
A FRAMEWORK FOR GENERATING EFFICIENT
YARD PLANS FOR MARINE CONTAINER

TERMINALS

KU LIANG PING

(Master of Science, National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

Acknowledgements

I am grateful to have two cheerful children, Jovan and Shannon, to be with me, who

continue to inject motivation into my life. I am also thankful to my wife, Jesline, for taking

good care of our two children while I am busy with this thesis. We thank our parents,

who help us selflessly in times of need.

Great appreciation goes to my supervisors, A/Prof. LEE Loo Hay, A/Prof. CHEW Ek

Peng and A/Prof. TAN Kok Choon, for their advice and opinions that steer me through

the research, hence making this thesis possible.

Lastly, I would also like to thank my friends Joon Leng, Pang Jin, Rajiv and Tian

Heong, for offering their help to improve my writing.

Liang Ping

i

Contents

Acknowledgements i

Table of Contents ii

Summary vi

List of Tables viii

List of Figures x

List of Abbreviations and Notations xii

List of Terminology xiv

List of Symbols xvi

1 Introduction 1

1.1 Improving quay crane work rate with better equipment 4

1.2 Definition of yard planning . 7

1.3 Definition of yard plan template . 9

1.4 Focus and outline of thesis . 10

ii

iii

2 Literature Survey 12

2.1 Yard planning . 12

2.2 Yard crane and truck, routing and scheduling 17

2.3 Berth planning . 20

2.4 Quay crane sequencing and stowage planning 21

2.5 Container terminal simulation . 23

2.6 General . 25

3 Motivation and Problem Definition 28

3.1 Motivation . 28

3.2 Scope and assumptions . 31

3.2.1 Container yard configuration . 32

3.2.2 Assumptions . 34

3.3 A generic yard plan template problem 36

3.3.1 Generic yard plan template specification 37

3.3.2 Problem definition statement . 42

3.3.3 Specifications for different yard plan strategies 43

3.3.4 A mathematical model . 45

3.4 Summary . 55

4 Static Yard Plan Template Model 56

4.1 A Mathematical Model . 57

4.2 Approach 1: Solving as a mathematical model 60

4.2.1 Experimental setup . 60

iv

4.2.2 Experimental results . 64

4.2.3 Re-modelling of Constraints 4.14, 4.15 and 4.16 65

4.2.4 Experimental results . 70

4.3 Approach 2: Heuristics algorithm - for the case of consolidated and ded-

icated strategy . 76

4.3.1 Loading Separation Assignment and Hill Climbing local search

(LSA-HC) . 78

4.3.2 Experimental results . 81

4.4 Summary . 86

5 Yard Plan Template with Uncertainty - Nimble Optimisation 88

5.1 Nimble Optimisation (Nimo) . 89

5.1.1 Literature survey . 90

5.1.2 Defining Nimo . 93

5.1.3 Solution approach . 96

5.2 Nimble yard plan template problem . 100

5.2.1 Motivation . 101

5.2.2 Problem definition . 103

5.2.3 Solution approaches for case 1: strict assignment policy 110

5.2.4 Solution approaches for case 2: one change policy 124

5.2.5 Case 3: generic nimble yard plan template problem 130

5.3 Summary . 132

6 Conclusion 134

v

6.1 Thesis achievements and contributions 134

6.2 Major limitations of the model . 137

6.3 Future research direction . 138

Bibliography 140

Appendix A Nimble Optimisation – A Generalisation of Some Problems 152

A.1 Overview of the approach . 153

A.2 Ben-Tal’s model (ARC) . 154

A.3 Liebchen’s model (LRR) . 157

A.4 Bertsimas’s model (CARO and FARO) 158

A.5 Soyster’s Model (SOY) . 166

A.6 Regret optimisation (RegO) . 168

A.7 Summary . 172

vi

Summary

As a result of globalisation, increasingly more cargoes are transported across the

globe in marine containers as it the most cost-effective means of transportation. Con-

tainer terminals must be efficient in order to meet the shipping community’s demand.

Terminal efficiency depends heavily on the efficiency of storage and retrieval of contain-

ers from the yard, and the most important factor in determining yard efficiency is the

yard plan.

Yard planning is the decision of where to stack the containers in the yard. Among

many strategies, consolidated strategy seems to be the preferred strategy by many ter-

minals in the world, where containers to be loaded into the same vessel are stacked in

groups. These locations are optimally chosen to improve yard efficiency, such that no

two groups of containers are stacked in close vicinity if they are to be loaded simultane-

ously. Due to the cyclical behaviour of vessels arrival schedule, a yard plan template -

plan that repeats on a weekly basis - can be generated.

We define a generic yard plan template problem specification where a variety of yard

plan strategies can be represented. We formulate a mixed integer mathematical pro-

gramme to model this problem. Two solution approaches are presented, namely solving

the mathematical programme using CPLEX, and a heuristic local search algorithm. Ex-

periments with the consolidated strategy show that scenarios where yard ranges are

non-dedicated can be solved by CPLEX efficiently, while scenarios with dedicated yard

ranges are best solved with the heuristic approach.

Next, we consider uncertainty in the vessels’ arrival schedule. For the case of con-

vii

solidated strategy, changes in vessel arrival schedule may cause congestion of trucks at

yard locations where groups of containers in the near vicinity are loaded simultaneously.

While the community for robust optimisation may suggest having a robust plan that re-

mains feasible when subjected to uncertainty, we want to find a solution that allows us

to change easily when the uncertainty is revealed - a nimble yard plan template. The

decision process has two stages - stage 1 finds a nimble solution, and stage 2 applies a

recovery policy to change the plan after the uncertainty is revealed. We consider three

cases of the nimble yard plan template problem by varying the recovery policy. We ex-

plore local search heuristics that enable us to find good solutions for the first two cases.

Experiments show that nimble plan gives a better yard plan in situations with uncertain

vessel arrival schedule. The experiments also show that the problem is harder to solve

as the recovery policy increases its flexibility. The third case, being the most generic,

could not be solved with the proposed heuristic algorithm, and we provide an intuitive

explanation of the complexity.

Motivated by the nimble yard plan template problem, and many other real life prob-

lems that require decisions to be nimble, we define a generic formulation for this class of

problem, called Nimble Optimisation. We show that our formulation is a generalisation

of a few other related works that we have reviewed. We present a distributed solution

architecture approach to solve this class of problems.

Keywords: yard plan strategy, yard plan template, optimisation under uncertainty,

nimble optimisation, mixed-integer programming, heuristic algorithms.

List of Tables

4.1 Table shows, for each workload, the number of containers loaded for the

whole week, and containers loaded for each service, respectively. 63

4.2 Summary of the models used in the experiments 69

4.3 Summary of Model sizes of Model ORIG, IMPR-M, IMPR and ORIG-Relax. 70

4.4 Summary of the running times of the models 71

4.5 Summary of the yard utilisation at different workload 72

4.6 Summary of running times of the models 73

4.7 Summary of the RMG utilisation at different workload with one and three

RMGs per block . 74

4.8 Summary of the running times of IMPR 78

4.9 Summary of the running times of LSA-HC 83

4.10 Running times of LSA-HC compared to IMPR in percentage 84

4.11 Summary of the objective values of LSA-HC 85

5.1 Abbreviations used to label various approaches in experiments 118

5.2 Experimental results: average and worst case violation 121

5.3 Detailed results of 10 replications of SGLS-R experiments - average vio-

lation . 121

viii

ix

5.4 Detailed results of 10 replications of SGLS-R experiments - worst case

violation . 122

5.5 Experimental results comparing SGLS-R versus SGLS-R1 : average and

worst case violation . 128

5.6 Detailed results of 10 replications of SGLS-R1 experiments - average

violation . 128

5.7 Detailed results of 10 replications of SGLS-R1 experiments - worst case

violation . 129

List of Figures

1.1 Emma Maersk . 3

1.2 Rubber tyre gantry (RTG) stacking crane 5

1.3 Straddle carrier stacking crane . 5

1.4 Twin lift quay crane, able to carry two 20-footers together 6

1.5 Triple lift quay crane, able to carry three 40-footers together 6

3.1 Perspective view of a yard block, showing how containers are stacked in

the block and notations of slot, row and level 31

3.2 Plan view of yard block, illustrating trucks being served by yard cranes

along the length of the block . 31

3.3 Yard layout used for the experiments - 20 blocks of 40 slots each, sup-

porting three berths . 33

3.4 Example of yard layout comparable to the experimental layout. (a) In-

cheon Container Terminal in South Korea (b) Fuzhou Qingzhou Con-

tainer Terminal in China (c) Asia Container Terminal in Hong Kong . . . 34

3.5 Example showing how Lis and Ais are derived. 39

3.6 Example of a yard block with 20 slots, partitioned into four ranges of five

slots each, and the ranges grouped into three groups of two ranges each. 41

x

xi

3.7 An algorithm for generating the set C. 46

4.1 Example of a yard block with 20 slots, partitioned into four ranges of five

slots each, and the ranges grouped into three groups of two ranges each. 61

4.2 Percentage TEU of the total loaded containers received into the yard prior

to the loading period for each service. 62

4.3 Pseudo code for LSA Algorithm. 80

4.4 Flowchart for LSA-HC Algorithm. 81

4.5 Pseudo code for LSA-HC Algorithm. 82

5.1 Simulated guided local search flow chart for solving Nimo 98

5.2 Solution approach architecture for solving Nimo 99

5.3 Flowchart for SGLS Algorithm . 115

5.4 Pseudo code for SGLS Algorithm. 116

5.5 Percentage TEU of the total loaded containers received into the yard prior

to the loading period for each service. 119

xii

List of Abbreviations and Notations

AGV : Automated Guided Vehicle

ARC : Adjustable Robust Counterpart

ASC : Automatic Stacking Crane

CARO : Complete Adaptable Robust Optimisation

CPLEX : A commercial software that solves MIP

FARO : Finite Adaptable Robust Optimisation

GA : Genetic Algorithm

GPS : Global Positioning System

ILP : Integer Linear programme

IMPR : Improved ORIG model without using big-M

IMPR-M : Improved ORIG model using big-M

IMPR-u : IMPR with u as an input instead of decision variable

ITT : Inter-Terminal Transport

LOSM : Loading Optimised Surrogate Model

LRR : Linear Recovery Robust problem

LSA-HC : Loading Separation Assignment and Hill Climbing local search

MIP : Mixed Integer Programme

Nimo : Nimble Optimisation

ORIG : Original yard plan template model

ORIG-Relax : Relaxed ORIG model with s20
r and s40

r set as real

xiii

RA : Recovery Algorithm with strict assignment policy

RA-1 : Recovery Algorithm with one change policy

RegO : Regret Optimisation

RMG : Rail Mounted Gantry cranes

SOY : Soyster’s Model

SGLS : Simulation Guided Local Search Algorithm

SGLS-R : Simulation Guided Local Search with recovery RA

SGLS-R1 : Restricted Simulation Guided Local Search with recovery RA-1

TEU : Twenty-foot Equivalent Unit

TOS : Terminal Operating System

xiv

List of Terminology

20-footers : Containers of 20 feet length

40-footers : Containers of 40 feet length

20-footer slot : A slot that can stack 20-footers

40-footer slot : A pair of slots that can stack 40-footers

Activities : Storage activities and retrieval activities collec-
tively

Activity concentration : Number of activities within a defined yard location
violating the pre-defined threshold

Cluster : A set of consecutive ranges that will be assigned as
a group

Discharging : Moving containers out of the vessel

Loading : Moving containers into a vessel

Mount : Put a container on a truck

Nimble optimisation : A problem that is subject to uncertainty, such that the
solution can be changed easily to an optimal solution
when uncertainty is revealed

Nimble yard plan template : A yard plan template that can be changed easily to
an optimal solution when uncertainty is revealed

Offload : Remove a container from a truck

One change policy : A recovery policy that allows only one of the assign-
ment of services to ranges to change

Port of rotation : A cyclical list of marine container ports that a vessel
will visit in sequence

Quay crane : A lifting crane that works at the quay

xv

Range : A set of consecutive slots

Retrieval activity : Activity of taking a container from the yard

RMG contention : Number of activities within a yard block violating the
pre-defined handling capacity of the RMGs in the
block

Services : A set of vessels that have the same port of rotation

Stack : Put a container on top of another

Static model : Yard plan template model that has deterministic in-
puts

Strict assignment policy : A recovery policy that does not allow changes to the
assignment of services to ranges

Stubborn policy : A recovery policy that does not allow any changes to
the plan at all

Storage activity : Activity of putting a container into the yard

Truck : A vehicle that transport containers

Violations : Any violations to the activity concentration and
RMG contention collectively

Workload : The ratio of total number of TEUs to be loaded in a
week to the maximum stacking capacity of the entire
yard in TEUs

Yard crane : A lifting crane that works at the yard

Yard planning : The decision of where to stack the containers in the
yard when they arrive, while considering both the ef-
ficiency of storage and retrieval activities

Yard plan strategy : A set of rules that constrains the choice of yard loca-
tions that each container may be stacked

Yard plan template : A yard plan that repeats on a weekly basis

xvi

List of Symbols

Ω = Uncertainty set

ω = Uncertainty vector

δ = Maximum perturbation of εi

εi = Number of time periods where service i’s arrival time deviates from
original schedule

Ai = Derived from Li, the set of time periods that are after the loading for
service i,

B = Set of blocks where each element b is a set of ranges that are in the
block

C = Set of clusters where each element c is a set of ranges that can be
combined to form a cluster

DT = (V , DA20
it , DA

40
it ,Li)

G = Set of groups where each element g is a set of ranges that belong to
the group

Li = Set of time periods where each element t is the time when service i is
loading its containers

R = Set of ranges

ST = (R,G,B, C, CSr, SRr,MAg, RY,MYb,W
k,W p, SH,OS)

T = Set of time periods

V = Set of services

A = Abstraction of constraint matrix of static model

B = Abstraction of right hand side of static model

C = Abstraction of cost vector of static model

xvii

CSr = Capacity in TEU for a slot in range r

DA20
it = Number of discharge 20-footers received by service i at time t

DA40
it = Number of discharge 40-footers received by service i at time t

M = Big Number

MAg = Maximum amount of activity allowable in group g in each time period

MYb = Number of RMG in block b

OS = 1 if the yard plan template is in one-slot mode

Qii′ = Time gap between service i and i′

RY = Maximum amount of activity a yard crane can handle per time period

SH = 1 if sharing is allowed, 0 otherwise

SRr = Number of slots in range r

TG = Threshold for maximum time gap between services assigned to adja-

cent yard ranges

W k = Weight of activity concentration in the objective function

W p = Weight of RMG contention in the objective function

W q = Weight of cluster separation violation in the objective function

b = A set of ranges that are in the block b

c = A set of ranges, which when combined, will form cluster c

d20
irt = Number of 20-footer spaces reserved for 20-footers in range r for ser-

vice i at time t

d40
irt = Number of 40-footer spaces reserved for 40-footers in range r for ser-

vice i at time t

xviii

g = A set of ranges that belong to the group g

i = Index for service

jmr = Binary indicator variable

krt = Number of excess activities in range r at time t, such that the krt
contributed to some groups g ∈ G to violate MAg

pbt = Number of activities which need to wait for a yard crane, measured in
number of activities above the capacity of the yard cranes in the block
b at time t

qic = 1 if cluster c is assigned to service i, 0 otherwise

qr = Number of time periods violating TG between services assigned to r

and r+

r = Index for range

r+ = Range next to the range r within the same block with bigger slot num-
ber

r− = Range next to the range r within the same block with smaller slot
number

s20
r = Number of 20-footer slots needed in range r

s40
r = Number of 40-footer slots needed in range r

t = Index for time period

u = (uir)
T

uir = 1 if service i is assigned to range r, 0 otherwise

v = (x20
irt, x

40
irt, y

20
irt, y

40
irt, pbt, krt, jmr)

T

wr = 1 if range r has a 40-footer container, 0 otherwise

x20
irt = Number of 20-footers received by service i into range r in time t

x40
irt = Number of 40-footers received by service i into range r in time t

y20
irt = Number of 20-footer retrieval activities by service i from range r in time t

y40
irt = Number of 40-footer retrieval activities by service i from range r in time t

Chapter 1 Introduction 1

Chapter 1

Introduction

Most of the world’s cargo is transported by sea today. The introduction of standard-

sized steel containers of 20 or 40 feet long (called 20-footers and 40-footers respec-

tively), has standardised transportation equipment such as trailer trucks, train wagons,

marine vessel cells, and at the same time has also standardised lifting equipment such

as quay cranes and yard cranes. This is a great invention that has greatly improved the

efficiency of cargo transportation and hence reduction of logistic cost (Levinson 2006).

Containers transported from the shipper to the consignee pass through various par-

ties. First, they are trucked from the shipper (e.g. a factory door) to a local sea port

where they have to stay in the yard, waiting for the vessel to arrive. When the vessel

arrives, they will be loaded (lifting of containers into the vessel). In most of the cases,

this vessel is not the vessel that brings the containers to the destination. The containers

are shipped to a hub port, where the containers are discharged (lifting of containers

out of the vessel) and stacked in the yard. They will be loaded into another vessel at a

later time. This process of transferring containers from one vessel to another vessel is

termed as transshipment. The containers may be transshipped a few times at various

hub ports until they are eventually discharged at the port of destination. Finally, the

Chapter 1 Introduction 2

containers will be trucked out of the port and delivered to the consignee (e.g. a ware-

house). This results in a hub and spoke distribution network, which is very common in

shipping as well as in other transportation systems. Vessels plying between hub ports

are usually ocean liners (providing ocean voyages), and vessels plying between local

ports and hub ports are feeder vessels (providing short sea services).

Ocean voyages and short sea services form the backbone of the world sea cargo

transportation system. Infrastructures such as container ships and marine container ter-

minals cost hundreds of million to a few billions of dollars to build and to operate. These

assets generate revenue when cargo is moved from one port to another. Time spent

by vessels alongside a terminal for loading and discharging of containers (i.e. moving

containers into the vessel, and out of the vessel, respectively), while necessary, has to

be as short as possible for the shipping line to maximise its revenue (Rudolft 2007). It is

also a win-win situation between shipping lines and container terminal operators, where

shipping lines reduce their operating cost, and more productive berths (more contain-

ers handled in the same period of time) translate to more revenue generated using the

same infrastructure for terminal operators as well.

The problem has also become more challenging, as vessel new builds have grown

in size (commonly measured in number of twenty-foot equivalent unit (TEU) containers)

over the years. Rudolft (Rudolft 2007) summarises the representative sizes of vessels

(and years) listed chronologically as follows: 750 TEU (1968), 1,500 TEU (1972), 3,000

TEU (1980), 4,500 TEU (1987), 7,900 TEU (1998) and finally 11,000 TEU (2006) being

the Emma Maersk (Figure 1.1 shows a photo of Emma Maersk). Emma Maersk and her

sisters Estelle Maersk and Eleonora Maersk that came along subsequently, have been

Chapter 1 Introduction 3

Figure 1.1: Emma Maersk

reported to carry up to 14,000 TEU. Then in 2011, Maersk again announces building 10

new triple-E class vessels that are capable of carrying 18,000 TEU. Wren (Wren 2007)

normalises the size of the vessel to the length of the vessel, and reports that Emma

Maersk carries 36.7 TEU per metre, while a usual panamax vessel (approximately 5,500

TEU) carries only 19.4 TEU per metre. This implies that terminal operators face greater

pressure for the quay cranes to work at a faster rate so as not to increase the vessel

port stay proportionally.

Chapter 1 Introduction 4

1.1 Improving quay crane work rate with better equip-

ment

A quay crane is a lifting crane that lifts containers in and out of a vessel. While terminals

aim to speed up the rate that the quay cranes can work, they are constrained at different

fronts. The quay crane working rate is limited by the technical specification, as well

as safety considerations. It is also constrained by the efficiency of the transportation

system that brings the containers to and fro between the quay cranes and the stacking

yard, and the efficiency of the stacking system in the stacking yard.

While quay cranes among various container terminals are largely similar in kind,

various options for stacking systems and transportation systems are available in the

market. The most common ones (used mostly in Asian ports) are the rail mounted

gantry (RMG) or rubber tyre gantry (RTG). Straddle carriers are also used, and they

are more commonly found in European ports. An example of the RTG and straddle

carrier are shown in Figure 1.2 and Figure 1.3, respectively. Diesel engine trucks are

the main work horse of the transportation system, while a small number of terminals

use the automated guided vehicle (AGV) or other automated systems.

Engineering has progressed and increased the handling rate of the quay cranes to

meet new standards of terminal performance required to minimise mega-vessel port

stay. Crane lifting capability has evolved to carry more than one container at a time,

such as twin lift (carry 2 × 20-footers length-wise), parallel lift (carry 2 × 20- or 2 × 40-

footers side by side) and parallel twin lift (carry 4 × 20-footers) (ZPMC 2007). Recently,

lifting 3 × 40-footers is also possible with a triple lift crane. Figure 1.4 shows a picture

Chapter 1 Introduction 5

Figure 1.2: Rubber tyre gantry (RTG) stacking crane

Figure 1.3: Straddle carrier stacking crane

of a twin lift quay crane, and figure 1.5 shows a picture of a triple lift quay crane.

However, having more efficient quay side handling may not reap immediate improve-

Chapter 1 Introduction 6

Figure 1.4: Twin lift quay crane, able to carry two 20-footers together

Figure 1.5: Triple lift quay crane, able to carry three 40-footers together

ment in performance. It passes the bottleneck from the quay side to the transportation

system (trucks’ efficiency) and storage and retrieval system in the stacking yard. For

example, in a typical terminal that uses trucks as their transportation method, a dis-

charging container needs to be lifted out of the vessel and mounted on a truck by a

quay crane. The truck brings the container into the storage yard, where the yard crane

offloads it and lands it onto a stack in the yard. A loading container will have to work

in the reverse, i.e., the yard crane mounts the container on the truck, the truck brings

it to the wharf and finally, the quay crane offloads it from the truck and loads it into

Chapter 1 Introduction 7

the vessel. Double stack trailers, multi-trailer-train and automated guided vehicle (AGV)

systems have been engineered to increase trucking efficiency. Storage and retrieval

efficiency then becomes the bottleneck when trucks waste time waiting in line in a con-

gested yard, or wait to be served by yard cranes when the yard cranes are not available.

These waiting times can be minimised if the decision of where and when to store and

retrieve the containers in the yard are made with these considerations, and this is the

role of yard planning.

1.2 Definition of yard planning

We define a storage activity as the activity triggered by the event of a truck arriving

with a container on its trailer at a given time and at a given yard location, requiring a

yard crane to offload the container from the truck and stack it onto the yard stack. A

retrieval activity, on the other hand, is the activity triggered by the event of a truck

arriving without a container at a given time and at a given yard location, requiring a

yard crane to lift a specific container from the stack and mount it onto the trailer. In most

terminals in the world, when containers arrive for storage, they remain in the same stack

throughout its stay in the terminal, and they are retrieved only when they to be loaded

onto a vessel. This is because shifting containers around incurs extra cost borne by

the terminal operator. Hence, the location chosen during storage will be the location

for the eventual retrieval. Next, the time at which the container arrives into the terminal

and departs from the terminal is given by the shipping lines and the shipping agents,

according to their vessels’ schedule, and hence they are fixed. Therefore, upon arrival

Chapter 1 Introduction 8

of the container, the decision to place it in a location in the yard not only fixes a storage

activity at this location at this given time, it also implies that there will be a retrieval

activity at this location a later known time. This single decision will affect the efficiency

of both the storage and retrieval activities. Yard planning is then defined as the decision

of where to stack the containers in the yard when they arrive, while considering both the

efficiency of storage and retrieval activities.

When too many storage or retrieval activities (collectively we call them activities)

happen in near proximity of time and space, it causes congestion and the trucks have

to stay in a queue, waiting to be served by the yard crane. Hence, within the vicinity, the

number of activities should not exceed a given threshold (usually pegged to the handling

capacity of one yard crane). When this violation of the threshold happens, we say that

there is activity concentration. In addition, within a yard block with a given number of

yard cranes, the total number of activities should not exceed the total working capacity

of the cranes. If there is a violation, we say that yard crane contention has occurred.

A violation of either case causes trucks to wait, and hence slows down the rate at which

the trucks return to the quay cranes, resulting in reduction of quay side performance.

Good yard planning is the key to reduce these violations.

It is also important to note that yard planning works under a complex set of con-

straints (such as physical constraints, policies due to regulations and safety practices),

and some level of uncertainty for future activities (such as vessels not arriving on time

due to bad weather). Hence, deciding the optimum stacking location of each container

taking into consideration the constraints and uncertainty is too complex to be made

manually, and most terminals resolve this by having yard plan strategies. A yard plan

Chapter 1 Introduction 9

strategy is a set of rules that constrains the choice of yard locations where each con-

tainer may be stacked. The rules encompass the rules of thumb, based on human

experience, such as no mixing of containers with different ports of destination in the

same stack. These rules reduce the search space and hence reduce the complexity

of the manual planning process. For example in consolidated strategy, containers to

be loaded into the same vessels have to be stacked in groups in the yard. There are

various strategies that terminals can adopt, and different terminals may find different

strategies work better for their specific scenarios. We will cover more about strategies

in Chapter 3.

1.3 Definition of yard plan template

Shipping lines operate most of their vessels by services, which have fixed schedules.

A service visits a pre-determined set of ports called the ports of rotation. For exam-

ple, APL operates the West Asia Express service (WAX), having the following ports of

rotation: Ningbo - Busan - Kwangyang - Qingdao - Ningbo - Singapore - Jebel Ali -

Dammam - Bahrain - Singapore - Ningbo. A few vessels will ply each service concur-

rently, such that the service will call at a port periodically (regardless of physical vessels)

and usually on a fixed day of the week. This is an important characteristic that enables

container terminals to generate yard plans that cycle on a weekly basis. Container ter-

minals prefer to have repeating plans as it results in consistent performance week after

week. Efforts to improve the yard plan that may result in better performance are also

more persistent. In this thesis, we have assumed that all services call on a weekly ba-

Chapter 1 Introduction 10

sis, and hence the yard plan assumes a seven-day window that wraps around back to

day 1 after day 7. We call this the weekly yard plan template – a plan that repeats on

a weekly basis.

1.4 Focus and outline of thesis

We focus our thesis to the problem of finding the optimum yard plan template – a

yard plan template with activity concentration and yard crane contention violations min-

imised. In the literature, we find very few research works are done in the area of yard

plan template. The paper by Lee et al. (Lee, et al. 2006) is the only paper that we come

across that addresses the yard plan template problem, other than the other paper au-

thored by us (Ku, et al. 2010). In particular, we are interested in addressing the topic in

three areas. First, we will like to define a generic model that defines the yard plan tem-

plate problem for a wide variety of yard plan strategies. Secondly, we will like to solve

this problem in a reasonable amount of time, assuming the inputs are deterministic.

Third, noting that uncertainty prevails in reality, we will like to have a solution approach

that can change the solution easily, while maintaining optimality, after the uncertainty is

revealed. We call this the nimble yard plan template problem.

The outline of the thesis is as follows. We first give a literature review of related

research papers on container terminal in Chapter 2. In Chapter 3, we present the mo-

tivation of this thesis. We then provide the problem scope and the assumptions made,

followed by the problem definition and a mathematical formulation of the problem. In

Chapter 4, we assume that the inputs are deterministic and present two solution ap-

Chapter 1 Introduction 11

proaches for the cases where terminals adopts the consolidated with dedicated strategy

and consolidated with non-dedicated strategy. Experimental results of the run times are

also presented. Next, in Chapter 5, we assume that the vessel arrival schedule is uncer-

tain, and present the nimble yard plan template problem. The problem leads us to first

discuss a generic nimble optimisation formulation. A short literature survey is presented

and we also prove that the nimble optimisation is a generalisation of some of the works

reviewed. Applying the formulation to yard plan template, three variations of the nimble

yard plan template problem are presented. We propose heuristic approaches to solve

the first two cases. Experiments are conducted and the quality of the nimble yard plan

template are compared. The third case is a generic nimble yard plan template problem,

and we provide some intuition to the complexity of the problem. Lastly, we conclude

the thesis in Chapter 6 with a summary of the thesis contribution, as well as a short

discussion of future works.

Chapter 2 Literature Survey 12

Chapter 2

Literature Survey

Container terminal operations are in the heart of all economic activities - no global

trade takes place when goods cannot be transported. Hence, it has inevitably attracted

a huge number of research works. Within container terminal operations, there are also

many sub-problems that researchers work on, and we group them logically in the fol-

lowing few sections. As the thesis focuses on the yard planning problem, we start the

review from this area.

