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Abstract

Efficient feature selection and classification algorithms are necessary for

the effective recognition of visual patterns. The initial part of this dis-

sertation presents fast feature selection and classification algorithms for

multiple feature data, with application to visual pattern recognition. A

fuzzy-rough approach is utilized to develop a novel classifier which can

classify vague and indiscernible data with good accuracy. The proposed

algorithm translates each quantitative value of a feature into fuzzy sets

of linguistic terms using membership functions. The fuzzy membership

functions are formed using the feature cluster centers identified by the

subtractive clustering technique. The lower and upper approximations

of the fuzzy equivalence classes are obtained and the discriminative fea-

tures in the dataset are identified. The classification is done through a

voting process. Two algorithms are proposed for the feature selection,

an unsupervised algorithm using fuzzy-rough approach and a supervised

method using genetic algorithm. The algorithms are tested in different

visual pattern classification tasks: hand posture recognition, face recog-

nition, and general object recognition. In order to prove the generality

of the classifier for other multiple feature patterns, the algorithm is also

applied to cancer and tumor datasets. The proposed algorithms identified

the relevant features and provided good classification accuracy, at a less

xv
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computational cost, with good margin of classification. On comparison,

the proposed algorithms provided equivalent or better classification ac-

curacy than that provided by a Support Vector Machines classifier, at a

lesser computational time.

The later part of the thesis presents the results of the utilization of com-

putational model of visual cortex for addressing problems in hand posture

recognition. The image features have invariance with respect to hand

posture appearance and its size, and the recognition algorithm provides

person independent performance. The features are extracted in such a

way that it provides maximum inter class discrimination. The real-time

implementation of the algorithm is done for the interaction between the

human and a virtual character Handy.

A system for the recognition of hand postures against complex natural

backgrounds is presented in the last part of the dissertation. A Bayesian

model of visual attention is utilized to generate a saliency map, and to

detect and identify the hand region. Feature based visual attention is

implemented using a combination of high level (shape, texture) and low

level (color) image features. The shape and texture features are extracted

from a skin color map, using the computational model of the visual cor-

tex. The skin color map, which represents the similarity of each pixel to

the human skin color in HSI color space, enhanced the edges and shapes

within the skin colored regions. The hand postures are classified using the

shape and texture features, with a support vector machines classifier. The

algorithm is tested using a newly developed complex background hand

posture dataset namely NUS hand posture dataset-II. The experimental

results show that the algorithm has a person independent performance,

and is reliable against variations in hand sizes. The proposed algorithm



xvii

provided good recognition accuracy despite clutter and other distracting

objects in the background, including the skin colored objects.
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Chapter 1

Introduction

Recognition of visual patterns has wide applications in surveillance, in-

teractive systems, video gaming, and virtual reality. The unresolved chal-

lenges in visual pattern recognition techniques assure wide scope for re-

search. Image feature extraction, feature selection, and classification are

the different stages in a visual pattern recognition task. The efficiency

of the overall algorithm depends on the individual efficiencies of these

stages.

Hand gestures are one of the most common body language used for com-

munication and interaction among human beings. Because of the nat-

uralness of interaction, hand gestures are widely used in human robot

interaction, human computer interaction, sign language recognition, and

virtual reality. The release of the motion sensing device Kinect by Mi-

crosoft demonstrates the utility of tracking and recognition of human ges-

tures in entertainment. Visual interaction using hand gestures is an easy

and effective way of interaction, which does not require any physical con-

tact and does not get affected by noisy environments. However complex

scenery and cluttered backgrounds make the recognition of hand gestures
1
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difficult.

Recognition of visual patterns for real world applications is a complex

process that involves many issues. Varying and complex backgrounds,

bad lighted environments, person independent recognition, and the com-

putational costs are some of the issues in this process. The challenge of

solving this problem reliably and efficiently in realistic settings is what

makes research in this area difficult.

1.1 Overview

A typical image pattern recognition pipeline is shown in Fig. 1.1. Im-

age feature extraction, feature selection, and classification, which are the

main stages in a visual pattern recognition task, are the focus of this

thesis. Novel algorithms are proposed for feature extraction, feature se-

lection, and classification using computational intelligence techniques.

The main goal of the research reported in this dissertation is to propose

computationally efficient and accurate pattern recognition algorithms for

Human-Computer Interaction (HCI). The main area of focus is hand pos-

ture recognition. However the research conducted has several directions.

The thesis proposes two feature selection and classification algorithms

based on fuzzy-rough sets, and neuro-biologically inspired hand posture

recognition algorithms.

Fuzzy and rough sets are two computational intelligence tools used for
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making decision in uncertain situations. This work utilizes the fuzzy-

rough approach to propose novel feature selection and classification algo-

rithms for datasets with large number of features. The presence of large

number of features makes the classification of multiple feature datasets

difficult. The proposed algorithms are simple and effective in such clas-

sification problems. The feature selection and classification algorithms

proposed in the thesis are applied to different visual pattern recognition

tasks: hand posture, face, and object recognition. In order to prove the

generality of the classifier, the algorithms are also applied to cancer and

tumor classification problems. The proposed classifier is effective in can-

cer and tumor classification, which is useful in the biomedical field.

The visual processing and pattern recognition capabilities of the pri-

mate brain is yet to be understood well. The human visual system rapidly

and effortlessly recognizes a large number of diverse objects in cluttered,

natural scenes and identifies specific patterns, which inspired the devel-

opment of computational models of biological vision systems. These mod-

els can be utilized for addressing problems in conventional pattern recog-

nition. This thesis utilizes a computational model of the ventral stream of

visual cortex for the recognition of hand postures. The features extracted

using the model have invariance with respect to hand posture appearance

and size, and the recognition algorithm provides person independent per-

formance. The image features are extracted in such a way that it provides

maximum inter class discrimination.

The thesis addresses the complex natural background problem in hand

posture recognition using a Bayesian model of visual attention. A saliency
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map is generated using a combination of high and low level image fea-

tures. The feature based visual attention helps to detect and identify

the hand region in the images. The shape and texture features are ex-

tracted from a skin color map, using the computational model of the ven-

tral stream of visual cortex. The color features used are the discretized

chrominance components in HSI, YCbCr color spaces, and the similarity

to skin color map. The hand postures are classified using the shape and

texture features, with a support vector machines classifier.

1.2 Problem Statement

Hand postures are widely used for communication and interaction among

human. The same hand posture shown by different persons varies as

the human hand is highly articulated and deformable, and has varying

sizes. Other factors which affect the appearance of the hand postures are

the view point, scale, illumination and the background. Human visual

system has the capability to recognize visual patterns despite these vari-

ations and noises. The real world application of computer vision based

hand posture recognition systems necessitates an algorithm which is ca-

pable of handling the variations in hand posture appearance and the dis-

tracting patterns. At the same time, the algorithm should be capable to

distinguish different hand posture classes which look similar. The bio-

logically inspired object recognition models provide a trade-off between

the selectivity and invariance. The current work utilizes a computational

model of the visual cortex for extracting the image features which con-

tains the pattern to be recognized.
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The features extracted using the computational model provides good

recognition accuracy. However the model (the feature extraction process)

has high computational complexity. A major limitation of the model in

real-world applications is its processing speed [85].

The visual features at the output of the feature extraction stage are

large in number. In general classification of multiple feature datasets is a

difficult process. In addition, the features extracted from images of differ-

ent classes that looks similar have vague and indiscernible classification

boundary. These issues lead to the need for an efficient feature selection

algorithm, and a computationally simple classifier that can classify vague

and indiscernible data with good accuracy.

The poor performance against complex natural backgrounds is another

major problem in hand posture recognition. Skin color based segmen-

tation improves the performance to a certain extent. However the con-

ventional skin color based algorithms fail when the complex background

contains skin colored regions.

1.3 Major Contributions

The major contribution of the dissertation is a computationally efficient

and accurate feature selection and classification algorithm for multiple

feature datasets. The concept of fuzzy-rough sets is utilized to develop

a simple and effective classifier that can classify vague and indiscernible

data with good accuracy. The proposed algorithm has a polynomial time

complexity. The feature selection algorithm identified the discriminative
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features in the dataset, which enhanced the shape selectivity and reduced

the computational burden of the pattern recognition algorithm. The fea-

ture selection and classification algorithms are applied to hand posture,

face, and object recognition.

Two hand posture recognition algorithms are proposed utilizing a stan-

dard model of the visual cortex for the feature extraction. The algorithms

are robust against variations in hand posture appearance and size, and

provided person independent performance. The features are extracted in

such a way that it provides good interclass discrimination even between

the classes which look similar. The proposed algorithm improved the pro-

cessing speed by identifying and selecting the relevant and predictive fea-

tures of the image. The selection of relevant features improved both fea-

ture extraction and classification time, which makes the algorithm suit-

able for real-time applications.

Another major contribution of the dissertation is an algorithm for hand

posture recognition against complex natural backgrounds. A Bayesian

model of visual attention is used for focussing the attention on the hand

region and to segment it. Feature based attention is implemented utiliz-

ing a combination of color, texture, and shape based image features. The

proposed algorithm improved the recognition accuracy in the presence of

clutter and other distracting objects, including skin colored objects.

Two new hand posture datasets, the NUS hand posture dataset I &

II (10 class simple background and 10 class complex background respec-

tively, with variations in hand sizes and appearances), are developed for
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the experimental evaluation of the proposed hand posture recognition al-

gorithms.

The feature selection and classification algorithm proposed in the thesis

is successfully applied for the predictive gene identification and classifica-

tion of cancer and tumor (which are non-visual patterns). This shows the

utility of the algorithm in multi feature classification problems in biomed-

ical field.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides survey

of the literature in the hand posture recognition and fuzzy-rough classi-

fication fields, and a brief explanation of the biologically inspired feature

extraction system. Chapter 3 describes a fuzzy-rough discriminative fea-

ture selection and classification algorithm, with applications to image pat-

tern (object, hand posture, face) classification and cancer classification.

Fuzzy-rough sets based hand posture and face recognition algorithm is

proposed in Chapter 4. Chapter 5 explains the neuro-biologically inspired

approaches for hand posture recognition. The problem of complex back-

grounds in hand posture recognition is addressed in Chapter 6 (Chapters

3 and 4 focus on the feature selection and classification aspects, whereas

Chapters 5 and 6 focus on the feature extraction aspect). The final chapter

concludes the thesis with a summary of the work done, and a statement

of possible future research directions.



Chapter 2

Literature Survey

This chapter provides a literature survey on the tools and techniques in

the background of this thesis. A detailed review of hand gesture recog-

nition techniques, a brief survey on fuzzy-rough classifiers, and a brief

study of the biologically inspired feature extraction system are presented.

2.1 Hand Gesture Recognition

This section focuses on the developments in the hand gesture recognition

and classification field during the last decade. A categorized analysis of

different hand gesture recognition tools and a list of the available hand

gesture databases are provided.

Gestures are expressive, meaningful body motions involving physical

movements of the fingers, hands, arms, head, face, or body [57]. Gestures

are classified based on the moving body part (Fig. 2.1(a)). There are two

types of hand gestures; static and dynamic gestures. Static hand ges-

tures (hand postures / poses) are those in which the hand position does

9
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not change during the gesturing period. Static gestures mainly rely on

the shape and the flexure angles of the fingers. In dynamic hand gestures

(hand gestures), the hand position is temporal and it changes continu-

ously with respect to time. Dynamic gestures rely on the hand trajec-

tories and orientations, in addition to the shape and fingers flex angles.

Dynamic gestures, which are actions composed of a sequence of static ges-

tures, can be expressed as a hierarchical combination of static gestures.

 

Hand gestures 

Static gestures 
(Hand postures / poses) 

Dynamic gestures 
(Hand gestures) 

Gestures 

Body gestures Head / Face gestures 

Characterized with  Characterized with  

• shape 
• finger’s flex angles 
• texture 
• skin color  

• shape 
• finger’s flex angles 
• texture 
• skin color  
• hand trajectory 
• orientations   

(a)

 Hand gesture recognition tools 

Hidden Markov  
Model (HMM) 

Neural network (NN)  
and Learning 

Other methods 
(Graph matching, 

3D model, Statistical 
and syntactic, Eigen space) 

(b)

Figure 2.1: Classification of (a) gestures and (b) hand gesture recognition
tools. The proposed algorithm recognizes static hand gestures, using a
learning based approach.

There exist several reviews on hand modeling, pose estimation, and
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gesture recognition [20, 57, 61, 63, 108, 121]. [57] provided a survey of dif-

ferent gesture recognition methods, which considered the hand and arm

gestures, the head and face gestures, and, the body gestures. Hand mod-

eling and three dimensional (3-D) motion based pose estimation methods

are reviewed in [20]. An analysis of sign languages, grammatical pro-

cesses in sign gestures, and issues relevant to the automatic recognition of

sign languages are discussed in [61]. The classification schemes in glove

based and vision based sign language recognition are also discussed in

their survey. Another survey on hand gesture recognition techniques is

provided in [63], which discusses gesture modeling, interpretation, and

recognition. The developments till the year 1997 was considered in their

review whereas [108] give another review of vision based gesture recog-

nition which covered developments till the year 1999. An elaborate and

categorized analysis of hand gesture recognition techniques is done in the

present study which makes this survey unique. The hand gesture recog-

nition methods are classified and analyzed according to the tools used for

recognition. A list of available hand gesture databases and a comparison

of different hand gesture recognition methods are also provided.

2.1.1 Different Techniques

There are different methods for hand gesture recognition. The initial at-

tempts in hand gesture recognition utilized mechanical devices that di-

rectly measure hand and / or arm joint angles and spatial position, using

glove-based devices. Later vision based non-contact methods developed.

Vision-based hand gesture recognition techniques can be broadly divided
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into two categories, appearance-based approaches and 3-D hand model-

based approaches. Appearance-based approaches utilize features of train-

ing images to model the visual appearance of the hand, and compare

these parameters with the extracted features of testing images. Three-

dimensional hand model-based approaches rely on a 3-D kinematic hand

model, by estimating the angular and linear parameters of the kinematic

model.

The tools used for vision based hand gesture recognition can be classi-

fied into three categories (Fig. 2.1(b)). They are 1) Hidden Markov Model

(HMM) based methods [9,41,50,79,113,117], 2) Neural network (NN) and

learning based methods [3,19,22,29,52,74,76,77,91,92,109,114,115,119],

and 3) Other methods (Graph algorithm based methods [75, 96–98], 3D

model based methods [4, 49, 103, 116], Statistical and syntactic meth-

ods [10,105], and Eigen space based methods [14,62]).

Hidden Markov Model based Methods

Hidden Markov Model (HMM) is the most widely used hand gesture recog-

nition technique [9,41,46,50,53,79,113,117]. It is a useful tool for model-

ing the spatiotemporal variability of gestures in a natural way [30]. HMM

is a statistical model in which the system being modeled is assumed to

be a Markov process with unknown parameters. A Markov process is a

mathematical model of a system in which the likelihood of a given future

state, at any given moment, depends only on its present state, and not on

any past states. A HMM is employed to represent the statistical behav-

ior of an observable symbol sequence in terms of a network of states [9].

For each observable symbol, it can be modeled as one of the states of the
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HMM, and then the HMM either stays in the same state or moves to an-

other state based on a set of state transition probability associated with

the state. The observable event is a probabilistic function of the hidden

states, and so the hidden parameters in the HMM are identified using the

observable data, and these parameters are used for pattern recognition.

HMM based dynamic hand gesture recognition is done in [9] using the

spatial and temporal features of the input image. Fourier descriptor and

optical flow based motion analysis are used to characterize spatial and

temporal features respectively. The work also proposes a real time hand

gesture tracking technique which can track the moving hand and then ex-

tract the hand shape from complex backgrounds. The algorithm is tested

using 20 different hand gestures selected from the Taiwanese Sign Lan-

guage(TSL) and more than 90% average recognition accuracy is achieved.

Normal HMM based recognizer identifies the best likelihood gesture

model for a given pattern. However the similarity of the pattern to the

reference gesture cannot be guaranteed unless the likelihood value is high

enough. Lee et al. [50] addressed this problem by introducing the concept

of threshold model using HMM, to filter out non-gesture patterns, among

dynamic hand gestures. A gesture is described as a spatio-temporal se-

quence of feature vectors that consist of the direction of hand movement.

The threshold model approves or rejects the pattern as a gesture and a

gesture is recognized only if the likelihood of the best gesture model is

higher than that of the threshold model. The method detects reliable end

point of a gesture and finds the start point by backtracking. However

the number of states in the threshold model is large which increases the

computational cost and slows down the recognition speed. The authors
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alleviated this problem by reducing the number of states of the threshold

model using the relative entropy, which is often used as a measure of the

distance between two probability distributions. Pairs of states with the

least distance are merged to reduce the computational requirements. Ten

dynamic hand gestures, which corresponds to 10 most frequently used

browsing commands in Power Point presentation, are considered in their

work and the method extracted trained gestures from continuous hand

motion with 93.14% reliability. Similar to [50], [46] uses a feature vec-

tor created from the direction of hand movement to model the dynamic

hand gestures using HMM. The system designed is used for controlling a

mobile robot.

Marcel et al. [56] proposed to use an extension of HMM, viz. the Input

/ Output Hidden Markov Model (IOHMM), for hand gesture recognition.

An IOHMM is based on a non-homogeneous Markov chain where emission

and transition probabilities depend on the input. In contrast the HMM is

based on homogeneous Markov chains since the dynamics of the system

are determined only by the transition probabilities, which are time inde-

pendent. Compared to HMMs, IOHMM is a discriminative approach as

it directly models posterior probabilities. However [41] compared HMM

and IOHMM, and concluded that HMM have better performance than

IOHMM. They performed the experiments on larger databases, ranging

from 7 to 16 dynamic gesture classes, whereas [56] considered only 2

classes. [41] also contributed two hand gesture databases [40], one con-

taining both one and two handed gestures, and the second containing only

two handed gestures.

An implementation of HMM, for dynamic gesture recognition, using
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the combined features of hand location, angle and velocity is provided

in [117]. The hand localization is done by skin-color analysis and the

hand tracking is done by finding and connecting the centroid of the mov-

ing hand regions. The extracted features are quantized so as to obtain

discrete symbols to input to the HMM. From the gesture trajectory the

discrete symbols are made using the k-means vector quantization algo-

rithm. The k-means clustering algorithm is adopted to classify the ges-

ture tokens into different clusters in the feature space. Experiments are

done using 48 classes of gestures for 36 alphanumeric characters and 12

graphic elements. A set of 2400 trained gestures and 2400 untrained ges-

tures are used for training and testing of the algorithm respectively. Accu-

racy of 98.96% and 93.25% are achieved for training and testing datasets

respectively, while the features are combined in cartesian system. The

work concludes that angle feature is the most effective one in providing

better accuracy, among the three features, location, angle, and velocity. It

also provided an analysis of the variation of accuracy, with respect to the

number of feature codes, and identified the best number of feature codes.

A similar HMM implementation, which utilizes angles of motion along

the trajectory of the centroid of hand is provided in [53]. The algorithm

recognized 26 alphabet (A-Z) hand gestures with an average recognition

rate of 90%.

A robust system for the gesture based control of a robot is developed

using a combination of HMM based temporal characterization scheme,

static shape recognition, and Kalman filter based hand tracking in [79].

The system uses skin color for static shape recognition and tracking. The

static shape recognition is performed using contour discriminant analysis.
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A Kalman filter based estimator is utilized in the hand contour tracker.

