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ABSTRACT

The rapid development of Internet Technology has enabled convenient access

to large amount of business transactions data and has advocated the era of

“fact-based” decision-making. An integrated “fact-based” decision-making

process consists of three phases : data collecting, pattern-seeking, and per-

formance. Motivated by the importance of understanding the integrated

“fact-based” decision process, I investigate three fundamental questions with

focuses on different phases of the process.

∙ Are there simple and universal patterns when people make choices?

∙ How to utilize limited (insufficient) data to design a robust service

system to ensure good performance under all possible situations?

∙ How system design affects behavioral patterns?

This dissertation adopts a multi-theoretic and multi-disciplinary approach

to offer fresh insights on “fact-based” decision-making. I investigate three

topics to tackle these questions. The first topic models a universal choice

rule: the small number phenomenon. The second topic solves a robust ap-

pointment scheduling problem using a parsimonious set of information on the

consultation durations. The third topic explores how information complexity

and pattern recognition affect people’s perception of randomness.
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1. INTRODUCTION

Nowadays, companies are confronting unprecedented challenges amid macroe-

conomics downturn, financial crisis, forces of globalization, fiercely compet-

itive market, ever-demanding investors and customers. The basis for com-

petition lies in the capability to make smarter decisions and design/execute

high-performance business processes. Smarter decisions create value through

higher efficiency or greater effectiveness, like reducing cost, increasing sales,

lowering the risk, better allocation of resources and enhancing customer sat-

isfaction. (cf.Davenport and Harris (2006), Laursen and Thorlund (2010)

etc.) A thorough study on the performance of a range of companies in var-

ious industries from 1965 to 1995 concluded that a series of good decisions

laid solid foundations for many companies in the study (Collins (2001)).

The rapid development of IT system has enabled convenient access to

large amount of business transactions data and has advocated the era of “fact-

based” decision-making. The financial crisis revealed the price of ungrounded

assumptions. Good decisions flow from a consistent and thorough effort to

confront “the brutal facts” (Collins (2001)). Extensive explorations of the

data helps a company to identify the trends and patterns of its customers’

behaviors, make predictive models and take prompt actions (e.g., re-designing

its service system) to increase its profitability. The famous “beer and diapers”
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phenomenon provides an excellent example on the benefits of data utilization.

A US supermarket chain found a strong correlation between sales of beer and

diapers through an investigation of their check-out receipts. This pattern

was then readily exploited by displaying the two products side by side on the

shelves. It would have been difficult to hypothesize through common sense

the correlations of sales between two seemingly unrelated products without

checking the sales data. Yet most companies sit on a priceless mountain of

data, but fail to utilize it in any meaningful way (Davenport et al. (2010)).

Therefore, the capacity to exploit the data and make fact-based, real-time

decisions is crucial for a company to gain a competitive edge.

As a decision support system (DSS), Business Analytics (BA) is defined

as “the continuous and iterative exploration and investigation of past busi-

ness performance to gain insights and drive business planning”. BA enables

companies to aggressively leverage huge, noisy and messy data in key busi-

ness decisions and promptly react to changing conditions around them. By

delivering insights gleaned from data about customers, suppliers, operations,

performance, and more, BA gives companies the tools to tackle complex

business problem (SAS white paper). A survey conducted by Davenport and

Harris (2006) confirmed a significant correlation between the adoption of

BA system and high performance of companies.

Adoptions of BA systems can now be seen in many business domains.

In health-care, for example, computer-based program is used to keep track

of patients’ electronic medical records (EMRs). EMR holds great promise

to enhance efficiency, reduce costs and errors, and make records available

anytime, anywhere. Analytical tools can be used to determine the optimal
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operating room usage by specialty, scheduling appointment, explore clinical

outcomes and risk tolerance to improve overall quality of patient care. Like-

wise, a BA system can create value for hospitality and gaming industry. From

predicting demand to improving inventory and staffing level, to determining

the optimal mix of tables at a restaurant, to simulating front desk before a

redesign, BA can help with better understand operations to make decisions

that increase revenues and profits.

An integrated fact-based decision-making process consists of three phases

(see Figure 1.1): data, patterns, and performance.

Fig. 1.1: The close loop of the integrated process in fact-based decision-making

Collecting relevant data to analyze a system and achieve certain target

is the first and foremost phase of fact-based decision-making. Due to the fact

most data are obnoxiously dirty and messy, one challenge of this phase is to

acquire the right data, and if not, how to obtain cleaner data.
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When (re-)designing a service system, prediction on customers’ behav-

iors is crucial. Identifying patterns of a system is the starting point for

improving decision-making and enhancing customer experience. In the sec-

ond phase, patterns are to be sought from data, using various statistical tools

(e.g. time series analysis, econometrics), to tell what is more likely to happen

in the future. Once the future becomes more predictable, we can make ef-

fective plans accordingly or conduct more thorough analysis to optimize the

outcomes. For example, Progressive Insure found that financial irresponsi-

bility predicts reckless driving. They thus use customers’ credit reports data

as input to optimally provide offers and price different customers.

Phase III lies in effective performances–making best decisions and taking

best actions. In this phrase, predictive model are to be built by incorporating

outcomes in the second phrase, and approaches like optimization or simula-

tion are to be used to find the best of all reasonable solutions to achieve

certain target, like minimizing cost, maximizing revenue or best allocating

limited resources etc.

An integrated “fact-based” decision-making is an iterative, and recursive

process. So, it is important to return to phase I to close the loop. Once the

system is optimally re-designed, the performance of the new system should be

constantly monitored and new data should be collected and analyzed to iden-

tify new patterns. This iterative process not only keep track of performance

of the new system but also enable agile responses to changing conditions.

Driven by the wave of the “fact-based” decision-making, in this disser-

tation, I study three fundamental questions with different focuses on the
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integrated process:

∙ Whether there exists a simple and universal choice rule that depicts

people’s choice pattern? (with focus on Phase II)?

∙ How could we leverage limited (insufficient) data to glean patterns and

design robust service system ensuring good performance under all pos-

sible situations? (with focus on Phase III)?

∙ How would different system designs affect people’s behavioral patterns,

especially, perception of randomness when uncertainty is involved in the

system (with focus on the close loop)?

These questions are tackled by adopting a mix of research methodologies

like conic programming, lab experiments, econometric model, simulation etc.,

and explore profound implications of the results in different business domains.

Adopting multi-theoretic and multi-disciplinary approach, the contribution

of this dissertation lies in bringing out fresh insights and opening new avenue

for future research in the integrated fact-based decision-making.

1.1 Structure of the Dissertation

This dissertation is structured as three separate topics associated with differ-

ent focuses on the integrated fact-based decision-making process. The three

topics have separate theoretical underpinnings and implications in practice,

and have contributed to the three fundamental question raised.

The first topic investigates an universal pattern revealed when people

make choices: The small number phenomenon. I quantify this phenomenon
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and examine its relation to the classical Benford’s law. I use this connection

to develop a choice model, and explore its implications in setting the appro-

priate sales limit in fixed-odd lottery games. The second topic starts with

historical data on patients’ consultations and develops a convex programming

approach to solve a general class of robust appointment scheduling problem

in a single server facility, using a “representative” worst case distribution

matching the prescribed mean and covariance estimates of the service dura-

tions of the patients, to determine the optimal schedule and sequence. The

third topic is to explore in depth how the deeply embedded human nature–

pattern seeking– shapes the perceptions of randomness. I create a simple

economic setting in which a sequence of random outcomes are generated and

build a Bayesian Updating model to explore conditions under which the Hot-

hand Fallacy appears. I collect two sets of field data from gaming industry

to provide a solid foundation and verification of the insights gained from the

model. These results have important implications in problem gambling, risk

management, and lab experiments where random outcomes are involved.



2. TOPIC 1: SMALL NUMBER PHENOMENON

2.1 Abstract

In fixed-odds numbers games, the prizes and the odds of winning are known

at the time of placement of the wager. Both players and operators are subject

to the vagaries of luck in such games. Most game operators limit their liability

exposure by imposing a sales limit on the bets received for each bet type, at

the risk of losing the rejected bets to the underground operators. This raises

a question - how should the game operator set the appropriate sales limit?

We argue that the choice of the sales limit is intimately related to the

ways players select numbers to bet on in the games. There are ample empir-

ical evidence suggesting that players do not choose all numbers with equal

probability, but have a tendency to bet on (small) numbers that are closely

related to events around them (e.g., birth dates, addresses, etc.). To the best

of our knowledge, this is the first paper to quantify this phenomenon and

examine its relation to the classical Benford’s law. We use this connection to

develop a choice model, and propose a method to set the appropriate sales

limit in these games.
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2.2 Introduction

Gambling is probably one of the oldest inventions in human history. In

the ancient past, it was often organized around a fight between tribesmen.

This ancient game of skill has proliferated into the different sports betting

games that are now commonly played in many countries. Gambling can also

take the form of a game of chance where the winners are determined via an

external event - a toss of bones, whoever draws the short straw, and so on. In

fact, such games are now routinely played at a national or state level, where

players bet on which prize-winning numbers will be drawn using mechanical

devices (cf. Lafaille and Simonis (2005)).

In many countries, number lotteries have become a popular source of

revenue for governments. In 2005, the Hong Kong Jockey Club paid close

to HK$12.4 billion to the SAR government in betting duties and profits tax.

This is close to 8.6% of the total tax collected by the Inland Revenue Depart-

ment of Hong Kong that year. In the same year, the Singapore government

took in S$1.05 billion from the gaming operators in betting duties, against

a total tax revenue of close to S$17 billion. These games are also popular

in the West. A recent survey by the licensed operator of the UK National

Lottery, Camelot, found that as many as 69% of the adult population in

Britain played the lottery in 2005-06.1 On the other hand, while there is no

national lottery in the US, similar games are now played in more than 30

states in the country.

There are many ways in which number lottery games can be organized.

1 The BBC news article on this can be accessed at
http://news.bbc.co.uk/1/hi/uk/6174648.stm
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In a parimutuel game, the players bet on the outcome of the draw of (random)

prize-winning numbers, with the winner drawing a fixed portion of the total

amount of bets received. The payout for the winners in such games depends

on the total amount of bets received and the total number of winners. On the

other hand, in a fixed-odds game, the winner receives a fixed payout for each

winning wager, and the total payout for the winner is proportional to the

amount of the wagers he makes in the game. For a fixed-odds game, the prize

is fixed for each ticket, and hence the return for each player does not depend

on how other players bet. However, the game operator now bears the risk of

paying out a large sum in prizes if a very popular number is chosen as the

winning number. Most game operators handle the risk exposure issue in their

fixed-odds numbers games by imposing a liability limit on the sales of each

number - all future bets on those numbers with accumulated sales hitting

the limit will be rejected. This raises an associated question - how should

a game operator set the liability limit? Note that this issue is particularly

important to legalized game operator as a large chunk of their sales will have

to be returned to the government as tax revenues at the end of each year.

This prevents the operator from building up a large reserve to absorb the

exposure risk.

Teo and Leong (2002) used the Markowitz model to argue that it is

reasonable to use a common sales limit for all numbers/bet-types in the game.

They exploited the design of a popular four-digit numbers game played in

Singapore to demonstrate the benefits of risk pooling in the liability limits

management system. However, they focused mainly on internal risk control

mechanism and did not study the impact of external demand distribution
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(i.e., how players select numbers) on the game. Interestingly, this turns out

to have a huge impact on the effectiveness of the risk control mechanism.