2.1 Yard planning

Yard planning is the decision of where to stack the containers in the yard when they

arrive. While there are many approaches to study this problem, one could look at the

strategic level, where an optimum strategy needs to be found. The quality of the strategy

is usually evaluated using a simulation model where a plan is generated according to the

strategy, and trucks are simulated to store and retrieve containers from the yard. The

waiting time of the trucks are collected as a measure of the quality of the plan. Some

papers also quantify the quality of the solution analytically by computing some abstract

Chapter 2 Literature Survey 13

measures that are proxy of the eventual trucks waiting. Some papers also look at the

problem at the operational level, where the exact location of the individual containers

has to be decided. At this level, details of containers’ exact location are considered, and

the number of shuffling moves is to be minimised when the retrieved container is not

the top most container in the stack.

Let us first review some papers that study the yard planning problem at the strategic

level. Saanen and Dekker (Saanen & Dekker 2007a) give a good categorisation of yard

plan strategies into four main characteristics, namely, dedicated versus non-dedicated,

consolidated versus dispersed, housekeeping versus immediate final grounding, and

discharge-optimised grounding versus loading-optimised grounding. A dedicated strat-

egy means that a yard “location” (a unit of stacking space for containers) cannot be

shared by more than two vessels, whereas a non-dedicated strategy allows sharing. A

consolidated strategy means that all the containers to be loaded into the same vessel

are stacked into a few groups in the yard, so that when the vessel is loading, the con-

tainers to be retrieved are already congregated into a few yard locations. A disperse

strategy means that these containers should not be congregated and hence are to be

dispersed throughout the whole yard. Immediate final grounding strategy means that

once a container is placed in the yard, it will not be shifted around, and the next time

it is retrieved is when it is loaded into a vessel. Housekeeping strategy, on the other

hand, means that the containers can be shifted around the yard. Finally, discharge-

optimised grounding strategy means that the strategy tries to minimise the waiting time

of the trucks that are performing storage activities, at the expense of retrieval activities,

while loading-optimised grounding tries to minimise the waiting time of the trucks that

Chapter 2 Literature Survey 14

are performing retrieval activities at the expense of storage activities. Note that there

can be strategies that are neutral in this aspect, as they minimise the overall waiting

time of trucks, regardless of its operation.

We review some works and at the same time categorise them based on the above

terminology. Chung et al. (Chung, et al. 1988) compare the strategies of housekeeping

versus immediate final grounding. They implement the housekeeping strategy with the

use of buffer space. Simulation results show that the system with buffer could reduce

the number of shuffling moves significantly and hence reduce the total container loading

time. However, these are at the expense of having more yard cranes and lower utilisa-

tion of yard space. Taleb-Ibrahimi et al. (Taleb-Ibrahimi, et al. 1993) also discuss the

trade-off between the immediate final grounding strategy and the housekeeping strat-

egy, and a hybrid approach is also presented. Chen (Chen 1999) outlines the foundation

of yard management, and particularly touches on the issue of housekeeping strategy.

They focus on the trade-off between having more housekeeping and higher yard space

utilisation. However, they do not study the efficiency of storage and retrieval in a house-

keeping strategy. There are no other works that study the housekeeping strategy, as

this strategy obviously is more costly to the terminals.

Next, Bruzzone and Signorile (Bruzzone & Signorile 1998) use simulation and Ge-

netic Algorithm to find the best cluster layout. Yard plans with clusters are categorised

as a consolidated strategy. Chen et al. (Chen, et al. 2000) study the storage space

allocation problem with a time-space network. The allocations of containers to yard

locations are made in advance. They assume no sharing of yard space and hence a

dedicated strategy. Their objective is to re-use the same yard space for different ves-

Chapter 2 Literature Survey 15

sel over different time periods. However, minimising truck waiting time is not in their

objective. Zhang et al. (Zhang, et al. 2003) study the dispersed strategy with block

assignment. They solve the problem in two stages. In the first stage, they find an allo-

cation of number of containers to yard blocks, so that workloads among yard blocks are

balanced. In the second stage, using the solution from stage 1, they allocate the exact

containers to the blocks, minimising the total distance travelled by the trucks. Murty

et al. (Murty, et al. 2005b) use a fill-ratio heuristic for the import containers. This is a

non-dedicated and dispersed strategy. Fill-ratio is a measure of the utilisation of each

yard block. The heuristic is based on the observation that a block that has high fill-ratio

usually has a high probability that a truck will arrive for retrieval, compared to a block

with low fill-ratio. Hence a storage activity should try to avoid blocks that have high

fill-ratio and hence avoid potential congestion with trucks performing retrieval. Petering

and Murty (Petering & Murty 2006) compare the difference between consolidated strat-

egy versus dispersed strategy. They approximate dispersed strategy by having very tiny

clusters spreading over many locations, versus consolidated strategy where big clusters

are spread over fewer locations. The simulation results show that disperse strategy is

better than consolidated in terms of trucks’ waiting time. Lee et al. (Lee et al. 2006)

study the fixed-size yard range consignment strategy. This is a consolidated and ded-

icated strategy. Mixed integer programming and heuristic approaches are proposed.

While most papers are neutral to loading- or discharge-optimised grounding, their ap-

proach is clearly a loading-optimised grounding strategy. Saanen and Dekker (Saanen

& Dekker 2007b) use simulation to compare between a traditional stacking strategy

versus a random stacking strategy, i.e. consolidated versus dispersed strategy. Their

Chapter 2 Literature Survey 16

objective is to increase operational yard density from 65% to 85% without compromising

on trucks’ productivity. The traditional stacking is known to have lower truck productiv-

ity when yard density increases beyond 65%, due to congestion of trucks. They show

by simulation that random stacking is able to increase operational yard density without

affecting productivity. They claim that this strategy is adopted by the Port of Rotterdam

and Hamburg. Ku et al. (Ku et al. 2010) study the yard plan template problem where

the yard plan repeats on a weekly basis. They propose a generic specification of the

problem for the purpose of having a computer based search engine to find the best

strategy. They propose solving a special case by solving the mathematical programme

with CPLEX. The run time can be very long, and in some cases not able to solve within

the time-out limit.

These studies are based on deterministic modelling of the problem, and do not

directly address the issue of uncertainty. However, the uncertainties are not ignored

totally, as most studies evaluate the solution using simulation.

Early works on modelling with uncertainty in port operations centre around uncer-

tainty in the arrival of import and export containers, which leads to wasted shuffling

during retrieval, or trucks waiting during retrieval. In the literature, shuffling moves are

also commonly referred to as re-handling moves. Castilho and Daganzo (de Castilho &

Daganzo 1993) study the amount of shuffling moves required when the retrieved con-

tainer is not the top most container in the stack. This happens in the case of collection

by trucks for local import delivery, as their arrivals are usually random. Kim et al. (Kim,

et al. 2000) study the problem of deciding which slot of a yard block to place an ex-

port container. Their objective is to minimise the expected shuffling moves arise due

Chapter 2 Literature Survey 17

to a stack having lighter containers on top of heavier ones. The weights of the arrived

containers are assumed to be random with probability estimated from historical informa-

tion. The problem is solved with a dynamic programming approach where they model

the state of a yard block as a function of the locations of empty slots and the weight

of the heaviest container in a stack. Kang et al. (Kang, et al. 2006) also look into the

stacking problem of having uncertainty in the weight information. Simulated annealing

is used to find a good stacking strategy. Casey and Kozan (Casey & Kozan 2006) also

study the problem of stacking the containers to minimise shuffling moves. An algo-

rithm based on a meta-heuristic and simulation technique is proposed. Xu et al. (Xu,

et al. 2010) consider a robust optimisation model for determining storage locations for

import containers and yard crane movements. Import containers are stored in a yard

area where internal trucks deposit the containers, while external trucks pick up contain-

ers. The time of container pick up is random, and the objective is to minimise the total

waiting time by the trucks. Other papers that study approaches to minimise re-handling

or shuffling within the yard block can be found in (Kim 1997, Kim & Bae 1998, Kim &

Kim 1999a, Kim & Park 2003, Dekker, et al. 2006).

2.2 Yard crane and truck, routing and scheduling

Next, the following papers address the area of yard crane routing and scheduling. Kim

and Kim (Kim & Kim 1997) and Narasimhan and Palekar (Narasimhan & Palekar 2002)

study the yard crane routing problem within a yard block, such that the make span is

minimised. Cheung et al. (Cheung, et al. 2002) and Linn and Zhang (Linn & Zhang

Chapter 2 Literature Survey 18

2003) study the problem of scheduling the yard crane movement from one yard block to

another yard block, in order to satisfy the demand with the least delays. A mixed integer

programming model and heuristic methods are presented. Kim et al. (Kim, et al. 2003)

study the problem of minimising the waiting time of external trucks in the terminal, by

sequencing retrieval and storage operations for the yard cranes. Ng (Ng 2005) stud-

ies the yard crane routing and scheduling problem with considerations of inter-crane

interference among cranes in the same block. Recent works of Guo et al. (Guo,

et al. 2008, Guo, et al. 2009) propose to simulate the yard crane gantry movements

and container handling operations in order to arrive at the optimal dispatch sequence.

To deal with uncertainty, their strategy is to have a very fast algorithm so that it could

be recomputed when new information is available. Based on the new positioning tech-

nology such as Global Positioning System (GPS), they assume that within a given short

planning window, advanced job arrival information can be determined accurately. They

propose a modified exhaustive search algorithm over the space of possible sequences.

For the case of a longer planning window which translates to a problem with bigger

search space, they propose a hybrid A-star heuristic and recursive backtracking with

prioritised search in order to accelerate the solution process. We do not find any other

papers that model the yard crane routing or scheduling problem with uncertainty.

In the area of truck deployment and scheduling, Vis et al. (Vis, et al. 2001) study

the problem of determining the minimum number of automated guided vehicles (AGV)

required in a semi-automated terminal, where automatic stacking cranes (ASC) inter-

face with the AGVs at the end of the yard blocks. A minimum flow algorithm is used.

Li and Vairaktakakis (Li & Vairaktakakis 2004) study the vehicle scheduling problem to

Chapter 2 Literature Survey 19

minimise the make span of a single quay crane problem. Vis et al. (Vis, et al. 2005)

study the problem of determining the minimum AGV fleet to fulfil the required job de-

mand under time-window constraints. An integer linear programme (ILP) is modelled

and they show that the ILP’s results are close to their simulated results. Bish et al. (Bish,

et al. 2007) study the vehicle despatching problem, and propose a greedy algorithm that

performs close to optimum solution.

Straddle carriers are container equipment that function as yard cranes (with the abil-

ity to stack one container above another), and at the same time, they are transporters

- bringing containers from one location to another in the terminal. Kim and Kim (Kim

& Kim 1999b) study the routing problem of straddle carriers in the container terminal.

The problem involves allocating of containers to straddle carriers and the straddle car-

rier routing problem. The objective is to minimise the total travel distance. Das and

Spasovic (Das & Spasovic 2003) study the problem of scheduling the straddle carriers

in order to service the external trucks. Their objective is to minimise the travelling time

of the straddle carriers and waiting time of the external trucks. Wong and Kozan (Wong

& Kozan 2006) propose an integrated approach to solve the problem of deciding where

to stack the containers (yard planning) and scheduling of straddle carriers to minimise

make span.

Meersmans and Wagelmans (Meersmans & Wagelmans 2001) study the integrated

problem of scheduling all handling equipments in an automated container terminal that

uses ASCs and AGVs. They prove NP-hard of the problem and propose a heuristic

called Beam Search to solve the problem. All the above models on truck deployment

and scheduling do not deal with uncertainty.

Chapter 2 Literature Survey 20

2.3 Berth planning

Berth planning is the decision of where to berth each vessel along the length of the

wharf. It is common for the berth planning problem to be modelled as a continuous 2-D

rectangle packing problem with side constraints, where the physical length of the wharf

and vessel form one of the dimensions, and time forms another dimension.

Uncertainty of vessel arrival schedule is commonly studied in conjunction with berth

planning. Moorthy and Teo (Moorthy & Teo 2006) present one of the earliest papers that

study the berth plan template with vessel arrival uncertainty. They propose a simulated

annealing approach to search for an optimal berth plan template which is encoded into a

sequence pair. The objective value is evaluated using a probabilistic model, and the final

solution is tested using Monte Carlo simulation with random arrival of vessels. Following

which, Dai et al. (Dai, et al. 2007) apply a similar technique to solve the dynamic berth

allocation problem which does not have time dimension wrapped around. Du et al.

(Du, et al. 2010) then extend the solution method from (Moorthy & Teo 2006) to have a

feedback mechanism where earlier iterations generate feedbacks to the model to adjust

the time buffers for the future iterations. Hendriks et al. (Hendriks, et al. 2010) study

the robust berth plan template problem with quay crane reservation. They assume

that the number of quay cranes reserved for a vessel is a function of the punctuality

of the vessel’s arrival, and further assume that the number of quay cranes reserved is

proportional to the cost of operating the berth. They propose a mixed integer linear

programme to find a robust berth plan that minimises the crane reservation. Han et

al. (Han, et al. 2010) consider simultaneously the vessel to berth assignment and quay

crane sequencing problems and develop a stochastic mixed integer program. They then

Chapter 2 Literature Survey 21

solve it with a genetic algorithm (GA) in which the evaluation of the fitness function is

done by sampling on the stochastic parameters.

There are also some earlier works that did not consider uncertainty in vessel arrival.

Tong et al. (Tong, et al. 1999) study the deterministic berth allocation problem, and apply

the Ant Colony Optimisation technique to solve it. Kim and Moon (Kim & Moon 2003)

study the deterministic berth scheduling problem using simulated annealing.

2.4 Quay crane sequencing and stowage planning

Quay crane sequence refers to the exact order in which the quay crane will perform

the load and discharge of the ship. In cases where multiple quay cranes work on

the same vessel, quay crane sequencing also produces the job allocation to the quay

cranes, commonly termed as crane split. The objective is usually to reduce make span.

Stowage planning refers to the decision of assigning loading containers to the cells in

the vessel, conforming to the stowage instruction (constraints) provided by the shipping

line.

Wilson and Roach (Wilson & Roach 2000) study the problem of finding the stowage

plans for a vessel at each port of call for its entire voyage. The later stowage plans are

dependent on earlier ones with respect to the order in which the ports are visited, and

the objective is to optimise efficiency at each port of call. Steenken et al. (Steenken,

et al. 2001) study the problem of stowage planning and scheduling of straddle carrier

movements for load and discharge operations such that make span is minimised. They

also propose that terminals should consider real time stowage planning due to the un-

Chapter 2 Literature Survey 22

certainty of the given information. Ambrosino et al. (Ambrosino, et al. 2004) study the

problem of finding the optimum stowage plan with additional hydrostatic and structural

constraints of the vessels.

Gambardella et al. (Gambardella, et al. 2001) study the problem of resource al-

location and scheduling of load and discharge operations. They propose to solve the

problem in two phases, namely, performing the resource allocation first, and then find-

ing the exact sequence of loading and discharging of each quay crane. Lim et al. (Lim,

et al. 2002) prove the NP completeness of the quay crane scheduling problem and

apply the tabu search technique to solve it. Bish (Bish 2003) studies the problem of

scheduling the quay cranes and internal trucks simultaneously, with the objective of

minimising the make span. The model is constrained by the choice of discharge loca-

tions, which is a pre-processed set. Kim and Park (Kim & Park 2004) study the problem

of quay crane sequencing, with the objective to minimise the make span. They use

the branch and bound algorithm for the optimum solution and a heuristic called greedy

randomised adaptive search procedure (GRASP). Choo (Choo 2006a) study the mul-

tiple quay crane sequencing problem with quay crane clearance constraints and yard

congestion considerations. They propose a mixed integer programme with Lagrangian

relaxation framework. In a later work, Choo (Choo 2006b) model the same problem with

a multiple self-interested agents framework. Each quay crane is modelled as an agent

and they compete among themselves for limited resources in order to minimise their

individual make span. All the models on quay crane sequencing and stowage planning

are deterministic.

Chapter 2 Literature Survey 23

2.5 Container terminal simulation

Container terminal operations are so complex that they cannot be modelled as a sin-

gle analytical model. Furthermore, the uncertainty of the input parameters due to real

life dynamics, such as demand variability, varying equipment working speed, weather,

labour issues, equipment breakdowns, etc, prevails. Hence, simulation has been used

very widely in both academia and container terminal industry as a tool to evaluate so-

lutions (Gambardella & Rizzoli 2000). Other than some of the works that are already

mentioned earlier, the following works are papers that focus more on the application of

simulation on container terminal operation.

Ottjes et al. (Ottjes, et al. 1994, Ottjes, et al. 1996) use the software MUST to build

their model of Rotterdam port area. They model the transportation of the containers

between the various terminals which they call inter-terminal transport (ITT). In (Ottjes

et al. 1994), they simulate a scenario of having a floating terminal that moves around

different terminals in Rotterdam to exchange containers between the terminals. On the

other hand, in (Ottjes et al. 1996), they evaluate two types of equipment for the ITT us-

ing simulation, namely AGVs and Multi-trailer-train system, which is a manned traction

unit pulling a train of trailers on which containers with a maximum of 10 20-footers can

be carried. Bontempi et al. (Bontempi, et al. 1997) simulate the La Spezia container ter-

minal where ship operations, gate operations and train operations are modelled. They

use the model to evaluate various optimisation techniques applied to terminal opera-

tions in La Spezia. In a related work, Gambardella et al. (Gambardella, et al. 1998)

focus on the resource allocation problem and use the simulation model to evaluate the

proposed integer linear programme solution. A later work by the same group, Rizzoli

Chapter 2 Literature Survey 24

et al. (Rizzoli, et al. 1999) use a software MODSIM III to build a model of La Spezia

Container Terminal, which is likely to be an enhanced version of the model presented

in the 1997 paper. The model is used to convince management of new policies derived

from optimisation techniques. However, truck congestion is not simulated in detail in

all three papers. Yun and Choi (Yun & Choi 1999) use SIMPLE++ software to build a

model of the container terminal in Pusan, Korea, with ship operations and gate opera-

tions. They adopt an object oriented design, which is claimed to be more flexible than

any other available simulation package like UNCTAD, PORTSIM and the MIT port simu-

lator. Legato and Mazza (Legato & Mazza 2001) use a queuing network model to model

the arrival, berthing and departure processes of vessels at a container terminal, and a

simulation model is built to perform “what if” analysis of the berth planning problem.

Jarjoui et al. (Jarjoui, et al. 2001) simulate a multi-agent cooperation system to achieve

good terminal performance. They build a simulation called MASH (Multi-Agent System

for Harbour activities) for this purpose. Itmi et al. (Itmi, et al. 2000, Itmi, et al. 2001)

present their object oriented terminal simulation system SGTC. They experiment with

a concept, called Noria, of sharing of straddle carriers between two vessels. Rida et

al. (Rida, et al. 2003) develop a terminal simulator using object oriented modelling,

using UML for design and JAVA for programming. It is meant for evaluation of differ-

ent load and discharge operations, storage policies and resource allocation algorithms.

Henessey et al. (Henessey, et al. 2004) present a berth allocation simulation system

coded in JAVA. It is used to evaluate different berth allocation policies for Skandia Har-

bour , Norfolk International Terminal, and Seagirt Terminal in Baltimore. Guenther et

al. (Guenther, et al. 2006) propose using simulation for evaluating a combination of

Chapter 2 Literature Survey 25

automated transportation modes, dispatching strategies, and stochastic variations.

Note that there are also some commercial players in the arena of container terminal

simulation. However, their works may not be publicly published. For example, TBA Ned-

erland (http://www.tba.nl/) provides container terminal consultancy services using sim-

ulation, and they also provide a simulation software (called CONTROLS) that can com-

municate directly with industrially used terminal operating systems (TOS) like NAVIS

(http://www.navis.com/). Total Soft Bank (http://www.tsb.co.kr/) also provides a simula-

tion software (called Operating - CATOS Port Simulator (O-CPS)), that communicates

with CATOS (a TOS). A Singapore registered company SIMPLUS (http://www.simplus.sg/)

also provides simulation studies on container terminals for Maritime Port Authority of

Singapore and PSA Singapore.

2.6 General

Some general papers related to container terminals are also reviewed. At the strategic

planning level, terminals are concerned with their handling capacity and their business

cost models so that they can maximise their revenue and profits. Many of these are

modelled with simulation. Kulick and Sawyer (Kulick & Sawyer 1999) propose a sim-

ulation model to analyse container terminal handling capacity. They call the system

SIMCAP, (simulation-based capacity analysis platform). Benacchio et al. (Benacchio,

et al. 2001) study the economic implication of dedicated terminals. Kim and Kim (Kim

& Kim 2002) create a cost model for evaluating the optimal yard configuration, con-

sisting of the amount of storage space and number of yard crane required. Kia et al.

Chapter 2 Literature Survey 26

(Kia, et al. 2002) study using simulation the impact of terminal capacity using two ap-

proaches, namely, stacking all containers in the yard and transporting them out later,

versus transporting many of them out of the terminal as soon as possible. Shabayek

and Yeung (Shabayek & Yeung 2002) use software WITNESS to build the simulation

model for the marine operations in the channels and the anchorage at the Kwai Chung

terminals. They study how the capacity of the four terminals (HIT, HIT-COSCO, SLOT

and MTL) can be limited by the marine operations. Fung et al. (Fung, et al. 2003)

study the impact of terminal handling charges on overall shipping charges. Huang and

Chu (Huang & Chu 2004) study the cost of operating a container terminal with varying

choices of yard handling system, such as rubber tyre gantry cranes or rail mounted

gantry cranes. Part of a US$238 million project to expand Alabama State Docks in

Mobile Alabama, Schroer et al. (Schroer, et al. 2004) simulate the handling capacity

of the newly expanded terminal with various demand scenarios. Hsu and Hsieh (Hsu

& Hsieh 2005) analyse the cost of operating an ultra large container ship and find that

one of the factors among many that make ultra large container ships economical is port

efficiency.

Some papers discuss the issue of manpower deployment in a terminal. Kim et al.

(Kim, et al. 2004) study the problem of human operator scheduling using a constraint

satisfaction technique. Legato and Monaco (Legato & Monaco 2004) study the problem

of generating a shift roster pattern, and then short term planning methods to handle day-

to-day deployment issues. A heuristic for set covering problem is used to generate the

roster pattern, while a branch and bound algorithm is used for the day-to-day planning.

Other more general papers are as follows. Rebollo et al. (Rebollo, et al. 2000)

Chapter 2 Literature Survey 27

propose a multi-agent architecture for a real time container terminal control system as it

is computationally too complex for a integrated solution. Tongzon (Tongzon 2001) uses

data envelopment analysis to study the efficiency of ports as there are many indicators

that can measure the efficiency of ports and they are non-parametric. Murty et al.

(Murty, et al. 2005a, Murty et al. 2005b) outline the decisions made by a container

terminal on a daily basis and propose that a decision support system is needed for

such complicated decision making. Also, general review papers on container terminal

research are in (Meersmans & Dekker 2001, Steenken, et al. 2004, Vis & de Koster

2003, Chen 2003, Stahlbock & Voβ 2008).

Chapter 3 Motivation and Problem Definition 28

Chapter 3

Motivation and Problem Definition

The earlier chapter on literature survey provides us with the insight on what has been

done, and it motivates us to study the yard plan template problem, where few works

have been done. The outline of this chapter is as follows. In Section 3.1, we present

the motivation of our work, by observing what is presented in the literature, and what

might be needed in the container terminal industry; we list down three areas of focus in

the thesis addressing the needs and gaps of the container terminal industry. In Section

3.2, we set up the scope of the problem assumed in this thesis, and list the assumptions

made. Then in Section 3.3, we address the first area of focus, by presenting a generic

yard plan template problem formulation. We summarise the chapter in Section 3.4

3.1 Motivation

From the literature survey in the earlier chapter, we see that there are many papers that

study the various aspects of yard planning. They have also covered various yard plan

strategies, and make comparisons between them. Only one paper by Lee et. al. (Lee

et al. 2006) addresses the yard plan template problem. However, they examine only

Chapter 3 Motivation and Problem Definition 29

the consolidated and dedicated yard plan strategy. From all the papers reviewed, and

to the best of our knowledge, we do not come across any work that presents a generic

model of the yard plan template problem that caters for a variety of yard plan strategies.

We also do not come across any work that solves the yard plan template problem with

non-deterministic inputs. We note that uncertainty prevails in real life, and container

terminals are adjusting their plans when input changes. Hence, the motivations of the

thesis to focus on the yard plan template problem in the following three areas are as

follows.

1. Different terminals may find that different yard plan strategies work better for their

terminals with their unique combinations of services, yard layouts and equipment

configurations. The yard plan template can be used as a means to compare

different strategies. We find that papers that study yard plan strategies make

different assumptions of the problem and hence model their problem differently. It

makes comparison of results across papers difficult. To help terminals to discover

the best strategy for their scenario, we will require the problem to be defined

generically so that solutions that apply different strategies can be generated and

compared. Hence, we first focus on formulating a generic model that defines

the yard plan template problem that is applicable to a wide variety of yard plan

strategies.

2. Secondly, search engines can be designed to discover the best yard plan strategy,

and that requires the generic yard plan template problem to be solved in a reason-

able amount of time. As the generic problem differs in complexity when applied to

different strategies, we propose to approach the problem by having different solu-

Chapter 3 Motivation and Problem Definition 30

tion techniques for different strategies. As the scope of covering all strategies can

be too large for the thesis, we only address two strategies in this thesis, namely,

consolidated and dedicated strategy, and consolidated and non-dedicated strat-

egy.

3. Lastly, after a terminal has adopted a strategy, a yard plan template can then be

generated and implemented. However, uncertainty of events prevails in reality,

and terminals usually modify and adapt their yard plan template to the changes,

which may not be optimum. While the community for robust optimisation may

suggest developing a robust plan – a plan that remains feasible when subjected

to uncertainty, we will like to have a plan that can be changed (recover) easily

to an optimal solution after the uncertainty is revealed. This is because robust

solutions are too conservative to remain feasible after uncertainty is revealed.

On the other hand, if we allow changes without any cost to be made after the

uncertainty is revealed, we obtain an optimum solution of the realised scenario.

However, changes are usually not free, and hence the changes have to be “easy”,

and we assume the degree of difficulty of the proposed change can be measured

by a cost function. This will mean that we have to have a starting solution that is

“nimble” such that future changes are made “easy”. Hence, we call this the nimble

yard plan template problem. While many types of inputs to the problem can be

uncertain, we learn from a global terminal operator that changes to the vessels

arrival schedule have the greatest impact to operation efficiency for a terminal

that adopts the consolidated strategy. Hence we focus on the nimble yard plan

template with uncertainty in vessel arrival schedule. We explore various options

Chapter 3 Motivation and Problem Definition 31

of recovery policy and compare the quality of the solutions.

3.2 Scope and assumptions

In this section, we provide the scope of our problem and assumptions made in the

thesis. We first present the yard configuration, which includes yard layouts, yard equip-

ments used, and the size of the terminal. Then we present the list of assumptions that

will apply throughout this thesis.

Figure 3.1: Perspective view of a yard block, showing how containers are stacked in the
block and notations of slot, row and level

Figure 3.2: Plan view of yard block, illustrating trucks being served by yard cranes along
the length of the block

Chapter 3 Motivation and Problem Definition 32

3.2.1 Container yard configuration

In this thesis, we consider a container terminal with automated rail mounted gantry

(RMG) yard cranes fixed to yard blocks. We assume containers are stacked lengthwise

along the length of the block as illustrated in Figure 3.1. In this example in Figure 3.1,

the block has ten slots, six rows and four levels of containers. Each slot has a length

of 20 feet, capable of stacking 20-footers. 40-footers will occupy two consecutive slots

(see Figure 3.1, slot 1 to 2, and slot 7 to 8 for illustration). For convenience, we call a

slot that stacks 20-footers a “20-footer slot”, and a pair of slots that stacks 40-footers a

“40-footer slot”. The slots that are used to stack 40-footers are not fixed, i.e. any pair of

slots can be used. However, there should not be any mixing of 20- and 40-footers in the

same slot. The RMG is able to move along the length of the yard block, and lift on or

lift off containers from trucks that drive on the service lane along the length of the block

(See Figure 3.2 for illustration).

The model we present in this thesis is not specific to any particular layout of where

the yard blocks should be placed in the terminal. However, in all the experiments that

are carried out in this thesis, we have assumed a medium sized container terminal that

has the layout shown in Figure 3.3. This terminal has 20 yard blocks, each with 40 ×

20-footer slots. Each yard block has three RMGs that are fixed to the yard blocks. As a

reality check, we note that this layout is comparable to a medium size container termi-

nals, such as Incheon Container Terminal in South Korea, Fuzhou Qingzhou Container

Terminal in China and Asia Container Terminal in Hong Kong, as illustrated in Figure

3.4.

