
Status of Phase Change Memory in
Memory Hierarchy and its impact on

Relational Database

Masters Thesis

submitted by

Suraj Pathak

suraj@comp.nus.edu.sg

under guidance of

Prof. Tay Yong Chiang

to

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

December 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48652894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Phase Change Memory(PCM) is a new form of Non-volatile memory that has

advantages like read access almost as close to a DRAM, write speed about 100

times faster than traditional hard disks and flash SSD, and cell density about

10 times better than any kind of storage devices available today. With these

advantages, it is feasible that PCM could be the future of data storage as it has

the potential to replace both secondary storage and main memory.

In this thesis, we study the current status of PCM in the memory hierarchy,

its characteristics , advantages and challenges in implementing the technology.

Specifically, we study how the byte-writeable PCM can be used as a buffer for

flash SSD to improve its write efficiency. Then in the second part, we study how

traditional relational database management should be altered for a database

completely implemented in PCM. Specifically, we study this effect by choosing

hash-join algorithm.

The experiments are carried out in a simulated environment, by modifying

a DRAM to act as a PCM. We use postgreSQL database for relational database

experiment. The results show that PCM has many benefits in the current

memory hierarchy. First, if it is used in a small scale, it can be used as a buffer

for flash to improve its write efficiency. Then, if PCM were to replace the DRAM

as main memory, we can modify the traditional database algorithms marginally

to accommodate the new PCM-based database.

i

Acknowledgement

I owe my deepest gratitude to people around me without whose help and sup-

port I would not have been able to finish my thesis.

First of all, I would like to thank my principal supervisor Prof. Y.C. Tay for

his continuous support, help and patience with me. I would also like to specially

thank my co-supervisor from Data Storage Institute of A-Star, Dr. Wei Qing-

song for his kind guidance and support throughout my study. It was a pleasure

to work with him and learn valuable knowledge from him.

I would like to thank my colleague and one of my best friends Gong Bozhao

for his support during my initial stage of research.

I would also like to thank my dearest parents who have endured their son

being away from them for most of the time but have supported me in my every

life decisions.

Last but not the least, I would like to thank all the supervisors involved in

the evaluation of this thesis. For any errors or inadequacies that may remain in

this work, of course, the responsibility is entirely my own.

ii

Contents

Abstract i

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Our contribution . 4

2 Phase Change Memory Technology 7

2.1 PCM in Memory Hierarchy . 8

2.2 Related work on PCM-based database 11

2.2.1 PCM as a secondary storage 11

2.2.2 PCM as a Main Memory 12

2.2.3 B+-tree design . 12

2.2.4 Hash-join . 13

2.2.5 Star Schema Benchmark 13

2.3 PCM: Opportunity and Challenges 15

3 PCM as a buffer for flash 17

3.1 Flash SSD Technology: FTL and Buffer Management 17

3.1.1 Flash Translation Layer 18

3.1.2 SSD buffer management 19

3.1.3 Duplicate writes present on workloads 20

iii

3.2 System Design . 22

3.2.1 Overview . 23

3.2.2 Redundant Write Finder 24

Fingerprint Store . 24

Bidirectional Mapping . 25

3.2.3 Writing frequent updates on PCM cell 26

F-Block to P-Block Mapping 29

Relative Address . 29

Replacement Policy . 29

3.2.4 Merging Technology . 30

3.2.5 Endurance, Performance and Meta-data Management . . 31

4 Impact of PCM on database algorithms 33

4.1 PCM based hash join Algorithms 33

4.1.1 Algorithm Analysis Parameters 33

4.1.2 Row-stored Database . 34

4.1.3 Column-stored Database 35

5 Experimental Evaluation 38

5.1 PCM as flash-Buffer . 38

5.1.1 Experiment Setup . 38

Simulators . 38

Simulation of PCM Wear out 39

Simulation parameter Configurations 39

Workloads and Trace Collection 40

5.1.2 Results . 41

Efficiency of duplication finder 41

Performance of flash buffer management 44

Making Sequential Flushes to flash 47

Combining all together . 47

5.2 Hash-join algorithm in PCM-based Database 49

iv

5.2.1 Simulation Parameters . 51

5.2.2 Modified Hash-join for Row-stored and Column-stored Database

52

5.2.3 PCM as a Main Memory Extension 56

6 Conclusion 59

Bibliography 60

v

List of Tables

2.1 Performance and Density comparison of different Memory devices 10

2.2 Comparison of flash SSD and PCM 10

4.1 Terms used in analyzing hash join 34

5.1 Configurations of SSD simulator 40

5.2 Configuration of TPC-C Benchmarks for our experiment 40

5.3 Simulation Parameters . 51

vi

List of Figures

2.1 Position of PCM in Memory Hierarchy 8

2.2 Memory organization with PCM 9

2.3 Schema of the SSBM Benchmark 14

3.1 The percentage of redundant data in (a) Data disk; (b) Workload

, cited from [14] . 21

3.2 Illustration of System design . 23

3.3 Basic Layout of the proposed buffer management scheme 27

3.4 Illustration of replacement policy 30

3.5 Illustration of Merging and Flushing block after replacement . . 31

5.1 The duplication data present in the workloads 42

5.2 The effect of fingerprint store size on (a) Search time per finger-

print; (b) Duplication detection rate 43

5.3 flash space saved by duplicate finder 44

5.4 The impact of data buffer size on write operations 45

5.5 The comparison of (a) Merge Numbers; (b) Erase Numbers; and

(c) Write time for three techniques 46

5.6 The comparison of Energy consumption for (a) Write operation;

(b) Read Operation; (c) Write + Read 48

5.7 Percent of sequential flush to flash due to PCM-based buffer man-

agement . 49

vii

5.8 Effect of duplication finder and pcm-based buffer extender on

(a)Write Efficiency; (b) Lifetime; (c) Power save 50

5.9 Hash join Performance for various Database Size 54

5.10 Comparison of traditional and modified hash joins for R-S and

C-S databases by increasing user size from 20 (U20) to 200(U200) 55

5.11 hash join Performance for a PCM-as-a-Main-Memory-Database . 57

viii

Chapter 1

Introduction

Non-volatile Memory (NVM) has a day-to-day impact in our life. NVM known

as flash memory is there with us to store music on our smart phone, photographs

on cameras, documents we carry on USB thumb drives, and as the electronics

in cars.

Phase Change Memory (PCM) [25] is one of such emerging NVM that has many

attractive features over traditional hard disks and flash SSD. For example PCM

read is more than ten times faster than flash Solid State Disks(SSD), and more

than hundred times faster than hard disks, while PCM write is also faster than

both flash SSD and hard disks. Besides PCM supports ‘in-memory update’.

And the most important features of all of them is the minimum cell density

[41]. These attractive features make PCM a potential candidate to replace flash

and hard disks as the primary storage in small and large scale computers and

data centres. Besides, since the reads in PCM are almost comparable to that

of DRAM, it is not too late to think that eventually we may have a computer

with PCM as the only memory, replacing both hard disks and DRAM[34].

Despite the above positive features, PCM is relatively slow in hitting the

memory world by storm, mainly, because of its two main drawbacks. The writes

are relatively slow compared to reads, and specifically 100 times slower than that

1

of DRAM [28]. And writes consume more energy, and causes wear-out of PCM

cells. Over a lifetime of PCM, each cell can only be used for a limited number

of times [29].

In the memory hierarchy, PCM falls in between flash SSD and DRAM main

memory. As such, PCM could be a potential bridge between SSD and DRAM

memory.

SSDs are gaining huge popularity as of late mainly because of their advan-

tages over traditional hard disks, like faster read access, higher cell density and

lower power consumption. Despite all these advantages, flash memory has not

been able to completely take over the hard disks as a primary storage media in

data centres because of their poor write performance and lifespan [9].

Even though SSD manufacturers claim that SSDs can sustain normal use for

few to many years, there still exist three main technical concerns that inhibit

data centers to use SSDs as the primary storage media. First concern is, as

bit-density increases, flash memory chips become cheaper, but their reliability

also decreases. In the last two years, for high-density flash memory, erase cycle

number decreased from ten thousand to five thousand [7]. This could get even

worse as the scaling goes up. Second concern is traditional redundancy solutions

like RAID, which are effective in handling hard disk failures, are considered less

effective for SSDS, because of the high probability of correlated device failures

in SSD-based RAID [8]. The third concern is prior research on lifespan of flash

memories and USB flash drives has shown both positive and negative reports

[11, 22, 36]. And a recent Google report points out that endurance and retention

of SSDs is yet to be proven [9].

Flash memory suffers from a random write issue when applied in enterprise

environments where writes are frequent because of its ‘erase-before-write’ lim-

itation. Because of this, it cannot update the data by directly overwriting it

[24, 5]. While PCM has not this issue since it allows ‘in-place-update’ of data,

2

PCM also has a finite write lifetime like the flash memory.

In flash memory, read and write operations are performed in a granularity of

a page (typically 512 Bytes to 8 KB) [17]. But to update a page, the old page

has to be erased, and to make matters worse, erase cannot be performed on a

single page. Rather, a whole block (erase unit) has to be erased to do the update.

Some file systems called ‘log-based file system’ have been proposed to use

logging to allow ‘out-of-place-updating’ for flash [43]. Some research shows that

performance of these file system does not fit well for frequent and small ran-

dom updates, like in database online transactions (OLTP) [10, 32]. Recently,

In-Page Logging (IPL) approach was proposed to overcome the issue of frequent

and small random updates [32]. It partitions the block of Flash memory into

data pages and log pages, and further divide log pages into multiple log sectors.

When a data page is updated, the change on this update (the change only, not

the whole page) is reflected in the log sector corresponding to this data page.

Later when the block runs out of memory, the log sectors and data pages are

merged together to form an up-to-date data page.

Although IPL succeeds in limiting the number of erase and write operations,

it cannot change the fact that the log region is still stored inside the flash, which

has inherent limitations like no in-place-update, frequent updates of log regions,

etc.

In PCM, the minimum write units are at byte-level, that means they can be

written at more than 10 times finer granularity than the flash disk [45]. Further-

more, PCM allows the in-place-update of the data. Thus it is not that difficult

to think that PCM may be used as a buffer for flash SSD.

By exploiting the advantages of PCM, a d-PRAM (d-Phase Change Random

3

Access Memory) technique was proposed where the log-region that was kept in

flash is now kept in PCM [44]. This solves the issues of IPL, but it still cannot

take full advantage of PCM technology. It has been well documented that flash

performs poorly for random writes [5]. By properly managing the log region of

PCM (or PCM buffer region), we can promise that every merge operation will

invoke a sequential write flush to the flash.

1.1 Our contribution

This thesis mainly focuses on two contributions of PCM: using PCM as a SSD-

buffer to increase its write efficiency, and impact of PCM on relational database.

