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Summary 

 

Self-healing materials (SHM) is a novel class of smart material which can 

detect and repair damages automatically. From the beginning, researches in this field 

have been targeted towards aerospace applications. Multiple experiments have been 

conducted to enhance the self-healing performance. To complement the experimental 

effort, a numerical model that is able to predict the macro behaviour of this composite 

is necessary. To tap on the potential of this smart material, attempts have been made 

to extend the self-healing concepts to cementitious materials for civil engineering 

applications, where the automatic crack repair can help to increase the durability of 

the material or to reduce the loss of stiffness and strength of the structure. The 

objectives of the current study are to develop a numerical modelling strategy that can 

efficiently predict the macro behaviour of SHM and to extend the self-healing concept 

to reinforced concrete, the most commonly used civil engineering material.   

Firstly, Representative Volume Element (RVE) approach was examined in 

detail based on simulations with porous epoxy. The simulations show that Multiple-

Particle RVE (MP-RVE) approach is suitable for predicting the properties, both 

elastic and inelastic, of composites containing high volume fraction of 

reinforcements; and fracture energy, which is a size invariant property, should be used 

to simulate the damage behaviour of heterogeneous materials.  

The RVE approach has been adopted to develop a numerical model to predict 

material properties of micro-capsule based SHM. Findings from a preliminary study 

suggest that the micro-capsules, which are much softer than the matrix, can be 

modelled as voids in the RVEs. The shear-yielding effect of the micro-capsules on the 



ix 

 

post-elastic behaviour of the composite is modelled by introducing shear retention in 

the smeared crack model. Good predictions of Young’s modulus, strength, and 

healing efficiency have been achieved.  

A numerical simulation of simply supported beam under three-point bend was 

carried out to study the effect of self-healing on structural behaviour. The result shows 

that healing with low strength healing agent is inefficient as the healed cracks will 

reopen. Ideally, self-healing beam using capsulated system may recover load bearing 

capacity and stiffness better but this system need more amount of healing agent. On 

the other hand, self-healing beam using tubular system sacrifices some degree of 

healing to concentrate on healing only severe cracks.  

Lastly, self-healing function was implemented in reinforced concrete as an 

extension of self-healing concept to civil engineering applications. It was found that 

the one-part air curing adhesive Isocyanate Prepolymer (POR-15) encapsulated in a 

hollow glass tubes is a promising self-healing unit. Protected by using spiral wires 

coated with a thin mortar layer, the proposed self-healing units were implemented in 

three key reinforced concrete structural members, at structural scale, namely beam, 

column and slab to test the healing efficiency, in terms of stiffness recovery. The self-

healing beam exhibited multiple crack healing capabilities with 84% of the flexural 

stiffness being recovered. Self-healing function was also introduced in column 

element where healing efficiency of up to 70% was reported. Multiple crack healings 

were observed in the self-healing slab with the maximum healing efficiency of 99%. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. GENERAL REMARKS 

Along the development of material science, the objective of material research, in 

terms of mechanical behavior, keeps changing from the starting point of finding stronger 

materials finding high performance materials. Over a few recent decades, advanced 

materials such as smart materials, multi-functional materials and sustainable materials 

have attracted the attention of material scientists. No matter how the focus in material 

research changes, cracking is always the essential issue need to be resolved. The 

existence of crack in material, regardless of how well it is designed or manufactured, is 

almost unavoidable as micro-cracks can be initiated during the processing of the material 

due to non-uniform heating and cooling which give rise to residual stresses, or rough 

handling of the material. Owing to the creep or fatigue effects during service condition 

caused by electrical, mechanical and/or thermal loading, these micro-cracks can grow and 

induced more severe macro-cracking phenomenon such as crack bridging at grain 

boundaries, debonding at matrix–reinforcement interface or delamination in sandwich or 

laminated panels, resulting in degradation of material properties.  

In materials which are brittle or quasi-brittle, such as polymer composites and 

concrete, the long-term degradation is highly undesirable. Especially, when the structure 
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is under-designed or accidental loadings are imposed, the presence of cracks at critical 

locations increases the vulnerability of the structure. In such cases, if the damage 

structure is left unrepaired, a sudden catastrophic structural failure may happen and cause 

some severe losses in property or even human death. Thus, overhaul or regular 

maintenance, which is costly in many cases particularly in civil and aerospace 

applications, is necessary to ensure safety and prolong the lifespan of the structure. For 

example, the average annual maintenance cost for bridges in US is estimated at $5.2 

billion (Yunovich and Thompson, 2003). Even with a costly regular maintenance and 

overhaul, the probability that a catastrophic failure happen can only be reduced to a 

certain level, rather than being zero as in ideal cases. The collapse of a highway overpass 

in Quebec in 2006, which happened after the annual inspection, is an obvious example. 

The fact that the probability of a sudden catastrophic failure cannot be reduced to zero is 

because in many instances, including of the above failure of the highway overpass in 

Quebec, damages are too fine or embedded too deep inside the structure so that they 

cannot be detected by conventional methods and equipments. Therefore, finding a 

reliable detection and repair method to solve cracking problem is a very challenging and 

practical issue nowadays.  

As a promising solution for the aforementioned cracking problem, self-healing 

materials has become an attractive topic to researchers over the past few years. The main 

idea of this novel material is to embed a self-sensing and repairing mechanism within the 

materials to prevent further damage and recover its material properties such as stiffness, 

strength and fracture toughness automatically. Indeed, this self-healing system is not 

entirely new and can be found in almost all living organisms. Through years of evolution, 
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the sensing and healing network in biological materials are optimized to adapt to their 

living environment. Obvious examples are the growth of tissue in cuts and abrasions of 

animal skin, or the remodeling of bone when there are fractured. Mimicking nature, many 

efforts have been made, experimentally, to find efficient ways to produce self-healing 

materials and some first promising results have been published recently.  

In the next section of this chapter, the self-healing mechanisms in nature will be 

reviewed in detail. Then, a general strategy to create artificial self-healing mechanism in 

material will be presented together with a review on achievements in literature.  

 

1.2. LITERATURE REVIEWS 

1.2.1. Natural self-healing systems 

In nature, living organisms heal themselves by either replacement or bleeding 

mechanism. The former mechanism is exhibited in the repair of bones with micro stress 

fractures or the repair of trees from cutting. Figure 1.1 describes the replacement 

mechanism in human bone. There are 2 different types of cells, the osteoclasts and the 

osteoblasts, within each repair unit called basic multicellular unit (BMU). While the 

osteoclasts remove the old and damaged part of the bone, the osteoblasts generate new 

ones to maintain the bone’s integrity. In order to mimic this mechanism artificially, one 

has to create two separate automatic systems for destruction and generation, which is still 

at present formidable to mimic. Moreover, effective bonding between new and old 

material is another difficult issue to content with satisfactorily.   
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Figure 1.1: Replacement-based healing mechanism of human bone. 

(after David Taylor et al., 2007) 

 

Fortunately, there is a simpler way of self-repair in nature which is based on 

bleeding mechanism. Figure 1.2 shows an example of bleeding-based autonomic healing 

process. When a cut through an animal skin is made, the intercepted blood vessels rupture 

and blood is released into the cut or wound. The blood functions as a self healing agent 

that contains clotting chemicals which can coagulate and mend the wound. The two key 

factors of this mechanism are (a) presence of a healing agent (blood) which is stored in 

containers (vessels), and (b) the damage has to rupture the containers to trigger the 

healing process. Compared to replacement mechanism, this approach is more practical 

and easier to mimic. 

 

Figure 1.2: Bleeding-based healing mechanism. 

(after Martha J. Heil, 2005 and William Matsui, 2007) 

 

 

 



Chapter 1 INTRODUCTION 

5 

 

1.2.2. Artificial self-healing systems 

1.2.2.1. Strategy to create artificial self-healing system 

An artificial strategy to create autonomic repairing ability in material has been 

developed in recent years, which mimics closely the bleeding-based healing mechanism. 

The strategy is described by the flow diagram in Figure 1.3. Mimicking the bleeding-

based healing mechanism in nature, the artificial self healing units comprise of the 

container and healing agent. These units are embedded inside the neat material to create 

the self healing function. The container serves both to contain the healing agent and act as 

a barrier to prevent any reactions between the healing agent and the neat material. When 

the propagating crack ruptures the container, the healing agent is released into the crack 

by capillary action or gravity. Chemical reaction takes place between the healing agent 

and neat material or between parts of healing agent (in the case of 2-parts epoxy) to 

create bonding between the crack planes and alter the crack tip’s shape. Because of this 

healing process, it can stop the crack propagation and material properties such as 

stiffness, fracture toughness and strength may be recovered. 
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Figure 1.3: Strategy to create artificial self–healing material 

 

 

 

Beside the liquid state healing agent which can provide fast chemical reaction to 

heal the damage, solid state healing agent have been proposed and developed in other 

systems. For such systems, the container is not necessary because under normal 

condition, solid healing agent cannot flow nor have chemical reaction with the host 

material. Instead, chemical reaction is triggered by methods such as heat (Zako and 

Takano, 1999; Chen et al., 2002; Hayes et al., 2005), light (Chung et al., 2004), or 

electric current (Christopher et al., 2007). However, such system requires a 

Self-healing material (SHM) 

= 

Host material + (container + healing agent) 

Damage 

Host material 

Self-healing material (SHM) 

= 

Host mat. + (container + healing agent) 

Embedding container 

with healing agent  

Repairing material 

Chemical reaction happens between healing 

agent and host material or between parts of 

healing agent to create bonding which 

closes crack planes and alter crack tip’s 

shape. 

Repaired material 

- Recovered stiffness, strength and fracture 

toughness 

- Stop crack propagation. 
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complementary damage sensing system, making it more expensive and comparatively 

less responsive. Additionally, it is difficult to ensure localized healing at the damage area 

as a wider area is often activated by the trigger. It is not surprising that liquid healing 

agent is commonly selected as the principal component in the development of self-

healing material. 

The development of self-healing material requires the integration of 

multidisciplinary sciences from material, mechanical and chemical fields to find the 

optimal healing agent and container for each specific class of application. The role of the 

chemical scientists is to find or develop chemical agents which have the ability to create 

new chemical bonds that can repair the damage, and to find catalyst that can increase the 

speed of repair. These aspects are relevant to the chemical and physical properties of the 

self-healing units and their surrounding environment such as the matrix and the working 

environment of the whole self-healing structure. Studies on finding and developing 

chemical agents have been studied vigorously by White et al. (2001), Chen et al. (2002), 

Jones et al. (2006), Mauldin et al. (2007), Kersey et al. (2007), Wilson et al. (2008, 

2009), Caruso et al. (2008), Blaiszik et al. (2009), Kryger et al. (2010), McIlroy et al. 

(2010), Kingsbury et al. (2011) and Jin et al. (2012) with promising results.  

Beside epoxies and adhesives, some bacteria are also used as healing agents in 

recent researches on self-healing cementitious materials (Kishi et al., 2007; Van 

Tittelboom et al., 2010 and Jonkers H.M., 2007, 2009). In these studies, bacteria were 

used to activate the autogeneous healing process of cementitious materials. Experiments 

with lab-scale beam specimens showed that good results, in terms of crack sealing and 

increasing the water permeability ability have been achieved. 
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The selection of appropriate container system has received pursued by material 

and mechanical scientists and engineers. Two systems have been widely discussed and 

developed, namely, hollow glass fibers and microcapsules. Both systems have been 

demonstrated by some pioneered studies sponsored by the US Air Force Office of 

Scientific Research – AFOSR (Kessler and White, 2001; Kessler et al., 2003; Keller et 

al., 2007, 2008) and European Space Agency – ESA (Trask et al., 2006a, 2006b) to have 

enormous practical potential. However, practical limitations still have to be overcome. 

 

1.2.2.2. Bio-inspired self-healing materials with tubular systems 

The idea of using tubular system for self-healing material was first come in 1992 

when researchers in civil engineering were trying to find a smart cementitious material. 

Initially, hollow glass fibers were chosen as the container of the healing agnet because it 

is chemically non-reactive and brittle, which may provide a timely rupture to trigger the 

healing process when the host material surrounding it is damaged.  

Dry and coworkers (Dry, 1992, 1994; Dry and McMillan, 1996) were the first 

researchers to propose the use of hollow glass fibers as a potential container for a repair 

system of cracks in concrete. The experiments were conduct at lab-scale with two 

different modes, namely active modes and passive modes. In the active mode, crack 

healing was triggered through the release of liquid methyl methacrylate from hollow wax 

coated fibers embedded in the concrete. When heat was applied to the concrete, the wax 

coating melted releasing the methyl methacrylate and with further heating, the healing 

agent will be polymerized to bond the crack faces. In the passive mode design, the self-
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healing units with hollow glass fibers as containers and methyl methacrylate as healing 

agent were adopted. The results showed that active mode design can improve the 

permeability while passive mode design was able to increase the flexural toughening. 

However, the glass fibers were so fragile that premature broken of glass tubes were often 

observed. Additionally, since there is a need of applied heat, the active self-healing 

system cannot be considered as a full autonomic self-healing system.  

Li et al. (1998) and Joseph et al. (2007) studied the possibility of using air-cured 

chemical (ethyl cyanoacrylate) within a hollow brittle glass tube to implement the self-

healing system in a fiber reinforced engineered cementitious composite. The reinforced 

fibers were used to as a mean to control crack width. The observations from experiments 

with lab-scale beams showed that healing agent can be drawn to the crack surface under 

capillary suction and gravity. In addition, self-healing process can be repeated at least 

twice with a reported flexural stiffness recovery up to 90%, and 70% in the first and the 

second instances of healing, respectively. 

Nishiwaki et al. (2006) combined a self-diagnosis system with a healing system 

comprising of repair agent encapsulated in heat-plasticity organic film pipe and electric 

sensors as can be seen in Figure 1.4. When the crack is developed to a certain degree of 

severity, the sensor increases its resistance leading to the melting of organic film pipe and 

then the flowing of healing agent to seal the crack. Since the healing agent is 

compartmentalized, multiple healings can be achieved. However, the drawback of this 

system is the need of provide electric power continuously, which limit it from large scale 

applications. Additionally, recovered properties of the healed structure have not been 

reported yet. 
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Figure 1.4: Selective healing system (Nishiwaki et al., 2006). 

 

After some first promising result obtained with self-healing cementitious material 

using tubular system, Motuku et al. (1999) adapted this method to polymeric composites 

reinforced with woven S2-glass fabric. The study is basically a proof-of-concept and 

investigated the suitability of glass, copper and aluminum as hollow fiber material to 

house the healing agent, and vinyl ester 411-C50 and EPON-862 epoxy as the healing 

agent.  Although the author concluded that the combination of glass tube and EPON-862 

epoxy is effective in healing the crack, the mechanical properties of the composite after 

healing were not reported.  

Bleay et al. (2001) provided a scheme for filling micro-diameter hollow fibers 

with healing agent to come up with a self-healing fiber laminate composite. The 

compressive strength of the damaged composite after healing was 10% higher than that 

of the untreated one. The study illustrated 3 healing systems as depicted in Figure 1.5. 

The first comprises hollow fibres filled with one-part resin, whereas the second is a 2-part 

resin system with the resin and hardener stored in separate hollow fibres. The second 

system allows faster chemical reaction but there may be occasions when bleeding resins 

do not meet hardening agent. The third system is a variation of the second system with 

the hardener encapsulated in micro-spherical modules interspersed in the matrix. 
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Figure 1.5: Schematic of different hollow fiber SHM approaches (Bleay et al., 2001). 

 

The work of Bleay et al. (2001) has since been extended at Bristol University for 

composite laminate (Pang and Bond, 2005a, 2005b; Trask and Bond, 2006; Trask et al., 

2006a, 2006b; Bond et al., 2007) under the European Space Agency (ESA) research 

programme. The host is E-glass/913 epoxy composite laminate, aligned in each ply with 

hollow glass fibers of 60-micron outer diameter and 35-micron inside diameter spread 

uniformly at a predefined separation distance.  The healing agent is a 2-part epoxy system 

(Cycom 823 epoxy). The self-healing composites are manufactured as pre-impregnated 

sheet with 900 stacking sequence. Damage was induced through indentation and 

specimens were then left to heal at a temperature of 100˚C for 2 hours, after which a 4-

point bend test was carried out. The strengths of virgin, damaged and healed specimens 

were compared as a measure of healing efficiency. It was reported that up to 87% 

strength can be recovered after healing. The experimental results are shown in Figure 1.6. 

The choice of healing agent, types of hollow glass tubes, diameter of the tubes, and 

distance between the tubes were also investigated. The performance of liquid healing 

agent at high temperature, and end-capping of the hollow tubes were studied. 
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     (a)      (b)       (c) 

 

                                                  (d) 

Figure 1.6: SHM using hollow glass fibers: (a) micrograph of hollow glass fibers in laminate 

composite under increasing magnification; (b) creating initial damage by 

indentation; (c) 4-point bending test; (d) recorded strength; (e) delamination of 

SHM using hollow glass fibers. (after Trask et al., 2006b) 

 

 In recent years, novel tubular systems have been studied by various researchers. 

In the new systems, also known as vascular systems, micro tubes/fibers are connected to 

form 2D or 3D networks. Most of researches on vascular systems are conceptual studies 

focusing on strategies to design and fabricate self-healing network. William et al. (2008 

a,b) studied strategies to design vascular systems by investigating the effect of channel 

(e) 
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diameter on fluid flow, network failure modes such as channel blockage and large-scale 

leakage from ruptured channels. The authors constructed a hierarchical self-healing 2D 

network using a two-part epoxy system contained in polyvinyl chloride tubes for 

composite sandwich panels (Williams et al. 2008c).  Effects of choices of channel 

diameter, network shape and network connectivity on reliability of vascular systems were 

studied by Bejan and coworkers (Kim et al., 2006; Zhang et al., 2007; Lorente and Bejan, 

2009). Aragon et al. (2008) proposed a genetic-based algorithm for designing 3D 

vascular system. Toohey et al. (2007, 2009) and Hansen et al. (2009) investigated direct-

ink writing method to produce 3D vascular self-healing systems for self-healing coating 

applications. It was claimed that surface cracks in the proposed self-healing coating could 

be healed repeatedly. 

 

1.2.2.3. Bio-inspired self-healing materials with microcapsulated systems 

Bio-inspired self-healing materials using microcapsules were pioneered by White 

et al. (2001) with the concept as illustrated in Figure 1.7. The healing agent (DCPD - 

Dicyclopentadiene monomer) is encapsulated into microcapsules and embedded into the 

structural composite matrix containing the catalyst (Grubbs’ catalyst). When a crack 

propagates across and ruptures the capsule, the healing agent will leak out to the crack 

plane and alter the shape of the crack tip through polymerizing reaction. This 

polymerization bonds the crack planes together, stops the crack propagation and recovers 

loss properties such as fracture toughness. Since polymerization requires contact between 

the healing agent and Grubbs’ catalyst, this poses a serious obstacle since there is 
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likelihood of the healing agent not meeting the catalyst. This problem has been solved 

with the use of a new catalyst-free healing agent, chlorobenzene (Caruso et al., 2007). 

 

 

Figure 1.7: Micro-capsule based SHM: (a) diagram of self-healing concept using microcapsules; 

(b) micrograph of capsules after rupturing; (c) healed fracture toughness vs. 

microcapsule concentration for different types of capsules (after White et al., 2001). 

      

The microencapsulated approach was first concept-proven by Kessler and White 

(2001) in woven composites. Healing efficiency in terms of recovered fracture toughness 

was investigated through a double cantilever beam (DCB) test. Two sets of experiments 

were conducted. The first involved a so-called reference sample to test the efficiency of 

healing by manually injecting the catalyzed healing agent into crack plane of the pure 

host material. The second involved a so-called self-activated sample to test if the 

embedded catalyst remains active after composite curing by premixing particulate 

catalyst into host material and then manually injecting uncatalyzed healing agent into the 

crack plane. In both sets of experiments, the specimens were unloaded and clamped after 

injection and left to heal for 48 hours before being tested again for their fracture 

(b) 

(a) 

(c) 
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toughness. The reported highest healing efficiency was 51% to 67%. This low healing 

efficiency is due to the imperfect interfacial bonding between E-glass fibers (in host 

composite) and the polymerized product at the healing position. 

Kessler et al. (2003) applied this concept in carbon fiber reinforced composite to 

prevent delamination in host material. The layers where delamination was pre-introduced 

were filled with 20 wt% microcapsules of average diameter 166 micron and containing 

DCPD healing agent. After curing for 48 hours at room temperature (27˚C), healing 

efficiency in terms of recovered interlaminar fracture toughness was found to be about 

38% but it increased to 80% when cured at 80˚C. 

 Brown et al. (2002) tested the concept of SHM using microcaspsules approach 

with a homogeneous polymer host matrix (EPON 828 epoxy resin). The tests were 

carried out using a tapered double cantilever beam (TDCB), which was developed by 

Mostovoy et al. (1967) to provide crack length-independent measurement of fracture 

toughness. In situ samples, which are fully integrated systems of this approach containing 

both microcapsules, catalysts and activated automatically by rupture of microcapsules, 

were tested. Parametric studies of microcapsule size, microcapsule percentage were also 

carried out. An average healing efficiency of 85% was reported for system containing 

5wt% microcapsules of diameter 180 microns. Moreover, maximum healing efficiency 

was obtained 10 hour after the fracture occurred. Further investigations carried out by 

Brown et al. (2004) showed that adding microcapsules containing DCPD increases 

fracture toughness of material up to 127%. This amount strongly depends on the size and 

volume fraction of microcapsules. Besides, microcapsules changed the fracture surface 
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from mirror-like texture (brittle fracture mechanism of neat polymer) to a hackled texture 

after healing. 

Effects of capsule size on performance of self-healing polymers were investigated 

further by Rule et al. (2007). It is claimed that the minimum size of microcapsules needed 

for healing performance strongly depends on size of the crack and weight fraction of 

capsules. For instance, with a crack separation of 3µm, self-healing can be achieved with 

1.25 wt% of 251-micron diameter capsules or with 15 wt% of 29-micron diameter 

capsules. In other words, for the microcapsule system to be effective in self healing, it 

must satisfy a minimum requirement in terms of the volume of healing agent delivered to 

the crack but the critical value is still questionable. 

Effects of self-healing microcapsule on extending the life of polymer composites 

under fatigue loading were studied by Brown et al. (2005a, 2005b) and Jones et al. 

(2007). Successful healing in terms of reducing crack length and retardation of additional 

crack growth can extend the fatigue life by 89% to 213%. More importantly, if stress 

amplitude is lower than a threshold, crack growth will be arrested completely. SEM 

micrograph of the crack tip indicated that the healing was successively achieved through 

both short and long term effects of the healing process.  While short term adhesive effect 

of healing agent retarded crack growth rate, the long term effect created shielding (solid 

DCPD wedge) along the crack and/or at crack tip to prevent its propagation. This 

phenomenon is illustrated in Figure 1.8. 
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Figure 1.8: Optical micrograph at crack tip of self-healing polymer composite under fatigue 

loading (after Brown et al., 2006). 

 

Recently, performances of self-healing polymer composite under low-velocity 

damage impact and torsion fatigue loading are currently investigated. Some early results 

by Patel et al. (2007, 2009) and Keller et al. (2007) indicated that self healing system not 

only can recover torsional stiffness significantly but increase the resistance against low-

velocity impact. Jin et al. (2011) applied micro-capsule based self-healing approach to 

create a self-healing adhesive for bonding steel substrates. Experimental results with 

tapered double cantilever beams showed that the novel adhesive was able to self-heal 

under both quasi-static fracture and fatigue conditions. 

Beside researches on the performance of self healing system using microcapsules 

in different host materials and under different types of loading, there are other studies on 

microcapsule manufacturing (Brown et al., 2003), mechanical properties of microcapsule 

(Keller et al., 2006), and healing agent development (Jones et al., 2006; Mauldin et al.,  

2006; Caruso et al., 2007, 2008; Wilson et al., 2008, 2009; Blaiszik et al., 2009; Kryger et 
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al., 2010; McIlroy et al., 2010; Kingsbury et al., 2011). The research in this area made 

significant progress through the finding of a new catalyst-free healing agent 

chlorobenzene (Caruso et al., 2007, 2008) making this method cheaper and more 

practical. 

 

1.2.3. Summary 

 The above literature review highlights strong potential of both tubular systems 

and microcapsules systems to create self-healing function in materials. Depending on the 

specific applications, each system exhibits different advantages and disadvantages. This 

is because the selection of container in an artificial self-healing system is closely relevant 

to the critical crack size at which the healing process is desired to perform. An overly 

large container, compared to the critical crack size, may be too stiff and strong to be 

ruptured timely. An overly small container may be too weak to prevent a premature 

rupture of the container, which also means a premature activation of the self-healing 

system.  

 For polymers and composites, which are mostly used in medicine, aerospace and 

especially in electronic industries, the critical crack size is at micro size and hence, the 

container system should be at micro size, also. Observations from literature show that 

SHM with tubular system, i.e. using hollow fibers, has the following advantages: high 

healing efficiency; refillable healing agent; reinforcing containers; possible development 

to a more advanced network of hollow glass fibers; and fast healing time. However, some 

obstacles against effective implementation are also obvious. Firstly, because the diameter 
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of tubes is in the micro-scale, filling the tubes with liquid healing agent is difficult due to 

large surface tension. Secondly, in self-healing systems using 2-part epoxies, there is high 

probability that two components of the epoxy do not interact and mix together and hence 

do not meet the minimum volume/weight ratio to activate the healing process. Thirdly, 

the hollow glass tubes may create initial weak planes at the matrix-container interfaces if 

they are stiffer than the host material. These weak planes may initiate or attract cracks 

and cause delamination as can be seen in Figure 1.6e. Fourthly, the total weight of the 

new composite may increase due to the presence of the healing system; as such, fibre 

system is only adopted for applications involving impact loading. To overcome this last 

limitation, micro-vascular system for SHM are currently being investigated (Williams et 

al., 2007, 2008 a, b, c; Toohey et al., 2007, 2009; Wu et al., 2007; Huang et al., 2007; 

Aragon et al., 2008; Lorente and Bejan, 2009 and Hansen et al., 2009).  However, the 

first three limitations of glass fibers system are still present in micro-vascular system. 

The literature review also points out the strong potential of SHM using 

microcapsules approach in polymer composites. Besides recovering the fracture 

toughness from damage, the fatigue life of the material may be extended as microcrack 

propagation are retarded or arrested. The recent researches also show that this approach is 

suitable for components under low-velocity loading and torsional fatigue loading. 

Compared to the approach using glass fibers, the microcapsules approach has the 

following advantages:  

(a) Manufacturing process of SHM using micro-encapsulated healing agent is 

easier than that of hollow glass fiber containing healing agent. 
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(b) Microcapsules can be distributed uniformly in host polymer. 

(c) The self weight of the overall composite will not be much affected since 

density of microcapsule is about 1000kg/m
3
, close to the density of the polymer matrix 

(1160 kg/m
3
). 

(d) The nearly perfect bonding between capsule and host polymer means that 

initial crack planes are unlikely to be introduced into the system by the self-healing 

system. 

(e) Lastly, since the microcapsule is soft compared to the host material, it can 

attract propagating cracks which helps the self healing system to function effectively. 

