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Executive Summary

The swift pace of globalization has signi�cantly increased the demand for containerized

maritime transport services. Under the atmosphere, the competition among port container

terminals has become acute and such drives the managers in port container terminals to pursue

seamless �ows of containers through terminals while to keep the operational costs as low as

possible. To this end, operations research methods have received considerable importance for

the operations management in port container terminals. From the angle of operations research

and management science, this thesis aims to design models and devise the corresponding solving

methods for the quayside operations in port container terminals. This enables port managers

to come up with viable and cost-e�ective scheduling plans for quayside operation problem in a

rapid manner.

The mathematical models introduced in this thesis have well covered each key component of

the quayside operation problem, i.e., berth allocation problem, quay crane assignment problem,

and quay crane scheduling problem. There are two highlights in this thesis with regarding to

the aimed modeling issue: 1) the technology updates and innovative implementations occurred

in the �eld have been re�ected. For instance, the quay crane scheduling problem has been

extended to the environment of indented berth, which is a noble idea to increase the ship-

to-shore interface aiming to tackle the challenge raised by the emergence of more and more

mega-containerships. 2) the integration issues to synchronize the decision-making processes

for each key component of the quayside operation problem has been stressed. In this thesis,

integrated models (including both discrete-berth and continuous-berth versions) to embrace all

the information �ow within the system of the quayside operation have been developed.

On the other hand, in the perspective of solving approaches and algorithms, a spectrum

of methods to handle the proposed models has been devised. This thesis not only contains

the meta-heuristics and approximation algorithms which are developed to generate sub-optimal

solutions for the hard-to-solved problems, but also introduces and tailors some of the excellent

methods proposed in the �eld of operation research and computer science to obtain exact so-

lutions. Taking the berth allocation problem as an example, the devised Greedy Randomized

v



Adaptive Search Procedure (GRASP) outperforms the state-of-the-art algorithms appeared in

the literature. Additionally, the GRASP algorithm possesses more �exibility than other meth-

ods, making it much easier to incorporate the decision rules of port managers into the planning

procedure. Moreover, in the path to solve the integrated models for the quayside operation

problem, after identifying the special properties of the problems at hand, the exact methods

like Combinatorial Benders' Cuts algorithm and Local Branching method have been developed

and tested to be promising methods for the complex problems through a series of comprehensive

numerical experiments.

In summary, the research presented in this thesis provides new insights of modeling the

quayside operation problem in port container terminals and introduces a set of potent tools to

handle the challenging issues rising from this �eld.
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Chapter 1

Introduction

1.1 Research Background

As the trend of globalization inevitably moves forward, world trade has risen signi�cantly during

the past decades. Since over 80% of world merchandize trade by volume is carried by sea,

the world seaborne trade has also achieved a rapid and vast growth. Figure 1.1 reveals the

evolving relationship between the growth in world GDP and seaborne trade from 1990 to 2010,

according to the report of United Nations Conference on Trade and Development (UNCTAD,

2008). Obviously, before year 2008, the booming of the world seaborne trade was remarkable.

It is reported that in 2007, international seaborne trade was estimated at 8.02 billion tons of

goods loaded. However, following the global �nancial crisis of late 2008, the year 2009 recorded

the �rst and deepest drop in global output since the 1930s, with world GDP contracting by

1.9%. Correspondingly, in year 2009, world seaborne trade declined sharply and its volume fell

by 4.5%. Thanks to the large scale of the �scal stimulus package launched by the world's leading

developed countries and the rise of the emerging countries such as China and India, a global

recovery is under way and despite a number of challenges ahead, it is optimistical to expect a

bright perspective of the world seaborne trade market in the near future.

The globalization of trade has also fuelled the strong demand of maritime transport services

particularly for containerized freight transportation, which was started in the late 1950s. Before

containerization, most general cargo was handled by building pallets and loading them into the

1



CHAPTER 1. INTRODUCTION

holds of vessels using cranes on the vessel and on the wharf. This labor-intensive process

was very slow, and goods transported were vulnerable to damage. With containers, easy and

fast handling of freight became possible. It is estimated that since 1990, container trade has

increased by a factor of �ve. According to Drewry Shipping Consultants, container trade is

forecast to double by 2016 to reach 287 million TEUs (Twenty-foot Equivalent Unit), and more

than double by 2020 to exceed 371 million TEUs.
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Figure 1.1: Indices for world economic growth and world seaborne trade (UNCTAD, 2008)

As the gateways in global containerized maritime shipping network, port container terminals

play essential roles as interfaces between maritime shipping and land transportation. Spurred

by container trade growth, port container handling activity has also increased. For example, it

is reported that the share of transshipment in total port throughput has grown from 10% in 1980

to 27% in 2007. As a result, competition to attract more ship carriers among port container

terminals has become acute especially for the geographically close container transshipment

ports such as the ports of Singapore and the Tanjung Pelepas Port of Malaysia. Facing �erce

competition, managers of many port container terminals have tried to provide more intensive

logistic services while reducing costs by utilizing e�ciently their existing resources, such as

human resources, berths, container yards, and various container handling equipments. The

2



CHAPTER 1. INTRODUCTION

looming challenges for port container terminals have triggered the need for in-depth studies

on the e�ective management of port container terminals, which includes the issues of quayside

operations and internal logistics as well as landside operations, transport connection and routing

within the surrounding area.

1.2 Port Container Terminals and Quayside Operations

In general terms, the container handling activities in a typical port container terminal can be

classi�ed into three groups in accordance with the area where the operations are taken place:

quayside operations, yard-side operations, and hinterland operations. As depicted in Figure

1.2, after its arrival at a port container terminal, a container vessel is allocated to a berth

equipped with quay cranes to load and unload containers. The unloaded import containers

are transported to the yard area by yard trucks and stacked in the designated slot by yard

cranes. The procedure of loading a container to a container vessel is done in a reverse manner.

Obviously, the decision making process to come up with a good quayside operations planning

is extremely critical for port operators due to the fact that the decision made for quayside

operations lays the foundation for the subsequent phases of planning and scheduling in other

areas of a port container terminal.

HIT

Quay Crane Yard Crane

Truck

Discharging container flow

Loading container flow

Vessel

Quayside 
Operation

Figure 1.2: Schema for container �ow in a port container terminal

There are two scarce resources that need to be utilized with care along the quay of port

container terminals, i.e., berth and quay cranes. The berth resource corresponds to a linear

3
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stretch of space in the port container terminal where vessels are able to moor. Quay cranes

are industry-standard equipment for loading and discharging containers to and from vessels.

Quay cranes are very expensive (around 10 million Singapore dollars for individual machine)

and quay cranes along the same berth are mounted on the same tracks, which forbid them

from crossing each other at any instant. Traditionally, there are three key problems needed to

be addressed for quayside operations: the Berth Allocation Problem (BAP), the Quay Crane

Assignment Problem (QCAP), and the Quay Crane Scheduling Problem (QCSP). The BAP is

the problem to determine the berthing times and berthing locations for a set of vessels within

the planning horizon by considering some factors such as the length, the expected arrival time,

and the processing time of each vessel. The QCAP, also referred to as the crane split problem, is

the decision to allocate quay cranes to container vessels with respect to the constraints of quay

crane availability and accessibility. For the QCSP, given the number of quay cranes deployed

to a certain vessel, the target of a QCSP is to assign each task in the vessel to a quay crane and

meanwhile to determine the starting times of the process for all the tasks that have been assigned

to a particular quay crane. Compared with the traditional machine scheduling problems, the

QCSP is unique in the sense that the potential of physical interference between any two quay

cranes should be avoided.

1.3 Research Objectives, Scopes, and Organization of the The-

sis

The thesis presents a comprehensive study on how to formulate the models and to develop the

corresponding solving algorithms for the problems arising from quayside operations in a typical

port container terminal. It will deliver the following outputs:

• Devise the state-of-the-art heuristic and sophisticated exact solving algorithms for the

existing models for the problems of quayside operations presented in the literature (see

the works in Chapter 3 and Chapter 6);

• Examine the weaknesses appeared in the existing models for the problems of quayside
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operations and provide the revised model and new algorithms for solution (see the work

in Chapter 4);

• Extend the existing models to cover the latest updates and/or innovations occurred in the

�eld of quayside operations and develop a more generic solution method (see the work in

Chapter 5);

• Propose new models (integration models) and e�cient algorithms to synchronize the in-

formation �ow for quayside operations (see the works in Chapter 7 and Chapter 8).

Note that although the QCAP is one of the key decisions for quayside operation. However,

as pointed out by Bierwirth and Meisel (2010), �in practice, the QCAP is not found as a di�cult

problem if solved by rules of thumb. Therefore, the problem has hardly received attention by

its own in academic research. Due to the profound impact on vessels' handling times, however,

crane assignment decisions are involved in some advanced berth planning models.� In light of

this, in this thesis, there is no intension to provide in-depth studies on the QCAP alone. On

the contrary, the QCAP will only be involved when integration models for quayside operations

are considered. Besides, all the research works presented in this thesis belong to deterministic

models. To cope with uncertainty, several concerns and suggestions are highlighted in the future

research remark in Chapter 9.

The thesis consists of 9 chapters. Figure 1.3 provides an overview for the structure for this

thesis.

Integration Problem

(Chapters 6,7,8)

BAP

(Chapter 3)

QCSP 

(Chapters 4,5)

Figure 1.3: Overview for the PhD works
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Chapter 1 is the introductive chapter which provides the general research background, the

brief introduction on quayside operations, and the objectives and scope of the thesis.

Chapter 2 reviews the literature for previous studies. The literature review is divided into

three parts: review on the BAP, the QCAP & the QCSP, and the integration models for

quayside operations.

Chapter 3 describes a study on the continuous BAP and two versions of Greedy Randomized

Adaptive Search Procedure (GRASP) are developed for solutions.

Chapter 4 proposes an improved approximation algorithm to solve the QCSP by considering

the Non-crossing Constraints.

Chapter 5 discusses the QCSP at indented berth, in which the QCSP is treated as an Unre-

lated Machine Scheduling Problem.

Chapter 6 examines the integration framework proposed in Liu et al. (2006). A new method

called Combinatorial Benders' Cuts algorithm is developed to solve the Berth-level Model

in the framework.

Chapter 7 introduces a new integration model (with respect to discrete berths) for the problem

of quayside operations.

Chapter 8 aims to develop an integrated framework (with respect to continuous berths) to

consolidate all the key information from all aspects of the problem of quayside operations.

Chapter 9 draws the concluding remarks and presents the future research suggestions under

this research topic.

6



Chapter 2

Literature Review

2.1 Literature on the BAP

There have been several studies on how to allocate berth to incoming vessels in the literature.

Basically, the BAP can be categorized into two classes: discrete BAP and continuous BAP. For

discrete version, the quay is viewed as a �nite set of berths. Usually, one berth can only serve

one vessel at a time. On the contrary, continuous BAP model allows vessels to berth anywhere

along the quay so as to su�ciently utilize the quay resource. Another criterion to classify the

BAP is based on whether all the vessels have arrived at the terminal or not before the berthing

planning starts. If all the vessels have already arrived, this type of BAP is identi�ed as static

BAP. Otherwise, it will be considered as dynamic BAP.

In Brown et al. (1994), a ship berthing plan assigning surface naval ships a berth prior to

entering port or reassigning ships once in port, was carried out. An MIP was formulated to

maximize the ship-to-berth assignment bene�ts and solved by GAMS. In Brown et al. (1997),

the authors tried to seek an optimal berthing plan for submarines by considering the shore

power limitation and speci�c service facilities for each submarine etc. To deal with change of

berthing plan, a persistence incentive was incorporated into the model and helped to minimize

revisions to an approved plan. For the studies of Brown et al., however, are only suitable for

naval ports since for commercial ports, parallel mooring and shifting of vessels are rare.

In Imai et al. (1997), discrete static BAP was formulated to minimize the sum of port stay-
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ing times of vessels and the dissatisfaction of the vessels in terms of the berthing order. A

weighted method was proposed to identify a set of non-inferior solutions. Unlike Imai et al.

(1997), in Imai et al. (2001), a dynamic version BAP was introduced. In the study, the ar-

rival time of some vessels was known in advance, but could be later than the beginning of the

planning horizon. Incorporating this consideration into the BAP complicates the model but

will achieve more practicable solutions for port operators. To solve the problem, a Lagrangian

relaxation was proposed. As a related work, in Monaco and Sammarra (2007), a stronger for-

mulation for the BAP introduced by Imai et al. (2001) was discussed. The compact formulation

of the BAP, was solved by Lagrangian relaxation with a non-standard multiplier adjustment

method. The reported numerical results in the study shown the e�ectiveness and e�ciency of

the proposed algorithm. In Nishimura et al. (2001), dynamic BAP with water draft constraints

and consideration of multiple vessels in a berth at a time, was modeled as a non-linear inte-

ger programming problem. Due to the computational intractability, the entire problem was

divided into several sub-problems and Genetic Algorithm (GA) was employed sequentially to

each subproblem. For Imai et al. (2003), service priority issue in BAP was highlighted. The

authors provided a generic formulation for BAP with service priority by introducing weight for

each incoming vessels, where the weight could be measured by vessel size, handling volume, etc.

Subgradient method with a Lagrangian relaxation technique was �rstly examined. However,

because of the problem complexity, a more e�cient GA (as the one used in Nishimura et al.

(2001)) was applied. A continuous BAP was considered in Imai et al. (2005), which was solved

by a heuristic. To obtain a continuous BAP scheme, at the �rst stage of the heuristic, discrete

BAP could be employed to provide a good guide (upper and lower bounds for the continuous

counterpart). The second part was crucial for the proposed algorithm since it relocated the

vessels to produce a valid berthing plan. In Imai et al. (2007), BAP was extended to indented

berths for mega-containerships. At �rst, the authors rewrote the formulation of the problem

proposed in Nishimura et al. (2001), modifying the original non-linear integer programming for-

mulation to a linear integer programming one. However, at most two vessels were allowed to be

served at the same berth simultaneously. Then, mega-containership was added into the model

and assigned the highest priority which guaranteed that mega-containership would be served
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without any delay. When no more mega-containerships would be serviced, the indented berths

could be used to handle feeder ships. A corresponding model was also formulated to capture

this situation. A GA-based heuristic was used to �nd the near optimal solutions. In Imai et al.

(2008b), the authors examined the BAP under exceptional circumstances that due to limited

quay capacity, some vessels with longer expected waiting time for service would be allocated

to an external terminal. Both static and dynamic versions of the problem were examined and

solved by GA.

In Li et al. (1998), BAP was treated as a machine scheduling problem with �multiple-job-

on-one-processor� pattern. Herein, the processor is the berth while the multiple jobs are the

vessels. An important constraint for the scheduling problem was that the total size of the jobs

being processed could not excel the capacity of the processor (the length of the berth) at any

time. Cases of ��xed location� and �non-�xed location� for BAP were studied. For each case, the

heuristic based on First-Fit-Decreasing rule was developed. Meanwhile, the worst-case behavior

for the heuristics was analyzed as well. For the rolling horizon situation, the problem with

processor unavailability was addressed. There are two main limitations of the study: �rstly, the

arrival times of each vessels are not taken into account and secondly, the �agreeable� assumption

(i.e., larger vessel will require more work) is not always valid in reality. In Guan et al. (2002),

BAP was modeled as a multiprocessor task scheduling problem. The objective was to minimize

the sum of weighted completion time for all vessels. A greedy heuristic was developed and the

worst case analysis was also carried out for the proposed method. In Guan and Cheung (2004),

the authors proposed a heuristic to handle continuous BAP for batch arriving vessels. At �rst,

the greedy heuristic in Guan et al. (2002) was employed to allocate vessels in the same batch

(i.e., a group of vessels with the same arrival time). Thereafter, between any two consecutive

batches, the exchange of vessels was performed as long as the exchange could achieve a better

objective value. Finally, an exact tree search procedure was applied for each of the resulting

batches.

In Lim (1998), the continuous BAP was represented by a graph (with directed and undirected

edges) and transformed into a problem of setting the direction of undirected edges in the graph

such that the graph became directed acyclic and the longest path in the graph was minimized.
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A heuristic was designed for �xing the edge direction in the graph representation of BAP to

create a directed acyclic graph with the minimum longest path. One drawback of the study

is that the beginning time of berthing for a vessel should always equal to its arrival time;

therefore the delay of berthing for the vessels is not allowed. In Tong et al. (1999), an Ant

Colony Optimization was adopted for the BAP introduced in Lim (1998), by representing the

solution of BAP as a vertex permutation. For Wang and Lim (2007), a Stochastic Beam Search

(SBS) was proposed for continuous BAP. The procedure was divided into N levels, where N

was the number of incoming vessels. At each level, there were 3 node sets�R, U , and B. Set R

was the node set generated by Set B in previous level; Set U was the node set generated from

Set R by draft selection; Set B was the node set generated from Set U by detail selection. For

selection scheme, the authors proposed the stochastic selection. In their numerical experiments,

the SBS algorithm outperformed Simulated Annealing (SA) proposed in Dai et al. (2007) for

continuous BAP.

Park and Kim (2002) addressed a continuous BAP by the Lagrangian relaxation technique.

Unlike the works of Imai et al, the objective of the study was to minimize two kinds of costs:

the costs resulting from delayed departures of vessels and the additional handling costs resulting

from deviations of the berthing position from the favorite location on the berth. Medium sized

numerical experiments (less than 20 vessels) were tested and showed the applicability of the

proposed method. Kim and Moon (2003) tackled the same problem as the one in Park and Kim

(2002). The method applied was SA. To decode a sequence of vessels (the coding scheme of one

feasible solution in SA) into a solution, the properties of optimal solution for continuous BAP

was examined by reducing the BAP to a sum minimization problem of a single facility under

the rectilinear distance measure.

In Cordeau et al. (2005), a dynamic discrete BAP was formulated as a Multi-Depot Vehicle

Routing Problem with Time Windows. Compared with the formulation in Imai et al. (2001),

the formulation proposed by Cordeau et al. (2005) for BAP possessed more �exibility since it

could easily accommodate a weighted sum of the vessel service times and time windows. A

time based Tabu search was used to solve the BAP. To extend the work into a continuous case,

an adjusted segment length scheme was proposed based on the vessel length distribution in
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Medcenter Container Terminal.

In Dai et al. (2007), a berthing plan was encoded by a sequence pair (H,V). With a �xed

sequence pair, BAP was separated into two independent subproblems, namely time cost min-

imization subproblem and space cost minimization subproblem. To obtain the near optimal

solution, an SA algorithm was used to search through the space of all possible (H,V) sequence

pairs. In Moorthy and Teo (2006), the decomposition idea for BAP in Dai et al. (2007) was

adopted to generate a robust berth management plan. Based on the conclusion in the time

cost minimization subproblem in Dai et al. (2007), the estimation of the expected delays was

analyzed and used to o�er a robust BAP solution compared with the deterministic version.

In Hansen et al. (2008), a Minimum Cost Berth Allocation Problem was modeled and solved

by the Variable Neighborhood Descent heuristic.

In Lee and Chen (2009), a candidate-based approach was developed to handle BAP by

incorporating some di�erent considerations such as vessel shifting and the clearance distance

between vessels which depended on the order of berthed vessels. A three-stage heuristic was

proposed to solve the BAP.

Finally, it is noted that apart from the aforementioned analytical models for BAP, simulation

techniques have also been applied to handle the problem, such as the works by Legato and Mazza

(2001) and Henesey et al. (2004).

2.2 Literature on the QCAP and the QCSP

Over the decades, the QCSP has received great attention. In Daganzo (1989), static and dy-

namic quay crane scheduling problems for multiple container vessels were studied. The objective

was to serve all these container vessels, while minimizing their aggregate cost of delay. Fur-

ther, Peterkofsky and Daganzo (1990) developed a Branch and Bound (B&B) method for the

static quay crane scheduling problem. However, in both studies, the berth length was assumed

to be unlimited and especially, the Non-crossing Constraints between quay cranes were not

considered, which may cause quay cranes unrealistically cross over each other during the the

operations.
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In Lim et al. (2004a), the authors examined the QCSP with spatial and separation con-

straints for a single container vessel. The problem was represented by a bipartite graph match-

ing problem by de�ning quay cranes and bay jobs as vertices and crane-to-job throughput as

the weights of connecting edges. DP algorithms, a Tabu search, and a Squeaky Wheel Opti-

mization Heuristic were proposed for solving the QCSP with spatial constraints. Nevertheless,

the study was su�ered by the de�ciencies such as: the de�nition of the pro�t value associated

with a crane-to-job assignment and the lack of time component in the model. Lim et al. (2004b)

analyzed the properties of the QCSP with Non-crossing Constraints for a single vessel. Based

on the study, a full polynomial time approximation scheme was proposed to solve the QCSP

with Non-crossing Constraints. Besides, three approximation algorithms were also provided in

this study. In Zhu and Lim (2006), the study on the QCSP with Non-crossing Constraints was

also conducted. In the study, the authors assumed that vessel could be divided into holds and

that quay cranes could move from hold to hold but jobs were not pre-emptive. The problem

was formulated as an MIP problem and solved by a B&B algorithm and an SA heuristic. As

a summary work of previous studies, Lim et al. (2007) presented the numerical experiment

results by applying the proposed algorithms for the QCSP with Non-crossing Constraints. In

the paper, a backtracking algorithm was introduced which was inspired by the study in Lim

et al. (2004b).

Kim and Park (2004) addressed a QCSP for single container vessel by formulating the

problem as an MIP. In this model, the authors considered the Non-crossing and the Precedence

Constraints for the QCSP. A B&B method and a GRASP heuristic were proposed for the

solution. As a related work, Moccia et al. (2006) examined the problem formulation structure

of Kim and Park (2004) and managed to ameliorate the mathematic model. Meanwhile, a more

e�cient B&C algorithm was developed. Based on Moccia et al. (2006), Sammarra et al. (2007)

developed a Tabu search heuristic for the same problem. The QCSP was decomposed into two-

level problems: routing and scheduling problems. Given the feasible results of upper problem

(routing problem), the scheduling problem was equivalent to the searching of the longest path in

a disjunctive graph constructed by considering the precedence and non-simultaneity constraints.

Instead of enumeration, a local search approach was used to �nd the near-optimal orientation
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of the disjunctive graph. The upper level problem was solved by a Tabu search heuristic. Two

neighborhood generation operators�swapping adjacent tasks and insertion, were discussed.

The e�ectiveness of the proposed heuristic was assessed by comparison with the B&C algorithm

in (Moccia et al., 2006) and GRASP in (Kim and Park, 2004). Bierwirth and Meisel (2009)

designed a heuristic to solve QCSP in a unidirectional manner. Similar to Sammarra et al.

(2007), the idea to decompose the QCSP into easier subproblems (routing and scheduling) was

also applied by Bierwirth and Meisel (2009). In contrast to Sammarra et al. (2007), in its

routing subproblem, the sequences of tasks assigned to all quay cranes should be ordered by

their stored locations in either an ascending or a descending way.

Ng and Mak (2006) discussed the problem of scheduling identical quay cranes moving along

a common linear rail to handle containers for a vessel. Compared with the works of Lim et al.,

the uniqueness of this study was that the jobs in each bay were distinguished into discharging

jobs and loading jobs, which should follow the precedence relationship. Due to the intractability

of the problem, the authors suggested a scheduling heuristic. The philosophy of this heuristic

was quite similar to the idea of approximation algorithms in Lim et al. (2004b). The di�erence

is that in Ng and Mak (2006), each subproblem was equivalent to a single quay crane to process

jobs with sequence-dependent process times while in Lim et al. (2004b), the jobs handled by a

single quay crane were sequence-independent.

In Lee et al. (2008), an MIP model for the QCSP with Non-crossing Constraints was stud-

ied. The authors discussed the computational complexity of the QCSP with Non-crossing

Constraints and they drew the conclusion that the problem was naturally NP-complete. And

for the solution, a GA was proposed for near optimal results.

For Tavakkoli-Moghaddam et al. (2009), this work was an extension of Kim and Park (2004).

Although several vessels were taken into account, like Daganzo (1989), all the vessels had already

arrived at the harbor and berthed along the quay side. Therefore, to some extent, the study

also focused on a single �vessel� consisting of several vessels.
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2.3 Literature on the Integration Models

The three problems related to the quayside operations are highly interrelated based on the

observation that the output of the BAP is the key input for the QCAP and the QCSP, while after

solving the QCAP and the QCSP the processing times for all the vessels would be updated to

more realistic values and this triggers another round of problem solving for the BAP (see Figure

2.1). However, to deal with a complex system like a port container terminal, the conventional

approach to handle the quayside operation problem is to solve the BAP, the QCAP, and the

QCSP in a sequential manner. Such a decomposition method has disadvantages since the

optimization of individual subproblems does not guarantee the overall e�ciency of container

terminal operations; besides, solving the quayside operation problem by decomposition method

may generate infeasible solutions and several runs of time-consuming adjustment should be

executed to seek a feasible plan.

Figure 2.1: Relationship between the BAP and the QCAP & QCSP

Thereby, due to such a de�ciency, in recent years, more and more researchers have been aware

that improved terminal performance cannot be achieved by solving isolated problems alone but

by pursuing the integration model to embrace all key components. For quayside operations, the

pioneer work for integration can date back to Park and Kim (2003). The proposed method in

Park and Kim (2003) was two-phased. In the �rst phase, an integer programming model was

formulated to obtain the berth allocation plan and also the total number of quay cranes that

should be assigned to each vessel. Subsequently, in the second phase, the detailed assignment

for individual quay crane was solved by a DP method to match the information of the total
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number of quay cranes assigned to each vessel realized in the previous phase. To facilitate the

modeling in the �rst phase, the authors simpli�ed the problem by assuming that the duration

of berthing of a vessel was inversely proportional to the total number of quay cranes assigned

to the vessel. However, the linearity assumption was over-simpli�ed and did not agree with

practice.

Liu et al. (2006) proposed a two-leveled framework to integrate quayside operations. The

plausible idea presented in Liu et al. (2006) was that instead of assuming a function relationship

between the processing time of a vessel and the number of quay cranes assigned to it, the authors

introduced a series of parameters pvj , i.e., the processing time of vessel j when v quay cranes

were assigned to it, to explicitly represent the complex relationship. For each v and j, the value

of pvj was the optimal value of the Vessel-level Model, which was essentially a QCSP. Therefore,

by parameterizing pvj , the QCSP could be detached from the integration model for the problem

of quayside operations and only the BAP and the QCAP needed to be combined and they

were solved seamlessly in the Berth-level Model. However, the integration model presented in

Liu et al. (2006) needed further improvement since in the Berth-level Model, the information

of berth positions for all vessels was �xed and initialized by the output of an upper decision

making problem.

Imai et al. (2008a) developed a simultaneous berth and quay crane allocation model. In this

work, the authors assumed that �ship handling requires a speci�c number of cranes and it does

not begin till that number of cranes are available�. However, compared with industrial practices,

this assumption was not pragmatic. As identi�ed by the authors, such a methodology could

only provide an upper bound for the genuine integration model for the problem of quayside

operations.

Meisel and Bierwirth (2009) devised a new model formulation to address the de�ciency of

the study in Park and Kim (2003) by substituting the linearity assumption with a more realistic

quay crane resource utilization function. In the resource utilization function, the authors used

a prede�ned interference exponent α to re�ect the impact of interference of quay cranes when

they were all assigned to one vessel. Speci�cally, the productivity obtained from assigning v

cranes to a vessel for one hour was measured by a total of vα quay crane hours. Although
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compared with Park and Kim (2003), this model presented in Meisel and Bierwirth (2009) had

gained more advanced features, the approach might not be able to capture the real magnitude

of interference of quay cranes when they were assigned to the same vessel.

For other works on the integration model for the problem of quayside operations, see the

discussions and references in Bierwirth and Meisel (2010).
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Chapter 3

Greedy Randomized Adaptive

Search Procedure for Continuous

Berth Allocation Problem

3.1 Background

To handle the continuous dynamic BAP, in the literature, several heuristics have been employed

such as Ant Colony Optimization (Tong et al., 1999), SA (Kim and Moon, 2003; Dai et al.,

2007), Tabu search (Cordeau et al., 2005), and SBS (Wang and Lim, 2007). According to the

numerical experiments in Wang and Lim (2007), SBS outperforms the current state-of-the-art

meta-heuristic such as the SA proposed in Dai et al. (2007). As an alternative, GRASP is

developed in this study to handle the continuous dynamic BAP and its e�ectiveness will be

assessed by comparisons with CPLEX and SBS. Additionally, one of the missing issues on how

to identify the possible locations in the Time-space Diagram where next vessel can be placed

existed in (Guan and Cheung, 2004) and (Wang and Lim, 2007), is addressed. Instead of

exhaustive enumeration, a more e�cient method is proposed.
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3.2 Problem Description

For the continuous dynamic BAP, the mathematical formulation in Guan and Cheung (2004)

is followed. In this formulation, vessel shifting is not considered since the interruption of the

container handling is usually costly.

3.2.1 Parameters

• S, the length of the continuous berth

• T , the length of the planning horizon

• n, the number of vessels, n = |V |

• pi, the processing time for Vessel i, i ∈ V

• si, the size of Vessel i, i ∈ V

• ai, the arrival time of Vessel i, i ∈ V

• wi, the weight assigned for Vessel i, i ∈ V

It is noted that si has included the requested gap between the adjacent vessels. And wi is

determined by port operators to represent the factors such as the priority for each Vessel i.

3.2.2 Decision variables

• ui, the mooring time of Vessel i, i ∈ V

• vi, the starting berth position occupied by Vessel i, i ∈ V

• ci, the departure time of Vessel i, i ∈ V

• xij ∈ {0, 1}, equals to 1 if and only if Vessel i is completely on the left of Vessel j in the

Time-space Diagram

• yij ∈ {0, 1}, equals to 1 if and only if Vessel i is completely below Vessel j in the Time-

space Diagram
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The solution of continuous BAP can be depicted in a Time-space Diagram where the allo-

cation plan for each vessel is represented as a rectangle. Hereafter in this chapter, the terms,

�vessel� and �rectangle� will be used interchangeably. As shown in Figure 3.1, the berthing plan

for 3 incoming vessels is illustrated. In this example, x12 = x21 = x31 = x32 = 0, x13 = x23 = 1,

and y13 = y21 = y23 = y31 = y32 = 0, y12 = 1.

