
DESIGN AND PERFORMANCE ANALYSIS OF

EFFICIENT WIRELESS SYSTEMS

WANG PEIJIE

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48652803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DESIGN AND PERFORMANCE ANALYSIS OF

EFFICIENT WIRELESS SYSTEMS

WANG PEIJIE

(M.Sc., National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011



Dedications:

To my family



Acknowledgment

It is my great pleasure to take this opportunity to express my sincere thanks to

everyone who has supported me during my PhD study.

First and foremost, my utmost gratitude and appreciation go to my supervisor,

Professor Kam Pooi-Yuen for his encouragement, guidance and support in all aspects

of my research working. I am deeply stimulated by his enthusiasm and expertise on

scientific research. It has been a great honor for me to work under his supervision

throughout the past four years. Those precious working experiences with him and

knowledge he has taught me, are the priceless treasures enriching my life.

My sincere thanks also go to my colleagues in the ECE-I2R Wireless

Communications Lab for their warm friendship. I would like to give my special

and grateful thanks to Wu Mingwei and Cao Le for their stimulating discussions

in research. Many thanks go to Zhu Yonglan, Lin Xuzheng, Yuan Haifeng, Zhang

Jianwen, Kang Xin, Chen Qian, He Jun, Jiang Jinhua and Siow Hong Lin, Eric.

I am grateful to Ghasem Naddaf, Dong Xiangxu, Han Mingding, Eu Zhi Ang

and Prof. Tham Chen-Khong, for producing works together.

I also would like to thank my friends, Li Lin, Peng Yafeng, Zhang Hao and Li

Ti, who have made my life enjoyable and always full of interesting things.

I am forever indebted to my parents for their endless love and support. Last

but not least, I owe my deepest gratitude to my girlfriend Liang Xi. Her love and

support lead me to where I am today.

Finally, the support of Singapore MoE AcRF Tier 2 Grant

T206B2101 in the form of a research scholarship is gratefully

i



Acknowledgment

acknowledged.

ii



Contents

Acknowledgment i

Contents iii

Summary viii

List of Tables x

List of Figures xi

Abbreviations xv

Notations xvii

Chapter 1. Introduction 1

1.1 Motivation of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Feedback Power Control . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Receiver Design and Performance Analysis of DF Relay

Communication Systems . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Fast Adaptive Algorithm for CSI Acquisition . . . . . . . . . . 9

1.2 Main Results and Contributions . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Feedback Power Control . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Receiver Design and Performance Analysis of DF Relay

Communication Systems . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Fast Adaptive Algorithm for CSI Acquisition . . . . . . . . . . 17

iii



Contents

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. Literature Review 19

2.1 Feedback Communications over Fading Channels . . . . . . . . . . . . 19

2.1.1 Information Theoretic Results . . . . . . . . . . . . . . . . . . 20

2.1.2 Feedback Power Control in Practical Systems . . . . . . . . . 21

2.2 Relay Communication Systems . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Relaying Protocols and Performance Analysis Issues . . . . . . 22

2.2.2 Receiver Design for DF Relay Systems . . . . . . . . . . . . . 24

2.2.3 Performance Analysis of DF Relay Systems . . . . . . . . . . 25

2.2.4 Multiple Relay Systems with Imperfect CSI . . . . . . . . . . 27

2.3 LMS Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 The LMS and the NLMS Algorithms . . . . . . . . . . . . . . 29

2.3.3 Variable Step-Size Algorithms . . . . . . . . . . . . . . . . . . 31

Chapter 3. Feedback Power Control for the Rayleigh Channel 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Perfect CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Imperfect CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Channel Estimation and Prediction using Pilots . . . . . . . . 37

3.3 BEP and BEOP of A Feedback System with Perfect CSI . . . . . . . 44

3.4 ABEP-based Power Control with Perfect CSI . . . . . . . . . . . . . 45

3.4.1 Design of the Power Law . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 BEOP-based Power Control with Perfect CSI . . . . . . . . . . . . . 48

3.5.1 Formulation of the Power Law . . . . . . . . . . . . . . . . . . 49

3.5.2 ABEP Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 BEP and BEOP of A Feedback System with Imperfect CSI . . . . . . 52

iv



Contents

3.7 ABEP-based Power Control with Imperfect CSI . . . . . . . . . . . . 53

3.7.1 Approximation 1 . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.2 Approximation 2 . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 BEOP-based Power Control with Imperfect CSI . . . . . . . . . . . . 59

3.8.1 Formulation of the Power Law . . . . . . . . . . . . . . . . . . 60

3.8.2 ABEP and BEOP Analysis . . . . . . . . . . . . . . . . . . . 61

3.9 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9.1 Performance under Perfect CSI . . . . . . . . . . . . . . . . . 62

3.9.2 Performance under Imperfect CSI . . . . . . . . . . . . . . . . 68

3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 4. Receiver Design of DF Relay Communication Systems 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 ML Detector at the Destination for A DF Relay System with

Imperfect CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Detection at the r-th Relay . . . . . . . . . . . . . . . . . . . 84

4.3.2 Detection at the Destination . . . . . . . . . . . . . . . . . . . 85

4.4 ML detector with BPSK . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Approximations to the ML Detector with BPSK . . . . . . . . . . . . 91

4.5.1 The Traditional MRC . . . . . . . . . . . . . . . . . . . . . . 91

4.5.2 The WSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.3 The CWSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.4 The PL Detector . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 5. Performance Analysis of A DF Relay System with BPSK 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



Contents

5.2 Statistics of Destination Decision Metrics . . . . . . . . . . . . . . . . 99

5.3 BEP Performance of A Single Relay System . . . . . . . . . . . . . . 104

5.3.1 BEP Analysis for the Traditional MRC . . . . . . . . . . . . . 105

5.3.2 BEP Analysis for the WSD . . . . . . . . . . . . . . . . . . . 106

5.3.3 BEP Analysis for the CWSD . . . . . . . . . . . . . . . . . . 107

5.3.4 BEP Analysis for the PL Detector . . . . . . . . . . . . . . . . 108

5.3.5 BEP Analysis for the ML Detector . . . . . . . . . . . . . . . 112

5.4 BEP Performance of A Multiple Relay System . . . . . . . . . . . . . 113

5.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . 117

5.5.1 Performance of A Single Relay System . . . . . . . . . . . . . 118

5.5.2 Performance of A Multiple Relay System . . . . . . . . . . . . 124

5.5.3 Performance of the Perfect CSI Scenario . . . . . . . . . . . . 127

5.5.4 Performance of the ML Detector in A Practical DF Relay System129

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 6. An Efficient Adaptive Algorithm and An Application to

Channel Estimation 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 The ASSA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3.1 Comparison of the ASSA algorithm and the LMS-type

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.2 Comparison of the ASSA algorithm and the NLMS-type

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Chapter 7. Conclusions and Suggestions for Future Work 157

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.1 Rate Control of A Practical System with CSI Feedback . . . . 161

vi



Contents

7.2.2 Feedback Power Control for Practical SIMO, MISO and

MIMO transmissions . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.3 Performance Analysis of A DF Relay System with the BEOP

Performance Measure; with Higher Order Modulations . . . . 162

7.2.4 Relay Communications with CRC at the Relay . . . . . . . . 163

7.2.5 Integration of Feedback Power Control and Relay

Communications . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165

List of Publications 174

vii



Summary

Driven by the rapidly increasing demand on mobile wireless communication

systems, many promising technologies for fast and reliable transmissions over

wireless channels have been developed in the past decades. A key issue that

most of these works have addressed is to mitigate signal fading. The fading is

caused by the inherent, time-varying attribute of a wireless medium, and has a

detrimental effect on the reliability of received wireless signals. To combat fading,

one effective approach is known as transmitter power control with channel state

information (CSI) feedback. We use the bit error outage probability (BEOP) as a

new performance measure to design an actual feedback power control system for

specific modulation formats, and develop the BEOP-based power control law at the

transmitter. Compared with the traditional design, which is based on the average

bit error probability (ABEP), the new BEOP-based law provides much more reliable

instantaneous quality of service by sacrificing only a little in the ABEP performance.

Our design also addresses the effect of imperfect CSI, which has not been considered

in previous works.

Another efficient approach that has been widely used nowadays to achieve

reliable transmissions is space diversity. By exploiting the broadcast nature of

a wireless medium and allowing terminals to cooperatively transmit information

through relaying, cooperative relay systems allow single-antenna users to gain

benefits from space diversity through relay cooperation. We consider receiver design

for a decode-and-forward (DF) relay system with one source, one destination and

L multiple relays. Our key contribution is to derive the maximal likelihood (ML)

viii



Summary

receiver at the destination with imperfect CSI at all receiving nodes. The derived

ML receiver applies to an arbitrary M -ary quadrature amplitude modulation. It

is important to note that our receiver result shows that for optimum detection at

the destination, the instantaneous information of the source-relay link is required,

and this information is summarized as the decoding error probability at the relay.

For simplicity, we analyze the ML receiver with binary phase shift keying, and

provide several suboptimum receivers. In performance analysis, we arrive at some

closed-form results for the ABEP performance of the destination receivers for both

a single relay system and a multiple relay system. We prove that for a DF relay

system, the destination receiver using the instantaneous decoding error probabilities

at the relays achieves full diversity.

The effect of imperfect CSI is a main issue addressed in our research. In

practice, the availability of CSI to a wireless system has a crucial effect on the

system performance. Therefore, we also devote some effort to CSI acquisition using

the least-mean-square (LMS) adaptive filter. We propose a control parameter-free

step-size adjustment algorithm for the tap-weight coefficients adaptation of an LMS

adaptive filter. When applied to channel estimation, simulation results show the

performance advantage of the new algorithm over the existing step-size adjustment

algorithms under different wireless channel environments.
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Chapter 1

Introduction

In wireless communications, information is transmitted over time-varying channels,

which causes severe fluctuations of the amplitude of the received signal. The

fluctuation, known as fading [1], significantly degrades the reliability of transmission

links, and has become the key challenge for enhancing system performance. Fostered

by the dramatically increasing demand for mobile wireless communication systems,

a great deal of work has gone into the development of efficient technologies for

transmission over fading channels.

One approach to perform reliable communications over fading channels is

achieved by a class of channel-adaptive methods. These schemes exploit the current

state of the channel at the transmitter side to optimize the transmitted signal by

systematically modifying some transmitter parameters, e.g., power, rate, modulation

type. The current state of the channel, commonly referred to as the instantaneous

channel state information (CSI), is acquired at the transmitter through feedback. A

system employing feedback always uses a low data rate stream on the reverse side

of the forward link to offer reliable transmission to the transmitter. By employing

channel-adaptive signaling, it yields large improvements in almost any performance

metric. From the information theoretic point of view, it has been shown that with

perfect CSI at the transmitter, the capacity of the fading channels is significantly

improved [2–4]. More practical works have taken into consideration of the imperfect
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CSI, which is generally known as limited feedback [5]. From a design point of

view, the design of channel-adaptive communication systems is always formulated

as an optimization problem, where the purpose is to optimize some performance

metric, subject to some systematic constraints. In particular, a power-adaptive

transmission system for fading channels is designed to adapt the transmitted power

to match the current state of the channel. Most of the works on the design or

analysis of power-adaptive transmission systems are information theoretic works,

where performance limits in terms of capacity and information outage are under

consideration. On the design of practical systems, the works are quite limited.

Hayes [6] first solved the optimal power control problem for a binary system over a

Rayleigh fading multipath channel with the assumption of a noiseless and delayless

feedback channel. It shows that the average bit error probability (ABEP) of the

system is significantly reduced compared with a non-feedback system for the same

average power. A few more works toward the design of practical systems, can be

found in [7–10]. All these works design the power law based on the ABEP as a

performance measure, and they show that power-adaptive systems offer a significant

gain over the constant-power systems in reducing the ABEP. While the effect of

imperfect CSI at the transmitter (CSIT) has been widely considered in information

theoretic research, it remains unaddressed in the design of a practical feedback

system.

Another key idea that has been widely used to achieve reliable transmissions

is space diversity. It is realized by means of multiple-antenna transmissions or

multi-node cooperative communications. Operating on the space domain, space

diversity techniques are widely recognized as an effective means in combating signal

fading in wireless communications. The philosophy is that by exploiting the low

probability of concurrence of deep fades in all the diversity channels, the reliability

of the end-to-end transmission is enhanced. This kind of diversity is of particular

interest as it can be readily combined with time or frequency diversity. Due to

size and cost limitations, multiple antennas may not be supportable on many
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wireless terminals. To relax such a restriction, cooperative relay communication

systems are introduced to allow single-antenna users to gain benefits from space

diversity. By exploiting the broadcast nature of the wireless medium and allowing

terminals to cooperatively transmit information through relaying, cooperative relay

communication systems achieve space diversity through relay cooperation. Various

relaying protocols have been proposed to gain the benefit from relay cooperation,

e.g. amplify-and-forward (AF), decode-and-forward (DF), selection relaying (SR)

[11]. As the SR protocol can employ either AF or DF relays, to distinguish the

terms, when talking about the AF or the DF protocol solely, it refers to relaying

without selection. Among those protocols, the DF protocol is recognized as the

most practical relaying strategy. In comparison, the AF relaying protocol requires

additional, expensive analog processing at the relays, and the SR protocol is usually

accompanied by interaction from a high layer. It has been shown that relay

transmission incorporating error control codes can significantly improve the overall

performance. However, in analysis, to isolate the diversity gain achieved through

relaying from the coding gain, an uncoded data stream is always used.

In evaluating the performance of digital communication systems, the ABEP

is commonly used as the performance measure. In wireless communications,

the transmitted signal is perturbed by an unknown, time-varying, multiplicative,

complex fading gain. This fading gain causes severe fluctuations of the received

signal power, and tremendously distorts the reliability of transmissions. As is

known, the ABEP is obtained by averaging the instantaneous bit error probability

(IBEP) over the distribution of the fading gain [12]. Therefore, the ABEP as a

performance measure does not reflect the instantaneous quality of service (QoS)

experienced by the user. For high-data rate transmission, a short duration of deep

fade may go across a large number of data bits and cause erroneous receptions of

them. In such a case, the ABEP as a performance measure becomes meaningless.

As has been pointed out in [13], the bit error outage probability (BEOP) is a more

useful performance measure for high-data rate transmission over time-varying fading
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channels. It is defined as the probability of the IBEP exceeding a QoS-specified IBEP

threshold. It monitors the instantaneous QoS experienced by the user. The BEOP

reflects, in the long term, the fraction of received bits that have IBEP exceeding

the IBEP threshold. As a new dimension in performance evaluation of wireless

communication systems, many existing technologies can be reconsidered from the

viewpoint of the BEOP. For example, [14] examines the performance of the packet

automatic-repeat-request (ARQ) scheme with packet-error-outage-probability QoS

measure. The packet error outage probability is defined in a similar way to the

BEOP.

In our work, we use the BEOP as a new performance measure to design

a feedback power control system, and we have arrived at some good results.

Comparing to the existing designs using the ABEP as the performance measure, the

BEOP-based feedback power control provides a much more reliable instantaneous

QoS by sacrificing only a little in the ABEP performance. For cooperative relay

communication systems, the examination of the BEOP is more complicated, as it

covers the joint of the instantaneous QoS of all source-relay and relay-destination

links. Due to lack of time, we put it as a future work. Here, we are more concerned

about some unsolved fundamental problems regarding to DF relay systems. We will

introduce these problems in detail in the next section. Another main issue we have

addressed in our research is the effect of imperfect CSI to wireless communications.

The most widely-used assumption of perfect CSI, provides a benchmark for system

design and performance analysis. However, as many works have shown, the degree

of available CSI significantly affects the performance of wireless communication

systems. Thus, the imperfect CSI is a serious issue that needs to be considered

in the design and performance analysis of actual communication systems. Noting

the importance of the CSI, we also devote some effort to CSI acquisition. The

CSI is commonly obtained by pilot-symbol-assisted channel estimation [15], where

the channel model and its parameters are required for a minimum mean-square

error (MMSE) estimation of the CSI. However, in many practical cases, the wireless
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channel model is unknown, or even if the model is given, its parameters may not

be known. For that reason, We propose an effective adaptive algorithm for CSI

acquisition.

1.1 Motivation of the Work

1.1.1 Feedback Power Control

By adapting the transmitter power to match the current state of the channel,

power control is a promising technology in mitigating the signal fading in wireless

communications. Most of the works on power control study the performance

limits of communication systems in terms of ergodic capacity or information outage

probability [2–4]. The performance limits of systems having limited CSI and/or

delay and noise on the feedback channel have been well investigated, e.g. [16–19].

Besides these information theoretic researches, it is of great importance to design

practically realizable feedback power control systems for specific modulation formats

and examine their end-to-end performance. Unfortunately, research in this area is

quite limited, and has been put away for a long time in the literature. In [6], Hayes

first solved the optimal power control problem for a binary system over a Rayleigh

fading multipath channel with a noiseless and delayless feedback channel. With

perfect CSI, the power law is set such that the ABEP at the receiver is minimized

subject to a constraint on the average transmitted power. The optimum transmit

power is implicitly given as a function of the CSI. It shows that the ABEP is

significantly reduced compared with a non-feedback system for the same average

power. A few more works can be found in [7–10].

All these limited existing works on the design of actual feedback power control

systems use the ABEP as the performance measure. For transmission over fading

channels, the ABEP is obtained by averaging the IBEP over the distribution of the

fading, and therefore it cannot reflect the instantaneous depth of fade experienced

by the user. For high data-rate transmission, a short duration of deep fade may
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cause thousands of erroneous received data bits. In such a case, the ABEP as

a performance measure becomes meaningless. As has been pointed out in [13],

to reflect the instantaneous QoS, the BEOP is a more useful measure. The bit

error outage (BEO) event is defined as the event that the IBEP exceeds an IBEP

threshold. The BEOP reflects, in the long term, the fraction of the received bits that

have IBEP exceeding the IBEP threshold. From the viewpoint of QoS assurance, it

is meaningful to set an upper limit on the BEOP to ensure that in the long term,

less than a certain fraction of received bits would have IBEP exceeding the IBEP

threshold.

Motivated by the importance of BEOP and its advantage over the

ABEP as a QoS measure, we propose a BEOP-based power control law for

single-input/single-output (SISO) transmission. It can be straightforwardly

extended to the single-input/multiple-output (SIMO) case. The extension to the

multiple-input/single-output (MISO) case or the multiple-input/multiple-output

(MIMO) case is more involved. For a start, we only consider the SISO case

for simplicity. We use a Rayleigh channel model as the probability density

function (PDF) of its channel fading gain provides good tractability for performance

analysis. Basically, the BEOP-based power control law adjusts the transmitted

power according to the variations of the channel such that the BEOP at the receiver

is always kept within some threshold. This threshold is a system-designed value

depending on what level of QoS is required. By applying the BEOP-based law, the

instantaneous QoS can be guaranteed.

Another motivation for our work is the issue of imperfect CSI for an actual

system. Although the effect of imperfect CSI has been widely considered in

information theoretic research of feedback systems, it remains unaddressed in the

design of actual feedback systems. In a practical feedback power contol system, since

the transmitted power is adjusted according to the CSI obtained, it is expected that

the imperfect CSI has a considerable effect on the performance. In those existing

works, it is commonly assumed that the perfect CSI is obtained at the receiver, and
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is then fed back to the transmitter through a noiseless and delayless feedback channel

to provide the CSIT. More intuitively, this implies that before each bit is sent out,

the transmitter has already perfectly known the channel that the bit is going to pass

through. It is clear that this genie-aided channel model does not apply to practical

transmissions. Nevertheless, the assumption of perfect CSI enables us to access the

elegance of feedback power control systems. For a more practical consideration,

the design of feedback power control systems should incorporate imperfect CSI at

both the receiver side and the transmitter side. Our practical system model offers a

general framework to study the issue of imperfect CSI for an actual feedback system.

1.1.2 Receiver Design and Performance Analysis of DF

Relay Communication Systems

Transmitting signals through multiple relays is a way to obtain the space diversity

and is effective in mitigating the signal fading. Generally, a relay employs one

of the two relaying protocols, namely, AF and DF [11]. Comparing to the AF

protocol which requires additional, expensive analog processing at the relay, the DF

protocol can be directly employed by most of the current wireless networks without

redeploying the existing wireless terminals. As an extension, the SR protocol [11]

selects those relays that meet certain requirements to forward the source information

to the destination via either AF or DF. The relay selection is usually accompanied

by interaction from a high layer. We note that many of the current works on

the SR protocol have drawn the conclusion that the DF protocol (without relay

selection) does not achieve full diversity, while the SR protocol does. This is a

misleading claim as we will show later. The cause for this misleading claim is

that all the existing works attempting to analyze the maximum likelihood (ML)

detector for a DF relay system, fall into the analysis of a suboptimum detector

which utilizes the statistical information of the source-relay link for detection at

the destination. In fact, the optimum (ML) detector at the destination for a DF

relay system utilizes the instantaneous instead of the statistical information of the
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source-relay link. In [20], this point has been shown for a DF single relay system with

coherent binary transmission. The instantaneous information of interest is simply

summarized as the IBEP at the relay. Unfortunately, the importance of using the

IBEP at the relay is not emphasized in [20].

As is known, the complexity of analyzing the ML detector for a DF relay

system increases exponentially as the number of relays increases. To avoid to

study the complex optimum (ML) detector, some works have proposed suboptimum

detectors [21–24] to approximate the ML detector. To the best of our knowledge,

for a coherent DF relay system, the ML detector has only been derived in [20]

for a single relay case with binary phase shift keying (BPSK) modulation. The

ML detector for a multiple relay system with general M -ary quadrature amplitude

modulation (M -QAM) remains unsolved.

Driven by the need of the ML detector in the most general form, from which

we can fairly assess the performance of the DF relaying protocol (without relay

selection), we study the fundamental issue of ML receiver design, and derive the

ML detector for a multiple relay system with general M -QAM. From our receiver

result, we point out and emphasize the importance of retaining the instantaneous

information of the source-relay link for the detection at the destination. This point

has been overlooked in many works on DF relay systems.

Moreover, we note that all the existing receiver designs for DF relay systems

assume perfect CSI at the relay and at the destination. As has been mentioned, the

effect of imperfect CSI is an important issue that should be covered in the design

of actual systems. This motivates us to consider the receiver design based on a

practical system model with channel estimation.

Although it has been shown that relay transmission incorporating error control

codes can significantly improve the overall performance, to isolate the diversity gain

achieved through relaying from the coding gain, our design and analysis use uncoded

data streams. Next, we consider the performance analysis of the ML detector for a

general DF relay system.
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As has been mentioned above, in the attempt to analyze the ML detector, all the

previous works actually analyzed a suboptimum detector which uses the statistical

information of the source-relay link for detection at the destination. The use of this

statistical information, of course, simplifies the performance analysis of the ABEP.

However, it is noted that the penalty of using the statistical information is a loss in

the achievable diversity order, which is quite undesirable for the design of a multiple

relay communication system. Moreover, so far, the exact performance analysis for a

DF relay system with the ML detector, is limited to a single relay or a two-relay case.

Reference [23] has noted the importance of using the instantaneous information of

the source-relay link for detection at the destination, and it considers a multiple

relay system. However, in [23], the bit error probability (BEP) is only analyzed

from the diversity point of view, where extremely high signal-to-noise ratio (SNR) is

assumed. Motivated by these facts, we analyze the performance of a multiple relay

system with the ML detector at the destination which utilizes the instantaneous

information of the source-relay link, and we provide exact, closed-form results. We

confine ourselves to the analysis with BPSK, as the ML detector for higher order

modulations is fairly complex. The consideration of imperfect CSI builds our work

on a more practical basis. Our analysis covers a single relay system, as well as a

multiple relay system with an arbitrary number of relays.

1.1.3 Fast Adaptive Algorithm for CSI Acquisition

As has been noted in our works on the feedback power control and the DF relay

systems, the CSI is a critical information that determines the system performance.

In fact, in coherent detection for transmission over fading channels, an accurate

acquisition of the instantaneous CSI is a crucial requirement. Therefore, we devote

some effort to CSI acquisition. In many works involving theoretical analysis of

transmissions over fading channels, the perfect CSI is a common assumption. It

greatly simplifies the analysis and helps develop an insightful view of those promising

techniques. However, in practice, the perfect CSI is of course, unknown to the
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receiver. Therefore, channel estimation must be carried out to provide a degraded

version of the perfect CSI, i.e., the imperfect CSI.

One of the most popular CSI-acquisition model used for analytical purpose

utilizes a Wiener filter for weighting the received pilot information to form

the MMSE estimate of the true CSI. The implementation of a Wiener filter

with optimum filter tap-weight coefficients requires the statistics of the fading

environment. However, in wireless communication systems, especially when the

communication terminals are mobile, the statistics of the environment may change

from time to time. In addition, the communication terminals are sometimes

required to work in a completely unknown environment. Under such cases,

the exact statistical information of the environment is not available. Therefore,

filters employing weight-adaptive algorithms have to be used to approximate the

performance of the Wiener filter in an iterative manner.

Among those weight-adaptive algorithms, the least-mean-square (LMS)

algorithm is one of the most popular and has been widely used for its robustness

and simplicity. For LMS adaptive filters, the convergence behavior of the weights

is controlled by a step-size parameter. As is well-known, for LMS adaptive filters,

a variable step-size is superior to a fixed step-size (FSS) as the former can respond

to a changing environment and more importantly, it can provide a fast rate of

convergence at the beginning of the adaptation process, and arrive at a small

steady-state mean-square error (MSE) when the adaptive algorithm converges.

A common feature of the existing variable step-size algorithms for the weights

adaptation of LMS adaptive filters is that preset control parameters are required to

enhance their performance, and those parameters are always chosen from extensive

simulations or from experience, which is undesirable for practical use.

Parameter-free step-size adjustment algorithms that avoid the tedious process of

parameter chosen is highly desired, especially in those applications with time-varying

or space-varying environments. Motivated by the demand of robust and fast

acquisition of the CSI, we develop the automatic step-size adjustment (ASSA)
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algorithm for the weights adaptation of the LMS adaptive filter. Unlike all the

existing step-size algorithms that require control parameters, the ASSA algorithm

is truly control parameter-free. The LMS adaptive filter employing the ASSA

algorithm can be used for effective CSI acquisition, when the optimum Winer filter

is not available.

1.2 Main Results and Contributions

1.2.1 Feedback Power Control

As has been addressed in Section 1.1.1, all the limited existing works on the

feedback power control in a practical system [6–10] commonly use the ABEP as

the performance measure for power adaptation. By noting the importance of the

BEOP and its advantage over the ABEP as a QoS measure, we propose to use

the BEOP as a new performance measure in the design of a feedback system. To

bring up our idea, we first assume perfect CSIT and perfect CSI at the receiver

(CSIR), and they are identical. This is a common assumption in all existing works

on actual feedback systems. We propose the BEOP-based power control law where

the transmitted power is adjusted according to the variations of the channel such

that the BEOP is kept within some QoS-specified threshold. It ensures that in the

long term, less than a certain fraction of received bits would have IBEP exceeding

some IBEP threshold. Therefore, the instantaneous QoS is guaranteed.

The BEOP-based power control law indicates that instead of the full

information of the channel fading gain, only the magnitude of the channel fading

gain is required at the transmitter for power adaptation. This has also been pointed

out in [6] for the ABEP-based power control law. In practice, this observation helps

the feedback system reduce the size of the feedback information.

Considering the BEOP-based power control scheme in more detail, if perfect

CSIT is available, we can always adjust the transmitted power such that no outage

event appears, i.e., the IBEP is always less than the IBEP threshold. However,
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practically, the transmitter power is usually limited to some peak value. When

the channel is very weak, it may happen that the power needed for an outage-free

transmission exceeds the peak transmitter power. In such a case, an outage happens.

From this point of view, the QoS-specified BEOP threshold indicates how much the

peak transmitter power is required to ensure the BEOP at the receiver being no

more than that QoS-specified BEOP threshold.

The effect of imperfect CSI is an overlooked issue in the design of a feedback

power control system. So far, no works on the design or analysis of actual feedback

power control systems have considered the imperfect CSI case. As a more practical

consideration, we build up a system model where the information is transmitted

in packets. The channel is assumed to be block-faded and all the symbols inside

a packet undergo the same fading. Each packet contains pilot symbols for channel

estimation purpose. The number of pilots that can be added is determined by the

maximal allowable bandwidth expansion factor (BEF) of the system. Upon receiving

a packet, the CSI is obtained at the receiver with estimation errors. In addition, a

future CSI is predicted at the receiver and fed back to the transmitter to provide the

CSIT through a feedback link. We assume that the feedback link is noiseless and

the complete information of the predicted future CSI can be fed back. The advance

in time of the predicted CSI should capture the processing delay at the receiver and

the propagation delay on the feedback channel. In other words, it must ensure that

when the predicted CSI arrives at the transmitter, the packet corresponding to that

future CSI has not been sent out yet. Therefore, it is easy to understand that for

the same packet, its CSIT and CSIR are different, or say, decorrelated due to the

delay. This is a practical and general model for the design and performance analysis

of actual feedback systems. Based on this model, we develop both the ABEP-based

and the BEOP-based power control laws for the imperfect CSI case.

For both the ABEP-based and the BEOP-based power control laws, we derive

explicit ABEP and BEOP results under perfect CSI and under imperfect CSI,

respectively. From these results, it is found that for each power law, the performance
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loss due to channel estimation errors is very large. However, there remains a

significant gain over a non-feedback system. Under either perfect CSI or imperfect

CSI, the BEOP-based law shows a remarkable gain over the ABEP-based law in

terms of BEOP, and sacrifices only a little in the ABEP performance. Therefore,

the BEOP-based power control law provides an attractive solution for instantaneous

QoS assurance for communications over fading channel. Our design and analysis of

the ABEP-based and the BEOP-based power control laws are generalized for both

BPSK and quadrature phase shift keying (QPSK) modulations.

1.2.2 Receiver Design and Performance Analysis of DF

Relay Communication Systems

Receiver Design

We consider a general, uncoded DF relay system with one source, one destination

and L multiple relays, and we assume L + 1 orthogonal channels available. The

source communicates with the destination and all the relays using one channel. All

the L relays communicate with the destination using the remaining L channels. We

derive the ML detector at the destination with an arbitrary M -QAM. It shows

the optimum diversity combining strategy for the reception of signals from L

independent, non-identically distributed (i.n.d.) links, and the reliability of each

link is different due to the decoding errors at each relay. The only reference on the

ML detector for a coherent DF relay system is [20], which only considers a single

relay case with BPSK under perfect CSI. Our derived ML detector can be specialized

to [20]’s result easily.

It is important to note that our receiver result clearly shows that for optimum

detection at the destination, the instantaneous information of the source-relay link

is required and this information is summarized as the instantaneous decoding error

probability at the relay. In many previous works, this instantaneous decoding

error probability has been replaced by its average, i.e., the average decoding error
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probability at the relay. The loss of the instantaneous information of the source-relay

link for detection at the destination would significantly degrade the system

performance, and therefore, should be avoided in the design of high-performance

receivers. Moreover, it is worth noting that only the instantaneous decoding error

probability at the relay needs to be forwarded to the destination, instead of the

complete channel fading gain of the source-relay link.

Our derived detector generalizes both perfect and imperfect CSI scenarios.

For the imperfect CSI scenario, we assume blockwise static channel for packet

transmission. Pilot symbols are inserted into a data packet for channel estimation

purpose. The number of pilots can be added is determined by the maximal BEF of

the system. Our work is the first one that builds a general DF multiple relay system

on a solid, practical channel estimation model.

Due to the complexity of the ML detector for higher order modulations, we

confine ourself to study the ML detector with BPSK modulation. In this case, the

contribution of the relay to the ML detector is summarized as a nonlinear function.

For ease of implementation and analysis, we provide a batch of suboptimum

detectors to approximate the ML detector. As has been mentioned earlier, one

common way that has been widely used in many works is to replace the IBEP at the

relay by its average. To distinguish, we term the ML detector using the ABEP at the

relay as the averaged-ML (A-ML) detector for short. Although it is not suitable,

the traditional maximum ratio combining (MRC) can be used as a suboptimum

detector for a multiple relay system for its simplicity. The MRC simply assumes

that the relay makes no decision errors, and it combines all the received signals in

the traditional way of diversity reception. We find an intuitional improvement on

the traditional MRC, which takes into consideration of the decoding errors at the

relay to some extent. We term it as the weighted slope-detector (WSD). The WSD

approximates the nonlinear function of the ML detector with a straight line whose

slope is affected by the IBEP at the relay. Furthermore, we propose a clipped WSD

(CWSD), which is similar to the classic piecewise linear (PL) detector but with a
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different slope. The PL approximation to the ML detector is firstly proposed in [25].