 However, embedding microcapsule into host material, if substantial, will reduce 

the initial stiffness and strength of the composite element. Therefore, optimization to 

achieve best healing performance while keeping the stiffness and strength is within 

acceptable range is necessary. Nevertheless, SHM using microcapsules exhibits elegant 

promise for brittle polymer matrix composites. 

 Although microcapsule system shows a better capability to create self-healing 

polymer composites, tubular system is a more approachable method for applications in 

civil engineering area. In civil engineering applications using mortar and concrete, 

because of the size of the structures, the high density and the brittleness in tensile of the 

material, micro cracks appear everywhere in the structure even under the structure’s self-

weight load. In those cases, healing microcracks is neither important nor possible. 

Instead, healing macro cracks, which point out mature damages in the structure, is more 

desirable. As a result, macro size should be the size of the container in self-healing units. 
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In addition, tubular system has the following advantages compared to the microcapsule 

system: 

(a) Casting concrete will create more harmful factors to self-healing units such as 

heat generated and aggregate impact that will easily rupture microcapsule healing units. 

Finding a protection method to protect hollow tubes from the above harmful factors is 

much easier than finding that to protect the microcapsules. 

(b) Since the zone of critical damage in a structural member in civil engineering is 

large and predictable, there is no need for the uniform distribution ability of the 

microcapsule system. Instead, the concentration of healing agent offered by tubular 

system is more appreciated. 

(c) The amount of healing agent that can be contained in a microcapsule is too 

limited compared to the critical crack size. This means a large number of microcapsules 

are required to heal one macro crack; resulting much higher cost compared to tubular 

system, where the macro hollow tubes are commercialized product with much lower cost. 

With the above reason, it is not surprising that there is very limited research on 

self-healing cementitious materials using microcapsule approach. Although the most of 

the experiments conducted in literature used mortar and at small scale (less than 500mm 

length), good literature results, in terms of recovered strength and stiffness, demonstrate a 

prospective outcome when this approach is implemented in practical concrete 

applications. 
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1.3. OBJECTIVES AND SCOPES 

The literature review has demonstrated that SHM using microcapsule has great 

potential to achieve self-healing concept for polymer composites. The outcomes are 

based on experiments and researchers are still trying to find ways to enhance its 

performance and utilize its full potential. To achieve, this purpose, it may be optimal to 

perform theoretical and numerical studies of these self-healing systems to complement 

the experimental effort.  

For microcapsule based SHM, detailed understanding of the underlying 

mechanisms and ability to predict its macro-behaviour as the parameter changes will 

provide the necessary information to speed up the development of this new class of smart 

material.  For instance, with a candidate chemical to be used as a healing agent, it is 

possible to perform numerical simulation to estimate the maximum healing efficiency in 

terms of recovered fracture toughness and the extent of material stiffness that has to be 

sacrificed to attain the desired healing efficiency. Limited experiments using the 

simulated optimal solution can be performed as verification before decisions on the 

suitability of using the above chemical as healing agent of SHM can be concluded. 

The literature also reveals effort of researchers in extending the idea of self-

healing concept in concrete. Actually, this extension is very important to make full use 

the idea of artificial self-healing as concrete is a widely used material in the world. 

Additionally, as a building material, concrete is closely related to human and any collapse 

of concrete structures may cause significant effect to human society.  
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It is shown that researchers are still finding ways  to implement the self-healing 

concept in concrete based on some preliminary studies with two variable parameters, 

namely, (i) type of host materials, e.g. mortar or ECC; (ii) type of healing agent, e.g. 

alkali-silica solution, methyl methacrylate, superglue cyanoacrylates, polyurethane or 

bacteria. These two parameters are important and are the basic components to create self-

healing functionality in materials. Until now, most of experiments are still proof-of-

concept test using lab-scale beam elements made of mortar or mortar composites. In fact, 

an implementation self-healing concept on concrete elements at structural scale is more 

difficult because of some issues such as aggregate impact on the healing units and effect 

of heat generation. Also, most of experiments in literature investigated self-healing with 

beam element, where hollow tubes are embedded horizontally to make use of gravity and 

capillary force. The plausibility of implementation of self-healing concept in other 

structural elements such as column and slab is still questionable.   

Based on the above review, the objectives of the current study are (i) to develop a 

numerical model to predict the macro behaviour of self-healing composites and (ii) to extend the 

idea of self-healing to concrete materials.  

Multiscale modeling approach will be used to develop the numerical model for 

self-healing composites. In this approach, a microscale model is constructed to capture 

constitutive mechanical properties of the composites. These properties will be fed as 

input into another model at macro scale to model the structural behavior of self-healing 

composite. The application of self-healing concept in concrete will be focused on 

concrete structural members at real-scale. Three basic structural elements will be 

investigated namely, beam, column and slab. 
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The scope of this study includes the following: 

- Linear and non-linear behavior of Representative Volume Element (RVE). RVE 

concept has been used intensively in recent years to predict material properties of 

composites. While the effectiveness of this approach in predicting linear properties of 

composites is strongly confirmed, the use of RVE in predicting non-linear behavior of 

quasi-brittle composites is still questionable. Moreover, the use of single-particle RVE 

(SP-RVE) and multiple-particles RVE in literature is still unclear and depends much on 

the author. This step is to provide a unique point of view on RVE concept in both linear 

and non-linear mechanical behavior.  

- Numerical model of material properties of microcapsule based SHM. Based on 

the result of the previous step, a numerical model will be developed to capture basic 

material properties of microcapsule based SHM. In this step, the healing effect will be 

simulated. 

- Macro-level simulations to capture structural behavior of self-healing beam 

using SHM. A macro-level model which uses effective homogenized element will be 

proposed to model structural behavior of a self-healing beam made of SHM. This model 

use the material properties of SHM predicted in step 2 as inputs. The output will be the 

behavior of the self-healing beam before and after being healed. Simulation with self-

healing beam using tubular system will also be conducted to compare healing effects 

offered by the two systems. 

- Application in civil engineering. This step provides some first investigations on 

implementation of self-healing function in reinforced concrete. Firstly, preliminary 
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studies will be carried on to select appropriate healing agent and container. Next, an 

effective method to protect self-healing units during casting process will be investigated. 

Finally, the protected self-healing units will be embedded in three basic structural 

reinforced concrete members namely, beam, column and slab to find the healing 

efficiency.   

 

1.4. ORGANIZATION OF THESIS 

Approaches to model mechanicals behaviors of composites are presented in 

Chapter 2. Theoretical, classic numerical and multiscale approaches, both theoretical 

modeling and numerical modeling using RVE concept, are reviewed. Advantages and 

limits of RVE approach are also presented. 

The plausibility of RVE approach for modeling the mechanical properties of 

quasi-brittle materials is investigated in detail in Chapter 3. A unique answer on the use 

of SP-RVE and MP-RVE as well as on the existence of RVE for non-linear modeling 

quasi-brittle materials will be discussed and verified with published experimental data. 

Chapter 4 is to develop a numerical model to simulate self-healing materials with 

capsulated system. Remarks on published experiments are first discussed to provide some 

basic information of the model. Then, numerical simulation of material properties of 

microcapsule based SHM using RVE concept is performed. These material properties 

will be used at macro level to simulate structural behavior of SHM.  
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The implementation of self-healing concept for civil engineering applications via 

developing self-healing concrete is examined in Chapter 6. The selection of components 

of self-healing unit comprising of healing agent, container and protection method is 

studied. Then, self-healing units are embedded inside reinforced concrete structural 

members to create self-healing members. Experiment set up and result of the 

implementation is presented and discussed. 

Finally, in Chapter 6, the conclusions and contributions of the study are presented 

while the recommendations for future works are outlined.  
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CHAPTER 2: 

APPROACHES TO MODEL 

MECHANICAL BEHAVIORS OF 

COMPOSITES 

2.1. INTRODUCTION 

Predicting mechanical behaviors of composites is a multi-scale modeling 

problem, in which different length scale models and links between these models are need 

to be taken into account. With the help of more and more powerful computational tools, 

this problem has been being studied intensively over the past few decades. Basically, 

there are two strategies to tackle the multi-scale modeling problem, namely, hierarchical 

approach and homogenization approach. 

 

2.2. HIERARCHICAL APPROACH 

2.2.1. Overall strategy 

In hierarchical approach, the mechanical response of composites is 

simultaneously modeled at different length scale levels, typically at the micro and macro 

scale for conventional composites as shown in Figure 2.1. Element deformations are 

computed at the larger scale, which will then serve as applied kinematic boundary 
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conditions at the smaller length scale. Stress and strain are consequently computed in the 

smaller length scale and the averaged values are sent back to the larger length scale. 

 

 

 

 

 

 

 

       

 

 

 

 

Figure 2.1: Schematic diagram of hierarchical approach 

 

2.2.2. Computational models 

2.2.2.1. Global – local analysis models 

In 1971, Mote C.D. (1971) pioneered the work of multi-scale modeling using 

hierarchical approach by introducing the global – local analysis concept which is a 

combination of the Rayleigh – Ritz method for global estimation and the finite element 

Transferred information: 

element deformation 

Transferred information: 

averaged stress, strain 

Upper Scale Model Lower Scale Model 



Chapter 2 APPROACHES TO MODEL MECHANICAL BEHAVIORS OF COMPOSITES 

29 

 

method for local solution. This technique was then developed by different researchers 

(Delves and Hall, 1979; Delves and Philips, 1980; Noor, 1986) with the generalized 

concept as follows: The global solution is obtained by using either classical variational 

methods, e.g. Rayleigh – Ritz, weighted residual approaches, or using discretized 

continuum methods, e.g. finite element method or boundary element method, or a 

combination of both variational approach and discretized continuum method such as 

global element method. Meanwhile, local analysis at critical positions is obtained by 

using either conventional discretized continuum methods or special discretized 

continuum methods. Table 2.1 is an example of global – local analysis used by Noor 

(1986) to analyze the post buckling response of a laminated composite cylindrical panel 

with a central circular hole. 

 

Table 2.1: Global – local analysis approach for a laminated composite panel (Noor, 1986) 

Global 

analysis 
Global elements 

Conventional finite 

element 
Global elements 

Local 

analysis 

Conventional (or special) 

finite elements 
Boundary elements 

Boundary 

elements 

Illustration 

   

 

 

The idea of using finite element methods for both global and local analysis was 

investigated in detail by Wilkins (1983) and Hirai et al. (1985). In their study, the global 
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solution is obtained using coarse mesh and local stress distribution at a specific position 

is obtained using a refined model, in which the nodal displacements obtained from the 

global model is applied as kinematic boundary conditions. Inter-element compatibility 

can be achieved by using transition elements or super-elements. 

 

2.2.2.2. Superposition based models 

To improve the accuracy of the solution when overlaying a local mesh on a global 

mesh, superposition based models have been developed with the main idea of 

decomposing the overall solution into global and local effects. The method is volunteered 

by Belytschko et al. (1990) by superimposing the spectral approximation of the classical 

finite element solution over a spectral patch that is placed over a critical region in the 

global model. The method is further developed by Fish (1992) into the more commonly 

known s-version of the finite element method. The idea of s-version is to improve the 

quality of the solution for a local region that is incorporated in a global problem by 

superimposing additional meshes of higher order element at the local region. The author 

then applied this approach to analyze the deformation of laminated composite shells (Fish 

et al., 1996, 1997a).  

Takano et al. (1999) derived a finite element formulation for the case where the 

meshes in global and local regions are generated individually and the boundary of 

elements in each level does not need to coincide as shown in Figure 2.2a. Afterwards, the 

authors used the technique to develop a four-level hierarchical finite element model in 

three-dimensional analysis to simulate damage propagation in woven and knitted fabric 

composite materials and structures as illustrated in Figure 2.2b. 
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Figure 2.2: Hierarchical modeling of woven composites (Takano et al., 1999):                                   

(a) global-local FEM technique; (b) multi-scale modelling 

 

2.2.2.3. Macro-micro hierarchical model 

Mishnaevsky et al. (1999) used macro-micro hierarchical model to simulate a 

compact tension test on WC/Co hard metal containing 16% volume fraction of cobalt. In 

this model, a realistic micro-structure just in front of the crack tip was reconstructed 

based on SEM images and embedded in a macro-model of the compact tension specimen 

as shown in Figure 2.3a. While damage propagation was simulated in the micro-modeling 

domain (Figure 2.3b-e) using element elimination technique, material in macro-modeling 

domain was simulated as linear elastic (Figure 2.3a) using effective properties of the 

composite. To generate the finite element mesh for the real micro-structure in front of the 

crack tip easily, multiphase finite element technique was used. The idea of the multiphase 

finite element technique is that material properties of different material phases in a 

(a) (b) 
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composite are assigned at each integration point of the element. As a result, geometrical 

boundaries of the generated elements do not necessarily coincide with the geometrical 

boundaries of each material phase that is observed in the SEM images. The approach was 

also used by Mishnaevsky et al. (2003a,b) to simulate crack initiation and growth in tool 

steels.  

 

Figure 2.3: Hierarchical modeling of WC/Co hard metal (Mishnaevsky et al., 1999):                                   

(a) model; (b) damage initiation and propagation 

 

 

2.2.2.4. Domain decomposition model 

Zohdi et al., (2001) developed the domain decomposition model in which a large 

scale micro-mechanical model is decomposed into a set of subdomains. All subdomains 

are non-overlapping and decoupled by applying a kinematically admissible solution on 

the global model to form separately solvable problems. Then, all subdomains are solved 

(a) (d) (e) 

(b) (c) 
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with the exact inhomogeneity contained within their boundaries. Finally, the solution for 

the global problem is found by assembling results obtained from the subdomains.  

 

2.2.2.5. Multi-level finite element models 

Feyel and Chaboche (2000) proposed the multi-level finite element model (FE
2
), 

in which the micro behavior of the composites is taken into account at the level of Gauss 

point of elements in the macro-model. The algorithm consists of four steps. Firstly, macro 

analysis is performed to find the macro-field strain. Next, localization process based on 

quasi-periodic theory is applied to find the microscopic strain. This microscopic strain is 

used as an input to a representative volume element model to find the output of 

microscopic stress. Finally, the microscopic stress field is homogenized to become the 

macroscopic stress. The homogenized macroscopic stress is assigned as the output at the 

Gauss points of elements in the macro-model. 

Gitman (2006) extended the Feyel and Chaboche model to the Coupled-Volume 

approach, in which the macro-level and the micro/meso-level sizes are uniquely linked. 

The size link is established based on the number of integration points in an element in the 

macro-model. If there is only one integration point per macro-level element, then the 

macro-level element equals the meso/micro-level representative volume element. In the 

case that more than one integration point is used for the macro-level elements, the 

tributary region belonging to each integration point equals to the size of the 

representative volume element. The main idea of the coupled-volume approach is 

illustrated in Figure 2.4 for the application of uni-directional tensile test of a composite 

bar. 



Chapter 2 APPROACHES TO MODEL MECHANICAL BEHAVIORS OF COMPOSITES 

 

34 

 

 

 

Figure 2.4: Schematic of Coupled-Volume approach (Gitman, 2006):  (a) macro element 

with single interaction point; (b) macro element multiple integration points. 

 

2.2.2.6. Concurrent multi-level model 

Ghosh and Raghavan (2004a,b, 2005, 2007) have developed the concurrent multi-

level hierarchical model to simulate linear behavior and damage development in 

composites. As can be seen in Figure 2.5, a concurrent multi-level model consists of three 

levels namely, (i) level-0: pure macroscopic computational level; (ii) level-1: 

intermediate computational subdomain; (iii) level-2: pure microscopic computational 

level. Level-1 acts as a link to switch from level-0 and level-2 and hence, consists of both 

micro and macro analysis.  

 

(a) 

(b) 
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Figure 2.5: Schematic of concurrent multi-level model (Ghosh and Raghavan, 2007) 

 

The macroscopic analysis at level-1 is performed using continuum damage 

mechanics to evaluate macroscopic variables, such as field displacement, which will then 

be fed into the level-1 microscopic analysis with periodic boundary condition to 

determine the effective average stress and strain fields to be relayed back to the level-1 

macroscopic analysis. Adaptive mesh refinement strategy is applied to macroscopic 

models in both level-0 and level-1 to improve the convergence of the solution through 

mesh enhancement.  

In level-2, microscopic analysis is performed without any periodic boundary 

condition being applied. The level-2 elements are constructed using the exact local 

micro-structure, which is normally found by analyzing SEM photographs. Similar to the 

microscopic computation performed at level-1, Voronoi cell FEM is applied to perform 
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the level-2 analysis. To facilitate a smooth transition between elements in level-2 and in 

the other two levels, a layer of transition elements is introduced.  

 

 2.2.3. Advantages and disadvantages of hierarchical approach 

The first, and foremost, advantage of hierarchical approach is in its ability to 

simulate the relationship between an evolving damage at micro-scale and the overall 

behavior of a structure at macro-scale. This advantage is a result of the overall strategy of 

the approach: the lower scale and upper scale models are simulated and solved 

simultaneously. In this approach, different scale models interact intensively via the 

transfer of data, such as stress, strain and deformation. Hence, interaction or coupling 

between different scale levels is the critical problem that has to be solved to assure 

accuracy of the models. This is both a challenge and an advantage of the approach. It is a 

challenge because of the difficulties, in both theoretical and experimental efforts, to link 

the classical theories at the different length scales such as continuum mechanics, 

micromechanics and molecular mechanics. However, modeling such links between 

different scale models is also the advantage of hierarchical approach compared to 

homogenization approach, in which all local effects are smeared out in the macro-model. 

The greatest disadvantage of hierarchical approach is in the complication of the 

model, which comes with a very high computational cost.  Because of this disadvantage, 

most researches using the hierarchical approach are limited to the analysis of simple 

composite structures (Zohdi, 2001; Ghosh and Raghavan, 2005). 
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2.3. HOMOGENIZATION APPROACH 

2.3.1. Overall strategy 

The basic concept of the homogenization approach is to find an equivalent 

homogeneous medium that can represent, in terms of mechanical behavior, a real 

heterogeneous material, shown in Figure 2.6.  

 

 

 

 

   

 

 

 

 

   

 

Figure 2.6: Schematic diagram of homogenization approach 

Material properties of the equivalent homogeneous medium are called effective 

properties and these properties are often determined on the basis of the analysis of the 

micro-structure that takes into account the heterogeneity of the material. Finding the 

Real heterogeneous material Equivalent homogeneous medium 

Effective 

propertie

Real macro problem 

Microscopic analysis 

Homogenization 

Modeling macro problem 
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effective properties of the heterogeneous materials, which is also called the 

homogenization process, is the first and most important step in this approach because it 

determines the accuracy of the whole model and, moreover, it reveals the underlying 

micro-mechanisms of the macro behavior such as particle clustering and interface 

debonding failure. Once the effective properties of the composite are found, it is fed into 

the macro-model as material inputs to simulate the overall behavior of a composite 

structure using either classical theories, e.g. beam theory and shell theory, or direct 

numerical approaches, e.g. finite element method or boundary element method.  

Since the analysis of the equivalent homogeneous medium is identical to the 

conventional structural analysis of homogeneous material, the review in this Section is 

purely on homogenization techniques to find effective properties of composite materials.  

 

2.3.2. Theoretical models 

2.3.2.1. Voigt’s and Reuss’ models 

Predicting the effective properties of composite materials, which is in fact the 

homogenization of a heterogeneous material, is one of the classical but very important 

problems in solid mechanics. This problem has been examined decades ago; starting from 

the use of Voigt’s model (Voigt, 1889), in which the strain was assumed to be uniform 

throughout the material, and Reuss’ model (Reuss, 1929) in which all phases in the 

material carry the same stress. Based on these assumptions, the effective Young’s 

modulus of a heterogeneous material is predicted using Equation (2.1a), for Voigt’s 

model, or Equation (2.1b), for Reuss’s model. 
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where E is Young’s modulus and f is the volume fraction of particles and subscripts eff, 

m, and i denote composite, matrix and inclusion respectively. 

Although neither Voigt’s model nor Reuss’ model are correct due to the non-

equilibrium or incompatibility at the boundaries of the phases, Hill (Hill, 1964) showed 

that they form the upper bound (Voigt’s estimation) and lower bound (Reuss’ estimation) 

of the true effective elastic modulus of composites. 

 

2.3.2.2. Dilute distribution model 

Eshelby (Eshelby, 1957) considered stress and strain fields in an infinite medium 

containing an ellipsoidal inclusion that is changing its shape and size (undergoes a 

“transformation”). He has shown that a uniform strain εt, called as unconstrained strain or 

eigenstrain, acting on an homogeneous ellipsoidal inclusion will result in a uniform strain 

state εc, called as constrained strain, on the inclusion if it is embedded in an infinite linear 

elastic medium. The relationship between εt and εc can be expressed by: 

tc εε S=          (2.2) 

where S is the Eshelby tensor and depends on the material properties of the matrix and 

shape of the inclusion.  
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Based on the above result, Eshelby (Eshelby, 1957) proposed an equivalent 

inclusion model or dilute distribution (DD) model for the case when a small volume 

fraction of inclusion is used to reinforce a host material. In that case, the effective bulk 

modulus and shear modulus of the composite can be predicted as following: 
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where K and G are the bulk and shear modulus respectively, f is the volume fraction of 

particles and subscripts eff, m, and i denote composite, matrix and inclusion respectively. 

 

 

2.3.2.3. Hashin-Strikman bounds (Composite sphere assemblage model) 

Following the micromechanics-based pioneering work by Eshelby (Eshelby, 

1957), there have been a lot of analytical solutions relating to composites over the last 
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five decades. In 1962, Hashin and Shtrikman (Hashin and Shtrikman, 1962) have 

developed the composite sphere assemblage (CSA) model from DD model by limiting 

the infinite matrix in DD model to a finite region that can be determined with volume 

fraction of the inclusions, as shown in Figure 2.7.  

 

 

 

 

 

Figure 2.7: Schematic diagram of CSA model 

 

The authors have derived the variational principle for nonhomogeneous linear 

elasticity and used this principle to derive the analytical solution for the CSA model that 

provides bounds for effective elastic properties of heterogeneous materials as expressed 

in Equations (2.4a, b, c, d). The predicted value band formed by Hashin – Shtrikman 

bound is much narrower than that formed by Reuss and Voigt bounds. As a result, Hashin 

- Shtrikman bound is the most widely used estimation to provide a rough estimate for 

effective modulus of composites. 
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where the subscripts – and + denote lower and upper bounds, respectively.  

 

2.3.2.4. Self-consistent and generalized self-consistent models 

Beside the Hashin-Strikman bounds, two other widely used models developed 

from DD model are self-consistent (SC) model and generalized self-consistent (GSC) 

model. The self-consistent (SC) model (Hill, 1965; Budiansky, 1965; Hori and Nemat-

Nasser, 1993) solves the similar problem of Eshelby but for high concentration of 

inclusion by substituting the infinite medium matrix properties by effective properties of 

the whole composite which has to be determined from iterations. Using SC model, the 

effective linear properties of composite were found by solving the set of Equations (2.5) 

 

1

11111

−


























−+








−+=

eff

eff

ii

m

eff
S

K

K

K

K
f

K

K
     (2.5a) 

 

1

21111

−


























−+








−+=

eff

eff

ii

m

eff
S

G

G

G

G
f

G

G
     (2.5b) 



Chapter 2 APPROACHES TO MODEL MECHANICAL BEHAVIORS OF COMPOSITES 

43 

 

with 

 
effeff

effeff

GK

K
S

43

3
1

+

=         (2.5c) 

 
)43(5

)2(6
2

effeff

effeffeff

GK

GK
S

+

+

=        (2.5d) 

The generalized self-consistent (GSC) model (Chrsitensen, 1990; Huang and Hu, 

1995) is an extension of the SC model where the matrix in the vicinity of the inclusion is 

simulated as a separate phase, as illustrated in Figure 2.8.  

 

 

 

 

 

 

 

Figure 2.8: Schematic of theoretical models to homogenize composites. (a) DD: inclusion in an 

infinite matrix; (b) SC: inclusion in an infinite medium that have effective stiffness 

of the whole composite; and (c) GSC: inclusion surrounded by matrix in an infinite 

medium that has effective stiffness of the whole composite 

 

The main differences between DD, SC and GSC models lie in the assumed 

interactions between inclusion and matrix as well as between inclusions themselves. In 

Matrix 

Inclusion 

Equivalent homogeneous 
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Inclusion 
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the DD model which is more suitable for small volume fraction of inclusions, interactions 

between inclusions are negligible as they are far apart that the matrix surrounding each 

inclusion may be considered as an infinite medium. When the number of inclusions is 

large, interactions between them become more significant and the surrounding matrix is 

replaced by a material that has the effective properties of the entire composite. The SC 

model does not pay special attention to the detailed stress and strain in the matrix near the 

inclusion. This is addressed in the GSC model by embedding an outer layer of matrix 

surrounding the inclusion. However, the solving for the sets of equations in GSC model is 

so much complicated compared to other analytical models that GSC is less widely used 

as other models. 

 

2.3.2.5. Mori-Tanaka model 

Another well-known model that uses Eshelby’s tensor is Mori-Tanaka (MT) 

model (Taya and Chou, 1981; Weng, 1984, 1990; Benveniste, 1987), which is similar to 

the DD model, except that it imposes an additional condition to account for the effect of 

multiple inclusions by combining the Eshelby’s theory with the effective field concept 

and the condition that, the effective Young’s modulus of the composite takes on the value 

of the Young’s modulus of the inclusion when the volume fraction of the inclusion 

approaches 1. The problem is solved by introducing a strain concentration tensor which 

relates the strain in the matrix to the strain in the inclusion. Christensen and Lo (1979) 

and Tan et al. (2005) noted that the Mori–Tanaka model shares the same expression for 

effective bulk modulus with the GSC model. As commented by many authors such as 
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Bohm (1998) and Mishnaevsky (2007), the prediction of effective bulk modulus and 

shear modulus for spherical inclusion and aligned fiber reinforcement composites using 

MT model, as expressed by Equations (2.6a) and (2.6b), is very close to the experimental 

results. That can explain why the MT model is one of the most widely used models to 

predict the effective elastic properties of composites.  
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2.3.3. Numerical approach using RVE concept 

All the analytical models reviewed in Section 2.3.2 are developed from Eshelby’s 

solution where they can approximately represent detailed stress and strain fields in the 

matrix and inclusions by their volume-averaged value. However, such models are limited 

by the assumptions made in the original Eshelby’s equivalent inclusion model, that is, 

materials are linear elastic and their deformations are small. Furthermore, it is difficult to 

incorporate damage mechanisms such as interface debonding and matrix/particle 

cracking. Also, the prediction of post-cracking nonlinear properties of composite 

materials cannot be accurately handled by this class of model.  
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With the help of computers, numerical techniques such as FE and discrete element 

(DE) methods have been used to develop more refined material models for composites. 

These approaches offer many advantages such as:   

(a) Inclusions of arbitrary shapes can be modeled;  

(b) Inelastic or time dependent properties can be incorporated to the model easily;  

(c) Imperfect bond between inclusion and matrix can be taken into account;      

and 

(d) Composites comprising three or more phases can be considered.  

 The increased complexity of the problem due to refinements in the material and 

geometrical details would inevitably escalate the computational cost enormously, 

especially for heterogenous micro-structure. To overcome this limitation, the 

representative volume element (RVE) concept is commonly adopted (Drugan and Willis, 

1996; Sun and Vaidya, 1996; Gusev, 1997; Michel et al., 1999; Gitman et al., 2007; Kim 

and Lee, 2009; Pelissou et al., 2009).  