1

2

Berth Position

Time

SSv3 + s3v3 + s3
v3v3 3

u3u3 c3 = u3 + p3c3 = u3 + p3TT
Figure 3.1: Time-space Diagram for a continuous BAP

3.2.3 Mathematical formulation

The mathematical formulation for the continuous dynamic BAP can be given as following:

min
∑
i∈V

wi(ci − ai) (3.1)

s.t.

uj − ui − pi − (xij − 1) · T ≥ 0, ∀ i, j ∈ V, i ̸= j (3.2)

vj − vi − si − (yij − 1) · S ≥ 0, ∀ i, j ∈ V, i ̸= j (3.3)

xij + xji + yij + yji ≥ 1, ∀ i, j ∈ V, i ̸= j (3.4)

xij + xji ≤ 1, ∀ i, j ∈ V, i ̸= j (3.5)

yij + yji ≤ 1, ∀ i, j ∈ V, i ̸= j (3.6)
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pi + ui = ci, ∀ i ∈ V (3.7)

ai ≤ ui ≤ (T − pi), 0 ≤ vi ≤ (S − si), ui, vi ∈ ℜ+ ∀ i ∈ V (3.8)

xij ∈ {0, 1}, yij ∈ {0, 1}, ∀ i, j ∈ V, i ̸= j (3.9)

In this formulation, the objective is to minimize the sum of weighted turnaround time for each

incoming vessel. Constraints (2) and (3) give the de�nition of the decision variables xij and yij ,

respectively. Constraints (4) to (6) guarantee that Vessel i and Vessel j do not overlap in the

Time-space Diagram. Constraints (7) show the relationship between the completion time (ci)

and the mooring time (ui) for Vessel i. Constraints (8) and (9) de�ne the feasible domains for

decision variables ui, vi, xij , and yij .

In Lim (1998), continuous BAP has been proved to be NP-complete. Hence, there is no

e�cient exact algorithm to solve BAP especially for large scale instances. However, one of the

properties of the continuous BAP with the formulation described above, has been emphasized

and applied to develop e�ective heuristics for the continuous BAP (Kim and Moon, 2003; Guan

and Cheung, 2004; Wang and Lim, 2007).

Proposition 3.2.1. There exists an optimal solution in which for a Vessel j,

1. either be berthed at its arrival time (uj = aj) or immediately after the completion time

for some Vessel i (uj = ui + pi);

2. either be allocated at lower or upper boundary of the berth (vj = 0 or vj = S − sj) or to

the adjoining regions for some Vessel i (vj = vi + si or vj = vi − sj).

To see the proof of the Proposition 3.2.1, please refer to Guan and Cheung (2004). Nev-

ertheless, compared with the statement of the proposition in Guan and Cheung (2004), more

comprehensive description on the property is o�ered in this research particularly for item (2).

In Guan and Cheung (2004), only vj = 0 or vj = vi + si, for some Vessel i, is considered. Thus,

in Guan and Cheung (2004), to search the possible locations in the Time-space Diagram where

the next rectangle can be placed is intuitive since the contour of the packed vessels forms a

stair and searching the possible locations for next vessel is equivalent to identify the steps of
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the stair. However, in accordance with the restated proposition 3.2.1, how to �nd out the exact

number of possible locations for next vessel is actually not trivial. Figure 3.2 demonstrates the

oversimpli�cation on the issue in Guan and Cheung (2004). According to Guan and Cheung

(2004), the number of possible locations for Vessel 3 to place in the Time-space Diagram is just

3 (Figure 3.2.(a)). However, based on the restated Proposition 3.2.1 (Figure 3.2.(b)), beside

Locations a, b, and c, Location d should be taken into account as well.

Berth Position

Time

1

2

a

b

c

3

a3a3

Berth Position

Time

1

2

a

b

c

3

a3a3
d

(a) (b)

Figure 3.2: Possible locations to place next vessel

3.3 Method to Identify the Possible Locations in the Time-

space Diagram

For heuristics (Kim and Moon, 2003; Guan and Cheung, 2004; Wang and Lim, 2007) proposed

for solving the continuous BAP, a fundamental procedure for the algorithms is to construct a

feasible solution. In the literature, the common strategy applied is the list insertion method.

Given a list of all the incoming vessels, the algorithms try to insert the vessels orderly into

the Time-space Diagram following the Proposition 3.2.1. During the procedure of insertion,

an arising problem is how to determine the possible locations for next vessel by using the

Proposition 3.2.1. As mentioned at the end of Section 3, Guan and Cheung (2004) addressed

the issue by counting the step number of the stair shaped by the packed vessels in the diagram.

However, this measure is not perfect since it is possible to �lter out some potential locations for
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next vessel. In fact, to identify all the possible locations in accordance with the Proposition 3.2.1

is a challenging problem, because as the number of packed rectangles increases, the con�guration

formed by the packed rectangles becomes more and more complicated. Figure 3.3 shows a case

which reveals the di�culty to identify all the possible locations for next vessel (i.e., Vessel 5) by

using the Proposition 3.2.1. In this example, the arrival times for Vessels 1, 2, and 3 are equal

to 0 (a1 = a2 = a3 = 0) and a4 and a5 are shown in the time axis. The previous 4 packed vessels

plus the arrival time of Vessel 5, a5, con�ne the possible domains for Vessel 5 to be allocated

into two holes (the regions encircled by wave line). In light of the Proposition 3.2.1, inside the

two holes, there are 6 possible locations for Vessel 5.

1

2

Berth Position

Time

SS
3

4

a4a4 a5a5
5

00 TT
Packing position for Vessel 5

Figure 3.3: The possible locations for Vessel 5

A similar issue on how to report all the possible locations for next rectangle also occurs

for Bin-packing Problem. Chazelle (1983) developed an e�cient algorithm to identify all the

possible locations where next rectangle can be placed for Bottom-left Bin-packing Heuristic.

Firstly, the author de�ned certain special vertices and edges for a hole. Based on the property

of Bottom-left Heuristic, �rstly a hole in the Bin-packing Problem was divided into several sub-

holes (see Figure 3.4). Then a �spring� device was used to test the feasibility of each sub-holes

and report the possible locations for next rectangle.
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L1

L2

L3

H1

H3
H2

Q2

Q1

Figure 3.4: Separating the hole into 3 sub-holes

Nevertheless, in the continuous BAP, according to the Proposition 3.2.1, a hole in the

Time-space Diagram is arbitrary enough that the property of Bottom-left Heuristic in Chazelle

(1983) may not always hold. Hence, the algorithm proposed by Chazelle (1983) cannot be

directly implemented in this research. However, the idea in Chazelle (1983) to classify the

vertices of the holes provides some hints to construct an e�cient method to solve the problem

in the continuous BAP.

Before starting to describe the procedures of the proposed method, 4 terms will be clari�ed

at �rst:
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C D
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(a) (b)

anan anan

Figure 3.5: Nodes and vertices in the Time-space Diagram

• Node: Given the expected arrival time of current candidate Vessel n, and the boundary

of the Time-space Diagram, a rectangle area can be de�ned to bound the possible region
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for Vessel n to place (in the case of Figure 3.5(a), the rectangle is ABCD.). For all the

packed vessels, they are either completely covered by ABCD or intersected with it. For

the later situation, the rectangle of the packed vessel will be trimmed and the portion

inside of ABCD will be considered only for the rest procedures. For packed Vessel i (or

part of Vessel i) inside of ABCD, it will be associated with 2 horizontal segments and 2

vertical segments. Speci�cally, the two horizontal segments are s = vi and s = vi + si;

while the two vertical segments are t = ui and t = ui + pi (for trimmed vessel, the two

vertical segments are t = an and t = ui + pi instead). Group all the horizontal segments

of the packed vessels as a horizontal segment set and denote it as H. In the same manner,

create a set V for all the vertical segments. For set H, if segments s = 0 and/or s = S

are not included, add them into set H; for set V, if segments t = an and/or t = T are not

included, add them into set V. A node in this method is de�ned as the intersection

point between any horizontal segment in H and any vertical segment in V (as

shown in Figure 3.5(a)).

• Hole: A hole is a closed area inside of ABCD which has not been occupied by any vessel

so far. See Figure 3.5(b).

• Vertex: The term vertex is short for the vertex of a hole. A vertex is a special node in

the Time-space Diagram.

• Edge: The edge of a hole.

F
2 1

3 4

Figure 3.6: The 4 quadrants of Node F in Figure 3.5(b)

It can be observed that all nodes in the Time-space Diagram can be categorized into di�erent

groups after assigning a 4-element vector to each of them. The following describes how to assign
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4-element vectors. For a node in the Time-space Diagram, the vicinity around the point can

be divided into 4 quadrants, which are numbered increasingly in an anticlockwise direction (see

Figure 3.6). For each quadrant, if the quadrant is impossible to provide room to pack any

arbitrary rectangle, a number �0� will be tagged to the quadrant. Otherwise, number �1� will

be chosen instead. For the case in Figure 3.6, since only Quadrant 3 is possible to pack another

rectangle, a 4-element vector [0, 0, 1, 0] will be associated with the Node F. Note that the value

of ith element of the vector represents the status of the Quadrant i.

After the assignment of vectors, the nodes can be classi�ed into 5 groups according to the

sum of the corresponding vectors. For example, the Node F in Figure 3.6 will be grouped into

Class 1 since the sum of [0, 0, 1, 0] is equal to 1. The following lists the vectors belonging to

each class.

• Class 0: [0, 0, 0, 0];

• Class 1: [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1];

• Class 2: [1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1];

• Class 3: [1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1];

• Class 4: [1, 1, 1, 1].

The vertices of the holes are the pivots of the method. From Figure 3.5(b), it is clear that all

the nodes in Class 1 and Class 3 are the vertices, and the nodes in Class 2 with vectors [1, 0, 1, 0]

and [0, 1, 0, 1] (e.g., Node J in Figure 3.5(b)) also belong to the vertices of the holes. Actually,

a node in Class 2 with vector [1, 0, 1, 0] or [0, 1, 0, 1] can be treated as the combination of two

di�erent but overlapping nodes in Class 1. For a node with [1, 0, 1, 0], it can be separated into

two overlapping nodes with [1, 0, 0, 0] and [0, 0, 1, 0]; for a node with [0, 1, 0, 1], it serves the same

function as two Class 1 nodes with [0, 1, 0, 0] and [0, 0, 0, 1]. Taking Node J in Figure 3.5(b) as

an example, it can be decomposed into two nodes associated vectors [1, 0, 0, 0] and [0, 0, 1, 0],

respectively. Hereafter, every node in Class 2 with vector [1, 0, 1, 0] or [0, 1, 0, 1] will be treated

as two overlapping nodes in Class 1 in the Time-space Diagram. Consequently, the set of
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vertices is equivalent to the nodes in Class 1 and Class 3 after the treatment of

nodes in Class 2.

In light of the Proposition 3.2.1, two sorts of nodes are associated with the possible locations

for next vessel. The �rst kind is the nodes in Class 1 with vector [1, 0, 0, 0] and [0, 0, 0, 1] (see

Figure 3.7, Nodes I and Q); the other part is related to the nodes in Class 3 (see Figure 3.7,

Nodes G, H, and O). For the nodes in the second part, the following will provide the rules to

identify them.

Hole1
G H

O

Hole1

I

Q
Node in Class 1 with [1,0,0,0] or [0,0,0,1]

Node in Class 3 with [1,0,1,1] or [1,1,0,1]
Node in Class 3 with [1,1,1,0] or [0,1,1,1]
Next vessel in the Time-space diagram

Figure 3.7: The nodes associated with possible locations for Hole 1 in Figure 3.5(b)

For a node with [0, 1, 1, 1] or [1, 1, 1, 0] (e.g., Nodes G and O in Figure 3.8), a leftward

extension segment will be added and intersected with the boundary of holes; for a node with

[1, 0, 1, 1] (e.g., Node H in Figure 3.8), it will generate a downward segment while for a node

with [1, 1, 0, 1], an upward segment started from the node will be generated. Two kinds of

intersection nodes will be highlighted in this procedure. The �rst kind of intersection nodes are

the intersection points between the extension segments and the edges of the holes (e.g., Nodes

R, T, and W in Figure 3.8). The second type of intersection nodes are the intersection points

between the extension segments of node with [1, 1, 1, 0] and node with [1, 0, 1, 1] (like Node U in

Figure 3.8), or between the extension segments of node with [0, 1, 1, 1] and node with [1, 1, 0, 1].

Group the �rst kind of intersection nodes in the set I1; for the second kind of intersection nodes,

group them in the set I2.
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Table 3.1: Vector updating rules for the nodes in (I1
∪

I2)

For nodes in I1 For nodes in I2
a bI1 a1, a2 bI2

[0, 1, 1, 1] =⇒ [0, 0, 0, 1]
[1, 0, 1, 1] =⇒ [1, 0, 0, 0] [1, 0, 1, 1], [1, 1, 1, 0] =⇒ [1, 0, 0, 0]
[1, 1, 0, 1] =⇒ [0, 0, 0, 1] [1, 1, 0, 1], [0, 1, 1, 1] =⇒ [0, 0, 0, 1]
[1, 1, 1, 0] =⇒ [1, 0, 0, 0]

The intersection points 
of the extension 
segments of the nodes 
in Class 3

The intersection points 
between the extension 
segments of the nodes 
in Class 3 and the edge 
of the holes

The extension 
segments of the nodes 
in Class 3

R G: [0,1,1,1] H: [1,0,1,1]

T U

O: [1,1,1,0]

W

Hole1

Figure 3.8: The extension segments of nodes in Class 3 and the intersection nodes

After identifying all the intersection nodes, their corresponding vectors will be updated

according to Table 3.1. For a node in I1, if it is the ending point of an extension segment

generated by a node with vector a, then its vector will be changed to vector bI1 . For example,

for the Node R in Figure 3.8, its vector will be changed from [1, 0, 0, 1] to [0, 0, 0, 1], since Node

R is the ending point of an extension segment generated by Node G with vector [0, 1, 1, 1]. For

a node in I2, if the two intersected extension segments are generated from nodes with vectors

a1 and a2, then the new vector for the intersection node will be bI2 . In the case of Node U in

Figure 3.8, its vector will be updated from [1, 1, 1, 1] to [1, 0, 0, 0] as the vectors of Node H and

Node O are [1, 0, 1, 1] and [1, 1, 1, 0], respectively.

So far, the potential nodes in the Time-space Diagram which may be associated with possible

locations for next vessel have been identi�ed (speci�cally, the nodes in Class 1 with vector

[1, 0, 0, 0] and [0, 0, 0, 1] and the nodes in I1
∪

I2) and updated their corresponding vectors if

necessary. However, taking the information of next vessel into account (such as the length of
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the vessel, the berthing time of the vessel), packing next vessel in the available quadrant of

a potential node may overlap with other packed vessels or violate the optimal conditions as

stated in the Proposition 3.2.1. Therefore, for each potential node, feasibility and optimality

tests should be carried out.
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Figure 3.9: Feasibility and optimality test for Hole 1 in Figure 3.5(b)

Figure 3.9(a)-3.9(g) show the feasibility and optimality tests for the potential nodes when

next vessel is Vessel i. In Hole 1, there are 3 nodes in Class 1 with [1, 0, 0, 0] and [0, 0, 0, 1] (i.e.,

Nodes Q, I, and E) and 4 nodes in I1
∪

I2 (i.e., Nodes R, T, U, and W). Among the 7 nodes,

only cases (a), (b), (d), and (f) pass the feasibility and optimality tests. In cases (c), (e), and

(g), Vessel i overlaps with some of the packed vessels. When next vessel is Vessel j, Figure
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3.9(h) shows a case in which feasibility condition is satis�ed but the optimality condition does

not ful�ll. In Figure 3.9(h), packing Vessel j at the 1st quadrant of Node U does not overlap

with other packed vessels. However, since the size of Vessel j is less than |HU | and the rectangle

can slide leftward to reduce cost, packing Vessel j at this location is not optimal according to

the Proposition 3.2.1.

The method to identify the possible locations for next vessel by using the Proposition 3.2.1

is summarized as follows:

Step 1: Input the information of packing locations for the previous (n− 1) vessels and next vessel

(Vessel n), such as the arrival time an, the processing time pn, and vessel length sn.

Step 2: Identify the nodes within ABCD (see Figure 3.5(a)) and classify them into 5 groups. If

the set of nodes in Class 2 is not empty, for each node with vector [1, 0, 1, 0] or [0, 1, 0, 1]

in Class 2, separate it into two di�erent but overlapping nodes in Class 1.

Step 3: Group all the nodes in Class 1 with vector [1, 0, 0, 0] and [0, 0, 0, 1] as a node set C1; group

all the nodes in Class 3 into a node set C3.

Step 4: For each node in C3, an extension segment will be generated from it and ended at the

boundary of the holes. Identify the two kinds of intersection points and store them in the

sets I1 and I2, respectively. Update the vector for each node in I1
∪

I2.

Step 5: Carry out feasibility and optimality tests for each node in C1
∪

I1
∪

I2. Each node passing

the tests will be associated with a possible location for next vessel, by packing Vessel n

at the available quadrant of it.

Compared with the exhaustive enumeration approach (see Figure 3.5(a), non-overlapping

test and the check of optimal conditions will be carried out for each node within ABCD), the

performance of the proposed method is shown in Table 3.2. For the 6 numerical experiments,

the berth length S = 100, the size, processing time, and arrival time of the n vessels follow

discrete uniform distributions U(6, 50), U(20, 80), and U(0, 50) respectively. In a greedy way,

the previous (n−1) vessels are packed and the two approaches are tested by inserting the Vessel
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Table 3.2: The performance of proposed method compared with exhaustive enumeration

Number of Enumeration approach Proposed method

vessels, n Possible locations CPU time (s) Possible locations CPU time (s)

51 3 8.125 3 0.0469
101 9 62.672 9 0.0938
151 3 161.657 3 0.188
201 10 297.594 10 0.234
251 7 536.672 7 0.359
301 10 740.641 10 0.438

n. Both methods are coded in Matlab and all the experiments are executed in a Pentium (R)

IV PC with 3.00 GHz CPU 2.00 GB of RAM. From Table 3.2, it is obvious that the proposed

method can identify all the possible locations for next vessel, but be executed in a highly e�cient

way.

3.4 GRASP for the Continuous BAP

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start metaheuristic which

was developed in the late 1980s to solve combinatorial problems. In the �eld of port operation,

Kim and Park (2004) used GRASP to solve the QCSP. The framework of GRASP consists of

two phases in each iteration: construction and local search. The pseudo code for GRASP is

illustrated in Table 3.3. In the solution construction phase, candidate elements are inserted into

the partial solution iteratively until a complete solution is constructed. The selection of the

next element for insertion is determined by the evaluation of all candidate elements according

to a greedy evaluation function (Resende and Ribeiro, 2003). In the second phase of GRASP,

a local search technique is used to replace the current solution by a better solution in the

neighbourhood of the current solution. The best solution is always updated at the end of the

iteration. The procedure will be terminated until one of the stopping conditions is satis�ed.

For the continuous BAP, two versions of GRASP are designed to obtain the near optimal

solutions. The �rst GRASP (called GRASP_1) follows the rule of ��rst-come-�rst-pack� to

construct the initial solution. In its second phase, swapping of two adjacent vessels in the
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Table 3.3: The pseudo code for GRASP (Resende and Ribeiro, 2003)

Procedure GRASP(Max_Iterations, Seed)
1. Read_Input();
2. for k = 1, . . . , Max_Iterations do
3. Solution← Greedy_Randomized_Construction(Seed);
4. Solution← Local_Search(Solution);
5. Update_Solution(Solution,Best_Solution);
6. end;
7. return Best_Solution;
end GRASP.

insertion list and an A-star like tree search procedure is chosen as the local search technique.

On the contrary, the second version of GRASP (called GRASP_2) does not follow the ��rst-

come-�rst-pack� rule. In its construction phase, the arrival time of vessel is not considered as

an important priority for the packing order of each vessel in the Time-space Diagram. The

local search phase is as same as the one in GRASP_1 except that the swapping operation can

happen between any two vessels. The followings describe the steps of GRASP.

3.4.1 GRASP_1: construction phase

Step 1: Input the data for all the incoming vessels and the berth length, S. Sort the vessels in an

increasing order according to their arrival time. The order of the vessels after the sorting

is denoted as V es_Seq.

Step 2: Insert the vessels following the list of V es_Seq. Suppose next vessel is Vessel j. Input

the information of Vessel j and the packing position for the previous (j − 1) vessels in

the Time-space Diagram into the method proposed in Section 4 to determine the possible

locations for Vessel j. Assume that there are K possible locations for Vessel j. For

each possible location k, after allocating Vessel j to the position, the cost calculated by

Function (3.1) for the previous j vessels is recorded and denoted as Costk. Exclude the

possible location k, if it ful�lls

1

Costk
< r × K

max
i=1
{ 1

Costi
} (3.10)
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where r is a constant in [0, 1]. Let the number of possible locations after the screening be

K̃.

Step 3: Associate each possible location after screening a probability. For example, for possible

Location k̃, the associated probability is de�ned as:

Pr
k̃
=

1
Cost

k̃∑K̃
i=1

1
Costi

(3.11)

Step 4: Randomly Choose a possible Location k̃ for Vessel j based on the probability distribution

de�ned by Equation (3.11). In this step, roulette wheel selection method widely used in

the genetic algorithm is adopted.

Step 5: Repeat Steps 2-4 until all the vessels are included.

3.4.2 GRASP_1: local search phase

The Local Search technique used in this study has two procedures: swapping the packing

order of two adjacent vessels and an A-star like tree search procedure. Given an insertion

list for the vessels i1, i2, . . . , ie, ie+1, . . . , in, the swapping procedure produces a new sequence

i1, i2, . . . , ie+1, ie, . . . , in. The reason to limit the swapping operation just between two adjacent

vessels is to follow the ��rst-come-�rst-pack� rule as much as possible. The A-star like tree

search is activated after the swapping procedure. For insertion list i1, i2, . . . , ie, ie+1, . . . , in, a

break point (e, for example) will cut the list into two substrings: i1, i2, . . . , ie and ie+1, . . . , in,

respectively. Keeping the packing locations of �rst e vessels intact, the A-star like tree search

technique will be used to repack the next (n− e) vessels. For example, Vessel j (e+1 ≤ j ≤ n)

is the next considered vessel and there are K possible locations for it. For each Location k

(1 ≤ k ≤ K), a greedy heuristic for the rest (n − j + 1) vessels will be used to evaluate the

bene�t value h(j, k) by allocating Vessel j to Location k. The location k∗ = argmaxKk=1{h(j, k)}

will be chosen as the packing location for Vessel j. The procedure will repeat until the ideal

position for Vessel n is assigned. Detail steps are summarized:
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Step 1: Swap the packing order of two adjacent vessels and evaluate the bene�t value of the

modi�ed insertion list.

Step 2: Repeat Step 1 for L1 times and choose the best insertion list for the n vessels.

Step 3: Cut the insertion list into two pieces at the position of e (1 < e < n). A-star like tree

search technique is adopted to �nd a better (if possible) packing pattern for the rest vessels

(from Vessel e+ 1 to Vessel n).

3.4.3 GRASP_2: construction phase

The construction steps of GRASP_2 is almost the same as the procedures of GRASP_1 except

Steps 1 and 2.

Step 1: Input the data for all the incoming vessels and the berth length, S. Denote V =

{1, 2, . . . , n − 1, n} the index set of the vessels. De�ne an index set Packed_Seq as

the set of vessels that have been packed in the Time-space Diagram and initialize it as ∅.

De�ne another index set Unpacked_Seq = V \Packed_Seq, the set of unpacked vessels.

Step 2: Let set Λ be the set of all possible locations for next vessel and initialize it as a null

set. For each Vessel i, i ∈ Unpacked_Seq, apply the proposed method in Section 3.4 to

identify all the possible locations for it and insert them into the set Λ. Compute the cost

associated with each location and use Inequality (3.10) to �lter out some unpromising

positions from Λ. Update Λ.

Step 3: Associate each possible location in Λ a probability like Equation (3.11).

Step 4: Using roulette wheel selection method to select a position. Update the set Packed_Seq

and Unpacked_Seq, respectively.

Step 5: Repeat Steps 2-4 until a complete solution is constructed.
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3.4.4 GRASP_2: local search phase

As mentioned before, the local search phase is almost identical to the one of GRASP_1. The

only di�erence exits in the procedure of swapping. In GRASP_2, the swapping can happen

between any pair of vessels.

It is noted that compared with traditional GRASP, there is a unique feature of the imple-

mentation of GRASP in this research. Based on the solutions found so far, if the objective

value becomes steady in the previous L2 iterations, the cut position e for the A-star like tree

search procedure in the local search phase will be decreased by 1. Once the value of e changes,

the value of cut position cannot be altered for the next L3 iterations. Beside, since the smaller

the e is, more time will be consumed in the tree search procedure, there is a lower bound for e,

LB. The adaptive scheme can help the GRASP to prevent stagnation and obtain better solu-

tions. Both GRASP_1 and GRASP_2 will terminate as long as one of the following criteria is

satis�ed:

1. The maximum iteration number (L4) is reached.

2. The best value of the objective function during the previous L5 consecutive loops has

converged.

3.4.5 GRASP compares with CPLEX

For small scale problem, the performance of GRASP_1 and GRASP_2 is tested through the

comparison with CPLEX. In the numerical experiments, the berth length S is set to 80. The

size, processing time, and arrival time of the vessels follow the discrete uniform distributions

U(6, 50), U(20, 80), and U(0, 20). The weights for the vessels are all equal to 1. Two scenarios

with di�erent vessel number (i.e., n = 5 and n = 10) are studied. For each scenario, 30

instances are randomly generated and solved by CPLEX and proposed GRASPs, respectively.

Both GRASP_1 and GRASP_2 are coded in Matlab and executed in a Pentium (R) IV PC

with 3.00GHz CPU and 2.00 GB of RAM. Due to the stochastic nature of GRASP, GRASP_1

and GRASP_2 are all executed 5 times for each instance. The following lists the parameters

for the GRASPs:
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Table 3.4: The performance of GRASP_1 and GRASP_2 compared with CPLEX

Number of CPLEX GRASP_1 GRASP_2

vessels, n ave_time†(s) ave_time(s) ave_Gap‡(%) ave_time(s) ave_Gap(%)

5 0.39 2.29 1.62 2.73 0.005
10 5977.01 11.90 7.89 16.59 3.70

†: average CPU time consumed
‡: average gap between the solutions found by GRASP and CPLEX

1. L1, the number to swapping operation is set to 10;

2. L2, L3 used in the adaptive scheme are equal to 5 and 10;

3. L4, the maximum iteration number equals to 200;

4. L5, the value chosen to judge the convergence is 25;

5. e, the cut position follows the equation e = [78 × n], where function [x] round the value x

towards the nearest integer;

6. LB, the lower bound for e, equals to [34 × n];

7. r, the parameter used in Inequality (3.10), is set to 0.3.

Table 3.4 shows the computational results for the two scenarios. Obviously, as the size of the

problem enlarges, CPLEX will consume unacceptable longer time to �nd the optimal solutions.

While for the proposed GRASPs, the average time spent to search a good solution is within 17

seconds for all the 60 instances. GRASP_2 tends to consume more computational time while

reap better solutions compared with GRASP_1. This phenomenon is reasonable because in

the construction phase, GRASP_2 inclines to spend more time to construct a more promising

initial solution than GRASP_1 as the former searches much broader solution space compared

to the latter.

3.4.6 GRASP compares with the SBS

For large scale problems, the proposed GRASPs are compared with the stochastic beam search

developed by Wang and Lim (2007). A brief description about the SBS has been given in the
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Section 2. Note that the insertion list in Wang and Lim (2007) strictly follows the ��rst-come-

�rst-pack� rule. Three key parameters used in the SBS suggested in Wang and Lim (2007) are

listed below:

1. u, �ltered beam width for draft selection: 1000;

2. b, �ltered beam width for detail selection: 33, 66, 150, 330;

3. ∆, search depth for depth-�rst-search based detail selection: 3, 4, 5, 6.

To demonstrate the e�ectiveness of the proposed GRASPs, the extreme combination of param-

eters (u, b,∆) is set to (1000, 330, 6) in this comparison (since the larger the parameters are,

more attractive solutions can be found by the SBS). The problem settings are kept as the ones

used in the small scale numerical experiments. On the contrary, there are some adjustments

for the tunable parameters used in GRASP so as to accelerate the algorithm for large scale

problems.

1. L1, 3;

2. L2, 2;

3. L3, 3;

4. L4, 200;

5. L5, 4;

6. e, e = max
{
[78 × n], n− 20

}
;

7. LB, LB = max
{
[34 × n], n− 40

}
;

8. r, 0.3.

5 scenarios with di�erent vessel number are carried out. For each scenario, 30 instances are

randomly generated and used to test the performance of SBS and proposed GRASPs. Note

that for each instance, the 3 algorithms are all executed 3 times. Table 3.5 summarizes the

computational results for the 150 instances. On average, GRASPs are able to �nd better
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Table 3.5: The performance of GRASPs compared with SBS

Number of SBS GRASP_1 GRASP_2

vessels, n ave_time[std]† ave_time[std] ave_impro[std]‡ ave_time[std] ave_impro[std]

40 188[17] 15[4] 0.99[0.03] 37[8] 0.98[0.03]
80 790[31] 112[32] 0.98[0.02] 271[55] 0.94[0.03]
120 911[20] 413[121] 0.97[0.01] 882[189] 0.93[0.03]
160 1703[46] 1103[367] 0.97[0.01] 2137[416] 0.92[0.02]
200 2809[64] 1763[702] 0.97[0.01] 4223[724] 0.92[0.02]

†: average CPU time consumed in second and standard deviation
‡: average ratio between the solutions found by GRASP and SBS and standard deviation

solutions in comparison with SBS. Speci�cally, GRASP_1 statistically outperforms SBS in

terms of average computational time and the solution quality. While GRASP_2 is able to

obtain the best solutions among the three algorithms, it will take longer time to accomplish

that especially as the number of vessels expands. Based on the �ndings from the experiments,

GRASP_1 is more recommended to handle large scale problem after considering the tradeo�

between e�ectiveness and e�ciency.

3.5 Summary

In this research, continuous and dynamic BAP is studied to minimize the total weighted �ow

time. Di�erent from previous studies on continuous BAP, an e�cient method is proposed to

address the problem to identify the possible locations for next vessel in the Time-space Diagram.