As the first and main contribution , an encryption-based method to find

and remove redundant data from SSD is purposed. PCM is used as a log to

store smaller writes to flash because of it has the highest cell density among the

emerging memory technologies [30]. Then, capacity of PCM is good enough to

qualify as the buffer of flash that works as a massive storage [29]. Also previous

works on combining PCM and flash [37, 26] to form hybrid storage have already

shown that combining these two is feasible.

The main contributions of the first part can be summarized as:

• Since normal workloads all contain significant redundant data, we propose

a hash-based encryption method to identify the redundant data that is

headed to be written on flash pages, and maintain the finder in PCM.

• Considering the in-page update property of PCM, we propose the use of

PCM as an extended buffer for flash memory.

• We emulate the PCM log region like the internal structure of flash memory,

with blocks and log-sectors. Because of this, when the logs are merged

4

with data pages of flash, a sequential flush is carried out to the flash. This

help increase the write performance of flash memory.

• We propose a replacement policy based on block popularity of PCM to

ensure that the PCM log region wears out evenly.

• We modify the Microsoft SSD simulator extension [6] to include duplica-

tion checking mechanism. This SSD simulator is an extension of widely-

used Disk simulator Disksim [12], and implements the major components

of flash memory like FTL, mapping, garbage collection and wear-leveling

policies, and others. The current version does not have buffer extension

for flash, which we implemented. So when a new write request comes to

SSD, it is first brought into this flash buffer space, and when its operation

is completed, the host is notified of it.

• We also implement the two log-based buffer management techniques, namely

IPL [32] and dPRAM [44] to compare our buffer management scheme

against these.

• To include the PCM simulator, we wrote our own PCM simulator using

C++, and implemented it as an extension of Disksim just like the SSD

simulator. We implement a fingerprint store, F-block to P-block mapping

table and a PCM log region as explained in above sections.

In the second part of the thesis, we ask the question: if PCM is to replace

the entire primary and secondary storage, how a database system should be

optimized for PCM. Primary design goal of new database algorithms should be

minimizing the number of writes, and the writes should be evenly distributed

over the PCM cells. Specifically, a modified hash-join Algorithm PCM-based

database system is proposed.

Recent work has shown than column-stored database perform better for

read-intensive queries [4] than the row-stored database. Even though, it is nor-

5

mally up to the database vendor to choose which type of database to use for

their system, we do a comparative study of using PCM as a column-stored

and row-stored database. We propose modified hash-join algorithms for these

database systems and compare them with the traditional hash-join for column-

stored and row-stored database systems.

Besides that, we also consider how database algorithms should be modified

if PCM is used as a main memory extension, instead of secondary memory.

We propose a modified hash-join algorithm for this database as well. All these

hash-join algorithms re-organize the data structure for joins, and trade off an

increase in PCM reads by reducing PCM writes.

We measure the performance of these algorithms in terms of their impact

on PCM Wear, PCM Energy, and Access Latency. We propose analytic metrics

for measuring these parameters.

We use DRAM as an emulator for PCM. To emulate DRAM as a PCM,

we change the read write time, and emulate the wear out behavior of PCM by

introducing a counter on the DRAM cells that get written. We study PCM as

a faster hard-disk as well as a DRAM extension. Simulation configurations for

these two architectures are different. For PCM as a faster hard-disk, data would

be required to brought into a DRAM to complete read or write, whereas in its

use as a DRAM extension we suppose that data from PCM do not need to be

brought into the DRAM to complete read/write operation. The experimental

results show that the proposed new algorithms for hash-join significantly out-

perform traditional approaches in terms of time, energy and endurance (Section

4), supporting our analytical results. Moreover, experiment on multi-user en-

vironment shows that the results hold for a large database system with many

transactions at the same time.

6

Chapter 2

Phase Change Memory

Technology

Phase-Change memory (PCM) is a type of the next-generation storage-class

memories (SCM) or Non-volatile Memories (NVM). PCM has read latency close

to DRAM and high write endurance which makes it a promising technology for

building large scale main memory system provided that one day it can have

higher density than DRAM. The chalcogenide-based material used in making

PCM allows it to switch between two states, amorphous and polycrystalline, by

applying electrical pulses which control local heat generation inside a PCM cell

[41].

Different from conventional RAM technologies, the information carrier in

PCM is chalcogenide-based materials, such as Ge2Sb2Te5 and Ge2Sb2Te4 [25].

PCM exploits the property of these chalcogenide glasses which allows it to switch

the material between two states, amorphous and polycrystalline, by applying

electrical pulses which control local heat generation inside a PCM cell. Differ-

ent heat-time profiles can be used to switch from one phase to another. The

amorphous phase is characterized by high electrical resistivity, whereas the poly-

7

Tape

Disk

Flash SSD

PCM

RAM

Processor Cache

Processor Registers

Decreasing speed ,
Decreasing cost ,
Increasing Size

Increasing speed ,
Increasing cost ,
Decreasing Size

Figure 2.1: Position of PCM in Memory Hierarchy

crystalline phase exhibits low resistivity. The difference in resistivity between

the two states can be 3 to 4 orders of magnitude [41].

2.1 PCM in Memory Hierarchy

PCM is a byte-addressable memory that has many features similar to that of

DRAM except the life-time limitation [25]. In today’s memory PCM falls in

between DRAM and flash SSD in terms of read/write latency. Figure 2.1 shows

the memory hierarchy.

Compared to DRAM, PCM’s read latency is close to that of DRAM, while

write latency is an order of magnitude slower. But PCM has a density advan-

tage over DRAM. Also PCM is potentially cheaper, and more energy-efficient

than DRAM in idle mode.

Compared to flash SSD, PCM can be programmed in any state, i.e. it sup-

ports the ‘in-page update’ , and does not have the expensive ‘erase’ operation

that flash SSD has [33]. PCM has higher sequential and random read speed

8

CPU

CACHE

DRAM

PCM

M
ai

n
M

em
or

y

(a)

CPU

CACHE

PCM

SSD/HARD DISK

M
ai

n
M

em
or

y

(b)

CPU

CACHE

SSD/HARD DISK

M
ai

n
M

em
or

y

PCM DRAM M

(c)

Figure 2.2: Memory organization with PCM

than SSD. And PCM’s write endurance is also better.

Figure 2.2 shows three ways in which PCM can be incorporated in memory

system [31, 39]. Proposal (a) uses PCM just as a plane replacement of SSD and

hard disks. Proposal (b) replaces DRAM with PCM to achiever higher main

memory capacity. Even though PCM is slower than DRAM, execution time on

PCM can be reduced with clever optimizations.

Proposal (c) includes a small amount of DRAM in addition to PCM so that

frequently accessed data can be kept in the DRAM buffer to improve perfor-

mance and reduce PCM wear. It has been shown that a relatively small DRAM

buffer (3% the size of PCM) can bridge the latency gap between DRAM and

PCM[39].

As PCM technology evolves, it has shown more potential to replace NAND

flash memory with advantages of in-place updates, fast read/write access, etc.

Table 2.1 compares the performance and density characteristics of DRAM,

PCM, NAND flash memory and hard disks. Table 2.2 compares the read/write

characteristics of Flash SSD and PCM. Units of write and read operations for

flash and PCM are different. While flash is written or read in units of page,

PCM can be accessed in finer granularity (byte-based). This advantage makes

PCM a viable option, in compared to traditional IPL [32] method, to use as a

9

log region to store the updated contents of Flash.

Currently, it is still not feasible to replace the whole NAND flash memory

with PCM due to its high cost, limitation of manufacture and data density

[28, 29]. Thus we propose to use PCM as an extension of buffer for flash. We

manage the log region of PCM in such a way that it emulates the structure of

flash memory. Specifically, we divide the PCM into a n ∗m sized array of log

sectors, where, n represents the block number (P-Block) and m represents the

log sector number. Here, using a DRAM to as a log region instead of PCM

does not make sense as DRAM is volatile, and the writes in the log region are

supposed to be there as long as their parent block in flash needs them.

Attributes DRAM PCM SSD Hard Disk
Non-volatile No Yes Yes Yes
Idle Power 100mW/GB 1mW/GB 10mW/GB 10W/TB

Erase No No Yes No
Page Size 64 bytes 64 bytes 256 KB 512 bytes

Write Bandwidth 1GB/s 50-100MB/s 5-40MB/s 200MB/s
Page Write Latency 20-50 ns 1 us 500 us 5 ms
Page Read Latency 20-50 ns 50 ns 25 /muS 5 ms

Endurance Infinity 106-108 105-104 Infinity
Maximum Density 4 Gbit 4 Gbit 64 Gbit 2 Tbyte

Table 2.1: Performance and Density comparison of different Memory devices

- flash SSD PCM
Cell size 4F 2 4F 2

Write Cycles 105 108

Read Time 284μs/4KB 80ns/word
Write Time 1833μs/4KB 10μs/word
Erase Time > 20ms/Unit N/A
Read Energy 9.5μJ/4KB 0.05nJ/word
Write Energy 76.1μJ/4KB 0.094nJ/word
Erase Energy 16.5μJ/4KB N/A

Table 2.2: Comparison of flash SSD and PCM

As we explained PCM has so many benefits we can say that it is just a

matter of time before most of the data centres and database systems start using

PCM as the main memory storage device. In the next chapter, we study the use

10

of PCM in the database management system. How some vendors have already

started to optimize the database algorithms for PCM-based database. Then

in next chapter, we talk briefly about how PCM’s unique properties like faster

read access, byte-writ-ability could be taken advantage of to actually improve

the write efficiency of solid state devices.

2.2 Related work on PCM-based database

Since PCM is still in its early development phase, and a PCM product with

significant size is still not out in the market, most of the studies on PCM-based

database are based on emulating PCM using either a DRAM or by using a pro-

grammed simulator. Some researchers in Intel [15] have recently studied how

some of the database algorithms should be optimized for PCM-based database.

They propose optimization algorithms for B+-Tree and hash-join. The algo-

rithms tend to minimize the writes to PCM by trading off writes with reads.

In this thesis, we propose two modified hash-joined algorithms for PCM-based

database when the PCM database is row-stored and column-stored respec-

tively. When PCM is used as a main memory, like the way proposed in [15]

paper, we can get a concept of how to design the database from “In-Memory

Database”[21].

2.2.1 PCM as a secondary storage

When we use PCM as a secondary storage like SSD and hard disk, database al-

gorithms proposed for such devices cannot fully exploit the advantages of PCM

over such devices. For example random reads are almost as fast as sequential

reads in PCM [27], so optimization for random writes are redundant for PCM.

Similarly, PCM cell has a lifetime issue, so before writing data to PCM, we must

consider if the writes are concentrated in only certain region of the PCM. Be-

cause once these few writes become unusable, whole PCM becomes less efficient.

And in general, writes are expensive, consume more energy, and take more time.

11

Thus optimization is done on database algorithms to minimize write numbers,

and if required, trade off reducing writes with increased number of reads.