The first definition of a RVE was stated by Hashin (Hashin, 1963) as follows: “A 

RVE is a model of the material to be used to determine the corresponding effective properties 

for the homogenized macroscopic model. The RVE should be large enough to contain sufficient 

information about the microstructure in order to be representative; however it should be much 

smaller than the macroscopic body”. Since then, a number of modified versions on the 

definition of a RVE have been made by other authors (Hashin, 1983; Drugan and Willis, 

1996; van Mier, 1997 and Evasque, 2000). In general, in all definitions of RVE, it is 
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treated as “super element” that either (i) represent statistically the micro-structure of the 

composite, or (ii) provide accurate prediction on the macroscopic constitutive response of 

the composite. Figure 2.9 shows the different types of RVE models built based on either 

of these two requirements in which the former is exhibited by RVEs under Scheme C 

while the latter is exhibited by RVEs under Schemes A and B.  

In Scheme A, the actual micro-structure is assumed to be equivalent, in terms of 

mean response, to another micro-structure with uniformly distributed particles. The 

equivalent micro-structure is, in fact, a periodic structure where the smallest “material 

period” is a square unit cell with a single particle located at the center of the cell and its 

edge length equals to the distance between the particles. By applying appropriate periodic 

boundary conditions so that a unit cell is replicable to the entire material domain, the 

overall behavior of the equivalent micro-structure can be represented by that of the unit 

cell, also known as the RVE. The position and size of window can be varied by defining 

the “material period”, thus different types of RVEs can be constructed as illustrated by 

RVEs A1, A2 and A3 in Figure 2.9. The construction of a RVE under Scheme B is 

similar to that under Scheme A, except the smallest “material period” is now a unit cell 

containing two or more randomly dispersed particles. Due to this randomness, multiple 

realizations with different arrangements of particles are possible. Each of the realization 

can be analyzed and the results are averaged over all realizations considered, to obtain the 

mechanical response of the actual composite. In Scheme C, the RVEs are constructed 

based on images of the actual micro-structure and periodicity is not considered. It should 

be noted that the volume fraction of particles in RVEs under Schemes A and B are 
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defined to be the same as that of the real composite, but this is not necessary true for the 

case of RVEs under Scheme C. 

 

 

Figure 2.9: Schemes to define RVE: SP-RVE with periodic boundary conditions (Scheme A), MP-

RVE with periodic boundary conditions (Scheme B), images from real micro-structure 

without periodic boundary conditions (Scheme C) 

 

 



Chapter 2 APPROACHES TO MODEL MECHANICAL BEHAVIORS OF COMPOSITES 

49 

 

2.3.3.1. Single-particle RVE approach 

As shown in Figure 2.9, a SP-RVE can be either symmetric or asymmetric. But, 

the latter type is rarely used in literature. There are two ways to construct a symmetric 

SP-RVE namely, (a) embedding a particle at the center of a cylindrical matrix to form a 

cylindrical cell; or (b) embedding a particle at the center of a cubic matrix to form a cubic 

cell. Figure 2.10 illustrates both cylindrical and cubic models, in which the 3D cylindrical 

cell can be simplified to a 2D axisymmetric cell as in the studies of Kuna and Sun (1996) 

and Sovik (1996). Although the cylindrical cell model can be simplified to save on the 

computational time, this model is much less popular than the cubic model because the 

cylindrical cells cannot populate the material space without overlapping. 

 

 

 

 

 

            

Figure 2.10: SP-RVE models: (a) cubic cell; (b) cylindrical cell and the simplified axisymmetric cell 

 

The SP-RVE approach is commonly used to study the linear elastic behavior of 

composites. In 1995, Sun and Vaidya (Sun and Vaidya, 1995) adopted this approach for 

the study of fiber reinforced composites. Chen and Mai (1998) used the SP-RVE 

(a) (b) 
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approach to study the elastic properties of rubber reinforced composites. The approach 

was also applied to study glass, boron and aluminum fiber composites (Xia et al., 2002).  

By coupling with micro damage models to account for inclusion failure, inclusion 

debonding or matrix failure, the SP-RVE approach has been used to analyze the effect of 

micro-cracks on the overall mechanical behavior of composites. Llorca and colleagues 

(Llorca et al., 1991) studied the effect of nucleation in the matrix on the deformation of 

Al/SiC composites using axisymmetric cylindrical cell with reinforcements in spherical, 

ellipsoidal shapes. Bao (1992) used a three-phase damage SP-RVE model to investigate 

the effect of particle failure and interfacial bonding on the strength and creep resistance 

of different composite systems. Michel (1993) used SP-RVE approach to study the effect 

of particle cracking and debonding on the mechanical behavior of Al/SiC composite and 

presented the effective stress-strain curves for different particle shapes and for different 

damage mechanisms. Kuna and Sun (1996, 1997) studied the void growth in ductile 

materials using both cylindrical and cubic cells. The authors showed that the arrangement 

of voids strongly affect the failure response. Steglich and Brocks (1997) combined micro-

damage models, such as void nucleation, particle cracking and particle-matrix debonding, 

to analyze the behavior of nodular iron and Al/Al3Ti composite. 

 

2.3.3.2. Multiple-particle RVE approach 

Similar to SP-RVE approach, MP-RVE approach is used to study both linear and 

non-linear behavior of composite materials. Segurado and Llorca (2002) used 3D MP-

RVE containing 30 non-overlapping spherical particles to predict elastic properties of 
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epoxy matrix composites. Three types of particles were investigated in this study 

including rigid spheres, spherical voids and glass spheres. The simulation results were 

used to compare and assess the accuracy of analytical models such as Mori-Tanaka 

model and self-consistent model. Kari et al. (Kari et al., 2007) applied 3D MP-RVE 

approach to study effect of size of particles on effective linear properties of particulate 

reinforced composite. Results of the study, in which up to 60% volume fraction of 

randomly distributed spherical particles was simulated, showed good agreement with 

analytical models.  

Various researchers applied MP-RVE approach to simulate elasto-plastic behavior 

of composites. Galli et al. (2008) numerically simulated elasto-plastic behavior of metal 

matrix composites and which agreed well with the experimental data. A comprehensive 

study on the elasto-plastic behavior of heterogeneous material systems by numerical 

simulation was conducted by Llorca and colleagues (Segurado et al., 2003; Segurado and 

Llorca, 2006; Pierard et al., 2007a, b), in which effects of particle size, particle shape and 

particle clustering on the overall behavior of composites were investigated.  

Recently, MP-RVE approach has been extended to study problems involving 

hyperelastic matrix or reinforcements. Yvonnet and He (Yvonnet and He, 2007) coupled 

the Mooney-Rivlin and Neo-Hookean material models for matrix modeling and MP-RVE 

approach to study porous hyperelastic media. Danielsson et al. (2007) developed a 

numerical tool with MP-RVE concept to model the elasto-viscoplastic deformation of 

rubber toughened glassy polymers. 
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For the micro-damage problem in composites, Sluis et al. (1999) applied MP-

RVE with uniformly distributed pores to study strain softening in porous polycarbonate 

plate. Segurado and Llorca (2005) incorporated interfacial zone with cohesive element 

model to examine the effect of interface decohesion on the mechanical behavior of a 

composite system comprising of stiff spherical particles embedded in a ductile matrix. 

The model used 35 spherical particles dispersed in both clustered and non-clustered 

manner, as shown in Figure 2.11.  

 

                           

Figure 2.11: Interface decohesion modeling with MP-RVE approach (Segurado and Llorca, 2005): 

(a) randomly distributed particles; (b) clustered particles; (c) result from simulation.  

 

2.3.3.3. Image based RVE approach 

 In image based RVE approach, RVEs is constructed based on the statistical 

analysis of the real micro-structure as illustrated in Scheme C in Figure 2.12. Generally, 

there are 3 steps in this method. Firstly, digital images of the micro-structure of material 

are analyzed to define the size of RVEs and to provide geometric conditions of all 

material phases contained in the RVEs. After that, finite element mesh is generated and 

material properties are assigned to each element according to the constructed geometric 

(a) (b) (c) 
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conditions in step 1. Finally, numerical analysis is carried out to investigate micro-

mechanics of the composite. This approach was first proposed by Hollister and 

colleagues in 1993 (Hollister and Reimer, 1993; Hollister and Kikuchi, 1994) to model 

porous micro-structure in human bone.  

Depending on the geometries of reinforcements, either 2D or 3D image based 

RVE can be applied. The 2D approach is often used for long fibrous composites while the 

3D approach is normally adopted to examine short fibrous composites or particulate 

composites. Examples of using the 2D image based RVE are studies done by Grufman 

and Ellyin (2006, 2007), in which damage analysis of fibrous composite was carried out 

on RVEs constructed based on the actual position and diameter of fibers extracted from 

micro-graphs of cross-ply laminate. Instances of using 3D image based RVE can be 

found in researches by Terada et al. (1997) for metal fiber reinforced MMC, and by 

Takano et al. (2003) for porous ceramics. 

Since all micro-graphs are in 2D, construction of a 3D image based RVE will be 

more complex than the corresponding 2D approach. To overcome the uncoupling 

between 2D images and 3D analysis, the so-called serial sectioning technique has been 

developed. Figure 2.12 shows the 4-step procedure to construct a 3D image based RVE 

namely, (i) section processing; (ii) cross-sectional images; (iii) image processing and (iv) 

voxel meshing, which has been discussed by Takano et al. (2003). 
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Figure 2.12: 3D image based RVE (Takano et al., 2003) 

 

2.3.4. Remarks on homogenization approach 

2.3.4.1. Comparison between analytical models and RVE approach 

Analytical models are first attempts made by researchers in homogenization 

approach. In the beginning, when the interest of research is in the linear elastic behavior 

of composites and when the computational tools are not developed fast enough to solve 

complex numerical problems, these analytical models proved to be useful and reliable for 

the prediction of elastic properties of composite materials. They formed the foundations 

for micro-mechanics such as Hill condition (Hill, 1964), Eshelby tensor (Eshelby, 1953) 
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and Mori-Tanaka theory (Mori and Tanaka, 1973). However, when the interest of study 

extends beyond the prediction of linear elastic properties of composites, the limitations of 

analytical models become more obvious, such as the low accuracy in modeling post-

failure behavior; difficulty in incorporating damage models such as interface debonding 

and particle cracking; and difficulty to use for hyperelastic materials with large 

deformation. 

 With the rise of computer speed, numerical models using RVE approach becomes 

more popular, especially for damage and large deformation analysis. Among the three 

approaches, the image based RVE method, which adopt the concept of RVE based on the 

equivalency in the geometrical statistics of micro-structure, is the least effective approach 

due to its requirements on section preparation and image processing. Also, the 

computational cost of image based RVE approach is much higher than those of SP-RVE 

and MP-RVE because the size of the image based RVE is relatively large to statistically 

represent the micro-structure of the composites. Compared to MP-RVE approach, SP-

RVE approach is simpler with the focus of modeling in the matrix-particle interactions 

only. Hence, the computational cost of SP-RVE approach is much cheaper than that of 

MP-RVE approach, but SP-RVE approach is only valid when inter-particle interactions 

are negligible, such as composites with low volume fraction and non clustering 

inclusions. On the other hand, MP-RVE approach sacrifices computational effort by fully 

taking into account interactions between all material phases in the composites to achieve 

a more realistic model with more accurate prediction. 
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2.3.4.2. Advantages and limitations of homogenization approach 

The advantage of the homogenization approach, compared to hierarchical 

approach, is at much lower computational cost as mechanical response of composites are 

modeled sequentially at different scales, which reduces the size of the problem, and laws 

of scaling is not fully modeled. In recent years, efforts have been made to explore the law 

of scaling that allow to use a variable found at a lower scale model to an upper scale 

model with a modification function but still not successful yet. As a result, at the 

moment, only size independent properties, such as elastic modulus and fracture energy, 

are able to be carried from the lower scale model to the upper scale model. Also, since 

the law of scaling is not understood in depth yet, only single mode of damage, mostly 

mode 1, is considered in homogenization approach.  

 

2.4. SUMMARY 

This chapter reviews on two commonly used multi-scale models namely, 

hierarchical approach and homogenization approach. These two approaches come from 

two different points of view and hence, serve different purposes. The hierarchical 

approach is adopted by researchers who are studying the structured response but are also 

interested in the micro-mechanical behavior in the lower length scales. As a result, lower 

level models are tied tightly to the macro-model in the hierarchical approach. 

The homogenization approach, on the other hand, is favored by researchers 

focusing on effects of constituents and micro-structural arrangement on material 

properties. Indeed, this approach shares the same concept with the conventional approach 
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of using experiment at lab-scale to find out mechanical properties of materials. The only 

difference is that in homogenization approach, experiments are conducted numerically at 

micro-scale. 

Among models in homogenization approach, SP-RVE and MP-RVE are two most 

widely used approaches in homogenization approach. The MP-RVE approach is more 

accurate with both particle-matrix and particle-particle interactions fully modeled. 

Nevertheless, the high computational cost makes this approach less favored for problems 

with negligible inter-particle contact such as composites with low volume fraction of 

particles. For those cases, SP-RVE is a better candidate due to the validity of sacrificing 

the inter-particle interactions for a much lower computational cost. 

In the light of the above reviews with the consideration of making use of 

published experimental data, homogenization approach using SP-RVE and MP-RVE 

approaches is chosen for the study involving micro-capsule based self-healing materials.  
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CHAPTER 3: 

RVE APPROACH FOR MODELING THE 

MECHANICAL PROPERTIES OF QUASI-

BRITTLE COMPOSITES 

 

3.1. INTRODUCTION 

As reviewed in Chapter 2, RVE concept is the most widely used to date, among 

homogenization methods to model the mechanical responses, both linear and non-linear, 

of heterogeneous materials. It is notable that the term RVE approach used in this Chapter 

onwards refers to single-particle and multiple-particle RVE approaches instead of image-

based RVE approach, which is not used in this project for its limitations. 

For the prediction of linear elastic properties, good agreement with the 

experimental data was achieved even at high volume fraction of inclusions indicating that 

multi-particle RVE is a powerful approach for developing micromechanics-based models 

of material behaviour. Although, the computational time for the repeated runs can be 

enormous that the choice between single-particle RVE approach and multiple-particle 

RVE approach should depend on the specific application. Unfortunately, in many 

researches, the use of SP-RVE or MP-RVE approaches is based on personal judgment of 

the researchers leading to an unwell-defined criterion for the approach to use. For 

example, Chen and Mai (Chen and Mai, 1998) used SP-RVE approach for rubber 
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reinforced composite with volume fraction of rubber particles varying from a low 0.209% 

to a high 26.18%; Sun and Vaidya (Sun and Vaidya, 1996) and Xia et al. (Xia et al., 

2003) used SP-RVE approach for fiber composite with very high volume fraction of fiber 

from 47% to 60%. On the other hand, Segurado et al. (Segurado et al., 2003) and Kari et 

al. (Kari et al., 2007) applied the MP-RVE approach in their studies for volume fraction 

of inclusion ranging from 10% to 60%. 

In the past 15 years, the RVE concept has been extended to predict the pre-

ultimate non-linear response of composites, as in studies by Gonzalez et al. (Gonzalez et 

al., 2004), Segurado and Llorca (Segurado and Llorca, 2005), Pierard et al. (Pierard et al., 

2007a, b), Muliana and Kim (Muliana and Kim, 2007), and Sharma and Socrate (Sharma 

and Socrate, 2009). In these studies, the effective properties were predicted either from 

multiple realizations of a fixed size RVE with random particles placement (Gonzalez et 

al., 2004; Segurado and Llorca, 2005; Sharma and Socrate, 2009), or from single 

realization of a fixed size RVE with assumed regular arrangement of the particles 

(Muliana and Kim, 2007). Although the numerical results agree with the experimental 

data in terms of stress-strain behaviour up to the ultimate strength, these studies did not 

consider the effect of the RVE size on the strain hardening behaviour. In addition, the 

number of realizations may be too few in some cases to provide reliable representation 

for the results obtained.  

The effect of size of a multi-particle RVE on the nonlinear behavior of 

composites for a fixed volume fraction of inclusions was examined in depth by Gitman et 

al. (Gitman et al., 2007), and Pelissou et al. (Pelissou et al., 2009). While the ability of 

RVE to predict the linear elastic and strain hardening phenomena of composites has been 
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established in their studies, the use of the RVE concept to predict the strain softening 

phenomenon of quasi-brittle composites remains debatable. Gitman et al. (Gitman et al., 

2007) questioned the existence of such a RVE based on their results which showed size 

dependence on the strain softening behavior. On the contrary, Pelissou et al. (Pelissou et 

al., 2009) carried out studies on quasibrittle composites, comprising of perfectly brittle 

inclusions embedded in a strain hardening metal matrix using multiple sizes of RVE and 

concluded that the predicted stress-strain diagram of a composite does not depend on the 

size of the RVE, provided that the number of realizations considered is sufficient.  

The reviews show that there is no consensus on the use of SP-RVE or MP-RVE 

approaches, and the existence of RVE for quasibrittle material is still unresolved. Hence, 

there is a rise of the two key questions for RVE approach: 

(i) What are the advantages and disadvantages of single-particle and multi-particle 

RVEs, and under what circumstances should they be applied? 

(ii) Is there any size effect in the effective stress-strain curve predicted using RVE 

concept? What is the reason for the differing views on the size effect in the effective 

stress-strain curve of RVEs in the literature? Is there a size-independent damage 

parameter which can be predicted with the RVE approach that can be applied to quasi-

brittle composites? 

These 2 questions are addressed in this Chapter via the simulation of the material 

properties of porous epoxy, which were found experimentally by El-Hadek and Tippur 

(El-Hadek and Tippur, 2002). The porous epoxy is used since this system is similar to the 
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micro-capsule based self healing material in the sense that both systems comprise of a 

very soft phase surrounded by a quasi-brittle medium.  

The organization of this Chapter is as follows: Section 3.2 presents the published 

experimental data and the numerical set up in which the periodic boundary conditions of 

a RVE are explained. Simulated results for linear and non-linear behavior of a RVE are 

shown in Section 3.3 and form the basis for answering the above two questions. 

Comparisons between the predictions obtained from RVE approaches and theoretical 

models are also presented in this Section. Section 3.4 shows the consistency of the RVE 

concept in terms of fracture energy, which will be used as an alternative measurement in 

damage analysis. The summary is given in Section 3.5. 

 

3.2. EXPERIMENTAL DATA AND NUMERICAL SET UP 

3.2.1. Experimental data 

El-Hadek and Tippur (El-Hadek and Tippur, 2002) carried out experimental tests 

to determine the mechanical properties of two-phase composites which comprises 

randomly distributed spherical pores in epoxy matrix. The voids, which are considered as 

a material phase with all mechanical properties having zero magnitudes, were introduced 

into the matrix by dispersing micro-balloons with an average diameter of 60 µm. The 

mechanical properties of the composite with volume fraction of voids f varying from 5% 

to 15% were obtained experimentally and shown in Table 3.1. This range of f seems to 

have little effect on the Poisson’s ratio where an average value of 0.35 was reported for 

both pure and porous epoxies.  
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Table 3.1: Mechanical properties of porous epoxy 

Volume fraction of voids 
f (%) 

Young's modulus 
(GPa) 

Tensile strength 
(MPa) 

Fracture toughness 
(MPa.m

1/2
) 

0 3.08 53.0 1.20 

5 2.63 46.8 1.10 

10 2.38 42.5 0.98 

15 2.17 39.8 0.95 

20 1.94 36.1 0.89 

 

3.2.2. Numerical set up 

3.2.2.1. RVE generation 

Both SP-RVE and MP-RVE approaches are adopted in this study to simulate the 

mechanical behavior of the above porous epoxy using a commercial finite element 

package ABAQUS version 6.7.2 with user subroutines. Three-dimensional simulations 

are carried out.  The relationship between volume fraction of inclusions (or voids), size of 

a cubic RVE and diameter of the spherical inclusions is given by: 
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π

==        (3.1) 

where n is number of inclusions (or voids) in the RVE; V is the volume of the RVE; Vinc 

is the volume of each inclusion; a is the edge length of the RVE and D is the diameter of 

inclusion, which is taken as 60 µm, corresponding to that in the experiment by El-Hadek 

and Tippur (El-Hadek and Tippur, 2002). 

For the SP-RVE approach where n = 1, the size of the RVEs will change 

depending on the volume fraction of inclusions assumed. Two types of SP-RVE with 
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different configuration for the inclusion are considered; SP-RVE type A contains one 

inclusion at the center of the RVE and the other, denoted as SP-RVE type B, which has 

the inclusion randomly placed within the RVE. In the latter, if the inclusion is intersected 

by the RVE edges for 2D or surfaces for 3D representation, the segment of the inclusion 

that falls outside the RVE domain will appear in the opposite edge or surface. For SP-

RVE type A, one realization is needed as the position of the inclusion is fixed while three 

realizations are considered for SP-RVE type B due to the random position of the 

inclusion. 

For specific volume fraction of inclusions and a given fixed inclusion diameter, 

the size of the SP-RVE is determined using Equation (3.1) with n = 1, while the size of 

the MP-RVE can be correspondingly varied depending on the number of inclusions 

considered for the RVE. To study the effect of size of RVE, three different sizes of the 

RVEs are considered at each volume fraction of inclusion, namely, a = 250µm, 300µm, 

and 350µm, and labeled as MP-RVE types C, D and E respectively. At each of the four 

volume fraction of inclusions considered in this study, nine realizations are generated for 

each RVE size, namely f = 5%, 10%, 15% and 20% as shown in Table 3.1. A larger 

number of realizations are being considered to account for the greater variability in the 

position of the inclusions in a larger RVE domain. The number of inclusions is calculated 

using Equation (3.1), where f, D and a are known parameters, and the positions of 

inclusions are also randomly generated based on equal likelihood of inclusions appearing 

anywhere in the RVE domain subjected to the constraint that the inclusion do not 

intersect each other. Typical realizations of generated sets are depicted in Figure 3.1.   
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Figure 3.1: Typical RVEs at volume fraction f = 5%. (a) SP-RVE type A; (b) SP-RVE type B; (c) MP-

RVE type C with a = 250µm; (d) MP-RVE type D with a = 300µm; (e) MP-RVE type E 

with a = 350 µm. 

 

3.2.2.2. Periodicities of a RVE 

As a RVE is a replica unit cell that is representative of the actual composite, The 

periodicity of these repeating cells must be satisfied, requiring the compatibility of the 

deformation, stresses and strains on opposite surfaces for the 3D (or opposite edges for 

2D) model of a RVE. Figure 3.2a illustrates the repeatability of a 2D RVE under pure 

shear load. To enforce compatibility, two periodic conditions must be applied on a RVE, 

(a)  
(b)  

(d) 

(c)  

(e) 
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namely, the periodic material condition and periodic boundary condition. The term 

periodicity of material include the case where the inclusions are cut at the cell border 

with the removed portions re-appearing on the opposite surface of the RVE to maintain 

periodicity as demonstrated in Figure 3.2b. In other words, the inclusion is able to 

penetrate through the sample borders. 

 

 

Figure 3.2: Periodicities of RVE: (a) repeatability of a 2D RVE; (b) periodic material condition of a 

3D RVE; (c) major concept of periodic boundary conditions for RVE 
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The idea of periodic boundary conditions, depicted in Figure 3.2c, is to 

decompose the final deformation into the mean response and the local fluctuation due to 

inhomogeneity. Mathematically, the periodic boundary conditions of RVE was expressed 

by Suquet (Suquet, 1983) using tensor notation as 

 *

ikiki uxu += ε         with i, k = 1, 2, 3      (3.2) 

where ui are displacement components of a node on the boundary faces; ikε are the 

average strains; kx  are the coordinates of the node; *

iu , which is known as the local 

fluctuation due to inhomogeneity, is the periodic part of ui.  

The displacements of an arbitrary node ��
� on one boundary surface and of its 

complementary node ��
� on the opposite surface are: 

 +++

+=
*

ikiki uxu ε         (3.2a) 

 −−−

+=
*

ikiki uxu ε         (3.2b) 

Because of periodic boundary conditions: 

 −+

=
**

ii uu          (3.3) 

Hence, 

 .)( constaxxuu ikkkikii ==−=−
−+−+

εε      (3.4) 

 Equation (3.4) is introduced in the numerical model to enforce periodic boundary 

condition for the RVE.  
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3.2.2.3. Material constitutive law 

The smeared crack concept (Bazant and Oh, 1983; Guzina et al., 1995) is used in 

the analysis, with the input parameters being the material properties of the matrix which 

include Young’s modulus, Em, Poisson’s ratio, νm, tensile strength, σf,m, and fracture 

energy, Gf,m. Values of these inputs, except for Gf,m, are given in row 1 of Table 3.1 

corresponding to f = 0%. For simplicity, the constitutive law of the epoxy is 

approximated by a bi-linear stress-displacement curve as shown in Figure 3.3, assuming 

that damage is dominated by tensile response only; in the figure w and w0 represent the 

crack opening displacement and maximum crack opening displacement respectively.  

 

 

Figure 3.3: Constitutive law for epoxy expressed in terms of stress versus: (a) displacement; (b) 

crack opening displacement. 

 

The stress-displacement (instead of the stress-strain) constitutive relation is used 

to reduce mesh size-dependence (Crisfield, 1986). The fracture energy, which is the area 

under the stress-displacement curve in Figure 3.3, is simply estimated from fracture 
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toughness KIC under plane strain condition in the experiment (Bazant and Planas, 1998) 

as: 
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The term fracture energy, Gf, is defined here as the energy required to create a unit area 

of crack (Bazant, 1998). This term differs from that used by Pelissou et al. (Pelisou et al., 

2009), which carries the meaning of energy dissipated by a unit volume of material. 

A full description of a smeared crack model requires three parameters, namely 

strength, fracture energy and the shape of the softening curve. In the current study, the 

simple bi-linear stress-displacement curve, first proposed by Hillerborg et al. (Hillerborg 

et al., 1976), is chosen because there is no experimental data on the actual softening 

behavior of the epoxy. In addition, the focus in the current simulations is on the strength 

and the fracture energy of the porous epoxy, rather than to compare the detailed softening 

curve of this material.  

 

3.2.2.4. Loading condition and other numerical issues 

All the RVEs are discretized using 4-node tetrahedral elements with reasonably 

fine mesh, typically an average of 800 000 elements are used for RVEs of size a = 350 

µm, to maintain accuracy of stresses obtained. The RVEs are subjected to displacement-

controlled uniform traction on two opposite faces. Whilst the specimens used in the 

experiment by El-Hadek and Tippur (El-Hadek and Tippur, 2002) has an existing single 

notch, the fracture energy measured corresponds to the propagation of a single crack and 
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the RVE approach can only be valid if the crack localizes into a single crack plane. This 

is automatically true for the case of SP-RVEs where the critical plane is well-defined. For 

MP-RVEs, there is more than one likely surface for the cracks to form due to the random 

location of the inclusions but the number of cracks that can form remains singular as the 

cracks localizes as soon as it is formed when under tensile action. 

From the load-displacement response of the RVE, the average stress is computed 

based on the cross sectional area, a x a, while the average strain is the ratio of the applied 

displacement over the edge length, a, of the RVE. From the average stress and strain, the 

effective Young’s modulus of the composite is estimated. Finally, the effective fracture 

energy, Gf,eff, which is the area under the average stress – displacement curve of the RVE, 

is converted to the effective fracture toughness, KIC,eff, using Equation (3.5). 