Here, we emphasize that in [25], the originally proposed PL detector uses the ABEP

at the relay for detection. Our receiver result shows that the IBEP at the relay

should be used, even for the PL detector. The WSD or the CWSD provides marginal

improvement on the MRC or the PL detector, respectively. In the WSD, the CWSD

and the PL detector, the IBEP at the relay can also be replaced by the ABEP at the

relay, which results in further approximations to the ML detector. We term them

as averaged-WSD (A-WSD), averaged-CWSD (A-CWSD) and averaged-PL (A-PL)

detector for short.

Table 1.1: Summary of the ML detector and its approximations for a DF relay

system

Optimum ML detector

MRC

(use IBEP at the relay) (use ABEP at the relay)

A-ML

Suboptimum WSD A-WSD

CWSD A-CWSD

PL A-PL

For clarification, we summarize different detectors mentioned above for a DF

relay system in Table 1.1. We emphasize that the optimum detector refers to the ML

detector. All the other forms of its approximations are referred to as suboptimum

detectors.

Performance Analysis

As has been mentioned in Section 1.1.2, in the attempt to analyze the ML detector,

all the existing works study a suboptimum detector which uses the ABEP at the
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relay to replace the IBEP at the relay. More specifically, they all examined the

performance of the A-PL detector, and is with the assumption of perfect CSI.

Therefore, those results and observations are quite limited.

In our analysis, we first consider a single relay system. Referring to Table 1.1

for different names of detectors, we derive closed-form conditional BEP conditioned

on the IBEP at the relay, for the WSD, the CWSD, and the PL detector. It is noted

that in those derived conditional BEP results, by replacing the IBEP at the relay

with its average, it gives the ABEP of the A-WSD, the A-CWSD and the A-PL

detector, respectively. Among those conditional BEP results, the conditional BEP

of the PL detector provides the most tractability. Therefore, we further obtain a

closed-form, approximate ABEP of the PL detector. We emphasize that although

being an approximation, this obtained ABEP is for the PL detector which utilizes

the IBEP at the relay. It shows that for a single relay system, a diversity order of

2, i.e., full diversity, can be achieved. Those previous results on the ABEP of the

A-PL detector show a loss of diversity, and lead to the misleading claim that DF

relay systems cannot achieve full diversity.

To analyze the performance of the ML detector, we first derive the conditional

BEP conditioned on the IBEP at the relay. This conditional BEP result contains

integrals. Again, it is noted that in the derived conditional BEP, by replacing the

IBEP at the relay with its average, it gives the ABEP of the A-ML detector. To

arrive at a closed-form conditional BEP of the ML detector for further analysis,

we apply an equivalent approximation to that which has been used in [26]. The

use of this approximation results in that the obtained closed-form, approximate,

conditional BEP of the ML detector amounts to the conditional BEP of the PL

detector. Therefore, the obtained results for the PL detector applies to the ML

detector as approximate results.

Considering a multiple relay system with an arbitrary number of relays, the

exact conditional BEP or ABEP of the PL detector cannot be obtained in general.

For that reason, we derive closed-form Chernoff upper bounds on the ABEPs of the
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A-PL and the PL detectors, respectively. The obtained Chernoff bounds enable us

to deduce the diversity order of a DF multiple relay system. These results proof

conclusively that the destination detector utilizing the IBEP at the relay achieves

full diversity. In contrast, the averaged destination detector utilizing the ABEP at

the relay suffers a loss of diversity.

By comparing the performance under perfect CSI and under imperfect CSI,

we examine the performance loss due to channel estimation errors. It is found

that channel estimation errors do not change the slope of the BEP curves, i.e., the

diversity order remains unchanged.

1.2.3 Fast Adaptive Algorithm for CSI Acquisition

Arising from the two topics we have studied, it is seen that CSI acquisition plays

a crucial rule in the develoment of these advanced technologies to mitigate the

detrimental effects of fading. For analytical purpose, a Wiener filter-based channel

acquisition model is popular for its simplicity, accuracy, and tractability. As has been

addressed in Section 1.1.3, the implementation of a Wiener filter with optimum filter

tap-weight coefficients may be impossible due to the lack of environmental statistics.

The LMS adaptive filter offers a simple and robust solution to this problem. Driven

by the demand of truly control parameter-free step-size adjustment algorithms, we

propose the ASSA algorithm for the tap-weight coefficients adaptation of an LMS

adaptive filter. The LMS adaptive filter employing the ASSA algorithm can be

used for effective CSI acquisition, when the optimum Winer filter is not available.

The most significant feature that distinguishes the ASSA algorithm from any other

existing variable step-size algorithms is that the ASSA algorithm does not require

any preset control parameters. When applied to channel estimation, simulation

results show the performance advantage of the ASSA algorithm over the existing

step-size adjustment algorithms under different wireless channel environments.

The proposed ASSA algorithm serves as a fundamental contribution to the

step-size adjustment for the tap-weight coefficients adaptation of LMS adaptive
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filters. It is expected to be applicable to other cases where LMS adaptive filters are

employed, e.g., system identification, channel equalization. In our work, we confine

ourselves to the use of the ASSA algorithm for CSI acquisition purpose only.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review some previous works that are related to our work.

In Chapter 3, we propose the BEOP-based power control law. For both the

ABEP-based and the BEOP-based power control laws, we develop them for the

imperfect CSI case. The ABEP and the BEOP of both laws are derived explicitly.

Using these results, we compare the performance of different power control laws.

In Chapter 4, we derive the ML detector of a general, uncoded DF multiple

relay system with an arbitrary M -QAM, and the receiver result generalizes both

perfect and imperfect CSI scenarios. We further propose the WSD, the CWSD and

also show the traditional MRC in a DF relay system. Those suboptimum detectors

can be viewed as byproducts of the derived ML detector.

In Chapter 5, we analyze the BEP performance of the ML detector and its

approximations with BPSK modulation, which are shown in Chapter 4. Simulations

are used to validate our derivations. The diversity order of the DF relay system is

analyzed using the numerical and simulation results.

In Chapter 6, we propose the ASSA algorithm, which is used for the tap-weight

coefficients adaptation of an LMS adaptive filter. Simulations are used to show the

performance of the ASSA algorithm.

Finally, we summarize our work in Chapter 7, and point out a number of future

research directions.
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Chapter 2

Literature Review

In this chapter, we conduct a comprehensive literature review to the existing works

that are related to our research. For the feedback power control topic, we focus

on the review of the limited works on the feedback power control for practically

realizable systems, and also introduce some of the important results on feedback

communications from information theoretic research. For relay communication

systems, we summarize many of the current results on the receiver design and

performance analysis of DF relay systems. For the topic on fast adaptive algorithms,

we review the Wiener filter, the LMS algorithm and a few of its popular step-size

adjustment schemes.

2.1 Feedback Communications over Fading

Channels

Feedback communications provide a way of utilizing the CSI of the forward channel

at the transmitter side. By modifying the transmitted signal according to the

variations of the channel, channel-adaptive signalling considerably improves the

system performance compared with non-feedback communication systems. Feedback

has an impact in many areas such as design of control systems and source coding. As

a branch of channel-adaptive communications, the power-adaptive transmission with
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feedback has been widely studied in the literature. Power-adaptive transmission is

realized by means of power control at the transmitter.

2.1.1 Information Theoretic Results

From the information theoretic point of view, [2] shows that power control with

perfect CSIT significantly improves the capacity of fading channels. Reference [3]

considers a block-fading Gaussian channel. Assuming perfect CSIR and perfect

CSIT, [3] solves for the optimum transmit power that minimizes the information

outage probability for a fixed-rate coding system under different power constraints

at the transmitter. Recently, the transmit power control topic has been extended

to the MIMO communication system. In [4], the information outage probability

of block-fading, additive white Gaussian noise (AWGN) channels with multiple

antennas under an input power constraint is derived. Coding scheme that is designed

to minimize the information outage probability has also be investigated in [4]. For

more practical considerations, a large number of works examine the performance

limits of feedback systems having limited CSI and/or delay and noise on the feedback

channel. For example, [16] proposes practical design of power-adaptive systems with

differential binary phase shift keying (DBPSK) modulation for ABEP minimization

over flat fading channels using finite optimal policies under short-term and long-term

power constraints, respectively. In [16], the instantaneous received SNR is assumed

to be known to the receiver and a quantized version of this SNR is fed back to

the transmitter to provide the CSIT. In addition, the finite optimal policy, which

is referred to a finite number of different transmission modes, is used to reflect the

limitations of the transmitter and the feedback channels. Reference [17] considers a

fixed-rate system, where power control is used to minimize the outage probability.

In [17], only partial CSIR and partial CSIT are available, and the resources used

for estimation and feedback are counted as part of the total available resources.

More works can be found in [18,19,27–30], where different kinds of limited feedback

information are examined under different situations. A comprehensive overview of
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the limited feedback issue can be found [5], where most of the relevant works up to

that time is summarized.

2.1.2 Feedback Power Control in Practical Systems

Most of the works on power control aim to identify the performance limits

of communication systems in terms of ergodic capacity or information outage

probability. On the other hand, it is of great importance to examine the end-to-end

performance of practically realizable feedback power control systems for specific

modulation formats. Commonly, power control schemes are designed in a way that

the ABEP is minimized subject to some systematic constraints. In [6], Hayes first

solved the optimal power control problem for a binary system over a Rayleigh fading

multipath channel with a noiseless and delayless feedback channel. With perfect

CSIT, the power law is set such that the ABEP at the receiver is minimized subject

to a constraint on the average transmitted power. The optimum transmit power is

implicitly given as a function of the CSI. It shows that the ABEP is significantly

reduced compared with a non-feedback system for the same average power. In [7]

and [8], power and rate control are considered at the same time to minimize the

ABEP at the receiver subject to constraints on the average power and average

rate. Both [7] and [8] demonstrate the superiority of a feedback system over a

non-feedback system in reducing the ABEP. Using pilot tone signalling to provide

the CSI for detection, [9] obtains the optimal power law which minimizes the ABEP.

A more recent work [10] derives the optimal power law that minimizes the ABEP

subject to both average and peak power constraints for BPSK signalling over the

Rayleigh fading channel. Comparing to the comprehensive works from the viewpoint

of information theory, researches on the end-to-end performance of power control

systems are quite limited.
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2.2 Relay Communication Systems

2.2 Relay Communication Systems

Multiple relay communication systems have received extensive attention from

scholars in the past a few years for its efficiency in offering space diversity in

wireless communications. The topic of relay communication systems contains a

large number of issues from all aspects of a conventional digital communication

system. In this section, we first briefly introduce the relaying protocols for multiple

relay communication systems and discuss issues on performance analysis. Then,

we focus on summarizing the current results on the receiver design and performance

analysis of coherent DF relay systems, which are related to our work. In the following

descriptions, unless otherwise specified, we refer to a relay system as a system with

the source-destination link available.

2.2.1 Relaying Protocols and Performance Analysis Issues

Generally, a relay employs one of the two relaying protocols, namely, AF and DF [11].

In the AF protocol, each relay that receives a signal from the source forwards an

amplified version of this signal to the destination. In the DF protocol, upon receiving

a source message, each relay decodes the source message, and generates a copy of

that source message as an output to destination. At the destination, a final decision

is made based on all the received signals from the source as well as from the relays.

As an extension of the basic AF and DF protocols, the SR protocol [11] selects

those relays that meet certain requirements to forward the source information to

the destination. Commonly, those requirements can be an SNR threshold of an AF

relay or an error probability threshold of a DF relay [31–36]. Besides AF and DF,

a relay can also transmit a compressed and quantized version of the past received

signals to the destination, and this protocol is known as the compress-and-forward

(CF) protocol [37–39]. The main drawback of the CF protocol is its relatively high

complexity, and this limits its development for practical use. Performance analysis

shows that relay communication systems offer great performance improvement over

the traditional non-relaying systems from various perspectives.
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From information theoretic point of view, the performance analysis of relay

communication systems refers to analyze the performance limits, e.g., capacity,

achievable rates and information outage probability [11, 37, 39–43]. Here, we

focus on the discussion on end-to-end performance analysis of real implementable

relay communication systems. We also mention that for a relay system, the two

most common encoding strategies are simple uncoded or repetition coding, and

space-time (ST) coding [44–47]. While ST coding provides additional gain from relay

cooperation at the expense of increasing system complexity, the implementation of

simple uncoded or repetition coding is straightforward, and the performance gain

achieved by using the uncoded transmission is from information relaying solely. The

performance of an uncoded relay system has been widely studied under different

relaying protocols.

Compared with a general, uncoded DF relay system, a general, uncoded

AF relay system is easier to analyze, as the performance of the latter one

can be circumvented by examining the equivalent, end-to-end SNR of the

source-relay-destination path at the destination. Reference [48] evaluates the

performance of a two-hop, AF single relay system without the source-destination

link. It is worth noting that in [48], the average received SNR at the destination

(or say, the equivalent, end-to-end SNR of the source-relay-destination path) is

expressed as the harmonic mean of two exponential random variables. These

two exponential random variables denote the SNRs of the source-relay and the

relay-destination links, respectively. In [48], the moment generating function (MGF)

of the harmonic mean of two exponential random variables is derived. Therefore,

the MGF of the average received SNR at the destination is known. With this

MGF result, [48] shows that the symbol error probability of the relay system with

various M -ary modulations can be easily obtained using the famous MGF-based

method [49]. The above-mentioned equivalent, end-to-end SNR-based approach is

very popular in evaluating the performance of a general AF relay system [50, 51].

The performance of a general, uncoded DF relay system will be discussed in detail
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after we review the receiver design for DF relay systems.

2.2.2 Receiver Design for DF Relay Systems

For coherent DF relay systems, as the relay can make decision errors, the traditional

MRC which is optimum for diversity reception of equally-probable transmitted

signals, is not suitable.

Reference [20] shows the optimum (ML) detector structure for a DF single relay

system with coherent binary transmission. As it is shown in [20], the ML detector

contains a nonlinear function that captures the effect of decoding errors at the relay.

The nonlinear function is clipped by a term that is related to the IBEP of decoding

the source message at the relay. As the decoding error probability at the relay

increases, the contribution of the source-relay-destination link to the ML detector

is reduced. In [25], it shows a general detector structure with either coherent or

noncoherent binary frequency shift keying (BFSK) modulation for a DF multiple

relay system. The authors of [25] called their detector the ML detector. However,

it should be noted that this detector is not truly optimum, as it uses the ABEP at

the relay instead of the IBEP. The contribution of each source-relay-destination link

amounts to a similar nonlinear function that has been shown in [20]. In the error

performance analysis, to ease the difficulty brought by the nonlinear function, [25]

proposes a PL function that closely approximates the original nonlinear function.

The authors of [25] termed the detector with the PL approximation as the PL

detector. However, since ABEP at the relay is used instead of the IBEP by the

destination detector, [25] actually proposes the A-ML and the A-PL detectors for

coherent BFSK, and only analyzes the A-PL detector. Like some other works,

e.g., [26] and [52], [25] fails to see the fact that the ML detector uses the IBEP at

the relay, instead of its average.

As is known, the complexity of analyzing the ML detector for a DF relay

system increases exponentially as the number of relays increases. To simplify the

performance analysis of a DF relay system, some works have proposed suboptimum
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detectors [21–24] to approximate the ML detector. In [21] and [22], a destination

detector termed as the λ-MRC is derived to approximate the ML detector with

BPSK modulation. The optimal value of the parameter λ has to be found through

numerical search. In [23], a suboptimum detector termed as the cooperative

MRC (C-MRC) is proposed for a general multiple-relay, multi-hop system with

general constellations. The C-MRC improves on the traditional MRC such that the

weights for weighting the received signals from different relays are modified. For

each source-relay-destination path, the modified weight is selected to capture the

quality of both source-relay and relay-destination links. Reference [24] proposes

a suboptimum detector for a single relay system with M -ary pulse amplitude

modulation and M -QAM. In [24], the ML decision rule is approximated using the

max-log approximation [53].

The performance analysis of the above detectors will be discussed next.

2.2.3 Performance Analysis of DF Relay Systems

Unlike that for an AF relay system, for a DF relay system, as the relay can make

decision errors, the equivalent, end-to-end SNR of the source-relay-destination link

is hard to obtain. Therefore, the performance of a DF relay system cannot be

evaluated using the popular MGF-based method. In fact, in many works, it has

been demonstrated that the exact performance analysis of DF relay systems is much

more complicated than that of AF relay systems.

In [20], the ABEP performance of the ML detector is studied by

simply assuming that the relay always decodes correctly and using large SNR

approximations. In [25], the ABEP of the A-PL detector with coherent and

noncoherent BFSK is obtained in a closed form. The PL approximation is widely

used in the performance analysis of ML detection for DF relay systems with binary

modulations. Using high-SNR approximations, [25] shows that full diversity order

is not achieved by the A-PL detector. In [54] and [55], the ABEP of the A-PL

detector for a single relay system with BPSK is obtained in an integral form. It is
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noted that [54] and [55] assume real channel fading coefficients, which is not common

for practical fading channels. Reference [26] aims to solve the exact ABEP of the

A-ML detector for a DF single relay system with BPSK. To arrive at a closed-form

result, [26] uses approximations in its analysis, which results in that the obtained

ABEP for the A-ML detector amounts to the ABEP of the A-PL detector. For a

DF multiple relay system, [26] obtains the ABEP of the A-PL detector by using an

approximation based on the central limit theorem. Similar to that in [25], due to

the use of the averaged detector (uses the ABEP at the relay instead of the IBEP),

a loss in the diversity order is reported in [26]. The authors of [26] extended their

work to DF MIMO relay channels in [56]. Reference [57] obtains the exact ABEP

of the A-PL detector for a DF two-relay system with BPSK. The analysis is done

using a contour integral approach for evaluating the Gil-Pelaez integral [58] involving

the characteristic function of the decision variable. In [52], closed-form ABEPs of

the A-PL detector for both a DF single relay system and a DF two-relay system is

respectively obtained with binary signalling including noncoherent BFSK, coherent

BFSK and coherent BPSK. The ABEP results for a single relay system in [52]

amounts to those in [25] and [26] for different modulation formats, respectively,

by properly manipulating the terms. It is noted that the method used in [52] in

deriving the ABEP is different from that in [25] or [26]. As can be seen, those

works [25,26,52,54,55,57] analyze the performance of the A-PL or the A-ML detector

in which the ABEP at each relay is used for detection at the destination. Although

their performance is more tractable than that of the ML or the PL detector where

the IBEP at each relay is used, the A-ML or the A-PL detector suffers a loss in the

diversity gain. This is quite undesired for the design of spatial diversity systems.

The C-MRC [23] retains the instantaneous information of the source-relay link.

For a single relay system with BPSK modulation, [23] shows the conditional BEP of

the destination detector conditioned on all the instantaneous SNRs of all links. Due

to the complexity of the conditional BEP result, it is difficult to obtain the exact

ABEP. Therefore, an upper bound on the conditional BEP is obtained instead.
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Based on this result, it shows that the diversity order of a single relay system

is two, i.e., full diversity is achieved. For higher order constellations, [23] uses

high-SNR approximations to show that the C-MRC achieves full diversity. Using

simulations, [23] also shows that the C-MRC performs better than an SR system,

in which the relays are assumed to equip cyclic redundancy check (CRC) and only

forward those correctly decoded messages. It is noted that all the BEP curves in [23]

are drawn from simulations, as no exact ABEP results are obtained.

Table 2.1: Summary of current works on coherent, uncoded DF relay systems

ML PL A-ML, A-PL Others

(Suboptimum)

Single relay system [20] [25,26,52,54,55] [21–24]

Multiple relay system [25,26,52,57] [23]

In Table 2.1, we summarize the current works on coherent, uncoded DF relay

systems. As can be seen, the ML detector for a DF relay system with multiple

relays remains unaddressed. In addition, [20] only considers binary modulations.

For general constellations, proposals on suboptimum detectors can be found in [23]

and [24].

2.2.4 Multiple Relay Systems with Imperfect CSI

It is noted that in all the aforementioned works, perfect CSI is assumed for coherent

detections. For practical considerations, it is necessary to study the detections under

imperfect CSI. In the literature, many works have done the analysis of relay systems

with AF relays (with or without relay selection) under imperfect CSI, e.g., [59–66].

In contrast, the attempt to analyze relay systems with DF relays is quite limited.

A few examples can be found in [67–69], and all of them involves relay selection.
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As far as we are concerned, no works have considered a general, uncoded DF relay

system with imperfect CSI from either receiver design or performance analysis point

of view.

2.3 LMS Adaptive Filters

For the purpose of CSI acquisition in an unknown wireless environment, adaptive

filters can be used. In this section, we provide a survey on the LMS adaptive filter.

We first briefly review the Wiener filter and the LMS as well as the normalized LMS

(NLMS) algorithms [70]. Then, we turn to review some popular variable step-size

schemes for the LMS and the NLMS algorithms, respectively.

2.3.1 Wiener Filter

A Wiener filter is designed based on the MSE criterion, i.e., the filter coefficients

are optimized in the sense that the mean-square value of the estimation error

is minimized. Given the autocorrelation function of the input sequence and the

cross-correlation between the input sequence and the desired sequence, the optimum

filter tap-weight coefficients of a discrete Wiener filter can be solved from the

Winer-Hopf equation [70]. Consider in general an N -tap filter, with the weight

vector w(n) at time point n denoted by

w(n) = [w1(n) w2(n) ... wN(n)]T . (2.1)

Let {x(n)} be the input sequence and x(n) = [x(n) x(n − 1) ... x(n − N + 1)]T

be its vector representation containing the immediate past N samples of {x(n)}.
The filter output y(n) = wH(n)x(n) aims to follow a desired signal d(n), and the

estimation error e(n) is defined as

e(n) = d(n) − y(n). (2.2)
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The autocorrelation matrix of the input vector x(n) and the cross-correlation

between x(n) and d(n) are denoted, respectively, by

R = E
[
x(n)xH(n)

]
, (2.3)

and

p = E [x(n)d∗(n)] . (2.4)

The optimum weight vector is solved from the Winer-Hopf equation, and is denoted

by

wo = R−1p. (2.5)

Here, it should be noted that wo is not time-varying. The MMSE of the estimation

process is given by

2V 2 = E
[|d(n)|2]− wH

o Rwo. (2.6)

From the above, it is noted that the implementation of the Wiener filter requires

the knowledge of R and p, which is statistical information that may be unavailable in

practice. When the statistical information is unknown, iterative adaptive algorithms

can be used to approximate the performance of the Wiener filter in an iterative

manner. Among those iterative algorithms, the LMS algorithm is widely used for

its robustness and simplicity. We will briefly review it in the following subsection.

2.3.2 The LMS and the NLMS Algorithms

In the LMS algorithm, the filter tap-weight coefficients are updated in a manner

such that the squared instantaneous estimation error is minimized. This results in

a time-varying tap-weight vector which is iteratively updated as [71]

w(n + 1) = w(n) + μe(n)x(n). (2.7)

Here, μ is a step-size parameter that controls the trade-off between the rate of

convergence and the steady-state MSE of the LMS algorithm. It is a very important
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parameter that needs to be carefully chosen. If the μ is chosen large, the algorithm

converges fast to the steady-state MSE. However, once the steady-state MSE is

achieved, the adaptive algorithm cannot learn any more. On the contrary, if

the μ is chosen small, the algorithm converges slower but leading to a smaller

steady-state MSE, which also means that the estimation performed by the filter

is more accurate. To compromise the rate of convergence and the steady-state

MSE, a variable step-size is desired. The basic idea of using a variable step-size

comes from the facts that a large step-size at the beginning of the adaptation is

capable of speeding up the convergence; and when the filter coefficients are about to

converge, a small step-size is necessary for a low steady-state MSE. In the literature,

many variable step-size schemes have been proposed, and they are shown to be more

efficient than the FSS LMS algorithm.

As a special extension of the LMS algorithm with a variable step-size, the NLMS

algorithm is designed to compensate the gradient noise amplification [70] problem

caused by the LMS algorithm. The NLMS algorithm uses a time-varying step-size

that is inversely proportional to the signal level at the filter input. The tap-weight

vector is updated as

w(n + 1) = w(n) +
μ̂

xT (n)x(n)
e(n)x(n), (2.8)

where μ̂ is a parameter to be chosen and μ̂/xT (n)x(n) is the actual step-size.

A more reliable implementation of the NLMS algorithm in practice requires

the assistance of a regularization parameter ε, and it results in the ε-NLMS

algorithm [70] with the improved step-size μ̂/(xT (n)x(n) + ε). Although having the

tap-weight adaptation equations in a similar form (and differing only in the choice

of the step-size), LMS-type algorithms are usually not compared with NLMS-type

algorithms. In the literature, it has been shown that NLMS-type algorithms provide

a potentially faster rate of convergence [70, 72, 73]. However, it should be noted

that additional computational complexity is required by the NLMS algorithm in

computing μ̂/xT (n)x(n), which is N additions, N multiplications and 1 division. In

the NLMS algorithm, the parameter μ̂ or ε, or even both of them, can be adjusted
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according to some rules to further improve its performance. We categorize these

extensions into variable step-size schemes for the NLMS algorithm, and review some

of the popular ones along with the variable step-size schemes for the LMS algorithm

in the next section.

2.3.3 Variable Step-Size Algorithms

The popularity of the LMS algorithm drives the development of many efficient

variable step-size schemes, some of which have received extensive attention. Here,

we briefly revisit a few popular variable step-size schemes for the LMS algorithm

and the NLMS algorithm, respectively.

In [74], the signs of the gradient terms in updating the weight vector are

continuously monitored, based on which, the step-size is increased if the number of

consecutive identical signs exceeds a specified threshold, and similarly, the step-size

is decreased if the number of consecutive sign changes exceeds another specified

threshold. Reference [75] proposes and analyzes the gradient adaptive step-size

(GASS) algorithm, where the squared estimation error is reduced at each iteration.

As can be seen, a initial value of the step-size, μ(0), and a constant ρ are the two

parameters that control the convergence. Reference [76] proposes to directly update

the step-size according to the square of the instantaneous estimation error. The

process is controlled by two parameters, namely, α and γ. In the simulations of [76],

these two parameters have been chosen differently for different cases. Reference [77]

improves on the work of [76] by using a time-averaged estimate of the error, instead

of the instantaneous error. Besides the two parameters α and γ that have appeared

in [76], [77] introduces a new control parameter β in generating the estimate of the

autocorrelation between two adjacent errors. The authors of [77] had shown that the

new algorithm that they call the modified variable step-size (MVSS) LMS algorithm

outperforms the algorithm in [76], especially in a noisy environment. In [78], a

kurtosis of the estimation error is defined, based on which the step-size is updated.

The computation of the kurtosis requires the statistics of the estimation error. In
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addition, a control parameter α needs to be adjusted to enhance the performance.

Considering variable step-size schemes for the NLMS-type algorithms, following

a procedure similar to that in [75], [79] applies a normalized gradient adaptive

descent algorithm to the μ̂ in (2.8), and arrives at the variable step-size NLMS

(VSS-NLMS) algorithm. In [79], no regularization is performed, i.e., ε = 0, and it

is noted that an initial value of μ̂ ( in [79], it is referred to as μ0) and an additional

constant ρ are to be set for the algorithm to work properly. Instead of adjusting

μ̂, [80] proposes to update ε according to a generalized normalized gradient descent

algorithm. In [80], a parameter ρ controls the learning rate of the algorithm, and

ρ = 0.15 is used as a typical value in the simulations. Reference [81] proposes

a robust regularization method where a sign function is applied to the derived

gradient descent term in [80], and by using the typical setting of ρ = 0.15, it shows

an improvement over the method of [80] in terms of steady-state MSE. Variations

and enhancements on the LMS or the NLMS algorithms are also developed for

the use in some special environments, or for some specific applications, where

variable step-sizes are also desired, and thus gives rise to a large number of different

algorithms [82–89].

It is noted that a common feature of all the above-mentioned step-size

adjustment algorithms is that preset control parameters are required, and of course,

the choice of these parameters would greatly affect the performance of these

algorithms. So far, these control parameters are always chosen from extensive

simulations or from experience. To obviate the tedious process of choosing

appropriate parameters, parameter-free algorithms are desired. Reference [90]

presents a nonparametric variable step-size NLMS (NPVSS-NLMS) algorithm which

aims to reduce the impact of the noise present in the desired response d(n). In its

case, d(n) is corrupted by a system noise. When setting the power of this noise to

zero, the NPVSS-NLMS algorithm reduces to the conventional NLMS algorithm.

To the best of our knowledge, no parameter-free algorithms in the true sense have

been introduced in the literature.
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Chapter 3

Feedback Power Control for the

Rayleigh Channel

By exploiting the CSIT, a feedback power control system yields large performance

improvements over a non-feedback system. We propose to use the BEOP as a new

performance measure in the design of a feedback power control system. Compared

with the traditional performance measure, i.e., the ABEP, the BEOP is a more

meaningful measure for high-data rate transmission over fading channels. We

propose the BEOP-based power control law where the transmitted power is adjusted

according to the variations of the channel such that the BEOP is kept within some

QoS-specified threshold. It ensures that in the long term, less than a certain fraction

of received bits would have IBEP exceeding some IBEP threshold. Therefore, the

instantaneous QoS is guaranteed. Based on a practical system model with channel

estimation and prediction, we develop the traditional ABEP-based power control law

and the new BEOP-based power control law. The effect of imperfect CSI has been

an overlooked issue in the literature of design and performance analysis of an actual

feedback power control system. For both the ABEP-based and the BEOP-based

power control laws, we derive explicit ABEP and BEOP results. The BEOP-based

law shows a remarkable gain over the ABEP-based law in terms of BEOP, and

sacrifices only a little in the ABEP performance.
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3.1 Introduction

By adapting the transmitter power to match the current state of the channel,

power control is a promising technology in mitigating the signal fading in wireless

communications. Most of the works on power control study the performance

limits of communication systems in terms of ergodic capacity or information outage

probability [2–4]. While information theoretic research is important, it is of great

use to design practically realizable feedback power control systems for specific

modulation formats and examine their end-to-end performance. Unfortunately, as

has been summarized in Section 2.1.2, research in this area is quite limited. All those

existing works [6–10] on the design of practical feedback power control systems use

the ABEP as the performance measure. For transmission over fading channels, the

ABEP is obtained by averaging the IBEP over the distribution of the fading, and

therefore, it cannot reflect the instantaneous depth of fade experienced by the user.

For high data-rate transmission, a short duration of deep fade may cause thousands

of erroneous received data bits. In such a case, the ABEP as a performance measure

becomes meaningless. As has been pointed out in [13], to reflect the instantaneous

QoS, the BEOP is a more useful measure. The BEO event is defined as the event

that the IBEP exceeds an IBEP threshold. The BEOP reflects, in the long term, the

fraction of the received bits that have IBEP exceeding the IBEP threshold. From

the viewpoint of QoS assurance, it is meaningful to set an upper limit on the BEOP

to ensure that in the long term, less than a certain fraction of received bits would

have IBEP exceeding the IBEP threshold.

Motivated by the importance of BEOP and its advantage over ABEP as a QoS

measure, we propose to use the BEOP as a new performance measure in the design

of a feedback power control system. To bring up our idea, we first assume perfect

CSIT and perfect CSIR, and they are identical. This is a common assumption in

all existing works on actual feedback systems. We propose the BEOP-based power

control law where the transmitted power is adjusted according to the variations of

the channel such that the BEOP is kept within some QoS-specified threshold. As a

34



3.2 System Model

more practical consideration, we build up a system model with channel estimation

and channel prediction at the receiver, and develop both the traditional ABEP-based

power control law and the BEOP-based power control law for the imperfect CSI case.

For both laws, we derive explicit ABEP and BEOP results under perfect CSI and

under imperfect CSI, respectively. These results show that for each power law, the

performance loss due to channel estimation errors is very large. However, there

remains a significant gain over a non-feedback system. The BEOP-based law shows

a remarkable gain over the ABEP-based law in terms of BEOP, and sacrifices only

a little in the ABEP performance. Therefore, the BEOP-based power control law

provides an attractive solution for instantaneous QoS assurance in communications

over fading channels.