2.2.1 Benford’s Law and Number Selection in Fixed-Odds Numbers Game

There are numerous studies in the gaming literature on lottery numbers se-

lection among the players. One group of studies (e.g., Simon (1999), Henze

(1997), Haigh (1997), and Ziemba et al. (1986)) focuses on the lotto games

(where players compete to pick, for instance, 6 winning numbers out of 45),

and has revealed many interesting behavioral patterns showing how the play-

ers select their numbers. The most striking conclusion from these studies is

that the players do not select their numbers randomly; that is, not all num-

bers are chosen with equal likelihood, and there is a tendency to select “aus-

picious” numbers (for instance, the number 7 is routinely chosen by players

in the game in the UK; numbers below 31 are more popular than numbers

above 31, etc.). Table 2.1 shows the proportion of bets received on each

number from 1-45 (ranked from highest to lowest proportions), in a 1996

powerball game played in the UK (Tijms (2007)).

Another group of studies (Chernoff (1999), Halpern and Devereaux (1989))

focuses on the numbers game (where the players compete to pick the winning

3-digit or 4-digit number), which is also known as Pick-3 or Pick-4 in many

states in the US. Halpern and Devereaux (1989) also observed that players

in Pennsylvania favor small numbers in the 3-digit numbers game, where the

winning number is drawn randomly from among the numbers 000 to 999.

They observed that the bet volumes decrease rapidly from numbers in the
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rank number proportion rank number proportion rank number proportion
1 7 0.036 16 25 0.026 31 20 0.019
2 9 0.033 17 15 0.025 32 33 0.018
3 5 0.033 18 21 0.025 33 35 0.016
4 3 0.033 19 17 0.024 34 32 0.015
5 11 0.031 20 16 0.024 35 40 0.015
6 12 0.030 21 26 0.024 36 34 0.014
7 8 0.030 22 14 0.024 37 42 0.014
8 4 0.029 23 24 0.024 38 36 0.013
9 10 0.029 24 27 0.023 39 41 0.013
10 2 0.029 25 19 0.023 40 44 0.012
11 6 0.028 26 30 0.023 41 39 0.012
12 23 0.027 27 18 0.022 42 45 0.012
13 13 0.026 28 31 0.02 43 43 0.012
14 22 0.026 29 28 0.02 44 38 0.011
15 1 0.026 30 29 0.02 45 37 0.01

Tab. 2.1: Popularity of the 45 numbers in a 6/45 powerball game.

100s to 400s, then slowly to the 900s. A similar phenomenon was also ob-

served by Chernoff (1999) in his study of the 4-digit game in Massachusetts.

The sales data received on a particular draw in Pennsylvania was clearly

presented in Halpern and Devereaux (1989), which allows us to quantify this

phenomenon in the numbers games. Figure 2.1 shows the empirical distribu-

tion of the sum-of-three-digits statistics of the numbers chosen by the players

in the Pennsylvania game. We compare the empirical distribution against

the base case where all the 3-digit numbers are selected with equal probabil-

ity (i.e., the uniform-choice model). Interestingly, the empirical distribution

indicates a leftward shift from the base-case distribution, indicating a general

preference for smaller digits in the number selections.

This empirical evidence indeed suggests that players favor small num-

bers. We call this the small-number phenomenon in the numbers game.
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Fig. 2.1: Distribution of the sum-of-three-digits statistics in the 3-digit numbers
game.
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2.2.2 Explanations

Studies investigating cognitions of lottery ticket purchasers showed that peo-

ple failed to recognize that each number on a ticket is independent of the

others. For example, Ladouceur et al. (1996) showed that adults were more

likely to select the ”most random” perceived combinations, although in real-

ity each ticket was as likely to win as the others. In addition, Langer (1975)

asserted that factors in a chance situation which are typically associated

with skill situations (such as choice, competition, and passive or active in-

volvement) cause an individual to believe they have control over a situation

that is completely governed by chance. Ladouceur et al. (1996) found that

individuals who selected their own lottery ticket requested a larger sum of

money in order to relinquish or sell back their ticket than those individu-

als who were randomly given a ticket (machine generated numbers). They

concluded that participants who were able to select their own lottery ticket

perceived their ticket as having a greater chance of winning and, as a result,

assigned a higher monetary value to the ticket than individuals in the no-

choice condition. Erroneous beliefs commonly held by adult gamblers were

also identified in Hardoon et al. (1997) and Ladouceur and Walker (1996).

Herman et al. (1998) studied the question as to when children’s gambling

behavior resembles that of adults. They showed that as children get older

they are more specific in their beliefs that certain types of tickets are more

likely to win than others.

There are a few explanations for the small-number phenomenon in lot-

tery games. As stated in many studies (e.g., Halpern and Devereaux (1989),
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Simon (1999), etc.), a large proportion of players tend to select numbers

associated with special dates (e.g., birthdays, anniversaries, etc.), meaning-

ful numbers (e.g., phone numbers, car numbers, address numbers, etc.), and

special events (e.g., accidents and murders), and these numbers tend to start

with smaller digits (e.g., there are only 12 months in a year, so that the

numbers 1-12 should be more popular than the numbers 13-45 in many 6/45

lotto games). Another explanation put forth by researchers is the observa-

tion that human beings simply can not choose numbers in a uniform manner.

Loetscher and Brugger (2007) demonstrated using experimental methods

that there is indeed a cognitive bias towards the selection of small numbers

by human beings, even when they are told to select numbers “randomly.” In

one of their studies, a total of 488 subjects were told to “name a sequence of

digits with each digit chosen from 1 to 6 as randomly as possible,” and they

found a surplus of small digits (1, 2, or 3) in all their experiments.

These studies, unfortunately, offer only anecdotal evidence (through sur-

veys and interviews) and rudimentary explanations for the existence of the

small-number phenomenon, and do not provide an analytical framework to

quantify and model this phenomenon.

Another factor influencing the choice of numbers is superstitious beliefs,

widely held by players of lottery games. In Chinese culture, certain numbers

are believed by some to be lucky (or unlucky) based on the similarity of their

pronunciation to that of certain Chinese words. For instance, Chinese people

usually associate the digit 8 with prosperity, and thus numbers containing

the digit 8 are normally more popular2. On the other hand, the number 4

2 In fact, China Mobile’s Jiangxi branch held an auction to sell a “lucky” phone number
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is considered unlucky in many cultures in Asia, since it sounds like the word

for “death” in spoken Chinese. Such beliefs concerning lucky and unlucky

numbers tend to affect the popularity of certain numbers in the lottery game,

leading to uneven distribution of the wagers on the different numbers.

2.2.3 Modeling Empirical Data

There have been several attempts to model the biases in the choice model of

players. Simon (1999) considered the impact of the “lucky-number” biases

and developed a model to approximate the distribution of the number of

times that a combination would be chosen in the UK national lottery game.

This provided a more accurate choice model for the UK lottery game, and

fitted the data better than the uniform-choice model. Stern and Cover (1989)

obtained the choice probability for each number in a lotto game, from the

empirical marginal frequencies, by solving a related entropy-minimization

problem. Ziemba et al. (1986) used regression methods and empirical data to

estimate the popularity of each number combination in the lotto game. Haigh

(1997) used choice probabilities directly on a set of numbers to estimate the

popularity of the number combinations. Unfortunately, all these methods

took the empirical data as given and focused merely on finding a better

choice model to fit the empirical data. Thus, these methods did not exploit

the existence of the small-number phenomenon in their modeling approaches,

nor did they try to quantify this phenomenon.

recently, and one such number - with six consecutive eights - was sold for RMB 44,000!
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2.2.4 Contributions

In this topic, we investigate the small-number phenomenon in the numbers

games (rather than the lotto games) and use it to address the liability limits

management problem. Our contributions in this topic are as follows:

∙ We quantify the small-number phenomenon through a curious fact ob-

served by Newcomb (1881) and independently by Benford (1938). In-

terestingly, while the classical Benford’s law captures the proportion of

bets on the first significant digit reasonably well, it fails to account for

the self-replicating nature of the empirical data beyond the first signif-

icant digit. By carefully modeling the ways players compose the digits

in the numbers game, we refine Benford’s law to develop an alternate

consumer-choice model for different bet types using a handful of pa-

rameters only. Surprisingly, this parsimonious choice model is already

able to capture some of the most important characteristics of the data

in the numbers game.

∙ We examine the consequences of the small-number phenomenon on the

prize liability performance of the game operator. In particular, our

analysis suggests that it will be fruitful for the operators to pursue

strategies to reduce the effect of the small-number phenomenon; that

is, to promote or encourage players to choose numbers randomly. On

the other hand, we show that the debate on whether a sales limit should

be imposed on the game can be examined from the demand side - if

numbers are selected in a uniform manner, then it may be futile to

impose any sales limit since the performance is very sensitive to the
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total sales revenues of the game; that is, with a slight change in total

sales revenues, the operator may swing from a situation with all num-

bers hitting the sales limit to a situation where all bets are accepted.

Unless the total sales revenue can be accurately forecasted, it will be

difficult to set the right sales limit in this environment. The small-

number phenomenon in the choice process actually helps to stabilize

this relationship between the total sales revenues and the proportion of

numbers sold out. The imposition of a sales limit is thus more effective

in such environment.

2.3 Modeling the Small-Number Phenomenon

Classical economic theory assumes that players behave like rational agents,

and make decisions based on utility-maximization reasoning. As the returns

from each number combination are identical, these players have no specific

preference for any particular number and thus all numbers are selected with

equal probability. We call these “Type 1” players.

However, recent empirical studies show that agents are not always seek-

ing utility maximization in their decision making since framing, loss aver-

sion, decision biases etc. can have major effects on players’ decisions. To

understand the small-number phenomenon, we need to augment the classi-

cal approach by incorporating the behavior of agents who pick their “lucky”

numbers (arising from events in their daily life, or through superstitious

beliefs) using reasoning which cannot be captured by any economic model.

These players are superstitious, and have a general tendency to avoid betting
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on certain digits.3. We call these the “Type 2” players.

We also assume that each player bets $1 on each number chosen.

Definition 1. Let 𝛽𝐵 and 𝛽𝑁 denote the proportions of type 2 and type 1

players respectively, with

𝛽𝐵 + 𝛽𝑁 = 1. (2.1)

The challenge in our problem is to estimate the proportions of type 1 and

type 2 agents in the population of players based on the aggregate sales data.

To this end, we need to have a better understanding on how type 2 agents

choose their numbers. As these “lucky” numbers are normally selected from

data series arising in the daily life of these type 2 agents, we will exploit a

curious property associated with these natural numbers.

2.3.1 Benford’s law

Newcomb (1881) observed that the first few pages of books of logarithms

were more worn than the last few and inferred that there might be more num-

bers starting with 1 or 2 than starting with larger numbers. Newcomb then

drew a counter-intuitive conclusion that the first significant digits (i.e., first

non-zero digits) of many data series in nature are not evenly distributed as

expected, but follow a logarithmic law. Almost 50 years later, independently

of Newcomb, Benford (1938) noticed the same phenomenon for categories

of naturally occurring numerical data; for example, areas of rivers, atomic

weights, numbers from Reader’s Digest, and so on. He then came to the same

3 Interestingly, our data suggests that players in Pennsylvania have an aversion to the
digit 2, but favor digits 7 and 8.
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conclusion, now known as Benford’s law, which Newcomb had arrived at so

many years previously. Both Newcomb (1881) and Benford (1938) proposed

that the probability that a number has the first significant digit 𝐷1 in a set

[1..9], is given by

𝑃 (𝐷1 = 𝑑1) = log
10

(
1 +

1

𝑑1

)
, for all 𝑑1 ∈ [1..9]. (2.2)

Let𝐷𝑖 denote the 𝑖
th significant digit of a number. Hill (1995a) extended

the above observation to a general version of Benford’s law: for all 𝑑1 ∈ [1..9],

and 𝑑𝑘 ∈ [0..9] for 𝑘 > 1,

𝑃 (𝐷1...𝐷𝑖 = 𝑑1...𝑑𝑖) = log10

(
1 +

1∑𝑖
𝑗=1 𝑑𝑗 × 10𝑖−𝑗

)
. (2.3)

Empirical evidence of Benford’s law has appeared in a wide range of data;

for example, stock index (Ley (1996)), income tax (Nigrini (1996)), math-

ematical series (Whitney (1972)), and so on. Benford (1938) analyzed the

underlying causes of this logarithmic phenomenon using a heuristic argument.

