE ROBOTIC SYSTEM 31

3.1. System Architecture 31

3.2. Development of the Wearable Sensory Module 34

3.2.1. Version 1: Light Dependent Sensor Glove 34

3.2.1.1. Microcontroller: the Computational Unit 34

 VII

3.2.1.2. Sensor Fusion Module 35

3.2.2. Version 2: Full Body Wearable Sensor System 36

3.2.2.1. The Sensor Fusion Module 38

3.2.2.2. Computational Unit Development 42

3.3. Development of Wireless Cross-Platform USB Interface Module 55

3.3.1. Selection of Chip Model 56

3.3.2. Circuit design 58

3.3.3. Firmware Development 60

3.3.3.1. Device Configuration Level Design 61

3.3.3.2. Interface Level Design 61

3.3.3.3. Descriptor Design 62

3.4. Prototype evaluation and Gesture Reorganization 63

3.4.1. Experiment 63

3.4.1.1. System Integration 63

3.4.1.2. Hardware Setup 63

3.4.1.3. Software Setup 65

3.4.2. Sensor Output and Gesture Recognition 65

3.4.2.1. Mathematical Model for Gesture Recognition with the Inertial System 65

3.4.2.2. Experiment Data and Discussion 68

3.4.3. Code implementation and Simulation 70

CHAPTER 4. INTERACTIVE DIGITAL APPLICATION DEVELOPMENT 72

4.1. General Game Production Pipeline 76

4.1.1. Concept Phase 77

4.1.2. Concept Art 77

4.1.3. Low Polygon Modeling 78

4.1.4. UV Layout 78

 VIII

4.1.5. Texturing 80

4.1.6. Rigging and Animation 81

4.1.7. Lighting in this project 81

4.1.8. Concept and Presentation Rendering 82

4.2. Implementation 82

4.2.1. Plug-in 83

4.2.2. Object Integration in Unity 83

4.2.3. Effects, Shader Programming 83

4.2.4. Sound 84

4.2.5. Motion Data Library and Gesture Control User Interface 85

4.2.5.1. Motion Data Library for Game Scoring Mechanism 85

4.2.6. Game Testing and Result Discussion 86

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 89

BIBLIOGRAPHY 90

ANNEX A: MICROCONTROLLER FIRMWARE 95

ANNEX B: HID FIRMWARE IN USB 99

ANNEX C: WIN32 CLASS DRIVER TO READ WRS DATA 105

ANNEX D: AVATAR CONTROL 110

ANNEX E: GAME SCORING SYSTEM FOR TAICHI 119

 IX

List of Figures

Figure 1: WRG System in Imaginary Movie Minority Report 14

Figure 2: Wireless Data Technologies 24

Figure 3: Parameter Comparisons of Wireless Data Technologies 24

Figure 4: Wireless Data Rate and Latency for Various Applications 25

Figure 5: HID Device Driver 27

Figure 6: HID Class Driver 28

Figure 7: USB Descriptor 30

Figure 8: WRS System Diagram 32

Figure 9: Flowchart of WRS 33

Figure 10: Top View and Side Perspective View 34

Figure 11: LDR Solution Prototype 35

Figure 12: LDR Sensor Fusion Version 1.2 36

Figure 13: Ergonomics Design of Wearable Sensor System 37

Figure 14: Electronics of Wearable Sensor System 37

Figure 15: WRS Sensor System 38

Figure 16: Simplified Transducer Physical Model 39

Figure 17: Accelerometers versus coin 39

Figure 18: Simplified accelerometer functional block diagram 40

Figure 19: The basic connection diagram of motion sensing module 40

 X

Figure 20: Data of noise level for acceleration 41

Figure 21: Pin diagram of 44-Pin PIC18 series MCU 43

Figure 22: The key elements of viewer environment 46

Figure 23: key point of schematic design 47

Figure 24: An example of using PCB Board Wizard 49

Figure 25: PCB Design Rule Editor Interface 49

Figure 26: Wireless Sensor Network 55

Figure 27: Comparison of different wireless chips 56

Figure 28: Comparison of different wireless chips 57

Figure 29a: Schematic design of USB receiver 58

Figure29b: Pin configuration for NRF chip 59

Figure 30: Routing of USB device 59

Figure 31: Actual Board of USB Receiver 60

Figure 32: Descriptor Design 62

Figure 33: System Integration 63

Figure 34: Interfacing with Windows on Personal Computers 64

Figure 35: Wearable Sensor Evaluation Set Up 64

Figure 36: the testing software operation 65

Figure 37: Model for Gesture Recognition 66

Figure 38: Accelerometer z axis sensor output 68

Figure 39: Accelerometer x axis sensor output 68

Figure 40: Accelerometer y axis sensor output 69

Figure 41: Arm Raise Simulation Using Game 71

 XI

Figure 42: Interactive Tai Chi game played by WRS by Testers 73

Figure 43: Game Structure 74

Figure 44: Sketch up for concept design 76

Figure 45: Sketch up for concept design 77

Figure 46: UV menu in Mava 79

Figure 47: Exported file 79

Figure 48: Sketch up for concept design 80

Figure 49: Character 81

Figure 50: Lighting 82

Figure 51: Shader 84

Figure 52: Form 3 Motion data recorded from Taichi master 86

Figure 53: Game Testing of Interactive Taichi Game 87

Figure 54: Game Score of 20 Testers 87

 XII

List of Symbols

HCI Human Computer Interface

HRI Human Robot Interface

WRG Wearable Robotic Glove

LDR Light Dependent Resistance

WRS Wearable Robotic System

IDM Interactive Digital Media

USB Universal Serial Bus

HID Human Interface Device

 13

Chapter 1. Introduction

1.1. Overview

In this thesis, the research work of design and implementation of Wearable Robotics

System through Sensor Fusion (WRS) for Interactive Digital Media is presented and

discussed.

The traditional human computer interface (HCI) has limitations. The keyboard and

mouse requires the users to remain at one position to perform typing keys and moving

mouse which limits their freedom. While wireless versions of these peripherals are

available, it is still not possible for users to use a mouse without a desk or a flat

surface. Research has shown that 70 percent of all meaning for human interactions are

derived from nonverbal body language which involves body motion, gesture and

facial expressions [1]. As such, to move beyond the limitations of current human

computer interface and towards the scenario portrayed in Minority Report shown in

Figure 1, this research work develops a wearable robotic system which incorporate

the motion and gesture into HCI. The user wears the WRS on different parts of the

body such as wrist and ankle. The WRS is able to capture the user’s motion and

gesture and wirelessly transmit the information to a USB device which is plugged into

the computer. These motions will have to be interpreted by the system into commands

to the computer by this USB device.

 14

Figure 1: WRG System in Imaginary Movie Minority Report

1.2. Problem Statement and Motivation

Currently the interface for human computer interaction mainly comprises flat

keyboard, mouse and pad-like controllers for entertainment purposes. The flat

keyboard has to be statically put on a surface for typing, and the mouse function are

separated from the keyboard which requires the hand of the user to constantly switch

control between mouse and keyboard which results in a reduction of interactivity and

enjoyment in entertainment. Research has shown that the long time usage of keyboard

and mouse interface could result in tiredness and even occupational disease such as

carpal tunnel syndrome [2]. Hence design a more interactive and mobile interface for

HCI is the objective of this project.

In this research work, the aim is to research and develop wearable robotic devices to

enhance interaction experiences for the user with digital media in daily life. The

research work of Wearable Robotics for Interactive Digital Media focuses on

improving human machine interaction experience through wearable robotic

technology, in particular catering for the interaction with digital media contents and

applications. The research approach is adopted from the standpoint of wearable

 15

robotics, since many of the latent issues [7, 8] in next-generation human-computer

interfaces, including real-time computational processes [9,10,11], sensor fusion [12],

intelligent system [13,14], wireless sensor network, have already been studied

extensively by the robotics community, and some of these fields including sensors

have since matured and developed results in technologies [15] that can be further

studied for potential extensions to human-computer interfaces.

In recent years, wearable robotics has become a reality with the development of

military robotic exoskeletons [3, 4, and 5] which extends the lifting capabilities and

endurance of soldiers beyond human limitations. Wearable robotics [6] is defined as

robots that are self-contained and/or part of a distributed system of robots that can

function as or be integrated with our clothing and accessories. In contrast to

conventional concept of ‘robots’ as anthropomorphic or animal-like machines with

mobility and intelligence, we generalize our understanding of ‘robots’ as agents with

sensing and information processing capability, which interact with the physical world.

In general, robots need not have mobile arms or legs, but can be a ubiquitous artifact,

such as a chair. They do not even need to be able to move, but just have means of

interaction with the world, through capturing user’s motion and gesture.

1.3. Objective

The research work has the following objectives:

� To investigate on the gesture recognition model using accelerometer, and hence

develop the wearable robotic sensory device for human motion and gesture

 16

capture. Investigate on the best solution to achieve a wireless USB plug and play

interfacing device

� To built and test on a workable prototype to prove the value of WRS system

� To develop an interactive Taichi Game to illustrate the application of WRS on

digital media content.

In particular, the design of the WRS should have the following considerations.

1) Convenience: Basing on the relevant ergonomics [16, 17] available and

experimental testing, the new interaction interface should be easy-put-on,

portable, durable, and reliable and no harm to health.

2) Interactive: Unlike the traditional graphical user interface, the new interface make

it possible that user directly control the virtual object in virtual world using their

physical motion and the robot gives the user a more tactile feeling about the

interaction with other players or virtual characters.

3) Immersive: The user is fully engaged in the interactive process. User is not

simply clicking and dragging mouse, instead he or she could use full body motion

in real daily life to control the virtual character. On the other hand, the user is not

only dealing with the plain monitor, rather that he or she can interact with a more

intelligent robot

4) Affordability: The material chosen for the glove minimize its weight. And it also

gives the comfortable feeling when people wear it and type for input by its hand

shape design interface. Hence in selecting the sensor and other electronics

components, cost is an important factor.

 17

5) Convenient: The new interface should be easy to put on and easy to take off. And

it is highly mobile that people can take around more conveniently and it can even

be used when people are moving around.

1.4. Contributions

This research worked has studied and developed a wearable robotic system to achieve

an intuitive interface between humans and the personal electronics. The wearable

robotic system in this thesis is an integrated system consisting of sensors,

computational equipment and interactive devices with the purpose to aid humans in

managing and manipulating objects in the information space. The personal electronics

in this project are defined as the means in which humans interacts digital machines

including Computers and televisions. The research and development of wearable

robotic systems has built a workable prototype and seamlessly integrate the user into

the virtual digital world in order to access or manipulate objects in the digital space

[18]. The contributions of the research work can be summarized into three parts.

� The research work has designed and developed an embedded system of Wearable

Robotic Sensory System for human natural input capturing. The system includes

the sensors, computational unit which we aim to select a low cost and efficient

Microcontroller and provide digital output terminals to interface with

communication module. Key challenges of signal processing, calibration and

gesture estimation are studied.

� The research work has developed a cross platform and plug and play wireless

USB interfacing device. This part of work has solved the problem such that user

 18

do not need to install any software driver on their computer to use the WRS

system. The wireless feature enables the mobility of the system. Two major

challenges are discussed in this part, including the implementation of a wireless

network for multiple wearable sensors through Radio Frequency 2.4G[19] and

issues to achieve a cross platform the machine interfacing engine through

designing a customized USB device to be compatible with different operating

systems on personal computer including Windows, iOS and Linux.

� Other than the workable prototype was built, a proof-of-concept interactive Tai

Chi game was built through game engine Unity3D [20] by deploying WRS

system. The result has demonstrated a complete development cycle for creating

interactive digital contents on various hardware platforms using the WRS

interface. And testing and discussion on the result have been conducted.

 19

Chapter 2. Literature Review

The rapidly improving communication technologies and the availability of various

sensory devices provide opportunities for creating new generations of human

computer interfaces, in particular for digital entertainment and healthcare [21].

Several electronic companies and research institutes have already taken the initiative

to integrate electronics to the items we wear or carry [22, 23, and 24]. One of the

recent typical developments is the application of wireless sensors for real-time

monitoring of physiological signs such as electrocardiogram (ECG) and

photoplethysmogram (PPG) sensors are leading ubiquitous healthcare services for

most chronic diseases to reality. Another development is done by MIT Media

Laboratory using inertial measurement framework of gyroscope for gesture

recognition [25].

In this project, instead of choosing complex and high cost sensors of EEG and

Gyroscope, the research work proposes a simpler solution using accelerometer only

for HCI, in particularly for the digital game playing application. The research

develops an algorithm for gesture recognition on the accelerometer output. The

research and development also make the system to be plug-and-play and working

wirelessly. The research work aims to make improvements on existing system in

terms of reducing cost, simplifying the complexity, enhancing convenience and

mobility. The following session will review on the state of art solutions of motion

tracking solution for HCI and also discuss on the proposed solution for improvement

 20

on simplifying the system by deploying accelerometer, wireless module and enabling

cross-platform plug and play interface.

2.1. State of Art Solutions

Various researchers have studied motion capture and tracking and different motion

capture technologies [26, 27, and 28] have been proposed in the last few decades. The

merits and defects of the mainstream approaches are argued in several excellent

surveys. In this brief summary, we review optical, magnetic, inertial, acoustic, and

hybrid systems, mentioning a few exemplary systems in each category.

Optical motion capture systems [29] and modern systems track retro-reflective

markers or light-emitting diodes placed on the body. Exact 3D marker locations are

computed from the images recorded by the surrounding cameras using triangulation

methods. These systems are favoured in the computer-animation community and the

film industry because of their exceptional accuracy and extremely fast update rates.

The major disadvantages of this approach are extreme expenditure and lack of

portability. To reduce cost and improve portability, some systems use a small number

of markers in conjunction with standard video cameras.

Magnetic systems, such as MotionStar by Ascension Technology Corporation, detect

the position and orientation using a magnetic field (either the Earth’s magnetic field

or the field generated by a large coil). These systems offer good accuracy and medium

update rates with no line-of-sight problems. However, it requires high cost and high

power consumption, and is sensitive to the presence of metallic objects in the

environment.

 21

Acoustic systems use the time-of-flight of an audio signal to get the marker locations.

Most current systems are not portable and handle only a small number of markers.

With the Bat system, an ultrasonic pulse emitter is worn by a user, while multiple

receivers are placed at some fixed locations in the surroundings. A system extends

ultrasonic capabilities by using broadband signals. The Cricket location system [30]

fills the surroundings with a number of ultrasonic beacons that send pulses along with

RF signals at random times in order to minimize possible signal interference. This

allows multiple receivers to be localized independently. Lastly, the WearTrack system

[31], developed for augmented reality applications, uses one ultrasonic beacon placed

on the user’s finger and three fixed detectors placed on the head-mounted display.

This system can track the location of the finger with respect to the display, based on

time-of-flight measurements.

Inertial motion capture systems, such as Xsens’s Moven (xsens.com) and Verhaert’s

ALERT system (verhaert.com), measure rotation of the joint angles using gyroscopes

or accelerometers placed on each body limb. Like the mechanical systems, they are

quite portable, but cannot measure distances and positions directly for applications

that must sample the geometry of objects using system. More importantly, the

measurements drift by significant amounts over extended time periods. In addition,

the motion of the root cannot be reliably recovered from inertial sensors alone,

although in some cases this problem can be alleviated by detecting foot plants [32].