2.2.2 PCM as a Main Memory

Similarly, when PCM is used as a main memory, the concept of in-memory

database[21] cannot also be directly implemented in it. For one, it cannot be

frequently written like DRAM. Recent studies have shown that PCM can be

used as a large main memory while a small DRAM can be used to support the

frequent writes towards the main memory. By combining a DRAM of size only

about 3% the size of PCM can achieve significant performance boost [39]. In

our experiment, we do consider PCM as the main component of main memory

but also have a small amount of DRAM to handle frequent updates.

2.2.3 B+-tree design

A B+-tree is a type of tree which represents sorted data in a way that allows for

efficient insertion, retrieval and removal of records, which are identified by a key.

It is a multi-level index, dynamic tree with maximum and minimum bounds on

the number of keys in each index segment (known as node). In B+-tree all the

records are stored at the leaf level of the tree, the interior nodes store only the

keys.

How the traditional B+-tree design should be optimized for PCM-based database

is an interesting topic. Traditional B+-tree involves a number of split and merge

operation, which means frequent writes to the database medium. Thus design

of B+-tree for PCM should be focused on reducing the number of writes, i.e.

reducing the number of splits and merge operation. Chen et. al from IBM [15]

have done a brief study on possible optimization of B+-tree and hash-join for

PCM-based database.

Their proposed B+-tree optimization is basically allowing the leaf nodes of a

B+-tree to have keys in unsorted order. Then leaving one key field to contain

the bit-map of the content of the nodes. This way insertion for a key will only

12

need to refer the bit-map and find an empty location. Deletion will need to

modify the bit-map only.

2.2.4 Hash-join

Since grace hash-join or even the hybrid hash-join require a relation be split into

smaller partitions based on the matching hash-keys, then re-writing these small

partitions back into the storage medium, one way of reducing the frequent writes

could be avoiding the re-writing part. A method called ‘virtual partitioning’ is

proposed in [15]. Basically, the concept is partition the relation virtually, and

instead of re-writing the partitions again, just re-writing an identifier of that

record (record id) in the storage medium.

2.2.5 Star Schema Benchmark

In this thesis, we use the Star Schema Benchmark(SSBM)[16]to compare the

performance of column-stored and row-stored databases.

SSBM is a data warehousing benchmark derived from TPC-H[3]. Star Schema

is simple for users to write, and easier for databases to process. Queries are

written with simple inner joins between the facts and a small number of dimen-

sions. These are simpler and have fewer queries than TPC-H.

Schema:The bechmark consists of one fact table, the LINE-ORDER table, a

17-column table with information about individual orders, with a composite

primary key of the ORDERKEY and LINENUMBER attributes. Other at-

tributes include foreign key references to the CUSTOMER, PART, SUPPLIER,

and DATE tables as well as attributes of each order, priority, quantity, price,

and discount. Figure 2.3 shows the schema of the tables.

Queries: We use the following queries for our experiments:

1. Query 1: List the customer country, supplier country, and order quantity

for orders made by customer who lives in Asia, for products supplied by

13

Size= scalefactor
x 6,000,000

Size= scalefactor
x 30,0000

Size= scalefactor
x 2,000

Size= 200,000 x (1+
log2 scalefactor)

Size= 365 x 7

Figure 2.3: Schema of the SSBM Benchmark

an Asian supplier in the year ‘2009’.

SELECT c . nation , s . nation , d . year , l o . quanti ty

FROM customer AS c , l i n e o r d e r AS lo ,

s u pp l i e r AS s , dwdate AS d

WHERE l o . custkey = c . custkey

AND l o . suppkey = s . suppkey

AND l o . o rderdate = d . datekey

AND c . r eg i on = ‘ ‘ASIA ’ ’

AND s . r eg i on = ‘ ‘ASIA ’ ’

AND d . year = 2009

2. Query 2: List the customer country and order quantity for orders of part

type ‘IC’.

SELECT c . nation , l o . qty

FROM customer AS c , L ineorder AS l o

WHERE c . custkey = l . custkey

AND p . parttype = ‘ ‘ IC ’ ’

AND l . partkey = p . partkey

3. Query 3: List the supplier’s name and region whose orders are above 500.

SELECT s . reg ion , s . name , l o . qty

14

FROM s upp l i e r AS s , l i n e o r d e r AS l o

WHERE s . suppkey = l . suppkey

AND l o . qty>500

Each of these queries involve a number of hash-join operations between re-

lations. We run these queries in a multi-user environment. As all the database

tables are kept in a single PCM device, there will be a fight between transactions

over buffer space, and priority of access of data.

2.3 PCM: Opportunity and Challenges

PCM poses a great potential to replace both the primary storage device (main

memory) and secondary storage device. Because of its low density, these devices

could be very small in volume but have a huge memory space. And PCM’s

reads are already comparable to that of DRAM, the current choice for main

memory. The two main concerns, however, for PCM are : slow writes (compared

to DRAM), and limited lifetime. Besides these, error in PCM cells due to

temperature change is another concern for PCM.

As such, PCM is important for the following reason:

• As multi-cores and CPU speed increase, so does the gulf between processor

and storage speed, PCM narrows the distance from CPU to large data sets

by 100X over SSD (high bandwidth).

• PCM increases the data available to CPU by 10X over DRAM (high den-

sity).

• PCM decreases the number of servers required to store a fixed set of data

• It allows us to

– Put all the data into one single storage medium, i.e. PCM and get

rid of hard disks as well as DRAM.

15

– Read the data only when we need it (because PCM is bit-alterable

like DRAM).

– Not let the operating system get in our way as the PCM can be used

the same way regardless of the operating system.

16

Chapter 3

PCM as a buffer for flash

In this chapter, we first introduce the flash SSD technology, its status in memory

hierarchy and challenges in its development. Then we propose an idea of using

PCM as a buffer for flash memory. By exploiting the faster read access, and

byte-writeable nature of PCM, a combination of flash and PCM can improve

the overall performance of flash SSD by a significant amount. System design,

technical details, and analysis of how the system can help improve the SSD

efficiency are included in this chapter.

3.1 Flash SSD Technology: FTL and Buffer Man-

agement

A flash memory package is usually composed of one or more dies. Each die

is divided into multiple planes. A plane contains number of blocks. A block

is the erase unit of flash. Each block is further divided into number of pages,

normally 64 - 128 pages. Each page has a data area (normally 4KB), and a

spare area for storing meta-data [6]. Three basic operations on flash memory

are read, write(update) and erase. Read and write are carried out in units of

pages, whereas, erase operation is performed in units of block. An erase opera-

17

tion clears all the pages in that block [40].

Even though writes on flash are close to or in some cases better than that of

hard disks, flash disks suffer from one fatal issue of limited lifespan. Over the

lifetime of flash memory, it can only be written for a certain number of times.

Hence many researches focus on wear-leveling techniques to wear out the flash

evenly, or techniques to improve the lifetime of flash by reducing write traffic to

flash.

Overall, three critical technical constraints on flash memory are : (1) No

in-place overwrite - the whole erase block must be erased before updating a

page in flash. (2) No random writes - in each erase block, the writes must be

carried out sequentially. If the write is random, flash memory suffers from poor

performance. (3) Limited erase cycles - like cited before, an erase block can

wear out after a certain number of erases.

3.1.1 Flash Translation Layer

Because of the erase-before-write characteristics of flash memory, a software

layer called flash Translation Layer (FTL) is implemented in flash SSD con-

troller to emulate a hard disk drive by exposing an array of logical block ad-

dresses (LBAs) to the host. At the core an FTL uses a logical-to-physical

address mapping table. If a physical address location mapped from a logical

address contains previously written data, the input data is written to an empty

physical location where no data were previously written. The mapping table is

then updated due to the newly changed logical/physical address mapping. This

protects one block from being erased by an overwrite operation [19].

Generally an FTL scheme can be classified into three groups depending on

the granularity of address mapping: page-level, block-level, and hybrid-level FTL

18

schemes [19]. In the page-level FTL scheme, a logical page number (LPN) is

mapped to a physical page number (PPN) in flash memory. This mapping tech-

nique has great garbage collection efficiency, but it commands a large RAM

space to store the mapping table. Garbage collector(GC) is launched periodi-

cally to recycle invalidate physical pages, by copying the valid pages in a clean

block, and erasing the old block. On the other hand, a block-level FTL is space

efficient, but still requires an expensive read-modify-write operation when writ-

ing only part of a block. In order to overcome these disadvantages, the hybrid-

level FTL scheme was proposed. Hybrid-level FTL uses a block-level mapping

to handle most data blocks and a page-level mapping to handle a small set of

log blocks, which actually works as a buffer to writes [23]. They are efficient

both from garbage collection as well as the size of mapping table points of view.

Besides this general mapping scheme, some log-like write mechanism have

also been proposed. Each write to a logical page invalidates the original flash

page, and the new content is appended sequentially to a new block, like a log.

The idea is similar to log-structured file systems. In-page Logging [32] and

Hybrid-logging [44] are two of such examples where log-region is maintained in

flash memory and phase-change memory respectively.

3.1.2 SSD buffer management

Many SSD controllers use a part of RAM as read buffer or write buffer. Dif-

ferent buffer cache management policies are proposed to improve performance

and extend lifetime of flash memory. Both cache hit ratio and sequentiality are

two critical factors determining the efficiency of buffer management for flash

memory.

One problem of SSD is that the background garbage collection and wear-leveling

compete for internal resources with the foreground user accesses. If most fore-

ground user accesses can be hit in buffer cache, the influence of each other will

19

be significantly reduced. In addition, high cache hit ratio significantly reduces

the direct accesses from/to flash memory which achieves low latency for fore-

ground user accesses and saves resources for background tasks.

On the other hand, sequentiality of write accesses passed to flash memory is

critical because random write has following negative impacts on SSD.

• Shorten the lifetime of SSD: The more the random write, the more the

erase operations required, which means SSD lifetime will degrade signifi-

cantly.

• High Garbage Collection overhead: The random writes means writes will

be distributed all over the flash blocks, so during the merge phase garbage

collection need to be run on all those blocks [23].

• Internal Fragmentation: Since flash memory does not support in-page

update, after certain number of random writes, invalid pages will be dis-

tributed all over the blocks, causing internal fragmentation [13].

• Little chance for performance optimization: SSD leverages striping and

interleaving to improve performance based on sequential locality [6, 40].

If a write is sequential, the data can be striped and written across differ-

ent dies or planes in parallel. Interleaving is used to hide the latency of

costly operations. Single multi-page read or write can be efficiently inter-

leaved, while multiple single-page reads or writes can only be conducted in

separate way. While above optimizations can dramatically improve per-

formance for workload with more sequential locality, its ability to deal

with random write is very limited because less sequential locality is left to

exploit.

3.1.3 Duplicate writes present on workloads

Data duplication is a common phenomenon in file systems. For example some

software developers have multiple versions of source code with only a slight vari-

20

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 101112131415
P

er
ce

nt
ag

e
of

 T
ot

al
 B

lo
ck

s(
%

)

Servers (1-4); Experimental (5-11); Office (12-15)

Duplicate blks
Zero blks

(a)

 0

 5

 10

 15

 20

 25

 30

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2P
er

ce
nt

ag
e

of
 D

up
lic

at
e

W
ri

te
s(

%
)

d - desktop; h - hadoop; t - transaction

(b)

Figure 3.1: The percentage of redundant data in (a) Data disk; (b) Workload ,
cited from [14]

ation. Users in operating system can create/delete the same file many times.