Other mathematicians and statisticians have offered various explanations for

this phenomenon. Raimi (1976) gave a review of some of the more intuitive

explanations. It wasn’t until 1995 that Hill (1995a) provided a formal rig-

orous proof that Benford’s law is the only probability distribution which is

scale-invariant and base-invariant. Using modern mathematical probability

theory, and the scale- and base-invariant proofs, Hill rigorously demonstrated

that the “distribution of distributions” given by random samples taken from

a wide variety of different distributions in fact satisfies Benford’s law (cf. Hill
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(1998)).

One of the main applications of Benford’s law is in fraud detection,

under the hypothesis that fabricating data which conform to Benford’s law

is difficult. Recent empirical evidence shows that true accounting data sets

conform very closely to Benford’s law (Thomas (1989), Nigrini (1996)). On

the other hand, fabricated data rarely conform to Benford’s law. Therefore,

digital analysis based on Benford’s law has been proposed as a new tool

for fraud detection in recent years. Another application of Benford’s law

has been in the design of computers. Peter Schatte (1988) devised rules

that optimize computer data storage, by allocating disk space according to

the proportions dictated by Benford’s law, based on the assumption that

input request satisfy Benford’s law. Furthermore, both Varian (1972) and

Hill (1995b) suggested using Benford’s law as a test of the reasonableness of

forecasts of a proposed model. If real life data follows Benford’s law, it seems

reasonable to assume that a good mathematical model should also do so.

In this topic, we add to this growing list of applications by showing that

Benford’s law can be used to capture the number selection behavior of type

2 agents in our model.

2.3.2 Choice Model for Type 2 Agents

WLOG, we will develop the choice model based on a 3D game, using the

sales data published earlier in Halpern and Devereaux (1989). We have cross

validated this model on other empirical data in several other number games,

but unfortunately, due to the sensitivity of the data, we could not report
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the results here. For ease of exposition, we ignore the bets received for the

number 000 from subsequent analysis; that is, we assume that none of the

players will place a bet on the number 000. Using this assumption, the

betting profiles of the type 1 players are drawn from a uniform distribution

where all the numbers from 001 to 999 will have an equal chance of being

selected. We focus next on the betting behavior of the type 2 players.

To ensure that the number selected has exactly 3 digits, we assume that

the type 2 player may choose to compose a 3-digit number by padding the

number he or she has chosen with leading zeros.4

Definition 2. Let 𝛾𝑖 denote the proportion of type 2 players who are betting

on numbers with 𝑖 significant digits.

By definition,
3∑

𝑖=1

𝛾𝑖 = 1. (2.4)

We first state a very simple consumer-choice model, where the classical

Benford’s law holds directly for the 3-digit numbers played.

Assumption 1. We assume that the type 2 player will choose to play the

3-digit number 𝑑1 . . . 𝑑𝑖 (𝑑1 > 0), with 3− 𝑖 leading zeros, with probability

𝛾𝑖 log10(1 +
1

𝑑1 × 10𝑖−1 + ...+ 𝑑𝑖
). (2.5)

4 Note that this simplifying assumption may not hold in general, as some players may
pad the numbers with trailing zeros, and some may simply duplicate the numbers to reach
a 3-digit number. Halpern and Devereaux (1989) mentioned that triplets like 111 or 888
are very popular in the Pick-3 game in Pennsylvania. Unfortunately, it does not appear
possible to incorporate such features into the model, without sacrificing the simplicity and
tractability of the calibration model.
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Note that this is none other than the classical Benford’s law, except that

we weigh it with a factor 𝛾𝑖 to account for the proportion of players who bet

with 𝑖 significant digits.

It is now easy to prove the following proposition.

Proposition 1. Under Assumption 1, the expected proportion of the betting

volume on a 3-digit number with first significant digit 𝑖, denoted by 𝐸[𝑆(𝑖)],

is

𝐸[𝑆(𝑖)] = 𝛽𝐵 × log10

(
1 +

1

𝑖

)
+ 𝛽𝑁 × 1

9
, for all 𝑖 = 1, 2, . . . 9. (2.6)

Note that 𝐸[𝑆(𝑖)] does not depend on 𝛾𝑗. We can thus use this property

to calibrate the value of 𝛽𝐵 and 𝛽𝑁 , by looking at the proportion of bets

received for each significant digit. In the 3D data from Pennsylvania, the

proportion of the type 2 and type 1 players are estimated to be 39.58%

(𝛽𝐵 = 0.3958) and 60.42% (𝛽𝑁 = 0.6042), according to the least square

model. We plot next the expected proportion of the first significant digit,

given by the optimal parameter values, as shown in Figure 2.2, along with

the empirical proportion. The prediction from Benford’s law captures the

general trend in the empirical data, although we observe a general preference

for first significant digit 3, 7 and 8 among the players, whereas the digit 2 has

lower frequency than expected. Although we can refine our model to build in

these biases into the model, we opted not to do so because such preferences
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do not appear to be universal across cultures.
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Fig. 2.2: Fitted proportion by the model.

While the simple model in Assumption 1 captures the behavior concern-

ing the first significant digit rather accurately, we examine its ability to track

the proportion of betting volume for the first two significant digits. We plot

next the expected proportion of bets received and the empirical averages in

Figure 2.3. Interestingly, our model is able to capture the declining popular-

ity in the 3-digit numbers, as the first two significant digits grow from 10 to

99. This provides a partial explanation for the small-number phenomenon

often observed in the games. Unfortunately, it could not explain the fact

that the small-number phenomenon exists even in each decile (sub-block), as

shown in Figure 2.3.

To understand the choice preferences beyond the first significant digit,
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Fig. 2.3: Fitted proportion by the model for the first two significant digits.

we need to model an important characteristic in the way players compose

the 3-digit numbers in the game. One such common strategy is to combine

data from two different series to form a 3-digit number. For example, the

number 246 could come from the 24th day of the month of June, or it could

come from the address being level 6 of block unit number 24. The previous

model assumes that the 3-digit numbers come from a single data series and

hence fails to capture this switching behavior.

We notice that the probability distribution in our first assumption can

be written in a different form:

𝛾𝑖 log10(1 +
1

𝑑1 × 10𝑖−1 + ...+ 𝑑𝑖
)

= 𝛾𝑖 log10(1 +
1

𝑑1
)
log10(1 +

1
𝑑1×10+𝑑2

)

log10(1 +
1
𝑑1
)

⋅ ⋅ ⋅ log10(1 +
1

𝑑1×10𝑖−1+...+𝑑𝑖
)

log10(1 +
1

𝑑1×10𝑖−2+...+𝑑𝑖−1
)
.
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Here, 𝛾𝑖 represents the probability that the type 2 player will pick a number

with 𝑖 significant digits. log10(1 +
1

𝑑1×10𝑖−1+...+𝑑𝑖
)/ log10(1 +

1
𝑑1×10𝑖−2+...+𝑑𝑖−1

)

represents the probability that the 𝑖𝑡ℎ digit is 𝑑𝑖, given that the first 𝑖 − 1

digits are 𝑑1 . . . 𝑑𝑖−1. To model the switching behavior, we refine the recursive

approach in the following way:

∙ As before, log10(1+
1
𝑑1
) represents the probability that the first digit is

𝑑1.

∙ Let
log10(1 +

1
𝑑1×10𝑖−1+...+𝑑𝑖

)

log10(1 +
1

𝑑1×10𝑖−2+...+𝑑𝑖−1
) + 𝜆

denote the probability that the player will continue to generate the 𝑖𝑡ℎ

digit 𝑑𝑖 as if it comes from the same data series as the first 𝑖− 1 digits,

with parameter 𝜆 > 0. Note that in this way, the players will switch to

a different data series with a non-negative probability

𝜆

log10(1 +
1

𝑑1×10𝑖−2+...+𝑑𝑖−1
) + 𝜆

.

∙ If the players switch to a different data series, let 𝑝0 denote the proba-

bility that they will switch to the digit “0.” Otherwise, they will switch

to digit 𝑖, with 𝑖 ∈ {1, . . . , 9}, with probability (1− 𝑝0) log10(1 +
1
𝑖
).

With a slight abuse of notation, we can write

log10(1 +
1

0
) :=

𝑝0
1− 𝑝0

, and 𝜆 :=
𝑞

1− 𝑞
.
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We can now model the switching behavior in the 3-digit game in the following

way:

Assumption 2. We assume that the type 2 player will choose to play the

3-digit number 𝑑1 . . . 𝑑𝑖 (𝑑1 > 0), with 3− 𝑖 leading zeros, with probability

𝛾𝑖 log10(1 +
1

𝑑1
)
(1− 𝑞) log10(1 +

1
𝑑1×10+𝑑2

) + 𝑞(1− 𝑝0) log10(1 +
1
𝑑2
)

(1− 𝑞) log10(1 +
1
𝑑1
) + 𝑞

× ⋅ ⋅ ⋅

×(1− 𝑞) log10(1 +
1

𝑑1×10𝑖−1+...+𝑑𝑖
) + 𝑞(1− 𝑝0) log10(1 +

1
𝑑𝑖
)

(1− 𝑞) log10(1 +
1

𝑑1×10𝑖−2+...+𝑑𝑖−1
) + 𝑞

.

In this way, we can interpret the parameters as follows.

Definition 3. Let 𝑞 denote the switching probability. Let 𝑝0 denote the prob-

ability that the digit will be switched to 0.

Let 𝐸[𝑆(𝑖, 𝑗)] denote the expected proportion of bets with first two significant

digits 𝑖 and 𝑗 respectively.

Proposition 2. Under Assumption (2),

𝐸[𝑆(𝑖)] = 𝛽𝐵 × log10

(
1 +

1

𝑖

)
+ 𝛽𝑁 × 1

9
, for all 𝑖 = 1, 2, . . . 9;

𝐸[(𝑆(𝑖, 𝑗)] = 𝛽𝐵 log10(1+
1

𝑖
)

(
(1− 𝑞) log10(1 +

1
𝑖×10+𝑗

) + 𝑞(1− 𝑝0) log10(1 +
1
𝑗
)

(1− 𝑞) log10(1 +
1
𝑖
) + 𝑞

)
+𝛽𝑁

(
1

90

)
.

Note that the expected proportion of first significant digits remains un-

changed under both assumptions. The parameters under Assumption 2 are
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calibrated to be 𝑞 = 0.9105, 𝑝0 = 0.1054, to best fit the empirical data under

the least square model.

We compare the expected frequencies of first two significant digits with

those in empirical data respectively in Figure 2.4. The frequencies generated
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Fig. 2.4: Fitted proportion for the first two significant digits.

from this model closely fit the frequencies of the empirical data. More inter-

estingly, this model is able to capture the small-number phenomenon in the

second significant digit of the data series.