Hybrid systems combine multiple sensor types to alleviate their individual

shortcomings while improve the accuracy and update rates. More importantly, they

 22

aim to improve performance, rather than decrease cost and increase portability. For

example, an acoustic-inertial system, Constellation TM, has been developed for

indoor tracking applications [33]. The system corrects inertial drift using ultrasonic

time-of-flight measurements to compute exact distances between receivers and

ultrasonic beacons placed at known locations. Another acoustic-inertial system [34]

uses a wrist-worn microphone and a 3-axis accelerometer for gesture recognition.

Similarly, MERG sensors [35] enable inertial-magnetic systems that account for the

drift by using a reference magnetic field. In the same manner, Hy-BIRDTM by

Ascension Technology Corporation (ascension-tech.com) combines optical and

inertial technologies to handle occlusion problems.

In this project, we proposed a simple 3 axis accelerometer for gesture recognition.

The core different from the current solutions is to simply the sensor structure and

mathematical model to cater for computer gaming interaction. Improvements are

made on developing a low cost and efficient wireless network using RF2.4G

technology. And a customized USB cross platform plug and play device is also

developed to make system working without forcing user to install driver. In the

following session, the literature review on developing the warless network and plug

and play USB device are elaborated.

2.2. Wireless Communications

In our project, a wireless sensor network (WSN) is built consisting of spatially

distributed autonomous sensors to cooperatively transfer the sensor output to the

target computer.

 23

2.2.1. Comparison of Existing Wireless Technology

A wide variety of different wireless data technologies now exist, some in direct

competition with one another, others designed to be optimal for specific applications.

Of the standards evaluated, these can be grouped as follows: UWB, Bluetooth,

ZigBee, and Wireless USB are intended for use as so called Wireless PAN systems.

They are intended for short range communication between devices typically

controlled by a single person. A keyboard might communicate with a computer, or a

mobile phone with a hands free kit, using any of these technologies.

WiFi is the most successful system intended for use as a WLAN system. A WLAN is

an implementation of a LAN over a microcellular wireless system. Such systems are

used to provide wireless Internet access and access to other systems on the local

network such as other computers, shared printers, and other such devices throughout a

private property. Typically a WLAN offers much better bandwidth and latency than

the user's Internet connection, being designed as much for local communication as for

access to the Internet, and while WiFi may be offered in many places as an Internet

access system, access speeds are usually more limited by the shared Internet

connection and number of users than the technology itself. Other systems that provide

WLAN functionality include DECT and HIPERLAN.

Some systems are designed for point-to-point line-of-sight communications, such as

RONJA and IrDA; once 2 such nodes get too far apart to directly communicate, they

can no longer communicate. Other systems are designed to form a wireless mesh

network using one of a variety of routing protocols.

 24

Figure 2: wireless data technologies

Wireless technologies can be evaluated by a variety of different metrics. The main

metrics of consideration are communication range, throughput, and cost of device and

power consumption. The comparison is made in bellow for existing technologies.

Figure 3: Parameter Comparisons of Wireless Data Technologies

In this project, the Zigbee is selected targeting specifically for wireless sensor

network which is a promising field that integrates sensor technologies, embedded

system and wireless communication together to produce small, low cost, low power

 25

and reliable system capable of monitoring specific events. The sensor network is

generally applied in monitoring applications with non-critical data, where longer

latency is not a critical issue. Such applications usually do not need high data

throughput but emphasize on power saving to maximize battery life. It has been used

in a variety of applications including commercial and industrial monitoring, home

automation and networking, consumer electronics, personal computer peripherals,

home security, personal healthcare, toys and games, automotive sensing, agriculture

etc. Figure 4 lists the data transfer rate and latency requirement of a few applications

[10]. From the table, it can be observed that higher data transfer rate is required in

entertainment and gaming applications. For personal health care and automation,

lower data rate and higher data latency are acceptable.

Figure 4: Wireless Data Rate and Latency for Various Applications

Even lower rates can be considered with the resulting effect on power consumption.

As already mentioned, the main identifying feature of 802.15.4 among WPAN's is the

importance of achieving extremely low manufacturing and operation costs and

technological simplicity, without sacrificing flexibility or generality.

Important features include real-time suitability by reservation of guaranteed time slots,

collision avoidance through CSMA/CA and integrated support for secure

 26

communications. Devices also include power management functions such as link

quality and energy detection. 802.15.4-conformant devices may use one of three

possible frequency bands for operation.

2.3. Cross Platform and Plug Play implementation through USB

The WRS system is interfaced with the computer through a Universal Serial Bus

(USB) device. USB is a communications architecture that gives a personal computer

(PC) the ability to interconnect a variety of devices using a simple four-wire cable.

The USB is actually a two-wire serial communication link that runs at either 1.5 or 12

megabits per second (mbs). USB protocols can configure devices at start up or when

they are plugged in at run time. These devices are broken into various device classes.

Each device class defines the common behaviour and protocols for devices that serve

similar functions. The HID class consists primarily of devices that are used by

humans to control the operation of computer systems.

In custom applications such as a printer, a driver needs to be installed on computer.

However, some drivers are available for most common host systems for the most

common classes of devices such as keyboard, mouse and other Human Device

Interface devices. Hence in this project, the core of achieving a plug and play feature

for the system is to design a customized USB device which is able to send the sensor

data into the computer at the mean time it can be recognized by the computer as a

common class device.

 27

2.3.1. HID libraries Integration Algorithms Design

Normally each USB port connect to a single device which only report to operating

system with one HID class type, however this research carried out in this thesis design

a virtual HID hub that combines few HID classes. The advantage to do so is to make

the wearable sensor system more powerful and able to control and emulate multiple

devices including keyboard, mouse, joystick and able to send customized raw data for

communication.

Typical examples of HID class devices include keyboards and pointing devices—for

example: standard mouse devices, trackballs, and joysticks. To design a customized

compliment HID device, a new information package about a USB device should be

stored in segments of its ROM (read-only memory). These segments are called

descriptors. An interface descriptor can identify a device as belonging to one of a

finite number of classes. .

A USB/HID class device uses a corresponding HID class driver to retrieve and route

all data. The routing and retrieval of data is accomplished by examining the

descriptors of the device and the data it provides.

Figure 5: HID Device Driver

A HID class device communicates with the HID class driver using either the Control

(default) pipe or an Interrupt pipe.

 28

Figure 6: HID Class Driver

The Interrupt Out pipe is optional. If a device declares an Interrupt Out endpoint then

Output reports are transmitted by the host to the device through the Interrupt Out

endpoint. If no Interrupt Out endpoint is declared then Output reports are transmitted

to a device through the Control endpoint, using Set_Report (Output) requests.

At the topmost level, a descriptor includes two tables of information referred to as the

Device descriptor and the String descriptor. A standard USB Device descriptor

specifies the Product ID and other information about the device. For example, Device

descriptor fields primarily include Class, Subclass, Vendor, Product, and Version.

And in this project, the core of the design is to define the descriptor package as review

in Figure 7.

� Device Descriptor

The device descriptor provides general information such as manufacturer, product

number, serial number, the class of the device and the number of configurations.

There is only one device descriptor.

� Configuration Descriptor

The configuration descriptor provides information on the power requirements of the

device and how many different interfaces are supported when in this configuration.

There may be more than one configuration for a device (i.e., low-power and

high-power configurations).

 29

� Interface Descriptor

The interface descriptor details the number of endpoints used in this interface, as well

as the class of the interface. There may be more than one interface for a configuration.

� Endpoint Descriptor

The endpoint descriptor identifies the transfer type and direction, as well as some

other specifics for the endpoint. There may be many endpoints in a device and

endpoints may be shared in different configurations.

� String Descriptor

Many of the previous descriptors reference one or more string descriptors. String

descriptors provide human readable information about the layer they describe. Often

these strings show up in the host to help the user identify the device. String

descriptors are generally optional to save memory and are encoded in a Unicode

format.

 30

Figure 7: USB Descriptor

2.3.2. Intellectual Property Protection

To protect the IP of the research and development work in this project, patent filing is

under the process with the assistant from NUS Enterprise at the National University

of Singapore.

The digital contents, graphics and game images used in this thesis belong to the

property of Portege Pte Ltd.

 31

Chapter 3. Development of Wearable Robotic System

This chapter discusses on the detail implementation process of developing the

Wearable Robotic System. Initially we form the system architecture based on the

design objective and engineering constrains. The first prototype was developed

through sensor fusion using Light Dependent Resistance (LDR) Sensors. Evaluation

and observation on the first prototype provide more collective information to achieve

the design objective. Improvements on mobility and intuitiveness of the system are

made in the second prototype design iteration with adopting sensor fusion using

Microelectromechanical (MEMS) sensors [36].

3.1. System Architecture

The Wearable Robotic System contains three modules including the Wearable

Sensory Module, the Wireless Communication Module and the Plug and Play

Universal Serial Bus (USB) interface module. To make the system convenient to

carry and use, physically the prototype of System is presented in two devices. The

first device is the wearable sensory device in the form of glove, belt, wristband or

shoes. The Wearable Sensory Module and a wireless transceiver are embedded into

the wearable sensory device in order to capture the user input and transmit the data

into the target computer. The second device is a USB apparatus which can be plugged

into the target computer. The USB apparatus contains a wireless transceiver and a

Human Device Interface (HID) [37] module in order to receive the information from

 32

the sensory system and further process the information into interpretable data of the

target computer. The USB apparatus is also able to transfer information of the

computer back to the wearable sensory device. The USB apparatus is designed to be a

Plug and Play device such that user will not need to install software driver before

using the system.

Figure 8: WRS System Diagram

The flowchart of user scenario is demonstrated in Figure 9. The user will wear the

Wearable Robotic System which is able to capture the user input information and

wirelessly transfer to the USB Interface Device. The user input information will be

interpreted and transferred by the USB Interface Device into the data format that the

low level Human Device Interface (HDI) drivers can recognize as equivalent to

standard HDI control information such as keyboard strokes and mouse cursor

movements. The HDI control information will be further sent to the interactive digital

content and applications such as games.

Belt

Wrist

Shoes

Plug-n-Play

Users Interface Virtual World

 33

The following session will discuss on the detail development process for the Wearable

Sensory Module, the Wireless Communication Module, the USB Interfacing Module

and the system integration.

User side

Figure 9: Flowchart of WRS

User

Wearable Robotic System

Low Level Control Interface (HDI drivers)

High Level Control

Interface Engine

TaiChi Game (example)

Games and other Computer Applications

USB Interface

Device
Machine side (Computer/Robot

etc)

 34

3.2. Development of the Wearable Sensory Module

There are two versions of prototype built using different sensors and ergonomic

design. The first one is in the form of wearable glove and the second version is made

into distributed wearable sensors which users can wear or attach to the body.

3.2.1. Version 1: Light Dependent Sensor Glove

The wearable device is presented into a glove. At each finger tip, a sensor fusion

module is deployed using Light Dependent Resistance (LDR) Sensors. The

microcontroller and wireless module are hidden at the side of the glove and battery is

also installed to provide portable power supply. The 3-Dimensional model of the

ergonomic design is drawn using 3dsMax and shown as Figure 10.

Figure 10: Top View and Side Perspective View

3.2.1.1. Microcontroller: the Computational Unit

The microcontroller we used in the system design is PIC16F877. The

microcontroller is connected to the sensor and read the analog input and then convert

into digital data through the Analog to Digital Converter (ADC) module and then

 35

further process the data controlled and interface to the wireless module. The firmware

inside the microcontroller is attached in Annex A of this thesis.

3.2.1.2. Sensor Fusion Module

LDR sensors are used and system are further customized which have low power

consumption and good reaction time, kept within 1 second.

Each finger will be given a sensor fusion module consisting of three sensors. Each of

the sensors serves as the basis sensing unit which correspondingly output to one

unique command to the machine; here we take computer for example. The sensor is

touched based. Hence when the finger in the covered module reaches and makes

contact with one specific touch sensor, the sensor will be triggered and output is made

following the touch event and will be captured by the microcontroller. Bellow in

Figure 11, it shows the three versions of the LDR Wearable Glove.

Version 1 Wearable Glove Version 1.1 Version 1.2 Version 1.3

Figure 11: LDR Solution Prototype

The first prototype Version 1.1 was built with an LDR sensor Printed Circuit Board

(PCB) shown in Figure 11. When the finger covers the LDR sensor from the

environment light, the LDR will change its resistance and result in the voltage change

at the microcontroller input pin. Such trigger of event will be regarded as one user

input. However due to the uncertainty of environment light, the Version 1.2 designs a

 36

cover sensor fusion module, an additional light source was added as a stable light

source to the LDR, as shown in Figure 12 such that the system can work regardless of

the change of environment light. Then Version 1.3 of two handed module was built

for both left and right hand.

3.2.2. Version 2: Full Body Wearable Sensor System

Although the Wearable Glove is able to capture the finger gesture and free the

user from the desk to type keyboards and dragging mouse, the interactivity,

mobility and intuitiveness of the system still need to be improved by observing

the user behavior. The user shall need to wear the two gloves every time before

they use. Among the 20 participants of user test, 70% of the participants

feedback that there is challenge to adjust the second glove after the user already

put on the first glove as the first hand become inconvenient with the glove on.

There is also space to improve on the mobility and interactivity as only finger

gesture is engaged for the human machine interaction. Hence the Version 2 of

the prototype is looking for a solution which can utilize the richness of the full

Front LDR

Upper LDR

Light Source LDR sensor

Figure 12: LDR Sensor Fusion Version 1.2

 37

body motion and gesture and achieve a more convenient device for wear, carry

and use.

With the design considerations discussed above, the Version 2 is developed

into a wearable sensor system for full body motion capture. The same

microcontroller as Version 1 is also engaged. The version 2.1 is featured in

Figure 13. The User can wear maximum of such five devices at different parts

of the body including wrist, ankle, head and waist. The Wearable Sensor

System measures the accelerations. The computational unit samples the signals

from the sensor circuits and conduct further signal processing, and finally

recognize motion and gesture. Such information will be transferred to the target

computer for Human Computer Interaction purpose.

Figure 13: Ergonomics Design of Wearable Sensor System Figure 14: Electronics of Wearable Sensor System

The driver circuit is powered by a rechargeable Lithium-Ion battery pack with

250mAHr, which provides ten hours of safe operation of the device as the current

drawn by the system is 20mA maximum.

 38

Figure 15: WRS sensor system

3.2.2.1. The Sensor Fusion Module

The acceleration sensing system is the basic system to capture the motion of human

and transfer these data to the microcontroller in driver circuit. As this acceleration

capturing module was attached on human body, the whole module should be small,

light, and low power consumption as well as high performance. The accelerometer

was the key components in this module. If the choice of accelerometer is not suitable,

the requirements of the subsystem can hardly be approached. Consequently, low cost

capacitive micromachined (MEMS) accelerometers could be one of proper candidates.

They are named as capacitive accelerometers since the detecting mode of acceleration.

The accelerometer can be modelled as a set of beams attached to a movable central

mass that move between fixed beams. The movable beams can be deflected from their

rest position by subjecting the system to acceleration. As the beams attached to the

central mass move, the distance from them to the fixed beams on one side will

 39

increase by the same amount that the distance to the fixed beams on the other side

decreases. The change in distance is a measure of acceleration. The g-cell beams form

two back-to-back capacitors. As the centre beam moves with acceleration, the

distance between the beams changes and each capacitor's value will change.

C = Aε/D,

where A is the area of the beam, ε is the dielectric constant, and D is the distance

between the beams.

This type of accelerometer is a successful commercial product which is widely used

in the laptop, mobile phone, wireless mouse and even handhold equipments due to its

stable performance, low power consumption, and miniature size which is shown in the

figures. According to the system functional, a low-g high sensitivity three-axis

MEMS accelerometer was employed in our design. As shown in figure 16, this

accelerometer has a 1-pole low pass filter for each axis, temperature compensation

and g-Select which allows for the selection among 4 sensitivities. Zero-g offset full

scale span and filter cut-off are factory set and require no external devices. It also

includes a Sleep Mode that makes it ideal for handheld battery powered electronics.

