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Summary 

Three-dimensional (3D) microfabrication has a niche role in emerging technologies as 

essential components of various MEMS and biomedical applications such as micro-lens 

array, photonic crystals, micro-filters, cell sorters, bio-sensing and tissue engineering. 

However, the 3D microfabrication is quite challenging as it requires simultaneous control 

over fabrication of lateral as well as vertical dimensions of microstructures. To achieve 

such control, highly localized light exposure in photosensitive materials is sought in 

existing 3D microfabrication techniques. The exposed regions cross-link and 

microstructures are fabricated according to pattern of the exposure.  However, this 

strategy is complicated, expensive and slow as it employs point-to-point or layer-by-layer 

exposure pattern which requires highly sophisticated and expensive equipments. Herein, 

it is hypothesized that controlling the cross-linking instead of the exposure would help in 

developing a simple 3D microfabrication technique. The cross-linking in lateral 

dimensions can be easily controlled by exposing photosensitive material through a binary 

coded photo-mask (as in photolithography). Nonetheless, controlling the light exposure 

or cross-linking in vertical dimension is not possible by using a normal photo-mask due 

to ‘all-or-none’ exposure pattern leading to complete cross-linking of the exposed region. 

Hence, a new strategy involving partial activation (PA) has been developed in this study 

for controlling cross-linking in both dimensions using photo-mask based exposure 

system. PA represents a state of material in which slight activation of cross-linking 

initiators is generated but the amount of such initiators is not enough for inducing cross-

linking reaction. In such a state, cross-linking can only take place under certain special 

conditions. The cross-linking in the PA is different from normal cross-linking and is 
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favored in certain configuration (anisotropic). Such a cross-linking pattern can provide 

opportunities for 3D microfabrication which can be modulated by simple parametric 

control such as exposure energy or baking temperature. Thus, this strategy allows 

fabrication of 3D microstructures besides retaining the speed and the simplicity of photo-

mask exposure scheme. Different types of 3D microstructures have been fabricated by 

using a single inexpensive photo-mask at high throughput in this project. To the best of 

our knowledge, the study on the PA as well as the 3D microfabrication based on 

materials’ properties has not been reported in past. 

The purpose of the 3D microfabrication technique in this project is to develop a 

functional micro-device for sorting and patterning of micro-entities such as cells or beads 

which is useful for disease diagnosis and treatment. Cell-sorting and patterning is an 

essential step in various diagnosis and prognosis applications such as sorting blood cells 

from the plasma, sorting rare cells (tumor or epithelial) from the blood, sorting stem cells 

from amniotic fluid and single cell studies. Bead-sorting and patterning is useful for 

immunoassays. The existing techniques for sorting or patterning of micro-entities using 

external forces such as dielectrophoretic, magnetic, optical however, are expensive, 

requires tagging of micro-entities and living cells are subjected to electromagnetic field 

with unknown implications. Other simpler alternative is the use of micro-filters, but their 

drawback is low throughput or unclean sorting. Amongst micro-filters, porous membrane 

presents the simplest option besides having high throughput performance. However, pore 

clogging is a common drawback in using porous membrane which adversely affects its 

performance. Herein, a unique anti-clogging three-dimensional (3D) pyramidal porous 

membrane (3DPPM) with multiple functionalities for enhanced performance has been 
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developed by using newly developed 3D microfabrication technique. The 3DPPM 

consists of an array of funnel-like pores, wherein each pore is surrounded by four 3D 

pyramidal micro-structures. The fabrication of such an arrangement of structures requires 

integration of different 3D microstructures which is challenging. To overcome these 

problems, a method involving non-uniform distribution and self-polymerization of the 

PA in micro-space has been developed in this study. The 3DPPM thus developed in this 

project has been integrated with a micro-channel to develop a functional microfluidic 

device.  

The design of the 3DPPM developed in this project confers four useful features. 1) It is 

anti-clogging and therefore allows uninterrupted sorting of micro-entities continuously; 

2) Simultaneous sorting and patterning of micro-entities can be achieved for downstream 

analysis of the patterned micro-entities; 3) Inhomogeneous cell population of different 

sizes can be patterned or trapped between the 3D microstructures for single-cell studies; 

4) Bi-directional sorting can be achieved, both in the direction of fluid-flow through the 

pores as well as that perpendicular to it, for high sorting efficiency. All these four 

features of 3DPPM have been studied in this project by using cells and micro-beads. 

Moreover, the cell viability has also been studied to prove that the 3DPPM is useful for 

cell-based applications.  
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Chapter-1: Introduction 

1.1 OVERVIEW 

The advancement in micro-technology has presented various techniques for fabrication of 

microstructures [1]. Among these microstructures, three-dimensional (3D) 

microstructures have an important niche in micro-technologies. 3D microstructures are 

defined as structures in which lateral dimensions vary with vertical dimension. These 

structures are being used in various research fields such as MEMS, Optical systems and 

biomedical devices. The fabrication of such structures require simultaneous control over 

lateral as well as vertical dimensions of microstructures formed and thus 3D 

microfabrication is challenging [2]. Though, a number of techniques have been reported 

for 3D microfabrication, but, these are limited by high cost, low throughput and need for 

highly sophisticated equipment. Such limitations surface due to current approach in 

which highly localized light exposure in a photosensitive material is sought to control 

position or distribution of the light exposure in lateral and vertical dimensions. The 

exposed region cross-links and microstructures are fabricated according to pattern of the 

exposure.  However, this method requires highly sophisticated and expensive equipment 

which limits their wide spread acceptance. Also, such techniques have low throughput. 

For example, Two-photon photo-polymerization employs point-to-point exposure (slow) 

by using highly controlled light exposure system (expensive) for 3D microfabrication.
 

Other laser-based techniques such as polymerization, ablation or deposition of materials 

by laser,
 
holographic lithography or stereolithography are also slow and complicated as 

they employ layer-by-layer fabrication approach. Gray-scale lithography is another 

alternative but need for a special and expensive photo-mask is the limiting factor for this 
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technology (details of these techniques have been covered in chapter-2). Other 

unconventional 3D microfabrication techniques, like inclined/rotated photolithography or 

silicon micro-machining are limited to the fabrication of few types of 3D microstructures 

and it may require special fabrication arrangements. Thus, the need for a simple, 

inexpensive and high throughput technique for 3D microfabrication is evident. Herein, a 

novel 3D microfabrication technique has been developed. This method is based on the 

partial activation (PA) of material which does not require sophisticated equipment or 

facilities.  

The development of 3D microstructures can be useful if they can be integrated in a 

functional micro-device to solve some technical or scientific problems. One such problem 

would be pore clogging in porous membranes. The porous membranes are being used 

commonly for filtration and separation applications in different areas of research and 

industrial processes such as waste-water treatment, cell-separation and sterilization. 

However, pore clogging or fouling is drawback in using porous membranes, which 

greatly affects their performance by decreasing productivity and by increasing 

operational and maintenance cost [3-5]. The pore clogging is caused due to blockage of 

the pores by filtered particles which drastically reduce fluid flow through pores. This 

causes increase in flow-resistance and fluidic pressure over the membrane. The 

increasing pressure may have adverse effects on the filtered materials such as living cells, 

besides decreasing filtration efficiency. To overcome this, there is a need for anti-

clogging porous membrane such that filtered particles do not block the pores. Herein, an 

anti-clogging 3D porous membrane has been developed for sorting and patterning of 

micro-entities (cells and beads). 
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1.2 THE IDEA AND THE HYPOTHESIS 

As mentioned in the previous section that the existing 3D microfabrication techniques are 

complicated, expensive and slow. The main challenge in the 3D microfabrication is to 

simultaneously control the cross-linking in vertical as well as lateral dimensions. 

Nevertheless, the cross-linking in lateral dimensions alone can be easily controlled by 

exposing a photosensitive material through a binary coded photo-mask (normally used 

for photolithography). A 2D pattern drawn on the photo-mask allows control of the light 

exposure in lateral dimensions, but it is not possible to control it in vertical dimension 

due to ‘all-or-none’ pattern of exposure through such photo-masks. Thus, controlling 

cross-linking in vertical dimensions in this situation by some simple means, without 

requiring control over the exposure in vertical dimension, may allow fabrication of 3D 

microstructures by simpler methods. However, the exposed region cross-links completely 

that makes it rigid, restricting further manipulation in the cross-linked regions. Hence, 

complete cross-linking should be avoided in the exposed region which may allow 

manipulation or alteration of the cross-linking in the exposed region. Herein, it is 

hypothesized that ‘partial activation’ (PA) would provide opportunity to manipulate the 

pattern of cross-linking in the exposed region which may allow control over the 

fabrication in vertical dimension besides lateral dimensions. PA represents a state of 

partial activation of the material which is not enough for initiating cross-linking reaction 

and unstable bonding or connection between cross-linking molecules may exist. Such 

weak connections between molecules may allow anisotropic cross-linking into some 
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stable or favorable configurations. If such anisotropic cross-linking is modulated by 

simple methods, a new technique for 3D microfabrication may be developed.  

The hypothesis for developing 3D microfabrication technique: 

1. The partial activation may allow control over the cross-linking of the exposed 

material.  

2. Partially activated material may allow anisotropic cross-linking into certain 

favorable configurations which may be helpful in the fabrication of 3D 

microstructures.   

The next aim of this project is to develop an anti-clogging 3D porous membrane for 

simultaneous sorting and patterning of micro-entities. The 3D microstructures can be 

integrated in the porous membrane in such a way that each pore in the porous membrane 

is surrounded by these structures. Such integration would create micro-traps over pores. 

The micro-entities such as cells or beads can be trapped in the micro-traps during 

filtration which would not block the pore leaving an interstitial-gap between trapped 

micro-entity and the pore. Such interstitial-gap would allow fluid or smaller micro-entity 

to pass through without clogging the pore. Moreover, such membrane would also allow 

patterning of micro-entities.  

The hypothesis for integration of 3D microstructures in a porous membrane: 

1. A novel anti-clogging 3D porous membrane can be fabricated by integrating 3D 

microstructures developed by the partial activation method.  
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2. The 3D porous membrane thus developed can be integrated in microfluidic device 

for developing a new device for patterning and sorting of micro-entities 

(Cells/beads). 

1.3 OBJECTIVES AND SPECIFIC AIMS 

 

Main Objective: To develop a 3D microfabrication technique for the fabrication of an 

anti-clogging 3D porous membrane for sorting and patterning of micro-entities. 

 

Specific Aims: The main objective of this project can be accomplished by completing 

three specific aims of this project. Each specific aim is divided in few milestones that 

gauge their completion. 

Specific aim 1: To develop a 3D microfabrication technique based on the PA in a photo-

sensitive material.   

Milestone-1: To study the characteristics partially activated material. 

Milestone-2: To develop new methods to control such cross-linking for fabrication of 

different 3D microstructures. 

Specific-aim 2: To design and fabricate 3D pyramidal porous membrane by the technique 

developed in specific aim 1.  

Milestone-1: To develop a method for integration of 3D pyramidal microstructures in a 

porous membrane. 

Milestone-2:  To integrate this membrane in a micro-fluidic device.  
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Specific-aim 3: To study multi-functionality of the micro-device developed in specific 

aim 2.  

 Milestone-1: To study the anti-clogging of the membrane integrated in the micro-device.  

Milestone-2: To study simultaneous sorting and patterning of micro-entities in the micro-

device. 

Milestone-3: To study patterning of micro-entities of different sizes in the micro-device. 

 

1.4 THE SCOPE  

 

This project incorporates study of the PA in materials and its application in developing a 

new technology. The PA and its properties have not been reported in past. This study has 

demonstrated a unique property of molecular re-arrangement within the PA, which has 

helped in devising a new 3D microfabrication technique. The 3D microfabrication 

technique can be adapted in different laboratories that do not require access to advanced 

resources. It may be exciting for scientists working in the optical-MEMS field for 

development of new class of micro-lens array and micro-lens with different properties. It 

may also be useful to researchers working in the MEMS field for developing devices with 

flexible and movable parts. The research can especially be useful to bioengineers for cell-

based applications such as studying cell-surface interaction, cell-growth on 3D 

topographies. Thus, we believe that this work should have wide scope in different fields 

of science and technology. 
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The second part of the work involves the development of a unique 3D pyramidal porous 

membrane. One of the interesting features of this porous membrane is its ‘anti-clogging’ 

characteristics. This porous membrane can be an interesting tool for studying the 

fundamental filtration process as it draws attention to a new concept of ‘anti-clogging’. 

The other exciting feature of this porous membrane is its ability to simultaneously sort 

and pattern micro-entities. It has been used for bead/cell sorting and patterning in this 

project. Beads patterning is gaining importance in multiplex detection and in-vitro 

diagnosis. Cell sorting is clinically important while patterning of cells is important for 

understanding cells behavior and for single-cell studies. Thus, this 3D porous membrane 

can have different applications such as sorting cancerous cells from blood, separation of 

blood cell subtypes and single-cell studies. Moreover, the patterned array beads can be 

useful for multiplex disease diagnosis. Thus, the achievement of this project can be useful 

for biological studies as well as biomedical applications.  

 

  



Chapter-1 

8 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

Chapter-2: Literature Review 

 

  



 

 
 

 

  



Chapter-2 

 

9 
 

Chapter-2: Literature Review 

2.1 THE OVERVIEW: 

This chapter on literature review deals with technical know-how related to various 

aspects of this project. The purpose of this literature review is to provide a general 

overview of works that have been published in the past and are related to the work done 

in this project. The review presented here is not exhaustive and does not claim to include 

all related articles. This review starts with discussing the state-of-art and other techniques 

that have been used for 3D microfabrication. Problems and short-comings of existing 

techniques have also been discussed here with the aim of highlighting the gap in the 

current technological developments. The literature review then takes a quantum leap to 

discuss about different techniques currently being used for the sorting/separation of 

particles escaping a review on porous membrane which seems to be the next step. There 

are few reasons for bypassing the porous membrane review and that are: 1) The porous 

membrane technology is very traditional and this has become part of various book 

chapters; 2) The focus of this project is to develop an ‘anti-clogging’ strategy for porous 

membrane and to develop a new tool for biomedical application, but literature available 

for porous membrane mainly deals with materials or techniques for the fabrication of 

porous membranes; 3) No new concepts, like 3D or anti-clogging porous membrane, 

have been developed in the  porous membrane technology that should be reviewed. 

Hence, justifying reasons for this escape and keeping in mind the word limits for this 

thesis, a jump from 3D microfabrication techniques to the separation techniques has been 

taken here. As the micro-device developed in this project has been applied for the 

separation and patterning of micro-entities, this review smoothly transits from the 
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separation techniques to patterning techniques followed by a review on techniques used 

for simultaneous separation and patterning of particles.  

 2.2 3D MICROFABRICATION 

2.2.1 APPLICATIONS OF 3D MICROFABRICATION TECHNOLOGY 

3D microfabrication has been used for the fabrication of micro-lens [6, 7] or micro-lens 

array[8-10], which constitute the essential part of the modern optical systems or for some 

interesting applications, like artificial eyes [11]. Another interesting and widely used 

application of the 3D microfabrication is the fabrication of photonic crystals and 

waveguides [12-15]. 3D microfabrication has also been used for optical data storage [16]. 

The fabrication of 3D micro-filters and micro-fluidic devices are other applications of 

this technology[17, 18], besides being used for cell-sorting applications [19] as well as 

for bio-sensing [20-22]. Tissue-engineering is another field in which use of 3D 

topographies for tissue-regeneration and implant applications is appealing [23, 24]. 

Recently, stem-cell research is also gaining interest in using 3D topographies to modulate 

gene-expression and protein-localization in cells [25, 26].
 
Other exciting applications of 

3D microfabrication technology is for miniaturized drug delivery system [27, 28] and for 

developing non-fouling coatings [29].  

 

2.2.2 THE TECHNIQUES FOR 3D MICROFABRICATION  

Microfabrication is a recent science which has received an unprecedented popularity due 

to its increasing demand for various industries, especially electronics industries. Core of 

this science is developments in material science and parallel sophistication of techniques 
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for high resolution fabrication in micro-scale. The combination of these two and some 

other expertise gave rise to the field of microfabrication which involved use of new 

materials and techniques for transferring a pattern or a design from a dataset to a 

substrate. These techniques are referred as patterning or lithographic techniques which 

involve few key steps, (i) design of a pattern, (ii) an appropriate method of transferring 

pattern, (iii) a functional material responsive to the pattern transfer process and (iv) 

suitable tools that ensure pattern transfer [30]. Probably, the most popular means of 

pattern transfer is the light in from of optical lithography such as Photolithography which 

are popular due to its simplicity, speed and its ability to transfer pattern to virtually any 

practical dimension without changing the process. Though popular and efficient, optical 

lithography is not suitable for the fabrication of 3D microstructures due to their inherent 

limitation of all-or-none scheme of exposure. Therefore, many alternative techniques 

have been developed for 3D microfabrication. The literature review on 3D 

microfabrication techniques has been categorized here as; i) controlled cross-linking in 

3D micro-space by high energy radiation, ii) layer-by-layer fabrication of 3D 

microstructures, and iii) unconventional strategies. The above said review is as follows: 

2.2.2.1 CONTROLLED CROSS-LINKING IN 3D MICRO-SPACE BY HIGH ENERGY RADIATION 

High-energy radiations such as UV-light, e-beam have been used for 3D microfabrication 

[31]. The high-energy radiation can change the property of a sensitive material by either 

initiating the cross-linking or by breaking the cross-linking between polymers chains. 

This causes a change in the property of the exposed region, which is harnessed for 

selective removal of either one of them. The microstructures are formed based on the 
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pattern of the exposure which is controlled in lateral as well as vertical dimensions of 

micro-space. Either position or distribution of the exposure is controlled by the existing 

3D microfabrication techniques. Different techniques that have been used for such 

control are discussed as follows: 

Gray-scale lithography: The distribution of light exposure can be controlled in the micro-

space by using a special photo-mask which is referred as gray-scale mask and the process 

is called gray-scale lithography [32-35]. The special mask used for the gray-scale 

lithography can vary the illumination intensity of the light over the photo-sensitive 

material and generates an optical density counter that determines the shape of the micro-

structures formed. Many types of gray-scale mask have been used. Half-tone masks are 

one of the popular choices [36-40]. Half-tone masks are usually fabricated by varying 

thickness of chromium on glass which creates the gray–scale level. The pattern on such 

mask is carved by using e-beam lithography. The high-energy beam-sensitive (HEBS) 

glass mask is another example of the gray-scale masks. The HEBS masks are fabricated 

by incorporating metal ions in the glass and the density of the metal ion determines the 

gray scale level in the mask [41, 42]. The pattern writing in HEBS glass is also usually 

accomplished by the electron beam. The use of HEBS gray-scale mask can be used for 

fabrication of 3D microstructures, like micro-lens or waveguide [43-46]. Similar 

approach has also been used for fabrication of gray-scale mask by direct writing of 

pattern in thin metallic film by using Laser [47].  There are other innovative approaches 

available in the literature for producing gray-scale level during exposure of the photo-

sensitive material by light. Micro-lens projection lithography using gray-scale micro-lens 

array is one of them [48]. Microfluidic photo-mask is another innovative approach for 
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creating gray-scale level [49, 50]. The use of fluid as the light absorbing element is 

innovative and the opacity of such mask can be tailored by tailoring this ability of the 

fluid. Use of liquid crystal display as gray-tone mask is another example of innovative 

approach in the field of gray-scale lithography [51].  Figure-2.1 depicts pyramidal 

microstructure fabricated using gray-scale lithography. 

 

Fig: 2.1: 3D microstructures fabricated by gray-scale lithography: SEM image of pyramids 

obtained by gray-tone lithography [40]. (Copyright permission obtained from publisher)  

 

E-beam/ Proton-beam lithography: Electron-beam (e-beam) lithography is being used as 

direct write technique for the 3D lithography [52-54]. The e-beam lithography requires 

precisely controlled e-beam to locally expose the e-beam sensitive material (resist). The 

distribution of exposure energy dose determines the developing rate distribution and final 

structure fabrication. The intensity of e-beam needs to be calibrated to expose the 

corresponding depth of the resist material. The surface relief is then converted into the 

intensity data according to the calibrated plot by using some software. The resist is 

scanned according to the intensity data to produce 3D profile. The secondary electron 

generated by electron beam has low energy distribution which helps in achieving high 

resolution fabrication [55]. Figure-2.2 shows saw-tooth structure fabricated by e-beam 

(b) 
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lithography. Proton-beam has also been used for 3D lithography with high resolution, but 

mostly for nanofabrication rather than microfabrication [56]. 

 

Fig. 2.2: Micro-structures fabricated by e-beam lithography: SEM images of the saw-tooth 

structures of different dimensions, fabricated by e-beam lithography [52]. (Copyright permission 

obtained from publisher) 

 

Direct writing by focused laser beam: Laser is the popular tool for microfabrication due 

to the high control it can provide. Focused beam of laser has been used as the direct-write 

technique for 3D microfabrication. Mask-less fabrication of 3D microstructures using 

UV-laser has been realized (Fig.2.3) [57-59]. The principle of structure fabrication by 

focused beam of laser is similar to that of e-beam lithography. The beam of laser induces 

cross-linking in the photo-sensitive resist in a controlled manner. Usually, a photo-mask 

is not required, but a special exposure system is required. A computer aided design of the 

pattern data is obtained in digital format. The pattern data is converted into exposure data 

and is fed into the exposure system in from of image frames. The exposure system 

continuously generates the image frames by exposing pixel-by-pixel 2D dot pattern on a 

light-sensitive material coated on a substrate. Other laser-based techniques use laser for 

serially ablating or depositing materials for controlled fabrication of 3D microstructures 

[60, 61] and photo-induced polymerization of liquid pre-polymer by laser. 
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Fig. 2.3: 3D microlens fabricated by laser-beam lithography:  3D microlense are fabricated 

here by using UV-laser and a mask-less exposure system. SEM pictures of fabricated spherical 

micro-lens array (a & b) and aspherical micro-lens array (c & d) [58]. (Copyright permission 

obtained from publisher)   

 

Two photon photo-polymerization: One of the most popular techniques for the 3D 

microfabrication is the two photon photo-polymerization by using focused beam of lasers 

[62, 63]. The technique depends on the use of a photo-sensitive material that absorbs light 

of certain energy to initiate photo-cross-linking or photo-polymerization. The required 

energy is provided by simultaneous absorption of two-photon from either one or two 

focused laser beams. The laser-light is focused at a point in the 3D micro-space to cross-

link a small volume of material. The photo-polymerization takes place in the vicinity of 
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the focused beam only and thus creates a 3D micro-voxel around that point. The 

fabrication procedure is performed by scanning the focused laser according to the pre-

programmed voxel matrix generated from the 3D image of microstructures by using 

software. The dimension of the voxel mainly depends on the spot-size and the pulse-

energy of lasers used which determines the spatial resolution of spots fabricated. The 

exposure can be controlled due to two-photon capability of the material and the material 

can be exposed at different points to from the real three-dimensional objects [62, 64-66]. 

The two-photon photo-polymerization is similar to the focused-beam of laser, but can 

achieve high spatial resolution due to reducing un-necessary cross-linking. The technique 

can also surpass the diffraction limit. The experimental set-up for two-photon 

polymerization or focused laser-beam based fabrication is similar. Mainly, the set-up 

consists of a laser-source which can be focused on the resist using an objective lens. 

Different depths can be achieved by shifting the focus by moving the objective lens up 

and down. The scanning is performed by the movement of the computer controlled stage. 

Figure-2.4 shows some 3D microstructures fabricated by this technique. 

 

Fig. 2.4: Fabrication of 3D microstructures by two photon photo-polymerization: Micro-

SEM images of (a) 3D microstructure fabricated by single-photon focused laser beam [59] while 

(b) the three-layer pattern of micro-porous structures with random holes in all layers fabricated by 

two-photon photo-polymerization technique [65]. (Copyright permission obtained from 

publisher)   

(b) (a) 
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2.2.2.2 HOLOGRAPHIC 3D MICROFABRICATION 

The holographic microfabrication is based on the exposure pattern created by interference 

between two coherent beams of laser. This technique is also known as interference 

lithography. The resultant interference intensity pattern is recorded in the thin film of 

photo-sensitive resist [67, 68]. The complex 3D pattern can be fabricated by either 

intersecting more than two lasers at one time or exposing the same substrate multiple 

times with different interfering patterns.  Complex 3D lattice has been fabricated as 

photonic crystals by exposing with four coherent beams of laser and selective removal by 

dissolution [69]. The pattern can be predicted using theoretical calculations in advance. 

The technique is particularly suited for the fabrication of 3D photonic crystals. The 

advantage of this technique is that it is relatively fast and simple and is suited for high 

throughput applications. The drawback of this technique is that only low refractive index 

materials can be used which may not be suitable for photonics applications. 

 

2.2.2.3 LAYER-BY-LAYER FABRICATION OF 3D STRUCTURES 

The layer-by-layer fabrication approach is simple to comprehend but difficult to 

accurately realize. In layer-by layer approach, 2D microstructures are fabricated in a layer 

and then another layer is coated. The 2D microstructures are again fabricated in the 

second layer by precisely locating the positions from the first layer and subsequently 

another layer is coated and structures are fabricated again. The process is repeated to 

fabricate the desired microstructure. Simply this is the technique for accumulation of 2D 
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microstructures from different layers to fabricate 3D microstructures. Few different 

strategies have been developed for the fabrication of 3D microstructures by this method. 

Layer-by-layer etching is one of the simpler techniques for fabrication of 3D micro-

structures. The technique can be useful for fabrication of 3D photonic crystals by using 

standard microfabrication facilities [70]. In this technique, a layer of substrate is usually 

coated and is patterned to selectively etch it. The etched part is covered by another 

material (like polycrystalline silicon) and is polished to make it flat. Then another layer is 

coated and the procedure is repeated to fabricate repeating units of stacked layers.  

Micro-stereolithography is another important technique for layer-by-layer fabrication of 

micro-structures. In micro-stereolithography, a layer of photo-sensitive material is coated 

on a substrate and is exposed to light either through a photo-mask or by a beam of light. 

The fabrication for the first layer is completed by post-exposure processing and then the 

second layer is coated and then the procedure is repeated for several times for the 

complete fabrication of the desired micro-structure. The micro-stereolithography is 

different from the fabrication done through layer-by-layer scanning through the focused 

beam of laser. In the later, actually the sub-layers within a single layer are scanned 

through focusing the beam in the single plane whereas in the former different layers are 

coated and exposed. To increase the spatial resolution and precision in fabrication of very 

complex structures by this technique, two photon micro-stereolithography has been used 

[71, 72]. Different variants of this technology have been demonstrated in the literature for 

fabrication of 3D microstructures, like the micro-stereolithography combined with UV-

lithography [73]. Recently multi-material micro-stereolithography has also been 

demonstrated [74]. 
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Other than these two layer-by-layer approach, other methods, like layer-by-layer 

deposition of material using robotic arm [75, 76] and self-assembly of the micro-particle 

[77, 78] have also been demonstrated in the literature. 

