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Summary  

This thesis studies several applications of subspace based optimization method 

(SOM) for solving two dimensional inverse scattering problems. The original 

contributions of this thesis are: Firstly, we proposed a perfect electric conductor (PEC) 

inverse scattering approach based on SOM, which is able to reconstruct PEC objects 

of arbitrary quantity and shape without requiring prior information on the 

approximate locations or the quantity of the unknown scatterers. Two editions of the 

approach are introduced. In the first edition, a binary vector serves as the 

representation for scatterers, such that the optimization method involved is the 

discrete type steepest descent method. In the second edition, a continuous expression 

for the binary vector is introduced which enables the usage of the alternative two-step 

conjugate-gradient optimization method. The second edition is more robust and faster 

convergence than the first one. Secondly, by successfully extending the SOM to the 

modeling scheme of T-matrix method, we solved the challenging problem of 

reconstructing a mixture of both PEC and dielectric scatterers together. Thirdly, we 

propose a modified SOM to solve the separable obstacle problem. Various numerical 

results are carried out to validate the proposed methods.   
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1 INTRODUCTION 

1.1 Overview of Inverse Scattering Problem 

The inverse problem is general framework of utilizing the measurement data 

at hand to recover the physical description and information about an object or system 

that cannot be accessed directly. It is of great practical importance to modern 

techniques. We call two problems inverse to each other if the formulation of each of 

them requires full or partial knowledge of the other [1]. Practically, the one which is 

already thoroughly investigated and theoretically easier to be solved is defined as the 

forward problem. On the contrary, the one which is less studied and hard to be solved 

is called the inverse problem. Another important difference between the forward and 

inverse problem is the ill-poseness. Inverse problems are mostly ill-posed while the 

corresponding forward problems are usually well-posed. In Hadamard‘s sense [2], a 

problem is well-posed if the following conditions are satisfied: 

1. The solution exists (existence) 

2. The solution is unique (uniqueness) 

3. The solution depends in a continuous manner on the data (stability) 

On the contrary, a problem is ill-posed if one of the properties above fails. 

This thesis aims to deal with the electromagnetic inverse scattering problem, 

i.e. to image or reconstruct the spatial distribution of refraction index of the unknown 

scatterers from the knowledge of the measured scattering data. Electromagnetic 
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inverse scattering problem is of essential importance in many fields, such as 

biomedical imaging, non-destructive testing, remote sensing, geological exploration, 

radar processing, civilian engineering, national security, microscopy, etc.  

In all these applications, the scatterers to be reconstructed are assumed to be 

known a priori inside one certain domain of interest. To get the scattering data for 

reconstruction, the experimental step is to firstly probe the domain of interest by using 

several electromagnetic (EM) waves (cylindrical wave, spherical wave or plane wave) 

from different directions. The wave travels through the domain of interest, onto the 

scatterers and is scattered off. Then several receivers located outside the domain of 

interest (mostly in the far field) record down the measured scattered field.  

In this thesis we discuss the case where the frequencies of the wave are in 

resonance region [3], i.e., the sizes of the unknown scatterers under consideration are 

compatible to wavelength of the EM wave. Such kind of inverse scattering problems 

are both ill-posed and nonlinear. The number of unknowns (number of subunits in the 

discrete model) is always larger than that of measurement points. The mapping 

operator from the induced current to the scattered field outside is compact. In addition 

the scattered field depends in a highly nonlinear manner on the unknown 

configurations, i.e. the permittivity, permeability, conductivity, shape and quantity of 

the scatterers.  

The existence of solution for inverse scattering problem can be guaranteed by 

properly choosing the data space. Since the mapping from induced currents to the 

scattered field is compact, there could be non-unique solutions to the induced current 
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given one scattered field. Thus the spatial distribution of the unknown scatterers 

cannot be uniquely determined by only one incidence [4]. Even though the ambiguity 

of the induced current changes along with different incident waves, the material 

properties of the scatterer do not change. Thus the uniqueness of the solution for 

material properties can be guaranteed by several incidences from different angles [3].    

The most difficult part of inverse scattering problems comes mainly from the 

instability of the solution. Instability can be understood in the sense that the solution 

of the problem is quite sensitive to the input data, such that a slight change in the 

input data will cause a severe change in the reconstruction result. Practically, noise is 

always present in the measured data. As a result, regularization schemes are needed to 

stabilize the solution.  

Till now, the nature of the inverse scattering problem is 

discussed—nonlinearity and ill-poseness. Algorithms for solving such kind of 

problem usually involve optimization scheme, in which the unknown configurations 

are parameterized and being determined by minimizing a cost function containing the 

measured and calculated scattered fields. In the meanwhile, iterative scheme are 

commonly needed, such as the distort Born iteration method (DBIM) [5, 6], modified 

gradient method (MGM) [7-11], the contrast source inversion method (CSI) [12-15] 

and subspace based optimization method (SOM) [16-23]. Besides, regularization 

schemes should also be included to stabilize the optimization, such as the Tikhonov 

regularization method [24-28] and the truncated singular value decomposition (SVD) 

[29-31].  
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Two different categories of scatterers are considered in this thesis. The first 

one is the perfectly electric conducting (PEC) scatterer which is impenetrable by the 

EM wave. There is no electric or magnetic field inside the scatterer, and induced 

currents (that are conducting currents) only exist on the surface of the PEC scatterer. 

The second one is the dielectric scatterer which is penetrable by the EM wave and the 

induced currents (that are contrast displacement currents) exist throughout the whole 

volume of scatterer. Hence, depending on the properties of scatterers to be 

reconstructed, two different kinds of problems are discussed in this thesis. The first 

one is the inverse scattering problem for PEC scatterers only. The property of the 

scatterers to be reconstructed is known as a priori information. Only the locations and 

boundaries for the PEC scatterers need to be reconstructed. Methods for solving such 

kind problem will be reviewed in section 1.2. The second problem is the mixed 

boundary inverse problem which involves reconstruction of PEC and dielectric 

scatterers together. In this mixed boundary inverse scattering problem, we will 

identify PEC scatterers and determine their boundaries while at the same time identify 

dielectric scatterers and determine the spatial distribution of their refractive index.  

1.1 Outline of the thesis  

This section serves to provide an outline of this thesis. In the subsequent 

sections of Chapter 1, the difficulties in solving inverse scattering problem are 

indicated. In section 1.2, we briefly review the methods that were used to solve 

dielectric inverse scattering problem and the methods of solving PEC scattering 
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problem. Then in section 1.3, we briefly describe the objectives of this thesis which 

lie in three subjects—the PEC inverse scattering problem, the mixed boundary inverse 

scattering problem, and the separable obstacle problem (SOP).   

Chapter 2 presents the PEC inverse scattering problem. Section 2.1 serves as 

an introduction of the PEC inverse scattering problem and presents the gap of the 

contemporary methods which we intend to fill by SOM. Then section 2.2 presents a 

new forward model based on the surface integral equation which enables the 

construction of the cost function for SOM. Section 2.3 introduces the discrete-type 

SOM which utilizes the steepest gradient method as the optimization scheme. Various 

numerical results are given to validate the method. Section 2.4 introduces a 

continuous-type SOM which is developed based on the same forward model with the 

discrete-type SOM but with a different optimization scheme. Then in section 2.5, the 

optimization process of the continuous-type SOM is further discussed. Comparisons 

are made between the discrete-type SOM and the continuous-type SOM to give a 

theoretical explanation of the better performance of continuous-type SOM over the 

discrete-type SOM.  

Chapter 3 presents the mixed boundary inverse scattering problem under the 

modeling scheme of T-matrix method. In Section 3.1, the challenges lying in solving 

such kind of problem are analyzed and the reasons for choosing the T-matrix method 

are discussed. In section 3.2, we derive the formulas for the forward model of 

T-matrix method in solving the mixed boundary problem. Then in section 3.3, the 

modification of SOM to the specific mixed boundary problem is indicated. The 
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criteria of classifying the PEC and dielectric scatterers are also presented in this 

section. Section 3.3 presents various numerical results to validate the proposed 

approach. 

Chapter 4 presents the application of SOM in solving the specific SOP. 

Section 4.1 presents a brief review of the problem. And a modified SOM which well 

utilizes the prior information of the separable obstacle is introduced. The SOP-homo 

for dielectric scatterers is firstly derived from the electric field integral equation (EFIE) 

model. Comparisons are made between the contemporary methods to show a good 

performance of SOP-homo. Then in section 4.2 the SOP-homo is further extended to 

the T-matrix SOM to solve the mixed boundary SOP. Various numerical results are 

presented to validate the proposed approach.  

Finally in Chapter 5, summary of this thesis is presented, as well as 

discussions of some aspects of the future work that may further improve the solver of 

electromagnetic inverse scattering problem.  

1.2 Methodology 

The methodologies for solving the dielectric scatterers and PEC scatterers are 

reviewed and discussed respectively in this section. For the dielectric scatterers we 

focus mainly on discussing the iterative methods. For PEC scatterers, we focus mainly 

on discussing the modeling methods which is the key issue in solving the PEC inverse 

scattering problem. It is highlighted that in all the works to be reviewed in the latter 

sections, the properties of scatterers to be reconstructed are implicitly known a priori.  
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1.2.1 Existing methods for dielectric scatterers 

Methods for solving the dielectric scatterer inverse scattering problems are 

mostly in the framework of the EFIE. The relationship between the unknown material 

properties and the scattered field is highly nonlinear. Two types of iterative 

algorithms based on whether the forward model is linearized are introduced.  

Born approximation [10, 32-39] is a linearization method in the condition that 

the contrast of the material is relatively low. The field inside the scatterer is replaced 

by the incident field and the multiple scattering effect is neglected. However, when 

dealing with the high contrast scatterers, the nonlinear nature of the scattering 

phenomena must be taken into account. Thus the Born iteration method (BIM) and 

DBIM are introduced as an ―intermediate‖ solution by keeping the higher order terms 

of the Born expansion. In BIM [24], the Green‘s function, the kernel of the integral 

operator is fixed through the whole iteration process, and only the field inside the 

scatterers is updated. Besides the updating of the field inside the scatterer, the DBIM 

[5, 6] also updates the Green‘s function in each step of iteration. The cost functions of 

both BIM and DBIM are consisted solely by the mismatch of the scattered field 

measured at receivers, and repetitive recall of forward solver in each step of iteration 

is needed. Thus, the Born related iterative algorithms have the drawback of the highly 

computational cost due to the repetitive forward solution. 

To overcome the burdensome forward solver calculation, a complete nonlinear 

model which avoids the forward solver in each iteration step is firstly realized by the 

MGM [7-11]. This nonlinear iteration method has properly taken into account of all 

multiple scattering effects, which enhances the reconstructing ability of the method. 
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Besides, in MGM, the cost function is constructed by two equally weighted 

mismatches from both the state equation which involves the total electric field inside 

the scatterer and the field equation which involves the scattered field measured at 

receivers. The regularizer is realized by the usage of state equation itself. The iterative 

process involves simultaneous updating of the material contrast and the field using 

two conjugate gradient (CG) methods running concurrently. MGM serves as an 

important milestone for the state and field equation type iteration algorithms.  

Until now, all the methods mentioned above are Field Type methods which 

only involve the calculation of the fields outside and inside the scatterers. A Source 

Type method under the framework of source type integral equation (STIE) is 

introduced and developed by [40-42]. The scattering behaviors of the scatterers are 

well described by the introduction of the secondary or induced contrast displacement 

currents throughout the volume of scatterer. Two linear equations, which describe the 

relationship between the induced current and the material contrast, and the 

relationship between the induced current and the scattered field, serve as the state 

equation and field equation respectively. The STIE method in [40] has used the 

concept of radiating and non radiating currents [43]. The total induced current is a 

linear combination of two orthogonal complementary parts—the radiating current and 

the non-radiating current. The solution for the induced current is non-unique, and 

cannot be remedied by simply adding more experiments because of the existence of 

the non-radiating currents which produce zero external electric field. Thus [40] firstly 

extracts the radiating current from the scattered field data in the minimum norm sense 
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and then iteration process is involved to seek for the non-radiating current. Other 

methods that also use the concept of radiating and non-radiating sources are presented 

in [29, 44-47]. However, this work performs poorly in the presence of noise due to the 

fact that the zero residue in the field equation produces large error in the state 

equation as shown in [48].  

The CSI [12-15] is a variant of the STIE based on non-forward solver idea 

from MGM. The cost function is consisted by both the field equation and the state 

equation. Two steps of CG are involved in the alternatively updating process of the 

induced current and material contrast. Instead of separating the induced current into 

two parts, CSI updates the induced current as a whole. Due to its ease of realization, 

the CSI method is one of the most widely used iterative methods nowadays.   

Subspace based optimization method 

Recently, SOM [16-23] is proposed based on the STIE to solve the dielectric 

scatterer inverse scattering problem.  

Similar to the CSI, the cost function of SOM is also consisted by both the 

mismatches from field equation and state equation. SOM decomposes the induced 

current into two orthogonally complementary parts: the deterministic part and the 

ambiguous part. However the deterministic and ambiguous parts of the induced 

current are different from the physical radiating and non-radiating currents as in [40]. 

SOM studies the SVD of the mapping from induced current to the scattered field, and 

mathematically classify the induced current into the deterministic part which is in the 

span of the right singular vectors corresponding to the first L  leading singular 
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values, and the remaining ambiguous part which is retrieved by the optimization. L  

is the total number of singular values that are above a predefined noise-dependent 

threshold. L  serves as a regularization parameter. The choice of L  is a consecutive 

range rather than a single value which makes the SOM more robust against noise than 

the contemporary methods.  

Since the deterministic induced current is uniquely defined and serves as a 

good initial guess to the induced current, the number of unknowns is greatly reduced 

as compared to the entire induced current space in CSI. Thus the convergence speed is 

increased drastically. The iteration scheme alternatively updates the material contrast 

and the ambiguous part of induced current by using the CG, and thus full forward 

solver calculation in each iteration step is avoided.  

Owing to all the merits discussed above, SOM serves as a good solver for the 

inverse scattering problem. SOM has already effectively solved the inverse problem 

of anistropic scatterers [16], transverse electric (TE) wave illumination[19], transverse 

magnetic (TM) wave illumination [17, 22], through wall imaging problem [18], 

inhomogeneous background problem [49] and three-dimensional case [23]. In this 

thesis we will further extend the application of SOM to the PEC scatterer and mixed 

boundary inverse scattering problems. 

Besides the EFIE, another modeling scheme that is based on the T-matrix 

method serves as an alternative choice for the forward model in dielectric inverse 

scattering problem. Firstly introduced by Waterman [50], the T-matrix is derived 

directly from the boundary condition and well describes relationship between the 
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multipole expansion coefficients of the incident field and scattered field. T-matrix 

scattering coefficient is in a nonlinear relationship with the relative permittivity, 

however it can be linearized under the assumption of small electrical size of the 

scatterer [51]. T-matrix method has been successfully developed for both forward 

problems [52, 53] and inverse problems [51, 54]. Iterative methods such as the CG 

minimization scheme and the DBIM have been applied to the T-matrix inverse 

problems [51, 54]. However there is no published work yet that falls into the category 

of state and field equation based iterative method for the T-matrix based model. In 

this thesis, the extension of SOM to the modeling scheme of T-matrix will also fill in 

this gap.  

1.2.2 Existing methods for PEC scatterers 

The main difference between the PEC and dielectric scatterer inverse 

scattering problem is the method for modeling or parameterizing the unknowns. As 

discussed before, the boundary condition of PEC scatterer, i.e., no field appears inside 

the scatterer and induced current appears only on the boundary, has posed difficulty in 

the modeling of inverse problem. Meanwhile, the iterative methods for the dielectric 

case are also applicable to the PEC inverse scattering problem as long as it is properly 

modeled or parameterized. Therefore we will mainly focus on the discussion about 

methods for modeling PEC inverse scattering problem. 

Similar to the Born approximation for dielectric scatterers, linearization 

method called the Kirchhoff‘s method (KM) has been developed for the PEC 

scatterers. By assuming the large smooth convex and closed shape of the scatterer, 
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KM neglects both the mutual interactions on the illuminated side of the scatterers and 

the induced surface current in their shadow region. Several works developed based on 

KM are reported [55-57]. However, this method can only reconstruct the parts facing 

the illumination and the complete reconstruction is not available.   

Based on integral equations used to describe the scattering behavior of PEC 

scatterers, there are two main categories of modeling methods developed for the 

complete nonlinear model—the volume based method and the surface based method. 