Figure 16: Simplified Transducer Physical Model Figure 17: Accelerometers versus coin

 40

Figure 18: Simplified accelerometer functional block diagram

The circuits of acceleration capturing module was consisted of the accelerometer and

related peripheral electronic components. The basic schematic of this module was

shown in the figure 19.

 Figure 19: The basic connection diagram of motion sensing module

Although the accelerometer had internal low-pass filter and the peripheral bypass

capacitors for power and output signals, the signal-to-noise ratio of output signal was

not satisfied. Thus the value of bypass capacitor for DC power was increased from

 41

0.1uF to 2.2uF, which can provide a less noise voltage supply into the accelerometer,

and benefit to the output voltage. On the other hand, an amplifier with unit gain was

utilized as a voltage buffer amplifier (voltage follower) is used to transfer a voltage

from a first circuit, having a high output impedance level, to a second circuit with a

low input impedance level. The interposed buffer amplifier prevents the second circuit

from loading the first circuit unacceptably and interfering with its desired operation.

According to the experimental data shown in figure 34 (b), the noise level was

significantly improve when these two changes of hardware design had been done.

(a) Output noise level before hardware improvements

 (b) Output noise level after hardware improvements

Figure 20: Data of noise level for acceleration

Comparing the sensor outputs before and after hardware development, it indicated

that the improved PCB of acceleration module can provide a relative stable baseline

for the acceleration data analysis.

 42

3.2.2.2. Computational Unit Development

Our inertial subsystem and microcontroller works independently. The inertial sensors

output signals keeps capturing motions and only stops working when powered off. At

the same time, the accelerometers measure accelerations of movements. On the other

hand, the microcontroller with each sensor board samples them with 8-bits

analog-digital-converters (ADCs). In addition, a mean filter, a type of simple

low-pass filters is applied to reduce the disturbances from small body vibrations and

to provide a smooth wave. Finally, these processed data from the three accelerometer

axes are encoded as a digital stream and then transmitted to computer via wireless

networks. The sampling rate of the inertial data is 140Hz.

Since an 8-bit PIC microcontroller is used to process sensing data, the firmware work

development tools are MPLAB® IDE Integrated Development Environment and the

MPLAB C30 language suite. It is a free, integrated toolset for the development of

embedded applications employing Microchip's PIC® and dsPIC® Microcontrollers.

MPLAB IDE runs as a 32-bit application on MS Windows®, is easy to use and

includes a host of free software components for fast application development and

super-charged debugging. MPLAB IDE also serves as a single, unified graphical user

interface for additional Microchip and third party software and hardware development

tools.

The core of the driver circuit is the microcontroller chip from the PIC18 series, which

is used for processing signal from sensor subsystem.

 43

Figure 21: Pin diagram of 44-Pin PIC18 series MCU

The acquisition for the acceleration of movement uses ADC function of the PIC. ADC

pins involved are. As the driver circuit and inertial sensing subsystem are in separated

PCBs, the connections of these two parts are via signal wires. The signal processing is

mainly control by firmware functions named ADC_ACC and TX_ACC. The

ADC_ACC is used to configure the ADC registers to enable the analog-to-digital

converting and define the pins of RA0, RA1, and RA2 to be analog pins. The

TX_ACC is used to store the acquired data and control the transmittal of data to the

computer.

For hardware design, the driver circuit in the main PCB which also includes the

interface to inertial sensing subsystem, the transceiver module for wireless networks,

 44

and the charging circuit for battery. In another words, this PCB includes the analogy

signal, digital signal, high speed components and thermal components in a very small

area, approximately 30mm×50mm. Therefore the PCB layout should be designed

carefully with several considerations to ensure the signal integrity without

interference between each function. Firstly, the PCB is divided into several areas by

different functions, and the electronic components for each function should be place

into corresponding area. Another important thing for avoiding EMI is the traces of

ground. Despite the four layer PCB layout with one layer of ground plane and one

layer of power plane, which has excellent capacity to keep signal integrity and avoid

EMI, the ultimate PCB layout has 2 layers which are due to the much lower cost (half

of the 4-layer PCB’s). This double sides PCB also can be made to perform quite well

with careful PCB design. And the key design for EMI compliance is loop area. A

closed circuit of tracks comprises a loop. Interference can both exit and enter the PCB

into areas inside loops. The smaller the dimensions of each loop, the smaller the

magnitude of interference to be dealt with. The circuit on the board may be contained

inside several small loops, through having a gridded power supply distribution. The

best distribution of the lot is one or two continuous planes or sheets of copper,

especially for high speed circuits. Therefore, in this PCB, two high speed (high

frequency) parts: transceiver module and crystal oscillator for microcontroller, are

enclosed by an overall ground. Additionally, no other electronic components place on

the opposite side of these two parts to further avoid interference. The final thing

should be mentioned is that the interface for the inertial sensing subsystem is routing

 45

near one edge of this board isolated from other circuit at all to protect the most

sensitive analogy signals against the interference.

The software used for hardware design is named Altium Designer, widely used EDA

software. In early years, to deal the limitations imposed by separate stand-alone

design tools, Altium Company developed a unified electronics design system, which

uses a single data model to hold all of the design data required to create a product. A

variety of editing tools could then be used to access and manipulate the design,

covering areas such as board layout and design, schematic capture, routing (EDA),

testing, analysis and FPGA design. And then they created its own platform called

Design Explorer (DXP), hosted on Microsoft’s Windows operating system, which

formed the foundation of the Altium Designer product. The basic operation windows

and function of Altium Designer is shown in the above figure. It can be seen that the

Viewer supports the display of multiple design documents of differing type.

Schematic, PCB, OpenBus, CAMtastic and OutJob documents are opened and viewed

within their respective Document Editors. All other text-based document types are

opened in the Text Editor for viewing. Documents, projects and design workspaces

can be opened using the relevant commands available from the main file menu.

 46

Figure 22: The key elements of viewer environment

Alternatively, you can drag-and-drop a document, project file or design workspace

file directly into the Viewer. A key ingredient of the Viewer's environment is

workspace panels. Whether specific to a particular document editor or used on a more

global, system-wide level, they present information and controls that allow you to

efficiently interrogate a design.

Since the Altium Designer is a powerful yet user-friendly system development

platform for PCB, FPGA, and embedded software development built on unique

layered platform architecture. It was used to develop the hardware of our system,

including schematic and PCB design. Therefore the design tools for schematic and

PCB layout should be familiarized. For drawing schematic, two points should be

highlighted: one is confirming that the Footprint is set to right one for every

component, and the other is checking electrical properties according to the rules set up

 47

in the Error Reporting. Both are fundamentals for providing a correct PCB layout.

(a) An example of footprint setting

(b) Electrical properties checking matrix

Figure 23: key point of schematic design

When the schematic is completed, the design needs to transfer from the Schematic

 48

Editor to the PCB Editor. At this step a new PCB design should be created at least

with a board outline. The following step is transferring design of schematic into PCB

layout. The process of transferring a design from the capture stage to the board layout

stage is launched by selecting Design->Update PCB Document from the menus. After

the transfer, the components and nets will appear in the PCB workspace. Since the

PCB Editor is a rules-driven environment, meaning that as the design changes, like

placing tracks, moving components, or auto-routing the board, Altium Designer

monitors each action and checks to see if the design still complies with the design

rules. If not, then the error will be indicated immediately as a violation. Setting up the

design rules before start routing allows designers to focus on designing, be confident

in the knowledge that any design errors will immediately be flagged for your attention.

The design rules fall into 10 categories, which can then be further divided into

different design rule types. The design rules cover electrical, routing, manufacturing,

placement and signal integrity requirements. It is a very useful tool to support PCB

design.

 49

Figure 24: an example of using PCB Board Wizard to create a new PCB design file

Figure 25: PCB Design Rule Editor Interface

Sometimes Printed Circuit Board (PCB) is considered as an older technology, which

is decreasingly applied in related areas. This is simply not the case. PCB is used more

than ever before, for almost every component, subsystem, and system in use because

the transformation of modern lifestyle under way and is becoming a more connected,

 50

electronic, and instrumented style. In the past, many systems were free of electronics,

but the majority commodities may include electrical elements in the future. PCB is

still playing a key role in electronics hardware used in communications,

computer-controlled systems, and automatic control systems. Therefore for all

electronics to perform interconnection, PCB is required.

Because of wide range of applications, PCB is a complex and highly adjustable

technology, from millimetres to tens of millimetres in size. The thickness, layers,

types, and numbers of interconnections, materials, and chemistry mean that the full

range of capabilities and technology is difficult for a facility to be able to produce.

This complexity is very attractive for commercial performance in that it gives

designers various options.

Because the requirement of maintaining legacy systems based on the concern of

increasing marketing, the range of complexity needed to fulfil present, and future

needs grows exponentially. On the other hand, as the trend of miniature in

commercial products, the density of interconnections and components in small area

becomes higher. This complexity with increasing EMI induces more challenges for

the PCB design.

This entire picture is overlaid with the need for more secure, robust, and reliable PCB.

New applications will require longer life, higher reliability under demanding

environmental conditions, protection against tampering.

 51

From electrical and mechanical aspects design for PCB, the electrical characteristics

of PCB and multichip electrical connection substrates have become a critical

functional product definition, and design requirement, for many electrical and

electronic products. Until the late 1980s, most PCB designs were printed writing

designs, in that, with the exception of power and ground distribution, component

placement and the arrangement of conductive and nonconductive patterns were not

critical for functional electrical requirements. However, since the late 1980s, electrical

signal integrity has become a more serious design consideration in order to meet both

functional performance and regulatory compliance requirements.

Electrical signal integrity is a combination of frequency and voltage/current,

depending on the applications. In low level analog, very small leakage voltages or

currents, thermal instabilities, and electromagnetic couplings can exceed acceptable

limits of signal distortion. In a similar manner, most digital components can

erroneously switch by application of less than 1 V of combined DC and AC signals.

The design of some analog PCB is a critical balance of all of the known parameters

and characteristics of the complete design-through-use product development,

manufacturing, assembly, test, and use processes. Analog designs cover all or portions

of the complete electromagnetic spectrum, from DC all the way up into the GHz

range of frequencies. Active and passive electronic components and materials have

various levels of sensitivity to operating environments and conditions, like

temperature, thermal shock, vibration, voltage connections, and especially analog

signal grounds are critical to analog integrity.

 52

One of the key methods to improve analog signal integrity is to separate the more

critical or sensitive portions of the design. Sensitive circuit may be susceptible to one

or more external forces, such as electromagnetic, voltage, and grounding systems,

mechanical shock/vibration, and thermal. Sometimes the more sensitive circuit is

repackaged into a separate function and module that provides its own isolation and

separation from the offending condition. Isolation and separation can be provided by

physical separation, electromagnetic and thermal barriers, improved ground practices

and design, power source filtering, signal isolators, shock and vibration dampeners,

and elevated or lowered temperature controlled environment.

Below a few Milli-volts, thermal electromotive forces (EMFs) have a significant

impact on low-level analog signal integrity. Thermal EMFs of a non-symmetrical

sequence of various metal junctions (conductors) or symmetrical sequence of various

metal junctions operating at different temperatures will generate and inject

undesirable voltage (or induce unwanted currents) into the electrical signal path. This

thermocouple effect is desirable in the case of temperature measurements. However,

in the case of other low-level measurements it is an undesirable characteristic.

Therefore, the requirement for low-signal level PCB is to ensure that all components

and electrical interconnection networks and corresponding electrical terminations

(such as soldered, welded, wire-bonded, or conductive adhesive) are symmetrical and

isothermal. Electrical components, such as thin/thick-film resistors of different values

(resistance), may have resistor elements manufactured from different formulations or

 53

compositions of materials and will have a designed-in thermal EMF error due to

component selection.

Each digital logic family of integrated circuits (ICs) has manufacturer-specified

electrical operating parameters and signal transfer characteristics, many of which have

become industry standards due to multiple manufacturing of the family of

components. The electrical signal integrity requirements for digital ICs are primarily

the high and low electrical (voltage/current) requirements for the output, input, clock,

set, reset, clear, and other signal names; the signal rise/fall times, clock frequency and

setup/hold times; and the voltage and ground connections as are necessary for the

control and operation of the IC. The input, output, and electrical signal transfer

parameters for digital ICs vary from logic or microcontroller family to family. ICs are

large matrix of components, consisting of the semiconductor substrate materials, such

as silicon, silicon-germanium, and gallium arsenide, which make up the various types

of transistors. The large number of digital IC families available creates a complex

matrix of design issue and requirements. The electrical signal integrity of the rise and

fall times of electrical signals is a major driver and concern for high-speed and

high-frequency circuits

Electromagnetic compatibility (EMC) is a serious design requirement for both

functional performance to design and regulatory compliance requirements. EMC

encompasses the control and reduction of electromagnetic fields (EMF),

electromagnetic interference (EMI), and radio frequency interference (RFI) and

covers the whole electromagnetic frequency spectrum from DC to 20 GHz.

 54

Worldwide, the electronics industry has had to pay increasing attention to EMC to

comply with both national and international standards and regulations. EMC involves

major design considerations that ensure proper function within the electronic

component, assembly, or system in order to limit the emission (radioactive or

conductive) from one electronic component assembly, or system, to another, and

reduce the susceptibility of an electronic component, assembly, or system to external

sources of EMF, EMI, or RFI.

Good design requires up-front determination of a noise budget, which should be

included in the product definition requirements. The noise budget is the summation of

all of the DC and AC voltages/currents that from a boundary within which the

component, assembly, or system is designed to function. The DC noise budget

consists of the voltage settings of the power supplies, the operating tolerance of the

power supply, and the series DC voltage drops of the voltage distribution system. The

AC noise budget consists of the effectiveness of the local bypass capacitor, the

amount of decoupling between the load, the bulk decoupling capacitor, and the power

distributions system, the local voltage drops in the component’s voltage/ground

conductors, and the component’s input voltage tolerance. As mentioned in the

previous, many of the operating electrical, mechanical, thermal, and environmental

parameters and conditions can have influence on the noise budget. Additional noise

that may need to be considered are EMC radiated and conducted emissions from other

electromagnetic equipment and thermocouple effect due to electrical connections with

differing layers of metals operating at different temperatures.

 55

3.3. Development of Wireless Cross-Platform USB Interface Module

From the above discussion, the standalone wearable robotic sensor is able to

recognize the motion and gesture. If all the sensors are connected through wire and

then connect again to computer using cable, the mobility and portability will be much

compromised. A wireless wearable sensor system based on ZigBee RF2.4G

technology is built. The system should support five remote wearable robotic sensors

working concurrently and be able to establish communications between the five

sensors and the target computer.

Figure 26: Wireless Sensor Network

Figure 26 shows the configuration of the system. From the figure, it can be observed

that the system consists of five wearable robotics sensor defined as sensor node that

will communicate wirelessly with the coordinator based on a star network

 56

configuration. The coordinator is in turn connected to a personal computer via a USB

device which we will further discuss on in later session.

Each sensor node has an on board Microcontroller and some sensors such as

accelerometer and gyro. For the wireless communication, both the sensor node and

coordinator use 2.4 GHz RF.

3.3.1. Selection of Chip Model

As discussed in the Literature Review session, the Zigbee RF2.4G technology is

selected for the wireless communication. In order to choose the optimized chip, a

comparison is made between the most popular models on the market as shown in

figure bellow.

