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Summary

Orthogonal frequency division-multplexing (OFDM) is an effective

method to tackle inter-symbol interference (ISI) in underwater acous-

tic communication and achieve high bit-rates. OFDM requires the

length of the cyclic prefix (CP) to be as long as the channel length.

However, in short-range shallow water or medium-range deep water

acoustic links, the channels are as long as a few hundred taps. This

reduces the bandwidth efficiency of the system. This thesis explores

methods of reducing the length of CP in OFDM systems, and hence

increasing the bandwidth efficiency of these systems. The role of a

time domain CSE is to shorten the effective channel so that a shorter

CP can be used. These methods include two time domain channel

shortening equalizers (CSE): minimum mean square error (MMSE)

and maximum shortening signal-to-noise ratio (MSSNR). Two of the

more common MMSE CSEs are unit tap constraint (UTC) and unit

energy constraint (UEC). The MSSNR approach and its frequency

weighted model minimum ISI (Min ISI) are designed to minimize the

shortening signal-to-noise ratio (SSNR). Another method to increase

the bandwidth efficiency is by implementing the frequency domain de-

cision feedback equalizer (FD-DFE). The performance of the different

methods is evaluated on simulated and real acoustic data.
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Chapter 1

Introduction

1.1 Background

Underwater communications have been given much attention by scientists and

engineers alike because of their application in marine research, oceanography, ma-

rine commercial operations, the offshore oil industry and defense. Sound propa-

gation proves to be most popular because electromagnetic as well as optical waves

attenuate rapidly underwater.

For the past 30 years, much progress has been made in the field of underwater

acoustic (UWA) communication [1]. However, due to the unique channel charac-

teristics like fading, extended multipath and the refractive properties of a sound

channel [2], UWA communication is not without its challenges. One of the issues

a designer for the communication system of a wide-band UWA channel faces is

the time varying and long impulse response. In medium range (200m to 2km)

very shallow (50m to 200m) water channels, which are common in coastal regions

like Singapore waters, long impulse responses due to extended multipath are more
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severe. Long impulse response contributes to inter-symbol interference (ISI) and

is an undesirable channel characteristic because of its negative impact on the er-

ror rate. In recent years, much work has been done on implementing orthogonal

frequency-division multiplexing (OFDM) for UWA communication [3; 4]. When

the cyclic prefix (CP) is longer than the channel impulse response (CIR), OFDM

is an effective method to tackle ISI and has yielded good results in UWA channels.

However, long CP is not desirable because it will reduce the bandwidth efficiency

of the system. Bandwidth efficiency, a measure of the channel throughput, can

be computed by Nc

Nc+Np
where Nc is the number of sub-carriers and Np is the CP

length. Hence, to keep the bandwidth efficiency high, it is important that the CP

is as short as possible. A time domain equalizer, known as a channel shortening

equalizer (CSE), can be inserted before the OFDM demodulator to shorten the

effective channel so that a smaller Np is required. A channel shortening equalizer

(CSE) is also known as a partial response equalizer. A CSE has better channel

shortening capability then a full response equalizer in general because a CSE does

not impose any limitation on the shape of the effective impulse response. The

output SNR of a CSE is higher than the output SNR of a full equalizer.

1.2 Literature review

Large delay spread is one of the challenges of underwater communication that

scientists and engineers try to overcome. Some work has been done in implement-

ing decision feedback equalizer (DFE) on underwater communication systems [5].

However, DFEs for channels with large delay spread require high computational

power due to the long feedback filters. In [6; 7; 8], the authors have implemented
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modified DFEs, which factor in the length and the sparsity of the channel. An-

other method to counter the effect of large delay spread in underwater acoustic

channels is the turbo equalizer [9]. Turbo equalizer, however, requires high com-

putation power. Two methods that are most commonly used to overcome the

large delay spread in underwater acoustic OFDM systems are: CSE and fre-

quency domain equalizer.

Over the years, scientists have made tremendous progress in developing and

applying CSE in different areas. [10; 11; 12; 13; 14; 15].The idea of CSEs first

came about in the 1970s [10; 11]. In [11], the effective CIR at the output of the

equalizer, also known as the target impulse response (TIR), is a truncated form

of the original impulse response. Dhahir and Chow proposed a minimum mean

square error (MMSE) CSE that minimizes the mean square error (MSE) between

the equalizer output and the TIR output [12; 13]. The CSE was first developed

to work with maximum-likelihood sequence estimation (MLSE) to achieve higher

data rates on bandlimited noisy linear channels. The role of the CSE is to reduce

the CIR to allow practical use of the high performance Viterbi algorithm. In

order to avoid a trivial solution, some constraints like unit energy constraint

(UEC) and unit tap constraint (UTC) has be imposed on the TIR. In maximum

shortening signal-to-noise ratio (MSSNR), the finite impulse response (FIR) filter

is generated to minimize the energy outside the length of a TIR while setting

the unit energy constraint on the desired component of the received signal [15].

Using Cholesky decomposition, the vector that solves for the generalized Rayleigh

Quotient gives the equalizer taps. The drawback of this method is that the filter

length has to be shorter than the TIR length in order to keep the matrix for

Cholesky decomposition positive semi-definite. In a long delay spread scenario,

3



we wish to have a sufficiently long filter and a short TIR. In [16], a new method

of deriving the matrix for MSSNR is shown to eliminate the restriction on the

filter length. The MSSNR proposed in [15] is a zero forcing equalizer where noise

is ignored. A more general derivation of MSSNR that takes into account the

statistic of the noise is proposed in [17]. However, the method is not optimized

for sub-carrier SNR. The minimum ISI (Min ISI) is a frequency weighted form of

MSSNR [18; 19]. It minimizes the energy outside the length of the TIR according

to the sub-carrier SNR. By using a water pouring algorithm the objective function

in sub-carriers with higher SNR is amplified. Both MSSNR and Min ISI have

been implemented in the Assymetrical Digital Subscriber Loop (ADSL) system

to increase bandwidth efficiency. Other CSEs that involve frequency weighting

are covered in [20; 21; 22]. The authors in [23] and [24] show the performance

of MSSNR and MMSE, respectively, in OFDM with insufficient CP. In [25], the

authors compare the performance of MMSE UEC and MSSNR in UWA OFDM

systems. However, due to limitation on the filter length of MSSNR as stated in

[15], and to have a fair comparison, both of the CSEs have filter length shorter

than the CP length.

An alternative to time domain equalizers is their frequency domain counter-

parts. Frequency domain equalizer for OFDM with insufficient CP are covered in

[26; 27; 28]. Among the frequency domain equalizers covered, frequency domain

DFE gives the best bit error result [27].

4



1.3 Thesis Contribution

The objective of this thesis is to study methods to increase the bandwidth ef-

ficiency of an OFDM communication system in an UWA channel by decreasing

the CP length. The study of the different equalizers is performed on an OFDM

platform to keep in line with the objective of the thesis. The main contributions

of this thesis are:

i. Provide a more detailed mathematical derivation of different CSEs and FD-

DFE.

ii. Compare the BER performance of different CSEs and FDDFE on simulated

and actual UWA trial data.

iii. Demonstrate a receiver structure that includes a CSE and a sparse channel

estimator.