 

2.2.2.4 UNCONVENTIONAL METHODS 

Other than the conventional approaches, few interesting strategies can be found in the 

literature for which have been used for fabrication of 3D micro-structures. One such 

strategies is the inclined or rotated exposure to a photo-sensitive material by X-ray or 

UV-light [79, 80]. The strategy is simple and can be used for fabrication of few types of 

3D micro-structures. The idea behind this technique is inclined exposure of the photo-

resist through a photo-mask by light. Depending on the angle of incidence or the angle of 

rotation, the slope of the fabricated structures is decided. Other than that, silicon 

micromachining can also be used for 3D microfabrication [81]. 

 

2.2.3 THE SCOPE AND LIMITATIONS OF EXISTING TECHNIQUES 

The current techniques used for the fabrication of 3D micro-structures have their own 

advantages and disadvantages. The use of electron beam or proton beam can provide 

better resolution than the UV-light, but their use is expensive due to high cost of 

equipment and maintenance. The e-beam lithography is suitable for sub-micron 

fabrication, but it is difficult to apply this technique for high-aspect ratio 3D 

microfabrication due to low penetration depth of the e-beam. Proton-beam is also used 

for nano-fabrication and may not be a good choice for microfabrication. The e-beam 
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lithography also suffers from low throughput and use of multiple layers. Also, the e-beam 

lithography required lot of calibration and optimization before developing the relation 

between the depth profile and the exposure-dose [82].  

The laser-based techniques provide better control over the fabrication process and can 

achieve high spatial resolution. With introduction of the two-photon fabrication the 

spatial resolution as well as complexity of microstructures has substantially increased 

[72]. Though the use of laser has come with a popular tool for the 3D microfabrication, 

the cost, the through-put and the need for special and expensive equipment has not been 

resolved. The problem of the 3D microfabrication by the focused beam of light is the 

roughness of the 3D profile due to residual cross-linking and improper joining of 

structures from each 2D pattern. The use of two-photon needs materials with special 

characteristics. The two-photon micro-stereolithography is capable of precisely 

controlling the exposure in the 3D micro-space but the coating of resist limits its use. The 

coating of resist depends on the surface tension and the viscosity of the material which 

limits the spatial resolution. Also, two-photon stereolithography suffers from 

accumulation of errors during layer-by-layer fabrication. Also, it requires long time and 

effort as it employs layer-by-layer accumulation based on 2D sliced data obtained from 

3D computer aided design. Other laser-based techniques including photo-induced 

polymerization of liquid pre-polymer by laser and serially ablating or depositing 

materials using laser also suffers from low through-put, and are complicated for 

fabrication of complex 3D structures. The drawback of the holographic microfabrication 

is that only materials with low refractive indices are suitable for direct patterning by this 

method.  
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The gray-scale lithography has been used as another alternative fabrication of 3D micro-

structures. The technique can be useful, but the disadvantage of this approach is the 

requirement of a special or an expensive photo-mask, the design of which may need a lot 

of calibration or simulation steps. Also, it is not suitable for fabrication of complex 3D 

microstructures with high aspect-ratio. The inclined or rotated exposure to a photo-

sensitive material by X-ray or UV-light also has limitations. The access to X-ray is 

generally restricted and also, only limited types of shapes can be fabricated. Silicon 

micromachining can also be used for 3D microfabrication, but it requires access to harsh 

chemicals or expensive equipment. Thus, most of techniques used for 3D 

microfabrication are expensive, time-consuming and are mostly performed in specially 

maintained clean-room lab environment which adds-up to the cost and restricts the use.  

 

2.3 SORTING OF MICRO-ENTITIES IN MICRO-DEVICE 

2.3.1 THE OVERVIEW 

The past decade has seen a rapid progress in the use of micro-fluidic devices 

encompassing various fields of science and technology. Since their advent, micro-fluidic 

devices have shown great promises for developing “lab-on-a-chip” devices. 

Sorting/separation of micro-entities (like beads or cells) using micro-fluidic devices is 

one such achievement [83, 84]. The development of micro-fluidic devices with ability to 

filter micro-entities such as cells or beads has found its application in immunological & 

biological assays and for performing cell studies. Bead-sorting can be used for 

performing immunoassays. Beads can be conjugated with some ligand molecules and can 
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interact with  target molecules present in the sample for efficient and multiplex detection 

[85, 86].  The cell-sorting is another major application of micro-fluidic devices [87]. 

Separation of rare cells such as circulating tumor cells (CTCs) from blood is used for 

diagnosis and prognosis of cancer [88], and thus the need to develop simple and effective 

tools for this purpose is medically important [89].  Enumeration of circulating epithelial 

cells from blood [90] and isolation of mesenchymal stem cells from blood are few other 

medically important applications of the cell separation which have been achieved by 

using micro-fluidic devices [91].  The micro-fluidic devices have also been applied for 

fractionation of blood cell subtypes, for example separation of leukocytes from whole 

blood (leukapheresis) which is clinically important for removing white-blood cells 

(leukocytes) from blood of leukemic patient or from blood used for transfusion [92]. 

With increasing consensus for analyzing cells at single-cell level, micro-fluidic devices 

have been used for sorting of single-cell for studying each cell individually [93, 94].  

2.3.2 SORTING TECHNIQUES 

The review presented here for the sorting of micro-entities is divided in terms of different 

technical principles that are used for this purpose. Different techniques have been 

discussed here with their scope and limitations.  

2.3.2.1 ACTIVE SEPARATION TECHNIQUES INVOLVING EXTERNAL FIELD OR FORCE: 

Many techniques that have been used for sorting of micro-entities in micro-fluidic 

devices are based on the use of external field to exert differential force on different 

micro-entities. The amount of the force exerted on a micro-entity depends on degree and 

kind of interaction with the external field. The net force on a particle affects its 
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trajectories while it flows through a micro-channel. Different types of micro-entities 

experience different amounts of force and hence their trajectories are different. This 

principle has been used for the separation of micro-entities in micro-fluidic devices. 

Different techniques based on this principle have been discussed here. 

Electric field for sorting of micro-entities: Electricity has popularly been used for the 

separation of micro-entities based on either intrinsic charge or polarisability. The charge-

based separation is less preferred due to small differences in the charge among different 

types of micro-entities. The polarisability of micro-entities has extensively been used for 

their separation. When a dielectric particle, like cell, is placed in an electric field, it is 

polarized to create a dipole. If the electric field is uniform, the net force on the micro-

entity induced by electric field is zero due to equal and opposite forces exerted by the 

electric field. However, if a micro-entity is placed in a non-uniform electric field, the net 

force on the particle is not zero and hence a net movement is observed. This phenomena 

is called as Dielectrophoresis (DEP) [95]. The principle of DEP was first demonstrated in 

1951 by Pohl. et al [96]. DEP has been used for the separation of different types of 

micro-entities such as cells and beads. The force exerted in the non-uniform electric field 

by DEP depends on the electrical properties of micro-entities, their surrounding medium, 

their shape and size, and frequency as well as gradient of the electric field. Based on the 

movement of and in the electric field, the DEP can be classified as positive-DEP (p-DEP) 

or negative-DEP (n-DEP). When electrical polarisability (or permeability) of a micro-

entity is greater than the surrounding medium, the net movement would be towards high 

intensity of electrical field (i.e. towards electrode) and is called as Positive-DEP or p-

DEP. If the electrical polarisability (or permeability) of a micro-entity is lower than their 
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surrounding medium, the net movement of particle is towards low intensity of the 

electrical field (i.e. away from electrodes) and is called as negative-DEP or n-DEP. 

Different strategies have been presented in the literature for producing non-uniform 

electric filed in micro-devices for performing DEP-based sorting of micro-entities. In 

some of these strategies, insulating obstacles, such as ridges [97], narrowing wedges [98, 

99] or array of posts [100] are incorporated in a micro-channel and a voltage is applied. 

The electric field in the vicinity of these obstacles becomes non-uniform and DEP is 

generated on micro-entities that flow near these obstacles. In another strategy, electrodes 

of different shapes and sizes have been used for generating non-uniform electric field 

[101].  

DEP has been applied for different cell separation application, such as the bacterial cell 

separation, separation of live and dead yeast cells [102, 103], separation of malaria 

infected cells from blood [104], cancer cell separation from blood [105-107] separation 

of white blood cells from blood [108] and stem cell separation from blood [109] etc. 

Though dielectrophoresis has been used for efficient separation of micro-entities, the 

need for special media with particular electrical properties is its drawback. Also, the 

effect of electric field on living cells is unknown and this technique may not be suitable 

for very sensitive cells.   

Magnetic field for sorting of micro-entities: Like electric field, magnetic field can also be 

used for the separation of magnetically susceptible particles or magnetically labeled cells 

[110]. When a non-uniform magnetic field is applied perpendicular to the flow direction 

of micro-entities, a magnetic force is experienced by them which can pull them away 
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from the flow. The micro-entities are subjected to two forces, the hydrodynamic force in 

the direction of the flow due to the pumping of the fluid in the device and the magnetic 

force perpendicular to the flow velocity. The vector sum of these two forces determines 

the final trajectories of micro-entities, which experiencing different forces due to 

different magnetic properties or sizes are separated from each other. This principle has 

been applied for the separation of micro-particles or cells in micro-fluidic devices [111, 

112]. The simplest design for such systems is depicted in the Figure-2.5. The micro-

fluidic device in such a design consists of a flow channels with two inlets and two outlets. 

One inlet is used for the delivery of the sample and the other inlet is used for the flow of 

buffers. The sample and the buffer flow in the micro-channel as two laminar flows. The 

magnetic field is applied perpendicular to the flow direction in the channel. The particles 

experiencing magnetic force are deviated from the sample channel to the buffer channel 

and are collected at the buffer outlet. The magnetically unsusceptible particles are 

collected at the sample outlet. More complicated designs for improved separation have 

also been reported, for example a device for size-based separation of micro-particles with 

multiple inlets and outlets have been realized [113]. 

 

 

Fig. 2.5: Magnetic separation of particles: The 

sample is introduced in the source inlet which 

travels in the source path. The magnetically 

susceptible particles are deflected from the source 

path to the collection path under the influence of 

the magnetic field and are collected at the 

collection outlet [111]. (Copyright permission 

obtained from publisher) 

 



Chapter-2 

 

26 
 

Separation of magnetic micro-entities has been used extensively for different 

applications. Magnetic micro-particles are conjugated with some ligand or target 

molecule (like antigen or antibody). The corresponding counterpart is then allowed to 

adhere to these particles which can be separated by using magnetic micro-fluidic device. 

The magnetic separation of micro-entities has been used for various applications such as 

separation of biomolecules [114, 115], pathogen detection and disease treatment [116, 

117]. The magnetic separation has also been used widely for separation of cells such as 

separation of magnetically labeled cells [118], immuno-magnetic separation of specific 

cells from blood [119], separation of red-blood cells from white-blood cells by using 

intrinsic magnetic properties of red-blood cells [120]. 

 

Magnetic separation has few distinct advantages over electrical separation. Magnetic 

separation is applied externally and no contact with liquid is required. The magnetic field 

is hardly affected by environmental factors like ionic strength and PH. Magnetic forces 

may also be milder than electrical forces. However, cells rarely have intrinsic magnetic 

properties and the use of magnetic separation is limited by the need for magnetic labeling 

of cells. The throughput of the magnetic separation may also be low.   

 

Optical techniques for sorting of micro-entities: Optical micromanipulation techniques 

have been developed in recent past for the trapping and/or sorting of micro-entities [121, 

122]. The radiation force of the Laser can be used to accelerate or move micro-entities to 

trap or to sort them. The concept of optical trapping of micro-entities in optical potential 

wells using focused beam of Laser was first introduced by Ashkin et al. in 1970, where 
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two counter propagating Laser-beams were used for trapping particles [123]. The 

particles can also be trapped by using single focused beam of Laser which is popularly 

known as optical tweezers. The principle of optical trapping or acceleration of particles 

under a beam of Laser can simply be modeled as the continuous momentum transfer from 

photons to particles during particle-photon interaction. Particles with higher refractive 

index are attracted towards the center of the focused beam (i.e. towards high intensity of 

light beam) due to larger momentum transfer by intense beam compared to less intense 

beam at boundary. The refracting light also transfers momentum in the direction against 

the direction of light propagation and once the particle is in center of focused beam, the 

net momentum transfer is against the direction of light propagation which induces motion 

of particle against photon’s movement. The net momentum transfer from scattered light 

is in the direction of light propagation which moves particles in the direction of the beam. 

The particle is trapped when net force arising from all momentum transfer is zero. This 

model doesn’t hold well for explaining the trapping of particles smaller than the 

wavelength of light. This can be explained by strong electric field generation in the 

narrowest part of the beam where smaller dielectric particles act as a dipole and move 

towards the most balanced electric field region i.e. center of focused beam of light.  

Optical trapping of micro-entities has been used for various applications related to 

particle or cell manipulation. Trapping of individual viruses and bacteria has been 

demonstrated by using single-beam gradient force traps of optical-tweezers[124]. Optical 

forces has also been used for damage-free trapping and manipulation of single living cells 

including bacteria, yeast, protozoa and even red blood cells [125]. Optical sorting 

techniques have also been used for sorting cells in micro-fluidic devices which are based 
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on the principle similar to electrostatic sorting performed in FACS. Instead of using an 

electrostatic field to deflect a cell in FACS, radiation force is used to deflect a desired 

particle. The technique has been used for sorting mammalian cells and macrophages 

using a micro-fluidic cell-sorting system [126, 127]. Optical tweezers have also been 

used for studying mechanical properties of red blood cells which is clinically relevant 

[128, 129]. 

Optical micromanipulation offers several advantages such as high through-put, complex 

manipulation at single particle/cell level, label-free manipulation, but the use of Laser and 

high power beams limits its use. 

Acoustic forces for sorting of micro-entities: Acoustic forces generated from ultrasonic 

waves can be a useful tool for separation of micro-particles and cells from liquid sample. 

Recently, acoustic manipulation techniques have received increased attention for 

designing chip-based micro-systems for separation and manipulation of micro-particles 

or cells due to advancement in micro-technology which enable integration of ultrasonic 

resonator in a micro-chip [130]. Ultrasonic standing wave exerts force on micro-entities 

that can affect their motion. The ultrasonic wave is generated orthogonal to the direction 

of flow over the cross-section of a micro-channel. Usually, it is tuned in such a way that a 

node is positioned in the center of micro-channel and two anti-nodes are located at two 

ends of the channel. The particles or cells experience a force either towards a node or 

towards an anti-node depending on the acoustic properties of micro-entities and their 

surrounding medium. To generate ultrasonic sound waves, different types of ultrasonic 

wave generator, like piezoelectric transducers, can be used. It can be generated by using 

either two counter sound waves or a single sound wave facing a sound reflector. 
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The acoustic force on the particle in ultrasonic standing wave depends on the properties 

of the ultrasonic waves, properties of micro-entities and their surrounding medium [131]. 

The acoustic force is determined from the amplitude and frequency of the acoustic wave. 

The higher the frequency of a wave, the higher is the acoustic force. Acoustic force on a 

micro-entity depends on its density and compressibility relative to the surrounding 

medium. The acoustic force on a micro-entity is also dependent on its volume. These 

properties decide motion of a micro-entity in ultrasonic standing wave field. Micro-

entities differing in size, density, compressibility or their combination can be sorted by 

the acoustic force.  

Acoustic forces have been used for separation of micro-particles and cells from a fluid 

flow into a stream of particle flow [132-134]. The technique has been used for the 

separation of particles of same size with different density and separation of red blood 

cells and platelets [134]. One of the interesting applications of the acoustic force based 

cell separation that has been shown in literature is separation of lipid droplets from blood. 

Red blood cells in plasma is pushed to the nodes and lipid droplets are pushed to the anti-

nodes [135]. The technique can be used for separation of lipid from blood during an open 

heart surgery. 

Acoustic manipulation of micro-particles or cells is attractive tool due to non-contact 

manipulation of particles. The acoustic forces are not affected by surface properties or 

ionic properties of liquid. The throughput is reasonably high and has not been reported to 

damage cells. However, the need for suitable surrounding medium limits its use. 
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Split field thin fractionation (SPLITT): SPLITT is another active method for sorting of 

micro-entities. In this method, particles are pushed from one sample stream to another 

stream by applying an external field. The force affects different micro-entities differently 

which cause separation of one type of micro-entity from another [136]. The external field 

may be gravitational, electrical or magnetic. It is a continuous flow process and has been 

used for separation of cells or micro-particles. The general design of SPLITT can be 

useful for separation of micro-entities based on different properties.  

 

2.3.2.2 PASSIVE SEPARATION TECHNIQUES WITHOUT INVOLVING EXTERNAL FORCES 

There are different techniques that do not use external field or force for sorting of micro-

entities in micro-devices, instead they depend on the micro-fluidic phenomena or 

interaction of micro-entities with structures or obstacles in a micro-channel. The 

separation is mainly based on the flow based differences which arise from either channel 

design or from micro-structures in a micro-fluidic device. Such techniques are discussed 

here as follows: 

Pinched flow fractionation: The pinched flow fractionation is an elegant example of use 

of simple micro-fluidic principles for particles or cell separation [137]. The technique is 

based on the laminar flow and negligible diffusion in a micro-channel. The sample stream 

(containing micro-entities to be sorted) is pushed through a narrow channel along with a 

carrier stream (containing only buffers) through two inlets. The flow rate of the carrier 

stream is usually higher than the sample stream which pushes away the sample stream 

towards one side wall. The sample stream is kept thinner in comparison to the carrier 
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stream. In such situation smaller particles remain in the sample stream whereas some 

portion of bigger particles comes in the carrier stream. When the pinched stream is 

allowed to open up in a wider channel the laminar flow helps in separating these particles 

in different flow streams (Fig.2.6). The separated particles can be collected further 

downstream. Based on this concept, other similar devices has been demonstrated for 

sorting of micro-entities [138].  The method has successfully been applied for the 

separation of 1-5micron particles as well as separation of erythrocytes from blood [139].  

The pinched flow fractionation technique is simple and yet effective for size-based 

separation of particles or biological cells. The through-put can be reasonably high. 

However, it is limited to size-based separation only and it requires lot of fine tuning of 

parameters before accurate separation is achieved. 

 

Fig. 2.6:  Principle of pinched flow fractionation: It based on laminar flow and negligible 

diffusion in a micro-channel: a sample stream (dark-colored in the diagram) is pushed through a 

pinched micro-channel along with another buffer stream. (a) Particles are aligned to one sidewall 

in the pinched segment of the channel by controlling the flow rates from two inlets; (b) particles 

are separated according to their sizes by the spreading flow profile at the boundary of the pinched 

and the broadened segments [Yamada et.al, 2004]. 
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2.3.2.3 MICRO-FILTRATION  

The significance of micro-filtration has been well recognized and different types of 

micro-filters for different applications have been demonstrated. Few strategies that have 

been applied for micro-filtration are Cross-flow filtration [140],  porous membrane 

micro-filtration [141] and micro-filtration using different types of micro-structures such 

as pool-dam based micro-filtration [142], wire-type filtration [143],  micro-pillar based 

filtration [144] and micro-filtration by using ‘C’ or U-shaped structures [88]. The 

filtration principle is based on the size and deformability differences in different types of 

micro-entities.  

Wire-type or pool-dam type filters are simpler but less efficient and are not suitable for 

trapping rare cells from blood. Cross-flow filtration is efficient but complete separation is 

difficult to achieve and it may not be suitable for separating very low number of cells. 

Pillars arranged in one dimension are limited to separate low number of cells and are also 

prone to clogging. Pillars arranged in ‘C’ or U-shaped structures can act as trapping sites 

and such structures can be arranged asymmetrically in two-dimensional space to increase 

the effectiveness of separation. The problem with such arrangement is that efficiency of 

trapping depends on cell-size and flow speed which limit their use [88]. Membrane 

micro-filters with uniform pore-size can achieve very high efficiency of cell or particle 

separation but membrane filters suffer from pore-clogging and pore fouling and are not 

suitable for continuous filtration of large number of cells [5, 145]. The efficiency of cell 

trapping may depend on flow-speed or applied pressure for most micro-filters. In some, 

efficiency may directly be related to the flow-speed. Increased speed or pressure may 

cause trapped cells to squeeze through microstructures or pores as cells are flexible 
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entities. This may decrease the throughput and would not be suitable for handling large 

volume of biological sample (e.g. blood) in micro-fluidic devices. Increasing filter area 

may not be a good solution as it may decrease the detection efficiency and may also use 

large quantities of expensive reagents used for detection. Another problem with many of 

above mentioned micro-filters is unclean separation of cells. As these devices have plain 

empty spaces near filtering structures, so there can be accumulation of undesired cells 

and this may affect the detection specificity of desired cells. Hence, micro-filtration is 

simple and easy to use, but suffers from clogging and unclean sorting, which limits their 

use for continuous separation. 

Micro-filtration have been used for filtering tumor cell from whole blood [88, 141], for 

fractionating white-blood cells from red-blood cells [146] and separation of plasma from 

blood [147] to name a few. 

Hydrodynamic filtration: Another interesting approach for sorting of micro-entities is 

hydrodynamic filtration which relies on laminar flow in a micro-fluidic device [148, 

149]. The principle of hydrodynamic filtration is similar to cross-flow filtration, but 

unlike cross-flow filtration hydrodynamic filtration allows concentration and alignment 

of micro-entities before separation. The dimensions of the main channel and the side 

channel determine the flow-rate distribution in side channels. The narrower the side 

channel, the lesser is the flow. When the relative flow in the side channel is low, only 

small amounts of fluid is removed from the main channel. Micro-entities which are larger 

than flow line are not removed even if the size of these micro-entities is smaller than the 

cross-section of the side channel. Though particles are not removed, fluid is removed 
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which helps in concentrating particles and continuous removal of fluid also helps in 

alignment of particles near side-walls. As the flow distribution on side-channels is 

increased particles of particular size are removed through side channels. Micro-entities 

can be concentrated, aligned and classified by using hydrodynamic filtration. 

 The hydrodynamic fitters have been demonstrated to enrich white blood cells (WBC) 

and red blood cells (RBC). The hydrodynamic fitters are simple to use and are effective 

for concentration of particles. The through-put can also be high. However, complete 

separation of particles or 100% efficiency is difficult to achieve by this technique. 

Other cell separation techniques based on the hydrodynamic principles have also been 

demonstrated. One of them is based on an interesting behavior of blood flow in 

capillaries. RBC tends to flow in the center of capillaries. This principle has been used 

for the depletion of RBC from whole blood using a simple and high through-put micro-

fluidic device [150] and for enrichment of WBC flowing at side-walls in a micro-channel 

[151]. Another one is based on the ‘bifurcation law’ or ‘Zweifach–Fung effect’ which 

states that particles tend to move in the channel at higher flow-rate and particle-free fluid 

tends to flow in a channel with lower flow-rate at a bifurcation of a channel. This 

property has been used for separation of blood plasma from the blood or blood-cell 

enrichment [152]. Few more separation principles can be found in literature, like cell-

separation using multi-stage multi-orifice flow fractionation in micro-channel and is 

referred to as MS-MOFF [153]. The method has been used for capturing circulating 

tumor cells or rare cells from blood. 
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2.3.2.4 SEPARATION BY SELECTIVE GUIDED MOVEMENT USING OBSTACLES 

Micro-entities can be separated by selectively guiding their motion in micro-channels. An 

elegant example of this type of separation is ‘Deterministic Lateral Displacement’ (DLD) 

where motion of micro-entities in laminar flow are guided or affected by an array of 

pillars arranged in a particular manner [154]. DLD is suitable for size-based continuous 

separation of micro-entities. In DLD, symmetrical pillars are arranged in a number of 

rows where each row is shifted by a small distance or angle relative to the previous row. 

The distance between each pillar and the distance or angle of shift determines the critical 

size for sorting [155]. Micro-entities, smaller than the critical size, are not affected by 

pillars and flow in the same streamline whereas particles larger than the critical size are 

‘bumped’ on pillars and shifts to the adjacent streamline. The shift of a larger particle is 

according to its size and the angle of shifted rows. The shift of larger particles pushes 

them away from the laminar flow streamline whereas smaller particles remain in the 

original streamline and thus particles are separated from each other (Fig.2.7). 

DLD has been practically successful in separation of biomolecules, micro-particles and 

cells with high efficiency and at high speed. Separation of blood components from whole 

blood has been demonstrated by using DLD device [156, 157]. It has also been used for 

enrichment of a particular cell types, like larger cardiomayocytes cells from a population 

of cells, for tissue-engineering purposes [158]. An innovative use of DLD has been 

demonstrated in determining the hydrodynamic size of cells and even predicts properties, 

like healthy verses malignant, based on the size-determination, thus performing 

separation and measurement tasks within a microfluidic device [159].  
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DLD is an elegant example of using passive means for effective separation. The method 

does not require any pre-labeling of cells or particles. The separation parameters can be 

tuned to suit different needs. The DLD has capability to achieve high efficiency 

separation with high through-put. However, the technique is only limited to size-based 

separation. 

 

Fig. 2.7: Deterministic Lateral Displacement (DLD):  (a) the smaller particles follow the 

streamline of the laminar flow and is not affected by the arrangement of pillars whereas (b) bigger 

particles shifts according to the shift in pillars arrangement [154]. (Copyright permission obtained 

from publisher) 

 

Another technique using obstacles for sorting micro-entities is hydrophoretic separation 

by using slanted obstacles in a micro-channel [160]. The slanted obstacles are placed on 

the top and the bottom of the channel in an alternating manner. Lateral pressure gradient 

is generated in the micro-channel due to these obstacles which induce transverse flow in 

direction perpendicular to the direction of flow. Different micro-entities are affected 

differently due to such flow and get separated over time. The technique has been used for 

separation of WBC from RBC [161]. The hydrophoretic separation technique utilizes 

b 
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pressure gradient induced by intrinsic means instead of generating force gradient by using 

external force, like electrical or magnetic force. 

2.3.2.5 SEPARATION BY INERTIAL FORCES IN MICROFLUIDICS 

Microfluidics has usually been associated with negligible inertial forces. However, 

inertial forces have recently been used for separation of micro-particles in micro-fluidic 

devices. Inertial lift forces can induce movement of micro-entities from one streamline to 

another streamline of the laminar flow. Position of a micro-entity in the flow is 

determined by the equilibrium of inertial and shear forces induced due to flow of fluid. 

Under effect of these forces, micro-entities with different sizes can be located in different 

streamlines and can be separated by using flow splitters [162]. When particles flow in a 

spiral micro-channel, dean-drag is also active apart from inertial lift force. The balance of 

forces determines the streamline along which a particle is located. Larger particles are 

located near side walls while smaller particles are located in the outer half of the channel. 

Hence, particles are located along different streamlines which is based on the size of 

particles. Streamlines can be separated which can achieve particle separation [163]. 

 

2.4 PATTERNING OF MICRO-ENTITIES IN MICRO-DEVICE 

Patterning of micro-entities is a term used for obtaining micro-entities in a pre-designated 

area on a substrate or space. If the patterning is achieved in a micro-device or by using 

micro features, it is termed as micro-patterning. Bead-based (micro-particles) 

immunoassay is an emerging tool for solid-phase detection of bio-molecules and is 

encouraging the development of micro-fluidic platforms for bead-patterning after or 
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before interaction of bio-molecules conjugated to beads to other bio-molecules present in 

the sample [85].  The ability to pattern beads in a micro-array format has contributed to 

multiplexing of these assays and has enhanced the scope of molecular diagnostics [86].  

The micro-patterning has also been investigated for cells. Usually, cell-patterning is the 

first and is an important step for doing research on cells using cell-based micro-devices. 