Model Name NRF24L01 RF2915 BC418 XC1201 CC400

Voltage 1.9~3.6V 2.4~5V 2.5~3.4V 2.4~5.5V 2.7~3.3V

Maximum

Output power
+4dBm +5dBm +12dBm +5dBm +14dBm

Speed 2Mbps 9.6Kbps 128Kbps 64Kbps 9.6Kbps

No. of

Antenna
1 1 2 2 1

Supporting

electronics

components

14 50 50 20 25

Figure 27: Comparison of different wireless chips

In consideration of cost and performance, the chip of NRF24L01 is chosen for its

lower voltage, less supporting electronics components required with highest speed.

The current drawn when works with -6dBm output power, the current drawn of the

transmitter is measured only as 9mA and current drawn for the receiver is only

12.3mA.

 57

Based on the schematic diagram as shown in Figure 28, the SPI communication is

chosen for the interface between wireless chip and microcontroller.

Figure 28: Comparison of different wireless chips

We discussed the development of the wearable robotic sensor module and wireless

communication module. At the transmitter side, the wireless module is interfaced with

microcontroller of PIC16F which read MEMS output and send the sensor data to the

receiver wirelessly. In this session, we will discuss the development of a USB

cross-platform module inside the microcontroller C8051F321 which interface with the

wireless receiver mentioned in session 3.2.2. The purpose is to develop such a plug

and play USB device that user can easily insert into computer and interpret the sensor

data received from wireless module into standard Human Interface Device data to

control the computer.

 58

3.3.2. Circuit design

Microcontroller C8051F321 is selected to interface with the NRF24L01 chip. In next

session, further discussion on development of HID functions within C8051F321 will

be made. This part, we only focus on developing the circuit with C8051F321 to

interface with wireless chip NRF24L01.The circuit for the wireless communication

module is constructed in Altium Designer. The design process includes schematic

design and circuits routing. The schematic design is illustrated in Figure 29a with

connecting the resister, compactor and diode as requested. The pin connection is

summarized in Figure 30.

Figure 29a: Schematic design of USB receiver

Pin Name IO Set up in this project

1 CE Digital input RX or TX selection

2 CSN Digital input SPI mode

3 SCK Digital input SPI timer

 59

4 MOSI Digital input SPI digital input

5 MISO Digital output SPI digital output

6 IRQ Power out Not connected

7 VDD Power +3V

8 VSS Ground Grounded

9 XC2 Analog output Oscillator

10 XC1 Analog output Oscillator

11 VDD_PA Analog output Output power to RF amplifier

12 ANT1 Antenna Antenna

13 ANT2 Antenna Antenna

14 VSS Ground Grounded

15 VDD Power +3V

16 IREF Power in Reference current

17 VSS Power Grounded

18 VDD Power +3V

Figure 29b: Pin configuration for NRF chip

The next step is completing the circuit routing; the two major considerations are board

size for portability and electromagnetic interference. In order to minimize the

electromagnetic interference to the signal, the analog and digital rout is separated.

And the final routing is shown in Figure 30.

Figure 30: Routing of USB device

After printing the circuit board and soldering the components, the prototype is shown

as Figure 31.

 60

Figure 31: Actual Board of USB Receiver

3.3.3. Firmware Development

The standard USB devices that we commonly used in daily life include keyboard,

mouse, printer and thumb drive. As discussed in the literature review session, we aim

to develop a plug and play USB device that does not request user to install any system

driver additionally. USB specifications include class specifications which operating

system vendors optionally support. Examples of classes include Audio, Mass Storage,

Communications and Human Interface (HID). In most cases, a driver is required at

the host side to ‘talk’ to the USB device. In custom applications, a driver may need to

be developed. Fortunately, drivers are available for most common host systems for the

most common classes of devices. Thus, these drivers can be reused. And base on such

system characteristics for Windows, Linux and Apple iOS, we select reusable driver

which by default is installed on user’s computer such that the USB device in this

project does not request any driver.

 61

3.3.3.1. Device Configuration Level Design

USB device functionality is structured into a layered framework. Each level is

associated with a functional level within the device. The highest layer, other than the

device, is the configuration. Hence in the development, we selected a standard HID

configuration and emulate the USB receiver as a HID device. A HID device may have

multiple configurations; for example, a particular device may have multiple power

requirements based on Self-Power Only or Bus Power Only modes.

3.3.3.2. Interface Level Design

For each configuration, there may be multiple interfaces. Each interface could support

a particular mode of that configuration. And in this project, we define three interfaces

including a keyboard interface, a mouse interface and a raw HID data transmitting

interface.

Below the interface is the endpoint(s). Data is directly moved at this level. There can

be as many as 16 bidirectional endpoints. Endpoint 0 is always a control endpoint and

by default, when the device is on the bus, Endpoint 0 must be available to configure

the device.

Information communicated on the bus is grouped into 1 ms time slots referred to as

frames. Each frame can contain many transactions to various devices and endpoints.

 62

3.3.3.3. Descriptor Design

Descriptors design is the core of the USB cross platform design process. It ultimately

specifies the data package after the device configuration and interface level is defined.

There are eight different standard descriptor types. For the three device descriptors,

we follow the standard data package of mouse and keyboard for the first two and

design a customized package for the HID raw data package to transfer our sensor data

into computer through USB HID port. The code is attached in Annex B of the thesis.

And the design of the descriptor for the HID customized data package with 8bits data

size, value ranging from 0 to 255, can be summarized as bellow.

Descriptor Parameter Design Value Design Discussion

Usage Page 0x06, 0x00, 0xFF, Set Vendor Defined Page

Usage (Vendor Usage 1 0x09, 0x01, Default

Collection (Application) 0xA1, 0x01 Default

Usage Minimum 0x19, 0x01 Default

Usage Maximum 0x29, 0x0B, Set 64 input usages total

(0x01 to 0x40)

 Logical Minimum 0x15, 0x00, Sensor data bytes in the

report may have minimum

value = 0x00)

Logical Maximum 0x26, 0xFF, 0x00, Sensor data bytes in the

report may have maximum

value = 0x00FF =

unsigned 255

Report Size 0x75, 0x08 Set 8-bit field size

Report Count 0x95, 0x0B Make sixty-four 8-bit

fields

Input 0x81, 0x00 (Data, Array, Abs):

Instantiates input packet

fields based on the above

report size, count, logical

min/max, and usage

Figure 32: Descriptor Design

 63

3.4. Prototype evaluation and Gesture Reorganization

3.4.1. Experiment

3.4.1.1. System Integration

Based on the development from session 3.2 to 3.3, the overall system is integrated as

illustrated in Figure 33. The MEMS sensor is interfaced with PIC16F897J50 which

again connect with wireless transmitter NRF24L01. The wireless signal is received by

the receiver chip of a paired NRF24L01 which is interfaced with microcontroller

C8051F321. Microcontroller C8051F321 is programmed into a combinational USB

plug and play device including a keyboard device, a mouse device and a customized

HID compliant data package device.

Figure 33: System Integration

3.4.1.2. Hardware Setup

On the receiver side, once plugging the USB receiver to computer, three devices on

Windows Device Manager will pop up as designed. When the device is connected to

the Windows, the two reporters will interface with HID driver will be recognized as a

 64

HID compliant device, and further be recognized as three devices of keyboard, a

mouse and a customized HID device for data transfer as shown in Figure 34. In this

evaluation experiment, we will only use the HID device for data transfer to analyze on

the sensor output for gesture estimation.

Figure 34: Interfacing with Windows on Personal Computers

On the transmitter side, user needs to wear the sensor on one part of the body. For the

illustration purpose, the user in this setup wears the sensor inside the wrist band to

both of the hands for arm lifting gesture estimation. The sensor is facing toward back

of the hand as shown in Figure 35.

Figure 35: Wearable Sensor Evaluation Set Up

Wrist Band with

Wearable Sensor

inside

 65

3.4.1.3. Software Setup

The software we programmed is in C++ and based on Win32 library environment.

The software finds the HID device through vendor ID and Device ID. Subsequently it

read the data into an 8 bit buffer and print it onto screen. Data is also written to a

excel file. The code of the software is attached in Annex C of the thesis.

Figure 36: the testing software operation

3.4.2. Sensor Output and Gesture Recognition

3.4.2.1. Mathematical Model for Gesture Recognition with the Inertial

System

The experiment will investigate basic motion and gesture of arm. The left arm starts

from relax position when hand is put down and lift up toward front to the top, in the

 66

process the arm keep straight, the whole process takes 10 seconds in a estimated

constant speed

In the mathematical model, we define the following parameters:

1) Define Arm length as l;

2) When the arm is naturally relax downward, define the initial position of the hand

where the sensor as 0, hence when the arm is fully lift up straight, the hand is at

position of 2l;

3) Define the angle between the arm and body which keep straight as a , and the

vertical position relative from the initial position as h, at time 1t ;

4) The gravity is denoted as g;

5) The direct reading of the output on x, y and z axis is X, Y and Z

6) We denote the sensor output value when the gravity projection is 0 as δ

Figure 37: Model for Gesture Recognition

Hence Gravity projection on z axis

z

y

x

g

a

h

l

 67

coszg g α=
 (1)

Gravity Projection on y axis

sinxg g α=
 (2)

Gravity Projection on y axis is 0, since the x axis is always perpendicular to the

gravity;

And it can be derived from the Figure 37 that

cosl h l α− = (3)

From equation (1), it can be derived that

cos zg

g
α =

, substitute into (3) such that

zgl h l
g

− = ⋅
 (4)

Noted that the zg is the gravity projection at the z axis.

Condition: We assume at the end of the motion, the arm is still, meaning the velocity

is 0 and the acceleration is also 0. Hence on the sensor output on the z axis, the only

output is result from the gravity projection.

The output zg can be further presented as:

()zg Z δ λ= − ⋅
, where Z is the output value directed read from the sensor, and Z is a

digitized value within the range from 0 to 255, λ is the digitization coefficient of the

accelerometer which is a constant

And substitute into (4), finally we have

()zg l
l h l Z

g g

λ
δ

⋅
− = ⋅ = ⋅ −

 (5)

 68

Hence it can be observed that the position h of the arm which wears the sensor is in a

liner relationship with the sensor output with an coefficient of

l

g

λ⋅

3.4.2.2. Experiment Data and Discussion

To investigate the validity of the proposed mathematical model, the experiment

measures sensor output in relationship with the time and position of the arm.

The data recorded from the software as mentioned in 3.4.1 include the readings from

the 3-axis of the accelerometer in the time interval of 10 seconds.

0

50

100

150

200

250

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Figure 38: Accelerometer z axis sensor output

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Figure 39: Accelerometer x axis sensor output

Time

Time

 69

0

50

100

150

200

250

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Figure 40: Accelerometer y axis sensor output

From above, it can be observed that z axis value keeps reducing in a linear

relationship and saturates at minimum value when hand reach the top. This match our

mathematical model in above session. The y axis output keeps the same within noise

range. The x axis value start from a fix value goes to a minimum when the hand

reaches the middle of the motion and then recover to the initial value when the hand

reach the top. The experiment results match the discussion the in the literature review

part where in the inertial system, the tilt of the sensor when the arm lift up result in

projection of gravity into different axis of the accelerometer.

Find the Coefficient

And next, it is to examine the coefficients to the relationship between the sensor

output and the orientation of the arm to estimate the gesture.

We take the mean of the initial value which is 200 when the gravity is fully projected

on the positive axis and the hand is at 0 position, and take 80 as the value for gravity

is fully projected to the negative axis when hand is at 2l position., Sub the two values

into the equation
()zg l

l h l Z
g g

λ
δ

⋅
− = ⋅ = ⋅ −

Time

 70

0 (200)
l

l
g

λ
δ

⋅
− = −

2 (80)
l

l l
g

λ
δ

⋅
− = −

Combined the above two equations, we can find out that

140

1

60g

δ
λ
=


 =

And the relationship of the position of the arm and the sensor output can be derived

as:

()1
(1)

60
h l Z δ= − ⋅ −

 (6)

3.4.3. Code implementation and Simulation

In order to visually simulate the experience result, the equation (6) is scripted using

C# language and the value of h is used to control the arm gesture of a virtual avatar.

The code is attached in Annex D of the thesis. The virtual avatar is a men character

inside a game named Garden Mania developed by Portege Pte Ltd. The simulation

result is shown as bellow:

Position 1 Position 2 Position 3

 71

Position 4 Position 5 Position 6

Position 7 Position 8 Position 9

Figure 41: Arm Raise Simulation Using Game

From the above simulation, it proved that the linear relationship from the sensor

output to the arm position is accurate. The player in the simulation program is able to

move both of the arms wearing the sensor smoothly and control the virtual avatar to

do a one-to-one mapping motion.

 72

Chapter 4. Interactive Digital Application Development

In this part, an interactive Taichi game played by WRS was developed for users to do

exercise. This part will only focus on the engineering development procedure of

Taichi game and investigate on the game soaring mechanism assessed by WRS

motion capture capability.

The Taichi game is currently deployed in Singapore General Hospital for trail and

serves doctors as a research platform on investigating how playing an interactive

Taichi game can influence the rehabilitation. The future work of this project will goes

in-depth study on the rehabilitation application of WRG.

As shown in Figure 42, the user will wear the WRS sensor on the wrists and motion

data can be captured and feedback to the game system. Scores will be given to player

to evaluate their game play performance. The game of ’Taichi’ is a 3D game

developed with Autodesk Maya [38] and Unity 3D in a team of designers and

programmers with different skills and expertise in game creation. A game

development pipeline explaining the production of the game from concept to release

is presented. In addition, challenges faced and experiences gained during the

production of ‘Taichi’ are also included in this document.

 73

Figure 42: Interactive Tai Chi game played by WRS by Testers

More importantly, the cross platform feature of WRS could serves as an external plug

in to the existing game engine of Unity3D and seamlessly capture user’s natural input

rather than through keyboard or joystick. Figure 43 shows the whole system

architecture of the game. The game pipeline manages well on the graphics asserts,

sounds and logic scripts, and HID classes serves as a plug in to interface WRS to the

game. Consumers expect to enjoy a more realistic and better graphic games, therefore,

the standards for graphic and realism of games needs to be improve too. This includes

the improvement of modelling, texturing, rendering, lighting, more realistic animation

and artificial intelligence behaviour and the overall content. Thus, the role for artists

and animators is very important in the developing of the games, as their works can

lead to the success of the game and the growing of the game studio.

 74

Figure 43: Game Structure

 ‘Taichi’ is an educational interactive game. Player is able to learn ‘Taichi’ by

following the moves in the game with the motion sensing controller wearing on their

wrist. Unity 3D and Autodesk Maya 2011 were used in the creation of ‘Taichi’. The

development team included people with varying skills from game designers, artists

and game programmers. Each member was given specific roles according to their

skills, such as Concept artists, Art Direction, Technical Direction and Project

Manager.

 75

In the following, we will introduce the tools that were used, workflow of the game

development process and lastly explain some problems faced during the developing of

‘Taichi’, as well as the solutions. Below is one of the ‘Taichi’ in-game screenshot.

Autodesk Maya 2011 was used for modelling, texturing, animating and rendering

throughout the project and Unity 3D was used for implementation of the art assets

produced from Maya. Besides Maya and Unity 3D, video, audio and image editing

software such as Adobe Photoshop and Adobe After Effect were also used during the

project.

Autodesk Maya was use for modelling, texturing, animating and rendering in this

project. Artists firstly modelled the characters and environments of the game out,

unwrapped it, arrange the UV layout of these models, and texture them with Adobe

Photoshop. After the models were done, the animators will take over the characters

and start the rigging process, after rigging is done, animators will use the controllers

created to animate the characters.

