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Summary

The concept of fuzzy logic was introduced to handle the uncertainties and

vagueness which widely exist due to inaccurate information, unmeasurable distur-

bance and noise in practical applications. Fuzzy logic, also called type-1 fuzzy

logic, has been widely applied to a variety of fields such as control, pattern recog-

nition, signal processing, decision making, etc. Results from a large amount of

experiments have shown that type-1 fuzzy logic is able to better cope with un-

certainties than other traditional methodologies. However, type-1 fuzzy logic has

been shown to be limited in modelling and minimizing the effect of uncertainties,

especially in the face of complex uncertainties. In order to improve the ability of

fuzzy logic in handling complex uncertainties, type-2 fuzzy logic was introduced.

While the concept of type-2 fuzzy set was introduced by Zadeh in 1975, interest in

the field grew only after Mendel and his students developed a theoretical frame-

work for type-2 fuzzy systems. This thesis focuses on studying and enhancing

the Karnik-Mendel (KM) algorithm, an iterative technique widely used in type-2

fuzzy set operations.
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As an important application of type-2 fuzzy logic, type-2 fuzzy logic control

has been attracting increasing attention from the research community. An open

research issue is that whether a type-2 fuzzy logic controller has the potential to

outperform type-1 fuzzy logic controller. Although a large number of experiments

show that type-2 fuzzy controller can produce more satisfactory performance, there

is no rigorous theoretical analysis to explain the condition under which a type-2

fuzzy controller can outperform type-1 fuzzy controller. The main challenge that

impedes the theoretical analysis is the lack of closed-form expressions for type-2

fuzzy controller, primarily because the widely adopted Karnik-Mendel (KM) type-

reducer can be implemented through the KM iterative algorithm/ the enhanced

KM (EKM) iterative algorithm only. To overcome this challenge, the input-output

relationship of a class of symmetric type-2 fuzzy PD/PI controller was established.

The significance is that these mathematical equations lay the foundation for the

theoretical study of type-2 fuzzy logic controller. By comparing the derived ex-

pressions with its type-1 counterpart, four interesting properties of type-2 fuzzy

logic controller were identified. These properties provide insights into why a type-

2 fuzzy logic controller is better able to balance the amount of the compromise

between faster response and smaller overshoot.

As an extension of these results, the input-output relationship of a class of non-

symmetric type-2 fuzzy PD and PI controllers was established. By comparing the

derived expressions with its type-1 counterpart, it was found that the properties of

the symmetric type-2 fuzzy controller still hold true for the non-symmetric type-2

fuzzy PD and PI controller. More importantly, another two properties were identi-

fied to highlight the differences between the non-symmetric type-2 fuzzy controller
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and the symmetric type-2 fuzzy controller and to establish the unique characteris-

tics of the non-symmetric type-2 fuzzy controller. The analysis demonstrated that

the non-symmetric type-2 fuzzy controller is able to further alleviate the amount

of the compromise between a fast response and smaller overshoot.

Another application of the KM iterative algorithm is the computation of fuzzy

weighted average (FWA) and linguistic weighted average (LWA). FWA and LWA

are important aggregation methods that have many engineering applications. How-

ever, even with the introduction of the KM iterative algorithm/the EKM iterative

algorithm to assist with the necessary α-cut arithmetic, the computational efficacy

of FWA and LWA remained poor because of the iterative nature of the KM/EKM

algorithm. Three algorithms that further reduce the computational burden needed

to calculate FWA and LWA were presented. In order to achieve lower computa-

tional overhead, the proposed algorithms optimize the choice of the initial switch

point in three different manners and propose an alternative termination condi-

tion in the procedure for the KM iterative algorithm. Theoretical analysis showed

that the number of the iterations may be significantly reduced by the proposed

algorithms, especially when the required accuracy increases. Results from numer-

ical studies were presented to demonstrate that all the three proposed algorithms

take fewer iterations and less computational time to compute the FWA and LWA.

Among the three proposed algorithms, the one which require the least computa-

tional overhead can achieve an approximately 60% reduction in the computational

time of the KM iterative algorithm and an approximately 40% reduction of the

EKM iterative algorithm.

In conclusion, the advances about the pivotal KM iterative algorithm presented
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in this thesis enhance the understanding of type-2 fuzzy logic and promote its

practical application in various areas.
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Chapter 1

Introduction

1.1 Fuzzy logic

Uncertainty exists in various aspects of life, resulting in an interesting world. In

the real world, uncertainties may arise from a variety of sources: (1) measurement

error due to unavoidable noise and resolution limits of measuring equipments; (2)

incomplete information due to limited knowledge, corrupted data, or the loss of

data; (3) vague natural language in communication among human beings. Since

uncertainty arising from different sources always exists, there is a need to find

ways to model uncertainty and to minimize its effect. Varieties of strategies have

been developed to cope with different types of uncertainties. Among them, fuzzy

logic introduced by Lotfi Zadeh has been shown to be an effective methodology

for handling uncertainties.

In the framework of fuzzy logic, the concept of fuzzy set was introduced by

allowing the membership grade to be any value within the interval [0, 1], instead

of the unity or zero membership grade of traditional sets, to represent the degree
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of the relevance. Fuzzy logic is essentially a reasoning process by performing logic

operations such as union, intersection, etc, on fuzzy sets. Comparing with unity

or zero-membership grade of traditional set concept, varying membership grade

of a fuzzy set between 0 and 1 enables a fuzzy set to better model uncertainties

and minimize the effect of the uncertainties.

A widely adopted reasoning method in the theory of fuzzy logic is fuzzy logic

system which uses fuzzy sets and a rule base to describe the input-output relation-

ship of a system. Fuzzy logic system has been widely applied to modelling, control,

pattern recognition, signal processing, etc. A large number of literatures on the

applications of fuzzy logic system have emerged to study how to utilize fuzzy logic

system to cope with uncertainties. Another reasoning method is to perform aggre-

gation operators on fuzzy sets to aggregate the information represented by fuzzy

sets. Various aggregation operators have been developed to achieve satisfactory

performance. Although the reasoning methods in the theory of fuzzy logic is not

limited to these two, this thesis will focus on these two reasoning processes.

1.1.1 Fuzzy control

The application of fuzzy logic system in control, termed as fuzzy control, is pri-

marily to design fuzzy controllers for the controlled plants. Literatures on fuzzy

control emerged in the early 1970’s. An early work [49] by Mamdani proposed to

utilize a fuzzy algorithm to control plants and used the laboratory-built steam en-

gine as a testbed to examine its performance. The algorithm was implemented by

interpreting a collection of rules expressed in terms of fuzzy conditional statements.

In 1975, the basic framework of Mamdani fuzzy control system was established
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based on Mamdani fuzzy logic system by Mamdani and Assilian [50], and applied

to control a steam engine. Based on the framework of Mamdani fuzzy control

system, a fuzzy controller [73] was designed to control temperature of a heat ex-

changer system by varying the steam pressure supplied to the heat exchanger. The

controller was designed by translating the prior knowledge on how to maintain the

temperature through varying the steam pressure to linguistic rules which super-

vise how the inputs of fuzzy controllers determined control signals. Converting

heuristic experience or prior knowledge to linguistic rules was the main method

of designing fuzzy controllers in early publications [18, 67]. Such design methods

not only provide opportunities for interaction between human beings and comput-

ers by incorporating knowledge from human being into linguistic rules, but also

avoid accurate modelling of the controlled plant required by traditional control

methodologies. Furthermore, fuzzy controller designed in this way is amenable for

engineers to understand.

However, fuzzy controller designed based on the designer’s experience is not

sufficient for complex systems. In order to design more efficient fuzzy controllers,

efforts have been made to extend conventional control technologies to fuzzy con-

trollers [3, 23, 51, 69, 70, 78, 81]. Among conventional control technologies, PID

control has been widely applied in industry. To extend PID control technology to

fuzzy control system, the knowledge inherent in conventional PID control laws is

converted to linguistic rules supervising how the two inputs, i.e. the system error

and the rate of change, determine control signals. Results from experimental re-

search have shown that fuzzy PID controllers can also produce better performance

than conventional PID controllers. More importantly, fuzzy PID control system
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incorporates the advantages of conventional PID techniques in rejecting distur-

bance and maintaining stability so that it can produce satisfactory performance,

even in face of a large amount of disturbances or modelling errors. The study

of fuzzy PID control system has been broaden to structural design, disturbance

rejection, parameters tuning, etc [17, 75, 77, 80, 82, 83, 107, 109].

1.1.2 Fuzzy aggregation

Fuzzy aggregation is an important reasoning method in the theory of fuzzy logic.

This reasoning method has been widely applied in decision making, signal pro-

cessing, etc [5, 16, 24, 36, 38, 40, 48, 53, 68, 72, 93, 95]. It is primarily used to

aggregate the information inherent in a certain number of fuzzy sets to produce

an overall result. For example, fuzzy aggregation may be performed to aggregate

opinions from different people in multi-persons decision making or different at-

tributes in multi-attribute decision making to produce a representative result as

a criteria for decision making. The result of fuzzy aggregation highly depends

on the choice of aggregation operator, and thus fuzzy aggregation operator is an

important research topic in the theory of fuzzy aggregation. Hence, it is necessary

to investigate fuzzy aggregation operator.

Early aggregation operations are max and min operation. Using max or min as

aggregation operator means that only the information contained in the largest or

smallest fuzzy numbers representing attributes or opinions are kept to represent

the overall result. Since the aggregation operators max and min are extreme cases,

they are not sufficient to model complex aggregation process. Another widely used

aggregation method is fuzzy weighted average. Fuzzy weighted average is similar
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to average arithmetic, except that the former is performed on fuzzy numbers, while

the latter is performed on crisp values. Fuzzy weighted average has been widely

studied. An important advancement in the theory of fuzzy aggregation operator

is the introduction of ordered weighted average by Yager [94]. Ordered weighted

average is an aggregation operation lying between max and min operation. Unlike

fuzzy weighted average in which the weights are assigned depending on the impor-

tance of each opinion or attribute, ordered weighted average operator allows the

weights for opinions or attributes to be assigned according to the relative values of

the fuzzy numbers representing the opinions or attributes. In the implementation,

the first step of performing ordered weighted average is to assign the predefined

weights based on the relative values of the fuzzy numbers representing opinions

or attributes, and then it becomes a fuzzy weighted average problem. The choice

of the aggregation operator, fuzzy weighted average or ordered weighted average,

depends on the need of practical applications.

1.2 Extensional fuzzy logic theory

1.2.1 Type-2 fuzzy logic

Type-1 fuzzy logic has been shown to be a useful tool in handling uncertainties

in a variety of areas such as control, pattern recognition, signal processing, deci-

sion making; however, type-1 fuzzy logic is not sufficient for coping with complex

uncertainties arising from different sources. A primary reason is that the member-

ship grade of a type-1 fuzzy set is a crisp value so that the membership function

is limited in modelling the position and shape of a fuzzy set. The introduction of
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type-2 fuzzy logic overcomes this limitation, since for any value of the variable,

the membership grade of type-2 fuzzy set is a fuzzy set, instead of a crisp value.

This architecture of type-2 fuzzy set allows more design freedoms for modelling

and coping with uncertainties.

The concept of type-2 fuzzy set was first introduced as an extension of type-1

fuzzy set by Zadeh in 1975 [106]. Set operations of type-2 fuzzy sets including

union, intersection, algebraic product, algebraic sum, etc, were widely studied

[28, 33]. The composition of type-2 relations was discussed as an extension of

super-star composition of type-1 fuzzy logic [28, 29]. Based on these results,

the complete theory of type-2 fuzzy logic system was established by Karnik and

Mendel in 1999 [32]. Fig. 1.1 depicts the structural diagram of type-2 fuzzy logic

system consisting of the components: fuzzifier, inference engine, type-reducer and

defuzzifier. Type-2 fuzzy logic has been gaining increasing attention from the

research community [8, 30, 31, 34, 55, 56, 57, 59, 64, 92]. Interval type-2 fuzzy set

is a special type of type-2 fuzzy set, and has been widely studied. Type-2 fuzzy

logic using interval type-2 fuzzy set is a hot research topic and also the focus of

this thesis.

Figure 1.1: The structure of type-2 fuzzy logic system
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1.2.2 Review of interval type-2 fuzzy control

With increasingly more researchers working on interval type-2 fuzzy control, the

number of publications studying interval type-2 fuzzy controller rapidly increased

[1, 6, 7, 37, 41, 76, 108]. Till now, there have been a great number of literatures

on different types of interval type-2 fuzzy controllers. Tan and Lai investigated

the robustness of an interval type-2 fuzzy proportional controller in the experi-

ments of controlling the liquid-level process with biased parameters or delays, etc

[74]. Hagras developed a hierarchical interval type-2 fuzzy controller for the nav-

igation of mobile robots operating in varying indoor and outdoor environments

[19]. Emmanuel, Martin and et al applied an interval type-2 fuzzy controller for

video streaming across IP Networks by adjusting the bit rate to avoid both fluctu-

ations and packet loss which may affect the end-users perception of the delivered

video[25]. Liu, Zhang, and Wang proposed an interval type-2 fuzzy switching con-

troller for the control of a biped robot with challenging dynamic characteristics

such as its high-dimensional dynamics, the instability of two-legged motion, and

multiple operating phases of the walking cycle [47]. Bartolomeo and Mose pro-

posed an adaptive interval type-2 fuzzy controller for the control of the aerobic

growth in a biomedical process [4].

Besides these applications of the interval type-2 fuzzy controller, there exist a

certain number of literatures theoretically studying interval type-2 fuzzy controller.

Wu and Tan investigated the robustness of the interval type-2 fuzzy proportional

and derivative controller around the origin through studying the characteristics

of its proportional and derivative gains [91]. Du and Ying proposed a method to
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approximate the output of interval type-2 fuzzy logic controller, derived the input-

output relationship of a class of interval type-2 fuzzy proportional and derivative

controller, and identified the characteristics of the interval type-2 fuzzy controllers

[15]. To guarantee that the designed interval type-2 fuzzy controller produces

a continuous control surface, Wu and Mendel [87] studied the continuity of an

interval type-2 fuzzy system by identifying sufficient and necessary conditions for a

continuous interval type-2 fuzzy system. Biglarbegian, Melek and Mendel studied

the stability of interval type-2 fuzzy controller by proposing sufficient conditions

for two classes of interval type-2 fuzzy controllers [6]. Although these results have

shed some lights on interval type-2 fuzzy controller, few of them investigated the

characteristics of interval type-2 fuzzy controllers using the widely adopted Karnik-

Mendel type-reducer. Therefore, there is a need to study interval type-2 fuzzy

controllers using the widely adopted Karnik-Mendel type-reducer theoretically.

1.2.3 Review of fuzzy aggregation using interval type-2

fuzzy set

“Words mean different things to different people”[54]. Hence, interval type-2 fuzzy

set can be used to model a word so that opinions from different people can be

incorporated into one fuzzy set. Hence, it is necessary to study fuzzy aggregation

using interval type-2 fuzzy set. To perform fuzzy aggregation using interval type-

2 fuzzy set, techniques for modelling words using interval type-2 fuzzy set need

to be developed first. At this stage of development, there has been a number of

publications studying how to use interval type-2 set to model words [45, 58, 63,
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65, 66]. Mendel reported two approaches for mapping a word from a group of

subjects into an interval type-2 fuzzy set for that word: the person-membership

function approach and the interval endpoints approach [58, 65, 66]. In the person-

membership function approach, a word for each subjective is represented using

an interval type-2 fuzzy set while in the interval endpoints approach, a word for

each subjective is represented using an interval on a scale of 0 -10, respectively.

However, these two approaches require people to be knowledgable about fuzzy sets.

To make it easier and practical, Liu and Mendel proposed an interval approach for

encoding words into interval type-2 fuzzy sets by first mapping interval endpoints

data for any subjective into a pre-specified type-1 membership function and then

aggregating them into an interval type-2 fuzzy set for a word from these type-1

fuzzy sets [45].

The aggregation operator on interval type-2 fuzzy sets has gained much atten-

tion from the research community. Wu and Mendel extended the concept of fuzzy

weighted average for type-1 fuzzy sets to interval type-2 fuzzy sets and called it

linguistic weighted average [84]. Similarly, ordered linguistic weighted average for

aggregating interval type-2 fuzzy sets was proposed as an extension of ordered

fuzzy weighted average for type-1 fuzzy sets. These aggregation operators have

been applied in many decision making processes. For example, Wu and Mendel

applied the linguistics weighted average to a hierarchical decision making for eval-

uating a weapon system [86]. In this hierarchical decision making system, the

performance of competing alternatives are evaluated by comparing the aggrega-

tion of hierarchical criteria and sub-criteria of alternatives. The linguistic weighted

average was also applied for evaluating locations of international logistic centers
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by Han and Mendel [21]. Although the linguistic weighted average and ordered

weighted average are efficient aggregation operators, the computational require-

ment of performing the linguistic weighted average is prohibitively high so that

they may not be suitable for practical applications. Hence, developing efficient

algorithms for implementing fuzzy aggregation is one focus of this thesis.

1.3 Aims and Scope of the Work

Although there have been an increasing number of publications on interval type-

2 fuzzy logic, there are still many open issues that need further investigation.

Most of these issues arise from the following common computation step needed in

different type-2 fuzzy sets operations:

Given variables xi and wi satisfying

xi ∈ [xi, xi], xi > xi (1.1)

wi ∈ [wi, wi], wi > wi (1.2)

where [xi, xi] and [wi, wi] are interval sets bounded by crisp values xi and xi, wi

and wi, respectively,

Compute

yl = min
xi∈[xi,xi]
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(1.3)

yr = max
xi∈[xi,xi]
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(1.4)

The Karnik-Mendel iterative algorithm is an efficient method for searching for

yl and yr. A situation where the common computation step defined in (1.1)-(1.4)

needs to be performed is to implement the Karnik-Mendel type-reducer which
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is an indispensable step in the implementation of an interval type-2 fuzzy logic

controller. A result of applying the Karnik-Mendel type-reducer is the lack of

closed from expression because the Karnik-Mendel type-reducer can be computed

using the Karnik-Mendel iterative algorithm only. Due to the lack of closed form

expressions, it is challenging to perform theoretical study of interval type-2 fuzzy

logic controller. Hence, the research reported in the thesis starts by deriving the

closed-form equations relating the output of the interval type-2 fuzzy system with

the inputs, providing a platform for further theoretical study of interval type-2

fuzzy controller.

Once the mathematical expressions are established, the theoretical study of

interval type-2 fuzzy logic controller can be performed. Despite several attempts

made to compare interval type-2 fuzzy controller and type-1 fuzzy controller, it

remains unclear whether an interval type-2 fuzzy controller can improve the per-

formance of a type-1 fuzzy controller. Hence, there is a need to study the potential

advantage of interval type-2 controller over its type-1 counterpart.

Another situation that requires the common computation step defined in (1.1)-

(1.4) is the computation of the fuzzy weighted average and linguistic weighted av-

erage. Although the Karnik-Mendel iterative algorithm was introduced to reduce

the computational overhead, they remain computationally intensive due to the

iterative nature of the Karnik-Mendel iterative algorithm. Hence, it is necessary

to develop efficient algorithms which reduce the computational overhead required

by performing fuzzy weighted average and linguistic weighted average.

In summary, this thesis seeks a further understanding of the Karnik-Mendel

algorithm that plays a pivotal role in the theory of interval type-2 fuzzy logic
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operations including the type-reduction step of an interval type-2 fuzzy logic con-

troller and linguistic weighted average operator. Based on the above discussion,

the detailed objectives are as follows:

1. To establish the mathematical equations relating the output and the inputs

of interval type-2 fuzzy controller using the Karnik-Mendel type-reducer, as

a tool for theoretical study of interval type-2 fuzzy logic controller.

2. To establish the potential advantage of interval type-2 fuzzy logic controller

over type-1 fuzzy controller using the derived mathematical expressions, es-

pecially how the additional parameters introduced by antecedent interval

type-2 sets affect the input-output relationship of interval type-2 fuzzy logic

controller. To verify the established potential advantages through numerical

experiments.

3. To propose efficient algorithms for the implementation of fuzzy weighted

average and linguistic weighted average to reduce their computational over-

head. To evaluate the computational performance of the proposed algo-

rithms by comparing with the Karnik-Mendel iterative algorithm.

1.4 Organization of the Thesis

In order to facilitate an understanding of the theory of type-2 fuzzy logic, Chapter

2 provides a brief description of the fundamental theory of type-2 fuzzy logic

including the basics of type-2 fuzzy set and type-2 fuzzy logic system. Chapter 3

derives the input-output relationship of a class of symmetric interval type-2 fuzzy
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PD/PI controller using the Karnik-Mendel type-reducer by following the proposed

algorithm which overcomes the limitation of no closed form equations for such

interval type-2 fuzzy controller. Using the derived mathematical equations, this

chapter investigates the potential advantage of interval type-2 fuzzy controller over

its type-1 counterpart by identifying four interesting properties unique to interval

type-2 fuzzy controller. Chapter 4 develops the input-output relationship for a

more general class of interval type-2 fuzzy controller. Chapter 4 shows that those

properties identified for the symmetric interval type-2 fuzzy logic controller still

hold true and establishes unique properties of the general class of interval type-2

fuzzy logic controller. Chapter 5 presents efficient algorithms for fuzzy weighted

average and linguistic weighted average to reduce their computational overhead

and studies their computational performance through intensive experiments.
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Chapter 2

Review of Type-2 Fuzzy Logic

This chapter aims to provide a brief introduction of the basics of type-2 fuzzy logic

to assist readers to understand the results reported in this thesis. The basics about

type-2 fuzzy set including the concept of type-2 fuzzy set and operations among

type-2 fuzzy sets will be introduced first in Section I of this chapter. Section II

reviews the centroid of a type-2 fuzzy set. Section III focuses on the theory of

type-2 fuzzy logic system including the concept of type-2 fuzzy logic system and

its implementation.

2.1 Type-2 Fuzzy Set

A type-1 fuzzy set is characterized by its membership grade which can be any

value within the interval [0, 1]. A type-1 fuzzy set Â can be characterized by

Â =

∫

x∈X

µÂ/x (2.1)

where the variable x is defined in the domain X; µÂ is the membership grade. Fig.

2.1 gives an example of type-1 membership function. Since the membership grade



15

Figure 2.1: Type-1 membership function

is a crisp value, type-1 fuzzy set is limited in handling uncertainties in the shape

and position of the fuzzy set. As an extension of type-1 fuzzy set, the membership

grade of a type-2 fuzzy set is a type-1 fuzzy set instead of a crisp value, providing

more freedoms in the membership grade for coping with complex uncertainties.

The concept of type-2 fuzzy set plays an important role in the theory of type-2

fuzzy logic. This section will briefly review the concept of type-2 fuzzy set.

2.1.1 The Concept of Type-2 Fuzzy Set

Definition 2.1 A type-2 fuzzy set Ã is characterized as

Ã =

∫

x∈X

∫

u∈Jx

µÃ(x, u)/(x, u) Jx ⊂ [0, 1] (2.2)

where the primary variable x is defined on the domain X; the secondary variable

u ∈ U has domain Jx for each x ∈ X. Jx, the primary membership of x is defined

as

Jx = {(x, u) : u ∈ [uÃ(x), uÃ(x)]} (2.3)



16

Ã can also be expressed as

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊂ [0, 1]} (2.4)

The domain of a secondary membership function is called the primary mem-

bership of x, i.e. Jx is the primary membership of x, where Jx ⊂ [0, 1] for ∀x ∈ X.

The amplitude of a secondary membership function is called a secondary grade,

i.e. µÃ(x, u), is a secondary grade.

Fig. 2.2 shows an example of the membership function of a type-2 fuzzy set.

The primary variable x and the secondary variable u are discrete. The primary

membership Jx is restricted in the interval [0, 1], i.e. 0 ≤ u ≤ 1. The secondary

membership grade is also in the interval [0, 1], i. e. 0 ≤ µÃ(x) ≤ 1.

Figure 2.2: An example of type-2 membership function

For each value of x, for example x = x′, the 2D plane whose axes are u and

µÃ(x′, u) is called a vertical slice of µÃ(x, u). A secondary membership function
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Figure 2.3: Vertical-slice of a type-2 fuzzy set

is a vertical slice of µÃ(x, u), i. e.

µÃ(x = x′, u) = µÃ(x′) =

∫

u∈Jx′
µÃ(u)/u (2.5)

A type-2 fuzzy set can be considered as the union of all its vertical slices, which

is the vertical-slice representation for a type-2 fuzzy set. Fig. 2.3 shows the

membership function of a type-2 fuzzy set where the 2D plane whose axes are u

and µÃ(x′, u) at each x′ is a vertical-slice. Each vertical slice is a type-1 fuzzy set

and such type-1 fuzzy set is called as a secondary set. Based on the concept of a

secondary set, a type-2 fuzzy set can be interpreted as the union of all secondary

sets (vertical slices), i. e.

Ã =

∫

x∈X

µÃ(x)/x =

∫

x∈X

[

∫

u∈Jx

µÃ(u)/u]/x (2.6)

Interval type-2 fuzzy set is a special case of type-2 fuzzy set when the secondary

grades equal to unity.
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Figure 2.4: Vertical-slice of an interval type-2 fuzzy set

Definition 2.2 An interval type-2 fuzzy set is characterized by

A =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[

∫

u∈Jx⊂[0,1]

1/u]/x (2.7)

where x is the primary variable and u is the secondary variable.

Fig. 2.4 shows the membership function of an interval type-2 fuzzy set whose

primary variable is x, the secondary variable is u and the secondary membership

grade are all unity. For each x′, the 2D plane whose axis is u and µÃ(x′, u) is a

vertical slice. Unlike a type-2 fuzzy set where each vertical slice at x′ is a type-1

fuzzy set, each vertical slice of an interval type-2 fuzzy set at x′ is an interval set.

Since all the secondary grades of an interval type-2 fuzzy set A are unity, all the

uncertainty modelled by an interval type-2 fuzzy set A can be completely described

by the union of all the primary memberships, which is called the footprint of

uncertainty (FOU) of A, i. e.

FOU(A) =
⋃

∀x∈X

Jx = {(x, u) : u ∈ Jx ⊂ [0, 1]} (2.8)

The FOU of an interval type-2 fuzzy set is bounded by two type-1 membership

functions, called the upper membership function (UMF) and the lower membership
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function (LMF). The UMF and LMF are associated with the upper bound and

the lower bound of FOU(A), denoted by u(x) and u(x), respectively, i. e.

u(x) = FOU(A) ∀x ∈ X (2.9)

u(x) = FOU(A) ∀x ∈ X (2.10)

Fig. 2.5 shows the FOU of an interval type-2 fuzzy set, in which the shaded

area is the FOU bounded by the UMF and LMF. Since the FOU of an interval

fuzzy set can be completely described by the UMF and the LMF, an interval type-

2 fuzzy set can be completely determined by its UMF and LMF. The concept of

UMF and LMF of an interval type-2 fuzzy set are useful in the theory of interval

type-2 fuzzy logic.

Figure 2.5: Interval type-2 membership function: UMF, LMF and FOU

2.1.2 Representation of Type-2 Fuzzy Set

A type-2 fuzzy set Ã can be interpreted as a collection of type-2 fuzzy sets Ãe,

which we call embedded type-2 fuzzy sets in Ã.
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Definition 2.3 For a type-2 fuzzy set defined in continuous of discourse X and

U , an embedded type-2 fuzzy set Ãe is

Ãe =

∫

x∈X

[µÃ(x, θ)/θ]/x θ ∈ Jx ⊂ U = [0, 1] (2.11)

An embedded type-2 fuzzy set can be constructed by choosing a primary mem-

bership θ from the primary membership grade Jx for each value of the primary

variable x, and the associated secondary membership grade µÃ(x, θ). Since there

are an infinite number of the possibilities in choosing θ from a continuous interval

Jx, there are a countless number of embedded type-2 fuzzy sets. A type-2 fuzzy

set can be represented as a union of an infinitely embedded type-2 fuzzy set, which

is called the wavy-slice representation for a type-2 fuzzy set.

Another important concept is embedded type-1 set Ae.

Definition 2.4 For a type-2 fuzzy set defined in continuous universe of discourse

X and U , an embedded type-1 fuzzy set Ae is:

Ae =

∫

x∈X

θ/x, , θ ∈ Jx ⊂ U = [0, 1] (2.12)

An embedded type-1 fuzzy set Ae is the union of all the primary memberships

of set Ãe defined in (2.11), and thus there are an infinite number of Ae.

Fig. 2.6 shows an example of an embedded type-1 fuzzy set of a type-2 fuzzy

set. The concept of embedded type-1 fuzzy set is very useful in the theory of

interval type-2 fuzzy set. An application of embedded type-1 fuzzy set is the

wavy-slice representation for an interval type-2 fuzzy set, which may be formally

stated as follows:



21

Figure 2.6: Embedded type-1 set (Red or green thick solid lines)

Theorem 2.1 (Wavy-slice representation) [54]: For an interval type-2 fuzzy set,

the domain of A is equal to the union of all of its embedded type-1 fuzzy set, i.e.