The tracker provides temporal characteristics of the gesture and the out-

put of the tracker is used for classifying the nature of the motion. Shape

classification information is provided by the contour discriminant-based

classifier. These symbolic descriptors, corresponding to each of the ges-

ture, are utilized for training the HMM. The system can reliably recog-

nize dynamic gestures in spite of motion and discrete changes in hand

poses. It also has the ability to detect the starting and ending of ges-

ture sequences in an automated fashion. The original contributions of the

work are, a novel technique for combining shape-motion parameters and

system level techniques, and optimizations for the achievement of real-

time gesture recognition. The system is tested using five dynamic ges-

tures, which is associated with five different functions needed for robot

motion. This method explicitly utilizes hand shape as a feature for ges-

ture identification. The use of hand shape makes it easier for the gesturer

to remember the commands, which increases the user friendliness of the

system.

[113] proposes an important and complex application of HMM in Human-

Robot Interaction (HRI) viz. whole-body gesture recognition. A set of fea-

tures, encoding the angular relationship between a dozen body parts in

3-D is used to describe the gesture and this feature vector is then used in

the HMM. A model reduction is done using the relative entropy, similar to

that done in [50]. The whole-body gesture recognition is outside the scope

of the present study.
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Neural Network and Learning Based Methods

Zhao et al. [119] proposed recursive induction learning based on extended

variable-valued logic in hand gesture recognition. Inductive learning is a

powerful approach to knowledge acquisition by inducing rules from sets

of examples or sets of feature vectors. The paper modified and extended

the old concept of Variable-Valued Logic into Extended Variable-valued

Logic (EVL) which provides a more powerful representation capability.

The Star concept is also extended into a more general concept: R-Star.

Based on EVL and R-Star, a heuristic algorithm viz. RIEVL (Rule Induc-

tion by Extended Variable-valued Logic) is developed. RIEVL can learn

rules not only from examples but also from rule sets and can produce more

compact rules than other induction algorithms. The ability of RIEVL to

abstract reduced rule sets is critical to efficient gesture recognition. This

capability allows to apply a large feature set to hand poses representing

a particular gesture during training-time, and to derive a reduced rule

set involving a subset of the training-time feature set to be applied at

recognition-time. The algorithm is capable of automatically determining

the most effective features. The system also determines a subset of fea-

tures that are salient to the recognition task, which reduces the number

of features that need to be computed at recognition-time. This is critical in

realtime vision systems because the rule size and number of features com-

puted directly impact the performance. RIEVL is well suited for gesture

pose recognition because recursive learning allows refining the gesture

coding for individuals and variable-valued logic permits multi-valued fea-

ture representation of gesture poses. The algorithm is tested using 15

static hand gestures. It provided 100% recognition accuracy for training
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images and up to 94.4% accuracy for test set, outperforming all other in-

ductive algorithms. This showed the efficacy of the system on real image

data which has variations in the hand pose.

A time delay neural network is used in [114,115] to learn the 2D motion

trajectories, for the classification of dynamic hand gestures. 2D motion

trajectories are extracted by computing pixel matches between consecu-

tive image pairs, after finding the affine transformations between consec-

utive frames. A multi-scale segmentation is performed to generate homo-

geneous regions in each frame. Such region based motion algorithms per-

form well in situations where intensity-based methods fail. For example,

motion information in areas with little intensity variation is contained in

the contours of the regions associated with such areas. The motion seg-

mentation algorithm computes correspondences for such regions and finds

the best affine transformation that accounts for the change in contour

shape. The affine transform parameters for region at different scales are

used to derive a single motion field, which is then segmented to identify

differently moving regions between two frames. The 2D motion trajecto-

ries are then learned using a time-delay neural network (TDNN). TDNN

is a multilayer feedforward network that uses shift windows between all

layers to represent temporal relationships between events in time. An in-

put vector is organized as a temporal sequence and at any instance only

the portion of an input sequence within a time window is fed to the net-

work. TDNN is a dynamic classification approach in that the network

sees only a small window of the input motion pattern and this window

slides over the input data while the network makes a series of local deci-

sions. These local decisions have to be integrated into a global decision at
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a later time. There are two good properties about TDNN. First, TDNN is

able to recognize patterns from poorly aligned training examples. Second,

the total number of weights in the network is relatively small since only

a small window of the input pattern is fed to TDNN at any instance. In

other words, TDNN has small receptive fields. This in turns helps reduce

training time due to a small number of weights in each receptive field.

The algorithm is tested using 40 hand gestures of American Sign Lan-

guage. Best accuracy achieved for training set is 98.14% and that for test

set is 99.02%.

[91] proposed a neuro-fuzzy algorithm for spatio-temporal hand ges-

ture recognition. They used sensor gloves for sensing the hand position

(not a vision based method). However the recognition algorithm can be

utilized in vision based gesture recognition, with the appropriate visual

features of the image. The approach employs a powerful method based

on hyper rectangular composite neural networks (HRCNNs) for selecting

templates. Templates for each hand shape are represented in the form

of fuzzy IF-THEN rules that are extracted from the values of synaptic

weights of the corresponding trained HRCNNs.

A novel approach to user independent static hand gesture recognition

system is proposed in [51, 52]. The system is made adaptive to the user

by on-line supervised training. Any non-trainer users will be able to use

the system instantly, and, if the recognition accuracy decreases only the

faulty detected gestures be retrained realizing fast adaptation. A super-

vised training method corrects the unrecognized gesture classes and an

unsupervised method continuously runs to follow the slight changes in
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gesture styles. These training methods are embedded into the recogni-

tion phase and the reference classes can be modified during the system

operation. There is no need to retrain all the gestures of the vocabu-

lary and the training rules are simple. The system is implemented as

a camera-projector system in which users can directly interact with the

projected image by hand gestures, realizing an augmented reality tool in

a multi-user environment. The emphasis is given on the novel approach

of dynamic and quick follow-up training capabilities instead of handling

large pre-trained databases. During experiments for the recognition of

9 static hand gestures, only the initial user trained all the gestures and

the subsequent users corrected the recognition accuracy through interac-

tive training when any of the gesture classes had low recognition rates.

From experimental results it is seen that when the trainer and tester are

the same person, the recognition rates are above 99%. If the trainer and

tester users are different, the recognition rate varied from 87 to 99%.

However the interactive training improved the recognition rate (more

than 98%).

[59] proposed a combination of hidden Markov model (HMM) and recur-

rent neural networks (RNN) for better classification accuracy than that

achieved using either HMM or RNN. A comparison of HMM and RNN

based methods is provided in the paper. The features used are based on

fourier descriptors and both static and dynamic gestures are considered.

The system is configured to interpret user’s gestures in real-time, to ma-

nipulate windows and objects within a graphical user interface, using 14

hand gestures. The processing is done in two stages. In the first stage,

a radial-basis function (RBF) network is used to obtain a likelihood of
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the basic hand pose. Gesture recognition is implemented in the second

stage using two independent classifiers, HMM and RNN. Such a modu-

lar approach leads to a robust gesture recognition method. At the same

time, the computation time is reduced both in the training and recog-

nition stages. Input to the classifiers in the second stage are the hand

pose likelihood vectors from each frame (output of first stage) and the

motion vector of the hand between the current and previous frames. Out-

puts from the two classifiers are combined by using a linear output layer

to give final gesture recognition result. The first stage (pose classifier)

achieved a classification accuracy of 90.9%. The second stage (gesture

recognizer) achieved recognition accuracies 90.2% and 89.8% for HMM

and RNN based recognizers respectively. The combination of HMM and

RNN classifier gave an improved accuracy of 91.9%.

An unsupervised learning algorithm viz. distributed locally linear em-

bedding (DLLE) is proposed in [22], for static gesture recognition and

dynamic gesture tracking, by extracting the intrinsic structure of data,

such as neighborhood relationship. A probabilistic neural network (PNN)

is employed for static gesture classification. Locally linearly embedding

(LLE) is an unsupervised learning algorithm that attempts to map high-

dimensional data to low-dimensional space while preserving the neigh-

borhood relationship. The paper modified LLE to DLLE, to discover the

inherent properties of the input data, by noticing that some relevant

pieces of information are distributed. The input data are mapped to low

dimensional space where both the local neighborhood relationship and

some global distributions are preserved. According to the DLLE algo-

rithm, the distances between the projected data points in low-dimensional
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space depend on the similarity of the input images. The images which are

similar are projected with a small distance while the images that differ

greatly are projected with a large distance. Based on the distances in low

dimensional space, probabilistic neural network (PNN) is used to clas-

sify different static gesture images. A skeleton model of the hand is used

for recognition and tracking. PNN is based on Bayes theorem, having

higher training speed, good classification accuracy, and negligible retrain-

ing time. Maximum accuracy of 93.2% is achieved for classification of 14

static gesture classes, which outperformed HMM and NN based methods

in [59].

Supervised learning in LLE algorithm is introduced in [92], for recog-

nizing static gestures in Chinese sign language (CSL). LLE is used for the

feature extraction process and and it is suggested that the method is suit-

able for real-time applications. Supervised LLE (SLLE) makes use of the

class label information during training. Hand is detected using skin color

and intrinsic geometry of the hand is used for gesture recognition. The al-

gorithm achieved 90% average recognition rate and has some robustness

against different lighting conditions and backgrounds.

Graph Algorithm Based Methods

Starting from the late seventies, Graph-based techniques are used as as

a powerful tool for pattern representation and classification. After the

initial enthusiasm, graph algorithms have been practically left unused

for a long period of time. This is probably due to the high computational

costs of graph algorithms, which still remains an unresolved problem.

However, the use of graphs in computer vision and pattern recognition
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is obtaining a growing attention from the research community, recently.

This is because the computational cost of the graph-based algorithms is

now becoming compatible with the computational power of new genera-

tion computers [13].

Elastic graph matching (EGM), a type of graph matching, is a neurally

inspired pattern recognition architecture [47]. EGM has the inherent

ability to handle geometric distortions, does not require a perfectly seg-

mented input image, and can elegantly represent the variances in object

appearance [97]. These advantages makes EGM a powerful tool for ges-

ture recognition applications. However there are unresolved challenges

like flexibility in the matching process and realtime performance, which

necessitates further research. A survey of graph algorithms used for hand

gesture recognition, the present trends, and the scope for further research

is relevant in this context.

In a typical graph representation, regions of the image are represented

by vertices in the graph. These vertices are related to each other by

edges, which express structural relationships between objects. Vertices

and edges are usually attributed. Triesch et al. employed [94, 96–98] the

elastic graph matching (EGM) technique to develop person independent

static hand gesture recognition system against complex backgrounds. Hand

postures are represented by labeled graphs with an underlying two- di-

mensional topology. Attached to the nodes are jets, which is a local im-

age description (image feature) based on Gabor filters. This approach

achieved scale-invariant and user-independent recognition, without the

need for hand segmentation. Different hand postures are represented as

attributed graphs and comparisons are made between model graphs (in



26

the database) and data graph (corresponding to the real-time image). The

nodes are compared using a similarity function, and the pattern is recog-

nized by calculating the average node similarities.

Bunch graphs [107] are used to model the variability in object appear-

ance. The natural variability in the attributes of corresponding points in

several images of the same object or a class of objects is captured, by label-

ing each node of a graph with a set or bunch of attribute values, extracted

from corresponding points in different sample images. This method is also

used to model complex backgrounds of the image [98]. For the matching

process, each of the attribute value in the bunch is compared with the

local image information in the data graph, and the maximum of the sim-

ilarities is taken as the similarity of the bunch graph. The algorithm

also proposes the use of multiple features for gesture recognition. The

EGM is done using three features, 1) conventional Gabor jets, 2) color

average and 3) color Gabor jets (convolutions of Gabor filter with images

expressing each pixel’s similarity to skin color). In order to find similarity

between two nodes, similarities of the corresponding features of nodes are

considered. These are then combined by computing a weighted average to

find the net node similarity. The algorithm is tested using 12 hand pos-

tures, performed by 19 persons, against simple and complex backgrounds.

Accuracies of 92.9% and 85.8% are achieved for simple and complex back-

ground images respectively.

Topology / 3D model Based Methods

Three dimensional model fitting is used in [103] for hand pose estima-

tion that can be used for vision based human interfaces. However the
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algorithm requires faster implementation for real-time processing. The

method estimates all joint angles and hand pose is reconstructed as a

voxel model. Then model fitting is done between the hand model and

the voxel model, in the 3-D space. The method uses only geometric infor-

mation of hand model and the voxel model for model fitting and do not

need any heuristic or priori information. The feasibility of the method

is tested using simulated and real hand poses. However the accuracy

and processing speed of the algorithm can be improved. This method

utilized kinematic model of the hand for gesture recognition, whereas

a computer vision model is introduced in [116]. It avoids the complex-

ity in estimation of the angular and linear parameters of the kinematic

model. [116] suggests topological features of the hand for 3D hand ges-

ture recognition. The hand is segmented from complex background using

a restricted coulomb energy (RCE) neural network based on color segmen-

tation method. The edge point of fingers are extracted as points of interest

and matching is done utilizing the topological features. A new method is

suggested to estimate the epipolar geometry between two uncalibrated

cameras from stereo hand images. The fundamental matrix is estimated

from uncalibrated stereo hand images. Fundamental matrix contains all

geometric information that is necessary for establishing correspondence

between two perspective images, from which 3D structure of an object can

be inferred. The algorithm is tested with real calibrated and uncalibrated

images. The experimental comparisons have shown the effectiveness and

robustness of the method.
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Statistical and Syntactic Analysis

[10] proposed a two level approach of statistical and syntactic analysis

for the recognition of static and dynamic hand gestures respectively. The

first level (statistical analysis) is based on Haar-like features and the Ad-

aBoost learning algorithm. The second level (syntactic analysis) is based

on a stochastic context-free grammar (SCFG). The Haar-like features ef-

fectively describe the hand posture pattern and the AdaBoost algorithm

greatly speeds up performance and constructs a strong classifier by com-

bining a sequence of weak classifiers. The posture detected by the first

level are converted into a sequence of terminal strings according to the

grammar. The SCFG algorithm analyzes the syntactic structure based

on the detected postures. Based on the probability that is associated with

each production rule, the gesture corresponding to an input string is iden-

tified by finding out the production rule that has the highest probability

of generating the gesture.

Eigen Space Based Method

A hand gesture recognition method without any explicit feature detection

step is proposed in [62]. The method suggests a novel eigenspace based

framework to model dynamic hand gestures those incorporate both hand

shape as well as trajectory information. In general, any feature-based

method involves a separate time-consuming and noise-prone feature de-

tection step which is avoided in [62]. The approach is useful in represent-

ing gestures that cannot be recognized by shape or from the trajectory

information. Moreover the algorithm is immune to common hand shape
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deformations: rotation, translation, scale and shear. Also the authors

modeled an upper bound on success rate of a particular set of gestures by

maximizing the distance between gesture classes in the eigenspace. The

algorithm is tested using an eight class gesture set and it provided 100%

classification of all the training and testing samples.

2.1.2 Hand Gesture Databases

The number of hand gesture databases available to the research commu-

nity is limited [41]. As part of this dissertation two new hand posture

databases namely NUS hand posture dataset-I (simple background) and

NUS hand posture dataset-II (complex background) are developed. Table

2.4 lists the available hand gesture databases and sources.

2.1.3 Comparison of Methods

HMM based methods are effective and are widely used for hand gesture

recognition. However HMM approaches have the disadvantage of a very

elaborate training procedure to be effective. In contrast to the HMM

based methods, the design of TDNN is attractive as its compact struc-

ture economizes on weights and makes it possible for the network to de-

velop general feature detectors. Also, its hierarchy of delays optimizes

these feature detectors by increasing their scope at each layer. Most im-

portantly, its temporal integration at the output layer makes the network

shift invariant (i.e., insensitive to the exact position of the gesture).

Graph based algorithms have the disadvantage of high computational
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complexity, which leads to its unsuitability for real-time applications. How-

ever these methods are effective in the recognition of complex background

gestures [97].

In general, appearance-based approaches have better real-time perfor-

mance as the extraction of the 2-D image features that are employed

is fast [10]. Appearance-based models lead to computationally efficient

purposive approaches that work well under constrained situations, but

seem to lack the generality desirable for HCI. Three-dimensional hand

models offer a way of more elaborate modeling of hand gestures. Three-

dimensional hand model-based approaches offer a rich description that

potentially allows a wide class of hand gestures. However, 3-D models

need a very large image database to cover all the characteristic shapes

under different views. Matching the test image with all the images in the

database is time consuming and computationally expensive which limits

the usage of 3-D models for real-time applications.

2.2 Fuzzy-Rough Sets

This section provides an introduction to fuzzy-rough sets and a review of

the classification and features selection algorithms in this field.

Real world classification problems often involve continuous data which

makes the design of reliable classifiers difficult. One way to handle con-

tinuous data is by partitioning the data into crisp or discrete intervals.

This process of discretization determines how coarsely the data is split

into intervals. The crisp discretization is achieved by generating a set of
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cuts of features within the dynamic ranges of the corresponding features.

The positions of cuts are very sensitive to the subsets of the information

system, which are used to generate the cuts, as well as to the method-

ology adopted. The position sensitivity of cuts may make the classifica-

tion accuracy adversely affected. Fuzzy sets, which is a generalization of

the classical sets, proposed by Zadeh in 1963 [118], offers solutions for

tackling such difficulties associated with continuous data. It suggests the

fuzzy discretization of the feature space and solves the problems associ-

ated with crisp discretization.

Z. Pawlak introduced the rough set theory in the early eighties, as a

tool to handle inconsistencies among data [64–66]. A rough set is a formal

approximation of a vague concept by a pair of precise concepts, the lower

and upper approximations. No additional knowledge about the data, such

as prior probability in probabilistic approach or grade of membership in

fuzzy set theory, is required in rough sets. Rough sets handle uncertainty

by computing the lower and upper approximations of the concept under

consideration.

The concept of crisp equivalence class is the basis for rough set theory. A

crisp equivalence class contains samples from different output classes. In

addition, the various elements in an equivalent class may have different

degrees of belongingness to the output classes. A combination of fuzzy

and rough sets, namely fuzzy-rough sets [17, 18], is useful for decision

making in such situations where both vagueness and indiscernibility are

present. Fuzzy-rough set is a deviation of rough set theory in which the

concept of crisp equivalence class is extended using fuzzy set theory to

form fuzzy equivalence class [18]. A fuzzy similarity relation replaces an
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equivalence relation in rough sets to form the fuzzy-rough sets. In fuzzy-

rough sets the equivalence class is fuzzy in addition to the fuzziness of

the output classes [84].

Let the equivalence classes be in the form of fuzzy clusters F1, F2, ..., FH ,

which are generated by the fuzzy partitioning of the input set X into H

number of clusters. Each fuzzy cluster represents an equivalence class

and it contains patterns from different output classes. The definite and

possible members of the output class are identified using lower and upper

approximations [64] of the fuzzy equivalence classes. The description of

a fuzzy set Cc (output class) by means of the fuzzy partitions under the

form of lower and upper approximations Cc and Cc is as follows [84] :

µCc(Fj) = inf
x
{max(1− µFj

(x), µCc(x))} ∀x ∈ X

µCc
(Fj) = sup

x
{min(µFj

(x), µCc(x))} ∀x ∈ X (2.1)

The tuple
⟨
Cc, Cc

⟩
is a fuzzy-rough set. µFj

(x) and µCc(x) are fuzzy mem-

berships of the sample x in the fuzzy equivalence class Fj and output class

Cc respectively.