Unity3D is an integrated authoring tool for creating 3D video games or other

interactive content such as architectural visualizations or real-time 3D animations,

focusing on clear interplay of features and functionality. Unity is similar to Director,

Blender game engine, Virtools, Torque Game Builder or Gamestudio in the sense that

an integrated graphical environment is the primary method of development.

In this Game, the free version of the game engine Unity 3.4 was chosen for the

production of ’Dynamite Pete’ as well as the GUI (Graphical User Interface). Unity

3.4 allows you to target all platforms from a single tool. Within a single project you

 76

have complete control over delivery to all platforms. (e.g.: Web Player, PC and Mac

Standalone, iOs, Android, Xbox 360, PS3), which eases the development for different

consoles or devices.

4.1. General Game Production Pipeline

Our concept is just a simple idea of remaking Tai chi, a 600-year-old dancelike

exercise derived from the martial arts — clears the mind, relaxes the body, and

contributes to health and longevity into a game [39].

Figure 44: Sketch up for concept design

This production pipeline is basically a concept of workflow management for use in

the game development process. The phases of are revised until the release of a video

game.

Some of these tasks require to be carried out sequentially as presented in the

following. We have to organize ways to carry out the deliverable to allow everyone to

work at the same time. Since this very project, it was necessary to follow a pipeline

 77

approach without iterations. The scope of this project was to successfully integrate a

working hardware into the game engine.

4.1.1. Concept Phase

During the concept phase a small team designed the character, the setting and the

game mechanics. The game’s environment was chosen to be a Chinese Temple. A

painterly style was preferred over a photorealistic style and the goal of the game was

to learn Taichi. After this stage, we began to look at how we can integrate the

hardware into the game.

Figure 45: Sketch up for concept design

4.1.2. Concept Art

To cut down time, we took a model for the internet to make the main character. After

searching very extensively for it, we made some slight modification to it and removed

the original texture, some artists moved on to graphics editing tools,

 78

4.1.3. Low Polygon Modeling

As we wanted the game to run quickly we were not able to put a lot of polygons into

our work so strategic planning is required. The character is put in a neutral position.

To save the computing power, we only add detail to the subject where it will be

needed to help deform the mesh. More attention is paid to where your points are and

how they will deform. Points should follow the flow of the body, and no less than five

spans per joint.

4.1.4. UV Layout

Before texturing or high polygon modeling could start, UV layouts had to be done

either by UV layout artists or by the modeling artists themselves. UV set in Maya

consists of a single UV layout. An object with multiple texture types can have

multiple UV layouts

Use other projection tools to map out areas that are used in high detail areas. Start

picking the larger areas first by selecting the polygonal faces of the body. Open up the

tool options for Planar Projection. By selecting the Camera option, Maya will unwrap

UVs according to whichever window you have activated. I activated the side view by

clicking on the empty portion of the side viewport menu.

 79

Figure 46: UV menu in Mava

Figure 47: Exported file

. For this project a maximum of three UV sets per object was defined:

• Color map UV set: For color textures. Faces can reuse texture space, meaning

that a certain space in texture space can be used by multiple faces.

• Normal map UV set (optional): Only used if a separate normal map was

required.

 80

• Light map UV set: Cannot include overlapping faces in texture space. Since

each face can have different lighting information, each face has to have its

own amount of space in the UV layout.

4.1.5. Texturing

Texturing started right after the UV layout was done. Its is done in Photoshop with a

tablet. Each mesh in Maya has to have one (and one only) Maya shader applied to it.

But you can apply the same shader to any number of meshes. When you export a file

(CGF or CHR), one (and only one) material file (.mtl) is created. This material file

holds the list of Maya shaders that were applied to your meshes. So if you export a

CGF file made of several meshes but all using the same Maya shader, one .mtl file

will be created, containing only one material.

Figure 48: Sketch up for concept design

 81

4.1.6. Rigging and Animation

To enable artists to easily create naturally looking animations of characters, a

technique called ’rigging’ is used, which creates a virtual bone structure for each

character. This structure can then be used to control the movements of the characters

for animation in a natural way For rigging, it is is important to: -create basic skeletal

structure hierarchy.

Figure 49: Character

The animation artists then produced 13 sets of key-frame based animations for some

movements for the character

4.1.7. Lighting in this project

Our game scene setting is supposed to be during the sunset. We have added 3

directional lighting to the scene. The first was to emulate the sunset ambience, with

color set according to the real sunset color. The other 2 light is used to improve the

lighting quality and the shadow effect of the character and the environment. The game

should be bright enough for the player to be able to view the environment around it.

 82

With Lighting Without Lighting

Figure 50: Lighting

4.1.8. Concept and Presentation Rendering

In addition to the scene’s lighting, rendering was also used for many different tasks

during the development process. We have to render the environment concept using

Maya first to look at the overall feel of the environment. Rendering in Maya does take

a lot of time, and the end result in Unity will not be the same in Maya, as rendering

using Maya setting in real-time will cause the game to lag. Thus, we have to remove

some of the unneeded details and polygon to improve the overall performance of the

game. We have improved the rendering in Unity using the image processing

available in Unity.

4.2. Implementation

As our artist uses Maya 2011 to model and animate the character, we have to export

our Maya project to *.fbx file. As Unity3D uses the *.fbx format as its main 3d model

format. Unity3D allows the import of Maya files, however, Maya program has to be

installed to the computer and it takes longer time than exporting it directly from Maya.

 83

Converting the fbx file ourselves is better than using Unity to convert the file, as

sometimes Unity conversion might give animation error.

4.2.1. Plug-in

Since the control for the game is using the customized HID device that is developed

in Session 3, a C#/C++ plug-in is created in order for unity to be able to communicate

or access the data of the hid device. The plug-in is exported in *.dll format, it has to

be located outside unity project asset folder. When the game is build out for release,

the plug-in has to be in the same folder as the *.exe file in order for it to be able to

detect the plug-in.

4.2.2. Object Integration in Unity

In order to save time in importing and editing of the 3D models, we have to separate

the models into layers, such as building, character and the object. Doing so improve

our overall time management, if we were to combine all the models into 1 layer, we

have to edit the whole thing whenever there are changes. And object such as trees can

be positioned in Unity thus, the artist could spend more time on designing the

environment than editing the models.

4.2.3. Effects, Shader Programming

After implementing all the major features of the game, we feel that we have to touch

up more on the graphic presentation of the game. We included some shader feature

that was in-built within Unity3D engine. Such as particle effect, lens flare, fog and

 84

some image processing shader. For the particle effect, we use the Particle Emitter

from Unity3D. We use Unity3D linear fog system to hide the background of the

environment. The fog did enhance the feel of the environment feel of mountainous

area. We tried on some of the image processing effect in Unity3D but, it does not

seem to fit into our current game design, thus we did not include it.

Without Fog With fog

Figure 51: Shader

4.2.4. Sound

The final feature that we have to include in the game is the sound effect and music.

With the audio added to the game, the game will be more complete and it improved

the overall quality of the game. The sound effect give a audio feedback for the game

while the music set the game ambience according to the scene. Unity3D allow the

user to set the type of sound and the properties the sound should have. The editor

mode help to simplify the way the sound should be handled. Adding a sound to the

game will need 2 things, ‘Audio Source’ and ‘Audio Listener’. The audio source is

 85

used set the properties of audio clip and its properties, such as 2D or 3D sound. The

audio listener is sound receiver; usually it is attached within the game camera.

4.2.5. Motion Data Library and Gesture Control User Interface

4.2.5.1. Motion Data Library for Game Scoring Mechanism

The whole Taichi game is separated into 13 forms, starting Form 1 to Form13. The

motion data is recorded from a Taichi master and saved in a txt file for comparison

with the player’s input. Each form is saved in a separated motion data sequence as

shown in the table bellow.

Time x y z

Timer : 98 1140.164 1094.5 1022.881

Timer : 98.25 1144.59 1088.5 1019.831

Timer : 98.5 1141.639 1097.5 1016.78

Timer : 98.75 1140.164 1099 1021.356

Timer : 99 1143.115 1088.5 1019.831

Timer : 99.25 1143.115 1088.5 1019.831

Timer : 99.5 893.7705 910 874.9153

Timer : 99.75 1149.016 1081 1025.932

Timer : 100 1138.688 1085.5 1022.881

Timer : 100.25 1138.688 1072 1024.407

Timer : 100.5 1146.066 1057 1000

Timer : 100.75 1129.836 1019.5 1140.339

Timer : 101 1112.131 1033 1163.22

Timer : 101.25 1098.852 1021 1158.644

Timer : 101.5 1092.951 1031.5 1144.915

Timer : 101.75 1088.525 1007.5 1120.508

Timer : 102 1090 1013.5 1088.475

Timer : 102.25 1084.098 1031.5 1041.186

Timer : 102.5 1094.426 1058.5 1019.831

Timer : 102.75 1100.328 1072 1010.678

Timer : 103 1113.607 1093 1007.627

Timer : 103.25 1131.312 1076.5 1006.102

Timer : 103.5 1140.164 1069 1015.254

Timer : 103.75 1151.967 1069 1022.881

 86

Timer : 104 1149.016 1073.5 1028.983

Timer : 104.25 1162.295 1070.5 1022.881

Timer : 104.5 1162.295 1070.5 1041.186

Timer : 104.75 1160.82 1052.5 1030.508

Timer : 105 1154.918 1052.5 1025.932

Timer : 105.25 1141.639 1039 1024.407

Timer : 105.5 1125.41 1069 1024.407

Timer : 105.75 1109.18 1072 1021.356

Timer : 106 1101.803 1072 1018.305

Timer : 106.25 1103.279 1076.5 1009.153

Timer : 106.5 1098.852 1087 1009.153

Timer : 106.75 1103.279 1090 1009.153

Timer : 107 1104.754 1091.5 1006.102

Timer : 107.25 1116.557 1090 1010.678

Timer :

107.4393 1116.557 1087 1006.102

Figure 52: Form 3 Motion data recorded from Taichi master

The game mechanism is designed in the way that at each sampled time by the timer,

the user’s motion data is compared with the standard motion data library. A difference

is calculated and an accumulative summation is made. The bigger the difference is,

the lower score the player gets. The game scoring mechanism code is attached in

Annex E of the thesis.

4.2.6. Game Testing and Result Discussion

The Taichi Game developed in this project was tested in a total sample size of 30

players from 1000 Taichi players ranging from Taichi master to starter. The final

score was recorded to investigate on the game scoring mechanism. The motion library

is built from Taichi Master denoted as A. And the players are allowed to play the

game twice consecutively to track the game score.

 87

Figure 53: Game Testing of Interactive Taichi Game

The score of the 20 players in two plays are recorded as bellow:

Player Level of Skills in Taichi Play 1 Score Play 2 Score

1 Master 9 8

2 Master 7 9

3 Master 6 7

4 Master 8 7

5 Master 4 6

6 Master 7 9

7 Master 8 8

8 Master 7 6

9 Master 8 7

10 Master 8 6

11 Starter 2 3

12 Starter 4 3

13 Starter 2 3

14 Starter 4 5

15 Starter 4 3

16 Starter 5 6

17 Starter 3 4

18 Starter 4 6

19 Starter 3 5

20 Starter 3 4

Figure 54: Game Score of 20 Testers

The average score of the Taichi Master is 7.2 and the average score for the starter is

3.4. It can be concluded that the level of skills is reflected by the score mechanism in

the Taichi game developed in above session. However, it can be noted that No.5

Master No.5 only score 4 and 6 in two plays, yet it has been told that the Master plays

quite well traditional Taichi. The reason of such unexpected low score is because of

No.5 Taichi master is playing different styling of Taichi namely Wu Style [40]

 88

whereas the standard motion library for assessment in this game is recorded from a

Taichi master in Yang Style [41] which is more common than Wu Style. However

this data has given more collective engineering knowledge in improving the future

version of the Taichi game such that it will allow different styles of Taichi.

 89

Chapter 5. Conclusion and Future Research

The research has studied the issues and challenges in making an improved human

computer interface. A workable prototype of Wearable Robotics System for

Interactive Digital Media is developed. Three major contributions are made including

developing a simplified motion capture compared to existing inertial system on

market by using accelerometer only, developing a Zigbee RF2.4G wireless sensor

network and a USB plug and play device in order for users to use the Wearable

Robotics System without installing driver onto their computers.

The prototype was evaluated and experiments are made to prove the mathematical

model that this thesis proposed. Simulations are made on a tester to wear the sensor

and control the virtual avatar inside a 3D game. Lastly, an interactive Taichi game

was developed to prove the value of the system. The Taichi game played by the

Wearable Robotics System illustrated to players that they can use natural body motion

as input to play the game interactively instead of using keyboard. The game results

were also collected to investigate on the game scoring mechanism through the sensor

output from the Wearable Robotic System.

The future research work will include integrating low cost gyroscopes and compass to

enable more precise motion tracking in complex environment. The work on

investigating on the influence of the interactive Taichi game application on

rehabilitation will also be proposed and carried out in future.

 90

Bibliography

[1] Engleberg, Isa N. Working in Groups: Communication Principles and

Strategies. My Communication Kit Series, 2006

[2] Jane F Thomsen1, Fred Gerr2 and Isam Atroshi3, Carpal tunnel syndrome

and the use of computer mouse and keyboard, Department of Occupational

Medicine, Copenhagen University Hospital in Glostrup

[3] Frey, W., Off-the-shelf, real-time, “human body motion capture for

synthetic environments” Tech. Rep. (1996) NPSCS-96-003, Naval

Postgraduate School, Monterey, California

[4] Hightower, J., and Borriello, G., “Location systems for ubiquitous

computing”, Computer (2001), 34, 8, 57–66

[5] Meyer, K., Applewhite, H. L., and Biocca, F. A., “A survey of

position-trackers”, Presence (1992), 1, 2, 173–200

[6] Miller, N., Jenkins, O. C., Kallmann, M., and Matric, M. J., “Motion

capture from inertial sensing for untethered humanoid teleoperation”,

International Conference of Humanoid Robotics (2004), 547–565

[7] S.S. Ge, A.P. Loh and F. Guan, “Robust Sound Localization Using Lower

Number of Microphones”, International Journal of Information

Acquisition, Vol. 2, no.1, pp.1-22, March 2005.

 91

[8] S.S. Ge and F.L. Lewis, Editors, Autonomous Mobile Robots: Sensing,

Control, Decision-Making, and Applications, CRC Press, Taylor and

Francis Group, Boca Raton, FL, 2006.

[9] F. Guan, A.P. Loh and S. S. Ge, “3D Sound Localization Using Movable

Microphones Sets,” Proceedings of Fourth International Conference on

Industrial Automation, Montreal, Canada, June 9-11, 2003.

[10] S. S. Ge, A. P. Loh, and F. Guan, “Sound Localization Based on Mask

Diffraction,” Proceedings of IEEE International Conference on Robotics

and Automation, pp. 1972-1977, September 14-19, 2003, Taipei, Taiwan.

[11] A. P. Loh, S. S. Ge and F. Guan, “Sound Source Tracking Using Movable

Microphone Sets,” Proceedings of the 2nd International conference on

Computational Intelligence, Robotics and Autonomous Systems (CIRAS

2003), Singapore, 15-18 December, 2003.

[12] A. P. Loh, F. Guan, S. S. Ge, “Motion Estimation Using Audio and Video

Fusion,” Proceedings of the 8th International Conference on Control,

Automation, Robotics and Vision (ICARCV), pp. 1569-1574, Kunming,

China, 6 – 9 December 2004.