A = 1/FOU(A) = 1/
n⋃

i=1

Aj
e (2.13)

This theorem indicates that the domain of an interval type-2 fuzzy set can be

considered as a union of all its embedded type-1 fuzzy sets. This representation

theorem provides an efficient method for operations on interval type-2 fuzzy sets

by representing an interval type-2 fuzzy set as a collection of all its embedded

type-1 fuzzy sets.

2.1.3 Operations among Type-2 Fuzzy Sets

Operations among type-2 fuzzy sets are complex to implement, and these complex

operations impede the study of type-2 fuzzy logic. Comparing with operations

among type-2 fuzzy sets, the operations on interval type-2 fuzzy sets are easy

to implement, primarily because an interval type-2 fuzzy set can be completely

described by its UMF and LMF. Since this thesis centers on interval type-2 fuzzy
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logic, this subsection will review the operations among interval type-2 fuzzy sets.

The widely used operations on interval type-2 fuzzy sets include union, inter-

section and complement. Suppose interval fuzzy sets A and B are characterized

by

A = 1/FOU(A) = 1/
⋃

∀x⊂X

[µ
A
(x), µA(x)] (2.14)

B = 1/FOU(B) = 1/
⋃

∀x⊂X

[µ
B
(x), µB(x)] (2.15)

then the operations are as follows

1. The union of A and B is an interval type-2 fuzzy set, i. e.

A ∪B = 1/
⋃

∀x∈X

[µ
A
(x) ∨ µ

B
(x), µA(x) ∨ µB(x)] (2.16)

2. The intersection of A and B is an interval type-2 fuzzy set, i. e.

A ∩B = 1/
⋂

∀x∈X

[µ
A
(x) ? µ

B
(x), µA(x) ? µB(x)] (2.17)

3. The implementation of A is also an interval type-2 fuzzy set, i. e.

A = 1/
⋃

∀x∈X

[1− µ
A
(x), 1− µA(x)] (2.18)

Form the above operations, it may be observed that the results of the union,

intersection and complement operation are interval type-2 fuzzy sets, and the

implementation of these operations is equivalent to computing the UMF and LMF

of the resulted interval type-2 fuzzy set. The UMF and LMF of the resulted

interval type-2 fuzzy sets are the results of the corresponding operations between

the UMF and LMF of interval type-2 fuzzy sets A and B, respectively.
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2.2 Centroid of a Type-2 Fuzzy Set

Defuzzification is an indispensable step of converting the output of the inference

engine to a crisp value in a type-1 fuzzy logic system, i.e. computing the centroid

of a type-1 fuzzy set Â,

CÂ =

∑N
i=1 µixi∑N
i=1 µi

(2.19)

where xi, i = 1, 2, · · · , N are the discretized points of the variable; µi are the cor-

responding membership grade. The important step of an interval type-2 fuzzy set

that corresponds to the defuzzification procedure is type-reduction, i.e. calculating

the centroid of an interval type-2 fuzzy set.

2.2.1 Centroid of a Type-2 Fuzzy Set

Given a type-2 fuzzy set Ã = {(x, µA(x))|x ∈ X}, discretize the x-domain into N

points, x1, x2, · · · , xN , and then the type-2 fuzzy set A can be expressed as

Ã =
N∑

i=1

[

∫

u∈Jx

fxi
(u)/u]/xi (2.20)

By applying the extension principle to the centroid of a type-1 fuzzy set defined

in (2.19), the centroid of a type-2 fuzzy set can be defined as

CÃ =

∫

w1∈Jx1

· · ·
∫

wN∈JxN

[fx1(w1) ? · · · ? fxN
(wN)]/

∑N
i=1 xiwi∑N
i=1 wi

(2.21)

Every possible combination of the the primary membership grade w1, · · · , wN and

the corresponding secondary membership grade fx1(w1), · · · , fxN
(wN) forms an

embedded type-2 fuzzy set, Ãe. The centroid of a type-2 fuzzy set is a type-1

fuzzy set whose primary variable is the result of

∑N
i=1 xiwi∑N
i=1 wi

(2.22)
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and the corresponding membership grade is the result of fx1(w1) ? · · · ? fxN
(wN).

A method that may be used to compute the centroid of a type-2 fuzzy set is to

exhaustively calculate all possible embedded type-2 fuzzy set, i.e. all the possible

combination of wi and xi and the corresponding fx1(w1) ? · · · ? fxN
(wN).

2.2.2 Centroid of an Interval Type-2 Fuzzy Set

For an interval type-2 fuzzy set, all fxi
(u) for any xi and u equals 1. Then the

centroid can be defined as

GC =

∫

x1∈X1

· · ·
∫

xN∈XN

∫

w1∈WN

· · ·
∫

wN∈WN

1/

∑N
i=1 xiwi∑N
i=1 wi

= 1/[yl, yr] (2.23)

Figure 2.7: Centroid of an interval type-2 fuzzy set

Fig. 2.7 shows the centroid of an interval type-2 fuzzy set is an interval set

bounded by yl and yr. It has been proven that yl and yr are the maximum and

minimum value of all possible combinations of
∑N

i=1 xiwi∑N
i=1 wi

, i.e.

yl = minwi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

(2.24)

yr = maxwi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

(2.25)
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Suppose

y(w1, · · · , wN) =

∑N
i=1 xiwi∑N
i=1 wi

(2.26)

Differentiating y(w1, · · · , wN) with respect to wk leads to

∂

∂wk

=
∂

∂wk

[

∑N
i=1 xiwi∑N
i=1 wi

] =
xk − y(w1, · · · , wN)∑N

i=1 wi

(2.27)

From (2.27), the following can be observed that

1. When y(w1, · · · , wN) = xk,

y(w1, · · · , wN) = xk →
∑N

i=1 xiwi∑N
i=1 wi

= xk →
∑N

i6=k xiwi∑N
i6=k wi

= xk (2.28)

wk does not appear in the final expression, indicating that the value of wk

does not affect the result of y(w1, · · · , wN) when y(w1, · · · , wN) = xk.

2. The equation indicates the direction in which wk should be changed to in-

crease or decrease the value of y(w1, · · · , wN):

• If xk > y(w1, · · · , wN), y(w1, · · · , wN) increases as wk increases;

• If xk < y(w1, · · · , wN), y(w1, · · · , wN) decreases as wk increases.

Based on the above results, yl and yr can be expressed as

yl =

∑L
i=1 xiwi +

∑N
i=L+1 xiwi∑L

i=1 wi +
∑N

i=L+1 wi

(2.29)

yr =

∑R
i=1 xiwi +

∑N
i=R+1 xiwi∑R

i=1 wi +
∑N

i=R+1 wi

(2.30)

It should be noted that the switch point L and R satisfying

xL ≤ yl ≤ xL+1 (2.31)

xR ≤ yr ≤ xR+1 (2.32)
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(a) (b)

Figure 2.8: The left and right endpoints yl and yr with switch point L and R

For an interval type-2 fuzzy set defined in continuous domain, yl and yr can

be expressed as

yl =

∫ l

−∞ xwi(x)dx +
∫∞

l
xwi(x)dx

∫ l

−∞ wi(x)dx +
∫∞

l
wi(x)dx

(2.33)

yr =

∫ r

−∞ xwi(x)dx +
∫∞

r
xwi(x)dx∫ r

−∞ wi(x)dx +
∫∞

r
wi(x)dx

(2.34)

where the switch point l and r satisfy l = yl and r = yr. Fig. 2.8 illustrates that

yl and yr can be achieved involving a switch point L and R.

2.2.3 The Karnik-Mendel Iterative Algorithm and The En-

hanced Karnik-Mendel Iterative Algorithm

Although the left and right bounds of the type-reduced set yl and yr can be ex-

pressed mathematically as (2.29) and (2.30), these expressions can not be directly

used to calculate yl and yr because the switch points L and R are unknown.

The Karnik-Mendel iterative algorithm is an efficient algorithm that searches for

the switch points L and R. The detailed procedure of the Karnik-Mendel (KM)

iterative algorithm may be stated as
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• Step 1: Sort xi in an increasing order and label them as x1 < x2 < · · · < xn.

Let [wi, wi] be the corresponding weight of xi.

• Step 2: Set wi as

wi =
wi + wi

2
(2.35)

and then compute

y =

∑n
i=1 wixi∑n
i=1 wi

(2.36)

• Step 3: Find the switch point k such as

xk ≤ y ≤ xk+1 (2.37)

• Step 4: Set wi as:

– yl:

wi =





wi for i ≤ k

wi for i > k

(2.38)

– yr:

wi =





wi for i ≤ k

wi for i > k

(2.39)

and compute

y′ =

∑n
i=1 wixi∑n
i=1 wi

(2.40)

• Step 5: If y′ = y, stop. k is the actual switch point L (R) and yl = y

(yr = y). Otherwise, set y = y′ and go to Step 3.
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The Enhanced Karnik-Mendel (EKM) iterative algorithm is an enhanced ver-

sion of the KM iterative algorithm through optimizing the initial switch point,

the terminal condition and the computational process [85]. The strategies used to

optimize the initialization, termination and computation are as follows:

1. Initialization: The initialization of the KM iterative algorithm is inefficient

and thus may cause a large number of iterations. To reduce the number of

iterations required in the search process, the switch point is initialized as

k = [n/2.4] for yl or k = [n/1.7] for yr ([·] denotes the nearest integer.),

where n is the number of xi. The heuristic number 2.4 and 1.7 are obtained

from intensive simulation studies.

2. Computation: In the KM iterative algorithm, to compute y in (5.48),
∑m

i=1 wi

and
∑n

i=1 xiwi need to be computed in each iteration. To reduce computa-

tional cost, the new computation technique is introduced by utilizing results

from the last iteration. Suppose that in the jth iteration, the switch point k,

∑m
i=1 wi and

∑n
i=1 xiwi are denoted by kj, (

∑m
i=1 wi)j and (

∑n
i=1 xiwi)j, re-

spectively. (
∑m

i=1 wi)j+1 can be computed by adding the difference between

(
∑m

i=1 wi)j and (
∑m

i=1 wi)j+1 to (
∑m

i=1 wi)j. Similarly, (
∑m

i=1 wixi)j+1 can be

computed by adding the difference between (
∑m

i=1 wixi)j and (
∑m

i=1 wixi)j+1.

3. Termination: In the KM iterative algorithm, the termination is identified by

comparing the output of the current iteration with the last iteration, indi-

cating that another iteration is needed although the actual switch point is

found. To avoid the computation in the unnecessary iteration, the termina-

tion of iterations is proposed to be identified by comparing the switch point
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of the current iteration with that of the last iteration.

In summary, the procedures of the EKM iterative algorithm may be described

as follows:

• Step 1: Sort xi, i = 1, 2, · · · , n in an increasing order and label them as

x1 < x2 < · · · < xn.

• Step 2:

– yl: Set k = [n/2.4] (the nearest integer to n/2.4), and compute

a =
k∑

i=1

xiwi +
n∑

i=k+1

xiwi (2.41)

b =
k∑

i=1

wi +
n∑

i=k+1

wi (2.42)

and

y =
a

b
(2.43)

– yr: Set k = [n/1.7] (the nearest integer to n/1.7), and compute

a =
k∑

i=1

xiwi +
n∑

i=k+1

xiwi (2.44)

b =
k∑

i=1

wi +
n∑

i=k+1

wi (2.45)

and

y =
a

b
(2.46)

• Step 3: Find k′ ∈ [1, n− 1] such that

xk′ ≤ y ≤ xk′+1 (2.47)
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• Step 4: Check if k′ = k. If yes, stop, set yl = y (yr = y), and L = k (R = k).

If no, continue.

• Step 5: Compute s = sign(k′ − k), and

a′ = a + s

max(k,k′)∑

i=min(k,k′)+1

xi(wi − wi) (2.48)

b′ = b + s

max(k,k′)∑

i=min(k,k′)+1

(wi − wi) (2.49)

y′ =
a′

b′
(2.50)

• Step 6: Set y = y′, a = a′, b = b′, and k = k′. Go to Step 3.

2.3 Type-2 Fuzzy Logic System

This section will provide a brief introduction of the theory of type-2 fuzzy logic

system. A description of a type-2 fuzzy logic system is provided in the following

subsection before its implementation will be described in the next subsection.

2.3.1 Components of a Type-2 Fuzzy Logic System

A type-1 fuzzy logic system comprises of four components: fuzzifier, rule base,

inference engine and defuzzifier. Fig. 2.9 depicts the diagram structure of type-

1 fuzzy logic system. The fuzzifier maps crisp inputs into type-1 input fuzzy

sets. Rules are expressed into IF-THEN statement relating antecedent sets and

consequent sets. In the inference engine, the operations between type-1 input

fuzzy sets and antecedent sets output the firing degree of each rule, while the

operations between the firing degree and the consequent sets produce a type-1
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output fuzzy set. The defuzzifier is to convert this output fuzzy set to a crisp

value as the output of a type-1 fuzzy logic system.

Figure 2.9: The structure of type-1 fuzzy logic system

In type-1 fuzzy logic system, the antecedent and consequent sets are type-1

fuzzy sets; while in a type-2 fuzzy logic system, antecedent and consequent sets

are type-2 fuzzy sets. Fig. 2.10 shows the structural diagram of type-2 fuzzy logic

system comprising of five components—fuzzifier, rule base, inference engine, type-

reducer and defuzzifier. In the implementation of a type-2 fuzzy logic system, crisp

inputs are mapped via the fuzzifier into fuzzy sets called fuzzy input sets which

can be singleton, type-1 or type-2 fuzzy sets, depending on the requirement of

practical application. Then the operation between fuzzy input sets and antecedent

sets produce the firing set for each rule, which is a type-1 set. The combination

of the firing sets and the corresponding consequent sets will output a type-2 fuzzy

set called fuzzy output set. The type-reducer reduces this output set into a type-1

fuzzy set, and the defuzzifier maps this interval type-1 fuzzy set into a crisp output

value.

An interval type-2 fuzzy logic system is similar to a type-2 fuzzy logic system
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in components, except that in the former the antecedent and consequent sets

are interval type-2 fuzzy sets, while in the latter, the antecedent and consequent

sets are type-2 fuzzy sets. Unlike a type-2 fuzzy logic system where the fuzzifier

can map crisp inputs into singleton, type-1 or type-2 fuzzy sets, the output of

the fuzzifier in an interval type-2 fuzzy logic system can be singleton, type-1 or

interval type-2 fuzzy sets. As a result, the firing set for each rule is an interval set

instead of a type-1 set and the output of the inference engine is an interval type-2

fuzzy set instead of a type-2 fuzzy set. The type-reducer converts the output of

the inference engine into an interval set.

Figure 2.10: The structure of type-2 fuzzy logic system

2.3.2 The Sup-star Composition Inference System

Since the focus of this thesis is on interval type-2 fuzzy logic, this subsection

reviews the implementation of an interval type-2 fuzzy logic system.

Consider a multi-inputs single-output interval type-2 FLS with p inputs x1 ∈

X1, · · · , xp ∈ Xp and the output y ∈ Y . The rule base comprises the following



33

IF-THEN statement:

Ri : IF x1 is F̃ i
1 AND · · · AND xp is F̃ i

p, THEN y is G̃i i = 1, · · · ,M

where all F̃ i
j , i = 1, · · · ,M, j = 1, · · · , p are interval type-2 fuzzy sets. These rules

provide a mapping from the input space X1 × · · ·Xp to the output space Y .

The sup-star composition is the widely adopted computation for a type-1 fuzzy

system. This computation can be extended to an interval type-2 fuzzy logic system

by replacing type-1 fuzzy sets in the operation with interval type-2 fuzzy sets and

the sup, t-norm operation with the join and the meet operation. Then each rule

can be interpreted as

Ri : F̃ i
1 × · · · × F̃ i

p → G̃i = Ãi → G̃i i = 1, · · · ,M (2.51)

Let the membership function µRi(x, y) = µRi(x1, · · · , xp, y) be Ri, i.e.

µRi(x, y) = µÃi→G̃i(x, y) (2.52)

Then

µRi(x, y) = µÃi→G̃l(x, y) = µF̃ i
1
(x1) u · · · u µF̃ i

p
(xp) u µG̃i(y)

= [up
j=1µF̃ i

j
(xj)] u µG̃i(y) (2.53)

The p-dimensional input to Ri is given by the type-2 fuzzy set Ãx, whose

membership function is

µÃx
= µX̃1

(x1) u · · · u µX̃p
(xp) = up

j=1µX̃j
(xi) (2.54)

where X̃j(j = 1, · · · , p) are the labels of the fuzzy sets describing the inputs. Each

rule Ri determines a type-2 fuzzy set B̃i = Ãx ·Ri such that

µB̃i(y) = µÃx·Ri(y) = tx∈X [µÃx
u µRi(x, y)] y ∈ Y, i = 1, · · · ,M (2.55)
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By substituting (2.53) and (2.54) into (2.55), it follows

µB̃i(y) = tx∈X [µÃx
u µRi(x, y)]

= tx∈X [up
j=1µX̃j

(xj)] u [up
j=1µF̃ i

j
(xj)] u µG̃i(y)

= tx∈X [up
j=1µX̃j

(xj)] u µF̃ i
j
(xj)] u µG̃i(y)

= µG̃i(y) u {[tx1∈X1µX̃1
(x1) u µF̃ i

1
(x1)] u

· · · u [txp∈XpµX̃p
(xp) u µF̃ i

p
(xp)]} (2.56)

Equation (2.56) follows in part from the commutativity of the meet operator using

the minimum or product function and the fact that µX̃j
(xj) u µF̃ i

j
(xj) is only a

function of xj. Hence, the result of each join operation is just a scalar variable.

Summarily, the implementation of an interval type-2 fuzzy logic system can be

formally stated as:

Theorem 2.2 [54] For an interval singleton type-2 fuzzy logic system using prod-

uct or minimum t-norm to implement the meet operator:

1. the result of the input and antecedent operations, which are contained in the

firing set Fi(x
′) is an interval type-1 set, i.e.

Fi(x
′) = [f

i
(x′), f i(x

′)] = [f
i
, f i] (2.57)

where

f
i
(x′) = µ

F̃ i
1

(x′1) ? · · · ? µF̃ i
p
(x′p) (2.58)

f i(x
′) = µF̃ i

1
(x′1) ? · · · ? µF̃ i

p
(xp) (2.59)

2. the rule Ri fired output consequent, µB̃i
(y) is the type-1 fuzzy set:

µB̃i
=

∫

bi∈[f
i
?µ

G̃i
(y),f i?µG̃i

(y)]

1/bi y ∈ Y (2.60)
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(a) (b)

Figure 2.11: Pictorial description of input and antecedent operation for an interval
singleton type-2 fuzzy logic system. (a) minimum t-norm, and (b) product t-norm

where µ
G̃i

(y) and µG̃i
(y) are the lower and upper membership grades of

µG̃i
(y).

3. suppose that N of the M rules in the FLS are fired, where N ≤ M , and the

combined output type-1 fuzzy set is obtained by combining the fired output

consequent set, i.e. µB̃(y) = uN
i=1µB̃i

(y), y ∈ Y , then

µB̃(y) =

∫

b∈[[f
1
?µ

G̃1
(y)]∨···∨[f

1
?µ

G̃1
(y)],[f1?µG̃1

(y)]∨···∨[f1?µG̃1
(y)]]

1/b, y ∈ Y(2.61)

Several defuzzification methods such as center-of-sets, centroid, height have

been developed. Depending on the adopted defuzzification method, Theorem 2.2

may be interpreted in different manners. Since this thesis involves the interval

type-2 fuzzy logic system using widely adopted center-of-sets defuzzification only,

the procedures of implementing a singleton interval type-2 fuzzy logic system

using the Karnik-Mendel type-reducer and the center-of-sets defuzzificantion are

provided based on Theorem 2.2 as follows:
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• Step 1: Compute the firing set Fi(x
′) = [f

i
(x′), f i(x

′)] for each rule Ri by

intersecting the antecedent sets and the firing strength according to

Fi(x
′) = [f

i
(x′), f i(x

′)] = [f
i
, f i] (2.62)

where

f
i
(x′) = µ

F̃ i
1

(x′1) ? · · · ? µ
F̃ i

p
(x′p) (2.63)

f i(x
′) = µF̃ i

1
(x′1) ? · · · ? µF̃ i

p
(xp) (2.64)

Fig. 2.11 gives a pictorial description of calculating f
i
and f i according to

(2.63) and (2.64).

• Step 2: Combine the firing sets [f
i
, f i] and the corresponding singleton con-

sequent sets yi, i = 1, 2, · · · ,M , resulting in an interval type-2 fuzzy set in

which the primary variable consists of the points yi, i = 1, 2, · · · ,M and the

primary membership grade is [f
i
, f i]. Fig. 2.12 shows the resulted interval

type-2 fuzzy set.

• Step 3: Compute the type-reduced set [yl, yr] using the Karnik-Mendel iter-

ative algorithm:

yl =

∑L
i=1 f iyi +

∑M
i=L+1 f

i
yi∑L

i=1 f i +
∑M

i=L+1 f
i

(2.65)

yr =

∑R
i=1 f

i
yi +

∑M
i=R+1 f iyi∑R

i=1 f
i
+

∑M
i=R+1 f i

(2.66)

where L and R are the switch point satisfying

yL ≤ yl < yL+1 (2.67)

yR ≤ yr < yR+1 (2.68)

Fig. 2.13 shows a pictorial description of yl and yr.
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Figure 2.12: The output of the inference engine of an IT2 FLS (yi, i = 1, 2, · · · ,M
represent the points where singleton consequent set have unity membership grade;
f
¯
i and f̄i are the lower and upper bound of the firing set for the ith rule; M is the
number of fired rules.)

(a) (b)

Figure 2.13: Pictorial description of type-reduction. (a) yl (b) yr.

• Step 4: The result of the type-reduction is an interval set called type-reduced

set, i.e. [yl, yr]. The output of an interval type-2 fuzzy system is the average

of the type-reduced set, i.e.

y =
yl + yr

2
(2.69)
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Chapter 3

Analytical Structure and

Characteristics of Symmetrical

Karnik-Mendel Type-Reduced

Interval Type-2 Fuzzy PI and PD

Controllers

3.1 Introduction

Fuzzy logic system theory (Type-1 fuzzy logic system, T1 FLS), first proposed by

Zadeh in 1965, has been widely applied for control, signal processing and pattern

recognition. T1 FLS was introduced for modelling and handling the uncertainties

in real systems; however, it has been demonstrated to be limited in modelling the

uncertainties in the shape and position of the fuzzy membership set. To overcome
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this limitation, the interval type-2 (IT2) fuzzy logic system (FLS), in which IT2

fuzzy sets (FSs) act as antecedent sets or consequent sets, was introduced. A

reason why IT2 FLS may be able to outperform its T1 counterpart is the additional

design freedoms provided by the footprint of uncertainty (FOU) associated with

the membership function of an IT2 FS. Numerical study has shown that IT2 FLS

can outperform T1 counterpart in some control problems [10, 12, 14, 20, 22, 42, 71,

88, 89, 90]. However, the simulation analysis cannot be generalized and applied

into other systems due to the limitation of case studies. While theoretical study

of IT2 FLS may provide more general results, it is a challenging task.

For T1 fuzzy logic controllers (FLCs), the analytical structure approach has

been established as a useful tool to identify the relationship between the system

inputs and output [2, 9, 97, 98, 99, 100, 101, 103, 104, 105]. Most notably in [105],

a class of Mamdani fuzzy PD and PI controllers with the Zadeh AND and linear

FSs (triangular or trapezoidal) for the input variables were proved to be equivalent

to nonlinear PD and PI controllers with variable gains. The mathematical study

is performed by first dividing the input space into several subregions, and then de-

termining the relationship between the firing strength and the inputs i.e. whether

the firing strength is 0, 1 or the membership of some antecedent set. Next, the

FLC was expressed as nonlinear PD or PI controller by replacing all the firing

strength with the specific expressions in every subregion. As pointed out [105], it

is the variable gains in different subregions that made it possible for a T1 FLC to

outperform conventional PD/PI controllers. Generally speaking, this analytical

structure theory of T1 fuzzy PD and PI controllers provides a general framework

to perform theoretical study of fuzzy systems in these aspects: (1) insights into
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the internal mechanism of T1 FLC — structurally PD and PI controller with

variables gains; (2) the advantages over conventional PD and PI controller; (3)

the characteristics of fuzzy logic system with different configurations; (4) design

methods including the tuning of the parameters [98].

An effort [15] has been made to derive the analytical structure of a class of IT2

FLCs. Instead of using common type-reduction methods, the IT2 FLC analyzed

in [15] approximates the type-reduced set by averaging 16 embedded IT2 FLSs.

Unlike [15], this chapter considers the IT2 FLCs that use the widely adopted

Karnik-Mendel (KM) type-reduction method. In the KM type-reduction method,

the domain of an IT2 FS is interpreted as a collection of embedded T1 FSs. As the

centroids of these embedded T1 FSs would form an interval, the type-reduced T1

FS is bounded by the minimum and maximum centroid of all embedded T1 FSs.

It has been proved that for an IT2 FS the bounds yl and yr of the type-reduced set

are the centroids of the two embedded T1 sets that involves one switch between

the lower and upper membership function of the IT2 FS respectively[54], i.e.

yl =

∑L
i=1 µiyi +

∑m
i=L+1 µ

i
yi∑L

i=1 µi +
∑m

i=L+1 µ
i

(3.1)

yr =

∑R
i=1 µ

i
yi +

∑m
i=R+1 µiyi∑R

i=1 µ
i
+

∑m
i=R+1 µi

(3.2)

where the primary variable yi, i = 1, 2, · · · ,m satisfies yi < yi+1; µi and µ
i

are

respectively the upper and lower bound of its primary membership. From the

derivation of the KM type-reduction method, the following property can be ob-

served [54] as presented in (2.31) and (2.32):

yL ≤ yl < yL+1 (3.3)

yR ≤ yr < yR+1 (3.4)
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This type-reduction process is generally implemented by using the Karnik-Mendel

(KM) algorithm to determine the bounds iteratively. Due to the iterative nature of

the KM type-reduction process, the relationship between the output of an IT2 FLS

and the input signals cannot be expressed in closed form, thereby impeding the

theoretical study of IT2 FLSs. Hence, a key result of this chapter is a methodology

that enables the input space to be partitioned such that the output for an IT2

fuzzy logic system may be explicitly related to the firing strength of all rules.

Comparing with their T1 counterpart, there are more parameters in antecedent

sets or consequent sets of an IT2 FLS. These additional parameters may create

more partitions in the input space and modify the relationship between the input

and output signals. This chapter also seeks to identify the advantages that the

additional FOU parameters may provide for a class of simple fuzzy PD and PI

controllers with symmetrical rule base and symmetrical consequent sets.

The rest of the chapter is organized as follows : Section II describes the config-

urations of IT2 fuzzy PD and PI controllers; Section III presents the algorithm to

derive their analytical structure followed by detailed derivation of the analytical

structure of IT2 FLCs in Section IV. Readers who are interested in understanding

the potential performance improvements due to the inclusion of the footprint of

uncertainty may jump directly to Section V, where four interesting characteris-

tics are presented to explain why an IT2 fuzzy controller may better achieve the

conflicting aims of fast rise time and small overshoot. Finally, Section VI presents

results from a comparative study between IT2 fuzzy PD controller and its T1

counterpart to highlight the advantages provided by the extra design parameters.
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3.2 Configuration of Interval T2 Fuzzy PD and

PI Controller

As shown in in Fig. 3.1, a two-inputs single-output fuzzy system commonly used

for feedback control may be defined as

4U(n) = f(E(n), R(n)) (3.5)

where E(n) = Kee(n) = Ke(SP (n)−y(n)), R(n) = Krr(n) = Kr(e(n)−e(n−1)),

y(n) is the output of the closed-loop system, SP (n) is the reference signal, Ke and

Kr are the scaling constants. The output 4U(n) may be interpreted directly as

the control signal or as the rate of change in the actuation signal. Depending how

the output of the fuzzy controller is defined, it may be interpreted as a fuzzy PD

or a fuzzy PI controller.

Controlled plant
IT2 fuzzy PD 

controller
),( REfU

ySP
eK

rK

ySPe eKE e

rKR r
r

d
e

dt

_

Figure 3.1: The structure of a fuzzy PD control system

Fig. 3.2 contains the schematic diagram of an IT2 FLS. For this study, two

IT2 FSs are used to partition the space of each input: EN and EP for E(n),

RN and RP for R(n). By shifting the membership of two symmetrical T1 FSs

horizontally by the amount of θ1, the upper and lower membership of EN and

EP , EN, EN, EP and EP in Fig. 3.3(a), can be obtained [15]. In the same
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Figure 3.2: The structure of IT2 FLS

way, θ2 represents the amount by which the upper and lower membership of RN

and RP are shifted to obtain RN, RN, RP and RP in Fig. 3.3(b). Based on

whether its value depends on the inputs, the lower bound or upper bound of any

antecedent set can be decomposed into dependent part or independent segment

(0 or 1). For example,

EN =





EN = − 1
2L1

E(n) + 0.5 + θ1 for − L1 + P1 ≤ E(n) ≤ L1 + P1

0 for E(n) ≥ L1 + P1

1 for E(n) ≤ −L1 + P1

(3.6)

where EN is the segment of the membership function of EN that is linearly related

with the input, while the membership grade of the other two segments of EN is

fixed at 0 or 1. (3.6) reveals the relationship between the membership grade and

the input.