C
hapter3

M
otivation

and
P

roblem
D

efinition
33

Figure 3.3: Yard layout used for the experiments - 20 blocks of 40 slots each, supporting three berths

Chapter 3 Motivation and Problem Definition 34

(a) (b)

(c)

Figure 3.4: Example of yard layout comparable to the experimental layout. (a) Incheon
Container Terminal in South Korea (b) Fuzhou Qingzhou Container Terminal in China
(c) Asia Container Terminal in Hong Kong

3.2.2 Assumptions

We have made the following assumptions.

1. Storage and retrieval may come from ship discharge or loading at the quay, train

discharge or loading from an inter-modal terminal, and trucks that bring containers

by road into or out of the terminal via the container gate. As a generalisation, a

Chapter 3 Motivation and Problem Definition 35

train can be viewed as a vessel where the time window to load the wagons and

discharge the wagons is the port stay of the vessel. Similarly, in-gate can be

viewed as a discharging vessel and out-gate as a loading vessel, and the opening

hours of the gate is the port stay of the vessel. Without loss of generality, we

assume that all activities in our problem come from vessel discharge and loading.

2. We assume that only vessels that belong to some services can call at the terminal.

Each service calls at the terminal once a week, and the arrival schedule repeats

on a weekly cycle.

3. We assume that a day has three eight-hour work-shifts, and the time resolution

required for planning is in work-shifts. Therefore, a week is partitioned into 21

equal time periods.

4. We further assume that, for each service, the number of containers arriving in

each time period prior to the loading of this service is known, and is repeating in

a weekly cycle.

5. A container that arrives into the terminal will stay in the same yard stack through-

out its stay in the terminal, until it is retrieved for loading into the vessel.

6. Containers to be loaded into a service will always arrive in the yard before the start

of the loading period of the service. No containers to be loaded into a service will

arrive during the loading period of the service.

7. No containers will stay longer than one week in the yard.

Chapter 3 Motivation and Problem Definition 36

8. As we have assumed that the terminal uses RMG as yard cranes, the term RMG

contention is then analogous to the term “yard crane contention” defined earlier.

9. Any violations to the activity concentration and RMG contentions collectively will

be referred to as violations.

10. We assume that any violation can be resolved within the time period where it

occurs, and there will be no carry forward of violations from one time period to

another.

3.3 A generic yard plan template problem

In this section, we address the first area of focus for the thesis – a generic yard plan

template problem definition. The yard plan template problem definition has to include

both the scenario and the yard plan strategy, and it has to be generic to cater for dif-

ferent yard plan strategies. The generality of the definition relies heavily on a set of

input parameters, which we refer to as the generic yard plan template specification.

The various strategies are manifested in the generic yard plan template specification

as a combination of a yard space partition, grouping and zoning of the partitioned yard

space, threshold values that are dependent on the partition and the grouping and zoning

method, and a couple of flags. The details of the specification are given in Section 3.3.1,

and the formal problem definition is given in Section 3.3.2. We have also illustrated with

some examples how various strategies are represented using the generic specifica-

tion in Section 3.3.3. The constraints binding the input parameters from the problem

specification to the solution and objective function are best represented mathematically

Chapter 3 Motivation and Problem Definition 37

using a mathematical programming approach. Section 3.3.4 presents a mixed integer

programming (MIP) model for the problem.

3.3.1 Generic yard plan template specification

Generically, given a time window of any duration, we partition the time window into equal

sized time periods according to the required time resolution. Based on our assumption,

we partition a week into a set of 21 equal time periods, and we call this set T . For

simplicity, we let the set T to be {1, 2, . . . , 21}. Note also that in a yard plan template

where plan repeats on a weekly basis, the time window wraps around from time period

21 back to 1.

The generic yard plan template specification is denoted by two tuples DT and ST ,

representing the two components of the specification, namely, demand and supply,

with a given T . The components of DT and ST are given as DT = (V , DA20
it , DA

40
it ,Li)

and ST = (R,G,B, C, CSr, SRr,MAg, RY,MYb,W
k,W p, SH,OS). The details are

described in the following two subsections.

Demand specification DT

V = Set of services

DA20
it = Number of discharge 20-footers received by service i at time t

DA40
it = Number of discharge 40-footers received by service i at time t

Li = Set of time periods where each element t is the time period when

service i is loading its containers

Chapter 3 Motivation and Problem Definition 38

The set V contains the set of services that calls at the terminal. Each service i calls

at the terminal once a week. For each service i, the terminal will receive containers to

be loaded into the service i into the yard, throughout the week. When the service calls

the terminal for loading, all the containers for this service will be loaded into the service.

We let DA20
it and DA40

it denote the number of 20-footers and 40-footers, received by

service i at time period t into the yard, respectively. Hence the total number of 20-

footers and 40-footers in the terminal for loading into service i are simply
∑

t∈T DA
20
it

and
∑

t∈T DA
40
it , respectively. We also let Li denote the set of time periods, where

t ∈ Li implies that service i is loading its containers in time period t. As an illustration

of how Li and DAit are defined, especially for the case of wrapping around at the end

of the last time period, an example is given in Figure 3.5.

Supply specification ST

R = Set of ranges

G = Set of groups where each element g is a set of ranges that belong to

the group

B = Set of blocks where each element b is a set of ranges that are in the

block

C = Set of clusters where each element c is a set of ranges that can be

combined to form a cluster

CSr = Capacity in TEU for a slot in range r

SRr = Number of slots in range r

MAg = Maximum amount of activity allowable in group g in each time period

Chapter 3 Motivation and Problem Definition 39

Example 1: Li = {19, 20, 21} , Ai = {},

Example 2: Li = {10, 11, 12}, Ai = {13, 14, 15, 16, 17, 18, 19, 20, 21} ,

Example 3: Li = {1, 2, 21},Ai = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21} .

Figure 3.5: Example showing how Lis and Ais are derived.

RY = Maximum amount of activity a yard crane can handle per time period

MYb = Number of RMG in block b

W k = Weight of activity concentration in the objective function

W p = Weight of RMG contention in the objective function

SH = 1 if sharing is allowed, 0 otherwise

OS = 1 if the yard plan template is in one-slot mode

Chapter 3 Motivation and Problem Definition 40

The yard is made up of multiple yard blocks and each block is further subdivided

into slots. Depending on the yard planning strategy being modelled, we decide on the

space resolution (in number of slots) and we partition the yard into ranges, each made

up of consecutive slots of the size of the decided resolution. We call the set of ranges

R.

We let SRr denote the size (in slots) for range r. We allow SRr to vary with r as the

number of slots in some blocks may not be a multiple of the required resolutions, and

hence some ranges are forced to be smaller or larger. The storage capacity of each

slot is indicated as CSr, which is the maximum TEU that a slot in range r may stack.

We also allow CSr to vary with r as terminals may have different types of yard block

configurations in the same yard.

We let G denote the set of groups, where each group g ∈ G is a set of ranges that

belong to the same group. Activities occurring in the ranges in the same group g are

used in the computation of the activity concentration for the group g as follows. We

define a threshold MAg for each g, where MAg is the maximum number of activities

allowable in group g in each time period t. Then, the total number of activities in g at

any time period t has to be less than MAg, exceeding which will constitute to activity

concentration violation. In order for the activities in a range r not to be double counted

for violating thresholds in different groups, any surplus of activities in each range that

constitute to this violation will be remembered by the range that causes it, and then the

total violation is a sum over all the violations of the individual range (the mathematical

expression will be shown in the later section). For illustration of how a yard block can

Chapter 3 Motivation and Problem Definition 41

be partitioned into ranges and how the ranges can be grouped, Figure 3.6 shows an

example of a yard block of 20 slots, partitioned into ranges at a resolution of five slots,

and grouped into three groups, with two ranges in each group. Note that G is not a

partition of the yard, as groups may overlap. It is also possible to model congestion

due to interactions between activities in neighbouring blocks (as presented in a paper

by Lee et al. (Lee et al. 2006)) by grouping ranges in neighbouring blocks together.

Figure 3.6: Example of a yard block with 20 slots, partitioned into four ranges of five
slots each, and the ranges grouped into three groups of two ranges each.

We let B denote the set of blocks, where each block b ∈ B is a set of ranges that

belong to the same block. The number of activities in each block in each time period

should not exceed that of the RMG handling capacity, i.e. handling rate of a RMG

multiplied by the number of RMGs in the block (RY × MYb). Any activity count in

excess of this threshold will be added into the RMG contention violations.

W k and W p are the weights given to activity concentration and RMG contention

violations in the objective function, respectively. However, in most practical situations,

they should be equal as activity concentration and RMG violation are calculated in the

same unit of measurement, i.e. number of activities in surplus of a given threshold.

C, SH and OS are strategy-specific parameters. If the strategy requires multiple

Chapter 3 Motivation and Problem Definition 42

consecutive ranges (called a cluster) to be assigned to the same service, then C is a

set of all possible legitimate clusters, where each element c ∈ C is a set of consecutive

ranges that will be grouped to form the cluster. If the strategy does not require cluster

assignment, then C is an empty set. SH is a flag, which when set to 1 indicates that

the strategy allows sharing, i.e. two or more services can be assigned to the same

yard range, while when set to 0 indicates that we do not allow sharing, i.e. each yard

range should be assigned to only one service. OS is another flag, which when set to

1 indicates that the yard plan template assumes a one-slot mode. In a one-slot mode,

the yard must be partitioned into R such that the size of each r is only one 20-footer

slot. Then, a 40-footer will occupy two consecutive ranges r and r+, where r+ denotes

the ranges that is adjacent to r in the same yard block and having slot number bigger

than r. Hence r+ does not exist when r is the last range in the block. Note that for the

case when we are not in the one-slot mode, i.e. OS is set to zero, containers will not be

allowed to straddle across two ranges r and r+.

3.3.2 Problem definition statement

We now give a formal definition of the problem.

PROBLEM DEFINITION 1: Find the matrix X where each element xirt defines the

number of discharging containers received by service i at time t to range r, satisfying

the specification given in (DT ,ST), such that we minimise the weighted sum of

1.
∑

r∈R
∑

t∈T krt, where krt denotes the surplus in number of activities in range

r ∈ R at time t ∈ T , such that the krt contributed to some groups g ∈ G to violate

Chapter 3 Motivation and Problem Definition 43

MAg. (i.e. sum of violations of activity concentration) and

2.
∑

b∈B
∑

t∈T pbt, where pbt denotes the number of activities in excess of yard crane

handling capacity in block b ∈ B and at time period t ∈ T . (i.e. sum of violations

of RMG contention).

3.3.3 Specifications for different yard plan strategies

We now show in a few examples how the generic yard plan template specification can be

used to specify various yard plan strategies. Let us recall that the specification is as fol-

lows: DT = (V , DA20
it , DA

40
it ,Li) and ST = (R,G,B, C, CSr, SRr,MAg, RY,MYb,W

k,

W p, SH,OS).

First, let us first define some of the common settings. For all the elements in the

demand tuple DT , they are not dependent on any yard plan strategies as they specify

only the demand side of the problem. For the supply tuple ST , it is obvious that the value

of CSr (capacity of a slot), RY (handling rate of a RMG), MYb (number of RMGs in a

block), W k (weight of activity concentration) and W p (weight of RMG contention) can

be set independently from any yard plan strategy, and hence they are fixed. Depending

on the definition of the set of ranges R and how they are grouped into G, which will

be different among different yard plan strategies, SRr (size or range r), B (grouping

of ranges to blocks) and MAg (activity thresholds) can be derived according to the

definition of R and G.

Hence, only five of the parameters directly control the yard plan strategy in the spec-

ification, namely R,G, C (set of clusters), SH (sharing) and OS (one-slot mode), and

Chapter 3 Motivation and Problem Definition 44

therefore we only describe how these are set in the following discussion.

Consolidated (by block) with dedicated/non-dedicated strategy

This is probably the simplest strategy. The yard is partitioned to R where each range r

is a yard block. Each group g ∈ G consist of only one range, i.e. a 1-to-1 mapping of

groups to ranges. Since there is no clustering of multiple blocks in the assignment, C is

an empty set. In a non-dedicated strategy where two or more services can be assigned

to the same yard block, i.e. with sharing, then SH is set to 1, otherwise SH is set to 0.

OS is set to zero as this strategy is not in a one-slot mode.

Consolidated (by fixed size yard range) with dedicated/non-dedicated strategy

Let SIZE denote the desired fixed yard range size, and we assume SIZE > 1. We

partition the yard intoR by combining consecutive slots in the same block of size SIZE

into ranges. For blocks with the number of slots in multiples of SIZE, they can be

partitioned exactly. For blocks that are not, we can partition the block to form ranges that

are approximately equal in size, and the average size is not too different from SIZE.

The exact policy of how this case can be handled should be decided by the terminal

operator, and hence we will not prescribe a fixed policy.

The ranges are grouped into groups such that each group consists of ranges in

close proximity such that high number of activities in each group can lead to activity

concentration. The rules of grouping the ranges depends on the SIZE as well as the

geographical location of the ranges, and these are dependent on terminal layout.

Since there is no clustering, C is a empty set. Depending whether it is a non-

Chapter 3 Motivation and Problem Definition 45

dedicated or dedicated strategy, i.e. allowing two or more services to be assigned to

the same yard range or not, then SH is set to 1 or 0, respectively. OS is set to zero as

SIZE is bigger than one.

Consolidated (by variable size yard range) with dedicated/non-dedicated strategy

As the yard ranges are variable in size, we model it by having the yard partitioned into

R, where each range is a single slot range, i.e. SRr = 1 for all r ∈ R. We then define C

such that every c ∈ C is a set of consecutive ranges and it is a legitimate cluster that can

be assigned to services. The set C can be generated in many ways, and for example, we

show a simple algorithm that can generate this set, assuming each cluster size should

be least min number of ranges, and at most max number of ranges (see Figure 3.7).

For illustration, given a block with five slots, and generating clusters of size three to four,

the algorithm will obtain C = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}}.

In this case, we model each r to be one slot, and therefore OS is set to one to

indicate that we allow a 40-footer to be assigned to two consecutive ranges, i.e. in a

one-slot mode. The ranges are grouped into groups G, such that each group consists

of ranges in close proximity such that high number of activities in each group can lead

to activity concentration. SH is set to 1 or 0, depending on whether the strategy allows

sharing or not, i.e. non-dedicated or dedicated strategy, respectively.

3.3.4 A mathematical model

We now formally describe the mathematical model. We first define all the input param-

eters and the decision variables, followed with the complete mathematical model. We

Chapter 3 Motivation and Problem Definition 46

1: for all blocks b ∈ B do
2: enumerate the ranges in b as (1, 2, . . . , |b|)
3: for size = min to max do
4: for i = 1 to (|b| - size + 1) do
5: create a new cluster c = {i, i+ 1, . . . , i+size−1} in C
6: end for
7: end for
8: end for

Figure 3.7: An algorithm for generating the set C.

then provide the detailed explanation of each constraint and the objective function.

Input parameters to the model - constants

T = Set of time periods

DT = (V , DA20
it , DA

40
it ,Li)

ST = (R,G,B, C, CSr, SRr,MAg, RY,MYb,W
k,W p, SH,OS)

Ai = Derived from Li, the set of time periods that are after the loading for service i.

M = Big Number

Decision variables

x20
irt = Number of 20-footers received by service i into range r in time t

x40
irt = Number of 40-footers received by service i into range r in time t

y20
irt = Number of 20-footer retrieval activities by service i from range r in time t

y40
irt = Number of 40-footer retrieval activities by service i from range r in time t

Chapter 3 Motivation and Problem Definition 47

d20
irt = Number of 20-footer spaces reserved for 20-footers in range r for service i

at time t

d40
irt = Number of 40-footer spaces reserved for 40-footers in range r for service i

at time t

uir = 1 if service i is assigned to range r, 0 otherwise

krt = Number of excess activities in range r at time t, such that the krt

contributed to some groups g ∈ G to violate MAg

pbt = Number of activities which need to wait for a yard crane, measured in

number of activities above the capacity of the yard cranes in the block

b at time t

wr = 1 if range r has a 40-footer container, 0 otherwise

s20
r = Number of 20-footer slots needed in range r

s40
r = Number of 40-footer slots needed in range r

hic = 1 if cluster c is assigned to service i, 0 otherwise.

x20
irt, x

40
irt, pbt, krt ≥ 0 are real variables. uir, wr, hic are binary variables. s20

r , s
40
r ≥ 0 are

integer variables. y20
irt, y

40
irt, d

20
irt, d

40
irt are derived variables.

Model

Objective Function

Minimise

(
W k

∑
r∈R

∑
t∈T

krt +W p
∑
b∈B

∑
t∈T

pbt

)

Chapter 3 Motivation and Problem Definition 48

Constraints

∑
r∈R

x20
irt = DA20

it ∀i ∈ V , t ∈ T (3.1)∑
r∈R

x40
irt = DA40

it ∀i ∈ V , t ∈ T (3.2)

y20
irt =

(∑
t′∈T x

20
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (3.3)

y40
irt =

(∑
t′∈T x

40
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (3.4)

∑
t∈T

y20
irt +

∑
t∈T

y40
irt +OS

∑
t∈T

y40
ir−t ≥ uir ∀i ∈ V , r ∈ R (3.5)∑

t∈T

y20
irt +

∑
t∈T

y40
irt +OS

∑
t∈T

y40
ir−t ≤ uirM ∀i ∈ V , r ∈ R (3.6)∑

i∈V

uir ≤ 1 +M(SH) ∀r ∈ R (3.7)

∑
r∈g

(∑
i∈V

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− krt

)
≤ MAg ∀g ∈ G, t ∈ T (3.8)

∑
i∈V

∑
r∈b

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− pbt ≤ MYb(RY) ∀b ∈ B, t ∈ T (3.9)

Chapter 3 Motivation and Problem Definition 49

d20
irt =

∑
t′∈Ai and t′≤t

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (3.10)

d20
irt =

∑
t′≤t

x20
irt′ +

∑
t′∈Ai

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (3.11)

d40
irt =

∑
t′∈Ai and t′≤t

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (3.12)

d40
irt =

∑
t′≤t

x40
irt′ +

∑
t′∈Ai

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (3.13)

s20
r ≥

∑
i∈V d

20
irt

CSr
∀r ∈ R, t ∈ T . (3.14)

s40
r ≥

∑
i∈V d

40
irt

CSr
∀r ∈ R, t ∈ T . (3.15)

s20
r + (2−OS)s40

r ≤ SRr ∀r ∈ R (3.16)

∑
i∈V,t∈T

y40
irt ≤ wrM +M(1−OS) ∀r ∈ R (3.17)

∑
i∈V,t∈T y

20
irt +

∑
i∈V,t∈T y

20
ir+t +

∑
i∈V,t∈T y

40
ir+t ≤M(1− wr) +M(1−OS)

∀r ∈ R,∃r+ ∈ R
(3.18)

∑
i∈V,t∈T

y40
irt ≤ M(1−OS) ∀r ∈ R,¬∃r+ ∈ R (3.19)

Chapter 3 Motivation and Problem Definition 50

(1− hic)M +
∑
r∈c

uir ≥ |c| ∀i ∈ V , c ∈ C (3.20)

(1− uir)M +
∑

(r∈c)∧(c∈C)

hic ≥ 1 ∀i ∈ V , r ∈ R (3.21)

∑
(r∈c)∧(c∈C)

(hic) ≤ 1 + (1− uir)M ∀i ∈ V , r ∈ R (3.22)

Derivation of the constraints

Constraints 3.1 and 3.2 : Number of containers received

Constraints 3.1 and 3.2 ensure that the total number of 20-footers and 40-footers

received at any time period t for service i must equate to DA20
it and DA40

it , respectively.

Constraints 3.3 and 3.4 : Number of retrieval activities

As retrieval of the
∑

t∈T x
20
irt and

∑
t∈T x

40
irt containers for service i in range r may

stretch over a few time periods |Li|, and we do not know exactly the sequence in which

these containers will be retrieved from range r, hence we need to make an assumption

on how these retrieval activities are divided over |Li| time periods. While these activities

may possibly be spread out evenly over the |Li| periods, or happen all in one time period

and leaving other periods with no activities, or in any other combinations, we want to

estimate the values for y20
irt and y40

irt so that we do not underestimate the extent of activity

concentration or RMG contention.

We note that the values of y20
irt and y40

irt corresponding to the above extreme cases

are
∑

t∈T x
20
irt

|Li| and
∑

t∈T x
40
irt

|Li| , and
∑

t∈T x
20
irt

1
and

∑
t∈T x

40
irt

1
, respectively. The denominator is

the number of periods we assume the loading will spread out. In the constraints 3.3 and

3.4, we have assumed that we take the average of the two extremes, i.e. the activities

Chapter 3 Motivation and Problem Definition 51

are spread to (1 + |Li|)/2 number of time periods. Hence the values of y20
irt and y40

irt are

set as
∑

t∈T x
20
irt

(1+|Li|)/2 and
∑

t∈T x
40
irt

(1+|Li|)/2 , respectively.

Constraints 3.5, 3.6, and 3.7 : Assignment of ranges to services

Constraints 3.5 and 3.6 ensure that the value of uir is set to 1 when range r is

assigned to service i (i.e. when yirt’s are not zero), and 0 otherwise. Note that for

convenience, we have also let r− denote the previous range to r, i.e. r+− = r. In

the case when OS = 1, if a 40-footer belonging to service i is assigned to range r−,

it makes range r to be assigned to i as well, as a 40-footer occupies two consecutive

ranges. The term OS
∑

t∈T y
40
ir−t in the constraints 3.5 and 3.6 ensures the assignment

of a 40-footer to range r− is considered for the setting of uir.

In the case when SH = 0 (a dedicated yard plan strategy where we do not allow

sharing of ranges between services), at most one service i should have uir = 1 for

each r. Hence constraint 3.7 ensures
∑

i∈V uir ≤ 1, and in the case where SH = 1,∑
i∈V uir is unbounded.

Constraint 3.8 : Activity concentration violation

We let krt denote the surplus number of activities in range r at time t, such that

the krt contributes to some groups g ∈ G to violate MAg. To further elaborate, if the

activities in every range r at time t can be reduced by krt simultaneously, then all groups

g ∈ G will have activity levels within the limits of MAg, and this is ensured in constraint

3.8. Although krt has no upper bound, krt is minimised in the objective function. Hence,

the value of krt will be the minimum number of activity concentration violations each

range r at time t can get.

Chapter 3 Motivation and Problem Definition 52

Constraint 3.9 : RMG contention violation

Constraint 3.9 ensures that the number of activities in each block is less than or

equal to the total handing capacity of the RMGs in the block (i.e. number of RMGs

multiplied by the handling rate of each RMG). Any violation will be captured in the slack

variable pbt as RMG contention. Although pbt has no upper bound, we also minimise pbt

in the objective, and hence the value of pbt will be the minimum number of violations of

the RMG contention.

Constraints 3.10, 3.11, 3.12 and 3.13 : Derived variables d20
irt and d40

irt

We let d20
irt and d40

irt denote the number of yard spaces reserved for 20- and 40-

footers, respectively, for service i in range r at time period t. Yard space is reserved for

the service i as long as its containers are in the yard, and we continue to reserve the

space during the loading periods Li of the service. For illustration, Figure 3.5 (in Page

39) gives three scenarios and shows graphically how the yard spaces are reserved with

respect to the number of TEUs in the yard (inventory level).

As the yard plan template assumes that time will wrap around from the last time

period back to 1, we note that any containers received for service i after the loading

period Li will occupy the yard space until the end of the time window, and continue

to do so at time period 1, until the end of the loading period Li. This can also be

observed from the Figure 3.5. For convenience, we define a derived input parameter

Ai to be the set of time periods after the loading period of service i. Figure 3.5 also

illustrates how each Ai is defined with respect to the Li. Constraints 3.10 and 3.12

ensure that yard spaces are reserved for time periods in Ai by accumulating received

Chapter 3 Motivation and Problem Definition 53

containers only in Ai. On the other hand, Constraints 3.11 and 3.13 ensure that yard

spaces are reserved for time periods outside Ai by accumulating received containers

outside Ai (i.e.
∑

t′≤t x
20
irt′ and

∑
t′≤t x

40
irt′), and all the containers received inside Ai

(i.e.
∑

t′∈Ai
x20
irt′ and

∑
t′∈Ai

x40
irt′) as they are wrapped around.

Constraints 3.14, 3.15 and 3.16 : Slot constraint

Since 20-footers and 40-footers cannot be stacked in the same slot in a range, we

have to compute the number of slots reserved for 20- and 40-footers separately and

ensure that the total is less than the number of slots in the range. We let the integer

variables s20
r and s40

r denote the number of 20-footer slots and 40-footer slots required

in range r, respectively.

The number of slots needed for 20-footers or 40-footers in a time period is computed

using the total space reservation for 20-footers or 40-footers divided by the slot capacity,

respectively. Since the demand for slots changes over time, we take the maximum over

all time periods. Hence, s20
r =

⌈
maxt∈T

(∑
i∈V d20irt

)
CSr

⌉
and s40

r =

⌈
maxt∈T

(∑
i∈V d40irt

)
CSr

⌉
.

These can be re-written as Constraints 3.14 and 3.15.

Note that in the case when OS = 0 (not in a one-slot mode), s40
r denote the number

of 40-footer slots, and therefore it requires double the number in terms of slots (which

are 20 feet wide) compared to s20
r . Hence, the total number of slots required in range r

is expressed as s20
r + (2 × s40

r). However, in the case when OS = 1, when a 40-footer

occupies a range r, it also occupies the next range r+. The usage of the other slot r+

is not accounted for in range r and hence the total number of slots required in range

r is expressed as s20
r + s40

r . Combining the two cases, the constraint is then given by

Chapter 3 Motivation and Problem Definition 54

Constraint 3.16.

Constraints 3.17, 3.18 and 3.19 : Modelling of 40-footers occupying two consecu-

tive ranges when OS = 1

Since we cannot stack 20-footers and 40-footers in the same slot, and whenOS = 1,

we have assumed that a 40-footer occupying range r also occupies r+, we have to

ensure that there is no conflict in size in the assignment of range r and r+. Hence,

when a 40-footer occupies range r, we will constrain the range r not to have a 20-footer

assigned, and the next range r+ not to have any containers assigned. This is achieved

by Constraint 3.17 setting the indicator variable wr to 1 whenever range r has at least

a 40-footers assigned, and Constraint 3.18 to ensure that no 20-footers in range r and

no containers in range r+. Constraint 3.19 ensures that a 40-footer cannot be assigned

to the last range in a block (indicated by ¬∃r+ ∈ R), otherwise it will protrude out of the

block.

Constraints 3.20, 3.21 and 3.22 : Constraints for cluster formation

In a strategy where C is specified (i.e. consecutive ranges are to be assigned to the

same service as a cluster), we have to ensure feasibility in the assignment of ranges

to the services such that if a range r is assigned to a service i, then there must exist

exactly a cluster c in C, where r ∈ C and for all r′ ∈ c, they must be also assigned

to i. This is achieved by introducing a binary indicator variable hic, which when set to

1 means that cluster c is assigned to i, and zero otherwise. Constraint 3.21 and 3.22

ensure that when r is assigned to a service i, there is exactly one c such that hic = 1.

To ensure that all ranges r′ ∈ c are also assigned to the same service, we sum the

Chapter 3 Motivation and Problem Definition 55

assignment variable uir for all the ranges in c and check that it is exactly equal to the

size of c, and this is done in Constraint 3.20.

The objective function

The objective function is the weighted sum of the k and p variables. The values of both

k and p variables store the number of activities that have to wait within a time period

due to either activity concentration or RMG contention. The weights W k and W p are

used to provide the relative importance of these two types of waiting. As both k and p

are of the same unit of measurement, in most practical cases, both the weights should

be set to 1, that is, they should be weighted equally.

3.4 Summary

In this chapter, we present the motivation of the thesis in three areas, namely, defining a

generic yard plan template problem, solving the problem in a reasonable time, and lastly

finding nimble solutions that can recover easily after uncertainty is revealed. We define

the scope of the problem by providing the terminal configuration used in the thesis,

and a list of assumptions made. We then present the first area of focus, a generic

yard plan template problem, by first giving a generic problem specification, followed

by a detailed mathematical model. In the following two chapters, we will present the

solution approaches to solve the yard plan template problem quickly when inputs are

deterministic, and solution approaches to a good yard plan template when inputs are

non-deterministic, respectively.