1.4 Thesis Outline

This thesis is organized in 7 chapters. Chapter 1 is dedicated to provide the

background knowledge on UWA communications and the thesis objective. In

Chapter 2, a brief description of OFDM is provided to have a better appreciation

of the role of CSE. Chapter 3-5 cover the theoretical framework of various CSEs

with description of the parameters of the simulation and some simulation results.

Chapter 6 shows the analysis of the performance of different CSEs on real UWA

data. Lastly, Chapter 7 sums up the thesis and propose further work to build on

the current research.
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Chapter 2

Orthogonal Frequency-Division

Multiplexing

OFDM is a communication technique which divides the available bandwidth into

several sub-carriers [29]. Each sub-carrier is allocated a narrow band which is less

than the coherence bandwidth of the channel such that the sub-carriers experi-

ence flat fading. The symbols in each sub-carrier can be modulated using any

modulation scheme. OFDM is implemented by using the Inverse Discrete Fourier

Transform (IDFT) and DFT to map symbols in frequency domain to signals in

time domain and vice-versa. An OFDM system eliminates ISI due to multipath

arrival by introducing a guard interval between adjacent OFDM symbols. If the

guard interval is larger than the delay spread of the channel, ISI is completely

eliminated. The guard interval is usually introduced in the form of a CP or zero

padding. An OFDM symbol is orthogonal as long as delay spread is shorter than

the CP.

For channels with large delay spread, like the short to medium range shallow
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UWA channels, OFDM systems have low bandwidth efficiency. The CP in an

OFDM system does not carry any data. The longer the CP is, the more redun-

dancy is introduced to the system. For a practical signal bandwidth, the delay

spread of a UWA channel can span up to hundreds of symbols. Besides, due to

high Doppler frequency, there is a limitation to the number of sub-carriers we can

use for OFDM in UWA channels [30].

Besides, long CP leads to long symbol duration, which is not desirable when

the channel coherence time is short. In UWA communication channels the co-

herence time is short due to displacement of the reflection point for the signal

induced by the surface waves [31].

Figure 2.1: Cyclic Prefix inserted at the front of an OFDM symbol in time domain

Figure 2.1 shows an OFDM symbol with CP. The CP is simply the last Np

samples of the OFDM symbol in time domain. It is inserted at the start of the

OFDM symbol. The CP length affects the bandwidth efficiency of an OFDM

system. Figure 2.2 shows the scenario of two OFDM symbols with different CP

length. The number of sub-carriers Nc is the same for both symbol. Both symbols

carry the same number of data. However, the one with longer symbol duration

has lower efficiency because CP does not carry data bits. Bandwidth efficiency

of an OFDM system is given by Nc

Nc+Np
.

7



Figure 2.2: OFDM systems with different CP.
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Let X be the PSK modulated data symbols.

xi = QHXi (2.1)

where xi are the time domain samples in the current OFDM symbol and Q is the

discrete Fourier matrix. The index i represents the OFDM symbol index and n is

the time index within the OFDM symbol in time domain. The received sequence

ỹi(n) is:

ỹi(n) =
L∑
l=0

x̃i(n− l)hl + zn (2.2)

where l and zn are the channel impulse respones and the noise sequence respec-

tively. Let yi be the received sequence with CP removed.

yi =



h0 0 . 0 hL hL−1 . h1

h1 h0 0 . 0 hL . h2

...

0 . 0 hL hL−1 . h1 h0


xi + z (2.3)

= Hxi + z

where z is the noise sequence. Because of CP, H is a circulant matrix. According

to matrix theory [32], a NcxNc circulant matrix can be decomposed into:

H = QHΛQ (2.4)

where Λ is a diagonal matrix whose elements are the FFT of the zero padded

channel impulse response. To recover the PSK modulated symbols from the

9



Figure 2.3: Channel Shortening Equalizer on OFDM

received sequence,

Yi = Qyi (2.5)

= QQHΛQQHXi + Z

= ΛXi + Z

This is valid as long as the CIR is time invariant within the symbol duration. As

shown, only a 1-tap equalizer is needed to recover the transmitted data symbol

from the received sequence.

The long CIR is a common feature in shallow medium range UWA communi-

cation. To shorten the CIR, a time domain CSE can be applied before the FFT

operation to shorten the channel. Figure 2.3 shows the application of CSE on

OFDM. The 1-tap equalizer is generated based on the effective impulse response

which is the convolution of the CIR and the TIR.

10



Chapter 3

Time Domain Minimum Mean

Square Error Channel Shortening

Equalizers

3.1 Introduction

Figure 3.1: MMSE Channel Shortening Equalizer

The MMSE CSE is a class of equalizers that generates FIR filter that mini-
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mizes the error between the output of the equalizer and the output of the TIR

in the mean square sense. The TIR is shorter than the original CIR, and in an

OFDM system, shorter than the CP. Figure 3.1 shows the block diagram of a

MMSE CSE. The design problem for MMSE CSE is to compute the equalizer

coefficients w and TIR b of a pre-defined length, such that the mean square of

the error sequence is minimized. A certain constraint is imposed on the tir and

based on this constraint the equalizer and TIR coefficients are calculated simul-

taneously. The vector y [m] represents the received symbols. The CIR h has l+1

generally complex taps and is modeled as the combination of the effects of the

transmitter filter, channel distortion and front-end receiver filter.

The equalizer w is a FIR filter with Nf + 1 taps. Across a block of Nf + 1

output symbols, the input-output relationship can be presented as follow:



y[m]

y[m− 1]

.

.

.

y[m−Nf + 1]


=



h0 h1 . . . hl 0 . . . 0

0 h0 h1 . . . hl 0 . . .

. .

. .

. .

0 . . . 0 h0 h1 . . . hl



×



x[m]

x[m− 1]

.

.

.

x[m−Nf + l]


+



n[m]

n[m− 1]

.

.

.

n[m−Nf + l]


(3.1)
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which is the same as the matrix form:

y[m] = Hx[m] + n[m]. (3.2)

For a system with oversampling factor bigger than one, the elements in H are

vectors of length los, the oversampling factor. This becomes a fractionally spaced

equalizer scenario. The input sequence {x[m]} and the noise sequence {n[m]} are

assumed to be complex, have zero mean and are independent of each other. The

input autocorrelation matrix, Rxx is defined by

Rxx ≡ E[x[m]x[m]H ]

and the noise autocorreation matrix is,

Rnn ≡ E[n[m]n[m]H ]

Both Rxx and Rnn are assumed to be positive-definite correlation matrices.The

input-output cross-correlation and the output autocorrelation are defined as:

Rxy ≡ E[x[m]y[m]H ] = RxxH
H (3.3)

Ryy ≡ E[y[m]y[m]H ] = HRxxH
H + Rnn (3.4)

The objective is to compute the coefficients of the equalizer w given Nb the length

of b such that the mean square of the error e[m] is minimized.