When editing word documents, the editor tools often saves a copy of the docu-

ment every few minutes, whose content are almost identical.

A study by Feng et. al [14] shows that duplicate blocks in disks used for

database/web servers, office systems and experimental systems is very common.

Figure 3.1(a) shows the duplication rates (percentage of duplicate blocks in

total blocks) in a study of 15 disks. The duplication rate ranges from 7.9%

21

to 85.9% across the 15 disks. Similarly, Figure 3.1(b) shows the percentage of

duplicate writes in 11 different workloads from three categories. It is found

that 5.8-28.1% of the writes are duplicated. These findings suggest that by

removing these redundant writes, we can effectively reduce write traffic to flash,

and subsequently improve its endurance and write efficiency.

3.2 System Design

The system contains the following main design steps.

• Redundant data finder : First, we have to find if the write is a redundant

write, i.e. it already exists on the flash page. If it is a redundant write,

then we can avoid re-writing it.

• Accelerating the redundant data finding mechanism: For the better per-

formance of the system, it is important that the redundant data finding

mechanism does not become the bottleneck. We propose a couple of ac-

celerating mechanism for quick searching of presence of redundant data.

• Using PCM for log update of flash pages : We would like to exploit the in-

page update mechanism of PCM and take away all the frequent updates

from flash pages into PCM.

• Merging PCM logs with flash pages : When the flash pages need to be up-

dated, we bring the logs of PCM and the original flash pages together in

DRAM, merge them to form an up-to-date page and flush them sequen-

tially into flash. By this we can exploit the faster write performance of

flash for sequential writes.

• Lifetime and wear-leveling for PCM : Since PCM blocks can only be writ-

ten for certain amount of times, we design a wear-leveling mechanism to

make sure the PCM blocks wear out evenly over time. This prolongs the

useable lifetime of the PCM.

22

Flash buffer

write request

(1)Cache
into
flash
buffer

Buffer

Encryption

(2)
Generate
fingerprint

0xxxxx

(3) Lookup
in the
fingerprint
store

Find a
match?

(4) If yes,
update the
FTL table

FTL table

Fl
as

h
 d

at
a

re
gi

o
n

Update ?
(5) No

(6) If it is not an
update, it is a
new write,
write to flash

PCM log region

(7) If it’s an
update, log it in
PCM

Flash SSD

PCM

f-block to p-block
mapping table

Seg# 0 Seg# n
B# 0

B# 4

B# 0

B# 4

Fingerprint Store

Figure 3.2: Illustration of System design

3.2.1 Overview

The goal of our design is to reduce unnecessary write traffic, increase the lifetime

of flash, extend the available flash space and improve the overall write perfor-

mance. Even though the space allocated for storing fingerprints is large enough,

we cannot always guarantee to find the duplicate data and remove them immedi-

ately. Figure 3.2 illustrates the process of handling a write request in our design.

When a write request arrives at SSD, (1) the data is brought into SSD

buffer; (2) this page in buffer is encrypted to find a fingerprint. The encrypt

handler could be a dedicated processor or just a part of the controller logic; (3)

the fingerprint is looked up in fingerprint store which is kept in PCM, which

maintains the fingerprints of data already stored in flash; (4) if a match is

found, it means the write already exists in flash. Thus the FTL mapping table

is updated to map this logical page number to the existing physical page number,

and correspondingly the write (which would be redundant) is avoided; (5) if no

23

match is found then there could be two cases; (6) if the write is a new write, not

an update, it is written to the physical location it was supposed to be written;

(7) but if it is an update, then instead of going back to the flash memory’s flash

pages, invalidating them and writing in some other flash pages, we calculate

the difference between the original page in flash and new update, and store this

change into PCM log region.

3.2.2 Redundant Write Finder

An important aspect of our design is in finding and removing the redundant

updates that exist in the workload. A byte-by-byte comparison would be un-

necessarily slow. A common practice is to use a cryptographic function to en-

crypt the incoming data and generate a unique identifier. Cryptographic hash

function like SHA-1 [20] or MD5 [42] are two of the most popular ones. The

SHA-1 hash function has been proven to be computationally infeasible to find

two distinct inputs hashing to the same value [35]. We use SHA-1 hash function

on the content of each flash page to generate a unique hash value, referred to

as fingerprint. We choose flash page as the chunk size to do the encryption,

because page (normally 4 KB in size) is the basic operation unit in flash, and

the flash internal policies like FTL, are also designed in the units of page. Using

these fingerprints, we can safely determine if the contents of two pages are the

same.

Fingerprint Store

The fingerprint store is maintained in PCM instead of flash for the simple reason

that reading from PCM is several times faster than reading from flash. Each

fingerprint store value contains two components, fingerprint value and its phys-

ical location. For accelerating the searching process in fingerprint store, we first

logically partition the fingerprint store into N segments.N is determined by the

size of the PCM. For a given fingerprint f , we can map it to segment (f mod N).

Each segment contains a list of buckets. Each bucket is a 4 KB page in memory,

24

and contains multiple entries, each of which is a key-value pair of <fingerprint,

location>.

To accelerate the search process,inside each buckets, the fingerprints are

stored in their ascending order. When a fingerprint has to be checked in the

store, first we calculate the SegmentNo. by using the aforementioned hash

function. Since each buckets in a segment is sorted, we do a range check in the

bucket. That means we compare the fingerprint with the smallest and largest

fingerprints in the bucket. If the fingerprint is out of the range, we pick another

bucket and do the range check. Once we find the bucket that satisfies the range

check, we do a binary search on that bucket. This way, we avoid the binary

search in the entries of each of the bucket. To further accelerate this searching

process, we can sort the buckets in the segment, randomly choose a bucket from

the middle and do the range check. This way we can skip over most of the

buckets and reduce the number of comparisons required.

Bidirectional Mapping

When we are searching for the physical location of a fingerprint, we search in a

table that maps fingerprints with physical page numbers. This one-way mapping

is not enough to maintain the fingerprint store, where when certain pages are

updated or deleted, the fingerprint value and/or the physical location value also

need to be changed. Thus we maintain a bidirectional mapping: mapping from

fingerprint to physical location and vice-versa.

For example, in page number 1024, a new data is written. Now we need to

delete the fingerprint that originally contained in physical number 1024, so by

checking in the location to fingerprint mapping, we can find the fingerprint

and update it. This mapping table is maintained together in the fingerprint

store in the PCM. Normally at the time of block erase, and later at merging of

PCM log region and flash data region only does this table need to be referenced

and updated.

25

3.2.3 Writing frequent updates on PCM cell

Unlike flash, PCM allows the in-page update. To exploit this advantage, we pro-

pose a buffer management method to use PCM as an extension of SSD buffer

to drift the frequent updates on flash pages into PCM. The region on flash that

stores the data is called data region, and the region on PCM where we store the

update logs of flash pages is called log region. We cannot place the PCM-based

log region inside the SSD data region due to their differences in processing tech-

nologies. Instead of using the SSD-pages themselves as the pages for logical

update, we save the update requests to flash pages into PCM region. We want

to manage the updates, or new writes to flash pages in the PCM log region in

such a way that it is easy to fetch them when they are required. And when the

data have to be flushed into flash, we want to make sure that these become as

sequential as possible.

The basic layout for this buffer management is shown in Figure 3.3. The

buffer of the SSD itself is not modified, existing buffer management technique of

this flash is kept as it is. We partition the PCM log-region into multiple blocks,

each block containing as many log sectors as the number of pages in a block

of the flash SSD. Specifically, we divide the PCM into a n ∗ m sized array of

log sectors. Where, n represent the block number (P-Block) and m represent

the log sector number. When a flash page is modified, instead of directly going

back to the flash block and updating the page, we log the changes made in the

log sector of PCM.

Since PCM is byte-writable, we can shrink the write from page-size(KB)

to byte when we actually record the update. This can save write time, and

consequently save energy. When the log sectors in a block region are all altered,

we bring these logs and the pages from the corresponding block of flash together

into NAND-buffer, combine them and flush them sequentially into SSD Block.

This process is called merging. A block number in flash (F-Block) to block

26

FLASH

FLASH BUFFER

PCM

Data
Region

Log
Region

B0 B1 B2 B3
p0
p1

p63

B0 B1 B2

L1
L0

L63

Data
Region

Log
Regiono

Data pages

Log sectors

B0 B1 B2 B3333

Flash Blocks (F-Block)

B0 B1 B2

PCM Blocks (P-Block)

FTL

F-B to P-B
Mapping Table

--
- Fingerprint

store

Figure 3.3: Basic Layout of the proposed buffer management scheme

27

number in PCM (P-Block) mapping table is maintained in PCM. This table

need to be modified when the block of a PCM region is flushed and this block

now contains logs from different flash block. The access to this PCM-extension

architecture is described as follows:

• For a read operation, the address of the accessed data is sent to both the

data region of flash page and log region of PCM. The exact log region is

located by looking up on the F-Block to P-Block mapping table. If the log

region has log records for this page, they are loaded into the data buffer

as well as the original data page to create an up-to-date data page.

• For a write operation, there are multiple scenarios:

– Case 1: The flash data page to which this write points is empty, then

it is written directly on the data page. Otherwise we have cases 2-5.

– Case 2: The flash block number of the page does not exist on the

F-Block to P-Block mapping table, then there can be two cases. The

PCM blocks are all occupied, or there is an empty block. If all the

P-Blocks are occupied, a victim block is chosen by a replacement

algorithm, which will be explained in next section. The contents of

this block are flushed into flash. A new P-block is allocated for this

F-block, and the log sector address for this page is calculated by a

simple hash function. Then, the current update is written to this

sector.

– Case 3: If the log record for this page already exists, this log record

and the current update are compared. The change is now recorded

in the log sector.

– Case 4: The F-Block to P-Block mapping table exists, but the log

sector for this page does not exist. In this case, we calculate the

log sector address for this page by the same hash function as above.

Then the update is written to this sector.

28

F-Block to P-Block Mapping

We introduce a term block popularity, which is maintained in the F-Block to

P-Block mapping table, is the counter that how many times a block in PCM

(P-Block) is updated. Initially the block popularity of each block is set at 0.

Every time a request comes for update a block, the block’s block popularity is

increased by 1.F-Block means the block numbers of flash disk. P-Block means

the block numbers that are allocated in PCM to store the logs of data pages in

flash. This table is actually an array of n ∗ 3 size. Where the first element in a

row represent F-Block, second element represent P-Block and the third element

represent popularity of P-Block . This table is maintained in PCM. The size

of the mapping table is very small (128 KB in our case) since it is just a n ∗ 3
integer array. Every read or write operation in flash need a visit to this mapping

table to find the log region of the data page. When a P-block is flushed out, or

when log regions for new F-block are recorded, this mapping table is updated.