Chapter 4 Static Yard Plan Template Model 56

Chapter 4

Static Yard Plan Template Model

A search engine can be designed to discover the best yard plan strategy for a con-

tainer terminal given its scenario. However, that requires the generic model presented in

Chapter 3 to be solved repeatedly, and hence it has to be solved in a reasonable amount

of time. As the complexity of the problem depends on the strategy, we propose having

different solution approaches for different strategies. Instead of covering all yard plan

strategies, which could be too large a scope for the thesis, in this chapter, we present

solution approaches to solve some cases of the generic yard template problem. We will

cover only two strategies, namely, 1) consolidated and dedicated strategy, and 2) con-

solidated and non-dedicated strategy. By consolidated, we mean that the containers to

be loaded into the same service will be stacked into groups with fixed number of slots

in each group. In a dedicated strategy, containers to be loaded into different services

cannot be mixed in a same group, while in a non-dedicated strategy, containers to be

loaded into different services can be mixed in the same group.

As the mathematical model given in Chapter 3 Section 3.3.4 is meant to be generic

for all strategies, we reproduce a simplified version of the same model in Section 4.1

Chapter 4 Static Yard Plan Template Model 57

for the two above-mentioned strategies. We then present two solution approaches as

follows. In Section 4.2, we present the first solution approach as solving the math-

ematical model using ILOG CPLEX. However, we find that the run time is extremely

long, and that motivates us to re-examine some of the constraints and we find that by

re-modelling some of the constraints, we reduce the run time tremendously. The new

model is presented, and the results of the experiments are also discussed. In Section

4.3, we present the second solution approach, which is a heuristic algorithm based on

local search. This heuristic is designed only for consolidated and dedicated strategy,

exploiting the non-sharing property. The algorithm and the experimental results are

presented. Finally, we summarise the chapter in Section 4.4.

4.1 A Mathematical Model

We simplify the mathematical model for the consolidated strategy by setting OS = 0

and C to be an empty set (i.e. no clusters). We partition the yard intoR, and the ranges

in R are the groups that the model will assign services to. Let’s call this simplified

mathematical model Model ORIG, and describe it as follows.

Chapter 4 Static Yard Plan Template Model 58

Input parameters to the model - constants

T = Set of time periods

DT = (V , DA20
it , DA

40
it ,Li)

ST = (R,G,B, C, CSr, SRr,MAg, RY,MYb,W
k,W p, SH,OS)

Ai = Derived from Li, the set of time periods that are after the loading for service i

M = Big Number

Decision variables

x20
irt = Number of 20-footers received by service i into range r in time t

x40
irt = Number of 40-footers received by service i into range r in time t

y20
irt = Number of 20-footer retrieval activities by service i from range r in time t

y40
irt = Number of 40-footer retrieval activities by service i from range r in time t

d20
irt = Number of 20-footer spaces reserved for 20-footers in range r for service

i at time t

d40
irt = Number of 40-footer spaces reserved for 40-footers in range r for service

i at time t

uir = 1 if service i is assigned to range r, 0 otherwise

krt = Number of excess activities in range r at time t, such that the krt

contributed to some groups g ∈ G to violate MAg

pbt = Number of activities which need to wait for a yard crane, measured in

number of activities above the capacity of the yard cranes in the block

b at time t.

s20
r = Number of 20-footer slots needed in range r

s40
r = Number of 40-footer slots needed in range r

Chapter 4 Static Yard Plan Template Model 59

x20
irt, x

40
irt, pbt, krt ≥ 0 are real variables. uir are binary variables. s20

r , s
40
r ≥ 0 are integer

variables. y20
irt, y

40
irt, d

20
irt, d

40
irt are derived variables.

Objective function

Minimise

(
W k

∑
r∈R

∑
t∈T

krt +W p
∑
b∈B

∑
t∈T

pbt

)

Constraints

∑
r∈R

x20
irt = DA20

it ∀i ∈ V , t ∈ T (4.1)∑
r∈R

x40
irt = DA40

it ∀i ∈ V , t ∈ T (4.2)

y20
irt =

(∑
t′∈T x

20
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (4.3)

y40
irt =

(∑
t′∈T x

40
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (4.4)

∑
t∈T

y20
irt +

∑
t∈T

y40
irt ≥ uir ∀i ∈ V , r ∈ R (4.5)∑

t∈T

y20
irt +

∑
t∈T

y40
irt ≤ uirM ∀i ∈ V , r ∈ R (4.6)

∑
i∈V

uir ≤ 1 +M(SH) ∀r ∈ R (4.7)

∑
r∈g

(∑
i∈V

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− krt

)
≤ MAg ∀g ∈ G, t ∈ T (4.8)

Chapter 4 Static Yard Plan Template Model 60

∑
i∈V

∑
r∈b

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− pbt ≤ MYb(RY) ∀b ∈ B, t ∈ T (4.9)

d20
irt =

∑
t′∈Ai and t′≤t

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (4.10)

d20
irt =

∑
t′≤t

x20
irt′ +

∑
t′∈Ai

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (4.11)

d40
irt =

∑
t′∈Ai and t′≤t

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (4.12)

d40
irt =

∑
t′≤t

x40
irt′ +

∑
t′∈Ai

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (4.13)

s20
r ≥

∑
i∈V d

20
irt

CSr
∀r ∈ R, t ∈ T . (4.14)

s40
r ≥

∑
i∈V d

40
irt

CSr
∀r ∈ R, t ∈ T . (4.15)

s20
r + 2s40

r ≤ SRr ∀r ∈ R (4.16)

4.2 Approach 1: Solving as a mathematical model

We solve the problem by solving the mathematical model in ILOG CPLEX. Experiments

with the model ORIG show that the run time is too long and lead us to re-model some

of the constraints into a new model IMPR. We then present experimental results com-

paring ORIG and IMPR.

4.2.1 Experimental setup

We conduct the experiments with the model ORIG coded with CPLEX 11.0 running a

single thread on an Intel Core 2 Duo 3.16 GHz machine with 3 GB RAM. Experiments

Chapter 4 Static Yard Plan Template Model 61

Figure 4.1: Example of a yard block with 20 slots, partitioned into four ranges of five
slots each, and the ranges grouped into three groups of two ranges each.

are conducted on a medium-sized terminal capable of berthing three vessels at the

same time as described in Chapter 3, Section 3.2. We further partition the blocks into

ranges of five slots for the set R. Adjacent ranges are grouped in pairs into g ∈ G

as illustrated in Figure 4.1. MAg are set to 120. We also assume a RMG is able to

handle 120 moves per time period, and each yard block has three RMGs. The weights

for activity concentration and RMG contention, W k and W p, are both set to 1. This is

because both measurements (i.e. krt and pbt) are in the same unit of measure, being

the number of activities exceeding the thresholds, and hence a unit of violation in krt is

equivalent to one unit in pbt.

We model a seven-day time window of three time periods per day, hence a total of

21 time periods in the time window. 21 services will arrive throughout the week, with

one service arriving in each time period, and staying alongside for loading for three

consecutive time periods. Hence in any time period, three services are loading concur-

rently. All services are assumed to be homogeneous, and will load the same number of

20-footers and 40-footers. The number of TEUs received by each service prior to the

loading time periods follows the same arrival schedule. Without loss of generality, let’s

Chapter 4 Static Yard Plan Template Model 62

assume that a service is to load in periods 19, 20 and 21, as shown in Figure 4.2. The

schedule depicts that 3.4% of the TEUs will arrive into the yard in time period 7, 6.6%

in time period 8, and so on, and continue to arrive in subsequent periods to period 17.

Figure 4.2 also shows graphically the cumulative percentage of the TEUs should have

arrived by each time period, where 100 percent will be the final TEUs the service will

load.

Figure 4.2: Percentage TEU of the total loaded containers received into the yard prior
to the loading period for each service.

We run multiple experiments by varying the workload from 0.1 to 1.0. Workload is

defined to be the ratio of total number of TEUs to be loaded in a week to the maximum

Chapter 4 Static Yard Plan Template Model 63

stacking capacity of the entire yard in TEUs. In the experiments, we assume each 20-

footer slot has a stacking capacity of 24 TEUs. Hence the maximum stacking capacity

of the entire yard is 20 × 40 × 24 = 19200 TEUs. Table 4.1 tabulates for each value

of workload, the number of containers to be loaded in the whole week as well as the

number of containers to be loaded for each service.

Table 4.1: Table shows, for each workload, the number of containers loaded for the
whole week, and containers loaded for each service, respectively.

Chapter 4 Static Yard Plan Template Model 64

4.2.2 Experimental results

For comparison, we have relaxed the model ORIG by relaxing s20
r and s40

r to be real

numbers instead of integers, and we call this relaxed model ORIG-Relax. Note that

when we set SH = 0, i.e. we do not allow sharing of ranges between services in a

dedicated strategy, we find that there is no feasible solution for ORIG with workload

at and above 0.9. This is because at a workload of 0.9, each service will load 274 ×

20-footers and 274 × 40-footers, which require 12 × 20-footer slots and 12 × 40-footer

slots, or a total demand of 36 × 20-footer slots. As each range has only 5 × 20-footer

slots, we need at least eight ranges to be allocated to each service, and since we have

21 services, we need a total of 168 ranges. However, the entire yard has only 160

ranges, and that implies that there will be no feasible solution. Also, there is no feasible

solution for ORIG-Relax for a workload at and above 1.0, as each service will load 912

TEUs, which translates to 38 × 20-footer slots (ignoring the integer allocation of 20-

and 40-footer slots). With each service to be assigned with eight ranges, a total of 168

ranges is needed for all services, and hence there will be no feasible solution.

Table 4.3 (in Page 70) provides the model size in terms of the size of the matrix that

CPLEX solves and also the number of integer and binary variables. The models are

considerably large, with more than one or two million non-zero entries in the matrix, and

about 150 thousand variables, of which more than 3500 are binary variables, and 320

are integers (only for ORIG). In Table 4.4 (in Page 71), columns (A) and (B) summarise

the run times of the experiments for ORIG and ORIG-Relax, respectively, with SH set

to zero. All the experiments are terminated with a time-out limit of eight hours, and

those that run beyond the time-out limit are indicated by “∗”. All the runs that terminate

Chapter 4 Static Yard Plan Template Model 65

produce zero as objective value.

From the Table 4.4, we see that model ORIG runs more than four hours at workload

0.3, and at higher workload, it fails to terminate within the time-out limit. For model

ORIG-Relax, it runs with the maximum workload of 0.9, and the run time is only about

12 minutes. This shows that the integer variables s20
r and s40

r are causing the CPLEX

a huge amount of time for the branch-and-bound. It motivates us to the next section

where we explore a re-modelling of these variables and a tremendous speed up of run

time is observed.

4.2.3 Re-modelling of Constraints 4.14, 4.15 and 4.16

We note that for cases of small SRr, we could re-model the problem by adopting a

similar concept as column generation, i.e. to pre-determine all possible combinations of

the integer variables s20
r and s40

r , and apply suitable constraints in choosing them. In the

following sub-sections, we illustrate the case of SRr = 5, and then give a generalised

formulation for any value of SRr ≥ 2.

Illustration of model when SRr = 5

In the case where SRr is 5 (i.e. a range has 5 × 20-footer slots), when there is no

40-footer in the range, there can be up to five 20-footer slots, and when there is one 40-

footer slot in the range, there can be up to three 20-footer slots, since one 40-footer slot

will occupy two of the five slots. Similarly, when there are two 40-footer slots occupied,

there can be only one 20-footer slot. Hence, the combinations of values of (s20
r , s

40
r) are

(s20
r ≤ 5 and s40

r ≤ 0) or (s20
r ≤ 3 and s40

r ≤ 1) or (s20
r ≤ 1 and s40

r ≤ 2). It can be

Chapter 4 Static Yard Plan Template Model 66

shown logically that it is equivalent to have s20
r ≤ 5 and s40

r ≤ 2 and (s20
r ≤ 3 or s40

r ≤ 0)

and (s20
r ≤ 1 or s40

r ≤ 1).

These can be modelled in the following constraints with two sets of binary variables

j1,r and j2,r.

∑
i∈V d

20
irt

CSr
≤ 5 ∀r ∈ R, t ∈ T (4.17)∑

i∈V d
40
irt

CSr
≤ 2 ∀r ∈ R, t ∈ T (4.18)∑

i∈V d
20
irt

CSr
≤ M(j1,r) + 3 ∀r ∈ R, t ∈ T (4.19)∑

i∈V d
40
irt

CSr
≤ M(1− j1,r) ∀r ∈ R, t ∈ T (4.20)∑

i∈V d
20
irt

CSr
≤ M(j2,r) + 1 ∀r ∈ R, t ∈ T (4.21)∑

i∈V d
40
irt

CSr
≤ M(1− j2,r) + 1 ∀r ∈ R, t ∈ T (4.22)

These constraints replace the constraints 4.14, 4.15 and 4.16 in ORIG, for the case of

SRr = 5. We call this improved model IMPR-M (indicating big-M is used).

Although the big-M method implements the constraints easily, we find that we can

make use of the unique structure of the constraints and replace big-M with a number

that is just big enough to serve its purpose, and tight enough to define the bounds.

By doing so, we eliminate the big-M from the constraints, and also reduce the number

of constraints by removing constraints 4.17 and 4.18 as they become redundant. The

following constraints implement the same constraints without the big-M .

Chapter 4 Static Yard Plan Template Model 67

∑
i∈V d

20
irt

CSr
≤ 2(j1,r) + 3 ∀r ∈ R, t ∈ T (4.23)∑

i∈V d
40
irt

CSr
≤ 2(1− j1,r) ∀r ∈ R, t ∈ T (4.24)∑

i∈V d
20
irt

CSr
≤ 4(j2,r) + 1 ∀r ∈ R, t ∈ T (4.25)∑

i∈V d
40
irt

CSr
≤ (1− j2,r) + 1 ∀r ∈ R, t ∈ T (4.26)

For an illustration of how j1,r and j2,r works, we consider an example. When j1,r = 1,

we have constraints 4.23 and 4.24 to be
∑

i∈V d20irt
CSr

≤ 5, and
∑

i∈V d40irt
CSr

≤ 0, respectively,

imposing no slots in r to be used for 40-footers. When j1,r = 0, we have
∑

i∈V d20irt
CSr

≤ 3,

and
∑

i∈V d40irt
CSr

≤ 2, and in this case, it depends on value of j2,r. When j2,r = 1, we have

constraints 4.25 and 4.26 to be
∑

i∈V d20irt
CSr

≤ 5, and
∑

i∈V d40irt
CSr

≤ 1, respectively, hence

together with constraints 4.23 and 4.24, imposing three slots in r for 20-footers and

one slot in r for 40-footers. When j2,r = 0, we have constraints 4.25 and 4.26 to be
∑

i∈V d20irt
CSr

≤ 1, and
∑

i∈V d40irt
CSr

≤ 2, respectively, hence imposing one slot in r for 20-footers

and two slots in r for 40-footers.

Constraints 4.23, 4.24, 4.25 and 4.26 will replace the constraints 4.14, 4.15 and

4.16 in ORIG, and we called this improved model IMPR. The following section gives a

generalised formulation for IMPR with SRr = n.

Generalised model with SRr ≥ 2

We provide here the generalised model for any value of SRr = n where n ≥ 2. Note that

when n is even, the model formulation of the cases where SRr = n and SRr = n+ 1 is

Chapter 4 Static Yard Plan Template Model 68

similar with the same number of constraints and same number of binary variables jmr.

For simplifying the explanation that follows, we temporarily introduce a binary indicator

nODD which is set to 1 when n is odd, and 0 otherwise.

First, we determine all possible combinations of (s20
r , s

40
r) for any given n. Using

the basis where a 40-footer will occupy two 20-footer slots, the combination of value of

(s20
r , s

40
r) can be derived as (s20

r ≤ n and s40
r ≤ 0) or (s20

r ≤ n − 2(1) and s40
r ≤ 1) or

(s20
r ≤ n−2(2) and s40

r ≤ 2) or . . . or (s20
r ≤ n−2(i) and s40

r ≤ i) or . . . or (s20
r ≤ nODD

and s40
r ≤

(n−nODD)
2

). It can be shown logically that it is equivalent to have s20
r ≤ n and

s40
r ≤

(n−nODD)
2

) and (s20
r ≤ n − 2(1) or s40

r ≤ 0) and . . . and (s20
r ≤ n − 2(i) or

s40
r ≤ i− 1) and . . . and (s20

r ≤ nODD) or s40
r ≤

(n−nODD)
2

− 1).

As there are (n−nODD)
2

(which is
⌊
SRr

2

⌋
) sets of disjunctive constraints for each range

r, we will then need
⌊
SRr

2

⌋
number of binary variables for each range r, i.e. jmr for

1 ≤ m ≤
⌊
SRr

2

⌋
, to implement these disjunctive constraints. We then have the following

constraints to replace the constraints 4.14, 4.15 and 4.16 in ORIG to give us model

IMPR-M.

∑
i∈V d

20
irt

CSr
≤ SRr ∀r ∈ R, t ∈ T (4.27)∑

i∈V d
40
irt

CSr
≤
⌊
SRr

2

⌋
∀r ∈ R, t ∈ T (4.28)

∑
i∈V d

20
irt

CSr
≤M(jmr) + SRr − 2m ∀r ∈ R, t ∈ T , 1 ≤ m ≤

⌊
SRr

2

⌋
(4.29)∑

i∈V d
40
irt

CSr
≤M(1− jmr) +m− 1 ∀r ∈ R, t ∈ T , 1 ≤ m ≤

⌊
SRr

2

⌋
(4.30)

Chapter 4 Static Yard Plan Template Model 69

As described earlier for the case of SRr = 5, we replace big-M with a tighter bound

and re-write the constraints without the big-M as follows.

∑
i∈V d20irt
CSr

≤ 2m(jmr) + SRr − 2m ∀r ∈ R, t ∈ T , 1 ≤ m ≤
⌊
SRr

2

⌋ (4.31)

∑
i∈V d40irt
CSr

≤
(⌊

SRr

2

⌋
−m+ 1

)
(1− jmr) +m− 1

∀r ∈ R, t ∈ T , 1 ≤ m ≤
⌊
SRr

2

⌋ (4.32)

The generic model for the improved model IMPR will have the constraints 4.14, 4.15

and 4.16 in ORIG replaced with the above constraints 4.31 and 4.32.

We conduct experiments for IMPR-M and IMPR for the same scenario as described

in Section 4.2.1. In the following subsections, we show the run times of IMPR and

IMPR-M and how they compare with ORIG. We observe big improvements in run time

over the model ORIG. We then do more experiments to compare between dedicated

versus non-dedicated strategy. The experiments also give insights on how the run time

responds to the tightness of the problem in terms of the number of RMGs.

Table 4.2: Summary of the models used in the experiments

Models s20
r and s40

r modelled jmr modelled jmr with Big-M

ORIG Integer - -

ORIG-Relax Real - -

IMPR-M - Binary Yes

IMPR - Binary No

Chapter 4 Static Yard Plan Template Model 70

Run time improvement after re-modelling

For ease of reference, the models and their corresponding names are summarised in

Table 4.2. Table 4.3 shows the size of the models in CPLEX, and Table 4.4 compares

the run times of four different models ORIG, ORIG-Relax, IMPR-M and IMPR, as shown

in column A, B, C and D, respectively. These experiments are based on experiments

with SH = 0. All the experiments are terminated with a time-out limit of eight hours and

those that run beyond the time-out limits are indicated by “∗”.

Table 4.3: Summary of Model sizes of Model ORIG, IMPR-M, IMPR and ORIG-Relax.

4.2.4 Experimental results

Comparing ORIG with the other three models confirms the earlier observation that

CPLEX runs very slowly when the variables s20
r and s40

r are modelled as integers. It

is obvious that re-modelling of s20
r and s40

r into jmr is indeed an improvement of the

model, as shown in the experiments for IMPR and IMPR-M. Comparing IMPR versus

IMPR-M, the run time of IMPR hovers at the same level as that of IMPR-M for workload

up to 0.4, but at workload 0.5 and beyond, IMPR is obviously running much faster than

IMPR-M. At a workload of 0.5 and 0.6, IMPR is taking about 10% of the run time of

Chapter 4 Static Yard Plan Template Model 71

Table 4.4: Summary of the running times of the models

IMPR-M, and at a workload of 0.7 and 0.8, IMPR is able to terminate in 107 and 703

seconds, respectively, while IMPR-M is not able to terminate within the time-out limit of

eight hours. The run time difference is largely attributed to the smaller size of the IMPR,

having 13% less rows than IMPR-M. The experiments also show that IMPR is able to

find the solution at higher workload while IMPR-M cannot. Hence, the experiments

suggest that IMPR is a better model than IMPR-M.

While the purpose of ORIG-Relax is to act as a benchmark against ORIG, an in-

teresting observation is also made while comparing between IMPR and ORIG-Relax.

At lower workloads up to 0.7, the IMPR runs faster than ORIG-Relax, even though

IMPR has more binary variables, and more rows compared to ORIG-Relax. Note also

that ORIG-Relax is also a possible solution approach for strategies with larger ranges,

typically 20 slots and above, which makes s20
r and s40

r less important to be solved as

integers.

Chapter 4 Static Yard Plan Template Model 72

Table 4.5: Summary of the yard utilisation at different workload

Comparing dedicated vs non-dedicated strategy

Earlier experiments test IMPR on the dedicated strategy. In this subsection, we conduct

more experiments using IMPR to see how it performs with non-dedicated strategy by

setting SH = 1. We also include more runs to cover workloads from 1.1 to 2.0, where

feasible solutions should exist in a non-dedicated strategy. This is because even though

each service is being allocated at least eight or more ranges, these ranges are not

exclusively assigned to the services. Hence, more than one service may be allocated

Chapter 4 Static Yard Plan Template Model 73

to the same range, and therefore we are not limited by having only 160 ranges in the

entire yard. Assuming yard utilisation is defined as the percentage of the yard space

being occupied by containers, Table 4.5 summarises the corresponding yard utilisation

at various workloads.

Table 4.6: Summary of running times of the models

Using the same scenario, we run IMPR with SH = 1 for workloads from 0.1 to

2.0. The results are shown in column (E) in Table 4.6. We also create another set of

runs with a slightly different scenario, where number of RMG per yard block is set to 1

Chapter 4 Static Yard Plan Template Model 74

Table 4.7: Summary of the RMG utilisation at different workload with one and three
RMGs per block

instead of 3. IMPR is then run with SH = 0 and SH = 1 and the results are tabulated

in columns (F) and (G) in Table 4.6, respectively. We note that all the completed runs

produce zero objective values.

First, we compare the run times as tabulated in Table 4.6. Comparing columns

(D) versus (E), and columns (F) versus (G), we see that run the time for the model

for dedicated strategy (SH = 0) is very long (can be more than 100 times slower)

compared to the runs for non-dedicated strategy (SH = 1) at the same workload. This

Chapter 4 Static Yard Plan Template Model 75

is because when SH = 1, the constraints are less tightly bounded, and hence it is able

to achieve shorter run time (see Constraint 4.7). Next, comparing columns (E) and (G),

which are both runs for the non-dedicated strategy (SH = 1), the case with one RMG

per block can run up to 10 times slower than the case with three RMGs per block. This

is because for the case with one RMG per block, the RMG utilisation is higher than that

of the three RMGs case with the same workload (see Table 4.7), and hence the RMG

contention constraints are more tightly bounded (see Constraint 4.9). The experiments

show that the model’s run time is very sensitive to the tightness of the constraints. We

conclude that this approach is more suitable for the non-dedicated strategy as the run

time for dedicated strategy is too long.

Next, we try to explain some of the run time behaviour. We note that there does

not exist solutions that have zero RMG contention violations for the case of one RMGs

with workload above 1.5. This is because the RMG utilisation has exceeded 100% (See

Table 4.7). Therefore, we expect feasible solutions for workload 1.6 to 2.0 with non-

zero violations (objective value), but the model did not find a solution within the time-out

limit of eight hours. An empirical observation is that as long as an optimum solution

exists with non-zero violation (non-zero objective value), the model will not terminate

within the time-out limit of eight hours. This could possibly be an explanation for the

case of one RMG per block on a dedicated strategy (SH = 0) and at a workload of

0.8. The model did not terminate within the time-out limit. We are not certain whether

a feasible solution with zero violation exists for this case or not. However, we do know

that a feasible solution exists since a solution exists for the case with three RMGs at this

workload. We also note that in this case, since a service loads 243 × 20-footers and

Chapter 4 Static Yard Plan Template Model 76

243 × 40-footers, the total number of ranges allocated to a service is at least seven. In

a typical time period, as there will be three services loading concurrently, hence at least

21 ranges will have their containers loaded concurrently. Since the entire yard has only

20 yard blocks, at least one of the yard blocks will have two of its ranges involved in

loading (by pigeon hole principle). We think that these blocks are likely to have violated

the RMG contention, resulting in non-zero objective value. Hence, we further conclude

that this model is suitable for scenarios where feasibility (no violation) is sought, and

does not work for scenarios where violations exist and need to be minimised.

Lastly, a note to compare the goodness of the two strategies, we see that non-

dedicated strategy is better than dedicated strategy. This is because non-dedicated

strategy produces solutions at much higher workload, and results in better yard utilisa-

tion, while keeping the number of violations at zero (objective value is zero). In the case

with three RMGs per block, a solution with 95% yard utilisation (at workoad 2.0) is gen-

erated, while in the case with one RMG per block, a solution with 75% yard utilisation

(at workload 1.5) is generated. Correspondingly, for the case with dedicated strategy, it

generates solutions with yard utilisation at 38% and 33.3%, respectively. Hence, non-

dedicated strategy has double the yard utilisation of dedicated strategy.

4.3 Approach 2: Heuristics algorithm - for the case of

consolidated and dedicated strategy

We note from earlier experiments that the run time for the IMPR with dedicated strategy

(SH = 0) can be very long for cases of high workload. In this section, we present a

Chapter 4 Static Yard Plan Template Model 77

heuristic algorithm for the dedicated strategy.

Earlier experiments show that run time increases with increased tightness of the

constraints (SH = 0 to SH = 1, and three RMGs per block reduce to one RMG

per block). We further explore this property by changing the thresholds for the activity

concentration (MAg), which will affect the tightness of the Constraint 4.8. We conduct

a new set of experiments on the same scenario as Section 4.2.4 using IMPR, three

RMGs per block, and SH = 0. We vary MAg from 50 to 120, and workload from 0.05

to 0.85 in steps of 0.05. The run times in seconds are tabulated in Table 4.8. The

experiments confirm that as we reduce MAg and increase workload, the problem gets

more constrained and hence the run time increases. There are many cases where the

model did not terminate within the time-out limit of eight hours.

We note that for the case of dedicated strategy, only one service can be assigned

to a range, i.e.
∑

i∈V uir ≤ 1, ∀r ∈ R. It means that the solution lies within the solution

space of the assignment vector A = (a1, a2, . . . , ar, . . . , a|R|), where ar = i if and only

if service i is assigned to range r, i.e. uir = 1, and ar = 0 if and only if range r is not

assigned to any service, i.e. uir = 0 ∀i ∈ V . Hence, uir can be derived given A, and

vice versa. Next, we modify the model IMPR to read in uir as an input instead of solving

it as a decision variable, i.e., we fix the assignment of service to the yard ranges, and we

call the modified model as IMPR-u. We then perform a search based algorithm on the

assignment of services to the range, i.e., find the vector A = (a1, a2, . . . , ar, . . . , a|R|)

that gives the lowest objective value in the model IMPR-u.

Chapter 4 Static Yard Plan Template Model 78

Table 4.8: Summary of the running times of IMPR

4.3.1 Loading Separation Assignment and Hill Climbing local search

(LSA-HC)

The proposed heuristic algorithm is made up of two parts, namely a greedy algorithm

to find an initial vector A, and a hill climbing local search to improve the vector A. The

objective value of A is computed as follows. We first convert A into its equivalent uirs.

We then solve IMPR-u with the inputs uirs and then obtain its objective value.

We use a Loading Separation Assignment heuristics (LSA) to find an initial solution

A. The motivation of LSA is that for the case of consolidated and dedicated strategy,

Chapter 4 Static Yard Plan Template Model 79

retrieval activities in the range happen in concentration during the time periods when

the service is loading, and storage activities in the range happen in smaller numbers

over larger numbers of time periods, as containers received for a service will arrive

over multiple time periods. Hence, the activity concentration violations are largely, but

not always, contributed by the sum of retrieval activities of two neighbouring ranges

happening at the same time that exceeds the activity thresholds. Therefore, the heuristic

tries to ensure that for every neighbouring pair of ranges, they should not be assigned

to services that have common loading time periods. Note that this heuristic works for

consolidated strategy, where the yard range are sufficiently large (in our example five

slots), so that activities happening in two non consecutive ranges do not interfere with

each other as they are separated by at least one yard range in between.