Cell-patterning can be classified as multiple-cell pattern or single-cell pattern based on 

number of cells on a particular area or spot of interest. In multiple-cell pattern, a group of 

cells are located at different locations on a substrate whereas in single-cell pattern, each 

cell is separated from other cells. In multiple-cell pattern, the cell study is based on the 

average data obtained across a large group of cells. A number of cells are put together 

and analyzed or are directed to grow or interact in a specified way. So, group effect of 

cells as well as interactions of a group of cells with another group of cells or effect of 

different reagents on a number of cells is studied at micro scale. Thus, it gives an insight 

of cumulative cellular behavior in micro-environment. Such micro-patterns have been 

used for tissue-engineering applications, for studying cell-to-cell and cell-to-surface 

interaction, for fundamental cell studies and for cell-based biosensors. Scientists have 

also shown interest in studying single-cell individually due to inherent heterogeneity in 

cell population. To take in to account of cellular heterogeneity, many scientists believe 

that such heterogeneity is inherent in cellular behavior and data collected from bulk of 

cells may not represent the true state of cellular phenomenon [164]. So, to peer into the 

molecular machinery of individual cells, single-cell pattern is required. Single-cell pattern 

is useful for investigating cellular level differences to understand a disease at the 
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molecular level. Other applications include biosensors, fundamental cell studies and drug 

screening.  

Different techniques have been used for patterning of micro-entities. Herein, a brief 

discussion on this topic has been presented. These techniques have been divided into two 

broad categories for presentation: 1) Biomolecules modified surfaces for patterning and 

2) Techniques for trapping micro-entities. The scope and limitations of these techniques 

have been discussed for each technique separately (together with their introduction). 

 

2.4.1 BIOMOLECULES MODIFIED SURFACES FOR PATTERNING 

Many techniques have been developed for patterning of micro-entities (especially cells) 

on different substrates by modifying surfaces with biomolecules. Biomolecules are 

imprinted on the surface to either enhance the surface properties for attachment of micro-

entities to specific regions or to retard their attachment to undesired regions. Different 

techniques have been used for modifying surfaces with biomolecules for cell-patterning 

which is discussed below. 

2.4.1.1 PHOTOLITHOGRAPHY 

Photolithography has been used for generating patterns of biomolecules on which micro-

entities can be attached on different types of surfaces [165]. In this technique, 

micropatterns are generated by transfer of a pattern from a photo-mask to a layer of 

photoresist using light as energy source. Then, materials of interest (e.g., cell-adhesion 

protein) are applied on the photoresist pattern, and the photoresist is lifted-off to obtain 

desired pattern of biomolecules. Then the surface is incubated with solution of micro-
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entities and their desired pattern is obtained. Recently, single cell micro-array was created 

by patterning biomolecules on the surface using combination of photolithography and 

etching (Fig.2.8) [166]. The photolithographic technique is highly developed for 

producing accurate patterns; however, there are some disadvantages as it requires clean-

room facilities and expensive equipment. 

Fig. 2.8: Single-cell micro-array: Single-cell 

micro-array produced by patterning biomolecules 

using photolithography in combination with 

etching [166]. (Copyright permission obtained 

from publisher) 

 

 

 

 

2.4.1.2 SOFT-LITHOGRAPHY 

Whitesides and colleagues have developed a set of techniques called “soft lithography”, 

which is suitable for patterning biomolecules on a substrate [167, 168]. The term soft 

lithography is used because a soft elastomeric material is used for pattern transfer by 

these techniques. In soft- lithographic techniques poly(dimethylsiloxane) (PDMS) is 

mostly used due to suitable properties of this material. It is biocompatible, optically 

transparent, permeable to gases, elastomeric, and durable. Cells can be cultivated on the 

surface of PDMS by modifying its surface. Different soft-lithographic techniques, like 

Microcontact printing [169], Microfluidic patterning Using microchannels [170], Stencil 

patterning [171] and Laminar flow patterning  [172, 173], have been used for cell 
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patterning. This technique is simple and inexpensive; however it depends on other 

microfabrication techniques for development of the mold used for pattern transfer. 

 

2.4.1.3 MICRO/NANO LITHOGRAPHY 

Cell deposition and culture on flat substrate is a common procedure on the macro scale 

but it is difficult to analyze cells with single cell resolution. Ordered immobilization in a 

two-dimensional array format on micro patterned surfaces may enable simplified analysis 

at single-cell resolution, as a particular cell can be fixed and labeled by its position on the 

substrate. The surface micro patterning is used to pattern cell-adhesive molecules, like 

ECM proteins, to specific sites on the substrate for the cells to adhere and inhibit cell and 

protein attachment in the surrounding areas. Novel surface patterning technologies, like 

contact or non-contact printing technologies that can print an array of spots containing 

biomolecules with resolutions in nanometers is an emerging technology to create an array 

of single cells. Dip-pen lithography, focused-ion beam milling, inkjet and other droplet 

printing technologies have been used for this purpose [174]. Drawbacks of surface 

immobilization methods are that they are not applicable to non-adherent cells and 

deposition is usually irreversible. The choice of the surface coatings may also pose a 

problem. Surface immobilized cell-array platforms can be used as biosensors, drug 

screening and individual cell studies. Another important application is fundamental cell 

studies for understanding cell–surface interactions and cell responses to soluble stimuli. 

Cell-attachment sites can also be modified in topography or chemical composition to 

investigate the effect of such cues on cell behavior [175]. 
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2.4.2 TECHNIQUES FOR TRAPPING MICRO-ENTITIES 

The techniques mentioned in previous sub-section have been used for creating patterns of 

micro-entities by using modified surfaces. The main drawback of these techniques is 

large amount of time required before further experiments can be performed. 

Miniaturization technology provides facilities for rapid trapping of cells. Various 

methods have been applied to trap or immobilize cells. These techniques are based on the 

use of some force or field, like electromagnetic, acoustic, fluidic, or by using micro-

structures. A brief discussion on trapping techniques follows. We have classified these 

techniques as electromagnetic and non-electromagnetic cell trapping techniques. 

 

2.4.2.1 ELECTROMAGNETIC CELL TRAPPING 

Electromagnetic forces or fields have been used for trapping single cells and an array of 

single cells can be obtained by such methods. These techniques use either intrinsic 

property of cell, like charge on cell surface for electrical trapping, or add some property 

to cell, like magnetic labeling for magnetic trapping, to trap a single cell. Some of these 

techniques are discussed here.  

Electrical trapping: Trapping micro-entities with electrical means has emerged as a 

convenient tool due to ease of fabrication of electrical structures and generation of 

electrical potential at micro scale. Furthermore, electrically driven microchips are fast, 

flexible, controllable and easy to automate. Micro-entities trapping has mainly been 

achieved by using DEP. DEP has been discussed in section-2.3.2.1. Micro-entities are 

trapped based on differences between their permittivity and conductivity compared to 

their surrounding medium. Micro-entities are stably trapped when the DEP force balances 
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other forces such as fluidic force and electrophoretic force. The flow speed has to be 

adjusted to keep them immobilized or to balance these forces. Dielectrophoresis can be 

achieved by planar microelectrodes that can produce strong field gradient and DEP force. 

Micro-entities may be trapped in suspension for different applications such as 

biochemical assays, cell fusion, or electrical measurements of cell properties.  

Optical trapping: Radiation from laser light can also be used for trapping micro-entities 

by exerting force for acceleration and trapping of micro-entities [176]. Axial force as well 

as a radial force is produced by laser beam. The axial force propels the particle along the 

axis of the beam and the radial force traps it on the beam axis. The optical forces depend 

on the optical (refractive index and absorption) and other properties (shape, composition, 

and surface charge) of micro-entities. This technique has been applied for trapping single 

cells using laser [177]. A major limitation for optical cell trapping is that the micro-

entities should have refractive index different from that of the surrounding medium.  

Magnetic trapping: Modulated magnetic field based on diamagnetic response of micro-

entities has been developed for trapping micro-entities [178]. The advantage of this 

technique is that it is applicable to any diamagnetic micro-entity with different magnetic 

susceptibility from that of the medium. This method eliminates the need for magnetic 

labeling. 
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2.4.2.2 NON-ELECTROMAGNETIC CELL TRAPPING 

The use of non-electromagnetic force to trap micro-entities has been used and is 

discussed here. 

Mechanical trapping: This term encompasses methods which use mechanical force or 

physical structures for trapping micro-entities. One of the major mechanical trapping 

techniques is to create a hydrodynamic trap by modulating fluid flow to separate micro-

entities from a flow and to immobilize them on certain sites. Mechanical obstacles or 

barriers are mostly used which sieve the object from a fluid by providing a passage for 

fluid only. The obstacle dimensions must be adjusted to capture particular type of micro-

entity. Dam or wire structures have been developed to trap micro-entities like cells [179]. 

Once a cell is trapped, fluid flow is restricted and no other cell gets accumulated there. 

‘C’ shaped microstructures with a small drain have been used for capturing single cells 

[93]. Though the efficiency and throughput for such trapping is high, but such a device 

needs to be optimized before cells of certain average size can be trapped efficiently. The 

problem with sieve based trapping is the high hydrostatic pressure experienced by cells 

during perfusion as trapped cell blocks the sieves and hinders fluid flow. The blockage 

also affects the flow of reagents in the cell trapping site.  In another strategy, micro-wells 

have been used for trapping cells. The fluid flow in the well is low which prevents 

dislodging of trapped cells from these wells [180]. Although, such a strategy may create a 

cell pattern of high density single cell array, but docking of cells in micro wells is not an 

efficient process. Such pattern of cells can be used as a platform for drug screening, to 
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study effects of toxins or environmental pollutants, for single cell-based assays and many 

other applications.  

Acoustic trapping: Standing acoustic wave field generated by one or more ultrasonic 

transducers can be used for acoustic trapping of micro-entities. The principle of acoustic 

force generation has been discussed in section-2.3.2.1. The micro-entities are trapped 

with balance acoustic forces. 

Immobilization in gels: Micro-entities especially cells can be trapped and immobilized in 

hydrogels. Hydrogels have a high solvent content due to loose polymeric network. For 

example, agarose gels have high water content (more than 99%). Under such conditions 

cells are almost entirely surrounded by cell medium. Thus it helps in keeping cells alive. 

Moreover, cells can be released by dissolving the gel [181]. In one application, micro-

fabricated cell-based biosensor has been developed by encapsulating cells using 

photolithography of poly(ethylene glycol) in hydrogel microstructures. An array of single 

or multiple encapsulated viable mammalian cells has been created for biological studies 

[182]. 
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Chapter-3: The 3D Microfabrication Technique 

3.1 INTRODUCTION: 

To work in 3D micro-space can be a rewarding expedition with numerous applications at 

that scale. The simple way to define functional 3D micro-space is to fabricate 3D 

microstructures. However, the current techniques for fabrication of 3D micro-structures 

are complicated, expensive and slow besides being not easily available. Hence, a new 

technique overcoming these drawbacks of existing technology is clearly needed to 

receive wide acceptance from scientists with different technical expertise.  

The above mentioned qualities desired for the new 3D microfabrication technique is 

commonly available in light based 2D microfabrication techniques. Energetic light-beams 

(like UV-light) are being widely used as a pattern transfer tool in these microfabrication 

techniques (like photolithography). Specially designed materials sensitive to energetic 

beams such as photoresists are used for recording the exposure pattern. Such an approach 

confers high efficiency and throughput in lateral pattern transfer, but it lacks control over 

the fabrication in vertical direction. Hence such approach is not used for 3D 

microfabrication. Instead highly localized exposure by using sophisticated equipment is 

used in the existing 3D microfabrication techniques. Most of these techniques focus on 

controlling the position or the distribution of light exposure on the material which allows 

controlled cross-linking in 3D micro-space. The exposure of material to energetic light-

beam is either localized (e.g. two-photon photo-polymerization) or a gradient of exposure 

energy is generated (e.g. Gray-scale lithography). Thus, a cross-linking pattern is 

obtained which is developed as 3D microstructures. Fabrication of different types of 3D 

microstructures has been achieved by using this approach, but the requirement for highly 
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sophisticated equipment for controlling the exposure as well as low throughput due to 

‘point-to-point’ exposure (like in Laser based exposure system) has limited their use. 

However, if the cross-linking can be controlled in the 3D micro-space without strict 

control over the exposure, a 3D microfabrication technique as simple and fast as 2D 

microfabrication techniques (as mentioned in the start of this paragraph) can be 

developed. This would retain the advantages of existing 2D microfabrication techniques, 

yet fabricate complex 3D microstructures.  

Overall, the idea is to control the cross-linking of the material in 3D micro-space instead 

of controlling the exposure. The proposed approach can eliminate the need for any 

sophisticated equipment and reduce the related cost and time while retaining the 

advantage of light-based exposure system (patterned exposure and high throughput). 

However, controlling the cross-linking is challenging due to ‘all-or-none’ cross-linking 

pattern. Moreover, the exposed region is fully activated to cross-link isotropically. The 

cross-linking is energetically favorable and irreversible reaction which is difficult to be 

controlled. Hence, we hypothesized that partial activation (PA) may provide an 

opportunity to manipulate or control the cross-linking. In PA, the material would not 

cross-link instead some unstable bonding may occur which may favor anisotropic cross-

linking into certain favorable configurations. In this work, we have studied this 

hypothesis and have proved anisotropic cross-linking due to partial activation of a photo-

sensitive material. Based on this understanding, a new technique has been developed for 

the fabrication of 3D microstructures by simple methods. Technically, the technique 

developed here would require inexpensive and easily available resources, like plastic 

photo-mask, UV-light source (like Fluorescence-microscope with UV-light).  
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The idea used for developing this technique is new. A single photo-mask (inexpensive 

plastic mask) has been used for the fabrication of different 3D shapes in this study. The 

use of light and photo-mask in this technique is similar to the photolithography (a 2D 

microfabrication technique) which is used for transferring pattern from a 2D photo-mask 

to a layer of photo-sensitive material [183]. However, the use of PA for controlling cross-

linking of exposed region is the core to this new technology. This technique has got high 

throughput like photolithography as arranged structures can be fabricated on a large area 

in a single process. Thus, it retains advantages of photolithography while fabricating 3D 

microstructures. Moreover, different 3D microstructures have been fabricated in this 

project using this technique, whereas only one type of 2D microstructure can be 

fabricated by a single photo-mask in photolithography. Hence, the concept and 

implication of this technique is very different from photolithography and it should not be 

considered just as an improvement of existing techniques. Overall, the technique is 

simple, efficient and inexpensive, the combination of traits which may ladder its 

acceptability by scientist and engineers of different research fields.  
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3.2 THE CHOICE OF MATERIAL 

A light-sensitive material which cross-links after light exposure and which have multiple 

functional groups (for possible re-arrangement) would be required for testing this 

hypothesis. SU-8 has been selected as the suitable material for testing this hypothesis and 

for developing the technique for the fabrication of 3D microstructures in this project as it 

possesses above mentioned qualities. SU-8 is one of the commonly used negative 

photoresist for high-aspect ratio photolithography. SU-8 contains polymeric epoxy resin 

containing high density of epoxy functional-groups (around 8) within each molecule. 

These epoxy resins are dissolved in a solvent along with photo-initiator. The solvent is 

evaporated before exposing it to UV-light by soft-bake. When SU-8 is exposed to UV-

light, the photo-initiators are converted into Lewis-acid which is referred to as photo-

acid. The photo-acid initiates a cationic polymerization reaction which is very slow 

below glass-transition temperature of SU-8 (55°C) due to low molecular movements. The 

PEB at higher temperature is thus required for substantial cross-linking to take place. 

During PEB, polymerization reaction is initiated by photo-acids (H
+
) via ring-opening 

reaction at epoxy bonds of SU-8 molecules [184].  Thus, the exposure by UV-light only 

activates SU-8, but the Post-exposure bake (PEB) at higher temperature completes the 

cross-linking [185].  During PEB, cross-linking species (i.e. photo-acids or activated 

cross-linking chains) in the exposed region may diffuse from exposed to unexposed 

region [186]. Such diffusion is undesirable for 2D pattern transfer techniques, like 

photolithography. However, partial activation (PA) can be generated by such diffusion 

which can help in the fabrication of 3D microstructures. The partial activation can also be 

generated by exposing SU-8 by the low dose of exposure energy.  
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3.3. MATERIALS AND METHODS: 

 

3.3.1 REAGENTS, MATERIALS AND EQUIPMENTS 

 SU-8 2050 photoresist and SU-8 Developer were purchased from Microchem (Newton, 

MA). Sylgard-184 (PDMS) was purchased from Dow Corning (Midland, MI). Silicon-

wafers were purchased from Teltec (Singapore). A photo-mask with a pattern of 

transparent circles (Scheme-S3.1a) was used for studying re-arrangement within the PA. 

The photo-mask with a pattern of opaque circles (Scheme-S3.1b) was used for the 

fabrication of 3D microstructures. Spin-coater (Cee, Brewer science) was used for 

coating a layer of SU-8 on the required substrate. UV-light exposure was done by using 

UV-light source in-built in the Mask aligner (Karl-SUSS Micro Tec.) or Fluorescence-

microscope (transmitted light microscope, Axiostar plus, Carl-Zesis Inc.). The intensity 

of UV-light (365nm) was measured by a power-meter (Cole-parmer). Hot-plate 

(Sawatec.) was used for baking SU-8 at required temperature. Transmitted light 

microscope (Axiostar plus, Carl-Zesis Inc) or Scanning Electron Microscope (SEM, Jeol 

JSM5600) were used for visualization of samples. For FTIR analysis, a thin layer of gold 

was coated on the silicon-wafer by RF-sputtering system (Denton) before coating SU-8. 

The FTIR analysis was performed by the using Micro-FTIR (IR-microscope, AIM-8080, 

coupled with FTIR equipment, IR Prestige-21, Shimadzu Corp.).  

3.3.2. STUDY OF ANISOTROPIC CROSS-LINKING DUE TO PARTIAL ACTIVATION 

Single-layer sample: A layer of SU-8 was coated on a silicon-wafer at final rotational 

speed of 4000rpm (28µm thick layer, as measured by surface profiler, was obtained) and 

it was soft-baked for 2min at 65°C and 10min at 95°C to remove solvents. It was exposed 
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to the low dose of exposure-energy (according to Table-T3.1 as discussed in next section) 

without using any photo-mask (Scheme-S3.1c). This step was avoided for the control 

sample (Scheme-S3.1c). The second exposure was performed by the exposure energy of 

280mJcm
-2

 through a photo-mask (Scheme-S3.1a) either immediately after first exposure 

or after performing PEB following the first exposure. The PEB was performed for 1min 

at 65°C and 5min at 95°C (after first and/or second exposure). It was developed for 5-

7min in SU-8 developer solution. The result shown in Figure-3a and 3b was obtained by 

this experiment. 

Double-layer sample: The double-layer samples were prepared for generation of PA at 

the interface of exposed and unexposed SU-8. These samples were prepared by coating 

and baking a layer of SU-8 as mentioned in previous paragraph. It was exposed by the 

required dose of exposure-energy (280mJcm
-2

) without using any photo-mask. Another 

layer of SU-8 was then coated immediately, at same coating parameters as used for the 

first coating, without performing PEB of this layer (Scheme-S3.1d). For control samples, 

PEB was performed after the first exposure (1min at 65°C and 5min at 95°C) and before 

coating second layer of SU-8 (Scheme-S3.1d). It was soft-baked for 2min at 65°C and 

10min at 95°C. It was then exposed through the photo-mask (Scheme-S3.1a) by the 

required dose of exposure-energy (280mJcm
-2

). The final PEB was performed normally 

(1min at 65°C and 5min at 95°C) in one experiment (Fig.3.10a and b) whereas it was 

performed at high temperature (1min at 65°C and 5min at 105°C) in another experiment 

Fig.3.10c and d). It was developed as before.  
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Scheme-S3.1: Photo-masks: (a) Photo-mask with a pattern of transparent circles, (b) Photo-

mask with a pattern of opaque circles. (c) Single-layer sample preparation and experiments and 

(d) Double-layer sample preparation and experiments 

 

 

 

(a) (b) 

(c) 

(d) 

Experimental Sample 

Sample 

Control Sample 

Sample 

SU-8 
Si-Wafer 

Low dose UV exposure  No UV exposure  

Photomask  

Experimental Sample 

Sample 

Control Sample 

Sample 
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FTIR analysis: All experiments for FTIR analysis were performed in the dark to avoid 

any effect of stray light on SU-8. The FTIR measurements were performed by using IR-

microscope attached to the FTIR equipment. The sample was fixed on a glass-slide which 

could fit in the microscope stage. The sample position was fixed and was stored in the 

microscope software. The image of the sample was transferred to the aperture window 

and the required aperture was defined (right side in Fig.3.2a). The aperture position was 

also fixed and was stored in the software. Positional accuracy of the system was 

determined. To determine it, a small dirt-particle was enclosed in the aperture of 

5µmX5µm. The glass-slide was removed and was placed back. The stored sample 

position and aperture position was restored. The position of dirt particle in the aperture 

was determined by maximizing the aperture window. The process was repeated to check 

the positional accuracy.  

The FTIR measurements for SU-8 were taken in reflectance mode. About 80nm thick 

layer of gold (Au) was sputter-coated on the silicon-wafer at the power of 200W which 

acted as background for the IR-spectral measurements. A layer of SU-8 was coated on 

the gold-coated silicon-wafer at final rotational speed of 8000rpm (13µm thick layer  was 

obtained) and it was baked for 1min at 65°C and 6min at 95°C to remove solvents. It was 

cooled for more than 30min before obtaining IR-spectra. The aperture-size was fixed in 

the software. Percent Transmittance was obtained which was converted to ‘Absorbance’ 

by the software attached to the equipment. Baseline corrections were performed before 

data-analysis. The spectral subtraction as well as determination of peak-intensity was 

performed using the same software. The steps detailed here were the basic step for all 

experiments done for the FTIR analysis.  
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FTIR study of Partially Activated SU-8: The IR-spectra of the soft-baked SU-8 was 

obtained by using the IR-microscope from an aperture of 40µmX40µm size. The sample 

position and the aperture-position were fixed and were stored in the software. It was then 

exposed to the low dose of exposure-energy (about 15mJcm
-2

) without using any photo-

mask. IR-spectra were obtained again from the same aperture area as stored in the 

software. Then, the PEB was performed for 1min at 65°C and 5min at 95°C. It was 

cooled for 30min and the IR-spectra were obtained from the same aperture area. This was 

target sample for studying the PA. Control sample for this experiment was prepared by 

performing the exposure by higher dose of exposure energy (about 100mJcm
-2

) instead of 

low dose of exposure energy keeping all other steps same. The IR-spectra obtained from 

unexposed SU-8 was subtracted from the IR-spectra obtained after exposure to UV-light 

as well as from the one obtained after PEB. A comparison between two samples was 

made.  

FTIR study of re-arrangement within the PA: The re-arrangement study was done by 

obtaining IR-spectra from different areas of interest. A layer of SU-8 was exposed to the 

low dose of exposure-energy (about 15mJcm
-2

) without using any photo-mask. Then, a 

photo-mask (similar to one shown in scheme-S3.1a, but with different feature-

dimensions, array 50µm circles with the pitch of 105µm) was used for the second 

exposure at the exposure energy of 100mJcm
-2

. To take the IR-spectra after this step, the 

image of circles on the photo-mask was taken (the focus was done to image the circle 

area in contact with the SU-8 to avoid any mismatch due to thickness of the photo-mask). 

It was transferred to aperture window and apertures at different positions were defined. 

Then, the photo-mask was removed and the IR-spectra from different areas were 
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obtained. The PEB was then performed for the sample and IR-spectra were obtained 

again. After complete PEB, the exposed and unexposed areas can be visually 

distinguished (Fig.3.6a). The image was taken and was transferred to the aperture 

window where it was matched to the stored aperture position.  

FTIR study of PA generation due to diffusion: For diffusion studies, the coating and soft-

baking of SU-8 were performed as usual. After soft-bake, the substrate was exposed 

through a photo-mask containing an array of transparent squares (200µm side and 400µm 

pitch) by the exposure-energy of 100mJcm
-2

. The PEB was performed either normally 

(1min at 65°C and 5min) or at high temperature (1min at 65°C and 5min at 105°C). FTIR 

measurements were obtained from different locations from the sample. 

3.3.3 FABRICATION OF 3D MICROSTRUCTURES 

 The fabrication of 3D microstructures was done by using either a single-layer or double-

layer of SU-8. The samples were prepared as discussed below. 

Single-layer SU-8 sample preparation: SU-8 was spin-coated at a final rotational speed 

of 2000rpm for 40s on a clean silicon-wafer. It was soft-baked for 5min at 65°C and 

20min at 95°C. It was cooled down for 10min and was exposed to UV-light by required 

dose of exposure-energy through the photo-mask (Scheme-S3.1b). For ‘Single-layer 

Double-exposure’ experiments, first exposure was performed with low dose of exposure-

energy without a photo-mask immediately followed by second exposure through the 

photo-mask (similar to Scheme-S3.1c). Post-exposure bake (PEB) was performed for 

1min at 65°C and 15min at certain temperature.  
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Double-layer SU-8 sample preparation: The first layer of SU-8 was coated at final 

rotational speed of 4000rpm and was soft-baked for 2min at 65°C and 10min at 95°C. It 

was cooled down for 8min and was exposed to the UV-light by an exposure-energy of 

280mJcm
-2

. The second layer was immediately coated without performing PEB of the 

first layer (similar to Scheme-S3.1c). The coating, baking and exposure of second layer 

were similar to the single layer mentioned in previous section.  

Replica Molding: The Silicon-wafer containing SU-8 master mold was vapor-silanized 

by TRICHLORO(1H,1H,2H,2H-PERFLUOROOCTYL)-Silane in a vacuum chamber for 

15min for easy release of PDMS replica. PDMS polymer base and cross-linking agent 

were mixed in ratio of 10:1 and stirred for uniform mixing. It was degassed in a vacuum 

desiccator. It was poured on SU-8 mold and baked for one hour at 70°C before peeling it 

out to obtain replica of structures in PDMS. 

SEM imaging: A thin layer of gold was coated for 40s at 30mA in a gold sputter-coater 

(Jeol) on PDMS or SU-8 samples and they were visualized through the SEM (Jeol). 

Data Analysis: The SEM images were used for measurement of different features of 

structures. The dimensions were measured using a soft-ware ImageJ (downloaded from 

www.rsbweb.nih.gov). The values were normalized with respect to maximum expected 

values. The base-width and the top-width were normalized by dividing the measured 

value by the known dimension of circular aperture on the photo-mask (60µm). The height 

was normalized by dividing the measured height by the SU-8 thickness obtained at the 

given spin-speed (here 60µm). The angle was normalized by maximum expected value of 
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90°. The Mean and Standard Deviation of measurements were calculated and were 

plotted by using Origin software.  