The rest of this chapter is organized as follows. In Section 3.2, we describe the

system model, where the imperfect CSI scenario is discussed in detail. In Sections

3.3, 3.4 and 3.5, we discuss the design and analysis of power control laws under

perfect CSI. From Section 3.6 to Section 3.8, we extend the study to the imperfect

CSI case. Numerical results are presented in Section 3.9. Finally, Section 3.10

concludes the chapter.

3.2 System Model

We consider SISO transmission over the frequency-nonselective Rayleigh

block-fading channel with CSI feedback from the receiver to the transmitter. The

message is sent in packets with uncoded BPSK or QPSK. The fading is assumed

to be constant over the duration of one packet, and we assume a packet length of

N symbols. The packet length that fits the block-wise static channel assumption is

determined by the coherence time of the channel and the available bandwidth. For

the purpose of power control, we assume a fixed transmission rate R and a fixed

symbol duration T . Therefore, the control on the transmitted power is equivalent

to the control on the transmitted energy. Let x(k) denote the symbol sent at time
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3.2 System Model

point k. The received signal in the k-th symbol interval kT ≤ t ≤ (k + 1)T is

y(k) = E1/2
s hlx(k) + n(k), (3.1)

where Es is the transmitted energy per symbol. The channel fading coefficient of

the l-th packet is denoted by hl, and is complex Gaussian distributed with mean

zero and autocorrelation function E[hl+mh∗
l ] = 2σ2R(m), where 2σ2 is the variance

and R(m) is the correlation coefficient of the fading process at a time difference of

m. Assuming Jake’s Doppler spectrum, we have R(m) = J0(2πfDTm) with fDT

being the normalized Doppler frequency and J0(·) denoting the Bessel function of

the first kind of order zero. The n(k) denotes the AWGN, which is complex Gaussian

distributed with mean zero and variance N0.

We consider both the perfect CSI case and the imperfect CSI case, and introduce

them separately in the following.

3.2.1 Perfect CSI

Upon receiving a source packet, the receiver is assumed to be able to obtain the exact

hl, i.e., perfect CSIR is available. The complete hl is then fed back to the transmitter

through a noiseless feedback channel. We assume that the feedback channel changes

slowly such that the CSIT is exactly the same as the CSIR. Although this genie-aided

feedback is not practical, it provides a theoretically analyzable model, and shows

the best performance that a feedback system can achieve. This perfect CSI model

is commonly used in all existing works on actual feedback systems [6–10].

3.2.2 Imperfect CSI

For the imperfect CSI case, channel estimation is required at the receiver to obtain

an estimate of the CSI for coherent detection. Here, we use pilot symbols for channel

estimation. We assume that a packet consists of Nd data symbols prefixed by Np

pilot symbols to form a packet of length N , i.e., N = Np +Nd. Let Ep be the energy

per pilot symbol and Ed be the energy per data symbol. The received signal has
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been shown in (3.1), where Es = Ed for data symbols and Es = Ep for pilot symbols.

The total packet energy is given by Epkt = NpEp + NdEd. For the purpose of power

control, we assume that Ep does not change according to the channel variation, and

denote the average energy per data symbol by Eave
d . If the packet energy is fixed,

we cannot adjust Ep and Eave
d freely, as it will affect the system performance. For

that reason, we define a power allocation factor ξ, such that NpEp = ξNdE
ave
d . The

ξ determines the power allocation between the data symbols and the pilot symbols

for a given fixed total packet energy. Without loss of generality, we also assume that

Np and Nd are fixed. In a practical system, the number of pilots that can be added

to a data packet is determined by the maximal BEF of the system. Compared with

the perfect CSI case, due to the use of pilots, the efficiency of data transmission is

reduced. The effective average transmitted energy per data symbol is denoted by

Eeff-ave
d =

Epkt

(1 + ξ)N
. (3.2)

Upon receiving a source packet, the receiver estimates the CSI using the pilot

information. In addition, a future CSI is predicted and fed back to the transmitter

through a noiseless feedback channel to provide the CSIT. We assume that the

feedback link is noiseless and the complete information of the predicted CSI can be

fed back. The advance in time of the predicted CSI should capture the processing

delay at the receiver and the propagation delay on the feedback channel. In other

words, it must ensure that when the predicted CSI arrives at the transmitter, the

packet corresponding to that future CSI has not been sent out yet. Therefore, it is

easy to understand that for the same packet, its CSIT and CSIR are different, or

say, decorrelated due to the delay.

In the next subsection, we discuss the channel estimation/prediction issue in

detail.

3.2.3 Channel Estimation and Prediction using Pilots

At the receiver, the received pilot signals are fed into a Wiener filter to obtain the

MMSE estimate of the channel. To distinguish from data symbols, we denote the
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3.2 System Model

transmitted pilot symbol and the received pilot signal by xp(k) and p(k), respectively.

Without loss of generality, we assume xp(k) = 1.

Channel Estimation

At the receiver, the channel fading coefficient hl is estimated using the received pilot

signals gathered from the current l-th as well as the immediate past Le packets. Let

p = [p0 p1 · · · pLe
]T , (3.3)

where

pi = [p(l − i + 1) p(l − i + 2) · · · p(l − i + Np)]
T , i = 0, 1, ..., Le (3.4)

denotes the received pilot signals in the past i-th packet. Note that i = 0 refers to the

current l-th packet. The MMSE estimate of hl can be represented as [70, eq.(2.1)]

ĥl|l = wT
o p. (3.5)

Here, wo is the optimum tap-weight vector of the (Le + 1)Np-th order Wiener filter

and can be obtained by using [70, eq.(2.36)], as

wo = R−1v, (3.6)

where R is the autocorrelation matrix of p, and v is the cross correlation between

hl and p. The R can be expressed as

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

R0 R1 · · · RLe

R1 R0 · · · RLe−1

...
...

...
...

RLe RLe−1 · · · R0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ N0I(Le+1)Np×(Le+1)Np , (3.7)

where

Ri = R(i)Ep2σ
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 0, 1, ..., Le (3.8)
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3.2 System Model

is an Np × Np matrix, and I(Le+1)Np×(Le+1)Np denotes an (Le + 1)Np × (Le + 1)Np

identity matrix. The vector v can be expressed as

v = [v0 v1 · · · vLe
]T , (3.9)

where

vi = R(i)
√

Ep2σ
2[1 1 · · · 1]T , i = 0, 1, ..., Le, (3.10)

and is of the length Np. The estimation error is denoted by êl|l, and is a complex

Gaussian random variable with mean zero and variance 2V 2. The 2V 2 is known as

the MMSE of the estimation process, and can be obtained by using [70, eq.(2.49)],

as

2V 2 = 2σ2 − vTR−1v. (3.11)

The hl can be expressed as

hl = ĥl|l + êl|l. (3.12)

It is noted that ĥl|l is a complex Gaussian random variable with mean zero and

variance 2λ2 = 2σ2 − 2V 2.

Channel Prediction

Besides estimation of the current channel, a future channel is also predicted at the

receiver and fed back to the transmitter to provide the CSIT. Due to the processing

time at the receiver and the propagation delay on the feedback channel, from the

viewpoint of the transmitter, the prediction is based on the received pilot signals

from past received packets with a delay. Assuming this delay is a multiple of the

packet duration NT , i.e., DNT , where D is a positive integer, and the pilot signals

from the past Lp consecutive packets are used, the pilot information for predicting

hl can be represented by the vector

p′ = [pD pD+1 · · · pD+Lp−1
]T , (3.13)
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where pi, i = D,D + 1, ..., D + Lp − 1 has been defined in (3.4). Note that D = 1

refers to the case that no feedback delay is incurred. For a practical consideration

which takes into account both the processing time and the feedback delay, it requires

that D ≥ 2. The MMSE prediction of hl is denoted by

h̃l|l−D = w′T
o p′. (3.14)

The optimum filter tap-weight vector w′
o is given by

w′
o = R′−1v′, (3.15)

where

R′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

R0 R1 · · · RLp−1

R1 R0 · · · RLp−2

...
...

...
...

RLp−1 RLp−2 · · · R0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ N0ILpNp×LpNp , (3.16)

and

v′ = [vD vD+1 · · · vD+Lp−1]
T . (3.17)

The prediction error is denoted by ẽl|l−D, which is a complex Gaussian random

variable with mean zero and variance

2V ′2 = 2σ2 − v′TR′−1v′. (3.18)

The 2V ′2 is also known as the MMSE of the channel prediction process. The hl can

be expressed as

hl = h̃l|l−D + ẽl|l−D. (3.19)

It is noted that h̃l|l−D is a complex Gaussian random variable with mean zero and

variance 2λ′2 = 2σ2 − 2V ′2.
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The Relationship Between Channel Estimation and Prediction

From (3.12) and (3.19), we have

ĥl|l = h̃l|l−D + ẽl|l−D − êl|l. (3.20)

It is noted that according to the principle of orthogonality in Wiener filtering [70],

ĥl|l−1 and êl|l−1 are uncorrelated, and h̃l|l−D and ẽl|l−D are uncorrelated. If p and

p′ have overlap, any two of the four terms in (3.20) are correlated except for those

two orthogonal pairs mentioned above. In the following, we derive the conditional

distribution of ĥl|l conditioned on h̃l|l−D. Later, this distribution will be used for

performance analysis at the receiver side of the feedback system.

First, we revisit Lemma 3.1 of [91]. It states that if X and Y are jointly

Gaussian circularly symmetric complex random variables with means E[X] = 0,

E[Y ] = 0 and variances σ2
X , σ2

Y , the covariance μXY = E[XY ∗] is shown to be a

real number. Conditioned on X, Y is a conditional Gaussian random variable with

conditional mean

E[X|Y ] = ρXY
σX

σY

Y, (3.21)

and conditional variance

Var[X|Y ] = σ2
X(1 − ρ2

XY ), (3.22)

where the normalized covariance ρXY is defined as

ρXY =
μXY

σXσY

. (3.23)

Using the above results, conditioned on h̃l|l−D, the conditional mean and

variance of ĥl|l are given, respectively, by

E[ĥl|l|h̃l|l−D] =

(
1 − E[êl|lh̃∗

l|l−D]

2λ′2

)
h̃l|l−D, (3.24)

and

Var[ĥl|l|h̃l|l−D] = Var[ẽl|l−D|h̃l|l−D] + Var[êl|l|h̃l|l−D] − 2E[ẽl|l−Dêl|l|h̃l|l−D]

+2E[ẽl|l−D|h̃l|l−D]E[êl|l|h̃l|l−D]. (3.25)
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If the errors ẽl|l−D and êl|l are very small, we can assume that they are uncorrelated,

i.e.,

E[ẽl|l−Dêl|l] = E[ẽl|l−D]E[êl|l]. (3.26)

Therefore, the conditional variance can be expressed as

Var[ĥl|l|h̃l|l−D] = 2V ′2 + 2V 2

(
1 − (E[êl|lh̃∗

l|l−D])2

2V 22λ′2

)
. (3.27)

Let s = |E[ĥl|l|h̃l|l−D]| and 2Ω2 = Var[ĥl|l|h̃l|l−D]. Conditioned on h̃l|l−D, |ĥl|l|2 is

conditionally noncentral chi-square distributed with the PDF

p|ĥl|l|2|h̃l|l−D
(x|h̃l|l−D) =

1

2Ω2
exp

(
−x + s2

2Ω2

)
I0

(√
x

s

Ω2

)
u(x), (3.28)

where u(·) is the unit step function and I0(·) is the modified Bessel function of the

first kind of order zero. The conditional cumulative distribution function (CDF) of

|ĥl|l|2 can be represented as

F|ĥl|l|2|h̃l|l−D
(x|h̃l|l−D) = 1 − Q

(
s

Ω
,

√
x

Ω

)
, (3.29)

where Q(a, b) is the first-order Marcum Q-function defined as

Q(a, b) =

∫ ∞

b

xexp

(
−x2 + a2

2

)
I0(ax)dx, a ≥ 0, b ≥ 0. (3.30)

It is also noted that conditioned on h̃l|l−D, |ĥl|l| is conditionally Rician distributed

with the PDF

p|ĥl|l||h̃l|l−D
(x|h̃l|l−D) =

x

Ω2
exp

(
−x2 + s2

2Ω2

)
I0

(xs

Ω2

)
, (3.31)

and the CDF

F|ĥl|l||h̃l|l−D
(x|h̃l|l−D) = 1 − Q

( s

Ω
,
x

Ω

)
. (3.32)

The Rician K -factor is represented as

K =
s2

2Ω2
. (3.33)

From the above point of view, transmission over the Rayleigh channel in the feedback

system is equivalent to transmission over the Rician channel with the line-of-sight

component h̃l|l−D.
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A Simplified Channel Estimation/Prediction Model

We consider here a simplified model of the channel estimation/prediction, where we

only utilize the received pilot signals from one packet. In this case, an explicit

relationship between the MMSE for estimation/predition and the NpEp can be

obtained.

For channel estimation, to estimate hl, the received pilot signals from the

current l-th packet are used, and we have

R = R0 + N0INp×Np (3.34)

and

v = R(0)
√

Ep2σ
2[1 1 · · · 1]T . (3.35)

Therefore, the variance of the estimation error êl|l can be explicitly obtained as

2V 2 =
2σ2

1 + NpEp2σ2

N0

. (3.36)

The variance of the estimate ĥl|l is thus given by

2λ2 =
NpEp(2σ

2)2

NpEp2σ2 + N0

. (3.37)

For channel prediction, to predict hl, the received pilot signals from the past D-th

packet are used, and we have

R′ = R0 + N0INp×Np (3.38)

and

v′ = R(D)
√

Ep2σ
2[1 1 · · · 1]T . (3.39)

Therefore, the variance of the prediction error ẽl|l−D is obtained as

2V ′2 =
(1 − R(D)2)NpEp(2σ

2)2 + N02σ
2

NpEp2σ2 + N0

, (3.40)

and the variance of the predicted channel h̃l|l−D is given by

2λ′2 =
R(D)2NpEp(2σ

2)2

NpEp2σ2 + N0

. (3.41)

These simplified results with explicit expressions are useful to analytical purpose.
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3.3 BEP and BEOP of A Feedback System with

Perfect CSI

In a feedback system with power control, the transmitted energy is some function

of the CSI. This function is to be determined based on different power control

strategies. Here, we obtain general expressions of the IBEP, the ABEP and the

BEOP for a feedback system with perfect CSI.

With the assumption of perfect CSI, the transmitter is assumed to have the

complete knowledge of the CSI of the forward channel. Therefore, the obtained

performance measures at the transmitter are identical to those at the receiver. For

coherent detection of equally likely symbol points, the IBEP can be represented as

F (α|hl) =
1

2
erfc

(
Es|hl|2 cos2 α

N0

)1/2

, (3.42)

where α is some angle, and note that Es is the transmitter energy to be chosen.

With Gray mapping, α = 0 and α = π/4 refer to BPSK and QPSK modulations,

respectively [92]. The ABEP is obtained as

F (α) =

∫ ∞

0

1

2
erfc

(
Esx cos2 α

N0

)1/2

p|hl|2(x)dx, (3.43)

where

p|hl|2(x) =
1

2σ2
exp

(
− 1

2σ2
x

)
u(x) (3.44)

is the PDF of |h|2. The BEOP, according to its definition, is the probability

Pout(α) = P (F (α|hl) > ε) , (3.45)

where ε is the IBEP threshold, which is a QoS-specified parameter that can be

adjusted according to different QoS requirements. Keeping in mind that for a

feedback system, the transmitted energy Es is some value to be determined according

to hl. Therefore, now we cannot get an explicit result of the ABEP or the BEOP.

However, for a non-feedback system, since Es is fixed, the ABEP and the BEOP can
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be explicitly evaluated using the distribution of hl, and the results are, respectively,

given by

F (α) =
1

2

(
1 −
√

Es2σ2 cos2 α

N0 + Es2σ2 cos2 α

)
, (3.46)

and

Pout(α) = 1 − exp

(
− N0C

Es2σ2 cos2 α

)
, (3.47)

where

C =
(
erfc−1(2ε)

)2
(3.48)

can be viewed as a constant related to a given IBEP threshold ε. In a feedback

system, explicit results for the ABEP or the BEOP can only be obtained after the

transmitted energy Es is determined.

In the following two sections, we explore different power control laws with

perfect CSI.

3.4 ABEP-based Power Control with Perfect CSI

In [6], Hayes has proposed a power control law to minimize the ABEP for the

reception of binary modulated signals, subject to a constraint on the average

transmitted power. Here, we generalize Hayes’s work with both BPSK and QPSK

modulations, and also analyze the outage performance.

3.4.1 Design of the Power Law

Our purpose is to minimize (3.43) subject to a constraint on the average transmitted

power, or the average transmitted energy. The minimization problem whose solution

gives the optimum transmitted energy is described as

minimize
Es

F (α) =

∫ ∞

0

1

2
erfc

(
Esx cos2 α

N0

)1/2

p|hl|2(x)dx

subject to Eave
s =

∫ ∞

0

Esp|hl|2(x)dx, (3.49)
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where Eave
s denotes the specified average energy per symbol. Using the method of

Lagrange multipliers [6, 10], we form an auxiliary function

L = F (α) + μ

(∫ ∞

0

Esp|hl|2(x)dx − Eave
s

)

=

∫ ∞

0

[
1

2
erfc

(
Esx cos2 α

N0

)1/2

+ μEs

]
p|hl|2(x)dx − μEave

s , (3.50)

where μ is the Lagrange multiplier. It is noted that L is minimized if

1
2
erfc
(

Esx cos2 α
N0

)1/2

+ μEs is minimized for every single realization of x = |hl|2.
Let

Lins =
1

2
erfc

(
Es|hl|2 cos2 α

N0

)1/2

+ μEs. (3.51)

We have

d

dEs

Lins = − 1

2
√

π
exp

(
−Ed|hl|2 cos2 α

N0

)
E−1/2

s

( |hl|2 cos2 α

N0

)1/2

+ μ. (3.52)

It can be shown that d2

dE2
s
Lins > 0. Therefore, solving d

dEd
Lins = 0 for Es gives the

optimal Es that minimizes Lins, and the solution is

Es =
W
(

1
8πμ2

(
2|hl|2 cos2 α

N0

)2)
(

2|hl|2 cos2 α
N0

) , (3.53)

where W (·) is the Lambert W function, which is defined as the function that satisfies

the equation

W (z)eW (z) = z. (3.54)

Substituting (3.44) and (3.53) into (3.49), we have

Eave
s =

∫ ∞

0

W
(

1
8πμ2

(
2x cos2 α

N0

)2)
(

2x cos2 α
N0

) 1

2σ2
e−

1
2σ2 xdx. (3.55)

From (3.55), it is seen that for any given Eave
s , μ can be numerically solved.

Substituting the solved μ into (3.53) gives the optimum transmitted energy Es that

minimizes F (α). Eq. (3.53) is recognized as the transmitted power law.
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We observe from (3.53) that the transmitted energy Es is a function of |hl|2.
This means that only the magnitude of the channel fading gain needs to be fed back

from the receiver to the transmitter. This has also been mentioned in [6]. Actually,

as we will see, for the purpose of power control, this is a general case. In practice,

this observation helps the feedback system reduce the size of feedback information.

3.4.2 Performance Analysis

ABEP

The ABEP is easily obtained by substituting (3.44) and (3.53) into (3.43), and is

explicitly given by

F (α) =

∫ ∞

0

1

2
erfc

⎛
⎝W

(
1

8πμ2

(
2x cos2 α

N0

)2)
2

⎞
⎠

1/2

1

2σ2
e−

1
2σ2 xdx. (3.56)

BEOP

Using (3.45), the BEOP is given by

Pout(α) = P (F (α|hl) > ε)

= P

(
1

2
erfc

(
Es|hl|2 cos2 α

N0

)1/2

> ε

)
. (3.57)

Substituting (3.53) into the above and after some manipulation, we obtain the BEOP

as

Pout(α) = P

(
W

(
1

8πμ2

(2|hl|2 cos2 α

N0

)2)
< 2C

)
. (3.58)

To compute (3.58), we introduce the following lemma.

Lemma 3.1 For any real numbers A ≥ 0 and B > 0, we have

W (A) ≤ B ⇔ A ≤ BeB. (3.59)

Proof: The Lambert W function can be defined as the inverse function of A = BeB,

i.e., B = W (A). It is noted that when A ≥ 0, W (A) is a monotonically increasing
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Figure 3.1: Plot of the Lambert W function W (A) for A ≥ 0.

function of A, and W (A) ≥ 0, as shown in Fig 3.1. Therefore, it is easy to see that

for any A ≥ 0 and B > 0, eq.(3.59) stands.

�

Using Lemma 3.1, (3.58) can be further evaluated as

Pout(α) = P

(
|hl|2 <

N0

cos2 α

√
4πμ2Ce2C

)

= 1 − exp

(
− N0

2σ2 cos2 α

√
4πμ2Ce2C

)
. (3.60)

We emphasize that μ is chosen from (3.55) for a given Eave
s , and therefore, Pout(α)

is a function of Eave
s .

3.5 BEOP-based Power Control with Perfect CSI

In this section, we consider the design of the power control law from the perspective

of BEOP with perfect CSI. We propose to choose the transmitted energy such that

48



3.5 BEOP-based Power Control with Perfect CSI

the BEOP would not exceed some QoS-specified threshold, say, δ. At the same

time, we want the minimum transmitted energy consumption. The BEOP has been

defined in (3.45). Substituting (3.42) into (3.45), we rewrite the BEOP as

Pout(α) = P

(
Es|hl|2 <

N0C

cos2 α

)
, (3.61)

where C has been defined as C =
(
erfc−1(2ε)

)2
, and ε is the IBEP threshold.

We note from here that Es can be adjusted according to |hl|2 such that Es|hl|2 =

N0C
cos2 α

, i.e., Es = N0C
|hl|2 cos2 α

. If so, the BEOP would be zero with the minimum

consumption of energy. However, when hl tends to zero, Es tends to infinity. Usually,

the transmitter power of a communication system is limited to a certain peak power.

When the transmission rate and the symbol duration are fixed, this is equivalent

to a limit on the transmitted energy, say, Epk. Therefore, it is straightforward that

when the channel adaptive Es exceeds Epk, Es|hl|2 is less than N0C
cos2 α

, and an outage

happens. From this point of view, the obtained BEOP itself is the QoS-specified

threshold δ. The BEOP is related to the peak energy constraint Epk, and their

relationship indicates how much peak energy is required to ensure the BEOP being

no more than the QoS-specified BEOP threshold δ. Based on the above observations,

next, we formulate the power law.

3.5.1 Formulation of the Power Law

From the above discussion, the power law under a peak energy constraint Epk is

given by

Es =

⎧⎨
⎩

N0C
|hl|2 cos2 α

, |hl|2 ≥ N0C
Epk cos2 α

Epk, |hl|2 < N0C
Epk cos2 α

(3.62)

Again, we note from (3.62) that only the magnitude of hl is needed for power

adjustment at the transmitter. According to the definition of a BEO event, the

BEOP of this power law is simply calculated as

Pout(α) = P

(
N0C

|hl|2 cos2 α
> Epk

)

= 1 − exp

(
− N0C

Epk2σ2 cos2 α

)
, (3.63)
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The IBEP threshold ε, the BEOP threshold δ and the peak transmitter energy Epk

are related through

1 − exp

(
− N0C

Epk2σ2 cos2 α

)
= δ, (3.64)

i.e., given ε (or say, C), to keep the BEOP within δ, a minimum peak energy

indicated by (3.64) is required. Solving (3.64) for Epk, and noting that C =(
erfc−1(2ε)

)2
, we have

Epk =
N0

(
erfc−1(2ε)

)2
2σ2 cos2 α ln(1 − δ)−1

. (3.65)

It is clear that as ε decreases or as δ decreases, the required Epk increases. The

average energy of this power law is obtained by averaging (3.62) over the distribution

of hl, and we have

Eave
s =

∫ N0C

Epk cos2 α

0

Epkp|hl|2(x)dx +

∫ ∞

N0C

Epk cos2 α

N0C

x cos2 α
p|hl|2(x)dx. (3.66)

The first integral is easy to calculate, and the second integral can be calculated by

changing the variable appropriately. The explicit result is given by

Eave
s = Epk

(
1 − e

− N0C

Epk2σ2 cos2 α

)
+

N0C

2σ2 cos2 α
Γ

(
0,

N0C

Epk2σ2 cos2 α

)
, (3.67)

where Γ(a, x) denotes the upper incomplete gamma function defined as

Γ(a, x) �
∫ ∞

x

ta−1e−tdt. (3.68)

3.5.2 ABEP Analysis

The BEOP of the power law described by (3.62) has been shown in (3.63).

Substituting (3.62) into (3.43), the ABEP is given by

F (α) =

∫ N0C

Epk cos2 α

0

1

2
erfc

(
Epkx cos2 α

N0

)1/2

p|hl|2(x)dx +∫ ∞

N0C

Epk cos2 α

1

2
erfc (C)1/2 p|hl|2(x)dx (3.69)
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The second integral is easy to calculate, and the result is∫ ∞

N0C

Epk cos2 α

1

2
erfc (C)1/2 p|hl|2(x)dx = ε exp

(
− N0C

Epk2σ2 cos2 α

)
. (3.70)

Denoting the first integral by I, it can be evaluated as follows. Writing the erfc

function in its integral form, we have

I =
1√

π2σ2

∫ N0C

Epk cos2 α

0

∫ ∞√
Epkx cos2 α

N0

e−t2dt e−
1

2σ2 xdx (3.71)

Letting y =
√

Epkx cos2 α

N0
and interchanging the order of integration, we have

I =
1√

π2σ2

(∫ √
C

0

∫ t

0

e
− 1

2σ2
N0

Epk cos2 α
y2 N0

Epk cos2 α
dy2 e−t2dt +

∫ ∞
√

C

∫ √
C

0

e
− 1

2σ2
N0

Epk cos2 α
y2 N0

Epk cos2 α
dy2 e−t2dt

)
. (3.72)

Simplifying (3.72), we have

I =
1

2
− 1

2

1√
1 + N0

Epk2σ2 cos2 α

(
1 − erfc

(√
C

(
1 +

N0

Epk2σ2 cos2 α

)))
−

ε exp

(
− N0C

Epk2σ2 cos2 α

)
. (3.73)

Letting γpk =
Epk2σ2 cos2 α

N0
and substituting (3.70) and (3.73) into (3.69), we finally

get

F (α) =
1

2
− 1

2

√
γpk

1 + γpk

(
1 − erfc

(√
C

(
1 +

1

γpk

)))
. (3.74)

In Section 3.4, we reviewed the ABEP-based power law and extended it to the

QPSK case. In Section 3.5, we proposed and analyzed the BEOP-based power law.

Next, we develop both laws for the imperfect CSI case. We first analyze the BEP

and the BEOP in general for a feedback system with imperfect CSI.

51



3.6 BEP and BEOP of A Feedback System with Imperfect CSI

3.6 BEP and BEOP of A Feedback System with

Imperfect CSI

It is noted that in a feedback system with imperfect CSI, since the CSIR and the

CSIT are different, the BEP and the BEOP need to be considered from the receiver

side and from the transmitter side, separately.

In the imperfect CSI case, we assume that the transmitted energy per pilot

symbol Ep is fixed. Therefore, we only need to adjust the transmitted energy per

data symbol Ed. We emphasize that the transmitter can only utilize the CSIT to

adjust Ed. When a signal arrives at the receiver, the receiver makes a decision based

on the newly obtained CSIR, which is different from the CSIT that has been used

to adjust Ed. From the viewpoint of the transmitter, the IBEP is obtained using

the predicted channel fading gain h̃l|l−D, and is given by

FX(α|h̃l|l−D) =
1

2
erfc

(
Ed|h̃l|l−D|2 cos2 α

Ed2V ′2 + N0

)1/2

. (3.75)

The superscript X denotes the viewpoint of the transmitter. Averaging (3.75) over

the PDF of |h̃l|l−D|2 gives the ABEP at the transmitter

FX(α) =

∫ ∞

0

1

2
erfc

(
Edx cos2 α

Ed2V ′2 + N0

)1/2

p|h̃l|l−D|2(x)dx, (3.76)

where

p|h̃l|l−D|2(x) =
1

2λ′2 e−
1

2λ′2 xu(x). (3.77)

The BEOP at the transmitter is the probability

PX
out(α) = P

(
FX(α|h̃l|l−D) > ε

)
. (3.78)

From the viewpoint of the receiver, the IBEP is obtained using ĥl|l, and is given by

F (α|ĥl|l) =
1

2
erfc

(
Ed|ĥl|l|2 cos2 α

Ed2V 2 + N0

)1/2

. (3.79)
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Its average is given by

F (α) =

∫ ∞

0

1

2
erfc

(
Edx cos2 α

Ed2V 2 + N0

)1/2

p|ĥl|l|2(x)dx, (3.80)

where

p|ĥl|l|2(x) =
1

2λ2
exp

(
− 1

2λ2
x

)
u(x) (3.81)

is the PDF of |ĥl|l|2. The BEOP at the receiver is the probability

Pout(α) = P
(
F (α|ĥl|l) > ε

)
. (3.82)

Similar to that in the perfect CSI case, for a non-feedback system, the ABEP

and the BEOP can be explicitly determined. They are given, respectively, by

F (α) =
1

2

(
1 −
√

Ed2σ2 cos2 α

Ed2V 2 + N0 + Ed2σ2 cos2 α

)
, (3.83)

and

Pout(α) = 1 − exp

(
−(Ed2V

2 + N0)C

Ed2σ2 cos2 α

)
, (3.84)

where C =
(
erfc−1(2ε)

)2
has been defined in (3.48).

In the following two sections, we explore different power control laws with

imperfect CSI.

3.7 ABEP-based Power Control with Imperfect

CSI

In the perfect CSI case, the ABEP-based power law is designed subject to a

constraint on the average transmitted energy per symbol. In the imperfect CSI

case, since pilot symbols are used, it is more reasonable to assume a constraint on

the average energy per packet. Assuming the average packet energy is fixed at Epkt,

it is related to the effective average energy per data symbol Eeff-ave
d , as shown in

(3.2). Therefore, a constraint on the Epkt can also be represented as a constraint
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3.7 ABEP-based Power Control with Imperfect CSI

on Eeff-ave
d . Moreover, besides minimizing the ABEP by adjusting the transmitted

energy Ed, using the power allocation factor ξ, we can also decide the optimal power

allocation between the pilot symbols and the data symbols.

With imperfect CSI, the ABEP at the transmitter has been shown in (3.80).

The minimization problem is formulated as

minimize
Ed

FX(α) =

∫ ∞

0

1

2
erfc

(
Edx cos2 α

Ed2V ′2 + N0

)1/2

p|h̃l|l−D|2(x)dx

subject to Eeff-ave
d =

∫ ∞

0

Edp|h̃l|l−D|2(x)dx. (3.85)

Using the method of Lagrange multipliers, and following the steps in Section 3.4,

we find the equation that gives the optimal solution of Ed as

− 1

2
√

π
exp

(
−Ed|h̃l|l−D|2 cos2 α

Ed2V ′2 + N0

)
E

−1/2
d |h̃l|l−D| cos αN0

(Ed2V ′2 + N0)3/2
+ μ = 0, (3.86)

where μ is the Lagrange multiplier. It is noted from (3.86) that an explicit expression

of Ed is unobtainable. This expression of Ed is necessary, as we need to substitute

it into (3.85) to obtain the value of μ subject to a given Eeff-ave
d . One way is to

numerically solve for Ed for any given |h̃l|l−D| and a fixed μ, and solve for Eeff-ave
d

numerically from (3.85). However, this numerical calculation does not provide any

useful expressions for the system performance. To make the performance analyzable

and more tractable, we consider the following two approximate solutions for Ed.