Note that so far the parameters 𝛾𝑗 did not feature in the analysis. This

arises because we have fixed the number of significant digits. To complete

our specification of the choice model, we need to estimate the values of these

parameters. Let 𝛾𝑗 denote the sample average of the proportion of bets with
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exactly 3− 𝑗 leading zeros. We use 𝛾𝑗 to obtain an unbiased estimator of 𝛾𝑗,

using the following relationship:

𝛽𝐵𝛾𝑗 + 𝛽𝑁
9× 10𝑗−1

999
= 𝛾𝑗, for 𝑗 ≥ 1. (2.7)

2.3.3 Model Validation

We show next that the choice model under Assumption 2 proposed in the

earlier section has the ability to track some of the most important character-

istics of the betting data in the 3D game.

We first estimate the behavior for the sum-of-digits statistic, using data sim-

ulated according to Assumption 1 (with the calibrated parameters). We

compare it with the empirical data (after removing the betting volumes on

the 3-digit number 000). Figure 2.5 depicts the distributions of the sum-of-

digits in three data series: the actual data, simulated data from our choice

model, and the uniform-choice model.

The estimation of 39.58% type 2 and 60.42% type 1 players in the pop-

ulation seems right, as it captures the magnitude of the leftward shift in the

empirical data reasonably well. Also, note that our choice model does not

account for the superstitious beliefs observed in the empirical data (players

generally avoid 2 and prefer 7 and 8). This partially explains why the pro-

portions from our model are higher for smaller sum-of-digits (from 3 to 7)

and lower for sum-of-digits around 15.

We track the performance of another statistic - the numbers of 3-digit
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bets attaining a certain betting volume. Figure 2.6 shows the number of

3-digit numbers in the game with a given betting volume (specified in the

horizontal axis). The distribution obtained from the uniform-choice model

follows a binomial distribution, and centers mainly around the mean. This

yields a poor fit for the empirical data. The distribution obtained from our

choice model clearly has a better fit.
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2.4 Applications

The small-number phenomenon clearly has important implications for the

operational risk management of the game. The numbers picked by the type

2 players introduce variability and skewness to the distribution of bets on

the 3-digit numbers. The winning numbers, on the other hand, are randomly

(i.e., uniformly) rolled out by a mechanical device, which implies that the

hot numbers are chosen with the same probability as other numbers. The

mismatch between the winning number distribution and the betting volume

distribution leads to a significant operational risk: the operators may face a

substantial payout if a popular number happens to be picked as the winning

number! This is a phenomenon which often worried the game operators. In

Quebec, according to Lafaille and Simonis (2005), “the first drawing caused

a prize liability well in excess of the amount received in sales.” Fortunately,

“over the long run it all evened out and the projected prize percentage was

achieved.”

We show in this section that the small-number phenomenon plays a

significant role in the large volatility of prize liability experienced by many

operators in the game. We further exploit this observation to propose a

method to help determine the sales limit in these games.

2.4.1 Volatility of prize liability

We examine the impact on the prize payout volatility by the proportion of

type 2 players in the population of players. We compare the variability of

payout in the 3D game, as we increase the proportion of type 2 players from
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0% to 39.58% in the choice model (both with Assumption 1 and Assumption

2). For this study, we assume that the sales limit is higher than demands, so

that all bets are accepted.

Consider a game with a prize 𝑃 and 𝑁 players, each betting $1 on a

number drawn from a respective distribution. Let 𝑋𝛽𝐵
(𝑛) denote the amount

of bets received on the number 𝑛 when the proportion of type 2 players is

equal to 𝛽𝐵. When the winning number for that prize is drawn uniformly

among the 999 numbers (from 001 to 999, as we have ruled out the bets on

the number 000), the expected payout in our choice model is simply

𝑃

999

999∑
𝑛=1

𝐸(𝑋𝛽𝐵
(𝑛)) =

𝑃

999
×𝑁.

The second moment of the payout is

𝑃 2

(∑999
𝑛=1 𝐸(𝑋2

𝛽𝐵
(𝑛))

999

)
.

Hence, the variance of payout is

𝑃 2

(∑999
𝑛=1 𝐸(𝑋2

𝛽𝐵
(𝑛))

999
− 𝑁2

9992

)
.

If all the𝑁 players choose their numbers independently,𝑋𝛽𝐵
(𝑛) ∼ 𝐵𝑖(𝑁, 𝑝𝛽𝐵

(𝑛)),

where 𝑝𝛽𝐵
(𝑛) denote the probability that number 𝑛 is picked in our choice

model, given that the proportion of type 2 players is 𝛽𝐵. Hence,

𝐸(𝑋𝛽𝐵
(𝑛)2) = 𝑁2𝑝2𝛽𝐵

(𝑛) +𝑁𝑝𝛽𝐵
(𝑛)(1− 𝑝𝛽𝐵

(𝑛)).
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Fig. 2.7: Variance of payout as the proportion of type 2 players increases.

We can thus analytically compare the variance of the payout, under

different values of 𝛽𝐵. As shown in Figure 2.7, under both assumptions,

the variability of payout is increasing as the proportion of type 2 players

increases. When 𝛽𝐵 is equal to 0, that is, the demand is evenly distributed,

the variance of payout is only 0.003×1012. When 𝛽𝐵 increases to 39.58%, the

variance of payout under Assumption 1 is 3.6794 × 1012, about 1216 times

higher than that of the uniform-choice model. Since Assumption 2 captures

more of the volatility of the data, the variance of payout is 13.049× 1012 in

this model, 4313 times bigger than that of the uniform-choice model.

Note that our choice model only includes 39.58% type 2 players and does

not account for other random effects such as date or month effect. So, the
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volatility of actual prize payout should be even worse. For the 3D game in

Pennsylvania, we conclude that the standard deviation of the prize payout

can be reduced by 65 times if the proportion of the type 2 agents (𝛽𝐵) reduces

to 0.

2.4.2 Liability Limit

In the rest of this section, we use the small-number phenomenon to set the

appropriate liability limit for the 3D game. Let 𝐷𝑛 denote the (random)

demand of a 3-digit number 𝑛. The distribution of 𝐷𝑛 depends on the

proportion of type 1 and type 2 players in the game. Let 𝐶 denote the

corresponding sales limit. Let 𝑆𝑛 denote the accepted sales for number 𝑛;

i.e.,

𝑆𝑛 = min(𝐷𝑛, 𝐶).

Note that

𝐸[𝑆𝑛] = 𝐶 ⋅ 𝑃 (𝐷𝑛 > 𝐶) + 𝐸(𝐷𝑛∣𝐷𝑛 ≤ 𝐶) ⋅ 𝑃 (𝐷𝑛 ≤ 𝐶).

Let 𝑅(𝑆1, . . . , 𝑆𝑁) denote the “risk exposure” when sales for the 𝑁 num-

bers are given by (𝑆1, . . . , 𝑆𝑁). There are several ways to model the risk

measure 𝑅(⋅), and it generally depends on the distribution of the winning

numbers drawn.

Suppose the expected return given $1 bet is 𝑟. We use the mean-risk

trade-off to model the utility function of the game operator. The expected
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utility function of the game operator is thus given by

𝑟
𝑁∑

𝑛=1

𝐸[𝑆𝑛]− 𝜆𝐸
{
𝑅(𝑆1, . . . , 𝑆𝑁)

}
,

where 𝜆 is an exogenous penalty term for risk exposure.

We can find 𝐶 by solving the following maximizing problem:

max
𝐶>0

𝑟
𝑁∑

𝑛=1

[𝐶⋅𝑃 (𝐷𝑛 > 𝐶)+𝐸(𝐷𝑛∣𝐷𝑛 ≤ 𝐶)⋅𝑃 (𝐷𝑛 ≤ 𝐶)]−𝜆𝐸
{
𝑅(min(𝐷1, 𝐶), . . . ,min(𝐷𝑁 , 𝐶))

}
.

It can be easily shown that the objective function is convex. Thus,

according to the first order condition, the optimal liability limit 𝐶 satisfies:

𝑁∑
𝑛=1

𝑃 (𝐷𝑛 > 𝐶) =
𝜆

𝑟
𝐸

[
∂𝑅(min(𝐷1, 𝐶), . . . ,min(𝐷𝑁 , 𝐶))

∂𝐶

]
. (2.8)

Note that the left hand side corresponds to the expected number of hot

numbers, i.e., the expected number of bet types reaching the sales limit in

the draw. The sales limit can be set by merely choosing a sales limit 𝐶 to

control the number of hot numbers.

Suppose the total bets collected are to the value of $𝑁 , and the cut-off

limit is $𝐶 for each number. We next estimate the expected number of hot

numbers (i.e., the numbers with betting volumes hitting the liability limit).

We define an indicator function 𝑌𝛽𝐵
(𝑛) as follows:

𝑌𝛽𝐵
(𝑛) =

⎧⎨⎩ 1 if 𝑋𝛽𝐵
(𝑛) ≥ 𝐶;

0 otherwise.
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The expected number of hot numbers with liability limit $𝐶 is

𝑬

(
999∑
𝑛=1

𝑌𝛽𝐵
(𝑛)

)
=

999∑
𝑛=1

𝑷 (𝑋𝛽𝐵
(𝑛) ≥ 𝐶)

=
999∑
𝑛=1

⎛⎜⎝1−
𝐶−1∑
𝑖=0

(
𝑁

𝑖

)
(𝑝𝛽𝐵

(𝑛))𝑖(1− 𝑝𝛽𝐵
(𝑛))𝑁−𝑖

⎞⎟⎠

Note we can use a normal distribution 𝑁(𝑁𝑝𝛽𝐵
(𝑛),

√
𝑁𝑝𝛽𝐵

(𝑛)(1− 𝑝𝛽𝐵
(𝑛)))

to approximate the binomial distribution 𝐵𝑖(𝑁, 𝑝𝛽𝐵
(𝑛)), if 𝑁 is large enough.

Hence, we have

𝑬

(
999∑
𝑛=1

𝑌𝛽𝐵
(𝑛)

)
=

999∑
𝑛=1

(
1− Φ

(
𝐶 −𝑁𝑝𝛽𝐵

(𝑛)√
𝑁𝑝𝛽𝐵

(𝑛)(1− 𝑝𝛽𝐵
(𝑛))

))
.

We can thus analytically compute the expected number of hot numbers

given a liability limit $𝐶, and compare the results using different liability

limits. Figure 2.8 shows the expected number of hot numbers under different

liability limits in the case that 39.58% players are type 2 and 60.42% players

are type 1, and in the ideal case that all players are type 1 agents.

In the ideal case, because all numbers are selected with equal probability,

the concentration of measure phenomenon kicks in and the expected number

of hot numbers goes through a phase transition - dropping sharply from 999

(all sold out) to 0 (none sold out) for a narrow range of sales limit. This

is most evident from Figure 2.8: when the total sales is $9M, $10M, $11M,

and $12M respectively, the expected number of hot numbers drops sharply

to zero when the liability limit is around $10000, $11000, $12000, and $13000
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respectively. In this environment, trying to find the appropriate sales limit

to control the right level of hot numbers is almost impossible because this

number depends critically on the total sales level, a number which normally

fluctuates from draw to draw.