 

3.4. RESULTS AND DISCUSSION 

3.4.1 STUDY OF PARTIAL ACTIVATION 

3.4.1.1 STUDY OF ANISOTROPIC CROSS-LINKING DUE TO PARTIAL ACTIVATION 

As hypothesized earlier, the partially activated polymer may favor anisotropic cross-

linking. To study this hypothesis, a simple experiment has been performed here. A layer 

of SU-8 is coated on a silicon-wafer and is soft-baked. It is uniformly exposed to the low 

dose of exposure energy and is baked again. The low dose of exposure energy in this step 

would initiate partial activation during baking step. Then, it is exposed again through a 

photo-mask (an array of transparent circles of diameter 5µm with the pitch of 15µm, 

Scheme-S3.1a) by required (as specified by the manufacturer) dose of exposure energy 

for complete cross-linking. PEB and development are performed normally. The first 

exposure (with low dose of exposure energy) is not performed while keeping rest of steps 

the same in the control sample of this experiment. Usually, exposure through the given 

photo-mask would produce an array of pillars as seen in the control sample (Fig.3.1b), 

but unexpected connecting structures between pillars are observed in target sample 

(Fig.3.1a). Since all other conditions are kept same for both of these samples, the 

connecting structures can only be attributed to the PA initiated by the first exposure with 

low dose of exposure energy. Though, the low dose of exposure energy used here is not 

enough to produce any cross-linked structures (it has been tested separately), yet, 
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connecting structures are formed. Also, the first exposure has been performed uniformly 

on the sample but connecting structures are observed in certain configuration only 

(between adjacent pillars). The result supports the hypothesis and indicates that the PA 

may favor anisotropic cross-linking. A range of exposure energy for the first exposure 

has been tested here (Table-T3.1). The result in the Table-T3.1 suggests that connecting 

structures are formed within a short-range of exposure energy only.  

To further confirm the finding and to make sure that the observed effect is not limited to 

a particular size of pillars or pitch of the array, different pillar size with varying pitch has 

been tested and the same result has been obtained (data is shown for pillar size of 50µm 

with pitch of 105µm in Fig-3.1c and d). It elicits an interest to know more about behavior 

of the PA and their possible anisotropic cross-linking. To study the partial activation at 

molecular level, Micro-FTIR has been used in this work. The sample can be viewed using 

the Microscope attached to Micro-FTIR and IR-spectrum can be obtained from the exact 

area of interest. Thus, it gives a glimpse of changes taking place at molecular level at a 

particular area of interest. The next sub-section has discussed it in detail. 

 

 

 
Tabel-T3.1: Range of low dose of exposure energy for the formation of connecting 

structures: Different low dose of exposure energy with or without baking after the exposure is 

used. The same Photo-mask and SU-8 coating and baking condition, which are used for obtaining 

Fig.3a, have been used for this experiment. 

 

1
st
 Exposure Energy  No PEB after 1

st
 exposure PEB after 1

st
 exposure 

7  mJcm
-2

 No connecting structures Connecting structures 

14 mJcm
-2

 Connecting structures Connecting structures 

21 mJcm
-2

 Connecting structures No connecting structures 

28 mJcm
-2

 No  connecting structures No  connecting structures 
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Fig. 3.1: Formation of connecting structures by the PA: (a) optical image of connecting 

structures between pillars (5µm pillars separated by 15µm) is obtained by the PA initiated by low 

dose of exposure energy, (b) is optical image of pillars without any connecting structures for the 

sample with no PA. Inset in (a) is the SEM image showing the connecting structure. (c) optical 

image of 50µm pillars separated by 105µm showing connecting structures which is obtained by 

partial exposure while (d) is obtained by using same mask as (c) without any partial exposure. 

Arrows point to the connecting structures. 

 

 

 3.4.1.2 MOLECULAR STUDY OF PARTIAL ACTIVATION USING MICRO-FTIR 

 

Positional Test for FTIR microscope: Micro-FTIR is a useful tool for obtaining IR-

spectrum from a small area of interest. The position of the sample can be fixed and co-

ordinates of the position can be stored in the attached software which allows retrieval of 

the same position. Thus, IR-spectrum from the same area of interest can be obtained after 

each experimental step. The positional accuracy of the equipment has been tested and it 

has been found that it is quite accurate in the error-margin of 5µm (Fig.3.2 and 3.3). To 

(a) 

(b) (d) 

100µm 
100µm 

20µm 
    20 µm 

(a) 

(d) (c) 

(b) 
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test the positional accuracy, an aperture of 5µmX5µm is located around a small dirt 

particle (Fig.3.2a). The sample is removed and is replaced and the position is noted each 

time. It has been found that the dirt-particle remains in the defined aperture of 5µmX5µm 

(Fig.3.2b). In the same way, the spectral accuracy has been tested by obtaining IR-spectra 

from a particular position each time after replacement. The difference between any two 

spectra obtained from the same position is negligible (Fig.3.3).   

 

FTIR peak allocation: The IR-spectrum for a particular experiment has been obtained 

from a single position; hence peak normalization with respect to any standard is not 

required for comparing spectra obtained after each experimental step. To compare the 

spectra obtained from two different positions/samples, spectral subtraction between 

spectrum with particular treatment and spectrum without any treatment is performed for 

both samples separately which are then compared.  The IR-spectrum has been obtained in 

reflectance mode using the IR-microscope. For the FTIR study done in this work, the SU-

8 has been coated on a gold-coated silicon-wafer as gold is an excellent reflector of IR. 

The IR-spectra of SU-8 without any light exposure (i.e. after soft-bake) has been obtained 

(Fig.-3.4b). Different absorbance peaks in the IR-spectra obtained here can be assigned to 

different bonds and their mode of vibrations [187]. The cross-linking in SU-8 proceeds 

with conversion of epoxy bonds to aliphatic ether bonds via cationic polymerization 

reaction. Hence, monitoring changes in the peaks related to ether bonds and epoxy bonds 

can give a glimpse of the cross-linking process. Saturated branched ether bond shows two 

or more peaks in wave-number range of 1070-1210cm
-1

[188]. Two peaks, the peak at 

1126±4cm
-1

 and 1111±4cm
-1

, have been chosen here for reliable monitoring of changes  
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Fig. 3.2: Test for positional accuracy of the IR-microscope system: The positional accuracy of 

microscope stage is tested here. The coordinates of the sample position can be stored in the 

software. A sample with dirt particles is taken for this experiment. (a) shows the picture of sample 

(view mode, left-side) which is transferred to the aperture window (right-side) to define the 

aperture. The position of aperture is also stored. The aperture size of 5µmX5µm is fixed around a 

small dirt-particle in this study. The sample is taken out of the stage and is put back again and the 

aperture position is restored. The same particle is located by the relative position of other 

surrounding particles. The aperture-window is maximized and particle position in the aperture is 

located. (b) shows maximized image (cropped from original image). The dirt-particle is encircled 

here to show its location.  The position of the particular particle is tracked after each time it is 

removed and is replaced. The series of images shows that the particle remains within the aperture 

area. So, the microscope can be used accurately at least with the aperture size greater than 

5µmX5µm or with an error margin of 5µm.   

 

 

 
 

 

Fig. 3.3: Test of spectral accuracy with the 

FTIR-microscope system: The spectral accuracy 

is tested for the microscope by taking spectra from 

an untreated SU-8 with the aperture size of 

40µmX40µm. The IR-spectrum from a particular 

position is obtained. Then sample is removed 

from the stage and is placed back and the same 

position is restored by the software. IR-spectrum 

is obtained again from that position. The 

difference of the two spectra is calculated as 

shown here. It can be seen here that two spectra 

nearly matched. The peaks of interest are zero.  

 

(b) 

(a) 



Chapter-3 

 

62 
 

in ether-bonds (has been observed to show expected variation and have also been used in 

literature, Ref-187). With certain treatments the peak positions change to slightly nearer 

wavenumbers, hence the peaks closet to the assigned peak, in the defined range, is chosen 

during analysis. The peaks at 914±4cm
-1

 and 862±4cm
-1

 are assigned for epoxy ring 

modes and have been chosen here for monitoring changes in epoxy bonds. Apart from 

these peaks corresponding to the functional groups participating in the cross-linking 

reaction, another peak corresponding to the bond that does not participate in the cross-

linking reaction has been monitored to determine if the base molecule is affected in the 

PA. The change in peak intensity of a cross-linking bond would be due to disintegration 

or formation of that bond, but such change in non-cross-linking bond would be due to 

change in dipole-moment of that bond which can be due to change in charge distribution 

in the molecule [188]. Thus, monitoring changes in non-participating bonds would 

indicate the change in charge distribution within molecules in PA state. Each molecule of 

SU-8 contains about eight aromatic rings which do not participate in the cross-linking 

reaction. The peak at 1608cm
-1

 is assigned to aromatic ring C-C stretch mode. Normally, 

the peak intensity at 1608cm
-1

 should not change and that is reason for selecting it as 

reliable internal standard in previously published works [187]. Since this peak 

corresponds to bonds that do not participate in the cross-linking reaction, any changes in 

peak-intensity of the peak may suggest change in charge distribution around aromatic 

rings. Hence, change in peak-intensity of this peak has also been monitored in this work 

to understand if partial activation state affects the charge distribution in molecule. 
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Fig. 3.4: SU-8 and its IR-spectra: (a) Molecular structure of SU-8, (b) IR-spectra of un-exposed 

SU-8. 

 

 

FTIR study of partially activated SU-8: To start with, a sample with complete cross-

linking has been studied as the control. A layer of SU-8 is exposed to the required dose of 

exposure energy (which is enough to cross-link SU-8 to from stable structures, about 

100mJcm
-2

) and PEB is performed normally. FTIR-spectra are obtained after each 

treatment from the same area. Spectral subtraction is performed for determining the 

corresponding changes due to each treatment. No significant change has been observed 

by the exposure to UV-light in any peak of interest which confirms that cross-linking 

does not occur with UV exposure until PEB is performed. After PEB, significant changes 

have been observed. The peaks corresponding to ether bonds increase while epoxy 

related peaks decrease (Fig.3.5a). The finding is reasonable and indicates the formation  

(b) (a) 
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Fig. 3.5: IR-spectral study of cross-linking: Spectral changes due to complete and partial 

activation: The plots are obtained here by subtracting IR-spectra of unexposed SU-8 from (a) 

fully exposed and baked SU-8 (complete cross-linking), and (b) partially exposed and baked SU-

8 (partial activation). The range of scale is same for  (a) and (b).  

 

of ether bonds with disintegration of epoxy bonds. The peak at 1608cm
-1

 has not changed 

during this experiment. Next, the target sample with induced PA is studied. A layer of 

SU-8 is exposed to the low dose of exposure energy (about 15mJcm
-2

) and is baked as 

usual (PEB). FTIR spectra are obtained after each step.  No significant change has been 

observed by UV-exposure (as before) but significant changes have been observed in the 

peaks of interest after baking step. Interestingly, the peaks related to both ether bonds and 

epoxy bonds have decreased significantly in their intensity after PEB (Fig.3.5b) while the 

peak at 1608cm
-1

 had increased in its intensity. The finding for this experiment is 

contrasting to the control experiment and indicates that the behavior of PA is quite 

different from their fully cross-linked counterpart. Although the exposure energy for PA 

is very low, the decrease in epoxy bonds is similar to that of complete cross-linking. 

Moreover, ether bonds also have decreased instead of increased. Thus, such decrease in 

epoxy bond should not be due to its disintegration as the decrease is unreasonably high 

and no new ether bonds have formed. The cross-linking reaction can only cause increase 

(b) (a) 
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in ether bond. Thus, the decrease in ether bond observed here means existing ether bond 

in the molecule has been affected in the PA state. An ether bond connected to the epoxy 

group and the aromatic ring does exist in SU-8 (Fig.3.4a). Also, the non-participating 

chemical bonds from aromatic rings have been affected. More than 25% increase in the 

corresponding peak intensity has been observed. As noted from the control experiment, 

this peak remains unaffected by the UV-exposure (which generates active/charged 

species) and PEB (which induces cross-linking). Thus, it can be inferred that such effects 

are unlikely due to activation or cross-linking reaction. Thus, the observed changes in the 

peaks of interest are due to change in dipole-moment of the bonds. However, it is 

difficult to predict the exact charge distribution in the SU-8 molecule pertaining to the 

observed changes. This might happen due to partial bonding of oxygen atom in epoxy 

bond with H
+
 ions produced by the exposure. Since the amount of exposure energy is 

less, the amount of H
+
 ions produced would also be less. Different oxygen atoms 

surrounding H
+
 ions may interact with it but new bonds may not from. Such interaction 

may cause change in the partial charge on different atoms in SU-8 molecule, thus 

changing the overall charge distribution.  

 

Anisotropic cross-linking in the PA: In section-3.4.1.2, the formation of unexpected 

connecting structures between pillars due to PA, as shown in figure-3.1a and 3.1c, has 

been studied. Herein, this phenomenon has been further studied by using Micro-FTIR. 

The conditions used for obtaining pillars with connecting structures in target sample 

shown in Fig.3.1c and pillars without connecting structures in the respective control 

sample shown in Fig.3.1d have been used for this study. Three areas of interest have been 
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selected by defining an aperture of 40µmX40µm (inset in Fig.3.7a). The aperture size has 

been chosen to be smaller than feature size to take into account the error margin in the 

positional accuracy. Area-1 is defined between two adjacent pillars, area-2 is defined at 

the center of four adjacent pillars and area-3 is defined on the top of a pillar. A layer of 

SU-8 is exposed to the low dose of exposure energy (about 15mJcm
-2

). The IR-spectra 

from all three regions are obtained and are copmpared. No significant change among 

spectras is oserved. Then, it is exposed again through the photo-mask (an array of 

transparent circles of 50µm with pitch of 105µm) and the PEB is performed as usual. For 

the control experiment, the first exposure (by low dose of exposure-energy) is not 

performed, but rest of steps is kept same as the target experiment. IR-spectra are obtained 

from the defined areas of interest and are compared (Fig.3.6a, b). Area-3 and area-1 show 

increased peak-intensity for ether bonds and decreased peak-intensity for epoxy bonds 

whereas area-2 shows decrease in peak-intensities for both of these peaks (Fig.3.6b). The 

peak-intensity for the peak at 1608cm
-1

 is significantly increased for area-2 while it is 

slightly increased for area-1 and area-3. This indicates complete cross-linking at area-3 

and area-1, while partial activation at area-2. Although area-1 and area-2 have been 

subjected to same treatments, area-1 has shown complete cross-linking behavior while 

area-2 has shown PA behavior.  
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Fig. 3.6: IR-spectra from different areas: (a) Image taken from the software attached to micro-

FTIR to shows how an area of interest is marked in the software and spectra is obtained from 

different areas. Area-3 is marked in this picture (discussed in main text). The IR-spectra from 

different position have been obtained. (b) The combined IR-spectra from Area-1 (red), Area-2 

(blue) and Area-3 (green) after completing exposure through photo-mask and PEB are obtained 

for studying re-arrangement within the PA. The peak-intensities from Area-1 and Area-3 are 

similar while they differ from Area-2.  

 

 

To further analyze the result, the spectral difference between different regions has been 

obtained. Untreated or UV-exposed SU-8 from all three regions does not show any 

significant difference. After PEB, for the control sample, the difference between IR-

spectra obtained from area-1 and area-2 are negligible (Fig.3.7a). The area-3 shows 

higher peak intensity for ether peaks and lower peak intensity for epoxy peaks compared 

to area-1 (Fig.3.7b) which indicates higher degree of cross-linking at the exposed region 

(area-3). The peak at 1608cm
-1

 remains unchanged for the control experiment. The target 

experiment, however, has shown differences between IR-spectra obtained from all three 

(a) 

(b) 



Chapter-3 

 

68 
 

areas of interest (Fig.3.6b). The difference between IR-spectra obtained from area-1 and 

area-2 is significant (Fig.3.7c). Both ether and epoxy peaks from area-1 are much higher 

than area-2, but the peak-intensity of the peak at 1608cm
-1

 is lower. The increased peak-

intensity at 1608cm
-1

 and decreased peak-intensity for ether and epoxy bonds from area-2 

compared to area-1 indicates more PA at area-2 compared to area-1. The difference 

between IR-spectra obtained from area-3 and area-1 is less (Fig.3.7d). The ether peaks 

from area-3 are slightly higher than ether peaks from area-1 while difference between 

epoxy-peaks and aromatic C-C peak (at1608cm
-1

) is negligible. The similarity in spectra 

between area-3 and area-1 indicates that cross-linking of polymers at area-3 and area-1 is 

similar. This supports the previous finding about the formation of connecting structures 

which is caused due to increased cross-linking at area-1. This finding suggests that the 

cross-linking at area-1 is affected by cross-linking at area-3. Another important thing to 

note here is the degree of cross-linking at area-3 and area-1. Although, the area-3 is 

exposed to exposure energy much higher than area-1, the degree of cross-linking at area-

3 and area-1 is similar. The area-1 is only exposed partially, like area-2, but it shows 

much higher cross-linking than area-2. Hence, findings here suggest that cross-linking 

proceeds in an anisotropic manner in the PA regions under influence of rapid cross-

linking at fully activated regions.  
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Fig. 3.7: Studying cross-linking at different areas under partial cross-linking: Inset in (a) 

shows the areas of interest for spectral measurements. (a-d) are spectral differences between 

different areas of interest. (a and b) are obtained from control sample without partial exposure, (a) 

is obtained by subtracting IR-spectrum of area-2 from area-1, and (b) is obtained by subtracting 

IR-spectrum of area-1 from area-3. (c and d) are obtained from target sample with partial 

exposure, (c) is obtained by subtracting IR-spectrum of area-2 from area-1, and (d is obtained by 

subtracting IR-spectrum of area-1 from area-3. The range of scale is same for  (a-d). 

 

 

 

To further investigate deeper on how the cross-linking occurs at different areas; an 

experiment has been performed to track the cross-linking process in the target sample. 

After exposure through the photo-mask, the PEB is performed by gradually increasing 

the PEB temperature while monitoring the spectral changes between all three areas as 

PEB occurs during cross-linking. It has been performed for 2min at 65°C, then 2min at 

80°C and then another 2min at 95°C. The change in peak-intensities of the three peaks, 

(a) 

(d) 

(b) 

2 

1 3 

(c) 
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ether related peak at 1126cm
-1

, epoxy related peak at 914 cm
-1

, and peak for aromatic 

ring mode at 1608cm
-1

, with respect to untreated SU-8 have been plotted here (Fig.3.8). 

The change in the peak-intensity of each peak of interest is plotted for all three areas of 

interest at four conditions, namely, the peak-intensity after UV-exposure through photo-

mask, and after PEB at 65°C, 80°C and 95°C (Fig. 3.8). Plot shown in Fig-3.8a, 3.8b and 

3.8c represents changes in peak-intensity of epoxy bonds, ether bonds and aromatic ring 

modes, respectively. Fig-3.8a and the Fig. 3.8b show that curve obtained from area-1 is 

between area-3 and area-2. The area-2 is expected to have PA and area-3 is expected to 

have complete cross-linking. Hence, the area-1 would possess characteristics of both 

partial as well as complete cross-linking. The plot for tracking changes in epoxy bonds 

(Fig. 3.8a) shows that the peak-intensity from area-3 decreases as PEB temperature is 

increased to 80°C and then it increases just slightly as PEB-temperature is increased to 

95°C. For the same area, the plot for ether bonds shows an increasing trend (Fig. 3.8b). 

This indicates increase in the degree of cross-linking at this area with increase in PEB 

temperature (as expected). The peak at 1608cm
-1

 does not show significant change (Fig. 

3.8c). The plot for area-2 shows different characteristics than area-3. For both ether peak 

and epoxy peak, the peak-intensity remains unchanged when PEB is performed at 65°C, 

and then a sharp decrease in peak-intensity is noted as PEB temperature is increased to 

95°C (Fig. 3.8a and b). The peak at 1608cm
-1

 shows opposite characteristics for the same 

range of temperature from the same area (Fig. 3.8c). The sharp decrease in the plot from 

area-2 for epoxy bonds as well as ether bonds and concomitant increase in the peak at 

1608cm
-1

 indicates increase in partial activation at area-2. The plot from area-1 shows  
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Fig. 3.8: Studying re-arrangement of 

partially cross-linked polymeric 

molecules: Plots showing changes in the 

peak- intensity of different peaks with 

respect to corresponding peaks of un-treated 

SU-8.   Peak-intensity of three 

wavenumbers, (a) 914cm
-1

, (b) 1126cm
-1

 

and (c) 1608cm
-1

, have been plotted for 

three areas of interest after four conditions 

of treatment, namely, UV-exposure through 

photo-mask, and PEB at 65°C, 80°C, 95°C. 

The areas of interest have been shown in 

inset of Fig.3.7a.    ,  ,  , indicates area-1, 

area-2 and area-3 respectevily in all three 

plots.  

 

a trend different from both area-3 and area-2. For the area-1, the plot related to epoxy 

bonds (fig. 3.8a) is similar to the area-3, but the corresponding plot for the ether bonds is 

different (Fig. 3.8b). The similarity in changes in epoxy bonds (almost through-out the 

experiment) suggests that the cross-linking at area-1 is influenced by area-3, as these two 

areas have been treated differently. Although, area-1 and area-2 have received same 

exposure treatment, yet, cross-linking at area-1 is similar to area-3. The peak at 1126±4 

cm
-1 

(ether) from area-3 increases continuously which indicates formation of new ether 

bonds. The same peak from area-1 increases then slightly decreases and then increases 

again. This shows that cross-linking begins in area-1 as ether peak increases. Slight 

(b) 

Epoxy Ether 

(c) 

(a) 

Aromatic Ring 
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decrease in ether peak suggests that there is generation of PA molecules along with 

complete cross-linking, as ether peak in PA shows decrease in intensity. Finally, it cross-

links completely similar to area-3. This further suggests that cross-linking at the area-1 is 

influenced by cross-linking at area-3. This conclusion is supported by results from area-2 

which shows sharp decrease for epoxy and ether peaks besides sharp increase in 

aromatic-ring peak. Although area-2 and area-1 have received same exposure treatment, 

their cross-linking pattern is very different. This proves the anisotropic cross-linking 

within PA material under the influence of rapid cross-linking at area-3.  

 

3.4.1.3 STUDY OF PARTIAL ACTIVATION DUE TO DIFFUSION 

 

FTIR study of partial activation due to diffusion: As discussed in the previous sub-

section, the PA can be generated by low dose of exposure energy. PA can also be 

generated by diffusion of activated molecules from exposed region to unexposed region. 

The exposure to UV-light activates SU-8, but the cross-linking takes place during PEB, 

which may allow diffusion of active species from exposed region to unexposed region. If 

the amount of diffusion is high, the unexposed region will cross-link completely, but if it 

is low PA may be generated in the unexposed region due to low amount of diffused 

cross-linking initiators. Micro-FTIR has again been used to study the generation of PA 

due to diffusion.  A layer of SU-8 is exposed to UV-light through a photo-mask (opaque 

Square area of 200µmX200µm). Two such samples are prepared. PEB for one of them is 

performed as usual at 95°C while for other it is performed at 105°C. Diffusion is 

expected to be higher at higher temperature. The IR-spectra is obtained from a fixed 

aperture size of 50µmX50µm and from three positions of interest as shown in inset of 
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Fig.3.9a (also refer to Fig.3.9e). The position-1 is located in the exposed region while 

position-2 and position-3 are in the unexposed region. All conditions for both samples 

remain same except for the temperature of PEB. A comparison between these two 

samples can indicate the differences due to diffusion at different temperatures. The IR-

spectra from these three regions does not show any significant difference before any 

treatment, but after PEB at 95°C, the difference between IR-spectra obtained from 

position-1 and position-2 shows no change for aromatic C-C stretch peak, positive 

change for ether peaks and negative change for epoxy peaks (Fig.3.9a). This indicates 

that cross-linking at position-1 is higher than position-2, which is reasonable as position-

1 is exposed while position-2 is not. Though, position-3 is also not exposed, but it shows 

slight increase in aromatic C-C stretch peak and decrease in both ether and epoxy peaks 

compared to position-2 (Fig.3.9b). This indicates PA at position-3 which could be due to 

diffusion as it is adjacent to position-1. The result obtained here differs from the one 

obtained from another sample with PEB at 105°C. In this sample, the peak-intensity of 

aromatic C-C stretch peak has increased at position-2 compared to position-1 as it is 

negative (Fig.3.9c). This indicates the some PA characteristics at position-2. However, 

the ether peak is not increased as expected (considering it should be negative for PA at 

position-2). Thus, at position-2, characteristics of both PA and complete cross-linking 

exist. This can happen due to high diffusion at increased temperature as other parameters 

are kept same for these two samples. The difference between position-2 and position-3 is 

negligible which supports that the diffusion is high enough to allow diffused species to 

reach the position-2. This is confirmed by developing these two samples. The sample 

with PEB at 105°C has much reduced feature size compared to the sample with PEB at  
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Fig. 3.9: Partial cross-linking due to diffusion: (a-d) are obtained by subtracting IR-spectra 

from one position to another position (different positions are shown in inset in (a)). For the PEB 

performed at 95°C, (a) is obtained by subtracting IR-spectrum of position-2 from position-1, (b) 

is obtained by subtracting IR-spectrum of position-2 from position-3. For the PEB performed at 

105°C, (c) is obtained by subtracting IR-spectrum of position-2 from position-1, (d) is obtained 

by subtracting IR-spectrum of position-2 from position-3h. (e) is the image taken from the 

microscope-software showing feature in view-window (left hand side) and feature with aperture 

in the aperture window (right hand side).  The range of scale is same for  (a-d). 

 

 

(a) (b) 

(d) 

1 2 3 

(c) 

(e) 
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95°C. Thus, the two samples show different trends due to difference in PEB temperature 

which suggest that diffusion of activated species can take place during PEB and PA can 

be generated due to diffusion. 

Formation of structures due to the PA obtained by diffusion: Next, the formation of 

structures due to re-arrangement of PA caused by diffusion has been studied here. To 

study this, another sample consisting two layers of SU-8 has been prepared. A layer of 

SU-8 is exposed to UV-light and then another layer is coated without performing PEB of 

first layer. As cross-linking of the first layer would not be completed without PEB, 

diffusion of activated cross-linking species from exposed layer to unexposed layer would 

take place. The second layer contains solvent which would enhance this process. A 

gradient of partial activation is expected at the interface of two layers. To prepare a 

control sample, the PEB is performed after exposure of first layer to complete the cross-

linking and to avoid any interaction between two layers. The second layer is exposed to 

normal dose of UV-light through the photo-mask (an array of transparent circles of 5µm 

with pitch of 15µm) and the PEB is performed normally at 95°C. Similar type of 

connecting structures is observed at the bottom of pillars in the target sample (Fig.3.10a), 

whereas no such connecting structures are observed in control sample (Fig. 3.10b). Since 

the PA is expected at the interface between first and second layer, connecting structures 

are only formed at bottom of pillars (Fig.3.10a and e). The replica mold in PDMS 

obtained from the target sample (Fig.3.10a) shows dome-shaped microstructures formed 

due to space enclosed between connected structures at bottom of pillars (inset in 

Fig.3.10e). This confirms the anisotropic cross-linking due to PA generated by diffusion.  
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The next question to answer is whether the PA can dynamically affect the cross-linking in 

the adjacent regions. To study this, samples have been prepared in the same way as the 

previous experiment (above paragraph). All conditions for both of these experiments are 

kept the   same except for the temperature of final PEB. The final PEB is performed at 

105°C instead of 95°C. The idea is to allow diffusion of cross-linking species from pillars 

at higher temperature. In this set-up it can be observed if PA at interface affects the cross-

linking of diffusing molecules. At increased PEB temperature (105°C), the results are 

interesting. Diffusion is expected to be high within second layer at this temperature which 

can be interpreted from the control sample. For control sample, no distinct pillars are 

formed and all structures are nearly merged together due to increased diffusion 

(Fig.3.10d). Same conditions for diffusion exist for target sample also, but connecting 

structures, through-out the height of pillars, are formed by diffusing species in this 

sample (Fig.3.10c and f). The PDMS replica mold obtained from target-sample 

(Fig.3.10c) shows large micro-structures formed due to space enclosed between pillars 

due to connecting structures through-out the length of pillars (inset in Fig.3.10f). Since, 

the only difference between the target and the control sample is the PA at interface; it 

indicates that the diffusing species in adjacent layer are dynamically influenced by the 

PA at the interface. This provides an opportunity to control such cross-linking which can 

help in 3D microfabrication.   
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Fig. 3.10: Re-arrangement of Partially activated polymer obtained by diffusionof activated 

species: (a-f) are SEM images of SU-8 samples for the experiment with double-layers of SU-8. 