Then two versions of GRASPs are developed to search for near optimal solutions. Both small

and large scale numerical experiments are tested to examine the e�ectiveness of the proposed

GRASPs by comparison with CPLEX and SBS, respectively.
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Chapter 4

An Improved Approach for Quay

Crane Scheduling Problem with

Non-crossing Constraints

4.1 Background

In container port operation, one of the critical issues is to schedule quay cranes to serve the

berthed container vessels. Quay cranes are industry-standard equipment for loading and dis-

charging containers to and from vessels. Practically, quay cranes along the same berth are

mounted on the same tracks, which forbid them from crossing each other at any instant. To get

the solution of quay crane scheduling accurately and e�ciently will provide immediate bene�t

and input to subsequent port operations such as yard truck and yard crane scheduling. Several

studies have been conducted to improve the e�ciency of the QCSP with consideration of Non-

crossing Constraints. However, it has been noted that the previous models of the QCSP with

Non-crossing Constraints, may cause unrealistic model solutions. Therefore, in this chapter,

�rstly the found de�ciencies in modeling QCSP with Non-crossing Constraints in the previous

studies will be identi�ed. Next, since the QCSP with Non-crossing Constraints is a strongly

NP-hard problem, in this chapter, two approximation algorithms will be proposed to obtain
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the approximate solutions for the QCSP with Non-crossing Constraints.

4.2 Problem Description

The previous modeling e�orts for the QCSP with Non-crossing Constraints (from Kim and Park

2004 to Tavakkoli-Moghaddam et al. 2009) generally follow the assumptions below:

• Quay cranes are identical machines which are operated on the same tracks.

• Once a quay crane starts processing a bay, it leaves only when it has �nished the workload

of the bay. In other words, the jobs of loading/discharging containers in a bay are without

preemption.

• Compared with the processing time of a ship bay, the travel time of a quay crane between

two bays is small and hence it is not considered.

Carefully observation can �nd out that in spite of adopting di�erent parameters or decision

variables, the main formulation structures of the previous studies for the QCSP with Non-

crossing Constraints are almost the same. They all follow the prototype formulation as following:

4.2.1 Parameters

• m, the number of quay cranes

• n, the number of ship bays in a vessel

• pi, the workload of Bay i, 1 ≤ i ≤ n

4.2.2 Decision variables

• cmax, the makespan for the QCSP with Non-crossing Constraints

• ci, the completion time of Bay i, 1 ≤ i ≤ n

• xik ∈ {0, 1}, equals to 1 if and only if Bay i is handled by Crane k

• yij ∈ {0, 1}, equals to 1 if and only if Bay i completes no later than Bay j starts
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4.2.3 Mathematical formulation

The mathematical formulation can be given as:

minimize cmax (4.1)

subject to

cmax ≥ ci, ∀ 1 ≤ i ≤ n (4.2)

ci − pi ≥ 0 ∀ 1 ≤ i ≤ n (4.3)
m∑
k=1

xik = 1 ∀ 1 ≤ i ≤ n (4.4)

ci − (cj − pj) +M · yij ≥ 0 ∀ 1 ≤ i, j ≤ n (4.5)

(cj − pj) +M · (1− yij)− ci ≥ 0 ∀1 ≤ i, j ≤ n (4.6)

M · (yij + yji) ≥
m∑
k=1

k · xik −
m∑
l=1

l · xjl + 1 ∀1 ≤ i < j ≤ n (4.7)

xik, yij ∈ {0, 1} ∀ 1 ≤ i, j ≤ n,∀1 ≤ k ≤ m (4.8)

cmax, ci ∈ ℜ+ ∀ 1 ≤ i ≤ n (4.9)

The objective function (4.1) is to minimize the makespan of one container vessel. Constraints

(4.2) de�ne the property of cmax. Constraints (4.3) make sure that the completion time of an

individual bay should be larger than its workload. Constraints (4.4) ensure that one bay must

be assigned to exactly one quay crane. Constraints (4.5) and (4.6) de�ne the properties of yij .

Constraints (4.7) specify the Non-crossing Constraints. That is, if Bay i is assigned to Crane

k, Bay j is assigned to Crane l simultaneously (in this case, yij + yji = 0), then l ≥ k+1. Note

that since quay cranes and bays are numbered in the same direction along the berth, i ≤ j and

k + 1 ≤ l ensure the Non-crossing Constraints.

The MIP above represents the formulation of the QCSP with Non-crossing Constraints in the

previous studies. However, after careful examination, it can be found out that this mathematic

model is not complete in terms of that it may generate unrealistic solution even for optimal

solution. For any feasible solution of the QCSP with Non-crossing Constraints, they could be

presented in a Time-space Diagram. Figure 4.1 shows a case for 3 quay cranes assigned for
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Figure 4.1: Time-space Diagram for a feasible solution of the QCSP with Non-crossing Con-
straints

a vessel with 5 ship bays. The stepwise horizontal dark lines for every quay crane represent

the working schedules of the quay crane on the assigned ship bays. For example, Crane 3 will

handle Bay 4 in time interval [t1, t4] and Bay 5 in [t4, t7] . In the previous studies, a scheduling

scheme will be considered as a feasible solution as long as the scheduling scheme satis�es:

• Condition 1: each ship bay is only handled exactly by one quay crane during the planning

horizon.

• Condition 2: at any instant, quay cranes should not cross over each other (as illustrated

in Figure 4.1, the dark lines belonging to a quay crane should not cross over dark lines

belonging to other quay cranes).

Nevertheless, these conditions are not su�cient to guarantee a realistic solution. The prob-

lems existed in the aforementioned models on the QCSP with Non-crossing Constraints are

summarized in the following:

• Although the Non-crossing Constraints are not violated at any moment, for some time

intervals, the space between any two quay cranes may not be su�cient to accommodate

the quay cranes to be positioned between them. A typical case is shown in Figure 4.2(a).

For example, during time interval [t4, t7], the space between Crane 1 and Crane 3 is zero
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Figure 4.2: Two problems for the previous studies
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Figure 4.3: A example for the QCSP with Non-crossing Constraints

ship bay, which means that Crane 2 has to be �dragged� out of the tracks to let Crane 1

and Crane 3 be positioned next to each other.

• Even if the aforementioned Conditions 1 and 2 can be ful�lled, it is still possible that

some quay cranes will be driven out of the space boundary of a vessel. As illustrated by

Figure 4.2(b), it is clear that, to avoid crossing, Crane 1 will be driven out of the vessel

boundary.

Other than the examples of feasible solutions depicted in Figure 4.2, it should be noted

that these two unrealistic situations are also possible to happen in optimal solutions generated

by the previous studies. The following is an example to illustrate the occurrence of these two

unrealistic situations for the QCSP with Non-crossing Constraints. Figure 4.3 shows a small

scale problem with 4 ship bays (the workload in each bay is 2, 2, 2, 4, respectively) and 3 quay

cranes. Formulate the problem according to the previous model and solve it in CPLEX. Two
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Figure 4.4: Two possible optimal solutions for the small scale problem

possible optimal solutions can be found and presented in Figure 4.4. In Figure 4.4(a), within

the time interval [2, 4], Crane 1 forces Crane 2 out of the tracks; however, in Figure 4.4(b),

Crane 1 is out of the vessel boundary in [0, 2].

4.2.4 Revised modeling for the QCSP with Non-crossing Constraints

To overcome these de�ciencies, additional constraints are introduced to prevent the occurrence

of these problems in optimal solution. For the �rst problem (as shown in Figure 4.4(a)), in

order to guarantee that there is enough space between any two quay cranes, Constraints (4.10)

can be added. For Constraints (4.10), they ensure that if Bay i is assigned to Crane k, Bay j

is assigned to Crane l simultaneously, then j − i ≥ l− k. Therefore, the quay cranes between k

and l can be accommodated properly.

M · (yij + yji) ≥
m∑
l=1

l · xjl −
m∑
k=1

k · xik + (i− j) ∀ 1 ≤ i < j ≤ n (4.10)

The second problem (see Figure 4.4(b)) can be solved by introducing two dummy quay cranes

and two dummy ship bays, namely Crane 0, Crane (m + 1) and Bay 0 and Bay (n + 1). To

avoid any quay crane being driven out of the vessel boundaries, Crane 0, Crane (m+1) will be

assigned to Bay 0 and Bay (n + 1) respectively during the whole planning horizon (Let x00 =

1, xn+1,m+1 = 1 and additionally the processing time p0 and pn+1 equal to
∑n

i=1 pi, completion
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time c0 and cn+1 ful�ll c0 = p0, cn+1 = pn+1). Incorporated the above two considerations

into model, the mathematical formulation for the QCSP with Non-crossing Constraints can be

strengthened as following:

minimize cmax (4.11)

subject to

cmax ≥ ci, ∀ 1 ≤ i ≤ n (4.12)

ci − pi ≥ 0 ∀ 1 ≤ i ≤ n (4.13)
m+1∑
k=0

xik = 1 ∀ 0 ≤ i ≤ (n+ 1) (4.14)

x00 = 1, xn+1,m+1 = 1 (4.15)

ci − (cj − pj) +M · yij ≥ 0 ∀ 0 ≤ i, j ≤ (n+ 1) (4.16)

(cj − pj) +M · (1− yij)− ci ≥ 0 ∀ 0 ≤ i, j ≤ (n+ 1) (4.17)

M · (yij + yji) ≥
m+1∑
k=0

k · xik −
m+1∑
l=0

l · xjl + 1

∀ 0 ≤ i < j ≤ (n+ 1) (4.18)

M · (yij + yji) ≥
m+1∑
l=0

l · xjl −
m+1∑
k=0

k · xik + (i− j)

∀ 0 ≤ i < j ≤ (n+ 1) (4.19)

xik, yij ∈ {0, 1} ∀ 0 ≤ i, j ≤ (n+ 1), ∀ 0 ≤ k ≤ (m+ 1) (4.20)

cmax, ci ∈ ℜ+ ∀ 0 ≤ i ≤ (n+ 1) (4.21)

For the QCSP with Non-crossing Constraints in Figure 4.3, by using the revised formulation,

CPLEX will generate the correct optimal solution as shown in Figure 4.5. It is clear that, in

Figure 4.5 even Crane 2 becomes idle in [2, 4], the optimal solution generated by modi�ed

formulation of the QCSP with Non-crossing Constraints will guarantee that there is space for

Crane 2 to accommodate.
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Figure 4.5: The optimal solution of modi�ed model for the QCSP with Non-crossing Constraints

4.3 Approximation Algorithm

It has been proved that the QCSP with Non-crossing Constraints is an NP-hard problem (Lim

et al., 2007; Lee et al., 2008). To solve the QCSP with Non-crossing Constraints e�ciently and

e�ectively, several algorithms have been adopted in the literature. However, in this section, two

approximation algorithms will be further studied due to the great convenience they bring to

port operators in handling the QCSP with Non-crossing Constraints (Lim et al., 2004b).

4.3.1 Best Partition (BP) Method

The �rst approximation algorithm is called BP Method in this chapter, which tries to seek

the best consecutive partition pattern for the ship bays and assigns each quay crane to the

corresponding partition orderly. Speci�cally, BP Problem can be de�ned as: Given a job list

J = {J1, J2, . . . , Jn−1, Jn}, a partition of the job list separates the list into m (m ≤ n) parts

{J1, . . . , Ji1}, {Ji1+1, . . . , Ji2}, . . . , {Jim−2+1, . . . , Jim−1}, {Jim−1+1, . . . , Jn}. Denote Sk (1 ≤ k ≤

m) the sum of {Jik−1+1, . . . , Jik}, that is Sk =
∑ik

l=ik−1+1 Jl. The BP Problem is to seek the

best partition pattern which will minimize maxml=1Sk.

In Lim et al. (2004b), the authors proposed a Dynamic Programming (DP) algorithm with
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Figure 4.6: BP Problem

time complexity of O
(
mn2

)
to solve the BP Problem. The DP equations are:

A[1, i] = T [1, i], ∀ 1 ≤ i ≤ n (4.22)

A[k, i] = min
k−1≤ik≤i−1

max {A[k − 1, ik], T [ik + 1, i]} , ∀ 2 ≤ k ≤ m, 1 ≤ i ≤ n (4.23)

where A[k, i] denotes the minimum latest completion time when Bays 1, 2, . . . , i are partitioned

in an adjacent manner among Cranes 1, 2, . . . , k; T [ik + 1, i] =
∑i

j=ik+1 Jj denotes the total

processing time of jobs ik + 1, . . . , i.

In fact, the O
(
mn2

)
DP algorithm for BP can be improved to O (mn log n) in light of the

property of A[k, i] shown in the Lemmas below.

Lemma 4.3.1. Given i (2 ≤ i ≤ n), A[k, i] ≤ A[k − 1, i], where 2 ≤ k ≤ i.

Proof. If k = 2, clearly, A[2, i] ≤ A[1, i]. Hence the above inequation holds. For k > 2, denote

P (k − 1, i) = {i1, . . . , ik−3, ik−2} (i1, . . . , ik−2 are the partition points) one of the partition

patterns when Bays 1, 2, . . . , i are partitioned in an adjacent manner among QCs 1, 2, . . . , (k−1)

and P ∗(k− 1, i) = {i∗1, . . . , i∗k−2} the best partition pattern. Let SP (k,i)

l be the sum of workload

of Partition l under Partition pattern P (k, i). For {i∗1, . . . , i∗k−2}, there exists a new partition

point i0 (1 ≤ i0 ≤ i, i0 ̸= i∗1, . . . , i
∗
k−2). By inserting i0 into {i∗1, . . . , i∗k−2}, it forms a P (k, i)=

{i0} ∪ {i∗1, . . . , i∗k−2}. Obviously, A[k − 1, i] ≥ maxkl=1 S
P (k,i)
l . Since by de�nition, A[k, i] =

maxkl=1 S
P ∗(k,i)
l ≤ maxkl=1 S

P (k,i)
l , A[k, i] ≤ A[k − 1, i].

Lemma 4.3.1 shows that for a �xed i, the series {A[k, i]}k is a descending sequence.
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Lemma 4.3.2. Given k (1 ≤ k ≤ m), A[k, i] ≤ A[k, i+ 1], where k ≤ i < n.

Proof. For P (k, i + 1), it is easy to verify that either P (k, i + 1) = P (k, i) or P (k, i + 1) =

{i1, . . . , ik−2, i}. In other words, P (k, i + 1) can be classi�ed into two possible partition types:

the �rst one is exactly as same as P (k, i) and for the other pattern, the kth part should be

{Ji+1}. In the �rst situation, for any P (k, i + 1) = P (k, i), it should have maxkl=1 S
P (k,i+1)
l ≥

maxkl=1 S
P (k,i)
l ≥ A[k, i]. Since in this situation, this relationship will always hold for any

P (k, i + 1), thus A[k, i + 1] = maxkl=1 S
P ∗(k,i+1)
l ≥ A[k, i]. On the other hand, if P (k, i +

1) = {i1, . . . , ik−2, i}, maxkl=1 S
P (k,i+1)
l = max(Ji+1,maxk−1

l=1 S
P (k−1,i)
l ) ≥ max(Ji+1, A[k − 1, i]).

According to Lemma 4.3.1, A[k, i] ≤ A[k − 1, i]. Hence, maxkl=1 S
P (k,i+1)
l ≥ A[k, i], for any

P (k, i+ 1) = {i1, . . . , ik−2, i}. Therefore, A[k, i] will be less or equal to A[k, i+ 1].

Lemma 4.3.2 shows that given k , the serials {A[k, ik]}ik is a non-decreasing sequence when

ik increases (as dcb in Figure 4.7). Conversely, according to the de�nition, {T [ik + 1, i]}ik

is a non-increasing sequence when ik increases (as ace in Figure 4.7). Therefore, in order to

calculate A[k, i] based on the recursive function (4.23), it is not necessary to compute max{A[k−

1, ik], T [ik + 1, i]} for all k − 1 ≤ ik ≤ i − 1 (as acb in Figure 4.7) and then �nd the minimum

value in the sequence of {max{A[k − 1, ik], T [ik + 1, i]}}k−1≤ik≤i−1. Since the minimum value

can be found near the �intersection point� between series {A[k, ik]}ik and series {T [ik +1, i]}ik .

The optimal i∗k should be next to the intersection point c. Consequently, a Binary Search

algorithm or Golden Section Search algorithm could be embedded into the DP algorithm to

facilitate the search of i∗k for every pair (k, i). Because the time complexity for Binary Search or

Golden Section Search is O (log n), the time complexity of the algorithm can be reduced from

O
(
mn2

)
to O (mn logn). The pseudo code for BP with O (mn log n) is shown in Table 4.3.1.

In Table 4.3.1, sum[i] =
∑i

a=1 Ja for 0 < i ≤ n. maxjob[i] stores the maximum job in the job

list {J1, J2, . . . , Ji}. In the pseudo code, from line 5 to line 24, it is a traditional DP recursion

for equations (4.22) and (4.23) except the embedded Binary Search starting from line 10 to line

20. Note that T [ik+1, i] =
∑i

j=ik+1 Jj . For the ease of computation, T [ik+1, i] is calculated by

sum[i]− sum[ik]. In the procedure of Binary Search (line 10 to line 21), lp, mp, and rp denote

left point, middle point, and right point respectively. As shown in Figure 4.7, in order to
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Figure 4.7: The optimal point of the recursive function

Table 4.1: The pseudo code for BP algorithm

Best Partition Method BP[J,m] :

1. sum[0] = 0,maxjob[1] = J1
2. for i = 1 to n do sum[i] = sum[i− 1] + Ji end
3. for i = 1 to n do A[1, i] = sum[i] end
4. for i = 2 to n do maxjob[i] = max(maxjob[i− 1], Ji) end
5. for k = 2 to m do

6. for i = k to n do
7. A[k, i] = +∞
8. if (k = i) then A[k, i] = maxjob[i] end
9. else

10. lp = k − 1, rp = i− 1
11. while (rp− lp) > 1 do

12. mp = [ (lp+rp)
2 ]†

13. if (A[k − 1,mp] = (sum[i]− sum[mp])) then
14. rp = mp,break
15. else

16. if (A[k − 1,mp] > (sum[i]− sum[mp])) then
17. rp = mp
18. else lp = mp end
19. end

20. end

21. A[k, i] = min(A[k − 1, rp], (sum[i]− sum[lp]))
22. end

23. end

24. end

25. return A[m,n]

†:The function [x] rounds the element x to the nearest integer.
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Table 4.2: Comparisons between original DP and the proposed DP

Experiment Size Original CPU time Proposed DP CPU time
No. (n×m) DP results (second) results (second)

1 1000× 10 16071 0.531 16071 0.094
2 1000× 20 8340 1.156 8360 0.188
3 1000× 30 5754 1.781 5754 0.266
4 1000× 40 4194 2.359 4194 0.375
5 2000× 10 33247 2.281 33247 0.313
6 2000× 20 16605 4.484 16605 0.406
7 2000× 30 11266 7.047 11266 0.594
8 2000× 40 8449 9.348 8449 0.734
9 3000× 10 49329 5.078 49329 0.547
10 3000× 20 25100 10.516 25100 0.813
11 3000× 30 16751 14.813 16751 0.969
12 3000× 40 12471 21.328 12471 1.297

�nd i∗k, initially, lp is set to k − 1, while rp is initialized as i− 1. If (rp− lp) > 1, the program

will proceed the Binary Search. The middle point mp is calculated by [ lp+rp
2 ]. Therefore, after a

loop (from line 11 to line 20), the searching space will roughly reduce by 50%. When rp = lp+1

(since rp > lp and both of them are integers) or A[k − 1,mp] = sum[i] − sum[mp], the Binary

Search will stop and according to the recursive function, A[k, i] should be equal to the minimal

value between A[k − 1, rp] and (sum[i]− sum[lp]).

Code the two algorithms (the original DP and DP embedded Binary Search) in Matlab

and execute 12 randomly generated numerical experiments (the job lists follow uniform discrete

distribution in the range [30, 300]) in a Pentium IV CPU 3.00GHz PC with 2.00 GB of RAM.

The comparisons between the two algorithms are summarized in Table 4.3.1. It is clear that the

proposed DP embedded Binary Search algorithm not only generates the same results with the

original DP also reduces the computational time dramatically when the problem size expands.

4.3.2 Enhanced Best Partition (EBP) Method

In the previous section, the time complexity of BP has been reduced fromO
(
mn2

)
toO (mn log n).

However, for port operators, a primary concern is how to come up with a good approximation

scheme easily which can also perfectly estimate the optimal makespan of the QCSP with Non-

crossing Constraints. To achieve this goal, EBP based on both BP and an exact algorithm for
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the QCSP with Non-crossing Constraints (a DP algorithm with pseudo-polynomial computa-

tional time) designed by Lim et al. (2004b) is proposed.

In Lim et al. (2004b), a pseudo-polynomial DP is proposed to solve the QCSP with Non-

crossing Constraints. Since it is a pseudo-polynomial algorithm, the computational time for this

DP will consume exponentially large times when the size of the problem increases. However,

for the two quay cranes problem, the time complexity for this algorithm is O (nT ), where n is

the number of bays and T is an upper bound for the makespan cmax and set to
∑n

i=1 Ji in this

study. The following shows the special case for the DP algorithm when the number of quay

crane is equal to 2.

A(i, w2) = min

 max [A(i− 1, w2), w2] + pi, k = 1;

A(i− 1, w2 − pi), k = 2.
(4.24)

where i (1 ≤ i ≤ n) is the index for the bays, k (k = 1, 2) is the index for the two quay cranes.

Let J(i) = {1, . . . , i} indicate the set of the leftmost i jobs. A(i, w2) denotes the minimum

latest completion time of jobs in J(i) processed by Crane 1, where the latest completion time

of jobs in J(i) processed by Crane 2 is exactly w2. Initially, A(0, w2) is set to zero if w2 = 0

and positive in�nity, otherwise. The interpretation of the recursive function (4.13) is: if the

bay is handled by Crane 1 ( k = 1 ), then A(i, w2) equals to the processing time of Bay i ( pi )

adds the maximum value between A(i− 1, w2) and w2; otherwise, when k = 2, A(i, w2) should

be equal to A(i− 1, w2 − pi). Name the algorithm above QCSNC-2 which can solve the QCSP

with Non-crossing Constraints with 2 quay cranes exactly.

The basic idea of EBP is stated in the following: since BP can e�ciently generate feasible

solutions (one quay crane for a partition) for the QCSP with Non-crossing Constraints and

QCSNC-2 can provide an optimal solution for the QCSP with Non-crossing Constraints with 2

quay cranes within acceptable time when the problem size is relatively small, it is possible to

combine the two methods to obtain a better scheduling scheme. Observing a BP solution shown

in Figure 4.8, in this example, 5 quay cranes are assigned to a berthed vessel and the latest

completion time is determined by the job partition handled by Crane 3, i.e., S3 = max5k=1 Sk.
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1S 2S 3S 4S 5S

QC

1 2 3 4 5

Figure 4.8: An output of BP for a QCSP with Non-crossing Constraints with 5 quay cranes

Hence, how to reduce S3 is a key consideration in order to shorten the makespan of the vessel.

A straightforward idea is to let Crane 2 (or 4) and Crane 3 work together to handle partition

S2 (or S4) and S3 while keep other quay cranes working on the previous assigned partitions.

Here, the �rst problem encountered is which Crane (2 or 4) should be chosen to cooperate with

Crane 3. To solve this problem, Lemma 4.3.3 can be applied to facilitate the decision making.

Lemma 4.3.3. Let J = {J1, J2, . . . , Jn−1, Jn} be the job list for a berthed vessel, then the

optimal makespan C∗ for the QCSP with Non-crossing Constraints with m QCs should satisfy

C∗ ≥ (
∑n

i=1 Ji)/m.

Proof. Denote JSk the job set assigned to quay crane k. According to the assumptions of the

QCSP with Non-crossing Constraints, JSk ∩ JSl, ∀1 ≤ k, l ≤ m, k ̸= l and
∪

1≤k≤m JSk =

{1, 2, . . . , n}. Let Sumk =
∑

i∈JSk
Ji. Apparently, C∗ ≥ Sumk, ∀1 ≤ k ≤ m. Thus, mC∗ ≥∑m

k=1 Sumk. Because
∑m

k=1 Sumk =
∑n

i=1 Ji, C
∗ should be greater than (

∑n
i=1 Ji)/m.

Lemma 4.3.3 indicates that given a job list, (
∑n

i=1 Ji)/m is a lower bound for the optimal

makespan of the QCSP with Non-crossing Constraints withm quay cranes. Back to the previous

question, in light of Lemma 4.3.3, if S2 ≥ S4, combining 3rd and 4th partition together (call it

P3−4) and assigning Crane 3 and Crane 4 to P3−4 is more possible to achieve a lower completion

time for the QCSP compared to the plan that assigning Crane 2 and Crane 3 to P2−3 . More

speci�cally, if P3−4 is adopted, the makespan of this approximation scheme could be shorter

than S2; otherwise, if P2−3 is adopted, the makespan of this approximation must be larger than

S2. Therefore, in this case, Crane 4 should be chosen to cooperate with Crane 3. Input P3−4

into QCSNC-2, an improved scheduling plan can be generated.

Besides, Lemma 4.3.3 also suggests that to obtain a better approximation scheme, it is not
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Table 4.3: The pseudo code for EBP algorithm

Enhanced Best Partition Method EBP[J,m] :

1. call BP[J,m], return the best partition pattern and {Sk}1≤k≤m

2. calculate AT = (
∑n

i=1 Ji)/m
3. Φ = ∅, Ψ = ∅.
4. for k = 1 to m do

5. if (Sk > AT ) then
6. Φ = Φ ∪ {k}
7. end

8. end

9. while Φ ̸= ∅ do
10. �nd the index of k (k ∈ Φ, Sk = maxi∈Φ Si)
11. search the partition with minimum sum of workload Sl(l = k − 1 or k + 1,
12. if k = 1, l = 2; if k = m, l = m− 1; besides, l /∈ Ψ).
13. if (there is not feasible l) then
14. Φ = Φ \ {k}†
15. else

16. call QCSNC-2(Pl−k),
17. Φ = Φ \ {k, l}, Ψ = Ψ ∪ {k, l}
18. end

19. if (Φ = ∅) then
20. break
21. end

22. end

23. return the makespan of the approximation scheme.

†: for set A, B, A \B = {x | x ∈ A and x /∈ B}

necessary trying to improve the partition grouping plan Pk−k+1

(
Sk+Sk+1

2 ≤
∑n

i=1 Ji
m

)
, 1 ≤ k ≤

m−1 by QCSNC-2. Based on the aforementioned �ndings, the pseudo-code for EBP algorithm

is shown in Table 4.3.2.

In Table 4.3.2, �rstly, EBP calls BP to get the best partition pattern for the input job list.

According to Lemma 4.3.3, the lower bound (
∑n

i=1 Ji)/m is computed and stored in AT. Φ is

a index set Φ = {k | Sk > AT}. Ψ is another index set used to store the partition numbers

which have been combined together. Initially, Φ and Ψ are empty sets. From Line 4 to Line 8,

all the partitions are examined and their index are added into set Φ if the sum of workload in

the partitions are larger than the lower bound AT. In the loop to decide which two partitions

will be combined, �rstly, Partition k should be identi�ed as long as Sk is the maximum value

in {Si}i∈Φ. Next, after examining the neighbor partitions around Partition k, the one with

relatively smaller sum of workload will be chosen. Note that the neighbor partition number

should not be an element of set Ψ. If there is not a feasible neighbor partition, separate k from
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set Φ and if Φ is not empty, execute another search. However, if a feasible partition can be

found (denote it as partition l), the combination of Partitions l and k (denote as Pl−k) will be

fed into QCSNC-2. Then delete l and k from Φ (l may not be an element of Φ, in this case just

delete k) and add them into Ψ.

To show the performance of EBP, 24 experiments were conducted. For each instance, the

job list was randomly generated. That is, the workload in each bay followed a uniform discrete

distribution in the range of [30, 300]. The �rst 20 instances are relatively small size problems

compared with last 4 experiments. To assess the e�ectiveness of BP and EBP, the revised

model of the QCSP with Non-crossing Constraints in Section 4.2 was also coded in CPLEX and

executed in a Pentium IV CPU 3.00GHz PC with 2.00 GB of RAM. Due to the intractability

of the QCSP with Non-crossing Constraints, for large scale problems like the experiment in

this study, CPLEX usually failed to provide the �nal solutions. CPLEX was run for 1 hour for

each experiment. Meanwhile, EBP were coded in Matlab. In Table 4.3.2, the computational

results of EBP are presented. In the third column, AT de�ned as (
∑n

i=1 Ji)/m is shown, which

according to Lemma 4.3.3, is a lower bound for the the QCSP with Non-crossing Constraints

with m quay cranes. The 4th column is the partial solutions generated by CPLEX after 1 hour

searching. For experiment from 21 to 24, CPLEX fails to generate any solution within one hour.

Columns 5 and 9 are the results of BP and EBP respectively. Gap1
BP

in Column 6 Gap1
EBP

in

Column 10 are the indicators to measure the e�ectiveness of BP and EBP using lower bound

AT as reference. For all the 24 randomly generated instances, the average di�erence between

BP's result and AT is 10% while EBP achieves better outcome since the average Gap1
EBP

is

nearly half of Gap1
BP

. In Columns 7 and 11, Gap2
BP

and Gap2
EBP

show the performances of BP

and EBP compared with CPLEX in terms of the solutions found. It is clear that for larger

instances (from experiment 17 to 24), running CPLEX merely 1 hour is not enough to obtain

better solutions compared with EBP even BP. Besides, both BP and EBP are very e�cient (see

Columns 8 and 12). As a comparison, to �nish the search of Instance 2 (16 bays and 5 cranes),

it takes 25685 seconds (roughly 7 hours) for CPLEX to �nd the global optimal value 586.

Figure 4.9 and Figure 4.10 show the Gantt Chart for Instance 2 (16 bays and 5 cranes)

scheduled by BP and EBP respectively. In Figure 4.9, it is shown that BP separates the job
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list into 5 partitions1: {2211, 1742, 1873}, {1084, 1115, 2396}, {337, 2368, 2509}, {22210, 4211,

14212, 26313}, and {24414, 13115, 29016}. The sum of workload of each partition is: S1 = 582,

S2 = 458, S3 = 519, S4 = 669, and S5 = 665. Since AT = 578.6, only Part 3 and Part 4 will

be combined for QCSNC-2. In Figure 4.10, Crane 3 and Crane 4 cooperate with each other to

handle P3−4. After complete the job in Bay 9, Crane 3 will proceed to Bay 11. While for Crane

4, at time 222, it will move from Bay 10 directly to Bay 12. It can be checked that no quay

cranes violate the Non-crossing Constraints at any instant.

1
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263
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Figure 4.9: Gantt chart for Instance 2 scheduled by BP

1In the following, 2211 means the workload in Bay 1 is 221. The rest can be interpreted by analogy.
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Figure 4.10: Gantt chart for Instance 2 scheduled by EBP

4.4 Summary

The common de�ciencies found in the previous studies in modeling the QCSP with Non-crossing

Constraints in port container terminals are identi�ed. Remedies for the problems are proposed

to prevent the occurrences of unrealistic optimal solutions for the problem. Additionally, two

approximation schemes for the QCSP with Non-crossing Constraints are studied. The �rst one

is called BP Method, which can be solved by DP algorithm with time complexity of O
(
mn2

)
.