The TIR b is not restricted to be causal. This allows one extra parameter to

be introduced for better performance. A relative delay, ∆ between the equalizer

13



and the TIR is assumed. Given:

s ≡ Nf + l −∆−Nb

the error e[m] in Figure 3.1 can be expressed as

e[m] =

Nb−1∑
j=0

bj
∗x[m− j −∆]−

Nf−1∑
k=0

wk
∗y[m− k] (3.5)

=

[
01×∆ b∗0 b∗1 . . . b∗Nb−1 01×s

]
x[m]

−
[
w∗0 w∗1 . . . w∗Nf−1

]
y[m]

≡ b̃Hx[m]−wHy[m] (3.6)

Hence, the mean square error (MSE) is given by:

MSE ≡ E[|e[m]|2]

= E[(b̃Hx[m]−wHy[m])(b̃Hx[m]−wHy[m])H ] (3.7)

= b̃HRxxb̃− b̃HRxyw −wHRyxb̃ + wHRyyw. (3.8)

By applying the orthogonality principle which states that the error is uncorrelated

with the observed data [33], we get:

E[e[m]y[m]] = 01×l

⇒ b̃HRxy = wHRyy (3.9)

14



Combining equations 3.8 and 3.9 we have:

MSE = b̃HR̄xyb̃ (3.10)

where

R̄xy = Rxx −RxyR
−1
yy Ryx (3.11)

= Rxy −RxyH
H(HRxxH

H + Rnn)−1HRxx (3.12)

= [R−1
xx + HHR−1

nnH]−1 (3.13)

by applying matrix inversion lemma and assuming Rxx and Rnn are invertible.

We define a new matrix R∆:

R∆ ≡
[

0Nb×∆ INb
0Nb×s

]

.R̄xy


0∆×Nb

INb

0s×Nb

 (3.14)

where INb
is an identity matrix of size Nb. Equation 3.9 becomes

MSE =

[
b∗0 b∗1 . . . b∗Nb−1

]
R∆



b∗0

b∗1

. . .

b∗Nb−1


≡ bHR∆b (3.15)
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3.2 Minimum Mean Square Error Unit Tap Con-

straint

In order to avoid a trivial solution of b = w = 0 , a constraint is placed on b

[12]. For MMSE UTC, the MSE is minimized subject to bHei = 1 where ei is

the ith unit vector. The Lagrangian for this optimization problem becomes:

LUTC(b, λ) = bHR∆b + λ(bHei − 1). (3.16)

Setting [dLUTC(b, λ)]/db = 0, we have

2R∆bopt+ λei = 0. (3.17)

The optimal TIR coefficients are given by

bopt =
R−1

∆ eiopt
R−1

∆ (iopt, iopt)
. (3.18)

where iopt represents the index that yields the minimum mean-square error

MMSEUTC =
1

R−1
∆ (iopt, iopt)

(3.19)

and is derived from

iopt = arg max
i

R−1
∆ (i, i). (3.20)
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where R−1
∆ (i, i) is the ith diagonal component of R−1

∆ . Combining 3.9 and 3.18,

the optimum equalizer coefficients are

w∗opt = b̃HoptRxyR
−1
yy

= b̃HoptRxxH
H(HRxxH + Rxx)

−1 (3.21)

In [13], another method of deriving the equalizer coefficients based on UTC

MMSE is introduced. It has some similarities with MMSE Decision Feedback

Equalizer(DFE). However, it makes no assumption on the monicity and causality

of the equalizer filter. Subject to UTC,bHei = 1 and i is between 0 and Nb − 1,

and equation 3.6 can be rewritten as follows:

e[m] = x[m−∆− i]− v∗u (3.22)

where

v∗ ≡
[
w∗0 . . . w∗Nf−1 −b∗0 . . . −b∗i−1 −b∗i+1 . . . −b∗Nb−1

]

u ≡

 y[m]

x[m]



By applying standard Wiener [34] and solving for equalizer that gives the MMSE,

we get:

v∗opt = Rx[m−∆−i]uR−1
uu (3.23)
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The results in [12] shows that both methods yield the same output SNR. In

the second method however, the search of the optimal i and ∆ is exhaustive.The

second method also limits the constraint to UTC whereas by having a Lagrangian

term some other constraints can be used.

3.3 Minimum Mean Square Error Unit Energy

Constraint

Another constraint on b is the UEC. This constraint has an advantage over UTC

because the exhaustive search procedure for the optimal index i is no longer

required. Under the constraint bHb = 1, the Lagrangian in equation 3.16 is

modified to

LUEC(b, λ) = bHR∆b + λ(bHb− 1). (3.24)

By setting [dLUEC(b, λ)]/db = 0, we get

R∆bopt = λbopt (3.25)

The optimal TIR bopt and λ is an eigenvector and eigenvalue of R∆, respectively.

R∆ is a Hermitian positive-definite matrix. The MSE is given by

MSE = bHoptR∆bopt

= λbHoptbopt

= λ (3.26)
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In order to minimize the MSE, bopt is chosen to be the eigenvector that corre-

sponds to the minimum eigenvalue, denoted by λmin of R∆. The MMSE is equal

to

MMSEUEC = λmin. (3.27)

A more general model of UEC that allows weighting to emphasize some elements

of the TIR is developed. We replace bHb = 1 with bHGb = 1 where G, a positive

definite diagonal matrix, is the weighting matrix. Equation 3.25 becomes

R∆bopt = λGbopt. (3.28)

In this case, bopt is the generalized eigenvector of R∆ [35].

3.4 Comparison Between The Two Methods

The comparison between the UTC and UEC based MMSE CSE is made on the

MMSE. We define the orthogonal eigen decomposition of R∆ as [35]:

R∆ = UΛUH (3.29)

⇒ R−1
∆ = UΛ−1UH (3.30)

R−1
∆ (i, i) = (eTi U)Λ−1(UHei)

≡ λ−1
0 |ui,0|2 + . . .+ λ−1

Nb
|ui,Nb

|2

≤ λ−1
min (3.31)
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In equation 3.31, ui,j denotes the (i, j) element of U. Therefore

⇒MMSEUEC = λmin

≤ 1

R−1
∆ (i, i)

= MMSEUTC

The equality only occurs when all of the eigenvalues of R∆ are equal.

Next we look at the shortening SNR (SSNR) which is the ratio of the signal

power within the TIR length to signal outside the TIR lenght and noise. The

SSNR can be defined as |b|2/MMSE[12]. To prove that SSNR of UEC is higher

than UTC, we have to show that

MMSEUEC

|bUECopt |2
≤ MMSEUTC

|bUTCopt |2
(3.32)

By definition, bUECopt gives the lowest MSE among all other unit norm TIR. It

gives lower MSE than the choice bUTCopt /|bUTCopt |.Hence

MMSEUEC

|bUECopt |2
= MMSEUEC

≤ MSE|b=bUTC
opt /|bUTC

opt |

≡ MMSEUTC

|bUTCopt |2
(3.33)

which also proves that MMSEUEC ≤MMSEUEC because |bUTCopt |2 ≥ 1 without

having to fix the delay for both constraints to be the same.
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3.5 Simulation Results

The CIR used for the simulations is estimated from real acoustic data acquired

in FAF 05 1. Figure 3.2 shows the effective impulse response of the output of

Figure 3.2: Effective impulse response.

the equalizer superimposed on the actual CIR. Notice that the effective impulse

response is shorter than the actual CIR. The data used for the simulation is

QPSK modulated in frequency domain. The CSEs, UTC and UEC, are inserted

to shorten the CIR. The number of sub-carriers Nc is 512. The term Nb in the

1Focused Acoustic Forecasting 2005, July 2005 Pianosa Italy.
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plots represent the length of the TIR which is also the CP length of the OFDM

system. Figure 3.3 is the SSNR to the received signal SNR plot. As shown in

equation 3.33, SSNR of UEC is higher than UTC when the filter lengths for both

equalizers are fixed. As the TIR length increases, the SSNR of both UTC and

Figure 3.3: SSNR plots for different Nb values.