The volume based method uses volume based pixels to estimate the surface of the 

scatterers. The main merit of this kind of method is that no prior information on the 

approximate centers and the quantity of the scatterers is required. Physical parameters 

such as the material contrast and T-matrix are used to describe the PEC scatterers. The 

surface based method involves the usage of the surface integral equation (EFIE for 

PEC scatterers). Most methods falling in this kind require prior information on the 

locations and quantity of the scatterers. Mathematical shape functions are commonly 

used to fit the surface of PEC scatterers. Both volume and surface based modeling 

methods have been proven to efficiently solve the PEC inverse scattering problem. In 

the following part we will discuss these two categories separately.  

Volume based method 

There are two kinds of parameters used to represent the PEC scatterers in the 

volume based method, i.e., material contrast and T-matrix. In [58], the concept of 

reconstructing conductivity for penetrable lossy scatterers is further extended to the 

case of PEC scatterers. Since the material contrast of PEC scatterer is dominated by 
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an infinity positive imaginary part, the real part can be neglected. Only a finite pure 

imaginary contrast is used to approximately describe the scatterer. Thus by using this 

pure imaginary material contrast, iterative methods for dielectric scatterers can be 

extended to the PEC scatterers. Then in [59], the proposed imaginary contrast 

modeling method is further tested by the MGM and CSI. The proposed modeling 

method can well cooperates with the iterative methods for dielectric scatterers. When 

both the real part and imaginary part of the material contrast are considered, the 

method can also deal with the mixed boundary problem [60, 61]. The two kinds of 

scatterers are distinguished by the difference of magnitude of the imaginary 

permittivity. However the reconstructed PEC scatterers are not significantly different 

from lossy dielectric scatterers. 

As discussed in Section 1.2.1, the T-matrix is a function of relative 

permittivity which depends only on the boundary condition. When the relative 

permittivity of PEC scatterers tends to infinity, the T-matrix stays a finite valued 

parameter. In [62, 63], a binary local shape function (LSF) is assigned to each subunit 

to determine whether this subunit is PEC or not. Further, this binary LSF is relaxed 

into a real number, i.e., magnitude of the complex number that equals to the 

reconstructed T-matrix scattering coefficient divided by the true value (which is 

known a priori because the scatterers are known to be PEC). However, relaxation of 

LSF has caused a severe blur in the reconstruction results, which is due to the spread 

out of the LSF. Thus in [64, 65], the LSF is restricted as a binary number and the 

nonlinear discrete optimization is realized by the Genetic algorithm (GA). However, 
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when dealing with the irregular shaped scatterer, the crossover and mutation processes 

need to be specially designed to obtain the desired result, which poses burdensome 

extra work.  

Surface based method 

The surface integral equation involves the integration of the surface induced 

current over the contour of PEC scatterer, which however is unknown in the inverse 

problem. Thus mathematical expressions of the contour called the shape functions are 

needed to fit the surface of PEC in the updating process. The shape function can either 

be the Fourier series [66, 67], or the Spline function [68-76], both of which are 

functions of azimuth angles based on the local polar coordinate system of each 

scatterers. Therefore in most of the surface type methods prior information or initial 

guess of the quantity and centers of the scatterers are essential in the optimization 

process. In [70] the prior information concerning the centers of scatterers are avoided 

by including the centers as an extra parameter in the iterative process. Even though no 

prior knowledge is needed, a first guess of the number of scatterers, to which the 

reconstruction result is quite sensitive, is still necessary. The reconstruction results are 

worse when the gap between the guessed number and exact number increases. Then in 

[71] the quantity of the scatterers is also included as a dynamic parameter into the 

optimization. Thus the prior information on the quantity and centers of the scatterers 

is avoided. However the computational cost increases severely with the quantity of 

the scatterers, thus an initial guess of the maximum quantity is still needed. Another 

weakness of the proposed shape function method is that due to the mathematical 
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nature of the shape functions, some concave or sharp angular structures cannot be 

reconstructed by this method.  

Until now, all the methods discussed above deal with only closed contoured 

objects which have non-empty interiors. However some very thin structures or open 

arcs (infinitely thinner than wavelength) are commonly encountered in the crack 

detecting problems. Open contoured PEC objects are investigated and successfully 

reconstructed in [77-79]. However there is no method reported yet that is able to 

reconstruct both the closed contour and open contour PEC scatterers simultaneously. 

In the proposed SOM for PEC, we will also fill in this gap.  

1.3 Research Objectives 

The subject of this thesis lies in three topics: Firstly, to investigate the SOM 

for solving electromagnetic inverse scattering problems for PEC scatterers. Secondly, 

to investigate SOM for solving the mixed boundary problem, so as to provide a full 

reconstruction of both shape of PEC scatterers and spatial distribution of relative 

permittivity of the dielectric scatterers. Thirdly, to investigate the SOM for solving the 

SOP, both dielectric scatterers and mixed boundary scatterers are considered, so as to 

provide an effective method to solve the SOP.  

The original contributions for the three subjects are:  

1) We developed a modeling method suitable for SOM to solve the PEC 

inverse scattering problem, which is the first algorithm able to simultaneously 

reconstruct line shaped (open contoured) scatterers and closed contour scatterers. The 
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modeling method falls into the category of surface based method which utilizes the 

EFIE. However no prior information or initial guess regarding the quantity of the 

scatterers or the approximate centers is needed. Further a binary vector indicating the 

property of the subunit is introduced to enable the construction of the state equation.   

Two editions of optimization methods are developed. We call the first edition 

the discrete-type SOM and call the second edition the continuous-type SOM. In the 

first edition, considering the binary unknown vector, a discrete type optimization 

which utilizes the steepest descent method is applied to solve the inverse problem. 

Even though the proposed method is able to yield the reconstruction in just a few 

iteration steps, the regularization parameter does not behave smoothly and the 

computing time is quite long due to the full forward solver in each step of iteration. 

Thus in the second edition, the binary vector is approximated by a continuous 

function of another real valued vector. The alternative two-step CG optimization 

method is applied to solve the continuous type optimization. Due to the continuous 

behavior of the optimization, the regularization parameter behaves continuously for a 

consecutive range, which makes this edition of method more robust. Since no full 

forward solver is needed in the updating process, the continuous-type SOM is more 

time saving than its last version.   

2) The SOM is further extended to the T-matrix modeling method, to fully 

reconstruct the mixed boundary problem. The T-matrix is chosen as the modeling 

method representing both the PEC and dielectric scatterers by a uniform volume 

based model. In the forward data calculation, it should be noted that even though a 
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single multipole is sufficient enough in describing the scattering behavior of either 

PEC scatterer or the dielectric scatterer, it is inaccurate to use only one multipole term 

to describe the mixed boundary problem because of the much stronger scattering 

behavior of the PEC scatterers. We give a reasonable T-matrix forward model for the 

mixed boundary problem. The iterative process which consists of retrieving the 

T-matrices is solved by SOM. Then the criterion of classifying PEC and dielectric 

scatterers is given based on the determination of the monopole term in T-matrix. The 

relative permittivity of the dielectric scatterer is retrieved through optimization from 

the T-matrix. We also give a reasonable representation of both dielectric scatterers 

and PEC scatterers in the reconstruction pattern. The T-matrix SOM is proved to 

effectively solve the mixed boundary problem.  

3) SOM is reformulated to solve the SOP. The practical problem of imaging 

scatterers that are separable from the known obstacles is addressed. Such problem is 

commonly encountered in the non-destructive evaluation of the optical fiber as well as 

some through wall imaging application. Using such a priori information, the obstacle 

is regarded as a known scatterer rather than part of the background and can be 

excluded from the retrieving process by reformulating the cost function. As a result, 

the proposed method transforms the problem into an inverse scattering problem with 

homogeneous background, and avoids the computationally intensive calculation of the 

Green‘s function for inhomogeneous background. As a result, we call our proposed 

method SOP-homo. Meanwhile, the factors that influence the imaging quality for 

such kind of problem are also analyzed. Comparisons are made with the SOM that 
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uses Green‘s function with inhomogeneous background. The SOP-homo is proved to 

be valid for dielectric SOP as well as the mixed boundary SOP. The dielectric SOP is 

solved under the model of EFIE while the mixed boundary SOP is solved under the 

model of T-matrix method. 
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2 THE INVERSE SCATTERING PROBLEM OF PEC 

SCATTERERS 

In this chapter, reconstruction of PEC scatterers by SOM is presented. Apart from the 

information that the unknown object is PEC, no other prior information such as the 

number of the objects, the approximate locations or the centers is needed. The 

background medium, together with scatterers of arbitrary number and arbitrary shapes, 

is effectively expressed as a binary vector that enables to build up the objective 

function.  

The steepest descent method is firstly used to solve the discrete-type 

optimization problem. Then the binary representation of the PEC scatterer is 

approximated by a continuous function of another vector such that the alternative 

two-step CG optimization method can be applied to solve the continuous-type 

optimization problem. Several numerical simulations are chosen to validate the 

proposed methods. In particular, a combination of a line shape (very thin) object and a 

closed shape object are successfully reconstructed. The SOM for PEC scatterer is 

found to be more complex than its counterpart for dielectric scatterers. The 

continuous-type SOM is found to be more robust against noise and faster convergence 

than the discrete-type SOM. 
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2.1 Introduction 

The inverse scattering problem of PEC scatterers, i.e., to reconstruct the locations, 

contours and the exact number of PEC objects by utilizing the information of 

scattering data, has found wide applications in many areas, such as biomedical 

imaging, non-destructive testing and remote sensing.  

Several methods have been developed to solve such kind of problem. One 

conventional method is to use the shape function (Spline function or Fourier series) 

under local coordinate to represent the contour of the scatterers, when given an initial 

guess of the number and the approximate locations of the scatterers [66, 70]. This 

method may fail in the case when no such prior information is provided. Another 

method which can avoid an initial guess of the number and locations is to discretize 

the domain of interest into square volume pixels and consequently PEC objects of 

arbitrary numbers and shapes can be represented by choosing certain pixels to be PEC 

[64, 65] . However, when dealing with line-shape structures (such as the ―L‖ shape), 

one has to use very small squares in order to give a good modeling, which may 

significantly increase the computational cost. 

In this chapter, we are interested in reconstructing PEC scatterers of arbitrary 

number and arbitrary shapes, without requiring a priori information on the number of 

the scatterers and their approximate locations. In addition, both closed-contour and 

line-shape scatterers are considered in the inverse scattering problem. The 

aforementioned conditions pose significant difficulties in not only representing the 

geometry of scatterers but also building up the objective function. Due to the 
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boundary condition on the PEC scatterer, the methods for solving the PEC inverse 

scattering problems are significantly different from those for the dielectric scatterers. 

In dielectric case, both scatterers and the background medium can be represented by 

permittivities such that the EFIE can be applied to the whole domain of interest. 

Therefore the objective function can be constructed into the function of the 

permittivity which can represent both the background medium and the scatterers. In 

the case of PEC, the EFIE is only applicable to the boundary of PEC scatterer which 

is however unknown in inverse problem. Therefore the objective function for the PEC 

case is quite different from the one used in the dielectric case. 

Firstly, a discrete-type SOM for reconstructing PEC is proposed [20]. In this 

method, the whole domain is discretized into segments of current lines. Both the 

background medium and scatterers of arbitrary number and arbitrary shapes are 

represented by a binary mathematical vector, which enables to construct the objective 

function. The steepest descent method is used to solve the discrete optimization 

problem. This discrete-type SOM has exhibited several good properties, such as 

taking just a few steps of iteration to converge and being able to reconstruct both 

closed-contour and line-shape PEC scatterers.  

Secondly, by introducing a continuous expression of the binary indicator of 

PEC boundary, the discrete type optimization can be converted into a continuous type, 

which can be solved by the alternative two-step CG optimization method with much 

lower computational cost. Other advantages of the continuous-type SOM over the 

discrete-type SOM include better robustness against noise and less dependence on the 
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number of leading singular values. Several numerical results are given to verify the 

validity of the proposed methods. The proposed continuous-type SOM for PEC 

scatterers not only inherits the merits of its previous version but also possesses the 

virtue of its counterpart of the dielectric inverse scattering, which paves the way for a 

high resolution reconstruction of the PEC scatterers. 

2.2 Forward Problem  

The inverse scattering problem under investigation is in two-dimensional 

setting with TM time harmonic illuminations. In another word, the whole domain of 

interest including the unknown scatterers as well as the incident electrical field is 

invariant along the z  axis. Suppose that the unknown PEC scatterers are located in a 

given domain 2D R . The background medium is free space, and its permittivity 

and permeability are denoted as 0  and 0 , respectively. There are incN  plane 

waves given by 
inc

inc
ˆ( ) e ,  1,  2,...,pi

p z p N


 
k r

E r , incident from different angles onto 

the domain of interest D , where 
pk  is the wave vector for the thp  incidence. For 

each incidence, the scattered field is detected by rN  antennas symmetrically located 

around a circle with positions 
r,  1, 2...,q q N r . The domain of interest is discretized 

into small square subunits, and side edges of square rather than the square itself are 

used as the elements to represent PEC scatterers. After such discretization, the method 

of moments (MoM) can be applied to calculate the scattered field [80].  

Define a vector T

1 2[ ( ), ( ),..., ( )]NJ J J J r r r  as the induced current density 

on the line elements, where N  is the total number of line elements in the domain 
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and the center of each line-element is located at ,  1,  2,...,n n Nr . 

tot
tot tot tot T

1 2[ ( ), ( ),..., ( )]NE E E E r r r and 
inc

inc inc inc T

1 2[ ( ), ( ),..., ( )]NE E E E r r r  

denotes the total electric field and the incident electric field upon each element inside 

the domain D  respectively. The relationship between them is given in a compact 

form,  

 
tot inc

DE E G J    (2.1) 

where DG  denotes the mapping from the induced current to the scattered field inside 

the domain of interest. For ,  1,  2, ,  m n N , the entries of DG  are given by 

(1)
D 0( , ) ( )

4
n m

k
G n m wH k


  r r , when m n , and 

D

2
( , ) {1 [ln( ) 1]}

4 4

k w kw
G n m i

 


     when m n . Here k  is the free space 

wave number,   is the impedance of the free space, (1)

0H  is the Hankel function of 

the first kind of order zero, w  is the length of the line element, and 1.781  [80]. 

The scattered field received by the antennas is given by  

 sca
sE G J   (2.2) 

where
r

sca sca sca sca T

1 2[ ( ), ( ),..., ( )]z z z NE E E E   r r r , (1)
s 0( , ) ( | |)

4
q m

k
G q m wH k


  r r  for 

r1,  2,...,  q N and 1,  2,...,m N . It is clear that sG  is the mapping from the 

current in D  to the scattered field measured at receivers. Eqs. (2.1) and (2.2) are 

referred to as the state equation and the field equation, respectively. 

2.3 A Binary Variable Subspace Based Optimization Method 

2.3.1  Discrete-type SOM 

For inverse problem, all the PEC boundary elements are unknown so that Eq. 

(2.1) cannot be explicitly established. The counterpart of Eq.(2.1) in dielectric 
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scatterer scenario is referred to as the state equation [17, 22, 81, 82]. In PEC scatterer 

scenario, the absence of an explicit state equation makes it impossible to directly 

apply the SOM developed for dielectric scatterer scenario. 

We define an N -dimensional vector P , which consists of only 1 and 0, as a 

judgment of whether the edge belongs to the PEC boundary. In another word, the 

dimension of vector P  equals to the total number of line elements in domain D  

and a ‗1‘ element represents the PEC element and a ‗0‘ element represents the free 

space area. Noticing the fact that 
tot

E  vanishes on the PEC boundary and in the 

meanwhile J  equals to zero for the elements which do not belong to the boundary, 

we are able to arrive at the following relative residue equation, which is the 

counterpart of the relative residue in the state equation in the dielectric scatterer 

scenario [17, 22, 81], 

2 2
tot

sta

2 2
s d

(~ ) ( )P J P E

J E

 
   ,                  (2.3) 

where  is the Euclidean length of a vector, P  is the diagonal matrix with P  in 

the diagonal, and ~ P  is the diagonal matrix with the complement of P  in the 

diagonal. 
s

J  is the deterministic part of the induced current which will be 

introduced later. 
d s

DE G J   is electric field generated by deterministic part of the 

induced current.  