2.2.1 Feature Selection and Classification using Fuzzy-
Rough Sets

Fuzzy and rough set theories are considered complementary in that they

both deal with uncertainty: vagueness for fuzzy sets and indiscernibility

for rough sets [18]. These two theories can be combined to form rough-

fuzzy sets or fuzzy-rough sets [17, 18]. Combining the two theories pro-

vides the concepts of lower and upper approximations of fuzzy sets by sim-

ilarity relations, which is useful for addressing classification problems.
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The concept of fuzzy discretization of feature space for a rough set the-

oretic classifier is provided in [83]. The merit of fuzzy discretization over

crisp discretization in terms of classification accuracy is demonstrated,

when overlapping datasets are used. An entropy-based fuzzy-rough ap-

proach for extracting classification rules is proposed in [99]. A new fuzzi-

fication technique called Modified Minimization Entropy Principle Algo-

rithm (MMEPA) is proposed to construct membership functions corre-

sponding to the fuzzy sets.

The fuzzy-rough uncertainty is exploited in [84] to improve the classi-

fication efficiency of a conventional K-nearest neighbor (K-NN) classifier.

The algorithm generalizes the conventional and fuzzy K-NN classifier al-

gorithms. Another modification of the K-NN algorithm using fuzzy-rough

sets is proposed in [106]. Fuzzy-rough concept is used to remove those

training samples which are in the class boundary and overlapping re-

gions. This improves classification accuracy. However the algorithm is

applied to only one type of problem, the hand gesture recognition, whereas

[84] reported more experimental results. [34] presents a new fuzzy-rough

nearest neighbour (FRNN) classification algorithm, as an alternative to

the fuzzy-rough ownership function (FRNN-O) approach in [84]. In con-

trast to [84], the algorithm proposed in [34] utilizes the nearest neighbors

to construct the lower and upper approximations of the decision classes.

The algorithm classifies test instances based on their membership to the

lower and upper approximations. FRNN outperformed both FRNN-O and

traditional fuzzy nearest neighbour (FNN) algorithm.

A new concept named as consistence degree is proposed in [120] to use

as a critical value to reduce redundant attributes in a database. A rule
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based classifier using a generalized fuzzy-rough set model is proposed.

The classifier is effective on noisy data. A comparison between fuzzy-

rough classifier and neural network (NN) classifier is provided in [39].

The fuzzy-rough classifier is reported as a better choice, as it needs lesser

training time, has transparency, and has lesser dependance on the train-

ing data.

A feature selection method with fuzzy-rough approach and ant colony

optimization is provided in [35]. Shen et al. [87] proposed a classifier that

integrates a fuzzy rule induction algorithm with a rough set assisted fea-

ture reduction method. The classifier is tested on two problems, the urban

water treatment plant problem and algae population estimation. Fuzzy-

rough approach is utilized in [100] for decision table reduction. Unlike

other feature selection methods, this method reduces the decision table in

both vertical and horizontal directions (both the number of features and

its dimensionality are reduced).

A robust feature evaluation and selection algorithm, using a new model

of fuzzy-rough sets namely soft fuzzy-rough sets, is provided in [78]. This

method is more effective in dealing with noisy data. [110] proposed a

fuzzy-rough feature selection algorithm, with application to microarray

based cancer classification. These works used standard classifiers (KNN,

C5.0) for the classification process.
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2.3 Biologically Inspired Features for Visual
Pattern Recognition

The features of the image which are to be used for pattern recognition

is an ongoing research topic in computer vision. Over the past three

decades, there are lots of success stories in vision based pattern analysis.

However, the mainstream computer vision has always been challenged by

human vision, and the mechanism of human visual system is yet to be

understood well, which is a challenge for both neuroscience and computer

vision. The human visual system rapidly and effortlessly recognizes a

large number of diverse objects in cluttered, natural scenes and identifies

the specific patterns, which inspired the development of computational

models of biological vision systems. Recent developments in the use of

neurobiological models in computer vision tries to bridge the gap between

neuroscience, computer vision and pattern recognition.

Hubel and Wiesel discovered the organization of receptive fields, and

the properties of simple and complex cells in cat’s primary visual cortex

[31]. The cortical simple cell receptive fields are modeled [37] using a

Gabor function (also known as Gabor wavelet or Gabor filter) which is

described by the following equations.

F (x, y) = exp
(
−(x0

2 + γ2y20)

2σ2

)
× cos

(
2π

λ
x0

)
, s.t. (2.2)

x0 = x cos θ + y sin θ and y0 = −x sin θ + y cos θ. (2.3)

where,
γ the spatial aspect ratio of the Gaussian function,

σ the standard deviation of the Gaussian function,

λ the wavelength of the sinusoidal term,

θ the orientation of the Gaussian from the x-axis.
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Gabor wavelet based features have good discriminative power between

different textures and shapes in the image. Gabor filters resemble the

receptive fields of neurons in the primary visual cortex of mammals [37].

Use of the 2D Gabor wavelet representation in computer vision was pio-

neered by Daugman [15].

Riesenhuber and Poggio extended this approach and proposed a hierar-

chical model of ventral visual object-processing stream in the visual cor-

tex [81]. Serre et al. implemented a computational model of the system

and used it for robust object recognition [85,86]. The features extracted by

this model are known as the C1 and C2 standard model features (SMFs).

The C2 SMFs were later used for hand writing recognition [104] and face

recognition [48]. These features are scale and position-tolerant, and the

feature extraction algorithm does not require the segmentation of the im-

age. Also the number of the extracted features is independent of the input

image size. They used the features for robust object recognition [85, 86].

Later these features were used for hand writing recognition [104] and face

recognition [48]. The algorithms proposed in this thesis utilize the C2 fea-

tures for the multi-class recognition of human faces and hand postures.

2.3.1 The Feature Extraction System

Table 2.5: Different layers in the C2 feature extraction system.

Layer Process Represents
S1 Gabor filtering simple cells in V1
C1 Local pooling complex cells in V1
S2 Radial basis functions V4 & posterior inferotemporal cortex
C2 Global pooling inferotemporal cortex
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The computational model proposed by Serre et al. consists of four lay-

ers (Table 2.5). Layer 1 (S1) consists of a battery of Gabor filters with

different orientations (4) and sizes (16 sizes divided into 8 bands). This

imitates the simple cells in the primary visual cortex (V1) which filters

the image for the detection of edges and bars. Layer 2 (C1) models the

complex cells in V1, by applying a MAX operator locally (over different

scales and positions) to the first layer results. This operation provides tol-

erance to different object projection size, it’s position and rotation in the

2-D plane of the visual field. In layer 3 (S2), radial basis functions (RBFs)

are used to imitate the V4 and posterior inferotemporal (PIT) cortex. This

aids shape recognition by comparing the complex features at the output

of C1 stage (which corresponds to the retinal image) with patches of pre-

viously seen visual image and shape features (in human these patterns

are stored in the synaptic weight of the neural cells). Finally, the fourth

layer (C2) applies a MAX operator (globally, over all scales and positions)

to the output of layer S2, resulting in a representation that expresses the

best comparison with previously seen images. The output of layer 4 are

the C2 SMFs, which are used for the classification of the image.

Simple cells in the third layer implement an RBF, which combines bars

and edges in the image to more complex shapes. RBFs are a major class

of neural network model, comparing the distance between input and a

prototype [5]. Each S2 unit response depends in a Gaussian-like way on

the Euclidean distance between a new input and a stored prototype. The

prototype patches of different sizes (center of the RBF units) are drawn

randomly (random image and position) from the training images at the
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level of the second layer (C1). Each patch contains all the four orienta-

tions. The third layer compares these patches by calculating the summed

Euclidean distance between the patch and every possible crop (combining

all orientation) from the image of similar size. This comparison is done

separately with each scale-band representation in the second layer.

The final set of shift and scale invariant C2 responses is computed by

taking a global maximum over all scales and positions for each S2 type,

i.e., the value of the best match between a stored prototype and the input

image is kept and the rest is discarded. Each C2 feature corresponds to a

specific prototype patch with a specific patch size (in layer 3). The more

the number of extracted features the better is the classification accuracy.

However when more number of features are extracted the computational

burden (both for feature extraction and classification) will increase.

The feature selection and classification algorithms presented in Chap-

ter 3 and 4 of the thesis extract the image features using the above feature

extraction system (the focus of these chapters is on feature selection and

classification aspects). The algorithms presented in Chapter 5 and 6 mod-

ify the feature extraction system for hand posture recognition application.



Chapter 3

Fuzzy-Rough Discriminative
Feature Selection and
Classification

Most of the fuzzy-rough classifiers surveyed in Chapter 2 (Section 2.2.1)

are based on pre-defined fuzzy membership functions and are focussed

either on classification or feature selection aspect. The fuzzy-rough ap-

proach is utilized as a preprocessing / supporting step. Direct construc-

tion of classifiers as an application of fuzzy-rough sets has been less stud-

ied [120]. The current work proposes a computationally efficient feature

selection and classification algorithm for datasets with multidimensional

feature space, utilizing the fuzzy-rough set approach. The algorithm au-

tomatically generates the fuzzy membership functions and selects the dis-

criminative features in the dataset. The classification rules are generated

using the selected subset of features, which further improves the compu-

tational efficiency of the classifier.

41
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3.1 Feature Selection and Classification of
Multi-feature Patterns

The computational expenses in any classification process are sensitive to

the number of features used to construct the classifier. An abundance

of features increases the size of the search space to be explored, thereby

increasing the time needed for classification. The available features in

a dataset can be categorized into four. 1) Predictive / relevant: the fea-

tures which are good in the interclass discrimination, 2) Misleading: the

features which affect the classification task negatively, 3) Irrelevant: the

features which provide a neutral response to the classifier algorithm, and,

4) Redundant: the features of a class which has other relevant features

for the discrimination. The presence of misleading features will reduce

the classification accuracy and, the presence of irrelevant and redundant

features will increase the computational burden. The removal of such

features reduces the size of the rule base of a classifier by preserving the

relevant and predictive features. This process is known as attribute re-

duction [67] or, in the context of machine learning, feature selection [93].

Similar and overlapped features in a dataset make the classification

of patterns difficult. Interclass feature overlaps and similarities lead to

indiscernibility and vagueness. Rough set theory [64, 65] is useful for

decision making in situations where indiscernibility is present, and, fuzzy

set theory [118] is suitable when vague decision boundaries exist.

This work considers the category of decision problems which is char-

acterized with multidimensional feature space. Searching for an optimal

feature subset in a high dimensional feature space is an NP complete
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problem [2]. In the present work, the feature space is partitioned into

fuzzy equivalence classes through fuzzy-discretization. The lower and

upper approximations of the fuzzy equivalence classes are calculated for

the training data set. The predictive features in the dataset are iden-

tified and if-then classification rules are generated using these features.

The decision is made through a voting process using these rules. The

proposed feature selection and classification algorithm has a polynomial

time complexity. The algorithm selects the relevant features, and avoids

the misleading, irrelevant and redundant ones. The selection of relevant

features reduces the number of features required for classification, which

further brings down the computational cost of the classifier.

Cancer and tumor classification using gene expression data is a typical

multi-feature classification problem. Gene expression monitoring by DNA

microarrays suggests a general strategy for predicting cancer classes, in-

dependent of previous biological knowledge [25]. However, the number of

genes in the gene expression data is quite large (each gene profile is a fea-

ture utilized for the classification) and the availability of tissue samples /

records is limited [71]. As the dataset has many more features than the

number of available samples, the common statistical procedures such as

global feature selection can lead to false discoveries [71]. These facts em-

phasize the need for a simple and robust classifier for such multi-feature

classification problems.

According to Piatetsky-Shapiro et al. [71], the main types of data anal-

ysis needed for biomedical applications include, a) Classification: classi-

fying diseases or predicting treatment outcome based on gene expression
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patterns, b) Gene selection: selecting the predictive features, and, c) Clus-

tering: finding new biological classes or refining the existing ones. The

first two are pattern recognition / data mining problems whereas the third

requires domain knowledge in the biomedical field. The present work ad-

dresses the first two aspects. The proposed feature selection and classifi-

cation algorithm is applied to five cancer / tumor datasets. The algorithm

identified predictive genes and provided good classification accuracy for

all the datasets considered.

The proposed algorithm is also tested on three visual pattern recogni-

tion tasks: hand posture recognition, human face recognition, and object

recognition. The features of the images are extracted using a cortex-like

mechanism [85], and, the classification is done using the proposed algo-

rithm.

3.2 The Fuzzy-Rough Feature Selection and
Classification Algorithm

 

Classification rules 

Fuzzy-rough set 
 based feature  
selector and  

rule generator  

Training phase  

Testing phase 

Classifier 
(Rule base using 
selected features) 

Training 
data 

Test data  Classified 
Test data 

Figure 3.1: Overview of the classifier algorithm development.
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The proposed fuzzy-rough set based feature selection and classification

algorithm is discussed in this section. The aim is to come up with a clas-

sifier which identifies discriminative features in a dataset and classifies

the data with less computational expense.

Fig. 3.1 shows the overview of the proposed classifier algorithm devel-

opment process. The available dataset is divided into two sets: training

and testing sets. In the training phase, the discriminative features in the

data are selected and the classification rules are generated using a fuzzy-

rough approach. The classifier developed is tested using the test data.

3.2.1 The Training Phase: Discriminative Feature Se-
lection and Classifier Rules Generation

The training phase (Fig. 3.2) involves the fuzzy discretization of the fea-

ture space and, the formation of fuzzy membership functions using the

cluster centers identified by the subtractive clustering technique [12]. The

discriminative features in the dataset are selected and the classification

rules are generated, using fuzzy lower and upper approximations of the

fuzzified training data.
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Figure 3.2: Training phase of the classifier.
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Fuzzy Equivalence Classes and, the Lower and Upper Approxi-
mations

The fuzzy membership functions are formed using the feature cluster cen-

ters identified by the subtractive clustering technique [12]. Every data

point is a potential cluster center. Subtractive clustering calculates a

measure of the likelihood of a data point as a cluster center, based on

the density of surrounding data points. The algorithm selects the data

point with highest potential as the first cluster center and then removes

all the data points in the vicinity (as specified by the subtractive cluster-

ing radius which usually lies within [0.2, 0.5]1) of the first cluster center.

The second data cluster and its center point are identified next. This pro-

cess is repeated until every data sample lies within the radius of one of

the cluster centers.

The concept behind the proposed algorithm is explicated with the fol-

lowing example. Consider a 3 class classification problem with a 2 di-

mensional feature space. Let the sample distribution in the feature space

A−B is as shown in Fig. 3.3(a) and the output class considered is class 2.

The fuzzy membership function is centered at the cluster center of feature

A (of class 2). The minimum and maximum values of feature A (of class

2) position the left and right sides of the membership function.

In the example, the fuzzy membership function forms an equivalence

class. The samples near to the cluster center have maximum member-

ship in class 2, as these samples have a better chance to be in class 2.
1The subtractive clustering radius represents the width of the data considered in

each step of the clustering. A radius within [0.2 0.5] leads to diameter within [0.4 1.0]
and it covers 40% to 100% of the data width. This is the usual range reported in the
literature [12]. The number of rules and accuracy decrease with the radius.
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Figure 3.3: (a) Feature partitioning and formation of membership func-
tions from cluster center points in the case of a 3 class dataset. The out-
put class considered is class 2. (b) Lower and upper approximations of the
set X which contains samples 1-8 in (a).
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However the same fuzzy equivalence class contains samples from differ-

ent output classes which leads to fuzzy-rough uncertainty. The proposed

algorithm identifies the membership values µAL
and µAH

(3.3) that parti-

tion the definite and possible members of the output class (class 2 in this

example, Fig. 3.3(a)) and identifies the relevant features for discriminat-

ing the output class .

Let X be the set of samples labeled 1-8 in Fig. 3.3(a). The set contains

samples from different partitions of the feature space. The lower and

upper approximations of the set X are shown in Fig. 3.3(b). The lower ap-

proximation consists the definite members and the upper approximation

consists the definite and possible members of class 2.

The cluster centers are identified and the membership functions are

formed for each feature of every class. The training data is then fuzzified

using the generated membership functions and, the lower and upper ap-

proximations are obtained. The set of membership values {µAL
, µAH

} and

feature values {AL, AH} that partition the definite and possible members

are utilized to identify the discriminative features, and to generate the

classification rules respectively2.

The distribution of data samples in the feature space may have vary-

ing amount of overlaps between different classes, along various feature

axes. The proposed algorithm identifies the discriminative features, the

features which have minimum interclass overlap, as the predictive/ rele-

vant features in the dataset, and generates the classification rules using

them.
2Refer Appendix-A for an illustration of the formation of fuzzy membership functions,

and the calculation of {µAL , µAH} and {AL, AH}.
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All the datasets considered in this paper have large number of features.

The presence of large number of features increases the possibility of iden-

tifying predictive features with less interclass overlap.

Feature Selection

The fuzzy equivalence class can contain samples from different output

classes. Let µAL
and µAH

be the membership values that partition the

definite and possible members of an output class (Fig. 3.3(a)). µAL
and

µAH
are calculated as follows.

Let MF be the fuzzy set associated with a particular feature in a class

and,

µmax(Ci) = max{µMF [ACi
(l)]}, (3.1)

where,

ACi
(l) represents the feature values of the samples from the class Ci,

and,

Cmax = argmaxCi
{µmax(Ci)}, (3.2)

then,

µAL
= max

Ci ̸=Cmax,Amin≤A≤AC

{µmax(Ci)},

µAH
= max

Ci ̸=Cmax,AC≤A≤Amax

{µmax(Ci)}. (3.3)

µAL
and µAH

are the maxima of the membership values associated with
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data samples belonging to classes other than Cmax. Once these member-

ship values are calculated, the features of the data are sorted in descend-

ing order of dµ where dµ is the average value3 of dµAL
and dµAH

(Fig. 3.4).
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Figure 3.4: Calculation of dµ.

dµ = (dµAL
+ dµAH

)/2, (3.4)

where,

dµAL
= 1− µAL

and dµAH
= 1− µAH

(3.5)

The value of dµ is an indication of the discriminative ability of a particular

feature. A high value of dµ indicates that the corresponding feature is

good for interclass discrimination, as it has less interclass overlap. dµ = 0

(µAL
= µAH

= 1) represents an indiscriminating feature.

The classification rules are generated using the first n features from

the sorted list (using the features which provide higher values of dµ). The
3The algorithm provides better results when the average value is considered. The

other possible values for dµ are dµAL
, dµAH

or a weighted average of dµAL
and dµAH

.
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proposed algorithm is tested by varying the number of selected features

n. The classification accuracy of the algorithm first increases and then

saturates with respect to n, for all the datasets considered.
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Figure 3.5: Calculation and comparison of dµ for two features A1 and A2
with different feature ranges.

The capability of dµ in representing the relevance of features is ex-

plained as follows. The calculation of dµ for two features A1 and A2 is

depicted in Fig. 3.5. The range of feature A1 (A1max − A1min) is less than

that of A2 (A2max − A2min). Let the feature range [AL, AH ] and feature

cluster center AC are the same for the two features A1 and A2. In this

case the feature selection algorithm provides preference to feature A1, as

it has a denser sample distribution. The algorithm provides higher value

for dµA1
(the average of dµA1L

and dµA1H
) than dµA2

. Within the feature

range of A1, A1max−AC < AC −A1min, which implies that the distribution

of samples is sparser within [A1min, AC] and denser within [AC , A1max] (as

AC is the feature cluster center). The proposed algorithm provides pref-

erence to the denser feature range [AC , AH ] and assigns a high value to
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the dµ corresponding to it (dµA1H
), compared to the dµ of the sparse feature

range [AL, AC ] (dµA1L
).

Classification

The feature values AL and AH that partition the lower and upper approx-

imations of the fuzzy equivalence class entails the rule: if the value of

a feature A is within (AL, AH) then the sample belongs to the class Cmax

(Fig. 3.4, A.1). This feature range decides whether a particular sam-

ple is a definite member of the output class Cmax. The rule always holds

true for the training samples. However some of the rules classify only a

small number of training samples (say 1 or 2), if the samples from various

classes are well mixed. To increase the reliability of the classifier, only

those rules which classify two or more number of training samples are

stored in the rule base.