For fuzzy systems that partition the input space using IT2 FSs shown in Fig.

3.3(a) and 3.3(b), a commonly used rule base comprises of the following IF-THEN

statements:

• Rule 1: IF E(n) is Positive AND R(n) is Positive THEN 4U(n) is H1
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• Rule 2: IF E(n) is Positive AND R(n) is Negative THEN 4U(n) is H2

• Rule 3: IF E(n) is Negative AND R(n) is Positive THEN 4U(n) is H3

• Rule 4: IF E(n) is Negative AND R(n) is Negative THEN 4U(n) is H4

where H1, H2, H3 and H4 are the four singleton consequent FSs.

The result of the input and antecedent operations is an IT1 set called the firing

set. Using Zadeh fuzzy AND operator as the t-norm operator, the firing set for

each rule are as follows:

R1 = [R1, R1] = [min(EP,RP), min(EP,RP)] for4 U(n) = H1 (3.7)

R2 = [R2, R2] = [min(EP,RN), min(EP,RN)] for4 U(n) = H2 (3.8)

R3 = [R3, R3] = [min(EN,RP), min(EN,RP)] for4 U(n) = H3 (3.9)

R4 = [R4, R4] = [min(EN,RN), min(EN,RN)] for4 U(n) = H4 (3.10)

The IT2 FLS using the Karnik-Mendel type-reduction and center-of-sets de-

fuzzification method is the research objective of this chapter. Using the Mendel-

John Representation theorem [60] (Theorem 1), the IT2 FS formed by the fuzzy

inference engine may be viewed as the collection of all of its embedded IT1 FSs.

Hence, the output of the inference engine may be type-reduced into an IT1 set

comprising of the centroids of all embedded T1 FSs.

4Uj =
R∗

1 ∗H1 + R∗
2 ∗H2 + R∗

3 ∗H3 + R∗
4 ∗H4

R∗
1 + R∗

2 + R∗
3 + R∗

4

(3.11)

where R∗
i is a value within the lower and upper bound of the firing set for the

ith rule, Ri. In summary, the type-reduced set 4UTR(n) may be expressed math-

ematically as [4Umin
j ,4Umax

j ], 4Umin
j and 4Umax

j are respectively the smallest
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(a) (b)

Figure 3.3: IT2 antecedent FSs: (a) IT2 FSs EN and EP for the input E(n)
(P1 = 2L1θ1). (b) IT2 FSs RN and RP for the input R(n) (P2 = 2L2θ2).

and largest centroid of all the possible embedded T1 FS. Lastly, using the height

defuzzification, the crisp output of the IT2 FLC is

4U(n) =
4Umin

j +4Umax
j

2
(3.12)

It has been proved that the upper and lower bound of the type-reduced set,

4Umin
j and 4Umax

j , are respectively the centroids of two unique embedded type-1

sets that involves only one switch between the lower and upper MF of the IT2

fuzzy set produced by the fuzzy inference engine [54]. The position of the switch

point depends on the values of the singleton consequent sets. Hence, unlike T1

fuzzy controller where the partitions of the input space are independent of the

consequent sets, there is a need for the following assumptions in order to simplify

the derivation of the analytical structure of IT2 fuzzy PD controller :

1. The rule base is symmetrical. In other words, H2 = H3.

2. H1, H2 = H3 and H4 are equally spaced in Fig. 3.4. The assumption

H4 < H3 = H2 < H1 is made based on the observation that the output of a

linear PD controller increases as any input increases.
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Figure 3.4: Singleton consequent FSs of IT2 fuzzy PD controller

3.3 Analysis of the Karnik-Mendel Type-Reduced

IT2 Fuzzy PD Controller

The analytical structure of a FLS may be established by deriving the mathematical

relationship between the inputs and the output. Similar to the case of a T1 FLC,

the main concept used to determine the input-output relationship in an IT2 fuzzy

PD controller is to specify the firing strength by dividing the input space into

regions and to replace each firing strength with its corresponding mathematical

expression. For an IT2 FLC, the key step is to identify equations for each firing

strength that should be used to calculate 4Umin
j and 4Umax

j .

(3.1) and (3.2) show that 4Umin
j and 4Umax

j may be expressed as the average

of all singleton consequents weighted by the lower or upper bound of the firing

strength and an embedded T1 FS. Once the switch points L in (3.1) and R in

(3.2) are known, then the problem of analyzing the structure of an IT2 fuzzy

PD controller reduces to a T1 system that can be studied using the following

well-established techniques [102]:
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1. Partition the input space into regions by applying the Zadeh AND operation

(minimum operator) to the antecedent membership functions;

2. Determine the specific expression for each firing strength respectively in the

corresponding subregion of each embedded T1 FLS.

The foundation stone of the the proposed method for deriving the analytical

structure of an IT2 fuzzy PD controller is the identification of the embedded

T1 FS. For the IT2 FLC described in Section 3.2, the type-reduced set may be

constructed from (3.1) and (3.2) by making the following substitution as

µi = Rj, µ
i
= Rj, yi = Hj (3.13)

where Rj and Rj are the upper and lower bound of the firing set associated with

the jth rule in (3.7)-(3.10). Furthermore, since it is assumed that H4 < H3 =

H2 < H1, (3.1) and (3.2) may be re-expressed as

4Umin
j =

∑L−1
i=1 RiHi +

∑4
i=L RiHi∑L−1

i=1 Ri +
∑4

i=L Ri

(3.14)

4Umax
j =

∑R−1
i=1 RiHi +

∑4
i=R RiHi∑R−1

i=1 Ri +
∑4

i=R Ri

(3.15)

where the switch point L and R coincide with the location of one of the 3 singleton

consequent sets (H1, H2 = H3, H4). In the case of the IT2 fuzzy PD controller,

(3.3) and (3.4) which are the conditions for finding the switch points L and R are

HL ≤ 4Umin
j < HL−1 (3.16)

HR ≤ 4Umax
j < HR−1 (3.17)

Due to the constraint that the switch point L and R must be positioned

at one of the three singleton consequent sets and the inequalities in (3.16) and
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(3.17), it may be concluded that L and R can assume one of only two values i.e.

HL = {H4, H2 = H3} and HR = {H4, H2 = H3}. Hence, the only two possible

expressions for 4Umin
j may be written as

1. Mode 1: When H4 ≤ 4Umin
j ≤ H2 = H3 ⇔ The left switch point L coincides

with H4,

4Umin
j = 4Umin

j1 =
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

(3.18)

2. Mode 2: When H2 = H3 ≤ 4Umin
j ≤ H1 ⇔ The left switch point L coincides

with H2 = H3

4Umin
j = 4Umin

j2 =
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

(3.19)

By comparing the expressions of Mode 1 and 2 in (3.18) and (3.19), their properties

can be generalized as

1. The weight associated with H1 is always the lower bound of the firing set

for Rule 1. Similarly, H4 is weighted by the upper bound of the firing set

for Rule 4. Consequently, the weight on H1 and H4 is independent of the

switch points L and R.

2. In Mode 1, H2 = H3 are weighted by the lower bounds R2 and R3, while

the corresponding upper bounds R2 and R3 are used to weight H2 = H3 in

Mode 2. The condition when the switch point changes from the position of

H2 = H3 to H1 and vice versa can be established as:

4Umin
j = 4Umin

j1 = 4Umin
j2 = H2 = H3 (3.20)
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By replacing 4Umin
j1 and 4Umin

j2 with their corresponding expressions in

(3.18) and (3.19), the above equation may be written as :

R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

=
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

= H2 = H3

⇔ R4(H4 −H2) = R1(H2 −H1) / R4(H4 −H3) = R1(H3 −H1)

Due to the assumption that the three consequent sets are equally spaced and

H4 < H3 = H2 < H1, the condition derived above may be simplified to

R4 = R1 (3.21)

Further, the subregions where (3.16) is used to calculate the left endpoint of

the type-reduced set (Mode 1) should satisfy the condition

4Umin
j1 ≤ H2 = H3 ⇔ R4 ≥ R1 (3.22)

and the areas where the IT2 fuzzy PD controller operate in Mode 2, i.e. the

output is defined by (3.17), can be found using the following equality:

4Umin
j2 ≥ H2 = H3 ⇔ R4 ≤ R1 (3.23)

The first property shows that the firing strength of Rule 1 and Rule 4 used to

calculate 4Umin
j is independent of the switch point L, and the firing strength

of Rule 1 and Rule 4 is always governed by the lower and upper bound of the

firing set i.e. R1 and R4. Furthermore, the boundary defined by the conditions

in (3.22)-(3.23) also depends on R1 and R4. Based on this observation, the first

step in partitioning the input space in order to derive closed form firing level

is performed by considering the outcomes of Zadeh AND operations (minimum
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operator) for Rule 1 and Rule 4. Next, the relative firing strengths of Rule 1 and

Rule 4 in each sub-space is compared in order to determine whether the IT2 fuzzy

PD controller will operate in Mode 1 and Mode 2. In the subregions under Mode

1 and 2, the embedded type-1 set is completely defined by (3.18) and (3.19) so the

partitions can be found using existing technique i.e. ascertaining the minimum of

the lower or upper bound of the firing sets. In summary, an algorithm to derive

the partitions of the input space by 4Umin
j can be generalized as:

• Step 1 : The firing strength of Rule 1 (R1) and Rule 4 (R4) can be specified

by dividing the input space via the outcomes of Zadeh AND operations

(minimum operator) for Rule 1 and Rule 4 i.e.

R1 = min{EP,RP} (3.24)

R4 = min{EN,RN} (3.25)

• Step 2 : The partitions obtained using R1 and R4 in Step 1 is further

subdivided into the following two groups that correspond to one of the two

possible operating modes :

Mode 1 : R4 > R1 (3.26)

Mode 2 : R4 < R1 (3.27)

• Step 3 : To specify the firing strength of Rule 2 and Rule 3 by dividing

the corresponding regions for Mode 1 and Mode 2 using (3.18) and (3.19)

respectively. Under Mode 1, the firing strength of Rule 2 and Rule 3 is given

by the lower MF. Hence, partitioning can be achieved from the outcomes of
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the following Zadeh AND operations :

R2 = min{EP,RN} (3.28)

R3 = min{EN,RP} (3.29)

For the regions where the IT2 fuzzy PD controller is operating in Mode

2, the following Zadeh AND operations should be used to divide the input

space :

R2 = min{EP,RN} (3.30)

R3 = min{EN,RP} (3.31)

• Step 4 : Superimpose all the partitions obtained by considering the mode

switch and Zadeh AND operations.

Similarly, the firing strength in the equation for deriving the right endpoint4Umax
j

can be specified. The procedures to derive the analytical structure of IT2 fuzzy

PD controller can be generalized in Fig. 3.5.

3.4 Derivation of the Analytical Structure of IT2

Fuzzy PD Controller

In this section, the analytical structure of the IT2 fuzzy PD controller will be

derived by following the proposed algorithms in last section.
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Figure 3.5: Flowchart of the algorithm to specify the firing strength of IT2 fuzzy
PD controller

3.4.1 Input Conditions for Left Endpoint, 4Umin
j

1. Step 1 seeks to partition the input space into regions where the firing strength

of Rule 1 (R1) and Rule 4 (R4) can be expressed mathematically.

• The firing strength of Rule 1 (R1) can be calculated via (3.24)

R1 = min{EP,RP}.

Hence, the input space is divided into three regions: R1(IC1, IC2 and

IC3) in Fig. 3.6a. In these three regions, the firing strength R1 is 0,

EP and RP respectively.
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• As the firing strength of Rule 4 is defined as (3.25)

R4 = min{EN,RN},

the input space is divided into three regions: R4(IC1, IC2 and IC3) in

Fig. 3.6b. In these three regions, the firing strength R4 is RN , 1 and

EN respectively.

2. Step 2 separates the input space into regions corresponding to Mode 1 (ML1)

and Mode 2 (ML2) operation respectively.

By superimposing the partitions derived in Fig. 3.6 (a-b), five regions are

generated: SL1, SL2, SL3, SL4 and SL5 (boundaries denoted by dashed lines)

in Fig. 3.7. Whether the IT2 fuzzy PD controller operates in Mode 1 or

Mode 2 in each of the 5 regions depends on the relative values of R1 and R4.

• Region SL1: R4 = RN and R1 = 0. Hence, R4 > R1 and according to

(3.22), an input pair in Region SL1 triggers Mode 1 (ML1) operation.

• Region SL2: R4 = 1, R1 = 0. As a result, R4 > R1 and thus the region

SL2 belongs to ML1.

• Region SL3: R4 = EN and R1 = 0. Region SL3 belongs to ML1 due to

R4 > R1.

• Region SL4: R4 = EN and R1 = RP . The red line segment in Fig. 3.7

denotes the points in SL4 where EN = RP . Hence, the red line divides

SL4 into two regions (unshaded and shaded) corresponding to each of

the operating modes. In the unshaded space, R4 > R1 so the region

belongs to ML1. Conversely, the shaded part corresponds to ML2.
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• Region SL5: R4 = RN and R1 = EP . Again, the boundary where

R4 = R1 is shown as a red line segment in Fig. 3.7. The unshaded and

shaded area in SL5 corresponds to ML1 and ML2 respectively.

3. Step 3 partitions the input space according to the firing strength of Rule 2

and Rule 3.

• The partitions due to Rule 2 and Rule 3 when the controller is working

in ML1 are specified by (3.28) and (3.29). The result of considering

the Zadeh AND operations defined by (3.28) R2 = min{EP,RN} and

(3.29) R3 = min{EN,RP} is shown as the green and blue lines in Fig.

3.8 respectively.

• Region ML2 is divided according to the firing strength of Rule 2 and

Rule 3 given by (3.30) and (3.31) i.e.

R2 = min{EP,RN}

R3 = min{EN,RP}

As shown in Fig. 3.8, these two Zadeh AND operations does not lead

to any further partitions of the region ML2.

4. Finally, the input space partitions for 4Umin
j shown in Fig. 3.9 is obtained

by superimposing all the results obtained in Steps 1–3.

By following the proposed algorithm in Fig. 3.5, the partition of the input

space for 4Umax
j shown in Fig. 3.10 can be derived. Since the output of IT2

FLS is the average of the two endpoints, the partition of the input space by IT2

fuzzy PD controller can be derived by superimposing the partition by 4Umin
j and
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(a) (b)

Figure 3.6: The partitions by rules and switch mode in 4Umin
j (a) The partition

by R
¯ 1. (b) The partition by R̄4.

4Umax
j in Fig. 3.11. The corresponding firing strengths in 35 local subregions for

4Umin
j and 4Umax

j are listed in Table 3.3.

3.4.2 The Expressions for IT2 Fuzzy PD Controller

By replacing each firing strengths in (3.14) and (3.15) with the expressions in Table

3.3 in every subregion, mathematical expressions for the two endpoints 4Umin
j

and 4Umax
j can be derived. As an example, consider the region defined by the

input conditions IC 1. The first row in Table 3.3 shows that the firing strengths

in (3.14) for 4Umin
j should be R4 = R3 = EN = − 1

2L1
E(n) + 0.5 + θ1, R2 =

RN = − 1
2L2

R(n) + 0.5− θ2, R1 = RP = 1
2L1

E(n) + 0.5− θ1. After mathematical

manipulations, the expression for 4Umin
j is shown as (3.32). A similar expression

can be obtained for 4Umax
j . As both equations are expressed in terms of E(n)
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Figure 3.7: The boundary (red line) that divides the input space into the two
operating mode in 4Umin

j

and R(n), each subregion is equivalent to a non-linear PI/PD controller.

4Umin
jIC1 =

R∗
4 ∗H4 + R∗

3 ∗H3 + R∗
2 ∗H2 + R∗

1 ∗H1

R∗
4 + R∗

3 + R∗
2 + R∗

1

=
EN ∗H4 + EN ∗H3 + RN ∗H2 + RP ∗H1

EN + EN + RN + RP

=
[− 1

2L1
E(n) + 0.5 + θ1](H3 + H4) + [− 1

2L2
R(n) + 0.5 + θ2]H2 + [ 1

2L2
R(n) + 0.5− θ2]H1

2[− 1
2L1

E(n) + 0.5 + θ1] + [− 1
2L2

R(n) + 0.5 + θ2] + [ 1
2L2

R(n) + 0.5− θ2]

=
−L2(H3 + H4)E(n) + L1(H1 −H2)R(n)

4L1L2(1 + θ1)− 2L2E(n)

+
L1L2[(0.5 + θ1)(H3 + H4) + (0.5− θ2)H1 + (0.5 + θ2)H2]

2L1L2(1 + θ1)− L2E(n)

= K∗
pE(n) + K∗

dR(n) + δ∗ (3.32)

Similarly, the relationship between the output of IT2 fuzzy PD controller and its

inputs in other subregions can be expressed into the following form:

4sUjICq = sKq
pE(n) + sKq

dR(n) + sδq (3.33)
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Figure 3.8: Partition of the input space by Rule 2 (green line), Rule 3 (blue line)
and the boundary between the two operating modes (red line) in 4Umin

j when
θ1 < θ2

Figure 3.9: Partition of the input space by the left endpoint 4Umin
j when θ1 < θ2

where 4sUjICq is the output of IC q, sKq
p is the corresponding proportional gain,

sKq
d is the derivative gain and sδq is the offset.

3.5 Characteristics of IT2 Fuzzy PD Controller

This section aims at using the analytical structure and the equivalent proportional

and derivative gains of the IT2 fuzzy PD controller, derived in previous sections,

to compare the controller with those of its T1 counterpart and to highlight in-
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Figure 3.10: Partition of the input space by the right endpoint 4Umax
j when

θ1 < θ2

Figure 3.11: Partition of the input space by the IT2 FLS when θ1 < θ2

teresting characteristics of the IT2 fuzzy PD controller. To simplify the following

investigation, the consequent sets of the IT2 and T1 fuzzy PD controllers in this

study are assumed to be H2 = H3 = 0. Theorem 3.1 proves that shifting all

consequents sets of an IT2 FLS or a T1 FLS horizontally by δ will yield an output

that is altered by δ. (A proof of Theorem 3.1 is provided in Appendix A.) Con-

sequently, the assumption that H2 = H3 = 0 does not affect the generality of the

study when the separation between the consequent sets are maintained.

Theorem 3.1 For multi-input single-output T1 FLS using the center-of-sets de-

fuzzification and IT2 FLS using the KM type-reducer and the center-of-sets de-
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fuzzification, shifting all consequent sets by δ will cause the output to be shifted by

δ.

Fig. 3.12(a) and 3.12(b) shows the antecedent sets of the T1 FLC for inputs

E(n) and R(n) used in this study. They are constructed by replacing every IT2

FS with a T1 FS such that both the IT2 and T1 FLC have the same input space.

Fig. 3.13 shows the four separate partitions for analyzing the gain characteristics

of a T1 FLC [102]. The output value of the T1 FLC may be written as:

4ujICh = kh
pE(n) + kh

dR(n) (3.34)

The proportional and derivative gains expressions (kq
p, kq

d) for the T1 fuzzy PD

controller are listed in Table 3.1.

As shown in Fig. 3.11, the input space of the IT2 fuzzy PD controller needs

to be decomposed into the 35 subregions before equivalence to nonlinear PD con-

trollers with variable gains and the offset can be established. The proportional,

derivative gains and the offset are tabulated in Table 3.4 and 3.5. By comparison,

Fig. 3.13 shows that the input space of a T1 fuzzy PD controller is only divided

into 4 subregions. The equivalent gains for the T1 FLC are tabulated in Table

3.1. Hence, it may be concluded that more subregions with special characteristics

are provided by the IT2 fuzzy PD controller at the cost of two additional inde-

pendent parameters θ1 and θ2 (Parameters P1 and P2 are related to θ1 and θ2 via

the equations : P1 = 2L1θ1, P2 = 2L2θ2). Next, four interesting properties of the

IT2 FLC will be highlighted.
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(a) (b)

Figure 3.12: (a) T1 FSs EN and EP (solid lines) as antecedent sets for the input
E(n). (b)T1 FSs RN and RP (solid lines) as antecedent sets for the input R(n).)

Figure 3.13: The partitions of the input space by T1 FLS

3.5.1 Characteristics of the Regions that Exist Only When

θ1 6= θ2

Fig. 3.11 and 3.14 contain the partition of the input space when θ1 6= θ2 and

when θ1 = θ2. By comparing the two figures, it may be concluded that θ1 6= θ2

introduces Region A. An inspection of Table 3.4 and 3.5 shows that the equivalent

proportional and derivative gains of the IT2 FLC for Region B and Region C in

Fig. 3.11 are functions of E(n) and R(n) respectively while the gains for Region

A except IC 17-20 are functions of both E(n) and R(n). In contrast, Fig. 3.13
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Table 3.1: The output of the T1 fuzzy PD controller 4uj(n) for IC 1 to IC 4

IC No. 4uj(n)

1
L1(1 + 2θ1)R(n) + L2(1 + 2θ2)E(n)

−2L2(1 + 2θ2)E(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)
H1

2
L1(1 + 2θ1)R(n) + L2(1 + 2θ2)E(n)

−2L1(1 + 2θ1)R(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)
H1

3
L1(1 + 2θ2)R(n) + L2(1 + 2θ2)E(n)

2L2(1 + 2θ2)E(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)
H1

4
L1(1 + 2θ1)R(n) + L2(1 + 2θ2)E(n)

2L1(1 + 2θ1)R(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)
H1

Table 3.2: The geometrical relationship of the input space between IT2 fuzzy PD
controller and its T1 counterpart

IC. q IC. h
1, 27, 13 1
2, 26, 14 2
3, 29, 15 3
4, 28, 14 4

and Table 3.1 indicates that the equivalent gains (kh
p , kh

d ) for a T1 FLC in Region

α are functions of one input E(n) while the equivalent gains (kh
p , kh

d ) in Region

β are functions of the other input R(n). Region A exists near the boundaries of

the partitions lines for the T1 FLC, which may be expressed mathematically as

L2(1+2θ2)E(n)+L1(1+2θ1)R(n) = 0 and L2(1+2θ2)E(n)−L1(1+2θ1)R(n) = 0.

This characteristic will first be stated formally before its significance is elucidated:

Property 1 In the IT2 fuzzy PD controller, the gains sKq
p ,

sKq
d and sδq of these

regions IC 21-25, 34 and 35 (Region A except IC 17-20 in Fig. 3.11) are functions

of both E(n) and R(n), while these gains for the other regions are functions of

only E(n) or R(n). The size of these areas increases as |θ1 − θ2| increases.

Comment : As Region A connects Region B and Region C in Fig. 3.11,

Region A whose gains are functions of both the inputs E(n) and R(n) may provide
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Figure 3.14: Partition of the input space by the IT2 FLS when θ1 = θ2

smoother transitions between Region B and Region C whose gains are functions of

E(n) and R(n) respectively. In other words, these regions make the surface of IT2

fuzzy PD controller smoother around the zero feedback error point. Consequently,

these regions may help to eliminate the overshoot despite greater control efforts

provided by the IT2 fuzzy PD controller.

3.5.2 Gains Relationship between Internal Regions and

External Regions

In this subsection, Region B and Region C in Fig. 3.11 are the study objective.

A unique property of IT2 FSs are regions where the upper or lower membership

grade remains constant at zero or unity. This characteristics enables Region B

and Region C in Fig. 3.11 to be classified into two categories:

1. internal subregions comprising IC 1 - IC4, IC 26- IC 29.

2. external subregions consisting of the other regions i.e. IC 5-IC 16 and IC

30- IC 33
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Property 2 In the IT2 fuzzy PD controller, the proportional gain of the inter-

nal subregions IC 1, 27 (IC 3, 29) is bigger than that of their adjacent external

subregion IC 13 (IC 15) while the internal subregion IC 2, 26 (IC 4,28) exhibit

bigger derivative gain than their adjacent external subregion IC 14 (IC 16).

Proof : The symmetry of the antecedent sets and consequent sets allows IC 1

and 27 to be taken as an example to illustrate this property. The observation are

sK1
p = sK13

p +
H1

8L1(1− θ1)− 4E(n)
=

H1

8L1(1 + θ1)− 4E(n)
+

H1

8L1(1− θ1)− 4E(n)

⇒ sK1
p > sK13

p > 0

sK27
p > sK1

p > sK13
p

This shows that in the direction of E(n), IC 1 and 27 exhibits bigger slope than

IC 13.

3.5.3 Comparative Output Values of IT2 Fuzzy PD Con-

troller and its T1 Counterpart

For any given input pair (E(n), R(n)) in the internal subregions, the relationship

in the output between the IT2 FLC and its T1 counterpart is the focus of this

subsection. By comparing Fig. 3.11 with Fig. 3.13, it may be observed that the

subregions ICq in the input space of IT2 fuzzy PD controller is a subset of the

subregion ICh for its T1 counterpart. Table. 3.2 list the values of ICq for the IT2

controller that make up one partition ICh for the T1 controller. By contrasting the

characteristics of subregions q in the IT2 fuzzy PD controller with the correspond-

ing subregion h in its T1 counterpart, conclusions about the relative sizes of the

output values of the IT2 and T1 controller can be established. This relationship



64

is interesting because a bigger control effort may lead to smaller rise time (faster

transient response). Since the outputs of the IT2 and T1 controllers for a given

input pair depends the equivalent gains, the study is performed by analyzing the

equivalent proportional and derivative gains of the two fuzzy controllers tabulated

in Tables 3.5, 3.4 and 3.1.

Property 3 Given any input pair in IC 1 or IC 27 (IC 3 or IC 29 due to

symmetry in the input space), the IT2 fuzzy PD controller has bigger proportional

gain than that of its T1 counterpart, while the IT2 fuzzy PD controller exhibit

bigger derivative gain than its T1 counterpart for any input pair in its subregions

IC 2 or IC 26 (IC 4 or IC 28). The differences between these gains of the IT2 FLC

and the T1 FLC increases as θ1 and θ2 increase.

Proof : It is sufficient to consider IC 1 and IC 27 (subset of IC 1 for the T1

controller) due to the symmetry of the two fuzzy PD controllers. The relationships

between the proportional gains of the IT2 fuzzy PD controller and the T1 FLC

are

sK1
p =

H1

8L1(1 + θ1)− 4E(n)
+

H1

8L1(1− θ1)− 4E(n)

> (
1

8L1 − 4E(n)
+

1

8L1 − 4E(n)
)H1 =

1

4L1 − 2E(n)
H1

≥ 1

4L1(1 + 2θ1)− 2E(n)
H1 = k1

p

sK27
p > sK1

p > k1
p

The above inequalities show the proportional gain of IT2 fuzzy PD controller in

IC 1 and IC 27 is bigger than its T1 counterpart.

For the special case when θ1 = θ2, a more rigorous result governing the output

relationships between the IT2 fuzzy PD controller and its T1 controller can be
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established. Fig. 3.14 shows the manner in which the input space is partitioned

when θ1 = θ2, while Property 2 formally states the relationship.

Property 4 Any input pair (E(n), R(n)) in IC 1–IC 4 and IC 26–IC 29 of the

IT2 fuzzy PD controller will produce an output that is bigger magnitude than

that of its T1 counterpart when θ1 = θ2; and the difference increases as θ1 and θ2

increase.

Proof : Due to the symmetry in the IT2 fuzzy PD controller and its T1 coun-

terpart, the output value property for IC 1–IC4 and IC 26–IC 29 will be illustrated

by comparing the equivalent gains expressions for IC 1 and 27 (subset of IC 1 of

the T1 counterpart). From Table 3.4, 3.5 and 3.1, the relationship between the

outputs of the two fuzzy PD controllers can be established as

4sUjIC1 = (
H1

8L1(1 + θ1)− 4E(n)
+

H1

8L1(1− θ1)− 4E(n)
)E(n)

+(
L1H1

8L1L2(1 + θ1)− 4L2E(n)
+

L1H1

8L1L2(1− θ1)− 4L2E(n)
)R(n) + δ1

= (
1

8L1L2(1 + θ1)− 4L2E(n)
+

1

8L1L2(1− θ1)− 4L2E(n)
)(L1R(n) + L2E(n))H1 + sδ1

4ujIC1 =
L1(1 + 2θ1)R(n) + L2(1 + 2θ2)E(n)

4L1L2(1 + 2θ1)(1 + 2θ2)− 2L2(1 + 2θ2)E(n)
H1

=
1

4L1L2(1 + 2θ1)− 2L2E(n)
(L1R(n) + L2E(n))H1

= (
1

8L1L2(1 + 2θ1)− 4L2E(n)
+

1

8L1L2(1 + 2θ1)− 4L2E(n)
)(L1R(n) + L2E(n))H1

Because

1

8L1L2(1− θ1)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)

1

8L1L2(1 + θ1)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)

and δ1 > 0, L1R(n) + L2E(n) > 0 in IC 1, then 4ujIC1 > 4ujIC1 > 0 and their

difference increases as θ1 increases because θ1 appears in the denominator.
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Another observation is

4sUjIC27 = (
H1

8L1(1− θ2)− 4E(n)
+

H1

8L1(1− θ1)− 4E(n)
)E(n)

+(
L1H1

8L1L2(1− θ1)− 4L2E(n)
+

L1H1

8L1L2(1− θ2)− 4L2E(n)
)R(n)

= (
1

8L1L2(1− θ1)− 4L2E(n)
+

1

8L1L2(1− θ2)− 4L2E(n)
)(L1R(n) + L2E(n))H1

Since L1R(n) + L2E(n) > 0 in IC 27 and

1

8L1L2(1− θ1)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)

1

8L1L2(1− θ2)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)

then the magnitude of the control effort provided by IT2 fuzzy PD controller for

the same input pair is bigger. Furthermore, the difference increases as θ1 and θ2

increase.