 

3.3. HOMOGENIZED STRESS-STRAIN CURVE OF RVE 

3.3.1. Prediction of elastic response 

3.3.1.1. Results from numerical simulations using RVE approach 

Table 3.2 compares the elastic properties of porous epoxy based on the 

predictions from RVE models with the experimental test results (El-Hadek and Tippur, 

2002). The latter reported a single value of Poisson’s ratio of 0.35 for all volume 

fractions of voids with a variation of ±0.01 (presumably the precision of the experiment).  

The results from the RVE models show that there is a slight decrease in Poisson’s ratio 

with an increase in the volume fraction of voids, from 0.350 for f = 0% to 0.336 for f = 
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20% in the case of MP-RVE type E. This trend also agrees well with the findings by 

Segurado and Llorca (Segurado and Llorca, 2002) for spherical particle reinforced 

composites.  

 

Table 3.2: Prediction of elastic properties of porous epoxy using RVE approach 

Properties 
Vol% 
of 
voids 

SP-RVE MP-RVE Reported 
results Type A Type B Type C Type D Type E 

Poisson's 
ratio 

0 0.350 0.350 0.350 0.350 0.350 

0.35±0.01 

5 0.344 0.341 0.343 0.345 0.345 

10 0.336 0.334 0.341 0.339 0.341 

15 0.327 0.324 0.336 0.335 0.338 

20 0.322 0.320 0.334 0.336 0.336 

Effective 
Young's 
modulus 
(GPa) 

0 3.08 3.08 3.08 3.08 3.08 3.08 

5 2.80 (+6.5%) 2.81 (+6.8%) 2.80 (+6.5%) 2.80 (+6.5%) 2.79 (+6.1%) 2.63 

10 2.56 (+7.4%) 2.56 (+7.6%) 2.55 (+7.1%) 2.54 (+6.7%) 2.52 (+5.9%) 2.38 

15 2.34 (+7.8%) 2.34 (+7.8%) 2.32 (+6.9%) 2.30 (+6.0%) 2.27 (+4.6%) 2.17 

20 2.15 (+10.8%) 2.15 (+10.8%) 2.08 (+7.2%) 2.07 (+6.7%) 2.05 (+5.7%) 1.94 

*numbers in parenthesis denote the % error as compared to experimental values 

 

The Young’s moduli predicted from the RVE models are presented in Table 3.2 

and the numbers in parenthesis denote the percentage error in prediction as compared to 

the experimental values. The two types of SP-RVE in this study are identical in the 

physical sense as they can be obtained by placing the same size window at different 

positions on a domain with uniformly distributed inclusions. Therefore, the material 

properties predicted from SP-RVE types A and B should be the same as shown in Table 

3.2. The accuracy of SP-RVE does not depend on the number of realizations generated, 

but depends only on the volume fraction of inclusion f.  
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 The predictions from the RVE models correctly follow the trend of diminishing 

Young’s modulus with increase in the volume fraction of voids as shown in Figure 3.4, 

with the most accurate prediction from MP-RVE type E which has the largest domain 

amongst the MP-RVEs, whilst the least accurate prediction are from the SP-RVE models 

where the prediction error increases with volume fraction of inclusion.  However for the 

MP-RVE models, the error is relatively constant, ranging from 5 to 7%, indicating the 

necessity to take the randomness in particle placement into account, especially at high 

volume fraction of voids.  

 

Figure 3.4: Effective Young’s modulus obtained from RVE approaches and experiments 

 

The higher discrepancy at higher f for SP-RVE model is due to the fact that a 
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1.5

2

2.5

3

3.5

0 5 10 15 20

Volume fraction (%)

E
ff

e
c
ti

v
e
 Y

o
u

n
g

's
 m

o
d

u
lu

s
 (

G
P

a
)

SP-RVE Type A

SP-RVE Type B

MP-RVE Type C

MP-RVE Type D

MP-RVE Type E

Results by Hadek and Tippur (2002)



Chapter 3 RVE APPROACH FOR MODELING THE MECHANICAL PROPERTIES OF                      

QUASI-BRITTLE COMPOSITES 

73 

 

with neighbouring inclusions are not included. The prescribed periodic boundary 

conditions do account for part of the influence of the surrounding inclusions by enforcing 

compatibility, as shown in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.5: (a) Description of a Voronoi cell; (b) Non-overlapping boundaries for critical size of 

SP-RVE in composite with low volume fraction of inclusions; (c) Overlapping 

boundaries for critical size of SP-RVE in composite with high volume fraction of 

inclusions. 

 

By dividing the micro-structure of a bi-phasic composite into domains using 

Voronoi cells, the distance between inclusions would be larger for low f.  Hence the 

presence of inclusion would have lesser effect on the “boundary” stresses as illustrated in 

Figure 3.5b. At high f, the critical size of the SP-RVE extends beyond the boundaries of 

the Voronoi cells which overlap each other as shown in Figure 3.5c.  This implies that 
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there is significant influence of the inclusion on the boundary stresses of a Voronoi cell 

which explains why the SP-RVE model is not accurate for such situations. 

The MP-RVE approach accounts for the interaction between inclusions to a 

greater extent and hence will be valid for cases with higher f as well as for studies on the 

effect of clusters on the macroscopic response of non-homogeneous materials. Larger 

MPE-RVE adopted will yield better results, as shown in Figure 3.4.  To minimize the 

error between the actual micro-structure and the generated microstructure for the RVE, 

simulations with multiple random realizations for different arrangements of inclusions 

can be performed. Thus the MP-RVE approach can be expected to provide better 

predictions than those by SP-RVE approach.  

However, generating and simulating multiple realizations can be computationally 

costly. For the problems where the interaction between particles is negligible, such as 

studies to determine the elastic behavior or the effect of interfacial zone on composites 

with low f, the SP-RVE approach is able to provide sufficient accuracy at low 

computational cost. For instance, the elastic behavior of porous epoxy with 15% of voids 

or less in this study can be predicted accurately with an error of less than 10% using SP-

RVE A, where the total computational time is less than half an hour; while it took more 

than three hours to complete 1 realization using MP-RVE on the same computer, with no 

significant improvement in accuracy.  

This leads to the practical question of the critical volume fraction for which the 

SP-RVE approach can be applied for elastic analysis. Drugan and Willis (Drugan and 

Willis, 1996) adopted a nonlocal constitutive model at micro-scale to solve the 



Chapter 3 RVE APPROACH FOR MODELING THE MECHANICAL PROPERTIES OF                      

QUASI-BRITTLE COMPOSITES 

75 

 

homogenization problem for elastic composites theoretically and provided an estimate for 

the minimum size of the SP-RVE. They derived the minimum size for bi-phasic 

composites as 
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in which K and G are the bulk and shear modulus, respectively, of the matrix; K1 and G1 

are the bulk and shear modulus, respectively, of the particles; δK is the difference 

between the bulk modulus of the matrix and the particles; δG is the difference between 

the shear modulus of the matrix and the particles; andα  is the level of accuracy. 
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Recall that Equation (3.1) gives the relationship between f and a/D even for the 

extreme case where the inclusions are void. Hence, to find the minimum a for the porous 

material, Equation (3.1) is plotted as a solid curve in Figure 3.6. By plotting Equation 

(3.6) for 10% error in Figure 3.6, the intersection of both curves gives the critical volume 

fraction beyond which the SP-RVE may no longer be accurate. 

 

Figure 3.6: Finding critical volume fraction for SP-RVE approach using Drugan and Willis criterion  

  

It can be seen from Figure 3.6 that when f exceeds the critical value of 19%, the 

prediction error may exceed 10% which agrees with the results of the current study 

shown in Table 3.2, where the predictions from the SP-RVE model differ from the 

reported experimental data by 10.7% at f = 20%.  Above the critical volume fraction, the 

MP-RVE model is expected to give much better prediction than the SP-RVE model and 

this is evident in the 5.8% error in prediction obtained for MP-RVE type E.  
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3.3.1.2. Comparison of the predictions from RVE approach and theoretical 

models 

The effective Young’s modulus of porous epoxy based on RVE approaches, 

theoretical models and experimental tests are compared in Table 3.3, in which the % error 

of predicted values compared to experimental values are shown in parenthesis. 

Graphically, the comparison is displayed in Figure 3.7.  

 

Table 3.3: Measured and predicted Young’s modulus of porous epoxy 

Vol% 
of 
voids 

Test 
results 

SP-RVE 
approach 

MP-RVE 
approach 

Voigt model 
Dilute 
Distribution 
model 

Self –
Consistent 
model 

Mori – Tanaka 
model 

0 3.08 3.08 3.08 3.08 3.08 3.08 3.08 

5 2.63 2.80(+6.5%) 2.79(+6.1%) 2.92(+11.1%) 2.77(+5.1%) 2.77(+5.2%) 2.82(+7.2%) 

10 2.38 2.56(+7.4%) 2.52(+5.9%) 2.77(+16.3%) 2.46(+3.2%) 2.46(+3.4%) 2.58(+8.5%) 

15 2.17 2.34(+7.8%) 2.27(+4.6%) 2.62(+20.5%) 2.14(-1.5%) 2.15(-1.0%) 2.36(+8.7%) 

20 1.94 2.14(+10.8%) 2.05(+5.7%) 2.46(+27.0%) 1.82(-6.4%) 1.84(-5.1%) 2.16(+11.4%) 

*numbers in parenthesis denote the % error as compared to experimental values 

 

The predictions from theoretical models are obtained using Equations (2.1) to (2.6) in 

Chapter 2 with two following remarks. Firstly, the Reuss’ model and Hashin-Strikman 

upper bound is inapplicable for this case, i.e. particles are void with zero G and K which 

makes the formulae unidentified. This illustrates one of limits of these models. Secondly, 

the predictions using Mori-Tanaka model is identical to those using Hashin-Strikman 

lower bound, which is also stated by Mishnaevsky (Mishnaevsky, 2007). 
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Figure 3.7: Measured and predicted Young’s modulus of porous epoxy using theoretical models 

and RVE approaches 

 

As can be seen, the theoretical models and the RVE models fit experimental data 

well. Similar to the predictions using RVE approaches, the effective Young’s modulus 

obtained from theoretical models exhibit a gradual decrease in effective Young’s 

modulus with an increase in the volume fraction of pores. With regard to accuracy of the 

different models, it is shown that Voigt’s model is the most inaccurate model, as 

predicted, while DD and SC models gave the two most accurate set of predictions. The 

results obtained from the more popularly used Mori-Tanaka model are similar to those 

using the single particle RVE approach with level of accuracy at about 90%. Actually, 

each theoretical model may give excellent prediction of the Young's modulus for some 

types of composite material but may not give perfect fit for others. The statistical 

variations in the size and distribution of the pores have not been reported in the 
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experiments and thus could not be modeled.  Otherwise, it may be possible to explain the 

deviation of the results. 

Although MP-RVE approach does not provide the best fitted values, its 

predictions are at about 6% of error and independent on the volume fraction of pores. On 

the other hand, the error in predictions from SP-RVE approach and all theoretical models 

including of DD and SC models keep increasing when the void contents getting more and 

more. This trend is because in all of these models, the interactions between particles are 

only partially modeled. As discussed in previous Section, the significance of this error 

increases with the raise in volume fraction of particles, which leads to a more 

considerable contribution of interactions between particles to the effective mechanical 

response of the composite.  

 

3.3.2. Prediction of inelastic response 

 Since the composite considered here is quasi-brittle, the strain-hardening response 

is negligible.  Therefore, only strength and strain-softening response will be investigated. 

The numerical predicted strengths are compared against the reported experimental 

strengths in Table 3.4. As can be seen, the accuracy is similar to that exhibited for the 

Young's modulus in Table 3.2, probably due to the fact that the ultimate-stress is the limit 

of the elasticity regime in this case with negligible strain hardening. The results also seem 

to indicate that the accuracy of the SP-RVE approach diminishes when the voids content 

is increased due to the effect of clustering at high f as discussed in Section 3.1. 
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Table 3.4: Prediction of strength of porous epoxy using RVE approach 

Properties 
Vol% of 

voids 
SP-RVE 

MP-RVE Reported 

results Type C Type D Type E 

 

Strength (MPa) 

0 53.0 53.0 53.0 53.0 53.0 

5 45.3 (-3.2%) 44.8 (-4.1%) 45.1 (-3.6%) 44.4 (-5.1%) 46.8 

10 39.4 (-7.3%) 39.2 (-7.7%) 39.9 (-6.1%) 40.0 (-5.8%) 42.5 

15 35.9 (-9.9%) 36.8 (-7.7%) 37.1 (-6.8%) 37.8 (-5.1%) 39.8 

20 31.6 (-12.5%) 33.1 (-8.3%) 33.9 (-6.1%) 34.2 (-5.3%) 36.1 

*numbers in parenthesis denote the % error as compared to experimental values 

 

The strain-softening responses of all the RVEs considered are shown, as a part of 

the stress-strain curves, in Figure 3.8, where the stress-strain relationship of epoxy with 

5% of voids predicted using SP-RVE type A, and typical realizations of SP-RVE type B 

and MP-RVE types C, D and E for the three sizes of 250µm, 300µm and 350µm are 

presented.  

 

 

Figure 3.8: Stress-strain curves obtained by RVEs at f = 5% 
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As be shown, the stress-strain curves of SP-RVE types A and B are almost 

indistinguishable, including the strain softening segment, confirming that the two types of 

SP-RVEs are physically identical. This is due to the enforcement of periodic boundary 

conditions where all field variables on one edge/surface of a RVE are repeated on the 

opposite edge/surface. Continuity of stress and deformation states between opposite 

edges/surfaces cancel out the effects of free surfaces with regards to damage evolution. 

Unlike the pre-peak regime, the post-peak softening curve characterizing the 

damage behavior shows obvious size dependence where an increase in the size of the 

RVE leads to a steeper strain softening slope, accompanied by a corresponding decrease 

in ultimate strain and this trend agrees with the findings by Gitman et al. (Gitman et al., 

2007) which is shown in Figure 3.9a. The size dependence of the stress-strain curve from 

RVE predictions suggests that there may not be a suitable volume element that can 

provide a representative stress-strain curve for quasibrittle composites which, in general, 

exhibit strong strain softening behavior.  

In contrast, Pelissou et al. (Pelissou et al., 2009) performed numerical studies on a 

bi-phasic composite comprising brittle Zirconium hydrides inclusions embedded in 

elasto-plastic Zircaloy metal matrix and pointed out that the fracture energy density, 

which is the area under the stress-strain curve, will converge with an increase in the size 

of the RVE. Since the linear elastic and strain hardening regimes are reported to be non-

varying with the size of the RVE, as shown in Figure 3.9b, the convergence of the area 

under the stress-strain curve also confirms the convergence of the entire stress-strain 

curve, including the softening regime.  
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Figure 3.9: Predicted stress-strain behavior of composites containing 30% of inclusion using RVE 

of different sizes: (a) brittle interface and matrix with perfectly elastic inclusions 

showing strong size dependence on RVE, after Gitman et al. (Gitman et al., 2007) (b) 

elasto-plastic matrix with perfectly brittle inclusions showing size independence on 

RVE, after Pelissou et al. (Pelissou et al., 2009). 

 

Although there is no report on the crack pattern in the study by Pelissou et al. 

(Pelissou et al., 2009), it can be expected that for the brittle inclusions having a much 

lower ultimate strain than the surrounding elasto-plastic matrix, the damage will be 

extensive and spreads throughout the RVE involving almost all the inclusions instead of 

localizing at a major crack. Hence, Pelissou et al. (Pelissou et al., 2009) reported that the 

stress-strain curve is independent on the size of the RVE, which can only be true if the 

number of cracks scales with the size of the RVE. This could be possible at low volume 

fraction of the brittle phase whereby at the onset of crack formation, the stresses can be 

distributed to the uncracked regions through the elasto-plastic matrix but at high volume 

fraction of the brittle phase, this may be almost impossible due to loss of continuity of the 

matrix.  

(a) (b) 
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 In general, a quasi-brittle bi-phasic composite may comprise two quasi-brittle 

phases or one quasi-brittle phase and one elasto-plastic phase. Consider an idealized 

model of a bi-phasic material under tension being represented by a chain of bundles 

shown in Figure 3.10a where each bundle represents a cross-section of the RVE and the 

number of bundles is a function of the minimum crack spacing, the squares representing 

the inclusions and the circles representing the matrix.  

 

Figure 3.10: (a) Idealized fiber bundle model for describing load distribution in a RVE for a bi-

phasic composite; (b) stress-strain curves for brittle phases 1 and 2; (c) stress-strain 

curves brittle phase 1 and elasto-plastic phase 2. 

 

Under tensile action, the average stress σavg can be expressed as  

 
avgttavg VEVEVV εσσσ )( 22,11,2211 +=+=      (3.7) 

where V1, V2 are the volume fractions, and Et,1, Et,2 are the corresponding tangent moduli 

for phases 1 and 2 respectively. 
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 When the average strain εavg across the critical cross section exceeds the cracking 

strain of the more brittle phase, damage will start to localize with accumulation of 

inelastic strain while the remaining sections unload provided that δσavg/δεavg < 0, which 

leads to the following criterion: 

2,11,2, )( ttt EVEE >−         (3.8) 

Since V1 must lie between 0 and 1, the inequality in Equation (3.8) can be 

satisfied for the following cases: 

(a) Both phases are brittle 

Consider a bi-phasic composite comprising phases 1 and 2, with phase 1 being the 

more brittle phase having the lower cracking strain ε1,cr as shown in Figure 3.10b. When 

phase 1 of the critical section goes into softening, characterized by a negative 

instantaneous stiffness on the stress strain curve i.e. Et,1 < 0, localization will occur if the 

volume fraction V1 satisfies the following inequality: 

1,2,

2,

1

tt

t

EE

E
V

−

>         (3.9) 

 Though the volume fraction of brittle phase 1 may not satisfy the inequality in 

Equation (3.9) when phase 1 becomes damaged, the composite will inevitably softens 

when εavg exceeds the cracking strain εcr,1 εcr,2 of both phases 1 and 2, thus always 

satisfying the inequality in Equation (3.9).  

 (b) One phase is brittle while the other is elasto-plastic 



Chapter 3 RVE APPROACH FOR MODELING THE MECHANICAL PROPERTIES OF                      

QUASI-BRITTLE COMPOSITES 

85 

 

 When phase 1 is brittle while phase 2 is elasto-plastic, it is still possible for the 

composite to behave in a quasi-brittle manner with localization of damage if the volume 

fraction of the brittle phase 1 satisfies the inequality in Equation (3.9). Since the tangent 

modulus of elasto-plastic phase 2 is always positive as shown in Figure 3.10c, this would 

only be possible if the tangent modulus of phase 1 is negative, thus implying damage and 

softening in the brittle phase.   

The localization of the damage in a critical section while the rest of the RVE 

unloads, would lead to a softening in the homogenized stress-strain behaviour of the 

composite, thus implying a size dependence on the average stress-strain curve (Bazant 

and Planas, 1998).  

From the above arguments, it can be concluded that quasi-brittle composites, in 

general, experiences strong damage localization, resulting in the formation of a single 

major crack in the RVE when subjected to tensile action. While the size effect on the 

homogenized stress-strain curve in the softening region leads to difficulty in the RVE 

approach for predicting the stress-strain behaviour, the energy to create a unit area of 

crack surface may be size invariant and suitable for characterizing the inelastic behaviour 

that involves fracture (Bazant and Planas, 1998). 

 

3.4. FRACTURE ENERGY PREDICTED USING RVE APPROACH 

 The fracture energy predicted using RVE approach is determined through the area 

under the simulated homogenized stress - displacement curve of the RVE and tabulated 

in Table 3.5. The fracture energy predicted from MP-RVEs type C, D and E are close to 
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one another implying independence of size on this parameter. As a result, the fracture 

energy or stress-crack opening displacement is suitable for predicting the brittle 

behaviour of composites, rather than the dissipated energy or stress-strain relationship 

usually adopted, to avoid the size sensitivity of the RVE approach. The result reveals that 

there is a trend of decreasing fracture energy with the increase in the degree of porosity; 

and this trend is identical to the trend of the fracture toughness observed from the 

reported experiments (El-Hadek and Tippur, 2002).  

 

Table 3.5: Prediction of fracture energy and fracture toughness of porous epoxy using RVE 

approach 

Properties 
Vol% of 
voids 

SP-RVE 
MP-RVE Reported 

results Type C Type D Type E 

Fracture energy 

 (10
-4

 MPa.m) 

0 4.109 4.109 4.109 4.109  

5 3.511 3.980 3.778 3.919  

10 3.055 3.812 3.843 3.769  

15 2.706 3.894 3.808 3.914  

20 2.491 3.752 3.718 3.627  

Fracture toughness 

 (MPa.m
1/2

) 

0 1.200  1.200 1.200  1.200 1.20 

5 1.056 (-4.0%) 1.125 (+2.3%) 1.095 (-0.5%) 1.116 (+1.5%) 1.10 

10 0.939 (-6.1%) 1.048 (+4.8%) 1.053 (+5.3%) 1.040 (+4.0%) 1.00 

15 0.842 (-12.3%) 1.009 (+5.1%) 0.998 (+4.0%) 1.007 (+4.9%) 0.96 

20 0.773 (-13.6%) 0.948 (+6.3%) 0.933 (+4.8%) 0.920 (+3.4%) 0.89 

 

 

To assess the use of fracture energy as a size invariant measure to characterize the 

fracture behaviour using the RVE approach, the fracture toughness of the porous epoxy 

obtained from published experimental data are compared to those estimated from 

numerical simulation, where the predicted fracture energy is converted into fracture 

toughness using Equation (3.5). In deed the comparison will be more accurate if the 

fracture energy extracted from literature is a direct measurement. The comparison in this 
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paper plays a role as a numerical example for the use of RVE approach to predict the 

damage behaviour of the composites with the assumptions that fracture energy can be 

treated as a material constant and the arrangement of micro-pores in the pre-defined 

damage zone creates an initial defect inside the RVE.  

One concern that may be raised is the presence of the notch in the reported 

experiments while notch was absent in the current simulations using the RVE approach. 

As discussed by van Mier (van Mier, 1997) and Janssen et al. (Janssen et al, 2004), a 

notch has two main effects. Firstly, a notch confines the crack growth and ensures that 

there is only a single crack in the specimen, which is identical to having a single crack in 

the RVE in the current study. Secondly, a sharp crack tip will be detrimental to the 

fracture toughness since it will limit the plastic development of the crack. This effect may 

not happen in the experiments, where an initial notch of root radius 75µm, which is 2.5 

times larger than the radius of the micro-pores, was used.. Although the notch’s mouth 

was subsequently sharpened by “gently tapping-in a wedge” (El Hadek et al., 2002), the 

size of the newly-formed crack tip was probably large compared to the size of the micro-

pores. As a result, the effect of stress concentration at the crack tip may not be so 

significant.  

The comparison between the predicted fracture toughness and the experimental 

results is shown in Table 3.5, where the numbers in parenthesis denote the percentages of 

error. The fracture toughness decreases with increase in f for both the numerical 

simulation and the experiment as depicted in Figure 3.11, which is expected due to the 

zero resistance offered by the voids. The consistency in the predicted fracture toughness 



Chapter 3 RVE APPROACH FOR MODELING THE MECHANICAL PROPERTIES OF                      

QUASI-BRITTLE COMPOSITES 

88 

 

using MP-RVEs type C, D and E shown in Figure 3.11 is a graphical presentation of the 

size independence of the simulated fracture energy tabulated in Table 3.5.  

 

 

Figure 3.11: Effective fracture toughness obtained from RVE approaches and experiments 

 

In terms of accuracy, the MP-RVE approach provides good predictions with less 

than 6% error for f up to 20% and these errors do not show a clear trend with the size of 

the RVE, thus supporting the use of RVE for material characterization in terms of the 

effective fracture energy. At f < 10%, the SP-RVE approach provides accurate prediction 

of the fracture toughness with less than 7% error, albeit a lower bound estimate. The 

lower estimation of fracture toughness for SP-RVE is due to the crack cutting across the 

narrowest cross section of the RVE where the void projected area is largest and by virtue 
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of the imposed periodic boundary conditions, leads to a perfectly planar crack surface as 

shown in Figure 3.12a. However in the MP-RVE models and in the actual composite, the 

voids may not be aligned on a rectangular grid and hence the crack surface may not be 

planar, exhibiting a “rough” and larger fracture surface as shown in Figure 3.12b. This 

will naturally imply higher fracture toughness compared to that based on SP-RVE. 

 

 

Figure 3.12: Simulation of cracks in porous epoxy using smeared crack model: (a) perfectly 

planar crack surface for SP-RVE; (b) rough crack surface and tortuous crack path for 

MP-RVE; (c) convergence of the effective maximum crack opening displacement at 

all volume fraction of voids. 

(a) 
(b) 

(c) 
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The above as well as Table 3.4 show that the error in the prediction of the fracture 

toughness and the strength does not have a clear trend with the size of RVE used. The 

usual description of the fracture behaviour is in terms of stress against crack opening 

displacement instead of stress against strain, as the latter suffers from size effect arising 

from damage localization. Therefore, the effective maximum crack opening displacement 

predicted from the MP-RVE models should not depend on the size of the RVE. This is 

substantiated by the results in Figure 3.12c which shows the variation of effective 

maximum crack opening displacement with respect to the volume fraction of voids for 

the three different sizes of the MP-RVEs. 

In terms of efficiency, the SP-RVE approach performs much better at low f.  For 

comparable level of accuracy of less than 6%, the total computational time for one 

realization takes only about 10 hours for the SP-RVE model while it takes about 48 hours 

for the MP-RVE model. As this study is only specific to porous composite, the critical 

volume fraction of inclusions for which the SP-RVE approach is accurate for predicting 

the fracture toughness of bi-phasic composites in general, remains to be determined.  

 

3.5. SUMMARY 

The adequacy of both the SP-RVE and MP-RVE approaches to predict the 

mechanical behaviour of quasi-brittle composites are examined in this Chapter using 

porous epoxy as an example. The SP-RVE approach is computationally more efficient for 

composites containing low volume fraction of inclusions, about five times faster than that 

for the MP-RVE. Based on Drugan and Willis’ criterion on minimum size of the RVE, it 
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is shown that for bi-phasic composites containing voids as inclusions when the volume 

fraction of voids exceeds the critical value of 15%, the accuracy of prediction for the 

elastic properties will exceed 10% for the SP-RVE approach while the MP-RVE 

approach remains accurate even for higher volume fractions. Results from simulations 

also reveal that the results from the SP-RVE model with proper periodic boundary 

conditions imposed are invariant with the position of the particle as all realizations are 

simply a unit cell of a structure with uniformly distributed particles.  

Compared to theoretical models, the predictions of elastic properties of the porous 

epoxy using SP-RVE approach is very close to the commonly used Mori-Tanaka model. 

Similar to SP-RVE approach, all theoretical exhibit the trend of increasing the error of 

prediction when the volume fraction of particles getting higher. This fact reconfirms the 

powerfulness of MP-RVE approach for simulate material properties of composites 

containing high volume fraction of reinforcements.  