The SVD of sG  reads *

sG U V  , where U  is of size r rN N  and is 

composed of the left singular vectors 
qu , V  is of size N N  and is composed of 

the right singular vectors nv .   is a diagonal matrix composed of singular values 
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n  and the subscript *  denotes the Hermitian [83]. A basic property of SVD is 

s n n nG v u  . The vector of scattered field scaE  can be represented as the span of 

left singular vectors, and the vector of induced current density J  can be represented 

as the span of right singular vectors J V   , where   is an N -dimensional 

vector. The induced current density is decomposed into two orthogonally 

complementary parts: the deterministic part sJ  and the ambiguous part nJ . The 

subscripts s  and n  denote deterministic and ambiguous parts resp ectively. The 

equation can be expressed as 
s n

s n s nJ J J V V     , where 
s

V  is the signal 

subspace that contains the first L  columns of V , 
n

V  is the noise subspace 

composed of the last M L  columns of , and  is the number of the total 

singular values that are above a predefined noise-dependent threshold (method for 

choosing  will be discussed later). Even though the total induced current density 

cannot be uniquely determined from the scattered field, the deterministic part can be 

uniquely determined, with the coefficients, 

 

* sca

s , 1,2, ., .
j

j

j

u E
j L




   (2.4) 

After sJ  is determined from the Eq.(2.4) by the SVD, the residue due to the 

mismatch of the scattering data in field equation can be expressed as 

 

2
n

n s sca
s s

fie

2
sca

G V G J E

E

    

  .               (2.5) 

And we can call it the field residue. The optimal solution of n  in the least 

square sense is given by,  

V L

L
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1

n

opt ,A B


   (2.6) 

where 
2 2n n n nd s* *

D D[(~ ) ] [(~ ) ] ( ) ( )A E P V P V J P G V P G V          ,  

2 2
d n s s n inc s* *

D D[(~ ) (~ )] [( ) [ ( )]B E P V P J J P G V P E G J            , and the 

inverse is understood as the pseudoinverse. 

The total relative residue is defined to be  

 tot fie sta    .                      (2.7) 

For each of the incidence 
inc

pE , the total relative residue can be calculated as 

tot

p , inc1,2, ,p N . The vector P  can be obtained by minimizing the following 

objective function 

 
inc

tot

1

( )
N

p

p

f P


   .                     (2.8) 

Since we have already represented 
n

  as the function of P , there is only 

one unknown argument P  left in the optimization equation. The steepest descent 

optimization method is chosen to minimize the objective function Eq.(2.8). Let the 

initial guess of P  to be a vector of zeros, i.e., all the line elements in the domain are 

considered as free space. In each iteration step, we change each element of P  into its 

complement and check whether the objective function decreases, and keep the value 

which gives smaller residue in the objective function. It is worth mentioning that in 

the objective function, the relative residue in the state equation can be regarded as 

some kind of regularization term, and thus no additional regularization method is 

needed in minimizing Eq.(2.8), as has been done in the previous versions of SOM 

[81]. 
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2.3.2 Numerical Examples  

In this section, we give four numerical simulations to validate the algorithm. 

The domain D  is a square of dimension 0.6 0.6   and is discretized into 15 15  

square cells. In all the figures, the original contour of the PEC is represented in red 

lines while the other line elements are represented by yellow ones, and the light-blue 

line with triangle vertex stands for the reconstructed PEC line elements. A total 

number of inc 10N   incident waves are evenly distributed in [0,2 ) , with 

inc
ˆ ˆ( cos sin ),  1,2, ,p p pk x y p N   k . r 30N   receivers are equally distributed 

on a circle of radius 5 . The MoM is used to generate the forward scattering data 

scaE , which is recorded in the format of the multistatic response (MSR) matrix with 

the size of r incN N . Then white Gaussian noise   is added to the MSR matrix, and 

the resultant noisy matrix K   is treated as the measured MSR matrix and is used 

to reconstruct scatterers. The noise level is quantified by the noise-to-signal ratio 

defined as 
|| ||

|| ||

F

FK


, where 

F
 denotes the Frobenius norm of a matrix. The initial 

guess in the optimization problem is free space, i.e. 0P  . Since the PEC scatterer is 

impenetrable, it does not change the scattered field whether the internal edges are 

detected as PEC or air as long as the boundary is correctly detected as PEC. The  
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Fig. 2-1. Singular values of the matrix sG  in all numerical simulations 

singular values of sG  are as shown in Fig. 2-1. The units for the label of coordinates 

in the reconstruction figures in all simulation results are  . 

Criteria of choosing number of leading singular values  

The number of leading singular values, the integer L, was found to dominantly 

affect the performance of SOM for dielectric scatterers [17, 84]. The criteria to 

determine the value of L as in the previous versions of SOM are listed as follows: 

1. The value of L balances the relative residues in the field equation and in the state 

equation. The larger the value of L is, the smaller is the relative residue in the field 

equation. However, if the L is so large that the relative residue in the field equation 

is smaller than the noise level, the relative residue in the state equation will be 

large and cannot be remedied by optimization. On the other hand, a small value of 

L does not produce a non-remediable large relative residue in the state equation, 

but the simultaneous minimization of both relative residues in the field equation 

and in the state equation takes longer time to converge.  
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2. The noise level affects the value of L. Generally speaking, the value of L in 

low-noise case is larger than that in high-noise case.  

3. An important and encouraging conclusion is that there is a consecutive range of 

integer L, instead of a single value that can be chosen, with different L resulting in 

different convergence speed. Note that this important property means that the value 

of L doesn‘t critically depend on any other parameter. 

4. An empirical method, which is obtained through numerical simulations for various 

profiles and noise levels, is that unless the noise is very high, a good candidate of L 

takes the value where singular values noticeably change the slope in the spectrum. 

      Similarly, we can also take the criteria of choosing L in dielectric case as a 

reference to choose the L in PEC case.  

The first numerical example is a circle with radius 0.15  located in the middle 

of the region, as shown in Fig. 2-2(a). Assume the scattered field is obtained without 

any noise added. From the spectrum of matrix sG  as shown Fig. 2-1 the value of L  

is chosen to be 11. After 10 iterations the PEC boundary is reconstructed completely 

as shown in Fig. 2-2(b), and totally coincides with the original boundary. 

In the second numerical example, two squares of side length 0.14  are located 

at ( 0.17 ,0.17 )   and (0.17 , 0.17 )  , respectively as shown in Fig. 2-3(a). For 

convenience, we refer to the square on the left as number one and the one on the right 

as number two. The separation from the right lower corner of square number one to 

the left upper corner of square number two is about 0.3 . 10% white Gaussian noise 

is added to the exact scattering data. The L  chosen here is 4 because of the added 
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noise. After 26 iterations the corresponding contour of the reconstructed pattern is 

plotted in Fig. 2-3(b). It is clearly seen that the region in between the squares are 

indentified as free space while there are two rectangular-liked shaped PEC scatterers 

located around ( 0.17 ,0.17 )   and (0.17 , 0.17 )  . The sizes of the reconstructed 

scatterers are almost the same as the original ones. The result is satisfactory, 

considering the close distance of scatterers and the presence of 10% noise.  

 

 (a)                    (b) 

Fig. 2-2. A circle with radius 0.15  (a) Exact contour. (b) Reconstructed contour. 

  

(a)                    (b) 

Fig. 2-3.Two squares separated by 0.3  (a) Exact contour. (b) Reconstructed contour under 10% 

white Gaussian noise  
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   (a)                         (b) 

Fig. 2-4.Single line shaped scatterer (a) Exact contour. (b) Reconstructed contour under 5% white 

Gaussian noise  

 

   (a)                        (b) 

Fig. 2-5. A combination of a square and a single straight line (a) Exact contour. (b) Reconstructed 

contour under 10% white Gaussian noise 

In the third example we deal with a line-shape scatterer, which resembles an 

―L‖ (Fig. 2-4(a)). In presence of 5% noise, we successfully reconstructed the single 

line with only one segment missing after 16 iterations. And the L chosen here equals 

to 6. 

In the last example, we test the proposed method for reconstructing a 

combination of a closed-contour scatterer and a line-shape scatterer. A rectangular 

and a straight line PEC scatterer are located in the domain as shown in Fig. 2-5(a). 10% 

white Gaussian noise is added. L  is chosen to be 4 which is the same as in the 

second example. After 54 iterations, from the reconstructed figure we can clearly see 
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that there is a single line and a rectangular shaped scatterer located in the domain with 

an obvious gap.  

2.4 A Continuous Variable Subspace Based Optimization Method 

2.4.1 Continuous-type SOM 

We notice that the discrete-type SOM suffers from two drawbacks. (1) 

Although it takes just a few steps of iteration to converge, the computational cost is 

heavy since there is matrix inversion in each step of iteration. (2) The method is not 

robust in the sense that the performance of the algorithms depends, in a 

non-continuous manner, on the number of leading singular values. 

To overcome these drawbacks of the discrete-type SOM, we propose a 

modified version of the SOM. The proposed modified version is different from the 

discrete-type SOM in the following three aspects: (1) The representation of the 

unknown is different: In the discrete-type version, the unknown parameter is 

expressed as a binary vector, whereas in the modified version, the binary unknown is 

expressed as a function of another unknown that is real and thus continuous. For 

convenience, we refer to the proposed improved SOM as the continuous-type SOM. 

(2) The unknowns to be reconstructed are different: The unknown is only a binary 

vector in the discrete-type SOM, whereas both the indicator of PEC boundary and the 

contrast current are unknowns in the continuous-type SOM. (3) The optimization 

solvers are different: The steepest descent optimization method is chosen to minimize 

the objective function in the discrete-type SOM, whereas the continuous-type SOM 

uses the alternative two-step CG method, where two types of unknowns (i.e., 
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continuous expression of the PEC boundary indicator and the coefficient of contrast 

current) are alternatively updated and no matrix-inversion is involved in the updating 

process. The alternative two-step CG optimization method used in our research 

follows the version developed by SOM [17].  

The alternative two-step CG optimization method was proposed to reconstruct 

dielectric scatterers. The basic idea of the alternative two-step CG optimization 

method is to construct an objective function and then to minimize the objective 

function by alternatively updating the contrast and the induced current using the CG. 

The alternative two-step CG optimization method is an effective inversion method 

and has been used extensively for synthetic as well as experimental data for acoustic- 

and electromagnetic-wave problems. However, the alternative two-step CG 

optimization method cannot be directly applied to deal with PEC scatterer problems in 

the discrete-type SOM since the unknowns are of binary type.  

The difficulty in applying SOM to PEC case lies in constructing the relative 

residue in the state equation [81]. To overcome this difficulty, we introduce a 

mathematical parameter P , an N -dimensional vector, as the indicator of PEC for 

line elements in the domain of interest. P  can further be expressed as the function of 

the variable vector x , 

 

Fig. 2-6. P as a function of x 
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1

1 ax
P

e



 (2.9) 

where a  is a large positive number, such that for each element , 1, 2, ,mx m N , 

if 0mx  , 1mP   and if 0mx  , 0mP  . The changing trend of the function is 

depicted as in Fig. 2-6. As in the discrete-type SOM [20], the vector P  is 

(approximately) a binary vector, which is used as the indicator of PEC, i.e., a ‗1‘ 

element in P  represents a PEC element and a ‗0‘ element a non-PEC element. The 

proposed method differs from the previous method by expressing the P  in Eq.(2.9) 

as a function of a continuous real variable x . Thus we can apply the optimization 

method for such continuous variables so as to solve the PEC inverse scattering 

problem. A similar idea can be found in [11] and [85], where the binary representation 

of the scatterer was also approximated into a smooth function and thus the 

continuous-type optimization was applied. 

We are able to construct the relative residue in the state equation as follows,  

 

2 2
tot

cur

2 2
s d

( ) ( )I P J P E

J E

  
    (2.10) 

where P  is the diagonal matrix with P  in the diagonal, and I  is the identity 

matrix.  

      The relative residue in the field equation is the same with the previous version. 

After we add all the residues for each incidence together, the vector P  can be 

obtained by minimizing the following objective function,  

 
inc

inc

2
n 2 2

n s sca tot
s s

n n n

1 2 2 2 2
sca s d

1

( ) ( )
( , , , , ) ( )

N p p p p p

N

p
p p p

G V G J E I P J P E
f x

E J E



  





      
  
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 (2.11)                                                                

Since the P  is now expressed as a function of x , the objective function is now a 

function of 
n

inc, 1, 2, ,p p N   and x , all of which are unknowns to be optimized. 

The optimization method we choose is the alternative two-step CG optimization 

method developed by SOM [17], which is suitable for the continuous-parameter 

optimization. The optimization procedure of the proposed SOM is implemented as 

follows: 

Step 1: Calculate DG , sG  and the SVD of sG . Obtain 

s

inc,  1, 2, ,pJ p N . 

Step 2: Initialization: 0n  , set 0 0x  , obtain 
n

,0p  from Eq. (2.6) 

evaluated at 
0 0xP 

, and set the search direction 
,0 0p  . 

Step 3: 1n n  . 

Step 3.1: Update 
n

,p n : Calculate gradient (Frechet derivative) 

n n
, 1 1

, ,p p n n
p n x

g f
   

 ; Determine the search directions 

*

, , 1 ,

, , , 12

, 1

Re[( ) ]p n p n p n

p n p n p n

p n

g g g
g

g
 







 
  . Plug 

n n

, , 1 , ,p n p n p n p nd     into the 

objective function, which is quadratic in terms of 
,p nd , to obtain the parameter 

,p nd  

which makes the cost function minimum. Then update 
n n

, , 1 , ,p n p n p n p nd    .  

Step 3.2: Update nx : for the thm  line element, 1, 2, ,m N , update 

induced current 
n

s n

, ,( ) ( ) ( )p n m p m p n mJ J V    . Then update the total field on the thm  

subunit, 
tot inc

D ,,( ) ( ) ( )p np n m p m mE E G J   . The objective function has an analytical 

derivative with respect to ( )n mx  and the optimal solution of ( )n mx  is given by  
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inc inc

2 2
tot

, ,

2 2
d s

1 1

( ) ( )1
( ) ln[ ]/

N N
p n m p n m

n m

p p
p p

E J
x

a E J 

     (2.12) 

Step 4: Stop iteration if there is no obvious change in the objective function 

for continuous three iterations. Otherwise, go to Step 3. 

Step 5: Determine binary result P  from x : for each element 

,  1, 2, ,mx m N , if 0mx  , set 1mP   and if 0mx  , set 0mP  . 

2.4.2 Numerical Examples 

In this part, we give several numerical simulations to validate the proposed 

algorithm. The domain of interest D  is a square and is discretized into square cells, 

the four edges of which are represented by the yellow lines. The contour of the PEC 

objects located inside the domain of interest is represented in red lines. In all the 

examples, to avoid the inverse crime [3], the discretization of the computational 

domain in solving inverse problems is coarser than that in the forward problem. The 

reconstructed pattern is represented by the light blue lines with triangle vertex.  

A total number of inc 10N   incident waves are evenly distributed in [0,2 ) . 

r 30N   receivers are equally distributed along a circle with radius 5 . Throughout 

all simulations, we use 20a   for the parameter P  in Eq.(2.9). According to our 

experience, the performance of the algorithm (convergence speed and results) does 

not sensitively depend on the value of a  as long as a  is large enough (which will 

be discussed in Section 2.5.1).  

Four numerical simulations will be presented. In the first and third simulations, 

the computational domain is a square with size of   , and the domain in the 2nd 
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and 4th numerical simulation is 2 2  , all of which are discretized into 20 20  

cells in solving the inverse problem. The units for the label of coordinates in the 

reconstructed figures are  . The singular values of matrix sG  for domain size of 

   and 2 2   are shown in Fig. 2-7 and Fig. 2-8 respectively. 

The first numerical example is a circle with radius 0.25  located in the 

middle of the region D  as shown in Fig.2-9(a). First, we test on the noise-free 

synthetic data. Analyzing the spectrum of sG  as shown in Fig. 2-7, the value of L  

is chosen to be 12, where the slope of the singular value changes dramatically. The 

reconstructed pattern is shown in Fig.2-9(b), where we see that the reconstruction is 

successful. Then 100% Gaussian white noise is added to the synthetic data. In this 

case, L  is chosen to be 6 due to the level of the noise. The reconstructed result is 

shown in Fig.2-9(c), which is quite acceptable considering the 100% noise.  

 

Fig. 2-7. Singular values of the matrix sG  in the 1st and 3rd numerical simulation. 
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Fig. 2-8. Singular values of the matrix sG  in the 2nd and 4th numerical simulation. 

In the second numerical example, four squares with side length 0.3  are 

located at the four corner of the 2 2   domain, as shown in Fig. 2-10(a). With 

noise-free synthetic data and 12L  , according to Fig. 2-8, the reconstructed result is 

plotted in Fig. 2-10(b). It is clearly seen that the region in between the squares are 

indentified as free space while there are four rectangular-liked shaped PEC scatterers 

located at four corners of the domain. The sizes of the reconstructed scatterers are 

almost the same as the original ones. Then 50% Gaussian white noise is added into 

the scattered field and 8L  . The reconstructed result is plotted in Fig. 2-10 (c). We 

see that the four squares are satisfactorily identified.  