In the empirical sales data, we have 𝛽𝐵 ≈ 0.3958. In this environment,

interestingly, the phase transition phenomenon disappears, and the relation-

ship between the sales limit and the expected number of hot numbers is

more stable. For a sales limit of $1000, the hot numbers fluctuate from 200

to 400 when the total sales level changes from $9M to $12M. The relationship

between the total sales and proportion of hot numbers are thus more stable.

2.5 Conclusion

In this topic, we have analyzed an interesting phenomenon in a popular

numbers game. While it is by now folklore that players in these games prefer

small numbers, this paper is arguably the first to quantify this behavior

using Benford’s law. The connection is forged by virtue of the argument that

many natural data series satisfy Benford’s law. We also take into account the

choice behavior of the players, in particular the way the players compose the

3-digit number to obtain a refined choice model. Although we do not model

additional phenomenon such as superstitious beliefs and date-month effect on

the choice behavior, the simple model we built, using only a few parameters

(i.e., the proportion of type 2 agents 𝛽𝐵, the probability of switching 𝑞, and

the probability of padding the number with digit zero 𝑝0), is already able to

capture some of the most important characteristics of the empirical data.
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While we have presented only the analysis using a set of publicly avail-

able data from the US, we have tested the model on an extensive series of

data provided by a game operator in another region. Despite the differ-

ences in culture and beliefs, we found that the same underlying model can

be used to describe the behavior of the aggregate data, with the main differ-

ence coming from the proportion of Benford-like players. We believe that the

small-number phenomenon is a generic behavior inherent in many numbers

games.

The proportion of type 2 players (𝛽𝑁) has a tremendous impact on the

variability of the prize liability, and to a certain extent affects the appropriate

choice of sales limit in the numbers game. There are many ways to mitigate

the small-number effect through demand shaping. One approach, already in

use, is to use on-site computer terminals to help players to pick the numbers

randomly. However, people often do not like random picks because they like

to assume some control over the outcomes (cf. Langer (1975)). Therefore,

there may be limits on the extent to which the industry can encourage ran-

dom picks. Another approach is to re-design the game to encourage the play-

ers to bet on as many different permutations as possible. In Singapore, the

introduction of a new iBet system (cf. http://www.singaporepools.com.sg)

proves to be popular with the players. The new system allows the players to

spread a dollar bet on as many permutations of the number combination as

possible, with a corresponding reduction in the prize monies. It also helps

to mitigate the effect of the small number phenomenon. Other possible ap-

proaches include posting the results of past winning numbers in the retail

outlets to influence the selection of numbers by the players. The past win-
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ning numbers are drawn in a random manner and thus will not exhibit the

same feature as numbers picked by Benford’s type player. Of course, recency

bias may actually deters players from betting on recent winning numbers,

and hence this approach may not be as effective in persuading players from

moving away from their preferred numbers.

Interestingly, if the game operators are able to reduce the proportion

of benford players, then the above analysis shows that the imposition of the

sales limit may no longer be needed, since it will be difficult and futile to

implement such a mechanism anyway.



3. TOPIC 2: APPOINTMENT SYSTEM DESIGN USING

COPOSITIVE CONES

3.1 Abstract

In this topic, we investigate a stochastic appointment scheduling problem in

an outpatient clinic with a single doctor. The number of patients and their

sequence of arrivals are fixed, and the scheduling problem is to determine an

appointment time for each customer. The service durations of the patients

are stochastic, and only the mean and covariance estimates are known. We

do not assume any exact distributional form of the service durations, and

solve for distributionally robust schedules that minimize the expectation of

the weighted sum of patients’ waiting time and doctor’s overtime. We for-

mulate this scheduling problem as a convex conic optimization problem with

a tractable semidefinite relaxation. Our model can be extended to handle

additional support constraints of the service durations. Using the primal-

dual optimality conditions, we prove several interesting structural properties

of optimal schedules. Despite the required relaxation in computation, we

can still obtain near optimal solutions compared to the existing literature.

We apply our method in a realistic setting at an eye clinic and suggest new
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schedules that can significantly improve the efficiency of the clinic.

3.2 Introduction

In many service delivery systems, the core operational activities are largely

planned around the arrival times of the customers. The ability to regulate

the arrival of customers through a suitable appointment system, is thus cen-

tral to the performance of these systems. The FastPass service of Disney is a

well known example. Customers in the park can obtain a pass to ensure fast

service at certain rides if they return at the stipulated time. The temple of

Tirumala in India has also used an online appointment system to convert its

long waiting line into a virtual queue. This has helped improve service de-

livery and generated spillover economic benefits to businesses in the vicinity

of the temple1.

The appointment design problem is also a core problem for healthcare

facilities such as outpatient clinics and operating rooms. The appointment

system is used to regulate the usage of the costly equipment and precious

resources in the system. In an eye-care facility that we have visited, there are

two consultation sessions per day, each lasting four hours, and the number

of doctors available per session is around two to seven. Each doctor has

to handle 20 to 30 patients per session. The patients can be classified into

“New” (20%) and “Repeat” (80%) patient types. The mean and variance of

the consultation times of the new patients are noticeably higher than those of

repeat patients, as the conditions of the new patients are hitherto unknown

1 See http://www.iimahd.ernet.in/publications/data/2005-08-02nravi.pdf for a thor-
ough discussion.



3. Topic 2: Appointment System Design using Copositive Cones 43

prior to the visit. There are also various operational details that complicate

the situation. For instance, patients often have to go for a dilation test

prior to seeing the doctor. This process adds to the complexity of finding an

optimal appointment strategy for the system.

One key performance indicator in this system is the “Turnaround Time”

(TAT), defined to be the time from the moment the patient walks into the

clinic, to the moment the patient leaves the clinic. Figure 3.1 shows the

overall median TAT, service time and waiting time (WT) of patients arriving

in different time slots for two different sessions in the clinic, where TAT is

the sum of service and waiting times. Clearly the patients are experiencing

long turn around time, with waiting time far exceeding the actual service

time.

Fig. 3.1: Median time from registration to payment

We note that there are several pertinent features in this system: (i)

New patients often have to undergo a series of checks (such as visual acuity,
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and/or other advanced tests) after the consultation, some of which can take

as much as 2.5 hours. To make sure that all the tests and consultations can

be performed within the same day, the doctors prefer to see the new patients

in the early portion of the morning session. Consequently, early morning

slots are reserved primarily for new patients. (ii) The current appointment

strategy is to allocate 5 minutes per patient slot for one hour, followed by a

half hour break. This allows each doctor to see around 36 patients in each

4-hour session.

This leads to the central questions for this topic: is there any (near)

optimal strategy to schedule and sequence the arrival of patients such that the

waiting time of the patients and overtime work of the doctor are minimized?

Furthermore, are there any “distributionally robust” solutions that perform

well for a wide range of service time distributions?

The research on appointment system design over the past few decades

has been driven largely by these issues. However, these problems are noto-

riously difficult. Standard queueing theory does not apply as we are inter-

ested in the transient performance measures of the system. It is technically

challenging to calculate the expected waiting time of the 𝑛𝑡ℎ patient in the

sequence, due to the difficulty of propagating the impact of earlier events on

this patient. Recently, Begen and Queyranne (2009) show that the schedul-

ing problem is solvable in polynomial time (in the size of the representation

of the discrete distributions). However, this method works well only for dis-

crete distributions with a small number of distinct values. To the best of

our knowledge, simulation and stochastic programming methods are still the

preferred approaches for the appointment design problem. Unfortunately,
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the solutions obtained are often sensitive to the samples used to develop the

schedules, and hence very little is known about the structure of the optimal

policies, even in the simplest environment with one doctor and when patients

arrive punctually according to the appointment time.

3.2.1 Contributions

In this topic, we develop a convex conic programming approach to solve

the appointment scheduling problem. We show that this problem can be

suitably reformulated as a two-stage stochastic optimization problem. In

the second stage, we construct a network flow model to capture the waiting

time of each patient, under a given scheduling policy (from the first stage

problem). Our novelty comes in the solution to the first stage problem, which

is a technically challenging problem. Instead of using a specific service time

distribution to design the schedule, we employ a minimax approach so that

the schedule is designed to minimize the maximum expected cost achieved

by some distribution from a family of distributions. Next, we develop a conic

optimization framework to transform the stochastic appointment scheduling

problem into a single deterministic copositive programming problem (COP)2.

Using the primal-dual optimality conditions, we prove several interest-

ing structural properties of the optimal schedule. For instance, our analysis

shows that when the appointment system is operating under the optimal

schedule, other than the first slot and the last few ones (where the consul-

tation intervals allocated are zero, i.e., patients are bunched together), the

2 A copositive programming problem is a linear programming problem over the convex
cone of the copositive matrices. Details of this optimization problem are discussed later
in this topic.
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chances of waiting for service in the clinic is identical for patients assigned

to all other slots. Furthermore, our model can also handle the correlations

between patients’ service durations, which has been largely overlooked in

literature.

Computationally, we solve a tractable semidefinite approximation to the

COP. Although the schedule obtained using our model is optimal for a set of

canonical service time distributions (called worst case distributions), our nu-

merical results show that this schedule also works reasonably well for several

other service duration distributions with the same moment conditions. We

also find that the schedule obtained from solving the SDP approximation of-

ten satisfies the structural properties obtained from model analysis. Further-

more, with the help of existing semidefinite programming (SDP) packages,

we can work out practical size appointment scheduling problems.

In a congested system with two types of patients, as in our eye clinic case,

the optimal schedule often exhibits the pattern: “Bailey’s Rule + Break”3 -

the optimal schedule allocates near zero time slot to the first few patients,

which resembles the well known “Bailey’s Rule”, and a break is often inserted

before switching from a class of patients with higher variability to another

class of patients with lower variability. We use this observation and the

solution from the SDP model to develop a simple and practical schedule for

the eye clinic. Compared to the naive approach of allocating equal interval to

3 “Bailey’s Rule” refers to the scheduling strategy proposed in the seminal paper by
Bailey (1952). It states that in a highly congested system, “an optimum system seems to
be as follows: the patients are given appointments at regular intervals equal to the average
consultation time, and the consultant arrives at the same time as the second patient”. That
means the first two patients are scheduled to come at the beginning of the consultation
session at the same time.



3. Topic 2: Appointment System Design using Copositive Cones 47

each patient with a break in between (which is current practice in the clinic),

our schedule can reduce the total system waiting cost by more than 35%.

This approach has thus the potential of producing near optimal appointment

schedules that can be deployed in practice.

Finally, we extend this approach to incorporate sequencing decision into

the appointment design problem. We show that the problem can be solved

approximately as a 0-1 SDP problem. Our numerical results give several

insights into the structure of the optimal sequencing decisions. In particular,

we observe that the optimal sequence may not follow the smallest variance

first rule. In fact, in some instances, a U-shape rule is more efficient. This is

surprising as it is counter-intuitive to put a high variability patient in front

of the queue to minimize the total expected waiting time.

3.2.2 Structure of the Topic

In the next section, we briefly review the relevant literature for our prob-

lem. In Section 3.4, we describe the development of our conic optimization

model in two steps, followed by several important extensions in Section 3.5

to address more practical issues. In Section 3.6, we analyze the structure and

properties of the optimal scheduling policy, while in Section 3.7, numerical

studies are presented to evaluate our approach under various circumstances

as well as a case study of the eye clinic. We conclude in Section 3.9.
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3.3 Literature Review

Since the pioneering work of Bailey (1952) and Welch & Bailey (1952), there

have been extensive studies on the appointment design problem in the past

six decades. In this section, we only briefly review some key results from

this line of research that is most relevant to our topic, but refer the readers

to Cayirli and Veral (2003), Gupta (2007), Gupta and Denton (2008) and

Erdogan & Denton (2010) for more thorough reviews.