UEC increase. When Nb is one, the CSE becomes a linear MMSE equalizer. The

SSNR plot shows a better performance by CSEs as compared to a linear MMSE

equalizer.
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Figure 3.4 is the SSNR to SNR plot of UEC and UTC with different filter

length. The TIR length is set to 100 samples long. The SSNR of both systems

Figure 3.4: SSNR plots for different filter lengths.

increase as the filter length increase. This shows that the equalizers have to be

sufficiently long to effectively shorten the channel. At the same filter length,

UEC equalizers have higher SSNR than UTC equalizers. Figure 3.5 is the SSNR

against relative delay plots for UEC. The relative delay that yields the highest

SSNR is not always zero. Figures 3.6 is the SSNR against delay plot for UTC

equalizer. For the same CIR, the optimal delay for both UEC and UTC can be

different.
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Figure 3.5: UEC SSNR against relative delay.

Figure 3.6: UTC SSNR against relative delay.
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Figure 3.7 shows the Bit Error Rate (BER) to SNR plots of the different

OFDM systems. As the CP length increases, the BER of OFDM with both

Figure 3.7: BER against SNR.

equalizers and OFDM without equalizer decreases. Even though the UEC CSE

outperforms UTC CSE in terms of SSNR, UTC CSE has lower BER than UEC

CSE. This is because the frequency response of the TIR for UEC has more deep

nulls than UTC. At lower SNR, the sub-carriers which fall within these nulls

have high error rate. Figure 3.8 shows the frequency responses and the bit error

performances by sub-carrier of UEC and UTC in the three channels. Compared

to UTC, the frequency response of UEC has more deep nulls. The error rate
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performance of each sub-carrier is related to the frequency response.

Figure 3.8: Frequency Responses and BER by sub-carriers.

Figure 3.9 is the plot of BER against Eb/No for different OFDM systems.

The OFDM system with sufficiently long CP is used as a benchmark for the
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Figure 3.9: BER against Eb/No.

performance of the equalizers. For M-ary symbols, the Eb/No in dB is given by

Eb/No = SNRsymbol − 10 log10(log2M ×
Nc

Nc +Np

) (3.34)

where SNRsymbol is the SNR per channel symbol and Np is the CP length. In the

three plots, the BER performances of the OFDM with sufficient CP are included

for comparison. The UTC equalizer with shorter CP performs almost as good

as OFDM symbol with sufficiently long CP. The trend is consistent across the 3

channels.
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Chapter 4

Time Domain Maximum

Shortening Signal-to-Noise Ratio

Channel Shortening Equalizers

4.1 MSSNR

Another method of performing channel shortening is the MSSNR [15]. From

Figure 3.1 and equation 3.2 the output of the CSE can be expressed as

r[m] = wH(Hx[m] + n[m])

= wHHx[m] + wHn[m]

(4.1)
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From equation 4.1, assuming a noiseless scenario (zero forcing equalizer), we have

rzf [m] = wHHx[m]

= x[m]HHTw

= x[m]Hheff (4.2)

Regardless of the choice of w there will be some energy that lies outside the

largest Nb consecutive samples of heff . Like the MMSE method, these samples

do not have to start from the first sample. The energy that spills out of the Nb

samples will contribute to ISI. The objective is to force as much of the energy

to lie in Nb consecutive samples and hence minimizing the ISI and maximizing

SSNR. We can break down heff from equation 4.2 into:

heff = HTw

=



heff,0

heff,1
...

heff,Nf+l−2



=



h0 0 . . . 0

h1 h0
. . .

...
...

hNf−1 hNf−2 . . . hNf−l+1 hNf−l

0 hNf−1 . . . hNf−l+1

...
. . .

...

0 . . . 0 hNf−1





w0

w1

...

wNf−1


(4.3)
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Let hwin represent a window of Nb consecutive samples of heff starting from a

relative delay ∆ and let hwall be the remaining samples of heff .

hwin =



heff,∆

heff,∆+1

...

heff,∆+Nb−1



=



h∆ h∆−1 . . . h∆−Nf+1

h∆+1 h∆ . . . h∆−Nf+2

...
. . .

...

h∆+Nb−1 h∆+Nb−2 . . . h∆−Nf+Nb





w0

w1

...

wNf−1


≡ Hwinw (4.4)

hwall =

[
heff,0 . . . heff,∆−1 heff,∆+Nb

. . . heff,Nf+l−2

]T

=



h0 0 . . . 0

...
. . .

h∆−1 h∆−2 . . . h∆−Nf

h∆+Nb
h∆+Nb−1 . . . h∆−Nf+Nb+1

...
. . .

0 . . . 0 hl−1





w0

w1

...

wNf−1



≡ Hwallw (4.5)

The optimization problem is expressed as the choice of w to minimize hHwallhwall

while imposing the constraint hHwinhwin = 1. The constraint is imposed to avoid a
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trivial zero solution. The expression of the energy outside and inside the window

can be written as

hHwallhwall = wHHH
wallHwallw = wHAw (4.6)

hHwinhwin = wHHH
winHwinw = wHBw (4.7)

The objective is to find w that minimizes wHAw while keeping wHBw = 1. As

long as B is positive definite, it can be decomposed using Cholesky decomposition

[36] into

B = QΛQH = Q
√

Λ
√

ΛQH

= (Q
√

Λ)(Q
√

Λ)H =
√

B
√

BH (4.8)

where Λ is a diagonal matrix formed of the eigenvalues of B and the columns of

Q are the orthonormal eigenvectors. As long as B is of full rank, (
√

B)−1 exists.

In order to satisfy the constraint wHBw = 1,

α =
√

BHw (4.9)

such that

αHα = wH
√

B
√

BHw = wHBw = 1. (4.10)

Solving for w in equation 4.10

w = (
√

BH)−1α (4.11)
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we have

wHAw = αH(
√

B)−1A(
√

BH)−1α = αHCα (4.12)

From equations 4.8 and 4.12,

C = (Q
√

Λ)−1A(
√

ΛQH)−1 (4.13)

Optimal shortening can thus be considered as choosing α to minimize αHCα

while constraining αHα = 1. This solution occurs for α = lmin where lmin is the

unit-length eigenvector corresponding to the minimum eigenvalue λmin of C. The

resulting equalizer coefficients are thus

wopt = (
√

B)−1lmin (4.14)

In this model, ∆ is searched exhaustively by finding the relative delay that yields

the highest SSNR.This solution stays valid if B is invertible. In the scenario

where the equalizer filter length is shorter than the CP length (i.e Nb > Nf ) it

holds. However, in a dispersive channel, in order to have an effective equalizer the

filter length has to be sufficiently long. In [16], an alternative model is derived

to allow a long equalizer (i.e Nf > Nb) to be implemented as a MSSNR CSE.