A more e�cient algorithm is designed to improve the original DP by adopting Binary Search.

Next, based on BP and an exact algorithm for the QCSP with Non-crossing Constraints (with

pseudo-polynomial computational time), the second approximation scheme named EBP Method

is proposed to achieve a better estimation of the optimal makespan for the QCSP with Non-

crossing Constraints. The results of numerical experiments show that EBP is an e�ective

approximation scheme for the problem.
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Chapter 5

Heuristics for Quay Crane

Scheduling at Indented Berth

5.1 Background

In a long run, due to the increasing volume of worldwide container tra�c and the severe freight

rate competition, the number of mega-containerships will continue to rise in this global environ-

ment. Nevertheless, to provide a fast service of mega-containerships brings up new and arduous

challenges for container terminal operators.

1
2

a

b

Figure 5.1: Hybrid quay wall proposed for the west terminal of Busan New Port
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Being one of the strategies to cope with the looming conundrum, indented berth which

is designed to increase the ship-to-shore interface, has been adopted in practice. The world's

�rst indented berth was implemented in the Ceres Paragon terminal at Port of Amsterdam

in 2001, which enabled container vessels to be handled simultaneously from both sides. It is

reported that through the indented berth, up to as many as nine quay cranes can be deployed

to a berthing vessel. Therefore, shorter handling time for the vessel is expected. The recent

technical update for the indented berth is the invention of hybrid quay wall. Hybrid quay wall

is a �oating mobile quay with dimension of 480m×160m×6m (Chae et al., 2008). Equipped

with thrusters, a hybrid quay wall can travel the distance of two or three berths. Therefore, in

combination with an existing land based berth, a hybrid quay wall can dynamically construct

an indented berth and enhance the �exibility and productivity of container terminals. The

concept of hybrid quay wall has been proposed for the west terminal of the Busan New Port in

Korea (see Figure 5.1).

The indented berth is designed to shorten the time necessary to load and unload vessels

by quay cranes. Compared with standard berth, the QCSP at indented berth possesses the

following unique features:

1. At indented berth, quay cranes are able to handle a vessel simultaneously from both sides

of the vessel. Due to the design of quay cranes (the arm of a quay crane can lift up when

it is going to pass the quay cranes at the opposite side), the quay cranes at di�erent sides

of the indented berth are free of the non-crossing constraints. However, lifting up of the

arm of a crane will introduce an additional idle time for the crane.

2. The handling time of a task (including processing time and transportation time) depends

on the quay crane that it is assigned to. Here a task is referred to the loading or unloading

operations of a group of containers belonging to the same bay (Kim and Park, 2004). For

example, as shown in Figure 5.1, suppose the designated storage yard location for a cluster

of containers located at Bay a, is Bay b. In terms of transportation time, assigning the task

to Crane 1 is probably more bene�cial compared with the alternative plan by assigning it

to Crane 2.
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In this Chapter, the QCSP at indented berth will be studied by taking its two aforementioned

unique features into account. However, it is assumed that the time lost introduced by crane

arm lifting up is small enough compared with the operational time of the crane and thus the

cost is not considered.

5.2 Problem Description and Mathematical Formulation

As depicted in Figure 5.2, it is a convention in this chapter that: the ship bay of a vessel

is numbered increasingly from left to right; the quay cranes at Berth Side A are numbered

increasingly from left to right while the quay cranes at Berth Side B are numbered immediately

in the same manner thereafter. Let Ω = {1, 2, . . . , n} denote the set of tasks (i.e., discharging

or loading operations for container clusters, Kim and Park (2004)). For each task i ∈ Ω, it is

located at Bay li and its processing time is pik if Task i is assigned to the Crane k. Additionally,

de�ne two dummy Tasks 0 and T = n + 1 with processing time p0k = pTk = 0 to indicate the

beginning and the end of the service of the vessel. Let Ω0 = Ω ∪ {0}, ΩT = Ω ∪ {T}, and

Ω = Ω ∪ {0, T}. Furthermore, let Φ denote the set of precedence constrained task pairs and Ψ

be the set of pairs of tasks that cannot be performed simultaneously. Obviously, Φ ⊆ Ψ.

Berth Side A

Berth Side B

1

2 3

Vessel

QC

Bay

1 2 3 4 5 6 7 8 9

Figure 5.2: Schema for QCSP at indented berth

Qa = {1, . . . , qa} and Qb = {qa + 1, . . . , q} are the sets of quay cranes at Berth Side A and

Berth Side B, respectively. De�ne the set of all quay cranes Q = Qa ∪ Qb. Each quay crane

k ∈ Q, has a starting position lk0 and a �nal position lkT . It is assumed that all the quay cranes
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travel in an identical speed and the travel time for them to move between two adjacent ship

bays is t̂. The travel time between bay position li and lj (i, j ∈ Ω) is de�ned as tij = t̂ · |li− lj |.

Let tk0j and t
k
jT respectively represent the travel time from the initial position (lk0) of Crane k

to location of Task j (lj), and from location of Task j to the �nal destination of Crane k (lkT ).

Besides, due to the safety requirement, any two quay cranes should maintain a safety distance

δ, measured in units of ship bays.

As pointed out by Bierwirth and Meisel (2009), in order to prevent the crane interference,

necessary time span between the execution of tasks by any two quay cranes should be considered.

De�ne ∆vw
ij as the minimum time span to elapse between the processing of two Tasks i and j,

if processed by Cranes v and w, respectively. Let δvw = (δ+1) · |v−w| be the smallest allowed

di�erence between the bay positions of Cranes v and w that are at the same side of the berth

(i.e., v, w ∈ Qa or v, w ∈ Qb). Then for all combinations of Tasks i, j ∈ Ω (i ̸= j) and Cranes

v, w ∈ Q (v ̸= w), the minimum temporal distance ∆vw
ij can be quanti�ed as:

∆vw
ij =



(li − lj + δvw) · t̂, if v < w, v, w ∈ Qa or Qb and li > lj − δvw;

(lj − li + δvw) · t̂, if v > w, v, w ∈ Qa or Qb and li < lj + δvw;

(li − lj + δ + 1) · t̂, if v, w are not at the same side of berth and

lj ≤ li ≤ lj + δ;

(lj − li + δ + 1) · t̂, if v, w are not at the same side of berth and

lj − δ ≤ li ≤ lj ;

0, otherwise.

(5.1)

The �rst two cases of (5.1) have been explained in Bierwirth and Meisel (2009). The third

and forth cases in (5.1) are unique for the QCSP at indented berth. As mentioned before,

the quay cranes at di�erent side of indented berth are free from the Non-crossing Constraints.

However, in order to reduce the risk of collision, the safety distance requirement remains valid for

any two quay cranes. Without loss of generality, suppose Task j is processed prior to Task i and

v ∈ Qa, w ∈ Qb. If the location of Task i is outside of the safety zone of Task j (i.e., li < lj − δ

or li > lj + δ), since Tasks i and j are possible to be processed simultaneously, ∆vw
ij = 0. For
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the case when lj ≤ li ≤ lj + δ (as depicted in Figure 5.3), there should be a minimum temporal

distance between the execution of Tasks j and i to guarantee the safety distance requirement.

However, this minimum temporal distance is a function of the realized quay crane routing plan.

For instance, after completion of Task j, if Crane w moves in the direction from Bay lj to Bay

b, then ∆vw
ij = (lj − li + δ + 1) · t̂; if quay crane w moves in the direction from bay lj to bay a,

∆vw
ij = (li−lj+δ+1)· t̂ instead. Because it is impossible to know the realized quay crane routing

plan beforehand, a compromised strategy is to keep a redundant temporal distance between the

execution of the two tasks. That is, ∆vw
ij = max{(li − lj + δ + 1) · t̂, (lj − li + δ + 1) · t̂}. Since

li ≥ lj , (li− lj + δ+1) · t̂ ≥ (lj − li + δ+1) · t̂. Therefore, in the case when lj ≤ li ≤ lj + δ, ∆vw
ij

can be set to (li − lj + δ + 1) · t̂.

Bay

Time

j

±±±± ww i

±±±±vvi

±±±±vvlililjljbb
aa (li ¡ lj + ± + 1) ¢ t̂(li ¡ lj + ± + 1) ¢ t̂

(lj ¡ li + ± + 1) ¢ t̂(lj ¡ li + ± + 1) ¢ t̂
Figure 5.3: Minimum time span between the execution of tasks by quay cranes at di�erent side

of berth

When lj − δ ≤ lj ≤ lj , similar analysis presented above will suggest that ∆vw
ij = (lj − li +

δ + 1) · t̂. For the scenarios when task i is processed prior to Task j, it can be shown that the

redundant ∆vw
ij can also be expressed in the way described in the third and forth cases of (5.1).

Note that although for the third and forth cases of (5.1), the choice of ∆vw
ij can be conservative,

the redundance of ∆vw
ij is su�ciently small provided that δ is usually set to 1 or 2 in practice and

61



CHAPTER 5. HEURISTICS FOR THE QCSP AT INDENTED BERTH

t̂ is usually within one minute. Hence, the impact of this conservative strategy on the QCSP

should be marginal.

After calculating the value of ∆vw
ij in advance, the set of all combinations of tasks and

quay cranes that potentially lead to crane interference, Θ, can be de�ned as Θ = {(i, j, v, w) ∈

Ω2 ×Q2 | (i < j) ∧ (∆vw
ij > 0)}. The sections below show the mathematical formulation for the

proposed problem.

5.2.1 Decision variables

• xkij ∈ {0, 1} (i, j ∈ Ω, k ∈ Q), is 1 if and only if Tasks i and j are performed consecutively

by Crane k

• zij ∈ {0, 1} (i, j ∈ Ω), is equal to 1 if and only if Task j starts after the completion time

of Task i

• ci (i ∈ Ω), the completion time of Task i

• pi (i ∈ Ω), the realized handling time for Task i. By default, p0 = pT = 0.

5.2.2 MIP model

min cT (5.2)

s.t. ∑
j∈ΩT

xk0j = 1, (k ∈ Q) (5.3)

∑
j∈Ω0

xkjT = 1, (k ∈ Q) (5.4)

∑
j∈Ω0

xkji −
∑
j∈ΩT

xkij = 0, (i ∈ Ω, k ∈ Q) (5.5)

∑
k∈Q

∑
j∈ΩT

xkij = 1, (i ∈ Ω) (5.6)

pi =
∑
k∈Q

∑
u∈Ω0

xkui · pik, (i ∈ Ω) (5.7)
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ci + tij + pjk − cj ≤M(1− xkij), (i, j ∈ Ω, k ∈ Q) (5.8)

ci + pj − cj ≤ 0, ((i, j) ∈ Φ) (5.9)

ci + pj − cj ≤M(1− zij), (i, j ∈ Ω) (5.10)

cj − pj − ci ≤Mzij , (i, j ∈ Ω) (5.11)

zij + zji = 1, ((i, j) ∈ Ψ) (5.12)∑
u∈Ω0

xvui +
∑
u∈Ω0

xwuj ≤ 1 + zij + zji,

((i, j, v, w) ∈ Θ ∧ v, w ∈ Qa) (5.13)∑
u∈Ω0

xvui +
∑
u∈Ω0

xwuj ≤ 1 + zij + zji,

((i, j, v, w) ∈ Θ ∧ v, w ∈ Qb) (5.14)

ci +∆vw
ij + pj − cj ≤M(3− zij −

∑
u∈Ω0

xvui −
∑
u∈Ω0

xwuj),

((i, j, v, w) ∈ Θ) (5.15)

cj +∆vw
ij + pi − ci ≤M(3− zji −

∑
u∈Ω0

xvui −
∑
u∈Ω0

xwuj),

((i, j, v, w) ∈ Θ) (5.16)

tk0j + pjk − cj ≤M(1− xk0j), (j ∈ Ω, k ∈ Q) (5.17)

cj + tkjT − cT ≤M(1− xkjT ), (j ∈ Ω, k ∈ Q) (5.18)

ci, pi ∈ ℜ+, (i ∈ Ω) (5.19)

xkij ∈ {0, 1}, (i, j ∈ Ω, k ∈ Q) (5.20)

zij ∈ {0, 1}, (i, j ∈ Ω) (5.21)

The objective of the QCSP at indented berth is to minimize the completion time of the

�nal Task T (i.e., the makespan). Constraints (5.3-5.5) are the classical �ow conservation

equations. Constraints (5.6) make sure that each task can be performed by one and only one

crane. Constraints (5.7) calculate the real handling time for task i, i ∈ Ω. Constraints (5.8),

(5.17), and (5.18) compute the task completion times for all the tasks in Ω. If Task j should

be processed prior to Task i, (i.e., (i, j) ∈ Φ), Constraints (5.9) guarantee the precedence

relationship. Constraints (5.10-5.11) de�ne the variable zij . And Constraints (5.12) ensure
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that Tasks i and j cannot be performed simultaneously if (i, j) ∈ Ψ. In Constraints (5.13),∑
u∈Ω0 xvui = 1 if and only if Task i is processed by Crane v, and similarly,

∑
u∈Ω0 xwuj = 1 if and

only if Task j is processed by Crane w. If both assignments realize, the left-hand side equals to

2 and the inequality guarantees that zij + zji cannot be 0, i.e., Tasks i and j are not operated

simultaneously. Therefore, Constraints (5.13) are the Non-crossing Constraints for the Cranes

v and w, (v, w ∈ Qa). Similarly, Constraints (5.14) prevent the crossing between Cranes v and

w, for v, w ∈ Qb. Constraints (5.15) and (5.16) insert the minimum temporal distance between

the completion time of one task and the starting time of another task. Finally, Constraints

(5.19-5.21) specify the domains for the decision variables.

5.3 Heuristic Solution Procedure

In this section, a new decomposition heuristic framework will be introduced to �nd satisfac-

tory solution for QCSP at indented berth. Similar to Sammarra et al. (2007), QCSP is broken

down into two consecutive subproblems, i.e., assigning subproblem and scheduling subproblem,

respectively. As mentioned before, the assigning subproblem is to partition the set of tasks Ω

into |Q| mutually exclusive but collectively exhaustive subsets and assign them to the |Q| quay

cranes. Consecutively, scheduling subproblem needs to be solved to determine the sequence and

starting times for all the tasks in each subset by considering all sorts of constraints and require-

ments. Compared with the assigning subproblem, scheduling subproblem is essentially more

complex. Therefore, in the sequel, a sophisticated but e�cient algorithm to solve scheduling

subproblem will be introduced at �rst.

5.3.1 Heuristic for scheduling subproblem

The disjunctive graph is applied to represent the scheduling subproblem by delineating Task i,

i ∈ Ω as a node, known task sequence relationship as a set of conjunctive arcs, and undetermined

task sequence relationship as a set of disjunctive arcs. Then to solve a scheduling subproblem

for the QCSP at indented berth is equivalent to �nd a feasible orientation of disjunction arcs

to minimize the longest path length of the corresponding disjunctive graph (Sammarra et al.,
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2007).

Given a scheduling subproblem, let the disjunctive graph G = (Ω, C,D, WV , WE) be its

corresponding geometrical representation. Here Ω is the node set for the graph, C and D

represent the sets of conjunctive arcs and disjunctive arcs respectively, while WV = [wi], i ∈ Ω

represents the node weights and WE = [wij ], i ∈ Ω0, j ∈ ΩT , i ̸= j represents the arc weights.

As stated above, scheduling subproblem receives the output of its preceding subproblem, i.e.,

assigning subproblem. Assume that task subset Ωv, v ∈ Q is assigned to Crane v such that

Ωv ∩ Ωw = ∅ (v, w ∈ Q, v ̸= w) and
∪

v∈QΩv = Ω. De�ne a set Υv, v ∈ Q, as Υv = {(i, j) ∈

Ω2 \ Φ | i, j ∈ Ωv, i < j}. Let Υ =
∪

v∈QΥv, which is the set of disjunctive arcs that connect

nodes (tasks) belonging to the same task subset. Apparently, Υ ⊆ D. There is another type

of disjunctive arcs: the arcs for task pairs which are not precedence constrained but can cause

crane interference under the given task assignment, {Ωv}v∈Q. Speci�cally, the latter disjunctive

arcs set can be de�ned as Λ = {(i, j) ∈ Ω2\Φ | (i, j, v, w) ∈ Θ, v, w ∈ Q, v ̸= w, i ∈ Ωv, j ∈ Ωw}.

Therefore, the set of all disjunctive arcs for graph G, D = {(i, j) ∈ Ω2 | (i, j) ∈ Υ ∪ Λ}. For

the case of conjunctive arcs, they represent the known task sequence relationship. Let ⟨i, j⟩,

i ∈ Ω0, j ∈ ΩT , i ̸= j, be an element of C, which means that Node i is the direct predecessor of

Node j in graph G. To construct the set of conjunctive arcs C, add ⟨i, j⟩ into C if and only if

(i, j) belongs to Φ. Note that in a disjunctive graph, the notation ⟨i, j⟩ stands for a conjunctive

arc with direction from Node i to Node j; while the notation (i, j) represents a disjunctive arc

connecting Node i and Node j.

Since the task assignment has been determined beforehand, the realized handling time for

Task i, i ∈ Ω, pi is known for the scheduling subproblem. The weight for a node in G is

equivalent to its realized handling time (i.e., wi = pi). Hence, WV = [pi], i ∈ Ω. For WE , the

weights of arcs are de�ned in the following:

wij =


max{tij ,∆vw

ij }, v, w ∈ Q, i ∈ Ωv, j ∈ Ωw;

tv0i, v ∈ Q, i = 0, j ∈ Ωv;

tviT , v ∈ Q, i ∈ Ωv, j = T .

(5.22)
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To facilitate the understanding on the transformation from a scheduling subproblem to a dis-

junctive graph, a simple example will be used for illustration. As shown in Figure 5.4, three

quay cranes (Qa = {1}, Qb = {2, 3}) are designated to serve a vessel with six bays. In Figure

5.4, pik = pia, ∀ k ∈ Qa and pik = pib, ∀ k ∈ Qb. There are six tasks distributed in the ship bays

of the vessel. Suppose the task assignment is Ω1 = {3, 4}, Ω2 = {1, 2}, Ω3 = {5, 6} and t̂ = 0.1,

δ = 1, l10 = l1T = 3, l20 = l2T = 1, l30 = l3T = 5. Then it can be derived that p1 = 11, p2 = 5,

p3 = 5, p4 = 6, p5 = 6, p6 = 7 and according to Formula (5.1) and the realized task assignment

plan, except ∆12
32 = ∆21

23 = ∆13
35 = ∆31

53 = ∆13
46 = ∆31

64 = 0.3, ∆13
45 = ∆31

54 = 0.2, the rest of

∆vw
ij = 0. Additionally, Φ = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (4, 5), (1, T ), (2, T ), (3, T ),

(4, T ), (5, T ), (6, T )}, Ψ = Φ ∪ {(2, 3), (3, 5), (4, 6)}, and Θ = {(2, 3, 2, 1), (3, 5, 1, 3), (4, 6, 1, 3),

(4, 5, 1, 3)}.

Figure 5.5 shows the corresponding disjunctive graph for the scheduling subproblem for the

example in Figure 5.4, where the arcs with arrow are the conjunctive arcs and the dotted arcs

are disjunctive arcs. The weights on both nodes and arcs are also highlighted in Figure 5.5. The

following describes the steps to identify the set of disjunctive arcs. Based on the task assignment,

Υ1 = {(3, 4)}, Υ2 = {(1, 2)}, and Υ3 = {(5, 6)}. Therefore, Υ = {(1, 2), (3, 4), (5, 6)}. Moreover,

since Λ = {(2, 3), (3, 5), (4, 6)}, D = {(1, 2), (2, 3), (3, 4), (3, 5), (4, 6), (5, 6)}.

2 3 4 5

Task 1 Task 2 Task 3

Task 5

Task 6

Task 4

1 6Bay

2

1

3

Quay crane

Task 1 2 3 4 5 6pia 9 5 5 6 6 8pib 11 5 5 8 6 7li 1 2 3 4 4 5Task 1 2 3 4 5 6pia 9 5 5 6 6 8pib 11 5 5 8 6 7li 1 2 3 4 4 5
Figure 5.4: A simple example for illustration
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0

1
2

3
4

5 6

T

t201 = 0t201 = 0 t202 = 0:1t202 = 0:1 t103 = 0t103 = 0 t104 = 0:1t104 = 0:1 t305 = 0:1t305 = 0:1t306 = 0t306 = 0

t21T = 0t21T = 0t22T = 0:1t22T = 0:1 t23T = 0t23T = 0t24T = 0:1t24T = 0:1 t25T = 0:1t25T = 0:1 t26T = 0t26T = 0
0:10:1

0:10:1 0:30:3
0:30:3

0:20:2 0:30:3 0:10:1

p1 = 11p1 = 11
p2 = 5p2 = 5 p3 = 5p3 = 5 p4 = 6p4 = 6

p5 = 6p5 = 6 p6 = 7p6 = 7
Figure 5.5: Disjunctive graph for the scheduling subproblem for example in Figure 5.4

After constructing the disjunctive graph G, a scheduling subproblem is transformed to a

problem of setting the direction of disjunctive arcs in the graph such that the graph becomes

directed acyclic and the longest path from Node 0 to Node T is minimized. A heuristic to

achieve the goal will be introduced hereafter, whose basic principle is: when �xing the direction

of a particular disjunctive arc, choose the direction which might lead to a shorter critical path

in the �nal Directed Acyclic Graph (DAG). In the literature, the basic idea of this heuristic is

also applied to solve the berth planning problem in Lim (1998). Before describing the heuristic,

some new terms should be de�ned.

• Lj
in, j ∈ Ω, the longest incoming path of node j;

• Lj
out, j ∈ Ω, the longest outgoing path from node j;

• βij = Li
in + wi + wij + wj + Lj

out, (i, j) ∈ D;

• βji = Lj
in + wj + wji + wi + Li

out, (i, j) ∈ D;

• αij = max{βij , βji}, the potential of the disjunctive arc (i, j);

• τ(G), the longest path from node 0 to node T in a graph G;

• D, a set of directed arcs;
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• Let ⟨ik, jk⟩ be the kth element of D, k ∈ {1, · · · , |D|}. De�ne Dk = (D\{⟨ik, jk⟩}) ∪

{⟨jk, ik⟩}. In other words, Dk is the same as D except that its kth element is ⟨jk, ik⟩

rather than ⟨ik, jk⟩.

Scheduling Subproblem Heuristic (SSH):

Step 1: ∀ i ∈ Ω, calculate Li
in and Li

out. Let D = ∅.

Step 2: ∀ (i, j) ∈ D, compute αij .

Step 3: Find the disjunctive arc (i, j) with the highest potential αij . If there is a tie in the highest

potential, pick the arc with the largest |βij − βji|. Let D ← D\{(i, j)}.

Step 4: If (βij < βji)

Then set arc to go from i to j, add ⟨i, j⟩ into D

Else if (βij > βji)

Then set arc to go from j to i, add ⟨j, i⟩ into D

Else if (i < j)

Then set arc to go from i to j, add ⟨i, j⟩ into D

Else set arc to go from j to i, add ⟨j, i⟩ into D

Step 5: Update the a�ected longest incoming and outgoing paths of nodes.

Step 6: Update the potential of a�ected disjunctive arcs.

Step 7: If D ̸= ∅, goto Step 3.

Step 8: Calculate τ(G0) = maxi∈Ω(L
i
in + wi + Li

out) for graph G0 = (Ω, C,D,WV ,WE).

Step 9: Let K = {0}.

For k = 1, . . . , |D|,

If graph Gk = (Ω, C,Dk,WV ,WE) is a DAG,

Compute the longest path from Node 0 to Node T in graph Gk, i.e., τ(Gk). K ← K ∪ k.
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Step 10: Return mink∈K τ(Gk) and the corresponding graph with minimum longest path, Gk∗ , k∗ =

argmink∈Kτ(Gk).

The algorithm of SSH consists of two parts. Firstly, Step 1 to Step 7 try to �x the direction

of disjunctive arcs one by one. In each iteration, a particular disjunctive arc is chosen by the

criteria of maximum potential αij (in the event of a tie, |βij − βji|). Once the arc is selected,

the direction of the arc is determined in the way that the longest path through the arc is as

small as possible (Lim, 1998). Secondly, the function of Step 8 to Step 9 is to conduct a local

search based on a feasible solution, graph G0, generated by the procedures beforehand.

Note that topological sorting can be used to determine the longest incoming and outgoing

paths of nodes and additionally, to verify whether a graph is a DAG or not. Since a topological

sorting has running time linear in the number of nodes plus the number of arcs of a graph G =

(Ω, C,D,WV ,WE) (i.e., O(|Ω|+|C|+|D|)), the time complexity of SSH is O(|D|·(|Ω|+|C|+|D|)).

Lemma 5.3.1. The output of SSH is a DAG.

Proof. It is easy to verify that the input for SSH, G = (Ω, C,D,WV ,WE) does not contain a

cycle. Given G, in Lim (1998), it has been proved that the procedures from Step 1 to Step 7 in

SSH will create a DAG. That is, G0 is a DAG. Moreover, since in Step 9 of SSH, the graph Gk,

k ∈ {1, · · · , |D|} which is not a DAG, has been skipped, the set of graph {Gk}k∈K is a set of

directed acyclic graphs. Therefore, the output of SSH, Gk∗ , k∗ = argmink∈Kτ(Gk) is a DAG.

Since SSH will generate a DAG, it guarantees that its corresponding scheduling plan should

be a feasible solution to the scheduling subproblem of the QCSP at indented berth. Figure

5.6 and 5.7 show the procedures of SSH for the disjunctive graph in Figure 5.5 (Omit nodes 0

and T and the corresponding arcs connected to them). The output of SSH for the disjunctive

graph in Figure 5.5 is 19.4 and its corresponding graph is G0. Providing Gk∗ from SSH, it can

be projected back to the domain of original scheduling subproblem. For example, Figure 5.8

gives the interpretation of G0 in terms of quay crane moving trajectories.
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Figure 5.6: Iterations of SSH from Step 1 to Step 7 for the disjunctive graph in Figure 5.5

70



CHAPTER 5. HEURISTICS FOR THE QCSP AT INDENTED BERTH

1
2

3
4

5 6

DAG
¿ (G0) = 19:4
DAG
¿ (G0) = 19:4

1
2

3
4

5 6

DAG
¿ (G1) = 21:4
DAG
¿ (G1) = 21:4

Iteration 1

1
2

3
4

5 6
not a DAGnot a DAG

Iteration 3

1
2

3
4

5 6
not a DAGnot a DAG

Iteration 5

1
2

3
4

5 6

DAG
¿ (G4) = 24:6
DAG
¿ (G4) = 24:6

Iteration 4

1
2

3
4

5 6

DAG
¿ (G6) = 23:8
DAG
¿ (G6) = 23:8

Iteration 6

1
2

3
4

5 6

DAG
¿ (G2) = 34
DAG
¿ (G2) = 34

Iteration 2

Figure 5.7: Iterations of SSH in Step 9 for the disjunctive graph in Figure 5.5
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Figure 5.8: Interpretation of the output from SSH for the scheduling subproblem in Figure 5.4

5.3.2 Heuristics for assigning subproblem

The assigning subproblem for the QCSP at indented berth can be treated as a special case for

unrelated parallel machines scheduling problem, Rm | | cmax. In an unrelated parallel machines

scheduling problem, there are n tasks to be scheduled without preemption on m unrelated

parallel machines. Each task is to be assigned to a machine and, at any time, each machine

can process at most one task. Task j (j = 1, . . . , n) requires a positive handling time pjk if

it is assigned to Machine k (k = 1, . . . ,m). The objective of an unrelated parallel machines

scheduling problem is to assign the tasks to machines so that the maximum completion time

cmax is minimized.

Mathematically, the unrelated parallel machines scheduling problem can be formulated as:

[P] min cmax (5.23)

s.t.
n∑

j=1

pjkukj ≤ cmax, k = 1, . . . ,m (5.24)
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m∑
k=1

ukj = 1, j = 1, . . . , n (5.25)

ukj ∈ {0, 1}, k = 1, . . . ,m; j = 1, . . . , n (5.26)

cmax ∈ ℜ+ (5.27)

where ukj is a binary assignment variable and equals to 1 if and only if Task j is assigned

to Machine k. Unfortunately, the unrelated parallel machines scheduling problem is NP-hard

(Hariri and Potts, 1991). Therefore, most researchers resorted to heuristic methods which

provide approximation solutions. In this research, two kinds of heuristics will be applied to

solve the assigning subproblem.

Assigning Subproblem Heuristic 1 (ASH1):

The heuristic is proposed by Hariri and Potts (1991), which integrates the linear program-

ming relaxation and earliest completion time heuristic. One observation for problem P is that

if constraints (5.26) are replaced by ukj ≥ 0 (k = 1, . . . ,m; j = 1, . . . , n), for n ≥ m − 1, at

least n −m + 1 assignment variables take the value 1 in a basic optimal solution. Therefore,

linear programming relaxation of problem P will produce a partial schedule in which at least

max{n−m+1, 0} tasks are assigned to machines. Let u∗kj (k = 1, . . . ,m; j = 1, . . . , n) be the op-

timal solution for P by linear programming relaxation. Denote Ωk = {j |u∗kj = 1, j = 1, . . . , n}

which stands for the task set that assigned to machine k (k = 1, . . . ,m). Hence, for the set

of unscheduled tasks U , U = {1, . . . , n}\
∪m

k=1Ωk. Given the partial solution from linear pro-

gramming relaxation, earliest completion time heuristic can be used to assign the remaining

tasks.

Step 1: Solve the linear programming relaxation of problem P by Simplex method. Based on the

optimal solution u∗kj (k = 1, . . . ,m; j = 1, . . . , n), initialize {Ωk}, k = 1, . . . ,m.

Step 2: Determine the set U , U = {1, . . . , n}\
∪m

k=1Ωk.

Step 3: ∀ k = 1, . . . ,m, if Ωk ̸= ∅, compute tk =
∑

j∈Ωk
pjk; otherwise, let tk = 0.

Step 4: Determine j∗ = argminj∈U{minmk=1(tk + pjk)} and k∗ = argminmk=1(tk + pkj∗).
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Step 5: Assign Task j∗ to Machine k∗. Update U , Ωk∗ and tk∗ , by U ← U\{j∗}, Ωk∗ ← Ωk∗∪{j∗},

tk∗ ← tk∗ + pk∗j∗ .

Step 6: If U ̸= ∅, goto Step 4.

Step 7: Return {Ωk}, k = 1, . . . ,m.