The heuristic is described as follows. Let V ′ be an ordered list of services obtained

from V . For convenience of notation, we let i.next indicate the service that comes

after i in the ordered list V ′. If i is the last item, then i.next gives the first item in the

list instead. We create the ordered list V ′ from V such that every consecutive pair of

services i and i.next in V ′ has no overlapping loading period, i.e., Li∩Li.next = ∅. Since

most container terminals only have a small number of services, usually in the 10’s, and

loading periods for each service are usually about one to three time periods out of the

21 time periods in the entire time window, we reason that the construction of V ′ can be

done easily by hand. For each range r ∈ R sorted in order of slot number, we greedily

assign the next service in V ′ to r in a round robin fashion. The pseudo code for the LSA

algorithm is given in Figure 4.3.

Next the hill climbing local search is done as follows. First, the objective value of

Chapter 4 Static Yard Plan Template Model 80

1: LSA Algorithm
2:
3: Input: V ′ = ordered list of services
4: Input: R = set of ranges
5:
6: let i = first item in V ′
7: for all r ∈ R in ascending order of slot number do
8: assign i to r
9: i = i.next

10: end for

Figure 4.3: Pseudo code for LSA Algorithm.

the current solution A = (a1, a2, . . . , ar, . . . , a|R|) is computed by running IMPR-u. We

then compute N(A), the neighbourhood set of A as follows. A neighbour of A is an

assignment vector with all the assignments equal to the assignments in A except that

one of the ai is replaced with other services in V other than the original value of ai. This

means that one of the range r is re-assigned to another service. Hence each ai can be

replaced with |V| − 1 possible value, and there are |R| number of ai, hence the size of

N(A) is (|V| − 1) × |R|. All the neighbours in N(A) are evaluated for their objective

values using IMPR-u. If all the neighbours give higher objective values than the current

solution A, then the local search terminates with A as the best solution. Otherwise the

neighbour with the lowest objective value will be chosen to be the next best solution,

and it takes the role as the current solution, and the local search repeats. The flowchart

of the heuristic is given in Figure 4.4 and the detailed pseudo code of the algorithm

is given in Figure 4.5. Note that for the purpose of speeding up execution time, we

terminate the search whenever a solution with zero objective value (optimum) is found

(see Line 8 and Line 18 in Figure 4.5).

Chapter 4 Static Yard Plan Template Model 81

Figure 4.4: Flowchart for LSA-HC Algorithm.

4.3.2 Experimental results

We conduct another set of experiments with the LSA-HC algorithm using the same

settings as those used to generate results in Table 4.8 for the model IMPR. The run

Chapter 4 Static Yard Plan Template Model 82

1: LSA-HC Algorithm
2:
3: let A = initial solution from LSA algorithm
4:
5: while not converge do
6: best = Objective value of A by running IMPR-u
7: if best = 0 then
8: return A as the optimum solution
9: end if

10: compute neighbours of A = N(A)
11: set A∗ = null
12: for all A′ in N(A) do
13: obj = Objective value of A′ by running IMPR-u)
14: if obj < best then
15: A∗ = A′

16: best = obj
17: if best = 0 then
18: return A∗ as optimum solution
19: end if
20: end if
21: end for
22: if A∗ = null then
23: converge and return A as the optimal solution
24: else
25: set A = A∗
26: end if
27: end while

Figure 4.5: Pseudo code for LSA-HC Algorithm.

time in seconds for this set of experiments is tabulated in Table 4.9.

To ease comparison of the run time, Table 4.10 shows the run time of LSA-HC in

percentage of the run time of IMPR with the corresponding workload and MAg. When

the percentage value for a specific setting of MAg and workload is more than 100%,

LSA-HC runs slower than IMPR for this specific setting, and when the value is less than

100%, LSA-HC runs faster than IMPR for this specific setting. For the case when IMPR

did not terminate, “NA” is shown in the table. We can see that for a high workload

and smaller value of MAg, LSA-HC is taking only a small percentage of the run time

Chapter 4 Static Yard Plan Template Model 83

Table 4.9: Summary of the running times of LSA-HC

compared to IMPR, and in some cases, less than 1%. There are cases where LSA-HC

runs slower (more than 100%), specifically for workloads less than or equal 0.2, but

that is not a concern as no container terminal should be operating at such low workload

(equivalent to less than 10% of the yard space utilised).

Note that in the model, the objective value is non-negative, and hence when it is

zero, the solution must be at optimum. The objective value of the respective runs for

LSA-HC are given in Table 4.11. For convenience of discussion, we shaded the cells

in Table 4.10 if the objective value given by LSA-HC is non-zero, and non-shaded cells

means that LSA-HC generated a solution with zero objective value. For those cells

Chapter 4 Static Yard Plan Template Model 84

Table 4.10: Running times of LSA-HC compared to IMPR in percentage

in Table 4.10 that are non shaded, we are absolutely sure that the LSA-HC found the

optimum solution at a fraction of the run time needed by the model IMPR for the exact

same problem. There are also cases where IMPR is not able to terminate within the

time-out limit of eight hours (example MAg = 100 and workload = 0.85), and LSA-

HC is able to find the optimum solution (non-shaded cells with “NA” shown). For the

remaining cases where IMPR is not able to terminate, LSA-HC is able to find a solution

with non-zero objective (shaded cells with “NA” shown), but we cannot be certain that

LSA-HC finds the optimum. This is because we do not know what is the true optimum

objective value in these cases as the IMPR is not able to terminate. The only exception

Chapter 4 Static Yard Plan Template Model 85

Table 4.11: Summary of the objective values of LSA-HC

to the above is when MAg = 60 and workload = 0.75. In this case, IMPR terminates in

4.2 hours with an optimum solution with zero objective value, but LSA-HC terminates in

three hours (faster) with objective value 96. This illustrates a case where the heuristic

may fail to find the optimum.

To conclude, the experiments show that for some cases, LSA-HC is able to find the

optimum solution faster than IMPR, and for some cases, LSA-HC is able to find the

optimum solution where IMPR is not able to. For the rest of the cases, LSA-HC is able

to generate a feasible solution (which may not be optimum), but IMPR is not able to. We

find one case where IMPR finds an optimum, while LSA-HC does not, but nonetheless,

Chapter 4 Static Yard Plan Template Model 86

LSA-HC finds the solution at a much shorter time. We conclude that LSA-HC is a good

heuristic to solve for the cases with dedicated strategy.

4.4 Summary

Having the motivation of designing search engines to discover the best yard plan strat-

egy for a container terminal given its scenario, we require the generic model presented

in Chapter 3 to be solved in a reasonable amount of time. As the complexity of the

problem depends on the strategy, we propose having different solution approaches for

different strategies. Instead of covering all yard plan strategies, we present solution ap-

proaches to solve the problem for two strategies, namely, 1) consolidated and dedicated

strategy, and 2) consolidated and non-dedicated strategy. Two solutions approaches are

presented, namely solving as a mathematical problem using CPLEX, and a heuristic al-

gorithm. With re-modelling of the original mathematical model to become the model

IMPR, experiments show that IMPR reduces the run time tremendously. Empirically, it

is only able to find the optimum solution with zero violations if they exist. The run time

of the model also highly depends on the tightness of the constraints. For the case of

dedicated strategy, the model runs very much slower than the case with non-dedicated

strategy. We conclude that IMPR is a good approach for the non-dedicated strategy. As

a side note in the perspective of quality of the solution, the experiments also show that

non-dedicated strategy is a better strategy as it produces solutions with zero violations

and with higher yard utilisation.

In the second approach, we propose a heuristic algorithm LSA-HC. The experiments

Chapter 4 Static Yard Plan Template Model 87

show that the run time of the model for high workload and lowerMAg thresholds is faster

than that of IMPR for the same problem instance, and in many cases less than 1% of

the IMPR run time. It also find solutions in cases where IMPR is not able to, and some

of them are optimum. However, being a heuristic algorithm, we find one case where

LSA-HC did not find the optimum solution, but it terminated at a shorter time compared

to IMPR for the same case. We conclude that LSA-HC is a good heuristic for solving

the cases with the dedicated strategy.

In the next chapter, we explore solving the problem when the vessel arrival schedule

is uncertain, and we introduce the notion of nimble yard plan template, where we are

interested in finding a solution that can be changed easily when uncertainty is revealed.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 88

Chapter 5

Yard Plan Template with Uncertainty - Nimble

Optimisation

After a terminal has decided to adopt a yard plan strategy, a yard plan template can

then be generated and implemented according to the strategy. However, uncertainty of

events prevails in reality, and terminals usually modify and adapt their yard plan template

to the changes, which may not be optimum. While the community for robust optimisa-

tion may suggest developing a robust plan – a plan that remain feasible subjected to

uncertainty, we will like to have a plan that can be changed easily to an optimal solution

after the uncertainty is revealed. We call this the nimble yard plan template problem.

This lead us to a generic problem formulation, where in a situation when input parame-

ters are uncertain, we like to find a optimum solution before the uncertainty is revealed,

and this solution can be changed easily after the uncertainty is revealed. We call this

a nimble optimisation problem. This is a relatively new area with only some related

works found in the literature. By defining a generic problem formulation, it allows the

non-container terminal operation research community to also explore other problems

that can be classified into this class of problems, and hence allowing a bigger research

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 89

community to be exposed to this problem. It is interesting to note that this problem has

never been addressed in the literature, except some related works where we show that

our formulation is a generalisation of these models (See Appendix A).

The chapter is organised as follows. In Section 5.1, we study the nimble optimi-

sation problem. We present a short literature survey on some related works, and then

present the formulation of the generic nimble optimisation formulation. We also propose

a solution approach to solve the problem. Next in Section 5.2, we apply the nimble op-

timisation problem into the yard plan template problem. Three variations of the nimble

yard plan template problem are presented, and solution approaches and experimental

results are discussed. We summarise the chapter in Section 5.3.

5.1 Nimble Optimisation (Nimo)

Uncertainty prevails in real life, and decisions are often made before the uncertainty

is revealed. Uncertainties are revealed in stages (event triggers), and usually decision

makers are able to change their decisions in every stage. There are generally two

schools of study in this area. First, the uncertainty in question follows a known proba-

bility distribution, and the objective at every decision stage is to optimise the expected

objective value. This generally falls under the stochastic programming approach. The

other school of study assumes the probability distribution of the uncertainty is unknown

and instead it is defined by an uncertainty set. This falls under the area of robust opti-

misation.

Nimble optimisation does not fall into any of these groups. A good analogy will be the

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 90

chameleon. A chameleon is able to change its colour to optimally match its changing

environment. Nimble optimisation (Nimo), in layman terms, is a solution where it is like

a chameleon, able to change optimally to match its changing environment. With many

practical applications in real life problem such as in the yard template problem, we are

motivated to look at a generic nimble optimisation formulation.

In Section 5.1.1, we give a short literature review on related topics, and in Section

5.1.2, we define our formulation of Nimo. We then show a possible solution architecture

for Nimo in Section 5.1.3.

5.1.1 Literature survey

Optimisation models taking uncertainty into considerations have been gaining interest

among researchers. More importantly, they provide more practical solutions for indus-

tries since it is hard to find a truly deterministic problem in the real world. There are two

perspectives to view uncertainty. The first approach is distributional, where a probability

distribution is associated with the parameters of the problems. The second one is the

robust approach where it is only possible to associate the uncertainty to a set of val-

ues. The distributional approach mainly covers areas of Stochastic Programming and

Markov Decision Process, which we will not dwell into. Instead we are interested in the

robust approach, and we review some of the major works done.

In one of the earliest papers in robust optimisation, Soyster (Soyster 1973) considers

a mathematical model where there are column wise uncertainties, such that each col-

umn of the matrix belongs to a convex uncertainty set. The model solves for a solution

that remains feasible in all possible realisations of the uncertainty, making the approach

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 91

very conservative. Motivated by an engineering problem on truss design, Ben-Tal and

Nemirovski (Ben-Tal & Nemirovski 1997) then propose a robust approach with an uncer-

tain ellipsoidal set, which is then shown to be equivalent to a semi-definite programme.

Ben-Tal and Nemirovski (Ben-Tal & Nemirovski 1998, Ben-Tal & Nemirovski 1999) fur-

ther generalise the problem and define the terms robust counterpart and uncertainty

set, and describe the notion of optimality in an uncertain optimisation problem. They

define a uncertain mathematical programme as one where some of the data of the

problem is known to be contained in a range or set. Hence some parameters are not

known in advance, which makes it not possible to solve as it is. Its robust counterpart

is a solvable mathematical programme of the same problem, whose solution is robust

regardless of the realisation of the random parameters. Ben-Tal and Nemirovski (Ben-

Tal & Nemirovski 2000) later study the robust problem with a new uncertain ellipsoid set

that comes with a parameter to control the degree of conservativeness of the model.

They show that the problem can be formulated as a second order cone programme.

The approach by Soyster is conservative but retains a linear structure, whereas the ap-

proach by Ben-Tal and Nemirovski is non-linear but allows greater flexibility. Bertsimas

and Sim (Bertsimas & Sim 2004) introduce an alternative model with the flexibility to ad-

just robustness while keeping linearity. They formulate a robust counterpart, such that

if the number of perturbed parameters is within a pre-determined threshold, they prove

that the robust solution will be feasible deterministically, and if there are more changes,

the robust solution will be feasible with high probability.

Some papers model their problem as a 2-stage decision making problem, which is

similar to Nimo. Early work on this was presented by Ben-Tal et al. (Ben-Tal, et al. 2004).

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 92

They extend the robust framework by introducing the concept of adjustable and non-

adjustable variables. Their model separates the decision variables into two types, those

made in stage 1 before the uncertainty is revealed (non-adjustable), and those made in

stage 2, after the uncertainty is revealed (adjustable). However, their objective function

is only dependent on the non-adjustable variables. For tractability, they further propose

the affinely adjustable robust solution, in which the adjustable variable is a linear func-

tion of the uncertain data set. Ben-Tal et al. (Ben-Tal, et al. 2006) subsequently provide

an extension to the adjustable robust counterpart where they do not assume that the

uncertainty set is bounded. Chen and Zhang in (Chen & Zhang 2009) propose the

extended affinely adjustable robust counterpart. In this model, instead of allowing the

adjustable variables to be affinely dependent on the uncertainty parameters, they also

allow for additional affine dependency on other parameters. Bertsimas and Carama-

nis (Bertsimas & Caramanis 2010) introduce the notion of complete adaptability. For

tractability, he further proposes the k-adaptability problem in which the decision-maker

chooses one of the k second stage solutions after observing the realisation of the un-

certainty. This is then shown to be equivalent to a bilinear optimisation problem and is

solved exactly for the case of k = 2. Liebchen et al. (Liebchen, et al. 2009) propose the

concept of recoverable robustness and discuss a special case, the linear recovery ro-

bust programme. Linear robust programme is very similar to nimble optimisation, where

stage 2 decision is a recovery of the decision made in stage 1, and a penalty cost is

associated to the difference between the stage 1 and stage 2 decision. However, this

cost is not optimised in the objective, and instead the sum is bounded by a budget in

the constraints. Hence the objective only depends on the stage 1 decision, while the

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 93

various possibilities of stage 2 decisions are constraints to the model.

Other than the paper by Liebchen et al. (Liebchen et al. 2009), we did not see any

paper that measures the cost of changing the stage 1 solution to the recovery solution

in stage 2. However, they did not attempt to minimise this cost in the model. We present

in the next section a mathematical definition of nimble optimisation, where we solve for

a stage 1 decision, such that it minimises both the maximum cost of all the possible

recovery options that could be taken after the uncertainty is revealed, plus the cost of

changing the decision already made in stage 1 to that of a stage 2 decision.

5.1.2 Defining Nimo

Consider the following static linear optimisation problem

Minimise
x∈<n cTx

s.t. Ax ≥ b

(5.1)

We let ω ∈ Ω represent the uncertainty in the uncertainty set Ω, and A(ω) and b(ω)

be the adjusted parameters with the revealed uncertainty ω. Ω, in most cases, cannot be

determined theoretically (unless they can be derived from physical laws). It has to be

determined empirically via experiments, historical data collection, forecasting models

or expert opinions. The cost vector c of applying the final decision x1 is known and

assumed to be independent of the uncertainty without loss of generality. If c depends

on the uncertainty, then we add a new constraint z ≥ cTx1 into the constraints and

replace the objective with z.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 94

Uncertainty usually unfolds as a sequence of events, and decisions made in the

face of uncertainty have to take into consideration the sequence of uncertain events

occurrences. However, modelling an infinite sequence of events will be highly complex,

and hence a planning time horizon has to be determined. Within the time horizon, one

could change their decision on every event occurrence or in stages after accumulation

of a number of occurrences of uncertain events. We assume that decisions are made

in stages and for simplicity (and also a limitation to the model), we assume a two stage

decision process, where a stage 1 decision is made before the uncertainty is revealed,

and a stage 2 decision is made at the end of the time horizon, which is a recovery after

observing all the uncertain events occurrences.

Defining the notation for the model, in stage 1, a decision x0 is made before the

uncertainty ω is revealed. After the uncertainty is revealed, we make a stage 2 decision

x1, which is a recovery of the stage 1 decision. x0 and x1 are of the same dimension,

i.e. x0 ∈ <n and x1 ∈ <n, as x1 is the recovery decision that replaces the original

decision x0. If x0 = x1, then there is no recovery after the uncertainty is revealed.

We consider a recovery algorithm after the uncertainty ω is revealed. If the recovery

does not respect the stage 1 decision that is made before ω is revealed, the mathemat-

ical problem is represented as follows:

Minimise
x1∈<n cTx1

s.t. A(ω)x1 ≥ b(ω)

(5.2)

However, there is also a cost of transforming the stage 1 decision to the stage 2

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 95

decision, represented by ∆(x0, x1), and this could be set to ∞ if it is impossible to

recover from x0 to x1. We further assume that the cost of recovery can be measured

in a unit that is linear to the cost function of the original problem, and without loss of

generality, we assume that we can define ∆(x0, x1) using the same unit of measurement

as the original problem.

In the Nimble Optimisation (Nimo) problem, we want to find a x0 in stage 1 before

the uncertainty ω is revealed, such that we minimise among all ω ∈ Ω, the worst case

cost of transforming x0 to x1 plus the cost of x1 after the uncertainty is revealed. Hence,

regardless of how the uncertainty is revealed, x0 is agile enough to be changed to a

final decision x1 while the total cost is bounded by the objective value solved during

stage 1. Nimo is then defined mathematically as

Minimise
x0∈<n max

ω∈Ω
min

x1(ω)∈<n

cTx1(ω) + ∆(x0, x1(ω))

subject to

A(ω)x1(ω) ≥ b(ω)

A(ω0)x0 ≥ b(ω0) ∃ ω0 ∈ Ω

(Model V.I)

To explain the min-max-min structure, we start from the inner most structure. The

innermost structure is a minimisation problem of finding the optimum x1(ω) given a

realisation of the uncertainty ω as well as the decision made in stage 1 x0. That is, the

innermost structure defines the optimum recovery problem given the stage 1 decision x0

and a realised ω. Next, among all possible realisations of ω, the maximization problem

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 96

finds the ω that gives largest (or worst) optimum recovered solution. Then, finally, the

nimble optimisation problem finds the optimum x0 such that the worst case outcome of

the recovery is minimised.

Note that in the formulation, we write x1(ω) instead of x1 as x1(ω), at the point

of making decision in stage 1, is not deterministic, but a mapping depending on ω,

i.e. x1(ω) ` <n. Hence, the solution generated after solving the stage 1 problem is

the solution x0 and an implicit mapping function x1(ω). Note also that the formulation

caters for the case where we also assume that the decision in stage 1, x0, should also

be feasible under a nominal setting of the uncertainty ω0 if it exists in the model.

5.1.3 Solution approach

To solve this problem, one could possibly work on special cases of the problem, by mak-

ing specific assumptions of the problem structure (for e.g. assume a fixed number of

recovery solutions), properties of the recovery solution x1 (for e.g. assume x1 is affinely

dependent on ω), or the cost of changing x0 to x1 (for e.g. check for feasibility with

zero being feasible and ∞ being infeasible). Specific solution techniques can then be

explored for various special cases. However, we like to explore a general method for

solving this class of problems. We propose a simulation guided local search architec-

ture, where uncertainties are handled as part of the simulation process. We think that

this is a good architecture, and the reasons are as follows.

Firstly, many real life problem do not have a very structured definition of their uncer-

tainty. Chances are that it cannot be defined by a known probability distribution. How-

ever, in simulation, as long we can generate a cumulative distribution function (either

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 97

via histogram from historical data, or hand plotted based on expert opinion or forecast),

the scenarios can be randomly generated to evaluate the solution. Hence the approach

is not limited in this aspect.

Next, while the usual range of values for the uncertain parameters could be known,

the true range can be very wide with extreme points occurring with very low probability.

These very rare occurrences of extreme values are usually ignored in analysis, but

some might cause devastating consequence to the solution. For example a major earth

quake in Japan in March 2011 disrupted supply chains, and caused material flow to be

disrupted. In another example, a financial crisis struck in late 2008, that caught many

people off guard, caused many shipping routes and schedules to change. Many ships

were left empty in the anchorage due to over supply of ships, and those still in service

adopted slow steaming (reduce travelling speed) to save on fuel cost. These rare but

high impact events are termed as “Black Swan events” by Taleb (Taleb 2007). These

black swan events can be evaluated if the simulation framework generates such extreme

points intentionally to simulate the extreme in case they do happen.

Lastly, as the problem can be of very high complexity, the solution architecture allows

us to exploit distributed computing technology to speed up the runs. This is elaborated

further with the details of the framework explained below.

The algorithm flow chart is given in Figure 5.1. It follows a standard hill climbing local

search routine, where an initial solution x0 is generated, followed by the hill climbing

iterations. In each iteration, the neighbourhood set N(x0) is generated, and for each

neighbour x′0, it is evaluated for its objective value, and the algorithm chooses the best

neighbour as the next best solution, and terminates when no better solution is found.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 98

The simulation comes into play in the evaluation routine, whereK number of uncertainty

ω are generated, simulating K scenarios, and for each scenario, the recovery algorithm

is executed to see how well the solution can be recovered. The largest (worst case)

objective value is returned.

Figure 5.1: Simulated guided local search flow chart for solving Nimo

We note that the approach naturally decomposes the computation into well defined

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 99

Figure 5.2: Solution approach architecture for solving Nimo

units. Hence, it is very natural to move it to a distributed architecture, where processes

are spawn as new tasks in different cores. Cores are computing units either on the same

CPU chip, different chip in the same computing box, or across many computing boxes

spread over different geographical locations connected via network. We propose the

architecture to solve the problem as shown in Figure 5.2. Each box is an independent

process that can be executed on a different core. We have a main controller process

that executes the local search. Evaluation of each neighbour is spawn off as a separate

process, and in turn, spawns off multiple processes, each simulating one instance of the

random scenario ω. This architecture may sit nicely on a cloud computing framework,

or a cluster of computers in a network with some scheduling programmes that control

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 100

the computers’ workloads. While distributed computing on cloud may still sound very

academic, in the recent years, cloud technology has moved on closer to consumer

arena (for example, Google Chrome and Apple iCloud). Although these examples are

still mainly on distributed storage more than computing, the time when cloud computing

becomes a norm should be near.

5.2 Nimble yard plan template problem

We now apply the nimble optimisation formulation into the yard plan template problem.

In Section 5.2.1, we first give an introduction and motivation to why we focus on ves-

sel arrival schedule uncertainty in a container terminal that adopts consolidated and

dedicated yard plan strategy. We then give a description of the nimble yard plan tem-

plate problem in Section 5.2.2 followed by the mathematical definition of the problem.

As there can be many variations of the nimble yard plan template problem, depend-

ing on the recovery policy used, we explore three cases. Section 5.2.3 explores the

first case where a strict assignment policy is used in the recovery. We present two

heuristic approaches to solve the problem. The first approach uses a surrogate model

and the second uses the simulation guided local search algorithm as described ear-

lier. However, the experiments are conducted on a single core computer. Experimental

results are presented and discussed. Section 5.2.4 explores the second case where

a “one change policy” is used. A modified simulation guided local search algorithm

is presented to solve this problem, and experiments are conducted and discussed. In

Section 5.2.5, we discuss the third case of solving a generic nimble yard plan template

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 101

problem, where a generic recovery policy is used. We discuss the complexity of solving

this problem.

5.2.1 Motivation

In the problem studied in Chapter 4, it is assumed that the inputs to the yard plan

template problem are deterministic. However, in real life application, uncertainty pre-

vails. Vessels plying a specific service may arrive at slightly different times from week to

week, as they may experience different weather conditions during their voyage, as well

as delays that may have occurred in their earlier port of visits. The number of contain-

ers to be loaded may also vary from call to call, as the shipping demand may change

due to shipper-consignee ordering uncertainty. This will not only change the number of

containers to be loaded, but also the number of containers received into the yard. Fur-

thermore, the arrival schedule of the containers into the yard may also vary, depending

on the trucking companies and local shippers (in the case of local export containers) as

well as the arrival schedule of vessels (in the case of transshipment containers).

While all these areas of uncertainty pose complexity to yard planning, we have learnt

from a global container terminal operator that the uncertainty in vessel schedule has

the highest impact to yard operations for terminals that adopt the consolidated and ded-

icated yard plan strategy. Most of the terminals that we come across are adopting this

strategy, i.e. the containers to be loaded into a vessel are stacked in groups and no two

services can be assigned to the same group. The reasons for them to adopt this strategy

are as follows. When a vessel is alongside, although the number of retrieval activities at

these locations are high, it is well controlled as terminal planners will have considered

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 102

the composition of the containers grouped together, and hence the sequence of which

the containers are retrieved will not create an activity concentration nor RMG contention.

They will station a yard crane at each yard location, and the trucks will shuttle between

the quay crane and the yard crane in a conveyor belt fashion. However, the assumption

made is that there will not be another vessel’s containers that are concurrently retrieved

in the vicinity, as the yard locations are well chosen based on the expected arrival time

of the vessels. When the vessels arrive at times different from the expected, there are

possibilities that two vessels’ containers are close to each other, and they happen to re-

trieve the containers simultaneously. Terminal operators can then choose to de-conflict

by moving some of the containers to a further location before the vessels arrive, but

that will mean incurring extra cost to the terminal operations. However, if they are not

moved, it results in massive activity concentration and likely contention for yard cranes

if extra yard cranes are not able to move in to relieve the contention. These may last

for many hours in a stretch or even the duration of the whole port stay, as consolidated

strategy usually stacks a substantial number of containers for the same vessel in the

same location. These result in the vessels’ departure time to be delayed due to the

bottleneck in retrieving the containers from the yard. Hence, instead of considering all

the areas of uncertainty, which is a huge optimisation model, in this chapter, we focus

only on the uncertainty of the vessel arrival schedule, that impacts the yard operations

the most.

To the best of our knowledge, we do not come across any paper that directly ad-

dresses the yard planning problem with respect to the uncertainty of vessel arrival

schedule. In the earlier chapter, the deterministic yard plan template problem is studied

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 103

to find where the containers will be stored at different parts of the yard blocks, such

that violations of the activity thresholds can be minimised. We assume that the vessel

arrival schedule is fixed and given. In the scenario where vessel arrival schedule is

uncertain, we can approach the problem by finding a robust solution - a solution that

remain feasible when when subjected to uncertainty. However, in this chapter, we would

like to find a solution that enables us to change easily when the uncertainty is revealed.

The decision is made in two stages, where the stage 1 decision is made before the

uncertainty is revealed, and stage 2 is a recovery of the stage 1 solution, after the un-

certainty is revealed. This makes the problem challenging, due to having to find a stage

1 solution such that the cost of recovery is minimised, after the uncertainty is revealed.

Since we do not know how the uncertainty will be revealed, we minimise the cost of the

worst case scenario. We call the stage 1 problem as the nimble yard plan template

problem because the solution is deemed as “nimble” (agile to changes in stage 2 when

the uncertainty is revealed).