3.5.4 Discussion

Based on the results in Property 1-4, the characteristics of an IT2 FLC that may

enable it to outperform a T1 FLC by providing fast rise time and small overshoot

may be summarized as:

1. As stated in Property 1, Region A whose gains are functions of both the

inputs E(n) and R(n) connects Region B and Region C whose gains are

functions of E(n) and R(n) respectively; thus such architecture enables the

IT2 FLC to achieve smoother surface. More importantly, the area of Region

A depends on the value of |θ1 − θ2|.

2. The greater proportional and derivative gains (Property 3) may enable the

IT2 FLC to provide better disturbance rejection ability. It should be noted
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that the difference between the gains of the IT2 FLC and the T1 FLC

increases as θ1 and θ2 increase.

3. Property 4 indicates that the IT2 FLC can produce control efforts that are

larger in magnitude for certain input pairs. Greater control effort from the

IT2 FLC may decrease the rise time; the amount by which the control effort

can be enlarged depends on the value of θ1 and θ2.

Nevertheless, the trade-off between fast rise time and small overshoot still

exists. This is because θ1 and θ2 need to be large for the IT2 FLC to produce

bigger control efforts that result in fast rise time. However, a small overshoot

requires the size of Region A to be enlarged by setting a large absolute value

|θ1 − θ2|. The two conditions cannot be achieved simultaneously.

3.6 Numerical Studies

Results from a numerical study is presented here to further illustrate the above

properties of an IT2 fuzzy PD controller gained by the analysis in the previous

sections. The test bed is a coupled tank whose behavior is defined by the following

differential equations [90]:

A1
dH1

dt
= Q1 − α1

√
H1 − α3

√
H1 −H2 (3.35)

A2
dH2

dt
= −α2

√
H2 − α3

√
H1 −H2 (3.36)

where H1 and H2 are the water level of the tank 1 and 2; Q1 and Q2 are the rate

at which water is pumped into tank 1 and tank 2. The two tanks in the system

are connected by a baffle that may be raised or lowered to vary the amount of
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water that flows between them. Outlets, at the base of the two tanks, enable

water to flow out from each tank. The control task is to vary the amount of water

(Q1) that enters tank 1 in order to regulate the water level (H2) in tank 2. In the

simulation, it is assumed that the nominal plant has the following parameters :

A1 = A2 = 36.52, α1 = α2 = 5.6186, α3 = 10.

The configurations of IT2 fuzzy PI controller and T1 fuzzy PI controller are

identical to those in Section 3.2 where Kr = Ke = 1, K4U = 75. The predefined

antecedent sets of T1 fuzzy PI controller for Error(E(n)) and Rate(R(n)) are

shown in Fig. 3.15(a) and 3.15(b). The singleton consequent sets are predefined

as H2 = H3 = 0, H4 = −H1. The two parameters θError and θRate are defined as

the distance between the upper bound and the lower bound for every antecedent

sets when α-cut is 1.

Analysis in the last subsection shows that IT2 fuzzy PD controller can out-

perform T1 counterpart in rise time, overshoot and disturbance rejection. To

substantiate the theoretical study, the following three cases are simulated:

1. Case 1: The parameters of IT2 fuzzy PD controller are optimized as θError =

5, θRate = 2 and H1 = 8 through genetic algorithm with ITAE as the fit-

ness function. As shown in Fig. 3.16(a), The response obtained using the

IT2 FLC has comparative rise time with the T1 case, but exhibits smaller

overshoot and is less oscillatory. Fig. 3.16(b) shows the error versus rate

trajectory and the trajectory for IT2 FLC is much more smooth when it is

near Error = 0.

2. Case 2: In terms of rise time, these two FLCs are compared by choosing
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H1 = 0.08. With a small H1, their difference is more obvious in rise time.

Fig. 3.17(a) shows the step responses for Case 2, while the error versus rate

trajectory is shown in Fig. 3.17(b). IT2 FLC achieves bigger convergence

rate and less rise time as it can provide bigger control effort than T1 case.

3. Case 3: By keeping H1 = 8, the results for the plant with random distur-

bances are compared with those in Case 1 to show their disturbance rejection

ability. As shown in Fig .3.18(a) and 3.18(b), more oscillation is caused by

disturbance in T1 FLC while IT2 FLC exhibits similar performance with

the one in Case 1.

In terms of overshoot, rise time and disturbance rejection, IT2 FLC can outperform

T1 counterpart, which is identical to the theoretical analysis in the last subsection.

To find out how much IT2 FLC can outperform T1 case, further study is done by

gradually increasing the value of H1 and comparing the value of their ITAE. Fig.

3.19 shows that as H1 increases, the rate of ITAE reduced by IT2 FLC increases.

The increase of this rate becomes slow when H1 is increased to some big value.

Fig. 3.20 and 3.21 show the control surface of the T1 FLC and the IT2 FLC

respectively. From their difference in Fig. 3.22 it can be observed that for most of

the input pairs the IT2 FLC generates control efforts that are larger in magnitude,

which is consistent with Property 4.

3.7 Conclusion

The analytical structure of a special class of IT2 fuzzy PD and PI controllers that

uses the KM iterative algorithm for type-reduction is presented. Due to the iter-



70

ative nature of the widely adopted KM algorithm, the well-established techniques

for deriving the analytical structure of T1 FLCs cannot be applied directly. A

methodology for identifying the input space boundaries where the KM algorithm

uses a new switch point to compute the bounds of the type-reduced set is first es-

tablished. This result resolves one of the main issues hindering theoretical analysis

of IT2 FLCs that employs the KM type reducer. Based on the finding, the analyt-

ical structure of an IT2 FLC is derived by treating each input region as a T1 FLS

problem using the well-established techniques for T1 FLSs. A comparative study

of the derived analytical structure and its T1 counterpart identified four character-

istics unique to an IT2 FLC. The property that has the most practical relevance is

that an IT2 FLC can provide greater control effort and achieve smoother control

surface simultaneously. This result provides initial theoretical basis for explaining

the ability of an IT2 FLC to alleviate the trade-off between fast rise time and

small overshoot, which was derived from experimental studies. Having developed

the analytical structure for a simple IT2 FLC, a future research direction is to

relax the design constraints and study the properties of more complex IT2 FLCs.
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Figure 3.15: IT2 antecedent FSs: (a) Antecedent sets of Error. (b) Antecedent
sets of Rate. (The dashed line for T1 FLS, the dotted line for IT2 FLS)
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Figure 3.16: Case 1 (a) The output of the system using T1 FLC and IT2 FLC
(The dashed line for T1 FLC, the dotted line for IT2 FLC). (b)The trajectory of
Error and Rate(Red line for IT2 FLC, Blue line for T1 FLC).)
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Figure 3.17: Case 2 (a) The output of the system using T1 FLC and IT2 FLC
(The dashed line for T1 FLC, the dotted line for IT2 FLC). (b)The trajectory of
Error and Rate(Red line for IT2 FLC, Blue line for T1 FLC).)
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Figure 3.18: Case 3 (a) The output of the system using T1 FLC and IT2 FLC
(The dashed line for T1 FLC, the dotted line for IT2 FLC). (b)The trajectory of
Error and Rate(Red line for IT2 FLC, Blue line for T1 FLC).)



75

0 0.5 1 1.5 2
75

80

85

90

95

100

105

H
1

IT
A

E 
di

ff
er

en
ce

 p
er

ce
nt

ag
e 

(%
)

Figure 3.19: The ITAE difference percentage: ITAE for T1 FLC−ITAE for IT2 FLC
ITAE for T1 FLC

×100%

Figure 3.20: The control surface produced by the T1 FLC (H1 = 8)
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Table 3.3: The Firing strengths of four rules in 4Umin
j and 4Umax

j

IC No. 4Umin
j 4Umax

j
Rule 4 Rule 3 Rule 2 Rule 1 Rule 4 Rule 3 Rule 2 Rule 1

1 EN EN RN RP EN EN RN RP
2 RN EN RN EP RN EN RN EP
3 RN RP EP EP RN RP EP EP
4 EN RP EP RP EN RP EP RP
5 EN EN RN RP 0 0 0 1
6 RN EN RN EP 0 0 0 1
7 RN EN 0 0 0 EN 0 EP
8 RN RP 0 0 0 RP 0 EP
9 1 0 0 0 RN RP EP EP
10 1 0 0 0 EN RP EP RP
11 EN 0 EP 0 0 0 EP RP
12 EN 0 RN 0 0 0 RN RP
13 EN EN RN RP 0 0 RNL RP
14 RN EN RN EP 0 EN 0 EP
15 RN RP 0 0 RN RP EP EP
16 EN 0 EP 0 EN RP EP RP
17 EN EN RN RP 0 EN 0 EP
18 RN RP 0 EP 0 RP 0 EP
19 EN 0 EP 0 RN RP EP EP
20 EN 0 RN 0 EN 0 RN RP
21 EN EN RN RP RN EN RN EP
22 RN RP RN EP RN RP RN EP
23 EN RP EP RP RN RP EP EP
24 EN RP RN RP EN RP RN RP
25 EN RP RN RP RN RP RN EP
26 RN EN RN EP RN EN RN EP
27 EN EN RN RP EN EN RN RP
28 EN RP EP RP EN RP EP RP
29 RN RP EP EP RN RP EP EP
30 RN RP 0 0 RN RP 0 EP
31 EN 0 EP 0 EN 0 EP RP
32 EN 0 RN RP 0 0 RN RP
33 RN EN 0 EP 0 EN 0 EP
34 EN EN RN RP RN EN RN EP
35 EN RP EP RP RN RP EP EP
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Table 3.4: The gains for the external subregions

IC No. sKp
sKd

sδ

5 H1

8L1(1+θ1)−4E(n)
L1H1

8L1L2(1+θ1)−4L2E(n)
− L1(θ1+θ2)H1

4L1(1+θ1)−2E(n)
+ 0.5H1

6 L2H1

8L1L2(1+θ2)−4L1R(n)
H1

8L2(1+θ2)−4R(n)
− L2(θ1+θ2)H1

4L2(1+θ2)−2R(n)
+ 0.5H1

7
H1

4L1

L1H1

4L1L2(1−θ1+θ2)−2L1R(n)−2L2E(n)
L1L2(0.5+θ2)H4

2L1L2(1−θ1+θ2)−L1R(n)−2L2E(n)

+0.5(0.5 + θ1)H1

8
L2H1

4L1L2(1−θ2+θ1)+2L1R(n)+2L2E(n)
H1

4L2

L1L2(0.5+θ1)H1

2L1L2(1−θ2+θ1)+L1R(n)+L2E(n)

+0.5(0.5 + θ2)H4

9 H1

8L1(1+θ1)+4E(n)
L1H1

8L1L2(1+θ1)+4L2E(n)
L1H1(θ1+θ2)

4L1(1+θ1)+2E(n)
+ 0.5H4

10 H1L2

8L1L2(1+θ2)+4L1R(n)
H1

8L2(1+θ2)+4R(n)
L2(θ1+θ2)H1

4L2(1+θ2)+2R(n)
+ 0.5H4

11
H1

4L1

L1H1

4L1L2(1−θ1+θ2)+2L2E(n)+2L1R(n)
L1L2(0.5+θ2)H1

2L1L2(1−θ1+θ2)+L2E(n)+L1R(n)

+0.5(0.5 + θ1)H4

12
L2H1

4L1L2(1+θ1−θ2)−2L2E(n)−2L1R(n)
H1

4L2

L1L2(0.5+θ1)H4

2L1L2(1+θ1−θ2)−L2E(n)−L1R(n)

+0.5(0.5 + θ2)H1

13
H1

8L1(1+θ1)−4E(n)
L1H1

8L1L2(1+θ1)−4L2E(n)
+ H1

4L2
− L1(θ1+θ2)H1

4L1(1+θ1)−2E(n)

+0.5(0.5 + θ2)H1

14
L2H1

8L1L2(1+θ2)−4L1R(n)
+ H1

4L1

H1

8L2(1+θ2)−4R(n)
− L2(θ1+θ2)H1

4L2(1+θ2)−2R(n)

+0.5(0.5 + θ1)H1

15
H1

8L1(1+θ1)+4E(n)
L1H1

8L1L2(1+θ1)+4L2E(n)
+ H1

4L2

L1(θ1+θ2)H1

4L1(1+θ1)+2E(n)

+0.5(0.5 + θ2)H4

16
L2H1

8L1L2(1+θ2)+4L1R(n)
+ H1

4L1

H1

8L2(1+θ2)+4R(n)
L2θ1+θ2)H1

4L2(1+θ2)+2R(n)

+0.5(0.5 + θ1)H4

17
H1

4L1
+ H1

8L1(1+θ1)−4E(n)
L1H1

8L1L2(1+θ1)−4L2E(n)
− L1(θ1+θ2)H1

4L1(1+θ1)−2E(n)

+0.5(0.5 + θ1)H1

18
H1

4L1(1.5−θ1)+2E(n)
+ L1H1

4L1L2(1.5−θ1)+2L2E(n)
L1L2(0.5+θ1)H1

2L1L2(1−θ2+θ1)+L1R(n)+L2E(n)
L2H1

4L1L2(1−θ2+θ1)+2L1R(n)+2L2E(n)
+ L1H4(θ1+θ2)

2L1(1.5−θ1)+E(n)

19
H1

8L1(1+θ1)+4E(n)
+ H1

4L1

L1H1

8L1L2(1+θ1)+4L2E(n)
L1(θ1+θ2)H1

4L1(1+θ1)+2E(n)

+0.5(0.5 + θ1)H4

20
H1

4L1(1.5−θ1)−2E(n)
+ L1H1

4L1L2(1.5−θ1)−2L2E(n)
L1L2(0.5+θ1)H4

2L1L2(1+θ1−θ2)−L2E(n)−L1R(n)
L2H1

4L1L2(1+θ1−θ2)−2L2E(n)−2L1R(n)
+ L1(θ1+θ2)H1

2L1(1.5−θ1)−E(n)

30
H1

4L1(1.5+θ1−2θ2)+2E(n)
L1H1

4L1L2(1.5+θ1−2θ2)+2L2E(n)
+ H1

4L2

L1(θ1+θ2)H1

2L1(1.5+θ1−2θ2)+E(n)

+0.5(0.5 + θ2)H4

31
H1

4L1
+ L2H1

4L1L2(2.5−2θ1+θ2)+2L1R(n)
H1

4L2(2.5−2θ1+θ2)+R(n)
L2(θ1+θ2)H1

2L2(2.5−2θ1+θ2)+R(n)

+0.5(0.5 + θ1)H4

32
H1

4L1(1.5+θ1−2θ2)−2E(n)
L1H1

4L1L2(1.5+θ1−2θ2)−2L2E(n)
+ H1

4L2

L1H4(θ1+θ2)
2L1(1.5+θ1−2θ2)−E(n)

+0.5(0.5 + θ2)H1

33
L2H1

4L1L2(1.5−2θ1+θ2)−2L1R(n)
+ H1

4L1

L2H1

4L1L2(1.5−2θ1+θ2)−2L1R(n)
L2H4(θ1+θ2)

2L2(1.5−2θ1+θ2)−R(n)

+0.5(0.5 + θ1)H1
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Table 3.5: The gains for the internal subregions

IC No. sKp
sKd

sδ

1
H1

8L1(1+θ1)−4E(n)
L1H1

8L1L2(1+θ1)−4L2E(n)
L1(θ1+θ2)H4

4L1(1+θ1)−2E(n)

+ H1

8L1(1−θ1)−4E(n)
+ L1H1

8L1L2(1−θ1)−4L2E(n)
+ L1(θ1+θ2)H1

4L1(1−θ1)−2E(n)

2
L2H1

8L1L2(1+θ2)−4L1R(n)
H1

8L2(1+θ2)−4R(n)
L2(θ1+θ2)H4

4L2(1+θ2)−2R(n)

+ L2H1

8L1L2(1−θ2)−4L1R(n)
+ H1

8L1L2(1−θ2)−4R(n)
+ L2(θ1+θ2)H1

4L2(1−θ2)−2R(n)

3
H1

8L1(1−θ1)+4E(n)
L1H1

8L1L2(1−θ1)+2L2E(n)
L1(θ1+θ2)H4

4L1(1−θ1)+2E(n)

+ H1

8L1(1+θ1)+4E(n)
+ L1H1

8L1L2(1+θ1)+4l2E(n)
+ L1(θ1+θ2)H1

4L1(1+θ1)+2E(n)

4
L2H1

8L1L2(1−θ2)+4L1R(n)
H1

8L2(1−θ2)+4R(n)
L2(θ1+θ2)H4

4L2(1−θ2)+2R(n)

+ L2H1

8L1L2(1+θ2)+4L1R(n)
+ H1

8L2(1+θ2)+4R(n)
+ L2(θ1+θ2)H1

4L2(1+θ2)+2R(n)

21
H1

8L1(1+θ1)−4E(n)
L1H1

8L1L2(1+θ1)−4L2E(n)
L1(θ1+θ2)H4

4L1(1+θ1)−2E(n)

+ L2H1

8L1L2(1−θ2)−4L1R(n)
+ H1

8L1L2(1−θ2)−4R(n)
+ L2(θ1+θ2)H1

4L2(1−θ2)−2R(n)

22
L2H1

4L1L2(2−θ1−θ2)+2L2E(n)−2L1R(n)
L1H1

4L1L2(2−θ1−θ2)+2L2E(n)−2L1R(n)
L1L2(θ1+θ2)H4

2L1L2(2−θ1−θ2)+L2E(n)−L1R(n)

+ L2H1

4L1L2(2−3θ2+θ1)+2L2E(n)−2L1R(n)
+ L1H1

4L1L2(2−3θ2+θ1)+2L2E(n)−2L1R(n)
+ L1L2(θ1+θ2)H1

2L1L2(2−3θ2+θ1)+L2E(n)−L1R(n)

23
L2H1

8L1L2(1−θ2)+4L1R(n)
H1

8L2(1−θ2)+4R(n)
L2(θ1+θ2)H4

4L2(1−θ2)+2R(n)

+ H1

8L1(1+θ1)+4E(n)
+ L1H1

8L1L2(1+θ1)+4l2E(n)
+ L1(θ1+θ2)H1

4L1(1+θ1)+2E(n)

24
L2H1

4L1L2(2+θ1−3θ2)+2L1R(n)−2L2E(n)
L1H1

4L1L2(2+θ1−3θ2)+2L1R(n)−2L2E(n)
L1L2(θ1+θ2)H4

2L1L2(2+θ1−3θ2)+L1R(n)−L2E(n)

+ L2H1

4L1L2(2−θ1−θ2)+2L1R(n)−2L2E(n)
+ L1H1

4L1L2(2−θ1−θ2)+2L1R(n)−2L2E(n)
+ L1L2(θ1+θ2)H1

2L1L2(2−θ1−θ2)+L1R(n)−L2E(n)

25
L2H1

4L1L2(2+θ1−3θ2)+2L1R(n)−2L2E(n)
L1H1

4L1L2(2+θ1−3θ2)+2L1R(n)−2L2E(n)
L1L2(θ1+θ2)H4

2L1L2(2+θ1−3θ2)+L1R(n)−L2E(n)

+ L2H1

4L1L2(2−3θ2+θ1)+2L2E(n)−2L1R(n)
+ L1H1

4L1L2(2−3θ2+θ1)+2L2E(n)−2L1R(n)
+ L1L2(θ1+θ2)H1

2L1L2(2−3θ2+θ1)+L2E(n)−L1R(n)

26
L2H1

8L1L2(1−θ1)−4L1R(n)
L1H1

8L1L2(1−θ1)−4L1R(n)
L2(θ1+θ2)H4

4L2(1−θ1)−2R(n)

+ L2H1

8L1L2(1−θ2)−4L1R(n)
+ H1

8L1L2(1−θ2)−4R(n)
+ L2(θ1+θ2)H1

4L2(1−θ2)−2R(n)

27
H1

8L1(1−θ2)−4E(n)
L1H1

8L1L2(1−θ2)−4L2E(n)
L1(θ1+θ2)H4

4L1(1−θ2)−2E(n)

+ H1

8L1(1−θ1)−4E(n)
+ L1H1

8L1L2(1−θ1)−4L2E(n)
+ L1(θ1+θ2)H1

4L1(1−θ1)−2E(n)

28
L2H1

8L1L2(1−θ2)+4L1R(n)
H1

8L2(1−θ2)+4R(n)
L2(θ1+θ2)H4

4L2(1−θ2)+2R(n)

+ L2H1

8L1L2(1−θ1)+4L1R(n)
+ H1

8L2(1−θ1)+4R(n)
+ L2(θ1+θ2)H1

4L2(1−θ1)+2R(n)

29
H1

8L1(1−θ1)+4E(n)
L1H1

8L1L2(1−θ1)+2L2E(n)
L1(θ1+θ2)H4

4L1(1−θ1)+2E(n)

+ L1H1

8L1L2(1−θ2)+4L2E(n)
+ H1

8L1(1−θ2)+4E(n)
+ L1(θ1+θ2)H1

4L1(1−θ2)+2E(n)

34
H1

8L1(1−θ2)−4E(n)
L1H1

8L1L2(1−θ2)−4L2E(n)
L1(θ1+θ2)H4

4L1(1−θ2)−2E(n)

+ L2H1

8L1L2(1−θ2)−4L1R(n)
+ H1

8L1L2(1−θ2)−4R(n)
+ L2(θ1+θ2)H1

4L2(1−θ2)−2R(n)

35
L2H1

8L1L2(1−θ2)+4L1R(n)
H1

8L2(1−θ2)+4R(n)
L2(θ1+θ2)H4

4L2(1−θ2)+2R(n)

+ L1H1

8L1L2(1−θ2)+4L2E(n)
+ H1

8L1(1−θ2)+4E(n)
+ L1(θ1+θ2)H1

4L1(1−θ2)+2E(n)
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Figure 3.21: The control surface produced by the IT2 FLC (H1 = 8)

Figure 3.22: The surface difference between the IT2 FLC and the T1 FLC (H1 = 8)
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Chapter 4

Analytical Structure and

Characteristics of Non-symmetric

Karnik-Mendel Type-Reduced

Interval Type-2 Fuzzy PI and PD

Controllers

Analytical structure is an efficient method of establishing the input-output rela-

tionship of a fuzzy logic system. Chapter 3 established the analytical structure for

a class of symmetric interval type-2 (IT2) fuzzy PD/ PI controller and addressed

the potential advantages of the IT2 fuzzy logic controller (FLC) over the type-1

(T1) FLC by identifying four interesting properties using the derived analytical

structure of the symmetric IT2 FLC. However, the results reported in Chapter 3

are limited to the class of symmetric IT2 FLC. To overcome this limitation, this
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chapter considers a class of non-symmetric IT2 fuzzy PD / PI controller. This

chapter will establish the analytical structure of this class of non-symmetric IT2

fuzzy controller, examine whether the four properties of the symmetric IT2 FLC

still hold true, and establish whether there is any unique characteristic of the

non-symmetric IT2 FLC existing.

The following parts of this chapter are organized as: Section I describes the

configurations of the non-symmetric IT2 fuzzy PD controller. Section II presents

the algorithm to derive their analytical structure followed by the detailed deriva-

tion of the analytical structure of IT2 FLCs in Section III. Section IV presents

results from a comparative study between non-symmetric IT2 fuzzy PD controller

and its T1 counterpart to highlight its unique characteristics.

4.1 Configuration of Non-symmetric Interval T2

Fuzzy PD and PI Controller

The non-symmetric IT2 fuzzy PD controller considered in this chapter has similar

structure as the symmetric IT2 fuzzy controller of Chapter 3. They share the

same inputs, output, rule base and antecedent sets. The unique difference between

the non-symmetric IT2 fuzzy controller and the symmetric one is that the non-

symmetric IT2 fuzzy controller uses four different fuzzy sets in the consequent

part of the fuzzy rules in Fig. 4.2, while the symmetric IT2 fuzzy controller has

three.

As shown in Fig. 4.1, the notations of the non-symmetric IT2 fuzzy controller

are the same with the symmetric IT2 FLC in Chapter 3 for ease of illustration.
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For any given input pair (E(n), R(n)), the firing sets Ri, i = 1, 2, 3, 4 for Rule 1-4

are computed as follows:

R1 = [R1, R1] = [min(EP,RP), min(EP,RP)] for4 U(n) = H1 (4.1)

R2 = [R2, R2] = [min(EP,RN), min(EP,RN)] for4 U(n) = H2 (4.2)

R3 = [R3, R3] = [min(EN,RP), min(EN,RP)] for4 U(n) = H3 (4.3)

R4 = [R4, R4] = [min(EN,RN), min(EN,RN)] for4 U(n) = H4 (4.4)

Then the endpoint of the type-reduced set 4Umin
j and 4Umax

j can be expressed

as [54]

4Umin
j =

∑L−1
i=1 RiHi +

∑4
i=L RiHi∑L−1

i=1 Ri +
∑4

i=L Ri

(4.5)

4Umax
j =

∑R−1
i=1 RiHi +

∑4
i=R RiHi∑R−1

i=1 Ri +
∑4

i=R Ri

(4.6)

where L and R are the left and right switch point satisfying

HL ≤ 4Umin
j < HL−1 (4.7)

HR ≤ 4Umax
j < HR−1 (4.8)

The position of the switch point L and R depend on the values of the singleton

consequent sets. Hence, unlike T1 fuzzy controller where the partitions of the

input space is independent of the consequent sets, there is a need for the following

assumptions in order to simplify the derivation of the analytical structure of IT2

fuzzy PD controller :

The four singleton consequent sets H4, H3, H2, H1 are equally spaced. Further,

it is assumed that H4 < H3 < H2 < H1, which is shown in Fig. 4.2.
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(a) (b)

Figure 4.1: IT2 antecedent FSs: (a) IT2 FSs EN and EP for the input E(n)
(P1 = 2L1θ1). (b) IT2 FSs RN and RP for the input R(n) (P2 = 2L2θ2).

Figure 4.2: Singleton consequent fuzzy sets of non-symmetric IT2 fuzzy PD con-
troller

4.2 Algorithms to Derive the Analytical Struc-

ture of non-symmetric IT2 Fuzzy PD Con-

trollers

The analytical structure for a FLS is to establish the mathematical expressions

relating the output and the inputs. Similar to the case of a T1 FLC, the main

concept used to determine the input-output relationship in an IT2 fuzzy PD con-

troller is to specify the firing strength by dividing the input space into regions and

to replace each firing strength with its corresponding mathematical expression.

For an IT2 FLC, the key step is to identify equations for each firing strength that

should be used to calculate the endpoints 4Umin
j and 4Umax

j via (4.5) and (4.6).
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4.2.1 General Idea for Deriving Mathematical Expressions

of Each Firing Strength

Eq. (4.5) and (4.6) show that each firing strength Ri for 4Umin
j and 4Umax

j can

be the lower bound or the upper bound of the corresponding firing set [Ri, Ri]

only. Whether the lower bound Ri or the upper bound Ri is used as the firing

strength is determined by the position of the switch points L and R. Once the

position of the switch point L and R are known, the endpoints 4Umin
j and 4Umax

j

can be expressed into an embedded T1 FLS and each of their firing strength, Ri,

can be specified by considering the Zadeh AND operation of Ri or Ri. Hence, the

key step of specifying each firing strength Ri is to identify each possible position

of the switch point L and R by dividing the input space into parts, each of which

corresponds to a position of switch point and an embedded T1 FLS.