In the third example, we use a line-shape PEC object, a reversed ‗L‘, as shown 

in Fig. 2-11(a). Fig. 2-11 (b) is the reconstructed result with noise-free data and 

12L  . Fig. 2-11 (c) shows the reconstructed result when 10% Gaussian white noise is 

added and 10L  . These results show that the proposed algorithm is able to 

reconstruct the line-shape PEC scatterer. 
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In the fourth example, we test the proposed method for reconstructing a 

combination of a closed-contour scatterer and a line-shape scatterer. A rectangular 

and a line-shaped PEC scatterer are located in the domain as shown in Fig. 2-12(a). 

Fig. 2-12 (b) shows the reconstructed result by using noise-free data and choosing 

12L   while Fig. 2-12 (c) for the case with 10% noise and 10L  . From the 

reconstructed results we clearly see that there is an ‗L‘ shaped scatterer and a 

rectangular scatterer located in the domain.  

 

Fig.2-9. A circle with radius 0.25  (a) Exact contour. (b) Reconstructed contour with noise-free 

synthetic data. (c) Reconstructed contour under 100% white Gaussian noise.  
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Fig. 2-10. Four separated squares (a) Exact contour. (b) Reconstructed contour with noise-free data. (c) 

Reconstructed contour under 50% white Gaussian noise. 
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Fig. 2-11. A reversed ‗L‘ shape PEC scatterer (a) Exact contour. (b) Reconstructed contour with 

noise-free data. (c) Reconstructed contour under 10% white Gaussian noise.  
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Fig. 2-12. Both the closed-contour and line shape PEC scatterers. (a) Exact contour. (b) Reconstructed 

contour with noise-free data. (c) Reconstructed contour under 10% white Gaussian noise.  
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2.5 Discussion  

2.5.1 Investigation of the optimization progress for continuous-type 
SOM 

A. Coefficient a 

The coefficient a  is a large positive number to make , 1,2, ,iP i N   as 

a function of , 1,2, ,ix i N
 
behave approximately as a step function. The 

influence of a  on the shape of the function is plotted in Fig. 2-13. It is clear that the 

larger a  is, the faster 
iP  changes from 0 to 1 when ix  approaches from negative 

to positive numbers.  

We aim to investigate the influence of coefficient a  on the optimization 

process. The numerical setup of the experiment is just the same as the first example in 

the Section 2.4.2: a circle with radius 0.25  is located in the middle of the domain 

of size    and no noise is added. Different values of a  are chosen. The time 

used for 400 iteration steps and the values of the objective function in the 400
th

 

iteration step are listed in Table 2-1 . No significant change of the convergence speed 

is observed and the objective function values are almost the same for different values 

of a . Therefore, the optimization does not sensitively depend on the value of a  as 

long as a  is large enough.  
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Fig. 2-13. P  as a function of a  

Table 2-1 Effect of a to the optimization process 

 Time used for 400 iteration(s) Objective function value 

a=5 

a=10 

a=20 

a=100 

103.075261 

102.283269 

100.852451 

100.678244 

0.0018257 

0.0018257 

0.0018257 

0.0018257 

 

B. The investigation of the filled-up parts inside the scatterer  

From Eq.(2.10) the residue in state equation, we see that the diagonal matrix 

P  complimentarily restricts the two terms J  and totE  to be zero. It can be 

explicitly seen from the state residue that when there is a zero valued total electric 

field there is non-zero valued induced current, which in fact happens at the boundary 

of PEC scatterer. However the state residue has no explicit requirement on the 

induced currents that are in the interior of the scatterer. 

In addition, an interesting phenomenon can be seen from the reconstructed 

patterns in continuous-type SOM: when the boundary of the unknown object is 

correctly recognized, the interior of each scatterer is also filled up by PEC elements or 

recognized as ‗1‘ elements in the retrieved P . Since the PEC scatterer is 

impenetrable, it does not change the scattered field no matter the internal edges are 
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detected as PEC or air as long as the boundary is correctly detected. However, further 

investigation is needed to theoretically explain this phenomenon. We aim to see what 

happens to the electric field and induced current on these ―filled-up‖ edges. 

The numerical set up is same as the first example in Section 2.4.2: as shown in 

Fig. 2-14 (a), one circle with the radius of 0.25  is located in the center of the 

domain of interest with size    and the domain is discretized into 20 20  cells. 

No noise is contained in the scattered field and 20a  . The red bars in figures 

represent the exact contour of the objects and yellow bars represent the side edges of 

square mesh. Light blues bars with triangle vertex stand for the reconstructed PEC 

line elements. The setups of transmitters and receivers are the same as all the 

numerical examples in the previous section.  
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Fig. 2-14.  Red bars represent the exact contour of objects and yellow bars represent the side edges of 

square mesh. Dark blue bars with star vertex represent bars with zero electric field and light blue bars 

represent ‗1‘ elements in P . (a) ~ (e) The total electric field for each step of iteration. (f) The 

reconstruction pattern for P .  
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Fig. 2-15. Red bars represent the exact contour of objects and yellow bars represent the side edges of 

square mesh. Dark blue bars with star vertex represent bars with non-zero induced current and light 

blue bars represent ‗1‘ elements in P  . (a) ~ (e) The induced current for each step of iteration. (f) The 

reconstruction pattern for P . 
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vector P . From Fig. 2-14 (b) ~ (e), we observe that the total electric field inside the 

scatterer is approaching to zero gradually. 

In Fig.2-15(a) ~ (e), we pick out the line elements with ‗non-zero‘ induced 

current along with the iteration steps and observe the trend of changing in J . The 

criterion is that if the magnitude of the induced current density on a line element is 

bigger than 1/100 of the average magnitude of induced current density throughout the 

domain, the current density on this line element will be considered as non-zero. The 

line elements on which the induced currents with non-zero values are picked out, and 

are represented by the dark blue bars with star vertex in Fig.2-15. As a comparison to 

the final result, in Fig.2-15 (f) we give out the reconstruction pattern at the 400th 

iteration step. From Fig.2-15 (a) ~ (e), we observe that the current density is gradually 

becoming the surface current around the boundary. 

Therefore, even though the interior of the scatterer is filled up, i.e., the 

corresponding elements are recognized as ‘1’ in P , the boundary condition is still 

satisfied and the products of 
tot( )P E  and ( )I P J   are negligibly small. Thus the 

influence of the filled up part of scatterer to the objective function is negligible. It 

does not matter whether the optimization fills up the inside of the scatterer or not. 

Since the PEC scatterer is impenetrable, it does not change the scattered field no 

matter the internal edges are detected as PEC or air as long as the boundary is 

correctly detected. 
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2.5.2 The investigation of regularization term for continuous-type 
SOM 

After we express the binary vector P  into function of x , the alternative 

two-step CG optimization method is applied to solve the continuous-type optimization 

problem. The optimization coefficients behave in a continuous manner. There is no 

need to choose a best value of L in the proposed continuous-type SOM, and there is a 

successive range of integer value of L that can be chosen to ensure a successful 

reconstruction. 

For instance, a square with a side length of 0.8  is located inside the domain 

of size 2 2   as shown in Fig. 2-17(a). 10% noise is added to the exact scattered 

field. The convergence trajectories in the first 300 iterations for different values of L  

are shown in Fig. 2-16. There exists a range of L , from 3 to 17, which can be used to 

reconstruct the PEC scatterer successfully. However, if L  is too large or too small, 

the optimization fails to converge to the wanted solution. The reconstructed pattern 

after 300 iterations for the different value of L  is shown in Fig. 2-17 (b) to (f). From 

these results, we see that, in 1L   case, the optimization fails to converge to a good 

result, and this is due to the fact that the information in the deterministic part of the 

induced current is not enough so that the optimization converges in a very slow way. 

As the value of L  increases, for the cases 3L   to 17L  , the convergences of the 

optimizations are similar to each other, as shown in Fig. 2-16. Besides, we also see 

there is no much difference between the reconstructed results, such as for 6L   and 

11L   cases shown in Fig. 2-17. However, if we further increase the value of L  to 

20 or even higher, 25, the noise in the deterministic part of the induced current spoils 
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the optimization and there are some unwanted disturbances shown in the 

reconstructed results, as shown in Fig. 2-17. Such phenomenon is accordance with the 

one for the dielectric scatterers case mentioned in Section 2.3. Therefore the 

continuous-type SOM for PEC is robust in choosing the regularization parameter L . 

 

Fig. 2-16. The convergence trajectories in the first 300 iterations for different values of L  

 

0 100 200 300 400 500
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Number of Iterations

lo
g

1
0
f

 

 
L=1

L=2

L=3

L=5

L=6

L=9

L=11

L=17

L=20

L=25



                                                                            51 

 

 

 
Fig. 2-17. The reconstruction pattern for different values of L  

2.5.3 The Comparison of discrete-type SOM and continuous-type SOM 

A. Comparison of the computing time 

The steepest descent optimization method used in the discrete-type SOM 

needs matrix inversion to calculate the searching direction, so that the computational 

cost is high and the speed for each iteration step is quite slow. On the other hand, the 

descent method searches for the steepest descent direction such that it takes fewer 

steps of iteration to converge. The continuous-type SOM finds searching direction 

using the CG, which does not involve any matrix-inversion and alternatively updates 

the vector x  and the unknown coefficient n . The speed for each iteration step is 

much faster than the original version, but it takes more iteration steps to converge.  
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For example, we compare the computational time for the discrete-type SOM 

and continuous-type SOM under the same experimental set up as indicated in the first 

numerical example in Section 2.4.2, in which no noise is added and 12L  . When the 

objective function is minimized to be 0.0027 in the 46
th

 iteration, the time used in the 

discrete-type SOM is around 8900 seconds CPU time. While the continuous-type gets 

a 0.0018 in only 100.8 seconds CPU time after 400 iterations. The average time used 

for one step of iteration is only 0.252 second for the continuous-type SOM, while the 

discrete-type SOM uses around 193 seconds for each step of iteration. The 

reconstructed patterns for both methods are in Fig. 2-18. Thus even at a cost of more 

iteration steps, the total time used for the continuous-type SOM is still much less than 

the one used by the discrete-type SOM. Continuous-type SOM is more time saving 

than the discrete-type SOM.  

 

Fig. 2-18. Reconstructed pattern for both SOM methods, 12L   (a) continuous-type SOM. (b) 

discrete-type SOM. 
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B. Comparison of the regularization term 

In the discrete-type SOM, the vector P  is a binary vector, and the optimization 

method is chosen as the steepest descent optimization. In various numerical 

simulations, we notice the following problems associated with the binary-type 

optimization. First, the performance of the algorithm depends, in a non-continuous 

manner, on the number of leading singular value L . Thus, in practice, to implement 

the binary-type SOM, we have to try several different values of L. Second, in some 

simulations, we observe that the optimization method is trapped at a cyclic solution, 

i.e., the solution cyclically repeats itself during the optimization iterations. This is a 

typical problem in binary optimization problems.  

In comparison, these two problems do not present in the proposed 

continuous-type SOM. The essence of the continuous-type SOM is to introduce the 

binary vector P  as well as to express it into a continuous form and then to apply the 

alternative two-step CG optimization method. As shown in Section 2.5.2, the 

regularization term behaves smoothly in optimization.  

For example, we compare the optimization process for the discrete-type SOM 

and continuous-type SOM under the same experimental set up as indicated in the first 

numerical example in Section 2.4.2, in which no noise is added. Then in Fig. 2-19 and 

Fig.2-20, we draw the convergence trajectories of a consecutive range of 8 10L   

for discrete-type SOM and continuous-type SOM respectively. We can observe in 

continuous-type SOM, the optimization converge smoothly and consecutive values of 

L  behave almost the same. While in discrete-type SOM, the optimization fluctuates 
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severely and sometimes traps into local minimum. Consecutive values of L  have 

totally different convergence behaviors. Therefore in continuous-type SOM, it is 

always safe to choose from a consecutive range of L  and the cost function is always 

dropping in optimization. Continuous-type SOM is more robust than the discrete-type 

SOM.  

 

Fig. 2-19 Continuous-type SOM: Convergence trajectories in the first 100 iterations for different values 

of L  

 

Fig.2-20 Discrete-type SOM: Convergence trajectories in the first 100 iterations for different values of 

L  

0 20 40 60 80 100
-2.5

-2

-1.5

-1

-0.5

0

Number of Iterations

lo
g

10
f

continuous type

 

 
L=8

L=9

L=10

0 10 20 30 40 50 60 70 80
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Number of Iterations

lo
g

10
f

discrete type

 

 
L=8

L=9

L=10



                                                                            55 

 

 

2.6 Summary 

In this chapter, we have investigated the reconstruction of PEC scatterers of 

arbitrary number and arbitrary shapes, without requiring a priori information on the 

number of the scatterers and their approximate locations. In addition, both 

closed-contour and line-shape scatterers are considered in the inverse scattering 

problem. The background medium, together with scatterers is effectively expressed as 

a vector that enables to construct the objective function. The discrete-type SOM 

succeeded in reconstructing the PEC objects. The continuous expression of the PEC 

indicator enables the application of alternative two-step CG optimization method into 

the optimization in solving the inverse problem. Numerical simulations conducted in 

two dimensional geometry show that the continuous-type SOM works well for the 

PEC inverse scattering problem and is more robust and more computationally 

economic than the discrete-type version.  
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3 THE INVERSE SCATTERING PROBLEM OF MIXED 

BOUNDARY SCATTERERS 

In this chapter, a T-matrix SOM is proposed to solve inverse scattering problem of 

reconstructing a mixture of PEC and dielectric scatterers, under the two dimensional 

TM incidence setting. Both the dipole and monopole elements of the T-matrix are 

retrieved directly and the monopole element of T-matrix is used to distinguish the 

PEC from dielectric scatterer. Numerical simulations validate the proposed method, 

showing that it works well in sub-wavelength setting and is quite robust against noise. 

3.1 Introduction  

The inverse scattering problem has been studied for decades and the methods 

have already been well developed for either dielectric scatterer [32, 86] or PEC [87, 

88]. The modeling scheme in inverse scattering problem is often based on the EFIE 

[80]. The dielectric scatterer problem is solved by volumetric model [17, 22, 81], 

while the PEC scatterer problem is commonly solved by surface model due to 

different boundary conditions [20, 21, 70, 87, 89]. However in inverse problem, the 

properties of scatterers are unknowns to be solved such that it is quite difficult to 

reconstruct the PEC and dielectric scatterers together under the EFIE model. One 

solution is to use complex relative permittivity representing both PEC and dielectric 

scatterers [60, 61]. The PEC scatterer is approximated by lossy dielectric scatterer and 
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distinguished by the larger imaginary permittivity. However the reconstructed PEC 

scatterer is not significantly different from lossy dielectric scatterers.  

In this Chapter, we will employ the T-matrix method to model the scattering 

behavior of the mixed boundary problem. The T-matrix method was firstly developed 

by Waterman in 1965 [50]. The scattered and incident fields are firstly expanded as 

functions of multipoles, and then scattered field coefficient is related to the incident 

field coefficient by T-matrix only utilizing the boundary condition. Different kinds of 

scatterers have different valued T-matrices. Thus, the T-matrix method provides a 

possibility of solving the mixed boundary problem. In this chapter, the SOM [17, 20, 

21] is applied to the T-matrix method to solve the mixed boundary problem consisted 

of both the PEC and dielectric scatterers of arbitrary number and shape. We refer to 

this newly developed method as the T-matrix SOM. 

The proposed method shares several similarities with the original SOM [17] in 

following aspects: 1) Both T-matrix SOM and the original SOM study the spectral 

property of the linear mapping from the induced current/ amplitude of the induced 

multipole to the scattered field. Then the unknown vectors are decomposed into two 

parts---the deterministic part which is uniquely determined by this mapping as well as 

the scattered field, and the ambiguous part which is solved via optimization. 2) The 

structures of the cost functions for both methods are similar, both of which are 

composed by the residue of the field equation and the residue of the state equation. 3) 

The method of choosing the singular value truncation number L in the original SOM 

is also applicable to the new T-matrix SOM. 
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The proposed method differs from the original SOM in the following aspects: 

1) In the original SOM, we analyze the singular value spectrum of the mapping from 

induced current in the domain to the scattered field. While in the T-matrix SOM, we 

analyze the singular value spectrum of the mapping from the amplitude of the induced 

multipoles to the scattered field. 2) In the original SOM, the relative permittivity is the 

unknown physical parameter representing the dielectric scatterer [17, 22] and a binary 

type vector is the unknown mathematical parameter to represent the PEC scatterer [20, 

21]. In comparison, in the T-matrix SOM, the T-matrix is the unknown physical 

parameter and both the PEC and dielectric scatterers can be represented as T-matrix. 3) 

The number of unknowns in the original SOM equals to the number of subunits inside 

the domain. The number of unknowns in T-matrix SOM equals to the number of 

subunits inside the domain multiplied by the number of multipoles chosen for 

representing the scattered field in each subunit.  