3.7.1 Approximation 1

In this scenario, the transmitter views h̃l|l−D as if it were the true channel with no

channel estimation errors. Therefore, the IBEP from the transmitter’s view becomes

FX(α|h̃l|l−D) =
1

2
erfc

(
Ed|h̃l|l−D|2 cos2 α

N0

)1/2

. (3.87)

The corresponding ABEP is obtained as

FX(α) =

∫ ∞

0

1

2
erfc

(
Edx cos2 α

N0

)1/2

p|h̃l|l−D|2(x)dx. (3.88)
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The minimization problem is now

minimize
Ed

FX(α) =

∫ ∞

0

1

2
erfc

(
Edx cos2 α

N0

)1/2

p|h̃l|l−D|2(x)dx

subject to Eeff-ave
d =

∫ ∞

0

Edp|h̃l|l−D|2(x)dx. (3.89)

It describes the same minimization problem that has been solved in Section 3.4.1,

except that the distribution of the channel changes. Following Section 3.4.1, the

solution of Ed is given by

Ed =
W
(

1
8πμ2

(2|h̃l|l−D|2 cos2 α

N0

)2)
(2|h̃l|l−D|2 cos2 α

N0

) , (3.90)

where for a given Eeff-ave
d , μ is solved from

Eeff-ave
d =

∫ ∞

0

W
(

1
8πμ2

(
2x cos2 α

N0

)2)
(

2x cos2 α
N0

) 1

2λ′2 e−
1

2λ′2 xdx. (3.91)

Eq. (3.90) is an approximate solution for the minimization problem described in

(3.85).

ABEP Analysis

Substituting (3.90) into (3.42), we obtain the IBEP at the receiver as

F (α|ĥl|l) =
1

2
erfc

(
Ed|ĥl|l|2 cos2 α

Ed2V 2 + N0

)1/2

=
1

2
erfc

⎛
⎜⎜⎜⎜⎜⎜⎝

W

(
1

8πμ2

(
2|h̃l|l−D |2 cos2 α

N0

)2)
(

2|h̃l|l−D |2 cos2 α

N0

) |ĥl|l|2 cos2 α

W

(
1

8πμ2

(
2|h̃l|l−D |2 cos2 α

N0

)2)
(

2|h̃l|l−D |2 cos2 α

N0

) 2V 2 + N0

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

. (3.92)

It is noted that (3.92) contains both h̃l|l−D and ĥl|l. To compute the ABEP,

we need to average (3.92) over h̃l|l−D and ĥl|l, respectively. In Section 3.2.3, we

have shown that conditioned on h̃l|l−D, |ĥl|l|2 is conditionally noncentral chi-square
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distributed, and the conditional PDF is given by (3.28). We first average (3.92) over

ĥl|l conditioned on h̃l|l−D being fixed. For notational simplicity, we let

a1(|h̃l|l−D|2) =

W

(
1

8πμ2

(
2|h̃l|l−D |2 cos2 α

N0

)2)
(

2|h̃l|l−D |2 cos2 α

N0

) cos2 α

W

(
1

8πμ2

(
2|h̃l|l−D |2 cos2 α

N0

)2)
(

2|h̃l|l−D |2 cos2 α

N0

) 2V 2 + N0

. (3.93)

Averaging (3.92) over the conditional PDF of |ĥl|l|2 conditioned on h̃l|l−D gives

F (α|h̃l|l−D) =

∫ ∞

0

1

2
erfc
(
a1(|h̃l|l−D|2)x

)1/2

p|ĥl|l|2|h̃l|l−D
(x|h̃l|l−D)dx. (3.94)

Using [49, eq.(5.12)] and changing the variables accordingly, (3.94) can be computed

as

F (α|h̃l|l−D) =
1

π

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2a1(|h̃l|l−D|2)

)
×

exp

(
− s2a1(|h̃l|l−D|2)

sin2θ + 2Ω2a1(|h̃l|l−D|2)

)
dθ. (3.95)

In the above, recall from Section 3.2.3, s = |E[ĥl|l|h̃l|l−D]| and 2Ω2 = Var[ĥl|l|h̃l|l−D]

are the conditional mean and variance of ĥl|l conditioned on h̃l|l−D, respectively.

We assume that the channel estimation at the receiver is very accurate to generate

a very small estimation error êl|l, such that êl|l and h̃l|l−D can be assumed to be

uncorrelated. Therefore, from (3.24) and (3.25), we have

s = |h̃l|l−D|, 2Ω2 = 2V ′2 + 2V 2. (3.96)

Substituting (3.96) into (3.95) and averaging (3.95) over the PDF of |h̃l|l−D|2, the

ABEP at the receiver is explicitly obtained as

F (α) =
1

π

∫ ∞

0

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2a1(x)

)
exp

(
− xa1(x)

sin2θ + 2Ω2a1(x)

)
dθ ×

1

2λ′2 e−
1

2λ′2 xdx. (3.97)

For the special case where 2V ′2 = 0 and 2V 2 = 0, (3.97) reduces to (3.56).

56



3.7 ABEP-based Power Control with Imperfect CSI

BEOP Analysis

Substituting (3.92) into (3.82), and using the definition of a1(|h̃l|l−D|2) in (3.93), the

BEOP at the receiver can be computed as

Pout(α) = P

(
|ĥl|l|2 <

C

a1(|h̃l|l−D|2)

)
, (3.98)

where C =
(
erfc−1(2ε)

)2
has been defined in (3.48). Using the conditional CDF of

|ĥl|l|2 conditioned on h̃l|l−D which has been shown in (3.29), conditioned on h̃l|l−D,

(3.98) can be evaluated as

Pout(α|h̃l|l−D) = 1 − Q

⎛
⎝ s

Ω
,

√
C

a1(|h̃l|l−D|2)

Ω

⎞
⎠ . (3.99)

Based on the observations in (3.96), (3.99) is a function of |h̃l|l−D|2. Averaging (3.99)

over the PDF of |h̃l|l−D|2, the BEOP at the receiver is explicitly obtained as

Pout(α) = 1 −
∫ ∞

0

Q

⎛
⎝√

x

Ω
,

√
C

a1(x)

Ω

⎞
⎠ 1

2λ′2 e−
1

2λ′2 xdx. (3.100)

Optimal Power Allocation

We note from (3.91) that the Lagrange multiplier μ is some function of the power

allocation factor ξ. Suppose this function is denoted by μ = Z(ξ). Substituting Z(ξ)

into (3.97) and (3.100), the ABEP and the BEOP can be represented as a function

of ξ, respectively. By adjusting ξ, it is possible to optimize the ABEP or the BEOP.

However, from (3.91), the explicit form of Z(ξ) cannot be obtained, and therefore the

optimal ξ is not theoretically analyzable. Nevertheless, using numerical calculations,

we can find a suitable ξ for each given Eeff-ave
d . This will be further discussed later

in Section 3.9.2.

3.7.2 Approximation 2

We note from (3.86) that the difficulty of solving for Ed lies in that Ed appears in

the denominator in the form of Ed2V
′2 + N0. In this scenario, we assume that 2V ′2,
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which is the MMSE of the channel prediction process, is very small, such that for

the term Ed2V
′2 + N0, N0 dominates its value. Therefore, we replace the Ed in

the denominator by its average Eeff-ave
d . Now, in (3.86), the Ed in the numerator is

solvable and is given by

Ed =
W
(

1
8πμ2

( 2N0|h̃l|l−D|2 cos2 α

(Eeff-ave
d 2V ′2+N0)2

)2)
( 2|h̃l|l−D|2 cos2 α

Eeff-ave
d 2V ′2+N0

) , (3.101)

where for a given Eeff-ave
d , μ is solved from

Eeff-ave
d =

∫ ∞

0

W
(

1
8πμ2

(
2N0x cos2 α

(Eeff-ave
d 2V ′2+N0)2

)2)
(

2x cos2 α
Eeff-ave

d 2V ′2+N0

) 1

2λ′2 e−
1

2λ′2 xdx. (3.102)

Eq. (3.101) is another approximate solution for the minimization problem described

in (3.85).

Following Section 3.7.1, the ABEP at the receiver is obtained as

F (α) =
1

π

∫ ∞

0

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2a2(x)

)
exp

(
− xa2(x)

sin2θ + 2Ω2a2(x)

)
dθ ×

1

2λ′2 e−
1

2λ′2 xdx, (3.103)

where a2(x) is defined as

a2(x) =

W

(
1

8πμ2

(
2N0x cos2 α

(Eeff-ave
d

2V ′2+N0)2

)2)(
2x cos2 α

Eeff-ave
d

2V ′2+N0

) cos2 α

W

(
1

8πμ2

(
2N0x cos2 α

(Eeff-ave
d

2V ′2+N0)2

)2)(
2x cos2 α

Eeff-ave
d

2V ′2+N0

) 2V 2 + N0

. (3.104)

For the special case where 2V ′2 = 0 and 2V 2 = 0, (3.103) reduces to (3.56). The

BEOP at the receiver is given by

Pout(α) = 1 −
∫ ∞

0

Q

⎛
⎝√

x

Ω
,

√
C

a2(x)

Ω

⎞
⎠ 1

2λ′2 e−
1

2λ′2 xdx. (3.105)

Similar to that in Section 3.7.1, the optimal power allocation can be solved

through numerical calculations.
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3.8 BEOP-based Power Control with Imperfect

CSI

Under imperfect CSI, the purpose of design is to choose a suitable transmitter

energy per data symbol Ed, such that the BEOP at the receiver would not exceed

some QoS-specified threshold δ. We emphasize the phrase at the receiver, since

under imperfect CSI, the CSIT is different from the CSIR, and the power law can

only utilize the CSIT. Suppose the transmitter adjusts Ed to let the IBEP at the

transmitter fit the same IBEP threshold ε as that employed by the receiver, such

that the BEOP at the transmitter is kept within δ. By doing so, the BEOP at the

receiver may be much greater than δ. Indeed, this phenomenon has been shown

by our simulations. The reason is that the CSIT and the CSIR are different, and

the value of the BEOP is very sensitive to the chosen IBEP threshold ε. More

specifically, suppose that the transmitter adjusts Ed according to the CSIT such

that the IBEP at the transmitter is fixed at ε. Therefore, the minimum energy is

consumed to ensure zero outage from the viewpoint of the transmitter. However,

when a symbol is actually received at the receiver, the CSIR is used for detection. If

the CSIR |ĥl|l| is smaller than the CSIT |h̃l|l−D|, the outage-free transmission from

the viewpoint of the transmitter is not true from the viewpoint of the receiver, as

the IBEP at the receiver exceeds ε. Based on these observations, it is suggested that

the transmitter should have a more stringent requirement on the IBEP threshold,

to tolerate the variation of the CSIR from the CSIT.

To solve the problem, we consider to design the power law with the aid of a

multiplicative factor κ. At the receiver, a BEO event is defined as the event that the

IBEP of the received bit exceeds the IBEP threshold ε. Now, at the transmitter, we

define a new BEO event as the event that the transmitter predicted IBEP exceeds a

new threshold, say, κε. By adjusting κ, we can achieve the desired δ at the receiver.

In the following, we formulate the power law and analyze its performance. We use

BEOPT and BEOPR to denote the BEOP at the transmitter and at the receiver,
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respectively.

3.8.1 Formulation of the Power Law

In this subsection, we formulate the power law based on the above observations.

From the viewpoint of the transmitter, the IBEP and the BEOP have been given

by (3.75) and (3.78), respectively. Substituting (3.75) into (3.78), and noting that

in (3.78), we replace ε with κε, the BEOPT is rewritten as

Pout(α) = P
(
Ed

(
|h̃l|l−D|2 cos2 α − 2V ′2Cκ

)
< N0Cκ

)
. (3.106)

where Cκ is defined as Cκ =
(
erfc−1(2κε)

)2
. Following the idea in Section 3.5, we

want to choose an Ed such that Ed

(
|h̃l|l−D|2 cos2 α − 2V ′2Cκ

)
= N0Cκ. However,

it is noted that when |h̃l|l−D|2 cos2 α − 2V ′2Cκ ≤ 0, i.e., |h̃l|l−D|2 ≤ 2V ′2Cκ

cos2 α
, there

is no solution for Ed, as Ed must be greater than zero for a fixed rate system.

Under imperfect CSI, this phenomenon is caused by the uncertainty of the channel

due to channel prediction errors. To solve this problem, we set Ed = Epk when

|h̃l|l−D|2 ≤ 2V ′2Cκ

cos2 α
happens. Now, the power law under a peak energy constraint Epk

is given by

Ed =

⎧⎨
⎩

Epk, |h̃l|l−D|2 <
(N0+Epk2V ′2)Cκ

Epk cos2 α

N0Cκ

|h̃l|l−D|2 cos2 α−2V ′2Cκ
, |h̃l|l−D|2 ≥ (N0+Epk2V ′2)Cκ

Epk cos2 α

(3.107)

Note that the case where |h̃l|l−D|2 ≤ 2V ′2Cκ

cos2 α
is included in the case where |h̃l|l−D|2 <

(N0+Epk2V ′2)Cκ

Epk cos2 α
. By adjusting κ, we can control the value of Ed, such that the desired

BEOPR is achieved.

The average energy of this power law is obtained by averaging (3.107) over the

distribution of h̃l|l−D. Following the calculation of (3.66), the result is given by

Eave
d = Epk

(
1 − e

− (N0+Epk2V ′2)Cκ

Epk2λ′2 cos2 α

)
+

N0Cκ

2λ′2 cos2 α
e−

2V ′2Cκ
2λ′2 cos2 α Γ

(
0,

N0Cκ

Epk2λ′2 cos2 α

)
. (3.108)

Due to the use of pilots, the effective average transmitted energy per data symbol is

Eeff-ave
d =

Eave
d

1 + ξ
. (3.109)
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3.8.2 ABEP and BEOP Analysis

We first compute the ABEP at the receiver. Let ϕ = Ed cos2 α
Ed2V 2+N0

, where Ed is given in

(3.107). Therefore, ϕ is a function of h̃l|l−D. The IBEP at the receiver conditioned

on h̃l|l−D is obtained as

F (α|h̃l|l−D) =

∫ ∞

0

1

2
erfc (ϕx)1/2 p|ĥl|l|2|h̃l|l−D

(x|h̃l|l−D)dx. (3.110)

where the conditional PDF p|ĥl|l|2|h̃l|l−D
(x|h̃l|l−D) has been given in (3.28). Using [49,

eq.(5.12)] and changing the variables accordingly, (3.110) can be computed as

F (α|h̃l|l−D) =
1

π

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2ϕ

)
exp

(
− |h̃l|l−D|2ϕ

sin2θ + 2Ω2ϕ

)
dθ. (3.111)

Substituting (3.107) into ϕ, and then averaging (3.111) over the PDF of |h̃l|l−D|2,
the ABEP at the receiver is finally obtained as

F (α) =
1

π

∫ gκ

0

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2ϕpk

)
exp

(
− xϕpk

sin2θ + 2Ω2ϕpk

)
dθ

1

2λ′2 e−
1

2λ′2 xdx +

1

π

∫ ∞

gκ

∫ π/2

0

(
sin2θ

sin2θ + 2Ω2ϕh

)
exp

(
− xϕh

sin2θ + 2Ω2ϕh

)
dθ

1

2λ′2 e−
1

2λ′2 xdx,

(3.112)

where

ϕpk =
Epk cos2 α

Epk2V 2 + N0

, (3.113)

ϕh =
Cκ

x + (2V 2−2V ′2)Cκ

cos2 α

, (3.114)

and we have let

gκ =
(N0 + Epk2V

′2)Cκ

Epk cos2 α
(3.115)

for notational simplicity.

Next, we compute the BEOP at the receiver. Substituting (3.107) into (3.79),

the IBEP at the receiver is given by

F (α|ĥl|l) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
erfc
(

Epk|ĥl|l|2 cos2 α

Epk2V 2+N0

)1/2

, |h̃l|l−D|2 < gκ

1
2
erfc

(
Cκ|ĥl|l|2

|h̃l|l−D|2+ 2V 2−2V ′2
cos2 α

Cκ

)1/2

, |h̃l|l−D|2 ≥ gκ

(3.116)
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Substituting (3.116) into (3.82), the BEOPR is obtained as

Pout(α) =

⎧⎨
⎩

P
(
|ĥl|l|2 <

(Epk2V 2+N0)C

Epk cos2 α

)
, |h̃l|l−D|2 < gκ

P
(
|ĥl|l|2 < C

Cκ

(
|h̃l|l−D|2 + 2V 2−2V ′2

cos2 α
Cκ

))
, |h̃l|l−D|2 ≥ gκ

(3.117)

Using the PDF of |ĥl|l|2 and the conditional CDF of |ĥl|l|2 conditioned on h̃l|l−D,

which has been respectively given in (3.81) and (3.29), the BEOPR can be written

as

Pout(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − exp
(
− (Epk2V 2+N0)C

Epk2λ2 cos2 α

)
, |h̃l|l−D|2 < gκ

1 − Q

⎛
⎝ |h̃l|l−D|

Ω
,

√
C

Cκ

(
|h̃l|l−D|2+

(2V 2−2V ′2)Cκ
cos2 α

)
Ω

⎞
⎠ , |h̃l|l−D|2 ≥ gκ

(3.118)

Averaging (3.118) over the PDF of |h̃l|l−D|2, the BEOPR is finally obtained as

Pout(α) =

[
1 − exp

(
− C

2λ2ϕpk

)] [
1 − exp

(
− gκ

2λ′2

)]
+

∫ ∞

gκ

⎡
⎣1 − Q

⎛
⎝√

x

Ω
,

√
C

ϕh(x)

Ω

⎞
⎠
⎤
⎦ 1

2λ′2 e−
1

2λ′2 xdx, (3.119)

This BEOPR is also recognized as the best QoS-specified δ that can be provided by

the system for a given peak energy Epk. In other words, this BEOPR itself is the

QoS-specified δ, and it indicates how much peak energy is required to ensure the

BEOP being no more than δ.

3.9 Numerical Results

In Sections 3.4 and 3.5, and Sections 3.7 and 3.8, we analyzed different power control

laws under perfect CSI and under imperfect CSI, respectively. In this section, we

examine their performance through numerical results. We first show the performance

under perfect CSI.

3.9.1 Performance under Perfect CSI

Without loss of generality, we assume that the transmission rate R, the symbol

duration T , the variance of the channel fading coefficient 2σ2, and the variance of
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Figure 3.2: ABEP performance comparison of a feedback system employing

the ABEP-based law and a non-feedback system, under perfect CSI.

the AWGN, N0, are all normalized to 1. All the performance is shown with respect

to the average SNR per bit γave
b . It is defined as γave

b = Eave
b 2σ2/N0, where Eave

b is the

average energy per bit, and Eave
b = Eave

s for BPSK modulation, and Eave
b = Eave

s /2

for QPSK modulation. It is noted that under perfect CSI, given the same Eave
b , the

ABEPs of the BPSK and QPSK modulations are identical, and the BEOPs of them

are also identical. This property is the same as that in a non-feedback system.

In [6], Hayes has shown that for transmission with coherent BPSK over a

Rayleigh fading multipath channel, the ABEP with feedback power control is

significantly reduced compared with that without any feedback. Here, we review

the ABEP performance of the ABEP-based power control law, and also examine its

BEOP performance.

Fig. 3.2 compares the ABEP performance of a feedback system employing the
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Figure 3.3: BEOP performance comparison of a feedback system employing

the ABEP-based law and a non-feedback system, under perfect CSI.

ABEP-based law and a non-feedback system. Their ABEPs are given in (3.56) and

(3.46), respectively. As can be seen, the ABEP of the feedback system employing

the ABEP-based law is much smaller than that of the non-feedback system. At the

probability level of 10−2, the performance gain of the feedback system is about 5dB.

As SNR goes higher, this gain further increases.

Fig. 3.3 compares the BEOP performance of a feedback system employing the

ABEP-based law and a non-feedback system. To show the BEOP performance,

we use an IBEP threshold of ε = 10−3 or 10−4. The choice of ε is based on the

QoS requirement. For example, ε = 10−4 denotes that when a received bit has

IBEP greater than 10−4, an outage happens (the QoS requirement is not met). Our

choices of ε here are acceptable in common wireless communications applications.

The BEOPs of the feedback system with the ABEP-based law and the non-feedback
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Figure 3.4: The relationship between Epk and Eave
b of the BEOP-based law

with perfect CSI, for different ε.

system are given in (3.60) and (3.47), respectively. As can be seen, the BEOP of

the non-feedback system decreases smoothly and very slowly as SNR increases. The

BEOP of the ABEP-based law remains 1 when the SNR is below some threshold.

For example, the threshold values are about 8dB and 12dB for the cases where

ε = 10−3 and ε = 10−4, respectively. Clearly, as ε decreases, the threshold value

increases. When SNR is below the SNR threshold, the IBEPs of the received bits of

the ABEP-based law always exceed the corresponding IBEP threshold. The BEOP

of the ABEP-based law only begins to drop significantly after the SNR increases

beyond the threshold, and it can be much smaller than that of the non-feedback

system at high SNR. Generally, at moderate or low SNR, the ABEP-based power

control system does not provide any performance advantage over the non-feedback

system in terms of BEOP.
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Figure 3.5: ABEP performance comparison of the ABEP-based power law and

the BEOP-based power law, under perfect CSI.

Now, we focus on examining the performance of the new BEOP-based law. We

first plot in Fig. 3.4, the relationship between Epk and Eave
b , which has been shown

in (3.67). In (3.67), the average energy is expressed in terms of Eave
s . It is noted

that given the same Eave
b , the values of Epk with BPSK and QPSK, respectively, are

identical. Therefore, the curves in Fig. 3.4 represent both BPSK and QPSK. As

can be seen in Fig. 3.4, for a given Epk , a smaller ε results in a larger bit energy

on the average. Vice versa, for a given Eave
b , a smaller ε leads to a smaller Epk. We

emphasize that this does not mean that when Eave
b is fixed, a smaller Epk is required

for a smaller ε. Rather, it can be explained as follows. When Eave
b and ε are fixed,

Epk is determined. From (3.65), this also indicates that the best (smallest) δ that

the BEOP-based law can achieve is determined. As Eave
b is fixed, when ε reduces,

the best δ that can be achieved is reduced, and so does the required Epk.
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Figure 3.6: BEOP performance comparison of the ABEP-based power law and

the BEOP-based power law, under perfect CSI.

Fig. 3.5 compares the ABEPs of the ABEP-based law and the BEOP-based law,

which are given in (3.56) and (3.74), respectively. From (3.74), it is noted that the

ABEP of the BEOP-based law depends on the value of ε. As can be seen from the

firure, when ε is chosen smaller, the ABEP decreases slower but arrives at a smaller

error floor. The value of the error floor is equal to ε, which can also be derived from

(3.74) as γpk tends to infinity. Here, we emphasize that the ABEP performance

of the BEOP-based law is determined by the chosen ε, which is a system-defined

parameter depends on what level of QoS we want to achieve. For example, seen

from Fig. 3.5, if the wanted QoS level is achieved with the chosen ε, when the

ABEP arrives at the error floor, the further increasing on SNR becomes a waste

of energy. It is also noted that not surprisingly, the ABEP-based law performs

the best, as it is designed to minimize the ABEP. For the BEOP-based law, its
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performance gain over the non-feedback system is significant for a properly chosen

ε corresponding to a fixed γave
b . In practice, if the ABEP performance is of concern,

we can adjust ε to achieve the desired ABEP for the BEOP-based law. Or more

advancingly, we can design a sliding ε based on the available average SNR to optimize

the performance. By choosing a suitable ε according to the availability of γave
b , the

performance loss of the BEOP-based law compared with the ABEP-based law can

be kept within 1dB. Fig. 3.6 compares the BEOP performance of the two laws for

different IBEP threshold values. The BEOPs of the two laws are shown in (3.60)

and (3.63), respectively. As can be seen, given the same average transmitted energy,

the BEOP-based law performs significantly better than the ABEP-based law. For

example, the performance gain is about 3dB at the probability level of 10−3. This

performance gain is further increased as SNR increases. We point out that for the

BEOP-based law, its BEOP is also recognized as the value of the QoS-specified

threshold δ, which has been discussed in Section 3.5.

From Figs. 3.5 and 3.6, we conclude that compared with the ABEP-based law,

the BEOP-based law sacrifices a little in the ABEP performance, but leads to a

remarkable gain in the BEOP performance.

3.9.2 Performance under Imperfect CSI

Following that in the perfect CSI case, without loss of generality, we assume that

the transmission rate R, the symbol duration T , the variance of the channel fading

coefficient 2σ2 and the variance of the AWGN, N0, are all normalized to 1. As

has been mentioned, in a practical system, the number of pilots that can be added

to a data packet is determined by the maximal BEF. Here, as the effect of the

imperfect CSI can also be reflected by adjusting the power allocation factor ξ, we

simply assume a fixed packet length of N = 500 that fits the blockwise static channel

assumption. We further assume that a packet consists of Nd = 490 data symbols

prefixed by Np = 10 pilots symbols. The issue of the maximal BEF will be more

carefully discussed in Section 5.5. For the Rayleigh fading, we assume that the
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Figure 3.7: ABEP performance of the ABEP-based power law under imperfect

CSI, with BPSK modulation, for a fixed ξ = 0.1.

value of the normalized Doppler fade rate is fDT = 0.002. The MMSE of the

channel estimation/prediction is generated from the simplified model introduced in

the last part of Section 3.2.3, and for channel prediction, we assume that the delay

factor D = 2.

All performance is evaluated with respect to the average SNR per bit, which has

been defined as γave
b = Eave

b 2σ2/N0. Due to the use of pilots, the effective average

energy per bit is given by Eeff-ave
b = Eave

b /(1 + ξ), and Eeff-ave
d = Eeff-ave

b for BPSK

modulation, and Eeff-ave
d = 2Eeff-ave

b for QPSK modulation. It is noted that the

performance of QPSK modulation is quite close to that of BPSK modulation, and

therefore, we only present the curves for BPSK. The slightly different performance

is caused by the channel estimation errors.
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Figure 3.8: BEOP performance of the ABEP-based power law under imperfect

CSI, with BPSK modulation, for a fixed ξ = 0.1; comparisons are made to a

non-feedback system.

We first examine the performance of the ABEP-based law. Fig. 3.7 shows

the ABEPs of the ABEP-based law with Approximation 1 and Approximation 2,

respectively, for a fixed ξ = 0.1. Their ABEP expressions are shown in (3.97) and

(3.103), respectively. The ABEPs of the ABEP-based law under the perfect CSI

scenario and a non-feedback system are also included for comparison. As can be seen,

under imperfect CSI, Approximation 1 and Approximation 2 perform nearly the

same, and both of them perform increasingly better than the non-feedback system

as SNR increases. It is also found that the performance gain of the feedback system

over the non-feedback system under imperfect CSI is much less than that under

perfect CSI, where the latter has been shown in Fig. 3.2. Comparing the feedback

system under imperfect CSI with that under perfect CSI, the performance loss is
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Figure 3.9: BEOP performance of the ABEP-based power law under imperfect

CSI, with BPSK modulation, for a fixed ξ = 0.1; comparisons are made to the

perfect CSI scenario.

significant. For example, at the probability level of 10−4, the loss is approximately

4dB. This loss further increases as SNR increases.

In Fig. 3.8, we show the BEOP performance of the ABEP-based law under

imperfect CSI with BPSK modulation, for a fixed ξ = 0.1. The BEOP expressions

for Approximation 1 and Approximation 2 of the ABEP-based law are shown in

(3.100) and (3.105), respectively. As can be seen, Approximation 2 performs slightly

better than Approximation 1 in terms of BEOP. Similar to the findings from Fig.

3.3, the BEOP of the ABEP-based law only begins to drop after the SNR increases

beyond some threshold. Again, we conclude that at moderate or low SNR, the

ABEP-based power control system does not provide any performance advantage

over the non-feedback system in terms of BEOP.
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Figure 3.10: ABEP performance of the ABEP-based power law using

Approximation 1, for different ξ.

In Fig. 3.9, we show the BEOP performance of the ABEP-based law with

imperfect CSI and with perfect CSI, respectively. The latter has been shown in Fig.

3.3. As can be seen, as SNR increases, the performance loss due to the imperfect CSI

increases. At the probability level of 10−2, the loss is about 2dB for both ε = 10−3

and ε = 10−4 cases. From the trend of the curves, it can be deduced that at high

SNR, the performance loss due to the imperfect CSI can be very large.

As has been mentioned at the end of Section 3.7.1, the power allocation factor ξ

is related to the Eeff-ave
d , and has an effect on the performance. Here, we consider the

effect of ξ on the ABEP performance of the ABEP-based law using Approximation

1, with BPSK modulation. For the cases of QPSK or Approximation 2, the problem

can be analyzed in the same way. Fig. 3.10 shows the ABEP performance of

Approximation 1 with ξ being set to 0.05, 0.1 and 0.2, respectively. As can be seen,
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Figure 3.11: The relationship between Epk and Eave
d of the BEOP-based law

with imperfect CSI, for different κε.

as SNR (or Eeff-ave
d ) increases, the value of ξ that results in the best performance

increases. This means that as the total amount of available transmitter energy,

Eeff-ave
d increases, more energy should be used for channel estimation to improve the

ABEP performance. Although the optimal value of ξ is not analytically obtainable,

we can find it through extensive search for any given Eeff-ave
d . For example, when

γave
b = 15dB (or Eeff-ave

d = 14.37dB), the optimal value of ξ is found to be

approximately 0.157.

Now, we evaluate the performance of the BEOP-based law under imperfect CSI.

Again, we note that the performance of BPSK and QPSK modulations are quite

close, and therefore, we only show the result for BPSK. We skip the discussion of

the optimal power allocation between pilot symbols and data symbols here, and use
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Figure 3.12: ABEP performance of the BEOP-based law versus the

ABEP-based law using Approximation 1, with BPSK modulation, under

imperfect CSI, for ξ = 0.1 and ε = 10−3.

a fixed ξ = 0.1 for all cases. Nevertheless, we mention that from (3.109), the power

allocation factor ξ is related to the effective average transmitted energy per data

symbol Eeff-ave
d , and thereby, it has an effect on the performance. In Fig. 3.10, we

have shown the effect of ξ on the ABEP performance of the ABEP-based law, and

also discussed how to choose the optimal ξ. Following a similar way, we can decide

the optimal ξ for the BEOP-based law. Here, we are more concerned about the

multiplicative factor κ, since it has a significant effect on the performance.

We show in Fig. 3.11 the relationship between Epk and Eave
d , which is given in

(3.108). The curves for the perfect CSI case are also included for comparison. As

can be seen, when the average energy is small, the values of Epk for the perfect CSI

case and for the imperfect CSI case, respectively, are quite close. Therefore, it is
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Figure 3.13: BEOP performance of the BEOP-based law versus the

ABEP-based law using Approximation 1, with BPSK modulation, under

imperfect CSI, for ξ = 0.1 and ε = 10−3.

expected that in the low SNR regime, the BEOPs that the BEOP-based law can

achieve under perfect CSI and under imperfect CSI, respectively, would be close.

As SNR increases, the value of Epk for the perfect CSI case sharply increases. In

contrast, the value of Epk for the imperfect CSI case tends to increase slower, which

implies that the achievable BEOP will be larger.

Fig. 3.12 shows the ABEP performance of the BEOP-based law under imperfect

CSI. The ABEP expression is explicitly given in (3.112). Comparisons are made

to the ABEP-based law using Approximation 1. For the BEOP-based law, the

IBEP threshold ε is fixed at 10−3, and the multiplicative factor κ is set to 0.01 and

0.001, respectively. As can be seen, by carefully choosing κ, the BEOP-based law

can perform comparably to, or even better than the ABEP-based law. The better
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performance is due to the fact that Approximation 1 is not optimal for ABEP

minimization under imperfect CSI. It is also noted that for the BEOP-based law, a

larger κ leads to a faster drop in the ABEP, but this would also result in a larger

ABEP as SNR further increases. The ABEP at the receiver of the BEOP-based law

would finally converge to an error floor, whose value is κε. This can be numerically

examined from (3.112).

Fig. 3.13 shows the BEOP performance of the BEOP-based law under imperfect

CSI. The expression of the BEOP is given in (3.119). Again, the multiplicative

factor κ is set to 0.01 and 0.001, respectively. The curves for the BEOP-based

law with perfect CSI and the ABEP-based law with imperfect CSI are included

for comparison. For both laws, the IBEP threshold ε is chosen to be 10−3. As

can be seen, the performance loss of the BEOP-based law due to the channel

estimation errors is small at low SNR. When SNR increases beyond some threshold,

there is a sharp reduction in the BEOP drop rate, and the performance loss

becomes significant. Under imperfect CSI, compared with the ABEP-based law,

the BEOP-based law performs much better even after SNR increases beyond the

above-mentioned threshold. For example, at the probability level of 10−3, the gains

are approximately 7dB and 8dB for the BEOP-based law with κ = 0.001 and

κ = 0.01, respectively. The above findings enhance our conclusion drawn from the

comparison between the BEOP-based law and the ABEP-based law under perfect

CSI, i.e., the BEOP-based law sacrifices a little in the ABEP performance, but leads

to a remarkable gain in the BEOP performance. Finally, we mention that a sliding κ

can be designed based on the available average SNR. From Fig. 3.13, it is seen that

as SNR increases, the κ needs to be decreased to ensure the desired performance,

i.e., to achieve the QoS-specified δ.