The maintenance cost of this table is negligible compared to all other read write

accesses.

Relative Address

For in-place update, the data address of the current update is compared to

the data address of existing log records. We use a relative address(addrRel) to

represent the position of an update inside the accessed data page. It can be cal-

culated as addrRel = addrUpdate−addrPage. addrUpdate and addrPage represent

the addresses of the update and the currently accessed page, respectively.

Replacement Policy

For flash Buffer, we do not need to change the existing replacement policy. This

replacement policy is for choosing a victim block from PCM’s P-Blocks when

the P-Block list is full and logs for new F-Block has to be written. It is prefer-

able to keep those blocks which are frequently accessed, and which have more

log sectors that are changed, in PCM. The block with least block popularity is

29

10 2 5

11 1 10

9 3 2

5 4 1

7 0 3

F-B P-B bp

5 4 1

9 3 2

7 0 3

10 2 5

11 1 10

5 4 1
Victim block for replacement

Mapping Table

Sort the lists on
F-block to P-block

mapping table

F-B P-B bp

Choose
the block
with least
block
popularity

Figure 3.4: Illustration of replacement policy

chosen for replacement. After every log sector of a P-Block is updated, its block

popularity is increased by 1. Once the block is flushed out, it is reset to zero.

Figure 3.4 depicts the replacement strategy. By replacing the least popular

block to store logs for new block, the write intensities of log sectors is balanced.

With this policy, the blocks with free log sectors (i.e. the blocks with less block

popularity) will get chance to be written again. This will, in turn, help balance

the write intensities among the P-Blocks. This helps the blocks of PCM to wear

out evenly. This is why we said that without adopting external wear leveling

mechanism, we manage to gain significant wear leveling balance.

3.2.4 Merging Technology

As explained in Figure 3.5, when a P-Block is chosen for replacement, the con-

tents of the log sectors, as well the contents of its corresponding data region in

flash are brought into flash Buffer. These two are compared, and merged to form

an up-to-date data. Then, the content of that flash blocks are flushed in the

flash in sequential fashion. This step completely avoids the traditional require-

ment where we needed to temporarily copy unchanged pages of the updating

30

5 4 1 Victim Block

B0 B5

Flash

B0 B4B5 B0 B

Merge

NAND Flash Buffer

B5 B4

F-Block B5 copied
and erased

P-Block B4 copied

+ B5’

Up-to-date block

Flash

Merge

NAND Flash Buffer

B5 B4 Mergeee B5’

Upp-to-date blockd t

Up-to-date block flushed to
a free block in Flash

PCM

F
r
e
e

b
l
o
c
k

Figure 3.5: Illustration of Merging and Flushing block after replacement

block to another location and bring them back.

3.2.5 Endurance, Performance and Meta-data Manage-

ment

Endurance of flash disk is an important issue since it has only a limited number

of writes. By shifting the in-place updating to PCM architecture, endurance

of the storage system can be improved. Write intensity to flash storage is now

greatly reduced compared to flash-only storage. Compared to flash, PCM has

a better endurance. This makes sure that log region of PCM will not wear out

before the data region of flash does. But PCM also has a write lifetime issue,

and if the updates are more converged in certain region of PCM, it may wear

out faster than the flash disk. But the block popularity replacement policy can

help even out the concentration of wear and tear in PCM.

PCM Log Sectors can easily be in-place updated, read faster and merged

with the content in their corresponding data region. As explained above, the

metadata should record F-block to P-Block mapping which is maintained in

PCM.

Reading a log sector incurs extra reads, but it saves expensive writes to flash data

31

pages. Writes to PCM are faster than to flash, and require less energy. Thus

overall, it should be able to improve the system throughput while consuming

less energy to do so.

32

Chapter 4

Impact of PCM on

database algorithms

This chapter examines how hash-join algorithms can be modified for PCM-

based database systems. Specific algorithms, design steps for both column and

row-based databases are proposed.

4.1 PCM based hash join Algorithms

In this section, we discuss the concepts used in calculating the performance

measures. Then we write out the traditional and modified hash-join algorithms.

Reducing PCM writes is the main goal in all modified hash-join algorithms.

4.1.1 Algorithm Analysis Parameters

One of the significant challenges in designing PCM-friendly algorithms is to

cope with the asymmetry of PCM reads and writes. PCM writes are slower

than reads, and consume more energy, and wear out PCM cells. Thus primary

design goal of new database algorithm (hash-join in this thesis) is to minimize

the number of PCM writes.

33

Since PCM is a byte-writable memory device, for both using PCM as a main

memory and as a secondary memory, we consider the write granularity to be

bit. We compare the performance of six types of hash-join algorithms namely,

traditional and modified hash-joins for row-based PCM database, traditional

and modified hash-joins for column-based PCM database, and traditional and

modified hash-joins for PCM as a main memory database. We analyze the

performance of a hash-join algorithm in terms of its effect on PCM-wear, PCM

energy and access latency. Table 4.1 shows the terms with meaning used in

analyzing hash joins. We use the following formulas to calculate PCM wear,

PCM energy, and Access Latency:

1. Total Wear = κNw

2. Energy = 8(NwEwb +NrErb)

3. Access Latency = 8(NwTw +NrTr)

Term Description Value used
Nw Number of words written to PCM -
Nr Number of words read from PCM -
Erb Energy consumed for reading a PCM bit 2 pJ
Ewb Energy consumed for writing a PCM bit 16 pJ
Tr Latency of reading a PCM bit 230 cycles
Tw Latency of writing a PCM bit 450 cycles
W Word size used in PCM writes 8 B
κ Average number of modified bits per modified word -

Table 4.1: Terms used in analyzing hash join

4.1.2 Row-stored Database

Algorithms 1 and 2 show the traditional [38] and modified hash-join algorithms

for row-stored database. In traditional row-based algorithm, during partition

phase, all the tuples are copied back to PCM. This write back is unbearably

expensive for PCM as this causes PCM to wear out quickly. In modified al-

gorithm, we propose a concept of copying only the tuple IDs that belong to

the same partition. During partition phase, the tuples are read in, and while

34

creating hash-buckets for tuples belonging to same partition, we only copy the

tupleID of that tuple. Size of a tupleID is an integer value(4 bytes) which

equals to four units of PCM when PCM is written byte-wise.

The size of writes to PCM is significantly reduced. For instance, for a relation

with 500,0000 records, the maximum size to be written to PCM using modified

hash-join is equal to 500, 000 ∗ 4bytes = 0.5MB. If we do the same copying

using traditional hash-based join, the total write size is equal to the size of the

relation itself. During join phase, the tuples are read using their tuple ID. Since

random reads and sequential reads are almost equally fast for PCM, reading

tuples randomly from the relation does not decrease the join processing time.

4.1.3 Column-stored Database

Algorithms 3 and 4, respectively, show the traditional and modified hash-join

algorithms for column-stored database. Even though column-stored database is

reported to perform better than row-stored database for general workloads [4],

the critical point is maintaining column-stored database itself is a tedious job

and is much costlier. In column-stored database, all the columns of a relation

are stored like a separate relation with two attributes, tupleID and V alue.

Thus queries that involve operation on a single column are obviously faster for

column-stored database.

Traditional hash-joins for column-stored database is similar to the traditional

row-stored hash-join algorithm, only difference is here instead of partitioning

the whole relation, only the column taking part in join is partitioned. Similar

to the concept in row-stored database, in modified hash-join for column-stored,

only the tupleID of tuples of the column taking part in join are copied back to

PCM.

35

Algorithm 1: Traditional Row-
based hash-join

Partition Phase
P = Total no. of Partitions
for (i = 0; i < R; i++) do

r = record i in Relation R
p = hash(r) modulo P
copy r to Partition Rp

end
for (j = 0; j < S; j ++) do

s = record j in Relation S
p = hash(s) modulo P
copy s to Partition Sp

end
join Phase
for (p = 0; p < P ; p++) do

Build Phase
for each i in Rp do

r = record i in R
insert r into hash table

end
Probe Phase
for each j in Sp do

s = record j in S
probe s in hash table
if there are match(es)
then

generate join results
send results to upper
layer

end

end

end

Algorithm 2: Modified Row-
based hash-join

Virtual Partition Phase
P = Total no. of Partitions
for (i = 0; i < R; i++) do

r = record i in Relation R
p = hash(r) modulo P
copy r.id to List Rlistp

end
for (j = 0; j < S; j ++) do

s = record j in Relation S
p = hash(s) modulo P
copy s.id to List Slistp

end
join Phase
for (p = 0; p < P ; p++) do

Build Phase
for each i in Rlistp do

r = record i in R
insert r into hash table

end
Probe Phase
for each j in Slistp do

s = record j in S
probe s in hash table
if there are match(es)
then

generate join results
send results to upper
layer

end

end

end

36

Algorithm 3: Traditional
Column-based hash-join

Data: R.A and S.B being the
columns taking place in
join

Partition Phase
P = Total no. of Partitions
for (i = 0; i < R.A; i++) do

r = tuple i of R.A
p = hash(r) modulo P
copy r to Partition Rp

end
for (j = 0; j < S.B; j ++) do

s = tuple j of S.B
p = hash(s) modulo P
copy s to Partition Sp

end
join Phase
for (p = 0; p < P ; p++) do

Build Phase
for each i in Rp do

r = tuple i in R.A
insert r into hash table

end
Probe Phase
for each j in Sp do

s = tuple j in S.B
probe s in hash table
if there are match(es)
then

generate join results
send results to upper
layer

end

end

end

Algorithm 4: Modified Column-
based hash-join

Data: R.A and S.B being the
columns taking place in
join

Virtual Partition Phase
P = Total no. of Partitions
for (i = 0; i < R.A; i++) do

r = tuple i of R.A
p = hash(r) modulo P
copy r.id to List Rlistp

end
for (j = 0; j < S.B; j ++) do

s = tuple j of S.B
p = hash(s) modulo P
copy s.id to List Slistp

end
join Phase
for (p = 0; p < P ; p++) do

Build Phase
for each i in Rlistp do

r = tuple i in R.A
insert r into hash table

end
Probe Phase
for each j in Slistp do

s = tuple j in S.B
probe s in hash table
if there are match(es)
then

generate join results
send results to upper
layer

end

end

end

37

Chapter 5

Experimental Evaluation

We use two different experiment setup for two experiments. First section talks

about the experimental setup, and experimental result of PCM as flash-buffer.

Experimental analysis of hash-join algorithm is studied in second section. The

second part includes simulation parameters, introduction of Star-Schema Bench-

mark used for the experiment, and analysis of the results obtained.

5.1 PCM as flash-Buffer

5.1.1 Experiment Setup

We implement and evaluate the design of our system using comprehensive trace-

driven simulations. In this section, we will introduce our experiment setup, SSD

and PCM simulators, workload and trace collection, and system configurations.