The improvement of the proposed method compared to the original T-matrix 

inverse method is as follows. Chew and others have developed a T-matrix based 

inverse scattering method, for either the PEC case [62] or the dielectric scatterer case 

[51, 54]. However, as a priori knowledge, scatterers are known to be perfectly 

conducting in [62] and to be dielectric in [51, 54]. Thus, only single leading multipole 

term is used in the modeling in these three papers. To be specific, only the monopole 

term is used in [62] to model the scattering of PEC scatterers for 2D Ez incidence, 

whereas only the dipole term is used to model the scattering of dielectric scatterers for 

2D Hz incidence [54] and 3D case [51]. In our research, we consider a mixture of two 
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kinds of scatterers for 2D Ez incidence. It is stressed that although the monopole term 

is leading for both PEC and dielectric scatterers individually, it is inaccurate to use 

only monopole term to model the scattering behavior for a mixture of two kinds of 

scatterers, due to the fact that dipole term of PEC scatterer is comparable in 

magnitude to the monopole term of dielectric scatterer. In this thesis, we use both the 

monopole and dipole terms for both types of scatterers to describe the field, which is 

more accurate for the mixed boundary case. 

In [54], T-matrix is approximated by small term polynomial during 

optimization, and the relative permittivity is retrieved directly from optimization. In 

comparison, in our method the T-matrix (without approximation) for both PEC and 

dielectric is directly solved for via optimization, and then another optimization is 

needed to retrieve the relative permittivity from the T-matrix, which is more accurate 

compared to directly solving the relative permittivity from the approximated 

polynomial. Other advantages of the two-step optimization are that: the first step uses 

the alternative two-step CG optimization method [17] which avoids the time 

consuming matrix inversion during the optimization; moreover, a reasonably good 

initial guess for the second step drastically increases the speed of convergence so that 

the univariate optimization problem in this step is straightforward. 

In [62] the PEC scatterer is known as a priori knowledge. A LSF proportional 

to the exact PEC T-matrix is assigned to each subunit during reconstruction. In our 

method, the monopole element in T-matrix of each subunit works similarly as the LSF. 
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However it is used to classify the PEC scatterers from the dielectric ones. No a priori 

information is needed in classifying these two kinds of scatterers.  

The main contributions of the proposed T-matrix SOM are: Firstly, the PEC 

and dielectric scatterers are reconstructed simultaneously by the T-matrix method, 

without a priori information on the property or number and shape of scatterers. 

Secondly, the SOM has been applied in the framework of T-matrix method by 

analyzing the linear mapping from the amplitude of the induced multipole to the 

scattered field, showing that the SOM is not limited to using the linear mapping from 

induced current to scattered field. Thirdly, various numerical simulations show that 

the proposed T-matrix SOM inherits good properties of the original SOM, i.e., fast 

convergence, robust against noise, and high-resolution imaging ability.  

3.2 Forward Solution for Mixture of PEC and Dielectric Scatterers 

We consider the inverse scattering problem in a two dimensional setting under 

the TM time harmonic illuminations. The setup of this problem is depicted as in Fig. 

Transmitter

Receiver

0 

Domain of interest

PEC

 

Fig. 3-1 The geometry for inverse scattering measurements: the dielectric scatterer with 

permittivity   and the PEC scatterer coexist in the domain of interest. 
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3-1. 

Suppose the unknown scatterers are located inside a domain of interest 

2D R . The background is air and 0k  denotes the wave number in free space. A 

total number of incN  unit plane waves that are evenly distributed around a circle 

impinge on the domain. The scattered field is received by rN  antennas, which are 

symmetrically located around a circle. Thus there are totally r incN N  points of data 

recorded in the scattered field matrix. The whole domain of interest is discretized into 

square meshes with N  subunits and in numerical simulations the scattering behavior 

of each cell can be well approximated by a circle of the same area such that the 

analytical form of T-matrix [52] can be used. The equivalent radius of each subunit is 

R  and the centers are located at 
0, 0,( , )i i ir ρ , 1, 2, ,i N , under the global 

coordinate system.  

Applying the multipole expansion to both the incident field and the scattered 

field under local coordinate of the thi  sub-unit [52], we get the total field,  

 tot t t

0 0

1

( ) ( , ) ( , ) , 1,2, , .
N

z i i i j j

j

E k k i N


    r Rgψ r e ψ r a          (3.1) 

On the right hand side, the first term is the incident field on the thi  subunit 

and the second term indicates the scattered field from all the subunits. The 

observation point is at r  with respect to the global coordinate and i i r r ρ  is the 

observation point under the local coordinate of the thi  sub-unit, where ( , ),i i ir r

1,2, ,i N . 
it (1)

0 0( , ) ( ) im

i m im
k H k r e

   ψ r , and Rg  stands for the regular part, i.e., 

it

0 0( , ) ( ) im

i m im
k J k r e

   Rgψ r  , , ,m M M  . M  is the truncation number of 

multipoles [53]. Here , 1,2, ,j j Na  are referred to as the vectors of amplitude of 



                                                                            62 

 

 

the induced multipole. The explicit form of ie  is   0 0, 0, inc inc
i cos( ) i

=i i ik r mm

i m
e e

   
e , where 

inc  is the angle that the incident wave number makes with the x -axis.  

To obtain the scattered field sca

zE  received on the antennas, the total incident 

field on the thi  subunit can be expressed as the summation of the incident field and 

the multiple scattered fields from other subunits. We can split Eq.(3.1) into the total 

incident field on the thi  subunit (the first two terms in Eq.(3.2)) and the scattered 

field on the thi  subunit. 

 tot t t t

0 0 0

1

( ) ( , ) ( , ) ( , ) .
N

z i i i j j i i

j i
j

E k k k



     r Rgψ r e ψ r a ψ r a  (3.2) 

The translational addition theorem enables one to represent the scattered field 

from other scatterers as a form of the incident field to one scatterer. 

t t

0 0( , ) ( , )j i ijk k  ψ r Rgψ r
 
(Appendix I). After some derivation by using the 

addition theorem we get,  

 
1

[ ], 1,2, ,
N

iji i i j

j
j i

T i N



   a e a ,              (3.3) 

where ij  is the translational matrix. 
( )(1)( , ) ( ) iji m n

ij m n ijm n H kd e



 

 , where 
ijd  is 

the distance between the thi  and thj  subunit and 
ij  is the angle of the  

subunit under the local coordinate of the subunit. 
iT  is the T-matrix of the thi  

subunit which relates the total incident field coefficient to the amplitude of the 

induced multipole. For a dielectric subunit, the T-matrix can be calculated by [52],  

  r 0 r 0 r 0 0

(1) (1)

0 r 0 r r 0 0

( ) ( ) ( ) ( )
, , , .

( ) ( ) ( ) ( )

m m m m

m

m m m m

J k R J k R J k R J k R
T m M M

H k R J k R J k R H k R

  

  

 
  

 

 (3.4) 

And for a PEC subunit,   

thj

thi
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   0

(1)

0

( )
, , ,

( )

m

m
m

J k R
T m M M

H k R
    .              (3.5) 

Combining the N  equations for all the subunits into one matrix equation, we 

then obtain amplitude of the induced multipole as, 

 
1ˆ ˆ[ ]O A I O    a e ,                     (3.6) 

where a  is an (2 1) 1N M    dimension vector consisting of , 1, 2, ,i i Na  

along its column and Ô  is a square matrix of size (2 1) (2 1)N M N M   , with the 

T-matrices for each subunit being arranged along its diagonal and zeros being in 

off-diagonal. Matrix A  is the combination of translational matrices where 

[ ]ij ijA    for i j  and zero otherwise. e  is an (2 1) 1N M    column vector 

consisting of , 1, 2, ,i i Ne  along its column. Eq.(3.6) is referred to as the state 

equation, similar to [17]. Note that in [17] the state equation is composed by the 

induced current while Eq.(3.6) is composed by amplitude of the induced multipole 

a . 

The scattered field on the antennas can be solved by,  

 t t

0

1

( , )
N

z j j

j

k


   sca
E ψ r a ψ a .                   (3.7) 

Eq.(3.7) is referred to as the field equation. 

3.3 The Inverse Problem for Mixture of PEC and Dielectric 

Scatterers  

3.3.1 T-matrix SOM 

Two steps of optimization processes are involved in the inverse scattering 

problem. The first process is to retrieve the T-matrices or matrix Ô  from the given 
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scattering data. The retrieved monopole element of the T-matrix works as the 

classification of the PEC scatterers from the dielectric ones. The second optimization 

consists of retrieving the relative permittivity of the dielectric scatterers, which is a 

univariate optimization problem at each subunit. 

A. The T-matrix SOM 

The essence of SOM lies in that it decomposes the induced current into two 

orthogonally complementary parts: the deterministic part and the ambiguous part, by 

doing SVD to the mapping from induced current in domain to the field on receivers. 

To reconstruct the induced current, the optimization is carried out in a smaller 

subspace of the current space in SOM.  

Similarly, we can also apply the SOM to the T-matrix method. The matrix 
t

ψ  

of dimension r (2 1)N M N   in Eq.(3.7) refers to the mapping from amplitude of 

the induced multipole a  to the scattered field on the receivers. 
t

ψ  is defined 

uniquely by the domain of interest and the positions of the receivers. It works in a 

way similar to the SG  as in the original SOM [17]. 

We do SVD to 
*

t U V ψ . After analyzing the spectrum of singular values, 

the deterministic part of a  is uniquely defined by the scattered field as 

* sca

s

1

L
j

j

j j

u E
v




a , where the definition of the parameters are similar to Chapter 2. a  

is decomposed as 
s n s n nV     a a a a , where 

nV  is composed of 

(2 1)M N L   right singular vectors and n  is a (2 1)M N L   dimensional 

vector to be solved for by optimization.  
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Due to the truncation of the singular values, the residue in the field equation 

can be defined as, 

 
2

fie t s t n n scaV E      ψ a ψ ,                (3.8) 

Similarly, the residue in the state equation (3.6) is defined to be [17], 

 
2

sta nC D    ,                       (3.9) 

where 
n nˆC V O A V     and 

s sˆ [ ]D O A   e a a . The total relative residue is 

defined to be 

 
2 2

tot fie sca sta s/ /E    a .                  (3.10) 

For each incidence
inc

pE , the total relative residue can be calculated as 

tot

inc, 1,2, ,p p N  . The Ô  is the unknown parameter to be solved for in the first 

step of optimization process, which is a square matrix of dimension 

(2 1) (2 1)N M N M   . The Ô  matrix can be obtained by minimizing the following 

objective function 

 
inc

tot

1

1ˆ( )
2

N

p

p

f O


  .                     (3.11) 

In solving the cost function, the alternative two-step CG optimization method 

[17] is adopted as the optimization scheme, i.e. alternatively updating n  and the Ô  

matrix. The steps of the algorithm are summarized as follows, 

Step 1: Calculate 
t

ψ  and the SVD of it. Obtain 
s

inc, 1,2,p p Na . 

Step 2: Initialization: 0n  , set 0
ˆ 0O  , 

n

,0 0p  , and set the search 

direction 
,0 0p  . 

Step 3: 1n n  . 
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Step 3.1: Update
n

,p n : Calculate gradient (Frechet derivative) n,
p

p ng f


  

evaluated at
n

, 1p n   and 1
ˆ

nO  . Determine the search directions 

*

, , 1 ,

, , , 12

, 1

Re[( ) ]p n p n p n

p n p n p n

p n

g g g
g

g
 







 
  . Plug 

n n

, , 1 , ,p n p n p n p nd     into the 

objective function, which is quadratic in terms of 
,p nd , to get the solution of 

parameter 
,p nd . Then update 

n n

, , 1 , ,p n p n p n p nd    .  

Step 3.2: Update ˆ
nO : for the thi  element, 1, 2, , (2 1)i N M  , update the 

vector of amplitude of the induced multipole 
n

s n

, ,( ) ( ) ( )p n i p i p n iV   a a . Then update 

the coefficient for the total field ,( ) ( )p p ni iA e a . The objective function has an 

analytical derivative with respect to ˆ( )n iO  and the solution of ˆ( )n iO  is given by

inc inc* *
, , , ,

2 2
s s

1 1

[( ) ( ) ] ( ) [( ) ( ) ] [( ) ( ) ]ˆ( ) ,

N N

p p n p n p p n p p ni i i i i i i
n i

p p
p p

A A A
O

 

       
 

e a a e a e a

a a
   

(3.12) 

where 1,2,3, ,(2 1)i M N  . 

Step 3.3: If termination condition is satisfied, stop iteration. Otherwise, go to 

Step 3. 

B. Choice of multipole truncation number 

For TM incidence, with the fine meshing assumption ( 0 1k R  ), 0M   is 

sufficient enough to represent the multipole scattering effects on either the dielectric 

or the PEC subunits. For dielectric subunit, the small term polynomial approximations 

(Appendix II) for elements in T-matrix are   
2

0

0

( )
(1 )

4i
r

k R
T


   and 

  4

01

i
( 1)( )

32
rT k R


  , respectively (    

1 1
T T


 ). While for PEC subunit, the small 
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term polynomial approximations for elements in T-matrix are  
0

0

i

2ln( )
T

k R


  and 

  2

01
( )

4i
T k R


 , respectively. From the approximation polynomial, we see that the 

monopole element is leading in magnitude for both PEC and dielectric scatterers 

individually. However it is inaccurate to use only monopole element to model the 

scattering problem for a mixture of two kinds of scatterers. The dipole element in 

T-matrix for PEC is on the same order of 0k R  as the monopole element of dielectric 

subunit. Therefore in the mixed boundary inverse problem, 1M   should be chosen 

as the truncation number of multipoles, to accurately represent the multipole 

scattering effects on both the PEC and dielectric subunit.  

To accelerate the optimization process, 0M   is firstly chosen to get a rough 

initial guess of the leading monopole elements in T-matrixes. Then 1M   is used to 

retrieve the whole matrix Ô . It is worth mentioning that because of the symmetric 

property, the two dipole elements  
1

T  and  
1

T


 in the T-matrix equal to each 

other. Therefore in matrix Ô  the (2 1)thi   and (2 1)thi   elements, 

1,2, ,i N , should equal to each other. Thus the unknowns are reduced by one 

third in optimization step 3.2. 

C. The classification criterion 

After Ô  is retrieved by the first step of optimization process, the retrieved 

T-matrix for the thi  cell can be expressed as 
iT , 1,2, ,i N , which includes the 

dipole elements  
1

T


 and the monopole element  
0

T . We further study the 

elements in T-matrices for PEC and dielectric scatterers, to provide a criterion for 

differentiating the PEC and dielectric scatterers.  
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From Eq.(3.5), we know that the monopole element in the T-matrix for PEC is 

  0 0

(1)0
0 0

( )

( )

J k R
T

H k R
  , where 

(1)

0 0 0 0 0 0( ) ( ) i ( )H k R J k R Y k R  . Under the small term 

assumption 0 1k R  , 0 0( )J k R  approaches to one, and 0 0( )Y k R  approaches to 

negative infinity [90]. Therefore, when 0 1k R  , the imaginary part of  
0

T  is a 

negative real number.  

The elements of T-matrix for dielectric scatterer is nonlinear with respect to 

r . Under the small term assumption 0 1k R  , the monopole element for dielectric 

can be approximated by the linear polynomial, 

  
2

0
r0

( )
(1 )

4i

k R
T


  .                     (3.13) 

We consider only dielectric scatterers, the real part for relative permittivity of 

which is larger than one. Thus from Eq.(3.13), we see that the imaginary part of  
0

T  

for a dielectric scatterer is larger than zero. When implementing the said classification 

criterion, special attention should also be paid to the case where the imaginary parts of 

the retrieved  
0

T  are of the value between 
2

0( )

4

k R
  and 0, which indicates that 

the real part of the optimized relative permittivity is between zero and one. 

Considering that there are only dielectric scatterers with rreal( ) 1   and PEC 

scatterer with r   inside the domain of interest and also due to the continuous 

property of the numerical optimization, these pixels should be classified as air.  

To summarize the criterion of classifying the PEC from the dielectric scatterer, 

when determining the property of a subunit from the elements in 
iT , 1,2, ,i N , if 

the imaginary part of  
0

T  is a positive number, the subunit is determined to be 

dielectric scatterer. dieN  is the number of dielectric subunits determined by  
0

T .  
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If the imaginary part of  
0

T  is between 
2

0( )

4

k R
  and zero, the subunit is 

determined to be air. Otherwise, the subunit is determined to be PEC.  