5.2.2 Problem definition

We consider a container terminal as described in Chapter 3 Section 3.2. We further as-

sume that the container terminal adopts a consolidated and dedicated yard plan strat-

egy, and the size of the groups are at least two slots each. We consider the same

mathematical formulation for model IMPR as presented Chapter 4 Section 4.2.3. The

solution depicts, the assignment of services to the yard ranges, as well as the number

of the containers received into each of the yard ranges, such that the amount of activity

concentration and RMG contention are minimised.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 104

In the nimble yard plan template problem, we consider uncertainty in service arrival

schedule. Terminal operators would like their yard plan template to be easily change-

able when the service arrival schedule changes. However, as the terminal operates

continually, the yard is always filled with some containers belonging to some services

at a different stage of build-up. It will be costly to change the assignment of services to

yard ranges all over again when a service changes its arrival schedule, as it may incur

extra physical resources to move the containers around. It is cheaper to change the

number of containers received into the ranges as the containers may not have arrived

yet. For simplicity, we have assumed that the cost of changing the assignment of ser-

vices to ranges is infinitely large if the number of changes exceeds a pre-set threshold,

(i.e., we do not allow too many changes of the assignment of services to ranges), and

the cost of changing the number of containers received into the ranges is zero. Given

the possible changes in the service arrival schedule, our problem is to find a good start-

ing solution before the uncertainty is revealed, such that we minimise the objective value

(violations) of the worst case scenario - a combination of possible vessel arrival sched-

ules that gives the worst objective value at optimum. Hence, regardless of how the

uncertainty is revealed, we will be able to change the number of receiving containers in

the ranges and the assignments of services to ranges, such the amount of violations is

bounded.

In the following subsections, we introduce the mathematical notations and formula-

tion for the nimble yard plan template problem. We first present the mathematical model

assuming deterministic inputs. Following that, we define the problem as a two stage de-

cision process, and the nimble yard plan template problem is to be solved in stage 1

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 105

before the uncertainty is revealed, taking all possible outcomes of the uncertainty into

consideration.

Static Model

As we refer to the model IMPR in Chapter 4 Section 4.2.3 in our formulation, we repro-

duce the model in a simplified form (without the C and SH as they are not used here)

as follows. We refer it as the static model.

Input parameters to the model - constants

T = Set of time periods

DT = (V , DA20
it , DA

40
it ,Li)

ST = (R,G,B, CSr, SRr,MAg, RY,MYb,W
k,W p)

M = Big Number

Decision variables

x20
irt = Number of 20-footers received by service i into range r in time t

x40
irt = Number of 40-footers received by service i into range r in time t

y20
irt = Number of 20-footer loaded by service i from range r in time t

y40
irt = Number of 40-footer loaded by service i from range r in time t

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 106

d20
irt = Number of 20-footer spaces reserved for 20-footers in range r for service

i at time t

d40
irt = Number of 40-footer spaces reserved for 40-footers in range r for service

i at time t

uir = 1 if service i is assigned to range r, 0 otherwise

krt = Number of excess activities in range r at time t, such that the krt

contributed to some groups g ∈ G to violate MAg

pbt = Number of activities which need to wait for a yard crane, measured in

number of activities above the capacity of the yard cranes in the block

b at time t

jmr = Indicator variable used in constraints 5.16 and 5.17

x20
irt, x

40
irt, pbt, krt ≥ 0 are real variables. uir, jmr are binary variables. y20

irt, y
40
irt, d

20
irt, d

40
irt

are derived variables.

Objective function

Minimise obj = W k
∑
r∈R

∑
t∈T

krt +W p
∑
b∈B

∑
t∈T

pbt

Constraints

∑
r∈R

x20
irt = DA20

it ∀i ∈ V , t ∈ T (5.3)∑
r∈R

x40
irt = DA40

it ∀i ∈ V , t ∈ T (5.4)

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 107

y20
irt =

(∑
t′∈T x

20
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (5.5)

y40
irt =

(∑
t′∈T x

40
irt′

(1 + |Li|)/2

)
∀i ∈ V , r∈ R, t ∈ Li (5.6)

∑
t∈T

y20
irt +

∑
t∈T

y40
irt ≥ uir ∀i ∈ V , r ∈ R (5.7)∑

t∈T

y20
irt +

∑
t∈T

y40
irt ≤ uirM ∀i ∈ V , r ∈ R (5.8)∑

i∈V

uir ≤ 1 ∀r ∈ R (5.9)

∑
r∈g

(∑
i∈V

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− krt

)
≤ MAg ∀g ∈ G, t ∈ T (5.10)

∑
i∈V

∑
r∈b

(
x20
irt + x40

irt + y20
irt + y40

irt

)
− pbt ≤ RY (MYb) ∀b ∈ B, t ∈ T (5.11)

d20
irt =

∑
t′∈Ai and t′≤t

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (5.12)

d20
irt =

∑
t′≤t

x20
irt′ +

∑
t′∈Ai

x20
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (5.13)

d40
irt =

∑
t′∈Ai and t′≤t

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ Ai (5.14)

d40
irt =

∑
t′≤t

x40
irt′ +

∑
t′∈Ai

x40
irt′ ∀i ∈ V , r ∈ R, t ∈ T and t /∈ Ai (5.15)

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 108

∑
i∈V d20irt
CSr

≤ 2m(jmr) + SRr − 2m

∀r ∈ R, t ∈ T ,m ∈ Z s.t. 1 ≤ m ≤
⌊
SRr

2

⌋ (5.16)

∑
i∈V d40irt
CSr

≤
(⌊

SRr

2

⌋
−m+ 1

)
(1− jmr) +m− 1

∀r ∈ R, t ∈ T ,m ∈ Z s.t. 1 ≤ m ≤
⌊
SRr

2

⌋ (5.17)

For convenience of later discussions that follow, we introduce an abstraction of the

formulation as follows. In the static model, the decision variable uir is set to 1 when

service i is assigned to range r, and zero otherwise (see constraints 5.7 and 5.8). We

separate the decision variable into two vectors, the vector u = (uir)
T , and vector v

for remaining decision variables, i.e. (x20
irt, x

40
irt, y

20
irt, y

40
irt, pbt, krt, jmr)

T . Then the static

model can be written as

Minimise

(u v)T
CTv

s.t. A

u
v

 ≥ B

 (Model V.II)

where A, B and C are the respective matrices of the static model.

Nimble model

Now consider that the service i arrival schedule is uncertain, and is offset by εi. We

assume εi, the difference between the new scheduled time to the original scheduled

time, is measured in units of time periods, and we assume it to be integer and uniformly

distributed from −δ to δ. We let ω represent the uncertainty vector of (εi|∀i ∈ V). Note

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 109

that there may be more than one service that may change their schedule, i.e. more than

one εi can be non-zero in ω. We also let Ω represent the set of all possible uncertainty

vectors ω.

Consider the problem being decomposed into a 2-stage decision process, called

Stage 1 and Stage 2. In Stage 1, we determine u∗ (the assignment of services to

ranges) before the realisation of ω, and in Stage 2, we determine the optimum v (which

includes the number of containers received into the ranges), and the new uwhich should

have limited differences from u∗, given the realisation of ω. Stage 2 can be viewed as

a recovery stage where it has to find a good solution (minimise objective value) based

on a given u∗ (the decision already made in Stage 1). We let F(u, v| u∗, ω), a function

of u and v given u∗ and ω, denote the objective value of Stage 2. The optimum solution

u∗ to the Stage 1 problem is when the maximum of the objective values of all Stage

2 decisions among all possible realisations of ω is minimised. We call the Stage 1

problem the nimble yard plan template problem. Hence, in mathematical notation, the

nimble yard plan template problem can be expressed as

Minimise
u∗

max
ω

min
u,v

F(u, v| u∗, ω) (Model V.III)

Many variations of the nimble yard plan template problem can be defined depending

on how Stage 2 recovery is defined, i.e. the cost of change of u in Stage 2 is measured

and limited. Specifically, it depends on how F(u, v| u∗, ω) is defined. We consider

only three cases in our discussion in this chapter. In the first case, we assume a strict

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 110

assignment policy, where Stage 2 is not allowed to change u, i.e., the cost of changing

u in Stage 2 is infinitely large, and hence u = u∗. In the second case, we assume a one

change policy such that one of the assignments of services to ranges can be changed,

and this is elaborated as follows. Let A = (a1, a2, . . . , a|R|) represent the assignment

vector in Stage 1 where ar = i if and only if service i is assigned to range r, i.e., uir = 1,

and ar = 0 if and only if range r is not assigned to any service, i.e. uir = 0, ∀i ∈ V .

Hence A and u are inter-convertible. In the one change policy, we assume that at most

one of the assignments ar in the assignment vector A can be modified by Stage 2 at

zero cost, and infinitely large cost if more than one assignment in A are modified. In

the third case, we define a generic nimble yard plan template problem, where in Stage

2, there is no limit to the changes that can be made in Stage 2. However, the cost of

changes is measured and minimised.

In the following sections, we will explore solution approaches for the first two cases.

For the third case, we present the problem definition, followed with some discussion on

the complexity. We do not explore further with any experiments but we think it could be

solved on a distributed computing environment.

5.2.3 Solution approaches for case 1: strict assignment policy

Stage 2 - a recovery algorithm RA

We can solve for Stage 2 optimally by adapting the static model to solve for v given u∗

and ω as follows. For simplicity of the model, we have assumed that the arrivals of the

containers to be loaded to service i are also offset by εi. Hence, the constraints 5.3,

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 111

5.4, 5.5 and 5.6, in the static model are modified respectively as follows:

∑
r∈R

x20
irt+εi

= DA20
it ∀i ∈ V , t ∈ T (5.18)∑

r∈R

x40
irt+εi

= DA40
it ∀i ∈ V , t ∈ T (5.19)

y20
irt+εi

=

(∑
t′∈T x

20
irt′

(1 + Pi)/2

)
∀i ∈ V , r∈ R, t ∈ Li (5.20)

y40
irt+εi

=

(∑
t′∈T x

40
irt′

(1 + Pi)/2

)
∀i ∈ V , r∈ R, t ∈ Li (5.21)

As ω adjusts only the subscripts of the static model, we let A(ω) represent the adjusted

matrix A with the uncertainty ω. Hence, given u∗ and a realisation of ω, we minimise

F(u, v| u∗, ω) where F(u, v| u∗, ω) is defined as follows, and we call this the recovery

algorithm (RA).

F(u, v| u∗, ω) =

CTv

subject to

A(ω)

u
v

 ≥ B

u = u∗

(5.22)

Stage 1 - nimble solution assuming RA

Finding the optimum solution for Stage 1 could be intractable and can be shown intu-

itively as follows. Since Ω is a finite set, we can enumerate {vω|∀ω ∈ Ω}, where vω

is the optimum solution for Stage 2 given u∗ and ω. Hence, to solve for optimum u∗ in

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 112

Stage 1, the set {vω|∀ω ∈ Ω} has to be determined. Since each service has a possi-

bility of arriving δ time periods earlier or later, i.e. −δ ≤ εi ≤ δ, and the terminal has

|V| services, that will mean that Ω has the size of (2δ + 1)|V|, and in the most practical

sense, it will be a very large number. Hence there will be O(δ|V|) number of variables

and we do not expect that we can get a model of this size to run successfully with the

current state of computing power.

Loading Optimised Surrogate Model (LOSM)

As the nimble yard plan template problem could be intractable, we explore a sur-

rogate model, called Loading Optimised Surrogate Model (LOSM) for solving Stage 1

with the following motivation. Since we are adopting a consolidated strategy, it means

that the retrieval activities are concentrated during loading of the service at any yard

range. Hence it will be bad if two adjacent yard ranges are loading at the same time

period. Since the service arrival schedule is non-deterministic, we therefore want to

increase the time buffer between two adjacent retrieval activities such that any changes

to service arrival schedule that may cause overlapping of loading time periods can be

minimised.

The details are as follows. We first pre-compute a matrix Qii′ that denotes the time

gap between service i and i′, defined as the number of time periods from the departure

of service i to the arrival of service i′, or the number of time periods from the departure

of service i′ to the arrival of the service i, whichever is smaller. To illustrate with an

example, if Li = {3, 4, 5}, and Li′ = {18, 19, 20}, and assuming there are 21 time

periods in a week, then Qii′ = 3 as we have time periods 21, 1 and 2 between time

periods 20 and 3, with time wrapping around from time period 21 back to 1. In another

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 113

example, if Li = {5, 6, 7} and Li′ = {6, 7, 8}, i.e. they overlap, then Qii′ will be the

negative of the number of time periods that they overlap, i.e. Qii′ = −2. The LOSM

is an adaptation of the static model (Model V.II) by imposing a new constraint set and

an extra term in the objective function. For any pair of consecutive yard ranges, r and

r+ (r+ denotes the range next to the range r in the same yard block), whose assigned

services are i and i′ (i.e. uir = 1 and ui′r+ = 1), we impose the rule that Qii′ has to be

bigger or equal than a fixed threshold TG, i.e. Qii′ + qr ≥ TG. The slack variable qr

is introduced to capture the violation when Qii′ is smaller than TG. Then, we add the

term W q
∑

r∈R qr into the objective function, where W q is the weight for this violation.

Hence the LOSM is expressed as follows.

Minimise
(u v)T

CTv +W q
∑

r∈R qr

s.t. A

u
v

 ≥ B

Qii′ + qr + (1− uir)M + (1− ui′r+)M ≥ TG

∀r ∈ R, ∀i, i′ ∈ V and ∃ r+

(Model V.IV)

Simulation Guided Local Search Algorithm (SGLS)

The LOSM depends on a parameter TG, and it should be set such that TG ≥ 2δ.

This is because when a pair of consecutive ranges have their assigned services’ loading

time periods separated by 2δ, then regardless of how the service arrival time period is

adjusted within δ, they will not have any overlapping of loading periods. However, from

the experiments, we find that LOSM is not able to terminate within the time-out set at

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 114

eight hours when TG is set beyond six. Hence, we propose to use the simulation guided

local search (SGLS) where we use LOSM with TG set to six to obtain a good starting

solution, and then apply the hill-climbing local search algorithm to further improve the

solution to cater for scenario when δ > 3.

The details are as follows (see flowchart in Figure 5.3). A starting solution u is found

by solving LOSM. The solution is evaluated (using the subroutine *Evaluate(u) in the

flowchart) by simulating Stage 2 with 50 random scenarios ω, and each is solved with

the RA given u and ω to obtain the objective value. The maximum of the objective

values of the 50 samples is returned. The algorithm then goes into a loop, where each

loop performs one step of the local search. The neighbourhood set N(u) for the local

search is generated as follows. Note that u encodes an assignment of services to yard

ranges, and to simplify discussion, we let (a1, a2, . . . , a|R|) represent the assignment,

such that ar denotes the service that is assigned to range r, i.e. ar = i if and only if

uir = 1. A neighbour to the solution u is defined to have a pair of assignment swapped,

i.e. the values of ar and ar′ are exchanged, for some r and r′ inR. The neighbourhood

set N(u) is the set of all possible neighbours of u. Each neighbour is evaluated using

the subroutine *Evaluate(u′), and the neighbour that gives the lowest objective value is

chosen as “Best”. If the objective value of “Best” is not better than that of u, the local

search terminates, otherwise, “Best” will be chosen as the next solution in the local

search, and the loop repeats.

The detailed algorithm in pseudo code is given in Figure 5.4 for reference. A cou-

ple of short cuts in the algorithm are inserted to speed up the computation time. First

and most obvious, we terminate the local search whenever a solution with zero objec-

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 115

Figure 5.3: Flowchart for SGLS Algorithm

tive is found (see line 32). Next, we terminate the sampling process of generating 50

samples when we encounter any of them that gives an objective value worse than the

best solution found so far (since this neighbour will never be chosen anyway, see line

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 116

1: SGLS Local Search Algorithm
2: Initialise Objmax as −1
3: Generate a starting solution vector u with LOH (Model V.IV)
4: repeat
5: Generate a random ω and solve RA (5.24) to determine the optimum solution
6: if solution.objective > Objmax then
7: Remember ω as ωworst

8: Remember solution.objective as Objmax

9: end if
10: Remember Objmax as Best

11: until 50 times
12: while Not converge do
13: Generate the neighbours of u = N(u)

14: Set Neighbourbest as null
15: for all u′ ∈ N(u) do
16: Solve RA (5.24) with ωworst to determine the optimum solution
17: if solution.objective ≥ Best then
18: Skip this u′ and continue with next item in the for loop
19: end if
20: Remember the solution.objective value as Objmax

21: repeat
22: Generate a random ω and solve RA (5.24) to determine the optimum solution
23: if solution.objective > Objmax then
24: Remember ω as ωworst

25: remember the solution.objective as Objmax

26: end if
27: if solution.objective > Best then
28: Skip this u′ and continue with next item in for loop
29: end if
30: until 50 times
31: if Objmax = 0 then
32: Terminate local search
33: end if
34: if Objmax < Best then
35: Best = Objmax

36: Remember u′ as Neighbourbest
37: end if
38: end for
39: if Neighbourbest not null then
40: Set u = Neighbourbest
41: else
42: Convergence found, terminate local search
43: end if
44: end while

Figure 5.4: Pseudo code for SGLS Algorithm.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 117

28). Lastly, since we will terminate the sampling process when we encounter an ω that

gives an objective value worse than the best, as we want to find an ω that gives a lousy

solution as early as possible (see line 18). Hence, we store the ω that is responsible

for the worst case so far, and this ω is always used first before generating the next 50

random samples. From the experiments, we find that the algorithm indeed does not

need to generate the remaining 50 samples in most of the solutions evaluated in the

local search.

Experimental results

We conduct the experiments as follows. For Stage 1, we experiment using LOSM and

SGLS. For the purpose of comparison, we also experiment using a naive model, where

Stage 1 is solved using the static model, ignoring the uncertainty. Stage 2 is solved

using the recovery algorithm RA, but for comparison, we have also experimented using

a “stubborn” policy, where we do not perform any recovery, i.e. we retain the assignment

of services to yard ranges and the number of containers received into each range. The

stubborn policy can be implemented simply by adapting the static model as follows.

Minimise
(u′ v′)T

CTv′

s.t. A(ω)

u′
v′

 ≥ B

u′ir = uir ∀i ∈ V , r ∈ R

x′20
irt = x20

irt−εi ∀i ∈ V , r ∈ R, t ∈ T

x′40
irt = x40

irt−εi ∀i ∈ V , r ∈ R, t ∈ T

(Model V.V)

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 118

For simplicity of notation, we label the various approaches in the experiments as

given in Table 5.1.

Table 5.1: Abbreviations used to label various approaches in experiments

Approaches Base RA LOSM LOSM-R SGLS-R

Stage 1 static static LOSM LOSM SGLS

Stage 2 stubborn RA stubborn RA RA

Experimental set up

We conduct the experiments with the terminal that is as described in Chapter 3

Section 3.2. We further partition the blocks into ranges of five slots for the set of ranges

R and adjacent ranges are grouped in pairs in the set of groups G. Each group has an

allowable maximum activity count of 90, i.e. MAg = 90. We also assume an RMG is

able to handle 120 moves per time period and each yard block has three RMGs.

We model the time window with 21 time periods. 21 services will arrive throughout

the week, with one service arriving in each time period, and staying alongside for loading

for one time period. It is intentional to have loading of each service to be within one

time period, so that the retrieval activities in each range will be more intense and hence

activity concentration violations can be manifested easily with changes of service arrival

schedule. All services are assumed to be homogeneous, and will load the same number

of 20-footers and 40-footers. The number of TEUs received by each service prior to

the loading time periods follow the same arrival schedule as follows. Without loss of

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 119

Figure 5.5: Percentage TEU of the total loaded containers received into the yard prior
to the loading period for each service.

generality, let’s assume that a service is to load in period 21, as shown in Figure 5.5.

The schedule depicts that 3.4% of the TEUs will arrive into the yard in time period 9,

6.6% in time period 10, and so on, and continue to arrive in subsequent periods to

period 19. Figure 5.5 also shows graphically the cumulative percentage of the TEUs

which should have arrived by each time period, where 100 percent will be the final

TEUs the service will load. The weights for activity concentration and RMG contention,

W k and W p, are set to 1. This is because both measurements (i.e. krt and pbt) are in

the same unit of measure, being the number of activities exceeding the thresholds, and

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 120

hence a unit of violation in krt is equivalent to one unit in pbt. For LOSM, we further set

TG = 6 and W q = 10. We find that the solution is not sensitive to the value of W q as

all the runs of LOSM terminate with optimum solution at zero objective value. As the

LOSM is not able to terminate with TG > 6, and we want TG to be as big as possible,

we set TG to the maximum at six.

For each solution approach as tabulated in Table 5.1, an experiment set comprises

of running experiments by varying the δ value from 1 to 10. When δ is 10, the uncertainty

is practically random, i.e. a service is able to come at any time period of the week. For

each value of δ, we apply the strategies for Stage 1, and then we randomly generate

400 samples of ω = (ε1, ε2, . . . , εi, . . . , ε|V|), where −δ ≤ εi ≤ δ, and for each ω we

apply the various strategies for Stage 2. We collect the objective value of the Stage 2

solution (i.e. amount of violations) for each ω , and observe the average and maximum

(worst case) violations of the 400 samples. One experiment set is conducted for each

of the approaches in Table 5.1 except for SGLS-R, as SGLS-R solves for Stage 1 non-

deterministically using simulation in the local search. The experiment set for SGLS-R is

replicated 10 times, and the means and standard deviations of the 10 replications are

computed.

Results

Table 5.2 tabulates the results of the experiments, showing the average and worst

case objective values. Note that the objective value measures the violations, hence, the

smaller the value, the better the solution. As the experiment set for SGLS-R is replicated

10 times, the means and standard deviations of the average and worst case objective

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 121

Table 5.2: Experimental results: average and worst case violation

Table 5.3: Detailed results of 10 replications of SGLS-R experiments - average violation

value of the 10 replications are shown instead. The details of the average case and

worst case objective values for each of the 10 runs are tabulated in Table 5.3 and 5.4,

respectively.

The purpose of the experiments is to observe the quality of the yard plan template

(in terms of number of violations) under various approaches. First, we compare the

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 122

Table 5.4: Detailed results of 10 replications of SGLS-R experiments - worst case vio-
lation

approaches that have recovery algorithm RA in Stage 2 versus those with the stubborn

policy (i.e., RA versus Base, LOSM-R and SGLS-R versus LOSM). The violations with

recovery are very much lower compared to those without recovery, and this can be

seen in both the average and worst case objective values. This shows that regardless

of whether the Stage 1 solution is nimble or not, having a recovery in Stage 2 to change

the solution after the uncertainty is revealed is very important to reduce the number of

violations after the uncertainty is revealed. Next, we examine the added value of finding

a nimble solution in Stage 1 compared to the static model. For the case without nimble

solution in Stage 1 (RA versus Base), the average violations with RA ranges from 3% to

10% to that of the solution without recovery (Base). But for the case with nimble solution

in Stage 1 (SGLS-R versus LOSM), the violations can be totally eliminated with recovery

in some of the cases, and for the rest of the cases, the average violation ranges from

0.3% to 0.4% to that of the solution without recovery (LOSM). This shows that having

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 123

nimble solution provides a very good starting solution for the recovery algorithm to repair

from, when the uncertainty is revealed.

Having a nimble solution in Stage 1 followed by a recovery algorithm in Stage 2

is a good approach to handle uncertainty, and the two solution approaches presented

are the LOSM-R and SGLS-R. Next, we examine the value of using the local search in

SGLS to improve the solution from LOSM, i.e. comparing the objective value of LOSM-

R and SGLS-R. The experiments show that with δ ≤ 6, both approaches have zero

violations for all the runs. This is an interesting result, as LOSM with TG = 6 provides

protection to uncertainty only up to δ = 3. Note that six time periods equate to two days.

Hence, the experiments show that LOSM is able to generate good solutions when the

service arrival schedule is off by two days. For δ > 6, we start to see violations to

the activity thresholds. However, we note that SGLS-R performs better than LOSM-R,

i.e. the local search has improved the nimbleness of the solution generated by LOSM.

However, due to the difference between LOSM-R and SGLS-R being not large, and with

high standard deviations, we are not able to show, using Student’s t-test, that SGLS-R

is significantly better.

In conclusion, the experiments show that the nimble yard plan template followed by

a recovery stage with strict assignment policy is able to achieve zero violation when

service arrival schedule is off by two days. For scenarios where the uncertainty of

service arrival schedule is beyond two days, SGLS-R is a preferred approach as it gives

solutions with lower violations, both in average and worst case. However, statistically,

the results fail to show significant difference between SGLS-R and LOSM-R.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 124

5.2.4 Solution approaches for case 2: one change policy

Stage 2 - a recovery algorithm RA-1

Recall that in the recovery algorithm, RA, presented earlier, the new u is the same as

the given u∗ in Stage 1. With the one change policy, the recovery algorithm will be

slightly different such that we limit the number of changes in the assignment of services

to ranges to one, and hence we need to derive an expression to measure the number

of changes and bound the value in a constraint. We modify the static model for this

purpose as follows.

F(u, v| u∗, ω) =

CTv

s.t. A(ω)

u
v

 ≥ B

∑
r∈R(

∑
i∈V∧(u∗ir=1)(u

∗
ir − uir)+∑

i∈V∧(
∑

i∈V u
∗
ir=0)(uir)) ≤ 1

(5.23)

The derivation is as follows. For a given range r, if it is assigned to service i in Stage

1, then u∗ir = 1. In the Stage 2 solution, if uir = 0, it means that the assignment of range

r to service i has been changed in Stage 2, and hence the term
∑

i∈V∧(u∗ir=1)(u
∗
ir − uir)

will be set to 1 if this happens. Next, if range r is not assigned to any service in Stage

1, then
∑

i∈V u
∗
ir = 0. In Stage 2, if uir = 1 for some i, it means that the range r is now

assigned and hence there is a change. The term
∑

i∈V∧(
∑

i∈V u
∗
ir=0)(uir) will then be set

to 1 if this happens. Summing the above two expressions over all r ∈ R will give the

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 125

total changes in assignment of ranges to services from u∗ to u, and hence the constraint∑
r∈R

(∑
i∈V∧(u∗ir=1)(u

∗
ir − uir) +

∑
i∈V∧(

∑
i∈V u

∗
ir=0)(uir)

)
≤ 1 ensures the number of

changes is limited to one.

However, this model took hours to solve in CPLEX. In order to conduct meaningful

experiments, we propose a new recovery algorithm, such that it will give a solution in a

shorter amount of time, but possibly with a sub-optimal solution. The proposed recovery

algorithm is made up of two steps. In the first step, we run the model RA (assuming u

= u∗). Recall that in the model, krt are decision variables that encode the number of

violations of the activity concentration thresholds in range r at time t. We let k∗rt be the

values of krt of this step 1 solution. In step 2, we run a model similar to equation 5.23,

with an additional constraint as follows.

F(u, v| u∗, ω) =

CTv

s.t. A(ω)

u
v

 ≥ B

∑
r∈R(

∑
i∈V∧u∗ir=1(u∗ir − uir)+∑

i∈V∧
∑

i∈V u
∗
ir=0(uir)) ≤ 1

uir = u∗ir ∀i ∈ V , r ∈ R ∧ (
∑

t∈T k
∗
rt = 0)

(5.24)

The additional constraint uir = u∗ir applies only for r such that
∑

t∈T k
∗
rt = 0, i.e

those ranges r that do not have any violations in step 1 will not quality to be changed

in Stage 2. Therefore, this limits the Stage 2 solution such that only those ranges r

satisfying
∑

t∈T k
∗
rt > 0 are allowed to change their assignments, otherwise, they have

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 126

to be the same as that in the Stage 1 solution. The rationale behind this constraint is that

if a range does not have activity concentration violations, then the Stage 1 assignment

for this range is probably not vulnerable to the uncertainty ω, and hence the assignment

should be retained. We call this proposed recovery algorithm for one change policy

RA-1.

Stage 1 - nimble solution assuming RA-1

We evaluate the possibility of using SGLS to solve Stage 1. We find that each run of

RA-1 can take 30-60 seconds. The Evaluate*(u) function will in turn run RA-1 50 times

for the 50 randomly generated ω. Using RA-1 in the Evaluate*(u) function makes the

evaluation of the neighbourhood N(u) in the local search extremely slow. In order to

speed up the local search, we modified the SGLS to only allow some neighbours to be

generated.

We recall that a neighbour of u is generated by swapping the assignment of any

two ranges as follows. We let (a1, a2, . . . , a|R|) represent the assignment of u and a

neighbour to the solution u is defined to have a pair of assignment swapped, i.e. the

values of ar and ar′ are exchanged, for some r and r′ in R. Instead of considering all

possible neighbours of u to be in N(u), we choose neighbours into N(u) as follows.

We first evaluate u by generating 50 random ω and solve each case with RA-1. The

case that gives the maximum objective value for RA-1 is chosen as the worst solution.

We let k∗rt be the values of krt of this solution. A neighbour u′ (with values of ar and

ar′ interchanged) is chosen into N(u) only if either
∑

t∈T krt > 0 or
∑

t∈T kr′t > 0.