3.10 Conclusions

In this chapter, we proposed to use the BEOP as a new performance measure in

the design of a feedback system. The BEOP is recognized as a more meaningful
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performance measure than the traditional measure ABEP, in high data-rate wireless

communications. The BEOP-based power control law adjusts the transmitted

power according to the variations of the channel such that the BEOP is kept

within some QoS-specified threshold. We built up a practical system model with

channel estimation, based on which, we developed both the ABEP-based and the

BEOP-based power control laws for the imperfect CSI scenario. For both laws under

perfect CSI and under imperfect CSI, respectively, we derived explicit ABEP and

BEOP results. These results show that for each power law, the performance loss due

to the channel estimation errors is considerable. However, it achieves a significant

gain over a non-feedback system. Under either perfect CSI or imperfect CSI, the

BEOP-based law shows a remarkable gain over the ABEP-based law in terms of

BEOP, and sacrifices only a little in the ABEP performance. The BEOP-based

power control law provides an attractive solution for instantaneous QoS assurance

for communications over fading channels.
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Chapter 4

Receiver Design of DF Relay

Communication Systems

We consider receiver design of a general DF multiple relay system under the Rayleigh

environment. The optimum (ML) detector for a DF multiple relay system with an

arbitrary M -QAM is derived. The only reference on the ML detector for a coherent

DF relay system is [20], which considers a single relay case with BPSK modulation

under perfect CSI. Our derived detector generalizes both perfect and imperfect CSI

scenarios. It is important to note that our receiver result clearly shows that for

optimum detection at the destination, the instantaneous decoding error probability

at the relay is required. In many previous works, this instantaneous probability

has been replaced by its average. The loss of the instantaneous information of the

source-relay link for detection at the destination causes the loss of diversity, and

therefore, should be avoided in the design of high-performance receivers. Due to

the complexity of the ML detector with higher order modulations, we confine our

further study to the ML detector with BPSK. We propose the WSD and the CWSD

to approximate the ML detector. These two approximate detectors improve the

traditional MRC and the PL detector, respectively.
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4.1 Introduction

In wireless communications, transmitting signals through multiple relays is a way to

obtain the space diversity and is effective in mitigating signal fading [12]. Various

relaying protocols have been proposed to achieve the benefits from relay cooperation,

e.g., AF, DF and SR [11]. As the SR protocol can employ either AF or DF relays,

to distinguish, when talking about the AF or the DF protocol solely, it refers to

relaying without selection. Among those protocols, the DF protocol is considered

as the most practical relaying strategy. It can be directly employed by most of

the current wireless networks with the existing terminals. In comparison, the AF

protocol requires additional, expensive analog processing at the relays, and the SR

protocol is usually accompanied by interaction from a high layer. It has been shown

that relay transmission incorporating error control codes can significantly improve

the overall performance. However, in analysis, to isolate the diversity gain achieved

through relaying from the coding gain, an uncoded data stream is widely used. For

the above reasons, our study focuses on uncoded DF relay systems.

A common misunderstanding to the DF protocol is that systems employing the

DF relaying protocol without relay selection do not achieve full diversity. The cause

for this misunderstanding is that all the existing works attempting to analyze the

ML detector for a DF relay system, fall into the analysis of a suboptimum detector

which utilizes the statistical information of the source-relay link for detection at the

destination. For example, [25] proposes and analyzes a general detector with either

coherent or noncoherent BFSK for a DF multiple relay system. The authors of [25]

called their detector the ML detector. However, it should be noted that the detector

proposed by [25] is not truly optimum, as it uses the ABEP at the relay. In fact, the

optimum detector at the destination for a DF relay system utilizes the instantaneous

instead of the statistical information of the source-relay link. In [20], this point has

been shown for a DF single relay system with coherent binary transmission. The

instantaneous information of interest is simply summarized as the IBEP at the relay.

Unfortunately, the importance of using the IBEP at the relay for optimum detection
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at the destination is not emphasized in [20].

To avoid to study the complex optimum (ML) detector, some works have

proposed suboptimum detectors [21–24] to approximate the ML detector. Referring

to Table 2.1, for a coherent, uncoded DF relay system, the ML detector has only

been derived in [20] for a single relay case with BPSK. The ML detector for a

multiple relay system with general M -QAM remains unsolved.

Driven by the need of the ML detector in the most general form, from which

we can fairly assess the performance of the DF relaying protocol (without relay

selection), in this chapter, we study the fundamental issue of ML receiver design for

a general, uncoded DF multiple relay system. We explicitly derive the ML detector

with an arbitrary M -QAM. The derived detector has taken into consideration of the

effect of imperfect CSI at all the relays and at the destination. In addition, all the

links between each pair of communication nodes are assumed to be independent,

non-identically, distributed (i.n.d.). Our receiver result clearly shows that for

optimum (ML) detection at the destination, the instantaneous information of the

source-relay link is required. To illustrate, for BPSK, the instantaneous information

is summarized as the IBEP at the relay for decoding the source message. Due to

the complexity of the ML detector for higher order modulations, we confine ourself

to study the ML detector with BPSK. In this case, the contribution of the relay to

the ML detector is summarized as a nonlinear function. For ease of implementation

and analysis, we provide a batch of suboptimum detectors to approximate the ML

detector. In particular, we reconsider the traditional MRC and the classic PL

detector [25], and fit them into the DF relay system. We also propose the WSD and

the CWSD that marginally improve the MRC and the PL detector, respectively. To

summarize and compare these detectors, we create an insightful, geometrical view

of them.

The remainder of this chapter is organized as follows. Section 4.2 introduces

the system model. In Section 4.3, we explicitly derive the ML detector structure. In

Section 4.4, we specialize the detector to the one with BPSK for simplicity. Section
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Figure 4.1: A multiple relay system with L parallel relays.

4.5 introduces a batch of suboptimum detectors that approximate the ML detector.

Finally, we conclude with Section 4.6.

4.2 System Model

We consider an uncoded DF multiple relay system as illustrated in Fig. 4.1. This

model is of great academic interest and also has its applications in practice. For

example, in a sensor network, the node that detects an event, known as source,

would sponsor a transmission to the sink, known as destination. Other intermediate

nodes that overhear the source information may serve as relays to help forward the

source information. In our study, all the nodes are assumed to operate in half-duplex

mode and each node is equipped with a single transmit and receive antenna. The

communication between the source and the destination is established in two phases.

In the first phase, the source broadcasts to the destination as well as the L parallel

relays. Upon receiving the source message, the relays decode and forward it to the

destination in the second phase. We assume that all the links between each pair of
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nodes are independent and quasi-static, and each introduces frequency-nonselective

Rayleigh fading in addition to AWGN. In the second phase of transmission, we

assume L orthogonal channels available. The message is transmitted in packets

and symbol-by-symbol detection is performed at each receiving node. In addition,

the channel is assumed to be block-faded, such that it remains constant over the

duration of a packet. Without loss of generality, the data symbols and the pilot

symbols are transmitted with equal energy, and Nd data symbols are prefixed with

Np pilot symbols to form a packet of length N , i.e., N = Np + Nd. In practice, the

number of pilot symbols that can be added to a data packet is determined by the

maximal allowable BEF ζ defined as ζ = (Np + Nd)/Nd.

4.2.1 Channel Model

Let xs(k) denote the symbol sent by the source at time point k, and each symbol

is transmitted with energy Es. Thus, the corresponding received signals at the r -th

relay and at the destination in the k -th symbol interval kT ≤ t ≤ (k + 1)T are

ysr(k) = E1/2
s hsr(k)xs(k) + nsr(k), (4.1)

ysd(k) = E1/2
s hsd(k)xs(k) + nsd(k), (4.2)

where the subscripts s, d represent the source and the destination, respectively, and

r = 1, 2, ..., L, represents the r-th relay. In the DF protocol, each relay r generates

an estimate xr(k) of xs(k), and transmits xr(k) to the destination with energy Er.

The received signal at the destination from the r -th relay is

yrd(k) = E1/2
r hrd(k)xr(k) + nrd(k). (4.3)

Here, hij(k), ij ∈ {sd, sr, rd}L
r=1 denotes the fading coefficient of the i − j link

during the k -th bit interval, and is a complex Gaussian random variable with mean

zero and variance 2σ2
ij. The fading coefficient remains constant over the duration of

a packet, i.e. hij(k) = hij, k ∈ 1, 2, ..., N . The channel AWGN is modeled by the

sequence {nij(k)}k. Each sequence {nij(k)}k consists of samples of a white, complex,
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Gaussian random process with mean zero and variance Nij. We assume that the

channel fading processes in different transmission links are mutually independent,

i.e., ∀i �= m or j �= n, we have E[hij(k)h∗
mn(k)] = 0. In addition, all the AWGN

sequences are mutually independent and are independent of all the channel fading

processes. The instantaneous received SNR at the j-th node over the i − j link

is defined as γij(k) = Ei|hij(k)|2/Nij, and the average received SNR is defined as

γave
ij = Ei2σ

2
ij/Nij. Since σ2

ij and Nij are only related to the i − j link, all the links

between each pair of nodes are i.n.d..

4.2.2 Channel Estimation

Channel estimation is required at the destination and at all the L relays to obtain

estimates of the CSIs for coherent detection. Without loss of generality, we assume

that all pilot symbols have the same value of 1. When node j receives a packet

from node i, the Np pilot symbols in that packet are feeded into a Wiener filter to

generate the MMSE estimate of hij(k), k ∈ Np + 1, Np + 2, ..., N . We denote the

MMSE estimate by ĥij(k), and it can be represented as [70, eq.(2.1)]

ĥij(k) =

Np∑
l=1

wij(l)yij(l), (4.4)

where wij(l) = 2σ2
ijE

1/2
i (NpEi2σ

2
ij + Nij)

−1 denotes the l-th filter coefficient and is

the same for all l. The corresponding MMSE of the estimation process is given

by [70, eq.(2.49)]

2V 2
ij =

2σ2
ij

1 +
NpEi2σ2

ij

Nij

. (4.5)

The ĥij(k) is a complex Gaussian random variable with mean zero and variance

2λ2
ij = 2σ2

ij − 2V 2
ij . Now, the instantaneous and average received SNRs at the j-th

node over the i − j link due to the imperfect CSI are given, respectively, as

γ̂ij(k) =
Ei|ĥij(k)|2

Ei2V 2
ij + Nij

. (4.6)

and

γ̂ave
ij =

Ei2λ
2
ij

Ei2V 2
ij + Nij

. (4.7)
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4.3 ML Detector at the Destination for A DF

Relay System with Imperfect CSI

In the DF protocol, each relay decodes the source message and generates a copy of

that message as an output to the destination. The destination receiver makes an

ML decision on xs(k) based on the received signals from the source and from all the

relays. Here, we do not consider the transmission delay and the delay due to the

channel estimation process, as they will not affect the main results. We assume that

for general M -QAM, all the symbol points in the signal constellation X = {Sm}|X |
m=1

are with equal likelihood. Therefore, the maximum a posteriori probability (MAP)

detector is equivalent to the ML detector. In the following, we consider the optimum

detection at the relay and at the destination, respectively.

4.3.1 Detection at the r-th Relay

A relay makes optimum (ML) detection of the received signal from the source.

Specifically, for the r-th relay, it calculates the likelihood of the received signal for

each possible value Sm in X , and declares that xr(k) = Sn if the likelihood function

p(ysr(k)|ĥsr(k), xs(k) = Sn) = max
Sm∈X

p(ysr(k)|ĥsr(k), xs(k) = Sm). Conditioned on

ĥsr(k) and xs(k) = Sm, ysr(k) is a complex Gaussian random variable with mean

E
1/2
s Smĥsr(k) and variance Es|Sm|22V 2

sr + Nsr. Therefore, the conditional PDF of

ysr(k) is given by

p(ysr(k)|ĥsr(k), xs(k) = Sm) =
1

π(Es|Sm|22V 2
sr + Nsr)

×

exp

(
−|ysr(k) − E

1/2
s Smĥsr(k)|2

Es|Sm|22V 2
sr + Nsr

)
. (4.8)

Taking natural logarithm of the right hand side of (4.8), and ignoring those terms

that are independent of Sm, it is clear that the maximization of (4.8) is equivalent to

the minimization of (Es|Sm|22V 2
sr+Nsr)

−1|ysr(k)−E
1/2
s Smĥsr(k)|2−ln (Es|Sm|22V 2

sr+
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Nsr)
−1. For notational simplicity, we let

ηm
ij = (Ei|Sm|22V 2

ij + Nij)
−1 (4.9)

and

βm
ij (k) = |yij(k) − E

1/2
i Smĥij(k)|2, (4.10)

where i ∈ {s, r}L
r=1 denotes a transmitting node, j ∈ {r, d}L

r=1 denotes a receiving

node, and the superscript m denotes that the term depends on the symbol point

Sm. Now, the ML decision rule at the r-th relay for detecting xs(k) declares that

xr(k) = Sn if ηn
srβ

n
sr(k) − lnηn

sr = min
Sm∈X

(ηm
srβ

m
sr(k) − lnηm

sr) .

4.3.2 Detection at the Destination

The received signals at the destination in the k -th symbol interval consist of a group

of signals {yrd(k)}L
r=1 from the L relays and a signal ysd(k) from the source. We

express the received signals as a 1-by-(L+1) vector y =
[
ysd(k) y1d(k) ... yLd(k)

]
.

The destination receiver makes an ML decision on xs(k) based on y. Conditioned

on ĥij(k) and xs(k) = Sm being sent by the source, the conditional PDF of y is

p(y| ĥij(k), ij ∈ {sd, sr, rd}L
r=1, xs(k) = Sm)

= p(ysd(k) | ĥij(k), ij ∈ {sd, sr, rd}L
r=1, xs(k) = Sm) ×

L∏
r=1

p(yrd(k) | ĥij(k), ij ∈ {sd, sr, rd}L
r=1, xs(k) = Sm), (4.11)

where the equality is due to the mutual independence of all the i − j links. Since

ysd(k) is independent of ĥsr(k) and ĥrd(k), we have

p(ysd(k) | ĥij(k), ij ∈ {sd, sr, rd}L
r=1, xs(k) = Sm)

= p(ysd(k)| ĥsd(k), xs(k) = Sm). (4.12)
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Moreover, since yrd(k) is independent of ĥsd(k), we have

p(yrd(k) | ĥij(k), ij ∈ {sd, sr, rd}, xs(k) = Sm)

= p(yrd(k) | ĥij(k), ij ∈ {sr, rd}, xs(k) = Sm)

=
∑

Sn∈X
p(yrd(k) | ĥij(k), ij ∈ {sr, rd}, xr(k) = Sn, xs(k) = Sm) ×

p(xr(k) = Sn | ĥij(k), ij ∈ {sr, rd}, xs(k) = Sm). (4.13)

In (4.13), we note that conditioned on ĥrd(k) and xr(k), yrd(k) is independent of

ĥsr(k) and xs(k). In addition, xr(k) is independent of ĥrd(k). Therefore, (4.13) can

be rewritten as

p(yrd(k) | ĥij(k), ij ∈ {sd, sr, rd}, xs(k) = Sj)

=
∑

Sn∈X
p(yrd(k) | ĥrd(k), xr(k) = Sn)p(xr(k) = Sn | ĥsr(k), xs(k) = Sm).

(4.14)

Substituting (4.12) and (4.14) into (4.11), we have

p(y| ĥij(k), ij ∈ {sd, sr, rd}L
r=1, xs(k) = Sm)

= p(ysd(k)| ĥsd(k), xs(k) = Sm) ×
L∏

r=1

∑
Sn∈X

p(yrd(k) | ĥrd(k), xr(k) = Sn)p(xr(k) = Sn | ĥsr(k), xs(k) = Sm).

(4.15)

In the above, we note that conditioned on ĥsd(k) and xs(k) = Sm, ysd(k)

is a complex Gaussian random variable with mean E
1/2
s Smĥsd(k) and variance

Es|Sm|22V 2
sd + Nsd. Similarly, conditioned on ĥrd(k) and xr(k) = Sm, yrd(k)

is a complex Gaussian random variable with mean E
1/2
r Smĥrd(k) and variance

Er|Sm|22V 2
rd + Nrd. Therefore, we have

p(ysd(k)| ĥsd(k), xs(k) = Sm) =
ηm

sd

π
exp
(− ηm

sdβ
m
sd(k)

)
, (4.16)

and

p(yrd(k)| ĥrd(k), xr(k) = Sm) =
ηm

rd

π
exp
(− ηm

rdβ
m
rd(k)

)
, (4.17)
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where ηm
ij and βm

ij (k) are defined in (4.9) and (4.10), respectively. We also note

that p(xr(k) = Sn | ĥsr(k), xs(k) = Sm) denotes the instantaneous probability of

xs(k) = Sm being sent by the source and xr(k) = Sn being received by the relay,

i.e., when m = n, it denotes the instantaneous probability of a correct decision

on the received symbol at the relay; when m �= n, it denotes the instantaneous

symbol error probability (ISEP) at the relay. We denote the probability p(xr(k) =

Sn | ĥsr(k), xs(k) = Sm) by Pm→n
sr (k) for short. Now, substituting (4.16) and

(4.17) into (4.15), taking the natural logarithm of the right hand side of (4.15)

and ignoring those terms that are independent of Sm and Sn, the ML decision

rule at the destination which maximizes the conditional PDF p(y| ĥij(k), ij ∈
{sd, sr, rd}L

r=1, xs(k) = Sm), is obtained as

x̂(k) = max
Sm∈X

{
−ηm

sdβ
m
sd(k) +

L∑
r=1

ln
[ ∑

Sn∈X
Pm→n

sr (k)exp(−ηn
rdβ

n
rd(k))

]}
. (4.18)

The (optimum) ML detector for a DF relay system with an available s− d link has

firstly been shown in [20] for a single relay case with BPSK. Our result (4.18)

generalizes the ML detector structure for a DF multiple relay system with an

arbitrary M -QAM. Moreover, it takes into account i.n.d. s − d, s − r and r − d

links, and generalizes both perfect and imperfect CSI scenarios. This receiver result

clearly shows that for optimum detection at the destination, the knowledge of the

instantaneous quality of the s − r links, which is summarized as the ISEPs at the

relays, is required. We also note that when the s − d link is not available, the ML

detector is given by

x̂(k) = max
Sm∈X

{
L∑

r=1

ln
[ ∑

Sn∈X
Pm→n

sr (k)exp(−ηn
rdβ

n
rd(k))

]}
. (4.19)

Comparing (4.19) with (4.18), the term −ηm
sdβ

m
sd(k) which represents the contribution

of the s − d link, is gone.

To analyze the ML detector, we need to specify the modulation scheme. In the

following, we specialize the ML detector to the one with BPSK for simplicity.
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4.4 ML detector with BPSK

With BPSK modulation, the signal constellation X only consists of {+1,−1}.
Without loss of generality, let S0 = −1 and S1 = +1. The ML decision rule at

the r-th relay becomes [93]

R
[
ysr(k)ĥ∗

sr(k)S0

] S0

≷
S1

R
[
ysr(k)ĥ∗

sr(k)S1

]
, (4.20)

and the corresponding detection error probability, i.e., the IBEP, is given by

εsr(k) =
1

2
erfc (γ̂sr(k))1/2 . (4.21)

We note that εr(k) is determined by the instantaneous received SNR γ̂sr(k) defined

in (4.6), and it summarizes the quality of the s − r link. Averaging εsr(k) over the

distribution of ĥsr(k) (or γ̂sr(k)), the ABEP at the r -th relay is given by [93]

εave
sr =

1

2

[
1 −
(

γave
sr

1 + γave
sr

)1/2
]

, (4.22)

where γave
sr is defined in (4.7). It is noted that this ABEP is obtainable at the

destination in advance, given the channel statistics of the s − r link, the source

transmitting energy Es and the number of pilots per packet Np.

Now, we show the ML detector at the destination with BPSK. Substituting S0 =

−1 and S1 = +1 into the argument on the right hand side of (4.18), respectively,

and by comparing the differences between the two terms obtained above, the ML

decision rule at the destination can be expressed, through a signum function, as

x̂(k) = sgn

(
ts(k) +

L∑
r=1

fr(tr(k))

)
. (4.23)

Here, fr(tr(k)) is a nonlinear function related to the r-th relay, and is given by

fr(tr(k)) = ln
(1 − εsr(k))exp(tr(k)) + εsr(k)

(1 − εsr(k)) + εsr(k)exp(tr(k))
, (4.24)

where

ts(k) = 4E1/2
s ηsdR

[
ysd(k)ĥ∗

sd(k)
]
, (4.25)
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Figure 4.2: Plot of the nonlinear function fr(tr(k)).

tr(k) = 4E1/2
r ηrdR

[
yrd(k)ĥ∗

rd(k)
]
. (4.26)

This decision rule declares that S1 is transmitted if the sum of the terms in the

signum function is greater than zero. Otherwise, S0 is transmitted. It is also worth

noting that with BPSK, the term ηm
ij defined in (4.9) can be written as ηij = (Ei2V

2
ij+

Nij)
−1, since |Sm|2 = 1, i.e., ηij is independent of the symbol point Sm. Therefore,

in (4.25) and (4.26), we have written ηm
ij as ηij for simplicity.

The nonlinear function fr(tr(k)), as illustrated in Fig. 4.2, has a sigmoidal

behavior, and it represents the contribution of the s−r−d link to the ML detection at

the destination. This function along with its sigmoidal behavior are firstly reported

in [20] for a DF single relay system. For a DF multiple relay system, we note

from (4.23) that each s − r − d link independently contributes an fr(tr(k)) to the

destination detector. Here, we emphasize that the ML detector uses εsr(k), which is
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4.4 ML detector with BPSK

the IBEP at the relay for decoding the source message. As has been mentioned in

Section 4.1, in the literature, all the existing works attempting to analyze the ML

detector, actually analyze the suboptimum detector which uses the ABEP at the

relay. The use of the ABEP, of course, simplifies the detector for both analysis and

implementation. However, it is noted that the penalty of using the ABEP is a loss

in the achievable diversity order, which is quite undesirable for the receiver design

of a multiple relay communication system.

Another fact that prevents the popularity of the ML detector is that it has

been commonly assumed that the estimated channel fading gain of the s − r link

is required at the destination for coherent detection. However, (4.23) clearly shows

that only the IBEP at the relay is involved, and it summarizes the CSI on the s− r

link. Compared with the transmission of the CSI, which consists of a real part

and an imaginary part both ranging from −∞ to ∞, one can expect to transmit

εsr(k) using much fewer bits, since it is a small, real number between 0 and 0.5. We

illustrate the carry of the IBEP information from the relay to the destination in the

following. In a practical DF relay system, when a relay decodes a source packet,

it also computes the IBEP, and attaches this IBEP as an overhead to that source

packet. Therefore, the new packet consists of three part of information, namely, the

IBEP at the relay, the pilot bits and the relay-decoded data bits. Then, the new

packet is forwarded to the destination for further use. For a heuristic study, we

introduce a simple 8-bit-overhead scheme for carrying the IBEP information. More

specifically, we represent εsr(k) in the scientific form, and quantize its base and

exponent separately, with each occupying 4 bits. This 8-bit information is attached

to the decoded source packet as an overhead. We will verify the efficiency of this

8-bit-overhead scheme using simulations in the next chapter. We emphasize that our

effort on retaining the IBEP information for detection at the destination is driven by

the fact that the destination detector using the IBEP at the relay offers a substantial

gain over the one using the ABEP at the relay. This will be demonstrated in the

next chapter.
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In the following, we consider approximations to the ML detector.

4.5 Approximations to the ML Detector with

BPSK

To simplify the implementation of the ML detector, suboptimum detectors are

widely considered. In Table 1.1, we have summarized and termed a few suboptimum

detectors. In this section, we introduce them in detail. Generally, we can categorize

those approximations to the ML detector into two groups. One group retains the

use of the IBEP at the relay. The other one replaces the IBEP at the relay by the

ABEP at the relay. In all the following parts of this chapter, we omit the time index

k in the corresponding terms for notational simplicity, since it would not cause any

ambiguity in interpretation.

4.5.1 The Traditional MRC

Although not suitable, the traditional MRC can be used as a suboptimum detector

for DF relay systems for its simplicity. Actually, in the case where the s − r link

is much more reliable than the corresponding r − d link, the MRC offers a good

approximation to the ML detector. From our derivation of the ML detector, it is

readily seen that the decision rule of the MRC is given by

x̂ = sgn

(
ts +

L∑
r=1

tr

)
. (4.27)

Eq. (4.27) can also be derived from (4.23) by letting fr(tr) = tr, i.e., by setting

εsr to zero. As can be seen, the MRC simply assumes that the relay makes no

decision errors, and it combines all the received signals in the traditional way of

diversity receptions. It is also worth noting that from a geometrical point of view,

in the MRC, the nonlinear function fr(tr) in the ML detector is approximated by a

straight line whose slope is equal to 1. This is clearly shown in Fig. 4.3.
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Figure 4.3: Geometrical representations of approximations to the nonlinear

function fr(tr).

4.5.2 The WSD

As can be seen from Fig. 4.3, an intuitive improvement on the MRC is to include the

IBEP at the relay, where the nonlinear function fr(tr) is approximated by a straight

line whose slope is equal to the slope of fr(tr) at tr = 0. To show the improvement

in more detail, we differentiate (4.24) with respect to tr, which gives

d

dtr
fr(tr) =

(1 − 2εsr)

(1 − 2εsr + 2ε2
sr)e

tr + εsr(1 − εsr)(1 + e2tr)
. (4.28)

Evaluating (4.28) at tr = 0 gives

d

dtr
fr(tr)|tr=0 = 1 − 2εsr. (4.29)
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Therefore, the term 1−2εsr is the slope of fr(tr) at tr = 0. From Fig. 4.3, it is clear

that a better approximation to fr(tr) than that in the traditional MRC is given by

fr(tr) ≈ (1 − 2εsr)tr. (4.30)

Using the above approximation, we arrive at the destination detector. We term it as

the WSD, since compared with the ML detector, the contribution of each s− r − d

link is reduced from fr(tr) to a weighed term weighting by the slope of fr(tr) at

tr = 0. The WSD is expressed as

x̂(k) = sgn
(
ts +

L∑
r=1

(1 − 2εsr)tr

)
. (4.31)

Although simple, the WSD captures part of the effect of the decoding errors at the

relay.

4.5.3 The CWSD

As has been noted in [20] and also been shown in Fig. 4.2, the nonlinear function

fr(tr) essentially “clips” its input to the values ± ln(1−εsr)/εsr. Therefore, compared

with the WSD, a more accurate approximation to fr(tr) is achieved by clipping the

WSD with ± ln(1 − εsr)/εsr. This results in the CWSD as given by

x̂(k) = sgn
(
ts +

L∑
r=1

zcs
r (tr)

)
, (4.32)

where the function zcs
r (tr) is given by

zcs
r (tr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ln τr, tr < − ln τr

1−2εsr

(1 − 2εsr)tr, − ln τr

1−2εsr
≤ tr < ln τr

1−2εsr
,

ln τr, tr ≥ ln τr

1−2εsr

(4.33)

and τr is defined as

τr =
1 − εsr

εsr

. (4.34)

Fig. 4.3 clearly shows how zcs
r (tr) approximates fr(tr).
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4.5.4 The PL Detector

In [25], a popular approximation to the nonlinear function fr(tr) has been proposed,

and is termed as the PL approximation. It approximates fr(tr) by a PL function

zr(tr) defined as

zr(tr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ln τr, tr < − ln τr

tr, − ln τr ≤ tr < ln τr,

ln τr, tr ≥ ln τr

(4.35)

Here, we emphasize that we retain the use of the IBEP at the relay in the PL

function. This distinguishes (4.35) from the classic PL approximation [25]. In [25],

the PL function is defined using the ABEP at the relay, which results in an averaged

detector. As has been discussed in Section 1.2.2, the main drawback of averaged

detectors is a loss of diversity. The ML detector with the PL approximation, or

simply, the PL detector, is denoted by

x̂ = sgn

(
ts +

L∑
r=1

zr(tr)

)
. (4.36)

It is readily seen that zr(tr) can be derived from (4.33) by setting the slope 1− 2εsr

to 1, i.e., the PL detector can be viewed as the CWSD with a fixed slope of 1. From

Fig. 4.3, it is noted that the PL detector can also be viewed as a clipped MRC.

As shown in Fig. 4.3, the geometrical view of these approximations to the

nonlinear function fr(tr) provides us with an insightful view of the relationship

among those suboptimum detectors. It is clear that as the SNR of the s − r

link increases, εsr decreases, and this results in that the slope 1 − 2εsr tends to

1. Consequently, the WSD tends to the traditional MRC, and the CWSD tends to

the PL detector.

4.6 Conclusions

In this chapter, we derived the ML detector at the destination for a general, uncoded

DF multiple relay system with an arbitrary M -QAM. The detector generalizes
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both perfect and imperfect CSI scenarios. The imperfect CSI case which takes

into account of the channel estimation errors at all receiving nodes, has not been

considered elsewhere. Our derived ML detector can be specialized to [20]’s result

easily. It is important to note that our receiver result clearly shows that for optimum

detection at the destination, the ISEP at the relay is required. Specializing to BPSK,

we introduced several approximations to the ML detector. The performance of these

detectors will be examined in the next chapter.
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Chapter 5

Performance Analysis of A DF

Relay System with BPSK

We provide performance analysis for a DF relay system. For a single relay case,

we derive a closed-form ABEP for the MRC and closed-form conditional BEPs

conditioned on the IBEP at the relay, for the WSD, the CWSD, and the PL detector,

respectively. It is noted that in these conditional BEP results, replacing the IBEP at

the relay with its average, it gives the ABEPs of the A-WSD, the A-CWSD and the

A-PL detector, respectively. The conditional BEP of the PL detector provides the

most tractability. Therefore, we further obtain a closed-form, approximate ABEP

for the PL detector. We emphasize that this obtained ABEP, although being an

approximation, is for the PL detector which utilizes the IBEP at the relay. This

distinguishes our work from those which analyze the A-PL detector using the ABEP

at the relay. The exact ABEP of the ML detector is not obtainable. Nevertheless,

the performance of the ML detector can be well approximated by the PL detector.

Considering a multiple relay system with an arbitrary number of relays, the exact

ABEP performance at the destination cannot be obtained in general. For that

reason, we derive closed-form Chernoff upper bounds on the ABEPs of the A-PL

and the PL detectors, respectively. Simulations are used to validate of our analysis.

It is shown that the detectors retaining using the IBEP at the relay offer a substantial
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gain over the averaged detectors which only use the ABEP at the relay. Our Chernoff

bound results prove that for a DF relay system, the destination detector using the

IBEP at the relay achieves full diversity.

5.1 Introduction

The performance analysis of a general, uncoded DF relay communication system

is a long-standing, open problem. To the best of our knowledge, no closed-form

ABEP result for the ML detector (4.23) has been obtained, even for a single relay

case. The two main difficulties on the analysis lie in the nonlinearity of the fr(tr)

function and the averaging of the obtained conditional BEP at the destination over

the statistics of the s− r link. As has been shown in Section 4.5, to circumvent the

first difficulty, the PL detector or the CWSD can be used instead. To circumvent

the second difficulty, as we have mentioned in Section 4.4, another commonly made

approximation is to replace the IBEP at the relay with its average. By doing so, the

averaging of the conditional BEP at the destination over the statistics of the s − r

link is obviated.

Generally, the approximation based on the replacement of the IBEP with the

ABEP should be avoided to maintain full diversity of the destination receiver.

Unfortunately, this has been an overlooked issue in the literature. As has been noted,

in the attempt to analyze the ML detector, all the previous works [25,26,52,54,55,57]

have made the approximation to replace the IBEP at the relay with the ABEP. More

specifically, they all examined the performance of the A-PL detector. It is noted

that [26] aims to solve the exact ABEP of the A-ML detector. However, due to

the use of an approximation in arriving at a closed-form result, the obtained final

result for the A-ML detector amounts to that for the A-PL detector. Thus, we

term this approximation used in [26] as the equivalent-PL approximation for clarity.