Denton & Gupta (2003) formulate the appointment scheduling problem

as a two-stage stochastic linear program and used a sequential bounding

approach to determine upper bounds of the problem. Kaandorp & Koole

(2007) assume that the service durations follow an exponential distribution

and that the patient arrivals can only be scheduled at discrete intervals.

They used results in queueing theory to calculate the objective function for a

given schedule of starting times and used a local search algorithm to find the

optimal solution. Begen and Queyranne (2009) go a step further and argue

that under mild assumptions, the discrete time version of the appointment

scheduling problem could be solved in polynomial time, by showing that

the objective function is an 𝐿-convex function. A recent paper by Begen et

al. (2010) is based on the methodology developed in Begen and Queyranne

(2009) but assume no prior knowledge of probability distributions on job

durations. They re-constructe an empirical distribution of the consultation

durations from a set of historical data and then developed a sampling-based

approach and established the cost (numbers of samples needed) to obtain a

near-optimal solution with high probability.
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When patients are homogenous, the issues are simpler since scheduling

rules are now the only concern. In practice, however, patients are distinct

due to patient’s classification (e.g., new/repeat, ages, types of procedures

performed etc.). Patients in different classifications tend to give rise to dif-

ferent means and variability in consultation/service time durations. Higher

percentage of more complicated cases (e.g., new patients) normally translates

into higher variability in the system performance, and thus proper sequencing

of patients become more valuable (cf. Vanden and Dietz (2000) and Cayirli et

al. (2008)). Weiss (1990) is arguably the first to study the optimal sequencing

problem analytically. He explored the optimal starting time and sequencing

of surgical procedures, to best utilize medical resources like surgeons and op-

erating rooms. He showed that sequencing lower-variance procedure first is

optimal in the case of 2 procedures under exponential/uniform service time.

Weiss also conjectured that the smaller-variance-first rule might be optimal in

more complicated systems. Similar results were later reported for local-scale

distributions like normal and uniform distributions (cf. Gupta (2007)).

In view of the analytical and computational difficulties of the appoint-

ment scheduling problem, we address the issue from a different angle, utilizing

the concept of robust optimization. Evolving from the minimax theorem es-

tablished by John Von Neuman in 1928, the concept was first brought into

operations research area by Scarf (1958). Scarf solves an inventory problem

with random demand by assuming only the mean and variance of the demand

instead of a specific form of distribution. Noting that there could be mul-

tiple distributions that satisfy a given mean and variance, Scarf identifies a

worst case distribution that would result in the highest expected total system
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cost, and finds an inventory strategy to minimize this maximal cost. That

is why another popular term describing this concept is called distributionally

robust. Such a concept has recently been extensively studied and extended,

and one stream of research is to exploit the connection between the theory of

moments and semidefinite programming (SDP) (cf. Bertsimas et al. (2004),

Bertsimas et al. (2006), Bertsimas et al. (2008), Vandenberge et al. (2007),

etc.). Most recently, Natarajan et al. (2009) show that a robust mixed 0-1

linear program under objective uncertainty is equivalent to a convex conic

program, which may help to deal with a second stage recourse function in a

two stage stochastic programming framework.

3.4 A Two Stage Model with the Copositive Cone

3.4.1 Assumptions, Notations and Problem Formulation

To isolate the impact of scheduling on the system performance, we rule out

the presence of other disruptions in the system. The basic assumptions are

listed as follows:

1. The sequence of patient arrivals is fixed. Service occurs in the same

sequence4.

2. Patients arrive punctually at the scheduled appointment times5.

3. There is a single doctor in the facility. The doctor arrives punctually

4 This assumption is relaxed when we study the sequencing problem in section 3.8
5 This assumption can be relaxed. In Section 3.5.2, we demonstrate how to extend our

model to incorporate late arrivals.
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and only serves the scheduled patients during the session. No break is

taken during the time serving one patient.

4. Patients in the same class are homogenous in the distribution of con-

sultation durations.

5. Walk-in and emergency patients are not considered.

Note that in a typical appointment scheduling problem, it is common

for the patients to choose the appointment slots in a dynamic fashion, and

their characteristics, such as mean and standard deviation of service time, are

known only at the time of booking. The problem described above matches

more the surgery scheduling environment. However, in certain appointment

scheduling environments, patients are classified into distinct classes and each

appointment slot in a single clinical session is pre-assigned to a dedicated class

of patients. The slots are filled up when patients call in for appointments

and their classifications are revealed. We assume that the clinic has enough

volume to fill up the slots available in each day. In this way, the scheduling

problem described here essentially addresses the design of the appointment

system based on the patient classifications, not on the characteristics of in-

dividual patients.

Let 𝑁 = {1, 2, . . . , 𝑛} be the index set for all patients, and the se-

quence of arrivals is 1, 2, . . . , 𝑛. Let �̃�𝑖 be the random service time of pa-

tient 𝑖, 𝑖 = 1, 2, . . . , 𝑛. We define 𝒔 = {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛}𝑇 , where 𝑠𝑖 rep-

resents the length of time slot scheduled for 𝑖𝑡ℎ patient in the sequence.

Therefore, the appointment time of the patients in the sequence is given by{
0, 𝑠1, 𝑠1 + 𝑠2, . . . ,

∑𝑛−1
𝑖=1 𝑠𝑖

}
.
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We assume that �̃�𝑖 follows a distribution with mean 𝜇𝑖 and standard de-

viation 𝜎𝑖, and P(�̃�𝑖 ≥ 0) = 1, i.e., �̃�𝑖 has nonnegative support. Let 𝑤𝑖 denote

the waiting time of the 𝑖𝑡ℎ patient in the sequence. It is reasonable to assume

that the first session starts at time zero, i.e., 𝑤1 = 0. Define 𝑐𝑖 to be the dif-

ference between the actual consultation time and the allocated consultation

interval of the 𝑖𝑡ℎ patient in the sequence, i.e., 𝑐𝑖 = �̃�𝑖−𝑠𝑖, 𝑖 = 1, . . . , 𝑛. Then

the waiting time of subsequent patients are given by the following recursions:

𝑤𝑖 = max {0, 𝑤𝑖−1 + 𝑐𝑖−1} , 𝑖 = 2, 3, . . . , 𝑛.

More precisely,

𝑤𝑖 = max

{
0, 𝑐𝑖−1, 𝑐𝑖−1 + 𝑐𝑖−2, ⋅ ⋅ ⋅ ,

𝑖−1∑
𝑘=1

𝑐𝑘

}
, 𝑖 = 2, 3, . . . , 𝑛. (3.1)

If there were an additional “auxiliary” patient (i.e., the (𝑛 + 1)𝑠𝑡 pa-

tient) arriving at the end of the consultation session, then the doctor’s

overtime would be exactly the waiting time of this patient, i.e., 𝑤𝑛+1 =

max {0, 𝑤𝑛 + 𝑐𝑛} . In this topic, we will use the total patients’ waiting time

and doctor’s overtime (i.e.,
∑𝑛

𝑘=1 𝑤𝑘 and 𝑤𝑛+1) as the key performance indi-

cators of the appointment system. The objective of the appointment schedul-

ing problem is to minimize the expectation of the weighted sum of the pa-

tients’ waiting times and the doctor’s overtime, i.e.,

E

[
𝑛∑

𝑖=1

𝜌𝑖𝑤𝑖 + 𝜌𝑛+1𝑤𝑛+1

]
, (3.2)
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where 𝜌𝑖, 𝑖 = 1, 2, . . . , 𝑛+1 are the corresponding weights (or the unit waiting

time/overtime cost). We first assume that 𝜌𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛+1, and

then relax this assumption in Section 3.5.

Note that the doctor’s total idle time during the session is also a crucial

performance indicator of the appointment system. When the consultation

interval (i.e., the session length, denoted as 𝑇 ) is pre-determined, the total

idle time is 𝑇 + 𝑤𝑛+1 −∑𝑛
𝑖=1 �̃�𝑖. Hence, we do not include the doctor’s

idle time in the objective since adding the expected total idle time can only

cause the objective function to differ by a constant and the weight of 𝑤𝑛+1

to increase by 1.

The technical difficulty associated with the scheduling problem is par-

tially due to the computation of

E [𝑤𝑖] = E

[
𝑚𝑎𝑥

{
0, 𝑐𝑖−1, 𝑐𝑖−1 + 𝑐𝑖−2, ⋅ ⋅ ⋅ ,

𝑖−1∑
𝑘=1

𝑐𝑘

}]
, 𝑖 = 2, 3, . . . , 𝑛.

We introduce a two stage stochastic optimization framework to tackle this

problem. In the first stage, the appointment scheduling decisions are made

under the objective to minimize the expected total waiting time cost6 defined

in equation (3.2). In the second stage, the patients’ service durations are

realized and the system performance is determined. Let us consider the

second stage problem first.

6 In the rest of this topic, we use the phrase “the total waiting time (cost)” to include
both of the waiting time (costs) of all the patients and the overtime (cost) of the doctor.
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3.4.2 The Second Stage Problem

Given the schedule of the patients (i.e., 𝒔 is known), the total waiting time

cost in equation (3.2) can be computed by solving a network flow problem

on a directed acyclic graph shown in Figure 3.2, with 𝑛 + 1 supply nodes

and a sink node 𝑠. The cost on arc (𝑖, 𝑠) is 0, and the cost on arc (𝑖+ 1, 𝑖)

is 𝑐𝑖(𝒔) = �̃�𝑖 − 𝑠𝑖, where the notation 𝑐𝑖(𝒔) is used here to emphasize the

dependencies of 𝑐𝑖 on the given schedule 𝒔 (not in the figure). The capacities

for all the arcs are infinite. Let 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛, be the flows on arc (𝑖+ 1, 𝑖),

and 𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛+ 1 be the flows on arc (𝑖, 𝑠).

Fig. 3.2: Network flow representation of the appointment scheduling problem

Proposition 3. Given the schedule 𝒔, the optimal cost of the following maxi-

mum cost flow problem equals the total waiting time cost of the system under
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any realization of �̃�:

𝑓 (𝒔, �̃�) := max
𝑛∑

𝑖=1

𝑐𝑖(𝒔) ⋅ 𝑦𝑖

𝑠.𝑡. 𝑦1 − 𝑧1 = −1

𝑦𝑖 − 𝑦𝑖−1 − 𝑧𝑖 = −1, ∀𝑖 = 2, 3, . . . , 𝑛

−𝑦𝑛 − 𝑧𝑛+1 = −1

𝑦𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛

𝑧𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛+ 1

Proof. The proposition can be easily verified through tracking the flow of

each unit of supply at node 1, 2, . . . 𝑛+1. A detailed argument can be found

in Appendix A.

Remark 1. Note that Proposition 3 is developed in the deterministic situa-

tion. In the second stage, the patients’ service durations are realized, i.e.,

they can be considered as deterministic. Then the network optimization

problem in Proposition 1 is proposed to find out the total waiting time cost

under this realization. When the patients’ service durations (𝒄(𝒔)) become

stochastic, the optimal value of the network flow problem (𝑓(𝒔, �̃�)) also be-

comes stochastic and depends on 𝒄(𝒔).