Simulators

We modify the Microsoft SSD simulator extension [6] to include duplication

checking mechanism. This SSD simulator is an extension of widely-used Disk

simulator Disksim [12], and implements the major components of flash memory

like FTL, mapping, garbage collection and wear-leveling policies, and others.

The current version does not have buffer extension for flash, which we imple-

38

mented. So when a new write request comes to SSD, it is first brought into this

flash buffer space, and when its operation is completed, the host is notified of

it.

Besides these, we also implement the two log-based buffer management tech-

niques, namely IPL [32] and dPRAM [44] to compare our buffer management

scheme against these.

To include the PCM simulator, we wrote our own PCM simulator using C++,

and implemented it as an extension of Disksim just like the SSD simulator. We

implement a fingerprint store, F-block to P-block mapping table and a PCM

log region as explained in above sections.

Simulation of PCM Wear out

Calculating PCM wear out by simulation is a bit tricky, and in some sense a

bit improbable. We need to know how often each unit of PCM cell is being

used for read and write. In other words, this requires a statistics of number of

reads and writes on a PCM cell. At the beginning of experiment, we set counter

of read and write of each PCM cell to be zero. As it is written, or read, the

write-counter and read-counter are increased by one. This way, we approximate

the number of wear out on each PCM cell.

Simulation parameter Configurations

Table 5.1 gives the list of major configuration parameters for SSD. The page

size of flash, erase unit (block) size of flash, and the log sector size of PCM

are set to be 4 KB, 256 KB, and 512 Bytes, respectively. As a block in flash

contain 64 pages, a P-block also contains 64 log sectors. Hence the size of a

P-block is set to be 32 KB. Besides these, a space of 128 KB is allocated to

store F-Block to P-Block mapping. For the fingerprint store, we dynamically

allocate the PCM space as per required. For the given configuration of SSD,

the maximum possible size for fingerprint store would equal to total number of

flash pages times size of a fingerprint record. The size of a fingerprint record is

39

192 bytes (160 bytes for fingerprint and 32 bytes for location).

Description Configuration
No. of Packages 10

Planes per Package 8
Blocks per Plane 2048
Pages per Block 64

Page Size 4 KB
Read Latency 25μs
Write Latency 200μs
Erase Latency 1.5ms

Table 5.1: Configurations of SSD simulator

Workloads and Trace Collection

We use 5 workloads from two representative categories and run the experiment

with them.

• Desktop (d1,d2)- These are typical office workloads, e.g. word editing,

internet surfing, programming codes, etc. We collect these traces from

our office computers when the computers are in use like programming,

word editing and internet surfing. The workloads run for 10 and 20 hours,

respectively. They feature irregular idle intervals, and generally small

read/write accesses.

Database size 1 GB
Users Simulated 100
Buffer pool size 20 to 100 MB

Table 5.2: Configuration of TPC-C Benchmarks for our experiment

• Online Transaction (t1,t2,t3)- We execute TPC-C [2] workloads that run

for 30 minutes, 2 hours and 4 hours respectively, to mainly test the perfor-

mance of flash buffer extension. Since TPC-C workloads contain intensive

writes, these are ideal for testing the efficiency of PCM-extension for flash

buffer. To generate workloads from the benchmarks, we use a workload

generation tool, Hammerora [1]. Hammerora is an open source tool writ-

ten in Tcl/Tk. It runs with a MySQL database server on a Linux platform

40

under different configuration, a combination of the database size, system

buffer size and number of simulated users. When the database server is

run in these configuration, the tool produces log records during query pro-

cessing. Table 5.2 shows our configuration settings. We fill the database

with records to make it 1 GB size. Then for various database buffer pool

sizes, we simulate online transaction by 100 users.

5.1.2 Results

We first use the hash-based encryption method as explained in above sections to

test for the presence of duplicate data in our workloads. Then we run these work-

loads in our simulation system to test the effectiveness of duplication finder. For

the second part, to test the performance of PCM-based flash buffer extender, we

compare our buffer management scheme against two of the existing buffer man-

agement schemes, namely IPL [32] and dPRAM [44]. Finally, we compare the

overall power saving by our system against the baseline configuration (without

the duplicate finder and PCM-based buffer extender).

Efficiency of duplication finder

First, we measure the percentage of the duplicate data in the five workloads that

we run our experiment on. The part dup perc in Figure 5.1 shows the percentage

of duplicate data present in these workloads. The desktop workloads contain

as much as 25% duplicate data, while the transaction workloads contain almost

30% duplicate data when it is run for 4 hours.

Then we use our duplication finder mechanism to see how much of these

duplicated writes can be removed. The part dup removed in Figure 5.1 shows

the percentage of removed duplicate writes from the workloads. The duplication

finding rate depends on the size of the fingerprint store. If we choose to store

all the fingerprints in the store, almost 100% duplicates can be detected. If the

fingerprint store is too big, search of a fingeprint will be slow. We choose to use

41

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 t1 t2 t3%
 o

f
du

pl
ic

at
e

an
d

re
m

ov
ed

 w
ri

te
s

d-desktop; t-transaction

dup perc dup removed

Figure 5.1: The duplication data present in the workloads

the maximum size fingerprint store in PCM. With that, the duplication finder

can effectively detect almost all the duplicates as shown in the figure.

We study the effect of size of fingerprint store for the search time and detection

of duplication. The results are shown in Figure 5.2. The x-axis shows the size

of the fingerprint store. The maximum required fingerprint size is 1. As we can

see from Figure 5.2(a), the smaller the size of fingerprint store, the faster is the

search process, since the number of buckets needed to be compared is less. How-

ever, at the same time, this also means that duplication detection is decreased

as the size of fingerprint store decreases (Figure 5.2(b)), as the fingerprint store

cannot hold all the possible fingerprints, and when it is full, fingerprints are re-

placed according to least recently used replacement scheme. For workloads that

contain high amount of duplicate data, having the maximum size fingerprint is

a logical solution, as the search time per fingerprint does not increase sharply

(Fig 5.2) once the fingerprint store size is more than half of the maximum pos-

sible size.

In addition to the simple removal of duplicate writes, this design scheme

can also increase the available clean blocks for flash SSD. Figure 5.3 shows the

percentage of saved flash space in units of blocks, compared to the baseline

scheme where no duplication finder is used. For all the five workloads, the

42

 0

 10

 20

 30

 40

 50

 60

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
ar

ch
 t

im
e/

fi
ng

er
pr

in
t

(m
s)

fingerprint size

d1
d2
t1
t2
t3

(a)

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

du
pl

ic
at

e
de

te
ct

io
n

ra
te

 (
%

)

fingerprint size

d1
d2
t1
t2
t3

(b)

Figure 5.2: The effect of fingerprint store size on (a) Search time per fingerprint;
(b) Duplication detection rate

43

 0

 5

 10

 15

 20

 25

 30

d1 d2 t1 t2 t3
%

 o
f

fl
as

h
sp

ac
e

sa
ve

d
d-desktop; t-transaction

Figure 5.3: flash space saved by duplicate finder

saving is more than 15%. This is a significant amount, as explained in next

section, this helps improve the endurance of flash SSD.

Performance of flash buffer management

In the second part of our experiment, we test the effectiveness of our PCM-based

flash buffer extender. To make the case for our proposed design, we compare

our scheme against two existing schemes IPL [32] and dPRAM [44]. We choose

to use only the TCP-C transaction workloads for this experiment as these work-

load contain the frequent smaller writes that truly test the effectiveness of our

PCM log region. We use a database size of 1 GB, and change the buffer pool

size from 20 MB to 100 MB to test the efficiency of this scheme under different

environments.

We know that large overhead of writes and erase operations are the main ob-

stacles in deficiency of flash memory. As shown in Figure 5.4, number of writes

to a database storage medium decrease as the data buffer size of the database

increase. We consider different buffer sizes to show the efficiency of our buffer

management scheme under different environments.

The comparison of merge numbers for different techniques is shown in Figure

5.5(a). IPL represents the pure NAND flash memory using IPL buffer manage-

ment method. d-PRAM represents the dynamic hybrid architecture using the

44

 0

 20

 40

 60

 80

 100

 120

 140

 20 30 40 50 60 70 80 90 100
N

um
be

r
of

 W
ri

te
s

(M
ill

io
ns

)
Data Buffer Size (MB)

Figure 5.4: The impact of data buffer size on write operations

basic dynamic log assignment. ours represents our PCM-aided buffer manage-

ment technique. Our method is able to further decrease the amount of merges,

and consequently the write time, because, logs of all the pages of flash blocks

are stored in block-like fashion in PCM, and when the whole block is ready to

be flushed, only then are these merged with the original data.

We also compare the number of erases for these three techniques in Figure

5.5(b). Keeping the logs away in non-volatile medium brings down the frequency

of block erase. Since the flushes to flash after merge operation are carried out

sequentially all the time, each erase represents a write of all the pages of that

erase unit. This enables us to avoid the requirement of erasing a whole erase

unit (block) just to update a single page of that block. Our PCM-extension

architecture outperforms both IPL and d-RAM in this regard.

We also calculate the total write time. This write time depends on the number

of merge and erase operations. Thus, we can draw similar conclusion for the

write time. The comparison of write times for three techniques is shown in

Figure 5.5(c).

Besides the energy consumption for writes, we also compute the energy con-

sumption for read operations. To calculate energy, we multiply the number of

reads or writes by amount of energy required per read or write. In our method,

45

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80 90 100
M

er
ge

 N
um

be
rs

 (
T

ho
us

an
ds

)

Data Buffer Size (MB)

IPL
d-PRAM

ours

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100N
um

be
r

of
 E

ra
se

s(
no

rm
al

iz
ed

)

Data buffer size (MB)

IPL
d-PRAM

ours

(b)

 0

 1

 2

 3

 4

 5

 20 30 40 50 60 70 80 90 100

W
ri

te
 t

im
e

(*
 1

00
0

se
c)

Data Buffer Size (MB)

IPL
d-PRAM

ours

(c)

Figure 5.5: The comparison of (a) Merge Numbers; (b) Erase Numbers; and (c)
Write time for three techniques

46

when a page is brought into flash buffer for write, the write is reflected in the

PCM log region immediately and the page is discarded. This allows space in

the buffer for a new incoming page without having to replace an old page. Thus

frequently read pages are more likely to be found in the buffer than that is for

IPL and d-PRAM method. The other reason this PCM-based buffer extension

architecture saves energy in reading is, reading from PCM is faster than reading

from flash. The energy for write, read and total energy are shown in Figures

5.2.2(a), 5.2.2(b) and 5.2.2(c), respectively.

Making Sequential Flushes to flash

One of the major reason that the PCM-based flash buffer extender can be so

effective is because it can delay the numerous small writes to flash, then when the

writes do occur, it writes them sequentially. The increase in sequential flushes

to flash as compared to the baseline configuration (without PCM extender) is

shown in Figure 5.7. As we can see, the sequentiality of writes to flash increase

by almost 50% for t3 workload which is the longest of the three transaction

workloads.