The smeared crack model is used to ascertain the suitability of the RVE approach 

for studying the inelastic softening response. The strong localization of damage with the 

formation of a single crack across the critical cross section indicates that the RVE may 

not be suitable for predicting the inelastic stress-strain softening response of quasi-brittle 

composites. It is shown that fracture energy or the fracture toughness (through the stress 

versus crack opening displacement relationship) could be used as a size invariant 

property to characterize the fracture resistance. As an example for the case of porous 

epoxy, the fracture toughness predicted from the MP-RVE models compares well with 

the experiment results for up to 20% volume fraction of voids investigated in this study 

while the SP-RVE model should not be used for volume fractions greater than 10%.  



Chapter 3 RVE APPROACH FOR MODELING THE MECHANICAL PROPERTIES OF                      

QUASI-BRITTLE COMPOSITES 

92 

 

In the current study, the MP-RVEs at the size of 250µm, i.e. MP-RVE type C, can 

provide reasonable accurate predictions, at less than 10% of error, for the material 

properties, both elastic and inelastic, of the epoxy containing 60µm diameter voids. This 

means MP-RVE sizes that are at least 4 times larger than the size of inclusions might be 

used to model the effective response of heterogeneous materials comprising of voids or 

very soft inclusions surrounded by a quasi-brittle homogeneous medium. 
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CHAPTER 4 

 

NUMERICAL SIMULATION OF SELF-

HEALING MATERIALS WITH 

CAPSULATED SYSTEM 

 

4.1. INTRODUCTION 

Until now, micro-capsule based self-healing materials is the most widely used 

and developed system for the class of self-healing materials using capsulated 

adhesive. Since the first well-known announcement of this type of self-healing 

composite, there have been numerous experimental studies to enhance the 

performance of micro-capsule based self-healing materials such as those on host 

matrix materials and healing agents (Kessler and White, 2001; Kessler et al., 2002, 

2003; Brown et al., 2002; Jones et al., 2007; Mauldin et al., 2007 and Caruso et al., 

2007) as well as those on effects of size and volume fraction of capsules on healing 

efficiency in terms of recovered fracture toughness (Brown et al., 2004 and Rule et 

al., 2007). The detailed reviews of the above researches are provided in Chapter 1. 

On the other hand, the development of numerical models developed for micro-

capsule based self-healing materials, and for all other types of self-healing composites 

as well, is very limited. Two numerical studies have been published by Keller et al. 
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(2006) to predict the elastic behaviour of capsules under micro-compressive test and 

by Remmers and de Borst (2007) to develop a multi-phase cohesive segments method 

to simulate the micro-capsule based self-healing materials. The former work is to 

characterise the Young’s modulus of micro-capsule shell under compression by 

adopting the theoretical solution proposed by Wang et al. (2004) for the problem of 

fluid-filled membrane under compression; the latter work is an introduction of a two-

dimensional method that may be used for crack propagation analysis of self-healing 

materials at micro-scale but has yet to be compared and verified with experiments. 

In this chapter, homogenization approach is applied to develop a numerical 

model for micro-capsule based self-healing materials. Section 4.2 is a preliminary 

study to find the elastic properties of both capsule wall and capsulated fluid. The 

material properties of micro-capsule based self-healing material are modelled using 

the RVE concept with an appropriate model for micro-capsule based on results of the 

preliminary study and the observations from the published experiments and presented 

in Section 4.3. The effective material properties such as Young’s modulus, strength, 

and healing efficiency are simulated and verified against published experimental data. 

Following that, the structural response of beam specimens made from the same self-

healing materials is presented in Section 4.4. Studies on the effect of strength of 

healing agent and type of healing system are discussed in this section. A summary of 

this chapter is presented in Section 4.5. 
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4.2. PRELIMINARY STUDIES ON ELASTIC RESPONSE OF MICRO-

CAPSULES 

4.2.1. Experimental results from micro-compression test 

Micro-compression tests of microcapsule identical to those used in SHM 

(Kessler and White, 2001 and Brown et al., 2004) were carried out by Keller et al. 

(2006). There were 3 groups of capsules of different mean diameters, namely, 65±6 

µm (group A), 187±15 µm (group B) and 213±12 µm (group C). The skin of the 

capsules were made of urea-formaldehyde (UF) which had a uniform wall thickness 

of 175 ± 33 nm, independent of the capsules diameter.  The capsules were filled with 

dicyclopentadiene (DCPD) liquid monomer (the healing agent). Each single capsule 

was drawn by pipette and placed on the compression platen for groups A, B, C (dry 

test) or in immersion cell containing DCPD for group C (immersed test). The punch 

was lowered until it is in contact with the capsule and displacement controlled loading 

at rate of 5 µm/s was applied for the larger capsules in groups B and C. The loading 

rate of 2.5 µm/s was adopted for the smaller capsules in group A to ensure that the 

yield point and maximum strength can be determined from the test. Figure 4.1a shows 

the set-up of the experiments, in which the immersion cell was used only in the 

immersed test. The capsules were tested to failure and images of deformed capsules 

were captured during the test as shown in Figure 4.1b. Image 1 shows the initial state 

of the capsule before testing while image 2 shows the shape of the capsule at yield, 

which occurs at dimensionless displacement d/D of about 15%, where d is the vertical 

displacement at the top of the capsule and D the initial capsule diameter. Images 3 and 

4 were captured just before and after the failure of the capsule, respectively. The 

diffusion of DCPD through the membrane may have severe consequences on the 

stresses acting on the capsule wall. To investigate the extent of diffusion, DCPD was 
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coloured using an oil-soluble dye. It was observed that, before application of the load, 

there was no observable diffusion for groups A and B, which suggested that the 

capsule wall was impermeable, whereas some diffusion is observed for group C in the 

long term. As a result, immersed test was designed for capsules in group C to ensure 

constant volume. From these experiments, the researchers obtained the force versus 

dimensionless displacement curve of capsule up to a maximum d/D of 15%. 

 

      

 

Figure 4.1: Dry and immersed compression test on the micro-capsule: (a) Schematic of tests 

(immersion cell was only used in immersed test); (b) Deformed shape of micro-

capsule under compression (after Keller et al., 2006). 

  

 Using analytical approach, proposed by Wang et al. (2004) to solve the 

problem of fluid-filled membrane under compression, Keller et al. (2006) calibrated 

the Young’s modulus of the capsule wall with the mean values of 3.7±0.5, 3.6±0.4 

and 3.9±0.7 for capsules in groups A, B, C, respectively. The slight variation of the 

Young’s modulus may be caused by the non-uniformity of the capsule wall due to 

chemical and manufacturing problems. As their conclusion, the calibrated elastic 

modulus of the wall is 3.7±0.2 GPa. The load versus dimensionless displacement 

curves for specific capsules having diameter 223 µm in immersed test, 169 µm and 61 

µm in dry tests, were reported. 

(a) (b) 
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4.2.2. Finite element model using bi-phasic materials 

The above micro-compression experiments for 175nm thick capsules having 

diameters of 223 µm, 169 µm and 61 µm, will be numerically modelled and analyzed 

using the commercial FE package, ABAQUS 6.7 with the following basic 

assumptions: 

a. The capsule is a perfect sphere and its volume is constant. 

b. The material properties are time and strain invariant. 

c. Perfect bonding is assumed for the interaction between the healing agent and 

the capsule wall. The punch is a rigid body and during compression, no 

slippage occurs between the punch and the capsule. 

 

4.2.2.1. Boundary conditions and loading 

Due to symmetry, only one eighth of the capsule was modeled. Geometric 

parameters include the capsule radius R and wall thickness t as illustrated in Figure 

4.2. Symmetric conditions were applied on three symmetric planes, and the rigid 

punch was constrained from all degrees of freedom except the translation in the 

direction of compression (Y direction). Similar to the experiments, displacement-

controlled loading was imposed. During the simulation, the contact between the 

punch and the capsule was determined by measuring the distance between them. The 

corresponding force applied on the capsule was calculated from the reaction of the 

capsule on the punch. 
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General contact model (Abaqus Theory Manual, 2007) between the capsule 

wall and the punch is employed. In normal direction of contact surfaces, there is no 

transfer of tensile stress is allowed across the interfaces. This condition is called “hard 

contact” in Abaqus. In tangent direction of contact surfaces, smooth contact without 

friction is applied. 

 

Figure 4.2: Finite element model of compressive test for micro capsules. 

 

4.2.2.2. Material model and element type 

An accurate representation of the capsule in the finite element model should 

be a combination of fluid elements for healing agent and membrane elements for the 

capsule wall due to its small thickness compared to the diameter of the capsule. 

However, a coupled solid-liquid interaction problem with contact analysis is not easy 

to solve with commercial FE packages such as ABAQUS and numerical difficulties in 

solving the interactions between fluid elements and solid elements at the interface 

would be encountered. As an alternative, a rubber-like material, which is 

incompressible and can sustain large deformation, is being evaluated for modelling of 

the healing agent. One such model is the Neo-Hookean material model, which is a 

simple hyperelastic material model that is described only by its shear modulus G. It is 
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often used to model very soft materials that can sustain large deformation, such as the 

modelling of biological cells (Zhou et al., 2005; Peters et al., 2005) and may be 

appropriate for this purpose.  

Neo-Hookean material model is described by its strain energy potential 

(ABAQUS, 2007): 

)3(
2

1
−= I

G
U        (4.1) 

where I1 is the deviatoric strain invariant, defined as: 
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3

2

2

2

11
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with λ1, λ2, λ3 are the principle stretches. As for the capsule wall, a linear elastic 

material model is assumed, similar to that of Keller et al. (Keller et al., 2006).  

In terms of element type, the membrane element would be more ideal for the 

capsule wall since its thickness (0.175µm) is much smaller than the capsule diameter 

(61µm to 223µm). However, the contact of the wall with the healing agent and the 

punch is difficult to solve with the membrane element. To overcome this problem, the 

fully integrated, quadrilateral shell element (S4) was used (ABAQUS, 2007). To 

check the suitability of this element, the out of plane principal stress of the capsule 

wall will be checked for zero stresses. As for the healing agent, the 8-node, fully 

integrated C3D8H hybrid element for incompressible material (ABAQUS, 2007) was 

adopted. The punch was modelled as a rigid object by constraining all the nodes to 

have the same displacement. Convergence studies on mesh density and loading 

increment were conducted to select the mesh size and loading rate. 
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4.2.2.3. Results and discussion 

The model was used to match the experimental data (Keller et al., 2006) of 3 

reported capsules with diameters are 61µm, 169µm and 223µm, respectively by 

varying the shear modulus of the self healing agent and the Young’s modulus of the 

capsule wall. While the shear modulus should be identical for all 3 capsule groups, the 

Young’s modulus of capsule wall can differ slightly between them due to the 

differences caused by chemical problems and manufacturing process. Figure 4.3a 

shows that the out of plane stress of the capsule wall is zero which confirms the 

membrane action (Keller and Sottos, 2006) with the use of S4 element for the capsule 

wall. signifies membrane behaviour and ascertains that using S4 element to model the 

capsule wall is appropriate. 

The final results of the simulation are shown in Figure 4.3b-d. Overall, the FE 

model using neo-Hookean material for capsules under dry tests gave results within 

10% off the experimental values, except the first 2 values for 61-micron diameter 

capsule due to the small displacement under low load. Nevertheless, the small 

deviation fall within the accuracy of the measuring equipment (Keller et al., 2006) 

which is 0.1mN. 

Both the theoretical solution and the FE model give less accurate prediction 

for the compression test of the 223 micron diameter capsule, which was conducted 

under immersed condition. In fact, the conditions of the dry and immersed tests were 

not the same because of the pressure caused by external fluid surrounding the capsule 

in the immersed test. This was not measured in the experiments nor modelled in both 

theoretical and FE models the simulations and it would have reduced the surface 

tension to allow greater diffusion of the DCPD across the capsule wall which could 
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equilibrate the hydrostatic pressure across the capsule wall, leading to a smaller 

stiffness at high d/D in the experiments and hence, the deviation from numerical 

simulation results. 

     

 

 

Figure 4.3: Results from FE simulation of micro-capsule under compression: (a) Zero out-of-

plane stress at the wall; (b), (c), (d): force vs. dimensionless displacement for 

capsules with diameter of 61μm, 169μm and 223μm, respectively.  

 

A possible source of deviation in the predicted numerical results is the 

difference between the real and modelled healing agent. In reality, DCPD is a liquid 

state healing agent, which would self-equilibrate the stress within itself to apply 

uniform internal pressure on the capsule wall. The healing agent is however modelled 

as a quasi-liquid which does not flow easily like a liquid and this may cause localised  

stress concentration in the model of the healing agent. However, this difference is not 
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expected to create significant error because the encapsulation of the healing agent 

reduced the flowability of the fluid.  

It has been demonstrated that the FE model using neo-Hookean material for 

healing agent and elastic material for the capsule wall can accurately predict the 

elastic response of the microcapsule in dry compression tests except at low loads 

where the sensitivity of the testing machine comes into question. The material 

properties of the capsule determined from this simulation are: shear modulus of the 

healing agent GHA = 300 kPa and Young’s modulus of the capsule wall Ecapsule = 

3.7±0.2 GPa, which agrees with the reported data. 

 

4.3. NUMERICAL SIMULATIONS TO CAPTURE MATERIAL 

PROPERTIES OF MICRO-CAPSULE BASED SHM  

4.3.1. Published experimental data and remarks 

 In 2004, Brown et al. (Brown et al., 2004) conducted experiments to determine 

four basic mechanical properties which included Young’s modulus, E, strength, σf, 

fracture toughness KIC and healing efficiency in terms of recovered fracture 

toughness, η, of the SHM using 180µm-diameter micro-capsules at volume fractions 

varying from 6% to 17%, as tabulated in Table 4.1. The specimens were cast using 

EPON
®

 828 epoxy resin (DGEBA) and 12 pph Ancamine® DETA 

(diethylenetriamine) curing agent with a prescribed volume fraction of micro-

capsules.  
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Table 4.1: Mechanical properties of micro-capsule based SHM 

Vol. fraction of 
capsules, f  
(%) 

Young's 
modulus, E  
(GPa) 

Tensile 
strength, σf  
(MPa) 

Fracture 
toughness, KIC 
(MPa.m

1/2
) 

Healing 
efficiency, η 
(%) 

0 3.4±0.1 39±4 0.55±0.04 - 

6 3.2±0.1 24±3 0.78±0.18 79±8 

11 3.1±0.2 20±4 1.14±0.21 48±7 

17 2.8±0.1 20±2 1.20±0.20 53±5 

 

The test results showed monotonic decrease in both Young’s modulus and 

tensile strength with an increase in volume fraction. In particular, the tensile strength 

drops to about 50% of the original host matrix when f is increased to 17%, resulting in 

a much weaker composite. On the other hand, a rise in the micro-capsule 

concentration leads to a rise in the fracture toughness for f < 17%.  

As commented by the authors (Brown et al., 2004), the trend in the material 

properties for a variation in f is similar to those obtained from the rubber modified 

composites, in which the addition of soft fillers will decrease the strength and stiffness  

while toughening the composites at low volume fraction of fillers, as reported in 

literature. DGEBA, which is the matrix for this SHM, is also commonly used in 

rubber toughened composites (Pearson and Yee, 1989; Chen and Jan, 1995; Bagheri 

et al., 2009). The shear modulus of encapsulated healing agent was found to be 300 

kPa and is in the range of 200 kPa to 800 kPa, which is the shear modulus of rubber 

particles used in rubber toughened composites (Gent, 2001). The value of 300 kPa for 

shear modulus of rubber particles was also used by Guild and Kinloch (1995) in their 

numerical study to determine the elastic properties of rubber-modified epoxy 

polymers. 

It is well-known that there are two major mechanisms that attribute to the 

fracture toughness of rubber modified system, namely cavitation and shear yielding in 
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the matrix (Bagheri and Pearson, 1996; Bagheri et al., 2009). In the former 

mechanism, the embedded particles are debonded from the host matrix and cavitated 

under the action of stress concentration near the crack tip. This mechanism can only 

happen in composite systems with weak bonding between the particles and the matrix. 

Therefore, this is not the case for SHM, in which the bonding between the micro-

capsules and the host epoxy has proved to be very strong (Brown et al., 2003). In fact, 

if the micro-capsules do not bond well to the host matrix, the cracks will propagate 

through the interface around the micro-capsules instead of rupturing through the 

micro-capsules to release the healing agent. Therefore, weak bonding between micro-

capsules and host matrix is undesirable in self-healing composites and cavitation 

could not be the reason for the improvement in fracture toughness of micro-capsule 

based SHM.  

In the latter mechanism, particles act as stress concentration points that 

diverge the original crack path and create the shear yielding effect (Bagheri and 

Pearson, 1996; Bagheri et al., 2009). The shear yielding effect, as claimed by Brown 

et al. (Brown et al., 2004) after examining the SEM images of the fracture surfaces, is 

believed to be the major reason for the toughening in micro-capsule based SHM. This 

conclusion is totally consistent to that made by Pearson and Yee (1989) on the 

toughening of composite systems with DGEBA based epoxies. 

 

4.3.2. Numerical model 

Adopting findings in Chapter 3, RVE approach is used to model mechanical 

response of SHM using 180µm-diameter capsules proposed by Brown et al. (2004). 
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Mechanical responses of micro-capsules used in the simulating SHM are presented in 

Section 4.2. Material properties of the host matrix are stated in the first row of Table 

4.1. 

4.3.2.1. RVE generation 

Three-dimensional finite element simulations using both single-particle RVE 

(SP-RVE) and multiple-particle RVE (MP-RVE) approaches were conducted for 3 

volume fractions of 6%, 11% and 17%. While the size of the SP-RVE is varied based 

on the volume fraction being investigated using Equation (3.1), the size of the MP-

RVE is kept at a constant size of 750µm, which is more than 4 times the size of the 

micro-capsule. At each of the 3 volume fractions of the MP-RVEs, 6 realizations with 

different micro-structure were generated to account for the randomly placed micro-

capsules. The number of capsules in each MP-RVE is calculated using Equation (3.1) 

where volume fraction, f, diameter of inclusions, D, and size of RVE, a, are known 

parameters. The positions of inclusion are also randomly generated based on Random 

Sequential Adsorption (RSA) algorithm as followings. The first inclusion is generated 

randomly in the RVE domain. When the inclusion (n+1)
th

 is added randomly into the 

domain containing n inclusions, intersections between n+1 inclusions are checked. If 

there is any inclusion intersection, the inclusion (n+1)
th

 will be regenerated. The 

procedure to generate the  inclusion (n+1)
th

 is repeated until there is no any 

intersection between n+1 inclusions.  

All RVEs are subjected to both periodic material conditions and periodic 

boundary conditions, which are identical to those in the study on porous epoxy 

presented in Chapter 3.  
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4.3.2.2. Material models 

The matrix is modelled as a homogeneous material and its crack-softening 

behaviour is simulated using the smeared crack model, in which values for the inputs 

of Young’s modulus and ultimate stress are given in row 1 of Table 4.1, 

corresponding to f=0%. The constitutive law of the matrix epoxy is approximated by a 

bi-linear stress-displacement curve with the maximum crack opening displacement of 

4.03µm calculated using Equation (3.5). 

In fact, as shown in Section 4.2, micro-capsules can be modelled as a Neo-

Hookean core in an enclosed shell. However, incorporating such a model of capsules 

into RVE, especially MP-RVE, approach with damage will raise to a very expensive 

computational cost. Also, it may also encounter with difficulties due to the closely 

singular of stiffness matrix in Neo-Hookean material, whose Poison’s ratio is very 

close to 0.5. In the current study, the fluid-filled micro-capsules is proposed to 

modelled as voids with the consideration that the micro-capsule is more than three 

orders of magnitude softer than the matrix, as determined in the preliminary study. 

This simplification can only be valid for the elastic response but cannot be extended 

to the post-elastic response due to the shear-yielding effect of the micro-capsule. The 

shear-yielding effect can be accounted for by introducing shear retention in the 

smeared crack model of the matrix. Researchers have found that the conventional 

shear retention model with constant shear retention factor, ρ, does not agree well with 

results from experiments (Kolmar et al., 1984; Rots and Blaauwendraad, 1989). The 

reason is because the shear retention model with constant ρ does not take into account 

the relationship between the reduction in shear resistance of a damaged area and its 

degree of damage. In reality, the effectiveness of a crack to transfer the shear stress 
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across the crack will decrease with increasing crack strain (de Borst R., 2002). To 

overcome this, a shear retention model with variable ρ has been proposed (Rots and 

Blaauwendraad, 1989) which is expressed mathematically as follows:  

 ��� = ��        (4.3) 

 � = 1 −	
	
�

	��
																																					for				��� ≤ ����    (4.4a) 

and  � = 0																																																				for				��� > ����   (4.4b) 

where, G and Gcr are initial shear modulus and cracked shear modulus, respectively; 

 ρ is shear retention factor;  

εcr is the direct strain across the crack;  

εmax is a user-defined parameter corresponding to the state when ρ is fully 

reduced to 0. 

 

4.3.2.3. Loading condition and other numerical issues 

All the RVEs are discretized using 4-node tetrahedral elements with 

reasonably fine mesh, typically an average of 800 000 elements are used for MP-

RVEs to maintain ensure accuracy in the computed stresses. The RVEs are subjected 

to displacement-controlled uniform traction on two opposite faces. The mechanical 

properties of the virgin SHM, which include Young’s modulus, strength and fracture 

toughness, are calculated from the load-displacement response of the RVE following 

the same procedure described in Chapter 3. The healed properties of the SHM are 

subsequently investigated by replacing the damaged elements obtained from the 

previous step with new elements that represent the cured healing agent. 
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4.3.3. Prediction of Young’s modulus and strength 

The effective Young’s modulus obtained from simulations and from 

experiments (Brown et al., 2004) are plotted in Figure 4.4 and tabulated in Table 4.2 

for comparison. The predictions from both SP-RVE and MP-RVE approaches follow 

the trend of diminishing Young’s modulus with increase in the volume fraction of 

micro-capsules. Similar to the results presented in Chapter 3, the effective Young’s 

modulus predicted from SP-RVE model is less accurate than that from MP-RVE 

model in comparison with experimental results. The SP-RVE approach provides good 

prediction with less than 10% of error for low volume fractions of f = 6% and 11% 

whereby the interactions between capsules is weak. 

The volume fraction of 17% for the capsule can be considered as small based 

on Drugan and Willis’ criterion and the deviation of the predicted Eeff, using SP-RVE 

model, from the experimental value is slightly higher than 10%, at 10.71%. This is 

because of the simplification of the capsules as voids which omit the small 

contribution of the capsules’ liquid core on the overall response of the composite. For 

the same reason, the predicted elastic responses at all varying f, using both SP-RVE 

and MP-RVE approaches, is softer than those obtained in real experiments. 

 

Table 4.2: Effective Young’s modulus of micro-capsule based SHM 

Properties 
Vol. % of 
micro-
capsules 

Experimental 
data (Brown et 

al., 2004) 
SP-RVE prediction MP-RVE prediction 

Mean Standard 
deviation 

Mean 
Standard 
deviation 

Error Mean 
Standard 
deviation 

Error 

Effective 
Young's 
modulus 
(GPa) 

0 3.4 0.1 3.4 - - 3.4 - - 

6 3.2 0.1 3.1 0 -3.13% 3.1 0.01 -3.13% 

11 3.1 0.2 2.8 0 -9.68% 2.9 0.01 -6.45% 

17 2.8 0.1 2.5 0 -10.71% 2.6 0.01 -7.14% 
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Figure 4.4: Effective Young’s modulus obtained from RVE approaches and experiments 

 

It is noticeable in Figure 4.4 that the predictions appear to be lines but in fact, 

it only reflects a small portion of a curve, which describes the relationship between 

effective Young’s modulus and volume fraction. This pseudo-linear trend in the case 

of small volume fraction of inclusions is also reported for other theoretical models 

predictions (Wang et al. 1999).  

The MP-RVE model fitted well with the experimental data with an error of 

less than 10% for volume fractions of micro-capsules less than 17%. This result 

suggests that the proposed simplified model for micro-capsule is adequate for the 

elastic properties of micro-capsule based SHM. In addition, the small standard 

deviations in the predicted Young’s moduli using MP-RVE also implies that 6 

realizations for each volume fraction of capsule are adequate for the selected size of 

the MP-RVE to provide accurate prediction of Eeff.  
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Figure 4.5 presents the comparison between the numerical predicted strengths 

and the reported experimental strengths. As expected, the predictions from RVE 

approaches exhibit trends of diminishing effective strength when the capsules content 

is increased, which is also observed from experiments. The reason for these trends, 

quite obviously, is because the introduction of much weaker particles into a host 

matrix will reduce the ultimate stress capacity of the host matrix.  

In general, MP-RVE approach is able to provide better predicted values. 

However the effective strength predicted using SP-RVE approach is closer to the 

reported experimental value at f=11%, compared to the prediction using MP-RVE 

approach. On the other hand, the accuracy of the reported strength of SHM with 11% 

volume fraction of micro-capsules, is questionable as it is equal to the strength of 

SHM at f=17%.  

 

 

Figure 4.5: Effective strength obtained from RVE approaches and experiments 
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The mean and standard deviation of the experimental determination of SHM’s 

strength and their numerical predictions are tabulated in Table 4.3. The standard 

deviation of the experimental σf, eff at f=11% is higher than the corresponding values of 

σf, eff at f=6% and 17%, which suggests that the measurements in experiments with 

11% of capsules is less reliable. This is likely the reason for a longer deviation of the 

MP-RVE approach as compared to the SP-RVE approach at f=11%.  

Table 4.3: Effective strength of micro-capsule based SHM 

Properties 
Vol% of 
micro-
capsules 

Experimental 
data (Brown et 

al., 2004) 
SP-RVE prediction MP-RVE prediction 

Mean Std.  
dev. 

Mean 
Std.  
dev. 

Error Mean 
Std.  
dev. 

Error 

Strength 
(MPa) 

0 39 2 39.0 - - 39 - - 

6 24 3 22.9 0 -4.58% 24.9 0.49 3.75% 

11 20 4 20.3 0 1.65% 22.11 0.45 10.55% 

17 20 2 17.8 0 -11.10% 18.92 0.89 -5.40% 

 

Table 4.3 shows that the prediction of effective strength using MP-RVE model 

fits well with the experimental data with an accuracy of around 90% or above and 

falls within the standard deviation of the experimental data. Again, this result 

validates the assumption that there is negligible contribution of micro-capsules on the 

overall strength of the SHM. Similar to the prediction of effective Young’s modulus, 

the standard deviation of the predicted strength using MP-RVEs are very small, which 

shows that the number of realizations used in MP-RVE approach is sufficient.  

 

4.3.4. Prediction of healing efficiency 

Healing efficiency, η, is defined by Brown et al. (2004), as a ratio of the 

recovered and the virgin fracture toughness. 
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respectively, of SHM. 
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efficiency, both KIC,virgin and K
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On the other hands, predicting the fracture toughness of micro

SHM is much more complicated
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input for shear retention model 
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was noted that the shear retention model is only applicable for MP-RVEs, in which 

the crack surface is non-planar and tortuous. For the case of SP-RVE, the crack, 

cutting across the narrowest section of the RVE, is perfectly planar and perpendicular 

to the applied load. As the result, there is no shear on the crack surface, which also 

means no effect of shear retention. 

 Results of simulations with MP-RVEs show that values of εmax to provide the 

closest capture of fracture toughness are 0.3, 2.0 and 8.0 for SHM with f=6%, 11% 

and 17%, respectively. Shear retention factors, when elements are fully damaged, 

corresponding to εmax = 0.3, 2.0 and 8.0 are 0.10, 0.77 and 0.85, respectively. 