In order to classify new samples, the classification rules are generalized

as follows (Rule 1 & 2).

Let {ALij
, AHij

} be the set of feature values obtained as per (3.3) where,
i 1,. . . , p : p - number of classes,

j 1,. . . , q′ : q′ - number of selected features,

then the samples are classified using the following two rules. Rule 1 is

a voting step whereas Rule 2 is the decision maker.

Rule 1:

IF [ALij
< Aj < AHij

] THEN [NCi
= NCi

+ 1] (3.6)
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where,
Aj jth feature of the sample to be classified,

NCi
the number of votes for a particular class Ci.

Rule 2:

C = argmaxCi
{NCi

} (3.7)

where,

C is the class to which the sample belongs (the output class).

A detailed flowchart of the training phase of the classifier is provided in

Fig. 3.6.

The proposed classifier is a margin classifier that provides the mini-

mum distance from the classification boundary, namely margin of clas-

sification, for each sample. The margin of classification for the proposed

classifier is defined as,

MC = Np −NnMAX (3.8)

where,
MC is the margin of classification,

Np is the number of positive votes, and

NnMAX is the maximum number of negative votes.

In case of a dataset with three classes, the number of votes NC1, NC2,

and NC3 are calculated for a sample under consideration (Rule 1). Rule 2

then identifies the class with maximum votes. Rules 1 and 2 serve to form

the classifier rule base, keeping the algorithm computationally simple.

For a sample from class 1, let the values NC1 = 90, NC2 = 5, and
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NC3 = 10. Then the MC for the sample is 90 − 10 = 80. In this case the

sample received 90 positive votes.4 The number of negative votes are 5

and 10 in classes 2 and 3 respectively. A positive margin indicates correct

classification whereas negative margin indicates misclassification. The

average margin of classification for a dataset indicates the discriminative

power of the classifier for that dataset. The experimental results (Section

3.3) evidence good discriminative power of the proposed classifier for all

the datasets considered.
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       (3.4) are selected (Fig. 3.4, Equation (3.4), (3.5)).d
 

Figure 3.6: Flowchart of the training phase.

4Voting is positive if the voted class and the actual class are the same. Otherwise it
is negative.
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3.2.2 The Testing Phase: The Classifier
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Rule 1: Equation (3.6) 
 IF [ ] [ 1]

ij ij i iL j H C CA A A THEN N N< < = +  

 where, 

iCN is the number of votes for a particular class Ci, 

ijLA and 
ijHA  are the  feature values that partition the  definite 

and possible members of  an output class (Fig. 3.3(a)). 
Rule 2: Equation (3.7) 
C = argmaxCi  {

iCN } where C is the class to which the sample 

belongs. 
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Figure 3.7: Flowchart of the testing phase.

The fuzzy-rough classifier is formed using the classification rules gen-

erated in the training phase. Fig. 3.7 shows the flowchart of the testing

phase (the classifier). The selected features of a test sample are compared

with the feature values AL and AH , and the classification is done using

Rules 1 and 2. Each of the execution steps of the classifier is a direct

comparison of feature values, using the classification rules, which makes

the algorithm computationally simple. The classification results are dis-

cussed in Section 3.3.
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3.2.3 Computational Complexity Analysis

This section provides a detailed computational complexity analysis of the

training and the testing (the classifier) algorithm. Both training and test-

ing algorithms have polynomial time complexity.

Computational Complexity of the Classifier Training Algorithm

read {train_data} ;  % read all the features of the samples

for i =  number_of_classes 

    for j = number_of_features;  

        calculate  {Ac} ; % finding feature cluster centers - using subtractive clustering 

        calculate {Amin}, {Amax}; % finding min. & max. values of features 

        calculate { }; % calculation of  fuzzy memberships in each class

       calculate {
L
A

 ,
H
A

 }; % Equation (3.1)-(3.3)  

 calculate {
L
A ,

H
A };  % finding features values  that partitions definite 

             % and possible members of an output class 

calculate {d };  % Equation (3.4), (3.5) 

    end 

end 

for i =  number_of_classes 

       Asort  = sort {d }; % features are sorted in the descending order of d 

         % - for the feature selection 

end 

write  {
L
A ,

H
A }, {Asort}; % store the parameters of the rule base 

Figure 3.8: Pseudo code of the classifier training algorithm.

Fig. 3.8 shows the pseudo code of the classifier training algorithm. The

different parameters at the input of the training algorithm are the num-

ber of classes, the number of features, and the number of samples per
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class. Let p be the number of classes, q be the number of features, and r

be the number of samples per class. The complexity of the algorithm is as

follows : O(pqr) for reading the training data, O(pqr2) for finding the clus-

ter centers (using subtractive clustering), O(pqr) for finding the minimum

and maximum of feature values, O(p2qr) for calculating the fuzzy mem-

berships, O(p2qr) for finding the membership values µAL
and µAH

, O(pq)

for finding feature values AL and AH , O(pq) for calculating dµ, O(pq log(q))

for sorting dµ, and, O(pq) for storing the rule base parameters. The overall

complexity of the algorithm is O(pqr2) + O(p2qr) + O(pq log(q)), which is

polynomial time.

Computational Complexity of the Classifier

read {
L
A ,

H
A }, {Asort}; % read the parameters of the rule base 

read {test_data} ;  % read the selected n features of the sample - corresponding 

% to the first n feature indices listed in {Asort}

for i =  number_of_classes 

    for j = number_of_features; % selected n number of features 

          IF  [ ]
L H
A A A  % compare the features of the test sample with  

     % feature value set  { , }
L H
A A  

       vote(i) = vote(i) +1; % Rule 1, Equation (3.6)

          end 

     end 

end 

class =  index {max (vote)} ; % Rule 2, Equation (3.7),  find the class index  

    % which received maximum votes 

print {class} ; 

Figure 3.9: Pseudo code of the classifier.

The pseudo code of the classifier is shown in Fig. 3.9. The different
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parameters at the input of the classifier are the number of classes and

the number of selected features. Let p be the number of classes and q′

be the number of selected features. The complexity of the algorithm is as

follows : O(pq′) for reading the classifier rule parameters, O(q′) for reading

the selected features of the sample, O(pq′) for the voting process, and, O(p)

for finding the class index which received the maximum votes. The overall

complexity of the proposed classifier algorithm is polynomial time, O(pq′).

3.3 Performance Evaluation and Discussion

The proposed feature selection and classification algorithm is tested using

5 cancer (Table 3.1) and 3 image datasets (Table 3.2). The reported results

are the classification accuracy, the number of features used per class, the

total number of features used (which is less than or equal to the product

of number of features used per class and the number of classes), and the

average margin of classification (MC) (Table 3.3 & 3.5). The variation

in classification accuracy with respect to number of selected features is

reported (Fig. 3.10). A comparison of the classification accuracy of the

proposed algorithm with relevant classification methods is also provided.

Table 3.1: Details of cancer datasets

Dataset # Classes # Samples
Leukemia [24] 3 72
Tumor vs. normal samples [24] 2 75
Lung cancer [27] 2 181
Small round blue cell tumor [42] 4 83
Central nervous system embryonal tumor [24] 5 42
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3.3.1 Cancer Classification

Cancer classification, which is a typical multi-feature classification prob-

lem, is based on microarray based gene expression data. Accurate classifi-

cation of cancer is necessary for diagnosis and treatment. As the number

of available samples is limited, 10 fold cross-validation is done for all can-

cer datasets, except for the fifth dataset (central nervous system embry-

onal tumor), for which leave one out cross validation is done. The classifi-

cation results are compared with that of Support Vector Machines (SVM)

implemented using LIBSVM [7] (Table 3.3). The classification results are

also compared with those reported in the literature (for this comparison,

the training and testing of the algorithm are done using the same sample

divisions as that in the compared work) (Table 3.4).

Leukemia Classification

The leukemia dataset [24] consists of a total of 72 samples. Each sample

has 7,129 gene expression profiles and each gene profile is a feature in the

classification process. Originally the dataset was created and analyzed

for the binary classification into acute lymphoblastic leukemia (ALL) and

acute myeloblastic leukemia (AML) [25]. Jirapech-Umpai et al. [36] sep-

arated the dataset into three classes by using subtypes of ALL. Seventy

two samples in the dataset are divided into three classes: ALL B-cell (38),

ALL T- cell (9), and AML (25). In the present work, the three class clas-

sification is carried out and the 55 top ranked genes5 by the RankGene

method [36] are utilized for classification. For the 10 fold cross validation,
5The list of 55 top ranked genes is available in [36].
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4 samples of ALL B-cell, 1 sample of ALL T-cell and 3 samples of the AML

are considered in one subset (some samples are repeated in the subsets,

as 10 subsets each having 8 samples are formed using the 72 samples).

The outcome of the classification is provided in Table 3.3. The proposed

algorithm provided the maximum classification accuracy of 100%, when

a total of 35 features are used. The variation in classification accuracy

with respect to the number of selected features per class is shown in Fig.

3.10(a). The SVM classifier provided 94.44% accuracy for this dataset

(even though all available features are used in SVM).

The classification of the same dataset is done in [36] using evolutionary

algorithm and GA-KNN classifier which reported 98.24% accuracy. In

their work, 38 samples are used for training and 34 samples are used for

testing. The proposed algorithm is tested using the same sample divisions

and provided 100% classification accuracy (Table 3.4). Fifty gene profiles

(features) are used in [36], whereas 35 gene profiles (15 selected features

per class) are used by the proposed algorithm.

Tumor vs. Normal Sample Classification

In [54], tumor detection is done using MicroRNA expression profiles. The

dataset [24] consists of expression profiles of tumor and normal samples

of multiple human cancers. Each sample has 217 expression profiles. A

k-Nearest Neighbor (kNN) classifier is built and trained using the human

tumor / normal samples and it is utilized for the prediction of tumor in

mouse lung samples [54]. Also the algorithm identified markers, the fea-

tures that best distinguishes tumor and normal samples. The training

data consists of colon, kidney, prostate, uterus, lung, and breast human
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tumor / normal samples (43 tumor and 32 normal samples) and the test-

ing is done using mouse lung tumor / normal samples (12 samples). The

kNN classifier provided 100% correct detection of tumor (Table 3.4), when

131 markers are used [54].

As this is a tumor detection problem (rather than a classification prob-

lem), the lower and upper approximations, and the corresponding mem-

bership (µAL
, µAH

) and feature values (AL, AH) are calculated only for the

tumor samples (and not for the normal samples). The presence of cancer-

ous tumor in the test sample is predicted if more than 50% of the selected

features vote the sample as tumor sample. The algorithm provided 100%

correct detection of tumor in the mouse lung samples, when 35 markers

(20 selected features per class) are used.

In order to substantiate the reliability of the classifier, an additional 10

fold cross test is done using the human tumor / normal samples (43 tumor

and 32 normal samples). Each of the subsets consists of 5 tumor and 4

normal samples (some samples are repeated in the subsets, as 10 subsets

each having 9 samples are formed using the 75 samples). The proposed

algorithm provided 96.67% classification accuracy when a total of 35 se-

lected features are used (Table 3.3). Fig. 3.10(a) shows the variation in

classification accuracy with respect to the number of selected features per

class. For this dataset the SVM classifier provided an accuracy of 94.66%.

Lung Cancer Classification

Lung cancer dataset [27] is used by Gordon et al. [28] for gene expres-

sion ratio based diagnosis of mesothelioma (MPM) and adenocarcinoma
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(ADCA) of the lung. The set contains gene expression profile of 181 tis-

sue samples (31 MPM and 150 ADCA). For the lung cancer dataset the

number of genes is 12,533 and all of them are considered for the classi-

fication. Three MPM and 15 ADCA samples are used in one subset to

do the 10 fold cross validation (One subset contains 18 samples. The ex-

ecution is repeated until all the 181 samples are tested). The proposed

algorithm provided 100% classification accuracy (Table 3.3) when a total

of 44 features (40 selected features per class) are used. The variation in

classification accuracy with respect to the number of selected features per

class is shown in Fig. 3.10(b). For this dataset the SVM classifier also

provided 100% accuracy.

In [28], 99% classification accuracy is achieved for the same dataset,

when 16 MPM and 16 ADCA samples are used for training, whereas the

proposed algorithm provided 100% accuracy, when trained in a similar

manner (Table 3.4). However, only 6 genes are used in [28] as the method

is based on the ratio of gene expressions, whereas the proposed algorithm

needs 24 genes to provide 99% accuracy and 44 genes to provide 100%

accuracy.

Small Round Blue Cell Tumor Classification

The dataset used is NCI’s dataset [42] of small round blue cell tumors

(SRBCTs) of childhood [43]. There are four classes : Burkitt lymphoma

(BL), Ewing sarcoma (EWS), Neuro blastoma (NB) and Rhabdomyosar-

coma (RMS). A total of 83 samples are provided (11 BL, 29 EWS, 18 NB

and 25 RMS). The dataset consists of 2,308 genes whereas the present



63

work utilizes the top 200 individually discriminatory genes (IDGs)6 iden-

tified by Xuan et al. [111]. For the 10 fold cross test 1 BL, 3 EWS, 2 NB

and 2 RMS are considered in one subset (One subset contains 8 samples.

The execution is repeated until all the 83 samples are tested). The classifi-

cation results are provided in Table 3.3. The proposed algorithm provided

an accuracy of 98.75%, when a total of 103 features are used. Fig. 3.10(b)

shows the variation in classification accuracy with respect to the number

of selected features per class. For this dataset the SVM provided similar

performance as that of the proposed algorithm. The accuracy provided by

SVM classifier is 98.8%.

The classification of the same dataset is done in [43], using neural net-

work (NN) classifier with 96 features, and in [111], using multilayer per-

ceptron (MLP) classifier with 9 features. They used 63 samples for train-

ing and 20 samples for testing, and achieved 100% and 96.9% classifica-

tion accuracies respectively. The proposed algorithm provided an accu-

racy of 100% when the same training and testing samples are used, with

103 features (35 selected features per class). The proposed classifier pro-

vided better accuracy compared to the MLP classifier. However, in the

MLP classifier, the classification is done with less number of genes (only

9) as Jointly Discriminatory Genes (JDGs) [111] are used.

Central Nervous System Embryonal Tumor Classification

The gene expression based prediction of central nervous system embry-

onal tumor is reported in [73]. The multiple tumor classes are predicted

using k Nearest Neighbor (kNN) algorithm. There are five classes namely
6These genes are listed in the additional material (Table S1) of [111].
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medulloblastoma (10 samples), malignant glioma (10 samples), AT/RT

(an aggressive cancer of the central nervous system, kidney, or liver that

occurs in very young children) (10 samples), normal cerebellum (4 sam-

ples), and supratentorial PNETs (primitive neuroectodermal tumor) (8

samples). A total of 42 samples are provided, each having 7129 gene pro-

files. The evaluation method used is leave one out cross validation, simi-

lar to [73]. The accuracy achieved by the proposed algorithm is 85.71 %,

whereas that achieved by the kNN classifier is 83.33% (Table 3.3). The

proposed algorithm used 90 selected genes (markers) per class whereas

[73] used only 10 markers per class (the proposed algorithm provided a

lesser accuracy when only 10 markers per class are used - Fig. 3.10(c)).

The accuracy provided by the SVM classifier for this dataset is 80.95%.

3.3.2 Image Pattern Recognition

The image based pattern classification problems considered are hand pos-

ture recognition, face recognition, and object recognition. Image features

used are C2 standard model features (SMFs) [85], which are extracted us-

ing a computational model of the ventral stream of visual cortex [85, 86].

A total of 1000 C2 SMFs are extracted. Two fold cross validation is done

for hand posture and face datsets. For the object dataset, 100 random

images per class are used for training, and the testing is done using all

the remaining images. The reported classification accuracy is the average

over 10 such runs. The classification results for image datasets are com-

pared with that of SVM and principal component analysis (PCA-eigenface

method [102]), both implemented using the C2 SMFs (Table 3.5).
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Table 3.2: Details of hand posture, face and object datasets

Dataset # Classes # Samples
Jochen Triesch hand posture dataset [98] 10 240
A subset of Yale face dataset [23] 10 640
Caltech object database [21] 4 3479

Table 3.3: Summary and comparison of cross validation test results - Can-
cer datasets (Training and testing are done by cross validation)

Accuracy (%) # features Total # Average Accuracy
Dataset -proposed method / class features MC (%) -SVM
Leukemia 100 15 35 7.03 94.44
Tumor vs. nor-
mal samples
data

96.67 20 35 - 94.66

Lung cancer 100 40 44 22.44 100
Small round
blue cell tumor

98.75 35 103 11 98.80

Central nervous
system embry-
onal tumor

85.71 90 433 35 80.95

Table 3.4: Comparison of classification accuracy (%) with reported results
in the literature - Cancer datasets (Training and testing are done using
the same sample divisions as that in the compared work)

Dataset Proposed
method

Benchmark

Leukemia 100 98.24 [36]
Tumor vs. normal samples data 100 100 [54]
Lung cancer 100 99 [28]
Small round blue cell tumor 100 100 [43]
Central nervous system embryonal tumor 85.71 83.33 [73]



66

Hand Posture Recognition

Hand posture dataset considered is Jochen-Triesch hand posture dataset

[95]. Ten classes of hand postures, performed with 24 different persons,

against light background, are considered for the classification. The im-

ages vary in size of the hand and shape of the postures. A total of 240

samples, with 24 images from each class, are provided. The algorithm is

tested by dividing the dataset equally into training and testing samples

(12 images from each class). The algorithm is repeated by interchanging

training and testing sets and the average results are reported (two fold

cross test).

The proposed algorithm provided the maximum classification accuracy

of 100%, whereas PCA provided an accuracy of 98.75% (Table 3.5). The

SVM classifier also provided 100% accuracy. However, all the 1000 fea-

tures are used for the classification using PCA and SVM, whereas the

proposed algorithm used only 178 features (20 selected features per class).

The variation in classification accuracy with the number of selected fea-

tures per class is shown in Fig. 3.10(d). The accuracy saturates at 100%

when 20 or more selected features per class are used.

Face Recognition

Face dataset considered is a subset of the Yale face database B [23], which

contains 10 classes of face images, taken from different lighting directions.

It consists of 640 frontal face images, 64 from each class. The algorithm

is tested in a similar manner as done for the hand posture dataset. The

proposed algorithm as well as the SVM classifier provided the maximum
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Figure 3.10: Variation in classification accuracy with the number of se-
lected features.

classification accuracy of 100%, whereas the PCA provided 99.7% accuracy

(Table 3.5). The whole set of features (1000) is used in PCA and SVM. The

proposed algorithm is tested by varying the number of selected features

(Fig. 3.10(d)). The classification accuracy saturates at 100% when only 7

selected features per class (a total of 56 features) are used.

Object Recognition

The classes considered in object recognition are human frontal face, mo-

torcycle, rear car, and airplane [21]. A total of 3479 images (450 faces,
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Table 3.5: Summary and comparison of cross validation test results - hand
posture, face and object recognition

Accuracy (%) # features Total # Average Accuracy Accuracy
Dataset -proposed method / class features MC (%) -PCA (%) -SVM
Hand
posture
dataset

100 20 178 12.65 98.75 100

Face
dataset

100 7 56 5.68 99.7 100

Object
dataset

94.96 8 30 3.39 88.37 94.84

800 motor cycles, 1155 cars, and 1074 air-planes) are provided. The train-

ing set consists of 100 randomly selected images from each class, and the

testing is done using remaining 3079 images. The reported results are the

average over ten such runs. The proposed algorithm provided an average

classification accuracy of 94.96%, whereas PCA provided 88.37% accuracy

(Table 3.5). The SVM classifier provided an accuracy of 94.84%, equiva-

lent to that of the proposed algorithm. All the 1000 features are used in

PCA and SVM, whereas the proposed algorithm needs only 30 features (8

selected features per class). The recognition accuracy saturates at 94.96%

when 8 or more selected features per class are used (Fig. 3.10(d)).