D. The univariate optimization 

The second step of optimization process is a univariate optimization. We aim 

to retrieve the relative permittivity of each dielectric subunit from 
iT , die1,2, ,i N . 

A good initial guess for the second step of optimization process can be obtained from 

Eq.(3.13),  

 
 

0
r 2

0

4i
1

( )

T

k R



  .                          (3.14) 

In this optimization, we reserve the nonlinearity between the T-matix and r , 

getting a more accurate r  compared to [54], where the r  is solved directly from 

the polynomial approximation. The T-matrix for each subunit is independent of the 

others. For each subunit, the cost function is defined as 

        
2 2

r, die0(retrieved) 0 1(retrieved) 1
( ) , 1,2, , ,i i i i i if T T T T i N           (3.15) 

where  
0iT  and  

1iT  are given by Eq.(3.4). 
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Then the relative permittivity can be retrieved directly using 

Levenberg–Marquardt (LM) algorithm, with the initial guess given by Eq.(3.14).  

3.3.2 Numerical Examples  

The domains of interest for the first three numerical examples under 

investigation are squares of size   , which are discretized into 45 45N    

square subunits. The domain of interest for the last example is of size 0.5   and 

is discretized into 60 30N    square subunits. inc 10N   plane incident waves are 

evenly distributed on [0,2 ) . r =30N  receivers are symmetrically located on a 

circle of radius 5 . To avoid the inverse crime, the multipole numbers used in 

getting the forward data is more than that used in the inverse part. The synthetic data 

is calculated by T -matrix method with 2M  .  

In the inverse problem, 1M   is the truncation number of the multipoles. 

 
1

T


 do not numerically exist for r 0  . Therefore in figures of numerical 

examples, we use r 0   to mark the PEC scatterers. Note that this practice only 

serves to visually distinguish PEC from dielectric scatterers in the relative permittivity 

 

Fig.3-2. Singular values of the matrix 
t

ψ  
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pattern. The singular value spectrum of the matrix 
t

ψ  for 1M   is shown in 

Fig.3-2.  

The numerical reconstruction does not yield a clear cut between PEC and air 

due to the feature of continuous parameter optimization. Instead, reconstructed image 

shows a gradual change from PEC into air. The imaginary parts of  
0

T  for the 

background pixels around PEC are also optimized to be negative. After applying the 

classification criterion as proposed in Section 3.3.1 to reconstruct the relative 

permittivity pattern, the size of the PEC scatterer should be enlarged a little bit, which 

can be accepted considering the optimization feature. Thus we also plot the patterns 

for the imaginary parts of  
0

T . To be specific, when estimating the reconstruction, 

we should refer to the pattern of imaginary parts of  
0

T  to get the information of 

PEC objects, while refer to the pattern for relative permittivity to get the information 

for dielectric scatterers.  

In the first numerical example, we have two circles with radius 0.1  placed 

inside the domain with centre distance 0.5 , as shown in Fig. 3-3(a). The PEC 

circular scatterer is on the right side and is marked as r 0  . The dielectric circular 

scatterer with r 4   is placed on the left side. Note that distance of the two 

scatterers is less than half wavelength. The synthetic data includes 10% white 

Gaussian noise to the exact scattered field. According to the criteria presented in 

Section 2.3.1, the number of leading singular values is chosen to be 8L  . From the 

reconstructed pattern shown in Fig. 3-3 (b), the two objects are clearly identified with 

PEC on the right and dielectric on the left. To be specific, in Fig. 3-3 (c) we also draw 
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the imaginary part of  
0

T , from which we can clearly see the difference between the 

subunits of PEC and dielectric scatterers. The result coincides with our analysis in 

Section 3.3.1.   

In the second example, two dielectric squares with relative permittivities 

4r   and 2.5r   respectively are placed inside domain of interest as shown in 

Fig. 3-4(a). A PEC square is placed on left top of the domain. 10% white Gaussian 

noise is added to the exact scattered field and the number of truncated leading singular 

values is 8L  . From Fig. 3-4(b) we can clearly see two dielectric objects of 

different permittivities at around 4r   and 2.5r   respectively as well as a PEC 

object on top of the domain. Even though a little bit blurred, the approximate shape 

and the position of the PEC object are correctly reconstructed.  

In the third example, a dielectric ring with 4r   is placed in the domain of 

interest as shown in Fig. 3-5(a). The outer radius is 0.25  and inner radius is 0.15 . 

A small square PEC object is placed on the upper right corner of the dielectric ring. 

10% white Gaussian noise is added to the exact scattered field and 8L  . From Fig. 

3-5(b) and Fig. 3-5(c), both the ring and PEC objects are correctly indentified and the 

hole of the ring is clearly seen.  

In the last example, both PEC and dielectric lossy scatterer with 
r 4 6i  

coexist in the domain of interest. The shapes for both PEC and dielectric scatterers are 

circulars with radius 0.1 . 10% white Gaussian noise is added to the exact scattered 

field and 8L  . From both the patterns for real parts and imaginary parts of the 
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relative permittivity as shown in Fig. 3-6, we can see the T-matrix SOM has 

successfully distinguished the PEC scatterer from a lossy dielectric scatterer. 

  

(a) 

 

(b) 

 

 (c) 

Fig. 3-3. Two circular objects: one PEC and one dielectric scatterer (a) original pattern. (b) 

reconstructed pattern. (c) the imaginary part of [T]0.  
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(a) 

 

(b) 

 
(c) 

Fig. 3-4. Three square objects: one PEC and two dielectric scatterers with different permittivities (a) 

original pattern. (b) reconstructed pattern. (c) the imaginary part of [T]0. 
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                                       (a) 

 

                                       (b) 

 

(c) 

Fig. 3-5. A ring dielectric object and a PEC small square (a) original pattern. (b) reconstructed pattern. 

(c) the imaginary part of [T]0. 
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(a)                     (b)                    (c)    

 

          (d)                       (e)                      (f)   

Fig. 3-6. A lossy dielectric scatterer and a PEC scatterer (a) original pattern for imaginary part of 

relative permittivity (b) reconstructed pattern for imaginary part of relative permittivity (c) the 

imaginary part of [T]0 (d) original pattern for real part of relative permittivity (e) reconstructed pattern 

for real part of relative permittivity (f) the real part of [T]0. 

 

3.4 Summary 

In this chapter we proposed an approach of using SOM to reconstruct the mixed 

boundary problem in two dimensional setting. The proposed algorithm is an extension 

of SOM to a new modeling scheme—T-matrix method. Numerical results show that 

the proposed method works well for the mixed boundary problem in sub-wavelength 

setting and inherits the merits of the original SOM, i.e., fast convergence, robust 

against noise, and high-resolution imaging ability.  
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4 SEPARABLE OBSTACLE PROBLEM  

In this Chapter, the separable obstacle problem (SOP) which is encountered 

often in practice is solved by reformulating the SOM. By treating the inhomogeneous 

background as a known scatterer that is hosted in a homogeneous background, the 

computationally intensive calculation of the inhomogeneous background Green‘s 

function is avoided. Therefore we call the newly developed method the SOP-homo. 

Firstly, the SOP-homo is derived and formulated in the dielectric scatterer case based 

on the EFIE model. Secondly, SOP-homo is further extended to the T-matrix model, 

to solve the mixed boundary SOP where both the obstacle and the unknown scatterers 

are consisted as a mixture of PEC and dielectrics. Numerical examples indicate that 

the proposed method works well for SOP and is less computational intensive than the 

contemporary inhomogeneous model. 

4.1 SOP for dielectric scatterer 

Inverse scattering problems are of great interest to scientists nowadays [21, 49, 

81, 91-96]. They have a wide application in the fields of optical diffraction 

tomography [95], bio-imaging [92], and non-destructive evaluation [93]. One specific 

case of inverse scattering problem is described as follows: 1) the problem involves 

imaging unknown scatterers surrounded by known obstacles. 2) There is no overlap 

between the scatterers and obstacles. Under these conditions, the obstacles are 
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separable from the unknown scatterers and we refer to such kind of problem as 

separable obstacle problem (SOP).  

The quality evaluation of the cores in optical fiber cable is a typical SOP. 

Another example is the non-destructive evaluation of the dielectric slab waveguide, 

where the middle layer can be seen as the unknown scatterer to be reconstructed and 

the outer layers are the known obstacles. Some general through wall imaging 

problems [86, 97] can also be classified as SOP. Thus, the study on SOP is of 

practical importance.  

 Traditionally, the SOP is classified as an inhomogeneous background inverse 

problem [98], because the obstacle is generally regarded as part of the background 

medium. Thus, the Green‘s functions used for inhomogeneous background have 

complex forms [99]. Most of the published works consider only the cases where the 

(semi-) closed-form expressions of the corresponding Green‘s functions are available, 

such as half-space background medium [100, 101] or infinite length layered medium 

[86, 95]. However, when the obstacle is of arbitrary shape, numerical calculation of 

the Green‘s function is needed. In [49], the finite element method (FEM) is adopted as 

the numerical method, while in [96] the finite difference (FD) approach is involved to 

calculate the numerical Green‘s functions. However, the numerical approximations to 

Green‘s functions introduce numerical errors into the discrete model and are quite 

computationally intensive.  

In this chapter, we aim to solve the SOP without resourcing to the numerical 

calculation of Green‘s functions while still providing good reconstruction results. The 
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main idea of the proposed approach is that the known obstacle can be treated as 

‗known scatterer‘ rather than part of the background. Therefore, the background is 

simply homogeneous and the elements corresponding to the obstacle can be excluded 

from the retrieving process of the unknowns by applying a mathematical 

reformulation of the cost function. The Green‘s function used has just the analytical 

form for the homogeneous background. For this reason, we refer to our scheme as 

SOP-homo. It‘s highlighted that the prior information of no overlap between the 

unknown scatterers and the known obstacles is essential for our method.  Such 

specific condition is fulfilled very often in practice, like the examples presented 

before. For comparison, we refer to the methods that require numerical calculation of 

Green‘s function (such as FEM/FD related approaches) as the Obstacle 

Problem-inhomo (OP-inhomo), which is applicable to both separable and 

non-separable obstacles. Furthermore, if the a priori information of separable obstacle 

is also used in OP-inhomo, we call it Separable Obstacle Problem-inhomo 

(SOP-inhomo).  

We analyze various factors that influence the imaging quality of SOP, and 

finally give the strategy of choosing proper method for such problem. Various 

numerical results are given to validate SOP-homo and comparisons are also made 

with the other two methods mentioned above. Many numerical examples presented in 

this chapter are much more complex and difficult than existing reported results so far. 

The numerical results indicate that the SOP-homo works well for SOP and has a 
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better performance especially in the case of unknown scatterer adjacent to the 

obstacles.   

4.1.1 Forward problem 

Domain of Interest
obstacle

1

2

w

0

0

D

 

Fig. 4-1. A general scenario for SOP. 

The forward problem consists of determining the scattered field on receivers 

given the information of the scatterers and the incident field. In this section, we 

present the forward model for dielectric case, which is the foundation of the inverse 

problem. We consider a two-dimensional problem under TM wave illumination. The 

setup of the problem is depicted in Fig. 4-1. Inside the domain of interest D , the 

obstacle of relative permittivity w  surrounds the unknown scatterers. The wave 

number in obstacle is denoted as wk . The physical properties of the obstacle are 

known a priori. incN  cylindrical waves symmetrically illuminate the domain of 

interest. Then the scattered field is received by rN  antennas evenly distributed on a 

circle outside the domain of interest D , the positions of which are 

r, 1,2, ,q q Nr . Thus, there are totally r incN N  data points of measurements 

recorded in the scattered field matrix. We discretize the domain of interest into N  

square-shaped subunits, and the centers of subunits are located at 1 2, , , Nr r r . Out of 

these N  subunits, the number of subunits that belong to the known obstacle is wN .  
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The scattered field and the incident field at r  satisfy the following Helmholtz 

equations [102],  

 2 2 sca 2 2 tot( ) ( ) [ ( ) ( )] ( ),b z b zk E k k E      r r r r r   (4.1) 

 2 2 inc( ) ( ) ( ),b zk E S     r r r  (4.2) 

where ( )bk r  denotes the background wave number and ( )k r  is the wave number at 

point r , tot sca inc

z z zE E E   indicates the total electric field. The primary source is 

given by ( )S r .  

The integral solutions of Eq. (4.1) and Eq.(4.2) are 

 
sca 2 2 tot( ) ( ; , ) ( ) ( ) ( ) ,z b b z

D
E g k k k E d       r r r r r r r  (4.3) 

 
inc ( ) ( ; , ) ( ) .z b

D
E g k S d   r r r r r  (4.4) 

Eq. (4.3) can be rewritten into discrete form, and the total electric field on the 

thm  subunit satisfies the self-consistent equation, 

 
tot inc tot( ) ( ) i ( ; , ) ( ), 1,2, , .z m z m b b b m i i z m

i m

E E k g k E m N 


  r r r r r  (4.5) 

The scattering strength is given by  i / ( ) 1i b b i r ik A      r . ( )r i r  and 

iA  denote the relative permittivity with respect to the background medium and the 

area of the thi  subunit, respectively, and 0 /b b    is the impedance of the 

background medium, where 0  is the permeability of free space, and b  is the 

permittivity of the background medium.  

Then we can write the scattered field on the receivers in a matrix form, which 

we call the field equation, 

 
sca d

s .E G I   (4.6) 



                                                                            82 

 

 

Here 
s ( , ) i ( ; , )b b b q mG q m k g k r r  for 1,2, ,m N  and r1,2, ,q N . 

Further, d d d d T

1 2[ ( ), ( ), , ( )]z z z NI I I I r r r , 
r

sca sca sca sca T

1 2[ ( ), ( ), , ( )]z z z NE E E E r r r . 

The scattering strength i  relates the total electric field to the induced 

current/contrast source by d tot( ) ( )z i i z iI Er r . We get the state equation in a compact 

form, 

 
d inc d

D( )I E G I    (4.7)

where D( , ) (i ) ( ; , )b b b m iG m i k g k r r  and inc inc inc inc T

1 2[ ( ), ( ), , ( )]z z z NE E E E r r r .   

is a diagonal matrix composed by , 1,2, ,i i N  . 

sG  and DG  in the field equation Eq.(4.6) and state equation Eq.(4.7) are 

matrices of Green‘s functions, which map the induced current to the scattered field at 

the points outside and inside the investigation domain, respectively. According to the 

different definitions of the background medium, two kinds of forward models can be 

extracted from Eq. (4.1) to (4.7): 

Model I: If the obstacle is regarded as part of the background, the background 

medium is inhomogeneous. The Green‘s function needs to be calculated by numerical 

methods such as FEM/FD etc. 

Model II: If the obstacle is regarded as the known scatterer rather than the 

background, the background medium is homogeneous and is simply the free space. 

The Green‘s function exists analytically [103]. 
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According to Eqs.(4.3) and (4.4), the calculated incE  and scaE  are totally 

different in these two models. Comparisons between the two models are made as 

shown in Table 4-1.  

In summary, by avoiding the numerical calculation of the Green‘s function, 

the advantages of model II over model I are: 

i. The computation complexity is reduced, 

ii. The computing time is reduced, 

iii. The numerical noise to the inverse model is avoided. 

The OP/SOP-inhomo employs the model I while the SOP-homo uses model II. 

4.1.2 Inverse problem 

The inverse scattering problem is to retrieve the relative permittivity matrix 

  from the measured scattered field. We use the SOM as a demonstration 

reconstruction method to show the detail of solving the SOP.  Namely, we will do 

the reformulation on SOM (so as to get the so-called SOP-homo) in order to utilize 

the prior information of SOP.     

A. Outline of standard SOM      

Table 4-1: Comparison of the Model I and Model II 

 bk  
D s&G G   incE  

scaE  

Model I 
w

0

, obstacle 
( )

,  air
b

k
k

k


 



r
r

r
 

Numerical–inexact and 
computationally 

intensive 

Numerical 
–numerical noise 

contained 

Numerical 
–numerical noise 

contained 

Model II 0k  
Analytical – exact and 

easy to compute 

Analytical – no 

numerical noise 

Analytical – no 

numerical noise 
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The main idea of SOM is to firstly obtain the deterministic part of the induced 

current sI  by using Equ. (2.4) in Section 2.3.1. Then the remaining part of the 

induced current n d sI I I   is obtained through optimization. The two terms   

and nI  are alternatively updated using the CG method. The action of fixing one 

portion of the induced current first can greatly speed up the optimization process.  