The rationale is that exchanging ar and ar′ is not likely to improve the solution if both

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 127

∑
t∈T krt = 0 and

∑
t∈T kr′t >= 0, as both ranges do not have the problem of violat-

ing the activity concentration thresholds. We call this algorithm Selective-SGLS as we

are selective in the choice of neighbours in N(u). Selective-SGLS algorithm is almost

exactly like the SGLS as shown in Figure 5.3 (flowchart) and Figure 5.4 (pseudo code),

except that, instead of RA, RA-1 is used, and the neighbourhood set N(u) is chosen

selectively based on k∗rt .

Experimental results

The experiment set up is exactly the same as that used for the experiments for SGLS-

R, as described in Section 5.2.3. We run Selective-SGLS for Stage 1 and RA-1 for

Stage 2. We label this approach as SGLS-R1. As SGLS-R1 solves for Stage 1 non-

deterministically using simulations in the local search, the experiment set for SGLS-R1

is replicated 10 times, and the means and standard deviations of the 10 replications are

computed. The details of the average and worst case objective values for each of the

10 runs are tabulated in Table 5.6 and 5.7, respectively. Table 5.5 tabulates the results

for SGLS-R1, and for convenience of comparison with SGLS-R, the results for SGLS-R

are also tabulated.

We compare the quality of the solutions of a recovery policy where we allow more

changes in the recovery stage (SGLS-R1), with one that has more restriction (SGLS-R).

The average and worst case violation of SGLS-R and SGLS-R1 are compared using the

corresponding objective values (violations) with the same δ.

For the case with δ = 8, experiments show that SGLS-R1 is better since it is able

to find solutions with zero violations with the recovery algorithm RA-1. With δ = 10, the

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 128

Table 5.5: Experimental results comparing SGLS-R versus SGLS-R1 : average and
worst case violation

Table 5.6: Detailed results of 10 replications of SGLS-R1 experiments - average viola-
tion

average and worst case results also show that SGLS-R1 is better with lower violations.

However, for δ = 9, SGLS-R1 gives solutions with higher violations in both the average

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 129

Table 5.7: Detailed results of 10 replications of SGLS-R1 experiments - worst case
violation

and worst case. Although we expect the one change policy to be more superior than

strict assignment policy (with less violations), as we allow one of the assignments to be

changed, we note that in our implementation, we compromise the optimality of the so-

lutions for better run time as follows. Firstly, we have used the RA-1 recovery algorithm,

which disallows some of the changes in u to be considered in Stage 2, and that could

have given us sub-optimal solutions for these cases. Secondly, we have used Selective-

SGLS, where some of the neighbours that could have helped to find better solutions are

not evaluated. Hence, the algorithm could have missed out the better solutions due to

these reasons. Nonetheless, as the differences between SGLS-R and SGLS-R1 are not

large and with high standard deviation, we are not able to show, using Student’s t-test,

any significant difference between SGLS-R and SGLS-R1 for the cases with δ = 9 and

δ = 10.

In conclusion, the experiments show that allowing one of the assignments to change,

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 130

as in the one change policy, gives a better solution than that with strict assignment

policy. However, due to run time issues, we compromise on the solution and we are

not able to show that the one change policy is better in one of the cases. We also note

that the problem gets harder to solve when we allow more changes to the solution in

the recovery stage, i,e. increase flexibility in the recovery stage. This will be discussed

further in the next section.

5.2.5 Case 3: generic nimble yard plan template problem

In Section 5.2.3, we consider the case where u cannot be changed in the Stage 2 re-

covery algorithm. In Section 5.2.4, we consider the case where one of the assignments

in u can be changed in the Stage 2 recovery algorithm, and there is no cost associated

to this change. In this section, we consider the most generic case of the nimble yard

template problem, where there is no limit to the changes in u in Stage 2. However, we

measure the cost of the change and that has to be minimised in the objective.

Problem definition

We let the function 4
(
(u∗ v∗)T , (u v)T

)
denote the cost of changing from a Stage 1

solution (u∗ v∗)T to a Stage 2 solution (u v)T . A formulation of the general Stage 2

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 131

recovery algorithm could be

F(u, v| u∗, v∗, ω) =

CTv +4
(
(u∗ v∗)T , (u v)T

)
subject to

A(ω)

u
v

 ≥ B

(5.25)

Hence, the corresponding nimble yard plan template problem will be defined as

follows.

Minimise
(u∗ v∗)T

max
ω

min
(u v)T

F(u, v| u∗, v∗, ω) (Model V.VI)

Note that this formulation is in the form of the generic nimble optimisation.

Complexity of the problem

We attempt to give a intuitive explanation to the complexity of the problem. We can

see that the formulation is a generalisation of the strict assignment policy and the one

change policy. For the case of strict assignment policy,4((u∗ v∗)T , (u v)T) is zero when

u∗ = u, and infinity otherwise. For the case of one change policy, 4((u∗ v∗)T , (u v)T)

is zero when u∗ and u differs by one of the assignment.

However, the above two cases consider only feasibility, and hence in the solution ap-

proach, they are modelled into the constraints of the recovery algorithm. For the case of

strict assignment policy, the optimum solution for RA can be solved in reasonable time.

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 132

However, the mathematical programme that models the exact one change policy is not

able to terminate within the time-out limit of eight hours, and hence a restricted version

RA-1 is used in the experiments, where some possible solutions are not considered.

Hence RA-1 may not give the optimum solution based on the exact one change policy.

Note also that even with this compromise in the RA-1, we have to also compromise the

local search with a Selective-SGLS where some neighbours are not evaluated.

In this most generalised case, 4((u∗ v∗)T , (u v)T) may not be just zero or infinity,

but can be a complex non-linear relationship between (u∗ v∗)T and (u v)T . As we

have seen in solution approaches for the two cases, it gets harder to solve for the

recovery algorithm when the changes in Stage 2 are more flexible (the model gets more

complex). Hence we think that the generic nimble yard plan template problem is a very

challenging problem to tackle, and we leave this for future research work. Nonetheless,

we think that the simulation guided local search architecture on a distributed computing

environment is likely to be the direction to pursue.

5.3 Summary

In this chapter, we consider a container terminal that adopts a consolidated and dedi-

cated yard plan strategy. With vessel arrival schedule being uncertain, we would like to

have a yard plan template that can be changed easily to an optimal solution after the

uncertainty is revealed. We call this the nimble yard plan template problem.

We first introduce a generic nimble optimisation formulation. It is interesting to note

that this problem has never been addressed in the literature, except in some related

Chapter 5 Yard Plan Template with Uncertainty - Nimble Optimisation 133

works where we show that our formulation is a generalisation of some of their models.

We also propose a general method for solving this class of problems, and also propose

that we could use distributed architecture (such as cloud computing) to implement the

solution architecture.

As there can be many variations of the nimble yard plan template problem, we first

focus on two cases, where the recovery stage adopts a strict assignment policy, and a

one change policy, respectively. We present solution approaches for both cases. We

show via experiments that a nimble yard plan template with a recovery policy in Stage

2 gives very much lower violations compared to an approach that is not nimble and

does not recover the solution after the uncertainty is revealed. We also show that a one

change policy generally gives lower violations compared to the strict assignment policy,

but in one instance, our solution method fails to find the optimum solution. Lastly, we

define a generic nimble yard plan template problem as the third case, and provide some

intuition of the complexity of the problem.

Chapter 6 Conclusion 134

Chapter 6

Conclusion

Container terminals must be efficient in order to meet the shipping community’s

demand. For container terminals to be efficient, relying on quay-side technological

advancements like better and faster cranes is not enough. Movement of containers into

and out of the storage yard must be as efficient as possible, and the most important

factor in determining yard storage efficiency is the yard plan. We focus most part of

the thesis on solving a yard plan template - a plan that repeats on a weekly basis. We

first focus on a static problem, and then move on to a problem where input could be

uncertain. We find that the yard plan template solution has to be “nimble”, i.e. agile to

changes when the uncertainty is revealed. Motivated by the nimble yard plan template

problem, we define a generic nimble optimisation formulation, and some preliminary

research work is presented.

6.1 Thesis achievements and contributions

The following points summarise what we have achieved and our contribution in this

thesis:

Chapter 6 Conclusion 135

1. We have provided good insight into why container terminals need to have an op-

timum yard plan in order to improve their efficiency at the quay side, despite new

quay cranes technology is becoming available for quay cranes to lift multiple con-

tainers at the same time. It is found that the bottleneck could be transferred to

the storage and retrieval efficiency in the yard. Storage and retrieval are slowed

down due to violations of the thresholds for activity concentration and yard crane

contention. These violations can be minimised with a optimised yard plan.

2. We present a very comprehensive literature review of various areas of research

pertaining to container terminal operations, ranging from yard planning, trucks

and yard cranes routing and scheduling, berth planning, quay cranes scheduling

and stowage planning. We also review works on container terminal simulations,

and also a couple of works on terminal handling capacity, cost of operating the

terminal, and manpower planning issues.

3. We have described how shipping lines operate their vessels by grouping them into

services. Each service calls at a terminal on a weekly cycle, and on a fixed day of

the week. This allows terminal to generate a yard plan that repeats on a weekly

basis - a yard plan template. Terminals usually generate yard plan templates

following a yard plan strategy. To help terminals to discover the best strategy

for their scenario, we will require the yard plan template problem to be defined

generically so that solutions that apply different strategies can be generated and

compared. Realising that there is this need, we formulate a generic model that

defines the yard plan template problem that is applicable to a wide variety of yard

Chapter 6 Conclusion 136

plan strategies. To the best of our knowledge and from the papers reviewed, this

has never been formulated before.

4. Search engines can be designed to discover the best yard plan strategy, and that

requires the generic yard plan template problem to be solved in a reasonable

amount of time. As the generic problem has different complexity when applied

to different strategies, we propose to approach the problem by having different

solution approaches for different strategies. We present solution approaches for

two strategies, namely, consolidated and dedicated strategy, and consolidated

and non-dedicated strategy, respectively. The first approach solves the model as

a mathematical programme on CPLEX, and we show that re-modelling some of

the constraints reduces the run time tremendously. The second approach is a

heuristic local search algorithm, and we show that the run time is extremely fast

compared to the mathematical programme. However, the experiments show that

it does not give the optimum solution in one case.

5. We note that uncertainty of events prevails in reality. We learn from a global

terminal operator that changes to the vessels arrival schedule have the greatest

impact to operation efficiency for a terminal that adopts the consolidated strat-

egy. We have defined a nimble yard plan template problem, where the objective

is not to find a yard template that is robust against vessel arrival uncertainty, but

a nimble yard template that is agile to change to a new solution “easily” when the

uncertainty is revealed. We explore three variations of the nimble yard plan tem-

plate problem. Heuristic algorithms based on local search are presented to solve

Chapter 6 Conclusion 137

the first two cases. Experiments show that nimble solutions are better for situa-

tions with vessel arrival uncertainty. Experiments also show that a more flexible

recovery policy gives a better solution in most of the cases, but it gets harder to

solve. The third case is the most generic form of the nimble yard plan template

problem, and we give some intuition of the complexity of solving such a problem.

6. In many real world problems, often we are forced to make an initial decision, but

at a later time, we can change the decision when new information is available,

but this change incurs additional cost, either wasted money or effort of rework.

Hence, the initial decision is deemed to be nimble, and nimble yard plan template

problem is an example. Motivated by the nimble yard plan template problem, we

have defined a generic formulation for Nimble Optimisation. We find that there

are no research papers that have formulated the nimble optimisation problem. By

defining the generic problem formulation, it allows the non-container terminal op-

eration community to also explore if any other problems can be classified into this

class of problems, hence allowing a bigger research community to be exposed to

this problem. A distributed solution architecture to solve this problem is presented.

We also show that it is a generalisation of some of the works we have reviewed.

6.2 Major limitations of the model

While we have defined the scope of the study for the purpose of this dissertation, various

assumptions are made, and hence the model presented is not without limitations. The

following summarises the major limitations of the model.

Chapter 6 Conclusion 138

1. The yard plan template problem model, presented in this thesis, only applies to

terminals with RMG fixed to the blocks. Allowing dynamic yard crane movement

across blocks can be modelled, but we find that the problem is too complex to be

solved.

2. The model also assumes that the terminal adopts immediate final grounding. Al-

lowing containers to be moved to another location later means that we have to

augment the yard planning problem with a scheduling problem of deciding when

each container will be moved from one yard location to another. This is again too

complex to be solved.

3. In the nimble optimisation (Nimo) problem definition, we limit the decision making

to be done in two stages, but in real life, decisions in the face of uncertainty are

done in multiple event triggered stages. However multi-stage problems are highly

intractable, and hence we limit out model to two stages.

4. In the nimble yard plan template problem, we limit the uncertainty to the service

arrival schedule. We reasoned that this is the major factor causing yard activity vi-

olation. However, a more in depth study with the combination of other uncertainty

factors can be explored.

6.3 Future research direction

We are still faced with a few un-solved problems. In the static yard plan template prob-

lem, we have not explored solution approaches for other strategies such as consolidated

Chapter 6 Conclusion 139

strategy with variable size clusters. For strategies with clusters, we do not think a math-

ematical programme is able to solve it, and hence heuristic algorithms are needed. For

the nimble yard plan template problem, more work can be done to explore different

search methods, like the genetic algorithm or simulated annealing. Distributed com-

puting can be explored to distribute the runs for the evaluation of the solutions with

simulation. For the nimble optimisation (Nimo) model, it may lead to many interesting

research work on solving the problem, either special cases, or solving the general prob-

lem with a general framework. Lastly, Nimo can be applied to almost every real life

problem, as uncertainty prevails in real life, and we are always constantly adapting to

new changes.

Bibliography

D. Ambrosino, et al. (2004). ‘Stowing a containership: the master bay plan problem’.

Transportation Research Part A 38A:81–99.

A. Ben-Tal, et al. (2006). ‘Extending scope of robust optimization: comprehensive

robust counterparts of uncertain problems’. Mathematical Programming Series B

107(1):63–89.

A. Ben-Tal, et al. (2004). ‘Adjustable Robust Solutions of Uncertain Linear Programs’.

Mathematical Programming Series A 99:351–376.

A. Ben-Tal & A. Nemirovski (1997). ‘Robust truss topology design via semidefinite pro-

gramming’. SIAM Journal on Optimization 7(4):991–1016.

A. Ben-Tal & A. Nemirovski (1998). ‘Robust convex optimization’. Mathematics of Op-

erations Research 23(4):769–805.

A. Ben-Tal & A. Nemirovski (1999). ‘Robust solutions of uncertain linear programs’.

Operations Research Letters 25(1):1–13.

140

Bibliography 141

A. Ben-Tal & A. Nemirovski (2000). ‘Robust solutions of Linear Programming problems

contaminated with uncertain data’. Mathematical Programming Series A 88(3):411–

424.

M. Benacchio, et al. (2001). ‘Cost, Benefits and Pricing of Dedicated Container Termi-

nals’. The 9th world Conference on Transportation Research, Seoul, Korea .

D. Bertsimas & C. Caramanis (2010). ‘Finite Adaptability in Multistage Linear Optimiza-

tion’. IEEE Transactions on Automatic Control 55(12):2751–2766.

D. Bertsimas & M. Sim (2004). ‘The Price of Robustness’. Operations Research

52(1):35–53.

E. K. Bish (2003). ‘A multiple-crane-constrained scheduling problem in a container

terminal’. European Journal of Operational Research 144:83–107.

E. K. Bish, et al. (2007). ‘Dispatching Vehicles in a Mega Container Terminal’. Con-

tainer Terminals and Cargo Systems, Design, Operations Management and Logistics

Control Issues pp. 179–194.

G. Bontempi, et al. (1997). ‘Simulation and Optimization for Management of Intermodal

Terminals’. European Simulation Multi-conference .

A. Bruzzone & R. Signorile (1998). ‘Simulation and Genetic Algorithms for ship planning

and shipyard layout’. Simulation 71(2):74–83.

B. Casey & E. Kozan (2006). ‘A container storage handling model for high tech au-

tomated multimodal terminals’. Proceedings of the second International Intelligent

Logistics Systems Conference pp. 10.1 – 10.19.

Bibliography 142

C. Chen (2003). ‘Simulation and Optimization of Container Yard Operations: a survey’.

Maritime Tehnology 10-12 Sep Singapore.

C. Y. Chen, et al. (2000). ‘A time-space network model for the space resource alloca-

tion problem in container marine transportation’. 17th international symposium on

mathematical programming .

T. Chen (1999). ‘Yard operations in the container terminal - a study in the “unproductive

moves"’. Maritime Policy and Management 26(1):27–38.

X. Chen & Y. Zhang (2009). ‘Uncertain linear programs: extended affinely adjustable

robust counterparts’. Operations Research 57(6):1469–1482.

R. K. Cheung, et al. (2002). ‘Inter block crane deployment in container terminals’. Trans-

portation Science INFORMS 36(1):79–93.

S. Choo (2006a). ‘The Crane Split and Sequencing Problem with Clearance and Yard

Congestion Constraints in Container Terminal Ports’. NUS Master Thesis, Singapore-

MIT Alliance .

S. Choo (2006b). ‘A Multi-agent Framework Applied to the Quay Crane Scheduling

Problem in Container Terminal Ports’. MIT Master Thesis, Singapore-MIT Alliance .

Y.-C. Chung, et al. (1988). ‘A simulation analysis for a transtainer-based container

handling facility’. Computers and Industrial Engineering 14:113–115.

J. Dai, et al. (2007). ‘Berth Allocation Planning Optimization in Container Terminals’

119:69–104.

Bibliography 143

S. K. Das & L. Spasovic (2003). ‘Scheduling material handling vehicles in a container

terminal’. Production Planning and Control 14(7):623–633.

B. de Castilho & C. F. Daganzo (1993). ‘Handling strategies for import containers at

marine terminals’. Transportation Research Part B 27B:151–166.

R. Dekker, et al. (2006). ‘Advanced methods for container stacking’. OR Spectrum

26(4):563–586.

Y. Du, et al. (2010). ‘A feedback procedure for robust berth allocation with stochastic

vessel delays’. Proceedings of the 8th World Congress on Intelligent Control and

Automation (WCICA) pp. 2210–2215.

M. K. Fung, et al. (2003). ‘The impact of terminal handling charges on overall shipping

charges: an empirical study’. Transportation Research Part A 37A:703–716.

L. Gambardella, et al. (1998). ‘Simulation and planning of an intermodal terminal’. Spe-

cial issue of Simulation Journal in Harbor and Maritime Simulation 21 Aug(2):107–

116.

L. M. Gambardella, et al. (2001). ‘An optimization methodology for intermodal terminal

management’. Journal of Intelligent Manufacturing 12:521–534.

L. M. Gambardella & A. E. Rizzoli (2000). ‘The role of simulation and optimization in

intermodal container terminals’. ESS2000, European Simulation Symposium Sep.

H.-O. Guenther, et al. (2006). ‘Simulation of transportation activities in automated sea-

port container terminals’. Proceedings of the second International Intelligent Logistics

Systems Conference pp. 3.1–3.15.

Bibliography 144

X. Guo, et al. (2009). ‘A simulation based hybrid algorithm for yard crane dispatching

in container terminals’. Proceedings of the 2009 Winter Simulation Conference pp.

2320–231.

X. Guo, et al. (2008). ‘Yard crane dispatching based on real time data driven simulation

for container terminals’. Proceedings of the 2008 Winter Simulation Conference pp.

2468–2655.

X. Han, et al. (2010). ‘A proactive approach for simultaneous berth and quay crane

scheduling problem with stochastic arrival and handling time’. European Journal of

Operational Research 207(3):1327–1340.

M. Hendriks, et al. (2010). ‘Robust cyclic berth planning of container vessels’. OR

Spectrum 32(3):501–517.

L. Henessey, et al. (2004). ‘Using simulation in evaluating berth allocation at a container

terminal’. 3rd International Conference on Computer Applications and Information

Technology in Maritime Industries .

C.-I. Hsu & Y.-P. Hsieh (2005). ‘Shipping economic analysis for ultra large containership’.

Journal of the Eastern Asia Society for Transportation Studies 6:936–951.

W.-C. Huang & C.-Y. Chu (2004). ‘A selection model for in-terminal container handling

systems’. Journal of Marine Science and Technology 12(3):159–170.

M. Itmi, et al. (2000). ‘A Simulation Methodology description of container placement

using a unique system to control the logistics’. Summer Computer Simulation Con-

ference .

Bibliography 145

M. Itmi, et al. (2001). ‘Simulation operations policies in a container terminal’. Summer

Computer Simulation Conference .

P. Jarjoui, et al. (2001). ‘Simulation of a Multi-agent system for container terminal ac-

tivities co-operation of handling teams’. Summer Computer Simulation Conference

.

J. Kang, et al. (2006). ‘Deriving stacking strategies for export containers with uncertain

weight information’. Journal of Intelligent Manufacturing 17(4):399–410.

M. Kia, et al. (2002). ‘Investigation of port capacity under a new approach by computer

simulation’. Computers and Industrial Engineering 42:533–540.

K. H. Kim (1997). ‘Evaluation of the number of rehandles in container yards’. Computers

Industrial Engineering 32(4):701–711.

K. H. Kim & J. W. Bae (1998). ‘Re-marshalling export containers in port container

terminals’. Computers Industrial Engineering 35(3-4):655–658.

K. H. Kim & H. B. Kim (1999a). ‘Segregating space allocation models for container in-

ventories in port container terminals’. International Journal of Production Economics

59:415–423.

K. H. Kim & H. B. Kim (2002). ‘The optimal sizing of the storage space and handling

facilities for import containers’. Transportation Research Part B 36B:821–835.

K. H. Kim, et al. (2004). ‘Operator-scheduling using a constraint satisfaction technique

in port container terminals’. Computers and Industrial Engineering 46:373–381.

Bibliography 146

K. H. Kim & K. Y. Kim (1999b). ‘Routing straddle carriers for the loading operation of

containers using a beam search algorithm’. Computers and Industrial Engineering

36:109–136.

K. H. Kim, et al. (2003). ‘Sequencing delivery and receiving operations for yard cranes

in port container terminals’. International Journal of Production Economics 84:283–

292.

K. H. Kim & K. C. Moon (2003). ‘Berth scheduling by simulated annealing’. Transporta-

tion Research Part B 37B:541–560.

K. H. Kim & K. T. Park (2003). ‘A note on a dynamic space-allocation method for out-

bound containers’. European Journal of Operations Research 148:92–101.

K. H. Kim & Y.-M. Park (2004). ‘A crane scheduling method for port container terminals’.

European Journal of Operational Research 156:752–768.

K. H. Kim, et al. (2000). ‘Deriving decision rules to locate export containers in container

terminal’. European Journal of Operations Research 124:89–101.

K. Y. Kim & K. H. Kim (1997). ‘A routing algorithm for a single transfer crane to load ex-

port containers onto a containership’. Computers Industrial Engineering 33(3-4):673–

676.

L. P. Ku, et al. (2010). ‘An optimisation framework for yard planning in a container

terminal: case with automated rail-mounted gantry cranes’. OR Spectrum 32:519–

541.

Bibliography 147

B. C. Kulick & J. T. Sawyer (1999). ‘Flexible interface and architechture for container

and intermodal freight simulations’. Proceedings of the 1999 Winter Simulation Con-

ference .

L. H. Lee, et al. (2006). ‘An optimization model for storage yard management in tran-

shipment hubs’. OR Spectrum 28(4):539–561.

P. Legato & R. M. Mazza (2001). ‘Berth planning and resources optimisation at a con-

tainer terminal via discrete event simulation’. European Journal of Operational Re-

search 133:537–547.

P. Legato & M. F. Monaco (2004). ‘Human resources management at a marine container

terminal’. European Journal of Operational Research 156:769–781.

M. Levinson (2006). The Box - How the Shipping Container Made the World Smaller

and the World Economy Bigger. Princeton University Press.

C.-L. Li & G. L. Vairaktakakis (2004). ‘Loading and unloading operations in container

terminals’. IIE Transactions 36:287–297.

C. Liebchen, et al. (2009). ‘Robust and Online Large-Scale Optimization’. chap. The

Concept of Recoverable Robustness, Linear Programming Recovery, and Railway

Applications, pp. 1–27. Springer-Verlag, Berlin, Heidelberg.

A. Lim, et al. (2002). ‘Crane Scheduling using Tabu search’. IEEE pp. 146–153.

R. J. Linn & C. Q. Zhang (2003). ‘A heuristic for dynamic yard crane deployment in a

container terminal’. IEE Transactions 35:161–174.

Bibliography 148

P. J. Meersmans & R. Dekker (2001). ‘Operations Research suppports container han-

dling’. Tech. Rep. EI 2001-22, Econometric Institute, Erasmus University Rotterdam.

P. J. Meersmans & A. P. Wagelmans (2001). ‘Dynamic scheduling of handling equipment

at automated container terminals’. Tech. Rep. EI 2001-33, Econometric Institute,

Erasmus University Rotterdam.

R. Moorthy & C.-P. Teo (2006). ‘Berth management in container terminal: the template

design problem’. OR Spectrum 28(4):495–518.

K. G. Murty, et al. (2005a). ‘A decision support system for operations in a container

terminal’. Decision Support Systems 39(3):309–332.

K. G. Murty, et al. (2005b). ‘Hong Kong International Terminal gains Elastic Capacity

using a Data-intensive Decision Support System’. Interfaces 35(1):61–75.

A. Narasimhan & U. S. Palekar (2002). ‘Analysis and Algorithms for the transtainer

routing problem in container port operations’. Transportation Science 36(1):63–78.

W. Ng (2005). ‘Crane scheduling in container yards with inter-crane interference’. Eu-

ropean Journal of Operational Research 164(1):64–78.

J. Ottjes, et al. (1994). ‘A simulation model of a sailing container terminal service in the

port of Rotterdam’. Proceedings of the Conference on Modelling and Simulation Jun.

J. A. Ottjes, et al. (1996). ‘Robotised inter terminal transport of containers: a simula-

tion study at the Rotterdam port area’. Proceedings of the 8th European Simulation

Symposium ESS Oct.

Bibliography 149

M. E. Petering & K. G. Murty (2006). ‘Simulation analysis of algorithms for container

storage and yard crane scheduling at a container terminal’. Proceedings of the sec-

ond International Intelligent Logistics Systems Conference, Brisbane, Australia pp.

19.1–19.15.

M. Rebollo, et al. (2000). ‘A MAS approach for port container terminal management’.

Proceedings of the 3rd IBEROAMERICAN Workshop on DAI - MAS pp. 83–94.

M. Rida, et al. (2003). ‘Object oriented approach and java-based distributed simulation

for container terminal operation management’. International Conference on Informa-

tion Systems and Engineering .

A. E. Rizzoli, et al. (1999). ‘Simulation for the evaluation of optimized operations poli-

cies in a container terminal’. HMS99, Maritime and Industrial Logistic Modeling and

Simulation Sep.

C. D. Rudolft (2007). ‘Ship-to-Shore productivity: an it keep up with mega-ship size

increase? Part 1’. Port Technology International Apr:83.

Y. A. Saanen & R. Dekker (2007a). ‘Intelligent stacking as way out of congested yards?

Part 1’. Port Technology International 31st:87–92.

Y. A. Saanen & R. Dekker (2007b). ‘Intelligent stacking as way out of congested yards?

Part 2’. Port Technology International 32nd:80–85.

B. Schroer, et al. (2004). ‘Using simulation to evaluate the expansion of terminal and in-

termodal operations at a deepwater port’. Summer Computer Simulation Conference

.

Bibliography 150

A. Shabayek & W. Yeung (2002). ‘A simulation model for the Kwai Chung container

terminals in Hong Kong’. European Journal of Operational Research 140:1–11.

A. Soyster (1973). ‘Convex Programming with set-inclusive constraints and applications

to inexact linear programming’. Operations Research 21(5):1154–1157.

R. Stahlbock & S. Voβ (2008). ‘Operations Research at Container Terminal: a Literature

Update’. OR Spectrum 30:1–52.

D. Steenken, et al. (2004). ‘Container terminal operation and operations research - a

classsification and literarture review’. OR spectrum 26:3–49.

D. Steenken, et al. (2001). ‘Stowage and Transport Optimization in Ship Planning’.

Online Optmization of Large Scale Systems pp. 731–745.

N. N. Taleb (2007). ‘The Black Swan: The Impact of the Highly Improbable’ .

M. Taleb-Ibrahimi, et al. (1993). ‘Storage space vs handling work in container terminals’.

Transportation Research Part B pp. 13–32.

C. J. Tong, et al. (1999). ‘Ant colony Optimization for the Ship Berthing Problem’.

ASIAN’99 pp. 359–370.

J. Tongzon (2001). ‘Efficiency measurement of selected Australian and other inter-

national ports using data envelopment analysis’. Transportation Research Part A

35A:107–122.