Another limitation of those above-mentioned works is that their exact performance

analysis is mainly restricted to a single relay or a two-relay case. Reference [23]

has noted the importance of using the instantaneous information of the s − r link
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for detection at the destination, and it considers a multiple relay system. However,

in [23], the ABEP at the destination is only analyzed from the diversity point of view,

where extremely high SNR is assumed. Motivated by these facts, we analyze the

performance of a DF relay system where the IBEP at the relay is used for detection

at the destination. We provide exact, closed-form results for both a single relay case

and a multiple relay case. Moreover, our analysis takes into account of the effect of

channel estimation errors, which has not been considered elsewhere. To specialize

the obtained results to the perfect CSI scenario, we simply set the variances of the

estimation errors defined in (4.5) to zeros. We confine ourselves to the analysis with

BPSK, as the ML detector for higher order modulations is fairly complex.

In our analysis, we first consider a single relay system. We derive closed-form

conditional BEPs conditioned on the IBEP at the relay, for the WSD, the CWSD,

and the PL detector, respectively. It is noted that in those derived conditional BEP

results, replacing the IBEP at the relay with its average, it gives the ABEPs of

the A-WSD, the A-CWSD and the A-PL detector, respectively. The conditional

BEP of the PL detector provides the most tractability. Therefore, we further obtain

a closed-form, approximate ABEP for the PL detector. We emphasize that this

obtained ABEP, although being an approximation, is for the PL detector which

uses the IBEP at the relay. To analyze the performance of the ML detector, we

first derive the conditional BEP at the destination conditioned on the IBEP at the

relay. This conditional BEP result contains integrals. Again, it is noted that in the

derived conditional BEP, replacing the IBEP at the relay with its average, it gives

the ABEP of the A-ML detector. To arrive at a closed-form conditional BEP for

the ML detector for further analysis, we apply an approximation which is similar

to the equivalent-PL approximation [26]. The use of this approximation results in

that the obtained closed-form, approximate, conditional BEP of the ML detector

amounts to the conditional BEP of the PL detector. Therefore, the obtained ABEP

result for the PL detector applies to the ML detector as approximate ABEP result.

Considering a multiple relay system with an arbitrary number of relays, the exact
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ABEP result for the ML detector cannot be obtained in general. For that reason,

we derive closed-form Chernoff upper bounds on the ABEPs of the A-PL and the

PL detectors, respectively. The Chernoff bounds become tighter as the number of

relays increases. Our derived results are verified through simulations. It is shown

that the detectors retaining using the IBEP at the relay offer a substantial gain over

the averaged detectors which only use the ABEP at the relay. Our Chernoff bound

results prove that for a DF relay system, the detector using the IBEP at the relay

achieves full diversity.

The rest of this chapter is organized as follows. In section 5.2, we first decide

the statistics of the decision metrics at the destination. Section 5.3 and Section 5.4

provide theoretical analysis for a single relay system and a multiple relay system,

respectively. Numerical and simulation results are presented in Section 5.5. Section

5.6 concludes this chapter.

5.2 Statistics of Destination Decision Metrics

To analyze the ABEP at the destination, we first study the statistics of the

destination decision metrics for the ML detector, namely, ts, tr and fr(tr). In

addition, we show the statistics of zcs
r (tr) and zr(tr), which are the decision metrics

for the CWSD and the PL detector, respectively.

The ts and tr are given by (4.25) and (4.26), respectively. It is noted that

conditioned on ĥsd and xs, ts is conditionally Gaussian distributed with mean

4xsEsηsd|ĥsd|2 and variance 8Esηsd|ĥsd|2. From the definitions of γ̂sd in (4.6) and

ηsd in (4.9), we note that γ̂sd = Esηsd|ĥsd|2. Therefore, ts is conditionally Gaussian

distributed with mean 4xsγ̂sd and variance 8γ̂sd. Similarly, it is easy to obtain that

conditioned on ĥrd (or say, γ̂rd) and xr, tr is conditionally Gaussian distributed with

mean 4xrγ̂rd and variance 8γ̂rd. We mention that γ̂ij is the instantaneous received

SNR at the j-th node over the i − j link due to the imperfect CSI. It is easy to see
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that γ̂ij is exponentially distributed with the parameter

θij = 1/γ̂ave
ij , (5.1)

where γ̂ave
ij is defined in (4.7). Therefore, the PDF of γ̂ij is given by

pγ̂ij
(x) = θij exp (−θijx) u(x). (5.2)

Now, it is straightforward to obtain that conditioned on γ̂sd and xs, the conditional

CDF of ts is given by

Fts|γ̂sd,xs(X) = P (ts < X|γ̂sd, xs)

= Q

(
4xsγ̂sd − X

2
√

2
√

γ̂sd

)
. (5.3)

Similarly, conditioned on γ̂rd and xr, the conditional CDF of tr is given by

Ftr|γ̂rd,xr(X) = P (tr < X|γ̂rd, xr)

= Q

(
4xrγ̂rd − X

2
√

2
√

γ̂rd

)
. (5.4)

Following the procedure proposed by [26], we present Theorems 5.2.1 and 5.2.2

as below, which can be readily shown to be the same as [26, Theorem 3.1] and [26,

Theorem 3.2], respectively.

Theorem 5.2.1. The conditional CDF of ti conditioned on xi, i ∈ {s, r}, is given

by

Fti|xi
(X) =

⎧⎨
⎩ 1 − gi

vi(−1,xi)
exp (−vi(−1, xi)X) , X ≥ 0

gi

vi(1,xi)
exp(vi(1, xi)X), X < 0.

(5.5)

where

gi =
θid

4
√

1 + θid

, (5.6)

and

vi(a, xi) =
axi +

√
1 + θid

2
, a = ±1. (5.7)
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Proof: We note from (5.3) that the expression is conditioned on the γ̂sd. To compute

the unconditional result, we uncondition Fts|γ̂sd,xs(X) with respect to γ̂sd to have

Fts|xs(X) =

∫ ∞

0

Q

(
4xsx − X

2
√

2
√

x

)
θsd exp (−θsdx) dx. (5.8)

To calculate the above integral, we use the following formula [94] (or [26, eq.(10)])∫ ∞

0

Q(
ax + b√

x
)e−cxdx =

exp
(− b(a +

√
a2 + 2c)

)
√

a2 + 2c(a +
√

a2 + 2c)
, (5.9)

where a, b > 0, c > 0 are constant. Using (5.9) and changing the variables

accordingly, (5.8) can be evaluated as

Fts|xs(X) =

⎧⎨
⎩

1 − θsd

4
√

1+θsd

2
−xs+

√
1+θsd

exp
(
−−xs+

√
1+θsd

2
X
)

, X ≥ 0

θsd

4
√

1+θsd

2
xs+

√
1+θsd

exp
(

xs+
√

1+θsd

2
X
)

, X < 0.
(5.10)

For notational simplicity, we define

gs =
θsd

4
√

1 + θsd

,

vs(a, xs) =
axs +

√
1 + θsd

2
, a = ±1. (5.11)

Therefore, we have

Fts|xs(X) =

⎧⎨
⎩ 1 − gs

vs(−1,xs)
exp (−vs(−1, xs)X) , X ≥ 0

gs

vs(1,xs)
exp(vs(1, xs)X), X < 0.

(5.12)

The conditional CDF of tr conditioned on xr can be obtained in the same way.

Generalizing the above observations, we get Theorem 5.2.1.

�

Corollary. The conditional PDF of ti conditioned on xi, i ∈ {s, r}, is given by

pti|xi
(X) =

⎧⎨
⎩ gi exp(−vi(−1, xi)X), X ≥ 0

gi exp(vi(1, xi)X), X < 0.
(5.13)

Proof: We note that Fti|xi
(X) is continuous at X = 0. Therefore, differentiating

(5.5) with respect to X gives (5.13).
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�

Theorem 5.2.2. The conditional CDF of fr(tr) conditioned on xr and εsr, is given

by

Ffr(tr)|xr,εsr(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, X < − ln τr

gr

vr(1,xr)
sr(X)vr(1,xr), − ln τr ≤ X < 0

1 − gr

vr(−1,xr)
sr(X)−vr(−1,xr), 0 ≤ X < ln τr

1, X ≥ ln τr

(5.14)

where sr(X) is defined as

sr(X) =
(1 − εsr) exp(X) − εsr

(1 − εsr) − εsr exp(X)
, X ∈ [− ln τr, ln τr) , (5.15)

and τr has been defined in (4.34).

Proof: The conditional CDF of fr(tr) conditioned on xr and εsr can be written as

Ffr(tr)|xr,εsr(X) = P (fr(tr) < X|xr, εsr). (5.16)

We note that fr(tr) is a monotonically increasing function and is clipped by − ln τr

and ln τr [25]. Therefore, for X < − ln τr, P (fr(tr) < X|xr, εsr) = 0, and for

X ≥ ln τr, P (fr(tr) < X|xr, εsr) = 1. For − ln τr ≤ X < ln τr, we can write

Ffr(tr)|xr,εsr(X) = P (fr(tr) < X|xr, εsr)

= P (tr < ln sr(X)|xr, εsr) (5.17)

where sr(X) is defined in (5.15) and Y = ln sr(X) can be viewed as the inverse

function of X = fr(Y ). It is noted that the function ln sr(X) only takes value on

[− ln τr, ln τr) and for X ≥ 0, ln sr(X) ≥ 0; for X < 0, ln sr(X) < 0. Based on these

observations, using Theorem 5.2.1, (5.17) can be computed as

Ffr(tr)|xr,εsr(X) =

⎧⎨
⎩ 1 − gr

vr(−1,xr)
sr(X)−vr(−1,xr), 0 ≤ X < ln τr

gr

vr(1,xr)
sr(X)vr(1,xr), − ln τr ≤ X < 0.

(5.18)

Therefore, Theorem 5.2.2 is proved.
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�

Using Theorem 5.2.1, it is easy to obtain the CDF of zcs
r (tr) and zr(tr), which

are the decision metrics for the CWSD and the PL detector, respectively. We omit

the proof as it is straightforward. The results are summarized in the following two

theorems. Here, we note that τr is defined in (4.34).

Theorem 5.2.3. The conditional CDF of zcs
r (tr) conditioned on xr and εsr, is given

by

Fzcs
r (tr)|xr,εsr(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, X < − ln τr

gr

vr(1,xr)
exp
(
vr(1, xr)

X
1−2εsr

)
, − ln τr ≤ X < 0

1 − gr

vr(−1,xr)
exp
(
−vr(−1, xr)

x
1−2εsr

)
, 0 ≤ X < ln τr

1, X ≥ ln τr

(5.19)

�

Theorem 5.2.4. The conditional CDF of zr(tr) conditioned on xr and εsr, is given

by

Fzr(tr)|xr,εsr(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, X < − ln τr

gr

vr(1,xr)
exp(vr(1, xr)), − ln τr ≤ X < 0

1 − gr

vr(−1,xr)
exp(−vr(−1, xr)), 0 ≤ X < ln τr

1, X ≥ ln τr

(5.20)

�

Here, we also derive the conditional PDF of zr(tr), which will be used in the

analysis of a multiple relay system. It is shown in the following theorem.

Theorem 5.2.5. The conditional PDF of zr(tr) conditioned on xr and εsr, is given

by

pzr(tr)|xr,εsr(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gr

vr(1,xr)
τ
−vr(1,xr)
r δ̇(X + ln τr), X = − ln τr

gr

vr(−1,xr)
τ
−vr(−1,xr)
r δ̇(X − ln τr), X = ln τr

gr exp(vr(1, xr)X), − ln τr < X < 0

gr exp(−vr(−1, xr)X), 0 ≤ X < ln τr

0, elsewhere

(5.21)
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where δ̇(·) denotes the Dirac delta function.

Proof: We note from Theorem 5.2.4 that Fzr(tr)|xr,εsr(X) is continuous at X = 0 and

is discontinuous at X = ± ln τr. It is easy to calculate

P (zr(tr) = − ln τr|xr, εsr) = Fzr(tr)|xr,εsr(− ln τr) − 0

=
gr

vr(1, xr)
τ−vr(1,xr)
r , (5.22)

and

P (zr(tr) = ln τr|xr, εsr) = 1 − Fzr(tr)|xr,εsr(ln τr)

=
gr

vr(−1, xr)
τ−vr(−1,xr)
r . (5.23)

Therefore, differentiating Fzr(tr)|xr,εsr(X) with respect to X generates the PDF

shown in (5.21), where the two Dirac delta functions, respectively, result from the

differentiation of Fzr(tr)|xr,εsr(X) at the two discontinuous points, i.e., X = ± ln τr.

�

In the next section, we analyze the performance for a single relay system.

5.3 BEP Performance of A Single Relay System

In this section, we consider a single relay case, and analyze the performance of

the traditional MRC, the WSD, the CWSD, the PL detector, and the ML detector,

respectively. We assume that the single relay is denoted by r. To maintain simplicity

and clarity of the results, we propose the following two lemmas first.

Lemma 5.3.1. Representing the ABEP of the i − d link by εave
id , where i ∈ {s, r},

we have

εave
id =

gi

vi(1, 1)
and 1 − εave

id =
gi

vi(−1, 1)
. (5.24)

Proof: The ABEP of the i − d link is given by

εave
id =

1

2

[
1 −
(

γave
id

1 + γave
id

)1/2
]

. (5.25)
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Noting that γave
id = 1/θid and using the definitions of gi and vi(a, xi) in (5.6) and

(5.7), respectively, after some manipulation, Lemma 5.3.1 is easy to be shown. It is

also worth noting that vi(1, 1) = vi(−1,−1) and vi(−1, 1) = vi(1,−1).

�

Lemma 5.3.2. We define

Φ =

√
1 + θrd +

√
1 + θsd

2
, (5.26)

and therefore

vr(−1, 1) + vs(1, 1) = Φ,

vr(1, 1) + vs(−1, 1) = Φ,

vr(−1,−1) + vs(1, 1) = Φ + 1,

vr(1,−1) + vs(−1, 1) = Φ − 1. (5.27)

Proof: the proof is straightforward using the definition of vi(a, xi) in (5.7).

�

Now, we show the exact BEP analysis for different detectors.

5.3.1 BEP Analysis for the Traditional MRC

Theorem 5.3.1. The closed-form ABEP of the traditional MRC for a single relay

system is given by

PMRC
e (e) = εave

sd + (1 − εave
sr )(−1 + 2εave

rd )
gs

Φ
− εave

sr εave
rd

gs

Φ + 1
+ εave

sr (1 − εave
rd )

gs

Φ − 1
.

(5.28)

Proof: The decision rule of the traditional MRC for a single relay system is given

by

x̂ = sgn (ts + tr) . (5.29)
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From (5.29), the ABEP of the MRC is expressed as

PMRC
e (e) = P (ts + tr < 0|xs = 1) (5.30)

Using Theorem 5.2.1 and its corollary, the evaluation of this probability is

straightforward. The result is shown as Theorem 5.3.1.

�

5.3.2 BEP Analysis for the WSD

Theorem 5.3.2. The conditional BEP of the WSD for a single relay system

conditioned on εsr, is given by

Pwsd
e (e|εsr)

= εave
sd − (1 − εsr)(1 − εave

rd )
(1 − 2εsr)gs

Φ − 2εsrvs(1, 1)
+ (1 − εsr)ε

ave
rd

(1 − 2εsr)gs

Φ − 2εsrvs(−1, 1)
−

εsrε
ave
rd

(1 − 2εsr)gs

Φ + 1 − 2εsrvs(1, 1)
+ εsr(1 − εave

rd )
(1 − 2εsr)gs

Φ − 1 − 2εsrvs(−1, 1)
. (5.31)

�

The proof of Theorem 5.3.2 is quite similar to the proof of Theorem 5.3.1. Therefore,

we do not repeat it.

We mention that in (5.31), if we replace εsr with its average, εave
sr , it gives the

closed-form ABEP of the A-WSD. The term averaged means that the corresponding

detector uses the ABEP at the relay for detection at the destination. Averaging

(5.31) over the statistics of the s− r link (or say, the PDF of γ̂sr) gives the ABEP of

the WSD. We note from (5.31) that the only term related to γ̂sr is εsr. However, it is

also noted that εsr consists of an erfc function of γ̂sr as shown in (4.21). In addition,

in (5.31), εsr appears in the numerators and the denominators with different weights.

Therefore, it would be very difficult to perform the averaging of (5.31) over the PDF

of γ̂sr. Nevertheless, we can use numerical calculations to obtain a precise result.
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5.3.3 BEP Analysis for the CWSD

Theorem 5.3.3. The conditional BEP of the CWSD for a single relay system

conditioned on εsr, is given by

P cwsd
e (e|εsr)

= εave
sd − (1 − εsr)(1 − εave

rd )
(1 − 2εsr)gs

Φ − 2εsrvs(1, 1)

(
1 − τ

−Φ−2εsrvs(1,1)
1−2εsr

r

)

+(1 − εsr)ε
ave
rd

(1 − 2εsr)gs

Φ − 2εsrvs(−1, 1)

(
1 − τ

−Φ−2εsrvs(−1,1)
1−2εsr

r

)

−εsrε
ave
rd

(1 − 2εsr)gs

Φ + 1 − 2εsrvs(1, 1)

(
1 − τ

−Φ+1−2εsrvs(1,1)
1−2εsr

r

)

+εsr(1 − εave
rd )

(1 − 2εsr)gs

Φ − 1 − 2εsrvs(−1, 1)

(
1 − τ

−Φ−1−2εsrvs(−1,1)
1−2εsr

r

)
. (5.32)

Proof: Conditioned on the instantaneous CSIs of all links, the conditional BEP of

the CWSD is given by

P cwsd
e

(
e|ĥij, ij ∈ {sd, sr, rd}

)
= P

(
ts + zcs

r (tr) < 0|ĥij, ij ∈ {sd, sr, rd}, xs = 1
)

= P
(
ts + zcs

r (tr) < 0|ĥsd, ĥrd, xs = 1, xr = 1
)

P (xr = 1|ĥsr, xs = 1) +

P
(
ts + zcs

r (tr) < 0|ĥsd, ĥrd, xs = 1, xr = −1
)

P (xr = −1|ĥsr, xs = 1),

(5.33)

where we note that P (xr = −1|ĥsr, xs = 1) represents the IBEP at the relay, i.e.,

εsr. To evaluate (5.33), we fix ts first, and evaluate (5.33) using Theorem 5.2.3,

and then we average the obtained conditional probability result over the PDF of ts.

After some manipulation, we get the result shown in Theorem 5.3.3.

�

We mention that in (5.32), if we replace εsr with its average, εave
sr , it gives the

closed-form ABEP of the A-CWSD. It is noted that the averaging of (5.32) over the

statistics of the the s− r link is even harder than that in evaluating the WSD, since

τr is also a function of εsr. Anyway, numerical calculations can be used to compute
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the ABEP of the CWSD. To obtain an analytical, closed-form ABEP result for the

CWSD, a simpler conditional BEP result rather than (5.32) is desired. In the next

subsection, we evaluate the BEP performance of the PL detector. As we will see,

the PL detector provides better tractability than the WSD or the CWSD, and a

closed-form, approximate ABEP result for the PL detector is analytically obtained.

5.3.4 BEP Analysis for the PL Detector

Theorem 5.3.4. The conditional BEP of the PL detector for a single relay system

conditioned on εsr, is given by

PPL
e (e|εsr)

= εave
sd + (1 − εsr)(−1 + 2εave

rd )
gs

Φ
(1 − τ−Φ

r ) −
εsrε

ave
rd

gs

Φ + 1
(1 − τ−(Φ+1)

r ) + εsr(1 − εave
rd )

gs

Φ − 1
(1 − τ−(Φ−1)

r ). (5.34)

�

The proof of Theorem 5.3.4 is quite similar to the proof of Theorem 5.3.3, and it is

noted that in this proof here, the conditional CDF result of zr(tr) in Theorem 5.2.4

is used.

We mention that in (5.34), if we replace εsr with its average, εave
sr , it gives

the ABEP of the A-PL detector. A similar closed-form ABEP result for the A-PL

detector has been reported in [26] and [52] for the perfect CSI scenario. Our result

here generalizes both perfect and imperfect CSI scenarios. We emphasize that the

A-PL detector does not provide full diversity as it uses εave
sr instead of εsr. We are

more concerned about the performance of the PL detector using εsr.

From (5.34), it is seen that the conditional BEP expression is very neat, and is

possible for the uncondioning with respect to the statistics of the s− r link. Again,

we note that τr defined in (4.34) is a function of εsr, and εsr defined in (4.21) is a

function of γ̂sr. Usually, to obtain the ABEP, the conditional BEP shown in (5.34)

is required to be averaged over the PDF of γ̂sr given by (5.2). As can be seen, this

averaging is not straightforward, as εsr is an erfc function of γ̂sr. Therefore, we
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propose the following two ways to approximate the calculation, and arrive at two

different, simple, approximate ABEP expressions for the PL detector. We simply

refer to the two cases as PL-App1 and PL-App2, respectively.

PL-App1

In this case, εsr is treated as a random variable, and (5.34) is averaged with respect

to the PDF of εsr. We first introduce the following lemma.

Lemma 5.3.3. The PDF of εsr is approximated by

pεsr(x) ≈
⎧⎨
⎩ 2θsrθsrx

θsr−1, 0 < x < 1/2

0, otherwise
(5.35)

Proof: The εsr is given by (4.21). Denoting the CDF of εsr by Fεsr(x), it is clear

that when x ≤ 0, Fεsr(x) = 0, and when x ≥ 1/2, Fεsr(x) = 1. When 0 < x < 1/2,

we approximate εsr using the exponential bound on the erfc function, i.e.,

εsr ≈ 1

2
exp(−γ̂sr). (5.36)

Using (5.36), Fεsr(x), x ∈ (0, 1/2) is approximated as

Fεsr(x) = P (εsr < x)

≈ P

(
γ̂sr > ln

1

2

)
. (5.37)

Using the PDF of γ̂sr given by (5.2), (5.37) can be easily evaluated. Concluding the

above results, an approximate CDF of εsr can be represented as

Fεsr(x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0

(2x)θsr , 0 < x < 1/2

1, x ≥ 1/2

(5.38)

We note that Fεsr(x) is continuous at both x = 0 and x = 1/2. Now, the PDF of εsr

is obtained by differentiating (5.38) with respect to x, which leads to Lemma 5.3.3.

�
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Using Lemma 5.3.3, averaging (5.34) over the approximate PDF of εsr,we obtain

the following theorem.

Theorem 5.3.5. The approximate ABEP of the PL detector for a single relay

system in the case of PL-App1 is given by

PPL-App1
e (e)

= εave
sd + (−1 + 2εave

rd )
gs

Φ
2θsrθsr

∫ 1/2

0

(1 − x)
[
1 − ( x

1 − x

)Φ]
xθsr−1dx

−εave
rd

gs

Φ + 1
2θsrθsr

∫ 1/2

0

[
1 − ( x

1 − x

)Φ+1
]
xθsrdx

+(1 − εave
rd )

gs

Φ − 1
2θsrθsr

∫ 1/2

0

[
1 − ( x

1 − x

)Φ−1
]
xθsrdx. (5.39)

�

As can be seen, the above result is in a form of sum of single integrals with

finite limits, which can be easily evaluated. We emphasize that (5.39) shows

the approximate ABEP of the PL detector which uses the IBEP at the relay for

detection.

PL-App2

Here, the calculation is based on the following lemma.

Lemma 5.3.4. For moderate and high SNR of the s − r link, the τr defined in

(4.34) can be approximated as τr ≈ exp(γ̂sr).

Proof: From the definition of τr, we write

ln τr = ln

(
1

εsr

− 1

)
. (5.40)

For moderate and high SNR, it is reasonable to approximate ln τr by ln (1/εsr),

since for small εsr, 1/εsr � 1. Furthermore, from the expression of εsr given by

(4.21) and using the exponential bound on the erfc function, it is easy to show

that ln (1/εsr) ≥ γ̂sr + ln 2. When γ̂sr is large, the constant ln 2 can be dropped.

Therefore, ln τr can be simply approximated as ln τr ≈ γ̂sr, i.e., Lemma 5.3.4 is

proved.
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�

Using Lemma 5.3.4, we obtain the following theorem.

Theorem 5.3.6. The approximate ABEP of the PL detector for a single relay

system in the case of PL-App2 is given by

PPL-App2
e (e)

= εave
sd + (−1 + 2εave

rd )
gs

Φ

(
1 − θsr

2(1 + θsr)
− θsr

Φ + θsr

+
θsr

2(1 + Φ + θsr)

)
−

εave
rd

gs

2(Φ + 1)

(
θsr

1 + θsr

+
θsr

2 + Φ + θsr

)
+ (1 − εave

rd )
gs

2(Φ − 1)

(
θsr

1 + θsr

− θsr

Φ + θsr

)
(5.41)

Proof: In (5.34), we first replace τr with exp(γ̂sr), and substitute εsr by its

exponentially bounded value, i.e., 1/2 exp(−γ̂sr). Then, averaging the obtained

expression over the PDF of γ̂sr, we arrive at (5.41).

�

As can be seen, (5.41) is a closed-form expression, and again, we emphasize that

(5.41) approximates the ABEP of the PL detector which retains using the IBEP at

the relay.

Theorems 5.3.5 and 5.3.6 show the ABEP result for the PL detector, not the

A-PL detector, since the destination BEP result has been averaged over the statistics

of the s − r link. This work has not been done in the previous works.

Next, we analyze the performance of the ML detector.
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5.3.5 BEP Analysis for the ML Detector

Theorem 5.3.7. The conditional BEP of the ML detector for a single relay system

conditioned on εsr, is given by

PML
e (e|εsr) = (1 − εsr)

(
gs

vs(1, 1)
+

∫ − ln τr

0

gr

vr(−1, 1)
sr(−x)−vr(−1,1)gse

xvs(1,1)dx

+

∫ ln τr

0

gr

vr(1, 1)
sr(−x)vr(1,1)gse

−xvs(−1,1)dx

)

+εsr

(
gs

vs(1, 1)
+

∫ − ln τr

0

gr

vr(−1,−1)
sr(−x)−vr(−1,−1)gse

xvs(1,1)dx

+

∫ ln τr

0

gr

vr(1,−1)
sr(−x)vr(1,−1)gse

−xvs(−1,1)dx

)
. (5.42)

�

The proof of Theorem 5.3.7 is similar to the proof of Theorem 5.3.3, and it is noted

that in this proof here, the conditional CDF result of fr(tr) in Theorem 5.2.2 is used.

We mention that in (5.42), if we replace εsr with its average, εave
sr , it gives the

ABEP of the A-ML detector, and this ABEP result is in a single integral form.

In (5.42), if we further uncondition the probability with respect to εsr, or say, γ̂sr,

it gives the ABEP of the ML detector. However, as can be seen, since εsr is an

erfc function of γ̂sr, and it appears in the limit of the integrals in terms of ln τr

and also in the nonlinear function sr(x), it would be very difficult to carry out the

unconditioning. Therefore, approximations are needed to simplify the calculation.

We note that the integrals in (5.42) can be eliminated through the following lemma.

Lemma 5.3.5. For − ln τr ≤ X ≤ 0, the function sr(X) can be approximated as

sr(X) ≈ exp(X). (5.43)

Proof: For the sr(X) defined in (5.15), we first note that for − ln τr ≤ X ≤ 0,

sr(X) ≥ 0. In (5.15), we take out a common factor, exp(X) to get

sr(X) =
(1 − εsr) − εsr exp(−X)

(1 − εsr) − εsr exp(X)
exp(X). (5.44)
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It is noted that for − ln τr ≤ X ≤ 0, (1−εsr)−εsr exp(X) ≥ (1−εsr)−εsr exp(−X) ≥
0, and (1 − εsr) − εsr exp(X) is always greater than zero. Therefore, we have

sr(X) ≤ exp(X),− ln τr ≤ X ≤ 0. (5.45)

This exp bound on sr(X) is increasingly tighter as X tends to zero, and the

equality holds when X = 0. The largest amount of difference between sr(X) and

exp(X) appears at x = − ln τr, and is given by εsr/(1 − εsr), which is a very small

number when εsr is small. Therefore, for − ln τr ≤ X ≤ 0, exp(X) offers a good

approximation to sr(X), i.e., Lemma 5.3.5 is proved.

�

Using Lemma 5.3.5, (5.42) can be easily simplified. It is interesting to note

that this simplified result is identical to (5.34), which is the conditional BEP of the

PL detector. In other words, the use of the approximation in (5.43) results in a

closed-form, approximate, conditional BEP of the ML detector, and it amounts

to the conditional BEP of the PL detector shown in (5.34). Therefore, those

approximate ABEP results in (5.39) and (5.41) also applies to the ML detector. The

equivalence of the two conditional BEP results also indicates that the approximation

in (5.43) made to the ML detector is equivalent to the PL approximation. We

recall that [26] uses the equivalent-PL approximation to approximate the ABEP

of the A-ML detector. Actually, it is noted that Lemma 5.3.5 is quite similar to

the equivalent-PL approximation. In [26], the equivalent-PL approximation is used

without a rigorous proof.

5.4 BEP Performance of A Multiple Relay

System

As can been seen from Section 5.3, the performance analysis of the ML detector in

a single relay system can be rather involved without appropriate approximations.

The PL approximation offers a way to analytically track the performance of the ML
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detector. In this section, we analyze the ABEP of the PL detector in a multiple

relay system, i.e., L ≥ 1. It is noted that the complexity of analysis increases

exponentially in the number of relays. Therefore, it is very difficult to obtain an

exact ABEP result in general. For that reason, we develop a closed-form Chernoff

upper bound on the ABEP of a general DF multiple relay system with an arbitrary

number of relays. The main results of this section are summarized in the following

two theorems.

Theorem 5.4.1. The Chernoff bound on the conditional BEP of the PL detector

conditioned on εsr, r = 1, 2, ..., L, is given by

PPL
e (e|εsr, r = 1, 2, ..., L)

≤ θsd

1 + θsd

L∏
r=1

{
(1 − εsr)

(
θrd

1 + θrd

+
1

1 + θrd

τ
−
√

1+θrd
2

r

)
+

εsr

[(
1 − εave

rd − θrd

2
√

1 + θrd(−2 +
√

1 + θrd)

)
τ

1−
√

1+θrd
2

r +

(
εave

rd − θrd

2
√

1 + θrd(2 +
√

1 + θrd)

)
τ
−
(

1+

√
1+θrd

2

)
r +

θrd

−3 + θrd

]}
.

(5.46)

Theorem 5.4.2. The Chernoff bound on the ABEP of the PL detector is given by

PPL
e (e) ≤ θsd

1 + θsd

L∏
r=1

[
θrd

1 + θrd

− θsrθrd

2(1 + θsr)(1 + θrd)
+

θsr

(1 + θrd)(
√

1+θrd

2
+ θsr)

−

θsr

2(1 + θrd)(1 +
√

1+θrd

2
+ θsr)

+
θsrθrd

2(1 + θsr)(−3 + θrd)
+

θsr√
1 + θrd + 2θsr

(
1 − εave

rd − θrd

2
√

1 + θrd(−2 +
√

1 + θrd)

)
+

θsr

4 +
√

1 + θrd + 2θsr

(
εave

rd − θrd

2
√

1 + θrd(2 +
√

1 + θrd)

)]
. (5.47)

Proof: The conditional BEP of the PL detector (shown in (4.36)) conditioned on
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the instantaneous CSIs of all links, is denoted by

PPL
e (e|ĥij, ij ∈ {sd, sr, rd}L

r=1)

= P

(
ts +

L∑
r=1

zr(tr) < 0|ĥij, ij ∈ {sd, sr, rd}L
r=1, xs = 1

)
. (5.48)

Applying the Chernoff bound [12, Section 2.1.5], (5.48) can be upper bounded by

PPL
e (e|ĥij, ij ∈ {sd, sr, rd}L

r=1)

≤ E

[
exp

(
δts + δ

L∑
r=1

zr(tr)

)
|ĥij, ij ∈ {sd, sr, rd}L

r=1, xs = 1

]

= E

[
exp(δts)|ĥsd, xs = 1

] L∏
r=1

{
(1 − εsr)E

[
exp(δzr(tr))|ĥsr, ĥrd, xr = 1

]
+

εsrE

[
exp(δzr(tr))|ĥsr, ĥrd, xr = −1

]}
, (5.49)

where the equality is due to the mutual independence of all i− j links, and δ ≤ 0 is

the parameter to be optimized. Unconditioning (5.49) with respect to ĥsd and ĥrd,

we obtain that the conditional BEP conditioned on εr only, is upper bounded by

PPL
e (e|εsr, r = 1, 2, ..., L)

≤ E [exp(δts)|xs = 1]
L∏

r=1

{
(1 − εsr)E [exp(δzr(tr))|εsr, xr = 1] +

εsrE [exp(δzr(tr))|εsr, xr = −1]

}
. (5.50)

Using Corollary of Theorem 5.2.1, the term E [exp(δts)|xs = 1] can be evaluated as

E [exp(δts)|xs = 1] =

∫ ∞

−∞
exp(δx)pts|xs=1(x)dx

=
gs

δ + vs(1, 1)
+

gs

−δ + vs(−1, 1)
, (5.51)

where gs and vs(±1, xs) are defined in (5.6) and (5.7), respectively. The tightest

Chernoff bound is obtained by selecting δ that minimizes the right hand side of

(5.50). However, it is difficult to find this δ as (5.50) is fairly complex. Therefore,

we select a δ that only minimizes the term E [exp(δts)|xs = 1], and use it elsewhere.
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Differentiating (5.51) with respect to δ, and equating it to zero, we obtain δ = −1/2.