3.4 Summary

A feature selection and classification algorithm based on the concept of

fuzzy-rough sets is proposed. The fuzzy membership functions, which

partition the feature space into fuzzy equivalence classes, are evolved au-

tomatically from the training dataset. The fuzzy membership values that

partition the lower and upper approximations of the fuzzy equivalence
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classes are utilized to identify the discriminative features in the dataset.

The classifier rules are generated using the identified predictive features

and the samples are classified through a voting process using these rules.

A measure of the quality of classification, the margin of classification, is

defined for the proposed classifier.

The performance of the algorithm is evaluated with two types of mul-

tiple feature datasets namely cancer and image datasets, and compared

with relevant classification techniques. The proposed algorithm provided

classification accuracy which is equivalent or better than that provided

by the compared methods, with less computational efforts, and with good

margin of classification.

Selection of relevant features reduced the number of features required

for classification, which in turn reduced the computational burden of the

classifier. The classification accuracy first increases and then saturates

with respect to the number of selected features, for all the datasets con-

sidered. The effectiveness of the classifier in different types classification

problems proves its generality. The time needed for rule generation as

well as classification is several seconds, whereas that of the conventional

machine learning algorithms is of the order of minutes or even hours. The

proposed classifier is effective in cancer and tumor classification, which

has high impact in the biomedical field. Also the effectiveness of the algo-

rithm in image pattern recognition is evident, which is useful in human-

computer interaction, human-robot interaction, and virtual reality.

In this work the first (main) cluster center of a feature is considered for

the generation of fuzzy membership functions. Additional membership
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functions (and classification rules) can be generated by considering the

second and third cluster centers, which can improve the performance of

the algorithm. The feature selection algorithm needs modification accord-

ingly, as the density of cluster centers vary (in general, first cluster center

is denser than the second, which in turn is denser than the third). This

modification is carried out and the results are presented in Chapter 4.



Chapter 4

Hand Posture and Face
Recognition using a
Fuzzy-Rough Approach

4.1 Introduction

The multi-class recognition of hand postures and human faces is con-

sidered in this chapter. A fuzzy-rough set based novel classification al-

gorithm that classifies the images at a less computational cost is pro-

posed. The features of the images are extracted using a cortex-like mech-

anism [85]. The algorithm then partitions the feature space by fuzzy-

discretization into fuzzy equivalence classes. The lower and upper ap-

proximations of the fuzzy equivalence classes are obtained which are used

to derive the fuzzy if-then rules. These rules are utilized for classifying

a new image, through a voting process. The proposed algorithm has a

polynomial time complexity.

By identifying the decision attributes, the performance of a classifica-

tion algorithm can be improved. The cost of classification is sensitive to

71
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the number of attributes / features used to construct the classifier. In the

present work, Genetic Algorithm (GA) is utilized to reduce the number

of features required for classification, by identifying and removing irrel-

evant and redundant features. The proposed classifier is a margin clas-

sifier and it provides margin of classification, a measure of the distance

from the classification boundary. The margin of classification is used to

define the fitness function. The proposed fitness function assists in the

feature selection process without compromising on the classification ac-

curacy and margin. The reduction in number of features needed for clas-

sification reduced the number of features to be extracted. This increased

the speed of both feature extraction as well as classification processes,

which makes the proposed algorithm suitable for real-time applications.

The proposed algorithm is tested using three face datasets (a subset of

Yale face database B [23], a subset of color FERET database [69], and a

subset of CMU face dataset [90]) and two hand posture datasets (a newly

created dataset namely NUS hand posture dataset, and Jochen Triesch

hand posture dataset [95]). Also the algorithm is tested by capturing the

hand images online, and the performance is compared with that of Sup-

port Vector Machines (SVM).

4.2 The Fuzzy-Rough Classifier

The proposed recognition algorithm is discussed in this section. The recog-

nition of a pattern in the image consists of two processes, feature extrac-

tion and classification. The aim is to come up with a simple algorithm

which is computationally less intensive, while automatically generating a
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classifier from the training set, using the fuzzy-rough set approach.

Figure 4.1 shows an overview of the components of the proposed recog-

nition system. The available data is divided into training, validation, and

testing datasets. The classification rules are generated in the training

phase, after extracting the features of the image. The discriminative fea-

tures of the images are identified and selected in the feature selection

phase. In the testing phase the images are classified using the generated

classification rules.
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Figure 4.1: Overview of the recognition algorithm.
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4.2.1 Training Phase: Identification of Feature Clus-
ter Centers and Generation of Classifier Rules

This section explains the various steps associated with the training of

the classifier. Figure 4.2 shows the training phase of the classifier. The

features of the image are extracted using the C2 feature extraction system

explained in Section 2.3.1. The fuzzy discretization of the feature space

is done using the cluster centers identified by the subtractive clustering

technique [12]. Then the lower and upper approximations of the fuzzy sets

are found out and the classification rules are generated. The following

subsections explain each of these phases.
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Figure 4.2: Training phase of the recognition algorithm.

Fuzzy Membership Functions from Feature Cluster Centers

The fuzzy membership functions are created in this step using the fea-

ture cluster centers, and these are utilized to partition the data into fuzzy

equivalence classes. The subtractive clustering technique [12], which is

an extension of Yager’s mountain clustering method [112], is utilized to

identify the feature cluster center points.
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The cluster centers are determined for each feature (in the feature vec-

tor corresponding to the training images) of each class. In subtractive

clustering, the number of clusters increases with smaller radius leading

to increased computational requirements. The clustering radius used in

the present work is 0.5. The number of cluster centers generated varied

from 1 to 3. Once the data clusters are identified, the peaks of the trian-

gular membership functions are placed at these points and, its left / right

sides span to adjacent left / right data cluster centers. The minimum /

maximum feature values position the left / right sides of the leftmost /

rightmost membership functions. For example, if a set of cluster points

cp1 = {0.35, 0.5, 0.8} are obtained for a feature A, which is within the range

[0.1, 0.9] for class C, then the triangular membership functions for A, for

class C are as shown in Fig. 4.3.
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Figure 4.3: Formation of membership functions from cluster center points.

A set of membership functions is obtained for each feature of every class

using the cluster center points. The training data is then fuzzified using

the generated membership functions and the lower and upper approxima-

tions are obtained.
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Modified Fuzzy Membership Functions

It is found that the same fuzzy equivalence class contains the samples

from different output classes which causes the fuzzy-rough uncertainty.

The proposed algorithm finds the lower and upper approximations of the

fuzzy equivalence classes. The limiting values of the memberships that

partition the definite and possible members of the output class are iden-

tified. The classification rules are generated utilizing these membership

values. The limiting values of the memberships are calculated as follows

(Fig. 4.4).
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Figure 4.4: Modified fuzzy membership function.

Let MF be the fuzzy set associated with a particular cluster center

point of a feature in a class and,

µmax(Ci) = max{µMF [xCi
(l)]}, (4.1)

where,

xCi
(l) is a sample from the class Ci,
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and,

Cmax = argmaxCi
{µmax(Ci)}, (4.2)

then,

µ∗ = max
Ci ̸=Cmax

{µmax(Ci)}. (4.3)

µ∗ is the maximum of the membership values associated with data sam-

ples belonging to classes other than Cmax. This limiting value of member-

ship entails the rule: if any µMF (x) > µ∗ then the associated class is Cmax.

This rule implies that if the value of the particular feature A is within

[AL1, AH1] then the sample belongs to class Cmax. These membership lim-

its decide whether a particular sample is a definite or possible member

of the output class (Cmax). The rule always holds true for the training

samples. However some of the rules classify only a small number of train-

ing samples (say one or two), if the samples from various classes are well

mixed. To increase the reliability of the classifier by avoiding the genera-

tion of rules from outlying data points, only those rules which classify two

or more number of training samples are stored in the rule base. In order

to classify a new sample, a generalization of the rule is needed, which is

provided in Section 4.2.1.

Generation of Classification Rules

The generalized classification rules are discussed in this section. Let

{µ∗
ijk} be the set of membership values obtained as per Eq. (4.3) where,

i 1,. . . ,p : p - number of classes,

j 1,. . . ,q : q - number of features,

k 1,. . . ,r : r - number of clusters corresponding

to the jth feature of the ith class,
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then the following two rules are utilized for classifying the patterns. Rule

1 is a voting step whereas Rule 2 is the decision making step.

Rule 1:

IF [µMFijk
(x) > µ∗

ijk] THEN [NCi
= NCi

+ 1] (4.4)

where,
x the sample to be classified.

NCi
the number of votes for a particular class Ci,

Rule 2:

C = argmaxCi
{NCi

} (4.5)

where,

C is the class to which the sample belongs to.

For example in case of a dataset with three classes, the number of votes in

the three classes namely NC1, NC2, and NC3 are calculated for the partic-

ular sample under consideration (Rule 1). Rule 2 then identifies the class

with maximum votes. Rules 1 and 2 serve to form the classifier rule base,

keeping the algorithm computationally simple.

The proposed classifier is a margin classifier that provides the mini-

mum distance from the classification boundary, namely margin of classi-

fication (MC), for each sample. The margin of classification of a particular

sample for the proposed classifier is defined as,

MC = Np −NnMAX (4.6)
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where,
MC is the margin of classification,

Np is the number of positive votes, and

NnMAX is the maximum number of negative votes.

For a sample from class 1, let the values NC1 = 90, NC2 = 5, and NC3 = 10

(in the case of a three class classification problem). Then the MC for the

sample is 90− 10 = 80. In this case the sample received 90 positive votes.1

The number of negative votes are five and ten in classes two and three

respectively. A positive margin indicates correct classification whereas

negative margin indicates misclassification. In Section 4.2.2, the margin

of classification is used to identify the relevant features of the image.

4.2.2 Genetic Algorithm Based Feature Selection

The number of features used to describe a pattern determines the size of

the search space to be explored [114]. An abundance of features increases

the size of the search space, thereby increasing the time needed for classi-

fication. The cost of classification in any classification process is sensitive

to the number of features used to construct the classifier.

The available features in a dataset can be categorized into four, rel-

evant features, misleading features, irrelevant features, and redundant

features (Section 3.1). The removal of misleading, irrelevant and redun-

dant features reduces the computational expenses and increases the clas-

sification accuracy. This process is known as attribute reduction or, in the

context of machine learning, feature selection.
1Voting is positive if the voted class and the actual class are the same. Otherwise it

is negative.
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In the present work the feature selection is done in two stages. The

first stage is a pre-filter which filters out the misleading features. The

second stage is a GA based feature selection algorithm which removes

the irrelevant and redundant features. The feature reduction process is

depicted in Fig. 4.5.
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Figure 4.5: Feature selection and testing phase.

Each classification rule in the proposed classifier corresponds to a par-

ticular feature of the image. The classification rules provide positive or

negative votes to the samples. This helps to identify the relevant fea-

tures (the features that provide more positive votes) of the image. The

proposed margin of classification (4.6) is utilized for the feature selection

process. Selection of the relevant features improves the performance of

the recognition system and reduces the computational burden of the over-

all algorithm.
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Pre-filter: Weeding-out the Misleading Features

Pre-filter (Fig. 4.6) identifies and removes the features that give negative

votes in the classification process. The features, which negatively vote for

two or more samples as per (4.4), are weeded out. The validation data

is sorted in the ascending order of the margin of classification and those

samples which have less MC are considered (the samples which have less

MC have more negative votes and are nearer to the classification bound-

ary). The features which vote these samples negatively are then identified

and removed from the dataset. For example if x(1), x(2), x(3) and x(4) are

the first four samples in the sorted list, and, A1, A2, A3 and A4 are the

subsets of features (the misleading feature subsets) which give negative

votes to these samples respectively, then the set of features eliminated is

A′, where A′ consists all the features which are members in at least any

two of the subsets A1, A2, A3 and A4. The process is iterated a few times

by repeating the validation procedure. The number of iterations needed

depends on the nature of the dataset. More number of iterations are un-

dergone for a dataset with large number of misleading features. In the

present work the number of iterations used is three. The elimination pro-

cess is a simple operation but it has significant effect in increasing the

margin of classification, and in reducing the computational load at the

second stage (as the number of classification rules is reduced).

Feature Selection using Genetic Algorithm

Genetic Algorithms (GAs) are widely used for feature selection and ex-

traction in machine learning [6, 44, 55, 82, 89]. In the present work GA is
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Figure 4.6: Flowchart of the pre-filter.
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utilized to remove the irrelevant and redundant features. A fitness func-

tion is defined which considers the accuracy, cost, and margin of classifi-

cation in accordance with the classification algorithm proposed in Section

4.2.1.

Each chromosome in the population represents the set of features used

for classification. A chromosome consists of Np bits and each bit repre-

sents a specific feature. When a particular bit is unity, it indicates the

presence of the feature and its absence is indicated by a zero. In the

present work the value of Np is 200. Elitism technique is utilized to cre-

ate a new population and the fitness function Eq. (4.7) is minimized.

F = w1 ∗ N1 + w2 ∗ N2 − w3 ∗ N3, (4.7)

where,
N1 number of misclassifications,

N2 number of features used for classification,

N3 minimum MC (minimum of MCs of different samples),

w1, w2, w3 weighing factors.

N1 represents the accuracy of classification and N2 represents the com-

putational expense (presence of more features leads to more classifica-

tion rules and so is the computational cost). N3 provides preference to

chromosomes with better margin of classification. The minimum mar-

gin of classification is the margin of the sample which is nearest to the

classification boundary. w1, w2, and w3 are to be tuned depending on the

dataset. An empirical guideline is to select the weights (w1, w2, w3) such

that w1 > w2 > w3, which provides the first preference to the accuracy

of classification, second preference to the number of features and third
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preference to the margin of classification. In the present work the values

of w1, w2, and w3 are 1.0, 0.6, and 0.4 respectively.

The crossover and mutation rate used are 0.9 and 0.01 respectively. The

population size of the GA is kept at 100. Iterations are done until the

pre-decided maximum number of iterations (50 in the present work) is

reached or till a non-zero classification error is originated. If iteration

is stopped after the origination of a non-zero classification error, then the

features used in the previous iteration is selected. The number of features

needed for classification is decided by taking the average over ten runs of

GA.

A detailed flowchart of the classifier development algorithm is provided

in Fig. 4.7.

4.2.3 Testing Phase: The Classifier

Fig. 4.8 shows the flowchart of the testing phase of the recognition system.

The selected features of the unlabeled test images are extracted using the

C2 feature extraction system. Then the memberships of these features in

different classes are calculated using the membership functions formed

in the training phase. This membership values are compared with the

limiting value of the membership function (4.3) and the classification is

done using Rules 1 and 2. Each of the execution steps of the classifier

consists of a few number (which is equal to the number of cluster cen-

ters of the feature) of comparisons, using the classification rules, which

makes the algorithm computationally simple. The classification results

are discussed in Section 4.3.
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4.2.4 Computational Complexity Analysis

The different parameters at the input of the recognition system are the

number of classes and the size of the input image. The complexity of the

recognition algorithm has two components, complexity due to the feature

extraction system and that due to the proposed classifier. This section

discusses the computational complexity of the classifier algorithm.

The fuzzy-rough pattern classifier is formed using the classification

rules generated in the training phase. The pseudo code of the classifier

is shown in Fig. 4.9. Let p be the number of classes and q be the num-

ber of selected features at the input of the classifier. The complexity of

the algorithm is as follows : O(q) for reading the image features, O(pq)
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for reading the trained parameters of the classification rules, O(pq) for

the fuzzy membership calculation and voting process, and, O(p) for find-

ing the class index which received the maximum number of votes. So the

overall complexity of the algorithm is polynomial time, O(pq). As the fea-

ture extraction algorithm provides a fixed number of features, indepen-

dent of the input image size, the effective complexity of the classification

algorithm reduces to O(p).

read {test_image_features} ;  % read the selected C2 features. 

read { * }, {Amin}, {Amax}, {Acenter} ; % read the membership limits, min. & max.   

    % values of features, and feature cluster centers.

for i =  number_of_classes 

for j = number_of_features;  % number of selected features. 

        calculate {fuzzy_memberships} ; % calculation of  . 

  IF  > *  

       vote(i) = vote(i) +1; 

  end 

        end 

end 

class =  index {max (vote)} ; % find the class index which received maximum votes. 

print {class} ; 

Figure 4.9: Pseudo code of the classifier.

4.3 Experimental Evaluation

The proposed algorithm is tested using three face datasets and two hand

posture datasets (Table 4.1). The datasets contain ten classes with equal

number of samples. The dataset is divided into N subsets, with equal
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number of images. The images in the first subset are used for the devel-

opment of the classifier while those in the remaining N − 1 subsets are

used for testing. The classifier development is then done using the second

subset and the algorithm is tested using the remaining N−1 subsets. The

experiments are repeated in a similar fashion, N times, until each of the

subset is used for the development, and, the average accuracy achieved

over the N runs is reported. The values of N are two and four (N = 2, 4

corresponds to 50%, 25% images in one subset respectively). The data sub-

set used for the classifier development is equally divided into training and

validation sets. The classification results are compared with that of Sup-

port Vector Machines (SVM) with polynomial kernel, implemented using

LIBSVM [7].

Table 4.1: Details of face and hand posture datasets

Dataset Source # images
Face dataset-1 Subset of Yale face database B [23] 640
Face dataset-2 Subset of color FERET database [69] 240
Face dataset-3 Subset of CMU face dataset [90] 240

Hand posture dataset-1 NUS hand posture dataset 240
Hand posture dataset-2 Jochen Triesch hand posture dataset [95] 480

4.3.1 Face Recognition

The proposed recognition algorithm is tested using three different face

datasets which have variation in lighting direction (Yale face database

B [23]), variation in pose (color FERET database [69]), and illumination

variation (CMU face dataset [90]).

The first face dataset considered is a subset of the Yale face database

B [23], which contains ten classes of face images, taken from different
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Figure 4.10: Sample images from (a) Yale face dataset, (b) FERET face
dataset, and (c) CMU face dataset.
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lighting directions (Fig. 4.10(a)). It consists of 640 frontal face images. A

comparison of the achieved results with that of SVM using C2 features is

provided in Table 4.2. The fuzzy-rough classifier provided full classifica-

tion of the dataset whereas SVM provided 99.38% accuracy, when N = 2.

The proposed algorithm classified the dataset utilizing only 86 number of

features, whereas SVM utilized all the 1000 features.

The second face dataset used is a subset of the color FERET database

[69]. The subset contains ten classes of face images, with variations in

pose (Fig. 4.10(b)). It consists of 240 images. A comparison of the results

with that of SVM is provided in Table 4.2. The proposed algorithm needed

only 102 features (when N=2) for the classification and it provided better

accuracy compared to SVM classifier.

Table 4.2: Recognition results - face datasets

No. of FRC* SVM
Dataset training Accuracy No. of Accuracy No. of

samples (%) features (%) features
A subset of Yale 160 (N=4) 99.16 95 98.33
face dataset [23] 320 (N=2) 100 86 99.38
A subset of color 60 (N=4) 88.89 111 88.33

FERET database [69] 120 (N=2) 91.66 102 90.83 1000
A subset of CMU 60 (N=4) 99.44 62 98.88
face dataset [90] 120 (N=2) 100 55 100

*Fuzzy-Rough Classifier

The third face dataset considered is a subset of the CMU face dataset

[90]. It has good amount of illumination variation as shown in Fig. 4.10(c).