The insets in (e) and (f) are PDMS replica of  respective samples. (a) and (c) are experimental 

sample obtained by coating second layer without performing PEB of the first layer. For control 

sample (c and d), PEB of first layer is performed normally. Second exposure is carried-out 

through photo-mask (array of transparent circles). Final PEB for sample (a and b) is performed at 

95°C and for sample (c and d) is performed at 105°C. Connecting structures at pillar’s bottom are 

seen in SEM image (a) but not in (b) (pillars are broken to show the bottom in (b)). Connecting 

structures between pillars are seen in SEM image of SU-8 mold (c) and no distinct pillars or 

connecting structures can be seen in (d). (e) and (f) are obtained by deliberately breaking pillars 

(to see the bottom) in sample (a) and (c) respectively.  Red-elipses show connecting structures at 

bottom of pillars in (e), but in (f) they show connecting structures  at the bottom as well as 

through-out the pillar. Inset in (e) shows small PDMS structures while inset in (f) shows larger 

PDMS structures (similar in size to SU-8 pillars in main-figure shown in f).   

(c) 

(a) 
(b) 

(d) 

(e) (f) 

20 µm 
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3.4.2 THE 3D MICROFABRICATION TECHNIQUE 

 

3.4.2.1. EFFECT OF EXPOSURE ENERGY AND PEB TEMPERATURE  

The anisotropic cross-linking due to partially activated SU-8 has been studied in the 

previous section. In this section, several methods would be demonstrated for fabrication 

of 3D microstructures based on this principle. These methods are based on generating the 

PA and allowing it to cross-link anisotropically to fabricate unique 3D microstructures. 

The two important experimental parameters, exposure energy and PEB temperature, can 

affect the structure formation and hence the section starts with the study of their effects 

on the cross-linking of SU-8. 

It has been demonstrated in the previous section that partial activation can be generated 

by diffusion of the activated cross-linking species from exposed to unexposed region. 

The temperature of PEB and energy of exposure are two important parameters that can 

affect the diffusion and hence structure formation. The PEB temperature controls the 

amount of diffusing species while exposure energy would determine the amount of 

activated species in the exposed region which can initiate diffusion (due to concentration 

gradient). Thus, the effect of exposure energy and PEB temperature on the structure 

formation has been studied in this project (Fig.3.11). The general scheme for this 

experiment has been presented in Fig-3.11(a). The design of photo-mask used for these 

experiments have been shown in Scheme-S3.1b. It is normal photolithography, in which 

the sample is exposed through the photo-mask by using different amount of exposure 

energy and PEB is also performed at different temperatures.  

After development, the structures are replicated in PDMS. The base-width/diameter of a   
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Fig. 3.11: Effect of the exposure-energy 

and the PEB- temperature: a general 

schematic for experiments (a). SEM 

micrographs (b-f) are PDMS replica mold 

and (g) is SU-8-mold structure. (h) is the 

graph obtained by varying exposure energy 

dose at different PEB temperature. (b) is the 

normal 2D structure and (c-f) are 3D conical 

structures obtained at conditions indicated 

by (*) in plot-h. (c) is obtained by exposure-

energy of 700mJcm
-2

 at 95°C and (d-f) are 

obtained by 400-600 mJcm
-2

 (in ascending 

order) of expoosure-energy at 105°C 

respectively. (g) is the SU-8 mold for the 

replicated structures shown in (d). 

  

Develop 

2. PEB  

 

 

1. SU-8 Layer Exposure  3. Replica Molding in PDMS 

(a) 

(b) (c) (d) 

(g) (f) (e) 

(h) 
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replicated structure is measured and it is normalized by the width/diameter of a feature on 

the photo-mask. The decrease in this ratio gives an idea of diffusion of activated species 

from exposed region to unexposed region. A plot between different exposure energies 

and normalized base width has been obtained for different PEB temperatures (Fig-3.11h). 

The plot indicates that the size of structures decreases with increase in exposure energy as 

well as PEB temperature and this effect is more prominent at the higher values of these 

parameters. During PEB, the photo-acids (H
+
) can diffuse to the unexposed region 

initiating cross-linking reactions [189]. The diffracted or refracted UV-light during 

exposure may also contribute to this effect. 2D cylindrical pillars (without any curve or 

inclined line in vertical dimension) have been obtained (Fig.3.11b) at many of these 

conditions, but at few conditions (indicated by (*) in the plot), 3D conical microstructures 

(Fig.3.11c-f) and 3D microstructures with ‘kink’ (Fig.3.11d and g) have been obtained. 

The 3D microstructures have been obtained at higher values of exposure energy and PEB 

temperature. At higher values of these parameters the diffusion is higher (prominent 

decrease in base-width). The 3D conical microstructures might have been caused due to 

non-uniform diffusion, but formation of ‘kink’ indicates the anisotropic cross-linking 

within PA caused due to diffusion. Overall, this experiment shows that exposure energy 

and PEB temperature can affect the extent of diffusion as well as the structures 

formation. 

 

3.4.2.2 FABRICATION OF 3D MICROSTRUCTURES BY LOW DOSE OF EXPOSURE ENERGY 

In the previous section on partial activation (Section: 3.4.1), it has been shown that the 

PA induced by low dose of exposure energy can from unexpected structures (like 



Chapter-3 

 

81 
 

connecting structures between pillars). This section deals with the fabrication of 3D 

micro-structures by the PA induced by low dose of exposure energy.  

Simply, a single layer of SU-8 is exposed by UV-light to the low dose of exposure energy 

without any photo-mask and then it is exposed again through the photo-mask (Scheme-

S3.1b). A range of exposure energy (400-800 mJcm
-2

) is used for the exposure. Two 

different exposure energies have been studied here as the first exposure (7mJcm
-2 

and 

14mJcm
-2

). The PEB temperature used for this study is 80°C. The formation of 3D 

structures has not been noticed at this temperature without any partial exposure 

(Fig.3.11). Hence, the 3D microstructures fabricated by this method can be attributed to 

the PA induced by the low dose of exposure energy. Prominent ‘Hour-glass’ shaped 

micro-structures and conical structures with high angle of cone have been obtained by 

this method (Fig.3.12a-d). Plots have been drawn between normalized values of different 

defining features of 3D microstructures and exposure energy   (Fig.3.12e and f). In these 

plots, (*) indicate the formation of microstructures with double-level architecture (‘Hour-

glass’ shaped) as shown in Fig.3.12a-c. Also, with increase in energy of exposure for the 

first exposure (low dose), the kinked structure is formed at lower value of exposure 

energy (1
st
 point in plot in Fig.3.12f) and with further increase in exposure energy more 

conical-like structures are formed (Fig.3.12d). As no such structure forms at same values 

of exposure energies and PEB conditions without uniform exposure to low dose of 

energy (Fig.3.11), so the PA generated by the first exposure should be the cause of 

formation of double-level structures. Since the first exposure is uniform through-out the 

layer of SU-8 (exposure without any mask), the ‘kink’ formation should be caused by 
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anisotropic cross-linking within the PA. The result indicates that the PA can cause the 

formation of double-level 3D microstructures with ‘kink’.   

  

 
 
Fig. 3.12: Partial activation by low dose of exposure energy: schematic shows the low dose 

exposure method. (b and c) are the SEM-images of the SU-8 mold while (a and d) are the SEM-

images of the PDMS replica. The Plot (e and f) represents the change in normalized value of 

different defining features against exposure energy. (*) in the plot indicates the formation of 

‘Kink’. A layer of SU-8 is exposed by the low dose of exposure energy (7mJcm
-2

 for obtaining 

(e) and 14mJcm
-2

 for obtaining (f)). It is then exposed through a photo-mask and PEB is 

performed at 80°C. (a) is obtained at 2
nd

 point while (b) is obtained at the 4
th
 point in the plot 

shown in (e). (c) appears at the 1
st
 point while (d) appears at the 2

nd
 point in the plot shown in (f). 

 

 

 

 

(a) (d) (c) (b) 

(f) 

* * 
* 

Low dose UV exposure  Normal exposure through photomask  ‘Hour-glass’ microstructures  

(e) 
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3.4.2.3 FABRICATION OF 3D MICROSTRUCTURES BY RAMPING-UP PEB TEMPERATURE: 

The preceding sub-section has shown the possibility of fabrication of 3D micro-structures 

by the PA generated by low dose of exposure energy. In this section formation of 3D 

microstructures by the PA generated by diffusion would be explored. Herein, it is 

hypothesized that if PA is non-uniformly distributed, then their re-arrangement may 

produce different 3D microstructures. To cause such non-uniformity, PEB has been 

performed by ramping-up temperature in this study. Captivatingly, different types of 3D 

microstructures, with double-level architecture like ‘Hour-glass shaped’, ‘Popsicle-

shaped’ and ‘Doll-like’, have been obtained from these experiments (Fig.3.13a-f). 

Assuming these structures to be conical, plots between exposure-energy and normalized 

values of different defining features have been drawn (Fig.3.13g-i). The (*) indicates the 

condition at which double-level structures (by appearance of a kink) have been obtained. 

Conical structure has been obtained at rest of conditions. Based on the previous 

experiment on the effect of exposure energy and PEB temperature on cross-linking, the 

temperature range 85°C-90°C, 90°C-95°C and 95°C-100°C have been empirically 

classified as less, moderate and highly sensitive diffusion zone. Ramping-up temperature 

in low diffusion range does not show any prominent formation of 3D microstructures 

(data not shown). Hence, the first temperature ramp-up range has been chosen as 85°C-

95°C as a combination of low and moderate diffusion range. It is hypothesized that in this 

range, some degree of cross-linking would take place (between 85°C-90°C) before 

diffusion supersedes (between 90°C-95°C). So, this would restrict the diffusion of cross-

linking species and would allow the PA in unexposed region. The second ramp-up 

temperature has been chosen in moderate (90°C-95°C) diffusion range of PEB-
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temperature. Interestingly, the distinct kink formation has been observed for the first 

temperature range for ramp-up (85°C-95°C) which becomes prominent with increase in 

exposure energy (Fig.3.13a-c). At first two energy points in the plot (Fig.3.13g), kink is 

smaller as shown in Fig.8a, but it becomes prominent and distinguished as the exposure-

energy is increased to towards 4
th

 point (Fig.3.13b and c). The further increase in 

exposure energy suppresses the formation of kink and results in formation of single-level 

conical structures as obtained at 5
th

 point in Fig.3.13g. The formation of conical 

structures indicates the increase in diffusion which is reasonable here as the exposure 

energy is increased. In the second temperature range of ramp-up (90°C-95°C), the 

structures are more conical indicating more diffusion than the first one (Fig.3.13h). 

Unique ‘Doll-like structures’ have been obtained in this range. ‘Kink’ (between neck and 

body of the ‘Doll-like structures’) can be observed for this range also. The kink formation 

observed here should have been caused due to re-arrangement within the PA. The 

explanation is further supported by the experiment done in the temperature range 95°C-

100°C (diffusion is expected to be high in this range), where no kink is observed in the 

exposure energy range used for earlier experiments (2
nd

 point onwards in fig.3.13i). The 

kink only occurs at reduced exposure energy (1
st
 point in fig. 3.13i) and with increase in 

diffusion ‘Kink’ is not prominent. Hence, the kink formation is due to PA caused due to 

low amount of diffusion. 
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Fig. 3.13: Ramp-up temperature PEB: The 

cartoons in some figures shows the shape of 

some special structure formed by this method. 

SEM images of SU-8 mold (a and b) showing 

‘Hour-glass’ structures and (c) showing 'Pop-

sickle' structure and (d-f) are SEM-images of 

‘doll-like’ structures replicated in PDMS. (g-

i) are plots showing variation of different 

defining-features of structures with variation 

of exposure energy at a ramp-up PEB 

temperature range of 85-95°C, 90-95°C and 

95-100°C respectively. (*) indicate 3D 

microstructures with ‘Kink’. (a-c) are 

obtained from 1
st
, 3

rd
 and 4

th
 energy point in 

plot-g respectively and (d-f) are obtained from 

1-3
rd

 energy points in plot (h) respectively. 

Structures are assumed to be conical for 

defining different features.  

  

(c) 

(f) (e) (d) 

(a) (b) 
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3.4.2.4 FABRICATION OF 3D MICROSTRUCTURES BY INTERFACIAL PARTIAL ACTIVATION  

As discussed before, the PA can be generated at the interface of exposed and unexposed 

material by the diffusion of activated cross-linking species from exposed region to the 

unexposed region (section-3.4.1.3). The PA at interface can help in fabrication of 3D 

microstructures different from other methods as only limited part of the structure (top-

part in this case) would be affected, unlike other methods demonstrated here. In this 

method, a layer of SU-8 is exposed to UV-light by the required dose of exposure energy 

without using any photo-mask and then another layer is coated on it without performing 

PEB for the first layer. Soft-bake is performed after coating the second layer to allow 

diffusion of cross-linking species from exposed layer to the unexposed layer. Finally, it is 

exposed through the photo-mask (Scheme-S3.1b). PEB-temperature is kept at 80°C for 

this experiment also for the same reason as 3D microstructures are not formed at this 

temperature due to diffusion (Fig.3.11h). Unique ‘dome-like’ microstructures have been 

fabricated here by this method (Fig.3.14a-c). A plot showing normalized values of 

defining features against exposure-energy has also been obtained (fig.3.14d). The 3D 

microstructures fabricated here are dome-like and not conical as only top-portion of 

structures is affected by the re-arrangement of partially activated interface.  
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c  

 Fig. 3.14: 3D microfabrication by ‘Double-

layer’ of SU-8:  The scheme shows the steps in 

this method and cartoon in figures show the 

shape of special microstructures. A layer of SU-8 

is coated and is exposed with sufficient energy 

(without any mask) and then second layer is 

coated without PEB of the first layer. Second 

exposure is carried out with the photo-mask as 

before. (a-c) are representative SEM-images of 

‘dome-like’ structures replicated in PDMS and 

(d) is the plot showing variation of different 

features with change in dose of the exposure 

energy at PEB temperature of 80°C. (a-c) are 

obtained at 1
st
, 2

nd
 and 4

th
  point in plot (d) 

respectively. 

 

 

3.4.2.5 3D MICROSTRUCTURES BY COMBINATION OF METHODS  

 

Combination of ‘Double-layer’ with ‘Low dose of exposure’: The two methods for 

generating the PA, i.e. exposure to low dose of exposure energy and PA at the interface 

of exposed and unexposed layer of SU-8 has been demonstrated. Now, these two 

methods can be combined for the fabrication of some more types of 3D microstructures. 

Although, there can be different ways for combining these two principles, two different 

(b) (c) (a) 

Normal UV exposure  2
nd

 layer coating W/O PEB of 1
st
 layer  Normal photomsk exposure  

(d) 
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ways have been explored here for this purpose.  In the first way, the double-layer sample 

is prepared as discussed before in the previous sub-section. This sample is then exposed 

to UV-light to low dose of exposure energy (7mJcm
-2

) without any photo-mask. Then it 

is exposed again through the photo-mask (Scheme-S3.1b). The idea here is to generate a 

non-uniform distribution of partially activated SU-8, higher at interface and lower at rest 

of the part. Finally, it is baked at 80°C. Uniform ‘dome-shaped’ microstructures have 

been obtained (Fig.3.15a-c), the shape of which can be controlled by changing the 

exposure energy (final exposure through photo-mask) as shown in the plot (Fig.3.15d). 

 

 

Fig. 3.15: Combination of ‘Double-layer’ and 

‘low dose exposure’: The scheme shows the 

steps in this method and cartoon in figures show 

the shape of special microstructures. SEM 

images of PDMS replica (a-c) are obtained by 

exposing ‘double-layer’ sample (as mentioned 

before in Fig.3.14) by 7mJ/cm
2
 without a photo-

mask and then through the photo-mask. (d) is the 

plot showing variation of different features with 

change in dose of the exposure energy at PEB 

temperature of 80°C. (a-c) are obtained at at 1
st
, 

3
rd

, and 5
th
 point in plot (d) respectively.  

(b) (c) (a) 

Normal UV exposure  
Low dose exposure of “Double-layer 

‘ 

Normal photomsk exposure  

(d) 
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Combination of ‘Low dose of exposure with Double-layer: In the second way, a layer of 

SU-8 is first exposed to a low dose of exposure energy (14mJcm
-2

) and then the second 

layer is coated over it. The idea is to generate a gradient of the PA in the first layer and at 

the interface without affecting the second layer. The first layer and the interface would 

have the PA but second layer would not have it. Thus, better control over dimensions 

may be achieved by this method compared to other methods. This method has been 

developed to modify the top or upper part of structures without losing dimensions at rest 

of part. The second exposure is done normally and it is baked at low PEB temperature 

(80°C). Since the partial activation is generated at the first layer which is further reduced 

at the interface, a non-uniform distribution of partially activated species is expected here. 

Unique shape of 3D microstructures has been fabricated (Fig.3.16a) and their shaped can 

be modulated to fabricate pyramidal shaped 3D microstructures (Fig.3.16b, c) by 

changing exposure energy (Fig.3.16d).The plot in Fig.3.16d shows that the change in 

base-width is more restricted than change in top-width with increase in exposure energy. 

This experiment here is a conceptual representative of the idea and further exploration 

may be useful for modulating the shape and size of such structures.  
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Fig. 3.16: Combination of ‘low dose 

exposure’ and ‘Double-layer’: The scheme 

shows the steps in this method and cartoon 

in figures show the shape of special 

microstructures. SEM images of PDMS 

replica (a-c) are obtained by exposing a 

layer of SU-8 by low dose of the exposure 

energy (14mJ/cm
2
) without a photo-mask 

and then another layer is coated and is 

baked. It is then exposed through a photo-

mask by different amount of exposure 

energy. (d) is the plot showing variation of 

different features with change in exposure 

energy dose at PEB temperature of 80°C. (a-

c) are obtained at at 1
st
, 3

rd
, and 5

th
 point in 

plot (d) respectively. 

 

 

3.4.2.6 SCOPE OF THE 3D MICROFABRICATION TECHNIQUE 

 

The 3D microfabrication technique developed in this project has been demonstrated to 

fabricate 3D microstructures with circular cross-section and for particular aspect ratio. 

However, the technique is not limited to such cross-section or aspect ratio. The 3D 

microstructures with other cross-section can be fabricated by this technique but it is 

difficult to obtain sharp edges. Due to anisotropic cross-linking the edges tend to lose 

(a) (b) (c) 

Low dose UV exposure  2
nd

 layer coating W/O PEB of 1
st
 layer  Normal photomask exposure  

(d) 
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sharpness and are rounded off. The 3D microstructure with different aspect ratio can also 

be fabricated by this technique. However, it would not be suitable for very high or very 

low aspect ratio as the method depends on the diffusion of cross-linking initiators. At 

high aspect ratio, the chances of diffusion are higher which may cause difficulty in 

making high aspect ratio microstructures. At low aspect ratio, diffusion may not be 

enough to cause any significant change. 

 

3.5. CONCLUSIONS 

 

A novel, simple, inexpensive, and high throughput technique has been developed for the 

fabrication of 3D microstructures. The technique is based on the study of the cross-

linking behavior of the PA of a photosensitive material. A anisotropic cross-linking 

within PA has been demonstrated. This property has been harnessed for developing the 

new technique for 3D microfabrication. Different types of 3D microstructures including 

conical, dome-shaped, pyramidal microstructures have been fabricated in this project. 

Moreover, 3D microstructures with double-level architecture such as ‘doll-like’, ‘hour-

glass’ have also been fabricated. All 3D microstructures demonstrated in this work have 

been fabricated by a single inexpensive plastic photo-mask. The technique is simple as it 

does not require special equipment and laboratory and hence, can be adopted by scientist 

working in different fields for using 3D microstructures in various applications.
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Chapter-4: The 3D pyramidal porous membrane 

4.1 INTRODUCTION 

Emerging technologies have presented various micro-devices for biomedical 

applications. Many such devices have been used for sorting of biological micro-

entities (cells or functionalized beads). Cell-sorting is an important step in cell-based 

screening for diagnostic and therapeutic purposes. For instance, broad attention has 

been placed on sorting circulating tumor or cancer cells from the blood [105, 190], 

separation of rare epithelial or endothelial cells from the blood [90, 191], sorting blood 

cells or blood-cell  subtypes from the plasma [92, 156, 192] and isolation of stem cells 

from amniotic fluids [91]. Bead-sorting is an emerging platform for immunoassays [85]. 

The sorting of micro-entities has been achieved in various types of micro-devices either 

by using external forces or by using micro-filters. The use of external forces, like 

dielectrophoretic [193], magnetic [194] and optical [195] however, is complicated, 

expensive and may require tagging of micro-entities. On the other hand the use of micro-

filters, like pillar-type, wire-type, cross-flow and porous membrane, is rather simple. 

Nonetheless, micro-filters suffer from either low through-put or unclean separation [146]. 

Compared to other types of micro-filters, porous membrane is the simplest one and can 

perform micro-filtration with higher efficiency and throughput [196].  

Porous membranes have been widely used for various industrial processes, like 

filtration/separation of substances from fluids, wastewater treatment [197], reaction 

catalysis [198], and sterilization. They are also an essential component for many research 

and biomedical applications, like stem-cell culture [199], micro-particle or cell sorting 

[200, 201], detection of biomolecules [202], diagnosis, prognosis and treatment of 
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diseases [141, 203, 204]. However, filtration through porous membranes suffers due to 

clogging of pores. Such pore clogging greatly affects their performance by decreasing 

filtration efficiency and by increasing the operational and maintenance cost [3-5]. Flow 

of fluid is reduced due to pore clogging which causes increase in the fluidic pressure over 

the membrane. The high fluidic pressure may have deleterious effect on biological 

entities, like cells or blood. Thus, pore clogging is a serious limitation in using porous 

membranes. To overcome this problem, cross-flow filtration has been applied [205], but 

filtration efficiency is reduced in this case. Another strategy to overcome this problem is 

frequent washing of clogged micro-entities [201], but this strategy is not suitable for 

continuous operation and it would reduce the throughput of the process. Hence, the need 

to develop new anti-clogging strategies for porous membrane is significant.  

Herein, we present a unique anti-clogging porous membrane integrating three-

dimensional (3D) pyramidal microstructures which we have termed as ‘3D Pyramidal 

porous membrane’ (3DPPM). The idea is to create a micro-trap above each pore, so that 

micro-entities can be trapped above the pore leaving an interstitial-gap. This gap would 

allow fluid or smaller micro-entities to pass through as shown in Scheme-S4.1. However, 

fabrication of such a porous membrane is challenging due to fabrication and integration 

of complex 3D microstructures together. Although a new method of 3D microfabrication 

has been developed in this project (Chapter-3), the integration of such microstructures to 

develop an anti-clogging membrane is difficult. The problem related to such fabrication 

and integration and their solutions is the focus of this chapter. Two methods for such 

integration have been developed in this study and would be discussed here. 



Chapter-4 

 

94 
 

 

 

4.2 DESIGN OF THE 3D PYRAMIDAL POROUS MEMBRANE: 

The 3DPPM consists of an array of well-arranged funnel-like pores (through-holes), 

wherein each pore is surrounded by four 3D pyramidal microstructures. This design helps 

in sorting and trapping of micro-entities without blocking pores. The trapped particles are 

being held by these structures, leaving behind interstitial-gaps between the trapped 

particles and the pores, thus preventing these pores from being fully clogged (Scheme-

S4.1). The funnel-like pores consists of a 3D conical region (top to middle part) and a 2D 

cylindrical region (middle to end part, through holes). The pyramidal structures would 

help in trapping particles and would also help in generating interstitial-gap between a 

trapped particle and the pore. The funnel structure would help in non-blocking of pores 

by the trapped particles due to its curvature. Moreover, the pyramidal shape would help 

in trapping micro-entities of different sizes. It would provide largest angular structure 

compared to other types of 3D microstructures. Now, the next question which arises is 

‘How to achieve it?’ i.e. how to integrate the 3D micro-structures together to achieve this 

goal. This question would be answered in this chapter.  

Interstitial-gap 

Small micro-entity 

Large micro-entity 

A micro-trap 

Scheme-S4.1: The idea- the scheme represents 

the idea of using three-dimensional pyramidal 

microstructures surrounding each hole in a 

porous film for development of an anti-clogging 

porous membrane. Trapped micro-entities (Large 

one, yellow color) do not obstruct the fluid-flow 

and smaller micro-entities (small one, red color) 

can pass through the ‘interstitial-gap’ between 

trapped micro-entity and the pore.  
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4.3 MATERIALS AND METHODS 

4.3.1 REAGENTS AND MATERIALS: SU-8 2050 photoresist and developer were 

purchased from MicroChem (Newton, MA). Sylgard-184 was purchased from Dow 

Corning (Midland, MI). (Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane was 

purchased from Sigma–Aldrich (Singapore), Isopropyl Alcohol (IPA) was obtained from 

Fisher Scientific, UK.  

4.3.2 MASTER-MOLD FABRICATION 

4.3.2.1 ‘Low dose exposure energy’ method: The process flow is shown in Scheme-

S4.2a. A SU-8 layer was spin-coated (spin-coater, Cee 100, Brewer science, MO, USA) 

at 4500rpm on an oxygen-plasma (PX-250 plasma chamber from March Instruments, 

Concord, Massachusetts, USA) treated silicon-wafer and was soft-baked for 2min at 65
◦
C 

and for 10min at 95
◦
C on a hot-plate (Sawatec, Germany). It was exposed to UV-light for 

40s at a power of 7mW/cm
2 

through a photo-mask (design for the channels) by a mask-

aligner (Karl-SUSS Micro Tec., Waterbury Centre, VT, USA). A second layer of SU-8 

was coated after exposure at 6000rpm. It was soft-baked for 3min at 65
◦
C and for 15min 

at 95
◦
C. It was then exposed to UV-light for 1.2s without any photo-mask. A post-

exposure bake (PEB) was then performed for 1min at 65
◦
C and for 1min at 95

◦
C. Third 

layer was then coated at 5000rpm. It was soft-baked for 1min at 65
◦
C and for 15min at 

92
◦
C. It was exposed again through the same photo-mask aligned to the same position for 

50s. PEB was performed for 3min at65
◦
C and then a drop of SU-8 (soft-baked) was put 

over the region containing microstructures. The temperature was then ramped to 96
◦
C 

within 2min and was baked at this temperature for 15min. It was cooled down before 

developing it for 8min. 