For the example shown in Figure 5.4, ASH1 will create the assignment plan that Ω1 = {1, 4},

Ω2 = {2, 5}, and Ω3 = {3, 6}.

Assigning Subproblem Heuristic 2 (ASH2):

The second heuristic is called ASH2. Compared with ASH1, in this heuristic, all the tasks are

assigned to machines purely based on the rule of earliest completion time �rst. For the example

shown in Figure 5.4, ASH2 will generate the assignment plan that Ω1 = {2, 4}, Ω2 = {3, 6},

and Ω3 = {1, 5}.

5.3.3 Tabu search to re�ne the assigning solution

Although combining ASH1 and SSH or ASH2 and SSH can obtain a feasible solution to the

QCSP at indented berth, since the heuristics for assigning subproblem fail to take the vital

constraints such as Non-crossing and safety distance into account, sometimes the generated

feasible solution may be far from satisfactory. Therefore, Tabu search will be proposed to re�ne

the assigning solution created by ASH1 or ASH2. Figure 5.9 is the �owchart for the proposed

Tabu search. Compared with traditional Tabu search, the proposed Tabu search in this research

takes advantage of hashing technique to keep track of all the visited solutions so as to prevent

cycling. In the literature, the approach to embed hashing technique within the Tabu search

framework has been successfully implemented in solving machine scheduling problems such as

Srivastava (1998).
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Initial solution

Create neighborhood solutions

Select the best admissible solution
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Satisfied

End

Update Tabu hash table

YES

NO

Hash neighborhood solutions

Identify the admissible solutions

Evaluate the admissible solutions

Figure 5.9: Flowchart of proposed Tabu search

Hashing technique is an important method widely used in information retrieval systems.

Its basic idea is to map relatively complicated records into integers through a hashing function

and use the integers to represent the records for further information manipulation, in light of

the fact that keeping and searching a list of integers is comparatively easier. Given a record

s = (s1, s2, . . . , sm), a hashing function h is served to map the record s into an integer z. There

are several types of hash function. For example, a hashing function can be:

z = h(s) =
m∑
i=1

zi · si (5.28)

where (z1, z2, . . . , zm) is a pre-computed vector of pseudo-random integers in the range [1, ρ].

Woodru� and Zemel (1993) has demonstrated that as long as the value of ρ is relatively large,

the probability of collision (i.e., when two di�erent records are encountered with the same

hashing value) would be pretty low. In this research, ρ is set as 216 = 65536.

75



CHAPTER 5. HEURISTICS FOR THE QCSP AT INDENTED BERTH

One intuitive way to code the assigning plan for the QCSP at indented berth is to use a

vector s = (s1, s2, . . . , s|Ω|) with dimension equaling to the size of tasks, whose element si i ∈ Ω

is an integer and bounded in the range [1, |Q|]. If si = k, i ∈ Ω, k ∈ Q, it means that Task i is

assigned to Crane k.

Initial solution

Let sI = (sI1, s
I
2, . . . , s

I
|Ω|) be the assigning plan generated by ASH1 and sII = (sII1 , s

II
2 , . . . , s

II
|Ω|)

be the output of ASH2. After inputting sI and sII into SSH, let τ(G(sI)) and τ(G(sII)) be the

corresponding makespans, respectively. If τ(G(sI)) ≤ τ(G(sII)), the initial solution s0 = sI;

otherwise, s0 = sII.

Create neighborhood solutions

Given an assigning plan s = (s1, s2, . . . , s|Ω|), two kinds of operation can be conducted on s

to create its neighborhood solutions, N(s). The �rst operation is called pairwise interchange.

Before pairwise interchange, two random integers i, j (i, j ∈ Ω, i < j, si ̸= sj) will be generated.

Then a neighborhood solution of s = (s1, . . . , si, . . . , sj , . . . , s|Ω|), s′, can be constructed as

(s1, . . . , sj , . . . , si, . . . , s|Ω|). The second operation is called �ipping which changes a randomly

selected element si (i ∈ Ω) into another integer in the set Q\{si}.

Hash neighborhood solutions and identify the admissible solutions

∀ s′ = (s′1, s
′
2, . . . , s

′
|Ω|) in N(s), its corresponding hash value z′ = h(s′) =

∑
i∈Ω zi ·s′i. Denote

H as the Tabu hash table for all the visited solutions (initially, H = {h(s0)}). Then if z′ ∈ H,

statistically speaking, it is very safe to assert that the s′ is a previously visited solution given

that ρ is relatively large. Therefore, at the current solution s, a neighborhood solution s′ is

regarded as an admissible solution if and only if s′ ∈ N(s) and h(s′) /∈ H. De�ne a set for all

the admissible moves when the current solution is s, A(s) = {s′ | s′ ∈ N(s) ∧ h(s′) /∈ H}.

Evaluate the admissible solutions and select the best one

Suppose the current solution is s, for all s′ ∈ A(s), SSH can be used to evaluate the goodness

of the task assigning plan s′. Let τ(G(s′)) be the output of SSH when s′ is evaluated. Then the

best admissible solution is s′∗ = argmins′∈A(s)τ(G(s′)).

76



CHAPTER 5. HEURISTICS FOR THE QCSP AT INDENTED BERTH

Stopping criterion

The Tabu search algorithm will be terminated in the case that one of the following conditions

is satis�ed:

• The maximum iteration number L1 is achieved.

• The objective value has never changed from the previous L2 consecutive iterations.

Update Tabu hash table

In one iteration of the Tabu search algorithm, if both stopping criteria can not be met, the

Tabu hash table H will be updated. Simply let H ← H ∪ {z′ | z′ = h(s′), s′ ∈ A(s)}.

Hereafter, the above Tabu search algorithm will be called Tabu1. Actually, there is another

strategy to code the information of assigning plan in Tabu search for the QCSP at indented

berth. The principle of this version of Tabu search (named Tabu2) is to aggregate all the tasks

located in the same ship bay as a batch and assign the batch to a single quay crane. This kind

of scheduling scheme is referred to be as bay-based QCSP in Bierwirth and Meisel (2009). Let

b = (b1, b2, . . . , bl) be a binary string with length l which is the total number of ship bays. The

element bi ∈ {0, 1} (i = 1, . . . , l), is equal to 1 if and only if the batch of tasks in Bay i is

assigned to a Crane k (k ∈ Qa). By default, if Bay i does not contain any task, bi is set to 0.

Initial solution for Tabu2

Without loss of generality, suppose the assigning plan of ASH1 is superior to that of ASH2

(i.e., τ(G(sI)) ≤ τ(G(sII))). Here is the rule to construct the initial solution for Tabu2, b0 =

(b01, b
0
2, . . . , b

0
l ): for Bay i (i = 1, . . . , l), if there are more than one task located inside, the value

of b0i is equal to the value randomly selected from {0, 1}; if there is only one task (e.g., task j,

j ∈ Ω) located in Bay i, b0i = 1 in the case that sIj ∈ Qa and b0i = 0 in the case that sIj ∈ Qb.

Taking the case in Figure 5.4 as an example, the output of ASH1 is Ω1 = {1, 4}, Ω2 = {2, 5},

and Ω3 = {3, 6}, in other words, sI = (1, 2, 3, 1, 2, 3). Note that both Task 4 and Task 5 are

located in Bay 4, therefore, the value of b04 can be ether 0 or 1. Besides, since there is no task

in Bay 6, b06 should equal to 0. Hence, b0 can be (1, 0, 0, 1, 0, 0) or (1, 0, 0, 0, 0, 0).
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Create neighborhood solutions for Tabu2

Given a ship bay assigning plan b = (b1, b2, . . . , bl), the methods to create its neighborhood

solution, N(b) are similar to the two operations introduced before. Note that for �ipping

operation, if element bi (i = 1, . . . , l) is chosen to manipulate, then bi will be changed to the

integer in the set {0, 1}\{bi}.

Hash neighborhood solutions and identify the admissible solutions for Tabu2

∀b′ = (b′1, b
′
2, . . . , b

′
l) in N(b), its hash value z′ = h(b′) =

∑l
i=1 zi · b′i. De�ne the admissible

moves when the current solution is b, A(b) = {b′ |b′ ∈ N(b) ∧ h(b′) /∈ H}. Here H is the Tabu

hash table for Tabu2 and it is initialized as H = {h(b0)} immediately after the construction of

the initial solution for Tabu2.

Evaluate the admissible solutions and select the best one for Tabu2

To evaluate the goodness of an admissible solution, b, Tabu2 needs more attempts com-

pared with Tabu1. Before using SSH, the assignment information for individual task should be

obtained based on b = (b1, b2, . . . , bl). Let p = (p1, p2, . . . , pl), where pi (i = 1, . . . , l) is the

aggregated handling time for Bay i under the ship bay assignment plan b. Speci�cally, de�ne

the task subset Ω(i) = {j | lj = i, j ∈ Ω, 1 ≤ i ≤ l}, which is the set for all the tasks located in

Bay i. Then pi =
∑

j∈Ω(i)[bi ·pjk | k∈Qa
+(1−bi) ·pjk | k∈Qb

]. In the case that Ω(i) = ∅ (1 ≤ i ≤ l),

pi = 0. Based on p, two vectors, pa and pb can be calculated: pa = (b1 · p1, b2 · p2, . . . , bl · pl),

pb = ((1−b1)·p1, (1−b2)·p2, . . . , (1−bl)·pl). The purpose to de�ne pa and pb is to store the work-

load list that purely related to the quay cranes in Qa or Qb. For instance, let b = (1, 0, 0, 1, 0, 0)

for the example shown in Figure 5.4. Then p = (9, 5, 5, 12, 7, 0), pa = (9, 0, 0, 12, 0, 0) and

pb = (0, 5, 5, 0, 7, 0).

It is worth to mention that given a b, without consideration of safety distance requirement,

the bay-based QCSP at indented berth can be treated as two traditional bay-based QCSP (see

Figure 5.10). Therefore, the heuristics proposed in the literature for solving bay-based QCSP

can be implemented to both traditional bay-based quay crane scheduling problems and �nally

generate the assignment plan for individual task.
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Figure 5.10: Partition the problem for the example in Figure 5.4

The approximation algorithm proposed in Lim et al. (2004b) is adopted to solve both tradi-

tional bay-based QCSP. Given the number of quay cranes (m) and the workload list for all the

ship bays (e.g., p̂ = (p̂1, p̂2, . . . , p̂n)), the approximation algorithm BP introduced in Chapter 4

will try to seek the best partition pattern for the ship bays and assign each quay crane to the

corresponding partition orderly through the DP recursive functions of 4.22 and 4.23. For exam-

ple, in Figure 5.10, if the number of quay crane m = 2 and the workload list pb = (0, 5, 5, 0, 7, 0)

are fed into the DP recursive functions, BP will generate two consecutive sections, (0, 5, 5) and

(0, 7, 0) and assign them to Cranes 2 and 3, respectively. Obviously, not only does BP distribute

the workload as evenly as possible, but also its generated bay-based work assignment naturally

eliminates the issue of crossing among quay cranes.

By sequentially inputting (m = |Qa|, p̂ = pa) and (m = |Qb|, p̂ = pb) into BP, b can be

translated to a more detailed individual task assignment s = (s1, s2, . . . , s|Ω|), where si ∈ Q

(i ∈ Ω) means that Task i is assigned to Crane si. For the case shown in Figure 5.10, if

b = (1, 0, 0, 1, 0, 0), after using BP twice, the assignment information for individual task s =

(1, 2, 2, 1, 1, 3) can be obtained. For ease of description, denote this transformation brie�y as

s = BP(b). After the translation, the goodness of b can be evaluated by SSH. Let τ(G(BP(b)))
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be the output of SSH when b is evaluated. Therefore, the best admissible solution for Tabu2 is

b′∗ = argminb′∈A(b)τ(G(BP(b′))).

Stopping criterion for Tabu2

The stopping criterion for Tabu2 is exactly the same as Tabu1.

Update Tabu hash table for Tabu2

The rule to update the Tabu hash table is: H ← H ∪ {z′ | z′ = h(b′),b′ ∈ A(b)}.

5.4 Numerical Experiments

To examine the performance, the proposed heuristic framework is evaluated by a suite of ran-

domly generated problems, which contains 7 instance sets of di�erent problem size with 30

instances each. Table 5.1 summarizes the details for the 7 instance sets. For a Task i (i ∈ Ω),

the handling time pik, ∀ k ∈ Qa follows a discrete uniform distribution in the range [30, 100];

while pik, ∀ k ∈ Qb is derived by adding pik, ∀ k ∈ Qa a random integer variable generated from

a discrete uniform distribution in the range [−15, 15]. The length of a vessel measured by the

number of bays is equal to the size of the tasks, n = |Ω|. To construct an instance, �rst of

all, the n tasks are randomly distributed to the n bays one by one. Next for each bay, if the

number of tasks that assigned to the bay is greater than 2, then each task in that particular bay

is tagged to be loading or discharging task randomly with equal possibility. The information

obtained from this part can be used to construct the precedence constrained pair set, Φ. Finally,

let the safety distance δ equal to one ship bay and t̂ = 0.1.

In this research, two criteria are used to assess the e�ectiveness of the proposed heuristic

framework: computation time and solution quality. Because it is challenging to �nd the optimal

solutions in reasonable time for each instance, a compromise strategy is to compare the approx-

imate solutions that the proposed heuristic framework generates to lower bounds. Three kinds

of lower bound from unrelated machine scheduling problem are calculated for each instance:

• LB1 =
∑

i∈Ω mink∈Q pik
|Q| . LB1 distributes the sum of the minimal handling times among the

quay cranes.
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• LB2 = maxi∈Ω{mink∈Q pik}.

• The third lower bound LB3, is found by solving the surrogate dual problem of problem

P. Let λ = (λ1, . . . , λm) be a vector of non-negative multipliers, the surrogate relaxation

problem Sλ is obtained by dualizing constraints (5.24) in P:

[Sλ] min
∑m

k=1

∑n
j=1 λk · pjk · ukj∑m
k=1 λk

(5.29)

s.t.
m∑
k=1

ukj = 1, j = 1, . . . , n (5.30)

ukj ∈ {0, 1}, k = 1, . . . ,m; j = 1, . . . , n (5.31)

Note that problem Sλ is solvable in O(mn) (Ghirardi and Potts, 2005). Let S(λ) be

the optimal solution of Sλ, which is obviously a lower bound for problem P. Then the

surrogate dual problem D for problem P is:

[D] max S(λ) (5.32)

s.t. λ ≥ 0 (5.33)

Problem D can be solved by ascent direction algorithm proposed in Van de Velde (1993).

Let LB3 be the optimal solution of problem D.

After calculating the above three lower bounds, the lower bound for each instance LB is equal

to max{LB1, LB2, LB3}.

Table 5.1: Detail of the 7 instance sets

Instance set A B C D E F G

Tasks: |Ω| 10 15 20 25 30 35 40
Quay cranes: |Qa| 1 1 2 2 2 3 3
Quay cranes: |Qb| 2 2 3 3 3 4 4

The proposed heuristic framework is coded in Matlab and ran in a PC with 2.4 GHz CPU
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and 2.99 GB of RAM. There are 4 solution methods in the framework to �nd the approximate

solutions for the QCSP at indented berth: the combination of ASH1 and SSH (denoted as

ASH1+SSH), the combination of ASH2 and SSH (denoted as ASH2+SSH), Tabu1, and Tabu2.

The �rst two solution methods are deterministic heuristics while the latter two are stochastic

ones. For Tabu1 and Tabu2, the maximum iteration number L1 and the number to test the

convergence L2 are set to 200 and 10, respectively. Besides, for each instance, both Tabu

search algorithms are executed 3 times and the information of the best solution found in the

3 runs for each algorithm is recorded for evaluation. For a particular instance, let µ be the

makespan for the solution found by one of the four solution methods. Then the e�ectiveness of

the corresponding solution method can be measured by:

gap =
µ− LB
LB

× 100% (5.34)

To select the suitable size of neighborhood solutions searched in each iteration (denoted as

L3), Tabu1 with di�erent values of L3 is executed to solve the 30 instances in Set A. Figure

5.11 depicts the performance of Tabu1 to solve instance Set A with di�erent value of L3 ranging

from 20 to 160 with step size 20. In Figure 5.11, the horizontal axis measures the e�ectiveness

of the algorithm while the vertical axis is the average CPU time consumed by the algorithm

to solve the 30 instances. As can be observed, except L3 = 20 and L3 = 60 which lies on the

pareto front, other options are dominated. By putting more weight on e�ectiveness, 20 can be

a suitable value for the parameter L3. For simplicity, in the rest of numerical experiments, the

value of L3 is �xed to 20.

Table 5.2 summarizes the average computational time, the means and standard deviations

of gaps for each solution method under di�erent instance set. From the computational results

shown in Table 5.2, several facts can be observed: 1) On average, the solutions generated by the

two deterministic heuristics (i.e., ASH1+SSH and ASH2+SSH) are not good enough since the

means of gap are ranging from 36% to 100%. 2) The di�erence between the two deterministic

heuristics in terms of solution quality is marginal. 3) The improvement of solution by Tabu

search is signi�cant especially for Tabu2. Compared with Tabu1, Tabu2 not only can �nd better
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solutions but also achieves that in a faster way. To explain this phenomenon, it is worth noting

that the exact size of searching space for Tabu1 is (|Q|)|Ω| while for Tabu2 is less 2|Ω| (recall that

the tasks in the same ship bay are assigned to the same quay crane). Since in practice |Q| ≥ 2,

the exact searching space for Tabu1 is remarkably larger than the one for Tabu2. Besides, the

task assignment plan generated by Tabu2 has taken the Non-crossing Constraints among quay

cranes into account which will help to reduce the number of disjunctive arcs in graph G. In

light of the above facts, Tabu2 should be essentially more e�cient than Tabu1.
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Figure 5.11: The selection of L3

5.5 Summary

This paper discusses the QCSP at indented berth, an extension to the current QCSP in the

�eld of container terminal operation. An MIP model by considering the unique features of

the QCSP at indented berth is formulated. For solution, decomposition heuristic framework is

developed and enhanced by Tabu search. To evaluate the performance of the proposed heuristic
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Table 5.2: The performance of the proposed heuristic framework

Instance set A B C D E F G

CPUa 0.09 0.21 0.41 0.79 1.49 2.32 3.85
ASH1+SSH Meanb 48.16 36.28 79.43 68.55 62.48 100.47 95.65

STDc 18.32 18.96 18.86 18.44 23.47 19.03 16.66

CPU 0.07 0.21 0.44 0.82 1.52 2.38 3.95
ASH2+SSH Mean 41.43 37.6 79.42 68.55 62.48 100.47 95.65

STD 16.94 18.39 18.86 18.44 23.47 19.03 16.66

CPU 9.58 40.75 82.38 227.99 453.99 915.13 1434.12
Tabu1 Mean 7.79 4.22 16.52 11.7 12.38 28.44 29.27

STD 3.35 1.87 6.77 4.45 4.96 7.24 8.17

CPU 4.38 20.46 22.61 59.79 101 100.41 192.61
Tabu2 Mean 6.11 3.31 8.02 5.88 4.59 8.29 6.93

STD 2.55 1.33 2.51 1.78 1.16 1.75 1.49

a: the average computational time in seconds

b: the mean of gaps (%)

c: the standard deviation of gaps (%)

framework, a comprehensive numerical test is carried out and its results show the good quality

of the proposed heuristic framework.
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Chapter 6

A Combinatorial Benders' Cuts

Algorithm for the Quayside

Operation Problem at Container

Terminals

6.1 Background

Based on the literature review of the integrated model for the quayside operation problem

presented in Chapter 2, it can be observed that the framework proposed in Liu et al. (2006)

is advantageous since it is capable to veritably reveal the exact in�uence of the quay crane

interference. That is, the QCSP is truly included into the integrated model of the quayside

operation problem. Nevertheless, both Vessel-level and Berth-level models in Liu et al. (2006)

are solved by the o�-the-shelf optimization solver. In this Chapter, a more e�cient and problem-

oriented algorithm, called the Combinatorial Benders' Cuts (CBC) algorithm, will be proposed

for the Berth-level model in Liu et al. (2006).
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6.2 Mathematical Model

In this section, the mathematical model provided by Liu et al. (2006) is presented. Subsequently,

some observations on the Liu, Wan, and Wang formulation (Liu et al., 2006) is introduced as

well.

6.2.1 Notation

Let V denote the set of vessels to be processed in the planning horizon and Q be the set of all

quay cranes available along the berth. Number the quay cranes one by one increasingly along

the increasing direction of the berth. The followings are the input data for the model:

• ri, the arrival time of Vessel i

• di, the scheduled departure time of Vessel i

• li, the (mid-point) position of Vessel i

• qi, the minimum number of quay cranes that can be deployed to Vessel i

• qi, the maximum number of quay cranes that can be deployed to Vessel i

• Θ(i) = {q | qi ≤ q ≤ qi}, ∀ i ∈ V , the set of legitimate quay crane numbers for Vessel i

• piq, the processing time when q quay cranes are assigned to process Vessel i

• τ , the total preparation time on the quayside for a docking vessel to depart and for a

waiting vessel to dock

Additionally, in order to present the precedence relationships among the vessels, three kinds of

vessel pair sets need to be de�ned.

• R, the set of vessel pairs (i, j) such that Vessel j is the next vessel that docks along some

berth position occupied by Vessel i

• R′, the set of vessel pairs that include all the pairs in R and pairs (i, j) such that {(i, i1)

, (i1, i2) , . . . , (ie, j)} ∈ R for some Vessels i1, i2, . . . , ie
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• U, the set of all vessel pairs (i, j) such that both (i, j) /∈ R′ and (j, i) /∈ R′

6.2.2 The Liu, Wan, and Wang formulation

In Liu et al. (2006), the ultimate objective for the proposed problem is to minimize the maximum

relative tardiness of all vessels in a planning horizon. The relative tardiness of a particular Vessel

i is de�ned as:

Li =
max(0, ci − di)

di − ri

where Li is the relative tardiness of Vessel i and ci is the processing completion time of Vessel

i. The list below shows all the decision variables used by Liu et al. (2006):

• Li, the relative tardiness of Vessel i

• L, the maximum relative tardiness of all vessels

• si, the service start time of Vessel i

• ci, the service completion time of Vessel i

• xski, the position of quay crane k at the start time of Vessel i

• xcki, the position of quay crane k at the completion time of Vessel i

• yssij ∈ {0, 1}, 1, if si is before sj , (i, j) ∈ U; 0, otherwise

• yscij ∈ {0, 1}, 1, if si is before cj , (i, j) ∈ U; 0, otherwise

• ycsij ∈ {0, 1}, 1, if ci is before sj , (i, j) ∈ U; 0, otherwise

• yccij ∈ {0, 1}, 1, if ci is before cj , (i, j) ∈ U; 0, otherwise

• zki ∈ {0, 1}, 1, if Crane k is assigned to process Vessel i; 0, otherwise

• ψiq ∈ {0, 1}, 1, if q quay cranes are assigned to process Vessel i; 0, otherwise

The Liu, Wan, and Wang formulation, denoted by [F ] hereafter, is shown as follows:
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[F ] min L (6.1)

s.t.

qi ≥
∑
k∈Q

zki ≥ qi, ∀ i ∈ V (6.2)

∑
q∈Θ(i)

q · ψiq =
∑
k∈Q

zki, ∀ i ∈ V (6.3)

sj ≥ si +M · (yssij − 1), ∀ (i, j) ∈ U (6.4)

cj ≥ si +M · (yscij − 1), ∀ (i, j) ∈ U (6.5)

sj ≥ ci +M · (ycsij − 1), ∀ (i, j) ∈ U (6.6)

cj ≥ ci +M · (yccij − 1), ∀ (i, j) ∈ U (6.7)

yssij + yssji = 1, ∀ (i, j) ∈ U (6.8)

yscij + ycsji = 1, ∀ (i, j) ∈ U (6.9)

ycsij + yscji = 1, ∀ (i, j) ∈ U (6.10)

yccij + yccji = 1, ∀ (i, j) ∈ U (6.11)

xski ≥ li +M · (zki − 1), ∀ i ∈ V, k ∈ Q (6.12)

xski ≤ li +M · (1− zki), ∀ i ∈ V, k ∈ Q (6.13)

xcki ≥ li +M · (zki − 1), ∀ i ∈ V, k ∈ Q (6.14)

xcki ≤ li +M · (1− zki), ∀ i ∈ V, k ∈ Q (6.15)

xskj ≤ li +M · (3− zki − yssij − yscji ), ∀ (i, j) ∈ U, k ∈ Q (6.16)

xskj ≥ li +M · (zki + yssij + yscji − 3), ∀ (i, j) ∈ U, k ∈ Q (6.17)

xckj ≤ li +M · (3− zki − yscij − yccji ), ∀ (i, j) ∈ U, k ∈ Q (6.18)

xckj ≥ li +M · (zki + yscij + yccji − 3), ∀ (i, j) ∈ U, k ∈ Q (6.19)

xski − xsk−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.20)

xcki − xck−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.21)

si ≥ ri, ∀ i ∈ V (6.22)
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ci ≥ si +
∑

q∈Θ(i)

piq · ψiq, ∀ i ∈ V (6.23)

sj − ci ≥ τ, ∀ (i, j) ∈ R (6.24)

Li ≥ (ci − di)/(di − ri), ∀ i ∈ V (6.25)

L ≥ Li, ∀ i ∈ V (6.26)

si, ci, Li, L, x
s
ki, x

c
ki ∈ ℜ+, ∀ i ∈ V, k ∈ Q (6.27)

yssij , y
sc
ij , y

cs
ij , y

cc
ij , zki, ψiq ∈ {0, 1}, ∀ (i, j) ∈ U, k ∈ Q, q ∈ Θ(i) (6.28)

The objective function (6.1) is to minimize L, which is de�ned as maxi∈V Li. Constraints

(6.2) make sure that the total number quay cranes assigned to a particular vessel should be in

the legitimate range. Constraints (6.3) link both the decision variables, ψiq and zki. Constraints

(6.4) to (6.11) show the properties of yssij , y
sc
ij , y

cs
ij , y

cc
ij . Constraints (6.12) to (6.19) indicate that

once a quay crane is assigned to a certain vessel, the quay crane can only work on that speci�c

vessel until it leaves port. Constraints (6.20) and (6.21) state that quay cranes can not cross

each other in the planning horizon. In Constraints (6.22) and (6.23), they ensure that the

service start time of Vessel i should be later than the arrival time of the vessel and meanwhile,

the completion time of Vessel i should be greater than the sum of start time, si, and realized

processing time,
∑

q∈Θ(i) piq · ψiq. For the vessel pair (i, j) in R, there should be a su�ciently

large time gap (i.e., τ) between the completion time of Vessel i and the start time of Vessel

j. Constraints (6.25) and (6.26) de�ne the decision variables, Li and L, respectively. Finally,

Constraints (6.27) to (6.28) declare the domains for all the decision variables.

6.2.3 Observations and valid inequalities

Based on [F ] originally developed in Liu et al. (2006), in this subsection, two observations can

be made on [F ] and additionally, several valid inequalities which are redundant for [F ] but can

be used to strengthen the master problem of the proposed algorithm (introduced in the next

section), is presented.

First of all, according to the de�nition of vessel pair set U, as long as (i, j) is an element of

U, (j, i) should also be included in U. In other words, the set U is sort of �symmetric�. In light
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of this observation, actually, constraints (6.9) and (6.10) are the same. Therefore, one of them

can be dropped from [F ] to avoid the repetition. Moreover, in the original formulation, there

is lacking a very important restriction on the decision variable ψiq:

∑
q∈Θ(i)

ψiq = 1, ∀ i ∈ V (6.29)

The validness of equations (6.29) is evident since they make sure that there is only one kind of

quay crane assignment plan for a certain vessel. And without the enforcement of constraints

(6.29), it is possible that ψiq1 and ψiq2 can both take 1 simultaneously while qi ≥ q1 + q2 ≥ qi.

In this case, the term
∑

q∈Θ(i) piq · ψiq in constraints (6.23) is equal to piq1 + piq2 and fails to

represent a valid processing time for Vessel i.

Next, 3 kinds of valid inequalities for [F ] are described. For ease of expression, it is necessary

to de�ne a new vessel pair set, U′, i.e., the set of vessel pairs (i, j) such that (i, j) ∈ U and

additionally li > lj .

The �rst kind of valid inequalities is about the connections among yssij , y
sc
ij , y

cs
ij and yccij . By

de�nition, for i, j ∈ V, i ̸= j, yssij = 1 if and only if si ≤ sj and y
sc
ij = 1 if and only if si ≤ cj .

Since sj ≤ cj , if y
ss
ij = 1, it follows that si ≤ cj which implies that yscij = 1. In other words, if

yssij = 1, then yscij = 1. This relationship between yssij and yscij can be expressed as the inequalities

shown in (6.30), i.e., yscij ≥ yssij . For the case of yccij and ycsij , the analogous analysis can be applied

to shown that yccij ≥ ycsij .

yscij ≥ yssij , yccij ≥ ycsij , ∀ i, j ∈ V, i ̸= j (6.30)

The next type of valid inequalities summarized in (6.31) is based on the fact that if Cranes k

and k′ (say, k < k′ − 1) are assigned to Vessel i at the same time, the quay crane located at

the interval between these two quay cranes (i.e., quay crane ke, k < ke < k′) should also be

assigned to Vessel i due to the physical constraint of Non-crossing.

zke,i ≥ zk,i + zk′,i − 1, ∀ i ∈ V, k, ke, k′ ∈ Q, k < ke < k′ (6.31)
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Mathematically speaking, it claims that if both zk,i and zk′,i take 1 simultaneously, then zke,i

should be 1 as well. It can be observed that inequalities (6.31) are able to serve the function

mentioned above.

Finally, valid inequalities (6.32) link the decision variables ycsij and zki in order to forbid the

assignment plan shown in Figure (6.1) and Figure (6.2). In both cases, Vessel i and Vessel j are

processed simultaneously at certain point of time. In Figure (6.1), assume that Cranes k and k′

(k < k′) are assigned to Vessel j and Vessel i, respectively, where Vessel i is moored above Vessel

j (i.e., (i, j) ∈ U′). Since at certain time point, Vessel i and Vessel j are processed simultaneously,

such kind of quay crane assignment is doomed to violate the non-crossing requirement. In the

case shown in Figure (6.2), identical quay crane is assigned to two vessels which can be handled

simultaneously. Since a quay crane assigned to a vessel stays at the berthing location of the

vessel until its completion, the assignment plan shown in Figure (6.2) is also infeasible for real-

life practice. For prevention, it should make sure that Vessels i and j, (i, j) ∈ U′, can not be

processed simultaneously (i.e., ycsij + ycsji = 0) if Cranes k and k′ are assigned to Vessel i and

Vessel j, respectively (i.e., zki + zk′j = 2).

ycsij + ycsji ≥ zki + zk′j − 1, ∀ (i, j) ∈ U′, k, k′ ∈ Q, k ≤ k′ (6.32)

ship i

ship j

Berth Position

Time

lili
ljljk0k0kk

Figure 6.1: An illustration for Valid inequalities (6.32) when k < k′
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ship i

ship j

Berth Position

Time

kk
Figure 6.2: An illustration for Valid inequalities (6.32) when k = k′

6.3 CBC Algorithm

Based on the aforementioned observations, the formulation of Liu, Wan, and Wang should be

updated as below:

[F ] min L

s.t.