Kotsovos and Pavlovic (1995) believed that a reasonable shear retention factor to be 

used in smeared crack model should not be larger than 0.5 to ascertain the physically 

realistic of aggregate interlocking effect. However, the above comment is based on 

the authors’ observations and experiments on concrete, where aggregate interlock is 

considered as the mean to transfer shear stress after cracking. For the polymers, cross-

links, instead of aggregate interlocking, play important role in stress transferring and 

shear yielding effect (Kinloch et al., 1987; Pearson and Yee, 1989; and Bagheri et al., 

2009).  Thus, comments on meaningful shear retention factor of Kotsovos and 

Pavlovic (Kotsovos and Pavlovic, 1995) may not be correct for the current study.  

 The numerically simulated fracture toughness and its error compared to the 

reported experimental data are tabulated in Table 4.4, in which the toughening 

phenomenon of micro-capsule based SHM was captured, at the accuracy level of 

95%, using MP-RVE approach. The confidence interval of fracture toughness 

obtained through numerical simulations is smaller than that obtained through reported 

experiments confirming the sufficiency of number of realizations used in this study. 
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Contradict to the results from both MP-RVE model and experimental data, the 

fracture toughness captured by SP-RVE approach, where shear retention is 

meaningless, exhibits a diminishing trend of KIC as the content of micro-capsules 

increases. These results further confirm the role of shear retention to describe shear 

yielding effect in the proposed model for micro-capsules SHM. 

 

Table 4.4: Effective fracture toughness of micro-capsule based SHM 

Properties 
Vol% of 
micro-
capsules 

Experimental 
data (Brown 
et al., 2004) 

MP-RVE model SP-RVE model 

Mean εmax Mean Error Mean Error 

Fracture 
toughness 
(MPa.m

1/2
) 

0 0.55 - 0.55 - 0.55 - 

6 0.78 0.3 0.75 -3.85% 0.41 -47.44% 

11 1.14 2.0 1.10 -3.51% 0.37 -67.54% 

17 1.20 8.0 1.18 -1.67% 0.32 -73.33% 

 

 

The results of simulations and the reported experiments (Brown et al., 2004) 

reveal the fact that the toughening degree of SHM, through shear yielding effect, 

increases with a raise in capsules concentration. This result is also observed in rubber-

modified systems (Becu et al., 1997; He et al., 1999). It is believed that inter-phase 

zone existing between soft particles and polymer matrix is a factor controlling the 

toughness of rubber-toughened epoxies (Chen and Jan, 1991; Bagheri and Pearson, 

1995). Through experimental observations, those researchers claimed that ductile 

inter-phase between rubber inclusions and epoxy matrix improves plastic dilation 

around the particles leading to an increase in fracture energy of the composite (Chen 

and Jan, 1991; Bagheri and Pearson, 1995). The idea of inter-phase zone can also be 

used for a reasonable explanation of brittle-to-tough zone observed experimentally by 

Margolina and Wu (Margolina and Wu, 1988). As the content of the soft inclusions 
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increase, the total volume of inter-phase zones will also increase resulting in the raise 

in fracture toughness of the composites, as can be seen with micro-capsule based 

SHMs. It is recommended to conduct a further investigation in the future on effect of 

shear yielding on toughening capability of micro-capsule based SHM.  

 

4.3.4.2. Capturing healing effect 

Since SP-RVEs are inadequate for the modelling of the fracture behaviour of 

micro-capsule based SHM, only the MP-RVEs are used for the prediction of fracture 

toughness recovery of SHM. Figure 4.6 demonstrates a three-step process carried out 

on each MP-RVE model to simulate healing effect of SHM as following. 

Step 1: Multiple realizations are carried out with MP-RVE models to 

determine the fracture toughness before healing, which is named as virgin fracture 

toughness, KIC,virgin.   

Step 2: Damaged elements, whose tensile strain in crack direction exceed the 

maximum tensile strain, in fracture zone in each MP-RVE are identified and replaced 

by new elements possessing material properties of healing agent. In other words, the 

process of healing is not modelled by the curing of the healing agent in this study but 

instead, the changes in state are tracked.  

Step 3: Healed MP-RVEs are subjected to periodic boundary and loading 

conditions that are identical with those in step 1 to characterize the recovered fracture 

toughness, KIC,healed. Healing efficiency, η, is calculated using equation 4.5. 
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Figure 4.6: Steps to capture healing efficiency of micro-capsule based SHM: (a) Determine 

KIC,virgin from virgin MP-RVEs; (b) Identify damaged elements and replace them 

with new elements; (c) Determine KIC,healed from healed MP-RVEs to find healing 

efficiency η. 

 

As discussed in Chapter 3, two material inputs for a bi-linear smeared crack 

model are strength, σf and maximum crack opening displacement wmax but these were 

not reported in literature. For this reason, we derive the material properties for 

hardened healing agent from results of a study carried out by Brown et al. (2002) to 

characterize the healing efficiency of micro-capsule based SHM using tapered double 

cantilever specimens shown in Figure 4.7.  

 

 

Figure 4.7: Tapered double cantilever beam KIC characterization of micro-capsule based SHM 

(after Brown et al., 2002) 
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Only result for SHM with 6% vol. fraction of capsules was reported and it was 

shown that the critical load of the specimen after healing was reduced to be 88% of its 

critical load at virgin state. Taking note that the geometry of the virgin and the healed 

specimens are exactly the same geometry and the critical load applied on a double 

cantilever beam is linearly proportional to the average stress ahead the crack tip (J.M. 

Whitney, 1985), the strength at the healed crack, σf,healed, can be estimated to be 88% 

of that of the  SHM when f = 6%:   

σf,healed = 0.88 x 22 = 21 MPa      (4.6) 

By fitting the numerically predicted fracture toughness KIC,healed to the 

experimental values obtained by Brown et al. (2004), we obtain a value of 6.0µm for 

the maximum crack opening displacement wmax,HA. The fitting results are presented in 

Table 4.5, in which the maximum error is less than 10%. 

 

Table 4.5: Healed fracture toughness of micro-capsule based SHM 

Vol% of micro-
capsules 

Calibrated 
wmax,HA 

(µm) 

Experimental data 
(Brown et al., 2004) 
(MPa.m

1/2
) 

Captured KIC,healed  
(MPa.m

1/2
) 

  

Mean Mean Error 

0 4 - 0.00 

6 6 0.53 0.58 9.43% 

11 8 0.55 0.60 9.09% 

17 12 0.66 0.65 -1.52% 

 

Figure 4.8 compares healing efficiency of micro-capsule based SHM obtained 

from numerical simulations and from experiments. As be shown, maximum healing 

efficiency of SHMs is about 80%, occurring at low concentration of capsules, f=6%.  
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Figure 4.8: Healing efficiency of micro-capsule based SHM: numerical prediction versus 

experimental data 

 

Recalling Equation 4.5, KIC,virgin is significantly contributed to η as virgin fracture 

toughness is the referenced to calculate healing efficiency. For the case of micro-

capsule based SHM, there is a sharp increase of KIC,virgin, at 46%,  when volume 

fraction of capsules increases from 6% to 11%. Meanwhile, there is just a slight 

increase at only 4% when f rises from 6% to 11%. As a result, the healing efficiency 

drop rapidly from f=6% to f=11%. The increase rate of KIC,virgin(f=17%) compared to 

KIC,virgin(f=11%) is almost the same as the  increase rate of KIC,healed(f=17%) compared 

to KIC,healed(f=11%), resulting a plateau in the η - f curve shown in Figure 4.8. 

Since SHM with 6% volume fraction of capsule has higher strength and 

Young’s modulus than both SHMs with f=11% or 17%, 6% volume fraction may be 

the optimum content of micro-capsule if Young’s modulus, strength, and healing 
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efficiency are controlled parameters for optimized process of SHM. However, if 

fracture toughness is the priority parameter, f=17% is the most favourable solution 

because this volume fraction of capsules offers the highest value for both virgin and 

healed fracture toughness of SHMs. Those results are just preliminary observations 

from experiments and numerical simulations. Further study is recommended for a 

comprehensive optimized design for micro-capsule based SHM. 

 

4.4. NUMERICAL SIMULATION OF STRUCTURAL BEHAVIOUR OF 

SELF-HEALING BEAMS 

The influence of healing effect on structural behaviour of a self-healing 

specimen is studied in this session using a self-healing beam subjected to a three-point 

bending test as a numerical example. The simulation is carried out firstly for the self-

healing composite, proposed by Brown et al. (2004), using 6% volume fraction of 

180µm-diameter microcapsules. It is noted that the strength of cured healing agent in 

SHM proposed by Brown et al. (2004) is lower than the strength of the host matrix. 

To investigate effect of the strength of healing agent, additional simulation with self-

healing beam using healing agent possessing higher strength, compared to host 

matrix, is performed. Lastly, a simulation with self-healing beam using tubular 

system, where the healing is only activated for severe cracks, are considered to make 

comparison with self-healing beam using encapsulated system.  

4.4.1. Numerical set up 

The numerical model is set up in 2D using 8-node quadrilateral elements as 

shown in Figure 9a.  
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Figure 4.9: Numerical set up of self-healing beam: (a) 2D Beam model; (b) contour plot of 

normalized strength of elements in the critical zone. 

 

The beam is divided into three equal parts, among which damage analysis 

using smeared crack model is applied only at the middle part to capture the fracture 

behaviour of the beam while the rest are modelled as pure elastic regions. Values for 

the inputs of Young’s modulus, for all parts, and of fracture toughness, for the middle 

part, are the mean value of Eeff and Gf,eff, respectively, of SHM embedded with 6% 

vol. fraction of micro-capsules. To simulate the effect of inhomogeneity, each element 

in the middle part is assigned with a random strength generated from the normal 

distribution, whose mean and standard deviation are 24MPa and 3MPa, respectively. 

The strength assigned for each element is normalized by the mean value and plotted in 

Figure 4.9b.  
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Three series of simulations are carried out in this Section, namely simulations 

with reference beam, self-healing beam using capsulated system, and self-healing 

beam using tubular system. The simulations with reference beam are to provide 

information on structural behaviour of a beam that does not possess healing 

capability. The simulations with self-healing beams are to simulate effect of healing 

on structural behaviour of the beam. In the simulations with self-healing beam using 

capsulated system, all cracks are repaired, while in the simulations with self-healing 

beam using tubular system, only critical cracks, whose length is larger than a 

threshold value representing the location of self-healing units, are healed. Similar to 

Section 4.3.5, healing is simulated by replacing damaged elements with new elements 

possessing material properties of cured healing agent.  

In all simulations, the beam is subjected to displacement control loading at its 

mid-point and the corresponding force is calculated as sum of reactions at the 

supports. For the sake of more obvious comparison between beams with and without 

healing effect, normalized force and normalized stiffness are used. The normalized 

reaction force is calculated as a ratio of reaction force to the beam’s maximum load 

capacity, which is found from the simulation with reference beam; while the 

normalized stiffness is a fraction of the secant stiffness to the reference beam’s initial 

stiffness. 

 

4.4.2. Simulation with reference beam 

The order of crack appearance in the reference beam is presented in Figure 

4.10a-c. At first, there were 3 cracks named as Crack 1, Crack 2 and Crack 3. As can 

be seen in Figure 4.10b, Crack 1 and Crack 2 propagated from weak elements at the 
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bottom of the beam while a very weak element close to the bottom of the beam, 

whose strength is only 78% of the average strength of the material, created a local 

stress concentration that initiates the growth of Crack 3. Compared to the other two 

cracks, Crack 2 is easier to evolve because both Crack 1 and Crack 3 are obstructed 

by strong elements that lie near to the bottom of the beam. For this reason, at later 

stages of the simulation, damage in the beam was localised at Crack 2, i.e. Crack 2 

continued to develop while the rest closed up, as shown in Figure 4.10c. 

 

 

 

 

Figure 4.10: Results from simulation of reference beam: (a) deformed shape; (b) location of 

cracks in strength contour map; (c) damage localization; 

 

Figure 4.11a and 4.11b show normalized plots of the reaction force and secant 

stiffness, respectively, of the reference beam as a function of the applied 

displacement. It can be seen from Figure 4.11b that when the applied displacement 

was 0.12mm, the beam’s stiffness started to decrease, signifying damage initiation in 

the beam. In the beginning, a number of small cracks were initiated and energy was 
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dissipated in all of these cracks resulting in a gradual decrease in secant stiffness. 

When the applied displacement was 0.22mm, damage and the dissipation of energy 

were localized in the growth of Crack 2. The evolving rate and also the beam damage 

rate increased dramatically leading to a sudden dip in the secant stiffness of the beam. 

The maximum load was attained at a displacement of 0.257mm with a corresponding 

loss of 9.5% of the secant stiffness. At maximum displacement, the beam’s 

normalized secant stiffness and force were 0.855 and 0.958, respectively. 

     

 

Figure 4.11a: Structural behaviour of reference beam - normalized force vs. displacement 

plot 
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(b) 

Figure 4.11b: Structural behaviour of reference beam - normalized secant stiffness vs. 

displacement plot. 

 

4.4.3. Simulation with self-healing beam using capsulated system 

The loading procedure for self-healing beam using capsulated system is as 

follows. First, the beam was loaded until a displacement of 0.26mm, at which the 

localized crack propagated through one quarter of the beam depth, was applied. At 

this stage, the beam was under softening regime and damage was localising in Crack 

2, as described in Section 4.4.3, and its normalized stiffness was reduced to 0.9. Then, 

the beam was unloaded and all damaged elements along Cracks 1, 2 and 3 were 

replaced by healed elements, whose material-wise inputs are given by properties of 

cured healing agent.  

As estimated in Section 4.3.4, cured healing agent in the micro-capsule based 

self-healing system that was first proposed by White et al. (2001) is weaker than the 
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surrounding matrix. Mending a crack with an adhesive weaker than the structure’s 

material is not effective since a crack filled with a weaker material will re-introduce 

stress concentration and will reopen. Crack reopening in a self-healing structure is 

undesirable, especially when the healing is to restore strength, prevent/retard further 

crack growth or reduce permeability due to damage. For these purposes, healing 

agents possessing higher strength compared to the structure’s material are more 

preferable (Dry, 1996). 

In the current section, effects of healing cracks by strong and weak materials 

are compared through two types of micro-capsule based self-healing beams. The first 

beam, named as “capsulated system – low strength” beam or CS-LS beam, is to 

capture the healing effect of the micro-capsule based SHM proposed by White et al. 

(2001). In the simulation with CS-LS beam, strength of healed elements equals to 

88% of the mean value of original elements’ strength, as estimated in Section 4.6. The 

second beam, named as “capsulated system – high strength” beam or CS-HS beam, is 

to investigate the scenario where micro-capsule based system using high strength 

healing agent is used. In the simulation with CS-HS beam, strength of healed 

elements equals to 120% of the mean value of original elements’ strength. For both 

beams, Young’s modulus of the original elements and the healed elements are 

identical.  

Figure 4.12 illustrates the critical zone of the Capsulated Based Self-Healing 

beams, where Cracks 1 and 3 did not reopen after healing, in both beams. For the CS-

LS beam, Crack 2 reopened as expected. As shown in Figure 4.12a, a new Crack 2 

was initiated at element 3765, which is an element neighbour to the original Crack 2 

and is weaker than healed elements. Because the strength of element 3764 is much 

higher than that of healed elements, it becomes an obstacle for the crack development; 
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and thus, the new Crack 2 chose an easier path to propagate, namely reopening healed 

elements.  

 

 

Figure 4.12: Before and after healing states at critical zone of self-healing beam using 

capsulated system: (a) CS-LS model; and (b) CS-HS model.  

 

In contrast, there was no crack reopening in the simulation with CS-HS beam, 

where a new crack was also initiated at element 3765. However, since the strength of 

healed elements is larger than that of element 3674, the easier path for the crack 

propagation becomes cracking through element 3674. Consequently, Crack 4 was 

newly formed.  

The effect of crack reopening on healing efficiency, in terms of recovered 

beam’s load capacity, as presented in Table 4.6. It is obvious that crack reopening in 
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the beam embedded with capsulated self-healing systems using low strength adhesive 

results in an inability to fully recover the beam’s load capacity. On the contrary, when 

high strength adhesive is used to prevent crack reopening, the beam’s load capacity 

after healing is increased. In the current numerical example, the CS-HS beam is able 

to recover to 102% the load capacity after healing. 

 

Table 4.6: Results from simulations with CS-LS and CS-HS beams 

Beams 

Loading Unloading  Reloading 

Normalized 
load 
capacity 

Normalized 
stiffness 

Normalized 
load 
capacity 

Normalized 
stiffness 

Normalized 
load 
capacity 

Normalized 
stiffness 

CS-LS 1.00 1.00 - 0.90 0.85 0.97 

CS-HS 1.00 1.00 - 0.90 1.02 0.97 

 

  

The healing efficiencies of self-healing beams in CS-LS and CS-HS beams are 

also quantified using stiffness recovery as tabulated in Table 4.6. As the Young’s 

moduli of healed elements in both simulations with Capsulated Based Self-Healing 

beams are identical, there is no difference in stiffness recovery of CS-LS and CS-HS 

beams. Results of the simulations show that after healing, initial stiffness of the self-

healing beam is able to recover to 97% of its original stiffness. 

 

4.4.4. Comparison with self-healing beam using tubular system 

In the simulations in Section 4.4.3, all cracks are healed to simulate the 

scenario that micro-capsules are distributed in the whole critical zone and cracks at 

any length will rupture the capsules to release healing agent. That scenario is not true 
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for the case of self-healing structures using tubular system in civil engineering 

applications, where the tubes are concentrated at a certain location only. In those self-

healing structures with tubular system, the healing is only activated for severe cracks, 

whose length is over the level where the tubes are embedded. To make comparison on 

the healing effect of the above two systems, simulations with self-healing beam using 

tubular system, named as TS-HS, are carried out in this Section. The loading 

procedure is identical to that for CS-HS beam with the assumption that healing system 

is activated only by cracks whose length is one quarter of the height of the beam. For 

this assumption, only Crack 2 was healed. The material properties of healed elements 

in simulations with CS-HS and TS-HS beams are the same, i.e. healed elements are 

stronger than original ones. Simulations of self-healing beam using tubular system 

with low strength healing agent are not carried out because it is predictable that Crack 

2 will reopen and such a beam will behave similarly to the CS-LS beam. 

As can be seen in Figure 4.13, during the reloading procedure, the healed 

Crack 2 did not open while the unhealed Cracks 1 and 3 reopened. Because elements 

1472 and 3473 at the tips of Cracks 1 and 3, respectively, are much stronger than 

element 3765, a newly formed Crack 4 was initiated at element 3765 and then 

propagated upwards. At later steps of the simulation, damage in the beam was 

localised at Crack 4.  
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Figure 4.13: Cracks appearance in TS-HS beam for the first healing 

 

Results from the simulations with CS-HS and TS-HS beams are tabulated in 

Table 4.7, where both beams are able to recover to 102% the beam’s load capacity. As 

can be seen, the difference between healing effects in TS-HS beam and CS-HS beam 

is in the recovered stiffness. Because damaged elements in all the three Cracks 1, 2 

and 3 were replaced by healed elements in simulation of the beam using capsulated 

self-healing system, the CS-HS beam is able to recover more, in terms of stiffness, 

than the TS-HS beam, where only damaged elements in Crack 2 were replaced. 

 

Table 4.7: Results from simulations with CS-HS and TS-HS beams 

Beams 

Loading Unloading  Reloading 

Normalized 
load 
capacity 

Normalized 
stiffness 

Normalized 
load 
capacity 

Normalized 
stiffness 

Normalized 
load 
capacity 

Normalized 
stiffness 

CS-HS 1.00 1.00 - 0.90 1.02 0.97 

TS-HS 1.00 1.00 - 0.90 1.02 0.95 

 

 

A further investigation on the difference between two self-healing systems 

was conducted by simulating the second healing in CS-HS and TS-HS beams. The 
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Element 3764 
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loading procedure is as follows. After being healed the first time, two beams were 

reloaded until a displacement of 0.26mm was applied, at which Crack 4 propagated to 

one quarter of the height of the beam. Then, the beams were unloaded and damaged 

elements in Crack 4 were replaced by the healed ones. Finally, displacement at the 

mid-point of the beams was reapplied to model the second reloading procedure. 

The difference in damage developments in CS-HS and TS-HS beams during 

the second healing test are shown in Figure 4.14a and b, respectively. After the 

second healing for Crack 4, the easiest path for the damage development in the beam 

is to continue from Crack 3; and that is the path of damage to evolution in TS-HS 

beam. However, this path was pre-prevented in the capsulated self-healing beam as 

Crack 3 was healed during the first healing. As a result, for the CS-HS beam, damage 

was evolved through a newly formed Crack 5, which required higher energy 

compared to the reopening Crack 3 path. Because a higher energy is required to 

develop the damage in the CS-HS beam, its maximum load capacity after the second 

healing is higher than that of the TS-HS beam. This is evidenced by Figure 4.14c, 

where the recovered maximum load capacity of the CS-HS and TS-HS beams are 

106.4% and 103.5%, respectively. 

Figure 4.14d shows that both self-healing beams are able to recover stiffness 

after healing and the healing efficiency, in terms of stiffness recovery, of the CS-HS 

beam is higher than that of the TS-HS beam. The main reason is because capsulated 

self-healing system is able to heal all cracks while only severe cracks are healed if 

tubular self-healing system is used. Actually, this result is only correct in an ideal 

scenario where there is no constraint on the limit of healing agent ready to flow to the 

cracks. 
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Figure 4.14d: Results of simulations of self-healing beams after the 2
nd

 healing: (d) 

normalized stiffness in all loading sequences 

 

4.5. SUMMARY 

The material response and structural behaviour of micro-capsule based self-

self-healing material is simulated in this Chapter. Firstly, the elastic behaviour of 

micro-capsules is investigated in the preliminary study using a biphasic model. It 

comprises of a linear elastic material model for the capsule wall and a hyperelastic 

neo-Hookean material model for the enclosed liquid healing agent. The model reveals 

that the capsules are orders magnitude softer than the matrix to have any significant 

contribution to the elastic response of the composite.  

Secondly, RVE approaches are adopted to simulate mechanical response of 

SHMs, containing 6% to 17% volume fraction of micro-capsules, and predict their 

healing efficiency. In all RVEs, the capsules are modelled as voids and the shear 

yielding effect in the matrix offered by the capsules is modelled by introducing shear 

(d) 
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retention in the smeared crack model adopted for the matrix. For the elastic behaviour 

of the SHMs, the simulations show that MP-RVE approach can predict well the 

elastic behaviour of the SHM with the maximum error of 7.1% and 5.5% for the 

predictions of Young’s modulus and of strength, respectively. SP-RVE approach is 

also able to predict both Young’s modulus and strength of the SHMs; but at a lower 

accuracy of less than 11.5% of error, compared to MP-RVE approach.  

To predict the healing efficiency of SHMs, a three-step procedure is proposed, 

in which the virgin fracture toughness of SHMs is modelled based on the calibration 

of the input εmax of the shear retention model. It was found that only MP-RVE 

approach is suitable for the prediction of healing efficiency of SHMs as the shear 

retention model is inapplicable for the SP-RVE. 

By replacing damaged elements in MP-RVEs with new elements that 

represents for cured healing agent, simulations are carried out to predict the healing 

efficiency. Compared to the published experimental data, the proposed model is able 

to generate good prediction, at less than 10%, of error for the healing efficiency of the 

SHM. 

Lastly, a macro size self-healing beam subjected to three-point bending is 

numerically modelled to investigate the effect self-healing material on structural 

behaviour. The simulated effective properties of micro-capsule based SHM are fed 

into the model as inputs value. Random strengths are assigned for elements at the 

critical zone of the beam to model the inhomogeneous effect. The numerical model 

shows that using healing agent that is weaker than the beam’s material will limit the 

healing effect, in terms of recovery of the maximum load capacity. In contrast, if 

strong healing agent is used, it is possible to induce the beam’s load capacity. 
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Additional simulations with beams using tubular healing system, in which only severe 

cracks are healed, show that ideally, capsulated system may offer better recoveries in 

both stiffness and load capacity. 
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CHAPTER 5 

 

APPLICATIONS OF SELF-HEALING 

CONCEPT IN CIVIL ENGINEERING 

 

5.1. INTRODUCTION 

Although recent studies on self-healing materials are strongly focused on 

composites for high-tech applications in space and aeroplane areas, the idea of self-

healing function was first investigated in civil engineering field with the study by Dry 

(1992) for cementitious materials. However, only in recent years, when the topic of 

sustainable materials is getting hotter and hotter, self-healing concrete has been an 

attractive topic as a possible solution for sustainability problem.  

As a specific type of self-healing materials, self-healing concrete is also 

considered as a potential way out for damage problems. As the most common 

building material in the world, there are so many civil structures made of concrete. 

Any untimely remedy for the damage of these structures, especially bridges and 

buildings, can easily lead to a sudden collapse and may result in drastic consequences, 

not only for economics but also for human life. Unfortunately, there are many 

circumstances where damage in concrete structure may not be detected and repaired 

easily such as cracks deep inside the element or cracks in invisible positions. If self-

healing function is implemented in concrete structure, damage propagation may be 
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stopped or postponed to provide valuable time for overhauling or evacuation and 

hence, severe losses can be prevented. 

Classifying by techniques to create self-repairing function in concrete, there 

are two types of self-healing concrete namely, autogenous self-healing and autonomic 

self-healing ones.  

 

5.1.1. Autogenous self-healing concrete 

The main idea of autogenous self-healing concrete is to activate the hydration 

of unhydrated cement particles dispersed in the concrete structure to gain strength and 

stiffness. Indeed, the natural autogenous healing of cementitious materials has been 

well known for many years and it is acknowledged as one of the reasons for the 

survival of many old buildings and structures. Observations from the existing bridges 

built in the 18
th

 century in Amsterdam, Roman aqueducts in Italy and Gothic churches 

in England reveal that cementitious materials are able to self-heal when moisture 

interacts with unhydrated cement clinker in the crack (Edvardsen, 1999). The main 

cause of this magnificent ability is attributed to the dissolution and re-precipitation of 

calcium carbonate within the lime-based mortar matrix.This re-precipitation happens 

on the surface of cracks, resulting in the crack-sealing and the reduction in 

permeability of the mortars (Jonkers and Schlangen, 2008). 

Numerous researches have been carried out in recent years to explore the 

effect of various parameters, including of freeze-thaw cycles, temperature, crack 

width, and material age, on the amount and the rate of autogenous healing. Jacobsen 

and Sellevold (1996) examined concrete cubes damaged by rapid freeze-thaw cycles 
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and found that concrete cubes stored in water bath were able to recover compressive 

strength. Reinhardt and Loos (2003) found that higher temperature and the smaller 

cracks will lead to a faster healing rate. Ter Heide (Ter Heide et al, 2006) observed 

that autogenous self-healing is especially effective for early-age cracks. Pimienta and 

Chanvillard (2004) noticed that autogenous healing phenomenon also exists in ultra 

high performance concrete specimens reinforced by steel fibers and organic fibers for 

cracks that have crack width smaller than 300µm. Researches by Victor Li and 

colleagues at University of Michigan (Li. 2003; and Yang et al., 2009) have 

established the condition on crack width to achieve autogenous healing function in 

cementitious composites. They claimed that tight crack width, typically from 50µm to 

150µm, is essential to ensure quality self-healing. Crack width of maximum 50µm is 

necessary to achieve full recovery of mechanical and transport properties, whereas 

partial recovery can only be attained for crack width of 50µm to 150µm. This 

requirement on crack width can be satisfied by using Engineered Composite Concrete 

(ECC), which uses fly ash and metal fibers to control the development of micro-

cracking and prevent the damage localization.  