Chapter-4 

 

96 
 

Scheme-S4.2: Methods of Integration: (a) ‘Low Dose Exposure Energy Method’ and (b) 

‘Diffusion Method’ to integrate 3D microstructures for the fabrication of the required master-

mold. Red things show the difference between these two approaches.   

 

4.3.2.2 ‘Diffusion’ method: The process flow is shown in Scheme-S4.2b. A SU-8 layer 

was spin-coated at 4500rpm on an oxygen-plasma treated silicon-wafer and was soft-

baked for 2min at 65
◦
C and for 10min at 95

◦
C on a hot-plate. It was exposed to UV-light 

for 40s at a power of 7mW/cm
2 

through a photo-mask (design for the channels) by the 

mask-aligner. A second layer of SU-8 was coated after exposure at 5000rpm. It was soft-

Normal UV-light Exposure 
The Photo-mask for channel 

Si Wafer 
Un-exposed SU-8 

Exposed SU-8 

Quasi activated SU-8 

SU-8 Master Mold 

SU-8 Structures 

Coating second layer of SU-8 

Low dose UV-light 

Exposure 

Coating third layer of SU-8 

PEB and Development 

(a) (b) UV-light 
The Photo-mask for channel 

Si Wafer 

Un-exposed SU-8 

Coating second layer of SU-8 

Exposed SU-8 

The Photo-mask with Pattern 

The Photo-mask with Pattern 

Quasi activated SU-8 

PEB and Development 

Short PEB and Coating 

third layer of SU-8 

SU-8 Master Mold 

SU-8 Structures 
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baked for 3min at 65
◦
C and for 15min at 95

◦
C. It was then exposed to UV-light for 30s 

through another photo-mask (with rectangular array of circular open window of 5µm 

diameter separated by 15µm) aligned with first exposure. A post-exposure bake (PEB) 

was then performed. The PEB was performed for 30s at temperature ramping from 78
◦
C 

to 86
◦
C. A third layer was then coated at 5000rpm. It was soft-baked for 1min at 65

◦
C and 

for 15min at 92
◦
C. It was exposed again through the same photo-mask aligned to the 

same position for 50s. PEB was performed for 3min at 65
◦
C and then a drop of SU-8 

(soft-baked) was put over the region containing microstructures. The temperature was 

then ramped to 96
◦
C within 2min and was baked at this temperature for 15min. It was 

cooled and developed for 8min. 

 

 4.3.2.3 Master-mold for the sink: The master-mold for sink was fabricated by spin-

coating a layer of SU-8 on a silicon wafer at 2000rpm. It was soft-baked normally and 

was exposed through a photo-mask (with an array of transparent circles of 40µm 

diameter and center-to-center distance of 100µm between nearest circles, located in the 

sink channel) for 100s at a power of 7mW/cm
2
. The PEB was performed by baking it for 

1min at 65°C and it was transferred to the hot-plate (Sawatec., used before) at ramping 

temperature of 90-96°C and then for 15min at 96°C. It was cooled and developed 

normally. 

4.3.3 FABRICATION OF SINK LAYER: The master-mold of sink was treated with silane as 

described before. The sink was fabricated by pouring PDMS on the master-mold for sink 
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according to the required thickness and was de-gassed before baking it for 60min at 

70°C. It was peeled-off and cut in shape before pasting it to the film. 

4.3.4 DEVICE FABRICATION: A layer of (Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-

trichlorosilane was coated on the master-mold by vacuum depositon in a vacuum 

desiccator for 10min for easy release of PDMS film. PDMS-base solution was mixed to 

the curing agent in a ratio of 10:1 by manual stirring. It was degassed in vacuum 

desiccators for 30-45min. A small drop of PDMS solution was put on the arrayed 

structures to cap them and was baked for 15min at 70°C. PDMS was then spin-coated 

(spin-coater, P6700, Specialty Coating Systems, INC. Indianapolis, Indiana, USA) at 

1400rpm on the master-mold to cover channels and baked for 10min at 60°C on a hot-

plate (Fisher scientific). The cap was then removed and another layer of PDMS was 

coated at 4000rpm. A small piece of silicon-wafer was used as weight to remove excess 

PDMS and it was baked for 5min at 60°C. The weight was removed and it was wiped by 

another small piece of silicon wafer over arrayed pillars in the master-mold. It was 

allowed to stand for 15min and was baked again for 60min at 70°C in an oven (Venticell, 

MMM-group). A PDMS piece containing sink (which contains an array of unique 3D 

microstructures) was aligned to micro-filter region and was pasted by oxygen-plasma 

treatment. It was then submerged in IPA and was incubated for 30min at 70°C. The 

porous membrane along with sink-layer was gently peeled-off from the master-mold and 

was dried in air flow in a Laminar-flow chamber. Holes were punched for inlets and 

outlets in appropriate layers which were pasted appropriately by oxygen-plasma 

treatment for 30s at the power of 200W.  The device was again treated with oxygen-

plasma before use. 
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4.4 RESULTS AND DISCUSSIONS 

4.4.1 INTEGRATION OF 3D MICROSTRUCTURES 

This section deals with two integration challenges: 1) Integration of 3D microstructures 

together to fabricate 3DPPM consisting an array of the micro-traps and 2) Integration of 

3DPPM in a functional micro-device.  

Although, a simple method has been developed for the 3D microfabrication in this 

project, fabrication of complex 3D microstructures such as one containing positive as 

well as negative relief features is difficult. Moreover, if more components (like micro-

pillars over 3D microstructures) are required to be integrated, this may become 

complicated. Such integration may require use of more than one layer of materials and 

alignment of exposures during fabrication process which may be tedious. In this study, 

efforts have been made to reduce the number of steps or number of layers for such 

integration. Anti-shapes of required 3D microstructures are fabricated in a ‘master-mold’ 

that is used for replication of the required 3D microstructures by replica-molding. Thus, 

the fabrication process is done once to fabricate the master-mold, which is used many 

times for the fabrication of 3DPPM which simplifies the overall process. 

There can be two different ways for the integration of 3DPPM in a functional micro-

device. One of ways can be to fabricate 3DPPM separately and then integrate it with 

other components of the micro-device. This method may be simple in some cases but 

may need high precision of alignment in other cases and may not always be possible to 

do so. Other way for such integration can be to fabricate 3DPPM together with other 

components of the micro-device. For example, a mold can be fabricated with replica for 
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micro-channels over which the fabrication of 3DPPM can be carried out. Although, such 

integration would need some specialized equipment, like mask-aligner, and one extra 

layer of material, but such integration would reduce the hassle afterwards. This method is 

preferred as the alignment has to be carried out only once i.e. during fabrication of the 

mold. Once the mold is fabricated, it can be used for replication of structures without any 

need for alignment. Hence, it would avoid alignment step each time the micro-device is 

fabricated, unlike the first method where each time structures have to be aligned, the 

second method has been chosen in this project. However, this method too is not free of 

problems. In this section, the problems of such integration would be discussed. It would 

follow by the discussion on the solution to this problem and how has it been achieved for 

the fabrication of the 3DPPM.  

  

4.4.1.1 Challenges in integration of 3D microstructures:  

As discussed before, the master-mold can be fabricated with anti-shape of the required 

3D microstructures that can be used for replicating these structures in another polymer. 

As per the design (shown in scheme-S4.1), the master-mold would consist of three parts, 

pyramidal pits (for the fabrication of pyramids), dome-like structures (for the fabrication 

of funnels) and micro-pillars (for the fabrication of cylindrical through-holes as pores). 

However, fabrication of such master-mold would pose three major problems. 1) It has 

been found that 2D micro-pillars cannot stand firmly on the completely cross-linked SU-

8 (Fig.4.1). 2) Although ‘dome-like’ 3D microstructures have been fabricated in PDMS 

in Chapter-3, the fabrication of these microstructures in SU-8 may be difficult and has 
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not been demonstrated. 3) More than one photo-mask and strict alignments may be 

required. Thus, this approach of integration is not suitable and there is a need for finding 

a better strategy, which is the focus of this study. 

To fabricate this master-mold, three layers of SU-8 would be required; each layer 

contributing to one type of structure which would increase the overall complexity of the 

procedure. Therefore, if 3D microstructures can be fabricated by using a single layer then 

minimum number of layers required for such integration would be two. One layer is 

essentially required for fabrication of 2D micro-pillars as 2D and 3D microstructures 

cannot be fabricated simultaneously. A new approach has been developed in this project 

to fabricate two types of 3D microstructures simultaneously, with positive and negative 

feature contour, just from a single layer. The solution to this problem has come from the 

partial activation (PA) and the unique re-arrangement within it. The required 3D pits are 

fabricated by the re-arrangement of the PA, thus avoiding the need for a separate layer. 

This also obviates the need for more than one photo-mask. In fact, all three problems 

listed above have been solved by the PA generation and its possible re-arrangement. 

As mentioned in section-4.4.1, the 3D microstructures need to be integrated in a 

functional micro-device. It is also discussed there that the master-mold should be 

fabricated to contain replica of 3D microstructures as well as components of the micro-

device. Thus, such integration should be done during the fabrication of the master-mold. 

Hence, at least one layer of SU-8 would be required for fabrication of components (here  
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Fig. 4.1: Agglomeration of pillars: SU-8 pillars fail to stand on a completely cross-linked layer 

of SU-8 due to lack of interaction between pillars with substrate. 

 

microchannels) on which 3D microstructures can be fabricated. Hence, at least three 

layers of SU-8 would be required for the fabrication of the required master-mold. 

Although three layers may sound tedious, it would save lot of time and energy during 

subsequent replication of microstructures for the fabrication of 3DPPM integrated in a 

micro-channel. 

 

4.4.1.2 STRATEGIES FOR INTEGRATION OF 3D MICROSTRUCTURES  

Before discussing the strategies for the integration of 3D microstructures, it is important 

to solve the first problem presented in section-4.4.1.1, i.e. micro-pillars cannot stand on 

the completely cross-linked SU-8. This can be attributed to lack of interaction of 

completely cross-linked SU-8 with another layer of fresh SU-8, as it may not have 
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functional group left for any interaction. Reducing the pillar size would not solve the 

problem as it would affect the pore (through-hole) formation and overall thickness of the 

porous membrane. This problem can be solved by increasing the interaction between SU-

8 layers. This can be achieved by coating second layer of SU-8 (the one that would be 

used for the fabrication of pillars) on a layer of SU-8 which is not completely cross-

linked. As noted in the previous chapter, doing so would create partially activated 

interfacial layer. This interfacial layer would link the two layers which may help micro-

pillars to stand stably. To study this hypothesis, a layer of SU-8 is coated on a silicon-

wafer and is exposed without any photo-mask to the required dose of exposure energy for 

complete cross-linking. Then, another layer is immediately coated over it without 

performing PEB for this layer. It is baked for enhancing the interaction at the interface. 

Finally, it is exposed through a photo-mask (an array of transparent circles). Subsequent 

PEB and development is performed normally. The result of this experiment has been 

shown in Fig.4.2. It has been found that pillars can stably stand (Fig.4.2a). This finding 

can be attributed to the enhanced interaction between SU-8 layers as the second layer is 

coated without completion of cross-linking in the first layer, unlike the sample shown in 

Fig.4.1. The solvent in the second layer would enhance inter-diffusion due to increased 

thermal motion of SU-8 molecules in solvent. This fact has been confirmed from the 

analysis of width of two layers. Although the spin-coating speed has been kept same for 

both layers, the width of both layers has been found to be different. The width of the first 

layer is greater than the width of second layer. The inter-diffusion would allow dispersion 

of photo-acid from first layer to second layer which may produce a gradient of photo-acid 

in the interfacial layer. During soft-bake of second layer, the cross-linking in  
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Fig. 4.2: Standing SU-8 pillars due to enhanced interfacial interaction: A layer of SU-8 is 

exposed and another layer is coated without performing PEB of first layer to enhance interaction 

of layers at the interface. The Second layer is exposed through a photo-mask. (a) SEM-image of 

SU-8 mold with standing pillars. (b) SEM-image of PDMS-replica obtained from SU-8 mold. 

The connecting structures at bottom in (a) provides enough strength for pillars to stand. 

 

interfacial layer would start. A portion of the interfacial layer with relatively higher 

concentration of photo-acid within this gradient, i.e. the layer near the exposed layer, 

cross-linking would be complete causing increase in width of the first layer. The rest of 

the portion within the interfacial layer would have PA. The PA in the interfacial layer re-

arranges after second exposure and PEB to from connecting structures at the bottom of 

micro-pillars. These connecting structures act as support for micro-pillars and help these 

structures to stand firmly. The space enclosed between pillars is replicated as dome-

shaped structures which supports the analysis made above about the interfacial layer and 

the possible re-arrangement (Fig.4.2b). It also shows that the micro-pillars remain stable 

during replication. 

All three challenges for the integration of 3D microstructures as mentioned in section-

4.4.1.1 have been solved in this project by generation of the PA and its re-arrangement.  

(a) (b) 
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Scheme-S4.3: Integration of 3D microstructures by ‘low dose exposure energy’ method: A 

layer of SU-8 is exposed through a photo-mask with micro-channel design. Another thin layer of 

SU-8 is coated over it and is baked to allow inter-mixing of interfacial layers. It is exposed to low 

dose of exposure energy before coating third layer. It is baked and is exposed through the photo-

mask. PEB and development is performed normally to obtain the required master-mold in SU-8.  

 

This approach has allowed linking and solving all three problems together. Two methods 

have been demonstrated in Chapter-3 for the generation of PA: 1) exposure by low dose 

of energy and 2) diffusion. Hence, two separate methods have been developed in this 

project for the fabrication of the required master-mold based on these principles. The 

discussion on these methods is as follows. 

4.4.1.2.1 ‘Low dose exposure energy’ method: In this method the PA is generated by the 

low dose of exposure energy. The method has been presented schematically in Scheme-

S4.3. As mentioned before, a minimum of three layers are required for the integration of 

3D microstructures together and with the components of the micro-device. This method 

requires three layers only. The first layer is coated on a silicon wafer and is exposed 
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through a photo-mask containing design of a micro-channel. Then, the second layer is 

coated and is baked to allow intermixing of layer to generate PA at the interface. This 

layer is exposed to the low dose of exposure energy to create a gradient of PA, higher at 

the interface and lower in the second layer. This method is similar to the one 

demonstrated in Section-3.4.2.5. It is baked for a short time before the third layer is 

coated over it. The combined layers are baked together to further increase the non-

uniformity in the PA distribution. Finally, it is exposed through the photo-mask for the 

fabrication of micro-pillars. After exposure, PEB is performed. During PEB, molecular 

re-arrangement within the PA would take place. This re-arrangement would determine 

the shape of 3D microstructures. As a gradient of the PA exist at the interface of first and 

second layer, its re-arrangement produces 3D pyramidal pits enclosed between four 

dome-like microstructures in the second layer (Fig.4.3a). The third layer produces micro-

pillars. Overall, two types of 3D microstructures are fabricated along with micro-pillars. 

After PEB, it is developed to obtain the required SU-8 master-mold, which can be used 

for the fabrication of the 3DPPM (Fig.4.3b-d). 

The ‘Low dose exposure energy’ method is simple and does not require multiple photo-

masks or alignment steps. Only one alignment step is involved. The alignment also does 

not require strict control as it has to be done over micro-channel rather than 

microstructures. Though, the fabrication of microstructures requires three layers by this 

method, but the first layer acts as a layer for micro-channel fabrication as well as for 

generating PA at interface. Hence, there is no need for an extra layer. The size of 

pyramidal microstructures can be easily changed by changing the thickness of the second 

layer (Fig.4.4a). However, it is difficult to change the shape or size of ‘dome-like’  
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Fig. 4.3: The integration of 3D microstructures by ‘Low dose exposure energy’:  SEM 

images showing different aspects of 3D microstructures developed by this method. (a) the SU-8 

master mold. (b-d) top, tilted and side view of the PDMS replica obtained from the master-mold. 

(d) is the 3D porous membrane finally fabricated by this method. 

 

structure in this method. This is because the shape of dome-like structure is entirely 

dependent on the re-arrangement of the PA in the second layer which occurs around the 

exposed region (for pillars through photo-mask) and it is difficult to increase its width 

based on re-arranging molecule. Any change in PA to control it, affects the pyramidal 

shape and height of pyramidal pillars (like the one shown in Fig.4.4a). Moreover, the 

‘dome-like’ 3D microstructures formed by this method have short width and low 

curvature (Fig.4.4). These structures are more ‘cone-like’ rather than ‘dome-like’ (red 

dots in Fig.4.4). Although, this does not limit its use for the fabrication of the desired  

(c) (d) 

(a) (b) 
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Fig. 4.4: Characteristics of the ‘Low dose exposure energy’ method:  (a) SEM image of a 

PDMS replica showing pillar-like microstructures obtained by increasing the size of Pyramidal 

microstructures by this method. The size of pyramids can be increased simply by increasing 

thickness of the second layer. (b) SEM image of SU-8 master-mold fabricated by this method 

showing enclosed 3D pits between ‘cone-like’ 3D microstructures. The micro-pillars have been 

broken to show the microstructures in detail. Red dotted curves indicate cone-like structures. It is 

difficult to change the shape and size of ‘cone-like’ microstructures by this method. 

 

anti-clogging 3DPPM, but the other method developed in this project (to be discussed 

next) can been used for developing better ‘dome-like’ structures. Hence, the second 

method has been used here to develop funnel-shape in the 3DPPM for cell/bead 

sorting and patterning (to be discussed in chapter-5). 

 

4.4.1.2.2 Diffusion method: This method has been developed here as another approach 

for the integration of 3D microstructures. In this method, generation of the PA 

depends on the diffusion of activated cross-linking species from exposed region to 

unexposed region. The advantage of this method is that gradient of PA can be created 

in vertical as well as horizontal directions, thus generating more non-uniformly 

distributed PA. The scheme for the integration of 3D microstructures has been 

provided in Scheme-S4.4. A layer of SU-8 is coated on a silicon-wafer and is exposed 

through a photo-mask designed for the micro-channel. Another layer is then  

(a) (b) 
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Scheme-S4.4: Integration of 3D microstructures by ‘Diffusion’ method: A layer of SU-8 is 

exposed through a photo-mask with micro-channel design. Another layer of SU-8 is coated over 

it and is baked to allow inter-mixing of interfacial layers. It is exposed through a photo-mask with 

sufficient dose of exposure energy. PEB is performed for short time and another layer is coated. It 

is soft-baked and exposed again through the same photo-mask aligned to the same position. PEB 

and development are performed normally. 

  

coated and is soft-baked which is then exposed to the UV-light through a photo-mask 

and the PEB is performed for a short time at lower temperature (lower than 

recommended by manufacturer) to generate only partial activation during PEB 

(Scheme-S4.4). Then, third layer is quickly coated over it and is baked. This would 

allow intermixing of layers during baking step due to incomplete cross-linking of the 

second layer. Also, the third layer contains solvent that would enhance the 

intermixing of layers. During this step, activated SU-8 from exposed region can 

diffuse to unexposed region. This would cause non-uniformly distributed Partially 

activated polymeric chains around the exposed SU-8 in the second layer (Scheme-

S4.4, third picture). As the exposure of the second layer is performed through a 

UV-light The Photo-mask 

for channel 

Si Wafer Un-exposed SU-8 Exposed SU-8 

The Photo-mask 

with Pattern 

Quasi Activated SU-8 SU-8 Master Mold 

SU-8 Structures 

Short PEB 
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photo-mask, the diffusion would create the PA non-uniformly distributed in the 

micro-space. Then the third layer is exposed through the photo-mask aligned to the 

same position and the PEB is performed. This step allows formation of 2D micro-

pillars as well as molecular re-arrangement within the PA. The re-arrangement allows 

formation of two types of 3D microstructures due to non-uniform distribution of the 

PA. ‘Dome-like’ microstructures surrounded by anti-pyramidal pits are formed from 

the first layer while micro-pillars standing on the dome-like structures are formed 

from the second layer (Scheme-4.4, Fourth picture). It is interesting to note that two 

different 3D microstructures with different profiles (up and down) have been formed 

from a single layer by this technique. Finally, it is developed to obtain the required 

master-mold.  

 

The ‘Diffusion’ method may not essentially require three layers for the fabrication of 

3D microstructures, but three layers have been included here to integrate 

microstructures to micro-channel. Now, it is important to justify the steps included in 

this scheme and how can fabrication be controlled. The simplest from of this scheme 

would be to perform the exposure of the second layer without any photo-mask and 

coat third layer without perorming PEB (i.e. keep the time for short PEB to zero). 

This would allow gereation of the PA at the interface of the second and the third 

layer. This experiment produces result similar to the one shown in Fig.4.2. Although, 

it shows the fabrication of 3D microstructures (dome-shaped in PDMS, Fig.4.2b), the 

shape of such microstructures cannot be changed. Different parameters such as 

temperature, exposure energy have been adjusted, but change in shape has not been 
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observed. The reason is lack of non-uniformity in the interfacial layer as diffusion 

should be uniform between two layers. Moreover, these microstructures are not 

angular as well as no funnel-like microstructures are fabricated as required for ‘the 

idea’ presented in the scheme-S4.1. Thus, to fabricate the integrated funnel-like and 

pyramidal microstructures, the exposure through photo-mask has been introduced. 

This would help in generating gradient of the PA in vertical as well as in horizontal 

direction.  

Next, inclusion of PEB for short time after exposure of the second layer should be 

studied. As mentioned before (in Chapter-3, Section-3.4.1.3), the diffusion of activated 

species from exposed layer to unexposed layer causes complete as well as partial 

activation depending on the gradient of activated species. Therefore, it is important to 

study the effect of diffusion in this scheme of fabrication. So, an experiment has been 

performed here according to this scheme (Scheme-S4.4). The time for the short PEB is 

kept zero in this experiment. Other values of parameters such as exposure energy and 

PEB temperature have been set according to recommendation from manufacturer of SU-

8. The result of this experiment is shown in Fig.4.5. It can be seen from the figure that the 

dome-like structure have been formed (Fig.4.5). Although, the photo-mask used in this 

experiment has transparent circles of size 5µm and other parameters have been kept to the 

recommended values, microstructures formed here are of size 10µm. Moreover, dome-

like structures have been formed instead of distinct pillars. This clearly suggests the cause 

of this result is diffusion of activated species from the second layer. Since the PEB is not 

performed after exposure of the second layer; the activated species from the exposed 

region can diffuse to the unexposed layer causing increased cross-linking around pillars 
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in the third layer. Slight re-arrangement can also be noticed as small pillar can be seen in 

the replica mold around the dome-shaped pits (Fig.4.5b). This experiment justifies the 

inclusion of short PEB after second exposure in the Scheme-S4.4 which would allow 

some amount of cross-linking before diffusion can take place and would contribute in 

controlling the formation of 3D microstructures. This experiment also proves the 

hypothesis made in the scheme that diffusion in the second layer can take place and 

dome-like structures can be fabricated by such diffusion. Although the result presented in 

Fig.4.5 is for the third layer, exposure pattern of the second and third layer is same. Thus, 

these findings can be extrapolated to the second layer also.   

 

Fig. 4.5: Cross-linking due to un-controlled diffusion: the samples have been prepared here by 

following the scheme-S4.4, with time for short-bake equal to zero. (a) SEM image of SU-8 mold 

and (b) SEM image of PDMS-replica obtained from SU-8 mold. 

 

Now, to fabricate the desired mold, a brief study has been done to evaluate the effect of 

short-PEB after second exposure in Scheme-S4.4. The short PEB (Scheme-4.4) after the 

second exposure has been used as a parameter for controlling structure formation. The 

short PEB has been performed at ramping-up temperature (at a rate of 15°C/min) to 

(a) (b) 
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enhance the non-uniform distribution of the PA. Few temperature ranges with the average 

temperature of 70°C, 80°C and 90°C have been tested for this purpose keeping other 

parameters the same. Different 3D microstructures are obtained in PDMS replica. When 

the short PEB is performed at the temperature ramping from 67°C to 73°C, pillars with 

curved top have been obtained as 3D microstructures (Fig.4.6c). This may be due to low 

rate of diffusion in this range. When the short PEB is performed at the temperature 

ramping from 77°C to 83°C, the pyramidal structures have been obtained as 3D 

microstructures (Fig.4.6d). When it is performed at the temperature ramping from 87°C 

to 93°C, frustum-like 3D microstructures are obtained while funnel-like microstructures 

shows increase in size compared to the previous result (Fig.4.6e). This can be explained 

by the increased diffusion at higher temperature range. The desired 3D microstructures 

are somewhere between the 3D microstructures shown in Fig.4.6d and Fig.4.6e. Hence, 

the desired 3D microstructures with pyramidal microstructures surrounding funnel-like 

microstructures are obtained in temperature range of 78°C to 86°C (Fig.4.6f). The 

fabrication of the desired master-mold has been achieved (Fig.4.6a). 3D microstructures 

(marked by red dots) can be seen in Fig.4.6b (pillars are deliberately broken to show 

structures). The ‘dome-like’ microstructures surrounded by 3D pits can be seen in 

Fig.4.6b.  

The diffusion method can be used for the fabrication of different types of 3D 

microstructures. The ‘Diffusion’ method has been found to be more versatile in terms of 

changing the shape and size of 3D microstructures. Since diffusion can allow cross-

linking in the unexposed region, the shape of dome-like 3D microstructures in the master-

mold can be changed, unlike the ‘Low dose exposure energy’ method. This method does 
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not essentially require three layers for the fabrication of 3D microstructure and hence is 

more flexible in terms of integration to any other type of micro-device as it is not 

essential to fabricate them on components of the micro-device. However, this method 

does require good control over alignment step as alignment has to be done over 

microstructures.  
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Fig. 4.6: Integration of 3D microstructures: SEM images (a) and (b) are SU-8 mold while (c-f) 

are PDMS replicas. (a) SU-8 mold obtained from the scheme of fabrication shown in Scheme-

S4.4 and (b) detailed view of 3D microstructures at the bottom of this mold (pillars are broken to 

show the bottom). Red dots and lines highlight ‘dome-like’ microstructure at the bottom. (c-e) are 

obtained by performing the short PEB at ramping temperature (15°C/min) from 67°C to 73°C, 

77°C to 83°C and 87°C to 93°C respectively. (f) is obtained by performing short-bake from 78°C 

to 86°C. 

  

(a) 

(f) (e) 

(d) (c) 

(b) 
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4.4.2 FABRICATION OF 3D PYRAMIDAL POROUS MEMBRANE 

 

4.4.2.1 CHALLENGES IN THE FABRICATION OF THROUGH-HOLES (PORES)  

The fabrication of the master-mold with integrated 3D microstructures has been 

explained in the previous section. The ‘master-mold’ is used for carrying out fabrication 

of the 3DPPM. One such master-mold can be used for many times for such fabrication. 

The 3D micro-structures are replicated in PDMS while micro-pillars are used for making 

through-holes to obtain pores in the 3DPPM. A thin film of PDMS is coated over the 

master-mold to obtain an array of through-holes in the membrane. However, the 

fabrication of through-holes with integrated 3D microstructures has been found to be 

challenging due to accumulation of PDMS over microstructures (Fig.4.7a). It has been 

noted that the PDMS forms a hump over the region containing microstructures. The 

PDMS thickness near the edge has been found to be lesser than that near center of the 

array. The accumulation of the PDMS may take place due to dense array of 

microstructures which might induce capillary force and surface tension over PDMS to 

accumulate it. The increase in coating speed is not helpful either.  Even at high coating 

speed (6000rpm), through-holes have been observed only at sides of the membrane 

(Fig.4.7b). So, a weight extrusion approach has been used here to overcome this problem, 

which is the topic of discussion of the next sub-section. 
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Fig. 4.7: Accumulation of PDMS over structures: The PDMS is coated on the master-mold. (a) 

SEM-image of PDMS film in cross-sectional view. It tends to accumulate over microstructures. 