The cost function is the sum of residues from both field and state equations,  

  
inc 2 2

fie sca sta s

1

( ) ,
N

p p p p

p

f E I


                   (4.8) 

The fie  denotes the residue in the field equation and is given by  

 
2

fie sca d

s .E G I                      (4.9) 

The residue in the state equation is defined to be, 

  
2

sta d inc d( )DI E G I     .            (4.10) 

The algorithm is briefly presented below and we refer the readers to the 

previous chapters for the details. Here 
n

,p nI , inc1,2, ,p N  denotes the remaining 

part of induced current in the thn  step of iteration. And n  denotes the matrix of 

scattering strength in the thn  step of iteration.  

Step 1: Data preparation 

Step 2: Initialization: 0n  .  

Step 3: Iteration: 1n n  . 

Step 3.1: Update 
n

,p nI , while regarding n  as a known parameter. 

Step 3.2: Update n , while regarding 
n

,p nI  as a known parameter.   

Step 4: If termination condition is satisfied, stop iteration. Otherwise, go to 

Step 3.  
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B. Reformulation of SOM for SOP: 

In this section we introduce how to reformulate the SOM so as to utilize the 

prior information of SOP. Since no scatterers overlap with the obstacles, the subunits 

belonging to the obstacles can be fixed throughout the whole updating process. 

Therefore the number of unknowns in matrix   is actually wN N  which is the 

number of non-obstacle elements. Thus in step 1 and 2 of the updating algorithm, the 

initial guess of    is modified according to the prior information of the obstacle.  

In step 3.2, since 
n

,p nI  is regarded as a known parameter, the field residue (4.9) 

is fixed and only state residue changes as a consequence of updating n . In (4.8), the 

cost function can be written as summation of each individual element as, 

  
 

inc

sta
fie

1

2 2
sca s

1

N

N p i
p i

p
p p

f
E I

 



 
 

  
 
 
 


                     (4.11) 

Thus, we can split the objective function into three parts: the field residue 

 fie

,p n , the state residue corresponding to the obstacle subunits  
obs

sta

,p n  and the 

state residue corresponding to the non- obstacle subunits  
non-obs

sta

,p n , i.e., 

    
   inc w w

obs non-obs
sta stafie

, ,,

2 2 2
sca s s

1 1 1

1
.

2

       

N N N N
p n p np n i i

n
i p i i

p p p

f
E I I




  

       
    

 

          (4.12) 

On the right hand side of Eq.(4.12), the first two terms are constant with 

respect to the unknowns (the ( )n i  on non-obstacle subunits). Thus, only the last 

term in Eq. (4.12) contributes in the CG update with respect to the unknowns 
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w( ) , 1,2, ,n i i N N   . The details of updating n  are similar to [49] but with a 

less number of unknowns. 

C. Discussion 

Besides the model advantages indicated in section II, the above optimization 

scheme has another advantage that the number of unknowns is significantly reduced 

compared to the general SOM model, which results in a faster convergence speed. 

Although there are various advantages for the SOP-homo scheme, it is 

important to note that a trade-off is also involved. Even though we have excluded the 

obstacle from the updating process of  , the currents in the known obstacle and the 

unknown scatterers, coexist in our scheme. On the other hand, in OP/SOP-inhomo, 

the obstacle is totally regarded as background and the induced current corresponds to 

only the unknown scatterer. This is because the multiple scattering effects between 

the scatterers and obstacles have already been involved in the inhomogeneous 

background Green's function. As a consequence, the SOP-homo has a higher 

nonlinearity compared to OP/SOP-inhomo, which may reduce the quality of 

reconstruction, for example in some cases where the known obstacle has a higher 

permittivity than the unknown scatterer. However, in the application of optical fiber 

or waveguide evaluation, the unknown scatterers (core) usually have a higher 

permittivity than the obstacle (cladding), which indicates that SOP-homo still serves 

as a good choice for such kind of problem.  

In summary, there are two factors that influence the quality of reconstruction 

in SOP. The first factor is the Green‘s functions and related numerical inaccuracies. 
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The second factor is the nonlinearity of the model used for the problem. SOP-homo 

performs better in the first factor while OP/SOP-inhomo performs better in the second 

factor. 

4.1.3 Numerical examples 

We present five numerical examples to validate our method as well as the 

influencing factors on imaging quality.  Since SOM is used in SOP-homo as the 

optimization scheme, the FEM-SOM in [49] is taken as a comparison method. 

Depending on whether or not the separable obstacle information is applied, we denote 

the two editions of FEM-SOM as the OP-inhomo and SOP-inhomo, respectively. 

The domain of interest for all five numerical examples is square of size 

2 2   and is discretized into 45 45N    square subunits. inc 10N   cylindrical 

waves are used as incident sources. The scattered field is measured by r 30N   

receivers evenly distributed around a circle of radius 5 . In all the examples, the 

measurement data are got by MoM and are contaminated by 10% white Gaussian 

noise. The singular value spectrum for the SOP-homo is drawn in Fig.4-2, and the 

singular value spectrum for the OP/SOP-inhomo is drawn in Fig. 4-3. For all the three 

methods (SOP-homo, SOP/OP-inhomo), the truncation number of leading singular 

values is chosen to be 10 and the optimization stops after 50 iterations. For 

quantitative comparison, we define the average relative error  

 
r_true, r_rec, r_true,

1 ,

N

i i i

ie
N

  







                   (4.13) 
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where 
r_true  represents the true value of relative permittivity and 

r_rec  stands for 

the reconstructed value. For all the examples, the values of e  are listed in Table 2.  

The units for the label of coordinates in reconstruction figures are  .  

A. Example 1 

In this example, we aim to image one concave scatterer as well as one square 

scatter inside an annulus obstacle.  

The outer radii and inner radii of the obstacle are 0.9  and 0.7  

respectively. The relative permittivity of the obstacle is 1.5. There are two scatterers 

in the interior area of the obstacle. The first scatterer is an ‗n‘ shaped scatterer with 

2r   and the second scatterer is a square scatterer with 3r  . The shapes and 

positions of these scatterers are shown in Fig. 4-4(a). Fig. 4-4(b) ~ (d) are the 

reconstruction results for SOP-homo, OP-inhomo and SOP-inhomo respectively. The 

reconstructed profiles in Fig. 4-4(b) ~ (d) show that all methods clearly retrieve the 

positions and permittivities of the scatterers, including the concave area of the ―n‖ 

shaped scatterer. The reconstruction errors presented in Table 4-2 show SOP-homo 

performs better than OP/SOP-inhomo. The reason of worse performance of 

SOP-inhomo than SOP-homo is because of its lower accuracy of Green‘s function.  
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Fig.4-2 Singular values of the matrix SG
 

for SOP-homo 

 

Fig. 4-3 Singular values of the matrix SG
 

for OP/SOP-inhomo 

 

Fig. 4-4. The configuration of scatterer in the first numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo. 
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Fig.4-5. The configuration of scatterer in the second numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.  

 

Fig. 4-6. The configuration of scatterer in the third numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo. 

B. Example 2 

In the second example, we consider scatterers adjacent to the known obstacle. 

Such scatterers are difficult to reconstruct due to the proximity to the obstacle.  

As shown in Fig.4-5(a), the known obstacle is square shaped, with the outer 

side length 1.63  and the inner side length 1.26 , and its relative permittivity is 

1.5. There is an annular scatterer in the interior region of the obstacle, with inner and 

outer radii 0.25  and 0.4 , respectively, and its relative permittivity is 2. The 

centers of both the known square obstacle and the annular scatterer are at the origin. 
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There are two small scatterers (similar to the presence of unanticipated clutters) 

adjacent to the known obstacle and in the corner, with the relative permittivities of 1.4 

and 1.5 respectively.  

Fig.4-5(b)~(d) are the reconstruction results for SOP-homo, OP-inhomo and 

SOP-inhomo respectively. We see that the position, the shape, as well as the relative 

permittivity of the annulus inside the obstacle are well reconstructed. Besides, the two 

objects adjacent to the obstacle are also seen clearly in Fig.4-5(b) and Fig.4-5(d), 

while the square obstacle appears blurred by the adjacent objects in Fig.4-5(c). This is 

mainly because in OP-inhomo, the obstacle is regarded as background and the 

optimization updates the permittivity in the region of the obstacle as well. While in 

SOP-homo/SOP-inhomo the obstacle is regarded as known scatterer and its 

permittivity is not allowed to change during the iteration. From Table 4-2 we see that 

the relative error of SOP-homo is smaller than those of the other two. 

C. Example 3 

The third example is more challenging. In this example the inner surface of the 

obstacle is coated with a thin layer of a material with relative permittivity 2. The 

physical properties of the annular object as well as the obstacle remain the same as in 

the second example and the thickness of inner layer is 0.07 , see Fig. 4-6(a). 

From the reconstructed pattern in Fig. 4-6(c) which is the obtained by 

OP-inhomo, we see that the both the obstacle and its inner layer appear blurred. Fig. 

4-6(b) and Fig. 4-6(d) for SOP-homo and SOP-inhomo are much better, which prove 
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again that the usage of the prior information of separable obstacle demonstrates better 

results in the cases where the object is placed near the obstacle.   

D. Example 4 

In the fourth example, the setup is the same as the third example except that 

the inner layer has a relative permittivity of 1.4, which is lower than the obstacle, as 

seen in Fig.4-8(a).  

From Fig.4-8(b) ~ (d) and Table 4-2, it is clearly seen that SOP-homo and 

SOP-inhomo reconstruct the inner layer of the obstacle as well as the annulus better 

than the OP-inhomo.  

E. Example 5 

As indicated previously, the SOP-homo compromises in nonlinearity to avoid 

the computationally intensive Green‘s function calculation. This example highlights 

the aspect of nonlinearity. In this example the shape of the obstacle and the annulus 

object remain the same as the previous examples. The only difference is the relative 

permittivity of the obstacle is 2.5, higher than the unknown scatterer as seen in Fig. 

4-7(a). 

Table 4-2: The relative errors in the reconstructions of examples 1-5. 

 SOP-homo OP-inhomo SOP-inhomo 

1st 0.0364 0.0432 0.0431 

2nd 0.0337 0.0368 0.0355 

3rd 0.0724 0.1125 0.0769 

4th 0.0500 0.0698 0.0477 

5th 0.0553 0.0423 0.0420 
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Fig.4-8. The configuration of scatterer in the fourth numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo. 

Comparing the results in Fig. 4-7(b) ~ (d) and also from the errors in Table 4-2, 

we can see that SOP-homo gives a worse result than OP/SOP-inhomo in this example. 

This is mainly because the obstacle has a higher relative permittivity than the 

unknown scatterer, thus the induced current on the obstacle is stronger than that on 

the scatterer, which results in higher nonlinearity in SOP-homo compared to 
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Fig. 4-7. The configuration of scatterer in the fifth numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. (c) Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo. 
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OP/SOP-inhomo (where the obstacle is treated as the background and no induced 

current appears on the obstacle). 

F. Further discussion about the results 

In order to verify our analysis about the nonlinearity for the SOP-homo and 

OP/SOP-inhomo, and also to quantitatively evaluate the nonlinearity for all the 

numerical examples, degree of nonlinearity [104], which is defined by 
D

2

G   in 

source type model, is calculated in our numerical simulations. Here matrix   is the 

scattering strength, from which we can see the scattering strengths on the obstacle for 

OP/SOP-inhomo are zero values, while the scattering strengths on the obstacle in 

SOP-homo are non-zero values. Thus the degrees of nonlinearity for OP/SOP-inhomo 

are smaller than those in SOP-homo. In Table 4-3, we list the degrees of nonlinearity. 

We see the SOP-homo has a larger degree of nonlinearity than the other two methods 

in all five examples, and the degree contrast is especially sharp in the last example, 

which coincides with the previous discussion. 

Obviously, SOP-inhomo performs better than OP-inhomo in all these 

examples because it takes use of the separable obstacle information and thus has 

fewer unknowns compared to the latter one. It is shown that the imaging resolution of 

Table 4-3 : The degrees of nonlinearity for examples 1-5. 

 SOP-homo SOP/OP-inhomo 

1st 3.9531 3.9008 

2nd 2.5529 2.4385 

3rd 2.8552 2.5665 

4th 2.5769 2.4538 

5th 4.0690 2.6670 
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SOP is improved greatly after the use of the prior separable information. In summary, 

these numerical results verify the theoretical analysis in section 4.1.2. C.  

4.1.4 Summary 

We provide a comprehensive discussion on the imaging of SOP. We have 

introduced a new method called SOP-homo which properly utilizes the prior 

information of separable obstacle. The imaging performance of SOP is influenced by 

both the accuracy of the Green‘s function in forward model and the nonlinearity of the 

inverse model. We conclude that: (1) SOP-homo runs much faster than the 

SOP/OP-inhomo since the homogeneous background Green‘s function is applied. (2) 

For the scatterers with lower contrast than the obstacles, SOP-homo outperforms 

SOP/OP-inhomo (due to the accuracy of Green's function), whereas for the higher 

contrast case, the SOP-homo is inferior to the SOP/OP-inhomo (due to the 

nonlinearity of model).  

We also highlight two points. Firstly, although the accuracy of the numerical 

Green‘s function can be easily improved by reducing the grid step length, this will 

also deteriorate the computational burden and increase the computing time severely. 

Thus, a balance between the two factors (accuracy of Green's function and 

nonlinearity of model) should be considered in actual situation to choose proper 

method for such kind of problems. Secondly, although the SOP-homo is introduced in 

the framework of SOM, other methods based on the field-state equation can also be 

reformulated to solve such kind of problems as long as the cost function is constructed 

in a similar form. 
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4.2 SOP for mixed boundary problem 

In practical civil through wall imaging problems, the walls (obstacles) are 

always embedded with steel rods inside and the walls are commonly separable from 

the scatterers. Besides, the scatterers enclosed by the obstacle can also be the mixture 

of PEC and dielectric. Such problems can be cast into the mixed boundary SOP. Most 

published works deal only with the dielectric obstacles. Therefore investigation of the 

mixed boundary SOP is of practical importance. Unlike the previous section which 

focuses mainly on the comparison between SOP-homo and the contemporary works, 

this section will mainly focus on the realization of solving the mixed boundary SOP.  

In this section, to solve the mixed boundary SOP, the T-matrix SOM is 

reformulated based on the idea of SOP-homo, i.e., the separable obstacle is treated as 

a ‗known scatterer‘ rather than part of the background. Thus the background medium 

remains as free space. In addition, the elements corresponding to the obstacle can be 

excluded from the updating process of the T-matrices by reformulating the cost 

function. For convenience, we call the newly developed method T-matrix SOP-homo. 

Several numerical examples are given to prove the validity of the T-matrix 

SOP-homo. The results indicate that the SOP-homo can be extended to the T-matrix 

method. The T-matrix SOP-homo is able to solve the mixed boundary SOP and is 

quite robust against noise.   
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4.2.1 Forward problem 

As depicted in Fig. 4-9, inside the domain of interest D , the dielectric part of 

obstacle is of relative permittivity w  and PEC rods are embedded inside. The 

physical properties of the wall are known a priori. Scatterers enclosed inside the 

obstacle can be either dielectric or PEC. incN  plane waves symmetrically illuminate 

the domain of interest around a circle. Then the scattered field is received by rN  

antennas evenly distributed on a circle outside the domain of interest. Thus there are 

totally r incN N  points of data recorded in the scattered field matrix. We discretize 

the domain of interest into N  square subunits. The number of subunits that belong 

to the wall is wN .  

Two equations describe the scattering behavior of the scatterers in T-matrix 

model: the state equation and the field equation, 

 ˆ ˆO O A    a e a  (4.14) 

 t

z  sca
E ψ a  (4.15) 

where 
t

ψ  denotes the matrix of multipoles, and a  is the vector of amplitudes of 

induced multipoles. Ô  is the combination of all the T-matrices for each subunit, with 

, 1,2, ,iT i N  arranged along its diagonal. A  the translational matrix. e  is the 

Domain of Interest

Obstacle

1
w



0


0


PEC

D

 

Fig. 4-9: A general scenario for mixed boundary SOP. 
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vector for the coefficients of the incident field. The expressions of all the parameters 

are same with Chapter 3. 

In Equs. (4.14) and (4.15), definitions of the mapping operators are changed. 

t
ψ  and A  works similarly to the matrices of Green‘s function sG  and DG  as in 

original SOM. However 
t

ψ  is the mapping from the amplitude of induced 

multipoles to the scattered field on receivers and A  is the mapping to transform the 

scattered field from other scatterers into a form of the incident field to one scatterer. 

Whereas in the SOM, the sG  and DG  are the mappings from induced current to the 

scattered fields outside and inside the domain of interest respectively. 

Similar to sG  and DG , 
t

ψ  and A  also require extra calculation if the 

obstacle is seen as part of the inhomogeneous background. While if we apply the 

SOP-homo and treat the wall as ‗known scatterer‘ rather than part of the background, 

t
ψ  and A  remain simply as the analytical expressions for free space.  