Removing one redundant network flow conservation constraint and using

the matrix notation, we rewrite 𝑓 (𝒔, �̃�) as follows for the ease of exposition:
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𝑓 (𝒔, �̃�) = max 𝒄𝑇 (𝒔)𝒚

𝑠.𝑡. 𝒂(𝑗)𝑇𝒚 − 𝒆(𝑗)𝑇𝒛 = −1, ∀𝑗 = 1, 2, . . . 𝑛

𝒚,𝒛 ≥ 0

where 𝒄 (𝒔) = (𝑐1(𝒔), 𝑐2(𝒔), . . . , 𝑐𝑛(𝒔))
𝑇 , 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)

𝑇 , and 𝒛 = (𝑧2, 𝑧3, . . . , 𝑧𝑛+1)
𝑇 ;

and 𝒆(𝑗) ∈ ℝ𝑛 is the unit vector with its 𝑗𝑡ℎ entry being one; and 𝒂(𝑗)𝑗 = −1

for 𝑗 = 1, . . . 𝑛, 𝒂(𝑗)𝑗+1 = 1 for 𝑗 = 1, . . . , 𝑛− 1, and 𝒂(𝑗)𝑘 = 0 otherwise.

3.4.3 The First Stage Problem

As mentioned before, we will deploy the minimax approach in our modeling

framework, which we need to address before solving the scheduling problem.

Under a fixed schedule 𝒔, when the service durations become stochastic, but

with given moment conditions, the maximal expected total waiting time cost

can be written as:

(P) 𝑍𝑃 (𝒔) := sup
�̃�∼(𝝁,Σ)+

{E[𝑓 (𝒔, �̃�)]}

where �̃� ∼ (𝝁,Σ)+ denotes that the distribution of �̃� lies in the set of feasible

multivariate distributions supported on ℝ𝑛
+ with finite first moment 𝝁 and

finite second moment Σ. We assume this set to be nonempty. The challenge

to solve (P) reduces to the following: can one find a distribution for the

random variable �̃� in such a way that

P (�̃� ≥ 0) = 1, E [�̃�] = 𝝁, E
[
�̃��̃�𝑇

]
= Σ,
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and a corresponding optimal solution (𝒚(𝒔, �̃�), 𝒛(𝒔, �̃�)) to 𝑓 (𝒔, �̃�) in (𝑃 ),

so that E
[
𝒄(𝒔)𝑇𝒚(𝒔, �̃�)

]
attains the maximum 𝑍𝑃 (𝒔)? In general, if the

maximum cannot be attained, can one find a sequence of random variables

so that 𝑍𝑃 can be attained asymptotically?

It turns out that this problem can be reformulated into a conic program-

ming problem through a moment decomposition approach. Before showing

the main result, we introduce some necessary notations, and briefly review

related subjects on the conic optimization problem.

Notations and A Brief Review of Conic Optimization

The trace of a matrix 𝐴, denoted by 𝑡𝑟(𝐴), is the sum of the diagonal entries

of 𝐴. The inner product between matrices 𝐴 and 𝐵 of the same dimensions is

denoted as 𝐴 ∙𝐵 = 𝑡𝑟(𝐴𝑇𝐵). 𝐼𝑛 represents the identity matrix of dimension

𝑛×𝑛, while 0𝑚×𝑛 is used to denote the zero matrix of dimension 𝑚×𝑛. We

may drop the subscript when it represents a zero vector of an appropriate

dimension that is obvious.

For any cone 𝒦, its dual cone is denoted as 𝒦∗. Let 𝑆𝑛 denote the cone of

𝑛×𝑛 symmetric matrices, and 𝒮+
𝑛 denote the cone of 𝑛×𝑛 positive semidef-

inite matrices. 𝐴 ર 0 indicates that the matrix 𝐴 is positive semidefinite,

and 𝐵 ર 𝐴 is equivalent to 𝐵 − 𝐴 ર 0. Similarly, 𝐴 ≥ 0 indicates that the

matrix 𝐴 has nonnegative entries, and 𝐵 ≥ 𝐴 is equivalent to 𝐵 − 𝐴 ≥ 0.

Two cones of special interest are the cone of completely positive matrices

and the cone of copositive matrices. The cone of 𝑛 × 𝑛 completely positive
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matrices is defined as

𝒞𝒫𝑛 :=
{
𝐴 ∈ 𝒮𝑛 : ∃𝑉 ∈ ℝ𝑛×𝑘

+ , such that 𝐴 = 𝑉 𝑉 𝑇
}
= conv

{
𝒗𝒗𝑇 : 𝒗 ∈ ℝ𝑛

+

}
,

where “conv” means the convex hull. The cone of 𝑛× 𝑛 copositive matrices

is defined as

𝒞𝒪𝑛 :=
{
𝐴 ∈ 𝒮𝑛 : ∀𝒗 ∈ ℝ𝑛

+, 𝒗
𝑇𝐴𝒗 ≥ 0

}
.

𝐴 ર𝑐𝑝 (ર𝑐𝑜) 0 indicates that matrix 𝐴 is completely positive (copositive).

These two cones are both closed, convex, pointed and of course, and have

nonempty interior. Moreover, they are duals of each other (cf. Berman

and Shaked-Monderer (2003)). A linear program over the cone of copositive

matrices is called a copositive program (COP), whose dual problem is a linear

program over the cone of completely positive matrices known as a completely

positive program (CPP).

Despite the nice properties of these two cones, it is widely believed that

their membership status is 𝒩𝒫-hard to check. For instance, the problem of

testing if a given matrix is copositive is known to be co-𝒩𝒫-complete (cf.

Murty et al. (1987)). In a recent paper, Dickinson & Gijben (2011) showed

that the membership problems for both copositive and completely positive

cones are 𝒩𝒫-hard. Fortunately, there are well-known hierarchies of linear

and semidefinite representable cones that approximate the copositive and

completely positive cones (cf. Bomze et al. (2000), Klerk et al. (2002), Parrilo

(2000)). In this topic, we restrict our attention to the simplest relaxations
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of CPP and COP for the numerical experiments, i.e.,

⎧⎨⎩ 𝐴 ર𝑐𝑝 0 ≈ 𝐴 ર 0, and 𝐴 ≥ 0

𝐴 ર𝑐𝑜 0 ≈ ∃𝐴1 ર 0, and 𝐴2 ≥ 0, such that 𝐴 = 𝐴1 + 𝐴2.
(3.3)

More information on CPP and COP can be found in Berman and Shaked-

Monderer (2003).

Moment Decomposition and Conic Representation

For ease of exposition, we define 𝒙 = (𝒚𝑇 , 𝒛𝑇 )𝑇 , and rewrite the network flow

constraints as 𝐴𝒙 = 𝒃, 𝒙 ≥ 0, where

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝒂(1)𝑇 −𝒆(1)𝑇

𝒂(2)𝑇 −𝒆(2)𝑇

...
...

𝒂(𝑛)𝑇 −𝒆(𝑛)𝑇

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, and 𝒃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1

−1

...

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since 𝐴 has full rank, the only feasible solution to 𝐴𝒙 = 0 and 𝒙 ≥ 0 is

𝒙 = 0.

Let

𝒟 := conv

⎧⎨⎩

⎛⎜⎜⎜⎜⎝
𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
𝑇

: 𝜋 ≥ 0, 𝒕 ∈ ℝ𝑛
+, 𝒗 ∈ ℝ2𝑛

+ , 𝐴𝒗 = 𝒃𝜋

⎫⎬⎭ . (3.4)

From the definition of 𝒞𝒫𝑛, we know that 𝒟 is indeed the intersection of the
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completely positive cone, 𝒞𝒫3𝑛+1 with a hyperplane in ℝ2𝑛+1 projected onto

ℝ3𝑛+1 (i.e., a polyhedral cone in ℝ3𝑛+1). Furthermore, if 𝜋 = 0, then 𝐴𝒗 = 0

and consequently 𝒗 = 0. Therefore, every 𝑍 ∈ 𝒟 can be expressed as

𝑍 =
∑
𝑘∈𝐾+

𝜋(𝑘)2

⎛⎜⎜⎜⎜⎝
1

𝒕(𝑘)
𝜋(𝑘)

𝒗(𝑘)
𝜋(𝑘)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1

𝒕(𝑘)
𝜋(𝑘)

𝒗(𝑘)
𝜋(𝑘)

⎞⎟⎟⎟⎟⎠
𝑇

+
∑
𝑘∈𝐾0

⎛⎜⎜⎜⎜⎝
0

𝒕(𝑘)

02𝑛×1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0

𝒕(𝑘)

02𝑛×1

⎞⎟⎟⎟⎟⎠
𝑇

, (3.5)

where 𝐾+ and 𝐾0 are the corresponding indicator sets, and they can be

chosen to be finite7 (c.f. Berman and Shaked-Monderer (2003)).

If 𝑍1,1 = 1, then 𝜋(𝑘)2 can be interpreted as the probability of the

𝑘𝑡ℎ scenario with service duration �̃� = 𝒕(𝑘)/𝜋(𝑘), and solution 𝒙(𝒔, �̃�) =

(𝒚(𝒔, �̃�),𝒛(𝒔, �̃�)) = 𝒗(𝑘)/𝜋(𝑘). The corresponding objective function in the

𝑘𝑡ℎ scenario is given by
∑𝑛

𝑖=1(�̃�𝑖−𝑠𝑖)𝑦(𝒔, �̃�)𝑖. Averaging over all the scenarios

each with probability 𝜋(𝑘)2, we get the objective function given by 𝑌 (𝒔)∙𝑍,
where 𝑌 (𝒔) is a (3𝑛+ 1)× (3𝑛+ 1) symmetric matrix defined as

𝑌 (𝒔) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 01×𝑛 −𝒔𝑇

2
01×𝑛

0𝑛×1 0𝑛×𝑛
𝐼𝑛
2

0𝑛×𝑛

−𝒔
2

𝐼𝑛
2

0𝑛×𝑛 0𝑛×𝑛

0𝑛×1 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The second term in the expression for 𝑍 in (3.5) can be viewed as a char-

acterization of the null set for the corresponding probability space. With

7 Indeed, not only they could be finite, but also bounded. This is related to the concept
of cp-rank, details of which can be found in Berman and Shaked-Monderer (2003).
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such moment decomposition interpretation, we get the following optimiza-

tion problem by incorporating other moment conditions:

(C) 𝑍 ′
𝑃 (𝒔) := max 𝑌 (𝒔) ∙ 𝑍

𝑠.𝑡. 𝑍1,1 = 1, 𝑍1,𝑖+1 = 𝜇𝑖, 𝑍𝑖+1,𝑗+1 = Σ𝑖,𝑗, ∀𝑖, 𝑗 = 1, . . . , 𝑛

𝑍 ∈ 𝒟

Furthermore, we can prove that the above conic optimization problem is

indeed equivalent to problem (P).

Proposition 4. For any given schedule 𝒔, 𝑍 ′
𝑃 (𝒔) = 𝑍𝑃 (𝒔).

Proof. There are two steps involved in the proof. Firstly, we show that

problem (C) provides an upper bound for (P), i.e. 𝑍 ′
𝑃 (𝒔) ≥ 𝑍𝑃 (𝒔), ∀𝒔. Next,

through a constructive approach, we find a sequence of random vectors, �̃�∗
𝜖

that satisfies the moment conditions in the limiting sense and E [𝑓 (𝒔, �̃�∗
𝜖)]

converges to 𝑍 ′
𝑃 (𝒔) when 𝜖 converges to zero, i.e., the bound provided by (C)

is tight. The technical details are omitted here but available in Appendix B.

Now we have a conic maximization problem that solves problem (P)

exactly. To incorporate the scheduling decision 𝒔, we still need one more

step, which is taking the dual of problem (P).