Instead of minimizing wHAw with wHBw = 1 constraint, the new approach

tries to maximize wHBw while keeping wHAw = 1. Equation 4.8 becomes

A = QΛQH = Q
√

Λ
√

ΛQH

= (Q
√

Λ)(Q
√

Λ)H =
√

A
√

AH (4.15)
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Equation 4.8 to equation 4.13 have the B term replaced by A and vice versa.

The equalizer coefficients are, hence:

wopt = (
√

A)−1lmax (4.16)

where lmax is the unit-length eigenvector corresponding to the maximum eigen-

value λmax of the new C.

4.2 Generic MSSNR

The previous approach assumes that the transmitted sequence is white and the

noise is absent. This is not always the case in UWA communication. A more

generic model of MSSNR is needed. In [17], a model similar to MMSE is developed

which embeds the input autocorrelation matrix Rxx and noise autocorrelation

matrix Rnn into the equation. We define

[Γ]m,n = δ(j − k −∆)


0 ≤ j < Nf + l

0 ≤ k < Nb − 1

(4.17)

and equation 4.8 can be rewritten as

MSE = bHΓTRxxΓb− bHΓTRxxH
Hw

−wHHRxxΓb + wHHRxxH
Hw + wHRnnw. (4.18)
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By minimizing MSE via partial differentiation with respect to b we get,

ΓTRxxΓb = ΓTRxxH
Hw (4.19)

⇒ bopt = ΓTHHw (4.20)

Combining both equations 4.18 and 4.20,

MSE = wHH[ΦTRxxΦ−ΦTRxx −RxxΦ + Rxx]H
Hw

+wHRuuw

= wHHΨTRxxΨHHw + wHRuuw (4.21)

where Φ = ΓΓT , and Ψ = I−Φ. We minimize MSE subject to UEC.

bHb = wHHΓΓTHHw = 1. (4.22)

The solution becomes

⇒ wopt = arg min
w
{wHHΨTRxxΨHHw + wHRuuw} (4.23)

such that wHHΓΓTHHw = 1. This becomes a generalized eigen-problem like

in MSSNR by [15]. Note that if the input sequence is white and in a high SNR

region where the last term in equation 4.21 becomes zero, equation 4.23 becomes

equation 4.6.
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4.3 Minimum ISI

In [18], another form of MSSNR called the Min ISI is introduced. It factors in

the SSNR of the sub-carriers when choosing the CSE coefficients. This frequency

weighting places ISI into spectral regions of low SNR in effect maximizing the rate

by applying the water-pouring algorithm. Let’s look at the relationship between

the auto-correlation sequence rxx(n) and the power spectral density Sx(ω).

rxx(n) =
1

Nc

Nc∑
i=0

Sx

(
2πi

Nc

)
ej(2πni/Nc). (4.24)

And

Rxx(j, k) = rxx(j − k)

=
1

Nc

Nc∑
i=0

ej(2πji/Nc)Sx

(
2πi

Nc

)
e−j(2πki/Nc) (4.25)

Using the DFT vector,

qi =

[
1 ej(2πni/Nc) ej(2πn2i/Nc) . . . ej(2πn(Nc−1)i/Nc)

]H
(4.26)

We can write equation 4.25 as

Rxx =
1

Nc

Nc∑
i=0

qiSx

(
2πi

Nc

)
qHi . (4.27)

Similarly,

Ruu =
1

Nc

Nc∑
i=0

qiSn

(
2πi

Nc

)
qHi . (4.28)

Substituting equation 4.26 and equation 4.27 into equation 4.23 and ignoring the

35



scaling by 1
Nc

,

wopt = arg minw

(
wHHΨT

∑Nc

i=0 qiSx

(
2πi
Nc

)
qHi ΨHHw

+wHΘT
∑Nc

i=0 qiSn

(
2πi
Nc

)
qHi Θw

)
(4.29)

with the same UEC constraint.Θ is the padding matrix for dimension matching.

We define a new term Pd:

Pd =

(
wHHΨT

Nc∑
i=0

qiSx

(
2πi

Nc

)
qHi ΨHHw

+wHΘT

Nc∑
i=0

qiSn

(
2πi

Nc

)
qHi Θw

)

=

(
wHHΨT

Nc∑
i=0

qiSx,iq
H
i ΨHHw

+wHΘTqiSn,iq
H
i Θw

)
(4.30)

After normalizing Pd with Sn,i, we derive a new objective function:

Pd,norm = wHHΨT

Nc∑
i=0

qi

(
Sx,i
Sn,i

)
qHi ΨHHw

+wHΘTqiq
H
i Θw (4.31)

The last term becomes wHw and for a constant norm w it does not affect the

minimization of equation 4.31. With UEC constraint, the solution becomes

arg min
w

(
wHHΨT

Nc∑
i=0

qi

(
Sx,i
Sn,i

)
qHi ΨHHw

)
(4.32)
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or simply

arg min
w

wHXw (4.33)

where

X = HΨT

Nc∑
i=0

(
qi
Sx,i
Sn,i

qHi

)
ΨHH (4.34)

If the transmitted signal is white, the frequency weighting of the algorithm de-

pends on the noise. If the noise sequence is white, equation 4.32 will be identical

to equation 4.6. Min ISI is a generalization of the MSSNR method. The con-

straints in both methods are identical. The MSSNR method minimizes the norm

of the ISI path impulse response. Min ISI on the other hand minimizes a weighted

sum of the ISI power. The weighting is with the individual sub-carrier SNR. Both

methods would be identical if the subcarrier SNR were constant for all subcarriers

and all subcarriers are used. According to [18], the frequency weighting ampli-

fies the objective function in sub-carriers with high SNR. By reducing the ISI

in high SNR sub-carriers, the SNR of these sub-carriers increase drastically. In

sub-carriers with low SNR, the noise power is larger than ISI, hence the effect of

ISI reduction on SNR and bit rate is small. The sub-carrier SNR can be defined

as

SNRi =
wHHΓqiSx,iq

H
i ΓTHHw

wHHΨTqiSx,iqHi ΨHHw + wHΘTqiSn,iqHi Θw
(4.35)
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Figure 4.1: BER against SNR plot.