The thickness of PDMS film can be seen to increase towards the center of the arrayed structures 

(left hand side). (b) the SEM image of the film obtained by increasing the coating speed. Only 

sides have got through-holes. 

 

4.4.2.2: FABRICATION OF THROUGH-HOLES  

To solve this problem, a small weight is applied to push-out the accumulated PDMS. It is 

then baked for short time to make PDMS stickier and then excess PDMS is removed by 

tapping a small piece of silicon-wafer on it. It is spun again to make the layer of SU-8 

uniform. It is allowed to settle down at room temperature before baking it to cross-link 

PDMS. This method helped in fabrication of an array of through-holes as pores. The 

overall method for the fabrication of the 3DPPM has been shown in Scheme-S4.5. 

  

(a) (b) 
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Scheme-S4.5: The fabrication of 3D pyramidal porous membrane: (a) PDMS is spin-coated 

on the master-mold. Excess PDMS over microstructures is removed by weight and is then baked. 

The porous PDMS film is then released from the master-mold by using 2-propanol at 70°C. (b) 

The top and the tilted view of the 3D pyramidal porous membrane integrated in a micro-channel. 

The expanded view of the integrated micro-filter illustrates pyramidal shaped microstructures 

(blue) surrounding each pore. 
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4.4.2.3 PEELING-OFF THE MEMBRANE:  

It has been found here that peeling the membrane off the master-mold can damage it. 

Also, handling thin membrane is difficult. Hence, a PDMS piece containing sink is pasted 

on it by aligning the sink to the region containing microstructures before peeling it off. 

As the membrane is pasted to the sink layer (relatively thicker), it is convenient to handle 

it, but even with sink layer the membrane cannot be peeled-off without any damage. To 

avoid the damage, a solvent-based approach has been demonstrated here to facilitate an 

easy release. The mold is immersed in Isopropyl Alcohol (IPA) and is incubated in an 

oven at 70°C for about 30min. It is interesting to note that heating in IPA helps in easy 

release of the membrane (Fig.4.8). It may be hypothesized here that swelling of PDMS 

might be the cause for such release. So, sizes of pillars and pores have been measured to 

verify this hypothesis. The size of pore and the pillar has been found to be almost similar. 

So, swelling of PDMS is not the cause.  We believe that heating allows better penetration 

of IPA between SU-8 and PDMS microstructures which helps its release as without 

heating it is not released properly. Finally, the successful fabrication of the desired 

3DPPM has been achieved in this project (Fig.4.9).  

 

Fig. 4.8: Peeling-off the membrane: The 

picture shows how membrane is peeled-off 

from the master-mold using IPA. The film is 

automatically released from the mold if it is 

kept at 70°C for about 30min.          
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Fig. 4.9: 3D Pyramidal Porous Membrane: SEM images of 3D pyramidal porous membrane 

fabricated by the method developed in this project. (a) the porous membrane, (b-e) are top, 

bottom, cross-sectional and tilted view of the 3D pyramidal porous membrane respectively. Inset 

in (c) presents the magnified view of bottom of the membrane showing holes. (f) the membrane is 

folded to show all three views together. 

  

(a) 

(e) 

(d) 

(b) 

(c) 
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4.4.3 FABRICATION OF THE MICRO-FLUIDIC DEVICE  

The 3DPPM is obtained from the master-mold as integrated in the sink layer. This can be 

developed as a micro-device. However, the porous membrane in the device may sag in 

the sink which may affect its performance and it can also prevent imaging of the 

membrane. To overcome this problem, an array of ‘doll-like’ 3D microstructures has 

been fabricated in the sink by using 3D microfabrication technique developed in this 

project (Chapter-3). These microstructures have truncated cone-like base with a short 

pillar (with curved top) standing over it. The structure is slightly hinged at the point of 

connection which makes it flexible (Fig.4.10). The flexible pillars help adjusting with 

fluidic pressure variations during filtration process besides keeping the membrane flat. 

The curved top and smaller diameter at top of these pillars allow minimum blockage of 

pores. The broad base provides stability to the structure which can withstand high fluidic 

pressure-drop. Also, the height of these structures (50µm) is slightly lesser than the sink 

depth (60µm) which ensures that pillars are not pasted on the film. This allows taking the 

film out of the device whenever it is required (e.g. SEM analysis).  

The device fabrication has been carried out by assembling different components together. 

As mentioned before, the porous membrane integrated with the sink is obtained from the 

above mentioned method. The channels are then sealed by another layer of PDMS 

containing appropriate inlets and outlets (Fig.4.11). The final device contains one inlet 

and two outlets (one from the sink and another from the main channel).  
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Fig. 4.10: ‘Doll-like’ 3D microstructures for supporting the membrane: (a) and (b) front-view 

and the side-view of the membrane resting on doll-like 3D micro-structures. Insets show the 

enlarged view of the ‘Doll-like’ 3D microstructures. 

 

 

Fig. 4.11: The micro-device: The picture here shows the micro-fluidic device containing 3D 

pyramidal porous membrane. The red circles show the two outlets; one in the main channel and 

other in the sink. The S$1 coin is kept for size comparison. 
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4.4.4 TEST OF THE DEVICE 

The micro-fluidic device fabricated here has been tested by flowing fluid at different flow 

rates to check its stability. The fluid can pass through the pores (through-holes) and can 

be collected at the outlet of the sink when the outlet in the main channel is closed and 

outlet in the sink is opened. After opening the outlet in the main channel, fluid can be 

collected from both outlets. The fluid (1X PBS) has been flowed in the device at different 

flow rates ranging from 10-1000µl/min. The device has been found to be stable after the 

flow. The porous membrane has been observed during flow by using the microscope. 

During flow at high flow-rates (more than 200µl/min), the membrane has been observed 

to defrom but it recovers back to its original position after flow is stopped. This shows 

that the ‘Doll-like’ 3D microstructures used as support for the membrane works well i.e. 

they adjust themselves accordingly and help in keeping the membrane flat. 
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4.5 CONCLUSIONS 

The integration of 3D microstructures has been achieved in this project to fabricate the 

3DPPM. Two methods have been developed for this purpose: ‘Low dose exposure 

energy’ and ‘Diffusion’ method. ‘Low dose exposure energy’ method is simpler than 

‘Diffusion’ method. However, ‘Diffusion’ method is more versatile than ‘Low dose 

exposure energy’ method. The 3D microstructures have been integrated to a micro-

channel during fabrication of the master-mold. Different types of integrated 3D 

microstructures have been fabricated. The master-mold has been used for fabrication of 

the desired 3DPPM. The fabrication of through-hole in the porous membrane has been 

achieved by weight extrusion method. The solvent based approach has been found in this 

project for peeling-off such membrane from the master-mold. Unique ‘Doll-like’ 3D 

microstructures have been developed here for supporting the membrane in the sink.  
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Chapter-5: Sorting and Patterning by the Anti-clogging 3DPPM    

5.1. INTRODUCTION 

The recent developments in technology have presented a variety of micro-devices for 

handling micro-entities such as cells or micro-beads, to satisfy biological and medical 

needs.
 
These devices are in demand for sorting/separation and patterning/trapping of 

micro-entities. For instance, micro-devices are being developed for various applications 

such as separation of circulating tumor or epithelial cells from blood [90, 190], separation 

of white-blood cells or blood-cell  subtypes from whole blood [92, 192] and isolation of 

stem cells from amniotic fluids [91]. Devices for cell-patterning are useful for basic cell-

biology studies including single-cells studies [206], whereas separation and patterning of 

micro-beads act as a new tool for immunoassays [85]. Nevertheless, these devices are 

normally intended for performing either sorting or patterning of micro-entities and a 

single approach for achieving both simultaneously, with high performance efficiency, is 

still challenging. The development of a novel micro-device to achieve this underlined 

goal with added functionality is thus encouraging and useful. 

Different techniques that have been used for the sorting and the patterning of micro-

entities are presented in Chapter-2. One of the popular techniques for sorting of micro-

entities is the filtration through porous membrane, but pore clogging is a drawback in 

using the porous membrane which adversely affects their performance. Here, we 

demonstrate an anti-clogging 3D pyramidal porous membrane (3DPPM) integrated in a 

micro-fluidic device for simultaneous separation and patterning of micro-entities. The 

membrane consists of an array of funnel-like pores where each pore is surrounded by four 

3D pyramidal microstructures. The 3DPPM presented here has four interesting features 
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that are unique to it as a micro-filter. 1) It is characteristically anti-clogging as pores are 

not blocked by the filtered micro-entities. This anti-clogging characteristic would allow 

uninterrupted sorting of micro-entities continuously, such as that of cancer cells from the 

blood. 2) Micro-entities of different sizes can be trapped (Scheme-S5.1a). This feature is 

potentially useful for single-cell studies by trapping cells from an inhomogeneous cell 

population of different sizes. 3) Simultaneous sorting and patterning of micro-entities can 

be performed by using 3DPPM (Scheme-S5.1b). This feature would be useful for sorting 

cells from actual samples (e.g. blood) as well as patterning them in an array of single-

cells for further studies. 4.)  Bi-directional sorting can be achieved by using 3DPPM 

(Scheme-S5.1b). The sorting of micro-entities can take place in the direction of the fluid 

flow in micro-channel (sorting in the micro-channel) as well as that perpendicular to it 

(sorting through pores). The sorting through pore is similar to traditional 2D porous 

membrane, wherein smaller micro-entities (red particles in Scheme-S5.1b) pass through 

the pores while bigger particles (yellow particles in Scheme-S5.1b) are retained on the 

membrane. High sorting efficiency can be achieved if smaller micro-entities can also pass 

through the interstitial-gaps, which is an additional feature of the 3DPPM. However, the 

sorting efficiency would remain low in case smaller micro-entities are unable to pass 

through these interstitial-gaps. In this case, many smaller micro-entities would also be 

retained on the membrane along with bigger micro-entities. Unlike 2D porous membrane, 

bigger micro-entities are trapped in 3DPPM and thus unsorted smaller particles can be 

washed-off through outlet in the main micro-channel (outlet-1 in Scheme-S5.1b).  The 

bigger micro-entities are retained on the 3DPPM and hence get separated from smaller 

micro-entities (bi-directional sorting). Thus, high sorting efficiency or purity can be 
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achieved even if smaller particles do not pass through interstitial gaps. Indeed, the bi-

directional sorting is unique to the 3DPPM. Overall, these features help in achieving high 

efficiency of the sorting and the patterning, which is a clear advantage over 2D 

membranes or other micro-filtration techniques. Other than direct applications of the 

3DPPM in the sorting and the patterning related applications, it can also be used in 

applications that require enhanced interaction of fluid with micro-entities, such as capture 

of analyte from fluid on functionalized-beads [207]. As the flow of fluid is maintained 

through interstitial-gaps, analytes from sample can interact well with the functionalized-

beads patterned on the 3DPPM while passing through these interstitial-gaps. Such 

interaction may increase chances of analyte being captured on beads. Thus, the idea of 

3DPPM would be interesting to scientists working in different fields. 

 

 

Scheme-S5.1: Characteristics of the 3DPPM: (a) the 3DPPM allows smaller micro-entities 

(Red ball) to pass through pores while larger micro-entities (Yellow ball) are trapped. 

Simultaneous sorting and patterning is achieved by this method. Micro-entities of different size 

can be singly patterned (Yellow balls). (b) The schematic for flow, sorting and patterning of 

micro-entities in the micro-fluidic device. Outlet-1 is kept closed and solution containing 

different micro-entities is flowed in the device to sort them through pores. Then outlet-2 is closed 

and outlet-1 is opened and unsorted micro-entities are washed-off. Bi-directional separation is 

achieved in this way. 
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5.2 MATERIALS AND METHODS 

 

5.2.1 REAGENTS AND MATERIALS  

Materials used for the device fabrication have been mentioned in the previous chapter. 

Parafromaldehyde, hexamethyldisilazane (HMDS), Calcein-AM and Propidium Iodide 

(PI) were purchased from Sigma–Aldrich, Singapore. Micro-beads were purchased from 

Polysciences (Warrington, PA) and Cancer cells (MDA-MB-231) were purchased from 

ATCC (Manassas, VA). Basal DMEM cell-culture media, fetal-bovine serum (FBS), and 

CMPTX live-cell labelling dye were purchased from Invitrogen, Singapore. Yeast cells 

were a kind gift from Department of Microbiology, National University of Singapore, 

Singapore. 

5.2.2 BEAD SEPARATION AND PATTERNING  

Beads were counted using a Hemocytometer. 10µL of bead solution was pipetted in the 

Hemocytometer. The beads were counted and their concentration was estimated by 

standard procedure. The bead solution was then diluted to the desired concentration (10
5 

beads/mL) using DI-water. For patterning beads, 100µL of bead solution was flowed in 

the device at a flow-rate of 50µLmin
-1

 using a syringe pump (Kd Scientific, Holliston, 

MA). For separation and patterning studies, the bead mixture was prepared according to 

the desired concentration. 100µL of bead solution was flowed in the device at a flow-rate 

of 50µLmin
-1

. Particles passing through pores were collected from the sink and were 

counted using the Hemocytometer. The un-patterned or unsorted particles were washed 

away from the device and were collected back and were flowed again in the device. The 

process was repeated. Finally, the micro-filter membrane was carefully cut and was taken 



Chapter-5 

129 
 

out of the device and was sonicated for 1-2hrs in 100µL of IPA to remove most of the 

beads. IPA was dried and it was reconstituted in 100 µL of DI-water. The number of 

beads was then estimated by using the Hemocytometer. The 3DPPM was observed again 

to count any left-over beads. The percentage was calculated accordingly. Separation and 

patterning efficiencies were calculated as per the formulae discussed given in next 

section. Scanning electron microscopy (SEM) images were obtained for trapped beads by 

sputter-coating the dried sample with gold and imaging using SEM (JSM-5600, Jeol). For 

studying the patterning efficiency of particles with different sizes, concentration of each 

type of beads was adjusted to 10
5
beads/mL. For studying the separation and patterning 

efficiency of mixture, the concentration of bigger bead (10µm) was fixed to 10
5
beads/mL 

and concentration of smaller beads was varied according to the desired ratio. 

5.2.3 CELL SEPARATION AND PATTERNING 

Cancer cell-line MDA-MB-231 was cultured in a DMEM cell culture-medium 

supplemented by 10% FBS in a cell-culture flask. Cells were trypsinized and were 

counted using a hemocytometer. Cell solution was diluted in complete culture medium to 

the concentration of 10
5
cells/mL. Yeast cells were taken from agar plate and were mixed 

in cell-culture medium. The concentration was adjusted by dilution. Cell mixture was 

obtained in different ratios keeping concentration of cancerous cells to 10
5
cells/mL in the 

mixture. 100µL of the cell mixture was flowed in the device at a flow rate 50µLmin
-1

. 

The process was repeated. Patterned cells were removed from the device by back-flow of 

fluid. The cells collected in fluid were centrifuged and were diluted in 100µL of media 

before counting by using Hemocytometer. Separation and patterning efficiencies were 

calculated according to formulae mentioned earlier.  
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SEM of cells: For trapped cells, cells were fixed by using 4% parafromaldehyde (in PBS) 

for one hour in the device. It was then dehydrated by using gradient of ethanol solution 

varying from 10% to 100% of ethanol with an increment of 10% for 5min incubation at 

each point. It was dried on the device by using different ratio of ethanol and HMDS with 

increasing concentration of HMDS (3:1, 2:1, 1:1, 1:2, 1:3,) and left for overnight drying 

for overnight. The sample was sputter-coated (Jeol Sputter-coater) for 30-40s at 30mA 

before obtaining Scanning Electron Microscopy (SEM) image. 

5.2.4 FLUID FLOW THROUGH INTERSTITIAL-GAPS  

A 2D porous membrane, without any micro-structures, was obtained by reversing the 3D 

porous-membrane. Beads were patterned on the device as before. 100µL of DI-water was 

flowed in the device at different flow-rates. Beads that were pushed through pores were 

collected and were counted using the Hemocytometer.  

For experiments to show that smaller beads can pass through interstitial-gaps, smaller 

beads (1µm, 3µm or 5µm) were diluted to the concentration of 3x10
5
beads/ml and 100µL 

of bead solution was flowed in the device with either beads (12µm) or cells (labeled with 

CMPTX live-cell labeling dye) patterned on the 3DPPM at a flow-rate of 50µLmin
-1

. The 

movie for showing particle’s flow through interstitial-gap was captured by using a High-

speed camera (Photron Fastcam SA3) at frame-rate of 125frames/S.  

The bead solution was normally diluted in DI-water, but when cells were involved, the 

dilution was done in 1XPBS. 
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5.2.5 CELL VIABILITY   

For cell-viability studies, the device was sterilized by UV-light for 15min and by flowing 

70% ethanol through channels. It was rinsed by 1X PBS for 15min. Then cell-culture 

media was flowed in the device and it was allowed to stand for 30-60min before starting 

cell-based experiments. A solution containing 10µM Calcein-AM and 10µM PI was 

prepared in 1X PBS for labeling viable and non-viable cells. Cells were patterned as 

before. The cell-staining solution was flowed in the device and it was incubated for 

15min at ambient temperature and fluorescence images were captured by using a 

fluorescence-microscope (Nikon Eclipse-80i). For time-based studies, after each time 

point, staining was performed. The culture-medium was flowed in the device at a flow-

rate of 20µLmin
-1 

for continuous flow of culture-media after patterning of cells. All cell-

based experiments done on device were performed at room temperature. Cell viability 

was assessed by counting viable/non-viable cells on the device using imageJ software. 

For cell-counting in imageJ, ‘thresholing’ was applied, followed by applying ‘watershed’ 

to separate particles and finally ‘analyze-particle’ was applied. For cell-culture based 

studies, cells were recovered by back-flow of fluid which was centrifuged to get a pellet. 

The pellet was diluted in 1ml of media before putting it for culture at normal cell-culture 

conditions.  
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5.3 RESULTS AND DISCUSSION 

 

5.3.1 CHARACTERIZATION OF THE MICRO-DEVICE 

 

5.3.1.1 SIZE-CHARACTERIZATION OF 3D MICRO-TRAPS 

The aforementioned micro-fluidic device has been used here for size-based separation 

and patterning of micro-beads as well as of cells. The dimension of each component in a 

single-trap has been presented in Fig.5.1. Each funnel-like pore consists of a conical and 

a cylindrical part. The cylindrical part of the pore has a diameter of 6µm and is 20µm 

deep (not shown here). The conical part is 6µm deep and has diameters of 10µm and 6µm 

at top and bottom respectively. The pyramidal structures are 10µm high and have a base-

width of 10µm. The top of pyramidal-shaped structures is rounded. Center-to-center 

distance between nearest located pores is 14µm (not shown here). In a single trap, the 

center-to-center distance between a pair of oppositely located pyramids is approximately 

20µm (not shown here). According to dimensions, each trap should be capable of holding 

particles in a size-range of 6µm-20µm. Particles less than 6µm should flow out of the 

device. To experimentally verify this hypothesis, different sizes of beads ranging from 

5µm to 19µm have been used in this study. More than 90% of 5µm beads can be 

recovered from the device after passing it through the porous-membrane. About 2-3% of 

beads from clumps and cannot pass through whereas about 3-4% of beads are lost in sink 

or channel. Beads of size 7µm or more do not pass through pores and are patterned on the 

device at the flow-rate (50µLmin
-1

) used for experiments in this project. Cells can also be 

patterned on the device. 
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Fig. 5.1: The size characterization of features: The measurement of different features of a 

single trap is being presented here. The red lines indicate the distance whereas black dotted lines 

represent the line of feature between which distance is measured. White arrows indicate the 

distance measured by a red line.   

 

 

5.3.1.2 SELECTION OF FLOW-RATE AND BEAD CONCENTRATION 

The flow-rate and the bead-concentration for conducting this study have been chosen as 

50µLmin
-1 

and 10
5
beads/mL, respectively. The appropriate value of flow-rate and 

appropriate number of beads for high patterning efficiency have been determined by 

conducting a study using different flow-rates and different number of beads. As a start, 

10 µm 

6 µm 

10 µm 

6 µm 

(c) 
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beads (5µm) smaller than the pore size, have been used to study the passing-through of 

beads through the micro-filter at different flow-rates. Bead concentration has arbitrarily 

been chosen as a starting point. It can be observed from Fig.5.2a, that the percentage of 

beads passing through pores increases with increase in flow-rate in the beginning, but it 

becomes constant after 50µL/min. At lower flow-rate settling is more which can be the 

reason for this trend, but after certain point overall effect remains same. The flow-rate of 

50µLmin
-1

 has been selected as the starting point to study patterning. Using this flow-

rate, patterning-efficiency has been studied for different bead concentrations. The 

patterning efficiency has been calculated according to the given formula for one time 

flow of bead solution. The bead concentration of 10
5
beads/mL (100µL) has been chosen 

for further use as being suggested from the plot (Fig.5.2b). The number of pores (approx. 

13x10
3
) is greater than the number of beads for optimal patterning (10

4
). With increase in 

bead concentration more clustering has been observed. Fixing this concentration, 

patterning efficiency has been studied at different flow-rates. A flow-rate of 50µLmin
-1

 

has been selected for further studies as seen from the plot in Fig.5.2c. At lower flow-

rates, more beads settle down in channels and at higher flow-rates more clustering of 

beads are observed in the micro-fluidic device.  
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Fig. 5.2: (a) A plot for studying percent of 

5µm beads recovered through micro-filter at 

different flow-rates. (b) A plot for studying 

of patterning efficiency using different 

concentration of 10µm beads at the flow-rate 

of 50µL/min. (c) A plot for studying 

patterning efficiency for 10µm beads at 

different flow-rates. Bead concentration 

used for obtaining (a and c) is 10
5
beads/mL. 

 

 

 

5.3.2 STUDY OF ANTI-CLOGGING CHARACTERISTICS 

 

5.3.2.1 FLUID FLOW THROUGH INTERSTITIAL-GAPS 

Computational study of anti-clogging: The anti-clogging porous membrane can be 

fundamentally significant for studying filtration process as well as for new applications. 

The 3DPPM should be considered anti-clogging, if fluid flow is maintained through 

interstitial-gaps after a micro-entity is trapped over a pore, even if many other pores 

remain empty (without any trapped micro-entities). Hence, a computational model has 

(b) 

(c) 

(a) 
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been prepared, where micro-entities are trapped over some pores and the rest are left 

empty (Fig.5.3a). This model is solved for incompressible Newtonian fluid flow at steady 

state by solving Navier-stock’s equation at different finite elements created by using 

COMSOL Multiphysics. Boundary conditions are defined as follows: 1.Inlet- Volumetric 

flow rate of 10
-11

m
3
/sec, 2.Outlets: atmospheric pressure, 3.Walls: no-slip condition. 

Then, velocity field is obtained for the fluid flow as simulated in the software. Although, 

the flow-rate of fluid is reduced through interstitial gaps, the change is not drastic 

compared to the flow through empty pores in the model of membrane (Fig.5.3b). The 

result is reasonable as the pores are partially blocked by the trapped micro-entities and it 

indicates that fluid can pass through interstitial-gaps even if many pores are empty. 

 

Fig. 5.3: Modeling of Cell-trapping in the porous membrane: A model is developed and 

solved for studying the fluid flow through pores by using COMSOL Multiphysics. a- the model 

containing an array of through-holes surrounded by 3D structures. Two columns in this array is 

filled with solid spheres representing beads (blue). b- the model is solved by the software and 

colored profile of velocity is obtained. The arrows indicate holes trapping beads. The figure 

shows that the flow rate is not reduced drastically by trapping beads and flow is maintained in the 

device. 

 

Experimental study of fluid flow through interstitial-gaps: A magnified view of the 

interstitial-gap between a trapped bead and a pore can be seen in Figure-5.4(a-c). The 

fluid flow through these gaps in the 3DPPM has also been experimentally studied here. 

(a) (b) 
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The experimental study has been performed by comparing the fluid flow in the 3DPPM 

with that in a 2D porous membrane (membrane without any micro-structures). The 

reverse side of 3DPPM is used as 2D porous membrane to keep all other conditions (e.g. 

pore size) same for both types of membranes. A fixed number of beads (~10
4
beads) are 

patterned on both types of membranes and fluid is then flowed in the device. 

Hypothetically, patterned beads would clog pores in 2D porous membrane but pores in 

3DPPM would not be clogged. Thus, flow of fluid in the device would exert greater 

fluidic pressure over 2D porous membrane compared to the 3DPPM. Although, the 

fluidic pressure in the device may be a complex function of different parameters, the 

relative difference between these two types of membrane is useful to prove the concept. 

The relative difference can be measured by comparing the effect of increasing fluidic 

pressure on both membranes. The fluidic pressure can be increased by increasing the 

flow-rate of fluid. As pressure increases one of two possible effects may be observed; 

either the membrane is damaged at certain flow-rate or some trapped beads are pushed 

through pores in spite of their size being greater than pore size. The membrane has not 

been damaged even at very high flow-rates, instead some beads passed through pores in 

spite of their large size (10µm beads passed through 6µm pores). As PDMS is a rubber-

like material, it is reasonable that larger beads are pushed through pores at high fluidic 

pressure (Fig.5.4d-f). As all other conditions are kept same for both of the membranes, 

the difference between the percent of beads passing through pores can indicate the 

relative difference in the fluidic pressure. This in turn can be related to the pore clogging. 

A plot between flow-rate and percentage of beads passing through the pores has been  
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Fig. 5.4: Fluid flow through the interstitial gap: (a-c) are high-magnification SEM image for 

showing ‘the Interstitial-Gap’ between the pore and the trapped-bead. Arrows in the figure 

indicate the gap. Size of bead hanging over the indicated pore is about 10 µm in (a), 12µm in (b) 

and 20µm in (c). (d-f) are SEM-images 2-D porous membrane. (d) shows the filter with beads 

pushed in pores, (e) shows complete blocking of pores by beads and (f) shows beads coming out 

of the normal filter due to high pressure drop.  

 

 

  

10µm 

(d) (c) 

(a) (b) 

(f) (e) 

10µm 

10µm 

(a) 

(c) 
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Fig.5.5: Comparison of bead flow through 2D and 3D porous membrane:  a plot to compare 

the percent of beads that passed through 2D porous membrane and the 3DPPM at different flow-

rates. 

 

obtained for both types of membranes (Fig.5.5). The plot shows that the percentage of 

beads passing through 3DPPM is much smaller compared to 2D porous membrane. This 

indicates that fluid flow in the 3DPPM is less affected due to patterned beads compared 

to 2D porous membrane. This difference can only be caused due to fluid flow through 

interstitial-gaps present in 3DPPM. Hence, this proves the anti-clogging characteristic of 

3DPPM. Also, it shows that the 3DPPM can be used at relatively high flow-rates (300-

400µlmin
-1

) compared to 2D porous membrane. This presents a clear improvement of 

3DPPM over traditional membranes. 