Constraints (6.2) to (6.9)

Constraints (6.11) to (6.29)

In this section, the CBC algorithm will be developed to solve [F ] (assuming that [F ] is a

feasible problem). The CBC algorithm was �rstly proposed in Hooker (2000) and extended by

Codato and Fischetti (2006) to solve mixed integer programming with special structures. In

the literature of port container terminal management, the CBC algorithm has been successfully

adopted to �nd the optimal solution for integrated yard truck and yard crane scheduling problem

(Cao et al., 2010). Compared with traditional Benders' Cuts method, the CBC algorithm tries
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to derive Benders' Cuts from the minimal set of inconsistencies of subproblem itself rather than

the dual information of the original subproblem.

Note that the decision process of [F ] can be naturally decomposed into two phases. The �rst

phase of the proposed problem is called [Master], which is the decision to determine the service

start time, the total number of quay crane assigned, and the service completion time of each

vessel. Sequenctially, the decision process of the second phase (denoted as [Slave]) starts and

takes the output from the �rst phase as input with the objective to check whether the output

from the previous phase is feasible in the sense that the Non-crossing requirement among quay

cranes can be satis�ed or not. Speci�cally, the two-phase decision process for [F ] is summarized

in the sequel.

For conciseness, vector notations are de�ned:

• x, the vector of {xski, xcki}i∈V,k∈Q

• y, the vector of {yssij , yscij , ycsij , yccij }(i,j)∈U

• z, the vector of {zki}i∈V,k∈Q

[Master] min L

s.t.

Constraints (6.2) to (6.9)

Constraints (6.11)

Constraints (6.22) to (6.26)

Constraints (6.28) to (6.29)

si, ci, Li, L ∈ ℜ+, ∀ i ∈ V, k ∈ Q (6.33)

Let (y∗, z∗) denote the output by solving the current [Master]. Then the second phase

problem [Slave] is,
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[Slave] min 0 · x

s.t.

xski ≥ li +M · (z∗ki − 1), ∀ i ∈ V, k ∈ Q (6.34)

xski ≤ li +M · (1− z∗ki), ∀ i ∈ V, k ∈ Q (6.35)

xcki ≥ li +M · (z∗ki − 1), ∀ i ∈ V, k ∈ Q (6.36)

xcki ≤ li +M · (1− z∗ki), ∀ i ∈ V, k ∈ Q (6.37)

xskj ≤ li +M · (3− z∗ki − yss∗ij − ysc∗ji ),∀ (i, j) ∈ U, k ∈ Q (6.38)

xskj ≥ li +M · (z∗ki + yss∗ij + ysc∗ji − 3),∀ (i, j) ∈ U, k ∈ Q (6.39)

xckj ≤ li +M · (3− z∗ki − ysc∗ij − ycc∗ji ), ∀ (i, j) ∈ U, k ∈ Q (6.40)

xckj ≥ li +M · (z∗ki + ysc∗ij + ycc∗ji − 3), ∀ (i, j) ∈ U, k ∈ Q (6.41)

xski − xsk−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.42)

xcki − xck−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.43)

xski, x
c
ki ∈ ℜ+, ∀ i ∈ V, k ∈ Q (6.44)

Given a (y∗, z∗), if there exists a feasible solution for [Slave], say x∗, it can be concluded

that (x∗,y∗, z∗) must also be an optimal solution for [F ]. However, if [Slave] happens to be

infeasible, it provides a hint that useful information can be explored from the Minimal Infeasible

Subsystem (MIS) of the polyhedron P = {x |Constraints (6.34)−(6.44)}. Here the MIS of P

is de�ned as any inclusion-minimal set of row indices of P such that the linear system has no

feasible solution.

As pointed out in Codato and Fischetti (2006), in order to derive at least one combinatorial

benders' cut from [Slave], one needs to convert the polyhedron P into an equivalent but special

form, i.e., a polyhedron comprised of a set of �conditional� linear constraints plus a set of

�unconditional� constraints. Here the set of �conditional� linear constraints should follow the
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prototype,

m · α∗ + aTβ ≥ b (6.45)

where α∗ is the realized value of a certain binary decision variable from [Master], β is a vector

for continuous variables, and m (m ̸= 0), b, a are constants. And the set of �unconditional�

constraints only involves the continuous variables β. That is, a set of linear constraints similar

to Inequality (6.45) but m takes the value 0.

To achieve the conversion for the current P , one possible way is to introduce continuous

copies of decision variables y and z, ŷ and ẑ, into the problem [Slave]. After the conversion,

the new but equivalent [Slave] problem is given below. Denote the row indices for constraints

(6.56) to (6.60) in the current [Slave] by set ∆ and the row indices for the MIS of current [Slave]

by set Λ if the input (y∗, z∗) makes [Slave] infeasible. Note that the set Γ = ∆ ∩ Λ can not

be an empty set, otherwise it implies that the original problem [F ] is an infeasible problem

which contradicts the previous assumption. Additionally, the set Γ can be decomposed into two

mutually exclusive subsets Γy and Γz, where Γy contains the row indices related to Constraints

(6.56) to (6.59) and Γz contains the row indices related to Constraints (6.60). For t ∈ Γy, there

is an one to one mapping relationship between t and a particular element of ŷ (ultimately y,

since ŷ is a continuous copy of y). Denote this binary decision variable as y(t). By the same

token, for each t ∈ Γz, it links with an unique binary variable in z called z(t).

[Slave] min 0 · x+ 0 · ŷ + 0 · ẑ

s.t.

xski ≥ li +M · (ẑki − 1), ∀ i ∈ V, k ∈ Q (6.46)

xski ≤ li +M · (1− ẑki), ∀ i ∈ V, k ∈ Q (6.47)

xcki ≥ li +M · (ẑki − 1), ∀ i ∈ V, k ∈ Q (6.48)

xcki ≤ li +M · (1− ẑki), ∀ i ∈ V, k ∈ Q (6.49)

xskj ≤ li +M · (3− ẑki − ŷssij − ŷscji ), ∀ (i, j) ∈ U, k ∈ Q (6.50)
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xskj ≥ li +M · (ẑki + ŷssij + ŷscji − 3), ∀ (i, j) ∈ U, k ∈ Q (6.51)

xckj ≤ li +M · (3− ẑki − ŷscij − ŷccji ),∀ (i, j) ∈ U, k ∈ Q (6.52)

xckj ≥ li +M · (ẑki + ŷscij + ŷccji − 3),∀ (i, j) ∈ U, k ∈ Q (6.53)

xski − xsk−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.54)

xcki − xck−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (6.55)

ŷssij = yss∗ij , ∀ (i, j) ∈ U (6.56)

ŷscij = ysc∗ij , ∀ (i, j) ∈ U (6.57)

ŷcsij = ycs∗ij , ∀ (i, j) ∈ U (6.58)

ŷccij = ycc∗ij , ∀ (i, j) ∈ U (6.59)

ẑki = z∗ki, ∀ i ∈ V, k ∈ Q (6.60)

xski, x
c
ki, ẑki, ŷ

ss
ij , ŷ

sc
ij , ŷ

cs
ij , ŷ

cc
ij ∈ ℜ+, ∀ (i, j) ∈ U, k ∈ Q (6.61)

The fundamental rationale of the CBC algorithm is: as long as (y∗, z∗) makes [Slave] infea-

sible, it indicates that at least one binary variable in y and z has to be changed to break the

infeasibility. This statement can be translated by a linear inequality called the Combinatorial

Benders' Cut:

∑
t∈Γy :y∗(t)=0

y(t) +
∑

t∈Γy :y∗(t)=1

(1− y(t)) +
∑

t∈Γz : z∗(t)=0

z(t) +
∑

t∈Γz : z∗(t)=1

(1− z(t)) ≥ 1 (6.62)

One or more Combinatorial Benders' Cuts of this type can be derived in correspondence to a

given infeasible (y∗, z∗) and be added back to [Master]. By iterating the above procedure, an

exact solution of [F ] can be found in the spirit of Benders' decomposition (Codato and Fischetti,

2006).

In the application of the CBC algorithm for [F ], as pointed out in the previous section,

constraints (6.30) to (6.32) are valid inequalities for [F ] and they can be added to the [Master]

for the purposes:

1. help to solve the [Master] subproblem as quickly as possible.
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2. make sure that the solution generated by the [Master] subproblem will violate the quay

crane Non-crossing requirement as least as possible and satisfy the constraints of the [Slave]

subproblem. Usually, by decomposing the original problem into the [Master] subproblem

and the [Slave] subproblem, the connection between the [Master] subproblem and the

[Slave] subproblem would become weak in the sense that the solution output from the

[Master] subproblem �tends to� make the [Slave] subproblem infeasible. Therefore, adding

these valid inequalities of the original problem to the [Master] subproblem can guide the

[Master] subproblem to seek suitable solutions which are superior in the domain of the

[Master] subproblem but also enhance the capability to �t the constraints of the [Slave]

subproblem.

Such a strategy to add these inequalities is considered to be a contribution to the classic CBC

algorithm. In sum, the following summarizes the procedures of the proposed CBC algorithm:

Step 1: Decompose the [F ] into [Master] and [Slave]. Add the Valid inequalities (6.30) to (6.32)

to strengthen [Master]. Transform the [Slave] by introducing continuous copies of binary

decision variables, y and z. Let iteration counter ι equal to 1. Initialize the row index set

∆ according to constraints (6.56) to (6.60) and let row index set Γ equal to ∅.

Step 2: At Iteration ι, solve the [Master] problem to optimality and obtain (y∗
ι , z

∗
ι ).

Step 3: With (y∗
ι , z

∗
ι ), solve [Slave]. If there is one feasible solution for [Slave], say x∗

ι, then stop

the CBC algorithm and return the optimal solution (x∗
ι ,y

∗
ι , z

∗
ι ). However, if [Slave] is

infeasible, examine the MIS of [Slave] and get the row index set Λ. Update Γ, Γ← ∆∩Λ.

Through Γ, generate Combinatorial Benders' Cuts in the form of (6.62) and add them

back to [Master].

Step 4: ι← ι+ 1. Go to Step 2.

6.4 Computational Experiments

Numerical experiments are designed to evaluate the performance of the proposed CBC algorithm

for [F ]. For problem generation, the strategy adopted in Liu et al. (2006) is used. The planning
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horizon is set to one week and the berth length is �xed to be 40 (bay lengths). The numbers

of incoming vessels and quay cranes considered for experiments are {20, 24, 26} and {8, 10, 12},

respectively. Therefore, there are 9 vessel-quay crane combinations. For each vessel-quay crane

combination, 30 instances are randomly generated. Totally, 270 instances are used to test the

performance of the proposed CBC algorithm.

For the generation of each particular instance, the vessel arrival times are generated uni-

formly within the planning horizon. The size of each vessel is chosen randomly in the range

[8, 20]. The workload of each bay is randomly generated from the uniform distribution between

1 hour and 6 hours. To estimate the scheduled departure time for each vessel, �rst of all, the

processing time for each vessel needs to be estimated beforehand. Following the tactics of Liu

et al., the number of quay cranes assigned to a vessel is assumed proportional to the size of the

vessel (a quay crane could be allocated for every 4 bays). Hence, the planned processing time

of the vessel is calculated by dividing the total workload of the vessel by the number of quay

cranes that the vessel is assumed to take. Given the information of both the arrival time and

the estimated processing time for each vessel, the corresponding scheduled departure time could

be obtained accordingly. Next, the key input, piq, the processing time when q quay cranes are

assigned to process Vessel i, can be estimated by heuristics such as the ones in Bierwirth and

Meisel (2009) or the heuristics introduced in Chapter 4. Furthermore, in order to initialize the

three vessel pair sets, R, R′, and U, the berth allocation problem for all the incoming vessels

are solved by GRASP proposed in Chapter 3. Finally, let qi = 1 and qi = 5, i ∈ V , τ = 1 hour.

The CBC algorithm is coded in C++ under the ILOG Concert Technology framework (ver-

sion 12.1). As the benchmark method, the branch and cut method in CPLEX is adopted for

comparison. All experiments are executed in a PC with 2.40 GHz CPU and 3 GB RAM. Ta-

ble 6.1 summarizes the computational results for the 270 instances. For example, when the

number of vessels is 20 and the number of quay cranes is 8, the average computational time

consumed by CBC algorithm to �nd the optimal solutions is 28.3 seconds while for CPLEX,

the average computational time is 378.3 seconds. It can be observed that by �xing the number

of quay cranes, as the number of vessels increases, [F ] becomes more and more challenging to

solve; however, conversely, when the number of vessels is �xed, as the number of quay cranes
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increases, [F ] seems much easier to solve. One possible explanation for such phenomena is that:

since the berth length is set to 40 and the average size for a vessel is around 14 (0.5× (8+20)),

therefore, the average number of vessels that can be processed simultaneously is 2 to 3; if in

most of the instances, the average number of vessels that can be processed simultaneously is 2

and note that qi=5, than when the number of quay cranes along the berth is greater or equal

to 10, the part of quay crane assignment in [F ] would become trivial and thus it reduces the

complexity of the entire problem. Throughout the 270 instances, it is evident that the proposed

CBC algorithm outperforms the B&C method in CPLEX. For instance, when the number of

vessels is 26 and the number of quay cranes is 8, on average, CPLEX would consume 14 hours

to complete the search of the optimal solution while only 9 minutes is required for the CBC

algorithm, which is 95 times faster.

Table 6.1: Computational results (average computation time for CBC in seconds, average com-

putation time for CPLEX in seconds)

Number of vessels

Number of QCs 20 24 26

8 (28.3,378.3) (138.0,6103.5) (539.7,51174.1)

10 (3.6,105.0) (12.0,465.5) (28.3,859.5)

12 (2.9,22.9) (9.4,114.3) (12.9,121.1)
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Table 6.2: The incumbent solution found by CPLEX when CBC hits the optimal one

Instance CBC Time(s) CBC Optimal CPLEX Incumbent Gap(%)

1 49 1.88 2.69 43.59

2 34 1.43 1.60 12.00

3 38 3.22 4.90 52.07

4 714 4.62 4.85 5.00

5 65 2.23 3.11 39.46

6 21 1.64 2.36 44.44

7 424 3.73 3.93 5.36

8 21 2.06 3.07 48.92

9 233 2.83 2.92 2.94

10 328 3.18 3.18 0.00

11 61 1.56 3.73 138.55

12 16 1.54 3.55 130.45

13 12 1.85 4.62 150.00

14 19 2.29 4.17 82.29

15 22 2.00 5.60 180.00

16 25 1.69 5.57 229.22

17 222 4.60 5.46 18.73

18 11 3.69 4.85 31.25

19 61 2.20 2.53 15.15

20 294 2.67 3.42 28.12

21 112 4.00 4.80 20.00

22 12 1.79 6.00 236.00

23 69 1.89 13.11 594.12

24 12 3.27 4.55 38.89

25 229 2.33 2.53 8.57

26 35 4.00 4.63 15.63

27 83 1.92 2.38 24.00

28 97 2.07 2.71 31.03

29 808 2.92 3.18 8.85

30 12 4.42 6.50 47.17

Average 76.06
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Additionally, it is well know that CPLEX solver is usually capable of �nding good solutions

very quickly at the beginning of search. Therefore, for fair comparison, the 30 instances when

the number of vessels is 24 and the number of quay cranes is 8 are used to demonstrate the true

potential of the proposed algorithm. When these 30 instances are solved by CPLEX, the search

will be forced to terminate if the current running time of CPLEX exceeds the corresponding

overall computation time of the CBC algorithm. Table 6.2 lists the incumbent solutions found

by CPLEX when CBC has already �nished the search. Here the Gap is de�ned as:

Gap =
CPLEX Incumbent− CBC Optimal

CBC Optimal
× 100%

For all the 30 instances, except Instance 10, the incumbent solutions found by CPLEX are not

optimal and the average gap is 76%.

6.5 Summary

The quayside operation problem is one of the key components in the management system for a

port container terminal. In this Chapter, the integrated models proposed in the previous studies

to address the quayside operation problem are examined and one of the potential frameworks

is identi�ed, i.e., the model presented in Liu et al. (2006). A new method called the CBC

algorithm is developed to solve the Berth-level model in the framework. The computational

experiment conducted in this research shows that the proposed approach is more e�cient than

the B&C algorithm embedded in CPLEX.
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Chapter 7

An Integrated Model for the

Quayside Operation Problem with

Discrete Berths

7.1 Background

Based on the literature review presented in Chapter 2, it is clear that there is still a lack of

more reasonable or comprehensive integrated models for the quayside operation problem. In

this chapter, a new integrated quayside operation model, an extension of Liu et al. (2006), will

be proposed in the context of discrete berths.

7.2 Problem Description and Mathematical Model

In this section, the description of the proposed problem and its mathematical formulation will

be presented. For a port container terminal, suppose the quay line is partitioned into m berths

(denote the set of the berths as B; the cardinality of B, |B| = m) and only one vessel can be

moored at each berth at a time. There are q quay cranes equipped along the quay and they

are mounted on the same tracks, which forbids them from crossing each other at any instance.

During the planning horizon, given the information of the n incoming vessels (denote the set
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of the vessels as V and |V | = n), the decision for the proposed quayside operation problem is

two-fold: �rstly, the port operators need to assign the q available quay cranes to each berth and

keep the assigned number intact throughout the planning horizon such that it becomes possible

to evaluate the length of the processing time for a particular vessel when it moors at a certain

berth; secondly, based on the quay crane assignment plan for each berth, the port operators

also need to determine the exact berthing location and berthing time for each incoming vessel.

The objective of the proposed problem is to minimize the total turnaround time for all vessels

by following the convention of the researches on discrete berth allocation problem such as (Imai

et al., 2001; Monaco and Sammarra, 2007).

At the �rst glance, it may seem that the assumption for the quay crane assignment, i.e.,

the number of quay crane assigned to a particular berth should not be changed during the

planning horizon, is somewhat strong. However, since the length of the planning horizon is

arti�cially determined by port operators, if they shorten the length to one shift (i.e., 4 or 6

hours depending on the policy of the port container terminal) or two shifts, then the quay crane

assignment mode will vary frequently and appear dynamic. Besides, on the solution part, the

algorithms developed in this research (described in Sections 7.4 and 7.4) are capable to solve

all relatively large scale problems within one hour (on average). Therefore, such assumption is

considered to be reasonable.

The following lists the parameters and decision variables for the proposed problem. Note

that for discrete berths, usually there are a minimum number and a maximum number of quay

cranes that can be deployed to Berth i (denote as ci and ci, respectively). The rationale for

the upper limit of the quay cranes for a particular berth is to take the available quay crane

resource and operation limits of the berth into account. Moreover, in order to achieve a feasible

quay crane assignment plan, it is reasonable to assume that for input data, q ≥
∑

i∈B c
i should

always hold. There are two key input data for the proposed problem, viz., pvj and tij . pvj

is the processing time when v quay cranes are assigned to Vessel j. Actually, given v and j,

to obtain the value pvj is equivalent to solve a QCSP which is NP-hard. Fortunately, in the

literature, several fast but e�ective heuristics for the QCSP have been proposed like the ones

in Sammarra et al. (2007) and Bierwirth and Meisel (2009). With the facilitation of these
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heuristics, the impact of the quay crane scheduling on the overall quayside operation can be

well estimated. Another key input, tij , is the approximate extra transportation time for the

loading or unloading the containers in Vessel j if Vessel j is moored at Berth i. The parameter

is used to account for the fact that for Vessel j, its extra transportation cost might not be the

same for a di�erent berth allocation plan.

7.2.1 Parameters

• V , the set of vessels to be berthed

• B, the set of berths

• Υ, an ordered set of indexes

• n, n = |Υ| = |V |

• m, m = |B|

• si, the time when Berth i becomes available for berthing

• aj , the arrival time of Vessel j

• q, the number of available quay cranes

• ci, the minimum number of quay cranes that can be deployed to Berth i

• ci, the maximum number of quay cranes that can be deployed to Berth i

• V (i) = {j ∈ V | aj > si}, ∀i ∈ B, the set of vessels that arrive at the port after si

• Υ(k) = {k′ ∈ Υ | k′
< k}, ∀k ∈ Υ, the set of position indexes preceding k

• Θ(i) = {v | ci ≤ v ≤ ci},∀i ∈ B, the set of legitimate quay crane numbers for Berth i

• pvj , the processing time when v quay cranes are assigned to process Vessel j

• tij , the extra transportation time for the loading/unloading containers in Vessel j if Vessel

j is moored at Berth i
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7.2.2 Decision variables

• xijk ∈ {0, 1} is equal to 1 if and only if Vessel j is the kth vessel moored at Berth i

• yik, the idle time at Berth i between the departure of the (k − 1)th vessel and the arrival

of the kth vessel

• ziv ∈ {0, 1} is equal to 1 if and only if v quay cranes are assigned to Berth i during the

planning horizon

• hij , the handling time (including processing time and the extra transportation time) of

Vessel j in the case that it is moored at Berth i

7.2.3 Formulations

Based on the compact formulation of the discrete BAP proposed in Monaco and Sammarra

(2007), the proposed integrated model for the quayside operation problem can be directly de-

rived. The following formulation [P0] is the mathematical model for the proposed problem.

[P0]min
∑
i∈B

∑
j∈V

∑
k∈Υ
{(n− k + 1)hij + si − aj}xijk

+
∑
i∈B

∑
k∈Υ

(n− k + 1)yik (7.1)

s.t. ∑
j∈V (i)

(aj − si)xijk −
∑

l∈Υ(k)

(yil +
∑
j∈V

hijxijl)− yik ≤ 0,

∀ i ∈ B, k ∈ Υ (7.2)

hij =
∑

v∈Θ(i)

pvj · ziv + tij , ∀ i ∈ B, j ∈ V (7.3)

∑
i∈B

∑
k∈Υ

xijk = 1, ∀ j ∈ V (7.4)∑
j∈V

xijk ≤ 1, ∀ i ∈ B, k ∈ Υ (7.5)

∑
v∈Θ(i)

ziv = 1, ∀ i ∈ B (7.6)

∑
i∈B

∑
v∈Θ(i)

v · ziv ≤ q (7.7)
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xijk ∈ {0, 1}, ∀ i ∈ B, j ∈ V, k ∈ Υ (7.8)

yik ≥ 0, ∀ i ∈ B, k ∈ Υ (7.9)

ziv ∈ {0, 1}, ∀ i ∈ B, v ∈ Θ(i) (7.10)

The objective (7.1) is to minimize the sum of the turnaround time for all vessels. Constraints

(7.2) and (7.9) de�ne the values of the idle times. Constraints (7.3) show that the value of

hij is the sum of the realized processing time for Vessel j (i.e.,
∑

v∈Θ(i) pvj · ziv) and the extra

transportation time tij . Constraints (7.4) restrict that each Vessel i is served in exactly one

position k at Berth i. Constraints (7.5) ensure that each berth serves no more than one vessel

at a time. Constraints (7.6) and (7.7) are served for quay crane assignment. Constraints (7.6)

make sure that during the planning horizon only a �xed number of quay cranes are deployed

to a certain berth. While Constraints (7.7) guarantee that the total number of deployed quay

cranes should not excel the number of available quay cranes. Finally, Constraints (7.8) and

(7.10) de�ne the domains for decision variables xijk and ziv.

Although [P0] is straightforward, it is nonlinear. To transform it to an equivalent linear

counterpart, there are two steps. First of all, by substituting hij with
∑

v∈Θ(i) pvj · ziv + tij

and introducing an auxiliary variable wivjk, wivjk = ziv · xijk, [P0] can be transformed to [P1].

Note that in [P1], the nonlinear part is con�ned to Constraints (7.13). Therefore, if Constraints

(7.13) can be replaced by linear counterparts, then the original nonlinear formulation will be

converted to an linear one. Next, by changing Constraints (7.13) and (7.14) to Constraints

(7.17) and (7.18), it ends up to a new formulation denoted as [P2].

[P1]min
∑
i∈B

∑
j∈V

∑
k∈Υ

∑
v∈Θ(i)

(n− k + 1)pvj · wivjk

+
∑
i∈B

∑
j∈V

∑
k∈Υ
{(n− k + 1)tij + si − aj}xijk

+
∑
i∈B

∑
k∈Υ

(n− k + 1)yik (7.11)

s.t. ∑
j∈V (i)

(aj − si)xijk −
∑

l∈Υ(k)

(yil +
∑
j∈V

tij · xijl)
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−yik −
∑

l∈Υ(k)

∑
j∈V

∑
v∈Θ(i)

pvj · wivjl ≤ 0

∀ i ∈ B, k ∈ Υ (7.12)

wivjk = ziv · xijk, ∀ i ∈ B, j ∈ V, v ∈ Θ(i), k ∈ Υ (7.13)

wivjk ∈ {0, 1}, ∀ i ∈ B, j ∈ V, v ∈ Θ(i), k ∈ Υ (7.14)

Constraints (7.4) to (7.10) (7.15)

[P2]min
∑
i∈B

∑
j∈V

∑
k∈Υ

∑
v∈Θ(i)

(n− k + 1)pvj · wivjk

+
∑
i∈B

∑
j∈V

∑
k∈Υ
{(n− k + 1)tij + si − aj}xijk

+
∑
i∈B

∑
k∈Υ

(n− k + 1)yik

s.t.

wivjk ≥ ziv + xijk − 1, ∀ i ∈ B, j ∈ V, v ∈ Θ(i), k ∈ Υ (7.16)

0 ≤ wivjk ≤ 1, ∀ i ∈ B, j ∈ V, v ∈ Θ(i), k ∈ Υ (7.17)

Constraints (7.4) to (7.10), (7.12) (7.18)

In the sequel, it would prove that the MIP formulation [P2] is equivalent to [P1] in the sense

that there exists an optimal solution at which both problems achieve the same objective value.

Note that due to the relaxation of Constraints (7.16) with regarding to Constraints (7.13) and

the observation that the coe�cient of wivjk, i.e., (n − k + 1) · pvj , is positive appeared in the

objective function, by minimization, someone might think that the equivalence between [P1]

and [P2] is trivial. However, according to Constraints (7.12), the decrease of wivjk will bring

about the increase of at least one yik, i ∈ B, k ∈ Υ and meanwhile the coe�cient of yik is also

positive. Therefore, decrease of wivjk can not guarantee the decreasing of the objective value

and without in-depth examination, it is not clear to state that [P1] and [P2] are equivalent.

Lemma 7.2.1. Formulations [P1] and [P2] are equivalent.

Proof. For the sake of conciseness, let x = (xijk)i∈B,j∈V,k∈Υ, y = (yik)i∈B,k∈Υ, z = (ziv)i∈B,v∈Θ(i),
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w = (wivjk)i∈B,j∈V,v∈Θ(i),k∈Υ and α = (x,y, z,w). Denote the sets of feasible solution for both

[P1] and [P2], P1 and P2, respectively. Obviously, ∀α ∈ P1, α is still an element for set P2.

Therefore, P1 ⊆ P2. Additionally, since [P1] and [P2] have the same objective function f , it can

be concluded that f(α∗
1) ≥ f(α∗

2), where α∗
1 and α∗

2 are the optimal solutions of [P1] and [P2],

respectively.

For an optimal solution of [P2], α∗
2 = (x∗,y∗, z∗,w∗), for all triples of (x∗ijk, z

∗
iv, w

∗
ivjk), if

they ful�ll x∗ijk · z∗iv = 0, w∗
ivjk = 0 or x∗ijk · z∗iv = 1, w∗

ivjk = 1, then it can be checked that α∗
2

is also a feasible solution of [P1], i.e., α∗
2 ∈ P1. Since f(α

∗
2) ≤ f(α∗

1), α
∗
2 is an optimal solution

for [P1].

If there exists a triple (x∗i0j0k0 , z
∗
i0v0

, w∗
i0v0j0k0

), k0 < |Υ|, such that x∗i0j0k0 · z
∗
i0v0

= 0, 0 <

w∗
i0v0j0k0

≤ 1, it can be proved that α2 = (x,y, z,w) is also an optimal solution for [P2],

where α2 is identical to α∗
2, except for the elements yi0k0 and wi0v0j0k0 , with yi0k0 = y∗i0k0 +

pv0j0 · w∗
i0v0j0k0

and wi0v0j0k0 = 0. Firstly, check the feasibility of α2. Because the value of

α2 is identical to α∗
2 except for the two particular elements, α2 should immediately ful�ll the

Constraints (7.16-7.18) except for Constraints (7.9, 7.12, 7.16, 7.17). yi0k0 = y∗i0k0 + pv0j0 ·

w∗
i0v0j0k0

> y∗i0k0 ≥ 0 and 0 ≤ wi0v0j0k0 ≤ 1, therefore, α2 satis�es Constraints (7.9) and

(7.17). Furthermore, xi0j0k0 · zi0v0 = 0, so wi0v0j0k0 = 0 ≥ zi0v0 + xi0j0k0 − 1 (i.e., constriants

(7.16)). For Constraints (7.12) , since α∗
2 is a feasible solution of [P1],

∑
j∈V (i0)

(aj−si0)x∗i0jk0−∑
l∈Υ(k0)

(y∗i0l+
∑

j∈V ti0j ·x∗i0jl)−
∑

l∈Υ(k0)

∑
j∈V

∑
v∈Θ(i0)

pvj ·w∗
i0vjl
≤ y∗i0k0 . For the case of α2,∑

j∈V (i0)
(aj−si0)xi0jk0−

∑
l∈Υ(k0)

(yi0l+
∑

j∈V ti0j ·xi0jl)−
∑

l∈Υ(k0)

∑
j∈V

∑
v∈Θ(i0)

pvj ·wi0vjl =∑
j∈V (i0)

(aj−si0)x∗i0jk0−
∑

l∈Υ(k0)
(y∗i0l+

∑
j∈V ti0j ·x∗i0jl)−

∑
l∈Υ(k0)

∑
j∈V

∑
v∈Θ(i0)

pvj ·w∗
i0vjl
≤

y∗i0k0 < yi0k0 , therefore, α2 also ful�lls Constraints (7.12). Hence, α2 ∈ P2. Note that f(α2) =

f(α∗
2), so α2 is also an optimal solution for [P2]. Besides, it can be observed that α2 ∈ P1,

therefore, f(α∗
1) = f(α2) = f(α∗

2).