4.4 Simulation Results

The simulations on MSSNR use the same parameters as the simulations in the

previous chapter. Figure 4.1 shows the plot of BER against SNR for two different

MSSNR CSEs. The ‘MSSNR Short’ represents the MSSNR model in [15] and

the ‘MSSNR Long’ represents MSSNR in [17]. For a channel with long delay

spread, the filter length has to be long to effectively shorten the channel. If

the filter length of the CSE is shorter than the CP length, the CSE will not

be able to shorten the CIR, leaving large ISI outside the CP and causing high
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number of error bits. The BER plot shows short filter length MSSNR is ineffective

in shortening the channel. The same relative delay parameter is introduced in

MSSNR just like in MMSE CSE as shown in Figure 4.2. The relative delay is

a CIR dependent parameter. The delay corresponds to the highest SSNR is not

necessarily zero. Figure 4.3 shows the BER against EbNo plots for MMSE and

MSSNR. UTC performs the best in terms of BER. As the noise is white, Min ISI

yield the same result as MSSNR. This is because the objective function of Min

ISI reduces to MSSNR when the sub-carrier SNR is constant.

Figure 4.2: SSNR against Relative Delay.
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Figure 4.3: BER against EbNo plot

Figure 4.4 shows the power spectral density (PSD) of a colored noise. When

the ratio of Sx/Sn is not constant across all sub-carriers, Min ISI will yield differ-

ent result from MSSNR. From Figure 4.5, Min ISI outperforms MSSNR in terms

of BER. This is because Min ISI is a frequency weighted solution of the CSE

problem. For sub-carriers of high SNR, the BER performance depends on ISI.

Hence by giving higher priority to sub-carriers with high SNR in eliminating ISI,

the system achieves a better overall performance in BER.
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Figure 4.4: Colored Noise PSD
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Figure 4.5: BER performance of equalizers in colored noise.
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Chapter 5

Frequency Domain Decision

Feedback Equalizer

Figure 5.1: FD-DFE on OFDM

The Figure 5.1 shows how a FD-DFE works. Unlike the time domain CSEs, a

FD equalizer for OFDM is applied to the symbols in frequency domain. Let y(m)

be the received symbol sequence. The current received symbol in the frequency
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domain in subcarrier k is:

Y (k) = FFT (y(m))

=
1

Nc

Nc−1∑
m=0

y(m)e(−2πj)(m)(k)/N (5.1)

and

Y (k) = Ys(k) + YICI(k) + YISI(k) (5.2)

where YICI(k) is the ICI portion of the received symbol, YISI(k) is the ISI portion

of the received symbol and YS(k) is the rest of the received symbol. In time

domain, where i is the OFDM symbol index,

yISI(m) =
L−1∑

l=Np+1

h(l)xi−1(Nc − l +m+Np)U(l −m−Np − 1) (5.3)

given

xi(m) =
Nc−1∑
k=0

X(k)e(2πj)k/Nc

Equation 5.3 becomes

yISI(m) =
L−1∑

l=Np+1

h(l)
Nc−1∑
q=0

Xi−1(q)

e(2πj)(Nc−l+m+Np)/NcU(l −m−Np − 1) (5.4)

YISI(k) =
1

Nc

Nc−1∑
m=0

L−1∑
l=Np+1

Nc−1∑
q=0

h(l)Xi−1(q)

e(2πj)(Nc−l+m+Np)/Nce(−2πj)(kq)/NcU(l −m−Np− 1) (5.5)
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U(n) is a unit step function where

U(n) =

 1 n ≥ 0

0 n < 0

yICI(m) =

Np∑
l=1

h(l +m)xi(Nc − l +m)U(L−m− l) (5.6)

=

Np∑
l=1

h(l +m)
Nc−1∑
q=0

Xi(q)e
(2πj)(Nc−l+m)/NcU(L−m− l) (5.7)

YICI(k) =
1

Nc

L−1∑
m=0

Np∑
l=1

Nc−1∑
q=0

h(l +m)Xi(q)

e(2πj)(Nc−l+m)/Nce(−2πj)(kq)/NcU(L− l −m) (5.8)

yS(m) =
L−1∑
l=0

h(l)xi(m− l)U(m− l) (5.9)

=
L−1∑
l=0

h(l)
Nc−1∑
q=0

Xi(q)e
(2πj)(m−l)/NcU(m− l) (5.10)

YS(k) =
1

Nc

Nc−1∑
m=0

L−1∑
l=0

Nc−1∑
q=0

h(l)Xi(q)

e(2πj)(m−l)/Nce(−2πj)(kq)/NcU(l −m) (5.11)

Equation 5.2 can be expressed in a matrix notation as

Y = YS + YICI + YISI + N (5.12)

= C1Xi + C2Xi + SXi−1 + N; (5.13)
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where YS = C1Xi, YICI = C2Xi, YISI = SXi−1. Xi and Yi are the transmitted

symbol vector and received symbol vector in frequency domain, respectively. The

elements in S, C1 and C2 , respectively, are:

S(k, q) =
1

Nc

Nc−1∑
m=0

L−1∑
l=Np+1

h(l)Xi−1(q)e(2πj)(Nc−l+m+Np)/Nc

e(−2πj)(kq)/NcU(l −m−Np− 1) (5.14)

C1(k, q) =
1

Nc

Nc−1∑
m=0

L−1∑
l=0

h(l)Xi(q)e
(2πj)(m−l)/Nc

e(−2πj)(kq)/NcU(l −m) (5.15)

C2(k, q) =
1

Nc

L−1∑
m=0

Np∑
l=1

h(l +m)Xi(q)e
(2πj)(Nc−l+m)/Nc

e(−2πj)(kq)/NcU(L− l −m) (5.16)

The FD-DFE consists of a feedforward filter matrix and a feedback filter matrix,

W and B, respectively. The estimated symbol is:

X̂i(k) = WH
k Y−BH

k X̂i−1

=

 Wk

−Bk


H  Y

−X̂i−1

 (5.17)

where X̂i−1 is the predicted previous symbol. If the previous decisions are as-

sumed to be correct. The MMSE Wiener-Hopf solution is implemented to mini-
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mize E[|X̂i(k)−Xi(k)|2]; The solution is

 Wk

−Bk

 = R−1Pk (5.18)

where

R = E


 Y

−Xi−1


 Y

−Xi−1


H (5.19)

Pk = E


 Y

−Xi−1

X∗i (k)

 (5.20)

Given C = C1 + C2 , [E[YYH ] = CCH + SSH + δ2I and E[YXH
i ] = S

R =

 CCH + SSH + δ2I −S

−SH I



Pk =

[
Ck

]

5.1 Simulation Results

Figure 5.2 shows the performance of FD-DFE on OFDM symbol with different

CP lengths. As the CP length increases, the BER of both the OFDM symbol with

and without FD DFE improves. Figure 5.3 is the overall comparison of various

OFDM systems. UTC performs the best in terms of BER in the 3 channels. The

BER performance of UTC in an insufficient CP OFDM is almost the same as the

BER of a sufficient CP OFDM given the same Eb/No.
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Figure 5.2: BER against SNR.