The dataset consists of 240 frontal face images (24 from each class). The

recognition results are provided in Table 4.2. Both the proposed algorithm

and the SVM classifier classified the dataset fully. However the proposed
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algorithm did the classification with lesser number of features.

4.3.2 Hand Posture Recognition

As the number of available hand posture datasets is limited, a new dataset

namely the NUS hand posture dataset,2 with ten classes of hand pos-

tures, is created. It consists of 24 sample images per posture, which are

captured by varying the position and size of the hand within the image

frame. These are gray-scale images (160 x 120 pixels). The hand postures

are selected in such a way that the inter class variation in the appearance

of the postures is less, which makes the recognition task more challeng-

ing. Sample images are shown in Fig. 4.11(a). The better performance of

the proposed algorithm is evident from the recognition results (Table 4.3).

The proposed algorithm utilized only 92 number of features (when N=2)

for the classification. The misclassifications occurred are mostly between

the classes which are similar.

The second hand posture dataset considered is Jochen Triesch hand

posture dataset [95]. The ten classes of hand postures (Fig. 4.11(b)), per-

formed with 24 different persons, against light and dark backgrounds,

were considered for the classification (total of 480 images). The images

vary in size of the hand and shape of the postures. The proposed algo-

rithm achieved better classification accuracy on comparison with SVM

(Table 4.3). The classification is done utilizing 63 selected features (when

N=2), whereas the SVM classifier utilized all 1000 features.
2This dataset is available on an e-mail request to prahlad@nus.edu.sg
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Figure 4.11: Sample hand posture images from (a) NUS dataset, and (b)
Jochen Triesch dataset.

Table 4.3: Recognition results - hand posture datasets

No. of FRC* SVM
Dataset training Accuracy No. of Accuracy No. of

samples (%) features (%) features
NUS hand 60 (N=4) 91.66 98 91.80

posture dataset 120 (N=2) 93.33 92 92.50
Jochen Triesch hand 120 (N=4) 95.83 72 94.44 1000
posture dataset [98] 240 (N=2) 98.75 63 97.91

*Fuzzy-Rough Classifier
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4.3.3 Online Implementation and Discussion

The proposed recognition system is implemented online in windows plat-

form to test the computational performance. The algorithm is developed

using the NUS hand posture dataset for the recognition of hand postures.

The image to be recognized is accessed using a web-camera, resized and

converted to gray scale, similar to the training images.

The algorithm is tested by showing each hand posture 20 times. The

hand postures are performed by different persons, with variation in size

and shape of the hand posture, and with different lighting conditions. The

algorithm recognized the postures with an accuracy of 94.5%.

Table 4.4: Comparison of computational time

Proposed algorithm SVM
Feature extraction 1.92 s 7.43 s

Classification 0.96 ms 3.24 ms

Table 4.4 provides a comparison of the average computational time of

the proposed algorithm with that of SVM. The total time for recognition is

divided into two, the time for the feature extraction, and the time for the

classification. In the SVM classifier all the 1000 features are utilized for

the classification, and so 1000 features are extracted. The proposed algo-

rithm needs only a subset of the 1000 features. This reduced both feature

extraction and classification time (The proposed classifier took lesser time

for classification even when 1000 features are utilized).

Each of the extracted C2 SMF corresponds to a particular prototype
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patch with a specific patch size, as explained in Section 2.3.1. The selec-

tion of relevant features identified the prototype patches those are good in

the inter class discrimination. This enhanced the shape selectivity. Also it

decreased the processing time for the feature extraction, which is a major

limitation of the feature extraction algorithm proposed by Serre et al. [85].

The significant reduction in the feature extraction and classification time

makes the algorithm suitable for real-time applications.

4.4 Summary

A hand posture and face recognition algorithm using C2 standard model

features (SMFs), and based on the concepts of lower and upper approx-

imations of fuzzy equivalence classes, is proposed in this chapter. The

fuzzy membership functions and the corresponding classification rules

are generated from the training images and the classification is done by

a simple voting process. The predictive features in the dataset are se-

lected using a GA based feature selection algorithm. The proposed fitness

function reduces the number of features required for the classification,

without compromising on the classification accuracy. The performance of

the algorithm is evaluated with some well-known datasets. The recogni-

tion results are compared with that of an SVM classifier. The proposed

algorithm provided good recognition accuracy for all the datasets consid-

ered, at a less computational cost, which makes it suitable for real-time

applications.



Chapter 5

Hand Posture Recognition
using Neuro-biologically
Inspired Features

5.1 Introduction

Chapters 3 and 4 presented two feature selection and classification algo-

rithms for pattern classification. In these algorithms the image features

are extracted using a standard model of the visual cortex proposed by

Serre et al. [85]. The visual object recognition is mediated by the ven-

tral visual object processing stream in the visual cortex [26, 81]. Serre et

al. [85, 86] proposed a computational model of the ventral stream, based

on the standard model of visual object recognition [81]. The model pro-

vided a hierarchical system which comprises four layers that imitates the

feed-forward path of object recognition in the ventral stream of primate

visual cortex (Section 2.3.1). This chapter suggests modifications and im-

provements in the system, for the extraction of hand posture features.

95
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Two different algorithms, based on the computational model of the ven-

tral visual object processing stream, are proposed for hand posture recog-

nition.

5.2 Graph Matching based Hand Posture
Recognition using C1 Features

Graph matching plays a key role in many areas of computing from com-

puter vision to networking, where there is a need to determine corre-

spondences between the components of two attributed structures. Graph

matching is a graph representation and matching technique and is a pow-

erful tool in computer vision due to its high representational nature and

the ability to handle complex images.

In a typical graph representation, regions of the image are represented

by nodes in a graph. These nodes are related to each other by edges,

which express the structural relationships between regions. The nodes

of a graph are labeled with a local image description, and the edges are

labeled with a distance vector.

Triesch et al. employed elastic graph matching (EGM) technique to

develop a person independent hand posture recognition system [97, 98].

EGM is a neurally inspired object recognition technique [47], which has

wide applications in general object recognition, face finding and recogni-

tion, gesture recognition, and the analysis of cluttered scenes. In EGM

the model graphs (the graphs generated from the training images) are
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matched with the input image which contains the pattern to be recog-

nized. Elastic matching of a model graph to an image means to search for

a set of node positions such that 1) the local image description attached to

each node matches the image region around the position where the node

is assigned and 2) the graph is not distorted too much [97].

The present work utilizes a new set of image features, extracted using

the computational model of the ventral stream of visual cortex [85, 86],

to label the various nodes in the graph. The model graph is created by

assigning the nodes to geometrically significant positions in the hand im-

age. The classification of the hand posture is done by identifying the best

match between the input image and the model graphs. A radial basis

function (RBF) is used as the similarity function for the comparison of

node features. The proposed algorithm is tested on a 10 class hand pos-

ture database. It provided better recognition accuracy compared to the

reported results in the literature.

5.2.1 The Graph Matching Based Algorithm

The proposed algorithm utilizes the structure of distribution of the graph

nodes to understand and recognize the shape of the hand posture. Each

node is labeled using Gabor filter based features (the C1 features). Gabor

filters are edge detecting filters. The responses of the image to Gabor

filters with various orientations store the shape information of the hand.

In the presented algorithm, the node features are expressed using a C1

image patch, which contains the local shape information around the node.

A group of such nodes stores the complex shape of the hand posture.
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Figure 5.1: The graph matching based hand posture recognition algo-
rithm.

Fig. 5.1 shows a simplified block diagram of the overall algorithm.

The model graphs are created from the C1 response of the training im-

ages. The nodes of the model graphs are assigned to the geometrically

significant positions in the hand image (Fig. 5.2(a)). The C1 images (Fig.

5.2(b)) of the training images are extracted and these are sub-sampled

(1 pixel per 5 pixels - to reduce the computational burden). The sub-

sampled C1 image patches centered at the graph nodes are extracted. The

patch size used is 15 x 15 pixels. Each patch contains four orientations

(0◦, 45◦, 90◦,−45◦). These image patches are used as the model graph node

features.

In [85] RBFs are used in the S2 stage which compares the complex fea-

tures at the output of C1 stage (which corresponds to the retinal image)

with patches of previously seen visual image and shape features. RBFs

are a major class of neural network model, which compare the distance

between input and a prototype [5]. The proposed algorithm utilizes RBF



99

Figure 5.2: (a) Positions of graph nodes in a sample hand image, (b) S1

and C1 responses of the sample image (orientation 90◦).

as the similarity function for matching the graphs. The similarity of each

node depends in a Gaussian-like way on the Euclidean distance between

the node feature of the input image and that of the model graph. The

smaller the Euclidean distance, the bigger will be the similarity.

The algorithm utilizes several images of the same class (four images per

class) to create the model graph, as that done in bunch graph approach

[107]. Bunch graphs model the variability in object appearance. In a

bunch graph, each model graph node is represented using a bunch of node

features. The bunch of features is extracted from identical nodes (the

nodes assigned to identical positions) of several images, which vary in

size and shape of the posture. During the recognition process, all the

features from the bunch is matched, and the maximum of the similarities
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is considered for the decision making.

For the recognition of a hand posture, the model graphs are sequen-

tially matched to the input image as described below.

1. The C1 image of the input image is extracted.

2. The C1 image is sub-sampled (1 pixel per 5 pixels).

3. The sub-sampled image is scanned in x and y direction using the

model graphs.

4. The similarity between each graph node i is calculated using the

equation

sij = exp(−||Xi − Pij||2), (5.1)

where Xi is the feature (C1 image patch) of the ith input image node

and Pij is the feature2 of the ith node of jth class (model graph).

Each node is allowed to shift its position by two pixels in the x and

y direction (two pixels left, right, above and below). This is to take

care small distortions in the graph.

5. The similarity Sj between the two graphs is calculated by summing

up the node similarities (5.2).

Sj =
n∑

i=1

sij, (5.2)

where n is the number of nodes in the model graph.

6. The class corresponding to the model graph which provides the best

match is declared as the output class C, the class to which the pos-

ture belongs to (5.5).

C = argmaxj{Sj} (5.3)

Fig. 5.3 shows a detailed flowchart of the model graph generation and

the hand posture recognition algorithm.
2The feature from the bunch of node features, which provides the maximum

similarity.
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Figure 5.3: Flowchart of (a) the model graph generation and (b) the hand
posture recognition algorithm.

5.2.2 Experimental Results

The proposed algorithm is tested on Jochen Triesch hand posture dataset

[95]. The dataset consists of 10 classes of hand postures, performed by 24

persons, against light and dark backgrounds (Fig. 6.9). The images are 8-

bit grey-scale images of 128 x 128 pixels. A total of 240 light background

images and 238 (2 images missed) dark background images are provided.

The images vary in size and shape of the hand posture.

The hand postures of two persons against light and dark backgrounds

(40 images) are used for the generation of model graphs. The algorithm is

tested using the remaining images (438 images). Out of 220 test images

with light background (which are not used for model graph generation)



102

213 were recognized correctly, which corresponds to a recognition accu-

racy of 96.82%. Recognition accuracy for dark background images is 209

out of 218, which is 95.87%. Most of the errors occurred when the algo-

rithm failed to discriminate between postures 5 and 9 (Fig. 6.9) which look

similar. The average accuracy provided by the algorithm is 96.35% (Table

6.6), whereas the earlier reported accuracy [98] for the same dataset is

93.77%. In [98], 60 images (6 images per class), each with 35 nodes, are

used for the model graph generation, whereas in the proposed algorithm

the model graphs are generated using 40 images (4 images per class), each

with 10 nodes. The reduction in number of nodes reduces the computa-

tional burden of the recognition algorithm.

(a)

(b)

Figure 5.4: Sample hand posture images (a) with light background and (b)
with dark background, from Jochen Triesch hand posture dataset [95].
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Table 5.1: Comparison of recognition accuracy

# test # correct Proposed Reported
Background images classifications method in [98]

Light 220 213 96.82 94.3
Dark 218 209 95.87 93.3
Net 438 422 96.35 93.77

The total computational time needed for the recognition process is di-

vided into two, the time for the feature extraction, and the time for the

classification. The feature extraction takes 1.9 seconds (on an average) to

complete, which needs to be improved for real-time applications. The clas-

sifier, which is based on elastic graph matching, has a high computational

complexity. However the present work utilized only 10 number of nodes

per model graph, which limited the classification time to few milliseconds

(12 ms on an average, on a computer with 3 GHz Intel Pentium 4 CPU).

5.2.3 Summary

An EGM algorithm using a new set of biologically inspired features is

proposed for hand posture recognition. The nodes of the graph are labeled

using the C1 SMFs, which are extracted using the computational model

of the ventral stream of visual cortex. The shape of the hand posture

is recognized by identifying the structure of distribution of nodes in the

input image. The graphs are matched using a radial basis function as

the similarity function. The variations in the size and shape of the hand

posture is taken care by the local maximization in the C1 stage, and by

using the bunch graph approach. The algorithm is tested on a 10 class

hand posture dataset. It provided better recognition accuracy compared
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to the earlier reported results. The algorithm is scale tolerant and person

independent.

5.3 C2 Feature Extraction and Selection for
Hand Posture Recognition

The computational model proposed by Serre et al. extracts the scale and

position tolerant C2 Standard Model Features (SMFs). A major limita-

tion of this model in real-world applications is its processing speed. Also

the algorithm needs a separate classifier for the classification of the pat-

tern. This section proposes a modification of the above algorithm which

does not need a separate classifier stage, and which is computationally

efficient. The prototype C1 patches used for learning are selected from

specific classes. The patches which have good interclass differences are

identified and the discriminative C2 features are extracted. The classifi-

cation is done by a comparison of the extracted C2 features.

5.3.1 Feature Extraction and Selection

Serre et al. suggested that it is possible to perform robust object recog-

nition with C2 SMFs learned from a separate set of randomly selected

natural images. However it was agreed that object specific features (the

features learned from images which contain the target object) perform

better compared to the features learned from random images. The pro-

posed algorithm extracts features by considering the class division. The

modification is done at the third layer of the C2 feature extraction system.
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Figure 5.5: The C2 features based hand posture recognition algorithm.

Instead of selecting the patches from random positions and random im-

ages, they are selected from geometrically significant positions of specific

hand posture classes. In [85] support vector machines (SVM) and boost-

ing based classifiers are used for the classification, whereas the proposed

algorithm does the classification by a simple comparison of the extracted

features. Also the patches which have more inter-class differences are

identified and selected which increased the classification accuracy and re-

duced the computational cost (by reducing the number of features). Fig.

5.5 shows a block diagram of the proposed algorithm. The different blocks

of the diagram are explained in the following subsections.

Assigning Prototype Patches Specific to Posture Classes

The C1 features of the training images (one image/class) are extracted.

The prototype patches (center of the RBF units) of different sizes are as-

signed to the C1 images of specific classes. N(= 10) patches, each with

Q(=4) different patch sizes are extracted from M(= 10) classes. The patches

are located at geometrically significant positions in the hand image (Fig.
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Figure 5.6: Positions of prototype patches in a sample hand image.

5.6). Each patch contains C1 responses with O(= 4) different orientations.

The C2 features are extracted from the C1 images using the prototype

patches. Each of the extracted C2 feature corresponds to a particular

patch with a specific size and totally there are QxMxN C2 features.

Classification

Once the C2 features are extracted the classification is done as follows.

Let

Pij =

Q∑
k=1

C2(ijk), (5.4)

where C2(ijk) is the C2 feature corresponding to the jth patch from the ith

class with kth patch size, then,

C = argmaxCi
{QCi

}, (5.5)
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where,

QCi
=

N∑
j=1

Pij, (5.6)

and C is the class to which the hand posture belongs to.

Selection of the Discriminative C2 Features

The C2 features are selected based on the interclass differences in the C2

features of the training images. Each C2 feature corresponds to a partic-

ular prototype patch. The prototype patches which helps to distinguish

different classes are identified and selected to make the extracted C2 fea-

tures discriminative. Let

P ′
ij = max

Cl ̸=C
{Pij(Cl)}, (5.7)

where Pij(Cl) is the response Pij (5.4) of an image from class Cl, then

Pij −P ′
ij represents a margin of classification(MC). The prototype patches

from each class are sorted according to the descending order of the corre-

sponding MCs and the first N’(= 5 in this paper) patches are selected.

The features of the test image are extracted using these selected dis-

criminative patches to get the discriminative C2 features. The hand pos-

ture classification is done using (5.5) and (5.6) (N=N’ in 5.6).

5.3.2 Real-time Implementation and Experimental Re-
sults

The proposed algorithm is implemented in real-time in windows XP plat-

form, for the interaction between human and a virtual character Handy.

The programming is done using C# language. The virtual character is
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Figure 5.7: The user interface.

created using Adobe flash. Twelve different animations (10 to represent

different predefined classes, 1 to represent non-class, and 1 to represent

idle mode) are developed. A text to speech converter is used to gener-

ate voice response. Handy welcomes the user and gives the command to

connect the camera, if it is not connected already. Once the camera is

connected and the posture is shown, Handy identifies it and responds to

the human by symbolically showing the posture. Also it pronounces the

class number. If the posture does not belong to any of the trained classes

Handy shows exclamation and asks what is that?.

The RGB image is captured using a webcam. The image is converted
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to YCbCr color space and the hand is detected using skin color segmenta-

tion.1 The segmented image is converted to gray scale and used for fur-

ther processing. The hand image is captured only if the movement of the

hand is less than a threshold value, which is adjustable. Low threshold

value provides high motion sensitivity (more motion sensitivity means the

hand posture will be detected only if the hand motion is lesser). The hand

motion is detected by subtracting the subsequent frames in the video. A

graphical user interface (Fig. 5.7) is developed which has provisions for

displaying the skin colored area, left / right hand selection, varying the

motion sensitivity of the hand, and, the training and testing of the recog-

nition algorithm. The user interface displays the input video (on left). The

posture class number, the corresponding hand posture image from the li-

brary, and the response of Handy are also displayed (on right) in the user

interface.

The algorithm is trained for 10 classes of hand postures (Fig. 5.8). Only

one image per class is used for the training and the testing is done by

showing each posture 20 times. The hand postures are performed by dif-

ferent persons, with large variation in size and shape of the hand posture,

and with different lighting conditions. The algorithm recognized the pos-

tures with an accuracy of 97.5%. The average recognition time taken is

few milliseconds.
1The segmentation is also done in HSV color space. On comparison, segmentation in

YCbCr color space provided better results.
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Figure 5.8: Hand posture classes used in the experiments.

5.3.3 Summary

A computationally efficient and reliable hand posture recognition algo-

rithm is proposed for the interaction between human and computers. The

proposed algorithm is motivated by the computational model of the ven-

tral stream of visual cortex. The C2 SMFs of the hand images are ex-

tracted in such a way that it provide good discrimination between differ-

ent classes, and the classification is done by a comparison. The algorithm

is implemented in real-time for the interaction between human and a vir-

tual character Handy. The algorithm recognized the hand postures at a

faster speed, with reliable accuracy. The recognition accuracy of the pro-

posed classifier shows its good discriminative power. Also the proposed

system has person independent performance.

The proposed algorithm easily recognizes hand postures with light and

dark backgrounds. However the performance of the algorithm in com-

plex backgrounds is to be improved. A person independent hand posture

recognition system against complex natural backgrounds is presented in

Chapter 6.



Chapter 6

Attention Based Detection and
Recognition of Hand Postures
Against Complex Natural
Backgrounds

The mainstream computer vision research has always been challenged

by human vision, and the mechanism of human visual system is yet to

be understood well, which is a challenge for both neuroscience and com-

puter vision. Intermediate and higher visual processes in primates se-

lect a subset of the available sensory information before further process-

ing [101], in order to reduce the complexity of scene analysis. This selec-

tion is implemented in the form of a focus of attention [60]. Recent devel-

opments in the use of neurobiological models in computer vision tries to

bridge the gap between neuroscience, computer vision and pattern recog-

nition [11,32,33,72,80,81,85,88].