Combining all together

Both the first part (duplication remover) and the second part (flash buffer ex-

tender) can independently help improve the write efficiency, lifetime and energy

savings of the system. When we combine these two together, the improvement

will be even better. We compare these improvements versus the baseline con-

figuration (with no duplication detector and buffer extender) in Figure 5.8. By

just adding a PCM of 16 MB, we can achieve a lifetime improvement of almost

four times for SSD while consuming less than 80% energy to do so.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100
W

ri
te

 E
ne

rg
y

(n
or

m
al

iz
ed

)

Data buffer size (MB)

IPL
d-PRAM

ours

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100

R
ea

d
E

ne
rg

y
(n

or
m

al
iz

ed
)

Data buffer size (MB)

IPL
d-PRAM

ours

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100

T
ot

al
 E

ne
rg

y
(n

or
m

al
iz

ed
)

Data buffer size (MB)

IPL
d-PRAM

ours

(c)

Figure 5.6: The comparison of Energy consumption for (a) Write operation; (b)
Read Operation; (c) Write + Read

48

 0

 20

 40

 60

 80

 100

d1 d2 t1 t2 t3
%

 o
f

se
qu

en
ti

al
 f

lu
sh

es
 t

o
fl

as
h

d-desktop; t-transaction

Figure 5.7: Percent of sequential flush to flash due to PCM-based buffer man-
agement

5.2 Hash-join algorithm in PCM-based Database

We evaluate the performance of traditional hash join algorithm [38] and modi-

fied hash join algorithms in terms of execution time, PCM energy and wear-out

level, for column-based and row-based database as well as for database with

PCM as the main memory by using cycled-simulations. First of all, we emulate

the PCM on DRAM of a server machine whose configuration are shown in table

5.3.

To emulate DRAM as a PCM, we change the read write time, and emulate

the wear out behavior of PCM by introducing a counter on the DRAM cells that

get written. We study PCM as a faster hard-disk as well as a DRAM extension.

Simulation configurations for these two architectures are different. For PCM as

a faster hard-disk, data would be required to brought into a DRAM to complete

read or write, whereas in its use as a DRAM extension we suppose that data

from PCM do not need to be brought into the DRAM to complete read/write

operation.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

d1 d2 t1 t2 t3
w

ri
te

 e
ff

ic
ie

nc
y

d-desktop; t-transaction

duplicate finder
buffer extender

combined

(a)

 0

 1

 2

 3

 4

 5

d1 d2 t1 t2 t3

lif
et

im
e

im
pr

ov
em

en
t

(t
im

es
)

d-desktop; t-transaction

duplicate finder
buffer extender

combined

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

d1 d2 t1 t2 t3

po
w

er
 s

av
ed

 (
ti

m
es

)

d-desktop; t-transaction

duplicate finder
buffer extender

combined

(c)

Figure 5.8: Effect of duplication finder and pcm-based buffer extender on
(a)Write Efficiency; (b) Lifetime; (c) Power save

50

5.2.1 Simulation Parameters

We basically use the DRAM memory and emulate it as a PCM by algorithmi-

cally delaying the read and write access time. Table 5.3 describes the simulation

parameters.

Processor 2x Intel�Xeon�E7540 2.00GHz, 18M cache
DRAM simulated as PCM 8 GB
DRAM used as extension 256 MB

PCM 4 ranks, read latency for a cache line: 230 cycles,
write latency per 8B modified word: 450 cycles,
Erb = 2pJ , Ewb = 16pJ

Table 5.3: Simulation Parameters

We use a DRAM and emulate it to be like a PCM by modifying the read-

/write latency. To simulate the wear-out phenomena of PCM, we write a pro-

gram that counts the cells that are written in DRAM. We also implement the

general wear-out balancing algorithms used in PCM to even-out the wear across

the PCM. The word size of 8 bytes per iteration of write operations is based on

[18].

When PCM is being used as a faster hard-disk, we take into consideration

the copying the PCM contents to DRAM during read, and copying content from

DRAM to PCM during write. But, when PCM is used as a main memory, these

two steps do not exist.

We run our experiment in a multiple-user environment. A number of database

queries, that may access the same database tables at the same time are run.

The processes are generally getting the relation for the purpose of a read, so

general lock is inclusive lock. If update transactions come for the records that

have inclusive locks from other process, the update process is held back.

These transactions are run simultaneously for a number of users each time.

We do experiments for user numbers ranging from 20 to 50.

51

5.2.2 Modified Hash-join for Row-stored and Column-stored

Database

We implemented four hash join algorithms for row-stored(R-S) and column-

stored(C-S) databases as discussed in Section 3.2: traditional hash-join for R-S,

modified hash join for R-S, traditional hash-join for C-S, and modified hash-

join for C-S. The database based on star schema benchmark is stored in the

emulated PCM. To partition a relation taking part in join, first we use a hash

function to hash the record on its join key field then partition it according to the

hash value. Depending on the hash-join method, either the partition containing

whole record or only its tuple ID are written back to PCM for next step.

During join stage, first a partition from a smaller relation is brought into

buffer, and hashed using a hash function. Then the partition with same parti-

tion number from bigger relation is brought and probed for matching tuple. The

join results are then sent to a high-level operator, which produces the final result.

We run the experiment in a multi-user environment where many users are

running a number of queries at the same time. Three queries explained in

above section are frequently used by these queries that require hash-join opera-

tion. Besides these queries, the users run many other insert, update, and delete

transactions that could change the result of a same query for different users. We

first run the experiment by fixing the number of users at 100, but varying the

size of database, i.e. the size of each relations by 1.0X to 4.0X factors. A factor

of 1.0X represent the database size as explained in Star Schema in Figure 2.3.

Then in the second experiment, we fix the initial size of database, but increase

the number of users operating at the same time from 20 to 200.

Figure 5.9 show the results for 4 types of hash-joins when size of database is

gradually increased. Figure 5.9(a) show that row-stored database causes high

52

PCM wear compared to column-stored database for traditional hash-join. This

is because all the records of a relation are written back to PCM for traditional

method, which is bigger than the tuple ID list of modified method. This result

validates our assumption in Section 4.1.2. But this does not necessarily mean

column-stored always wins the PCM-wear race, because creating a column-

stored database, then maintaining it is costlier than maintaining row-stored

database because it requires inserting extra column of tuple ID for each of the

attributes. The wear level is almost the same for both R-S and C-s modified

hash-joins. Because both of them only copy the tuple ID back to PCM. Even

though size of reads vary for these two types, wear only depends on the size of

write, thus wear to PCM is almost the same.

Figure 5.9(b) compares the energy for two types of databases. It shows

that modified hash-join for C-S database consumes slightly more energy than

the modified hash-join for R-S. This result is particularly interesting, because

from energy stand point, maintaining C-S database is more expensive. As the

modified hash-join is also costlier for C-S, R-S wins the battle of PCM energy

saved.

In terms of latency, column-stored is clearly better because it only needs to

read the column that takes part in join. The results are shown in figure 5.9(c).

The results from figure 5.10 show that the hash-join performance for two

types of PCM-databases when the database size is fixed at 1.0X and number of

users accessing the database is increased from 20 to 200. Each user runs multiple

queries of insert, update and delete operation besides the three queries explained

in Section 2.2.5. The results show PCM wear, PCM Energy and access latency

caused by hash-join operation while running the queries from multiple users for

a certain amount of time.

53

 100000

 1e+006

 1e+007

 1e+008

1.0X 2.0X 3.0X 4.0Xnu
m

 o
f

bi
ts

 m
od

if
ie

d
(l

og
 s

ca
le

)

Database Size

RS(trad)
RS(mod)

CS(trad)
CS(mod)

(a) Total Wear

 1e+007

 1e+008

 1e+009

1.0X 2.0X 3.0X 4.0X

en
er

gy
(m

J)

Database Size

RS(trad)
RS(mod)

CS(trad)
CS(mod)

(b) PCM Energy

 1e+008

 1e+009

 1e+010

 1e+011

1.0X 2.0X 3.0X 4.0X

L
at

en
cy

(c
yc

le
s)

Database Size

RS(trad)
RS(mod)

CS(trad)
CS(mod)

(c) Access Latency

Figure 5.9: Hash join Performance for various Database Size

54

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Wear-out Energy Latency

trad-U20
mod-U20
trad-U50
mod-U50

trad-U100
mod-U100
trad-U200
mod-U200

(a) Row-Stored Database

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Wear-out Energy Latency

(b) Column-Stored Database

Figure 5.10: Comparison of traditional and modified hash joins for R-S and C-S
databases by increasing user size from 20 (U20) to 200(U200)

55

In the figures, ‘trad-U20’ indicates traditional hash-join methods run in a

20-user environment, ‘mod-U20’ means modified hash-join run in a 20-user envi-

ronment, and so forth. We consider the wear, energy and latency factor for R-S

traditional hash-join when users are 200 (at ‘trad-U200’) to be the maximum

value (equal to 1). Results for both databases show that modified hash-join out-

perform the traditional hash-join irrespective of the number of users running at

the same time. And in general, column-stored database consumes less energy,

creates less wear on PCM, and takes less time to execute. But again, this re-

sult does not consider the maintenance cost of C-S and R-S databases. Thus it

will not be wise to declare C-S as a clean winner. Rather, we can say that for

both types of databases, our modified hash-join technique brings a significant

performance improvement.

5.2.3 PCM as a Main Memory Extension

For this experiment, it is considered that the entire relations are stored in PCM,

and CPU can directly read from and write to PCM. No data need be transferred

between PCM and DRAM. Traditional hash-joins tend to create many parti-

tions and re-write them in PCM. We can avoid the actual physical copying of

the partitions into PCM by only saving the record ids of the records that belong

to same partitions.

We compare of read/write access numbers, query execution time and wear

out of PCM with varying record size of query output for traditional and modi-

fied hash-join methods. For this experiment, we chose the traditional row-based

database storage model, and use the modified hash-join used for row-stored

in above section. The algorithms vary in the fact that reading a record from

PCM does not involve the step of bringing it back to DRAM anymore. Thus

read/write access latency will change. PCM-wear and energy will primarily be

similar to that of the the row-based approach.

56

 100000

 1e+006

 1e+007

 1e+008

1.0X 2.0X 3.0X 4.0X

nu
m

 o
f

bi
ts

 m
od

if
ie

d
(l

og
 s

ca
le

)

trad mod

(a) Total Wear

 1e+007

 1e+008

 1e+009

1.0X 2.0X 3.0X 4.0X

en
er

gy
(m

J)

trad mod

(b) PCM Energy

 1e+008

 1e+009

 1e+010

1.0X 2.0X 3.0X 4.0X

L
at

en
cy

(C
yc

le
s)

trad mod

(c) Access Latency

Figure 5.11: hash join Performance for a PCM-as-a-Main-Memory-Database

57

The results in Figure 5.11 show that modified hash-join can reduce the num-

ber of writes by trading it with read numbers. Since wear out of PCM is directly

related to the write numbers, this method can effectively improve the life-cycle

by as much as 60%, energy by 50% and access latency by about 30 %.