If there exists a triple (x∗i0j0k0 , z
∗
i0v0

, w∗
i0v0j0k0

), k0 = |Υ|, such that x∗i0j0k0 · z
∗
i0v0

= 0, 0 <

w∗
i0v0j0k0

≤ 1, it can construct a α2 which is identical to α∗
2 except for element wi0v0j0k0 ,

wi0v0j0k0 = 0. It is easy to check that α2 is a feasible solution for [P2]. However, f(α2) < f(α∗
2),

which contradict the assumption that α∗
2 is an optimal solution for [P2]. Therefore, no such

triple (x∗i0j0k0 , z
∗
i0v0

, w∗
i0v0j0k0

), k0 = |Υ| can exist.
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In sum, it has been proved that if both [P1] and [P2] are feasible, there exist a feasible solution

α∗ (α∗ ∈ P1, P2), at which [P1] and [P2] achieve the same optimal value. Thus, formulations

[P1] and [P2] are equivalent.

7.2.4 Strengthening the formulation of [P2]

Although [P1] and [P2] are equivalent, [P1] is a stronger formulation than [P2] since P1 ⊆ P2.

Actually, there are three kinds of cuts that can be used to tighten the formulation of [P2]. The

�rst two are the valid inequalities for [P1]. In [P1], according to Constraints (7.13), wivjk =

ziv · xijk. Hence,
∑

j∈V wivjk =
∑

j∈V ziv · xijk = ziv ·
∑

j∈V xijk ≤ ziv. The last inequality is

valid because of Constraints (7.5). Analogously, based on Constraints (7.6) and (7.13), it follows

that
∑

v∈Θ(i)wivjk =
∑

v∈Θ(i) ziv · xijk = xijk ·
∑

v∈Θ(i) ziv = xijk. Therefore, the following two

sorts of constraints can be added to [P2] for strengthening.

∑
j∈V

wivjk ≤ ziv, ∀ i ∈ B, v ∈ Θ(i), k ∈ Υ (7.19)

∑
v∈Θ(i)

wivjk = xijk, ∀ i ∈ B, j ∈ V, k ∈ Υ (7.20)

The rest of cuts to strengthen the formulation of [P2] can be derived from Lemma 1 in Monaco

and Sammarra (2007). Let ni be the total number of vessels assigned to Berth i. Monaco and

Sammarra prove that for the discrete BAP, at optimality, ni vessels assigned to a speci�c Berth

i are scheduled to be served consecutively as the (n− ni +1)th to the nth vessels. For instance,

in Figure 7.1, according to the Lemma 1 in Monaco and Sammarra (2007), it can be concluded

that the shown berth allocation plan can not be an optimal one since the vessels assigned to

Berth m are not served consecutively as stated by the lemma. Thus, in light of the lemma, the

berth allocation plan depicted in Figure 7.1 can be ignored without the loss of optimality for

the original problem.
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............
order 1

n-2

n-1

n

: : :: : :berth 1 2 m

Figure 7.1: An illustration for the Lemma 1 in Monaco and Sammarra (2007)

The Lemma 1 in Monaco and Sammarra (2007) can be translated to mathematical language

as follows: ∀ i ∈ B, l ∈ Υ, if l < n −
∑

j∈V
∑

k∈Υ xijk + 1, then
∑

j∈V xijl = 0, where∑
j∈V

∑
k∈Υ xijk is equal to the total number of vessels assigned to Berth i and

∑
j∈V xijl

is the indicator for whether the lth order of Berth i is occupied by a vessel or not. For example,

in Figure 7.1, there are 3 vessels assigned to berth 2 (i.e.,
∑

j∈V
∑

k∈Υ xijk = 3). Therefore, for

order l (1 ≤ l < n−2), there should be no vessel (i.e.,
∑

j∈V xijl = 0). The relationship between∑
j∈V

∑
k∈Υ xijk and

∑
j∈V xijl for the lemma is equivalent to the following cuts.

n−
∑
j∈V

∑
k∈Υ

xijk + 1− l ≤ n · (1−
∑
j∈V

xijl), ∀ i ∈ B, l ∈ Υ

Or more simpli�ed,

n ·
∑
j∈V

xijl ≤
∑
j∈V

∑
k∈Υ

xijk − 1 + l, ∀ i ∈ B, l ∈ Υ (7.21)
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7.3 Heuristic

This section aims to develop a heuristic for the proposed problem. It is worth noting that

for the discrete BAP, it can be regarded as an unrelated parallel machines scheduling problem

by associating berths to parallel machines and vessels to jobs. Speci�cally, a discrete BAP

actually can be considered as a machine scheduling problem, (Rm | rj |
∑
cj) in the standard

three-�eld scheduling notation. Therefore, if the information of the berth position allocated

for each vessel is regarded as a priori knowledge but the decision of the berthing time for each

vessel still needs to be made, a discrete BAP can be treated as m single machine scheduling

problems, i.e., (1 | rj |
∑
cj). However, even for (1 | rj |

∑
cj) problem, it has been proved to

be NP-hard (?). In contrast with (1 | rj |
∑
cj) problem, there exists a polynomial algorithm

to solve (1 | rj | cmax) problem to optimality: sort all the jobs in non-decreasing order of their

release dates and assign all the jobs to the machine in accordance with the job sequence. This

optimal rule lays the foundation for constructing the heuristic for the proposed problem. Its

rationale is to add cuts to the formulation [P2] with the objective to generate a berth allocation

plan such that: for each individual berth, all the vessels assigned to the berth are served by the

rule of �rst-come-�rst-serve.

To achieve this, the following constraints can be added to [P2]. For all i ∈ B, k ∈ Υ(k ̸= n)

and j1, j2 ∈ V while (aj2 > aj1):

∑
l∈Γ(k)

xij2l − xij1k ≥
∑
l∈Υ

(xij1l + xij2l)− 2 (7.22)

Here Γ(k) = {k′ ∈ Υ | k′ > k}, ∀ k ∈ Υ, is the set of position indexes greater than k. For Vessels

j1 and j2, if they are allocated to the same berth, say Berth i, then
∑

l∈Υ(xij1l + xij2l) = 2 and

by Constraints (7.22),
∑

l∈Γ(k) xij2l ≥ xij1k which forces the berthing sequence of Vessel j1 to

precede Vessel j2. Alternatively, if Vessels j1 and j2 are not allocated to the same berth, then

Constraints (7.22) become redundant. By adding Constraints (7.19) to (7.22) to the formulation

111



CHAPTER 7. QUAYSIDE OPERATION PROBLEM: DISCRETE BERTHS

[P2], a much easier problem [P3] can be obtained.

[P3]min
∑
i∈B

∑
j∈V

∑
k∈Υ

∑
v∈Θ(i)

(n− k + 1)pvj · wivjk

+
∑
i∈B

∑
j∈V

∑
k∈Υ
{(n− k + 1)tij + si − aj}xijk

+
∑
i∈B

∑
k∈Υ

(n− k + 1)yik

s.t.

Constraints (7.16) to (7.22) (7.23)

Clearly, the optimal solution of [P3] can not guarantee to be the optimal solution for the problem

[P2] as well. To seek better solutions, Tabu search can be adopted for improvement. The coding

of a solution for the proposed Tabu search includes two parts: the �rst (n+m−1) cells represent

the berth allocation plan and the following (q+m−1) cells represent the quay crane assignment.

Figure 7.2 shows a feasible solution for the proposed quayside operation problem with 2 berths,

4 vessels, and 4 quay cranes (i.e., m = 2, n = 4, q = 4).

4 1 0 3 2 1 1 1 0

quay crane assignment

1

berth allocation plan

Figure 7.2: An illustration of solution coding for the proposed Tabu search

For each part of the coding string, (m−1) zeros divide the corresponding part intom substrings.

For the part representing the berth allocation plan, each substring contains the vessel berthing

information for a particular berth. For example, in Figure 7.2, there are two substrings, i.e.,

`41' and `32', which means that Vessels 4 and 1 are berthed sequentially at Berth 1 and Vessels

3 and 2 are allocated to Berth 2 one after another. For the part that represents the quay crane

assignment, it is a binary string with `0' and `1' only. For the ith substring of this part, if the

number of element `1's is v, then it means that v quay cranes is assigned to Berth i. In Figure

7.2, the second part of the string implies that Cranes 1 to 3 are assigned to Berth 1 while Crane

4 is assigned to Berth 2.
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To generate the neighborhood solutions, the pairwise interchange operation is applied to

either part of the current solution with equal probability. If the �rst part is chosen for operation,

two di�erent cells are randomly selected and the values in both cells are exchanged (see Figure

7.3). Otherwise, if the second part is chosen, �rst of all, denote the set of location indexes for

Element `0' as Λ0 and for the case of Element `1' as Λ1.

4 3 0 1 2 1 1 1 0 1

4 1 0 3 2 1 1 1 0 1

Before:

After:

Figure 7.3: Neighborhood solution generation method for the �rst part

Next, as depicted in Figure 7.4, randomly select two elements from sets Λ0 and Λ1 respectively

and assign them to l1 and l2. Exchange the values in Cells l1 and l2. As an illustration, in

Figure 7.4, after the pairwise interchange operation, the second part of the new solution stands

for that Crane 1 is assigned to Berth 1 and Cranes 2 to 4 is assigned to Berth 2.

4 1 0 3 2 1 0 1 1 1

4 1 0 3 2 1 1 1 0 1

Before:

After: l1l1l2l2
Figure 7.4: Neighborhood solution generation method for the second part

The evaluation of the solution string is straightforward. Both substrings are read from

left to right and the the information of berth allocation plan and quay crane assignment for

each berth is extracted from the string. Assume that the berth allocation plan for Berth i is

(u1, u2, · · · , uni). Since the number of quay cranes assigned to the berth has been determined,

the handling time for each vessel can be calculated. Berth i serves the ni vessels in the sequence
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of (u1, u2, · · · , uni). For any two consecutive Vessels uj and uj+1, if the completion time of

Vessel uj , cuj , is later than the arrival time of Vessel uj+1, auj+1 , then the service starting time

for Vessel uj+1, tuj+1 , is equal to cuj . Otherwise, let tuj+1 = auj+1 . The evaluation is terminated

after the berthing times for all the vessels have been determined.

Compared with traditional Tabu search algorithm, in this research, the hashing technique

from computer science is adopted to store the tabu information. For more detail on how to

embed the hashing technique into the Tabu search framework, the authors refer to the work in

Srivastava (1998).

The following summarizes the procedure of the proposed heuristic designed for the integra-

tion problem on quayside operation.

Step 1: Solve the problem [P3] and code the optimal solution as a string, which is the initial

solution, s0, of the Tabu search. Initialize the current solution s = s0, the set of hashed

tabu moves, H = {s0}, and the maximum iteration number ιmax. Let the iteration counter

ι = 1.

Step 2: Generate the neighborhood solutions of s, N(s), by the pairwise interchange operation.

Find out the admissible moves for the current solution s, A(s) = {s′ | s′ ∈ N(s) ∧ s′ /∈ H}.

Step 3: Evaluate all the solutions in A(s) and select the one with the minimal total turnaround

time. Denote the chosen solution s∗, s∗ ∈ A(s).

Step 4: If ι > ιmax, stop the Tabu search. Otherwise, let s = s∗, ι = ι+ 1 and go to Step 2.

7.4 Local Branching (LB) Method

In the previous section, a heuristic is developed to obtain an upper bound for the proposed

problem. In this section, the LB Method is applied to solve the integrated model for the quayside

operation problem aiming to get the exact optimal solution. The LB Method is developed in ?

for solving the MIP problems. Its philosophy is similar to the local search meta-heuristics, but

the neighborhoods are obtained through the introduction in the MIP model of linear inequalities

known as LB Cuts and solved by a general-purpose MIP solver.
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Under the conventional local branching scheme, the k-OPT neighborhood boundary cuts

are used for local branching. Given the searching space P for the MIP problem, an incumbent

solution x, x ∈ P and a positive number k, then the k-OPT neighborhood around the incumbent

solution x is:

∆(x, x) ≤ k

Here ∆(x, x) is de�ned as
∑

j∈J(1−xj)+
∑

j∈J\J xj and the set J is the index set for x and the

set J := {j ∈ J |xj = 1}. Therefore, by adding the cut representing the boundary of the k-OPT

neighborhood, the whole searching space P can be partitioned into two branches: ∆(x, x) ≤ k

(left branch) and ∆(x, x) ≥ k+1 (right branch). Actually, for the proposed integrated quayside

operation problem, there is another problem-oriented branching scheme. As illustrated in Figure

7.1, intuitively, the searching space of the proposed problem can be separated into two mutually

exclusive subspaces: the one where there is at least one vessel served at the Order 1 of some

berth (left branch); the other where there is no vessel served at the Order 1 of some berth

(right branch). Note that for each right branch, a similar partition scheme can be adopted

for further branching. More speci�cally, if the current right branch is that there is no vessel

served at the Order k (also for the Order l, 1 ≤ l < k) of a particular berth, then the right

branch can be divided into two sub-branches: there is at least one vessel served at the Order

k + 1 of a particular berth (but no vessel served at the Order l, 1 ≤ l ≤ k) and there is no

vessel served at the Order k + 1 (also for the Order l, 1 ≤ l ≤ k). Since, Constraints (7.21)

enforce that vessels assigned to a particular berth should be served in a consecutive manner,

the neighborhood boundary cuts for the left and right branches at level k are Constraints (7.24)

and (7.25), respectively. ∑
i∈B

∑
j∈V

xijk ≥ 1 (7.24)

∑
i∈B

∑
j∈V

xijk = 0 (7.25)

Figure 7.5 shows the local branching scheme for the proposed problem. There are (k + 1)

levels (numbered from 0 to k) under the scheme, where k = n −
⌈
n
m

⌉
and the function ⌈x⌉ =

max{z ∈ Z | z ≥ x}. The maximum number of levels is bounded by n −
⌈
n
m

⌉
since for further
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branching after the level, the right branch will become infeasible. In Level 0, it contains only

one node, Node 0, which represents the original problem [P2]. In Level l, 1 ≤ l ≤ k, there

are two nodes: Node l and Node l′, which stand for the left branch and right branch for the

current level, respectively. From Figure 7.5, it is clear that the original problem is branched

into (n + 1 −
⌈
n
m

⌉
) mutually exclusive but collectively exhaustive sub-problems and they are

Nodes l, 1 ≤ l ≤ k and Node k′.Node 0Node 0Node 1Node 1 Node 10Node 10i2ª j2Ðxij1 ¸ 1i2ª j2Ðxij1 ¸ 1 i2ª j2Ðxij1 = 0i2ª j2Ðxij1 = 0
Node 2Node 2 Node 20Node 20i2ª j2Ðxij2 ¸ 1i2ª j2Ðxij2 ¸ 1 i2ª j2Ðxij2 = 0i2ª j2Ðxij2 = 0

Node (k¡1)0Node (k¡1)0Node kNode k Node k0Node k0i2ª j2Ðxijk ¸ 1i2ª j2Ðxijk ¸ 1 i2ª j2Ðxijk = 0i2ª j2Ðxijk = 0k = n¡ nmk = n¡ nm
Figure 7.5: The local branching scheme for the proposed problem

Also di�erent from the conventional LB Method, in this research, since an upper bound for the

proposed problem can be obtained through the heuristic developed in the previous section, the

bounding procedure can be added into the framework to prune dominated branches if at certain

point of time, their lower bounds excel the upper bound.

The following summarizes the procedure of the proposed local branching method for the

studied problem. For conciseness, denote Node k′ in Figure 7.5 as Node (k + 1).

Step 1: Let U be an upper bound for the proposed problem. Initially, U = +∞. Let the iteration

counter ι = 0.

Step 2: If ι = 0, go to Step 3; If 1 ≤ ι ≤ n + 1 −
⌈
n
m

⌉
, go to Step 4; Otherwise, stop the local

branching procedure.
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Step 3: Solve the problem [P2] by the heuristic developed in the previous section. Update the

upper bound U to be the output of the heuristic. Let ι = ι+ 1 and go to Step 2.

Step 4: Construct Node ι by adding the corresponding LB Cuts into the formulation [P2] shown

in Figure 7.5. Solve the branch by the MIP solver, CPLEX. If at certain point of time,

the lower bound for Node ι is greater than U , stop solving the node; Otherwise, Node ι is

solved to optimality and update the upper bound U as the optimal value of Node ι. Let

ι = ι+ 1 and go to Step 2.

7.5 Computational Experiments

The aim of this section is to analyze the performance of the proposed heuristic and LB Method

for the integrated quayside operation problem. There are two sets of instances used for evalua-

tion.

• Set A: the number of vessels n = 20, the number of berths m ranges from 5 to 12, and

the number of quay cranes q = 3m.

• Set B: the number of vessels n = 30, the number of berths m ranges from 5 to 6, and the

number of quay cranes q = 3m.

To construct an instance, �rst of all, let the minimum and the maximum numbers of quay

cranes that can be deployed to any berth be 1 and 5 (i.e., ci = 1 and ci = 5, ∀ i ∈ B). Then

let the available time for Berth i, si, follows the uniform distribution in the range [0, 100].

Consequently, generate the information of the n vessels randomly following the procedures

below: the expected arrival time and length of the workload list for any vessel (say, Vessel j)

follow the discrete uniform distribution within the intervals [0, 2000] and [16, 25], respectively;

given the length of the workload list for the vessel, the size of the individual task in each bay of

the vessel ranges from 30 to 50; by inputting the workload list of Vessel j to one of the heuristics

to solve quay crane scheduling like the ones introduced in Chapter 4, the processing time pvj

(1 ≤ v ≤ 5) can be initialized one by one; �nally, the extra transportation if Vessel j is moored

at Berth i is randomly generated in the range [0, 100].
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For each combination of n and m in the instance sets, 5 random copies of instances are

generated and they are denoted as m_n_i, 1 ≤ i ≤ 5. In other words, there are 8× 1× 5 = 40

instances in set A and 2× 1× 5 = 10 instances in set B.

The proposed heuristic and LB Method are coded in C++ and used the ILOG Concert

Technology (version 12.1). For the heuristic, the maximum iteration number ιmax is set to

100 and the size of the neighborhood solutions for each iteration is 100. As a benchmark,

the B&C algorithm in CPLEX is used for comparison. The Tables 7.1 and 7.2 summarize the

computational results for the 40 instance in Set A, which are tested in a PC with 2.40 GHz CPU

and 3 GB RAM. In these two tables, Columns (1) and (2) store the optimal objective value

and running time for each instance solved by CPLEX; Column (3) is the list of computational

times consumed by the LB Method; Columns (4) and (5) are the computational results for the

proposed heuristic; The gaps in Columns (6) and (7) are used to measure the e�ciency of the

LB Method and the e�ectiveness of the proposed heuristic, respectively. Here,

Gap1 =
value inColumn (3)

value inColumn (2)
× 100

Gap2 =
value inColumn (4)− value inColumn (1)

value inColumn (1)
× 100

Over the 40 instances, the LB Method outperforms the B&C in CPLEX except for the Instances

11_20_4 and 12_20_5. The average computational time saving is up to 51%. On the other

hand, the performance of the heuristic is also remarkable. With only 1.39% of average gap, the

heuristic is considerably faster than the other two exact algorithms.

As pointed out by ?, one of the merits of the LB Method is its capability to be straight-

forwardly implemented in a parallel computing architecture. The 10 instances in Set B are

adopted to evaluate the performance of the parallel version of the proposed LB Method. Two

computers are used for the parallel computing and they are connected through a Message Pass-

ing Interface written by C++. The �rst PC with 3 GHz CPU and 4 GB RAM is chosen as

the master computer and the second PC with 2.40 GHz CPU and 3 GB RAM is selected as

the slave computer. For comparison, the B&C algorithm of CPLEX, the LB Method for single
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computer, and the heuristic are also run on the master computer individually for all the 10

instances. Note that the time limit for the 4 algorithms is set to 3 hours (i.e., 10800 seconds).

Table 7.3 is the computational results for the test. Columns (1) and (2) are the computational

results for the B&C. For Instances 6_30_3, 6_30_4, and 6_30_5, the B&C fails to generate

the optimal solution within the time limit. Therefore, the values with a star symbol are the

incumbent solutions for these 3 instances. Columns (3) to (5) keep the optimal value for each

instance, the computational time for the single computer version of the LB Method, and the

computational time of the two-computer version of the LB Method, respectively. Both two

versions of the LB method outperform the B&C algorithm in terms of the computational time.

The average running times for the two versions of the LB Method are 2184.3 seconds and 1226.3

seconds. Hence, roughly speaking, adding one computer can double the e�ciency of the algo-

rithm. Columns (6) and (7) store the computational results for the heuristic. The Gap3 in

column (8) is de�ned as:

Gap3 =
value inColumn (6)− value inColumn (3)

value inColumn (3)
× 100

Note that average Gap3 for the 10 instances is 6.11%. Based on the computational times in

Column (7) and the gaps in Column (8) for the heuristic, it is clear that the heuristic, which

achieves quite a nice balance between e�ectiveness and e�ciency, is a good alternative algorithm

to solve the proposed integrated quayside operation problem as well.
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Table 7.1: The computational results for the instance set A

CPLEX Local Branching Heuristic Gap

Instance Obj Time(s) Time(s) Obj Time(s) Gap1(%) Gap2(%)

(1) (2) (3) (4) (5) (6) (7)

5_20_1 20291 940 315 20644 39 33.51 1.74

5_20_2 19580 212 181 19580 29 85.38 0.00

5_20_3 18826 320 218 19120 33 68.13 1.56

5_20_4 15731 1103 401 16140 40 36.36 2.60

5_20_5 22975 231 205 22976 25 88.74 0.00

6_20_1 14490 812 424 14490 67 52.22 0.00

6_20_2 14656 1621 468 14656 63 28.87 0.00

6_20_3 16193 570 333 16370 65 58.42 1.09

6_20_4 15457 3002 1000 15457 119 33.31 0.00

6_20_5 14798 2837 764 14798 103 26.93 0.00

7_20_1 13599 2165 595 13659 48 27.48 0.44

7_20_2 14266 2212 565 14406 51 25.54 0.98

7_20_3 14556 1593 736 14921 57 46.20 2.51

7_20_4 10354 515 456 10382 11 88.54 0.27

7_20_5 12400 3537 963 12568 50 27.23 1.35

8_20_1 10620 4326 1120 10685 73 25.89 0.61

8_20_2 11541 5717 1396 11645 156 24.42 0.90

8_20_3 8282 3715 1743 8787 46 46.92 6.10

8_20_4 12898 5654 605 12898 115 10.70 0.00

8_20_5 11469 5588 2017 11469 116 36.10 0.00
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Table 7.2: Continuation for Table 7.1

CPLEX Local Branching Heuristic Gap

Instance Obj Time(s) Time(s) Obj Time(s) Gap1(%) Gap2(%)

(1) (2) (3) (4) (5) (6) (7)

9_20_1 9100 823 545 9100 39 66.22 0.00

9_20_2 10252 1510 503 10252 34 33.31 0.00

9_20_3 10620 4894 1068 10675 155 21.82 0.52

9_20_4 10299 766 524 10299 34 68.41 0.00

9_20_5 10020 2476 848 10350 99 34.25 3.29

10_20_1 9303 5538 1374 9428 18 24.81 1.34

10_20_2 8739 3528 1418 8899 23 40.19 1.83

10_20_3 8294 1815 740 8473 12 40.77 2.16

10_20_4 7566 9066 3182 7610 17 35.10 0.58

10_20_5 8376 8013 3752 8929 26 46.82 6.60

11_20_1 8645 2977 1221 8725 30 41.01 0.93

11_20_2 7939 2258 793 8077 19 35.12 1.74

11_20_3 9817 15394 5438 10111 46 35.33 2.99

11_20_4 8624 2438 2996 8808 23 122.89 2.13

11_20_5 8062 2625 1972 8510 26 75.12 5.56

12_20_1 7732 3827 1716 7806 22 44.84 0.96

12_20_2 9068 15791 1805 9169 24 11.43 1.11

12_20_3 7236 3032 2539 7354 16 83.74 1.63

12_20_4 7618 3165 1858 7710 23 58.70 1.21

12_20_5 7111 2594 3629 7184 21 139.90 1.03

Average 48.27 1.39
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Table 7.3: The computational results for the instance set B

CPLEX Local Branching Heuristic

Instance Obj Time(s) Obj Time1(s) Time2(s) Obj Time(s) Gap3(%)

(1) (2) (3) (4) (5) (6) (7) (8)

5_30_1 34169 5977 34169 1542 859 35966 22 5.26

5_30_2 31679 1183 31679 1113 521 35243 6 11.25

5_30_3 40047 6356 40047 1177 636 40732 7 1.71

5_30_4 33232 4786 33232 1064 512 35613 7 7.16

5_30_5 36357 6442 36357 1276 660 38123 6 4.86

6_30_1 35466 9951 35466 2211 1187 38968 6 9.87

6_30_2 33624 10470 33624 2241 1331 35765 4 6.37

6_30_3 32499∗ 10800 32417 3181 2044 34207 10 5.52

6_30_4 28978∗ 10800 28740 3477 2458 29423 20 2.38

6_30_5 25624∗ 10800 25582 4561 2055 27308 5 6.75

Average 2184.3 1226.3 6.11

7.6 Summary

A new integrated model for the quayside operation problem, one of the most critical logistics

problems arising in the management of port container terminals, is provided in this Chapter.

The problem is formulated as an MIP and its properties are analyzed. For solution, a heuristic

and a LB Method are developed and their performance is evaluated through a comprehensive

numerical experiment.
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Chapter 8

An Integrated Model for the

Quayside Operation Problem with

Continuous Berths

8.1 Background

Based on the literature review, it can be observed that despite the aforementioned de�ciency,

the idea proposed in Liu et al. (2006) is signi�cant since it is capable to veritably embrace all

the information of the quayside operation under one umbrella. In this chapter, the Berth-level

model in Liu et al. (2006) will be extended by overcoming the de�ciency mentioned in Chapter

2.

8.2 Problem Description and Mathematical Formulation

Let the length of the quay space be L and there are m quay cranes (denote the set of quay

cranes, Q and number them increasingly according to their relative positions) deployed along

the quay. Let V denote the set of container vessels with known characteristics such as the

length, the expected arrival time, and the workload. For each incoming vessel, it is allowed

to moor at anywhere along the quay so as to su�ciently utilize the quay resource. In other
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words, the BAP under the proposed framework is the so called continuous BAP appeared in

the literature. Besides, for Vessel i ∈ V , let qi and qi be the minimum and maximum number

of quay cranes that can be assigned to Vessel i. The rationale to set the range of quay crane

number for each vessel is explained in Liu et al. (2006).

As mentioned in the review of Liu et al. (2006), the author introduced the parameter piq,

i ∈ V , qi ≤ q ≤ qi, the processing time when q quay cranes are assigned to process Vessel i,

to avoid the solving of the QCSP within the integrated framework. However, such a strategy

comes with the price that in order to obtain the series of parameters piq, the QCSP has to

be solved
∑

i∈V (q
i − qi + 1) times beforehand. Although the QCSP has been proven to be

NP-complete (Lee et al., 2008), the computational results from Liu et al. (2006) showed that

for real application (i.e., Hong Kong terminals), the o�-the-shelf optimization solver is capable

to solve the QCSP in seconds for a given i and q. Besides, in the literature, several heuristics

or approximation algorithms have been developed to provide satisfactory approximate solutions

for the QCSP, e.g., Bierwirth and Meisel (2009). Therefore, the sacri�ce to parameterize piq

can be reduced to the minimum.

The proposed problem for the quayside operation can be stated as followings: given the

aforementioned parameters, the decision makers need to decide how many and which quay

cranes will be assigned to a particular vessel and meanwhile the docking position and service

start time for each incoming vessel, aiming to minimize the total weighted �ow time. Actually,

the proposed problem can be viewed as the combination of the ones presented in Guan and

Cheung (2004) and Liu et al. (2006). Therefore, some basic decision variables are borrowed

from the two works.

8.2.1 Parameters

Other parameters are listed below.

• ai, the arrival time of Vessel i

• li, the length of Vessel i

• wi, the weight assigned for Vessel i
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• Θ(i) = {q | qi ≤ q ≤ qi}, ∀ i ∈ V , the set of legitimate quay crane numbers for Vessel i

8.2.2 Decision Variables

• si, the service start time of Vessel i

• vi, the starting berth position of Vessel i

• ci, the service completion time of Vessel i

• xij ∈ {0, 1}, 1, if the berthing position of Vessel i is completely lower than the berthing

position of Vessel j; 0, otherwise

• yssij ∈ {0, 1}, 1, if si is before sj ; 0, otherwise

• yscij ∈ {0, 1}, 1, if si is before cj ; 0, otherwise

• ycsij ∈ {0, 1}, 1, if ci is before sj ; 0, otherwise

• yccij ∈ {0, 1}, 1, if ci is before cj ; 0, otherwise

• zki ∈ {0, 1}, 1, if Crane k is assigned to process Vessel i; 0, otherwise

• ψiq ∈ {0, 1}, 1, if q quay cranes are assigned to process Vessel i; 0, otherwise

• ρski, the position of Crane k at the start time of Vessel i

• ρcki, the position of Crane k at the completion time of Vessel i

8.2.3 Formulation

The formulation [F ] is the synthesis of both the MIP models developed in Guan and Cheung

(2004) and Liu et al. (2006).