Eng-Jon et al. proposed an efficient algorithm for hand detection and

111
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static hand shape recognition [19]. The algorithm provided good detec-

tion and recognition accuracy. A robust hand posture detection algo-

rithm based on the object recognition method proposed by Viola and Jones

is presented in [45]. The algorithm is applied for the detection of six

hand postures. View independent recognition of hand postures is con-

sidered in [109]. The suitability of a number of classification methods is

investigated for the purpose of view independent recognition. The image

datasets utilized to test the above algorithms have simple and relatively

similar backgrounds, and these works didn’t address the issues with com-

plex backgrounds.

An algorithm for the recognition of hand postures in complex natural

environments is useful for the real-world applications of interactive sys-

tems. The earlier works on hand posture recognition against complex

backgrounds are [4, 97, 98]. Triesch et al. [97, 98] addressed the com-

plex background problem using elastic graph matching. Bunch graph

method [98] is utilized to improve the performance in complex environ-

ments. In graph algorithms, the entire image is scanned to detect the

object, which increases the computational burden. In addition, in a bunch

graph each node is represented using a bunch of identical node features

which further decreases the processing speed. The algorithm presented

in [4] does the segmentation based on skin color, and it needs fairly ac-

curate estimates of the center and the size of the hand. The above algo-

rithms cannot deal with complex backgrounds which contain skin colored

regions, and large variations in the hand size.

This chapter focuses on the recognition of static hand gestures with
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variations in hand size and with complex backgrounds. The proposed al-

gorithm utilizes a biologically inspired approach, which is based on the

computational model of visual cortex [85] and the Bayesian model of vi-

sual attention [11]. It utilizes an appearance based approach and recog-

nizes hand postures through learning. The Bayesian theory of attention is

utilized to detect and identify the hand region in the complex background

hand posture images. The where information is extracted using feature

based visual attention. Shape, texture and color features are utilized for

this. The shape and texture based features are extracted from a map

which represents the similarity of pixels to human skin color, using the

computational model of the ventral stream of visual cortex [85]. The color

features are extracted by the discretization of chrominance color compo-

nents in HSI and YCbCr color spaces, and the similarity to skin color

map. A saliency map is created by calculating the posterior probabilities

of pixel locations to be part of a hand region, using the Bayesian model of

attention. The presence of hand is detected by thresholding the saliency

map, and the hand region is extracted by the segmentation of input image

using the thresholded saliency map. The hand postures are recognized us-

ing shape and texture based features (of the hand region), with a Support

Vector Machines (SVM) classifier.

The proposed algorithm is reliable against skin colored regions in the

background as the segmentation of hand region is done using the atten-

tion mechanism, which utilizes a combination of color, shape, and texture

features. The experimental results show that the proposed algorithm has

a person independent performance. The proposed algorithm has robust-

ness against variations in hand size and its position in the image.
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The number of hand posture databases available to the research com-

munity is limited [95]. This thesis contributes a new 10 class complex

background hand posture dataset, namely NUS hand posture dataset-II

(available online [1]). The postures are obtained from 40 subjects, with

various hand sizes, and with different ethnicities. The images have a

variety of indoor as well as outdoor complex backgrounds. The hand pos-

tures have wide intra class variations in hand sizes and appearances. The

database also contains a set of background images which is used to test

the hand detection capability of the proposed algorithm. The recognition

algorithm is tested with the new dataset using a 10 fold cross validation

strategy. It provided an accuracy of 94.36%.

6.1 The Feature Extraction System and the
Model of Attention

The biologically inspired, shape and texture based feature extraction sys-

tem, and the Bayesian model of visual attention [11] are briefed in this

section. The shape and texture based features are extracted using a cor-

tex like mechanism [85], and the visual attention is implemented using

these features and a set of color features.

6.1.1 Extraction of Shape and Texture based Features

The feature extraction system consists of four layers (Table 6.1). Layer

1 (S1) consists of a battery of Gabor filters with 4 orientations (0◦, 45◦,

90◦, 135◦) and 16 sizes (divided into 8 bands). The S1 layer imitates the
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Table 6.1: Different layers in the shape and texture feature extraction
system

Layer Process Represents
S1 Gabor filtering simple cells in the primary visual cortex

(V1)
C1 Local pooling complex cells in the primary visual cortex

(V1)
S2 Radial basis

functions
visual area V4 & posterior inferotempo-
ral cortex

C2 Global pooling inferotemporal cortex

Note: S stands for simple cells and C stands for complex cells. The simple
and complex cells are the two types of cells in the visual cortex. The
simple cells primarily respond to oriented edges and bars. The complex
cells provide spatial invariance.

simple cells in the primary visual cortex (V11), detecting edges and bars.

Layer 2 (C1) models the complex cells in V1, by applying a MAX operator

locally (over different scales and positions) to the first layer’s outputs.2

This operation provides tolerance to different object projection sizes, po-

sitions, and rotations in the 2-D plane of the visual field. In layer 3 (S2),

radial basis functions (RBFs) are utilized to imitate the visual area V4

and posterior inferotemporal (PIT) cortex. Layer 3 aids shape and tex-

ture recognition by comparing the C1 images with prototypical C1 image

patches. The prototypical C1 image patches (the prototype patches) are

learned and stored during the training (in humans, these patches corre-

spond to learned patterns of previously seen visual images and are stored

in the synaptic weights of the neural cells). Finally, the fourth layer (C2)

applies a MAX operator (over all scales, but not over positions) to the
1V1, V2, V3, V4, and V5 are the visual areas in the visual cortex. V1 is the primary

visual cortex. V2 to V5 are the secondary visual areas, and are collectively termed as
the extrastriate visual cortex.

2Refer [85] for further explanation of S1 and C1 stages (layer 1 and 2).



116

outputs of layer S2, resulting in a representation that expresses the simi-

larities with the prototype patches. The outputs of layer 4 are C2 response

matrices, which are the shape and texture based features utilized in the

attention model.

Fig. 6.1 shows an overview of the shape and texture based feature ex-

traction system. Simple cells in the RBF stage (third layer, S2) combines

bars and edges in the image to more complex shapes. RBFs are a major

class of neural network model, comparing the distance between an input

signal and a prototype signal [5]. Each S2 unit response depends in a

Gaussian-like manner on the Euclidean distance between crops of the C1

image (Xi) and the stored prototype patch (Pj). The prototype patches

(centers of the RBF units) of different sizes are extracted from the C1 re-

sponses of the training images. The centers of the patches are positioned

at the geometrically significant and textured positions of the hand pos-

tures (Fig. 6.1). Each patch contains the four orientations. The third

layer compares these patches by calculating the summed Euclidean dis-

tance between the patch (Pj) and every possible crop (Xi) of the C1 image

(combining all orientations). This comparison is done with all the C1 re-

sponses in the second layer (the C1 responses at different scales).

The scale invariant C2 responses are computed by taking a global max-

imum over all the scales (but not over positions) for each S2 type. Each

C2 response matrix corresponds to a particular prototype patch with a

specific patch size. The more the number of extracted features the bet-

ter is the classification accuracy. However, the computational burden (for

feature extraction as well as classification) increases with the number of

features. In the present work 15 prototype patches with 4 patch sizes are
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Figure 6.1: Extraction of the shape and texture based features (C2 re-
sponse matrices). The S1 and C1 responses are generated from a skin
color map (Section 6.2.1) of the input image. The prototype patches of dif-
ferent sizes are extracted from the C1 responses of the training images.
15 patches, each with four patch sizes, are extracted from each of the 10
classes leading to a total of 600 prototype patches. The centers of the
patches are positioned at the geometrically significant and textured posi-
tions of the hand postures (as shown in the sample hand posture). There
are 600 C2 response matrices, one corresponding to each prototype patch.
Each C2 response depends in a Gaussian-like manner on the Euclidean
distance between crops of the C1 response of the input image and the cor-
responding prototype patch.
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extracted from each of the 10 classes. The total number of patches is 600,

leading to 600 shape and texture based features.

Modifications in the Shape and Texture Feature Extraction Sys-
tem

The major differences between the proposed shape and texture features

(utilized in the attention system) and that presented in [85] are summa-

rized as follows.

1. The shape and texture features are extracted from a similarity to skin

color map (Section 6.2.1) (not from the grey scale image).

2. The prototype patches are extracted from different class images. The

centers of the patches are placed at geometrically significant and

textured positions of the hand postures.

3. The output feature component is a C2 response matrix (instead of a

real number) which retains the hand location information.

6.1.2 The Bayesian Model of Visual Attention

Visual attention is the part of the inference process that addresses the

visual recognition problem of what is where [11]. Visual attention helps

to infer the identity and position of objects in a visual scene. Attention

reduces the size of the search space and the computational complexity of

recognition.

The visual attention is directed selectively to objects in a scene using

both bottom-up, image-based saliency cues and top-down, task-dependent
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cues. The top-down task based attention is more deliberate and powerful

[32], and is depended on the features of the object. The proposed pattern

recognition system is task based and it utilizes a top-down approach. The

attention is focussed on the region of interest using the object features.

Visual perception is interpreted as a Bayesian inference process whereby

priors (top-down) help to disambiguate noisy sensory input signals (bottom-

up) [16]. Visual recognition corresponds to estimating posterior probabil-

ities of visual features for specific object categories, and their locations

in an image. The posterior probabilities of location variables serve as a

saliency map.

There are two types of visual attention, spatial attention and feature

attention (Fig. 6.2). Spatial and feature based attention are utilized to

reduce the uncertainty in shape and spatial information respectively. In

spatial attention, different spatial priors are assigned by learning the con-

text from the training images (the information about the position of object

in the image). In feature attention, different feature priors are assigned

by counting the frequency of occurrence of each feature among the train-

ing images.

A Bayesian model of spatial attention is proposed in [80]. Chikkerur et

al. [11] modified the model to include feature based attention, in addition

to the spatial attention. The model imitates the interactions between the

parietal and ventral streams of visual cortex, using a Bayesian network

(Bayes net). A Bayes net represents joint probability distributions in a

compact manner, via conditional independence. It helps in calculating

the posterior probability of an event, the probability of the event given
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Figure 6.2: Two types of visual attention as per the Bayesian model
[11, 80]. Spatial attention utilizes different priors for locations and helps
to focus attention on the location of interest. Spatial attention reduces un-
certainty in shape. Feature attention utilizes different priors for features
and helps to focus attention on the features of interest. Feature atten-
tion reduces uncertainty in location. The output of the feature detector
(with location information) serve as the bottom-up evidence in both spa-
tial and feature attention. Feature attention with uniform location priors
is utilized in the proposed hand posture recognition system, as the hand
position is random in the image
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any evidence, through Bayesian inference. A biologically plausible be-

lief propagation algorithm [68] is utilized for the calculation of posterior

probabilities.

The present work utilizes the feature based attention (with different

feature priors) to create the saliency map. The location priors are set to

be uniform, as the hand can be randomly positioned in the image. The

visual attention model is developed utilizing the shape and texture based

features, and the color features. The saliency map (the posterior probabil-

ities of pixel locations) is generated using the learned feature priors and

evidences from the images. The hand region is segmented by thresholding

the saliency map. The complex backgrounds of the images considered con-

tain skin colored pixels. Due to this, the utilization of color based features

alone is not effective. However, when the color features are combined with

shape and texture features, it resulted in better identification of the hand

region, than that achieved with shape and texture features alone.

6.2 Attention Based Segmentation and Recog-
nition

The proposed algorithm addresses the complex image background issue

by utilizing a combination of different features. The hand region in the

image is identified by calculating the joint posterior probability of the

presence of the combination of features. Bayesian inference is utilized

to create a saliency map, which helps in the segmentation of the hand

region.
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In Bayesian inference, the likelihood of a particular state of the world

being true is calculated based on the present input and the prior knowl-

edge about the world. The significance of an input is decided based on the

prior experience. In images with complex backgrounds, the shape pat-

terns emerging from the background affect the pattern recognition task

negatively. To recognize a pattern from a complex background image, the

features corresponding to the foreground object are given higher weigh-

tage compared to that corresponding to the background.

In this work, the shape and texture features of the hand postures, and

the color features of the human skin are utilized to focus attention on the

hand region. The posterior probability of a pixel location to be part of

a hand region is calculated by assigning higher priors (which is learned

from the training images) to the features corresponding to the hand area.

The hand postures are classified using the shape and texture features of

the hand region, with an SVM classifier.

Fig. 6.3 shows the block diagram of the proposed system. The functions

of different blocks in the system are elaborated in the following subsec-

tions.

6.2.1 Image Pre-processing

The image pre-processing includes color space conversions and the gener-

ation of similarity to skin color map.
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Color Space Conversions - RGB to HSI and YCbCr

The input image in RGB space is converted to HSI and YCbCr color

spaces. The conversion between RGB and HSI is nonlinear whereas that

between RGB and YCbCr is linear. The chrominance components in these

color spaces (H, S, Cb, and Cr) are utilized to detect the hand region in

images. The hue value H refers to the color type (such as red, blue, or

yellow), and the saturation value S refers to the vibrancy or purity of the

color. The values of Cb and Cr represent the blue component (B − Y ) and

the red component (R − Y ) [8] respectively (Y stands for the luminance

value). The values of H and S are in the range [0 1], and those of Cb and

Cr are within [16 240].

Similarity to Skin Color Map

A skin color map (6.1) is created using the similarity of each pixel in HSI

space to the average pixel values of the skin color.

Sskin = 1−

√
(H −Hs0)

2 +

(
Hsmax −Hsmin

Ssmax − Ssmin

)2

(S − Ss0)
2 (6.1)

where,
Sskin the similarity of the pixel to skin color,

H & S the hue and saturation values of the pixel,

Hs0 & Ss0 the average hue and saturation values of the skin colors,

Hsmax & Hsmin the maximum and minimum of the hue values of the

skin colors, and,

Ssmax & Ssmin the maximum and minimum of the saturation values of

the skin colors.
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The average hue and saturation values are calculated by considering

10 skin colored pixel values of all the subjects.3 The values of different

parameters in (6.1), obtained from the present study, are provided in Ta-

ble 6.2. The hue value span (0.1770) is smaller than that of saturation

(0.5692). The coefficient of the saturation term ((S − Ss0)
2) in (6.1) is a

scaling factor to compensate for such a variation in span.

Table 6.2: Skin color parameters

Hue span Saturation span
Hs0 Ss0 Hsmax Hsmin Ssmax Ssmin (Hsmax −Hsmin) (Ssmax − Ssmin)

0.1073 0.3515 0.1892 0.0122 0.6250 0.0558 0.1770 0.5692

The similarity to skin color map enhances the edges and shapes within

the skin colored regions in the images, while preserving the textures (Fig.

6.4). The proposed system extracts the shape and texture based features

of hand postures from the skin color map. The feature extraction system

detects and learns the edges and bars (at different orientations), and the

textures in images. The utilization of the skin color map enhances the

capability of the system to detect the hand region in complex background

images.

6.2.2 Extraction of Color, Shape and Texture Features

The proposed algorithm utilizes a combination of low and high level im-

age features to develop the visual attention model. A saliency map is

generated and the attention is focussed on the hand region using color
3The dataset consists of hand postures by 40 subjects, with different ethnic origins,

against complex backgrounds.
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Figure 6.4: Sample hand posture images (column 1 - RGB, column 2 -
grayscale) with corresponding skin color map (column 3). The skin color
map enhanced the edges and shapes of the hand postures. The marked
regions in column 3 have better edges of the hand, as compared with that
within the corresponding regions in column 1 and 2. The edges and bars of
the non-skin colored areas are diminished in the skin color map (column
3). However the edges corresponding to the skin colored non-hand region
are also enhanced (row 2, column 3). The proposed algorithm utilizes the
shape and texture patterns of the hand region (in addition to the color
features) to address this issue.

features (low level) and shape-texture features (high level). The postures

are classified using the high level features.

Color based Features

The hue (H) and saturation (S) components in the HSI color space, and,

the Cb and Cr components in the YCbCr color space help to distinguish

skin colored region in images. Analysis and comparison of the usage of

different color spaces for skin segmentation are provided in [70], [38] and

[8]. [70] rates YCbCr as the best choice for skin segmentation, whereas

HSI color space is rated as the best in [8]. The proposed algorithm utilizes

a combination of HSI and YCbCr color spaces. The hand region is detected

using the chrominance color components (H, S, Cb, and Cr) of these color
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spaces.

The proposed algorithm generated the skin color map using the aver-

age skin color components (Hs0 and Ss0 in Table 6.2). However the skin

colors and the corresponding component values have variations about the

mean value. Fig. 6.5 shows four skin samples which have inter and in-

tra ethnic variations in skin colors. The average chrominance component

values of these samples are provided in Table 6.3. The H, Cb, and Cr com-

ponents have approximately 10% variation whereas that for S component

is 50%. In order to detect different skin colors in spite of the variations,

the proposed algorithm considers different ranges of color components.

 

 

Turkish German Chinese Burmese Chinese Indian 1 Indian 2 

Figure 6.5: Skin samples showing the inter and intra ethnic variations in
skin color. Table 6.3 provides the average H, S, Cb, and Cr values of the
six skin samples.

The proposed algorithm utilizes the discretized values of chrominance

color components, and the similarity to skin color map to calculate the

joint posterior probability of pixel locations to be part of a hand region.

The values of H, S, Cb, Cr, and Sskin fall within the range [0 1] (values of

Cb and Cr are normalized). This range is subdivided into ten subranges in

steps of 0.1. The features are named as in Table 6.4. For example the hue

values between 0 to 0.1 is a feature and is named as H1. Similarly there

are 50 number of color features (Table 6.4). The prior probabilities for



128

the presence of these features are calculated by counting the frequency

of occurrence of the features in the skin colored hand area in training

images4. The features those had maximum priors are H1, H2, S4, Cb5, Cr6,

and Sskin10. The color features are common for all the hand postures (the

position and frequency of the features may vary, however). Due to this,

the color features are utilized only for focussing the attention on the hand,

and not for the interclass discrimination of hand postures.

Table 6.3: Average H, S, Cb, and Cr values of the four skin samples in Fig.
6.5

Sample H S Cb Cr

Turkish 0.1859 0.4118 111.6 150.0
German 0.1207 0.5733 118.1 156.4
Burmese Chinese 0.1106 0.4529 101.9 141.6
Chinese 0.1830 0.0954 127.8 129.8
Indian 1 0.0493 0.5894 112.8 148.0
Indian 2 0.0572 0.3816 107.7 152.4

Note: The bolded figures represent the maximum and minimum values
in each column.

Table 6.4: Discretization of color features
(a) Chrominance color components dis-
cretization
H S Cb Cr Ranges
H1 S1 Cb1 Cr1 0.0 - 0.1
H2 S2 Cb2 Cr2 0.1 - 0.2
H3 S3 Cb3 Cr3 0.2 - 0.3
H4 S4 Cb4 Cr4 0.3 - 0.4
H5 S5 Cb5 Cr5 0.4 - 0.5
H6 S6 Cb6 Cr6 0.5 - 0.6
H7 S7 Cb7 Cr7 0.6 - 0.7
H8 S8 Cb8 Cr8 0.7 - 0.8
H9 S9 Cb9 Cr9 0.8 - 0.9
H10 S10 Cb10 Cr10 0.9 - 1.0

(b) Skin color similar-
ity (6.1) discretization

Sskin Ranges
Sskin1 0.0 - 0.1
Sskin2 0.1 - 0.2
Sskin3 0.2 - 0.3
Sskin4 0.3 - 0.4
Sskin5 0.4 - 0.5
Sskin6 0.5 - 0.6
Sskin7 0.6 - 0.7
Sskin8 0.7 - 0.8
Sskin9 0.8 - 0.9
Sskin10 0.9 - 1.0

4400 images (1 image per class per subject) are considered. During the training phase
the hand area is selected manually.
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Shape and Texture based Features

The shape and texture descriptors (Section 6.1.1) are extracted from the

similarity to skin color map. In the proposed algorithm, 15 prototype

patches with 4 patch sizes, are extracted from each of the 10 classes. The

15 patches are from 15 different images of the same class (we have also

experimented using patches extracted from a single image per class, but

better accuracy is achieved in the earlier case as it provides better invari-

ance). Each of the extracted patch contains the four orientations. The

total number of patches is 600, leading to 600 shape and texture based

features.