Substituting δ = −1/2 into (5.51) and using the expressions of gs and vs(±1, 1), we

can manipulate (5.51) into the following simple expression,

E [exp(δts)|xs = 1] =
θsd

1 + θsd

, (5.52)

where θsd is defined in (5.1). Using Theorem 5.2.5, the term E [exp(δzr(tr))|εsr, xr]

can be evaluated as

E [exp(δzr(tr))|εsr, xr]

=
gr

vr(1, xr)
τ−vr(1,xr)
r

∫ ∞

−∞
exp(δx)δ̇(x + ln τr)dx +

gr

vr(−1, xr)
τ−vr(−1,xr)
r

∫ ∞

−∞
exp(δx)δ̇(x − ln τr)dx +∫ 0

− ln τr

exp(δx)gr exp(vr(1, xr)x)dx +

∫ ln τr

0

exp(δx)gr exp(−vr(−1, xr)x)dx.

(5.53)

In (5.53), using the expressions of gr and vr(±1, xr), and noting that δ =

−1/2, E [exp(δzr(tr))|εsr, xr = 1] and E [exp(δzr(tr))|εsr, xr = −1] can be obtained,

respectively, in neat form as

E [exp(δzr(tr))|εsr, xr = 1] =
θrd

1 + θrd

+
1

1 + θrd

τ
−
√

1+θrd
2

r , (5.54)

and

E [exp(δzr(tr))|εsr, xr = −1]

=

(
1 − εave

rd − θrd

2
√

1 + θrd(−2 +
√

1 + θrd)

)
τ

1−
√

1+θrd
2

r +

(
εave

rd − θrd

2
√

1 + θrd(2 +
√

1 + θrd)

)
τ
−
(

1+

√
1+θrd

2

)
r +

θrd

−3 + θrd

, (5.55)

where θrd and εave
rd are defined in (5.1) and (5.25), respectively. Substituting

(5.52), (5.54) and (5.55) into (5.50), we get (5.46), i.e., Theorem 5.4.1 is proved.

Using Lemma 5.3.4 and replacing εsr with its exponentially bounded value, i.e.,

1/2 exp(−γ̂sr), it is possible to average (5.46) over the PDF of γ̂sr. This calculation

is straightforward from former experience. The result is given in Theorem 5.4.2.
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�

It is noted that the Chernoff bounds obtained in Theorems 5.4.1 and 5.4.2 are

partially optimized, as the parameter δ is only optimized with respect to the term

E [exp(δts)|xs = 1]. Eq. (5.46) shows the Chernoff bound on the conditional BEP

of the PL detector conditioned on εsr. We mention that in (5.46), if we replace

εsr with its average, εave
sr , it gives the Chernoff bound on the ABEP of the A-PL

detector. For the Chernoff bound shown in (5.47), we emphasize that it results from

the destination detector who retains the use of the IBEP at the relay for detection.

These Chernoff bound results here apply to a general DF relay system with an

arbitrary number of relays.

5.5 Numerical and Simulation Results

In this section, we present numerical and simulation results for the ABEP

performance of a DF relay system with different destination detectors. The variances

of the fading gains of different links are assigned using the path-loss model 2σ2
ij ∝

d−u
ij , where dij is the distance from node i to node j, and u is usually a constant

within the range 3 ≤ u ≤ 5. Here, we choose u = 4. Without loss of generality,

the quantities 2σ2
sd and dsd are normalized to 1. The variance of the AWGN of each

link is also normalized to 1, i.e., Nij = 1, ij ∈ {sd, sr, rd}L
r=1. For fair comparisons,

the total transmitted energy per bit (for BPSK, 1 bit is equivalent to 1 symbol) is

fixed at Eb = Es + ΣL
r=1Er, and for simplicity, the source and each of the relays are

assumed to have the same transmitted energy, i.e. Es = Er, r ∈ {1, 2, ..., L}.
In a practical communication system, since the bandwidth is limited, the

number of pilot bits that can be added to a data packet is determined by the maximal

allowable BEF ζ defined as ζ = (Np +Nd)/Nd, where Np and Nd denote the number

of pilot bits per packet and the number of data bits per packet, respectively. The

ζ is always fixed. To illustrate, we consider the following example. Assume that

the carrier frequency is 1900MHz and the vehicle moves at 20m/s. The coherence
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time of the channel is thus 1.4ms [1]. We assume that the fading channel remains

constant over the duration of 1ms, which allows the transmission of one packet.

Therefore, the blockwise static channel assumption is valid for the duration of one

packet. Assuming the total available bandwidth is 500kHz, the symbol duration

is thus 1/500ms. Therefore, the number of bits affordable per packet is 500. We

assume that the maximum allowable BEF is 1.021. It is easy to see that a packet

contains at least 490 data bits, and at most 10 overhead bits can be used for pilot

transmission. Following the above illustration, in our simulations, we use a packet

of the packet length N = 500 bits, and it consists of Nd = 490 data bits prefixed by

Np = 10 pilot bits. Since pilots are used, the effective transmitted energy per data

bit is given by Eeff
b = (Nd/N)Eb. Under block fading, all bits in a packet undergo

the same fading. In all the following figures, the SNR is defined as 10log(Eb/Nsd),

and each simulated error probability point is drawn when at least 100 errors are

detected.

5.5.1 Performance of A Single Relay System

In this subsection, we consider a single relay system and examine the performance

of those detectors discussed in Section 5.3. Unless otherwise specified, the relay is

assumed to be located at the midpoint between the source and the destination, i.e.

dsr/dsd = drd/dsd = 0.5.

Fig. 5.1 compares the performance of different detectors. As can be seen, the

A-WSD which uses the ABEP at the relay, performs almost the same as the MRC.

However, it is noted that when the IBEP at the relay is used, the WSD performs

slightly better than the MRC. The MRC does not need the IBEP at the relay, and

simply assumes that the relay has decoded correctly. We also note that the A-CWSD

performs almost the same as the A-PL detector, and the CWSD performs almost

the same as the PL detector. It is important to note that the use of the IBEP at

the relay offers an increasing gain over the use of the ABEP at the relay as SNR

increases, for detection at the destination. For example, at the probability level of
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Figure 5.1: ABEP performance of the MRC, the A-WSD, the WSD, the A-PL

detector, the A-CWSD, the PL detector and the CWSD in a single relay

system.

10−3, the performance gain of the CWSD or the PL detector over the A-CWSD or

the A-PL detector is about 0.5dB, and it increases to about 1dB at the probability

level of 10−4. Here, we mention that the ABEP curves for the MRC and the A-WSD

are, respectively, draw from (5.28) and (5.31), and the ABEP curve for the WSD is

draw from numerically averaging (5.31) over the PDF of γ̂sr. We also mention that

the ABEP curves for the A-CWSD and the A-PL detector are, respectively, draw

from (5.32) and (5.34), and the ABEP curves for the CWSD and the PL detector

are, respectively, draw from numerically averaging (5.32) and (5.34) over the PDF

of γ̂sr. Since the MRC and the PL detector are, respectively, simpler than the WSD

and the CWSD, and at the same time, provide nearly the same performance as the

latter two, in the following, we only use the MRC and the PL detector for further
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Figure 5.2: ABEP performance of the MRC, the A-PL, the A-ML, the PL and

the ML detectors in a single relay system.

comparisons.

Fig. 5.2 compares the ABEP performance of the MRC, the A-PL, the A-ML,

the PL and the ML detectors. Simulations are used to validate our theoretical

results. It is seen that the theoretical curves well match the simulated points. Here,

we do not show the theoretical curve for the A-ML or the ML detector, since no

simple ABEP results are obtained for them. As shown in Fig. 5.2, the A-PL detector

and the PL detector closely approximate the A-ML detector and the ML detector,

respectively. This demonstrates that the PL approximation made to the nonlinear

function fr(tr) is well-suited, and so is the clipped slope-approximation. Besides the

above observations, we emphasize that as can be seen in Fig. 5.1 and Fig. 5.2, from

an error probability perspective, the A-CWSD, the A-PL and the A-ML detectors

suffer a loss in the diversity (the diversity is represented by the slope of the ABEP
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Figure 5.3: Theoretical, approximate ABEP of the PL detector in a single

relay system.

curve), compared with the CWSD, the PL and the ML detectors. This loss is caused

by the use of the ABEP at the relay in the averaged detectors. The traditional MRC,

of course, shows a much poorer performance than the other detectors in Fig. 5.3, as

it does not make use of the decoding errors at the relay.

Fig. 5.3 examines the two theoretical, approximate ABEP results for the PL

detector, which are shown in (5.39) and (5.41), respectively. As can be seen, the

two approximations perform quite close to each other. Therefore, we suggest the

use of the second one shown in (5.41), since it is in simple, closed form. We mention

that the exact ABEP of the PL detector without any approximations is obtained

from the numerical calculation of some double integrals. For analytical purpose, the

closed-form expression shown in (5.41) is more useful. We note from Fig. 5.3 that

the two approximations provide the same diversity order as the PL detector does,
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Figure 5.4: Effect of the location of the relay on the ABEP performance of

different destination detectors in a single relay system.

although there is always an about 0.8dB loss in the performance gain. Later, we

will show that this diversity order is 2, i.e., full diversity is achieved. In contrast,

the ABEP curve for the A-PL detector drifts away as SNR increases, i.e., compared

with the PL detector, the A-PL detector loses diversity.

In Fig. 5.4, we show the effect of the location of the relay on the ABEP

performance of different destination receivers. We assume that the source, the relay

and the destination are collinear, i.e., dsd = dsr + drd. First, it is noted that when

the relay is very close to the source, e.g., dsr/dsd = 0.1, the ABEP curves for the

MRC, the A-PL and the PL detectors nearly superpose to one another, i.e., these

destination detectors make little difference in detection. For the MRC, since it

assumes no detection errors at the relay, its performance becomes better when the

relay gets closer to the source. This is shown in Fig. 5.4 that as SNR increases,
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Figure 5.5: ABEP performance of the A-ML and the ML detectors in a

multiple relay system.

the best performance of the MRC is found in the scenario where dsr/dsd = 0.1. For

both the A-PL and the PL detectors, their best performance is always found in the

scenario where dsr/dsd = 0.5, and this can be explained as follows. To both the

detectors, the contribution of the s− r − d link is jointly determined by the quality

of the s− r and the r− d links. Therefore, to achieve a good performance, the relay

needs to be located at some point that balances the quality of the two sublinks in the

long term. For ease of analysis, the best location of the relay is commonly assumed

to be at the midpoint between the source and the destination, i.e., dsr/dsd = 0.5.

It is note that in [95], it shows a graphical way of determining the best location of

the relay that would generate the minimum end-to-end error probability in a DF

single relay system with DBPSK. Here, we can also graphically determine the best

location of the relay for different destination detectors, by evaluating their ABEP
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Figure 5.6: Chernoff bound on the ABEP of the A-PL detector in a multiple

relay system.

performance for different locations of the relay. However, it should be noted that

the best location of the relay cannot be a general suggestion, since the end-to-end

error probability also depends on the power allocation between the source node and

the relay node. The joint design of power allocation and relay locating for a DF

relay system is a new topic, and is beyond the scope of this chapter.

5.5.2 Performance of A Multiple Relay System

In this subsection, we examine the performance of a multiple relay system.

In Fig. 5.5, we show the ABEP performance of the A-ML and the ML detectors

in multiple relay system. For simplicity, we assume that all the relay nodes locate at

dsr/dsd = drd/dsd = 0.5. All the curves here are drawn from simulations. It is clearly

seen that for either the A-ML or the ML detector, as the number of relays increases,
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Figure 5.7: Chernoff bound on the ABEP of the PL detector in a multiple

relay system.

the achievable diversity increases. It is important to note that, similar to that in

a single relay system, in a multiple relay system (in Fig. 5.5, it refers to the case

where L = 2 or L = 3), the A-ML detector suffers a loss in the diversity, compared

with the ML detector. This loss is caused by the use of the ABEP at the relay in the

A-ML detector. The ML detector shows a substantially better performance than

the A-ML detector. For example, in the cases where L = 2 and L = 3, respectively,

the performance gains achieved by the ML detector over the A-ML detector are

approximately 6dB and 4dB, at the probability level of 10−5.

In Figs. 5.6 and 5.7, we show, respectively, the partially optimized Chernoff

bounds on the ABEPs of the A-PL and the PL detectors, which are given in (5.46)

and (5.47), respectively. Since the A-PL and the PL detectors, respectively, closely

approximate the A-ML and the ML detectors, the obtained Chernoff bound results
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Figure 5.8: Diversity order analysis of a DF multiple relay system.

also apply to the A-ML and the ML detectors. As can be seen in both figures, the

Chernoff bound becomes tighter as the the number of relays increases. In the case

where L = 3, the Chernoff bound bounds the original curves within 2.5dB and 1dB

as shown in Fig. 5.6 and Fig. 5.7, respectively. The tight Chernoff bound enables

us to use it to analyze the diversity order of a general, uncoded DF multiple relay

system. The diversity order refers to the increase in the slope of the curve for BEP

versus SNR [49]. In the limit of large SNR, the diversity order is simply denoted

by − lim
SNR→∞

(ln BEP)/(ln SNR). The diversity order can be graphically represented

by a BEP curve drawn from BEP = SNR−Gd and evaluating at large SNR. The Gd

denotes the diversity order. In Fig. 5.8, we plot the Chernoff bounds and compare

them with the graphically visualized Gd. As can be seen, the PL detector using the

IBEP the relay achieves the full diversity of L + 1, where L denotes the number of

relays. For example, for L = 1, the PL detector achieves a diversity order of 2, since
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Figure 5.9: ABEP performance of the A-ML and the ML detectors in a single

relay system with perfect and imperfect CSI, respectively.

the slope of the ABEP curve for the PL detector is the same as the slope of the

BEP curve for Gd = 2. The A-PL detector, however, suffers a loss in the diversity

order. These observations from Fig. 5.8 show that in the destination receiver design

of a DF relay system, the IBEP at the relay instead of its average should be used,

to maintain full diversity.

5.5.3 Performance of the Perfect CSI Scenario

Figs. 5.1-5.8 have shown the performance of a DF relay system with imperfect CSI.

For analytical purpose, it is also useful to examine the system performance with the

assumption of perfect CSI, as it provides a benchmark for performance evaluation.

It is noted that all our results in Chapters 4 and 5 are generalized for both perfect

and imperfect CSI scenarios. To obtain the results for the perfect CSI scenario,
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Figure 5.10: ABEP performance of the A-ML and the ML detectors in a

two-relay system with perfect and imperfect CSI, respectively.

we simply set the variances of the estimation errors defined in (4.5) to zeros. In

Figs. 5.9 and 5.10, we show the simulated ABEP performance of the A-ML and the

ML detectors in a single and a two-relay systems, respectively, with either perfect or

imperfect CSI. In the perfect CSI case, we maintain a packet length of N = 500 bits,

and use all of them to carry data information. The other settings remain the same

as those in the imperfect CSI case. For simplicity, all the relay nodes are assumed

to be located at dsr/dsd = drd/dsd = 0.5. As can be seen from both figures, in either

perfect or imperfect CSI case, the ML detector performs better than the A-ML

detector. It is also seen that for either the ML or the A-ML detector, with the same

number of relays, the ABEP curve for the perfect CSI case has the same slope as the

ABEP curve for the imperfect CSI case. The gap between these two ABEP curves

is determined by the variance of the channel estimation errors. This equal-slope
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property indicates that the diversity order of a DF relay system is irrelevant to the

channel estimation errors.

5.5.4 Performance of the ML Detector in A Practical DF

Relay System

In this subsection, we deal with the last issue to complete our simulations on a DF

relay system. Our effort here is driven by the above observation that the destination

detector using the IBEP at the relay achieves full diversity. In Section 4.4, we have

briefly introduced an 8-bit-overhead scheme for carrying the IBEP information from

the relay to the destination, for practical use. It should be noted that the 8 bits

information is sent to the destination along with a data packet, and therefore, it

may be decoded wrongly. As this information is critical for the detection at the

destination, it needs to be treated carefully, e.g., error correction codes can be

used. In our simulations, we do not assume any error control coding on the 8

bits information, and only suggest a straightforward error control strategy at the

destination, i.e., if the destination decodes the 8 bits information wrongly to generate

an IBEP greater than 0.5, it sets the IBEP to 0.5. From (4.24), (4.33) and (4.35),

we note that when εsr = 0.5, the values of those functions are all zeros, i.e., the

contribution of the s − r − d link to those destination detectors is zero. Therefore,

this error control strategy also says that once the destination fails to decode a

reasonable IBEP, the whole relayed packet that carries the wrong IBEP information

is discarded at the destination. To examine the performance of the 8-bit-overhead

scheme, we assume perfect CSI for simplicity.

We first consider the same blockwise static channel used in the previous

subsections, which affords 500bits/packet and is used with a maximum allowable

BEF of 1.021. We mention that in practice where imperfect CSI applies, the

maximum allowable BEF is always much larger than our defined value here, and

therefore, both the IBEP information and the pilots for channel estimation purpose

can be tolerated in one packet. Here, we use a packet which consists of 492 data
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Figure 5.11: ABEP performance of the ML detector in a practical DF relay

system, in the case where the blockwise static channel affords 500bits/packet.

bits and an additional 8-bit overhead for carrying the IBEP information. The other

system settings remain the same as those in the previous subsections. We term

the destination detector that has the perfect IBEP information as the genie-aided

detector. In Fig. 5.11, we show the ABEP of the ML detector in a practical system

using the 8-bit-overhead scheme. The performance of the A-ML and the genie-aided

ML detectors is also included for comparison. We note that for the A-ML detector,

only the ABEP at the relay is required, which can be obtained at the destination

in advance using the statistical information of the s − r link. As can be seen from

Fig. 5.11, the ML detector with the 8-bit-overhead scheme performs very close to

the genie-aided one. In the low SNR regime, the performance loss of the former

compared with the latter is less than 0.5dB, and in the high SNR regime, this loss

is negligible. Clearly, the efficiency of the 8-bit-overhead scheme is affected by the
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Figure 5.12: ABEP performance of the ML detector in a practical DF relay

system, in the case where the blockwise static channel affords 100bits/packet.

packet length. We consider in below a more stringent scenario, where the blockwise

static channel only affords 100bits/packet. The maximal BEF is assumed to be 1.09

to support the 8-bit overhead. As can be seen from Fig. 5.12, the loss of the ML

detector with the 8-bit-overhead scheme compared with the genie-aided ML detector

is always less than 1dB. Both of these two detectors perform much better than the

A-ML detector which only uses the ABEP at the relay. From the above observations,

we conclude that the 8-bit-overhead scheme is effective in communicating the IBEP

information from the relay to the destination. Again, the results in this subsection

show the importance of using the IBEP at the relay for detection at the destination,

i.e., even the IBEP information is partially known to the destination receiver, it

offers a substantial gain over the receiver using only the ABEP at the relay.
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5.6 Conclusions

In this chapter, we analyzed the ABEP performance of a DF relay system. For

a single relay case, we derived closed-form ABEP results for different destination

detectors introduced in Chapter 4. Among those results, the closed-form,

approximate ABEP result for the PL detector is of the greatest interest to us, since it

is simple and also closely approximates the ABEP of the ML detector. We emphasize

that the PL detector in our work uses the IBEP at the relay. This distinguishes

our work from those that only examine the A-PL detector which uses the ABEP

at the relay. For a multiple relay system, we derived closed-form Chernoff upper

bounds on the ABEPs of the A-PL and the PL detectors, respectively. Numerical

and simulation results show that the loss of the instantaneous information of the

s − r link at the destination significantly degrades the system performance. The

instantaneous information of the s−r link, which is summarized as the IBEP at the

relay, is indeed a crucial information for detection at the destination. Our Chernoff

bound results prove that for a DF relay system, the destination detector using the

IBEP at the relay achieves full diversity. In contrast, the destination detector using

the ABEP at the relay suffers a loss of diversity.
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Chapter 6

An Efficient Adaptive Algorithm

and An Application to Channel

Estimation

As has been noted in our works on the feedback power control and the DF relay

systems, the CSI is a critical information that affects the system performance.

Therefore, in this chapter, we devote some effort to CSI acquisition. Particularly,

we propose the ASSA algorithm for the tap-weight coefficients adaptation of an

LMS adaptive filter. The LMS adaptive filter can be used for efficient CSI

acquisition in a completely unknown wireless environment. The most significant

feature that distinguishes the ASSA algorithm from any other existing variable

step-size algorithms is that the ASSA algorithm does not require any preset control

parameters. When applied to channel estimation, simulation results show the

performance advantage of the ASSA algorithm over the existing step-size adjustment

algorithms under different wireless channel environments. The ASSA algorithm also

serves as a fundamental contribution to the step-size adjustment for the tap-weight

coefficients adaptation of LMS adaptive filters.
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6.1 Introduction

In coherent detection of wireless communications, an accurate estimate of the

instantaneous CSI is a crucial requirement. In many works involving theoretical

analysis of transmission over fading channels, the perfect CSI is a common

assumption. This assumption greatly simplifies the analysis and helps develop an

insightful view of those promising techniques. However, in practice, the perfect CSI

is of course, unknown to the receiver, and therefore, channel estimation must be used

to provide a degraded version of the perfect CSI, i.e., the imperfect CSI. Channel

estimation is a mature technology that has been well-studied in the literature.

To obtain the CSI, either decision feedback [93] or pilot tone signalling [96] can

be used. One of the most popular pilot-assisted channel estimation schemes is

the pilot symbol assisted modulation (PSAM) [15]. In [15], it proposes to use a

Wiener filter to extract the pilot information, and form the MMSE estimate of

the CSI. By appropriately deploying the pilots, [15] shows that the performance

degradation in coherent detection due to channel estimation errors is controllable,

and can be very small. The Wiener filtering is a classic topic in linear adaptive

signal processing. As it is known, to implement a Wiener filter with optimum filter

tap-weight coefficients, the statistics of the input signals and the desired signals

are required. In the context of channel estimation in wireless communications

applications, if the channel statistics are known, e.g., in [15], the PSAM scheme

can be implemented directly. However, more often, transmission is carried out in an

environment whose statistics are completely unknown. In such a case, we need to

rely on iterative adaptive algorithms to approximate the performance of the Wiener

filter in an iterative manner.

As one of the most popular iterative algorithms, the LMS algorithm [71] is

widely used for its robustness and simplicity. However, the original LMS algorithm

always suffers from a low rate of convergence, or a high steady-state MSE, due

to the use of an FSS throughout the adaptation process. The step-size is an

important parameter that controls the trade-off between the rate of convergence and
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the steady-state MSE. To achieve a good compromise for this trade-off, a variable

step-size is desired. The basic idea of using a variable step-size comes from the facts

that a large step-size at the beginning of the adaptation, is capable of speeding up the

convergence; and when the filter coefficients are about to converge, a small step-size

is necessary for a low steady-state MSE. The popularity of the LMS algorithm drives

the development of many efficient variable step-size schemes. As has been addressed

in Section 2.3, a common feature of all the existing step-size adjustment algorithms

is that preset control parameters are required, and of course, the choice of these

parameters would greatly affect the performance of these algorithms. As has been

noted, those control parameters are always chosen from extensive simulations, or

from experience. To obviate the tedious process of choosing appropriate parameters,

parameter-free algorithms are desired.

In this chapter, we present the complete theoretical development for a

parameter-free algorithm for the tap-weight coefficients adaptation of an LMS

adaptive filter that we call the ASSA algorithm. The most significant feature

that distinguishes the ASSA algorithm from any other existing variable step-size

algorithms is that the ASSA algorithm does not require any preset control

parameters. At each time point when a new observation of the input signal arrives,

we choose a step-size that would minimize the sum of the squares of the measured

estimation errors up to that current time point. This desired step-size is, of course,

only obtainable through genie-aided feedback. For a real system, we propose a

suboptimum realization of the desired step-size, where the past measured values

of the estimation errors and the past realizations of the tap-weight vector are

used. The obtained suboptimum step-size, after being normalized by the power

of the current tapped filter input, is used as the actual step-size to update the

current tap-weight vector. The adaptive filter employing this proposed algorithm

can update its tap-weight vector online without setting any control parameters in

advance. As an application to wireless communications, we apply the adaptive filter

to channel estimation and examine the MSE performance of the ASSA algorithm
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using simulations. Simulation results show the effectiveness of the new algorithm

in rapidly driving the MSE to a smaller value when compared with other existing

adaptive filtering algorithms.

A literature survey that includes many of the popular step-size adjustment

algorithms has been done in Section 2.3. The rest of this chapter is organized as

follows. In Section 6.2, we formulate and discuss the ASSA algorithm. In section 6.3,

we examine the performance of the ASSA algorithm through simulations. Finally,

Section 6.4 concludes this chapter.

6.2 The ASSA Algorithm

We begin the formulation by studying the first a few rounds of the adaptation

process, and then we generalize it to an online algorithm. Without loss of generality,

we assume that the adaptation starts at time point 0, where the input vector is

x(0) = [x(0) x(−1) ... x(−N + 1)]T , and the weight vector w(0) is chosen to be

the zero vector. The estimation error is given by e(0) = d(0) − wT (0)x(0), and it

is noted that e(0) = d(0). At this stage, an arbitrarily chosen initial step-size μ0

can be used to update the weight vector as w(1) = w(0) + μ0e(0)x(0), as long as

μ0 keeps w(1) stable, i.e., the mis-adjustment [70] by applying w(1) is finite. At

time point 1, a new observation x(1) arrives and the input vector is now x(1) =

[x(1) x(0) ... x(−N + 2)]T . The estimation error is

e(1) = d(1) − wT (1)x(1)

= d(1) − [w(0) + μ0e(0)x(0)]Tx(1). (6.1)

From the viewpoint of time point 1, looking backwards, we propose that the step-size

would have been more suitably chosen at time point 0 if e2(1) is minimized. Suppose

this more suitable step-size is μ̃1. If genie-aided feedback enables us to reset the
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step-size for time point 0 as μ̃1, we would have

w̃1(1) = w(0) + μ̃1e(0)x(0) (6.2)

ẽ1(1) = d(1) − w̃T
1 (1)x(1)

= d(1) − [w(0) + μ̃1e(0)x(0)]Tx(1). (6.3)

from which μ̃1 can be analytically determined. Now we take μ1 = μ̃1/x
T (1)x(1) to

be the actual step-size used for updating the current tap-weight vector, i.e.

w(2) = w̃1(1) + μ1ẽ1(1)x(1). (6.4)

Then, at time point 2, with input vector x(2) = [x(2) x(1) ... x(−N + 3)]T , the

estimation error is given by

e(2) = d(2) − wT (2)x(2)

= d(2) − [w̃1(1) + μ1ẽ1(1)x(1)]Tx(2). (6.5)

Now, again from the viewpoint of time point 2, looking backwards, the step-size

would have been more suitably chosen for both time points 0 and 1 at the same

time, if e2(1) + e2(2) is minimized. Suppose this more suitable step-size is μ̃2. If

genie-aided feedback allows us to reset the step-size for both time points 0 and 1 as

μ̃2, we would have

w̃2(1) = w(0) + μ̃2e(0)x(0) (6.6)

ẽ2(1) = d(1) − w̃T
2 (1)x(1)

= d(1) − [w(0) + μ̃2e(0)x(0)]Tx(1), (6.7)

and

w̃2(2) = w̃2(1) + μ̃2ẽ2(1)x(1) (6.8)

ẽ2(2) = d(2) − w̃T
2 (2)x(2)

= d(2) − [w̃2(1) + μ̃2ẽ2(1)x(1)]Tx(2), (6.9)
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from which μ̃2 can be analytically determined. Then, we take μ2 = μ̃2/x
T (2)x(2)

to be the actual step-size used for updating the current tap-weight vector, i.e.

w(3) = w̃(2) + μ2ẽ2(2)x(2). (6.10)

Generalizing the above idea, from the viewpoint of time point n, a step-size μ̃n

would have been more suitable for all the past time points if it minimizes
∑n

i=1 e2(i).

With genie-aided feedback to reset all the past step-sizes as μ̃n, w̃n(i) and ẽn(i) are

expressible recursively in μ̃n as

w̃n(i) = w̃n(i − 1) + μ̃nẽn(i − 1)x(i − 1), n ≥ 1, (6.11)

and

ẽn(i) = d(i) − w̃T
n (i)x(i)

= d(i) − [w̃n(i − 1) + μ̃nẽn(i − 1)x(i − 1)]Tx(i), n ≥ 1, (6.12)

respectively, where w̃n(0) = w(0) and ẽn(0) = e(0). Therefore, μ̃n can be determined

by solving a common minimization problem. Then, we take μn = μ̃n/xT (n)x(n) to

be the actual step-size for updating the current tap-weight vector, i.e.

w(n + 1) = w̃n(n) + μnẽn(n)x(n). (6.13)

In the above description, we use the overhead ˜ and subscript n, n = 1, 2, ...

on a term to indicate that the term comes from genie-aided feedback and is only

optimized from the viewpoint of time point n. It should be noted that at each time

when a new observation of the input signal arrives, the optimum value μ̃n varies. In

addition, the actual step-size μn is μ̃n normalized by xT (n)x(n) to compensate for

the impact of gradient noise amplification [70].

The algorithm described above is expected to have a good performance as the

chosen μ̃n results in the least sum of the squares of the measured errors. However,

as noted, this algorithm is not practically realizable, unless the genie-aided feedback

exists. To implement the idea that a step-size can be chosen to minimize the sum of

the squares of the measured estimation errors, we propose a suboptimum realization.
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We observe from (6.11) and (6.12) that the difficulty lies in the recursive expressions

of w̃n(i) and ẽn(i) in μ̃n. However, for a real system, viewing from the current time

point n, all the past tap-weight vectors {w(i)}n
i=0 and the past errors {e(i)}n

i=0 have

already been realized. Therefore, we replace w̃n(i − 1) and ẽn(i − 1) in (6.11) and

(6.12), respectively, by the values w(i− 1) and e(i− 1) that have been realized, i.e.,

we approximate w̃n(i) and ẽn(i) by

w̃′
n(i) = w(i − 1) + μ̃′

ne(i − 1)x(i − 1), n ≥ 1, (6.14)

and

ẽ′n(i) = d(i) − [w(i − 1) + μ̃′
ne(i − 1)x(i − 1)]Tx(i), n ≥ 1, (6.15)

respectively. Here, μ̃′
n denotes the practically realizable approximation to the

genie-aided μ̃n. Now, μ̃′
n can be determined from the approximation (6.15) by

minimizing

J(n) =
n∑

i=1

ẽ′2n (i). (6.16)

Substituting (6.15) into (6.16) and rearranging the terms, we have

J(n) =
n∑

i=1

{
[d(i) − wT (i − 1)x(i)]2 −

2μ̃′
n[d(i) − wT (i − 1)x(i)]e(i − 1)xT (i − 1)x(i) +

μ̃′2
n e2(i − 1)[xT (i − 1)x(i)]2

}
. (6.17)

Differentiating successively with respect to μ̃′
n, we have

d

dμ̃′
n

J(n) =
n∑

i=1

{
− 2[d(i) − wT (i − 1)x(i)]e(i − 1)xT (i − 1)x(i) +

2μ̃′
ne2(i − 1)[xT (i − 1)x(i)]2

}
(6.18)

d2

dμ̃′2
n

J(n) =
n∑

i=1

{
2e2(i − 1)[xT (i − 1)x(i)]2

}
(6.19)

From (6.19) it is seen that d2

dμ̃′2
n
J(n) ≥ 0, and therefore J(n) is a convex function of

μ̃′
n, whose minimum is attained for d

dμ̃′
n
J(n) = 0. Rearranging the terms, we obtain

μ̃′
n =

∑n
i=1[d(i) − wT (i − 1)x(i)]e(i − 1)xT (i − 1)x(i)∑n

i=1 e2(i − 1)[xT (i − 1)x(i)]2
. (6.20)
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We emphasize that μ̃′
n is a suboptimum realization of the genie-aided μ̃n. At each

time point when a new observation of the input signal arrives, μ̃′
n is recomputed

irrespective of its past values at all previous time points.