Since deriving the mathematical expressions for 4Umin
j is similar to that of

4Umax
j , 4Umin

j is taken as an example for illustration. (4.5) indicates that the

switch point L must be positioned at one of the three singleton consequent sets

and thus L can assume one of the three values i.e. L = {4, 3, 2}. Each value of L

corresponds to an unique embedded T1 FLS used to calculate 4Umin
j . Based on

(4.5) and (4.8), the embedded T1 FLS and the output condition corresponding to
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each value of the switch point L may be established as follows:

Mode 1 : When H4 ≤ 4Umin
j ≤ H3 ⇔ L = 4,

4Umin
j = 4Umin

j1 =
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

(4.9)

Mode 2 : When H3 ≤ 4Umin
j ≤ H2 ⇔ L = 3

4Umin
j = 4Umin

j2 =
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

(4.10)

Mode 3 : When H2 ≤ 4Umin
j ≤ H1 ⇔ L = 2

4Umin
j = 4Umin

j3 =
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

(4.11)

To identify when the three embedded T1 FLSs in (4.9)-(4.11) are respectively used

as the left endpoint 4Umin
j in the input space, the input conditions for each of

them may be established as follows by analyzing the output conditions for each

embedded T1 FLSs, i.e. Hi+1 ≤ 4Umin
j ≤ Hi, i = 1, 2, 3:

1. The condition when the switch point changes from the position of L = 4 to

L = 3 and vice versa can be established as

4Umin
j = 4Umin

j1 = 4Umin
j2 = H3 (4.12)

By replacing 4Umin
j1 and 4Umin

j2 with the expressions (4.9) and (4.10), the

above equation may be written as

R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

=
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

= H3

⇔ R4(H4 −H3) = R2(H3 −H2) + 2R1(H3 −H1) (4.13)

Because of the assumption that the four consequent sets are equally spaced

and H4 < H2 < H3 < H1, the condition above may be reduced to

R4 = R2 + 2R1 (4.14)
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Further, the input subregion for Mode 1 satisfies the following inequalities:

4Umin
j = 4Umin

j1 ≤ H3 ⇔ R4 ≥ R2 + 2R1 (4.15)

and the subregion for Mode 2 satisfies the following inequalities:

4Umin
j = 4Umin

j2 ≥ H3 ⇔ R4 ≤ R2 + 2R1 (4.16)

2. The condition when the switch point changes from the position of L = 3 to

L = 2 and vice versa can be established as

4Umin
j = 4Umin

j2 = 4Umin
j3 = H2 (4.17)

By replacing4Umin
j2 and4Umin

j3 with the corresponding expression in (4.10)-

(4.11), the above equation may be written as

R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

=
R4 ∗H4 + R3 ∗H3 + R2 ∗H2 + R1 ∗H1

R4 + R3 + R2 + R1

= H3

⇔ R4(H4 −H2) + R3(H3 −H2) = R1(H2 −H1) (4.18)

The assumptions that the four singleton consequent sets are equally spaced

and H4 < H3 < H2 < H1 reduce the condition established above to

2R4 + R3 = R1 (4.19)

Further, the subregion in the input space for Mode 2 satisfies the following

equality:

4Umin
j = 4Umin

j1 ≤ H2 ⇔ 2R4 + R3 ≥ R1 (4.20)

and the subregion for Mode 3 satisfy the following inequalities:

4Umin
j = 4Umin

j3 ≥ H2 ⇔ 2R4 + R3 ≤ R1 (4.21)
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From the input conditions (4.15)-(4.16) and (4.20)-(4.21), the following can be

found:

1. The regions in the input space where the left endpoint 4Umin
j is operating

at Mode 1 and Mode 2 satisfy the condition (4.15) and (4.16), respectively.

The subregions for Mode 3 satisfy (4.21), i. e. 2R4 + R3 ≤ R1, and thus it

can be concluded that in the subregions for Mode 3, the inequality (4.16),

i. e. R4 ≤ R2 + 2R1, must hold true because all Ri, Ri, i = 1, 2, 3, 4 are

nonnegative. Since the subregions operating in Mode 1 satisfy (4.15), i.e.

R4 ≥ R2 + 2R1, while those for Mode 2 and 3 satisfy (4.16), i. e. R4 ≤

R2 + 2R1, the subregion where the left endpoint 4Umin
j operates in Mode

1 can be identified using (4.15) due to the contradiction between (4.15) and

(4.16).

2. Similarity, the regions which correspond to Mode 2 and Mode 3 satisfy (4.20)

and (4.21), respectively. The region for Mode 1 in the input space also

satisfies the inequality (4.15), i.e. R4 ≥ R2 + 2R1, and thus they must

satisfy (4.20), i.e. 2R4 + R3 ≥ R1. Since the subregions that correspond to

Mode 3 satisfy (4.21) while the subregions for Mode 1 and Mode 2 satisfy

(4.20), the subregion for Mode 3 can be identified using the inequality (4.21).

In summary, the regions in the input space that correspond to Mode 1 and 3 can

be identified according to (4.15) and (4.21), respectively. The other region in the

input space corresponds to Mode 2.
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4.2.2 The Algorithm for Deriving Mathematical Expres-

sions of Each Firing Strength

Based on the general idea for specifying each firing strength in Section 4.2.1, this

subsection will present an algorithm for deriving mathematical expressions of each

firing strength.

From (4.9)-(4.11), the following properties of the firing strength for 4Umin
j can

be observed:

1. The weight associated with H1 is always the lower bound of the firing set

for Rule 1. Similarly, H4 is weighted by the upper bound of the firing set

for Rule 4. Consequently, the weight on H1 and H4 is independent of the

switch points L.

2. In Mode 1, H3 is weighted by the lower bound R3, while the corresponding

upper bounds R3 is used to weight H3 in Mode 2 and 3. On the other hand,

the lower bound R2 weights H2 in Mode 1 and 2, while in Mode 3 H2 is

weighted by the corresponding upper bound R2.

The first property shows that the firing strength of Rule 1 and Rule 4 used to

calculate 4Umin
j is independent of the switch point L, and the firing strength of

Rule 1 and Rule 4 is always governed by the lower and upper bound of the firing

set, i.e. R1 = R1, R4 = R4. Therefore, the first step in partitioning the input

space in order to derive closed form firing level is performed by considering the

outcomes of Zadeh AND operations (minimum operator) for Rule 1 and Rule 4.

The weights associated with H2 and H3 can be the lower or upper bound of their

corresponding firing set, depending on which embedded T1 FLS in (4.9)-(4.11)



89

dominates the sub-region. Hence, the weights for H2 and H3 can not be specified

before the subregions for each mode are identified to clarify which bound of the

firing sets for Rule 2 and Rule 3 should be used to weight H2 and H3.

As discussed in Section 4.2.1, the regions for Mode 1 and Mode 3 can be

identified using (4.15) and (4.21). (4.15) indicates that whether the left endpoint

4Umin
j is operating at Mode 1 depends on the relative value of R1, R2 and R4.

Similarly, (4.21) indicates that whether the left endpoint 4Umin
j is operating at

Mode 3 depends on the relative value of R1, R3 and R4. To identify the regions

for Mode 1 and Mode 3 using (4.15) and (4.21), the following strategies will be

used in the second step:

• The region for Mode 1 : The mathematical expression of R2 is first obtained

by considering the following Zadeh AND operation in the whole input space:

R2 = min(EP,RN) (4.22)

Then the subregion that correspond to Mode 1 can be identified by exam-

ining the relative value of R1, R2 and R4 via (4.15).

• The region for Mode 3 : The mathematical equations for R3 is first derived

by considering the corresponding Zadeh operation:

R3 = min(EN,RP) (4.23)

Then the subregions for Mode 3 may be identified by examining the relative

value of R1, R3 and R4 according to (4.21).

Once the regions for Mode 1 and Mode 3 are respectively identified, the firing

strength for Rule 2 and Rule 3 may also be mathematically expressed by consider-
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ing the corresponding Zadeh AND operations in the subregions. In summary, the

proposed algorithm to derive the mathematical expression of the firing strength

for 4Umin
j may be presented as:

• Step 1 : The firing strength of Rule 1 (R1) and Rule 4 (R4) can be specified

by dividing the input space via the outcomes of Zadeh AND operations

(minimum operator) for Rule 1 and Rule 4 i.e.

R1 = R1 = min{EP,RP} (4.24)

R4 = R4 = min{EN,RN} (4.25)

• Step 2 : This step is to identify the regions in the input space that correspond

to Mode 1 and Mode 3 respectively. Then the other region must correspond

to Mode 2.

– Step 2.1 : The mathematical expressions for R2 can be derived by

dividing the input space via the corresponding Zadeh AND operation:

R2 = min(EP,RN) (4.26)

The partitions obtained using R1, R4 in Step 1 and R2 are further ex-

amined to find out the group for Mode 1 (ML1) satisfying the following

inequality (4.15):

Mode 1 : R4 ≥ R2 + 2R1

– Step 2.2 : The mathematical expression for R3 can be specified by

dividing the input space via the corresponding Zadeh AND operation:

R3 = min(EN,RP) (4.27)
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The relative values of R4, R1 obtained in Step 1 and R3 are examined

to find out the group for Mode 3 (ML3) which satisfies the inequality

(4.21):

Mode 3: 2R4 + R3 ≤ R1

• Step 3 : In Step 3, the firing strength associated with Rule 2 and 3 can be

specified via the corresponding Zadeh AND operation.

1. Step 3.1 : Since Step 2.1 divides the whole input space into two parts:

the group ML1 for Mode 1 and the other region for Mode 2 and 3, the

firing strength associated with Rule 3 can be respectively specified as

follows:

In the group ML1, H3 is weighted by its lower bound R3. By considering

the Zadeh AND operation the firing strength for Rule 3 may be specified

as

R3 = R3 = min{EN,RP} (4.28)

In the other regions for Mode 2 and Mode 3, the corresponding upper

bound R3 weights H3 and thus the firing strength for Rule 3 can be

specified as

R3 = R3 = min{EN,RP} (4.29)

2. Step 3.2 : The whole input space is divided into two parts in Step 2.2:

the group ML3 for Mode 3 and the other region for Mode 1 and Mode

2. Therefore, the firing strength for Rule 2 can be specified by using

Zadeh AND operation to divide the input space as follows:
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The upper bound R2 weights H2 in the region ML3. The regions ML3

is divided by the Zadeh AND operation as

R2 = R2 = min{EP,RN} (4.30)

In the other regions, H2 is weighted by the corresponding lower bound

R2. The Zadeh AND operation divides the regions as

R2 = R2 = min{EP,RN} (4.31)

• Step 4 : Superimpose all the partitions obtained by considering the mode

switch and Zadeh AND operations.

Similarly, the firing strength for the right endpoint 4Umax
j can be specified. The

procedures to derive the analytical structure of IT2 fuzzy PD controller can be

summarized in Fig. 4.3.

4.3 Derivation of the Analytical Structure of non-

symmetric IT2 Fuzzy PD Controller

By following the proposed algorithm presented in the last section, the analytical

structure of the non-symmetric fuzzy PD controller will be derived in this section.

4.3.1 The Expressions of the Firing Strength for 4Umin
j

and 4Umax
j

The firing strength for the left endpoint 4Umin
j can be specified by following the

proposed algorithm in Section 4.2.2 as follows:
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Figure 4.3: Flowchart of the algorithm to specify the firing strength of the non-
symmetric IT2 fuzzy PD controller

1. Step 1 is to mathematically express the firing strength for Rule 1 (R1) and

Rule 4 (R4) by dividing the input space into regions.

• The firing strength of Rule 1 (R1) can be calculated via (4.24)

R1 = R1 = min{EP,RP}.

Hence, the input space is divided into three regions: R1(IC1, IC2 and

IC3) in Fig. 4.4a. In these three regions, the firing strength R1 is 0,

EP and RP respectively.
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(a) (b)

(c) (d)

Figure 4.4: Partition of the input space by (a) R̄4. (b) R
¯ 1. (c) R

¯ 2. (d) The
superimposition of R̄4, R

¯ 1 and R
¯ 2.
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Figure 4.5: The region below the red line where the embedded T1 FLS in Mode 1
is used as 4Umin

j

• As the firing strength of Rule 4 is defined as (4.25)

R4 = R4 = min{EN,RN}

the input space is divided into three regions: R4(IC1, IC2 and IC3) in

Fig. 4.4b. In these three regions, the firing strength R4 is RN , 1 and

EN respectively.

2. Step 2 is to sperate the input space into the three groups where the three

embedded T1 FLSs in (4.9)-(4.11) are respectively used as the left endpoint

4Umin
j .

(a) In Step 2.1 The lower bound R2 can be specified in the whole input

space by considering the corresponding Zadeh operation:

R2 = min(EP,RN)

the input space is divided into three parts: R2 (IC1, IC2 and IC3) in

Fig. 4.4(d). In these regions, R2 is 0, RN and EP , respectively.



96

(a) (b)

(c) (d)

Figure 4.6: Partition of the input space by (a) R̄4 (b) R
¯ 1 (c) R̄3. (b) The super-

imposition of R̄4, R
¯ 1 and R̄3.
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Figure 4.7: The region above the left red line where the embedded T1 FLS in
Mode 3 is used as 4Umin

j

Figure 4.8: The partition of the input space for the left endpoint 4Umin
j

By superimposing the partitions derived in Fig. 4.4(a-c), nine regions

in Fig. 4.4(d) are generated: S1
L1-S

1
L9. Whether the IT2 fuzzy PD

controller operates in Mode 1 (ML1) depends on the relative values of

R4, R1 and R2.

• Region S1
L1: R2 = R1 = 0 and R4 > 0. Hence, R4 > R2 + 2R1 and

thus for any input pair in Region S1
L1, the IT2 fuzzy PD controller

is operating in Mode 1. (SL1 ∈ ML1)

• Region S1
L2: R4 = RN, R2 = 0, R1 = EP . The inequality (4.15)
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Figure 4.9: The partition of the input space for the right endpoint 4Umax
j

Figure 4.10: The partition of the input space for the IT2 FLC

can be simplified into RN ≥ 2EP . As shown in Fig. 4.5, the

condition RN = 2EP is denoted by the red line EG.

• Region S1
L3: R4 = EN,R2 = 0, R1 = RP . The fact EN < RN and

RN < RP in Region S1
L3 lead to EN < RP . Hence, in Region S1

L3,

the property R4 < R2 +2R1 holds and the IT2 fuzzy PD controller

operates in Mode 2 or 3.

• Region S1
L4: R4 = RN, R2 = RN,R1 = EP . The inequality (4.15)

leads to RN ≥ RN + 2EP which is the left side of the red line IJ

in Fig.4.5.

• Region S1
L5: R4 = RN, R2 = EP,R1 = EP and then the condition
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(4.15) can be simplified into RN > 3EP . The line EF includes all

input pairs where RN = 3EP holds in Region SL5.

• Region S1
L6: R4 = EN,R2 = EP,R1 = RP . The condition in

(4.15) leads to EN ≥ EP +2RP . The boundary EN = EP +2RP

is denoted by the red line MG in Fig.4.5.

• Region S1
L7: R4 = EN,R2 = RN,R1 = RP . Due to the fact

R4 < R2 + 2R1 in Region SL7, the IT2 fuzzy PD controller is

operating at Mode 2 or 3.

• Region S1
L8: R4 = EN,R2 = EP,R1 = 0. The condition (4.15)

can be reduced to ENU ≥ EPL, which is the left side of the red

line GN in Fig.4.5.

• Region S1
L9: R4 = EN,R2 = RN,R1 = 0. In Region SL9, there

exists R4 < R2 +2R1 and thus Region S1
L9 does not belong to ML1.

(b) Step 2.2 seeks to identify the region ML3 where the IT2 fuzzy PD

controller is operating at Mode 3. The upper bound R3 is defined as

R3 = min(EN,RP) (4.32)

the input space is divided into the three parts: R3 (IC 1, IC 2 and IC3)

in Fig. 4.6. In these regions, R3 is 1, EN and RP , respectively.

The superimposition of the partitions in Fig. 4.4(a-b) and those in

Fig. 4.6(a) creates 5 regions: S2
L1-S

2
L5. The relative values of R1, R4

and R3 determines whether in any of these 5 regions the IT2 fuzzy PD

controller is operating at Mode 3 (ML3).

• Region S2
L1: R1 = 0 while the values of both R and R4 are above
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zero. Hence, in the region S2
L1, 2R4 + R3 > R1 and thus the fuzzy

controller is operating at Mode 1 or Mode 2.

• Region S2
L2: R1 = EP , R4 = RN and R3 = EN . The boundary

2R4 + R3 = R1 is shown by the red line QS in Fig. 4.7.

• Region S2
L3: R1 = EP , R4 = RN and R3 = RP . In Region SL3,

2R4 + R3 > R1 and thus the fuzzy controller is operating in Mode

1 or Mode 2.

• Region S2
L4: R1 = RP , R4 = EN and R3 = EN . The red line SV

shows the boundary 2R4 + R3 = R1 in Fig.4.7.

• Region S2
L5: R1 = RP , R4 = EN and R3 = RP . Because in this

region 2R4+R3 > R1 always holds, the fuzzy controller is operating

in Mode 1 or Mode 2.

In this manner, the whole input space is divided into the three parts:

ML1, ML2 and ML3, where the fuzzy controller is operating at Mode 1,

Mode 2 or Mode 3, respectively.

3. Step 3 is to specify the firing strength for Rule 2 and Rule 3 by considering

the corresponding Zadeh AND operation in the subregions for Mode 1-3

(a) In the region ML1 for Mode 1, the firing strength for Rule 3 can be

specified by considering the following Zadeh AND operation:

R3 = R3 = min{EN,RP}

while in the other regions ML2 and ML3, the following Zadeh AND
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operation is considered to specify the firing strength for Rule 3:

R3 = R3 = min{EN,RP}

The red and blue lines in Fig. 4.8 show the divisions of the input space

for Rule 3.

(b) As shown in Fig. 4.8, the red lines and yellow lines show the partition

for Rule 2. In the subregion ML1 and ML2, H2 is weighted by the lower

bound R2. Hence, the firing strength for Rule 2 in these regions can be

specified by considering

R2 = R2 = min{EP,RN}

In the subregion ML3, the firing strength for Rule 2 can be specified

using

R2 = R2 = min{EP,RN}

4. At last, the partition of the input space for 4Umin
j in Fig. 4.8 can be

obtained by superimposing all the results derived in Step 1-3.

Similarly, the firing strength for 4Umax
j can be specified by following the proposed

algorithm and the partitions of the input space is shown in Fig. 4.9. By superim-

posing the partitions by 4Umin
j and 4Umax

j in Fig. 4.8 and 4.9, the partitions by

the IT2 FLC can be obtained in Fig. 4.10. The corresponding firing strength for

50 subregions are listed in Table 4.1.
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4.3.2 The Expressions for the non-symmetric IT2 Fuzzy

PD Controller

By replacing each firing strength in (4.5) and (4.6) with their expressions in Table

4.1, the expressions for 4Umin
j in each subregion can be derived. For illustration,

the input condition IC1 is taken as an example to show the procedure. Table

4.1 shows that in IC1, R4 = R2 = RN = − 1
2L2

R(n) + 0.5 + θ2, R3 = EN =

− 1
2L1

E(n) + 0.5 + θ1, R1 = EP = 1
2L1

E(n) + 0.5− θ1. After simple manipulation,

4Umin
j for IC 1 can be expressed into functions of E(n) and R(n) in (4.33). Since

both4Umin
j and4Umax

j can be expressed into functions of E(n) and R(n), the IT2

fuzzy PD controller is equivalent to a nonlinear PD controller in each subregion.

4Umin
jIC1 =

R∗
4 ∗H4 + R∗

3 ∗H3 + R∗
2 ∗H2 + R∗

1 ∗H1

R∗
4 + R∗

3 + R∗
2 + R∗

1

=
RN ∗H4 + EN ∗H3 + RN ∗H2 + EP ∗H1

RN + EN + RN + EP

=
[− 1

2L2
R(n) + 0.5 + θ1](H2 + H4) + [− 1

2L1
E(n) + 0.5 + θ1]H3 + [ 1

2L1
E(n) + 0.5− θ1]H1

2[− 1
2L2

R(n) + 0.5 + θ2] + [− 1
2L1

E(n) + 0.5 + θ1] + [ 1
2L1

E(n) + 0.5− θ1]

=
−L1(H2 + H4)R(n) + L2(H1 −H3)E(n)

4L1L2(1 + θ2)− 2L1R(n)

−2L1L2[(0.5 + θ1)(H2 + H4) + (0.5− θ1)H1 + (0.5 + θ1)H3]

4L1L2(1 + θ2)− 2L1R(n)

= K1
pE(n) + K1

dR(n) + δ1 (4.33)

4.4 Characteristics of the non-symmetric IT2 fuzzy

PD controllers

The focus of this section is on using the analytical structure and the equivalent

proportional and derivative gains of the IT2 fuzzy PD controller, derived in pre-



103

vious sections, to compare the non-symmetric with the symmetric IT2 FLC and

to highlight interesting characteristics of the IT2 fuzzy PD controller. The unique

difference between the structure of the non-symmetric IT2 FLC and the symmet-

ric IT2 FLC is one extra consequent set. Fig. 4.11 shows that the whole input

space of the symmetric IT2 FLC is divided into 35 separate partitions, each of

which is equivalent to a nonlinear PD controller:

4sUjICl = sK l
pE(n) + sK l

dR(n) + sδl (4.34)

where sK l
p,

sK l
d and sδl are the proportional, derivative gains and the offset, respec-

tively. As shown in Fig. 4.10, the input space of the IT2 fuzzy PD controller needs

to be divided into 49 subregions before the IT2 FLC are expressed into equivalent

nonlinear PD controllers:

4UjICq = Kq
pE(n) + Kq

dR(n) + δq (4.35)

Without losing any generality, the assumption that
∑4

i=1 Hi = 0 is made to sim-

plify the following study. The proportional gain Kq
p , the derivative gain Kq

d and

the offset δq are tabulated in Table 4.3 and 4.2.

Research results have shown that an IT2 FLC is better able to manage the

trade-off between fast rise time and overshoot [88], [14], [19]. Since an IT2 FLC

has the structure of a PD controller, its properties can be analyzed by comparing

with the characteristics that will enable a PD controller to provide fast rise time

with small overshoot following a step change. An ideal nonlinear PD would have

the following characteristics: 1) the proportional and derivative gains around the

(E(n), R(n)) = (0, 0) origin are as small as possible; 2) the control efforts in

external region is relatively large; 3) the control surface of an ideal controller is
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as smooth as possible. Hence, the following sub-sections focuses on analyzing the

characteristics of the proportional and derivative gains of the non-symmetric IT2

FLC in the external regions and around the (E(n), R(n)) = (0, 0) origin in order

to draw inference about its control performance.

Figure 4.11: The partition of the input space for the symmetic IT2 FLC

Figure 4.12: The partition of the input space for the IT2 FLC when θ1 = θ2
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4.4.1 Comparison of the analytical structure of the non-

symmetric IT2 FLC and the T1 FLC

A study of the analytical structure of the symmetric IT2 FLC in Chapter 3 has

identified four interesting properties and these properties reveal that it can bet-

ter alleviate the compromise between faster response and smaller overshoot by

providing larger control effort and smoother surface compared to a T1 FLC. To

examine whether these properties of the symmetric IT2 still hold true for the

non-symmetric FLC, a comparative study of the analytical structure of the non-

symmetric IT2 FLC and its T1 counterpart will be presented in the following part

of this section. The configurations of the T1 FLC used in the comparative study

are provided in the Appendix.

1. Characteristics of the regions that exist only when θ1 6= θ2

An observation of Fig. 4.10, Table 4.2 and 4.3 indicates that the proportional

and derivative gains and the offset of Region B and Region C are functions

of the input E(n) and R(n), respectively, while those gains of Region A

except IC 38 are the functions of both the inputs E(n) and R(n). Noted

that Region C only exist when θ1 6= θ2 and its size increases as the value

of θ1 6= θ2 increases. As Region A connects Region B and Region C in Fig.

4.10, Region A whose gains are functions of both the inputs E(n) and R(n)

may provide smoother transitions between Region B and Region C whose

gains are functions of E(n) and R(n) respectively. This architecture enable

the non-symmetric FLC to produce smooth surface and thus eliminate the

overshoot despite greater control efforts provided by the IT2 FLCs. This
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property differs from Property 1 of the symmetric IT2 FLC in the subregions

only:

Property 1 In the non-symmetric IT2 fuzzy PD controller, the gains Kq
p ,

Kq
d and δq of Region A except IC 38 in Fig. 4.10 are functions of both E(n)

and R(n), while these gains of Region B and Region C are functions of only

E(n) or R(n). The size of Region A increases as |θ1 − θ2| increases.

2. Gains relationship between internal regions and external regions

Region B and Region C of Fig. 4.10 is the study focus of this subsection.

Like the symmetric IT2 FLC, Region B and Region C may be classified into

the following two categories:

(a) internal subregions comprising IC 1 - IC 13.

(b) external subregions consisting of the other regions i.e. IC 15 -IC 34.

To identify the relative gains of the internal and external subregions of the

non-symmetric IT2 FLC, the property that corresponds to Property 2 for

the symmetric IT2 FLC will be established as follows:

Property 2 In the non-symmetric IT2 fuzzy PD controller, the proportional

gain of the internal subregions IC 12, 13 (IC 6, 7) is bigger than that of their

adjacent external subregion IC 33, 34 (IC 23, 24) while the internal subregion

IC 1,2,3,5 (IC 8,9,10,14) exhibit bigger derivative gain than their adjacent

external subregion IC 17,18,19,20 (IC 27,28,29,30).

Proof of Property 2 is provided in the Appendix B.
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3. Comparative output values of the non-symmetric IT2 FLC and the

T1 FLC

To identify the relative output values of the non-symmetric IT2 FLC and its

T1 counterpart, two properties that corresponds to Property 3 and Property

4 of the symmetric IT2 FLC will be established for the non-symmetric IT2

FLC as follows:

Property 3 Given any input pair in IC 11, 12, 13 (IC 4, 6, 7 due to sym-

metry in the input space), the non-symmetric IT2 fuzzy PD controller has

bigger proportional gain than that of its T1 counterpart, while the non-

symmetric IT2 fuzzy PD controller exhibit bigger derivative gain than its

T1 counterpart for any input pair in its subregions IC 1, 2, 3, 5 (IC 8, 9, 10,

14). The differences between these gains of the IT2 FLC and the T1 FLC

increases as θ1 and θ2 increase.

Proof of Property 3 is provided in the Appendix B.

Property 4 Any input pair (E(n), R(n)) in IC 1–IC 4, and IC 6 – IC 13 of

the non-symmetric IT2 fuzzy PD controller will produce an output that is

bigger in magnitude than that of its T1 counterpart when θ1 = θ2; and the

difference increases as θ1 and θ2 increase.

Proof of Property 4 is provided in the Appendix B.

Comments: Property 3 and Property 4 slightly differ from the properties

for the symmetric IT2 FLC in the subregions. Hence, it can be concluded

that both the symmetric and non-symmetric IT2 FLC can produce control

efforts that are larger in magnitude, compared to a T1 FLC. Consequently,
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both the IT2 FLCs can provide faster transient response.

4.4.2 Comparison of the analytical structure of the non-

symmetric IT2 FLC and the symmetric IT2 FLC

Comparing with 35 subregions in Fig. 4.11 for the symmetric IT2 FLC, the input

space of the IT2 fuzzy PD controller needs to be divided into 49 subregions in Fig.

4.10 before they can be expressed into nonlinear PD controllers. The 14 additional

subregions with unique properties indicates that the IT2 fuzzy PD controller has

the potential to outperform the symmetric IT2 FLC. To highlight the unique

characteristics of the IT2 fuzzy PD controller, the rest of this subsection will

establish two interesting properties.

Depending on the distance from the origin (E(n), R(n)) = (0, 0), the internal

subregions for the symmetric IT2 FLC including IC 1-4, IC 26-29 in Fig. 4.11 can

be divided into two groups:

• The regions denoted by Group α̃ consisting of IC 1-4

• The regions denoted by Group β̃ including IC 26-29

Results from Chapter 3 that the proportional and derivative gains of the subregion

IC 26 (IC 27,28,29) in Group β̃ located around the origin (E(n), R(n)) = (0, 0)

are larger in magnitude than its adjacent subregion IC 2 (IC 1, 4, 3) in Group α̃,

respectively. Unlike the symmetric IT2 FLC, the internal subregions of the IT2

fuzzy PD controller comprising IC 1-4,6-13 in Fig. 4.10 may be divided into the

following three categories depending on the distance from the original:

• The regions labeled by Group Ã consisting of IC 1, 7,8,13
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• The regions labeled by Group B̃ including IC 2,6,9,12

• The regions labeled by Group C̃ including IC 3,4,10,11

The relative relationship of the proportional and derivative gains of these three

groups may be formally stated as:

Property 5 For the IT2 fuzzy PD controller, the proportional and derivative

gains of the subregion IC 1(IC 7,8,13) are smaller in magnitude than the adjacent

subregion IC 2 (IC 6,9,12), respectively while the proportional and derivative gains

of the subregion IC 3 (IC 4,10,11) are smaller in magnitude than the adjacent

subregion in IC 2 (IC 6,9,12) and IC 1 (IC 7,8,13), respectively.