4.2.2 Inverse problem  

The inverse scattering problem consists of determining the unknown scatterers 

located inside the obstacle given the scattered field and the incident field data. Two 

optimization processes are involved in solving the mixed boundary inverse problem. 

The first optimization process retrieves the T-matrices or matrix Ô  from the 

scattered field matrix. The reformulated SOM, i.e., SOP-homo is adopted as the 

optimization scheme. Then after classifying the PEC from dielectric subunits by using 

the monopole term of T-matrix, the second optimization process retrieves the relative 

permittivity from the T-matrix by using the LM algorithm. Throughout the whole 
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optimization processes, the information of the separable obstacle is known as a priori 

information and the corresponding subunits are excluded from the updating process. 

Thus number of unknowns is further reduced. 

Similar to Section 3.3.1, the objective function is defined to be  

  
inc fie sta

2 2
sca s

1

1ˆ
2

N

p

f O
E

 
   

 
 


a

                (4.16) 

Here s
a  is the determined part of vector a  defined by SOM, s n a a a  and n

a  

needs to be solved by optimization. The field residue fie  is defined by the residue in 

the field equation Eq.(4.15), 

 
2

fie t s t n n scaV E      ψ a ψ ,             (4.17) 

And state equation sta  is define by the residue in the state equation 

Eq.(4.14), 

 
2

sta ˆ ˆO e O A      a a .             (4.18) 

A. Optimization 1. 

The SOM is chosen as the optimization scheme, i.e. alternatively update n
a  

and the Ô  matrix. The algorithm is briefly presented below. Here ˆ
nO

 
denotes the 

matrix Ô  in the thn iteration step, and 
n

,p na  denotes the matrix 
n

pa , 

inc1,2, ,p N
 

in the thn  step of iteration.    

Step 1: Data preparation 

Step 2: Initialization: 0n  .  

Step 3: updating process: 1n n  . 

Step 3.1: Update 
n

,p na , while regarding ˆ
nO  as a known parameter. 
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Step 3.2: Update ˆ
nO , while regarding 

n

,p na  as a known parameter:   

Step 4: If termination condition is satisfied, stop iteration. Otherwise, go to 

Step 3.  

Since no scatterers overlap with the obstacles, the subunits corresponding to 

the obstacle can be fixed throughout the whole updating process. Therefore the 

number of unknowns in matrix Ô  is actually w(2 1)( )M N N  , where M  is the 

truncation number of multipoles chosen to represent the multiple scattering effect of 

each subunit and wN N  is the number of non-obstacle subunits. In step 1 and 2 of 

the updating algorithm, the initial guess of Ô  needs to be modified according to the 

prior information of the obstacle.  

A mathematical reformulation to the objective function can be applied in step 

3.2 to further reduce the number of unknowns. We can split the objective function 

into three parts: the field residue  fie

,p n , the state residue corresponding to the 

obstacle subunits  
obs

sta

,p n  and the state residue corresponding to the non- obstacle 

subunits  
non-obs

sta

,p n , i.e., 

 
   inc w w

obs non-obs
sta stafie (2 1) (2 1)( )

, ,,

2 2 2
sca s s

1 1 1

1ˆ .
2

       

N M N M N N
p n p np n i i

n
i

p i i
p p p

f O
E

  

  

  
     

   
 

  
a a

(4.19) 

On the right hand side of Eq. (4.19), the first two terms are constant with 

respect to the unknowns (the non-obstacle elements). Thus, only the last term 

contributes to the CG updating of the unknowns, i.e., 

w
ˆ , 1,2, ,(2 1)( )iO i M N N   . The details of updating ˆ

iO  are similar to Section 

3.3.1 but with a less number of unknowns.  
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B. Optimization 2 

After Ô  is retrieved by the first optimization process, we adopt the criterion 

indicated in Section 3.3.1 to classify PEC from dielectric subunits. After classifying 

the properties of the scatterers, another step of optimization is needed to retrieve the 

relative permittivity of dielectric scatterers from the T-matrix. 

The second step of optimization is the same as Section 3.3.1, where the LM 

algorithm is applied to solve the univariate problem. We omit the details here and 

refer the reader to Section 3.3.1 for details. 

4.2.3 Numerical Examples 

The domain of interest for all the numerical examples under investigation is a 

square of size 2 2  , which is discretized into  square subunits. 

 plane incident waves are evenly distributed on .  receivers 

are symmetrically located around a circle of radius . To avoid the inverse crime, 

the multipole numbers used in getting the forward data is more than that used in the 

inverse part. The synthetic data is calculated by T-matrix method with  and 

10% white Gaussian noise is added into the scattered field. In the inverse problem, 

 is chosen as the truncation number of the multipoles.  is used to mark 

the PEC scatterers in the reconstructed patterns. The singular value spectrum for 
t

ψ  

is drawn in Fig. 4-10, and in all the numerical examples the number of leading 

singular values is chosen to be 10. 

45 45N  

inc 10N  [0,2 ) r =30N

5

2M 

1M  r 0 
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Fig. 4-10 Singular value spectrum for t
ψ  

 

  (a)                              (b) 

Fig.4-11. The configuration of scatterer in the first numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo.  

 

(a)                              (b) 

Fig. 4-12. The configuration of scatterer in the second numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo.  
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(a)                              (b) 

Fig. 4-13. The configuration of scatterer in the third numerical example. The scattering data are 

contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by 

SOP-homo. 

In the first numerical example the obstacle is square shaped, with the outer 

side length  and the inner side length . The relative permittivity for the 

dielectric part of obstacle is 1.5. There is one small square metallic rod embedded in 

the right part of the obstacle, as shown in Fig.4-11 (a). Two square unknown 

dielectric scatterers are enclosed by the obstacle, with the relative permittivities of 2.5 

and 4 respectively. From Fig.4-11 (b), we see that the proposed method has clearly 

recognized the relative permittivities as well as the positions of the scatterers. The 

influence of the PEC rod to the reconstruction result is quite small which can be 

explained by the action of excluding the obstacle from the updating process.   

In the second example, a more complicated unknown scatterer is used to test 

the reconstruction ability of the proposed method. An annulus with the outer radii 

0.4  and inner radii 0.25 , is located at ( 0.25 ,0.25 )   in the domain of interest. 

The relative permittivity of the annulus is 3. The shape and relative permittivity of the 

obstacle remain the same as the first example except that the square PEC rod is in the 
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see that despite of the existence of the PEC rod, the annulus shaped scatterer is still 

successfully reconstructed with the hole clearly seen.  

Lastly, we test the algorithm for mixed boundary obstacle as well as the mixed 

boundary scatterers. The obstacle remains the same as example two. There are two 

scatterers placed inside the domain of interest as shown in Fig. 4-13(a), one is a 

square dielectric scatterer with r 4   and the other is a square shaped PEC scatterer. 

From Fig. 4-13(b), we can clearly see the PEC scatterer and the spatial distribution of 

the relative permittivity for the dielectric scatterer. The reconstructed PEC scatterer is 

blurred due to the expansion of the T-matrix to the free space, which is reasonable 

considering the nature of continuous type optimization scheme.  

4.2.4 Summary 

The SOP-homo is successfully applied to the T-matrix model to solve the 

mixed boundary SOP. A mathematical reformulation is applied to the T-matrix SOM 

to solve the SOP. The mapping operators remain as the analytical form for free space 

due to the usage of separable information of the obstacle. The elements corresponding 

to the obstacle are excluded from the updating process of T-matrices. Numerical 

results indicate that the T-matrix SOP-homo works well for the mixed boundary SOP 

and is quite robust against noise.  
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5 Conclusion   

5.1 Summary of contributions 

Three types of problems were studied in this thesis, namely, the PEC inverse 

scattering problem, the mixed boundary inverse problem, and the SOP. All these 

problems have been successfully solved by SOM. The essence of original SOM lies in 

decomposing the induced current into deterministic and ambiguous part. Whereas the 

deterministic part is obtained by SVD to the mapping operator which maps the 

induced current to the scattered field on receivers, the ambiguous part is obtained by 

solving an optimization problem in which the searching dimension is smaller than that 

of the original problem. This thesis has successfully extended the SOM to these three 

types of problems. Various numerical results are given to prove the validity of the 

proposed methods. The conclusions for these three types of problems are made as 

follows: 

1) This thesis has successfully extended the application of SOM from dielectric 

to PEC scatterers. We have realized the simultaneous reconstruction of both 

line shape and closed-contour PEC scatterers under the EFIE model, without 

requiring any prior information on the number or approximate locations of the 

scatterers. One main contribution of the work is the representation of the 

scatterers, i.e., using side edges of the square mesh rather than the square itself, 

which enables the modeling of both line shape and closed contour objects. 

Proposing the model of the relative state residue is another main contribution 



                                                                            106 

 

 

of the work which is realized by the introduction of a binary shape function 

indicating the property of the subunits. 

A. In discrete-type SOM, the shape function is binary, and the optimization 

problem is a discrete one. This is different from the dielectric case which is 

a continuous type optimization problem. The optimization method used is 

the steepest descent method. The discrete-type SOM has several good 

properties, such as taking just a few steps of iteration to converge and 

being able to reconstruct both closed-contour and line-shape PEC 

scatterers.  

B. The continuous-type SOM is realized by approximating the binary vector 

into a function of another real valued and thus continuous changing 

variable. The alternative two-step CG optimization method is adopted as 

the optimization scheme for this continuous variable problem. Further 

investigation of the smooth behavior of regularization term has proved the 

robustness of the continuous-type SOM. The continuous-type SOM is 

found to be more robust and time saving than the discrete-type SOM. 

2) This thesis has extended the application of SOM to the T-matrix method to 

solve the mixed boundary problem. To represent both the PEC and dielectric 

scatterers by a uniform volume based model, the T-matrix method is chosen as 

the modeling scheme. Truncation number of the multipole terms has been 

investigated to accurately model the forward problem. Two steps of 

optimization processes are necessary to retrieve the T-matrix and relative 
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permittivity respectively. The amplitude of the induced multipoles in the 

T-matrix method works similarly to the induced current in original SOM, 

which is thus decomposed into the deterministic part and ambiguous part by 

analyzing the singular value spectrum of the mapping from the amplitude of the 

induced multipoles to the scattered field. Therefore the deterministic part serves 

as an initial guess to the amplitude of induced multipoles and reduces the 

dimension of unknowns in the alternative two-step CG optimization. After the 

first optimization process, the properties of the subunits are distinguished by 

the monopole term of T-matrix. In addition, another univariate optimization is 

carried out to retrieve the refraction index for the dielectric scatterers, which 

conserves the nonlinearity between the T-matrix coefficients and refraction 

index. The PEC and dielectric scatterers are reconstructed simultaneously by 

using the T-matrix method, without a priori information on the property or 

number and shape of the scatterers. The proposed T-matrix SOM also inherits 

the good properties of the original SOM, i.e., fast convergence, robust against 

noise, and high-resolution imaging ability. 

3) Lastly, this thesis has extended the application of SOM to the SOP, a 

commonly encountered practical problem where the obstacle is separable from 

the unknown scatterers. The key point in solving the SOP lies in the usage of 

the prior information of the separable obstacle, so as to treat the obstacle as a 

known scatterer rather than part of the inhomogeneous background. Thus the 

background is homogeneous and the subunits corresponding to the obstacle can 
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be excluded from the retrieving process of the unknowns by properly 

reformulating the cost function of SOM. The dielectric scatterer SOP is solved 

by the SOP-homo in the EFIE framework and the mixed boundary SOP is 

solved by SOP-homo in the T-matrix framework. The proposed SOP-homo can 

be applied to any state-field equation based optimization scheme and is less 

computational intensive than the contemporary methods for inhomogeneous 

background.  

5.2 Future work and discussion 

In summary, the future work involves two points: firstly, the extension of the 

proposed modeling schemes to the more complicated TE and three dimensional cases; 

Secondly, the practical application of the proposed method in real life measurements 

and simulations.  

The 2D-TM illumination is the most basic setup for the inverse scattering 

problem. In practice, many real world problems can be well modeled as the 2D-TM 

case. In addition, investigation on 2D-TM case provides a theoretical guidance to both 

the 2D-TE and the 3D cases. There are several challenges lying in extending the 

proposed models to the 2D-TE case and 3D case. 

When implementing the model proposed for PEC to the 2D-TE case, induced 

currents flow in the transverse direction and one should be careful in choosing the 

basis for current to avoid discontinuities at the sharp corners or tips of scatterers. 
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When implementing the PEC SOM to the 3D case, careful study should be paid on the 

basic elements representing the PEC scatterers.  

The T-matrix SOM can also be implemented to 2D-TE and 3D cases. The 

dominant multipole terms in T-matrices for dielectric scatterers in both cases are 

dipoles. However due to the surface currents, in 2D-TE case for PEC scatterers, 

magnetic monopole which is on the same order of the electric dipole should also be 

considered. While in 3D case for PEC scatterers, magnetic dipole which is on the 

same order of the electric dipole should be considered. Moreover, the multipole 

truncation numbers should also be carefully studied to accurately model the scattering 

behavior of the corresponding mixed boundary problem.  

The SOP-homo is a technique of implementing the prior information of 

separable obstacles for state-field equation type optimization schemes. The 

SOP-homo can also be implemented to the TE or 3D cases on the condition that the 

cost function is constructed in a state-field equation form.  

In the practical applications such as through wall imaging and geophysics 

exploration, the distribution of the transmitters and the receivers may not be arranged 

in a symmetrical way. Instead, the receivers and transmitters are arranged along a line 

at one side of the domain of interest. In such case the information may not be 

sufficient enough to guarantee a clear reconstruction. The multiple frequency hopping 

technology can be applied to improve the solution for the results. Further, the 

background mediums may not be air in biomedical imaging or geophysics exploration. 

However, we can utilize the inhomogeneous background Green‘s function and 



                                                                            110 

 

 

represent the scatterers by the contrast as compared to the background medium. 

Therefore even though the relative permittivities are high for either the background or 

the scatterers, the contrast of the scatterer to the background is relatively low. The 

proposed modeling schemes are still applicable as long as the background medium is 

known. An agreed viewpoint on all these practical issues is to utilize as much 

available information as possible in the inversion. Practically, certain amount of the 

prior information can always be guaranteed. SOM is able to incorporate some prior 

information by constraining the relative permittivity during iterations or modifying 

the cost function (such as the method in chapter 4). Thus SOM has the potential of 

acting as a useful inversion tool in practical applications. 
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APPENDIX I  

Derivation of the translational addition theorem   

 

 

Fig. 6-1 Graf‘s Law 

With the condition of   ( )ive u  , the Graf‘s law is expressed as page 263 in [90],  
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To derive the translational addition theorem under the cylindrical coordinate, we draw 

one triangle with the vertexes located at ( , , )j ir r r  in a cylindrical coordinate as 

shown in Fig.6-2. The vectors of the three edges can be expressed as the subtraction 

of the vectors denoting the vertexes.   
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Fig.6-2 Two dimensional addition theorem 

The condition for writing this addition theorem from the Graf‘s law is 

i j ir r r r   , 

The angle 
j i

 r r  is the angle of point j  made with the x -axis of local coordinate 

of point i . The angle 
i

 r r
 is the angle of point r  made with the x -axis of local 

coordinate of point i . The angle 
j

 r r  is the angle of point r  made with the x

-axis of local coordinate of point j . 

The addition theorem in this case can be written as: 
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Equation (6.2) is the final format of the translational addition theorem.  

We can also write it into the regular form   
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APPENDIX II  

Derivation of the small term expansion for the T-matrix 

From page 360 in [90], when v  is fixed and 0z  , the ascending series for the 

Bessel functions of integer order is written as,  
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For approximation, we only take the low power terms. Such that we have  
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Where ( ) ( 1)!n n   . Also from [90], 
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The recurrence relationship is as follows, where   can be replaced by 
(1),J H  
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TM incident case: 
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Where rx   and 0 0z k R  (assume fine discretization). Plug equation (7.9) 

into the numerator (N) and denominator (D) of (7.10) we get,  

 1 1( ) ( ) ( ) ( )n n n nJ xz J z xJ z J xz  N  (7.11) 

 (1)

1 1( ) ( ) ( ) ( )n n n nxJ xz H z H z J xz  D  (7.12) 

When 1n   we put (7.8) and (7.7) into the numerator and denominator,  
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So  
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When 0n  , we plug (7.3)~(7.6) into the numerator and denominator,  
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In the case of PEC, x  such that  
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Under the TM incidence,  
0

T  in dielectric case is on the same order of  
1

T  in 

PEC case. So in the mixed boundary problem we should pay attention to this specific 

point.  

 