6.2.3 Feature based Visual Attention and Saliency Map
Generation

The feature based visual attention is implemented utilizing a combination

of low level (color) and high level (shape and texture) features. Fig. 6.6

shows the Bayes net utilized in the proposed system, which is developed

based on the model proposed in [11]. The Bayes Net Toolbox (BNT) [58] is

utilized to implement the Bayes net. The probabilistic model is given by,

P (O,L,Xs
1, . . . , Xs

N1, Xc
1, . . . , Xc

N2, Fs
1, . . . , Fs

N1, Fc
1, . . . , Fc

N2, I)

= P (O) ∗ P (L) ∗
∏i=N1

i=1

{
P (Xs

i/L, Fs
i)P (Fs

i/O)
}

∗
∏j=N2

j=1

{
P (Xc

j/L, Fc
j)P (Fc

j/O)
}

∗ P (I/Xs
1, . . . , Xs

N1) ∗ P (I/Xc
1, . . . , Xc

N2) (6.2)

The feature-based attention depends on the task-based priors and ev-

idences. The posterior probabilities of locations (6.3), which serve as a
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1 .......... .......... 
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1 .......... .......... 

I 

L 

Shape and texture 
based features 

Color based 
features 

Fs
N1 Fc

N2 Fc
1 

Xs
N1 Xc

N2 Xc
1 

Figure 6.6: Bayes net used in the proposed system. O - the object (hand),
L - the location of the hand, I - the image, Fs

1 to Fs
N1 - N1 binary random

variables that represent the presence or absence of shape and texture fea-
tures, Fc

1 to Fc
N2 - N2 binary random variables that represent the pres-

ence or absence of color features, Xs
1 to Xs

N1 - the position of N1 shape
and texture based features, Xc

1 to Xc
N2 - the position of N2 color based

features.

saliency map, are calculated using the top-down priors and bottom-up

evidences. The priors and evidences are calculated from the training

and testing images respectively (Table 6.5). A belief propagation algo-

rithm [68] is utilized for the calculation of the posterior probabilities.

P (L/I) ∝ P (L) ∗
∏
i

 ∑
Fs

iXs
i

P (Xs
i/L, Fs

i)P (Fs
i/O)P (I/Xs

i)


∗

∏
j

 ∑
Fc

jXc
j

P (Xc
j/L, Fc

j)P (Fc
j/O)P (I/Xc

j)

 (6.3)
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Table 6.5: Description of the conditional probabilities (priors, evidences,
and the posterior probability)

Conditional
probability

Represents Calculation

P (Fs
i/O) The top-down shape and

texture feature priors;
the probability of shape
and texture features be-
ing present, given the
presence of hand.

By counting the frequency
of occurrence of features*
within the training images
(maximum one count per
image).

P (Fc
i/O) The top-down color fea-

ture priors; the probabil-
ity of color features being
present, given the pres-
ence of hand.

By counting the frequency
of occurrence of features
(Table 6.4) within the hand
region in the training im-
ages (only 280 images, 1
image per class per sub-
ject, are considered).

P (I/Xs
i) Bottom-up evidence for the

shape and texture fea-
tures; provides the likeli-
hood that a particular lo-
cation is active for the
shape and texture fea-
tures.

By the shape and texture
feature extraction of test
images (Section 6.1.1).

P (I/Xc
i) Bottom-up evidence for the

color features; provides
the likelihood that a par-
ticular location is active
for the color features.

By the color feature ex-
traction of test images
(Section 6.2.2).

P (L/I) Posterior probabilities of
location, which acts as the
saliency map.

By the belief propagation
algorithm [68].

*A feature is present if it is above a threshold value. Otherwise it is
absent. In the proposed algorithm, the threshold is set at 75% of the
maximum value of corresponding training features.
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6.2.4 Hand Segmentation and Classification

The hand region is segmented using the saliency map generated. For

the segmentation, a bounding box is created around the most salient (top

30%) locations in the image. The shape and texture based features of the

hand region are extracted next. The same prototype patches selected ear-

lier (Section 6.1.1) are utilized for the feature extraction. The C2 SMFs are

extracted by taking maximum over positions of the C2 response matrices,

similar to that done in [85]. That is, the value of the best match between

a stored prototype and the input image is kept and the rest are discarded.

An SVM classifier with linear kernel is utilized for the classification.

Fig. 6.7 provides an overview of the proposed system, showing the im-

age pre-processing, feature extraction, attention, and classification stages.

6.3 Experimental Results and Discussion

The proposed algorithm is tested using a 10 class complex background

hand posture dataset. Ten fold cross validation is done and the average

accuracies are reported.

6.3.1 The Dataset : NUS hand posture dataset-II

As the number of available hand posture datasets is limited, a new 10

class dataset namely NUS hand posture dataset-II (Fig. 6.8, 6.9) is devel-

oped (available online [1]). The postures are shot in and around National

University of Singapore (NUS), against complex natural backgrounds,
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Figure 6.7: An overview of the attention based hand posture recognition
system.
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Figure 6.8: Sample images from NUS hand posture dataset-II, showing
posture classes 1 to 10.

with various hand shapes and sizes. The dataset consists of 2000 hand

posture color images with 160x120 size. The postures are obtained from

40 subjects, with various ethnicities, against different complex backgrounds.

The subjects include both males and females in the age range of 22 to 56

years. The subjects are asked to show the 10 hand postures, 5 times each.

They are asked to loosen the hand muscle after each shot, in order to in-

corporate the natural variations in the postures. The dataset also consists

of 2000 background images without the hand postures.

Figure 6.9: Sample images from NUS hand posture dataset-II, showing
the variations in hand postures (class 9).
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Figure 6.10: Receiver Operating Characteristics of the hand detection
task. The graph is plotted by decreasing the threshold of the pos-
terior probabilities of locations to be a hand region. Utilization of
only shape-texture features provided reasonable detection performance
(green) whereas utilization of only color features lead to poor performance
(red) (due to the presence of skin colored backgrounds). However the al-
gorithm provided the best performance (blue) when the color features are
combined with shape-texture features

6.3.2 Hand Posture Detection

The hand postures are detected by thresholding the saliency map. To

calculate the detection accuracy, saliency map is created using the poste-

rior probabilities of locations, for the set of hand posture and the back-

ground images. If the posterior probability is above a threshold value,

the presence of hand is detected. Fig. 6.10 shows the Receiver Operat-

ing Characteristics (ROC) of the hand detection task (the curve is plotted

by decreasing the threshold) by the three systems; a) system with shape,

texture, and color attention, b) system with shape and texture attention

alone, and, c) the system with color attention alone. On comparison, the
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system with shape, texture, and color attention provided better perfor-

mance.

6.3.3 Hand Region Segmentation

Fig. 6.11 shows the segmentation of hand region using the skin color

similarity and the saliency map. The segmentation using skin color simi-

larity performed well when the background does not contain skin colored

regions (Fig. 6.11, column 1). However natural scenes may contain many

skin colored objects (more than 70% of the images in the dataset under

consideration have skin colored regions in the background). The segmen-

tation using skin color similarity fails in such cases (Fig. 6.11, column

2 and 3). The proposed attention based system succeeded in the seg-

mentation of images with complex background, irrespective of whether

it contained skin colored regions or not.

Fig. 6.12 shows 50 sample images (5 from each class) from the dataset

and the corresponding saliency maps. The hand regions are segmented

using these saliency maps, in a way similar to that shown in Fig. 6.11.

6.3.4 Hand Posture Recognition

The proposed hand posture recognition algorithm is tested using 10 fold

cross validation strategy. The recognition accuracies for the four cases;

a) with shape, texture, and color based attention, b) with shape and tex-

ture based attention, c) with color based attention, and, d) without atten-

tion are reported (Table 6.6). On comparison, the best recognition rate
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Figure 6.11: Segmentation of hand region using the similarity to skin
color map and the saliency map. Each column shows the segmentation
of an image. Row 1 shows the original image, row 2 shows the corre-
sponding similarity to skin color map (darker regions represent better
similarity) with segmentation by thresholding, row 3 shows the saliency
map (only the top 30% is shown), and row 4 shows the segmentation using
the saliency map. The background in image 1 (column 1) does not contain
any skin colored area. The segmentation using skin color map succeeds
for this image. Image 2 and 3 (column 2 and 3 respectively) backgrounds
contain skin colored area. The skin color based segmentation partially
succeeds for image 2, and it fails for image 3 (which contains more skin
colored background regions, compared to that in image 2). The segmenta-
tion using the saliency map (row 4) succeeds in all the 3 cases.
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Figure 6.12: Different sample images from the dataset and the corre-
sponding saliency maps. Five sample images from each class are shown.
The hand region in an image is segmented using the corresponding
saliency map.

(94.36%) is achieved when the shape, texture, and color based feature at-

tention is utilized.

Table 6.6: Hand posture recognition accuracies

Method Accuracy (%)
Proposed Attention using shape, texture, and color features. 94.36
system Attention using shape and texture features alone. 87.72

Attention using color features alone. 81.75
C2 features without attention [85] 75.71
Elastic graph matching (EGM) [97] 69.80

When the attention is implemented using shape and texture features,

the algorithm provided good improvement in the accuracy (87.72%) com-

pared to that achieved (75.71%) by the algorithm proposed in [85]. The

color feature attention alone provided lesser accuracy (80.35%) compared
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to that provided by shape and texture attention. The lesser accuracy

with color feature attention is due to the skin colored pixels in the back-

ground. The color features are extracted using point processing, whereas

the shape-texture features are extracted using neighborhood processing.

This is another reason for the lesser accuracy with color feature attention.

However when color features are combined with the shape and texture

features, it resulted in the best accuracy (94.36%).

Table 6.6 also shows a comparison of the accuracy provided by the pro-

posed algorithm with that provided by the EGM algorithm [97]. The EGM

algorithm provided only 69.80% recognition accuracy in spite of the high

computational complexity of graph matching. The EGM algorithm per-

forms poor when the complex background of the image contains skin col-

ored objects. A majority of the samples misclassified by the EGM algo-

rithm are the images with skin colored complex backgrounds. The pro-

posed algorithm has robustness to skin colored backgrounds as it utilizes

shape and texture features with color features. The shape-texture se-

lectivity of the feature extraction system is improved as the prototype

patches are extracted from the geometrically significant and textured po-

sitions of the hand postures.

6.3.5 Recognition of Hand Postures with Uniform Back-
grounds

The proposed system is also tested with a simple background dataset, the

NUS hand posture dataset-I [77] (Fig. 6.13). Ten fold cross validation

provided an accuracy of 96.88%. This shows the effectiveness of the algo-

rithm for recognition of postures with uniform backgrounds. However the
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attention does not have much impact in the case of uniform background

postures. The system without attention provided an accuracy of 95.83%,

which is equivalent to that provided by the system with attention. This

implies the attention based system is necessary only for the recognition

in complex environments.

 

 

Figure 6.13: Sample images from NUS hand posture dataset-I, showing
posture classes 1 to 10.

6.4 Summary

This chapter proposed an attention based system for the recognition of

hand postures against complex backgrounds. A combination of high and

low level image features is utilized to detect the hand, and to focus the at-

tention on the hand region. A saliency map is generated using Bayesian

inference. The postures are classified using the shape and texture based

features of the hand region with an SVM classifier. The proposed algo-

rithm is tested with a 10 class complex background dataset, the NUS

hand posture dataset-II. The algorithm provided good recognition accu-

racy in spite of different complex backgrounds and variations in hand

sizes. The algorithm is tested with color based attention alone, with
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shape and texture based attention alone, and with the combination of

color, shape, and texture attention. On comparison, the proposed algo-

rithm provided the best recognition accuracy when the combination of

color, shape, and texture attention is utilized.



Chapter 7

Conclusion and Future Work

This chapter provides the summary of results and contributions of the

thesis. The chapter is concluded by describing the future research direc-

tions and the possible extensions of the present work.

7.1 Summary of Results and Contributions

The research reported in the thesis was motivated by the identification

of unresolved issues in visual pattern recognition, in particular, the chal-

lenges in hand posture recognition. The real-time performance, variations

in hand size, subject dependency, indiscernibility between similar classes,

and complex backgrounds are identified as the key issues which need bet-

ter solutions.

The visual images and the extracted features consist of large amount

of data and information. Initial part of the thesis (Chapters 3 and 4)

proposed two classification and feature selection algorithms for such mul-

tiple feature datasets. The concepts of fuzzy and rough sets are combined

142
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to develop simple, computationally efficient, and accurate classifier algo-

rithms. The proposed algorithms are capable of identifying the discrimi-

native features in the dataset. Combining fuzzy and rough sets helped to

classify vague and indiscernible data. The classification rules are gener-

ated by calculating the fuzzy lower and upper approximations around the

data cluster centers. The proposed classifier algorithms have a polyno-

mial time complexity. The two algorithms basically differ in the number

of identified feature cluster centers. The algorithm proposed in Chapter

3 utilized only one feature cluster center (the main cluster center). The

feature selection is done in an unsupervised manner, utilizing the infor-

mation learned during the development of the classifier from the training

dataset. This lead to a faster training phase. Two or more cluster centers

are identified and utilized in the algorithm proposed in Chapter 4. More

cluster centers are identified by reducing the clustering radius. This re-

sulted in more number of classification rules and better recognition accu-

racy. However the unsupervised feature selection algorithm is not effec-

tive as the density of the various cluster centers (of the same feature) and

the distance from the classification boundary varies independently, in a

nondeterministic manner. This motivated to propose a supervised feature

selection algorithm based on GA, which lead to a good margin of classi-

fication. The proposed feature selection and classification algorithms are

applied to various image datasets (hand posture, face and object). The

proposed classifier provided equivalent or better classification accuracy

than that provided by an SVM classifier, with lesser computational ef-

forts.

In order to validate the generality of the proposed feature selection and
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classification algorithm for other multiple feature data, the algorithm is

applied to Cancer and Tumor datasets. Five different datasets are consid-

ered. The algorithm provided classification accuracy which is equivalent

or better than that reported in the literature, with less computational ef-

forts. The maximum classification accuracy (100%) is achieved for four

of the cancer / tumor datasets. The feature selection algorithm identified

the predictive genes in the dataset. The proposed algorithm has the ca-

pability to classify diseases and to select relevant genes, which has high

impact in the biomedical field.

The later part of the dissertation (Chapter 5) utilizes the standard

model of the ventral stream of visual cortex to propose novel hand pos-

ture recognition algorithms. The effectiveness of both C1 and C2 features

are studied. These algorithms need lesser number of training images (4

per class for the C1 feature based algorithm, and only 1 per class for the C2

feature based algorithm). The hand posture recognition algorithms pro-

posed have good discriminative power between different posture classes.

The C2 features of the hand posture images are selected in such a way that

it provides good interclass discrimination. The C2 feature based recogni-

tion algorithm is implemented in real-time for the interaction of human

with a virtual character. The success of the algorithm shows its utility for

virtual reality applications.

A visual attention based system for the recognition of hand postures

against complex backgrounds is presented in the last part (Chapter 6) of

the thesis. A combination of color, texture, and shape features is utilized

to improve the recognition accuracy in complex environments. The hand
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region is segmented from the image using a saliency map generated us-

ing Bayesian inference. The postures are classified using the shape and

texture based features of the hand region with an SVM classifier. The

algorithm provided good recognition accuracy despite different complex

backgrounds, and variations in hand size and appearance. The improve-

ment in the performance of the recognition algorithm against complex

backgrounds makes it suitable for real-world applications.

Two new hand posture datasets are developed for the experimental

analysis of the proposed algorithms. These datasets are useful in test-

ing and bench marking of novel pattern recognition algorithms in the re-

search field.

7.2 Future directions

• Feature extraction: The identification of discriminative C2 features

provides an insight into the functioning of the C2 feature extrac-

tion system, which imitates the primate visual cortex. There are

many parameters in the system which are not tuned (and are set

to match what is known about the primate visual system). Each

feature corresponds to a prototype image patch extracted from the

training images. The selection of relevant features identified the

discriminative prototype patches, which in turn enhanced the shape

selectivity. This information can be utilized to tune and select differ-

ent parameters in the feature extraction system, in order to improve

its performance.
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• Computational complexity: The thesis proposed computationally ef-

ficient classification and feature selection algorithms for visual pat-

tern recognition. The selection of relevant features reduced the fea-

ture extraction time as well. However the computational complexity

of the biologically inspired feature extraction algorithm can be im-

proved. In general, the computational complexity is a problem to be

addressed in biologically inspired feature extraction systems.

• Dynamic gesture and Action recognition: The research proposed

in the dissertation was focussed on feature extraction, selection,

and classification aspects. The algorithms are applied to some of

the static visual pattern classification problems. The proposed al-

gorithms can be extended with temporal shape sequences, for the

recognition of dynamic gestures and actions.

• Body posture recognition: The algorithm proposed in Chapter 6 can

be extended for other shape recognition tasks like human body pos-

ture recognition, in cluttered natural environments. The utilization

of color features may not be effective in the case of human body pos-

tures due to clothing on the body. However a body posture provides

more reliable texture features compared to that of a hand posture.

The body pose can be estimated part-by-part or hierarchically (for

example, skin colored regions first and then textured regions).
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Appendix A

Illustration of the formation of
fuzzy membership functions,
and the calculation of
{µAL

, µAH
} and {AL, AH}

- Object dataset

Fig. A.1(a)-(d) shows the identified best discriminative feature for a par-

ticular class, which has a well separated feature cluster center (the center

of the fuzzy membership function). The selection of such features ease the

classification process, even though there is an interclass feature overlap.

Learning classification rules from the features which have distribution

similar to that shown in Fig. A.2 (which have higher interclass overlap) is

difficult and may lead to misclassification. The proposed algorithm (Chap-

ter 3) neglects such features, and excludes the corresponding rules from

the classifier rule base. This increases the classification accuracy, and

provides better margin of classification.
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(a) (b)

(c) (d)

Figure A.1: Illustration of the formation of fuzzy membership functions,
and the calculation of {µAL

, µAH
} and {AL, AH} for object dataset. Subfig-

ures (a)-(d) show a two dimensional distribution (only two feature axes
are shown) of training samples in the object dataset (class 1-4 respec-
tively). The x-axis represents the best discriminative feature (which is
selected) and the y-axis represents one of the non-discriminative features
(which are not selected). Subfigures (a)-(d) also show the formation of
fuzzy membership functions, the calculation of the membership values
{µAL

, µAH
} and the feature values {AL, AH} (Section 3.2.1), for the four

object classes.
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Once the feature values AL and AH are identified, the classification is

done by the voting process using Rule 1 and Rule 2 (4.4 and 4.5).

Figure A.2: Two dimensional distribution of samples in the object dataset,
with x and y-axes representing two non-discriminative features. The fea-
tures have high interclass overlap with the cluster centers closer to each
other. Such features are discarded by the feature selection algorithm.
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