58

Chapter 6

Conclusion

In this thesis, we study the position of Phase Change Memory(PCM) in the

memory hierarchy, and how flash SSD buffer and database systems can exploit

such memory. First, we propose two separate techniques to reduce the write

traffic to flash SSD, and improve the write efficiency to increase the lifetime of

SSD while bringing the power consumed by the overall system down.

We take advantage of the redundancy present on normal workloads to reduce

the write traffic to flash SSD. We proposed a hash-based encryption method to

detect and avoid the duplicate writes to flash (Fig 3.2). We show that this itself

can save a lot of flash space., which ultimately help increase its lifetime (Fig 5.3).

In the second part, we migrated the frequent small updates on flash pages to

PCM as logs. The inherent limitation of ’erase-before-write’ on flash makes it

very difficult to optimize the write operations on flash without taking support

of external update-efficient medium. PCM is an emerging storage-class memory

with advantages like non-volatility, faster read/write access, in-place updating

and higher density. In this part, first of all, we record the changes on flash data

pages into the log sectors of PCM, which is update-efficient as it allows the in-

place update. Then, we organize the PCM buffer space in such a way that when

we want to merge the logs with old data, the writes to flash are sequentialized.

59

We proposed a block popularity based replacement scheme for PCM to even

out the wear-leveling among the blocks. We show by simulation result that this

proposed method outperforms two existing log-buffer extension techniques.

Finally, we combine these two design techniques together and compare their

performance against the baseline configuration. We can see that the system can

improve the lifetime of flash SSD by more than four times (Fig 5.8(b)) while

consuming 20% less power to do so (Fig 5.8(c)).

In the second work of the thesis, we study the performance of PCM-based

database system. We study how the query optimization algorithms should be

optimized when PCM is used as a row-stored database and as a column-stored

database. We chose hash-join algorithm as a performance test-case to study

the behavior of PCM-based database. We proposed two modified hash-join al-

gorithm for both row-stored and column-stored database. We also study the

performance of modified row-stored hash-join algorithm when it is used in a

database system where PCM is used primarily as a extension of main memory.

This thesis does not conclude that PCM is more suitable for row-stored, or

column-stored, or as a main-memory extension type databases. Rather, with

experiments on all types of databases we show that to gain performance ben-

efits, and to exploit the PCM’s architectural advantages, we can modify these

algorithms. We show, by experiment with emulated PCM simulator, that mod-

ified hash-join algorithm, which basically trades off the more expensive PCM

writes with cheaper PCM reads, can improve the life-time, energy savings and

execution time for PCM.

60

Bibliography

[1] Hammerora: The open source oracle load test tool.

http://hammerora.sourceforge.net/.

[2] Tpc benchmark. http://www.tpc.org/.

[3] Tpc-h benchmark. http://www.tpc.org/tpch.

[4] D.J. Abadi, S.R. Madden, and N. Hachem. Column-stores vs. row-stores:

How different are they really? In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pages 967–980. ACM,

2008.

[5] L. Adam. Flash storage memory. Communications of the ACM, 51(7),

2008.

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, and

R. Panigrahy. Design tradeoffs for ssd performance. In USENIX 2008

Annual Technical Conference on Annual Technical Conference, pages 57–

70. USENIX Association, 2008.

[7] D.G. Andersen and S. Swanson. Rethinking flash in the data center. IEEE

Micro, 30(4):52–54, 2010.

[8] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi. Differential

raid: rethinking raid for ssd reliability. ACM Transactions on Storage

(TOS), 6(2):4, 2010.

61

[9] L.A. Barroso. Warehouse-scale computing. In Proceedings of the 2010

international conference on Management of data, page 2. ACM, 2010.

[10] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for high-

performance flash disks. ACM SIGOPS Operating Systems Review,

41(2):88–93, 2007.

[11] S. Boboila and P. Desnoyers. Write endurance in flash drives: Measure-

ments and analysis. In Proceedings of the 8th USENIX conference on File

and storage technologies, pages 9–9. USENIX Association, 2010.

[12] J.S. Bucy, J. Schindler, and S.W. Schlosser. The disksim simulation en-

vironment version 4. 0 reference manual. Environment, (CSE-TR-358-98),

2008.

[13] F. Chen, D.A. Koufaty, and X. Zhang. Understanding intrinsic character-

istics and system implications of flash memory based solid state drives. In

Proceedings of the eleventh international joint conference on Measurement

and modeling of computer systems, pages 181–192. ACM, 2009.

[14] F. Chen, T. Luo, and X. Zhang. Caftl: a content-aware flash translation

layer enhancing the lifespan of flash memory based solid state drives. In

Proceedings of the 9th USENIX conference on File and stroage technologies,

pages 6–6. USENIX Association, 2011.

[15] S. Chen, P.B. Gibbons, and S. Nath. Rethinking database algorithms for

phase change memory. In Proc. CIDR, 2011.

[16] X. Chen, P. O’Neil, and E. O’Neil. Adjoined dimension column index (adc

index) to improve star schema query performance.

[17] M.L. Chiang and R.C. Chang. Cleaning policies in mobile computers using

flash memory. Journal of Systems and Software, 48(3):213–231, 1999.

[18] S. Cho and H. Lee. Flip-n-write: a simple deterministic technique to im-

prove pram write performance, energy and endurance. InMicroarchitecture,

62

2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,

pages 347–357. IEEE, 2009.

[19] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. A sur-

vey of flash translation layer. Journal of Systems Architecture, 55(5):332–

343, 2009.

[20] PUB FIPS. 180-1. secure hash standard. US Department of Commerce,

1995.

[21] H. Garcia-Molina and K. Salem. Main memory database systems: An

overview. Knowledge and Data Engineering, IEEE Transactions on,

4(6):509–516, 1992.

[22] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H.

Siegel, and J.K. Wolf. Characterizing flash memory: anomalies, observa-

tions, and applications. In Microarchitecture, 2009. MICRO-42. 42nd An-

nual IEEE/ACM International Symposium on, pages 24–33. IEEE, 2009.

[23] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation layer

employing demand-based selective caching of page-level address mappings,

volume 44. ACM, 2009.

[24] A. Inoue and D. Wong. Nand flash applications design guide. Toshiba

America Electronic Components Inc, 2004.

[25] D.H. Kang, D.H. Ahn, K.B. Kim, JF Webb, and K.W. Yi. One-dimensional

heat conduction model for an electrical phase change random access mem-

ory device with an 8f memory cell (f= 0.15 μm). Journal of applied physics,

94:3536, 2003.

[26] J.K. Kim, H.G. Lee, S. Choi, and K.I. Bahng. A pram and nand flash

hybrid architecture for high-performance embedded storage subsystems. In

Proceedings of the 8th ACM international conference on Embedded software,

pages 31–40. ACM, 2008.

63

[27] S. Lai. Current status of the phase change memory and its future. In

Electron Devices Meeting, 2003. IEDM’03 Technical Digest. IEEE Inter-

national, pages 10–1. IEEE, 2003.

[28] C. Lam. Cell design considerations for phase change memory as a universal

memory. In VLSI Technology, Systems and Applications, 2008. VLSI-TSA

2008. International Symposium on, pages 132–133. IEEE, 2008.

[29] C. Lam. Cell design considerations for phase change memory as a universal

memory. In VLSI Technology, Systems and Applications, 2008. VLSI-TSA

2008. International Symposium on, pages 132–133. IEEE, 2008.

[30] C. Lam. Cell design considerations for phase change memory as a universal

memory. In VLSI Technology, Systems and Applications, 2008. VLSI-TSA

2008. International Symposium on, pages 132–133. IEEE, 2008.

[31] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change

memory as a scalable dram alternative. In ACM SIGARCH Computer

Architecture News, volume 37, pages 2–13. ACM, 2009.

[32] S.W. Lee and B. Moon. Design of flash-based dbms: an in-page logging ap-

proach. In Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 55–66. ACM, 2007.

[33] S.W. Lee, B. Moon, C. Park, J.M. Kim, and S.W. Kim. A case for flash

memory ssd in enterprise database applications. In Proceedings of the 2008

ACM SIGMOD international conference on Management of data, pages

1075–1086. ACM, 2008.

[34] Mearian Lucas. Ibm announces computer memory breakthrough.

http://www.computerworld.com/s/article/9218031.

[35] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied

cryptography. CRC, 1997.

64

[36] V. Mohan, T. Siddiqua, S. Gurumurthi, and M.R. Stan. How i learned to

stop worrying and love flash endurance. In Proceedings of the 2nd USENIX

conference on Hot topics in storage and file systems, pages 3–3. USENIX

Association, 2010.

[37] Y. Park, S.H. Lim, C. Lee, K.H. Park, et al. Pffs: a scalable flash memory

file system for the hybrid architecture of phase-change ram and nand flash.

In Proceedings of the 2008 ACM symposium on Applied computing, pages

1498–1503. ACM, 2008.

[38] J.M. Patel, M.J. Carey, and M.K. Vernon. Accurate modeling of the hy-

brid hash join algorithm. In ACM SIGMETRICS Performance Evaluation

Review, volume 22, pages 56–66. ACM, 1994.

[39] M.K. Qureshi, V. Srinivasan, and J.A. Rivers. Scalable high performance

main memory system using phase-change memory technology. In ACM

SIGARCH Computer Architecture News, volume 37, pages 24–33. ACM,

2009.

[40] A. Rajimwale, V. Prabhakaran, and J.D. Davis. Block management in solid-

state devices. In Proceedings of the 2009 conference on USENIX Annual

technical conference, pages 21–21. USENIX Association, 2009.

[41] S. Raoux, GW Burr, MJ Breitwisch, CT Rettner, Y.C. Chen, RM Shelby,

M. Salinga, D. Krebs, S.H. Chen, H.L. Lung, et al. Phase-change ran-

dom access memory: A scalable technology. IBM Journal of Research and

Development, 52(4.5):465–479, 2008.

[42] R. Rivest. The md5 message-digest algorithm. 1992.

[43] M. Rosenblum and J.K. Ousterhout. The design and implementation of

a log-structured file system. ACM Transactions on Computer Systems

(TOCS), 10(1):26–52, 1992.

65

[44] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, Y. Chen, and H. Li. A hybrid

solid-state storage architecture for the performance, energy consumption,

and lifetime improvement. In High Performance Computer Architecture

(HPCA), 2010 IEEE 16th International Symposium on, pages 1–12. IEEE,

2010.

[45] H.S.P. Wong, S.B. Kim, B. Lee, M.A. Caldwell, J. Liang, Y. Wu, R.G.D.

Jeyasingh, and S. Yu. Recent progress of phase change memory (pcm) and

resistive switching random access memory (rram). In Solid-State and Inte-

grated Circuit Technology (ICSICT), 2010 10th IEEE International Con-

ference on, pages 1055–1060. IEEE, 2010.

66