Proof: Since the partitions of the IT2 fuzzy PD controller in Fig. 4.10 are

symmetrical, the relationship of the gains between IC 1, IC 2 and IC 3 can be

taken as an example to show this property. From Table 4.2, it can be found

K1
p =

L2(H1 −H3)

8L1L2(1− θ2)− 4L1R(n)
+

L2(H1 −H3)

8L1L2(1 + θ2)− 4L1R(n)

<
L2(H1 −H3)

8L1L2(1− θ2)− 4L1R(n)
+

L2(H1 −H3))

8L1L2 − 4L1R(n)
= K2

p (4.36)

K1
p =

L2(H1 −H3)

8L1L2(1− θ2)− 4L1R(n)
+

L2(H1 −H3)

8L1L2(1 + θ2)− 4L1R(n)

>
L2(H1 −H3)

8L1L2 − 4L1R(n)
+

L2(H1 −H3)

8L1L2 − 4L1R(n)
= K3

p (4.37)

Another observation is

K1
d =

−(H2 + H4)

8L2(1− θ2)− 4R(n)
+

−(H2 + H4)

8L2(1 + θ2)− 4R(n)

<
−(H2 + H4)

8L2(1− θ2)− 4R(n)
+
−(H2 + H4)

8L2 − 4R(n)
= K2

d (4.38)

K1
d =

−(H2 + H4)

8L2(1− θ2)− 4R(n)
+

−(H2 + H4)

8L2(1 + θ2)− 4R(n)

>
−(H2 + H4)

8L2 − 4R(n)
+
−(H2 + H4)

8L2 − 4R(n)
= K3

d (4.39)
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Comments: For the symmetric IT2 FLC, the subregions around the zero feed-

back point, i.e. Group β̃, produce the larger proportional and derivative gains

than their adjacent subregions. Unlike the symmetric IT2 FLC, the subregions

of the non-symmetric IT2 FLC around the zero feedback point, i.e. Group C̃,

generate the smallest gains among the internal subregions. Smaller proportional

and derivative gains around the zero feedback point may produce a smaller over-

shoot. Hence, the non-symmetric IT2 FLC is able to achieve a smaller overshoot

compared to the symmetric IT2 FLC.

It has been demonstrated that the proportional and derivative gains of the

internal subregions for the symmetric IT2 FLC will increase in magnitude as

either of the parameters θ1 and θ2 or both of them increase. Hence, increasing the

parameters θ1 and θ2 can enlarge the control efforts in magnitude. But smaller

proportional and derivative gains around the zero feedback point requires θ1 and

θ2 to be small. Such a conflict may be alleviated by the non-symmetric IT2 FLC

due to the characteristic presented as follows:

Property 6 For the IT2 fuzzy PD controller, the proportional and derivative

gains of the subregions IC 3 and IC 10 are functions of |θ1− θ2|, while the propor-

tional and derivative gains of the subregions IC 4 and IC 11 are independent of θ1

and θ2. As a special case, when θ1 = θ2, the proportional and derivative gains of

IC 3, 4, 10, 11 are independent of θ1 and θ2.

Comments: Based on the property stated above, varying the values of the pa-

rameters θ1 and θ2 simultaneously does not alter the surface around zero feedback

point for the non-symmetric IT2 FLC. It means that increasing θ1 and θ2 can

enlarge the control efforts of internal subregions but also maintain the smooth
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surface around the zero feedback point. Therefore, the non-symmetric IT2 FLC

can better alleviate the amount of the compromise between fast response and small

overshoot by varying the value of θ1 and θ2 simultaneously.

4.4.3 Discussion

Based on the results presented in Property 1-8, the characteristics of the non-

symmetric IT2 FLC that may enable them to outperform the symmetric IT2 FLC

by providing fast rise time and small overshoot may be summarized as follows:

1. Property 1-4 indicate that both the symmetric IT2 FLC and the non-symmetric

IT2 FLC can outperform a T1 FLC by providing larger control efforts and

smoother surface.

2. As stated in Property 5, another group of subregion whose proportional

and derivative gains are smaller than the other adjacent internal subregions

is introduced around the origin (E(n), R(n)) = (0, 0) at the cost of one

consequent set. This characteristic may enable the non-symmetric IT2 FLC

to achieve smaller overshoot despite larger control efforts provided by the

IT2 FLC for the external regions.

3. Unlike the symmetric IT2 FLC, the gains of the non-symmetric IT2 FLC

around the origin (E(n), R(n)) = (0, 0) depend on the parameters |θ1 − θ2|

only (Property 6). Hence, varying the value θ1 and θ2 simultaneously for

the non-symmetric IT2 FLC can maintain small proportional and derivative

gains around the origin (E(n), R(n)) = (0, 0) and enlarge the control effort

for the external regions.
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4.5 Conclusion

This chapter presents the analytical structure of a class of IT2 fuzzy PD and PI

controllers that uses the KM iterative algorithm for type-reduction. A method-

ology for identifying the input space boundaries where the KM algorithm uses a

new switch point to compute the bounds of the type-reduced set is first established

for the considered IT2 FLC. This result resolves one of the main issues hindering

theoretical analysis of IT2 FLCs that employs the KM type reducer. Based on the

finding, the analytical structure of an IT2 FLC is derived by treating each input

region as a T1 FLS problem using the well-established techniques for T1 FLSs.

A contribution is that the four properties identified for the symmetric IT2 FLC

in Chapter 3 were established for the non-symmetric IT2 fuzzy FLC considered

in this chapter. Furthermore, a comparative study of the analytical structure of

the two IT2 FLCs identified the unique properties of the IT2 fuzzy PD controller.

These properties provide further theoretical basis for explaining the ability of an

IT2 FLC to alleviate the trade-off between fast rise time and small overshoot.
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Table 4.1: The Firing strengths of four rules in 4Umin
j and 4Umax

j

IC No.
4Umin

j 4Umax
j

Rule 4 Rule 3 Rule 2 Rule 1 Rule 4 Rule 3 Rule 2 Rule 1

1 RN EN RN EP RN EN RN EP

2 RN EN RN EP RN EN RN EP

3 RN EN RN EP RN EN RN EP

4 RN RP EP EP RN RP EP EP

5 RN EN RN EP RN EN RN EP

6 RN RP EP EP RN RP EP EP

7 RN RP EP EP RN RP EP EP

8 EN RP EP RP EN RP EP RP

9 EN RP EP RP EN RP EP RP

10 EN RP EP RP EN RP EP RP

11 EN EN RN RP EN EN RN RP

12 EN EN RN RP EN EN RN RP

13 EN EN RN RP EN EN RN RP

14 EN RP EP RP EN RP EP RP

15 EN EN RN RP 0 0 0 1

16 RN EN RN EP 0 0 0 1

17 RN EN RN EP 0 EN 0 EP

18 RN EN 0 EP 0 EN 0 EP

19 RN EN 0 EP 0 EN RN EP

20 RN EN 0 EP 0 EN RN EP

21 RN EN 0 0 0 EN RN EP

22 RN RP 0 0 0 RP EP EP

23 RN RP 0 0 RN RP EP EP

24 RN RP 0 0 RN RP EP EP

25 1 0 0 0 RN RP EP EP

26 1 0 0 0 EN RP EP RP

27 EN 0 EP 0 EN RP EP RP

28 EN 0 EP 0 EN 0 EP RP

29 EN RP EP 0 EN 0 EP RP

30 EN RP EP 0 EN 0 EP RP

31 EN RP EP 0 0 0 EP RP

32 EN EN RN 0 0 0 RN RP

33 EN EN RN RP 0 0 RN RP

34 EN EN RN RP 0 0 RN RP
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Table 4.2: The gains for the internal subregions

IC No. Kp Kd δ

1
L2(H1−H3)E(n)

8L1L2(1−θ2)−4L1R(n)
−(H2+H4)R(n)

8L2(1−θ2)−4R(n)
L2[θ1(H1−H3)−θ2(H2+H4)]

4L2(1−θ2)−2R(n)

+ L2(H1−H3)E(n)
8L1L2(1+θ2)−4L1R(n)

+ −(H2+H4)R(n)
8L2(1+θ2)−4R(n)

+L2[θ1(H3−H1)+θ2(H2+H4)]
4L2(1+θ2)−2R(n)

2
L2(H1−H3)E(n)

8L1L2(1−θ2)−4L1R(n)
−(H2+H4)R(n)

8L2(1−θ2)−4R(n)
L2[θ1(H1−H3)−θ2(H2+H4)]

4L2(1−θ2)−2R(n)

+ L2(H1−H3)E(n)
8L1L2−4L1R(n))

+−(H2+H4)R(n)
8L2−4R(n))

+L2[θ2(H4−H2)+θ1(H3−H1)]
4L2−2R(n))

3
L2(H1−H3)E(n)
8L1L2−4L1R(n)

−(H2+H4)R(n)
8L2−4R(n)

L2[θ1(H1−H3)+θ2(H2−H4)]
4L2−2R(n)

+ L2(H1−H3)E(n)
8L1L2−4L1R(n))

+−(H2+H4)R(n)
8L2−4R(n))

+L2[θ2(H4−H2)+θ1(H3−H1)]
4L2−2R(n))

4
(H2+H1)E(n)

8L1(1−θ2+θ1)+4E(n)
L1(H3−H4)R(n)

8L1L2(1−θ2+θ1)+4L2E(n)
L1[θ1(H1+H2)−θ2(H3+H4)]

4L1(1−θ2+θ1)+2E(n)

+ (H2+H1)E(n)
8L1(1+θ2−θ1)+4E(n)

+ L1(H3−H4)R(n)
8L1L2(1+θ2−θ1)+4L2E(n)

+L1[θ2(H3+H4)−θ1(H1+H2)]
4L1(1+θ2−θ1)+2E(n)

5
L2(H1−H3)E(n)
8L1L2−4L1R(n)

−(H2+H4)R(n)
8L2−4R(n)

L2[θ1(H1−H3)+θ2(H2−H4)]
4L2−2R(n)

+ L2(H1−H3)E(n)
8L1L2(1−θ1)−4L1R(n)

+ −(H2+H4)R(n)
8L2(1−θ1)−4R(n)

+L2[θ2(H4−H2)−θ1(H1+H3)]
4L2(1−θ1)−2R(n)

6
(H2+H1)E(n)

8L1(1−θ2+θ1)+4E(n)
L1(H3−H4)R(n)

8L1L2(1−θ2+θ1)+4L2E(n)
L1[θ1(H1+H2)−θ2(H3+H4)]

4L1(1−θ2+θ1)+2E(n)

+ (H1+H2)E(n)
8L1(1−θ1)+4E(n)

+ L1(H3−H4)R(n)
8L1L2(1−θ1)+4L2E(n)

+L1[θ2(H4−H3)−θ1)(H1+H2)]
4L1(1−θ1)+2E(n)

7
(H1+H2)E(n)

8L1(1+θ1)+4E(n)
−L1(H4−H3)R(n)

8L1L2(1+θ1)+4L2E(n)
L1[θ1(H1+H2)+θ2(H3−H4)]

4L1(1+θ1)+2E(n)

+ (H1+H2)E(n)
8L1(1−θ1)+4E(n)

+ L1(H3−H4)R(n)
8L1L2(1−θ1)+4L2E(n)

+L1[θ2(H4−H3)−θ1)(H1+H2)]
4L1(1−θ1)+2E(n)

8
L2(H2−H4)E(n)

8L1L2(1+θ2)+4L1R(n)
(H3+H1)R(n)

8L2(1+θ2)+4R(n)
L2[θ2(H3+H1)+θ1(H2−H4)]

4L2(1+θ2)+2R(n)

+ L2(H2−H4)E(n)
8L1L2(1−θ2)+4L1R(n)

+ (H3+H1)R(n)
8L2(1−θ2)+4R(n)

+L2[θ1(H4−H2)−θ2(H1+H3)]
4L2(1−θ2)+2R(n)

9
L2(H2−H4)E(n)
8L1L2+4L1R(n)

(H3+H1)R(n)
8L2+4R(n)

L2[θ1(H2−H4)+θ2(H1−H3)]
4L2+2R(n)

+ L2(H2−H4)E(n)
8L1L2(1−θ2)+4L1R(n)

+ (H3+H1)R(n)
8L2(1−θ2)+4R(n)

+L2[θ1(H4−H2)−θ2(H1+H3)]
4L2(1−θ2)+2R(n)

10
L2(H2−H4)E(n)
8L1L2+4L1R(n)

(H3+H1)R(n)
8L2+4R(n)

L2[θ1(H2−H4)+θ2(H1−H3)]
4L2+2R(n)

+L2(H2−H4)E(n)
8L1L2+4L1R(n)

+ (H3+H1)R(n)
8L2+4R(n)

+L2[θ1(H4−H2)+(0.5+θ2(H3−H1)]
4L2+2R(n)

11
−(H3+H4)E(n)

8L1(1−θ1+θ2)−4E(n)
L1(H1−H2)R(n)

8L1L2(1−θ1+θ2)−4L2E(n)
L1[−θ1(H4+H3)+θ2(H2+H1)]

4L1(1−θ1+θ2)−2E(n)

+ −(H4+H3)E(n)
8L1(1+θ1−θ2)−2E(n)

+ L1(H1−H2)R(n)
8L1L2(1+θ1−θ2)−2L2E(n)

+L1[θ1(H4+H3)−θ2(H2+H1)]
4L1(1+θ1−θ2)−2E(n)

12
−(H4+H3)E(n)

8L1(1−θ1)−4E(n)
L1(H1−H2)R(n)

8L1L2(1−θ1)−4L2E(n)
L1[−θ1(H4+H3)+θ2(H1−H2)]

4L1(1−θ1)−2E(n)

+ −(H4+H3)E(n)
8L1(1+θ1−θ2)−2E(n)

+ L1(H1−H2)R(n)
8L1L2(1+θ1−θ2)−2L2E(n)

+L1[θ1(H4+H3)−θ2(H2+H1)]
4L1(1+θ1−θ2)−2E(n)

13
−(H4+H3)E(n)

8L1(1−θ1)−4E(n)
L1(H1−H2)R(n)

8L1L2(1−θ1)−4L2E(n)
L1[−θ1(H4+H3)+θ2(H1−H2)]

4L1(1−θ1)−2E(n)

+ −(H3+H4)E(n)
8L1(1+θ1)−4E(n)

+ L1(H1−H2)R(n)
8L1L2(1+θ1)−4L2E(n)

+L1[θ1(H3+H4)+θ2(H2−H1)]
4L1(1+θ1)−2E(n)

14
L2(H2−H4)E(n)

8L1L2(1−θ1)+4L1R(n)
(H1+H3)R(n)

8L2(1−θ1)+4R(n)
L2[−θ1(H2+H4)+θ2)(H1−H3)]

4L2(1−θ1)+2R(n)

+L2(H2−H4)E(n)
8L1L2+4L1R(n)

+ (H3+H1)R(n)
8L2+4R(n)

+L2[θ1(H4−H2)+(0.5+θ2(H3−H1)]
4L2+2R(n)
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Table 4.3: The gains for the external subregions

IC No. Kp Kd δ
15 −(H3+H4)

8L1(1+θ1)−4E(n)
L1(H1−H2)

8L1L2(1+θ1)−4L2E(n) 0.5H1 + L1[θ1(H3+H4)+θ2(H2−H1)]
4L1(1+θ1)−2E(n)

16 L2(H1−H3)
8L1L2(1+θ2)−4L1R(n)

−(H2+H4)
8L2(1+θ2)−4R(n) 0.5H1 + L2[θ1(H3−H1)+θ2(H2+H4)]

4L2(1+θ2)−2R(n)

17
1

4L1
(H1 −H3)

−(H2+H4)
8L2(1+θ2)−4R(n) 0.5[(0.5− θ1)H3 + (0.5 + θ1)H1]

+ L2(H1−H3)
8L1L2(1+θ2)−4L1R(n) +L2[θ1(H3−H1)+θ2(H2+H4)]

4L2(1+θ2)−2R(n)

18
1

4L1
(H1 −H3) −H4

4L2(1.5+θ2)−2R(n) 0.5[(0.5− θ1)H3 + (0.5 + θ1)H1]

+ L2(H1−H3)
4L1L2(1.5+θ2)−2L1R(n) +L2[(0.5+θ2)H4+(0.5+θ1)H3+(0.5−θ1)H1]

2L2(1.5+θ2)−R(n)

19
L2(H1−H3)

2L1L2(1.5+θ2)−L1R(n)
−H2

4L2(1.5+θ2)−2R(n)
L2[(0.5+θ1)H1+(0.5+θ2)H2+(0.5−θ1)H3]

2L2(1.5+θ2)−R(n)

+ −H4
4L2(1.5+θ2)−2R(n) +L2[(0.5+θ2)H4+(0.5+θ1)H3+(0.5−θ1)H1]

2L2(1.5+θ2)−R(n)

20
L2(H1−H3)

4L1L2(1.5+θ2)−2L1R(n)
−H2

4L2(1.5+θ2)−2R(n)
L2[(0.5+θ1)H1+(0.5+θ2)H2+(0.5−θ1)H3]

2L2(1.5+θ2)−R(n)

+ L2(H1−H3)
4L1L2(1.5+θ2−2θ1)−2L1R(n) + −H4

4L2(1.5+θ2−2θ1)−2R(n) +L2[(0.5+θ2)H4+(0.5−θ1)(H1+H3)]
2L1L2(1.5+θ2−2θ1)−L1R(n)

21
L2(H1−H3)

4L1L2(1.5+θ2)−2L1R(n)
−H2

4L2(1.5+θ2)−2R(n)
L2[(0.5+θ1)H1+(0.5+θ2)H2+(0.5−θ1)H3]

2L2(1.5+θ2)−R(n)

+ −L2H3
4L1L2(1−θ1+θ2)−2L1R(n)−2L2E(n)

+ −L1H4
4L1L2(1−θ1+θ2)−2L1R(n)−2L2E(n)

+ L1L2[(0.5+θ2)H4+(0.5−θ1)H3]
2L1L2(1−θ1+θ2)−L1R(n)−L2E(n)

22
L2(H1+H2)

4L1L2(1.5−θ2+2θ1)+2L1R(n)+4L2E(n)
L1H3

4L1L2(1.5−θ2+2θ1)+2L1R(n)+4L2E(n)

L1L2[(0.5−θ2)H3+(0.5+θ1)(H1+H2)]
2L1L2(1.5−θ2+2θ1)+L1R(n)+2L2E(n)

− 1
4L2

(H4 −H3) +0.5[(0.5 + θ2)H4 + (0.5− θ2)H3]

23
(H2+H1)

8L1(1−θ2+θ1)+4E(n)
L1(H3−H4)

8L1L2(1−θ2+θ1)+4L2E(n)
L1[θ1(H1+H2)−θ2(H3+H4)]

4L1(1−θ2+θ1)+2E(n)

− 1
4L2

(H4 −H3) +0.5[(0.5 + θ2)H4 + (0.5− θ2)H3]

24
(H1+H2)

8L1(1+θ1)+4E(n)
−L1(H4−H3)

8L1L2(1+θ1)+4L2E(n)
L1[θ1(H1+H2)+θ2(H3−H4)]

4L1(1+θ1)+2E(n)

− 1
4L2

(H4 −H3) +0.5[(0.5 + θ2)H4 + (0.5− θ2)H3]
25 (H1+H2)

8L1(1+θ1)+4E(n)
−L1(H4−H3)

8L1L2(1+θ1)+4L2E(n)
L1[θ1(H1+H2)+θ2(H3−H4)]

4L1(1+θ1)+2E(n) + 0.5H4

26 L2(H2−H4)
8L1L2(1+θ2)+4L1R(n)

(H3+H1)
8L2(1+θ2)+4R(n)

L2[θ2(H3+H1)+θ1(H2−H4)]
4L2(1+θ2)+2R(n) + 0.5H4

27
L2(H2−H4)

8L1L2(1+θ2)+4L1R(n)
(H3+H1)

8L2(1+θ2)+4R(n)
L2[θ2(H3+H1)+θ1(H2−H4)]

4L2(1+θ2)+2R(n)

+ 1
4L1

(H2 −H4) +0.5[(0.5 + θ1)H4 + (0.5− θ1)H2]

28
L2(H2−H4)

4L1L2(1.5+θ2)+2L1R(n)
H1

4L2(1.5+θ2)+2R(n)
L2[(0.5−θ1)H4+(0.5+θ1)H2+(0.5+θ2)H1]

2L2(1.5+θ2)+R(n)

+ 1
4L1

(H2 −H4) +0.5[(0.5 + θ1)H4 + (0.5− θ1)H2]

29
L2(H2−H4)

2L1L2(1.5+θ2)+L1R(n)
H1

4L2(1.5+θ2)+2R(n)
L2[(0.5−θ1)H4+(0.5+θ1)H2+(0.5+θ2)H1]

2L2(1.5+θ2)+R(n)

+ H3
4L2(1.5+θ2)+2R(n) +L2[(0.5+θ1)H4+(0.5+θ2)H3+(0.5−θ1)H2]

2L2(1.5+θ2)+R(n)

30
L2(H2−H4)

4L1L2(1.5−2θ1+θ2)+2L1R(n)
H1

4L2(1.5−2θ1+θ2)+2R(n)
L2[(0.5−θ1)(H2+H4)+(0.5+θ2)H1]

2L2(1.5−2θ1+θ2)+R(n)

+ L2(H2−H4)
4L1L2(1.5+θ2)+2L1R(n)

+ H3

4L2(1.5+θ2)+2R(n)
+L2[(0.5+θ1)H4+(0.5+θ2)H3+(0.5−θ1)H2]

2L2(1.5+θ2)+R(n)

31
L2H2

4L1L2(1−θ1+θ2)+2L1R(n)+2L2E(n)
L1H1

4L1L2(1−θ1+θ2)+2L1R(n)+2L2E(n)
L1L2[(0.5−θ1)H2+(0.5+θ2)H1]

2L1L2(1−θ1+θ2)+L1R(n)+L2E(n)

+ L2(H2−H4)
4L1L2(1.5+θ2)+2L1R(n)

+ H3

4L2(1.5+θ2)+2R(n)
+L2[(0.5+θ1)H4+(0.5+θ2)H3+(0.5−θ1)H2]

2L2(1.5+θ2)+R(n)

32
L2(H3+H4)

4L2E(n)+2L1R(n)−4L1L2(1.5+2θ1−θ2)

1
4L2

(H1 −H2)+ 0.5[(0.5− θ2)H2 + (0.5 + θ2)H1]
L1H2

4L2E(n)+2L1R(n)−4L1L2(1.5+2θ1−θ2)
+−L1L2[(0.5+θ1)(H3+H4)+(0.5−θ2)H2]

2L2E(n)+L1R(n)−2L1L2(1.5+2θ1−θ2)

33
−(H4+H3)

8L1(1+θ1−θ2)−2E(n)
1

4L2
(H1 −H2) 0.5[(0.5− θ2)H2 + (0.5 + θ2)H1]

+ L1(H1−H2)
8L1L2(1+θ1−θ2)−2L2E(n) +L1[θ1(H4+H3)−θ2(H2+H1)]

4L1(1+θ1−θ2)−2E(n)

34
−(H3+H4)

8L1(1+θ1)−4E(n)
1

4L2
(H1 −H2) 0.5[(0.5− θ2)H2 + (0.5 + θ2)H1]

+ L1(H1−H2)
8L1L2(1+θ1)−4L2E(n)

+L1[θ1(H3+H4)+θ2(H2−H1)]
4L1(1+θ1)−2E(n)
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Chapter 5

Improved algorithms for Fuzzy

Weighted Average and Linguistic

Weighted Average

Chapter 3 and Chapter 4 addressed the interval type-2 fuzzy logic controller using

the Karnik-Mendel(KM) type-reducer in which the KM iterative algorithm is ap-

plied to implement the KM type-reducer. Another important reasoning process in

the theory of fuzzy logic is fuzzy weighted average (FWA) and linguistic weighted

average (LWA) which are the widely adopted aggregation operators. The common

characteristic between these two reasoning process, interval type-2 fuzzy logic sys-

tem and the aggregation operators (FWA and LWA), is the application of the

KM iterative algorithm or the EKM iterative algorithm in their implementation.

However, even with the introduction of the KM/EKM iterative algorithm to assist

with the necessary α-cut arithmetic, the FWA and LWA remain computationally

intensive due to the iterative nature of the KM algorithm. Just because of the
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prohibitively high computational requirement, FWA and LWA may not be suitable

for practical applications. To reduce the computational overhead required by the

FWA and LWA, this chapter presents three proposed algorithms by optimizing

the initialization and termination of the EKM iterative algorithm.

5.1 Introduction

Averaging is a technique that is commonly employed for combining, amalgamating

or fusing information. As practical data tend to be uncertain, the fuzzy weighted

average (FWA) and the linguistic weighted average (LWA)[44, 84] have been pro-

posed to blend uncertain information modeled by fuzzy sets in many engineering

applications such as multi-criteria decision making, sensor fusion, risk analysis,

filtering etc [11, 26, 27, 52, 86]. The process of converting the general type-2 fuzzy

set (T2 FS) generated by the inference engine of a general type-2 fuzzy system

(T2 FLS) to a type-1 fuzzy set (T1 FS) is another application where FWA is used

to combine the centroid of all consequent sets with their respective firing sets.

Formally, the FWA may be defined as follows:

YFWA =

∑n
i=1 WiXi∑n

i=1 Wi

(5.1)

where Xi and Wi are T1 FSs. The result YFWA is also a T1 FS. In a decision

making process, Xi, i = 1, 2, · · · , n represent the possible opinions or attributes

and Wi are the weights. In a general T2 FLS, Xi are the centroids of consequent

sets and Wi are the corresponding firing sets. As a generalized version of the

FWA, the linguistic weighted average (LWA) aggregates interval type-2 (IT2) FSs
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representing the opinions or attributes and their weights, i.e.

ỸLWA =

∑n
i=1 X̃iW̃i∑n

i=1 W̃i

(5.2)

where X̃i and W̃i are IT2 FSs representing the opinions or attributes and the

corresponding weights. LWA is mainly used as a perceptual computer to perform

computing with words (CWW) where the word uncertainties are modeled as IT2

FSs. As the result of the LWA ỸLWA is also an IT2 FS and an IT2 FS may be

completely characterized by the upper membership function (UMF) and the lower

membership function (LMF), computing the LWA essentially reduces to using the

FWA to identify the LMF and UMF of the IT2 FS ỸLWA. In the computation

of the LWA, finding the UMF or LMF of ỸLWA may be equivalently treated as

computing a FWA, respectively.

As the FWA operator is useful in many application areas, the task of comput-

ing the FWA has been attracting much attention from the research community.

Computing the FWA is essentially achieved by finding out the membership func-

tion (MF) of the T1 FS YFWA. The widely adopted approach is to construct the

MF of the T1 FS YFWA by deriving its α-cuts, where each α-cut of the T1 FS YLWA

is the weighted average among the corresponding α-cuts of T1 FSs Xi and Wi.

However, it is challenging to compute the α-cuts because closed-form expressions

for the left and right bound of each α-cut of the fuzzy set YFWA is not available.

To overcome this challenge, an exhaustive search method was proposed to find

the bounds for each α by calculating all possible weighted averages at each α level

[13]. The exhaustive nature of this search method results in great computational

overhead. To reduce the great computational burden of finding each α-cut of the



119

FS YLWA, several iterative algorithms were proposed by directly searching for the

two bounds of each α-cuts iteratively. The first iterative algorithm by Liou and

Wang [43] was presented based on the observation that Xi in (5.1) appears in the

nominator. This iterative algorithm takes at most n2 + n + 2 iterations before

it reaches either bound of any chosen α-cut. Later, Lee and Park proposed an

iterative algorithm that takes at most 2nlnn iterations to complete the search of

either bound of any α-cut [39]. Despite these efforts to improve the search efficacy,

the computation cost required for the FWA operation remains large until the in-

troduction of the Karnik-Mendel (KM) iterative algorithm, which was proposed

for solving the following problem [85]:

yl = min
xi∈[xi,xi]
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.3)

yr = max
xi∈[xi,xi]
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.4)

When the intervals [xi, xi] and [wi, wi] in (5.3)-(5.4) are interpreted as α-cuts of the

fuzzy sets Xi and Wi in the FWA operation, then the result of the KM algorithm

[yl, yr] represents the corresponding α-cut of YFWA. It has been demonstrated that

the KM iterative algorithm takes at most n iterations for one search objective. In

addition, the KM iterative algorithm is exponentially convergent [61], [46], which

may further reduce the number of the iterations and thus speed up the search

process. The enhanced KM (EKM) iterative algorithm is an enhanced version of

the KM iterative algorithm by optimizing the initialization, computation process

and termination of the search process.

Although the introduction of the EKM iterative algorithm has reduced the

number of iterations required in the search process to determine each of the α-
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cuts that make up YFWA, the computational overhead for computing the FWA and

the LWA is still prohibitively high, especially as the required accuracy rises. This is

because the required accuracy determines how many α-cuts need to be computed,

and for each chosen α, the EKM iterative algorithm must be implemented twice to

obtain the FWA and four times for LWA. As the high computational requirement

of the EKM method is well documented, there have been efforts at improving

the efficacy of the algorithm. One such work is the optimization of the EKM

iterative algorithm for computing the centroid of a general T2 FS. Via the α-

planes representation [62, 79], the centroid for a general T2 FS can be obtained by

taking the union of the centroids of all the α-planes of the FS. Since an α-plane is

an IT2 FS (shown as the dotted line in Fig. 5.1), its centroid is the IT1 FS [cl, cr].