Different methods have been used to activate the autogeneous healing process 

such as using temperature (Farage et al., 2003), natural water containing dissolved 

carbon dioxide (Cowie J. and Glassert F.P., 1992), water pressure (Nanayakkara A., 

2003) and bacteria (Ramachandran et al. 2001; Ghosh et al. 2005; De Muynck W. et 

al., 2008; Jonkers, H.M., 2007, 2009). Amongst them, studies using bacteria to create 

bio-concrete have attracted the attentions of researchers from different countries such 

as Belgium (Van Tittelboom et al., 2010), Netherlands (Jonkers, H.M., 2007, 2009) 

and Japan (Kishi et al., 2007). Good results, in terms of crack sealing and increasing 

the water permeability ability, have been achieved as shown in Figure 5.1. However, 



Chapter 5 APPLICATIONS OF SELF-HEALING CONCEPT IN CIVIL ENGINEERING 

 

138 

 

there is no report on the recovered strength or load capacity of the tested specimens 

after damage. 

 

 

Figure 5.1: Bacteria-based self-healing concrete (after Jonkers H.M., 2007). 

 

 

5.1.2. Autonomic self-healing concrete 

Autonomic self-healing concrete shares the same concept with other artificial 

self-healing composites: self-healing function is created by embedding self-healing 

units comprising of the container and the healing agent in the host concrete. The first 

research on autonomic self-healing concrete was carried out by Dry (1992) using 

hollow glass tubes as containers and methyl methacrylate as healing agent. 

Afterwards, Dry and her colleagues (Dry, 1994; Dry and Mc Millan, 1996), Li et al. 

(1998) and Joseph et al., (2007) adopted this method to examine healing efficiency, in 

terms of recovered strength and flexural stiffness, of autogenous self-healing beams 

using lab scale specimens that are shorter or equals to 300mm. The detail literature 
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review of these researches can be found in Chapter 1 with the notice that all of them 

used tubular system to establish self-healing ability. 

In recent years, there are interests in using micro-encapsulating system for 

self-healing concrete. The use of microcapsules to create self-healing function in 

cementitious materials was first investigated by Yang et al. (2009, 2011). In this 

study, microcapsules with oil core and silica gel shell were constructed by using 

methyl methacrylate monomer and triethyl borane as healing agent and catalyst. The 

microcapsules were dispersed in fresh cement mortar along with carbon micro-fibers 

to create self-healing mortar. Experiment results showed some enhancements in 

compressive strength of self-healing mortar. Autonomic repairing at room 

temperature yielded as much as 45% recovery of virgin fracture toughness while 

repairing at 80
0
C increased the recovery to over 80%. Adopting the similar idea, 

chemical researchers in University of Rhode Island have embedded 2% volume 

fraction of micro-encapsulated sodium silicate healing agent into concrete matrix and 

found that the healing mix was able to recover 26% of its original strength (Science 

Daily, May 25, 2010).  

Another approach is to employ the Shape Memory Alloy (SMA) as 

reinforcement for concrete. This study was carried out by Song and Ma (2006) and 

generated the concept of Intelligent Reinforced Concrete (IRC). IRC uses martensite 

SMA wires for post-tensioning, which resistance change can be used to monitor strain 

distribution inside the concrete. When crack occurs, the heated SMA wires cause the 

contraction which decreases crack width and restores concrete specimen into its initial 

form. Hence, this method has the ability to detect and heal cracks. Adopting the same 

ideas, as illustrated in Figure 5.2, researchers in Cardiff University (Jefferson et al., 

2007, 2010) proposed the cementitious-shape memory or cementitious polymer 
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composite system to improve the durability of cementitious materials. The self 

repairing of cracks will prevent the ingress of harmful substances such as carbon 

dioxide in the air and chloride ions from sea water, which leads to reinforcement 

corrosion, degradation of material properties and a shortened lifespan of the structure. 

However, there are human interventions in its healing process, such as heating the 

tendons for the contraction. Therefore, this system cannot be considered as a fully self 

healing composite. 

 

 

Figure 5.2: Crack closure system using shrinkable polymer tendons (Jefferson et al., 2010). 

 

5.1.3. Remarks 

Although numerous studies have been carried out on autogenous self-healing 

concrete with good results in the improvement in permeability, there are 

disadvantages for this method. First of all, there are various environmental and 

damage conditions, such as crack width, water pressure and environmental 

temperature, pH, water chloride concentration, have to be tailored to ensure the occur 

of the autogenous self-healing process. However, those factors are not easy to control 

and need a high level of monitoring and thus, quality control of autogenous self-

healing concrete is still a challenge. On top of that, autogeneous self-healing will only 
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effective in an ample supply of unhydrated cement, particularly in low water-cement 

ratio concrete. This will limit the applications of autogenous self-healing concrete. 

Compared to autogenous self-healing concrete, autonomic self-healing 

concrete is more reliable and not much dependent on the surrounding environment. 

Among three techniques used to create autonomic self-healing concrete, namely using 

tubular system, using microcapsules and using shape memory alloy, the method with 

shape memory alloy is not a fully automatic process. For the other two, tubular system 

is more preferable than micro-encapsulating system because the former one offers 3 

main advantages as following: 

i) In tubular system, self-healing units are concentrated and hence, 

protecting tubular self-healing units from pre-mature damages during concrete 

casting process is simpler. In contrast, as many microcapsules should be used 

to provide self-healing function, finding a method to protect them from pre-

mature damage is almost impossible. 

ii) Since self-healing units using hollow glass tubes is sizeable, it is 

possible to position them in structural members. As this task is impossible for 

micro-capsulated system, micro-capsules may float up and position at 

uncritical zones. 

iii) The hollow glass tube is commercialized and easily found from the 

market while the microcapsules have to be produced from laboratories. As a 

result, self-healing unit using tubular system is more economic than that uses 

micro-capsules. 
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Another important remark drew from the literature review is most of 

researches on self-healing concrete are at the stage of conceptual proof on beam 

elements made of mortar or non-aggregate cementitious materials. As an illustration, 

Li and Yang (2007) used ECC specimens at the size of 230x76x13mm; Jonkers 

(2008) experimented with concrete bars of dimensions 160x40x40mm; Nishiwaki et 

al. (2006) utilized mortar specimens at size 320x60x20mm, Song and Mo (2003) 

demonstrated their theory with mortar specimens of dimensions 343x152x51mm. 

While autonomic self healing approach appears as a great potential approach, 

it remains a great challenge to extend this idea from small-scale mortar specimens to 

large-scale concrete structural elements, in which the slower dissipation of heat 

generated during curing, the impact by the coarse aggregates during casting impact 

and the vibration of the concrete for compaction may cause the undesirable premature 

damage to the self-healing units. 

This Chapter focuses on the implementation of autonomic self-healing 

function in large scale structural reinforced concrete members. Firstly, preliminary 

studies on the selection of self-healing unit components including of healing agent 

and container, along with proof-of-concept experiments to illustrate the effectiveness 

of the chosen self-healing unit components are presented in Section 5.2. 

Implementation issues of self-healing system in structural members including of 

methods to protect healing unit during casting process are also discussed in this 

Section. Next, the protected self-healing systems are implemented at structural scale 

for of the three essential structural elements namely beam, column and slab. The 

experimental set up and results for those structural elements are discussed in Section 

5.3, 5.4 and 5.5, respectively. Finally, Section 5.6 summarizes the whole Chapter.  
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5.2. PRELIMINARY STUDIES 

5.2.1. Selection of healing agent and storage system 

The self-healing functionality in concrete, which uses damage to trigger the 

healing process, relies heavily on the selection of two main components namely, the 

adhesive and the hollow tubes, both of which have to fulfil the following 

requirements: 

a. The adhesive used for self-healing system in concrete must have a low 

viscosity, in the range of 100-500cps as recommended by ACI (1992), in order to 

flow within the confined crack space. The bond strength between the adhesive and the 

concrete should be larger than that of concrete and the adhesive must cure sufficiently 

fast to resist cracks from re-opening. There are currently 1-part and 2-part adhesives 

in the market. The 2-part adhesive comprises an adhesive base and a hardener and 

they have to be mixed properly in adequate proportions to ensure proper bonding. The 

latter may be difficult to be met since the two parts must be presented in separate 

containers embedded in the concrete. In addition, using 2-part healing agent will 

causes the difficult in activate healing procedure timely as both of containers need to 

be ruptured to activate the healing agent. Hence, the 1-part adhesive, which contains 

latent hardener, is preferred as the healing agent for embedded systems.  

b. The hollow tubes used as the storage system must not react with concrete 

and the adhesive. The tubes must remain thermally stable during casting as well as 

when the structure is in-service. The tubes should be small enough so as not to cause 

significant changes to the overall properties of structure, but they should be large 

enough to transport sufficient amount of healing agent to the crack surfaces. The 

selection of the tube wall thickness plays an important role in the control of the 
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initiation of tube breakage. A thin wall may cause the tube to rupture before the crack 

reaches it whereas with a thicker wall, the fracture of the tube may not be timely to 

cause the release of adhesive to heal the cracks.  

c. In concrete applications, both the adhesive and the hollow tubes have to 

remain intact during the casting process, which means the properties of the adhesive 

should not be altered by heat generated during curing and the hollow tubes should not 

be damaged by vibration and impact of aggregates. 

In view of the aforementioned requirements, several adhesives were first 

chosen based on manufacturers’ information on the viscosity, curing conditions, shelf-

time and bond strength with concrete. A 1-part adhesive Isocyanate Prepolymer 

(commercial name is POR-15) with a low viscosity of 250-500cps was used. The 

material safety data sheet of POR-25 is shown in Appendix 1. The curing process is 

initiated upon contact with air at ambient condition and the hardened adhesive 

achieves a tensile strength of 22MPa when fully cured, which is higher than the 

tensile strength of normal concrete.  

Perspex and glass hollow tubes were considered for the storage system. 

Observations from perspex and glass tubes filled with Isocyanate Prepolymer 

indicated that after 24 hours under indoor condition, visible cracks on the surface of 

perspex tubes were formed as shown in Figure 5.3a, while no cracks were found on 

the glass tubes. Beside the chemical reaction between the perspex tubes and the 

Isocyanate Prepolymer causing the aforementioned visible cracks, the higher strength 

and ductility of perspex delay the rupture of the tubes (Johnson, 2008). Glass is 

therefore sufficiently inert when used with the proposed Isocyanate Prepolymer 

adhesive.  
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(a)                 (b)  

Figure 5.3: Encapsulation of Isocyanate Prepolymer using: (a) Perspex tube; (b) Glass tube 

 

In order to investigate the effect of concrete curing temperature on the 

adhesive and hollow glass tubes, the encapsulated adhesive-filled glass tube was 

immersed in a Memmert waterbath. As a reference, Burg and Ost (Burg and Ost, 

1994) measured the temperature rise of a high-cement-content 1.2-meter test cube and 

found that temperature at the center of the cube reached the peak of 55°C to 65°C 

after 2 days of curing. In the current preliminary study, the temperature of the 

waterbath was set of 65°C to 77.5°C over a period of 8 days and the tube containing 

Isocyanate Prepolymer showed no visible cracks on its surface. Also, the Isocyanate 

Prepolymer did not harden. The encapsulated Isocyanate Prepolymer was then 

injected to a small sample of cracked mortar specimens. After 24 hours, these 

specimens were subjected to a 3-point bending test, to investigate whether the 

Isocyanate Prepolymer healing agent is able to be used to seal the cracks. It was found 

that the bonding strength of the heated Isocyanate Prepolymer and the mortar is still 

higher than the tensile strength of the mortar, which was indicated by a new crack 

formed at a position in proximity to the old one. 

Crack 
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Tests were also conducted to investigate the appropriate size of hollow glass 

tubes, using 2 groups of tubes, named as Group A and Group B, with inner diameter 

(ID) and outer diameter (OD) respectively are: ID=3mm, OD=5mm and ID=4mm, 

OD=6mm. 

Two sets of steel-mesh-reinforced mortar beams with dimensions of 300mm x 

80mm x 50mm, each containing two identical empty tubes from one tube group, were 

subjected to three-point bending test until the crack penetrated through almost half of 

the specimen depth. To determine the instant when the tubes cracked, strain gauges 

were attached on the glass tubes. After cracking the specimen, Isocyanate Prepolymer 

was injected manually into the hollow glass tubes using syringe. Observations showed 

that for all specimens, the leakage of adhesive into the crack was observed, implying 

that tubes in Groups A and B did crack. However, pumping the adhesive into hollow 

tubes in Group A was much more difficult than into the ones in Group B due to the 

larger surface tension associated with the smaller inner diameter. The first occurrence 

of fracture in the glass tubes was indicated by a sudden surge in strain measured by 

the strain gauge, accompanied by an audible “pop” sound. This event was preceded 

by the cracking of concrete which happened less than 10 seconds earlier.  

Additional tests for tubes in Groups A and B were carried out to see if the 

adhesive from the rupture tube can be drawn upwards to the crack tip under capillary 

action, and also flow down towards the bottom surface of the beam under gravity. 

This test was identical to the previous ones except that the tubes were pre-filled with  

Isocyanate Prepolymer and sealed at the ends.  

It is noticeable that sealing the filled adhesive glass tube was one of the 

difficulties encountered due to the reaction between the sealant and  Isocyanate 
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Prepolymer. Various sealants were tried with the glass tube. Using silicon and araldite 

to seal ends of the adhesive-filled glass tubes produced unsatisfactory results. The 

chemical reaction happened between these sealants and the adhesive produced air 

bubbles, which pushed the adhesive upwards causing leakage as shown in Figure 5.4. 

However, when Diglycidyl Ether of Bisphenol A, whose commercial name is 

Aquastick, was used to seal the ends, no leakage was observed even after a few days, 

indicating its suitability. Material Safety Data Sheet of Aquastick is attached in 

Appendix 2. 

 

(a)  (b) 

Figure 5.4: Leakage of adhesive when araldite was used as sealant: (a) 30 minutes after 

sealing; (b): 1 day after sealing 

 

The mortar beams were also loaded until the visible crack tip approached the 

mid-depth of the beam. Observations showed that for beams containing tubes in 

Group B, the  Isocyanate Prepolymer can virtually fill the entire crack planes from the 

bottom surface of the beam to the crack tip, whereas for the ones containing tubes in 

group A, there was no sign of adhesive leakage on the bottom surface of the beam 

even after the crack tip has reached the upper quarter of the beam height. The crack 

mouth opening at the time when the crack tip approached the middle level of the 
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beams was about 0.3µm. After dissecting the specimens containing the smaller tubes 

in group A, it was found that the adhesive only filled a small region around the 

rupture zone due to the large surface tension of the small tube that prevented the 

adhesive from flowing. For a comparison study, additional steel-mesh-reinforced 

mortar specimens, each containing one tube in Group A and another one in Group B, 

were also subjected to the three-point bending test. As it can be seen in Figure 5.5, 

part of the crack surfaces was filled by the leaked adhesive from the larger tube while 

no leakage was found in the area embedded with the smaller tube. 

 

        

Figure 5.5: Testing for the leakage of ISOCYANATE PREPOLYMER using tubes in Groups A and 

B 

 

In summary, the preliminary tests for selection of healing agent and container 

indicate that the suitable components of self-healing system for concrete are (a) 1-part 

adhesive Isocyanate Prepolymer and (b) hollow glass tube with ID=4mm and 

OD=6mm.  This combination will be used for the proof-of-concept tests. 
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5.2.2. Proof-of-concept experiments 

For artificial functionalized material to exactly mimic nature’s self-repairing 

mechanism, it must be truly autonomic, with no manual intervention needed. It is thus 

necessary to experimentally test the autonomic bleeding of Isocyanate Prepolymer 

adhesive. Adhesive-filled glass tubes sealed at both ends were embedded in the tensile 

zone of the steel mesh reinforced mortar specimens. In addition to bleeding, the 

healed specimen must regain a significant portion of its original strength. This was 

experimentally done by comparing the strength of healed specimens against the 

control specimens which do not contain the self-healing system. The subsequent 

cracking of the healed specimen upon re-loading was also investigated. 

 

5.2.2.1. Materials and specimens preparation 

Mortar specimens of size 300mm x 80mm  x 50mm (denoted as set D) were 

cast using a mortar mix of 0.41:1:1 (i.e. water: OPC: sand), each of which were 

embedded with two glass tubes of length = 250mm, inner diameter = 4mm and outer 

diameter = 6mm. The tubes were filled with Isocyanate Prepolymer using aquastick to 

seal both ends. They are placed at a depth of 10mm from the bottom of the specimen 

while the steel wire mesh (1.3mm diameter at 12mm spacing) was placed at 20mm 

from the bottom of the specimen. The horizontal distance between the tubes was 

25mm as shown in Figure 5.6. A similar set of specimens (set C) but without the glass 

tubes was cast to serve as control specimens. All specimens were compacted using a 

vibrating table, demoulded after 24 hours and dried in air for 3 days before tests were 

carried out. 
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Figure 5.6: Self-healing system for autonomic bleeding test: (a) front elevation; (b) side view; 

(c) adhesive-filled glass tubes with aquastick as sealant 

 

5.2.2.2. Test procedure 

All specimens were subjected to three-point bending test, using the Instron 

Testing Machine, at 0.2mm/min. The control specimens (set C) were loaded to failure 

to determine the load-displacement curve. Each specimen in set D was tested beyond 

the point where an audible ‘pop’ sound was heard, which indicated fracturing of the 

glass tube. The load was held until leakage of the adhesive was observed on the 

bottom surface of the specimen. The specimen was then unloaded and left unloaded 

for 4 days before being loaded again using the same displacement rate.  The test was 

terminated soon after more leakage of Isocyanate Prepolymer was observed. The load 

was then removed and the specimen left to heal for 3 days before being loaded again 

and tested to failure in the third loading test.  
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5.2.2.3. Results and discussions 

Figure 5.7a shows the typical load-displacement behaviour observed for both 

the self-healing and the control beams. The presence of the self-healing system 

decreased the overall elastic modulus of the beam as the adhesive-filled glass tubes 

were less stiff than the concrete that was replaced. The crack strength of self-healing 

beam during the first loading, represented by the first peak at a load of 2.23 kN, was 

similar to the crack strength of the control beam. A second peak in load-displacement 

curve was observed which was caused by the fracture of glass tubes, typically 

occurring within 10 seconds after the crack in mortar beam was initiated. Once the 

tubes were broken, gravity and capillary force acted as driving force for the adhesive 

to flow towards the gap formed by the crack.  

The second loading was performed after 4 days of healing and the load-

displacement curve shows an initial peak of 1.44kN, which corresponds to the 

initiation of a second crack, but the specimen can be further loaded up to a higher load 

of 2.31kN. The newly formed crack initiated from a point at the bottom surface of the 

beam that is very close to the first crack and they bridged together when the second 

crack propagated further into the specimen. This suggests that the first crack has 

partially healed. The adhesive in the vicinity of the crack mouth cured fully having 

been in contact with air for 4 days. However in regions close to the crack tip which is 

depleted of air for curing, curing may not have completed with some adhesive still in 

its liquid state. This weak zone attracted nearby propagating cracks. Secondly, the 

smaller damage initiation load of 1.44kN may be due to the softening the beam 

caused by the formation of micro-cracks in the vicinity of the first crack zone during 

the first loading. Although the specimens were partially healed after 3 days, the 

recovered strength equaled the strength of the control specimen. The third loading 
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was performed after the specimen was left to heal for 3 days for both specimens. 

Similar to the previous loading, a new crack was formed, but this time, it did not 

merge with the previous cracks, suggesting that the damage has been fully healed. 

The order of crack formation is shown in Figure 5.7b. 

 

 

       

            (b)           (c)  

Figure 5.7: Experimental results of self-healed specimen: (a) load-deflection curve; (b) order 

of crack formation; and (c) dissected specimen after healing thrice. 

 

As cracking only started from the weakest point in a specimen, complete 

healing strengthened this zone and it is not surprising that a new crack was initiated at 

a location corresponding to the next weakest zone in the specimen. This is confirmed 

by the result of the experiment showing the crack strength of the specimen has 

Top 

Bottom Bottom 
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increased to 2.95kN, which is 32% higher than that of the control specimen. Table 5.1 

summarizes the experimental results.  

Indeed, the waiting time of 7 days for epoxy hardening is relatively long and 

limits the applications of the current self-healing system. However, the scope of the 

current study focuses on mechanical aspect of implementing self-healing idea in civil 

engineering applications, rather than chemical aspect. Finding a faster response 

healing agent is strongly recommended for future work. 

 

Table 5.1: Summary of proof-of-concept experimental results 

Specimen Crack Initiation Load 
(kN) 

Ultimate Load 
(kN) 

Control 2.25kN 2.25kN 
Undamaged self-healing specimen 2.23kN 2.23kN 
Self-healing specimen after first healing 1.44kN 2.31kN 
Self-healing specimen after second healing 2.31kN 2.95kN 

 

 

5.2.3. Implementation issues of self-healing system in structural members 

5.2.3.1. Protection of self-healing system 

In the foregoing experiments, the protection of self-healing system was not 

necessary as mortar specimens were used. However when casting actual structural 

concrete members, the self healing system may be damaged due to impact by 

aggregates or severe vibration. A protective layer for each glass tube has to be 

installed to prevent breakage during the casting process. Finding an effective 

protection method for the self-healing unit is the basic requirement to implement self-

healing in concrete structural elements. 
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In the first trial, self-healing unit is protected by a 6.5mm thick mortar strip 

where demoulding was done after 1 day before the host beam was cast as illustrated in 

Figure 5.8a. The cement-based protective layer such as mortar is preferred as it might 

provide good bonding with the surrounding concrete mixture. The 6.5mm thickness of 

the mortar protection trip is used since it is the smallest thickness can be cast using a 

mould.  

 

     

 

Figure 5.8: Testing for protected self-healing units: (a) self-healing unit protected by mortar 

trip; (b): diagram of the embedded self-healing system; (c) reinforcement detail. 

 

To investigate if the protected self-healing system can work well in structural 

concrete beam, a concrete beam of size 2000mm x 125mm x 200 was embedded with 

2 glass tubes of length = 310mm, inner diameter = 5mm, outer diameter = 7mm. The 

tubes were filled with Isocyanate Prepolymer using aquastick to seal both ends and 

protected as described earlier. They were tied beneath the bottom steel reinforcement 

before the host beam was cast. The beam was demoulded after 48 hours to air dry for 

24 days. Figures 5.8b and 5.8c show the diagram of the self healing system 

implemented and the detailing of the reinforcements in the concrete beam. In fact, this 

(a) (b) 
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experiment can be considered as a pre-test for the real experiment with structural self-

healing beam. The hollow glass tubes in this experiment are larger than those used in 

proof-of-concept test for the ability of storing and delivering sufficient amount of 

adhesive into meso-cracks. However, the thickness of the tubes still remains to be 

2mm to preserve the brittleness. 

The beam was subjected to displacement control four-point bending until 

failure. Although the leakage of Isocyanate Prepolymer could be seen at the crack on 

the bottom and the side surfaces on the beam, there was a delay at more than 5 

minutes after the first crack occurred. Further investigation was made by dissecting 

the beam at the cracked area, as shown in Figure 5.9.  

 

 

Figure 5.9: Self-healing unit protected with 6.5 strip mortar and the surrounding concrete 

 

The image of the intact protected self-healing unit and the fact that there was 

no signal of a pre-dried Isocyanate Prepolymer at positions other than crack location 

strongly imply the capability of the mortar trip to protect the self-healing system. 

However, the delay in the leakage of Isocyanate Prepolymer recommended that the 

protective mortar layer is too thick to provide timely rupture of the tubes. In addition, 

bonding between the protective layer and the surrounding concrete mixture is very 
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poor, as can be seen in Figure 5.9, and may create slippage of the protected self-

healing units. 

After the first trial, three other protection methods were proposed, as imaged 

in Figure 5.10a-c, in an attempt to overcome the drawbacks of mortar trip protection 

layer: 

i. Mesh: The glass tube is wrapped by fine steel mesh. This method protects 

the glass tubes from the impact of concrete during casting and does not provide extra 

strength to the glass tubes. 

ii. Spiral Wire: The glass tube is wrapped by spiral wire. This method protects 

the glass tubes from the impact of concrete during casting, provides no extra strength 

to glass tubes and creates the roughness for better bonding between the self-healing 

system and the surrounding matrix. 

iii. Mortar Layer: The glass tube is wrapped by spiral wire, followed by a thin 

layer of mortar that is applied an hour before the casting of the specimen. The 

thickness of the mortar layer is around 3.5 mm, as compared to 6.5mm in mortar strip 

method. The spiral wire helps to increase the bond between the mortar and the glass 

tube, and increase the roughness on the outer surface of the mortar layer for better 

interlock with the surrounding matrix. 

To investigate the performance of these methods, three pairs of glass tubes 

were each filled with different color dyes, with each color representing one protection 

method. All six protected glass tubes were embedded into a mould for casting a 

125x200x2000mm concrete beam. After curing, the concrete beam was loaded under 

a four-point bending test, in which all six embedded glass tubes were positioned in the 
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flexural zone. Any release of dyes during testing, as shown in Figure 5.10d, would 

indicate that the glass tubes remain intact during casting and the healing units with the 

protection layer can break successfully when the crack passes through it. 

 

     

     

Figure 5.10: Protections for self-healing unit: (a) Mesh; (b) Spiral Wire; (c) Spiral Wire coated 

with mortar; (e) test results 

 

Although results showed that both the Spiral Wire and Spiral Wire coated with 

mortar methods were qualified for protection through the observation of released 

dyes, it was found, after the test by dissecting the beam, that a small region of the 

concrete around the healing unit protected by Spiral Wire was pre-stained with the 

dye. This suggests that the Spiral Wire method did not protect the glass tube well 

during casting procedure and hence, the Spiral Wire coated with mortar approach is 

chosen to adopt for subsequent structural self-healing specimens. 

 

 

 

(a) (b) 

(c) (d) 
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5.2.3.2. Detection of breakage of glass tube 

As part of the verification process, it would be informative to detect the instant 

that the glass tube breaks. Detection is difficult for embedded systems especially in 

deep beams, foundations or at the interfacial zone of the steel-concrete composite 

structure. Strain gauge can be used to detect the rupture of the tube but it relies on 

advance knowledge of rupture zone, otherwise, multiple gauges along the tube need to 

be installed. An efficient way is to use an optical fiber as shown in Figure 5.11.  

 

      

              (a)          (b) 

         

              (c)         (d) 

Figure 5.11: Detection of glass tube rupture using optical fiber: (a) head with input laser; (b) 

head that receive signal; (c) experimental set up with optical fibers; (d) dip in 

signal of laser when tube was ruptured. 
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At each end of the tube, a rivet (see Figures 5.11a-b) is used as a guide to align 

the ends of the optical fiber so that when a laser light is projected from one end, the 

other end can receive it. When the beam is loaded in flexure such that the glass tube is 

broken, the intensity of the laser light at the receiving end will dip, as shown in Figure 

5.11d, due to the misalignment of the two ends. 