5.3.2.2 FLOW OF MICRO-ENTITIES THROUGH INTERSTITIAL-GAPS  

 

Flow of beads through interstitial-gaps: To prove that beads smaller than the interstitial-

gap can pass through it, a movie has been captured using a high-speed camera and the 
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flow of smaller beads has been tracked in the movie by using a software, ImageJ 

(Fig.5.6).  Bigger beads (12µm) are patterned on the 3DPPM keeping number of beads 

lesser than the approximate number of pores leaving many empty pores. Then smaller 

beads (2µm) are flowed in the device and the movie is captured (not provided with this 

thesis). Few representative frames from the movie have been shown in the Fig-5.6. As 

seen from the figure, a particle travels to a trapped particle, takes a turn perpendicular to 

the flow in main-channel and flows out. Since the flow in the channel is perpendicular to  

 

Fig. 5.6: Particle flow through interstitial-gap: Representative images taken from the movie to 

show the movement of the bead through the interstitial gap. The red and blue circles indicate the 

trapped large bead and the small bead to pass through the interstitial gap respectively. The white 

line shows the track of the small bead.  
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the flow in the sink, the smaller particle has passed through the interstitial-gap (which can 

be seen through the transparent beads) and has flowed out in the sink.  

An experiment has also been performed to study the flow of beads through interstitial-

gaps. To perform this experiment, a fixed number of beads of 12µm size are patterned on 

the 3DPPM and 2D porous membrane. Two different sizes of beads (1µm and 3µm), one 

smaller than and the other larger than interstitial-gaps, are flowed through 3DPPM as 

well as 2D porous membrane. The percent of beads passing through both membranes is 

calculated and compared. Hypothetically, if flow of fluid or beads is maintained through 

interstitial-gaps, then beads smaller than interstitial-gaps should pass through these gaps, 

whereas, beads bigger than interstitial-gaps should settle around patterned beads. In this 

case, there should be significant difference between the percent of these two types of 

beads passing through the membrane. If this is not the case i.e. none of beads pass 

through interstitial gaps or no such interstitial gap exists, then such difference should not 

surface. Thus, if 3DPPM is anti-clogging such difference should occur while it should not 

occur for 2D porous membrane. 

Results obtained here support this hypothesis. For 3DPPM, 1µm beads are hardly seen 

whereas many 3µm beads can be seen trapped around patterned beads (Fig.5.7a, b) in 

SEM micrographs. For 2D porous-membrane, beads are scattered over the whole surface 

for both types of beads (Fig.5.7c, d). The plot in Fig.5.7e shows a significant difference 

between the percentage of 1µm and 3µm beads passing through the 3DPPM whereas this 

difference is not significant for 2D porous membrane. As both types of beads are smaller 

than pore-size (6µm), no such difference would occur if particles pass through empty 

pores. Also, all other conditions are kept same for both beads. Thus, such difference 
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should occur due to flow of beads through interstitial-gaps. Such difference does not 

occur for 2D porous membrane that does not have interstitial-gaps. Hence, this 

experiment proves that the smaller beads flows towards interstitial gaps even if all pores 

are not blocked. Now depending on their size, these beads either pass through or are 

stuck there. Thus, it can be concluded here that the 3DPPM is characteristically anti-

clogging.  
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Fig. 5.7: Flow of smaller beads through the interstitial-gap: (a) and (b) are SEM-images 

which were captured after flowing 1µm and 3µm beads respectively through the 3DPPM 

patterned with 12µm. (c) and (d) are SEM-images which were captured after flowing 1µm and 

3µm beads respectively through the 2D porous membrane patterned with 12µm beads. (e) is the 

bar chart for showing percentage of beads of size 1µm (black bar) and 3µm (white bar) passing 

through the 3DPPM and the 2D porous membrane. 

 

 

(c) (d) 

(b) (a) 

(e) 
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Flow of beads through interstitial-gaps with patterned cells: Next, the anti-clogging of 

3DPPM has been studied by using cells to prove that the 3DPPM is useful for cell-based 

applications.  The cell-size within a batch varies, so it is difficult to ascertain the 

interstitial gaps. Also, the problem is complicated as cells are not rigid as beads. So, the 

anti-clogging should be determined by the experiment. To study this, cells (15-20µm) 

have been patterned in the device and smaller beads are flowed through the device. Beads 

of size 1µm, 3µm and 5µm have been used as smaller beads (all three are smaller than 

pores). It can be seen from the plot (Fig.5.8a) that high percentage of 1µm and 3µm beads 

have passed through 3DPPM while most of 5µm beads could not pass through it 

(Fig.5.8b). As all three types of beads can pass through pores, the significant difference 

here is caused due to ease with which 1µm and 3µm beads can pass through interstitial-

gaps. This proves that 3DPPM can be used as anti-clogging membrane for cell-based 

experiments. Moreover, such differences are not observed for the 2D membrane which 

supports the conclusion. 

 Fig. 5.8: Fluid flow through interstitial-gaps with patterned cells: (a) the plot showing 

percent of beads of size 1µm (black bar), 3µm (white bar) and 5µm (gray bar) that passed through 

the 3DPPM and 2D porous membrane with cells patterned on them. (b) the 5µm beads (green) are 

stuck around cells (red, labeled with CMPTX-a red fluorescent dye for staining live cells) on the 

device as fluid flows through pores.   

(b) (a) 
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5.3.3 SORTING AND PATTERNING BY THE 3DPPM 

One of the major applications of the 3DPPM can be sorting and patterning of micro-

entities besides being used as an anti-clogging porous membrane. As mentioned 

before, the 3DPPM is endowed with four main characteristics. The anti-clogging 

property of the 3DPPM has been studied in previous sections. Now, the study on 

other three characteristics is presented in this sub-section.  

 

5.3.3.1 PATTERNING OF MICRO-ENTITIES OF DIFFERENT SIZES 

 Herein, patterning of beads with different sizes has been studied. Beads as well as 

cells of different sizes can be patterned on the 3DPPM (Fig.5.9). In this figure, 

different sizes can be seen to be trapped. The patterned cells look smaller than their 

normal size in Figure-5.9c. This can be due to shrinking of cells during sample 

preparation for SEM. The patterning of micro-entities has been quantitatively studied 

by obtaining Patterning efficiency for beads of different sizes (Fig.5.10a). The 

patterning efficiency is being defined here as,  

                      
                               

                      
 

The data shows beads of size 10µm and 12µm are patterned with high efficiency (~ 

90%) which is expected for the given dimension of micro-traps. The 7µm and 15µm 

beads are patterned with slightly lower efficiency (~80% and ~70% respectively). 

Some of un-patterned 7µm beads get stuck between microstructures during washing, 

while some of 15µm beads leave their place during washing. The patterning 

efficiency for 19µm beads is low (~30%). The reason is the large size of these beads. 
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Although the maximum distance between pyramids in a single micro-trap is 20µm, 

the pore-to-pore distance is only 14µm. Hence, a trapped bead of large size prevents 

other beads to be trapped in its vicinity. The increase in patterning efficiency has been 

observed by decreasing the bead-concentration. Patterning efficiency of ~80% has 

been achieved for this size of beads (Fig.5.10b). 

Living cells have also been used for this study. Cells have been successfully patterned 

on the device with an efficiency of ~85%. 

 

 

 

 

(a) (b) 

(c)  

Fig. 5.9: Sorting and Patterning of micro-

entities of different sizes: SEM images 

showing (a) Patterned beads of 7µm size on 

the 3DPPM, (b) patterned beads 10µm and 

12µm size on the 3DPPM. (c) SEM image 

showing patterned cells (MDA-MB-231) on 

the 3DPPM. Cells look smaller than their 

normal size due to shrinking during SEM 

sample preparation. 
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Fig. 5.10: Patterning efficiency: (a) The graph presenting the patterning efficiency of beads of 

different sizes on the device. (b) The graph presents the patterning efficiency of 19µm beads at 

different concentrations of beads. 

 

5.3.3.2 BI-DIRECTIONAL SORTING IN 3DPPM 

Next, bi-directional sorting of micro-entities in the 3DPPM has been studied. To 

perform this study, two sizes of beads have been chosen in such a way that smaller 

beads should pass through pores, but should not pass through interstitial-gaps while 

bigger beads are trapped over pores. This study has been performed to show the 

improved capability of 3DPPM as a micro-filter even without using its anti-clogging 

property. As discussed before, micro-entities can be separated in two directions, in the 

direction of fluid-flow in micro-channel (i.e. sorting in the main channel) as well as 

that perpendicular to it (i.e. through pores) (Scheme-S5.1b). This unique ability of the 

3DPPM can be attributed to pyramidal microstructures that help in trapping of larger 

micro-entities. This allows washing of unsorted smaller micro-entities out of the main 

channel. Thus, apart from size-based sorting due to pores (like 2D porous membrane); 

(a) (b) 
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the in-channel sorting also takes place in 3DPPM (unlike 2D porous-membrane) 

which increases sorting efficiency. To verify this hypothesis, two different sizes of 

beads (5µm and 10µm) have been used in this study. A bead solution containing 

mixture of both types of beads is flowed through the device. A portion of 5µm beads 

(smaller beads) passes through the pores getting separated from the mixture as 10 µm 

beads (larger beads) are trapped. The unsorted smaller beads are then washed-off 

through outlet-1 without flushing away larger beads (Scheme-S5.1b). The washed-off 

solution mainly contains smaller beads with low number of bigger beads. The 

washed-off solution is re-flowed in the device to increase the purity of sorted beads. 

The sorting purity has been determined by calculating the percentage of smaller 

particles (5µm) in the fluid collected from the device. The sorting purity has been 

found to be more than 95% (98±2%) for the range of bead-ratio studied here 

(Fig.5.11a).  

 

5.3.3.3 SIMULTANEOUS SORTING AND PATTERNING IN 3DPPM  

The sorting as well as simultaneous patterning of micro-entities has been studied here. 

The respective efficiencies have also been calculated. For simplicity, sorting 

efficiency can be represented as the efficiency of the device in sorting smaller micro-

entities from the mixture. It is also reasonable to consider that smaller micro-entities 

recovered from device are almost purely separated from the mixture (neglecting small 

number of larger particles for the ease of calculation). Thus, the patterning efficiency 

would simply mean the percentage of smaller micro-entities recovered from the 

device. Hence, a simple formula has been presented below for the calculation of 
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sorting efficiency which only contains terms for smaller beads. As larger micro-

entities are patterned on the 3DPPM during sorting, the patterning efficiency can be 

calculated by another formula given below. Patterning efficiency is considered for 

larger micro-entities only and thus this formula contains the term for larger beads 

only. Using these formulae, simultaneous sorting and patterning efficiencies have 

been studied here for a range of bead-ratio (Fig.5.11a). Sorting and patterning 

efficiencies have been calculated as per the formulae given below.  

                      
                                  

                               
 

                     
                                   

                                    
 

As it can be seen from the plot in Fig.5.11a, there is no significant change in sorting 

or patterning efficiency with change in beads-ratio which can be attributed to the bi-

directional sorting mechanism of 3DPPM. The smaller particles (5µm) cannot pass 

through interstitial-gaps, so they tend to settle around the larger particles (10µm). As 

beads-ratio is increased, number of smaller beads settling around larger beads also 

increases, but the smaller beads settled on the membrane can be washed-off. Hence, 

even though the beads-ratio is changed, the sorting and patterning efficiency is not 

changed. 

Simultaneous sorting and patterning of cells have also been performed. Human cancer 

cells (~15-20µm) have been sorted from yeast cells (~5µm) and have been patterned 

on 3DPPM with reasonably high efficiency (Fig.5.11d).  
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Fig. 5.11:  Separation and simultaneous patterning efficiencies: (a) the graph presenting the 

separation efficiency of device in separating 5µm beads from 10µm beads and simultaneous 

patterning efficiency for patterning 10µm beads on the device. (b) the graph presenting the 

separation efficiency of device in separating yeast cells (smaller) from cancer cells (bigger) and 

simultaneous patterning efficiency for patterning of cancer cells. Black and white bars represent 

separation and patterning, respectively, in (a) and (b).  

 

 

 

5.3.3.5 USE OF 3DPPM FOR OTHER SHAPE OF MICRO-ENTITIES 

In this project it has been demonstrated that the 3DPPM is suitable for sorting and 

patterning of spherical micro-entities. It is difficult to predict how the 3DPPM would 

behave for non-spherical micro-entities. It would depend on many characteristics of such 

micro-entities, such as rigidity. As most of the micro-entities like beads or cells (in 

solution) remain spherical or nearly spherical, the 3DPPM should be useful in most of the 

cases. However, for some special micro-entities like blood cells, the 3DPPM may not be 

suitable.   

 

(b) (a) 
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5.3.4 CELL VIABILITY ON THE DEVICE 

 

The micro-filter device presented here can be a useful tool for cell-based applications as 

cells can be separated and patterned on the device with high efficiency. Also, it has been 

proved that trapped-cells do not block pores. Now, it is important to study if the filtration 

process can cause significant decrease in cell-viability or cell-functionality. To study the 

cell viability on the device, a combination of two fluorescent-dyes Calcein-AM and 

Propidium Iodide (PI) have been used. Calcein-AM (green fluorescence) labels live-cells 

only whereas PI (red fluorescence) labels dead-cells only. To perform this experiment, 

cells (MDA-MB-231, breast cancer cell-line, average size=16µm) are patterned on the 

same device and cell- viability is assessed at different time–intervals by using the above 

mentioned dyes. Cell viability does not change significantly even after five hours of 

incubation (Fig.5.12a-c) which proves that filtration process does not affect cell-viability 

significantly. 
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Fig. 5.12: Cell-viability in the device: (a) and (b) are obtained from the cell-viability study on 

the device. Green fluorescence indicates viable cells and red fluorescence indicates non-viable 

cells. (a) Cells just after patterning and (b) after 5hr of incubation in the device. (c) a plot showing 

cell-viability studied over 5hrs of incubation in comparison to the plain PDMS surface. 

 

To further confirm the finding and to prove that cells remain functional, another 

experiment has been performed. Cells are flushed-out from the device after patterning by 

using back-flow of fluid. The recovered cells are then cultured and cell-culture is 

compared to the normal cell-culture. The cells have been found to grow normally and are 

morphologically similar to cells from normal culture (Fig.5.13a and b). This experiment 

shows that cells remain viable and functional after filtration process.   

(a) (b) 

(c) 
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Fig. 5.13: (a) shows culture of cells recovered from device after filtration process and (b) culture 

of cells under normal conditions  

 

  

 

5.4 CONCLUSIONS 

A unique 3D pyramidal porous membrane has been integrated in a functional micro-

device which has been used here for simultaneous separation and patterning of 

cells/beads. The anti-clogging nature has been studied in detail. The membrane also 

exhibits an interesting separation mechanism, i.e. bi-directional separation. It has been 

proved here that the high efficiency of separation and patterning of cells/beads can be 

achieved by the bi-directional separation mechanism. The micro-device used here is 

compatible for the cell-trapping and can be used for the cell-based applications. Anti-

clogging porous membrane has not been reported in the past.  

(a) (a) (b) 

100µm 100µm 
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Chapter-6: Conclusion and Future Work 

 

6.1 CONCLUSIONS 

A novel 3D microfabrication technique has been developed in this project. This technique 

is simple, inexpensive and has high throughput. It does not require any sophisticated 

equipment or facilities for adopting this technology. This technique is based on an 

approach different from other approaches used in existing 3D microfabrication 

techniques. In the most of the existing techniques, exposure of light on a photosensitive 

material is highly controlled or localized, whereas the cross-linking of the material is 

controlled in this newly developed technique. A new concept of material cross-linking 

termed as ‘Partial activation’ (PA) has been introduced in this project, which helps in 

controlling the cross-linking of the material. The cross-linking properties of PA have 

been found to be different from normal complete cross-linked state. The PA is a flexible 

state of cross-linking which can be modulated to control the cross-linking of the material. 

It has been interesting to study anisotropic cross-linking within the PA. This property has 

been studied by using an optical imaging as well as a molecular spectroscopy technique 

(FTIR). Results from both of these techniques have confirmed the re-arrangement within 

PA. Such re-arrangement has endowed the ability to fabricate different 3D 

microstructures.  Based on this understanding, the novel 3D microfabrication technique 

has been developed. A single inexpensive plastic photo-mask has been used here for the 

fabrication of various 3D microstructures. The shape and size of these microstructures 

can be modulated by exposure energy and PEB temperature. To the best of our 
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knowledge, the study on PA as well as the 3D microfabrication based on materials’ 

properties has not been reported in past. 

The 3D microfabrication technique developed in this project has been applied for the 

fabrication of a unique anti-clogging 3D pyramidal porous membrane (3DPPM). A 

master-mold is fabricated in SU-8 which is used several times for the fabrication of 

3DPPM in PDMS. The anti-shape of the desired 3D microstructures is fabricated in the 

master-mold which is replicated in PDMS. These micro-structures are fabricated on a 

replica of micro-channel. This allows integration of 3D microstructures in a micro-fluidic 

device. The fabrication of such master-mold requires integration of different 3D 

microstructures. Such integration is challenging as complex 3D microstructures are 

desired. In this project, the 3D microstructures with positive and negative relief features 

are required to be integrated together, which also need to be integrated with micro-pillars. 

Such integration has been found to be challenging due to use of multiple layers and 

instability of micro-pillars in standing over 3D microstructures. To overcome this 

problem, the PA and its molecular re-arrangement has been harnessed to develop two 

methods for such integration of microstructures. Both of these methods depend on 

generation of the PA. In one of these methods it is generated by exposing SU-8 to low 

dose of exposure energy (‘Low dose exposure energy’ method), while in other method it 

is generated by diffusion of activated cross-linking species from exposed region to 

unexposed region (‘Diffusion’ method). ‘Low dose exposure energy’ method is simpler 

while ‘Diffusion’ method is more versatile. Both methods have been demonstrated for the 

fabrication of the master-mold. The master-mold has been used for fabrication of the 

3DPPM. The 3D microstructures are replicated while micro-pillars are utilized for 
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fabrication of pores (through-holes). It is accomplished by coating a thin layer of PDMS 

over microstructures. However, it has been found that PDMS is accumulated over these 

microstructures and prevent formation of through-holes. Hence, a weight extrusion 

method has been developed in this project to overcome this problem. Furthermore, 

peeling the membrane off the master-mold has been found to damage the membrane. To 

overcome this problem, a solvent based approach has been developed for easy and 

automatic release of porous membrane from the master-mold. The 3DPPM membrane 

has been successfully fabricated in this project, which consists of ‘funnel-like’ pores 

surrounded by 3D pyramidal microstructures. The 3DPPM has been integrated in a 

micro-fluidic device by integrating it to a layer containing sink for collecting fluid 

passing through it. The 3DPPM has been supported by using unique ‘Doll-like’ 

microstructures in the sink. These structures have been fabricated by the newly developed 

3D microfabrication technique in this project. The micro-device consisting 3D PPM has 

been found to be stable at high flow-rates and thus can be used for various applications. 

The 3DPPM confers four characteristics to the micro-fluidic device developed in this 

project, which has been applied for sorting and patterning of micro-entities such as cells 

and beads. These characteristics are: 1) It is anti-clogging and therefore allows 

uninterrupted sorting of micro-entities continuously; 2) Simultaneous sorting and 

patterning of micro-entities has been achieved; 3) Micro-entities of different sizes has 

been patterned or trapped between the 3D microstructures; 4) Bi-directional sorting has 

been achieved, both in the direction of fluid-flow through the pores as well as that 

perpendicular to it, for high sorting efficiency. The anti-clogging of the 3DPPM has been 

studied using computational technique as well as by experimental method. It has been 
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found from these studies that fluid as well as micro-entities can pass through interstitial-

gaps between trapped micro-entities and pores. The bi-directional sorting of micro-

entities has led to high purity of sorting and sorted micro-entities have been found to 

contain negligible amount of contamination by other micro-entities present in the 

mixture. The 3DPPM has been found to perform simultaneous sorting and patterning of 

micro-entities at high efficiencies which remain unaffected by change in ratio of micro-

entities. These studies have also been performed by using living cells. The cell-viability 

and cell-functionality has also been studied to assess effect of sorting and patterning 

process on cells. It has been found that cells remain viable and functional in the micro-

device. Hence, the micro-device developed here can be useful for cell-based studies and 

for biomedical applications. 
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6.2 FUTURE WORKS 

Future work for 3D microfabrication technique: The lack of simple 3D microfabrication 

technique fuels a strong need for developing a simple, inexpensive and versatile 

technique for this purpose. Also, possible applications and potentials of 3D 

microstructures or topographies might not been fully explored. One of the examples from 

the past developments can be taken for the introduction of three-dimensional cell-culture 

techniques. Though the 2D cell culture has been well established, the introduction of 3D 

cell-culture techniques has greatly increased the understanding of cell-behavior and has 

increased the attention of biologist to study cell in a 3D environment which resembles 

more to their natural environment. The concept has radically changed the view about cell-

culture, cell-behavior and cell-based applications. Similarly, many possible applications 

can be conceptualized from the use of 3D topographies. For example, cells are trapped by 

using micro-wells for single-cell studies in some of the existing techniques. Usually, 

vertical dimensions of these wells do not vary which provides a strict dimensional 

restriction for capturing cells. Dimensions of cells (even from the same batch) vary and 

cells of different sizes can be found from the same batch of cell culture. So, capturing 

cells using such wells produces biasness for capturing cells of particular size only that 

may not represents the true stochasticity in the single-cell analysis. The use of 3D 

microstructures with varying vertical dimension may represent better system by 

accommodating cells of different sizes. Another example can come from high-aspect 

ratio microfabrication. High-aspect ratio of microstructures decreases their stability. The 

simple solution to this problem can be using conical structures with broader base and 

slimmer top. There can be many such examples and applications where 3D 
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microstructures can be used to add more functionality or to improve the current 

functionality of a system apart from being used for unique and specialized purposes. 

Thus, it is important to develop simple techniques for 3D microfabrication. This project 

is an effort in this direction. However, this is not end in itself and provides wide scope for 

future exploration to tailor this technique according to needs for various scientists. 

Following works can be undertaken in future to extend this project: 

 The 3D microfabrication technique developed here has been demonstrated only 

for SU-8 that is a negative photoresist. The work can be extended for other types 

of negative photoresists available in market, e.g. Negative photoresist (AL-217) 

from Sigma-Aldrich. 

 The concept of the PA should be explored more for other polymeric material. It 

would be interesting to explore if other material shows “molecular re-

arrangement” too. It would also be useful to study if PA in other material can be 

used for developing other important techniques. A deeper research in this area 

should be undertaken. 

 The 3D microstructures developed in this project should be explored for 

different applications such as fabrication of different types of micro-lens array, 

moving parts in MEMS system. 

 Array of pillar arranged in particular fashion has been recently used for sorting 

micro-entities. This technique has been reported to be quite efficient. However, 

it is only limited to size based separation, whereas many micro-filtration 

techniques can sort micro-entities based on size and defromability of micro-

entities. Hence, it can be an interesting exploration to use 3D micro-pillars in 
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such application as these microstructures may modulate movement of micro-

entities in different way. Moreover, if such microstructures are flexible, sorting 

of micro-entities based on defromability may also be achieved. This can be 

interesting new addition to the existing tools for sorting of micro-entities. 

Future work for the 3D porous membrane: No doubt, porous membranes are one of the 

most traditional tools that are essential components of many advanced industrial and 

research applications. However, the basic architecture (2D) and the major drawback (pore 

clogging) of porous membranes have not seen much advancement in long history of their 

use. Herein, we intend to add a new dimension in this technology by presenting the 

3DPPM with anti-clogging characteristics. The purpose of this research is two-fold: 1) to 

introduce the concept of anti-clogging 3D porous membrane and 2) to present a new tool 

for biomedical applications. In future, further study would be required for using this 

technology for many applications. Following are some suggested future works: 

 The anti-clogging is a new concept for filtration by using porous membrane. 

Hence, it should be important to understand the fundamental aspects of this 

concept. Such understanding may lead to develop similar anti-clogging porous 

membrane used for different industrial application.  

 Infectious Disease Diagnosis: Bacterial identification from pathological samples 

is clinically very important. Although bacterial disease diagnosis is clinically 

important and commercially lucrative, existing techniques are either slow 

(mainly based on bacterial culture) or require stringent sample preparation (based 

on PCR). Hence there is a need to develop a new technique for fast, efficient and 

sensitive detection of bacteria. 
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The 3DPPM patterned with functionalized beads (with antibodies or other 

capturing molecules specific for bacterial capture) may solve this problem. 

Patterned beads do not block holes/pores leaving interstitial-gaps which allow 

fluid to pass through (Due to anti-clogging property of the membrane). The 

bacteria from the sample would be forced to pass through these gaps. During this 

process they would interact with functional moieties on beads and may get 

trapped. Moreover, the device can be used for multiplex detection as an array of 

beads functionalized with different antibodies may be used. It may also be 

developed for testing antibiotics against trapped bacteria. If successful, the device 

can replace the age-old bacterial culture based diagnosis system. Based on this 

idea, we plan to develop a point-of-care bacterial diagnosis system for fast and 

sensitive detection of bacteria. Recently, a grant (Biomedial Engineering 

Programme (BEP) under A-star grant) has been secured for his purpose.  

 

 Disease Treatment: Leukemia is a serious clinical problem in which number of 

cancerous cells increases in the blood which makes it more viscous. The 

increased viscosity can cause failure of vital organs like heart. One of the current 

treatments for Leukemia is called Leukapheresis whereby cancerous cells are 

removed from the body by separation of cancerous cells using big and bulky 

equipment. It is a tedious process and needs hospitalization. Miniaturized 

equipment using anti-clogging filtration system can be developed in future to 

solve this problem. The 3DPPM can be integrated in such equipment for 

continuous separation of cancerous cells from blood. The system would be 
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expected to clear out cancerous blood and supply back the normal blood. The 

system would contain circulation system for continuous separation without the 

need for hospitalization. 

 

 Support System for Disease management: The failure of insulin production from 

beta-cells cause diabetes which is one of the silent killers that affects human lives 

world-wide. Conventional therapy consists of direct insulin injection based on 

the physician’s recommendation about the amount and number of dosage. The 

conventional technique is difficult to regulate and is inefficient in regulating 

blood-glucose concentration. 

 

 A “pancreas-mimic micro-device (PMMD)” using encapsulated β-cells can be 

used to solve this problem. The goal would be to mimic the pancreas function in 

a micro-device. The 3DPPM can be used as an anti-clogging porous membrane 

for continuous interaction of blood with encapsulated cells. A number of β-cells 

can be encapsulated (by established methods of micro-encapsulation) to make 

small beads containing cells. Beads of different sizes can be trapped in the 

membrane avoiding the need for strictly controlling the bead-size. Blood can 

continuously be flowed in the device without cells being washed-off due to anti-

clogging property of the membrane. Blood flow around each encapsulated beads 

would allow cells to access blood-glucose correctly which in turn would help β-

Cells to sense blood-glucose accurately and release correct amount of insulin in 

response. This would also provide nutrient and gases from blood for cell survival. 
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The device may mimic the Pancreas. Pancreas contains β-cells for insulin release 

with high perfusion of blood-flow, as may be in this micro-device. Finally, stem-

cells or engineered-cells can be used for long-term release of insulin as it is an 

external device. 
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