The upper and lower bounds cl and cr may be expressed as

cl = min
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.5)

cr = max
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.6)

where xi represents the discretized points of the primary variable and wi and wi

are the lower and upper bound of the corresponding membership grade of an α-

plane. The above equations for computing cl and cr is a special case of (5.3) and

(5.4) when the variable x is a crisp value instead of an interval set, i.e. Eq. (5.3)

and (5.4) reduced to Eq. (5.5) and (5.6) when xi = xi = xi. To achieve lower com-

putational overhead and a higher accuracy simultaneously, the centroid of the jth

α-plane may be computed via the EKM iterative algorithm by setting the switch

point for the first iteration as the switch point of the (j − 1)th α-plane derived in

previous computation [96]. This enhancement is based on the characteristic that
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xi, i = 1, 2, · · · , n are discretized points in the domain of the primary variable,

and are fixed for a general T2 fuzzy set. However, for the FWA operation, [xi, xi]

in (5.3) are a collection of interval sets representing the α-cuts that constitute the

T1 FS, Xi. Hence, it is not straightforward to extend the efficient EKM iterative

algorithm for computing the centroid of a T2 FS to the FWA and LWA operations.

To reduce the computational cost of the FWA and LWA operation, this chapter

presents algorithms in which three methods are proposed to optimize the initializa-

tion of the EKM iterative algorithm by leveraging on the unique properties of the

α-cuts of the FSs YFWA and ỸLWA to reduce the number of iterations. In addition,

a new termination condition is proposed to remove an unnecessary iteration in the

termination of the EKM iterative algorithm. The rest of this chapter is organized

as follows: Section II reviews the procedures for the FWA and LWA operation

and the KM and EKM iterative algorithms; Section III covers the characteristics

of the α-cuts of YFWA and ỸLWA followed by the proposed algorithm for the FWA

and LWA operation; Section IV presents a theoretical study to compare the pro-

posed algorithms and KM/EKM iterative algorithm; numerical studies compare

the proposed algorithm and the KM and EKM iterative algorithms in Section V.

Section VI is the conclusion.
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Figure 5.1: Two α-planes of a general T2 FS (α1 < α2).

5.2 Background

5.2.1 The α-cut Representation Theorem and the Exten-

sion Principle Theorem

For a T1 FS A, its α-cut Aα in which α ∈ [0, 1], is an interval:

Aα = {x ∈ X|µA(x) ≥ α} (5.7)

where X is the universe of discourse, µA(x) is the membership of the FS A.

The α-cut Representation Theorem [35]: Let A be a T1 FS defined in X. Then

A =
⋃

α∈[0,1]

αIAα/x (5.8)

where IAα is an indicator function of the α-cut Aα, i.e.

IAα(x) =





1 ∀x ∈ Aα

0 ∀x /∈ Aα

(5.9)

From the decomposition theorem, it can be observed that a T1 FS is deter-

mined once its α-cuts can be specified. Hence, a T1 FS can be identified by
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finding its α-cuts. This approach of identifying a T1 FS has been widely used in

performing the FWA and LWA operation.

The Extension Principle Theorem [35]: Let f(X1, X2, X3, · · · , Xn) be a func-

tion of fuzzy sets Xi, i = 1, 2, · · · , n. Then,

fα(X1, X2, · · · , Xn) = f(Xα
1 , Xα

2 , · · · , Xα
n ) (5.10)

Computing the FWA and LWA operation are important applications of the

extension principle theorem. Take the FWA operation as an example, each α-cut

of the T1 output FS can be derived by performing the weighted average operation

on the corresponding α-cut of all input fuzzy sets.

5.2.2 Computing FWA using the Karnik-Mendel Iterative

Algorithm

The FWA can be computed by first discretizing the membership range [0, 1] into

m points: α1 < α2 < · · · < αm. For each αj, find the corresponding α cuts of

Xi and Wi, denoted by Xi(αj) = [ai(αj), bi(αj)] and Wi(αj) = [ci(αj), di(αj)] as

shown in Fig. 5.2(a) and 5.2(b), respectively. For any particular αj, the output of

the FWA operation YFWA(αj) is an interval, denoted by [fL(α), fR(α)]. According

to the α-cut representation theorem, the output of the FWA operation YFWA(αj)

can be defined as

YFWA(αj) =

∑n
i=1 Xi(αj)Wi(αj)∑n

i=1 Wi(αj)
= [fL(αj), fR(αj)] (5.11)



124

(a)

(b)

Figure 5.2: Computing the FWA: (a) T1 FSs Xi, i = 1, · · · , n. (b) T1 FSs Wi, i =
1, · · · , n.

Based on (5.11), fL(αj) and fR(αj) may be defined as follows:

fL(αj) = min
xi∈[ai(αj),bi(αj)]
wi∈[ci(αj),di(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.12)

fR(αj) = max
xi∈[ai(αj),bi(αj)]
wi∈[ci(αj),di(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.13)

where xi and wi in (5.12) and (5.13) satisfy

xi ∈ Xi(αj) = [ai(αj), bi(αj)] (5.14)

wi ∈ Wi(αj) = [ci(αj), di(αj)] (5.15)
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Figure 5.3: The output of the FWA: T1 FS YFWA

fL(αj) and fR(αj) defined in (5.12) and (5.13) may be modeled as yl and yr in

(5.3) and (5.4), and hence fL(αj) and fR(αj) can be found using the KM iterative

algorithm. Once the intervals [fL(αj), fR(αj)] for all the chosen αj, j = 1, 2, · · · ,m

are found, the T1 FS YFWA can be constructed via

YFWA =
m⋃

i=1

αj/YLWA(αj) =
m⋃

j=1

αj/[fL(αj), fR(αj)] (5.16)

5.2.3 Computing the LWA using the Karnik-Mendel Iter-

ative Algorithm

For an IT2 FS, its membership is characterized by the footprint of uncertainty

(FOU ) bounded by the lower membership function (LMF) and the upper mem-

bership function (UMF). Take all IT2 FS X̃i and W̃i for example, it follows

X̃i = 1/FOU(X̃i) = 1/[X i, X i] (5.17)

W̃i = 1/FOU(W̃i) = 1/[W i, W i] (5.18)

where FOU(·) is the FOU of an IT2 FS. X i and X i (W i and W i) are the LMF and

the UMF of IT2 FS X̃i (W̃i). Similarly, the output of the LWA operator, ỸLWA,
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may be represented as

ỸLWA = 1/FOU(ỸLWA) = 1/[Y LWA, Y LWA] (5.19)

where Y LWA and Y LWA are the LMF and the UMF of IT2 FS ỸLWA. Since an

IT2 FS is determined once its LMF and UMF is known, computing the LWA is

equivalent to computing the LMF Y LWA and the UMF Y LWA.

As shown in Fig. 5.4, the LMF of IT2 FSs Xi and Wi have different height

(maximum value of LMF) denoted by hXi
and hW i

, respectively. Noted that the

LMF Y LWA has been proven to be limited to αj ∈ [0, hmin] where hmin is the

minimum height of all Xi and Wi, i.e.

hmin = min{hXi
, hW i

, i = 1, 2, · · · , n} (5.20)

To find out Y LWA and Y LWA, the range of the membership [0, 1] is discretized

into m points: α1 < α2 < · · · < αm where αp ≤ hmin < αp+1 and then for each αj,

the α cuts of all X̃i and W̃i are found. Fig. 5.4(a) and 5.4(b) show the following

variables to denote the α cuts of X̃i and W̃i:

X i(αj) = [air(αj), bil(αj)], X i(αj) = [ail(αj), bir(αj)] (5.21)

W i(αj) = [cir(αj), dil(αj)], W i(αj) = [cil(αj), dir(αj)] (5.22)

The interval [fLl(αj), fRr(αj)] and [fLr(αj), fRl(αj)] in Fig. 5.5 are used to

denote the α cut of the LMF Y LWA and the UMF Y LWA, respectively. Applying

the α-cut decomposition theorem to (5.2) leads to the following equations:

Y LWA(αj) =

∑m
i=1 X i(αj)W i(αj)∑m

i=1 W i(αj)
= [fLl(αj), fRr(αj)] (5.23)

Y LWA(αj) =

∑m
i=1 X i(αj)W i(αj)∑m

i=1 W i(αj)
= [fLr(αj), fRl(αj)] (5.24)
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(5.23) and (5.24) indicate that computing Y LWA and Y LWA is equivalent to com-

puting a FWA, respectively. The LMF Y LWA(αj) and the UMF Y LWA(αj) may

be computed as follows:

1. The interval [fLl(αj), fRr(αj)] for the UMF Y LWA(αj): 0 < αj ≤ 1

Based on (5.23), fLl(αj) and fRr(αj) may be defined as:

fLl(αj) = min
xi∈[ail(αj),bir(αj)]
wi∈[cil(αj),dir(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.25)

fRr(αj) = max
xi∈[ail(αj),bir(αj)]
wi∈[cil(αj),dir(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.26)

where xi and wi in (5.25) and (5.26) satisfy

xi ∈ X i(αj) = [ail(αj), bir(αj)] (5.27)

wi ∈ W i(αj) = [cil(αj), dir(αj)] (5.28)

fLl(αj) and fRr(αj) defined in (5.25) and (5.26) may be modeled as yl and yr

in (5.3) and (5.4), respectively, and hence fLl(αj) and fRr(αj) can be found

using the KM iterative algorithm.

2. The interval [fLr(αj), fRl(αj)] for the LMF Y LWA(αj): 0 < αj ≤ hmin

Based on (5.24), fLr(αj) and fRl(αj) may be defined as:

fLr(αj) = min
xi∈[air(αj),bil(αj)]
wi∈[cir(αj),dil(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.29)

fRl(αj) = max
xi∈[air(αj),bil(αj)]
wi∈[cir(αj),dil(αj)]

∑n
i=1 xiwi∑n
i=1 wi

(5.30)

where xi and wi in (5.29) and (5.30) satisfy

xi ∈ X i(αj) = [air(αj), bil(αj)] (5.31)

wi ∈ W i(αj) = [cir(αj), dil(αj)] (5.32)
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fLr(αj) and fRl(αj) defined in (5.29) and (5.30) may be interpreted as yl

and yr in (5.3) and (5.4), and hence fLr(αj) and fRr(αj) can be found using

the KM iterative algorithm.

Once fLr(αj), fRl(αj), fLl(αj) and fRr(αj) are available, the UMF and LMF Y LWA

and Y LWA can be constructed via the following equations:

Y LWA =
m⋃

j=1

αj/Y LWA(αj) =
m⋃

j=1

αj/[fLr(αj), fRl(αj)] (5.33)

Y LWA =
m⋃

j=1

αj/Y LWA(αj) =
m⋃

j=1

αj/[fLl(αj), fRr(αj)] (5.34)

5.2.4 The KM Iterative Algorithm and the EKM Iterative

Algorithm

In steps of computing the FWA and LWA, the endpoints of the α-cut, YFWA =

[fL(αj), fR(αj)], Y LWA = [fLl(αj), fRr(αj)] and Y LWA = [fRl(αj), fLr(αj)] can be

modelled as the problem defined in (5.3) and (5.4) and computed using the KM

iterative algorithm or the EKM iterative algorithm. The KM and EKM iterative

algorithm solves the problem defined in (5.3) and (5.4) based on the the following

results [54]:

Since xi appears only in the nominator of (5.3) and (5.4), yl depends solely on

the left bound xi while yr may be expressed using only the right bound xi. Hence,

(5.3) and (5.4) can also be written as

yl = min
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.35)

yr = max
wi∈[wi,wi]

∑n
i=1 xiwi∑n
i=1 wi

(5.36)
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(a)

(b)

Figure 5.4: Computing the LWA: (a) IT2 FS Xi. (b) IT2 FS Wi.

Figure 5.5: The result of the LWA: IT2 FS ỸLWA
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It has been proven that yl and yr defined in (5.3) and (5.4) involve one switch

point between the upper bound and the lower bound of the weights [wi, wi]:

yl =

∑L
i=1 xiwi +

∑n
i=L+1 xiwi∑L

i=1 wi +
∑n

i=L+1 wi

(5.37)

yr =

∑R
i=1 xiwi +

∑n
i=R+1 xiwi∑R

i=1 wi +
∑n

i=R+1 wi

(5.38)

where L and R are the switch points satisfying

xL ≤ yl < xL+1 (5.39)

xR ≤ yr < xR+1 (5.40)

Noted that in (5.37) and (5.38), xi and xi, i = 1, 2, · · · , n have been ranked in an

increasing order, i. e.

x1 ≤ x2 ≤ · · · ≤ xn (5.41)

x1 ≤ x2 ≤ · · · ≤ xn (5.42)

The KM iterative algorithm computes yl or yr by updating the switch point

iteratively until the actual one L (R) is reached. The main steps of the KM

iterative algorithm include initialization, update and termination, and the detailed

procedures of the KM iterative algorithm are as follows:

1. Step 1: Sort xi in an increasing order (xi denotes xi for yl or xi for yr) and

label them as x1 < x2 < · · · < xn. Let [wi, wi] be the corresponding weight

of xi.

2. Step 2: Set wi as

wi =
wi + wi

2
(5.43)
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and then compute

y =

∑n
i=1 wixi∑n
i=1 wi

(5.44)

3. Step 3: Find the switch point k such as

xk ≤ y ≤ xk+1 (5.45)

4. Step 4: Set wi as:

(a) yl:

wi =





wi for i ≤ k

wi for i > k

(5.46)

(b) yr:

wi =





wi for i ≤ k

wi for i > k

(5.47)

and compute

y′ =

∑n
i=1 wixi∑n
i=1 wi

(5.48)

5. Step 5: If y′ = y, stop. k is the actual switch point L (R) and yl = y

(yr = y). Otherwise, set y = y′ and go to Step 3.

The EKM iterative algorithm is an enhanced version of the KM iterative al-

gorithm through optimizing the initial switch point, the terminal condition and

the computational process [85]. The strategies used to optimize the initialization,

termination and computation are as follows:
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1. Initialization: The initialization of the KM iterative algorithm is inefficient

and thus may cause a large number of iterations. To reduce the number of

iterations required in the search process, the switch point is initialized as

k = [n/2.4] for yl or k = [n/1.7] for yr ([·] denotes the nearest integer.),

where n is the number of xi.

2. Computation: In the KM iterative algorithm, to compute y in (5.48) in each

iteration,
∑m

i=1 wi and
∑n

i=1 xiwi need to be computed. To reduce computa-

tional cost, the new computation technique is introduced by utilizing results

from the last iteration. Suppose that in the jth iteration, the switch point k,

∑m
i=1 wi and

∑n
i=1 xiwi are denoted by kj, (

∑m
i=1 wi)j and (

∑n
i=1 xiwi)j, re-

spectively. (
∑m

i=1 wi)j+1 can be computed by adding the difference between

(
∑m

i=1 wi)j and (
∑m

i=1 wi)j+1 to (
∑m

i=1 wi)j. Similarly, (
∑m

i=1 wixi)j+1 can be

computed by adding the difference between (
∑m

i=1 wixi)j and (
∑m

i=1 wixi)j+1.

3. Termination: In the KM iterative algorithm, the termination is identified by

comparing the output of the current iteration with the last iteration, indi-

cating that another iteration is needed although the actual switch point is

found. To avoid the computation in the unnecessary iteration, the termina-

tion of iterations is proposed to be identified by comparing the switch point

of the current iteration with that of the last iteration.
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5.3 Improved Algorithms for the FWA and the

LWA

Although the introduction of the KM iterative algorithm and EKM iterative al-

gorithm has reduced the computational cost required in calculating the FWA and

the LWA, computing the FWA and the LWA remains computationally intensive

due to the iterative nature of the KM and EKM iterative algorithms. To further

reduce their computational overhead, the following subsection proposes possible

strategies employed for optimizing the KM and EKM iterative algorithms, fol-

lowed by detailed descriptions of the proposed FWA and LWA algorithms in the

next subsection.

5.3.1 Strategies for Optimizing the KM / EKM Iterative

Algorithm for Computing FWA and LWA

The result of the FWA, YFWA, can be constructed from its α-cut YFWA(αj) =

[fL(αj), fR(αj)] via (5.16) where the endpoints fL(αj) and fR(αj) may be com-

puted using the KM iterative algorithm or the EKM iterative algorithm. However,

the KM and EKM iterative algorithms initialize the search process in a fixed way

regardless of the actual position of the switch point. Such initialization methods

may unnecessarily increase a large number of iterations and thus require greater

computational overhead. As an effort to reduce the number of iterations in the

KM /EKM iterative algorithm, the efficient method for computing the centroid

of a T2 FS initializes the search process by setting the switch point of the last
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α-plane as the switch points of the first iteration. This initialization was pro-

posed based on the property that the switch points for its α-plane will converge

to those of the α = 1 plane as the value of α increases, and thus the switch point

of successive α-planes are close. Unlike the steps for computing the centroid of

a general T2 FS where the domain of the primary variable xi, i = 1, 2, · · · , n is

fixed, (5.3) and (5.4) and Fig. 5.2(a) shows the FWA computation involves the

bound representing the α-cuts of Xi, i.e. [xi, xi] = [ai, bi], that vary as the value of

α varies. As a result, in computing the FWA or LWA, the switch points may not

monotonously converge to that for α = 1 cut, and thus the initialization proposed

for computing the centroid of a T2 FS may not be directly extended to computing

the FWA and LWA. Instead, new strategies need to be proposed based on the

following properties about the endpoints, fL(αj) and fR(αj):

Theorem 5.1 The output YFWA of a FWA operation defined in (5.1) is a T1 FS

which has continuous membership if T1 FSs Xi and Wi have continuous MFs.

A proof of Theorem 5.1 is provided in Appendix C. Theorem 5.1 indicates

that for the FWA, the variables fL(αj) and fR(αj) in Fig. 5.3 are continuous with

respect to αj.

Theorem 5.2 Assume the T1 FSs Xi and Wi in (5.1) have convex membership

grade. Then YFWA(αj) = [fL(αj), fR(αj)], j = 1, · · · ,m defined in (5.12)-(5.13)

satisfy the following inequality:

YFWA(αm) ⊆ YFWA(αm−1) ⊆ · · ·YFWA(αj+1) ⊆ YFWA(αj) · · · ⊆ YFWA(α1)(5.49)
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Equivalently speaking,

fL(α1) < fL(α2) < · · · < fL(αj) < fL(αj+1) < · · · < fL(αm) (5.50)

fR(α1) > fR(α2) > · · · > fR(αj) > fR(αj+1) > · · · > fR(αm) (5.51)

A proof of Theorem 5.2 is provided in Appendix C. From Theorem 5.2, it can

be observed that in the FWA, the variable fL(αj) (fR(αj)) will increase (decrease)

as the value of αj increases.

Example 1 Consider a FWA example, in which three fuzzy attributes Xj, j =

1, 2, 3 and their corresponding weights are shown in Fig. 5.6(a)-5.6(b), respectively.

Fig. 5.6(c) shows the output YFWA. An observation of Fig. 5.6(c) indicates that

the MF of YFWA is continuous and the α-cuts of the FWA output converge to the

α = 1 cut as the value of α increases. Since the FS YFWA is a weighted average

of Xi, the domain y of YFWA and the domain of Xi have the same range and they

share the same unit.

As shown by (5.23) and (5.24) in Section 5.2.3, the result of a LWA operation,

ỸLWA, may be obtained by using the FWA to determine the bounds Y LWA and

Y LWA. Consequently, Theorem 5.1 and Theorem 5.2 may be restated in the

following form for the LWA operation:

Theorem 5.3 The output ỸLWA of a LWA operation defined in (5.2) is an IT2

FS. Its LMF Y LWA and UMF Y LWA are continuous if IT2 FSs X̃i and W̃i have

continuous MFs.

Theorem 5.4 Y LWA(αj) = [fLl(αj), fRr(αj)], j = 1, · · · , p defined in (5.25)-

(5.26) and Y LWA(αj) = [fLr(αj), fRl(αj)], j = 1, · · · ,m defined in (5.29)-(5.30)
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satisfy the following inequalities:

Y LWA(αp) ⊆ Y LWA(αp−1) ⊆ · · ·Y LWA(αj+1)

⊆ Y LWA(αj) · · · ⊆ Y LWA(α1) (5.52)

Y LWA(αm) ⊆ Y LWA(αm−1) ⊆ · · ·Y LWA(αj+1)

⊆ Y LWA(αj) · · · ⊆ Y LWA(α1) (5.53)

Equivalently speaking,

fLr(α1) < fLr(α2) < · · · < fLr(αj) < fLr(αj+1) < · · · < fLr(αp) (5.54)

fRl(α1) > fRl(α2) > · · · > fRl(αj) > fRl(αj+1) > · · · > fRl(αp) (5.55)

fLl(α1) < fLl(α2) < · · · < fLl(αj) < fLl(αj+1) < · · · < fLl(αm) (5.56)

fRr(α1) > fRr(α2) > · · · > fRr(αj) > fRr(αj+1) > · · · > fRr(αm) (5.57)

Example 2 Consider a LWA example. Fig. 5.7(a) shows four IT2 FSs X̃i

representing the attributes, and the corresponding weights W̃i are shown in Fig.

5.7(b). Fig. 5.7(c) shows the output of the FWA operation, ỸLWA. Its LMF Y LWA

is limited to [0, hmin] where hmin = 0.7. From Fig. 5.7(c), it can be observed that

both its LMF and UMF are continuous and their α cuts converge to their α = 0.7

and α = 1 cut, respectively. This observation is consistent with Theorem 4.

Since the FWA is the foundation of the LWA computation, the efficient KM

algorithm for computing the centroid of a general T2 FS [96] may be extended to

lower the computational cost of FWA/LWA operations by using the properties of

FWA. Theorem 5.1 shows that both fL(αj) and fR(αj) are continuous with respect

to αj, while Theorem 5.2 indicates that fL(αj) and fR(αj) monotonously vary as

αj increases. The implication of the two theorems is that the endpoints of the jth
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Figure 5.6: A FWA example: (a) T1 FSs Xi, i = 1, 2, 3. (b) T1 FSs Wi, i = 1, 2, 3.
(c) the output T1 FS YFWA.
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Figure 5.7: A LWA example(a) IT2 FSs X̃i, i = 1, 2, 3, 4. (b) IT2 FSs W̃i, i =
1, 2, 3, 4. (c) the output IT2 FS ỸLWA.
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(a) (b)

Figure 5.8: fL(αj) and fR(αj)(yl and yr in (5.37) and (5.38)): (a) fL(αj) (L = 2).
(b) fR(αj) (R = 3). (The solid vertical lines show the weights [w

¯ i, w̄i] for x
¯i / x̄i,

i = 1, 2, 3, 4, 5; The membership grades used to calculate fL(αj) and fR(αj) are
labelled by circles.)

and (j + 1)th α-cuts, i. e. fL(αj) and fL(αj+1) (fR(αj) and fR(αj+1)), are very

close. As the update law of the KM or EKM iterative algorithm is monotonously

convergent, starting the iterative search using a switch point which is close to the

search objective may result in a reduction of the number of iterations. Hence,

one possible initialization strategy that reduces the number of iterations is to

use the endpoints of the adjacent α-cut, fL(αj) and fR(αj), to initialize the KM

iterative algorithm for the αj+1-cut. On the other hand, (5.39) and (5.40) indicate

that the endpoints for an α-cut, fL(αj) and fR(αj), are derived from an unique

switch point L (R) and correspond to unique values in the universe of discourse

for attributes, xL (xR). Fig. 5.8 illustrates the relationship between the endpoint

fL(αj) (fR(αj)), switch point L (R) and variable xL (xR). Since the endpoints of

the successive α-cuts are close, the corresponding switch point L (R) and variables

aL(αj) (bR(αj)) of the successive α-cuts will also be close. This observation leads

to alternative strategies for initializing the KM iterative algorithm using the switch

point and variables of the last α-cut. Details of the proposed algorithms will be

summarized in the next subsection.
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Another important factor that determines the computation requirement of the

KM algorithm is the termination condition. In the original KM iterative algorithm,

the decision to terminate computation is made by examining whether the result

of the current iteration is equal to that of the last iteration. This termination

method is based on the observation that the result of each iteration will vary

until the actual endpoint is found. As a result, the algorithm will terminate one

iteration after the one in which the actual endpoint is found. The implication

is that an additional iteration is needed, even though the actual endpoint has

been found. To remove this unnecessary iteration, the EKM iterative algorithm

identifies the termination of iterations by examining whether the switch point is

identical to the one of the last iteration. Although this termination condition of

the EKM iterative algorithm avoids the calculation of the unnecessary iteration,

the switch point for this unnecessary iteration still needs to be identified.

To completely remove the unnecessary iteration, a new terminal condition is

introduced based on the update law of the KM iterative algorithm in Step 3.

Suppose y is calculated using k as the switch point. Then, a new switch point, k′,

is generated via the update law xk′ < y < xk′+1. Then it follows

• If xk < y < xk+1, k = k′ and the iterations end.

• If y > xk+1 or y < xk, k 6= k′ and the the switch point continues to update.

Hence, the termination of iterations can be identified by examining whether xk <

y < xk+1 holds. Using this terminal condition to identify the end of iterations, the

unnecessary iteration can be completely avoided.
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5.3.2 The Proposed Algorithms for the FWA and the LWA

In summary, the proposed FWA algorithm starts by using KM /EKM iterative

algorithm to compute fL(α1) and fR(α1), the bounds of the α1-cut, and then

increase the value of αj. For subsequent α-cuts, the bounds, fL(αj) and fR(αj),

are computed using the improved KM (IKM) iterative algorithm that is based on

the proposed initialization strategies and the proposed termination strategy. Since

three possible initialization strategies using the bounds, the variable and the switch

point for the last α-cut are proposed in Section 5.3.1, there are three versions of

IKM iterative algorithm. For ease of description, the IKM iterative algorithm

initialized using the bounds, the variable and the switch point are denoted by

IKMA-b, IKMA-x, IKMA-s, respectively. The flowchart of the proposed FWA

algorithm is shown in Fig. 5.9. The detailed procedure of the IKM iterative

algorithm may be described as

1. yl

• Step 1: Sort xi, i = 1, 2, · · · , n in an increasing order. Let [wi, wi] be

the corresponding weight of xi.

• Step 2:

(a) IKMA-b: Find the switch point k such as

xk ≤ fL(αj−1) ≤ xk+1

(b) IKMA-x: Find the switch point such that xk = ah(αj), 1 ≤ h ≤ n

where in the IKM or EKM algorithm for the αj−1-cut, xL represents

ah(αj−1).
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(c) IKMA-s: Initialize the switch point k as k = L where L is the

actual switch point for the αj−1-cut.

• Step 3: Compute

a =
k∑

i=1

xiwi +
n∑

i=k+1

xiwi

b =
k∑

i=1

wi +
n∑

i=k+1

wi

and compute

y =
a

b
(5.58)

• Step 4: if xk+1 > y > xk, stop, yl = y. Otherwise, continue.

• Step 5: Find the switch point k′ such as

xk′ ≤ y ≤ xk′+1 (5.59)

• step 6: Compute s = sign(k′ − k) and

a′ = a + s

max(k,k′)∑

i=min(k,k′)+1

xi(wi − wi)

b′ = b + s

max(k,k′)∑

i=min(k,k′)+1

(wi − wi)

y′ =
a′

b′

• Step 7: Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.

2. yr

• Step 1: Sort xi, i = 1, 2, · · · , n in an increasing order. Let [wi, wi] be

the corresponding weight of xi.
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• Step 2:

(a) IKMA-b: Find the switch point k such as

xk ≤ fR(αj−1) ≤ xk+1

(b) IKMA-x: Find the switch point such that xk = bh(αj), 1 ≤ h ≤ n

where in the IKM or EKM algorithm for the αj−1-cut, xR represents

bh(αj−1).

(c) IKMA-s: Initialize the switch point k as k = R where R is the

actual switch point for the αj−1-cut.

• Step 3: compute

a =
k∑

i=1

xiwi +
n∑

i=k+1

xiwi

b =
k∑

i=1

wi +
n∑

i=k+1

wi

and compute

y =
a

b
(5.60)

• Step 4: if xk+1 > y > xk, stop, yr = y. Otherwise, continue.

• Step 5: Find the switch point k′ such as

xk′ ≤ y ≤ xk′+1

• step 6: Compute s = sign(k′ − k) and

a′ = a− s

max(k,k′)∑

i=min(k,k′)+1

xi(wi − wi)

b′ = b− s

max(k,k′)∑

i=min(k,k′)+1

(wi − wi)

y′ =
a′

b′
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Figure 5.9: The flowchart of the proposed FWA algorithm

• Step 7: Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.