Figure 5.3: BER against EbNo
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Chapter 6

Trial Data

For this thesis, the equalizers are based on non-adaptive channel estimate based

methods. Recent results have shown the performance related advantages in com-

puting the equalizer based on updated channel and noise estimates as opposed

to updating the equalizer coefficients directly [12]. It is important to have a

channel estimation that provides the most accurate channel parameters to the

equalizers. In short and medium range shallow water acoustic communication,

the channels more often than not have large delay spread and are time varying

[37]. The CIRs tend to be sparse as well. Spareness is defined by the scenario

where a big fraction of the channel energy is located in a small number of taps. A

classic adaptive channel estimator like normalized least mean square (NLMS) and

recursive least square (RLS) show poor performance in sparse and long channels

for two reasons. First, the filter taps of NLMS and RLS will converge very slowly

to their steady state values because the convergence rate of these algorithm are

directly proportional to the channel length. Secondly, the steady state misadjust-

ment would be high due to estimation noise from adaptation of low energy filter
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taps. This calls for channel estimation algorithms that exploit the sparsity of the

channel for better performance in steady state misadjustment value and conver-

gence rate. There has been some work done on sparse estimation in the field of

acoustic echo cancelation [38]. The improved proportionate NLMS (IPNLMS)

and the improved proportionate affine projection algorithm (IPAPA) is shown to

out-perform NLMS in channel estimation for echo cancelation. In recent years,

some good results have been achieved on channel estimation for UWA channel

by using these sparse adaptive natural gradient (NG) based algorithm [39; 40].

Channel estimation involves sending a known pilot sequence. This reduces

the bandwidth efficiency because the pilot sequence does not carry any data. In

our application, only the first symbol is known by the receiver for initialization of

the channel estimation algorithm. Subsequently, we use the decoded bits as the

pilot for channel estimation. The decoded symbols in the frequency domain is

IFFT modulated into an OFDM time domain signal. The CIR estimated is used

to calculate the equalizer coefficients for the subsequent received OFDM symbol.

Figure 6.1 shows the flowchart of the decoding and channel estimation process.

Figure 6.1: Processing of the received data
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6.1 GLINT 08

During the GLINT 08 trials in August 2008, OFDM signals were transmitted

(source level 175 dB re 1 µPa @ 1m) from a transducer mounted on a rigid

pole deployed through a moon pool on the Leonardo (about 3.75 m below the

hull). The signals were received on three hydrophones on a moored vertical array

and recorded. The signals were repeated every 30 seconds for several hours as

Leonardo moved as shown in Figure 6.2. The results from the hydrophones are

averaged to have more accurate results by having different noise realizations.

Figure 6.2: Motion of the transmitter with respect to a fixed receiver array (ar-
bitrary coordinate system)

The spectrogram of the signals received at location D is shown in Figure 6.3.
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Figure 6.3: Spectrogram of received signal at D

The signals have been bandpass filtered from 18 kHz to 42 kHz to remove out-of-

band interference and down-sampled to 96 kSa/s to reduce computational load.

The OFDM signals transmitted have different number of sub-carriers Nc and CP

length Np. For better appreciation of the impact of ISI and the importance of the

CSEs, two OFDM signals with short Np are chosen for analysis in this section.

The SNR is about 15-20 dB at low frequencies and decreases with frequency due

to increased absorption. An average estimate of 14 dB SNR is computed from

the signal and noise samples.

6.1.1 Signal 1

Figure 6.4 shows the snapshots of the estimated CIR for signal 1. The parame-
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Figure 6.4: Snapshots of the estimated time-varying channel impulse response
for GLINT 08 Signal 1. The horizontal axis represents delay, the vertical axis
represents absolute time and the colorbar represents the amplitude. The intensity
ranges linearly.

ters of signal 1 are shown in table 6.1. With a CP length of 0.8 ms, the OFDM

signal will suffer from ISI because the a significant portion of the channel en-

ergy lies outside of the CP. From the estimated CIR we can deduce that this

is a relatively sparse channel. Hence for faster convergence and more accurate

steady state estimation, we can use IPNLMS or IPAPA. From Figure 6.5, IPAPA

and IPNLMS outperform the other non-sparse algorithm in terms of convergence

speed and steady state estimation error. The estimated CIR and the effective
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Table 6.1: OFDM Parameters of Signal 1

Nc 256
Np 16
Ns 2
Fs 96000 Hz
Fd 20000 Hz
Fc 30000 Hz

Symbol Length 30

Figure 6.5: Learning Curve for Signal 1
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CIR of the signal is shown in Figure 6.6. The length of the effective CIR with

CSE is shorter than the CP. Figure 6.7 shows the carrier phase estimate which

is done in conjunction with channel estimation using second order phase-locked

loop (PLL) [41]. The estimated phase is then fed to the equalizer to correct for

residual carrier phase.

Figure 6.6: Effective CIR and original CIR of GLINT 08 signal 1.

55



Figure 6.7: Carrier Phase Estimate for Signal 1

Table 6.2 shows the BER performance of different equalizers. ‘OFDM’ rep-

resents the OFDM signal without equalizer. Since the CIR is time-varying, the

channel has to be continuously tracked in order to have the correct equalizer

filter coefficients. In our case, we use the previously decoded OFDM symbol as

the pilot signal to the channel estimator. To reduce the BER, a rate 1/3 con-

volution encoding is performed at the transmitter. The first column of Table

6.2 assumes perfect decoding, i.e., the actual transmitted signal was used as a

pilot. The second column is based on pilot generated from the decoder output

(decision directed). In both cases, the BER performance of OFDM is worse than
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Table 6.2: BER performance in Signal 1
Method Perfect

Feedback
Imperfect
Feedback

Imperfect Feedback
(Code 1/3 rate)

OFDM 0.1473 0.1548 0.0323
UTC 0.0932 0.1104 0.0021
UEC 0.1273 0.1431 0.0227
MSSNR 0.1224 0.1337 0.0097
MIN ISI 0.1235 0.1357 0.0094
FD DFE 0.1123 0.1245 0.0054
Bit Rate
(kbits/s)

37.4 37.4 12.4

the rest. UTC performs better than UEC because of the presence of deep nulls

in the TIR of the UEC method. The BER performance of Min ISI is the same as

MSSNR because the noise is white. In the imperfect feedback scenario, the de-

coding errors render the pilot signal inaccurate and thus leads to poorer channel

estimation in the next OFDM period and degradation in the BER performance.

Imperfect feedback rate 1/3 has lower BER than perfect feedback at the expense

of reduced bit-rate. UTC performs better than UEC because of the deep nulls in

the frequency response in TIR of UEC. Figure 6.9 illustrates this point clearly.

6.1.2 Signal 2

Table 6.3 shows the OFDM parameters of Signal 2. The CIR in Signal 2 is similar

to Signal 1 because the gap between the two signals is small. Figures 6.10, 6.11,

6.12 and 6.13 show snapshots of the estimated CIR, learning curve, estimated

CIR and estimated carrier phase respectively. The CIR of Signal 2 is sparse.