I. Vis, et al. (2001). ‘Determination of the number of automated guided vehicles required

at a semi-automated container terminal’. Journal of the Operational Research Society

52:409–417.

Bibliography 151

I. F. Vis & R. de Koster (2003). ‘Transhipment of containers at a container terminals: An

overview’. European Journal of Operational Research 147:1–16.

I. F. A. Vis, et al. (2005). ‘Minimum Vehicle Fleet Size under time-window contraints at

a container terminal’. Transportation Science 39(2):249–260.

I. Wilson & P. Roach (2000). ‘Container stowage planning: a methodology for generating

computerised solutions’. Journal of the Operational Research Society 51:1248–1255.

A. Wong & E. Kozan (2006). ‘An integrated approach in optimising container process

at seaport container terminals’. Proceedings of the second International Intelligent

Logistics Systems Conference pp. 23.1–23.13.

H. Wren (2007). ‘a solution to the Emma challenge’. Cargo Systems Jul/Aug:43–45.

Y. Xu, et al. (2010). ‘A Robust Integrated Approach to Yard Space Allocation and Crane

Scheduling in Container Terminals’. 7th International Conference on Service Systems

and Service Management pp. 1–6.

W. Yun & Y. Choi (1999). ‘A simulation model for container-terminal operation analysis

using an object oriented approach’. International Journal of Production Economics

59:221–230.

C. Zhang, et al. (2003). ‘Storage space allocation in container terminals’. Transportation

Research Part B 37B:883–903.

ZPMC (2007). ‘ZPMC sets sights on quadruple-40 crane’. Cargo Systems Jan/Feb:19.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 152

Appendix A

Nimble Optimisation – A Generalisation of Some

Problems

To the best of our knowledge, we do not find any work that has defined their for-

mulations in the same way as Nimo. However, some of them have similar problem

structures as Nimo. We prove that Nimo is a generalisation of these problems by defin-

ing a transformation of an instance of that problem to an instance of Nimo problem, and

the solution of Nimo is then transformed back to the solution of the original problem.

This not only shows that Nimo is a generalisation of these problems, it also shows that

it is equal or harder to solve than these problems (i.e. if there is a solution method for

Nimo, then we have a solution method for those problems too). If those problems are

proven to be NP hard, Nimo is also NP hard.

We first give an overview of the approach that we undertake, followed by the proofs.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 153

A.1 Overview of the approach

All the following proofs follow the same structure, and we explain them here for better

clarity. For each proof, we will first explain how a problem instance of the problem will

be transformed to a problem instance of Nimo. The proof then proceeds as follows.

1. We will first cover the case where Nimo finds no feasible solution (objective value

is ∞), and we show that no feasible solution can also be found in the original

problem too.

2. We then cover the case where a feasible optimum solution is found in Nimo and

we map this solution to the solution in the original problem.

(a) We first show that this corresponding solution in the original problem is fea-

sible.

(b) We then show that this corresponding solution in the original problem is op-

timum. We show this by contradiction as follows. We first assume that it

is not optimum and there exist a solution that has lower objective value in

the original problem. We then map this solution back to Nimo and show that

there will be a solution in Nimo that has lower objective value than the known

optimum in Nimo, and hence this contracts the fact that Nimo has found a

feasible optimum solution. We can then conclude that the assumption that

there exists a solution that has lower objective value in the original problem

cannot hold.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 154

A.2 Ben-Tal’s model (ARC)

Ben-Tal et al. (Ben-Tal et al. 2004) introduce the Adjustable Robust Counterpart (ARC),

and they separate the decision variables to those that are made in stage 1 and those

that are made in stage 2. It is not presented that stage 2 is a recovery of stage 1,

and the decision variables of stage 1 and stage 2 may not have the same dimensions.

The objective function only includes the stage 1 decision variables, and hence we de-

duce that they do not measure the differences between stage 1 and stage 2 decision

variables. We prove that Nimo is a generalisation of this problem as follows.

Mathematically, ARC is defined as:

Minimise
∀x∈<n cTx

s.t. ∃y(ω) A(ω)x+B(ω)y(ω) ≥ b(ω) ∀ω ∈ Ω

We transform ARC to Nimo with the following transformation. We let

x0 =

x
0

 , and x1 =

x
y

We also define

∆

x
z

 ,

x′
y

 =

0 if x = x′ and z = 0

∞ otherwise

Appendix A Nimble Optimisation – A Generalisation of Some Problems 155

Then the vector x in the solution x0 =

x
0

 of the following Nimo is the solution x

of the original ARC problem.

Minimise
∀x0∈<n max

∀ω∈Ω
min

∀x1(ω)∈<n

(
cT 0

)
x1(ω) + ∆(x0, x1(ω))

subject to(
A(ω) B(ω)

)
x1(ω) ≥ b(ω)

Proof:

Let x∗0 =

x∗
z

 be the optimum solution for Nimo. The transformation says that the

optimum solution in problem ARC is x∗.

1. If the objective value of x∗0 is∞, and z could be forced to zero without violating any

constraints, it means that there does not exist x′ such that x1(ω) =

 x′

y(ω)

 ∀ω ∈
Ω, and the constraints

(
A(ω) B(ω)

)
x1(ω) ≥ b(ω) are satisfied. That is, there

does not exist a x′ and y(ω) such that A(ω)x′+B(ω)y(ω) ≥ b(ω). This will mean

that there does not exist a feasible solution in ARC.

2. If the objective value is not∞.

(a) We first show that x∗ is a feasible solution in ARC. Since the objective value

is not∞, x1(ω) must take the form

 x∗

y(ω)

. Then, because the constraints

in Nimo are satisfied, it can be re-expressed as A(ω)x∗ + B(ω)y(ω) ≥ b(ω)

and hence x∗ is a feasible solution in ARC.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 156

(b) Next we show that x∗ is the optimum solution in ARC. We prove by contra-

diction by assuming that there exist another solution x′ where the objective

value of ARC with x′ is smaller than that of x∗, i.e.,

cTx′ < cTx∗

The objective value of Nimo with solution x∗0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT 0

)
x1(ω) + ∆ (x∗0, x1(ω))

)
. With the value of ∆ as

zero, and x1(ω) =

 x∗

y(ω)

, the objective value simplifies to cTx∗. Next, we

let x′0 =

x′
0

 and x′1(ω) =

 x′

y′(ω)

 where y′(ω) take the same values as

y(ω) in the feasible solution in ARC with solution x′. Since x′ is a feasible

solution in ARC, the constraints A(ω)x′ + B(ω)y′(ω) ≥ b(ω) are satisfied,

and it can be expressed as
(
A(ω) B(ω)

)
x′1(ω) ≥ b(ω), and we get the

feasible solution in Nimo. The objective value of Nimo with solution x′0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT 0

)
x1(ω) + ∆ (x′0, x1(ω))

)
, which will be less than or

equal to max
∀ω∈Ω

((
cT 0

)
x′1(ω) + ∆ (x′0, x

′
1(ω))

)
. This can be simplified to

cTx′, and by our assumption, this is less than cx∗, the objective value of

the optimum solution x∗0. We have a contradiction where we have found a

feasible solution of Nimo having a smaller objective value than the optimum,

hence x∗ is the optimum solution of ARC.

#

Appendix A Nimble Optimisation – A Generalisation of Some Problems 157

A.3 Liebchen’s model (LRR)

Liebchen et al. (Liebchen et al. 2009) define the Linear Recovery Robust problem

(LRR). They explicitly measure the cost of the difference between stage 1 and stage 2

decision variables, just like Nimo. They let Â be a matrix called the recovery matrix, d

be a vector called the recovery cost vector, and D be a non-negative number called the

recovery budget. LRR is defined as follows.

Minimise
x∈<n cTx

subject to

A(ω0)x ≥ b(ω0)

∃y(ω) ∈ <n

 A(ω)x+ Ây(ω) ≥ b(ω)

dTy(ω) ≤ D

 ∀ω ∈ Ω

This is exactly the same model as Ben-Tal’s ARC model with the following mapping.

Â is the matrixB(ω), where in this case Â is static (not depending on ω). The constraints

on A(ω0)x ≥ b(ω0) and dTy(ω) ≤ D and can be easily subsumed into the matrices

A(ω), B(ω) and vector b(ω). Since ARC and LRR are equivalent, having shown Nimo

to be a generalisation of ARC, it follows that Nimo is also a generalisation of LRR.

#

Appendix A Nimble Optimisation – A Generalisation of Some Problems 158

A.4 Bertsimas’s model (CARO and FARO)

Bertsimas and Caramanis (Bertsimas & Caramanis 2010) present the Adaptable Ro-

bust Optimisation problem that assumes a two stage decision making process, labelled

as x and y respectively. Unlike ARC, both sets of decision variables are included in

the constraints and objective function, and hence implicitly they can also measure the

difference between the stage 1 and stage 2 decision variables. They define a Complete

Adaptable Robust Optimisation (CARO) as:

Minimise
∀x∈<n max

∀ω∈Ω
min

∀y(ω)∈<n

cTx+ dTy(ω)

subject to

A(ω)x+B(ω)y(ω) ≥ b(ω)

We show below that Nimo is a generalisation of CARO. It is also worth noting that

since CARO has both stage 1 and 2 decision variables included in the constraints and

objective, we can model a Nimo problem easily as CARO, and hence the proof that

CARO is also a generalisation of Nimo is obvious. Therefore, CARO and Nimo are

equivalent problems modelled differently.

They then propose a special case where there is a finite number of possible solutions

of y. The problem then is to solve x and a set of {y1, y2, . . . , yk}. The problem is termed

as Finite Adaptable Robust Optimisation (FARO). We also show below that Nimo is a

generalisation of FARO.

CARO

We first consider the CARO. We transform CARO to Nimo with the following trans-

Appendix A Nimble Optimisation – A Generalisation of Some Problems 159

formation. We let

x0 =

x
0

 , and x1 =

x
y

We also define

∆

x
z

 ,

x′
y

 =

0 if x = x′ and z = 0

∞ otherwise

Then the vector x in the solution x0 =

x
0

 of the following Nimo is the solution x

of the original CARO problem.

Minimise
∀x0∈<n max

∀ω∈Ω
min

∀x1(ω)∈<n

(
cT dT

)
x1(ω) + ∆(x0, x1(ω))

subject to(
A(ω) B(ω)

)
x1(ω) ≥ b(ω)

Proof:

Let x∗0 =

x∗
z

 be the optimum solution for Nimo. The transformation says that the

optimum solution in problem CARO is x∗.

1. If the objective value of x∗0 is∞, and z could be forced to zero without violating any

constraints, it means that there does not exist x′ such that x1(ω) =

 x′

y(ω)

 ∀ω ∈
Ω, and the constraints

(
A(ω) B(ω)

)
x1(ω) ≥ b(ω) are satisfied. That is, there

does not exist a x′ and y(ω) such that A(ω)x′+B(ω)y(ω) ≥ b(ω). This will mean

Appendix A Nimble Optimisation – A Generalisation of Some Problems 160

that there does not exist feasible solutions in CARO.

2. If the objective value is not∞.

(a) We first show that x∗ is a feasible solution in CARO. Since the objective value

is not∞, x1(ω) must take the form

 x∗

y(ω)

. Then, because the constraints

in Nimo are satisfied, they can be re-expressed as A(ω)x∗ + B(ω)y(ω) ≥

b(ω) and hence x∗ is a feasible solution in CARO.

(b) Next we show that x∗ is the optimum solution in CARO. We prove by contra-

diction by assuming that there exists another solution x′ where the objective

value of CARO with x′ is smaller than that of x∗, i.e.,

max
∀ω∈Ω

(
min

∀y(ω)∈<n
[cTx′ + dTy(ω)]

)
< max
∀ω∈Ω

(
min

∀y(ω)∈<n
[cTx∗ + dTy(ω)]

)
(A.1)

The objective value of Nimo with solution x∗0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT dT

)
x1(ω) + ∆ (x∗0, x1(ω))

)
. With the value of ∆ as

zero, and x1(ω) =

 x∗

y(ω)

, the objective value simplifies to

max
∀ω∈Ω

min
∀x1(ω)∈<n

(cT dT

) x∗

y(ω)

, and further simplifies to

max
∀ω∈Ω

min
∀x1(ω)∈<n

(
cTx∗ + dTy(ω)

)
, which is the R.H.S. of the expression (A.1).

Next, we let x′0 =

x′
0

 and x′1(ω) =

 x′

y′(ω)

 where y′(ω) takes the same

Appendix A Nimble Optimisation – A Generalisation of Some Problems 161

values as y(ω) in the solution in CARO with solution x′ at optimal (i.e. the

y(ω) values that give min
∀y(ω)∈<n

(
cTx′ + dTy(ω)

)
). Then the L.H.S. of the ex-

pression (A.1) can be re-expressed as max
∀ω∈Ω

(
cTx′ + dTy′(ω)

)
. Since x′ is a

feasible solution in CARO, the constraints A(ω)x′ + B(ω)y′(ω) ≥ b(ω) are

satisfied, and can be expressed as
(
A(ω) B(ω)

)
x′1(ω) ≥ b(ω), and we

get a feasible solution in Nimo.

The objective value of Nimo with solution x′0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT dT

)
x1(ω) + ∆ (x′0, x1(ω))

)
, which will be less than or

equal to max
∀ω∈Ω

((
cT dT

)
x′1(ω) + ∆(x′0, x

′
1(ω))

)
, and can be re-expressed

as max
∀ω∈Ω

(
cTx′ + dTy′(ω)

)
, which is the L.H.S. of the expression. We have

now a feasible solution x′0 in Nimo, whose objective value is equal to the

L.H.S. of expression (A.1) and it is assumed to be smaller than the R.H.S.,

which is the objective value of the optimum solution x∗0. We have a con-

tradiction where we have found a feasible solution of Nimo having a smaller

objective value than the optimum, hence x∗ is the optimum solution of CARO.

#

FARO

Next we consider the Finite Adaptable RO. FARO model restricts the set y(ω) to a

finite set with a fixed given cardinality k. Hence y(ω) ∈ {y1, y2, . . . , yk}, i.e. there are

k contingencies for all possible ω ∈ Ω, and hence for each possible ω, we just need to

ensure that at least one of the elements in {y1, y2, . . . , yk} satisfies the constraints.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 162

Consider the following FARO model:

Minimise∀x∈<n

(
max

∀y∈{y1,y2,...,yk}
(cx+ dy)

)

s.t. A(ω)x+B(ω)y1 ≥ b(ω) or

A(ω)x+B(ω)y2 ≥ b(ω) or

...

A(ω)x+B(ω)yk ≥ b(ω) ∀ω ∈ Ω

We transform FARO to Nimo with the following transformation.

We let

x0 =

(
x y1 . . . yi . . . yk

)T

We impose that x1 takes the following form of

x1 =

(
x 0 . . . 0 yi 0 . . . 0

)T
1 ≤ i ≤ k

by defining the ∆ function as follows:

∆

x

y1

y2

...

yk

,

x′

y′1

y′2

...

y′k

=

0 if x = x′ and ∃i s.t. 1 ≤ i ≤ k

yi = y′i, and ∀j, 1 ≤ j ≤ k and j 6= i, y′j = 0,

∞ otherwise

Appendix A Nimble Optimisation – A Generalisation of Some Problems 163

Then x, y1, . . . , yk in the solution x0 =

(
x y1 y2 . . . yk

)T
of the following Nimo

is the solution of the original problem FARO.

Minimise
∀x0∈<n max

∀ω∈Ω
min

∀x1(ω)∈<n

(
cT dT . . . dT

)
x1(ω) + ∆(x0, x1(ω))

subject to(
A(ω) B(ω) . . . B(ω)

)
x1(ω) ≥ b(ω)

s.t.

(
A(ω) B(ω) . . . B(ω)

)
x1(ω) ≥ b(ω) ∀ω ∈ Ω

Proof:

Let x∗0 =

(
x∗ y∗1 . . . y∗k

)T
be the optimum solution for Nimo. The transformation

says that the optimum solution in the FARO problem is x∗, y∗1, . . . , y
∗
k.

1. If the objective value of x∗0 is∞, it means that there does not exist x1(ω) such that

the constraints
(
A(ω) B(ω) . . . B(ω)

)
x1(ω) ≥ b(ω) are satisfied and

x1(ω) ∈ x1(Ω) =

x′

y∗1

0

...

...

...

...

0

x′

0

y∗2

0

...

...

...

0

x′

0

...

0

y∗i

0

...

0

x′

0

...

...

...

...

0

y∗k

Appendix A Nimble Optimisation – A Generalisation of Some Problems 164

Hence there does not exist x′, y′1, . . . , y
′
k such that the conditions for FARO are

satisfied, otherwise Nimo will have adopted them to avoid ∞ in objective value.

This will mean that there does not exist a feasible solutions in FARO.

2. If the objective value is not∞.

(a) We first show that x∗, y∗1, . . . , y
∗
k is a feasible solution in FARO. Since the

objective value is not∞, x1(ω) must take the form

x1(ω) ∈ x1(Ω) =

x′

y∗1

0

...

...

...

...

0

x′

0

y∗2

0

...

...

...

0

x′

0

...

0

y∗i

0

...

0

x′

0

...

...

...

...

0

y∗k

Then, because the constraints in Nimo are satisfied, they can be re-expressed

as A(ω)x∗+B(ω)y∗i ≥ b(ω) and hence x∗, y∗1, . . . , y
∗
k is a feasible solution in

FARO.

(b) Next we show that x∗, y∗1, . . . , y
∗
k is the optimum solution in FARO. We prove

by contradiction by assuming that there exists another solution x′, y′1, . . . , y
′
k

where the objective value of FARO with x′, y′1, . . . , y
′
k is smaller than that of

Appendix A Nimble Optimisation – A Generalisation of Some Problems 165

x∗, y∗1, . . . , y
∗
k, i.e.,

max
∀y∈{y′1,y′2,...,y′k}

[
cTx′ + dTy

]
< max
∀y∈{y∗1 ,y∗2 ,...,y∗k}

[
cTx∗ + dTy

]
(A.2)

The objective value of Nimo with solution x∗0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT dT . . . dT

)
x1(ω) + ∆ (x∗0, x1(ω))

)
. With the value

of ∆ as zero, and x1(ω) taking the form
(
x∗ 0 . . . y∗i . . . 0

)T
, the ob-

jective value simplifies to max
∀x1(ω)∈x1(Ω)

((
cT dT . . . dT

)
x1(ω)

)
, and fur-

ther simplifies to max
∀y∈{y′1,y′2,...,y′k}

(
cTx∗ + dTy

)
, which is the R.H.S. of the ex-

pression (A.2).

Next, we let x′0 =

(
x′ y′1 . . . y′k

)T
and x′1(ω) take the form(

x′ 0 . . . y′i . . . 0

)T
. Since x′, y′1, . . . , y

′
k is a feasible solution in FARO,

the constraints A(ω)x′ + B(ω)y′ ≥ b(ω) are satisfied for some ω, and can

be expressed as
(
A(ω) B(ω) . . . B(ω)

)
x′1(ω) ≥ b(ω), and we get the

feasible solution in Nimo. The objective value of Nimo with solution x′0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT dT . . . dT

)
x1(ω) + ∆(x′0, x1(ω))

)
, which will be less

than or equal to max
∀ω∈Ω

((
cT dT . . . dT

)
x′1(ω) + ∆ (x′0, x

′
1(ω))

)
, and can

be re-expressed as max
∀y∈{y′1,y′2,...,y′k}

(
cTx∗ + dTy

)
, which is the L.H.S. of the ex-

pression (A.2). We have now a feasible solution x′0 in Nimo, whose objective

value is equal to the L.H.S. of (A.2) and smaller than the R.H.S. of (A.2),

which is the objective value of the optimum solution x∗0. We have a contra-

diction where we have found a feasible solution of Nimo having a smaller

objective value than the optimum, hence x∗, y∗1, . . . , y
∗
k is the optimum solu-

Appendix A Nimble Optimisation – A Generalisation of Some Problems 166

tion of FARO.

#

A.5 Soyster’s Model (SOY)

For completeness, we also consider Soyster’s (Soyster 1973) model (SOY), the iconic

work in the arena of robust optimisation, where all decisions are made before the un-

certainty is revealed, and the decision remains feasible for all possible outcomes of ω.

There is no stage 2 decision, or rather the stage 2 does not change the decision of

stage 1. We show that Nimo is also a generalisation of SOY as follows.

SOY can be expressed as

Minimise
∀x∈<n cTx

s.t. A(ω)x ≥ b(ω) ∀ω ∈ Ω

The transformation is as follows:

Let x0 = x. We impose an implicit constraint that x1 = x0, by having ∆(x0, x1)

defined as

∆(x0, x1) =

0 if x0 = x1

∞ otherwise

Then the solution x0 of the following Nimo is the solution x of the original problem

SOY.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 167

Minimise
∀x0∈<n max

∀ω∈Ω
min

∀x1(ω)∈<n

cTx1(ω) + ∆(x0, x1(ω))

subject to

A(ω)x1(ω) ≥ b(ω)

Proof:

Let x∗0 be the optimum solution for Nimo. The transformation says that the optimum

solution in problem SOY is x∗ = x∗0.

1. If the objective value of x∗0 is∞, it means that there does not exist a x′0 such that

x1(ω) = x′0 ∀ω ∈ Ω, and the conditions A(ω)x1(ω) ≥ b(ω) are satisfied. This will

mean that there does not exist a feasible solutions in SOY.

2. If the objective value is not∞

(a) We first show that x∗ is a feasible solution in the original model. Since the

objective value is not ∞, x1(ω) must be equal to x∗0, and because the con-

straints in Nimo are satisfied, it is obvious that x∗ is a feasible solution in

SOY.

(b) Next we show that x∗ is the optimum solution in SOY. We prove by contra-

diction by assuming that there exists another solution x′ where the objective

value of SOY with x′ is smaller than that of x∗, i.e.,

cTx′ < cTx∗

The objective value of Nimo with solution x∗0 is

Appendix A Nimble Optimisation – A Generalisation of Some Problems 168

max
∀ω∈Ω

min
∀x1(ω)∈<n

(
cTx1(ω) + ∆ (x∗0, x1(ω))

)
. With the value of ∆ as zero, and

x1(ω) = x∗, the objective value simplifies to cTx∗. Next, we let x′0 = x′ and

x′1(ω) = x′0 ∀ω ∈ Ω. Since x′ is a feasible solution in SOY, the constraints

A(ω)x′1(ω) ≥ b(ω) in Nimo are also satisfied, and we get a feasible solution

in Nimo whose objective value is max
∀ω∈Ω

min
∀x1(ω)∈<n

(
cTx1(ω) + ∆ (x′0, x1(ω))

)
.

This can be simplified to cTx′, and by our assumption, this is less than cTx∗,

the objective value of the optimum solution x∗0. We have a contradiction

where we have found a feasible solution of Nimo having a smaller objective

value than the optimum, hence x∗ is the optimum solution of SOY.

#

A.6 Regret optimisation (RegO)

While the classical regret optimization (RegO) problem is not exactly a robust optimi-

sation problem, however, it does consider effects of uncertainty on the solution. The

concept is to minimise the worst case regret defined by a regret function – the differ-

ence in objective value of the chosen solution from the optimum solution if the uncertain

outcome is known in advance. We show that Nimo is also a generalisation of the RegO

problem.

Appendix A Nimble Optimisation – A Generalisation of Some Problems 169

Mathematically, we consider the RegO as follows:

Minimise
x∈<n max

ω∈Ω
min

y(ω)∈<n

cTx− cTy(ω)

subject to

A(ω)y(ω) ≥ b(ω)

A(ω0)x ≥ b(ω0)

We transform RegO to Nimo with the following transformation. We let

x0 =

0

x

 , and x1 =

x− y
x

We also define

∆

z
x

 ,

z′
x′

 =

0 if x = x′ and z = 0

∞ otherwise

Then the vector x in the solution x0 =

0

x

 of the following Nimo is the solution x

of the original RegO problem.

Minimise
∀x0∈<n max

∀ω∈Ω
min

∀x1(ω)∈<n

(
cT 0

)
x1(ω) + ∆(x0, x1(ω))

subject to(
−A(ω) A(ω)

)
x1(ω) ≥ b(ω)(

−A(ω0) A(ω0)

)
x0 ≥ b(ω0)

Appendix A Nimble Optimisation – A Generalisation of Some Problems 170

Proof:

Let x∗0 =

 0

x∗

 be the optimum solution for Nimo. The transformation says that the

optimum solution in problem RegO is x∗.

1. If the objective value of x∗0 is ∞, it means that there does not exist x′ such that

x1(ω) =

x′ − y(ω)

x′

∀ω ∈ Ω, and the constraints
(
−A(ω) A(ω)

)
x1(ω) ≥

b(ω) are satisfied. That is, there does not exist a x′ and y(ω) such that −A(ω)x′+

A(ω)y(ω) + A(ω)x′ = A(ω)y(ω) ≥ b(ω). This will mean that there does not exist

a feasible solution in RegO.

2. If the objective value is not∞.

(a) We first show that x∗ is a feasible solution in RegO. Since the objective value

is not∞, x1(ω) must take the form

x∗ − y(ω)

x∗

, and x0 must take the form

 0

x∗

. Then, because the constraints in Nimo are satisfied, they can be

re-expressed as −A(ω)x∗ + A(ω)y(ω) + A(ω)x∗ = A(ω)y(ω) ≥ b(ω) and

A(ω0)x∗ ≥ b(ω0). Hence x∗ is a feasible solution in RegO.

(b) Next we show that x∗ is the optimum solution in RegO. We prove by contra-

diction by assuming that there exists another solution x′ where the objective

value of RegO with x′ is smaller than that of x∗, i.e.,

max
∀ω∈Ω

(
min

∀y(ω)∈<n
[cTx′ − cTy(ω)]

)
< max
∀ω∈Ω

(
min

∀y(ω)∈<n
[cTx∗ − cTy(ω)]

)
(A.3)

Appendix A Nimble Optimisation – A Generalisation of Some Problems 171

The objective value of Nimo with solution x∗0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT 0

)
x1(ω) + ∆ (x∗0, x1(ω))

)
. With the value of ∆ as

zero, and x1(ω) =

x∗ − y(ω)

x∗

, the objective value simplifies to

max
∀ω∈Ω

min
∀x1(ω)∈<n

(cT 0

)x∗ − y(ω)

x∗

, and further simplifies to

max
∀ω∈Ω

min
∀x1(ω)∈<n

(
cTx∗ − cTy(ω)

)
, which is the R.H.S. of the expression (A.3).

Next, we let x′0 =

 0

x′

 and x′1(ω) =

x′ − y′(ω)

x′

 where y′(ω) takes the

same values as y(ω) in the solution in RegO with solution x′ at optimal (i.e.

the y(ω) values that gives min
∀y(ω)∈<n

(
cTx′ − cTy(ω)

)
). Then the L.H.S. of the

expression (A.3) can be re-expressed as max
∀ω∈Ω

(
cTx′ − cTy′(ω)

)
. Since x′ is a

feasible solution in RegO, the constraints A(ω)y′(ω) ≥ b(ω) and A(ω0)x′ ≥

b(ω0) are satisfied, and they can be expressed as
(
−A(ω) A(ω)

)
x′1(ω) ≥

b(ω) and
(
−A(ω0) A(ω0)

)
x′0 ≥ b(ω0). We get a feasible solution x′0 in

Nimo.

The objective value of Nimo with solution x′0 is

max
∀ω∈Ω

min
∀x1(ω)∈<n

((
cT 0

)
x1(ω) + ∆ (x′0, x1(ω))

)
, which will be less than or

equal to max
∀ω∈Ω

((
cT 0

)
x′1(ω) + ∆(x′0, x

′
1(ω))

)
, and can be re-expressed

as

max
∀ω∈Ω

(
cTx′ − cTy′(ω)

)
, which is the L.H.S. of the expression. We have now

a feasible solution x′0 in Nimo, whose objective value is equal to the L.H.S.

of expression (A.3) and it is assumed to be smaller than the R.H.S., which

Appendix A Nimble Optimisation – A Generalisation of Some Problems 172

is the objective value of the optimum solution x∗0. We have a contradiction

where we have found a feasible solution of Nimo having a smaller objective

value than the optimum, hence x∗ is the optimum solution of RegO.

#

A.7 Summary

In this appendix, we have shown that nimble optimisation (Nimo) is a generalisation of

some known problem models, namely, Ben-Tal’s ARC, LiebChen’s LRR, Bertsimas’s

CARA and FARO, Soyster’s robust model, and the classical regret optimisation model.

This list is not likely to be exhaustive, and there could be other known problems that we

have not included in this thesis.