Since the computation of the LWA uses the FWA as foundation, the proposed

FWA algorithms can be extended to computing the LWA. The flowchart of the

proposed LWA algorithms are showed in Fig. 5.10.
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Figure 5.10: The flowchart of the proposed LWA algorithm
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5.4 Theoretical Analysis of Computational Over-

head of the Proposed FWA and LWA Algo-

rithm

The above analysis indicates that the proposed FWA and LWA algorithms can

achieve smaller computational overhead. To further demonstrate the effectiveness

of the proposed algorithms, this section theoretically studies the computational

overhead by comparing the number of iterations required by the proposed algo-

rithm with that of the EKM iterative algorithm. Since computing the LWA is

equivalent to computing two FWAs, the following analysis focuses on the FWA.

To compute the FWA using the EKM iterative algorithm, the EKM iterative

algorithm needs to be implemented once for either bound of each α-cut of the

output YFWA. Since the proposed IKM iterative algorithm updates the switch

point in the same manner as the EKM iterative algorithm, the study can be

conducted by considering the worst case in which all possible switch points need

to be examined. In each implementation of the EKM iterative algorithm, all n

possible switch points, xi, i = 1, 2, · · · , n (xi, i = 1, 2, · · · , n), need to be examined

in the worst case. As a result, at most 2n iterations are required for computing

the bounds of each α-cut of the output YFWA. Suppose that in performing the

FWA operation, m α-cuts are chosen, and then computing the FWA using the

EKM iterative algorithm requires at most 2nm iterations.

The proposed FWA algorithm starts from α1 (αm) and increases (decreases)

the value of αj. For the first α-cut, the EKM iterative algorithm needs to be
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implemented twice and thus the maximum number of iterations for the first α-cut

of the output YFWA is 2n. For the other chosen αj, the IKM iterative algorithm

is used to search for the bounds fL(αj) and fR(αj). Here the IKM iterative

algorithm initializing using the bounds of the adjacent α-cut of YFWA (IKMA-b)

is considered. Because the IKM iteration algorithm for fL(αj) (fR(αj)) starts its

search from that of the last α-cut, the search process for the other chosen αj takes

at most 2n iterations. In total, computing the FWA using the proposed algorithm

takes at most 4n iterations.

Let C1 and C2 be the maximum number of iterations needed by the EKM

iterative algorithm and the proposed algorithm, respectively, i. e. C1 = 2nm and

C2 = 4n. 4C is defined as the difference between C1 and C2, i.e.

4C = C1 − C2

= 2nm− 4n = 2n(m− 2) ≥ 0 (5.61)

An observation of (5.61) indicates that the proposed algorithm takes less iterations

than the EKM iterative algorithm, regardless of the value of m (m > 1). More

importantly, the number of the reduced iterations,4C, will increase as the number

of the chosen α cuts, m, increases. This may be attributed to the property that the

maximum number of iterations required by the EKM iterative algorithm is linearly

related with m, i. e. C1 is O(mn), while the maximum number of iterations

required by the proposed FWA algorithm is independent of the value of m, i. e.

C2 is O(n). Since the number of the chosen α cuts, m, determines the accuracy of

the output YLWA, the proposed algorithm is able to achieve a high accuracy and

a lower computational overhead simultaneously.
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5.5 Numerical Study

This section will present a comparative study of the computational performance of

the KM iterative algorithm, the EKM iterative algorithm and the three proposed

algorithms through numerical simulations. Since computing a LWA is equivalent

to computing two FWAs, the numerical studies focus on the FWA. In the following

numerical studies, the platform is a Thinkpad X201i laptop with Intel CPU I5 and

4 GB memory, running Matlab 7.0.

In the numerical study, the parameters of the T1 FSs Xi and Wi, i = 1, 2, · · · , n

were randomly generated by Monte Carlo method. In each simulation, the MFs

of Xi and Wi, i = 1, 2, · · · , n were uniformly distributed. In addition, the range

of the primary variable of Xi and Wi were constrained to the range [0, 10] and

[0, 1], respectively. The number of Xi and Wi, n, are chosen as 20, 60 and

100. To access how the required accuracy affect the computational overhead for

the FWA operator, the number of α-cuts, m, was increased by 5 from 5 to 20,

(m = 5, 6, , 7, · · · , 20) 100, and then was increased in step of 5 from 25 to 50

(m = 25, 30, 35, · · · , 50) in the simulation. For each m, 100 Monte Carlo simu-

lations were done. The mean and the standard deviation (STD) of the number

of iterations and the computational time were recorded in Fig. 5.11-5.14 to eval-

uate the computational performance of the KM iterative algorithm (KMA), the

EKM algorithm (EKMA), and the three proposed algorithms (IKMA-b, IKMA-x,

IKMA-s).
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5.5.1 The Mean and STD of the Number of Iterations

Fig. 5.11 shows the mean and the standard deviation (STD) of the number of

iterations. Fig. 5.11(a)-5.11(c) show the results for triangular-shaped Xi and Wi

while Fig. 5.11(d)-5.11(f) show the results for gaussian-shaped Xi and Wi. The

following can be observed from Fig. 5.11:

1. The average number of iterations using the KMA ,EKMA and the proposed

algorithms approximately increase linearly as the number of the chosen α-

cuts,m, increases, regardless of the value of n. However, the rates of the

increase for the proposed algorithms are smaller than the KMA and EKMA.

In addition, the mean number of iterations for the proposed algorithms are

smaller than those for the KMA and EKMA. This is consistent with the

theoretical analysis in Section IV that the number of iterations for the pro-

posed algorithm do not rely on the number of m as heavily as the KMA and

EKMA.

2. Among the three proposed algorithms, the IKMA-s method requires the

smallest iterations. The computation reduction is especially significant when

the number of Xi and Wi, n, is between 60 and 100. This indicates that

the switch point initialized based on the switch point is closer to the actual

switch point and thus unnecessary iterations can be avoided.

3. To investigate the dependence of the variation in the number of iterations

needed by the proposed algorithms on the value of attributes Xi and weights

Wi in a FWA operation, the standard deviation (STD) of the number of it-

erations needed for different values of Xi and Wi is used as a criteria. When
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n = 20, the STD for the KMA and the EKMA linearly increases as m in-

creases while the STD for the three proposed algorithms are smaller and

independent of the value of m. When the value of n is increased between 60

and 100, the STD for the proposed algorithm, especially the IKMA-s, are

still smaller than the KMA and EKMA. This reveals that the number of iter-

ations for the KMA and EKMA heavily rely on the position and parameters

of T1 FSs Xi and Wi while the proposed algorithms do not, primarily be-

cause the proposed initialization strategy can predict an initial switch point

which is close to the actual one, regardless of the parameters of Xi and Wi.

4. A comparative observation of Fig. 5.11(a)-5.11(c) and Fig. 5.11(d)-5.11(f)

reveals that the mean and STD of iterations for triangular-shaped T1 FSs

representing Xi and Wi are similar to those for gaussian-shaped ones when

the proposed algorithms are applied.

Fig. 5.12 shows the percentage of the mean of the number of iterations re-

duced by the proposed algorithms over the average number of iterations taken by

the KMA and the EKMA. From Fig. 5.12, it can be found that the proposed

algorithms can achieve a roughly 60% reduction in the number of iterations re-

quired by the KMA and roughly 40% of those needed by the EKMA when m,

is sufficiently large. Among the three proposed algorithms, the IKMA-s achieves

the largest reduction percentage, regardless of the number and the shape of Xi

and Wi, indicating the superiority of the initialization method employed by the

IKMA-s.
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5.5.2 The Mean and STD of the Computational Time

The proposed algorithms have been shown to require less iterations. However, less

iterations may not necessarily result in less computational overhead as the calcula-

tions and mathematical manipulation in the initialization may be relatively high.

To further examine the superiority of the proposed algorithms, this subsection

focuses on using computational time as a criteria to compare the computational

overhead of the KMA, the EKMA and the proposed algorithms. Fig. 5.13 shows

the mean and STD of the computational time for the KMA, the EKMA and the

proposed algorithms. An observation of Fig. 5.13 reveals that

1. Firstly, the mean computational time for the KMA, the EKMA and the

proposed algorithms is approximately proportional to the number of the

chosen α cuts, m. The growth rates of the computational time for the

proposed algorithm are smaller than those for KMA and EKMA. This may

be attributed to smaller iterations required by the proposed algorithms due

to the proposed initialization method and termination condition. Among

the proposed three algorithms, the IKMA-s takes the least computational

time, primarily because it takes the smallest number of iterations shown in

Fig. 5.11.

2. Secondly, the STD of the computational time for KMA and EKMA algo-

rithms linearly increase as m increases while those for the proposed algo-

rithms slightly vary. More importantly, the STD for the proposed algorithms

are smaller than the KMA and EKMA. As a result, the iterations required

by the proposed algorithms does not rely on the position or parameters of



152

Xi and Wi. Among the three algorithms, the STD of the iterations for the

IKMA-s is slightly smaller.

3. Lastly, when the proposed algorithms are employed, the mean and STD of

the computational time for triangular Xi and Wi are similar to those for

gaussian T1 FSs Xi and Wi, indicating that the computational performance

of the proposed algorithms are independent of the shape of Xi and Wi.

Fig. 5.14 shows that the percentage the reduction of the average computational

time by the proposed algorithm over the KMA and EKMA. An observation of Fig.

5.14 reveals that among the three proposed algorithms, the IKMA-s achieves the

largest computational reduction and the IKMA-s reduces about 60% computa-

tional time required by the KMA and 40% computational time required by the

EKMA.

5.6 Conclusion

This chapter proposed three algorithms for performing FWA/LWA that optimize

the initialization and termination of the KM/EKM iterative algorithm. The three

proposed initialization strategies reduce the number of iterations required in the

search process by initializing the search process using the endpoint, the variable

and the switch point of the computations for an adjacent α-cut. On the other

hand, the proposed termination condition reduces the computational time re-

quired in the last iteration by avoiding the step of updating the switch point

which is a necessary step to identify the end of iterations in the KM/EKM al-

gorithm. Numerical experiments show that the three proposed algorithms can
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Figure 5.11: Mean of the number of iterations: Triangle T1 FSs Xi and Wi (a)
n = 20 (b) n = 60 (c) n = 100; Gaussian T1 FSs Xi and Wi (d) n = 20 (e) n = 60
(f) n = 100
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Figure 5.12: Iteration reduction: Triangle T1 FSs Xi and Wi (a) n = 20 (b) n = 60
(c) n = 100; Gaussian T1 FSs Xi and Wi (d) n = 20 (e) n = 60 (f) n = 100.
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Figure 5.13: Mean and STD of the computational time: Triangle T1 FSs Xi and
Wi (a) n = 20 (b) n = 60 (c) n = 100; Gaussian T1 FSs Xi and Wi (d) n = 20
(e) n = 60 (f) n = 100.
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Figure 5.14: Computational time reduction: Triangle T1 FSs Xi and Wi (a) n = 20
(b) n = 60 (c) n = 100; Gaussian T1 FSs Xi and Wi (d) n = 20 (e) n = 60 (f)
n = 100.
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reduce the number of iterations required in the search process and the computa-

tional time required by the FWA and LWA operator. Among the three proposed

algorithms, the proposed algorithm which employs the strategy of initializing the

search process using the switch point of the adjacent α-cut requires the smallest

computational time, achieving an approximately 60% reduction in computational

time of the KM iterative algorithm and an approximately 40% reduction of the

EKM iterative algorithm.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

Although a large number of publications on interval type-2 fuzzy logic have emerged,

many questions on interval type-2 fuzzy logic still remain unsolved. The challenges

that impede the study of interval type-2 fuzzy logic primarily arise from operations

implemented using the Karnik-Mendel(KM) iterative algorithm or the enhanced

Karnik-Mendel (EKM) iterative algorithm. To be specific, there are two major

challenges. Firstly, there lack closed from expressions for the operations imple-

mented using the KM iterative algorithm and thus it is challenging to perform

theoretical analysis. Secondly, these operations are computationally intensive due

to the iterative nature of the KM algorithm and thus they are not suitable for

practical implementation in real systems. In view of these challenging issues, this

thesis delved into the the operations implemented using the KM iterative algo-

rithm: interval type-2 fuzzy controller using the KM type-reducer, fuzzy weighted

average and linguistic weighted average.
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In chapter 3, a class of symmetric interval type-2 fuzzy PI/PD controller using

the KM type-reducer was investigated. To overcome the limitation of no closed

form expression relating the output and the firing strength of the system, the

input-output relationship of the symmetric interval type-2 fuzzy controllers was

established by dividing the input space into parts and deriving the mathematical

expression for each subregion. These mathematical expressions lay the foundation

for the theoretical study of interval type-2 fuzzy logic controller. A larger number

of the partitions for the symmetric interval type-2 fuzzy controller indicates that

it has the potential to outperform type-1 fuzzy logic controller. By comparing

the derived expressions with those of its type-1 counterpart, four properties were

identified to address the potential advantage of the interval type-2 fuzzy controller

over the type-1 fuzzy controller. These properties revealed that the interval type-

2 fuzzy controller could better alleviate the compromise between faster response

and smaller overshoot by providing larger control efforts and smaller overshoot

simultaneously. Results from numerical experiments conducted to verify these

results are consistent with the theoretical analysis.

Although the results in Chapter 3 shed some lights on the potential advan-

tage of interval type-2 fuzzy controller, these results are limited to the symmetric

interval type-2 fuzzy PD/PI controller. To generalize these results, a class of inter-

val type-2 fuzzy PD/PI controller with more general configurations was studied

in Chapter 4. Using the strategy of dividing the whole input space into parts

presented in Chapter 3, the mathematical expressions relating the output and

the inputs of the interval type-2 fuzzy PD/PI controller were established. These

mathematical equations provide a platform for theoretical study of more general
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interval type-2 fuzzy controllers. By comparing the derived partitions of the in-

put space and the corresponding expressions with those of the symmetric interval

type-2 fuzzy controller and its type-1 counterpart, two aspects of results were

derived. Firstly, it have been shown that the four properties for the symmetric

interval type-2 fuzzy controller still hold true for general interval type-2 fuzzy

controller. Secondly, the biggest advantage offered by an interval type-2 fuzzy

controller over the symmetric one is the introduction of another class of subregion

with unique characteristics to enable the interval type-2 fuzzy controller to better

balance the compromise between fast rise time and smaller overshoot. These re-

sults revealed how the configurations of an interval type-2 fuzzy controller affect

its characteristics and the control performance.

Another obstacle limiting the usefulness of the KM iterative algorithm is the

intensive computational overhead, especially when the algorithm is used to com-

pute the fuzzy weighted average (FWA) and linguistic weighted average (LWA).

Chapter 5 proposed three algorithms to perform FWA and LWA in which the ini-

tialization and the termination of the KM iterative algorithm/ the EKM iterative

algorithm are optimized. Three strategies of optimizing the initialization were

proposed to reduce the number of iterations required by the search process by

initializing using the endpoint, variable and the switch point from the previous

computation for an adjacent α-cut. In addition, a better termination condition

was proposed to reduce the required computational overhead by avoiding the step

of updating the switch point in the last iteration which is a necessary step to

identify the end of iterations in the KM iterative algorithm. Numerical studies

verified that the three proposed algorithms can reduce the computational overhead
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required by the KM iterative algorithm / the EKM iterative algorithm. In partic-

ular, the proposed algorithm which employs the strategy of initializing the search

process using the switch point available for an adjacent α cut needs the least com-

putational time, achieving an approximately 60% reduction in the computational

time of the KM iterative algorithm and an approximately 40% reduction of the

EKM iterative algorithm. The large amount of reduction in the computational

overhead by applying the proposed algorithms may enhance the application of

FWA and LWA.

6.2 Future work

It should be noted that the derived mathematical expressions in Chapter 3 and

Chapter 4 are limited to interval type-2 fuzzy controller with specific configurations

such as symmetrical antecedent sets, equally spaced consequent sets. A possible

extension of this work is to derive the mathematical input-output relationship for

interval type-2 fuzzy controllers with more complex configurations. Whether the

properties presented in Chapter 3 and Chapter 4 still hold true for more general

interval type-2 fuzzy logic controller is unknown. Hence, it would be interesting to

examine whether these properties still hold true or to establish whether there are

any other unique properties. The mathematical equations for interval type-2 fuzzy

controller lay the foundation for its theoretical study. Thus, it would be helpful

to provide guidelines for designing interval type-2 fuzzy logic controller through

these theoretical study tools.

It also should be noted that the strategies of optimizing the initialization of the
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KM/EKM iterative algorithm in Chapter 5 may not be limited to the computation

of FWA and LWA. These strategies may be applied to reduce the computational

overhead of other operators or systems implemented using the KM /EKM itera-

tive algorithm. Another direction of the future work is to develop more efficient

strategies to further improve the computational efficacy of the KM/EKM iterative

algorithm.
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Appendix A

Proof of Theorem 3.1

For a T1 FLS using the center-of-sets defuzzification method, the defuzzified out-

put yc can be expressed as

yc =

∑m
i=1 fiyi∑m
i=1 fi

(A.1)

where fi, i = 1, 2, · · · ,m is the firing strength of the ith rule and yi is the centroid

of the corresponding consequent set. When all consequent sets of the T1 FLS are

shifted horizontally by δ, i.e. yi → yi +δ, the defuzzified output y∗c of the resulting

T1 FLS can be computed as

y∗c =

∑m
i=1 fi(yi + δ)∑m

i=1 fi

=

∑m
i=1 fiyi∑m
i=1 fi

+ δ = yc + δ (A.2)

The above results may be extended for IT2 FLSs that use the Karnik-Mendel

(KM) type-reduction method. By employing the wavy slice representation to

interpret the IT2 FS generated by the inference engine, the output of the KM



164

type-reducer is the interval set [yl, yr].

yl = min{yj
e, j = 1, 2 · · · , v}

yr = max{yj
e, j = 1, 2 · · · , v}

yj
e =

∑m
i=1 f ′iyi∑m
i=1 f ′i

, j = 1, 2 · · · , v

where yj
e is an embedded IT2 FS of the output of the fuzzy inference process, and

f ′i is any value in the firing set [f
i
, f i]. Suppose all consequent sets of an IT2

FLS are shifted by the amount δ, i.e. yi → yi + δ. Then the centroid y∗j of an

embedded IT2 FS that form the output of the new IT2 FLS is yj
e +δ. Since shifting

all consequent sets by the amount of δ causes the centroids of all embedded IT2

FLS to shift by the same amount, the type-reduced set formed by these centroids

will be [yl + δ, yr + δ]. As a result, the new defuzzified output y∗ of the IT2 FLS

will be y∗ = y + δ.
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Appendix B

Proof of Property 2-4 of the

non-symmetric IT2 fuzzy PD

controller

This appendix aims to examine whether Property 2-4 of the symmetric IT2 FLC

still hold true for the non-symmetric IT2 fuzzy PD controller by comparing the

analytical structure of the IT2 fuzzy PD controller, derived in Section 4.3, with its

T1 counterpart. Fig. B.1(a) and B.1(b) show the antecedent sets of the T1 FLC

for inputs E(n) and R(n) used in this study. They are constructed by replacing

every IT2 FS with a T1 FS such that both the IT2 and T1 FLC have the same

input space. Fig. B.2 shows the input space is partitioned into four subregions

before the T1 FLS can be equivalently expressed as nonlinear PD controller as

follows:

4ujICh = kh
pE(n) + kh

dR(n) (B.1)
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(a) (b)

Figure B.1: (a) T1 FSs EN and EP (solid lines) as antecedent sets for the input
E(n). (b)T1 FSs RN and RP (solid lines) as antecedent sets for the input R(n).)

where the proportional gain kh
p and the derivative gain kh

d are listed in Table B.1.

Figure B.2: The partitions of the input space by T1 FLS

B.1 Proof of Property 2

The symmetry of the antecedent sets and consequent sets allows IC 6 and 7 to be

taken as an example to illustrate this property. The observation are

K7
p =

H2 + H1

8L1(1− θ1) + 4E(n)
+

H2 + H1

8L1(1− θ1) + 4E(n)

>
H2 + H1

8L1(1 + θ1) + 4E(n)
= K24

p

K6
p =

H2 + H1

8L1(1− θ2 + θ1) + 4E(n)
+

H2 + H1

8L1(1− θ1) + 4E(n)

>
H2 + H1

8L1(1− θ2 + θ1) + 4E(n)
= K23

p
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Table B.1: The output of the T1 fuzzy PD controller 4uj(n) for IC 1 to IC 4

IC No. 4uj(n)

1
L1(1 + 2θ1)(H1 −H2)R(n)− L2(1 + 2θ2)(H3 + H4)E(n)

−2L2(1 + 2θ2)E(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)

2
−L1(1 + 2θ1)(H2 + H4)R(n) + L2(1 + 2θ2)(H1 −H3)E(n)

−2L1(1 + 2θ1)R(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)

3
L1(1 + 2θ1)(H3 −H4)R(n) + L2(1 + 2θ2)(H1 + H2)E(n)

2L2(1 + 2θ2)E(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)

4
L1(1 + 2θ1)(H1 + H3)R(n) + L2(1 + 2θ2)(H2 −H4)E(n)

2L1(1 + 2θ1)R(n) + 4L1L2(1 + 2θ1)(1 + 2θ2)

This shows that in the direction of E(n), IC 6 and 7 exhibits bigger slope than IC

23 and 24, respectively.

B.2 Proof of Property 3

It is sufficient to consider IC 11, 12, 13 (subset of IC 1 for the T1 controller) due

to the symmetry of the two fuzzy PD controllers. The relationships between the

proportional gains of the IT2 fuzzy PD controller and the T1 FLC are

K11
p =

−(H3 + H4)

8L1(1− θ1 + θ2)− 4E(n)
+

−(H3 + H4)

8L1(1 + θ1 − θ2)− 4E(n)

>
−(H3 + H4)

8L1 − 4E(n)
+
−(H3 + H4)

8L1 − 4E(n)
=

−H3 −H4

4L1 − 2E(n)
>

−H3 −H4

4L1(1 + 2θ1)− 2E(n)
= k1

p

K12
p =

−(H3 + H4)

8L1(1− θ1)− 4E(n)
+

−(H3 + H4)

8L1(1 + θ1 − θ2)− 4E(n)

>
−(H3 + H4)

8L1(1− θ1)− 4E(n)
+

−(H3 + H4)

8L1(1 + θ1)− 4E(n)
>

−H3 −H4

4L1 − 2E(n)

>
−H3 −H4

4L1(1 + 2θ1)− 2E(n)
= k1

p

K13
p =

−(H3 + H4)

8L1(1− θ1)− 4E(n)
+

−(H3 + H4)

8L1(1 + θ1)− 4E(n)
>

−H3 −H4

4L1 − 2E(n)
= k1

p

The above inequalities show the proportional gain of IT2 fuzzy PD controller in

IC 11, 12 and IC 13 is bigger than its T1 counterpart.
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B.3 Proof of Property 4

Due to the symmetry in the IT2 fuzzy PD controller and its T1 counterpart,

the output value property for IC 1–IC 4, and IC 6 – IC 13 will be illustrated by

comparing the equivalent gains expressions for IC 1– IC 3 (subset of IC 2 of the T1

counterpart). From Table 4.3, 4.2 and B.1, the relationship between the outputs

of the two fuzzy PD controllers can be established as

4UjIC1 = [
L2(H1 −H3)

8L1L2(1 + θ2)− 4L1R(n)
+

L2(H1 −H3)

8L1L2(1− θ2)− 4L1R(n)
]E(n)

+[
−(H2 + H4)

8L2(1 + θ2)− 4R(n)
+

−(H2 + H4)

8L2(1− θ2)− 4R(n)
]R(n) + δ1

= [
1

8L1L2(1 + θ1)− 4L2E(n)
+

1

8L1L2(1− θ1)− 4L2E(n)
]

×[−(H2 + H4)L1R(n) + (H1 −H3)L2E(n)] + δ1

4ujIC1 =
−L1(1 + 2θ1)(H2 + H4)R(n) + L2(1 + 2θ2)(H1 −H3)E(n)

4L1L2(1 + 2θ1)(1 + 2θ2)− 2L1(1 + 2θ1)R(n)

=
1

4L1L2(1 + 2θ1)− 2L1R(n)
[−(H2 + H4)L1R(n) + (H1 −H3)L2E(n)]

= (
1

8L1L2(1 + 2θ1)− 4L1R(n)
+

1

8L1L2(1 + 2θ1)− 4L1R(n)
)

×[−(H2 + H4)L1R(n) + (H1 −H3)L2E(n)]

Because

1

8L1L2(1− θ1)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)
> 0

1

8L1L2(1 + θ1)− 4L2E(n)
>

1

8L1L2(1 + 2θ1)− 4L2E(n)
> 0

and δ1 > 0, −(H2 + H4)L1R(n) + (H1 −H3)L2E(n) > 0 in IC 1, then 4UjIC1 >

4ujIC2 > 0 and their difference increases as θ1 increases because θ1 appears in the

denominator.
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Another observation is

4UjIC3 =
L2(H1 −H3)

4L1L2 − 2L1R(n)
E(n) +

−(H2 + H4)

4L2(1 + θ2)− 2R(n)
R(n)

=
1

4L1L2 − 2L1R(n)
[−(H2 + H4)L1R(n) + (H1 −H3)L2E(n)]

Since L1R(n) + L2E(n) > 0 in IC 3 and

1

4L1L2 − 2L2R(n)
>

1

4L1L2(1 + 2θ1)− 2L2E(n)
> 0

then 4UjIC1 and 4ujIC2 have the same sign and 4UjIC1 is larger than 4ujIC2 in

magnitude and their difference increases as θ1 increases because θ1 appears in the

denominator. For any input pair in the region IC 2 of the IT2 fuzzy controller,

the value calculated using the left endpoint of IC 2 is equivalent to that of IC3

and the value calculated using the right endpoint of IC 2 is larger than that of

IC3. Hence, the value calculated using 4UjIC2 is larger than that using 4UjIC3

for any input pair of IC2 and thus it follows 4UjIC2 > 4ujIC2 > 0 for any input

pair in IC 2 of the IT2 fuzzy controller. Furthermore, the difference increases as

θ1 and θ2 increase.
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Appendix C

Proof of Theorem 5.1 and

Theorem 5.2

C.1 Proof of Theorem 5.1

For the FWA operation defined in (5.1), the output YFWA may completely con-

structed based on fL(αj) and fR(αj) defined in (5.12) and (5.13), respectively.

(5.12) and (5.13) reveal that the left and right bound fL(αj) and fR(αj) are con-

tinuous functions of ci(αj), di(αj), ai(αj) and bi(αj). For continuous Xi and Wi,

these four variables ci(αj), di(αj), ai(αj) and bi(αj) are continuous functions about

αj. Hence, fL(αj) and fR(αj) are continuous about αj and thus the output fuzzy

set YFWA has a continuous membership function.
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C.2 Proof of Theorem 5.2

This theorem can be proved by showing YFWA(αj+1) ⊆ YFWA(αj) where j =

1, 2, · · · ,m− 1, i.e. fL(αj) < fL(αj+1) and fR(αj) > fR(αj+1).

1. From (5.12), the left bounds of the αj cut and the αj+1 cut in (5.12) can be

written as

fL(αj) = min∀wi∈[ci(αj),di(αj)]

∑n
i=1 wiai(αj)∑n

i=1 wi

(C.1)

fL(αj+1) = min∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wiai(αj+1)∑n

i=1 wi

(C.2)

Since [ci(αj), di(αj)] are an α-cut of Wi, the weights in the above equations

satisfy [ci(αj+1), di(αj+1)] ⊆ [ci(αj), di(αj)]. Hence,

fL(αj) = min∀wi∈[ci(αj),di(αj)]

∑n
i=1 wiai(αj)∑n

i=1 wi

< min∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wiai(αj)∑n

i=1 wi

(C.3)

Because in the above inequality ai always appear in the nominator and

ai(αj) < ai(αj+1), for any wi ∈ [ci(αj+1), di(αj+1)]

∑n
i=1 wiai(αj)∑n

i=1 wj

<

∑n
i=1 wiai(αj+1)∑n

i=1 wi

(C.4)

Hence,

fL(αj) < min∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wiai(αj)∑n

i=1 wi

< min∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wiai(αj+1)∑n

i=1 wi

= fL(αj+1) (C.5)

2. According to (5.13), the right bounds of the αj cut and the αj+1 cut can be

described as

fR(αj) = max∀wi∈[ci(αj),di(αj)]

∑n
i=1 wibi(αj)∑n

i=1 wi

fR(αj+1) = max∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wibi(αj+1)∑n

i=1 wi
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Since [ci(αj+1), di(αj+1)] ⊆ [ci(αj), di(αj)], the following inequality can be

derived:

fR(αj) = max∀wi∈[ci(αj),di(αj)]

∑n
i=1 wibi(αj)∑n

i=1 wi

> max∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wibi(αj)∑n

i=1 wi

(C.6)

Because in the nominator bi(αj) > bi(αj+1), the above inequality can be

written as

fR(αj) > max∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wibi(αj)∑n

i=1 wi

> max∀wi∈[ci(αj+1),di(αj+1)]

∑n
i=1 wibi(αj+1)∑n

i=1 wi

= fR(αj+1) (C.7)
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