 

5.3. IMPLEMENTATION OF SELF-HEALING FUNCTION IN 

REINFORCED CONCRETE BEAM 

5.3.1. Specimens fabrication and testing procedure 

Self-healing reinforced concrete beams are experimented under three-point 

and four-point bending test to investigate the effectiveness of sensing and healing 

when vertical cracks are formed by different mechanism. In the former one, self-

healing units were embedded in the zone where combined effect of bending and shear 

is active; while in the later one, self-healing units were embedded in pure flexural 

zone. 

 

5.3.1.1. Beams under three-point bending experiments 

Two concrete beams at size 900mm x 125mm x 200mm were cast. Among 

them, one is self-healing beam while the other one is the control beam. Both of them 

are identical except that in self-healing beam, two 300mm long protected self-healing 

units were tied beneath the longitudinal reinforcement. Material properties of the 

beams are presented in Tables 5.2, while the configuration of self-healing beam is 

depicted in Figure 5.12. It is notable that optimization study of self-healing units in 



Chapter 5 APPLICATIONS OF SELF-HEALING CONCEPT IN CIVIL ENGINEERING 

 

160 

 

terms of locations and volume, which is out of the scope of the current research, is 

recommended for the future study. 

 

Table 5.2: Properties of materials used for reinforced concrete beam 

 Materials Used 

Material Properties Links Concrete Steel 

Strength 500N/mm
2
 35N/mm

2
 460N/mm

2
 

 

 

Figure 5.12: Self-healing beam under three-point bending test 

  

Both beams were subjected to three-point bending test where displacement 

control actuator was used with loading rate 0.2mm/min. One transducer was installed 

at the mid-point of each beam to record the deflection data. The control beam was 

loaded until failure to provide reference on maximum load capacity and stiffness. 

Meanwhile, the self-healing beam was loaded until the leakage of healing agent was 

observed. Then, the beam was unloaded and unmounted to rest for 7 days before 

being reloaded again to examine the self-healing capacity. 
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5.3.1.2. Beams under four-point bending experiments 

Two specimens, namely control beam and self-healing beam, were fabricated 

at the size of 125mm x 200mm x 2000mm using the same materials as in the three-

point bending test series. No self-healing units were installed in the control beam 

whereas six self-healing units, each of length 400mm, were embedded in the flexural 

zone of the four-point bend beam and all tubes were positioned right below the tensile 

reinforcement bars as shown in Figure 5.13. Displacement control actuator was used 

with a loading rate of 0.2mm/min.  

While the control beam was loaded to failure, the self-healing beam was 

loaded in loading – unloading sequence in which the resting period of 7 days was 

applied for curing process. During all experiments, displacement at the center of the 

beams were recorded continuously using transducers and plotted together with applied 

loading value to form load-displacement curves. 

 

 

Figure 5.13: Self-healing reinforced concrete beam under four-point bending test 
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5.3.2. Results and discussion 

 5.3.2.1. Beams under three-point bending experiments 

Load-displacement curves of self-healing beam and control beam were plotted 

in Figure 5.14 for comparison, in which there is a slight increase in maximum load 

capacity of self-healing beam (165.97kN) compared to that of control beam 

(157.65kN). Although the difference in maximum load capacity of self-healing and 

control beams are insignificant, there is strong evidence of healing effect in terms of 

stiffness of the beams. 

 

(a)     

(b)  

Figure 5.14: Load displacement curve of beams under three-point bending test: (a) control 

beam; and (b) self-healing beam. 
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 As can be seen in the Figure 5.14, the tangent stiffness of both control and 

self-healing beams keep reducing from the loads 34.11kN and 35.09kN, respectively, 

signifying the crack localization and development to become the first severe damage 

in the beams, which coincides with the experimental observations. To be comparable, 

tangent stiffness of the self-healing beam is also calculated at the load value of 

35.09kN when first damage was created. As shown in Figure 5.14b, there was a 

recovery in terms of stiffness in the healing beam. 

Quantifying, tangent stiffnesses of both control and self-healing beams 

obtained from experiments are normalized with their pre-damage stiffnesses and 

presented in Figure 5.15, in which, 52% of loss stiffness or 86% of pre-damage 

stiffness was recovered in self-healing beam after being healed. 

 

 

Figure 5.15: Normalized stiffness of control beam and self-healing beam. 
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5.3.2.2. Beams under four-point bending experiments 

The first crack happened in the self-healing beam at around 18kN and the 

leakage of Isocyanate Prepolymer was observed shortly after when the load reached 

24kN. The crack width at the level where self-healing units installed were 0.3mm. 

The timely flow out and the well distribution of healing agent into the opening cracks, 

which failed to happen in the preliminary tests with mortar strip protective layer, is 

another demonstration of the effectiveness of the using protection method. Loading 

was continued further to allow more healing agent flow out and then stopped at 37kN. 

After this, the beam was unloaded and was rested for 7 days to allow healing before it 

was re-loaded until fresh leakage of healing agent was detected. This unloading-

reloading cycle was repeated twice and each time, new cracks were formed while the 

old cracks did not re-open, clearly signifying that the healing is effective and the 

beam has multiple self-healing abilities.  

The effectiveness of the healing was also quantified in terms of the tangent 

stiffness recovery as depicted in Figure 5.16, in which stiffnesses after damage, after 

first healing and after second healing are normalized to the before damage one. 

Analogous to the beams under three-point bend, both self-healing and control beams 

experienced the continuously decrease of tangent stiffness after damage but the 

former one is able to recover its stiffness after healing. In detail, after the first 

damage, the stiffness of the control and self-healing beams were reduced to 76% and 

74%, respectively, of before damage stiffness. After the first healing, the self-healing 

beam regained its stiffness back to 88% of the pre-damage stiffness. Nevertheless, 

stiffness of the self-healing beam after the second healing fell back to 85% of the pre-

damage stiffness. This may due to the insufficient healing agent used for the second 

healing. 



Chapter 5 APPLICATIONS OF SELF-HEALING CONCEPT IN CIVIL ENGINEERING 

165 

 

   

                                     (a)                                                                                    (b) 

Figure 5.16: Result of self-healing beam under four-point bending test: (a) load-

displacement curve; (b) normalized stiffness. 

 

Experiments with self-healing beams under 3-point bending load, where there 

is shear effect at the healing zone, and 4-point bending load, where the healing zone is 

subjected to pure bending moment, show an insignificant influence of shear loading 

on healing effect. This may be because of the high shear strength of the healing agent. 

In addition, self-healing beams in the current study are reinforced concrete beams, in 

which the steel reinforcements will distribute the cracks along the damage zone 

regardless the loads are 3-point or 4-point loading. Thus, the results with self-healing 

beams under 3-point bending and 4-point bending loads in the current study are very 

similar. 

 

5.4. IMPLEMENTATION OF SELF-HEALING FUNCTION IN 

REINFORCED CONCRETE COLUMN 

In this experimental series, self-healing units are embedded in column 

elements to investigate the effect of healing system for horizontal and inclined cracks 
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when the presence of gravity does not offer much help to the flow of the healing 

agent. 

 

5.4.1. Specimens fabrication and testing procedure 

One control column and one self-healing column were cast using the same 

concrete Grade35. Twenty 350mm-long self-healing units were tied to the 

longitudinal reinforcement bars of the self-healing column while no healing tubes 

were introduced in the control one. Self-healing units were designed to be short to 

avoid the buckling failure and to act as compartments to prevent all healing agent 

flows into one single crack and hence, allow multiple healings.  

Figure 5.17 illustrates that configuration of the experiment on self-healing 

column in which, displacement controlled horizontal load was applied close to the top 

of the columns at the rate of 0.1mm/min. The self-healing column was loaded until 

the leakage of healing agent was observed and then, it was unloaded and rest for 

7days for curing before being reloaded. The loading-unloading cycle was applied 

thrice to examine the multiple healings ability. The control column was loaded until 

damage propagated to half of the section then was unloaded before loading again. 

After being applied loading-unloading two times, the control column damaged 

severely and the experiment was stopped for safe. 
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Figure 5.17: Elevation and cross sectional views of self-healing column. 

 

5.4.2. Results and discussions 

Load-displacement relationship of self-healing column and control column are 

plotted in Figure 5.18a and b. As can be seen, after each loading-unloading sequence, 

the stiffness of the control column reduced implying the damage condition became 

more and more significant. In contrast, the stiffness of self-healing column exhibited 

recuperation after each healing time. The trends in changing stiffness of both columns 

are quantified using normalized tangent stiffness and graphically plotted in Figure 

5.18c, in which after the first damage, control column and self-healing column lost 

42% and 51% of their original stiffness. After recuperation, the self-healing column is 

able to recover to 70% of their original stiffness.  
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(a)

(b)

(c)

Figure 5.18: Results for cantilevered columns test: (a) load

column; (b) load-displacement curve of self

changing normalized stiffness of columns
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(d) 

Figure 5.18: Results for cantilevered columns test: (d) observation from self-healing column. 

 

Analogous to the observations in self-healing beam test, for each time of 

loading, there were new crack formed without any re-opening detected from the 

healed cracks. For instance, during the first loading, there were two cracks appeared at 

the bottom zone of the column where maximum moment was applied. Healing agent 

was observed to be leaked short after the crack propagated through the level where 

healing units were installed. After 7 days of curing, these two cracks were fully healed 

and not opened during the second loading; instead, a new crack was formed between 

them as illustrated in Figure 5.18d. The presence of newly formed cracks and the 

absence of old cracks re-opening after each loading signify that the self-healing 

column was able to perform the autonomic healing multiple times, which is also 

reflected from the multiple recovery of stiffness.  
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5.5. IMPLEMENTATION OF SELF-HEALING FUNCTION IN 

REINFORCED CONCRETE SLAB 

In this experimental series, the function of self-healing in slab element was 

evaluated for the case when cracks open and close fast due to the subjection of impact 

loading. 

 

5.5.1. Specimens fabrication and testing procedure 

Two specimens, namely the control slab and the self-healing slab, were used 

to compare and quantify the amount of stiffness recovery. The 1m square specimens 

with a thickness of 0.1m are cast in Grade 40 concrete with reinforcing steel meshes 

of opening spacing at 100mm and diameter of 4mm. In the self-healing slab, four 

400mm long healing units were attached to both the top and bottom steel mesh in 

each of the two orthogonal axes as shown in Figure 5.19a.  

The setup of the drop weight test, which used to create impact load onto two 

specimens, was shown in Figure 5.19b where (1) is a 20-kg impact hammer; (2) is a 

vertical aluminium guide to ensure the location of impact is at the center of the slab; 

(5) is a steel frame to provide the base for the test. The boundary conditions of the 

slabs were pinned at 2 opposite edges where G-clamps (4) were used to prevent the 

side displacement of the slabs. On each of the remaining 2 edges, one belt was used to 

fasten the slabs to the steel frame to prevent the bouncing of the slabs after being 

impact. The impact energy was standardized by dropping from a constant 2-meter 

height.  
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                (a)         (b) 

         

      (c)        (d) 

Figure 5.19: Experiments on self-healing slab: (a) reinforcement cage with self-healing units; 

(b) Drop-weight test to create damage; (c) Static loading test to measure 

stiffness; (d) Diagram of one typical sequence in the experiment.  

 

To quantify the effect of self-healing, the static stiffness before and after 

impact were selected for comparison. The static stiffness is chosen as this quantified 

parameter reflects the “health” condition of the structure where damage in the 

structure is reflected in the loss of stiffness. The setup of the static loading test is 

shown in Figure 4c where a transducer with a resolution of 1µm was located beneath 

the center of the slab. Steel weights, sitting on a thick steel U-channel to localize the 

load, were sequentially applied on top of the slab until the limit of 2kN was achieved. 

The value of 2kN was chosen based on a preliminary test on the trial slab to ensure no 
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non-linear performance happened even in the case that the slab was heavily damaged. 

All steel weights range from 6.3kg to 29kg except a 98-kg I-beam used as the largest 

weight and served as a platform for adding the other weights. 

Figure 5.19d illustrates a typical loading sequence in the experiment in which 

the self-healing slab was subjected to repeatedly impacts until the release of healing 

agent was spotted and then it was subjected to static loading test to measure the before 

healing stiffness. After that, the slab was left for 7 days for curing before being 

subjected to static loading test again to measure the stiffness after healing.  

 

5.5.2. Results and discussions 

The results of the test were tabulated in Table 5.3 and graphically presented in 

Figure 5.20 where the control slab suffered from a continuous loss in stiffness after 

each impact and failed after test sequence 3. In contrast, the self-healing slab 

exhibited a strong recovery after test sequences 2 and 3, in which up to 99% of the 

stiffness was recovered. The lowest healing efficiency is in test sequence 1 and this is 

possibly because the impact energy was not large enough to fully trigger the self-

healing systems. Similar to the self-healing beams and column, crack reopening was 

not observed after healing. After test sequence 4, the center of the healing slab, where 

the healing units were placed, were strengthened by healing to the extent that meso- 

and macro-crack no longer form in this region but critical cracks were formed at the 

corner zones which could not be healed due to the absence of healing units.  
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Table 5.3: Stiffness of control and self-healing slabs under impact loading 

Test 
Sequence 

Control slab Self-healing slab 

No. of 
Impacts 

Stiffness (kN/mm) 
No. of 
Impacts 

Stiffness (kN/mm) 

Before 
impact 

After 
impact 

Before 
impact 

After 
impact 

1 1 43.8 34.3 1 42.9 33.2 

2 1 34.2 20 2 38.8 24.5 

3 1 20 N.A. 4 38.6 24.1 

4 - - - 5 36.5 N.A. 

  

 

 

Figure 5.20: Stiffness of control and self-healing slabs under impact loading 

 

5.6.   SUMMARY 

This chapter addresses the implementation of self-healing function in 

reinforced concrete elements. First the combination of hollow glass tubes and air-cure 

adhesive Isocyanate Prepolymer were considered and verified through proof-of-

concept experiments as promising healing units. Next, the protection methods of 

Isocyanate Prepolymer filled glass tubes to prevent the premature damage of self-

healing system caused by aggregate impacts and severe vibration during casting 

procedure of structural members were examined. Experiments with 4 methods of 

protection using mortar strip, steel mesh, spiral wires and spiral wires coated with a 

mortar layer showed that a 3.5mm thick mortar layer wrapping around the glass tube 

spiralled with steel wires is able to protect the self-healing system during casting 
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procedure and facilitate timely rupture of the glass tube to release the healing agent. 

The proposed protected self-healing system was then implemented in three basic 

structural members namely, beam, column and slab. The self-healing beams were 

experimented under the three-point and four-point bending test repeatedly and the 

multiple crack healing was observed through the flowability of the healing agent into 

cracks to bond the crack surfaces. Although there was no increase in maximum 

loading capacity of self-healing beams, over 85% of initial flexural stiffness was able 

to be recovered. Similarly, self-healing was implement successfully in column 

element, where the major crack direction is horizontal, with up to 70% of stiffness 

was recovered. The self-healing slab was damaged using impact drop weight. Again, 

multiple crack healing ability was performed with the maximum healing efficiency 

was found to be 99% in terms of stiffness recovery.  

In the current study, there is a need of load removal to allow the self-healing 

elements fully healed before they are reloaded. This trend is very common in 

literature studies on self-healing materials and it is applicable to deal with sudden 

accidental loads such as impact, blast and seismic loading. It would be much 

comprehensive if the study is extended, in the future, for cases of sustain load. 
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CHAPTER 6 

 

CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE 

WORK 

6.1. CONCLUSIONS 

A numerical model to predict the macro behaviour of self-healing composites has 

been developed by adopting multi-scale modelling using Representative Volume 

Element concept. Good agreement between the predictions from numerical models 

and experimental data, in terms of Young’s modulus, strength and healing efficiency, 

verifies the correctness of the proposed model.  

Firstly, RVE approach is examined in detail based on simulations with porous 

epoxy. Results from the simulations reveal that the SP-RVE approach is more 

efficient for composites with low volume fraction of inclusions, since it can provide 

reasonably accurate prediction at a low computational cost. For instance, the SP-RVE 

can be used to predict elastic behaviour of porous materials less than 10% of error 

when the volume fraction of voids is less than 15%, which totally agrees with the 

critical volume fraction for SP-RVE approach using Drugan and Willis’ criterion. 

While SP-RVE approach is more suitable for composites with low volume fraction of 

inclusions, MP-RVE approach is very effective for composites containing high 

volume fraction of reinforcements as it fully models particle-matrix and inter-particle 

interactions. 
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A comprehensive explanation on the contradict conclusions on the existence 

of RVEs for damage behaviour was offered in the current research through 

investigations on RVEs at different size. It was shown that there is size effect in 

homogenized stress-strain curve found from RVEs caused by the strong localization 

of damage with the formation of a single crack across the critical cross section. As 

such, the RVE concept is not suitable for predicting the inelastic stress-strain 

softening response of quasi-brittle composites. Instead, fracture energy or fracture 

toughness calculated through the stress versus crack opening displacement 

relationship were illustrated as size invariant properties and they could be used for to 

simulate the damage behaviour of heterogeneous materials. As an example for the 

case of porous epoxy, fracture toughness predicted from MP-RVE models compares 

well with the experimental data for up to 20% volume fraction of voids. 

The RVE approach has been adopted to develop a numerical model to predict 

material behaviours and healing efficiency of micro-capsule based self-healing 

materials. In the proposed model, the matrix is modelled as a homogeneous material 

and its crack-softening behaviour is simulated using smeared crack model. A 

preliminary study found that the encapsulated healing agent can be modelled as Neo-

Hookean material with shear modulus of 300kPa . This result suggests that the micro-

capsules are too soft, at more than three orders of magnitude softer than the matrix, to 

have any significant contribution to the elastic response of self-healing composites 

and hence, can be modelled as void in the RVEs. The shear-yielding effect of the 

micro-capsules on the post-elastic behaviour of the composite is modelled by 

introducing shear retention in the smeared crack model. As the matrix toughening is 

attributed to the micro-capsules, the shear retention factor also varies with the volume 

fraction of the micro-capsules. Good results at less than 10% of error, compared to 
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experimental data, have been achieved for the predictions of Young’s modulus, 

strength, and healing efficiency have been achieved with MP-RVE approach verified 

the proposed model.  

The simulated material properties of micro-capsule based self-healing 

materials were then fed, as inputs, in a numerical simulation of simply supported 

beam three-point bend to study the effect of self-healing on structural behaviour. The 

simulation result reveals that healing with low strength healing agent, compared to the 

virgin material, will cause crack reopening and hence, limit the healing effect in terms 

of recovered load bearing capacity. In contrast, healing with high strength healing 

agent may induce the load bearing of the structure. Numerical study with tubular self-

healing system was also carried out to make comparison with capsulated self-healing 

system. The results showed that self-healing beam using capsulated system may 

recover load bearing capacity and stiffness better. On the other hand, self-healing 

beam using tubular system sacrifices some degree of healing to concentrate the 

healing only severe cracks. These findings provide essential ideas for future 

researches on designing a self-healing system, which would be an interesting and 

important topic.  

Lastly, self-healing function is implemented in reinforced concrete to develop 

a new sustainable and protective structure. For this class of applications, tubular 

system is more preferable than micro-encapsulating system because the former one is 

concentrated and sizeable, which provide the easiness and plausibility of positioning 

self-healing units and protecting them from possible pre-mature damage caused by 

heat generation and aggregate impact during casting process. In addition, the hollow 

tubes used as containers in tubular system are commercialized, and therefore, they are 

more economics than the micro-capsules, which can only be produced in laboratories.  
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Preliminary studies on the selection of self-healing unit’s components were 

carried on with the consideration of requirements for healing agent and containers. It 

was found that the one-part air curing adhesive Isocyanate Prepolymer and the hollow 

glass tubes are a promising combination to be self-healing units. To protect the 

proposed self-healing unit from impact of aggregate and severe vibration during 

concrete casting process, four different methods, namely mortar strip, steel mesh, 

spiral wires and spiral wires coated with a 3.5mm thick mortar layer were 

experimented. Amongst the four, the method of protection using spiral wires coated 

with a thin mortar layer is the most effective one and is adopted in the current study. 

The proposed protected self-healing units were implemented in three basic 

reinforced concrete structural members including beam, column and slab to test the 

healing efficiency. The experiments were conducted with specimens at structural 

scale, which have not been carried out until the current research. The self-healing 

beams were subjected to both three-point and four-point bending repeatedly. Multiple 

crack healings were observed through the leakage of healing agent into cracks and 

bond the crack surfaces; along with the presence of new cracks formed and the 

absence of old cracks reopening. The healing efficiency was quantified in terms of 

tangent stiffness recovered after healing and good results of over 85% of original 

flexural stiffness was able to be recuperated after healing. Similarly, self-healing was 

also successfully implemented in column element, where the cracks are horizontally 

or inclined causing the limited help of gravity force to drive the healing agent into the 

cracks. Once again, multiple healings with up to 70% original stiffness was recovered. 

Self-healing was also implemented in slab element and tested for the case when crack 

opening and closure appears quickly during impact loading. Analogous to two 

previous self-healing elements, experimental results showed that self-healing slab is 
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able to perform multiple healings with the maximum healing efficiency of 99% in 

terms of stiffness recovery. 

 

6.2. RECOMMENDATIONS FOR FUTURE WORKS 

Based on the experimental result and simulation results obtained, discussion 

presented and conclusion drawn from the current study, some potential areas for 

further investigation are highlighted as following. 

 

6.2.1. Extension of RVE approach to predict shear-related material 

properties  

Up to now, numerical models of material properties of composites using RVE 

concept are more focused on cases subjected to unidirectional tensile or compressive 

load. Although there have been limited studies on prediction of shear modulus of 

heterogeneous materials, there is still a need to conduct a comprehensive research on 

ability of RVE approach to capture the overall response of composites subjected to 

shear. The need is more significant if RVE concept can be used to capture the fracture 

energy of composites for mode 2 of fracture, which caused by shear deformation. Had 

the 2
nd

 mode of fracture behaviour can be predicted using RVE concept, this approach 

will be able to capture the mechanical responses of composites in the two most 

common modes of fracture, namely mode I and mode II; and hence, it will be a very 

powerful tool to analyse and design composites for damage problems.  

6.2.2. Optimized design for micro-capsule based SHM 
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Embedding more microcapsules in the composite will lead to lower the 

Young’s modulus and strength. Moreover, as reported by Brown et al. (Brown et al., 

2004), there is a critical volume fraction of microcapsules such that the healing 

efficiency gained is maximized. Therefore, an optimization search for the volume 

fraction of micro-capsule is needed to limit the reduction of Young’s modulus and 

achieve a reasonable high level of healing efficiency. Objective functions 

�(����(��, 	(��� or �(
��,���(��, 	(��� needs to be constructed, where f is the 

volume fraction of microcapsule. The optimal f0 is determined such that 

��(����(���,�(����

��
 or 

��(�����,���(���,�(����

��
. Beside the Young’s modulus and strength, 

fracture toughness can also be included in the objective functions to take into account 

the effect of toughening induced by embedding micro-capsules. 

 

6.2.3. Design for self-healing structure  

It is often to observe many cracks in structures made of quasi-brittle materials, 

such as reinforced concrete elements, under the design service load. When the applied 

load reaches a critical value or sudden accidental load is imposed, these cracks will 

localize to fewer major cracks signifying the severe damage that creates dramatic 

decrease in stiffness or strength of the structure. They are these major cracks are the 

desirable ones to be repaired, rather than the cracks happen under normal service load. 

This means, the self-healing system should be designed so that it is only triggered 

when critical load are imposed. To have such a design for self-healing structure, 

control parameters such as stiffness or strain/stress at critical location can be used as 

thresholds. For instance, based on the configuration of a reinforced concrete beam, 

one can establish an expression of the diminishing stiffness as a function of crack 

length. Self-healing units will be positioned based on the critical crack length found at 

the critical stiffness, where any further reduction is undesirable.   
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6.2.4. Effect of crack healing regime 

As illustrated in Figure 6.1, there are healing regimes for a crack namely, full 

healing, partial healing at the crack tip and partial healing at the crack mouth.  

 

 

  

 

 

 

 

 

 

Figure 6.1: Three crack healing regimes and application in an RC Beam: (a) Full crack healing; 

(b) Partial crack healing at crack tip; and (c) Partial crack healing at crack mouth. 

 

The first regime happens when all healing agent flow into the crack and fully 

bond crack surfaces together. This regime is the most ideal case that definitely can 

provides the maximum healing effect. However, this healing regime needs many 

healing agent or in other word, many healing units, which usually softer and weaker 

than the host matrix. As a result, side effect for self-healing composites designed with 
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fully healing ability, such as the decrease in overall Young’s modulus and strength, 

would be more significant. As alternatives, partial healing at the crack tip or at the 

crack mouth can be considered. While healing at the crack tip can reduce the stress 

intensity factor by alter the sharpness of the growing crack, healing at the crack mouth 

can provide constrain for the crack opening. As a result, healing at crack tip or crack 

mouth may have significant effect on the prevention of crack propagation.  

In fact, studies on crack healing regime are more important when incorporated 

in research on design of self-healing structure because different positioning of healing 

unit can lead to different crack healing regime. An example can be seen in Figure 6.1 

with self-healing reinforced concrete beam. If the self-healing unit locates close to the 

bottom surface of the beam and the applied load in unsustainable, full crack healing 

regime can be obtained as observed in experiments with self-healing beams in 

Chapter 5. However, if the applied load is sustainable or the crack propagation is fast, 

partial healing at crack mouth will appear because the capillary force might not be 

large enough to suck healing agent to fulfil the space above the self-healing unit. The 

scenario with partial healing at crack tip appears when short self-healing units are 

used and the self-healing beam is designed to capture the deep cracks. In that case, the 

required volume of healing agent flow into the crack is not necessary equal to the 

volume of the crack space. 

A detail version of the crack healing regime study can be conducted in the 

future to find out the reliability of healing effect. This recommend study is based on a 

notice that there are possibilities where fully bonding is not established in the healing 

zone because chemical properties of healing agent can be changed during storing or 

manufacturing process. For this study, numerical simulations with finite element 
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method, where properties of elements represent for healing agent are randomly 

assigned, can be adopted to simulate effect of different healing degree.  

 

6.2.5 Novel self-healing system for reinforced concrete 

One of the drawbacks of the current tubular based self-healing system in 

reinforced concrete is caused by healing agent. Since the healing agent is one-part air-

curing adhesive, it is not effective for deep cracks where the contact of healing agent 

and the surrounding air is very limited. Because of this drawback, micro-capsulated 

system, where less constraint on healing agent are imposed, has been attracting the 

concentration of researchers as an alternative for the current tubular system. However, 

finding an effective protection method and ways to position micro-capsules are still 

very challenging issues. One possible solution for the above problems is to develop a 

hybrid tubular-micro-capsulated system as shown in Figure 6.2.  

 

 

 

Figure 6.2: Hybrid tubular-micro-capsulated self-healing system 

 

In this hybrid system, micro-capsules are contained in a thin polymer tube. 

The polymer tube is implemented to serve two purposes: (i) it acts as a barrier to 

protect the micro-capsules during casting process; and (ii) it provide tool to position 

the micro-capsules. Material for the polymer tube is chosen such that it will be melted 

under the heat generated from curing process of concrete. After the melt of the 

Polymer tube Micro-capsule 
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polymer tube, micro-capsules are released and functional as normal in the micro-

capsulated system. 
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