After obtaining μ̃′
n, we update w(n) as

w(n + 1) = w(n) +
μ̃′

n

xT (n)x(n)
e(n)x(n), (6.21)

where the actual step-size is μ′
n = μ̃′

n/x
T (n)x(n). Due to the normalization process,

we categorize our proposed algorithm into the NLMS-type algorithm. In addition,

we propose a time-varying upper bound μ̃max
n = xT (n)x(n) on μ̃′

n to avoid the actual

step-size μ′
n from becoming too large. Similarly, a lower bound μ̃min

n on μ̃′
n is used

to avoid μ′
n from becoming zero. The μ̃min

n can be arbitrarily chosen as long as

it is a small positive constant, e.g., μ̃min
n = 10−10 is a common value that can be

used. Equations (6.20) and (6.21) define the core operations of the adaptive filtering

process. It is clearly seen that no preset control parameters need to be specified.

The algorithm adapts online by itself with each new arrival of the input signal. We

name it the ASSA algorithm to reflect its self-adaptation capability. The ASSA

algorithm is summarized in Table 6.1.

Remark 6.1 It should be noted that the least-squares cost function defined in (6.16)

is used as the objective function to be minimized to adaptively adjust the parameter

μ̃′
n that is then used to update the filter tap-weight. The idea of this least-squares

cost function-aided adaptation approach first appears in [97]. However, in [97], the

cost function is used to adjust the filter weight itself, instead of a step-size parameter

for adjusting the filter weight. The proposed algorithm also differs from the recursive

least-squares (RLS) algorithm [70] in which a weighted sum of squared errors is used

directly in arriving at the algorithm for adjusting the filter weights.

Remark 6.2 In the expression determining μ̃′
n, as shown in (6.20), both the

denominator and the numerator are calculated in a running-sum form, which is

easy to implement.

In Table 6.2, we list the computational complexity of various algorithms that
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Table 6.1: ASSA Algorithm

Initialization: w(0) = 0

Input: Current tap-weight vector w(n)

Input vector x(n),

Desired signal d(n),

Output: Filter output y(n) = wT (n)x(n)

Updated tap-weight vector w(n + 1)

1. Estimation error:

e(n) = d(n) − y(n)

2. Step-size and tap-weight adaptation:

μ̃′
n =

∑n
i=1[d(i)−wT (i−1)x(i)]e(i−1)xT (i−1)x(i)∑n

i=1 e2(i−1)[xT (i−1)x(i)]2

if μ̃′
n > μ̃max

n , μ̃′
n = μ̃max

n , where μ̃max
n = xT (n)x(n)

if μ̃′
n < μ̃min

n , μ̃′
n = μ̃min

n , where μ̃min
n = 10−10

w(n + 1) = w(n) + μ̃′
n

xT (n)x(n)
e(n)x(n)

have been introduced in Section 2.3. Note that N denotes the filter order, and

the ε-NLMS-RR algorithm denotes the ε-NLMS algorithm incorporating the robust

regularization [81]. As can be seen, the ASSA algorithm has the most computational

complexity. However, it is noted that computational cost of the ASSA algorithm

remains reasonable. For example, it only requires N more additions and N + 2

more multiplications than the VSS-NLMS algorithm. Moreover, we emphasize that

in choosing the step-size, the other algorithms always rely on extensive trials for a

good performance. This would in turn, incur more cost in general.
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Table 6.2: Computational Complexity of Various Step-Size Adjustment

Algorithms for the LMS Adaptive Filter

Algorithms Additions Multiplications Divisions

LMS [71] 2N+1 2N+1 0

GASS [75] 3N+2 3N+4 0

MVSS [77] 2N+3 2N+7 0

NLMS [70] 3N+1 3N+1 1

VSS-NLMS [79] 4N+2 4N+4 2

ε-NLMS-RR [81] 4N+3 4N+4 1

ASSA 5N+2 5N+6 2

6.3 Simulation Results

In this section, we apply an adaptive filter to channel estimation in wireless

communications applications, and examine the performance of different step-size

adjustment algorithms. Specifically, we consider a one-step prediction, i.e., given

the immediate past N samples {x(l)}n
l=n−N+1 of a random process as the filter input,

the filter output y(n) = wT (n)x(n) forms an estimate of x(n + 1), where x(n + 1)

is viewed as the desired signal. The performance metric of concern is MSE versus

number of iterations, from which the rate of convergence of an algorithm and the

MSE achieved by that algorithm are clearly shown. The MSE at each time point is

measured by averaging over a sufficiently large number of runs for a smooth curve.

The two channel models used are the first-order Butterworth process [98] which

is useful in modeling the ionospheric skywave and the tropospheric scatter channel,

and the Jakes process [1] which is used to model the signal propagation in street

microcells and in-building micro, nano and pico cells. Their power spectra are given

by

Sp(ω) =
2σ2

p/ωdT

1 + (ωT/ωdT )2
, (6.22)
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and

Sp(ω) =

⎧⎨
⎩

2σ2
p

ωdT
√

1−(ωT/ωdT )2
, |ω| ≤ ωd,

0, |ω| > ωd,
(6.23)

respectively. Here, σ2
p is the variance of the process, T is the sampling interval,

and ωd is the 3-dB spectral bandwidth. In simulations, the first-order Butterworth

sequence is generated by feeding a white Gaussian noise sequence into a first-order

Butterworth filter, and the Method of Equal Areas (MEA) [99] is used to generate

the Jakes sequence. We use {p(n)} to denote the generated random sequence.

Without loss of generality, we assume that all pilot symbols are equal to 1. Therefore,

each sample of the random sequence is recognized as a sample of the channel at that

time point. We consider both a non-noisy environment and a noisy environment. In

the non-noisy case, the filter input sequence {x(n)} is exactly the generated random

sequence {p(n)}. In the noisy case, a corrupted version of {p(n)} is fed into the

filter, i.e., the input signal becomes

x(n) = p(n) + v(n), (6.24)

where v(n) is a white noise with mean zero and variance σ2
v . The SNR is defined as

SNR = 10 log10(σ
2
p/σ

2
v). (6.25)

In our simulations, we assume a fixed SNR at 10dB.

6.3.1 Comparison of the ASSA algorithm and the LMS-type

Algorithms

Although as has been mentioned, the NLMS-type algorithms are usually not

compared with the LMS-type algorithms, it would be useful to show the performance

gain of the ASSA algorithm over the LMS-type algorithms with variable step-size,

and demonstrate the better performance of the former one. To illustrate, we generate

a first-order Butterworth sequence with σ2
p = 0.25 and ωdT = 0.01, and a Jakes

sequence with σ2
p = 0.25 and ωdT = 0.05, respectively. These statistics are of
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Figure 6.1: MSE comparison of the ASSA, the FSS LMS, the GASS and the

MVSS algorithms in predicting the first-order Butterworth process for the

non-noisy case.

course, unknown to the receiver. We assume an adaptive filter of order 10 at

the receiver for prediction. For fair comparison, the filter tap-weight coefficients

are initialized to zeros for each test. We compare the ASSA algorithm with the

other two well-known variable step-size algorithms, i.e., the GASS algorithm [75]

and the MVSS algorithm [77]. The original FSS LMS algorithm is also included

for comparison. We first consider the non-noisy case. To predict the first-order

Butterworth sequence, the FSS LMS algorithm is used with step-size being fixed at

μ = 1 × 10−3. For the GASS algorithm, the parameters are chosen to be μ(0) = 0

and ρ = 1 × 10−4. For the MVSS algorithm, the parameters are chosen to be

α = 0.9999, β = 0.5 and γ = 5 × 10−3. For both the GASS and the MVSS

algorithms, their step-sizes are bounded by μmax = 0.034 and μmin = 1 × 10−10. To
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Figure 6.2: MSE comparison of the ASSA, the FSS LMS, the GASS and the

MVSS algorithms in predicting the Jakes process for the non-noisy case.

predict the Jakes sequence, we choose μ = 5 × 10−3 for the FSS LMS algorithm,

and μ(0) = 0.02, ρ = 1 × 10−3 for the GASS algorithm, and α = 0.9999, β = 0.97,

γ = 1×10−3 for the MVSS algorithm. For both the GASS and the MVSS algorithms,

their step-sizes are bounded by μmax = 0.045 and μmin = 1 × 10−10. Here, μmax

denotes the maximum allowable step-size for an algorithm to remain stable, and

μmin denotes the lower bound that can be arbitrarily chosen as long as it is a

small, positive constant. We emphasize that all the control parameters used in

the above for the GASS and the MVSS algorithms are chosen through extensive

trials, for a good performance. Figs. 6.1 and 6.2 show the MSE curves of different

algorithms in predicting the first-order Butterworth process and the Jakes process,

respectively, under the non-noisy environment. As can be seen in both figures, the
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Figure 6.3: MSE comparison of the ASSA, the FSS LMS, the GASS and the

MVSS algorithms in predicting the first-order Butterworth process for the

noisy case.

ASSA algorithm performs much better than the other ones. It converges the fastest

and arrives at the smallest MSE.

Figs. 6.3 and 6.4 show the comparison of different algorithms under the noisy

environment. First, it is noted that, reasonably, the MSEs of these algorithms under

the noisy environment are larger than those under the non-noisy environment. We

mention that for the GASS and the MVSS algorithms, their control parameters

for the noisy case are chosen differently from those for the non-noisy case. These

control parameters for the noisy case are, again, chosen through extensive trials

for a good performance. Specifically, the GASS algorithm is used with μ(0) = 0,

ρ = 1×10−3 and μmax = 0.03 for predicting the first-order Butterworth process, and
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Figure 6.4: MSE comparison of the ASSA, the FSS LMS, the GASS and the

MVSS algorithms in predicting the Jakes process for the noisy case.

with μ(0) = 0.01, ρ = 1 × 10−4 and μmax = 0.04 for predicting the Jakes process.

The MVSS algorithm is used with α = 0.99, β = 0.6, γ = 1× 10−3 and μmax = 0.03

for predicting the first-order Butterworth process, and with α = 0.99, β = 0.97,

γ = 1 × 10−4 and μmax = 0.04 for predicting the Jakes process. The lower bound

μmin = 1× 10−10 applies to all the cases in the above. As can be seen from Figs. 6.3

and 6.4, the ASSA algorithm still performs the best under the noisy environment.

We emphasize that the better performance of the ASSA algorithm is achieved with

no preset control parameters.

We conclude that in all the scenarios considered above, the ASSA algorithm

performs better than these LMS-type algorithms, and its performance advantage is

significant.
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Figure 6.5: MSE comparison of the ASSA, the VSS-NLMS and the

ε-NLMS-RR algorithms in predicting the first-order Butterworth process for

the non-noisy case; the input sequence is with σ2
p = 0.25 and ωdT = 0.01; the

filter order is N = 10.

6.3.2 Comparison of the ASSA algorithm and the

NLMS-type Algorithms

To demonstrate the effectiveness of the ASSA algorithm, we are more concerned

about the comparison of the ASSA algorithm and the NLMS-type algorithms. In

the following, we compare the ASSA algorithm with the VSS-NLMS algorithm [79]

and the ε-NLMS-RR algorithm [81]. These two algorithms are typical NLMS-type

algorithms with variable step-size. Similar to that in the previous subsection, for

fair comparison, all the algorithms start with filter tap-weight coefficients being set

to zeros.
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Figure 6.6: MSE comparison of the ASSA, the VSS-NLMS and the

ε-NLMS-RR algorithms in predicting the Jakes process for the non-noisy case;

the input sequence is with σ2
p = 0.25 and ωdT = 0.05; the filter order is N = 10.

In Figs. 6.5 and 6.6, we plot the MSE curves for the ASSA, the VSS-NLMS and

the ε-NLMS-RR algorithms in predicting the first-order Butterworth process and the

Jakes process, respectively. The first-order Butterworth sequence is generated with

σ2
p = 0.25 and ωdT = 0.01, and the Jakes sequence is generated with σ2

p = 0.25 and

ωdT = 0.05. For the VSS-NLMS algorithm, its parameter μ(0) is fixed at 0.05, and ρ

is set to 0.01 and 0.1, respectively. Here, μ(0) is the initial value of the time-varying

step-size defined in [79]. For the ε-NLMS-RR algorithm, its parameter μ is fixed at

1, and ρ is set to 0.01 and 1, respectively. As can be seen from Figs. 6.5 and 6.6,

by carefully choosing the control parameters, the VSS-NLMS and the ε-NLMS-RR

algorithms can perform close to the ASSA algorithm. In Fig. 6.6, it is seen that
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Figure 6.7: MSE comparison of the ASSA and the VSS-NLMS algorithms

in predicting the first-order Butterworth process for the non-noisy case; the

input sequence is with σ2
p = 0.2 and ωdT = 0.005; the filter order is N = 6.

the ε-NLMS-RR algorithm outperforms the ASSA algorithm from about the 4500th

time point onwards in predicting the Jakes process. However, we note that when

the same parameters are used for predicting the first-order Butterworth process, the

ε-NLMS-RR algorithm shows a poorer performance than the ASSA algorithm at all

time points, as shown in Fig. 6.5. It is not surprising that by carefully choosing the

control parameters, some of the parameter-controlled algorithms can outperform the

ASSA algorithm. However, the ASSA algorithm is undoubtedly more flexible, due

to its parameter-free nature. To further demonstrate the performance advantage

of the ASSA algorithm, in the following, we change the statistics of those input

sequences, and show the performance of those algorithms.

We generate a new first-order Butterworth sequence with σ2
p = 0.2, ωdT =
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Figure 6.8: MSE comparison of the ASSA and the ε-NLMS-RR algorithms

in predicting the first-order Butterworth process for the non-noisy case; the

input sequence is with σ2
p = 0.2 and ωdT = 0.005; the filter order is N = 6.

0.005, and a new Jakes sequence with σ2
p = 0.2, ωdT = 0.03, and we use the filters

with order N = 6 and N = 12, respectively, to predict the first-order Butterworth

process and the Jakes process. For the VSS-NLMS and the ε-NLMS-RR algorithms,

to assess their performance fairly, we have simulated them with many different

choices of parameters to determine the optimum parameters for each of them.

Here, we present a few typical results including the best performance achieved by

using the optimum control parameters. For the VSS-NLMS algorithm, we show its

performance with four different sets of (μ(0), ρ), given by (0.05, 0.15), (0.05, 0.5),

(0.5, 0.15) and (0.5, 0.5). For the ε-NLMS-RR algorithm, μ is fixed at 1 and results

for ρ = 0.01, 0.15 and 1.5 are shown.

Figs. 6.7 and 6.8 compare the ASSA algorithm with the VSS-NLMS
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Figure 6.9: MSE comparison of the ASSA, the VSS-NLMS and the

ε-NLMS-RR algorithms in predicting the Jakes process for the non-noisy case;

the input sequence is with σ2
p = 0.2 and ωdT = 0.03; the filter order is N = 12.

algorithm and the ε-NLMS-RR algorithm, respectively, in predicting the first-order

Butterworth process for the non-noisy case. In Fig. 6.7, it is noted that the control

parameters for the VSS-NLMS algorithm have to be carefully chosen, otherwise,

the MSE may not converge, e.g., when the second parameter ρ is chosen to be 0.5,

as iteration goes on, the MSE increases. The VSS-NLMS algorithm with the best

choice of parameter, i.e., (μ(0) = 0.05, ρ = 0.15), converges faster than the ASSA

algorithm at the beginning. However, when the VSS-NLMS algorithm stops learning

at about the 600th time point, the ASSA algorithm is still learning from the random

process and arrives at a smaller MSE from about the 800th time point onwards. In

Fig. 6.8, we observe that ρ = 0.15 is the best choice for the ε-NLMS-RR algorithm.

When further decreasing ρ, the MSE is increased. The performance advantage of
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Figure 6.10: MSE comparison of the ASSA, the VSS-NLMS and the

ε-NLMS-RR algorithms in predicting the first-order Butterworth process for

the noisy case; the input sequence is with σ2
p = 0.2 and ωdT = 0.005; the filter

order is N = 6.

the ASSA algorithm is quite clear in Fig. 6.8.

In Fig. 6.9, we compare the three algorithms in predicting the Jakes process

in the non-noisy case. For the VSS-NLMS and the ε-NLMS-RR algorithms, we

only show the curves with the best choice of their parameters, as for either of

the algorithms, the curves with different parameters are very close to one another.

This phenomenon also indicates that in predicting the given Jakes process, the

MSE of the VSS-NLMS and the ε-NLMS-RR algorithms is not sensitive to the

variations of the control parameters, which is in contrast to that in predicting the

non-noisy first-order Butterworth process. As can be seen in Fig. 6.9, the ASSA

algorithm converges slower than the other two algorithms. The better performance

of the ASSA algorithm in terms of the MSE value can only be observed after
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Figure 6.11: MSE comparison of the ASSA, the VSS-NLMS and the

ε-NLMS-RR algorithms in predicting the Jakes process for the noisy case;

the input sequence is with σ2
p = 0.2 and ωdT = 0.03; the filter order is N = 12.

about the 2100th time point. However, we again emphasize that the best choice

of the parameters for the VSS-NLMS and the ε-NLMS-RR algorithms are only

obtainable through extensive trials. In practice, to predict an unknown source, it is

impossible to experimentally realize an extensive search for the optimum parameters

for those parameter-controlled algorithms, as it would be very time-consuming and

waste a large amount of energy. Therefore, the ASSA algorithm is a promising

approach, as it can be immediately and directly implemented without pre-adjusting

any parameters or requiring any knowledge of the environment.

Figs. 6.10 and 6.11 compare the three algorithms in predicting the

first-order Butterworth process and the Jakes process, respectively, under the noisy

environment. Comparing Fig. 6.10 with Figs. 6.7 and 6.8, and comparing Fig.
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6.11 with Fig. 6.9, respectively, it is noted that, as expected, the MSEs of all the

algorithms under the noisy environment are larger than those under the non-noisy

environment. For example, in predicting the Jakes process, the ASSA algorithm

can achieve an MSE of about 10−6 at the 3000th time point under the non-noisy

environment, as shown in Fig. 6.9. However, this value increases to about 10−1.61

under the noisy environment, as shown in Fig. 6.11. It has been noted that for the

VSS-NLMS algorithm in predicting the first-order Butterworth process under the

non-noisy environment, when the second parameter ρ is chosen to be 0.5, the MSE

curve does not converge. However, as can be seen from Fig. 6.10, this choice of ρ

results in a fairly good performance especially for the choice of (μ(0) = 0.05, ρ = 0.5).

For the ε-NLMS-RR algorithm, from Fig. 6.10, we observe that ρ = 0.15 is the

best choice, while in Fig. 6.11, ρ = 1.5 becomes the best choice. These findings

indicate that when the disturbance or the environment changes, the optimum control

parameters may also change for those parameter-controlled algorithms. However,

in practice, it is impossible to rechoose the control parameters every time when the

statistics of the input varies. We have also examined those algorithms at SNR= 20dB

and SNR= 30dB, respectively. It is commonly found that when SNR goes higher,

the final MSE that those algorithms can achieve becomes smaller, and the SNR has

little effect on the rate of convergence of those algorithms. At different SNR values,

the ASSA algorithm always shows the smallest final MSE.

Generally, the three algorithms show a comparable rate of convergence, except

that in predicting the noiseless Jakes process, the ASSA algorithm converges slower

than the other two algorithms, as shown in Fig. 6.9. Figs. 6.7-6.11 show that

the ASSA algorithm consistently leads to a smaller MSE when compared with

the VSS-NLMS and the ε-NLMS-RR algorithms, no matter what parameters have

been chosen for the latter two parameter-controlled algorithms. We emphasize that

the better performance of the ASSA algorithm is achieved with no preset control

parameters. The other two algorithms require preset control parameters whose

optimum values can only be determined through extensive trials, which as has been
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mentioned, is not easy to implement in practice. In contrast, the ASSA algorithm

can be immediately deployed in any environment.

6.4 Conclusions

In this chapter, we proposed a novel step-size adjustment algorithm, i.e., the ASSA

algorithm, for the tap-weight coefficients adaptation of an LMS adaptive filter.

Unlike all the existing step-size algorithms that require preset control parameters,

the ASSA algorithm is truly control parameter-free. The LMS adaptive filter

employing the ASSA algorithm can be used for effective CSI acquisition, when the

optimum Wiener filter is not applicable. When applied to channel estimation, we

have shown the performance advantage of the ASSA algorithm over the existing

step-size adjustment algorithms under different wireless channel environments. The

ASSA algorithm serves as a fundamental contribution to the step-size adjustment for

the tap-weight coefficients adaptation of LMS adaptive filters. It can be applied to

other situations where LMS adaptive filters are employed, e.g., system identification,

channel equalization.
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Chapter 7

Conclusions and Suggestions for

Future Work

7.1 Conclusions

In wireless communications, a severe channel impairment caused by signal fading

has become the key challenge for fast and reliable transmission. A straightforward

way to mitigate signal fading is to transmit channel-adaptive signals. The design

of channel-adaptive communication systems deals with the modification of some

transmitter parameters according to the CSIT, which is usually obtained through

CSI feedback. In particular, a power-adaptive transmission system for fading

channels is designed to adapt the transmitted power to match the current state of the

channel. It has been shown that by employing channel-adaptive signaling, a system

yields large improvements in almost any performance metric. Another efficient

approach to reliable transmission is known as space diversity, and it can be readily

combined with time or frequency diversity. By exploiting the broadcast nature of

a wireless medium and allowing terminals to cooperatively transmit information

through relaying, cooperative relay communication systems achieve space diversity

through relay cooperation. Moreover, relay systems realize many benefits over

traditional MIMO systems, such as adaptability, coverage and cost-efficiency.

157



7.1 Conclusions

In the design of a power-adaptive transmission system, a common way is to

adapt the power to optimize some performance metric, subject to some systematic

constraints. Considering the design of a practically realizable feedback power

control system for specific modulation formats, the ABEP is commonly used as

the performance metric. However, we noted that ABEP is not a good performance

measure for high data-rate transmissions. Since the ABEP is obtained by averaging

the IBEP over the distribution of the fading, it cannot reflect the instantaneous

depth of fade experienced by the user. In high data-rate transmission, a short

duration of deep fade may cause thousands of erroneous received data bits. In such

a case, the BEOP is a more meaningful measure, and it reflects the instantaneous

QoS experienced by the user. We proposed a BEOP-based power control law to

compete with the traditional ABEP-based power control law. In all the previous

works studying the ABEP-based law, it is assumed that perfect CSI for each

bit is immediately available at the transmitter through a genie-aided feedback.

However, this is impossible for real transmissions. We developed both the traditional

ABEP-based law and the new BEOP-based law for the imperfect CSI scenario,

which takes into consideration of feedback delay as well as channel estimation

errors. In addition, we generalized the two power laws for both BPSK and QPSK

modulations. We explicitly analyzed the ABEP and BEOP results for both laws.

Through numerical results, we showed that each law suffers a significant loss in the

ABEP or the BEOP performance when imperfect CSIT is applied instead of perfect

CSIT. This demonstrates the importance of an accurate estimate of the CSIT. Under

both perfect and imperfect CSI scenarios, the BEOP-based law shows a remarkable

gain over the ABEP-based law in terms of BEOP, and sacrifices only a little in the

ABEP performance.

A large number of works on the multiple relay communication systems has been

developed during the past decade. Those works cover a wide range of topics on both

information theoretic research and practical systems. However, there remains some

unsolved problems regarding to some fundamental issues. In our work, we considered
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the receiver design of a DF multiple relay system (without selection) and derived

the ML detector at the destination with an arbitrary M -QAM, under imperfect CSI.

It is noted that the true ML detector has only been shown in [20] for a single relay

system with BPSK, under the assumption of perfect CSI. It is important to note

that our receiver result clearly shows that for optimum detection at the destination,

the instantaneous information of the s − r link is required, and this information

is summarized as the decoding error probability at the relay. This crucial point

has been overlooked in many previous works on DF relay systems. We specialized

the derived ML detector to BPSK case, and proposed the WSD and the CWSD to

approximate the ML detector. These two detectors can be viewed as improvements

on the traditional MRC and the PL detector, respectively.

In the performance analysis of the ML detector in a general DF relay system

(without selection), all the previous works actually analyzed the suboptimum A-PL

detector which uses the ABEP at the relay. In our work, we obtained the ABEP

results for several different destination detectors in a single relay system. Among

them, we highlight the closed-form, approximate ABEP of the PL detector, and we

emphasize that this PL detector uses the IBEP at the relay. This distinguishes our

work from those who analyze the A-PL detector which uses the ABEP at the relay.

When considering a DF multiple relay system, no exact ABEP performance analysis

of the ML or the PL detector has been conducted in previous works. Reference [23]

has noted the importance of using the instantaneous information of the s − r link

for detection at the destination, and it considers a multiple relay system. However,

in [23], the ABEP is only analyzed from the diversity point of view, where extremely

high SNR is assumed. In our work, we derived closed-form Chernoff upper bounds

on the ABEPs of the A-PL detector and the PL detector, respectively, in a DF

multiple relay system with an arbitrary number of relays. The obtained Chernoff

upper bound becomes tighter as the number of relays increases. All our theoretical

results have been validated using simulations. We made many important and useful

observations from the analysis of those derived ABEP results. For example, to
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achieve a good performance in a single relay system, the relay needs to be located

at some point that balances the quality of both the s − r and the r − d links in

the long term; the detectors retain using the IBEP at the relay offers a substantial

gain over the averaged-detectors which only use the ABEP at the relay; the channel

estimation errors do not affect the diversity order. Our Chernoff bound results prove

that in a DF relay system, the detector using the IBEP at the relay achieves full

diversity. In contrast, the averaged detector using the ABEP at the relay suffers a

loss of diversity, which is quite undesired for the receiver design of spatial diversity

systems.

Our works on the feedback power control and the DF relay communications

alerted us the importance of CSI. Therefore, we devoted some effort to CSI

acquisition. For analytical purpose, a Wiener-filter based channel acquisition

model is popular for its simplicity, accuracy and tractability. However, in wireless

communication systems, especially when the communication terminals are mobile,

the statistics of the environment may change from time to time. In addition, the

communication equipments are sometimes required to work in a completely unknown

environment. Under such cases, we need to rely on adaptive filters to approximate

the performance of the Wiener filter in an iterative manner. We proposed a novel

ASSA algorithm for the weights adaptation of an LMS adaptive filter. The most

significant feature that distinguishes the ASSA algorithm from any other existing

variable step-size adjustment algorithms is that the ASSA algorithm does not require

any preset control parameters. When applied to channel estimation, simulation

results show the performance advantage of the ASSA algorithm over the existing

step-size adjustment algorithms under different wireless channel environments. The

ASSA algorithm is a fundamental contribution to the step-size adjustment for the

tap-weight coefficients adaptation of LMS adaptive filters. It can be applied to

other situations where LMS adaptive filters are employed, e.g., system identification,

channel equalization.
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7.2 Future Work

7.2.1 Rate Control of A Practical System with CSI

Feedback

In Chapter 3, we considered the power control using feedback CSI. Practically,

another common transmitter parameter that can be adjusted is the transmitted

rate. Some early works on rate control for an actual system, propose to adjust

the bit duration to realize the control on the transmitted rate [7, 8, 100]. In those

works, the bit duration is assumed to be able to change continuously according to

the channel variations. The assumption of a continuous change of bit duration is

impractical. Actually, the idea of rate control is more attractive in the context

of coded transmission. Instead of keep changing the bit duration, we can tend to

change the code rate. When the channel is detected strong, a larger code rate can

be used to reduce redundancy. On the contrary, when the channel is weak, a smaller

code rate is required for reliable receptions. For rate control, either the ABEP or

the BEOP can be used as the performance measure in the design of rate control

laws.

7.2.2 Feedback Power Control for Practical SIMO, MISO

and MIMO transmissions

Feedback power control in SIMO, MISO and MIMO systems has been widely studied

from the information theoretic point of view. However, it remains unaddressed in

practical MISO or MIMO system with specific modulation formats. We note that

either the ABEP-based or the BEOP-based power control law can be extended

to SIMO, MISO or MIMO transmission. The extension to SIMO transmission is

straightforward. Since in SIMO transmission, the received SNR is the sum of the

SNR of each transmit-receive path, the power of the transmit antenna can be easily

adjusted according to this received SNR. The formulation of both power control laws
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in SIMO case is the same as that in SISO case, except that the squared magnitude

of the single channel fading gain in the SISO case is replaced by a sum of squared

magnitude of each transmit-receive channel fading gain. For the power control to

be effective in MISO or MIMO transmission, each transmit antenna is expected to

gather its own CSI. Thus, power control needs to be performed on each transmit

antenna, subject to constraints on the total transmitted power and/or the peak

transmitted power of each antenna.

7.2.3 Performance Analysis of A DF Relay System with

the BEOP Performance Measure; with Higher Order

Modulations

In Chapter 1, we have introduced the BEOP as a new performance measure for

transmissions over fading channels. The BEOP reflects the instantaneous QoS

experienced by the user, and is extremely useful for high-data rate transmission

over time-varying fading. As a new dimension in performance evaluation of wireless

communication systems, many of the existing technologies can be relooked at from

the viewpoint of the BEOP. Due to lack of time, we did not extend our analysis on

the DF relay system to the BEOP performance measure. Rather, we put it here as

a future work. It is noted that the examination of the BEOP for a DF relay system

is complicated, as it covers the joint of the instantaneous QoS of all the source-relay

and relay-destination links. From our experience of analyzing the ABEP, the BEOP

is expected to be analyzable with appropriate approximations.

It is also noted that most of the current works on the performance analysis of

a DF relay system confine to BPSK modulation. From the general ML detector

structure derived in Chapter 4, the performance with higher order modulations can

be examined.
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7.2.4 Relay Communications with CRC at the Relay

It is known that relay transmissions incorporating error control codes can

significantly improve the overall performance. Many current works have assumed

the use of CRC at the relay to improve the reliability of the relaying path. A

common assumption that has been made in many of these works is that with CRC,

the decoding error probability at the relay is zero. However, as it is known, even with

CRC and appropriate retransmission schemes, the received packet still suffers from

an undetectable error [101]. The probability of the undetectable error is computable

and therefore can be used to adjust the weight of the contribution of the relay to the

detection at the destination. The undetectable error of CRC has been an overlooked

issue in the development of relay communication systems, and needs to be addressed.

7.2.5 Integration of Feedback Power Control and Relay

Communications

Another possible extension of our work is the combination of feedback power control

and relay communications. This issue needs to be carefully considered as a relay

system contains more than one independent transmitting nodes. The power control

strategy at the source node highly depends on the availability of the CSI. For

example, if all the CSIs of the s − d, s − r and r − d links are known to the source

node, the source node may employ a comprehensive power control law imposing

on all the links. This comprehensive power control law may improve the overall

system performance. If only the CSIs of the s − r links are available, the source

node has to decide to do power control with respect to which s−r link. Or, it might

be better that the source node keeps a constant transmitted power, as it does not

know what will happen on the r − d links. The power control at a relay node is

also possible. However, it must firstly ensure that the decoded information at the

relay is correct. Otherwise, the power control at the relay with respect to the r − d

link, would significantly reduce the overall reliability of that relaying path. To that
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reason, error control codes are desired to guarantee reliable receptions at the relay.

It should also be noted that if the source node chooses to do power control with

respect to a certain link, a potential risk is the loss of space diversity. All these

issues need to be comprehensively considered for the design of a practical power

control strategy for relay communication systems.
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