[13] S. S. Ge, F. Guan, A.P. Loh and C.H. Fua, “Feature Representation Based

on Intrinsic Structure Discovery in High Dimensional Space,” Proceedings

of the 2006 IEEE International Conference on Robotics and Automation,

p.3399-3404, Orlando, Florida, USA, May 15-19, 2006

 92

[14] S. S. Ge, Y. Yang and T.H. Lee, “Hand Gesture Recognition and Tracking

based on Distributed Locally Linear Embedding,” Proceedings of IEEE

International Conference on Robotics, Automation and Mechatronics, pp.

567-572, Bangkok, Thailand, 7 - 9 June, 2006.

[15] T. S. Chua, S. S. Ge and Y. Yang, “Expression Recognition and Tracking

based on Distributed Locally Linear Embedding and Expression Motion

Energy”, Workshop on Human Emotions in Voice and Body: Approached

from affective sciences and virtual reality, Organized by the Swiss House

Singapore, in cooperation with the Swiss Centre for Affective Sciences

and MIRALab, University of Geneva, Singapore, 14-15 December 2006.

[16] Ward, J. A., Lukowicz, P., and Troster, G., Gesture spotting using wrist

worn microphone and 3-axis accelerometer, Joint Conference on Smart

Objects and Ambient Intelligence (2005), 99–104

[17] Bachmann, E. R., Inertial and Magnetic Tracking of Limb Segment

Orientation for Inserting Humans Into Synthetic Environments, PhD thesis

(2000), Naval Postgraduate School, Monterey, California.

[18] S.S. Ge, T.H. Lee and C.J. Harris, Adaptive Neural Network Control of

Robotic Manipulators, World Scientific, London, December 1998.

[19] RF2.4G, http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01

[20] Unity3d Engine: http://unity3d.com/

[21] M. Fitzpatrick, L. Harding, Using the Wii for Vestibular Rehabilitation,

Vestibular Disorder Association

 93

[22] Foxlin, E., Pedestrian tracking with shoe-mounted inertial sensors,

Computer Graphics and Applications (2005), 25, 6, 38–46

[23] Ward, A., Jones, A., and Hopper, A., A new location echnique for the

active office. Personal Communications (1997) 4, 5, 42–47

[24] Hazas, M., and Ward, A., A novel broadband ultrasonic location system,

International Conference on Ubiquitous Computing (2002), 264–280

[25] A. Y. Benbasat. An inertial measurement unit for user interfaces. Master’s

thesis, Program in Media Arts and Sciences, Massachusetts Institute of

Technology, September 2000.

[26] Frey, W., Off-the-shelf, real-time, “human body motion capture for

synthetic environments” Tech. Rep. (1996) NPSCS-96-003, Naval

Postgraduate School, Monterey, California

[27] Hightower, J., and Borriello, G., “Location systems for ubiquitous

computing”, Computer (2001), 34, 8, 57–66

[28] Meyer, K., Applewhite, H. L., and Biocca, F. A., “A survey of

position-trackers”, Presence (1992), 1, 2, 173–200

[29] Bishop, T. G., Self-Tracker: “A Smart Optical Sensor on Silicon”, PhD

thesis (1984), University of North Carolina at Chapel Hill

[30] The introduction of Altium Designer http://www.altium.com/ products/

altium-designer

 94

[31] Foxlin, E., and Harrington, M., Weartrack: A self-referenced head and

hand tracker for wearable computers and portable VR, International

Symposium on Wearable Computers (2000), 155–162

[32] Foxlin, E., Pedestrian tracking with shoe-mounted inertial sensors,

Computer Graphics and Applications (2005), 25, 6, 38–46

[33] Foxlin, E., Harrington, M., and Pfeifer, G., Constellation: A wide-range

wireless motion-tracking system for augmented reality and virtual set

applications, Computer Graphics, Annual Conference Series (1998),

371–378

[34] Ward, J. A., Lukowicz, P., and Troster, G., Gesture spotting using wrist

worn microphone and 3-axis accelerometer, Joint Conference on Smart

Objects and Ambient Intelligence (2005), 99–104

[35] Bachmann, E. R., Inertial and Magnetic Tracking of Limb Segment

Orientation for Inserting Humans Into Synthetic Environments, PhD thesis

(2000), Naval Postgraduate School, Monterey, California.

[36] MEMS, http://en.wikipedia.org/wiki/Microelectromechanical_systems

[37] HID, http://en.wikipedia.org/wiki/Human_interface_device

[38] Maya, http://usa.autodesk.com/maya/

[39] Taichi Chuan, http://en.wikipedia.org/wiki/T'ai_chi_ch'uan

[40] Wu Style Taichi, http://en.wikipedia.org/wiki/Wu_style_tai_chi_chuan

[41] Yang Style Taichi, http://www.fushengyuan-taichi.com.au/

 95

Annex A: Microcontroller Firmware

/******************************include files********************************/

#include <p18cxxx.h>

#include <p18f45j10.h>

/******************************include files********************************/

#define HARDWARE_TRANSMITTER

//#define HARDWARE_RECEIVER

#define ID 1

/******************************include files********************************/

#include "GenericTypeDefs.h"

#include "MRF24J40MA.h"

#include "KEYBOARD.h"

#include "GyroDataProcessing.h"

#include "ChipConfig.h"

/******************************include files********************************/

#pragma config XINST = OFF // Extended instruction set

#pragma config STVREN = ON // Stack overflow reset

//#pragma config PLLDIV = 5 // (20 MHz crystal used on this board)

#pragma config WDTEN = OFF // Watch Dog Timer (WDT)

#pragma config CP0 = OFF // Code protect

//#pragma config CPUDIV = OSC1 // OSC1 = divide by 1 mode

#pragma config IESO = OFF // Internal External (clock) Switchover

#pragma config FCMEN = OFF // Fail Safe Clock Monitor

#pragma config FOSC = HSPLL // Firmware must also set OSCTUNE<PLLEN> to start PLL!

#pragma config WDTPS = 32768

//#pragma config WAIT = OFF // Commented choices are

//#pragma config BW = 16 // only available on the

//#pragma config MODE = MM // 80 pin devices in the

//#pragma config EASHFT = OFF // family.

//#pragma config MSSPMSK = MSK5

//#pragma config PMPMX = DEFAULT

//#pragma config ECCPMX = DEFAULT

#pragma config CCP2MX = DEFAULT

/******************************Function declaration********************************/

void Load_ID(void);

void Load_Gyro_Data(void);

void Load_ACC_Data(void);

void Load_KB_Data(void);

 96

/******************************Function declaration********************************/

void YourHighPriorityISRCode();

void YourLowPriorityISRCode();

/** Important VECTOR REMAPPING ***/

#if defined(__18CXX)

//On PIC18 devices, addresses 0x00, 0x08, and 0x18 are used for

//the reset, high priority interrupt, and low priority interrupt

//vectors. However, the current Microchip USB bootloader

//examples are intended to occupy addresses 0x00-0x7FF or

//0x00-0xFFF depending on which bootloader is used. Therefore,

//the bootloader code remaps these vectors to new locations

//as indicated below. This remapping is only necessary if you

//wish to program the hex file generated from this project with

//the USB bootloader. If no bootloader is used, edit the

//usb_config.h file and comment out the following defines:

//#define PROGRAMMABLE_WITH_USB_HID_BOOTLOADER

//#define PROGRAMMABLE_WITH_USB_LEGACY_CUSTOM_CLASS_BOOTLOADER

#if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)

#define REMAPPED_RESET_VECTOR_ADDRESS 0x1000

#define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x1008

#define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x1018

#elif defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER)

#define REMAPPED_RESET_VECTOR_ADDRESS 0x800

#define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x808

#define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x818

#else

#define REMAPPED_RESET_VECTOR_ADDRESS 0x00

#define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x08

#define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x18

#endif

#if

defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOA

DER)

extern void _startup (void); // See c018i.c in your C18 compiler dir

#pragma code REMAPPED_RESET_VECTOR = REMAPPED_RESET_VECTOR_ADDRESS

void _reset (void)

{

_asm goto _startup _endasm

}

#endif

#pragma code REMAPPED_HIGH_INTERRUPT_VECTOR = REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS

void Remapped_High_ISR (void)

{

 97

_asm goto YourHighPriorityISRCode _endasm

}

#pragma code REMAPPED_LOW_INTERRUPT_VECTOR = REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS

void Remapped_Low_ISR (void)

{

_asm goto YourLowPriorityISRCode _endasm

}

#if

defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOA

DER)

#pragma code HIGH_INTERRUPT_VECTOR = 0x08

void High_ISR (void)

{

_asm goto REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS _endasm

}

#pragma code LOW_INTERRUPT_VECTOR = 0x18

void Low_ISR (void)

{

_asm goto REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS _endasm

}

#endif //end of "#if

defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_LEGACY_CUSTOM_C

LASS_BOOTLOADER)"

#pragma code

//These are your actual interrupt handling routines.

#pragma interrupt YourHighPriorityISRCode

void YourHighPriorityISRCode() //adc code

{

 if(INTCONbits.INT0IF)

 {

 INTCONbits.INT0IF=0;

 INTCONbits.INT0IE=0;

 }

 //***TMR0***

 if(INTCONbits.TMR0IF) //MRF call

 {

 INTCONbits.TMR0IE = 0;//disable timer0

 INTCONbits.TMR0IF = 0; //clear flag

/**/

 Load_ID();//0

 98

 Load_Gyro_Data();//123

 Load_ACC_Data();//456

 Load_KB_Data();//78910

 PORTDbits.RD1=1;

 MRF24J40_Transmit(11,RFTxBuffer);

 PORTDbits.RD1=0;

/**/

 TMR0H=0xfd;

 TMR0L=0x00;

 INTCONbits.TMR0IE=1;

 }

}

#pragma interruptlow YourLowPriorityISRCode

void YourLowPriorityISRCode()

{

}

#elif defined(__C30__)

#if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)

#endif

#endif

//******END interrupt Service Routine*******************

//development board code

void main(void)

{

 unsigned char i = 0;

 InitialPorts();

 PORTDbits.RD1=0;

 for(i=0;i<TX_PLOAD_WIDTH;i++)

 RFTxBuffer[i]=0;

 while(1);

}

void Load_ID(void)

{

 RFTxBuffer[0]=ID;

}

void Load_Gyro_Data(void)

 99

{

 UINT8 GYRO1,GYRO2;

 UINT8 MOUSE1,MOUSE2;

 RFTxBuffer[3]=0;

}

void Load_ACC_Data(void)

{

 RFTxBuffer[4]=AD_CONVERSION(0x00);//AN0

 RFTxBuffer[6]=AD_CONVERSION(0x03);//AN3

}

void Load_KB_Data(void)

{

 UINT8 joy1,joy2;

 if(RFTxBuffer[5]>190)

 RFTxBuffer[8]=KEY_J;

 else if(joy1>170)

 RFTxBuffer[8]=KEY_RIGHT;

 else if(joy1<80)

 RFTxBuffer[8]=KEY_LEFT;

 else if(joy2>170)

 RFTxBuffer[8]=KEY_UP;

 else if(joy2<80)

 RFTxBuffer[8]=KEY_DOWN;

 else if(PORTDbits.RD4)

 RFTxBuffer[8]=KEY_ENTER;

}

Annex B: HID firmware in USB

#ifndef __USB_DESCRIPTORS_C

#define __USB_DESCRIPTORS_C

/** INCLUDES ***/

#include "GenericTypeDefs.h"

#include "Compiler.h"

#include "usb_config.h"

#include "usb_device.h" //haojie

#include "usb_function_hid.h" //haojie key

#include "usb_function_hid_m.h" //haojie mouse

#include "usb_function_hid_h.h" //haojie hid

/** CONSTANTS **/

#if defined(__18CXX)

 100

#pragma romdata

#endif

/* Device Descriptor */

ROM USB_DEVICE_DESCRIPTOR device_dsc=

{

 0x12, // Size of this descriptor in bytes

 USB_DESCRIPTOR_DEVICE, // DEVICE descriptor type

 0x0200, // USB Spec Release Number in BCD format

 0x00, // Class Code

 0x00, // Subclass code

 0x00, // Protocol code

 USB_EP0_BUFF_SIZE, // Max packet size for EP0, see usb_config.h

 MY_VID, // Vendor ID

 MY_PID, // Product ID: Mouse in a circle fw demo

 0x0001, // Device release number in BCD format

 0x01, // Manufacturer string index

 0x02, // Product string index

 0x00, // Device serial number string index

 0x01 // Number of possible configurations

};

/* Configuration 1 Descriptor */

ROM BYTE configDescriptor1[]={

 /* Configuration Descriptor */

 0x09,//sizeof(USB_CFG_DSC), // Size of this descriptor in bytes

 USB_DESCRIPTOR_CONFIGURATION, // CONFIGURATION descriptor type

 DESC_CONFIG_WORD(0x005B), //haojie Total length of data for this cfg

 3, //haojie // Number of interfaces in this cfg

 1, // Index value of this configuration

 0, // Configuration string index

 _DEFAULT | _SELF, // Attributes, see usb_device.h

 50, // Max power consumption (2X mA)

 /* Interface Descriptor */

 0x09,//sizeof(USB_INTF_DSC), // Size of this descriptor in bytes

 USB_DESCRIPTOR_INTERFACE, // INTERFACE descriptor type

 0, //hoajie Interface Number

 0, // Alternate Setting Number

 1, //haojie Number of endpoints in this intf

 HID_INTF, // Class code

 BOOT_INTF_SUBCLASS, // Subclass code

 HID_PROTOCOL_KEYBOARD, // Protocol code

 0, // Interface string index

 101

 /* HID Class-Specific Descriptor */

 0x09,//sizeof(USB_HID_DSC)+3, // Size of this descriptor in bytes RRoj hack

 DSC_HID, // HID descriptor type

 DESC_CONFIG_WORD(0x0111), // HID Spec Release Number in BCD format (1.11)

 0x00, // Country Code (0x00 for Not supported)

 HID_NUM_OF_DSC, //haojie Number of class descriptors, see usbcfg.h

 DSC_RPT, // Report descriptor type

 DESC_CONFIG_WORD(HID_RPT01_SIZE), //hoajie sizeof(hid_rpt01), // Size of the report

descriptor

 /* Endpoint Descriptor */

 0x07,/*sizeof(USB_EP_DSC)*/

 USB_DESCRIPTOR_ENDPOINT, //Endpoint Descriptor

 HID_EP | _EP_IN, //EndpointAddress

 _INTERRUPT, //Attributes

 DESC_CONFIG_WORD(8), //size

 0x01, //haojie //Interval

 /*-----------mouse----------*/

 /* Interface Descriptor */

 0x09,//sizeof(USB_INTF_DSC), // Size of this descriptor in bytes

 USB_DESCRIPTOR_INTERFACE, // INTERFACE descriptor type

 1, //haojie // Interface Number

 0, // Alternate Setting Number

 1, // Number of endpoints in this intf

 HID_INTF, // Class code

 BOOT_INTF_SUBCLASS, // Subclass code

 HID_PROTOCOL_MOUSE, // Protocol code

 0, // Interface string index

 /* HID Class-Specific Descriptor */

 0x09,//sizeof(USB_HID_DSC)+3, // Size of this descriptor in bytes RRoj hack

 DSC_HID, // HID descriptor type

 DESC_CONFIG_WORD(0x0111), // HID Spec Release Number in BCD format (1.11)

 0x00, // Country Code (0x00 for Not supported)