[F ]min
∑
i∈V

wi(ci − ai) (8.1)

s.t.

vj ≥ vi + li + L · (xij − 1), ∀ i, j ∈ V, i ̸= j (8.2)
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sj ≥ si +M · (yssij − 1), ∀ i, j ∈ V, i ̸= j (8.3)

cj ≥ si +M · (yscij − 1), ∀ i, j ∈ V, i ̸= j (8.4)

sj ≥ ci +M · (ycsij − 1), ∀ i, j ∈ V, i ̸= j (8.5)

cj ≥ ci +M · (yccij − 1), ∀ i, j ∈ V, i ̸= j (8.6)

yssij + yssji = 1, ∀ i, j ∈ V, i ̸= j (8.7)

yscij + ycsji = 1, ∀ i, j ∈ V, i ̸= j (8.8)

yccij + yccji = 1, ∀ i, j ∈ V, i ̸= j (8.9)

xij + xji + ycsij + ycsji ≥ 1, ∀ i, j ∈ V, i ̸= j (8.10)

xij + xji ≤ 1, ∀ i, j ∈ V, i ̸= j (8.11)

ycsij + ycsji ≤ 1, ∀ i, j ∈ V, i ̸= j (8.12)∑
q∈Θ(i)

ψiq = 1, ∀ i ∈ V (8.13)

∑
q∈Θ(i)

q · ψiq =
∑
k∈Q

zki, ∀ i ∈ V (8.14)

ρski ≥ vi + 0.5li +M · (zki − 1), ∀ i ∈ V, k ∈ Q (8.15)

ρski ≤ vi + 0.5li +M · (1− zki), ∀ i ∈ V, k ∈ Q (8.16)

ρcki ≥ vi + 0.5li +M · (zki − 1), ∀ i ∈ V, k ∈ Q (8.17)

ρcki ≤ vi + 0.5li +M · (1− zki), ∀ i ∈ V, k ∈ Q (8.18)

ρskj ≤ vi + 0.5li +M · (4− zki − yssij − yscji − xij − xji),

∀ i, j ∈ V, i ̸= j, k ∈ Q (8.19)

ρskj ≥ vi + 0.5li +M · (zki + yssij + yscji + xij + xji − 4),

∀ i, j ∈ V, i ̸= j, k ∈ Q (8.20)

ρckj ≤ vi + 0.5li +M · (4− zki − yscij − yccji − xij − xji),

∀ i, j ∈ V, i ̸= j, k ∈ Q (8.21)

ρckj ≥ vi + 0.5li +M · (zki + yscij + yccji + xij + xji − 4),

∀ i, j ∈ V, i ̸= j, k ∈ Q (8.22)

ρski − ρsk−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (8.23)
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ρcki − ρck−1,i ≥ 0, ∀ i ∈ V, k ∈ Q\{1} (8.24)

si ≥ ai, ∀ i ∈ V (8.25)

vi ≤ L− li, ∀ i ∈ V (8.26)

ci = si +
∑

q∈Θ(i)

piq · ψiq, ∀ i ∈ V (8.27)

si, vi, ci, ρ
s
ki, ρ

c
ki ∈ ℜ+, ∀ i ∈ V, k ∈ Q (8.28)

xij , y
ss
ij , y

sc
ij , y

cs
ij , y

cc
ij , zki, ψiq ∈ {0, 1},

∀ i, j ∈ V, i ̸= j, k ∈ Q, q ∈ Θ(i) (8.29)

The objective of this model is to minimize the total weighted �ow time as in Guan and Cheung

(2004). Constraints (8.2) enforce the de�nition of xij . Constraints (8.3) to (8.9) work together

to de�ne the binary decision variables yssij , y
sc
ij , y

cs
ij , and y

cc
ij . Constraints (8.10) to (8.12) are very

important since they ensure that there is no con�ict between any two berth plans (with respect

to both berthing position and service time) of di�erent vessels. Constraints (8.13) and (8.14)

are used to link ψiq and zki and make sure that the total number of quay cranes assigned to a

vessel is in the legitimate range. Constraints (8.15) to (8.22) are used to track the movement of

all quay cranes during the planning horizon through variables ρski and ρ
c
ki. Constraints (8.23)

and (8.24) serve as the Non-crossing Constraints for any two quay cranes. That is, the quay

cranes should keep relative positions and can not cross over each other during the planning

horizon. Constraints (8.25) and (8.26) state that the service start time of Vessel i should be

later than its expected arrival time and the entire vessel is docked within the available quay

space. Constraints (8.27) de�ne the service completion time for Vessel i. For example, if q∗

quay cranes are assigned to Vessel i, then only ψiq∗ = 1 and ci = si + piq∗ . Finally, Constraints

(8.28) and (8.29) declare the domains for all the decision variables.

8.2.4 Improved formulation

Actually, the formulation of [F ] can be simpli�ed in accordance with the proposition below.

Proposition 8.2.1. In an optimal solution of [F ], there is no a quay crane assignment plan
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such that Cranes kd and ku are assigned to Vessel i while Crane k (kd ≤ k ≤ ku) is not assigned

to Vessel i.

Proof. In an optimal solution of [F ] (called current solution), suppose there exists a quay crane

assignment plan that Cranes kd and ku are assigned to Vessel i and Crane k is not assigned to

Vessel i. Since kd ≤ k ≤ ku and the fact that quay cranes should keep relative positions, it is

easy to conclude that during the processing of Vessel i, Crane k has to stay idle. Compared with

another solution of [F ] (called new solution) such that quay crane assignment plan for other

quay cranes and berthing plan for vessels are intact while Crane k is also assigned to Vessel

i, due to the monotonically increasing property of parameter piq with q ∈ Θ(i), the objective

value of the current solution should be higher because the service completion time of Vessel i

is greater than the one for the new solution, which contradicts the assumption that the current

solution is an optimal solution.

In light of the proposition, to solve the proposed problem, in fact, it is not necessary to

introduce zki in order to obtain the information of the assignment plan for individual quay

cranes. Instead, only two decision variables for Vessel i are required in order to capture the

quay crane assignment plan for Vessel i. Let zui be the quay crane assigned to Vessel i with the

highest numbering and zdi be the quay crane assigned to Vessel i with the lowest numbering.

Based on proposition 8.2.1, any Crane k, zdi ≤ k ≤ zui should be assigned to Vessel i as well.

By introducing zui and zdi , i ∈ V , the improved formulation denoted as [G] is shown below.

[G]min
∑
i∈V

wi(ci − ai)

s.t.

vj ≥ vi + li + L · (xij − 1), ∀ i, j ∈ V, i ̸= j

sj ≥ ci +M · (ycsij − 1), ∀ i, j ∈ V, i ̸= j

xij + xji + ycsij + ycsji ≥ 1, ∀ i, j ∈ V, i ̸= j

xij + xji ≤ 1, ∀ i, j ∈ V, i ̸= j

ycsij + ycsji ≤ 1, ∀ i, j ∈ V, i ̸= j
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∑
q∈Θ(i)

ψiq = 1, ∀ i ∈ V

∑
q∈Θ(i)

q · ψiq = zui − zdi + 1, ∀ i ∈ V (8.30)

zui − zdj + 1 ≤ Q · (1 + ycsij + ycsji − xij), ∀ i, j ∈ V, i ̸= j (8.31)

si ≥ ai, ∀ i ∈ V

vi ≤ L− li, ∀ i ∈ V

ci = si +
∑

q∈Θ(i)

piq · ψiq, ∀ i ∈ V

si, vi, ci ∈ ℜ+, ∀ i ∈ V

xij , y
cs
ij , ψiq ∈ {0, 1}, ∀ i, j ∈ V, i ̸= j, q ∈ Θ(i)

zui , z
d
i ∈ Q, ∀ i ∈ V (8.32)

Formulation [G] is a simpli�ed version of formulation [F ]. Compared with [F ], [G] adds in two

new integer decision variables zui and zdi for each vessel but eliminates the decision variables

ρski, ρ
c
ki, y

ss
ij , y

sc
ij , y

cc
ij , and zki in [F ]. Besides, on the constraint part, the new Constraints (8.30)

to (8.32) in formulation [G] are used to replace the Constraints (8.14) to (8.24) in formulation

[F ]. In Constraints (8.30), according to the de�nitions of both zui and zdi , the term (zui −zdi +1)

is the number of quay cranes assigned to Vessel i. Therefore, Constraints (8.30) are equivalent

to Constraints (8.14). In formulation [F ], the decision variables ρski and ρ
c
ki are de�ned by Liu

et al. to monitor the movement of all quay cranes during the planning horizon (i.e., Constraints

(8.15) to (8.22)) are ultimately to guarantee the Non-crossing requirement for the quay crane

assignment plan (i.e., Constraints (8.23) and (8.24)). In fact, to achieve such a goal, imposing

Constraints (8.31) is necessary.

Figure 8.1 illustrates how Constraints (8.31) work. In the Time-space Diagram for the

proposed problem, suppose Vessel i is completely below Vessel j, i.e, xij = 1 and at certain

period of time, Vessel i and Vessel j are processed simultaneously, i.e., ycsij + ycsji = 0. Hence,

to ensure that the quay crane assignment plan follows the Non-crossing requirement, it is only

necessary to guarantee that the numbering of Crane zui is strictly smaller than the numbering

of Crane zdj , i.e., z
u
i + 1 ≤ zdj .
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Formulation [G] is expected to be an e�ective formulation compared with formulation [F ]

since [G] truncates a great portion of decision variables introduced in the original formulation

and is naturally much smaller in size. Although the solution of formulation [G] does not contain

the information for quay crane moving trajectory, such information can be obtained easily after

the berthing plan for vessels and quay crane assignment plan are settled. In the section of

numerical experiment, the performance of both formulations [F ] and [G] will be tested.

ship j

ship i

Berth Position

Time

zdjzdjzuizui
Figure 8.1: An illustration for Constraints (8.31)

8.3 Heuristic Solution

In this section, a greedy search approach will be constructed to solve the proposed quayside op-

eration problem. Compared with most of the greedy search approaches, the heuristic developed

in this chapter takes advantage of the current sophisticated MIP solvers, by using them as a

black box tool to �nd satisfactory feasible solutions as early as possible during the computation.

Such a strategy is inspired by the work of ?. For a general MIP problem,

min c′x+ d′y + e′z

s.t. (x,y, z) ∈ H

x,y integer
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x, y, z, c, d, and e are vectors and H is the convex feasible domain for the decision variables.

Denote P as the projection of H onto the space of x and y. Suppose an initial solution

(x0,y0, z0) for the MIP problem has been found. The proposed greedy search is applied in the

space P (see Figure 8.2) and starts from solution (x0,y0) attempting to �nd a better solution in

the following manner. First of all, a line search will be conducted by �xing either x to x0 or y to

y0. For illustration, let y be �xed to y0 and solve the problem min{c′x+d′y0+e′z : (x,y0, z) ∈

H,x integer}, which is equivalent to �nd a better solution for the original problem along the line

of L1 in the space of P . Suppose the solution for min{c′x+d′y0+e′z : (x,y0, z) ∈ H,x integer}

is (x1,y0, z1). The next step for the greedy search is to explore the neighborhood subspace

around the point (x1,y0) in P which is denoted as R1. Let the solution (x2,y2, z2) be the

optimal solution for the problem min{c′x+ d′y+ e′z : (x,y, z) ∈ H, (x,y) ∈ R1,x,y integer}.

Plainly, after one line search and one neighborhood search (note that both of them are solved

by a generic MIP solver), the heuristic approach has found a better solution (x2,y2, z2) based

on the initial solution (x0,y0, z0). By repeating the procedure described previously, the greedy

search will �nd a serial of solutions and �nally be terminated once some termination conditions

are satis�ed.

To adopt the greedy search approach to the proposed quayside operation problem, the

decision variables in formulation [G] need to be classi�ed. Let x = {xij , ycsij }i,j∈V,i ̸=j which

is the integer vector representing the berthing information for vessels. Meanwhile, let y =

{ψiq, z
u
i , z

d
i }i∈V,q∈Θ(i), the integer vector contains the quay crane assigning plan for every vessel.

Finally, let z = {si, vi, ci}i∈V which is the vector for the rest of continuous decision variables in

formulation [G].

To construct an initial solution for [G], the following Constraints will be added into [G] and

the new problem will be solved by a MIP solver.

ycsji = 0, ∀i, j ∈ V, ai ≤ aj (8.33)

The purpose to adding such cuts is to seek an solution complying with the rule that if the

expected arrival time of Vessel i is earlier than the one of Vessel j, then the service start time
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of Vessel i should not later than the service completion time of Vessel j (i.e., si ≤ cj and thus

ycsji = 0). By forcing {ycsji }i,j∈V,ai≤aj equals to 0, the original problem [G] becomes much easier

to solve.

Another issue to apply the greedy search approach for the proposed problem is to de�ne

the neighborhood subspace around a known solution. Suppose for the known solution those

binary decision variables relating to berthing plan are {x̂ij}i,j∈V,i ̸=j and {ŷcsij }i,j∈V,i ̸=j . Then

one possible neighborhood subspace around the known solution can be de�ned by the following

boundary cut. xx
yy

(x0;y0)(x0;y0) (x2;y2)(x2;y2)(x3;y2)(x3;y2)(x4;y4)(x4;y4)PP (x1;y0)(x1;y0)
L1L1 L2L2R1R1 R2R2

Figure 8.2: An illustration for the proposed heuristic approach

∑
i,j∈V

(x̂ij · xij + ŷcsij · ycsij ) ≥ ⌈0.95
∑
i,j∈V

(x̂ij + ŷcsij )⌉ (8.34)

The rationale for such a boundary cut is: let the number of non-zero variables in {x̂ij}i,j∈V,i ̸=j

and {ŷcsij }i,j∈V,i ̸=j be n; then for any point in the neighborhood subspace, the sum of variables

xij (if x̂ij = 1) and ycsij (if ŷcsij = 1) should be greater than 95% (say) of the number n. The

form of such boundary cut is also referred to as the linear soft �xing constraint in ?.

To sum up, the procedure for the greedy search approach for the proposed quayside operation

problem includes the following steps:
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Step 1: Solve the problem [G] with Constraints (8.33) to obtain the initial solution {xij , ycsij }0i,j∈V,i ̸=j ,

{ψiq, z
u
i , z

d
i }0i∈V,q∈Θ(i), and {si, vi, ci}

0
i∈V . Initialize the maximum iteration number kmax

and let the iteration counter k = 0.

Step 2: if k > kmax, stop the greedy search approach. Otherwise, proceed to Step 3.

Step 3: Conduct the line search by �xing {ψiq, z
u
i , z

d
i }i∈V,q∈Θ(i) in the formulation [G] to {ψiq, z

u
i ,

zdi }ki∈V,q∈Θ(i). Denote the optimal solution after the line search as {x̂ij , ŷcsij }i,j∈V,i ̸=j ,

{ψiq, z
u
i , z

d
i }ki∈V,q∈Θ(i), and {ŝi, v̂i, ĉi}i∈V .

Step 4: Conduct the neighborhood search around the solution {x̂ij , ŷcsij }i,j∈V,i ̸=j , {ŝi, v̂i, ĉi}i∈V ,

and {ψiq, z
u
i , z

d
i }ki∈V,q∈Θ(i). Use the MIP solver to obtain the optimal solution of [G] within

the subspace con�ned by boundary (8.34). Denote the new solution as {xij , ycsij }
k+1
i,j∈V,i ̸=j ,

{ψiq, z
u
i , z

d
i }

k+1
i∈V,q∈Θ(i), and {si, vi, ci}

k+1
i∈V .

Step 5: k = k + 1 and go to Step 2.

8.4 Computational Experiments

In this section, numerical experiments will be conducted to ful�ll two purposes: �rstly, to

test which formulation of the proposed quayside operation problem (i.e., [F ] or [G]) is more

preferable and secondly, to evaluate the performance of the proposed greedy search.

To construct an instance for the experiment, for each incoming vessel, suppose its length

is measured as the number of bays in it, which is randomly selected from the range of [8, 20].

In other words, the length for any vessel is from 8 to 20. All the jobs in each bay are lumped

together as a single workload for that bay and the size of workload in each bay is chosen from

the range of [5, 10]. Additionally, the expected arrival time for each vessel follows the uniform

distribution in the interval of [0, 100]. And without loss of generality, it is assumed that the

weight for each vessel equals to 1 and the minimum and maximum number of quay cranes that

can be assigned to one vessel are 1 and 5, respectively. Let the length of quay space L equal to

40. Therefore, the number of vessels that can be moored simultaneously at the quay is ranging

from 2 (i.e., L divides the maximum length for all vessels) to 5 (i.e., L divides the minimum
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length for all vessels). Besides, the number of quay cranes equipped along the quay is �xed to

8. As noted previously, the parameter piq is very crucial for the proposed quayside operation

problem. Given the pair of i and q, to initialize the value of piq, the approximation algorithm

developed in the Chapter 4 is adopted. The following shows the input for an instance of the

problem when the number of vessels is 4.

• |V |: 4; Q: 8; L: 40; li: [16,19,10,12]; ai: [24,16,6,12]; wi: [1,1,1,1]

• piq:

i, q 1 2 3 4 5

1 122 61 41 34 26

2 151 76 51 41 32

3 80 40 30 24 19

4 86 44 30 22 20

Note that all the experiments are conducted in a PC with 2.40 GHz CPU and 3 GB RAM and

the MIP solver used is the ILOG CPLEX 12.1.

Table 8.1 lists the computational results for 10 instances (the number of vessels equals to

4) when they are formulated by di�erent MIP models. As expected, formulation [G] is much

easier to solve compared with the formulation [F ]. Although the reason for such phenomenon

has been explained in the previous section, the following data are useful to grasp how e�ective

the formulation [G] is in comparison with formulation [F ]: when the number of vessels is equal

to 4, the size of the formulation [F ] is 662 rows, 164 columns, 3537 nonzeros, and 88 binaries;

while for the formulation [G], there are only 66 rows, 60 columns, 283 nonzeros, 44 binaries, and

8 generals.

To test the performance of the proposed greedy search algorithm, the instance sets with

vessel number 8 and 10 are used. There are two types of stopping conditions for the heuristic:

• the maximum number of iterations reaches 10

• the objective value does not improve for 3 consecutive iterations
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Table 8.1: The computational results when the number of vessels equals to 4

[F ] [G]

Obj Time(s) Obj Time(s)

4_1 118 5211 118 0.36

4_2 143 34 143 0.73

4_3 136 719 136 1.20

4_4 171 114 171 1.20

4_5 121 49 121 0.14

4_6 155 278 155 1.00

4_7 137 42 137 1.41

4_8 122 2072 122 1.14

4_9 166 37 166 0.80

4_10 157 345 157 0.33

Tables 8.2 and 8.3 summarize the computational results for the 40 instances (20 instances

when the number of vessels is 8 and the other 20 when the number of vessels is 10). In these

two tables, the column �Gap� stores the value of

Obj of the heuristic− the optimal value found by CPLEX

the optimal value found by CPLEX
× 100%

for all the instances. To evaluate the performance of the proposed greedy search, �rstly look at

the dimension of solution e�ectiveness. When |V | = 8, the maximum gap between the solution

found by the heuristic and the optimal value is around 1.36% for Instance 8_12 and the average

gap for the 20 instances is 0.17%. For the case when |V | = 10, the maximum gap and average

gap are 2.65% and 0.26%, respectively. On the other hand, in terms of e�ciency, in order to

con�rm the global optimum for each instance, the average computational time for CPLEX is

2442.7 seconds when |V | = 8 and 4580.2 seconds when |V | = 10. Among the 40 instances, the

worst case performed by CPLEX is Instance 10_8. It takes more than 7 hours for CPLEX

to complete the search. For the proposed greedy search, the average executive time for case

|V | = 8 and |V | = 10 is 387.5 seconds and 452.4 seconds and 35 instances out of the 40 instances
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can be �nished within 15 minuets (i.e., 900 seconds). However, the greedy search approach does

not always run shorter time than CPLEX, for example, Instances 8_3, 8_7, and 10_12 in

which instances although the proposed heuristic runs quite fast and achieves the optimums,

CPLEX performs much better. In a broader view, given the merits of the proposed greedy

search approach, it is con�dent to claim that the proposed greedy search approach is able to

�nd satisfactory solutions for the proposed quayside operation problem in acceptable time.

Table 8.2: The computational results when the number of vessels equals to 8

Heuristic CPLEX Gap(%)

Obj Time(s) Obj Time(s)

8_1 416 110 416 455 0.00

8_2 425 392 425 5681 0.00

8_3 318 147 318 128 0.00

8_4 369 202 369 739 0.00

8_5 335 517 335 2252 0.00

8_6 491 273 491 6407 0.00

8_7 334 50 334 30 0.00

8_8 483 71 483 527 0.00

8_9 330 17 330 31 0.00

8_10 504 440 504 2116 0.00

8_11 369 18 369 64 0.00

8_12 448 54 442 5411 1.36

8_13 351 335 349 561 0.57

8_14 432 2350 432 4754 0.00

8_15 397 195 397 3913 0.00

8_16 301 440 301 735 0.00

8_17 453 235 452 1932 0.22

8_18 505 1095 505 6310 0.00

8_19 421 351 416 4512 1.20

8_20 401 458 401 2295 0.00
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Table 8.3: The computational results when the number of vessels equals to 10

Heuristic CPLEX Gap(%)

Obj Time(s) Obj Time(s)

10_1 536 560 536 19748 0.00

10_2 437 138 437 234 0.00

10_3 398 119 398 134 0.00

10_4 350 129 350 159 0.00

10_5 394 47 393 70 0.25

10_6 419 875 419 2322 0.00

10_7 499 88 499 312 0.00

10_8 445 2400 445 26104 0.00

10_9 496 53 496 284 0.00

10_10 338 1263 338 3554 0.00

10_11 466 257 466 8781 0.00

10_12 310 126 310 124 0.00

10_13 519 553 519 4347 0.00

10_14 397 362 397 847 0.00

10_15 431 950 426 11343 1.17

10_16 494 125 494 851 0.00

10_17 392 517 392 2811 0.00

10_18 492 209 487 7865 1.03

10_19 464 200 464 292 0.00

10_20 465 77 453 1422 2.65

8.5 Summary

In this chapter, an integrated framework to consolidate all the key information from all aspects

of a quayside operation problem in a port container terminal is provided. The proposed problem

is formulated as an MIP problem and two di�erent formulations are developed. To solve the

problem, a greedy search approach is devised attempting to �nd out satisfactory solutions as

early as possible. Computational experiments are conducted to evaluate the e�ectiveness of
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the two formulations and to test the performance of the proposed heuristic for the quayside

operation problem.
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Chapter 9

Conclusions

9.1 Concluding Remarks

The quayside operations problem always takes the leading role in the management system

of a port container terminal. Through constructing more realistic mathematical models and

developing new and e�ective methods for the corresponding problems, the research presented in

this thesis has provided an insightful investigation on how to upgrade the performance level of

the quayside operations in a typical port container terminal. It not only attempts to �ll the gaps

in the previous studies, but also contributes to re�ect and highlight the emerging technology

updates in port container terminals and introduces the novel MIP solving techniques into this

�eld for applications.

In Chapter 3, continuous and dynamic BAP has been studied to minimize the total

weighted �ow time. Compared with previous research on continuous BAP (Guan and Che-

ung, 2004; Wang and Lim, 2007), the algorithm to identify all the possible locations in the

Time-space Diagram for next vessel is discussed in depth. Although in the work of Chazelle

(1983), similar issue has been addressed for the Bottom-left Heuristic in the Bin-packing Prob-

lem, the unique feature of continuous BAP leads to the failure of Chazelle's approach to cope

with the same problem arising in this �eld. An e�cient method is proposed based on the idea of

node classi�cation, which outperforms the exhaustive enumeration approach as demonstrated

in the numerical experiments. Additionally, two versions of GRASPs are developed to search for
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near optimal solutions. The �rst GRASP�GRASP_1, attempts to follow the �rst-come-�rst-

pack rule as much as possible while there is no same rule to comply with in the second version,

GRASP_2. Both small and large scale problems have been tested to exhibit the e�ectiveness of

the proposed GRASPs by comparing with CPLEX and the SBS by Wang and Lim (2007). The

computational results have indicated that for small scale problems, GRASP_2 is an outstanding

method for continuous BAP, while for large scale problems, GRASP_1 is recommended since

it has the feature to balance the requirement of e�ectiveness and e�ciency simultaneously.

In Chapter 4, �rstly the common de�ciencies in modeling the QCSP with Non-crossing

Constraints in the previous studies are examined. Additional constraints are proposed and

the revised model has been proven to guarantee the practicability of the optimal solution for

the studied problem. Meanwhile in this chapter, two approximation algorithms are studied to

produce e�ective approximate solutions for the QCSP with Non-crossing Constraints. For BP

Method, after examining the properties of the original DP algorithm, its time complexity has

been reduced from the original O
(
mn2

)
to O (mn log n). Moreover, in order to achieve a better

approximation scheme, an EBP Method is proposed as well. The numerical experiments have

shown that EBP is able to provide approximation schemes for the QCSP with Non-crossing

Constraints e�ciently and e�ectively.

The research presented in Chapter 5 has extended the traditional QCSP to the environ-

ment of indented berth, an innovative concept to surmount the challenges introduced by the

emergence of mega-containerships. In comparison with the traditional version of the problem,

at indented berth, it is more appropriate to treat the quay cranes as unrelated machines rather

than identical ones. Moreover, at indented berth, the quay cranes situated at di�erent sides

of the quay are free from the Non-crossing Constraints. Taking these two unique features into

account, a group-based QCSP at indented berth is formulated as an MIP problem. To facilitate

the search of approximate solutions for the proposed problem, the QCSP at indented berth

is decomposed into two subproblems, i.e., assigning subproblem and scheduling subproblem,

which can be solved by corresponding designed heuristics individually. Therefore, by solving

the two subproblems consecutively, a feasible solution could be constructed. Two versions of

Tabu search are also devised to further improve the solution quality. In order to evaluate
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the performance of the proposed heuristic framework, a comprehensive numerical experiment

has been conducted and its results have shown the good performance of the proposed heuristic

framework. Finally, it should be highlighted that the proposed problem is more generic than the

traditional one, therefore, the proposed heuristic framework can also be applied to traditional

QCSP with minimal modi�cation. Additionally, the heuristic proposed to solve the scheduling

subproblem, SSH, has been tested to solve the scheduling subproblem quite well that it can be

implemented to enhance the performance of Tabu search in Sammarra et al. (2007), one of the

state-of-the-art heuristics designed for the traditional QCSP.

In Chapter 6, after the literature review, the framework proposed in Liu et al. (2006) is

identi�ed to be a logical and pragmatic platform to integrate the quayside operation problem

and then its key component, Berth-level model, is solved by a new exact solution method

called the CBC algorithm. The CBC algorithm is a newly developed algorithm to solve the

MIP problem especially for the problem that involves logical implications modeled through the

big-M approach. Since the formulation of the Berth-level model in Liu et al. (2006) ful�lls the

prototype of the CBC algorithm and additionally, this formulation can be naturally decomposed

into two sub-systems, the CBC algorithm is expected to be a suitable method to solve the studied

problem. This conjecture has been tested by a comprehensive numerical experiment and it has

shown that the proposed CBC algorithm is capable to save a great amount of computational

time compared to CPLEX.

The quayside operation problem always takes the leading role in the management system of

a port container terminal. The traditional measure is to decompose the entire problem into a

series of sub-problems, which reduces the complexity of the problem but meanwhile cuts o� the

tight link among the elements. In Chapter 7, a reasonable integrated model for the quayside

operation problem is proposed in the context of discrete berths. Under the framework, by pa-

rameterizing pvj (an idea from Liu et al. (2006)), the information �ow of the discrete BAP, the

QCAP, and the QCSP has been grouped together naturally as a monolithic part. Initially, the

integrated problem is formulated as a mixed integer nonlinear programming problem based on

the discrete berth allocation model developed by Monaco and Sammarra (2007), which is then

transformed to an equivalent linear counterpart. Through in-depth analysis, three kinds of valid
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cut are identi�ed and used to strengthen the linear formulation of the studied problem. For

problem solving, a heuristic and a local branching method are developed aiming to provide a

menu of viable algorithms for the integrated quayside operation problem. The proposed heuris-

tic consists of two steps, solving a restricted original problem and re�ning the solution by Tabu

search. For the LB Method, in contrast with the conventional one, a problem-speci�c neighbor-

hood boundary cut is explored and furthermore, a bounding procedure is included to accelerate

the algorithm. A comprehensive numerical experiment has been carried out to examine the

performance of the proposed algorithms. From the experiment, it can be observed that: 1) the

heuristic is a fast algorithm with an acceptable sacri�ce in the dimension of solution quality;

2) generally speaking, compared with the B&C in CPLEX, the LB Method is a more e�cient

exact algorithm to solve the proposed problem. Besides, the LB Method can be transformed

to a parallel version without tremendous e�ort, which is a great potential for the algorithm.

Meanwhile, it is important to note that these two algorithms can also be adopted to solve the

discrete berth allocation problem with just minor modi�cations.

Similar to Chapter 7, in Chapter 8, great e�ort has been made to seek the integrated model

for quayside operation problem in the context of continuous berths. Instead of constructing a

truly integrated but insurmountably complex model, in the study presented in this chapter, a

framework which integrates all the key information for all subproblems of the quayside operation

problem with continuous berths is proposed. To achieve that, as pointed out in Liu et al. (2006),

the basic strategy is to parameterize the information of the QCSP and detach it out of the

integrated model for the quayside operation problem. To some extent, the work is a reasonable

extension of Liu et al. (2006) by incorporating the continuous BAP developed in Guan and

Cheung (2004). Two formulations, i.e., formulations [F ] and [G], have been constructed for

the integrated framework of the quayside operation problem with continuous berths. Herein,

the formulation [F ] is a simple combination of the models introduced in Liu et al. (2006)

and Guan and Cheung (2004). In contrast, the formulation [G] is developed by considering

the property of the proposed problem. The computational experiments have con�rmed that

as expected, the formulation [G] is much more e�ective than the formulation [F ]. For the

solution of the proposed quayside operation problem, a greedy search approach which consists
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of a serial of line search and neighborhood search is devised. Di�erent from traditional greedy

search algorithms, both the line search and the neighborhood search in each iteration of the

proposed greedy search approach are solved by an MIP solver with the aim of taking advantage

of the current advance and sophisticated MIP solvers developed for industry and academia.

Through comprehensive numerical experiments, it has been clearly shown that the proposed

greedy search approach possesses the feature of �nding satisfactory solutions for the proposed

quayside operation problem on a low computational time budget. Additionally, it needs to

highlight that the proposed greedy search approach is a generic heuristic for MIP problem and

can be customized and adopted to solve other MIP problems arising from di�erent �elds.

9.2 Remarks for Future Research

It is acknowledged that the fundamental assumption for the research presented in this thesis

is that all the information and data are given and they do not vary throughout the decision

making process. However, in real applications, some scenarios might violate the fundamental

assumption in the manner of information unavailability or data �uctuation. It should be noted

that for almost all engineering applications, the e�ect of uncertainty is inevitable due to the

fact that the involved system is ultimately complex and dynamic. Therefore, it is a common

and acceptable practice for engineers to simplify the conundrums by projecting the real but

stochastic problems into a deterministic domain. Recently, several techniques such as stochastic

programming and robust programming have been developed to cope with the uncertainty in

the decision making process so as to guarantee that the generated plans are resilient enough to

overcome the in�uences of the uncertainty. For future works of the quayside operation problem

in port container terminals, one of the viable directions is to shift all the deterministic models

to stochastic counterparts and to develop corresponding methods for problem solving.
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