IPNLMS and IPAPA are used to get a better channel estimation.
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Figure 6.8: PSD of Noise for GLINT 08
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Figure 6.9: Frequency Response of TIR UEC and UTC for Signal 1

Table 6.3: OFDM Parameters of Signal 2

Nc 512
Np 16
Ns 2
Fs 96000 Hz
Fd 20000 Hz
Fc 30000 Hz

Symbol Length 30
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Figure 6.10: Snapshots of the estimated time-varying channel impulse response
for GLINT 08 Signal 2. The horizontal axis represents delay, the vertical axis
represents absolute time and the colorbar represents the amplitude. The intensity
ranges linearly.
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Figure 6.11: Learning Curve for Signal 2

Figure 6.12: Effective CIR and original CIR of GLINT 08 signal 2.
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Figure 6.13: Carrier Phase Estimate for Signal 2

Table 6.4 shows the BER result of different equalizers. Similar to previous

Table 6.4: BER performance of Signal 2
Method Perfect

Feedback
Imperfect
Feedback

Imperfect Feedback
(Code 1/3 rate)

OFDM 0.1227 0.1354 0.0174
UTC 0.0724 0.1031 0.0017
UEC 0.1178 0.1542 0.0153
MSSNR 0.0889 0.1382 0.0093
MIN ISI 0.0901 0.1377 0.0085
FD DFE 0.0901 0.1421 0.0074
Bit Rate
(kbits/s)

38.7 38.7 12.8

signal, UTC performs better than the rest of the equalizers. By encoding the
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transmit symbols, the channel estimation and BER performance improve in the

expense of the bit rate. The bit rate of Signal 2 is higher than Signal 1 due to

higher number of sub-carriers transmitted. As the noise is white, Min ISI does

not have an frequency advantage over MSSNR. Figures 6.14 shows the frequency

responses of TIR of UEC and UTC respectively. At low SNR, the sub-carriers of

the deep frequency response null have high BER due to detection error in noisy

environment. There are more deep nulls in the frequency response of the TIR of

UEC than UTC.

63



Figure 6.14: Frequency Response of TIR UEC and UTC for Signal 2

6.2 Singapore Water 2010

Table 6.5 shows the OFDM parameters of the signal.

Table 6.5: OFDM Parameters of Singapore Water 2010

Nc 256
Np 10
Fs 200000 Hz
Fd 5000 Hz
Fc 27500 Hz

Symbol Length 30
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The experimental data have been recorded in the area of Selat Pauh in Sin-

gapore waters on April 21st, 2010. Both the transmitter and the receiver were

mounted on rigid tripods, 4m above the sea floor. The sea depth is 15m and

the horizontal range of the link is 350m. The sound speed profile is isovelocity

1540m/s and the sea surface was calm during the experiment. The received av-

erage SNR is 11.5 dB. Of the 256 subcarriers, 129 subcarriers carried data. The

rest are reserved for Peak-to-Average Power Ratio (PAPR) or are null carriers.

Figures 6.15, 6.16 and 6.17 show snapshots of estimated CIR, a single capture of

the estimated CIR and estimated carrier phase respectively. The CP at 2ms is

clearly inadequate for the long CIR.

Figure 6.15: Snapshots of the estimated time-varying channel impulse response
for Singapore Water 2010. The horizontal axis represents delay, the vertical axis
represents absolute time and the colorbar represents the amplitude. The intensity
ranges linearly.
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Figure 6.16: Effective CIR and original CIR of Singapore Water 2010.

Figure 6.17: Carrier Phase Estimate for Singapore Water 2010
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Table 6.6 and Figure 6.18 show the BER result of the equalizers. The UTC

method performs better than the other methods when no bit-loading is performed.

This is due to smaller number of spectral nulls in the frequency response of UTC

TIR. The noise is colored as seen in Fig. 6.19.

Table 6.6: BER performance in Singapore Water 2010
Method Perfect

Feedback
Imperfect
Feedback

Imperfect Feedback
(Code 1/2 rate)

Bit Load-
ing

OFDM 0.1383 0.1893 0.0983 0.0693
UTC 0.0903 0.1563 0.0692 0.0231
UEC 0.1203 0.1832 0.1102 0.0754
MSSNR 0.1128 0.1692 0.0927 0.0532
Min ISI 0.1128 0.1692 0.0816 0.0183
FD DFE 0.1093 0.1602 0.0826 0.0442
Bit Rate
(kbits/s)

4.85 4.85 2.42 2.24

The results in the first three columns of Table IV are documented under the

same setting as the first three columns of Table II. In order to showcase the

performance of Min ISI, bit loading is performed on the transmit signal. There

are 30 sub-carriers with low SNR which are encoded with a convolution code rate

of 1
3
. The rest of the sub-carriers are convolution 1

2
encoded. The BER result of

this setting is tabulated in the last column of Table IV. In the case of bit-loading

with non-white noise, Min ISI has the lowest BER. Bit loading is able to enhance

the performance difference between MSSNR and Min ISI. In Min ISI, high SNR

subcarriers perform much better than the subcarriers with low SNR. By loading

the high SNR subcarriers with more bits, the overall performance of the system

improves. The frequency weighting in Min ISI gives higher priority to high SNR

subcarriers in alleviating ISI. Like the GLINT 08 case, UTC is better than UEC

due to the nature of their frequency response as shown in figure 6.20.
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Figure 6.18: BER for Singapore Water 2010
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Figure 6.19: PSD of Noise for Singapore Water 2010
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Figure 6.20: Frequency Response of TIR UEC and UTC for Singapore Water
2010
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Chapter 7

Conclusion

In an OFDM system with insufficient CP, the ISI and insufficient CP induced ICI

is detrimental to effective demodulation. A CSE can shorten the CIR such that

the effective impulse response is shorter than the CP, allowing the signal to be

orthogonal. For MMSE CSEs, UTC yields better BER results than UEC even

though UEC has higher SSNR. This is due to the nature of the UEC frequency

response with deep nulls. The Min ISI CSE is a frequency weighted version of

MSSNR. When the SNR is different across the sub-carrier, Min ISI CSE performs

better than MSSNR. When both the noise and the signal is white, Min ISI reduces

to MSSNR. Both time domain CSEs introduce an extra parameter which is the

relative delay,. Another alternative to time domain CSEs is the FD-DFE. In the

simulation, perfect channel knowledge is assumed. In a real scenario however,

the CIR has to be estimated using a pilot sequence. Due to the sparse and

long nature of an UWA channel, the natural gradient based channel estimation

performs better than the conventional statistical gradient method in terms of

convergence speed and steady state error. Having an accurate CIR estimation is
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important in ensuring optimal performance of the equalizer. In a non-white noise

scenario plus bit loading, UTC and Min ISI perform better than the rest of the

equalizers.

7.1 Future Work

Based on simulation and field trial data results, UTC is a recommended choice for

UWA channels with large delay spread. However, more work is needed to reduce

the complexity of the UTC algorithm while keeping its capability in channel

shortening so that it can operate in a real UWA system. The next phase of the

research will involve developing a low complexity equalizer. The sparseness of

the channel has not been exploited fully in finding the optimal equalizer filters.

A lower complexity equalizer can be implemented in a DSP hardware for more

practical application of the equalizer. Another potential extension of the current

work is a adaptive CSE for OFDM. Previous concern of adaptive CSE is the slow

convergence speed due to the length of the CIR. However, we can make use of

the IPNLMS or IPAPA algorithm to achieve better result in CSE with less pilots

than a conventional LMS equalizer. Lastly, we can explore some other constraint

of the time domain MMSE CSE in order to find a more optimal solution to the

CSE problem.
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