 HID_NUM_OF_DSC_M, //haojie // Number of class descriptors, see usbcfg.h

 DSC_RPT, // Report descriptor type

 DESC_CONFIG_WORD(HID_RPT01_SIZE_M), //haojie

 /* Endpoint Descriptor */

 0x07,/*sizeof(USB_EP_DSC)*/

 USB_DESCRIPTOR_ENDPOINT, //Endpoint Descriptor

 HID_EP_M | _EP_IN, //haojie //EndpointAddress

 _INTERRUPT, //Attributes

 DESC_CONFIG_WORD(3), //size

 102

 0x01, //haojie Interval

 /*-----------hid----------*/

 /* Interface Descriptor */

 0x09,//sizeof(USB_INTF_DSC), // Size of this descriptor in bytes

 USB_DESCRIPTOR_INTERFACE, // INTERFACE descriptor type

 2, //haojie Interface Number

 0, // Alternate Setting Number

 2, //haojie Number of endpoints in this intf

 HID_INTF, // Class code

 0, // Subclass code

 0, // Protocol code

 0, // Interface string index

 /* HID Class-Specific Descriptor */

 0x09,//sizeof(USB_HID_DSC)+3, // Size of this descriptor in bytes

 DSC_HID, // HID descriptor type

 0x11,0x01, // HID Spec Release Number in BCD format (1.11)

 0x00, // Country Code (0x00 for Not supported)

 HID_NUM_OF_DSC_H, //haojie Number of class descriptors, see usbcfg.h

 DSC_RPT, // Report descriptor type

 DESC_CONFIG_WORD(HID_RPT01_SIZE_H), // haojie sizeof(hid_rpt01), // Size of the

report descriptor

 /* Endpoint Descriptor */

 0x07,/*sizeof(USB_EP_DSC)*/

 USB_DESCRIPTOR_ENDPOINT, //Endpoint Descriptor

 HID_EP_H | _EP_IN, //haojie //EndpointAddress

 _INTERRUPT, //Attributes

 0x40,0x00, //size

 0x01, //Interval

 /* Endpoint Descriptor */

 0x07,/*sizeof(USB_EP_DSC)*/

 USB_DESCRIPTOR_ENDPOINT, //Endpoint Descriptor

 HID_EP_H | _EP_OUT, //haojie EndpointAddress

 _INTERRUPT, //Attributes

 0x40,0x00, //size

 0x01 //Interval

};

//Language code string descriptor

ROM struct{BYTE bLength;BYTE bDscType;WORD string[1];}sd000={

sizeof(sd000),USB_DESCRIPTOR_STRING,{0x0409

 103

}};

//Manufacturer string descriptor

ROM struct{BYTE bLength;BYTE bDscType;WORD string[25];}sd001={

sizeof(sd001),USB_DESCRIPTOR_STRING,

{'M','i','c','r','o','c','h','i','p',' ',

'T','e','c','h','n','o','l','o','g','y',' ','I','n','c','.'

}};

//Product string descriptor

ROM struct{BYTE bLength;BYTE bDscType;WORD string[22];}sd002={

sizeof(sd002),USB_DESCRIPTOR_STRING,

{'K','e','y','b','o','a','r','d',' ','D','e','m','o'

}};

//Class specific descriptor - HID keyboard

ROM struct{BYTE report[HID_RPT01_SIZE];}hid_rpt01={

 { 0x05, 0x01, // USAGE_PAGE (Generic Desktop)

 0x09, 0x06, // USAGE (Keyboard)

 0xa1, 0x01, // COLLECTION (Application)

 0x05, 0x07, // USAGE_PAGE (Keyboard)

 0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl)

 0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)

 0x15, 0x00, // LOGICAL_MINIMUM (0)

 0x25, 0x01, // LOGICAL_MAXIMUM (1)

 0x75, 0x01, // REPORT_SIZE (1)

 0x95, 0x08, // REPORT_COUNT (8)

 0x81, 0x02, // INPUT (Data,Var,Abs)

 0x95, 0x01, // REPORT_COUNT (1)

 0x75, 0x08, // REPORT_SIZE (8)

 0x81, 0x03, // INPUT (Cnst,Var,Abs)

 0x95, 0x05, // REPORT_COUNT (5)

 0x75, 0x01, // REPORT_SIZE (1)

 0x05, 0x08, // USAGE_PAGE (LEDs)

 0x19, 0x01, // USAGE_MINIMUM (Num Lock)

 0x29, 0x05, // USAGE_MAXIMUM (Kana)

 0x91, 0x02, // OUTPUT (Data,Var,Abs)

 0x95, 0x01, // REPORT_COUNT (1)

 0x75, 0x03, // REPORT_SIZE (3)

 0x91, 0x03, // OUTPUT (Cnst,Var,Abs)

 0x95, 0x06, // REPORT_COUNT (6)

 0x75, 0x08, // REPORT_SIZE (8)

 0x15, 0x00, // LOGICAL_MINIMUM (0)

 0x25, 0x65, // LOGICAL_MAXIMUM (101)

 0x05, 0x07, // USAGE_PAGE (Keyboard)

 104

 0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated))

 0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)

 0x81, 0x00, // INPUT (Data,Ary,Abs)

 0xc0 }

};/* End Collection,End Collection */

//Class specific descriptor - HID mouse

ROM struct{BYTE report[HID_RPT01_SIZE_M];}hid_rpt01_m={ //haojie

 {0x05, 0x01, /* Usage Page (Generic Desktop) */

 0x09, 0x02, /* Usage (Mouse) */

 0xA1, 0x01, /* Collection (Application) */

 0x09, 0x01, /* Usage (Pointer) */

 0xA1, 0x00, /* Collection (Physical) */

 0x05, 0x09, /* Usage Page (Buttons) */

 0x19, 0x01, /* Usage Minimum (01) */

 0x29, 0x03, /* Usage Maximum (03) */

 0x15, 0x00, /* Logical Minimum (0) */

 0x25, 0x01, /* Logical Maximum (0) */

 0x95, 0x03, /* Report Count (3) */

 0x75, 0x01, /* Report Size (1) */

 0x81, 0x02, /* Input (Data, Variable, Absolute) */

 0x95, 0x01, /* Report Count (1) */

 0x75, 0x05, /* Report Size (5) */

 0x81, 0x01, /* Input (Constant) ;5 bit padding */

 0x05, 0x01, /* Usage Page (Generic Desktop) */

 0x09, 0x30, /* Usage (X) */

 0x09, 0x31, /* Usage (Y) */

 0x15, 0x81, /* Logical Minimum (-127) */

 0x25, 0x7F, /* Logical Maximum (127) */

 0x75, 0x08, /* Report Size (8) */

 0x95, 0x02, /* Report Count (2) */

 0x81, 0x06, /* Input (Data, Variable, Relative) */

 0xC0, 0xC0}

};/* End Collection,End Collection */

//Class specific descriptor - HID

ROM struct{BYTE report[HID_RPT01_SIZE_H];}hid_rpt01_h={

{

 0x06, 0x00, 0xFF, // Usage Page = 0xFFFF (Vendor Defined)

 0x09, 0x01, // Usage

 0xA1, 0x01, // Collection (Application, probably not important because vendor

defined usage)

 0x19, 0x01, // Usage Minimum (Vendor Usage = 0) (minimum bytes the device

should send is 0)

 105

 0x29, 0x04, //haojie Usage Maximum (Vendor Usage = 64) (maximum bytes the

device should send is 64)

 0x15, 0x00, // Logical Minimum (Vendor Usage = 0)

 0x26, 0xFF, 0x00, // Logical Maximum (Vendor Usage = 255)

 0x75, 0x08, // Report Size 8 bits (one full byte) for each report.

 0x95, 0x04, //haojie Report Count 64 bytes in a full report.

 0x81, 0x02, // Input (Data, Var, Abs)

 0x19, 0x01, // Usage Minimum (Vendor Usage = 0)

 0x29, 0x04, //haojie Usage Maximum (Vendor Usage = 64)

 0x91, 0x02, // Output (Data, Var, Ads)

 0xC0}

}; // End Collection

//Array of configuration descriptors

ROM BYTE *ROM USB_CD_Ptr[]=

{

 (ROM BYTE *ROM)&configDescriptor1

};

//Array of string descriptors

ROM BYTE *ROM USB_SD_Ptr[]=

{

 (ROM BYTE *ROM)&sd000,

 (ROM BYTE *ROM)&sd001,

 (ROM BYTE *ROM)&sd002

};

/** EOF usb_descriptors.c ***/

#endif

Annex C: Win32 Class driver to read WRS data

BOOL CUsbhidiocDlg::DeviceNameMatch(LPARAM lParam)

 {

 // Compare the device path name of a device recently attached or removed

 // with the device path name of the device we want to communicate with.

 PDEV_BROADCAST_HDR lpdb = (PDEV_BROADCAST_HDR)lParam;

 DisplayData("MyDevicePathName = " + MyDevicePathName);

 106

 if (lpdb->dbch_devicetype == DBT_DEVTYP_DEVICEINTERFACE)

 {

 PDEV_BROADCAST_DEVICEINTERFACE lpdbi = (PDEV_BROADCAST_DEVICEINTERFACE)lParam;

 CString DeviceNameString;

 //The dbch_devicetype parameter indicates that the event applies to a device interface.

 //So the structure in LParam is actually a DEV_BROADCAST_INTERFACE structure,

 //which begins with a DEV_BROADCAST_HDR.

 //The dbcc_name parameter of DevBroadcastDeviceInterface contains the device name.

 //Compare the name of the newly attached device with the name of the device

 //the application is accessing (myDevicePathName).

 DeviceNameString = lpdbi->dbcc_name;

 DisplayData("DeviceNameString = " + DeviceNameString);

 if ((DeviceNameString.CompareNoCase(MyDevicePathName)) == 0)

 {

 //The name matches.

 return true;

 }

 else

 {

 //It's a different device.

 return false;

 }

 }

 else

 {

 return false;

 }

}

void CUsbhidiocDlg::DisplayCurrentTime()

 107

{

 //Get the current time and date and display them in the log List Box.

 CTime curTime = CTime::GetCurrentTime();

 CString CurrentTime = curTime.Format("%H:%M:%S, %B %d, %Y");

 DisplayData(CurrentTime);

}

void CUsbhidiocDlg::DisplayData(CString cstrDataToDisplay)

{

 //Display data in the log List Box

 USHORT Index;

 Index=m_ResultsList.InsertString(-1, (LPCTSTR)cstrDataToDisplay);

 ScrollToBottomOfListBox(Index);

}

void CUsbhidiocDlg::DisplayFeatureReport()

{

 USHORT ByteNumber;

 CHAR ReceivedByte;

 //Display the received data in the log and the Bytes Received List boxes.

 //Start at the top of the List Box.

 m_BytesReceived.ResetContent();

 //Step through the received bytes and display each.

 for (ByteNumber=0; ByteNumber < Capabilities.FeatureReportByteLength; ByteNumber++)

 {

 //Get a byte.

 ReceivedByte = FeatureReport[ByteNumber];

 //Display it.

 DisplayReceivedData(ReceivedByte);

 }

}

unsigned char test22;

 108

int inPosX = 600;

int inPosY = 300;

int XinPosX = 1000 - 50;

int YinPosX = 1100 - 50;

int ZinPosX = 1200 - 50;

void CUsbhidiocDlg::DisplayInputReport()

{

 USHORT ByteNumber;

 unsigned char ReceivedByte;

 char ProcessData;

 //char ReceivedByte;

 CString strs;

 test22++;

 //Display the received data in the log and the Bytes Received List boxes.

 //Start at the top of the List Box.

 m_BytesReceived.ResetContent();

 //Step through the received bytes and display each.

 for (ByteNumber=0; ByteNumber < Capabilities.InputReportByteLength; ByteNumber++)

 {

 //Get a byte.

 ReceivedByte = InputReport[ByteNumber];

 // strs.Format("%02X", ReceivedByte);

 // strs = strs.Right(2);

 if (ByteNumber==2) //testing, was 2

 {

 //write

 fprintf(fd1, "%d\t", ReceivedByte);

 m_output_X.MoveWindow(XinPosX,ReceivedByte+300,20,20,1);

 }

 if (ByteNumber==3) //testing, was 2

 {

 /*if(ReceivedByte >160)

 inPosY-=20;

 109

 if(inPosY <= 200)

 inPosY = 600;

 m_LeftFoot.MoveWindow(inPosX,inPosY,100,100,1);

 */

 //raw output to show

 m_output_Y.MoveWindow(YinPosX,ReceivedByte+300,20,20,1);

 //process data and integrate

 if(ReceivedByte >116&&ReceivedByte<136)

 ReceivedByte = 126;

 ProcessData = ReceivedByte - 126;

 if(ProcessData>=-10&&ProcessData<=10)

 ProcessData=0;

 inPosY-=ProcessData/10;

 if(inPosY <= 100||inPosY>=700)

 inPosY = 600;

 m_RightFoot.MoveWindow(inPosX+100,inPosY,100,100,1);

 fprintf(fd1, "%d\t", ReceivedByte);

 }

 if (ByteNumber==4)

 {

 //raw data to show

 m_output_Z.MoveWindow(200-ReceivedByte+1100,600,20,20,1);

 ////write

 //if(ReceivedByte >96&&ReceivedByte<116)

 // ReceivedByte = 106;

 fprintf(fd1, "%d\t", ReceivedByte);

 //fprintf(fd1, "\n");

 }

 if (ByteNumber==5)

 {

 //raw data to show

 //m_output_Z.MoveWindow(200-ReceivedByte+1100,600,20,20,1);

 ////write

 110

 //if(ReceivedByte >96&&ReceivedByte<116)

 // ReceivedByte = 106;

 fprintf(fd1, "%d\t", ReceivedByte);

 fprintf(fd1, "\n");

 }

 //Display it.

 DisplayReceivedData(ReceivedByte);

 }

}

Annex D: Avatar Control

using UnityEngine;

using System.Collections;

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.InteropServices;

using System.IO;

using System.Threading;

[System.Serializable]

public class DeviceCap

{

 public int maxX, minX,

 maxY, minY,

 maxZ, minZ;

};

public class HID

{

 protected static DeviceCap[] deviceCap;

 public static int[,] hidData;

 public static float[] timer; //list of the device id last update

 //public static List<int> timeOutDevice = new List<int>(); //list of timeout device id

 public static bool[] deviceTimeOut;

 public static void SetDeviceCap(DeviceCap[] dev)

 {

 deviceCap = dev;

 111

 }

 public static int GetReport(int deviceID, int dataID)

 {

 lock (hidData)

 {

 return hidData[deviceID, dataID];

 }

 }

 public static float GetOrientation(int deviceId, int dataId)

 {

 float min = 0, max = 1, input;

 int index = dataId;

 switch (dataId)

 {

 case 0:

 {

 min = deviceCap[deviceId].minX;

 max = deviceCap[deviceId].maxX;

 } break;

 case 1:

 {

 min = deviceCap[deviceId].minY;

 max = deviceCap[deviceId].maxY;

 } break;

 case 2:

 {

 min = deviceCap[deviceId].minZ;

 max = deviceCap[deviceId].maxZ;

 } break;

 }

 input = (float)HID.GetReport(deviceId, index);

 //input = Mathf.Clamp(input, min, max);

 return (input - min) / (max - min) * 180.0f;

 }

 public static float[] GetOrientations(int deviceId)

 {

 return new float[3] { GetOrientation(deviceId, 0),

 GetOrientation(deviceId, 1),

 112

 GetOrientation(deviceId, 2) };

 }

 public static void DataSize(int id, int data)

 {

 hidData = new int[id, data];

 timer = new float[id];

 deviceTimeOut = new bool[id];

 for (int i = 0; i < id; ++i)

 deviceTimeOut[i] = true;

 }

};

public class PortegeHidPlugin : MonoBehaviour {

 [DllImport("HID_Plugin.dll")]

 protected static extern void UpdateHID();

 //

 [DllImport("HID_Plugin.dll")]

 protected static extern int inputReport(int n);

 [DllImport("HID_Plugin.dll")]

 protected static extern void ResetInput();

 [DllImport("HID_Plugin.dll")]

 protected static extern bool deviceFound();

 //[DllImport("HID_Plugin.dll")]

 //public static extern bool deviceFound();

 private StreamWriter output;

 //private float timer;

 private bool startRecording = false;

 private string form;

 //private int timer;

 private float recordStart = 0;

 public string performer;

 public int[] deviceID;

 public int[] dataArray;

 public Vector2[] drawPos;

 public Vector2 translateWarning;

 public DeviceCap[] deviceCap;

 113

 private float sX, sY;

 private Thread thread = null;

 private bool runThread = false;

 public Texture2D[] leftDevTex;

 public Texture2D[] rightDevTex;

 public Texture2D[] captTex;

 bool deviceWorking;

 float countdown;

 // Use this for initialization

 void Start () {

 //timer = Time.timeSinceLevelLoad;

 Time.fixedDeltaTime = 0.25F;

 HID.DataSize(deviceID.Length, dataArray.Length);

 HID.SetDeviceCap(deviceCap);

 ResetInput();

 StartHID();

 }

 void OnDisable()

 {

 //usb.CleanUp();

 StopHID();

 }

 void OnApplicationQuit()

 {

 StopHID();

 }

 void OnGUI()

 {

 GUI.depth = -2;

 if (Event.current.type == EventType.Repaint)

 {

 int caption, right, left;

 114

 left = HID.deviceTimeOut[0] ? 0 : 1;

 right = HID.deviceTimeOut[1] ? 0 : 1;

 caption = right == 0 || left == 0 ? 0 : 1;

 if (countdown > 0.0f)

 {

 Color defaultColor = GUI.color;

 GUI.color = new Color(defaultColor.r, defaultColor.g, defaultColor.b,

countdown);

 GUI.DrawTexture(new Rect(20 * sX, 20 * sY, leftDevTex[left].width * sX,

leftDevTex[left].height * sY), leftDevTex[left]);

 GUI.DrawTexture(new Rect((20 + leftDevTex[left].width) * sX, 20 * sY,

rightDevTex[left].width * sX, rightDevTex[left].height * sY), rightDevTex[right]);

 GUI.DrawTexture(new Rect((20 + leftDevTex[left].width -

(captTex[caption].width * 0.5f)) * sX, (20 + (leftDevTex[left].height * 0.5f) -

(captTex[caption].height * 0.5f)) * sY,

 captTex[caption].width * sX,

captTex[caption].height * sY), captTex[caption]);

 GUI.color = defaultColor;

 }

 if (caption == 1) //device working

 {

 if (!deviceWorking)

 deviceWorking = true;

 }

 else

 {

 deviceWorking = false;

 countdown = 1.0f;

 }

 }

 }

 void StartHID()

 {

 if (thread != null) return;

 runThread = true;

 try

 {

 thread = new Thread(new ThreadStart(RunHID));

 115

 thread.Start();

 }

 catch (Exception e)

 {

 print(e.Message);

 }

 finally

 {

 //print("Thread Started");

 }

 }

 void StopHID()

 {

 if (thread == null) return;

 //print("Abborted");

 runThread = false;

 thread.Abort();

 thread = null;

 }

 void RunHID()

 {

 DateTime now = DateTime.Now;

 int fps = 0, tick = 0, id, dataPerSec = 0;

 int[] data;

 bool emptyData;

 while (runThread)

 {

 TimeSpan elapsedSpan = new TimeSpan(DateTime.Now.Ticks - now.Ticks);

 now = DateTime.Now;

 UpdateHID();

 //if (!deviceFound()) return;

 emptyData = true;

 id = inputReport(2);

 data = new int[dataArray.Length];

 for (int i = 0; i < dataArray.Length; ++i)

 116

 data[i] = inputReport(dataArray[i]);

 if (id == 0)

 {

 foreach (int no in data)

 if (no != 0)

 {

 emptyData = false;

 break;

 }

 }

 else emptyData = false;

 for (int i = 0; i < deviceID.Length; ++i)

 {

 HID.timer[i] += elapsedSpan.Milliseconds;

 if (HID.deviceTimeOut[i]) continue; //the device id is already in the time

out list

 //the device id has not been updated for the pass 1 second

 //this might be due to the device error or no battery

 if (HID.timer[i] > 500)

 {

 //print("HID REMOVE " + i);

 for (int n = 0; n < dataArray.Length; ++n)

 HID.hidData[i, n] = 0;

 //HID.timeOutDevice.Add(i);

 HID.deviceTimeOut[i] = true;

 }

 }

 if (!emptyData)

 for (int i = 0; i < deviceID.Length; ++i)

 if (deviceID[i] == id)

 {

 //print(deviceID[i] +" " + id);

 HID.timer[i] = 0;

 //print("HID REMOVE " + i);

 HID.deviceTimeOut[i] = false;

 //HID.timeOutDevice.Remove(i); //we'll remove the device id from the

time out list

 //print(HID.GetOrientation(i, 0) + " " + HID.GetOrientation(i, 1) + "

" + HID.GetOrientation(i, 2));

 117

 for (int n = 0; n < dataArray.Length; ++n)

 HID.hidData[i, n] = inputReport(dataArray[n]);

 break;

 }

 if (!emptyData)

 {

 ++dataPerSec;

 /* print(inputReport(0) + "\t" +

 inputReport(1) + "\t" +

 inputReport(2) + "\t" +

 inputReport(3) + "\t" +

 inputReport(4) + "\t" +

 inputReport(5) + "\t" +

 inputReport(6) + "\t" +

 inputReport(7));*/

 }

 ResetInput();

 tick += elapsedSpan.Milliseconds;

 ++fps;

 if (tick > 1000)

 {

 tick = 0;

 // print("Thread Fps : " + fps);

 // print("Data Per Sec : " + dataPerSec);

 fps = 0;

 dataPerSec = 0;

 }

 }

 }

 // Update is called once per frame

 void Update()

 {

 sX = (float)Screen.width / 1024.0F;

 sY = (float)Screen.height / 768.0F;

 if(deviceWorking)

 {

 if (countdown > 0.0f)

 countdown -= Time.deltaTime;

 else

 118

 countdown = 0.0f;

 }

 }

 void StartRecording(string move)

 {

 recordStart = Time.timeSinceLevelLoad;

 form = move;

 startRecording = true;

 SaveInputTo("Takes/" + performer + form, Time.timeSinceLevelLoad - recordStart);

 }

 void EndOfClip()

 {

 }

 void SaveInputTo(string fileName, float currTime)

 {

 string file;

 for(int i = 0; i < deviceID.Length; ++i)

 {

 file = fileName + "_" + i + ".txt";

 if(!File.Exists(file))

 output = File.CreateText(file);

 else

 output = File.AppendText(file);

 output.Write("Timer : " + currTime);

 for(int k = 0; k < dataArray.Length; ++k)

 output.Write("\t" + HID.GetReport(i, k));

 output.WriteLine("");

 output.Close();

 print("Recording Timer : " + currTime);

 }

 }

}

 119

Annex E: Game Scoring System for Taichi

 void StartScoreAnimation()

 {

 startScoreBoardAnim = true;

 if (rollAnim != 0) return;

 paintR = null;

 paintAnim = 0;

 taichiPoseR = null;

 poseAnim = 0;

 signAnim = -1;

 scrollRollR = scrollRoll[rollAnim];

 alpha = 0;

 watchFrame = -1;

 showProgress = finishProgress = showScore = showGrade = false;

 p1PercentBar = 0.95f;

 sfx.PlayOneShot(clips[0]);

 gradeAlpha = 0;

 Invoke("RollAnim", scrollSpeed);

 }

 void RollAnim()

 {

 if (alpha < 1.0f)

 alpha += 0.075f;

 ++rollAnim;

 if (rollAnim == scrollRoll.Length)

 {

 rollAnim = 0;

 showProgress = true;

 float p = (float)p1Score / (float)totalScore;

 if (p > 0.85f)

 grade = 4;

 else if (p > 0.65f)

 120

 grade = 3;

 else if (p > 0.5f)

 grade = 2;

 else if (p > 0.3f)

 grade = 1;

 else

 grade = 0;

 sfx.PlayOneShot(clips[4]);

 p1Percent = Mathf.InverseLerp(totalScore, 0, p1Score) * 0.8f + 0.1f;

 float time = 3 - ((p1Percent - 0.1f) / 0.8f); //0-3 seconds

 p1PercentAdd = (p1PercentBar - p1Percent) / (framePerSecond * - time);

 if (p1PercentAdd > 0 || p1Score == 0)

 {

 p1PercentAdd = 0;

 p1Percent = p1PercentBar;

 }

 return;

 }

 else if (rollAnim < scrollRoll.Length)

 {

 Invoke("RollAnim", scrollSpeed);

 }

 scrollRollR = scrollRoll[rollAnim];

 }

 void PoseAnim()

 {

 ++poseAnim;

 if (poseAnim == taichiPose.Length)

 {

 poseAnim = 0; //this is for debug purposes

 Invoke("SignAnim", signSpeed);

 return;

 }

 else if (poseAnim < taichiPose.Length)

 Invoke("PoseAnim", poseSpeed);

 taichiPoseR = taichiPose[poseAnim];

 121

 }

 void SignAnim()

 {

 ++signAnim;

 print(signAnim);

 if (signAnim == 2)

 {

 signAnim = 1;

 showGrade = true;

 }

 else if (signAnim < redDot.Length)

 Invoke("SignAnim", signSpeed);

 }

 void PaintAnim()

 {

 ++paintAnim;

 if(paintAnim == 1)

 sfx.PlayOneShot(clips[3]);

 if (paintAnim == paint.Length)

 {

 paintAnim = 0; //this is for debug purposes

 showScore = true;

 taichiPoseR = taichiPose[poseAnim];

 Invoke("PoseAnim", painSpeed);

 return;

 }

 else if (paintAnim < paint.Length)

 Invoke("PaintAnim", painSpeed);

 paintR = paint[paintAnim];

 }

 void DrawWatch(bool fadeOut)

 {

 if (Event.current.type == EventType.Repaint)

 {

 if (fadeOut)

 {

 if (!gamePause)

 {

 if (alpha < 1)

 alpha += Time.deltaTime;

 else

 122

 {

 watchFrame += Time.deltaTime * 30;

 if (watchFrame > 24) watchFrame = 24;

 }

 }

 GUI.color = new Color(1, 1, 1, alpha);

 GUI.DrawTexture(new Rect(0, 0, 1024 * screenRatioX, 768 * screenRatioY),

watchFade);

 GUI.color = new Color(1, 1, 1, 1);

 if (watchFrame > -1)

 GUI.DrawTexture(new Rect(336 * screenRatioX, 5 * screenRatioY,

watch[(int)watchFrame].width * screenRatioX, watch[(int)watchFrame].height * screenRatioY),

watch[(int)watchFrame]);

 }

 else

 {

 if (!gamePause)

 {

 if (alpha > 0)

 alpha -= Time.deltaTime * 2;

 }

 GUI.color = new Color(1, 1, 1, alpha);

 GUI.DrawTexture(new Rect(0, 0, 1024 * screenRatioX, 768 * screenRatioY),

watchFade);

 if (watchFrame > -1)

 GUI.DrawTexture(new Rect(336 * screenRatioX, 5 * screenRatioY,

watch[(int)watchFrame].width * screenRatioX, watch[(int)watchFrame].height * screenRatioY),

watch[(int)watchFrame]);

 GUI.color = new Color(1, 1, 1, 1);

 }

 }

 }

 void DrawScoreBoard()

 {

 //score

 Rect rect = new Rect(756 * screenRatioX, 606 * screenRatioY, scoreBoard.width *

screenRatioX, scoreBoard.height * screenRatioY);

 GUI.DrawTexture(rect, scoreBoard);

 GUI.Label(new Rect(830 * screenRatioX, 639 * screenRatioY, 110, 50), p1Score.ToString(),

scoreStyle);

 123

 //GUI.Label(new Rect(100 * screenRatioX, 132 * screenRatioY, 110, 50),

p2Score.ToString(), scoreStyle);

 }

 void DrawProgressBar()

 {

 if (Event.current.type == EventType.Repaint)

 {

 if (totalScoreBar > totalScorePercent)

 {

 totalScoreBar -= totalScoreAdd;

 }

 if (totalScoreBar < totalScorePercent)

 totalScoreBar = totalScorePercent;

 }

 Rect rect;

 const float totalScoreBarX = 26, totalScoreBarY = 525;

 const float progBarX = 189, progBarY = 656;

 const float percentBarY = 663, barMax = 475;

 rect = new Rect(progBarX * screenRatioX, progBarY * screenRatioY,

progressBarTex[0].width * screenRatioX, progressBarTex[0].height * screenRatioY);

 GUI.DrawTexture(rect, progressBarTex[0]); //prog bar base

 Color c1, c2; //start color and end color

 float percent; //the color lerp percentage

 if (p1PercentBar < 0.25f) //0 to 25%

 {

 c1 = tryAgainColor;

 c2 = fairColor;

 percent = p1PercentBar * 4;

 }

 else if (p1PercentBar < 0.5f) //25 - 50%

 {

 c1 = fairColor;

 c2 = goodColor;

 percent = (p1PercentBar - 0.25f) * 4;

 }

 else if (p1PercentBar < 0.75f) //50 - 75%

 {

 c1 = goodColor;

 c2 = excellentColor;

 percent = (p1PercentBar - 0.5f) * 4;

 124

 }

 else //75 - 100%

 {

 c1 = c2 = excellentColor;

 percent = 1;

 }

 GUI.color = Color.Lerp(c1, c2, percent); //lerp the color

 float pBarW = barMax * p1PercentBar;

 rect = new Rect(progBarX * screenRatioX, percentBarY * screenRatioY, pBarW * screenRatioX,

progressBarTex[4].height * screenRatioY);

 GUI.DrawTexture(rect, progressBarTex[4]); //this is the progress bar which will move

 float fadeBarX = progBarX + pBarW - (progressBarTex[5].width * 0.1f);

 float fadeBarMaxX = barMax - (progressBarTex[5].width * 0.75f);

 float fadeBarWidth = progressBarTex[5].width;

 if (pBarW > fadeBarMaxX)

 {

 float diff = barMax - pBarW + (progressBarTex[5].width * 0.25f);

 float diff2 = barMax - fadeBarMaxX + (progressBarTex[5].width * 0.25f);

 float p = diff / diff2;

 fadeBarWidth = (progressBarTex[5].width) * p;

 }

 rect = new Rect(fadeBarX * screenRatioX, percentBarY * screenRatioY, fadeBarWidth *

screenRatioX, progressBarTex[5].height * screenRatioY);

 GUI.DrawTexture(rect, progressBarTex[5]); //this is the progress bar fade

 GUI.color = Color.white; //change back to default color

 rect = new Rect(totalScoreBarX * screenRatioX, totalScoreBarY * screenRatioY,

progressBarTex[1].width * screenRatioX, progressBarTex[1].height * screenRatioY);

 GUI.DrawTexture(rect, progressBarTex[1]); //the grey color circle

 mat.SetFloat("_Cutoff", totalScoreBar);

 Graphics.DrawTexture(rect, mat.mainTexture, mat); //color is 147 200 172 this is the

bar itself

 GUI.DrawTexture(rect, progressBarTex[2]); //move bar front image this is the tai chi

logo

 }