Remark 2. Note that our conic optimization model resembles the results of

Natarajan et al. (2009) from a different perspective. Instead of separating

the moment requirement on �̃� and the feasibility conditions on 𝒙 and then
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enforcing their relationship through a lifting constraint, we directly charac-

terize the cone 𝒟 from the moment decomposition angle. One of the advan-

tages of the new perspective is that it makes the regularity condition for the

strong conic duality self-evident, in particular, Slater’s constraint qualifica-

tion. We will elaborate more on the dual problem in the following analysis.

Another important advantage is that it can be extended into a much more

general conic framework for a stochastic optimization problem, which will be

discussed in Section 3.5.4.

Conic Duality and Copositive Program

Let 𝒟∗ denote the dual cone of 𝒟, i.e., 𝒟∗ = {𝑊 : 𝑍 ∙ 𝑊 ≥ 0, ∀𝑍 ∈ 𝒟}.
Then the dual of problem (C), denoted by 𝑍𝐷 (𝒔), can be written as follows:

𝑍𝐷 (𝒔) := min Σ ∙ Γ + 𝝁𝑇𝜷 + 𝛼

𝑠.𝑡. 𝑊 =

⎛⎜⎜⎜⎜⎝
𝛼 𝜷𝑇

2
01×2𝑛

𝜷
2

Γ 0𝑛×2𝑛

02𝑛×1 02𝑛×𝑛 02𝑛×2𝑛

⎞⎟⎟⎟⎟⎠− 𝑌 (𝒔) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝜷𝑇

2
𝒔𝑇

2
01×𝑛

𝜷
2

Γ − 𝐼𝑛
2

0𝑛×𝑛

𝒔
2

− 𝐼𝑛
2

0𝑛×𝑛 0𝑛×𝑛

0𝑛×1 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑊 ∈ 𝒟∗

where 𝛼 ∈ ℝ, 𝜷 ∈ ℝ𝑛 and Γ ∈ ℝ𝑛×𝑛 are the corresponding dual variables of

the moment constraints.
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By the definition of 𝒟∗, for all (1, �̃�,𝒚(𝒔, �̃�), 𝒛(𝒔, �̃�))𝑇 satisfying

𝐴

⎛⎜⎝ 𝒚(𝒔, �̃�)

𝒛(𝒔, �̃�)

⎞⎟⎠ = 𝒃, �̃� ≥ 0, 𝒚(𝒔, �̃�) ≥ 0, 𝒛(𝒔, �̃�) ≥ 0,

we have

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

�̃�

𝒚(𝒔, �̃�)

𝒛(𝒔, �̃�)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝜷𝑇

2
𝒔𝑇

2
01×𝑛

𝜷
2

Γ − 𝐼𝑛
2

0𝑛×𝑛

𝒔
2

− 𝐼𝑛
2

0𝑛×𝑛 0𝑛×𝑛

0𝑛×1 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

�̃�

𝒚(𝒔, �̃�)

𝒛(𝒔, �̃�)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0,

i.e., ⎛⎜⎝ 1

�̃�

⎞⎟⎠
𝑇 ⎛⎜⎝ 𝛼 𝜷𝑇

2

𝜷
2

Γ

⎞⎟⎠
⎛⎜⎝ 1

�̃�

⎞⎟⎠ ≥ (�̃�− 𝒔)𝑇𝒚(𝒔, �̃�).

Hence, for any distribution of the service durations, with probability 1,

⎛⎜⎝ 1

�̃�

⎞⎟⎠
𝑇 ⎛⎜⎝ 𝛼 𝜷𝑇

2

𝜷
2

Γ

⎞⎟⎠
⎛⎜⎝ 1

�̃�

⎞⎟⎠
≥ max

⎧⎨⎩(�̃�− 𝒔)𝑇𝒚(𝒔, �̃�) : 𝐴

⎛⎜⎝ 𝒚(𝒔, �̃�)

𝒛(𝒔, �̃�)

⎞⎟⎠ = 𝒃, �̃� ≥ 0, 𝒚(𝒔, �̃�) ≥ 0, 𝒛(𝒔, �̃�) ≥ 0

⎫⎬⎭ .

Then the weak duality 𝑍𝐷 (𝒔) ≥ 𝑍𝑃 (𝒔) follows immediately. Furthermore,

since problem (P) is obviously bounded, so is (C). Then as long as 𝒟 has a

nonempty relative interior, by the Slater’s constraint qualification, there is
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no duality gap between the primal 𝑍𝑃 (𝒔) and its dual 𝑍𝐷 (𝒔). Note that 𝒟
needs not be full dimensional for the strong duality to hold. We use a simple

example in Appendix C to illustrate this.

To convert 𝑍𝐷 (𝒔) into a copositive programming problem, we need to

analyze the structure of the cone 𝒟 and 𝒟∗. Let 𝑍 ∈ 𝒟, and

𝑀𝑖 =

⎛⎜⎜⎜⎜⎝
𝑏2𝑖 01×𝑛 −𝑏𝑖𝑨

𝑇
𝑖

0𝑛×1 0𝑛×𝑛 0𝑛×2𝑛

−𝑏𝑖𝑨𝑖 02𝑛×𝑛 𝑨𝑖𝑨
𝑇
𝑖

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−𝑏𝑖

0𝑛×1

𝑨𝑖

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

−𝑏𝑖

0𝑛×1

𝑨𝑖

⎞⎟⎟⎟⎟⎠
𝑇

, 𝑖 = 1, 2, . . . , 𝑛,

where 𝑨𝑇
𝑖 is the 𝑖𝑡ℎ row vector of 𝐴, i.e., 𝑨𝑇

𝑖 =

(
𝒂 (𝑖)𝑇 −𝒆 (𝑖)𝑇

)
. Note

that

⎛⎜⎜⎜⎜⎝
𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
𝑇

𝑀𝑖

⎛⎜⎜⎜⎜⎝
𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠ = (𝑨𝑇
𝑖 𝒗 − 𝑏𝑖𝜋)

2 = 0 if and only if 𝑨𝑇
𝑖 𝒗 = 𝑏𝑖𝜋.

Hence, with a simple justification, we get

𝒟 = {𝑍 : 𝑍 ∙𝑀𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑛, 𝑍 ∈ 𝒞𝒫3𝑛+1} , (3.6)

and it can be easily verified that

𝒟∗ =

{
𝑊 : 𝑊 = 𝑉 +

𝑛∑
𝑖=1

𝛾𝑖𝑀𝑖, 𝑉 ∈ 𝒞𝒪3𝑛+1, 𝛾𝑖 ∈ ℝ, 𝑖 = 1, 2, . . . , 𝑛

}
.

(3.7)
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Therefore, we obtain the follow formulation for the appointment schedul-

ing problem:

(S) 𝑍𝑆 := min Σ ∙ Γ + 𝝁𝑇𝜷 + 𝛼

𝑠.𝑡.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝜷𝑇

2
𝒔𝑇

2
01×𝑛

𝜷
2

Γ − 𝐼𝑛
2

0𝑛×𝑛

𝒔
2

− 𝐼𝑛
2

0𝑛×𝑛 0𝑛×𝑛

0𝑛×1 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

𝑛∑
𝑖=1

𝛾𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝑏𝑖

0𝑛×1

𝒂 (𝑖)

−𝒆 (𝑖)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝑏𝑖

0𝑛×1

𝒂 (𝑖)

−𝒆 (𝑖)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

ર𝑐𝑜 0

𝒔 ∈ Ω𝒔

where the decision variables are 𝛼 ∈ ℝ, 𝜷 ∈ ℝ𝑛, Γ ∈ ℝ𝑛×𝑛, 𝜸 ∈ ℝ𝑛 and

𝒔 ∈ ℝ𝑛. The last constraint confines the choice of 𝒔 to a feasible set Ω𝒔. For

example, 𝒔 ∈ Ω𝒔 in our case is

𝑛∑
𝑖=1

𝑠𝑖 ≤ 𝑇 , and 𝑠𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛, (3.8)

which means the time slots must be nonnegative and the total scheduled time

cannot exceed the session time 𝑇 . We assume 𝑇 > 0.

We have thus obtained the central result in this topic:

Theorem 1.

min
𝒔∈Ω𝒔

{
sup

�̃�∼(𝝁,Σ)+
{E [𝑓 (𝒔, �̃�)]}

}
= 𝑍𝑆

Remark 3. With the compact formulation of 𝑍𝑆, we are then able to analyti-

cally investigate the structure of the optimal scheduling policy. Furthermore,
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computationally we can solve the relaxation of 𝑍𝑆 as a semidefinite program-

ming problem as mentioned before.

3.5 Extensions

In this section, we show that our model can be extended to capture more

features of the practical appointment scheduling problem, while still main-

taining a formulation that is a compact convex conic optimization problem.

3.5.1 General Waiting Time Costs

In the earlier discussion, we have assumed 𝜌𝑖 = 1 for all patients. The

network flow model used in the second stage problem can be extended to

cope with general waiting time costs 𝜌𝑖. This can be achieved by simply

changing the in-flow at each node 𝑖 from 1 to 𝜌𝑖, and the out-flow at node 𝑠

from 𝑛 + 1 to
∑𝑛+1

𝑖=1 𝜌𝑖. The reader can easily verify that the total waiting

time cost is now mapped to the maximum cost flow problem in the network

with the new supply and demand parameters.

3.5.2 Eye test before consultation (Late arrivals)

Suppose that the 𝑖𝑡ℎ patient in the sequence has to undertake a test prior

to the consultation. The test is often handled by a nurse and can be ad-

ministered immediately upon arrival. The duration of the test is random

and denoted by the random variable �̃�𝑖. We define the waiting time of the

patients to be the waiting time needed to consult the doctor after the test is
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administered. We also assume that the patients are seen by the doctor in

the same sequence based on the appointment time, i.e., the sequence of the

patients seen by the doctors is the same as the sequence of arrival. In this

case, we can also use the network flow model to capture the impact of the

test on the performance of the system. This is achieved by changing the cost

on arcs (𝑖, 𝑠), 𝑖 = 1, 2, . . . , 𝑛, from 0 to the random variables, �̃�𝑖. Then the

network flow solution in our model corresponds to the total waiting time cost

in the system, offset by
∑𝑛

𝑖=1�̃�𝑖, i.e.,

𝑓
(
𝒔, �̃�, 𝒍

)
= max

𝑛∑
𝑖=1

𝑐𝑖(𝒔) ⋅ 𝑦𝑖 +
𝑛∑

𝑖=1

�̃�𝑖𝑧𝑖 −
𝑛∑

𝑖=1

�̃�𝑖

𝑠.𝑡. 𝑦1 − 𝑧1 = −1

𝑦𝑖 − 𝑦𝑖−1 − 𝑧𝑖 = −1, ∀𝑖 = 2, 3, . . . , 𝑛

−𝑦𝑛 − 𝑧𝑛+1 = −1

𝑦𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛

𝑧𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛+ 1

To see this, note that when 𝑧𝑖 = 1, the 𝑖𝑡ℎ patient finishes the eye test and

finds the doctor to be idling. This patient gets to consult the doctor at time

�̃�𝑖 after arrival. The waiting time is thus zero. This starts a new busy period,

with the initial consultation duration given by �̃�𝑖+ 𝑐𝑖(𝒔), so we need to offset

the objective by �̃�𝑖. On the other hand, if after the test, the patient finds the

doctor to be busy, then 𝑧𝑖 = 0 in the network flow solution, and hence the

waiting time is simply the length of the longest path originating from node

𝑖 deducted by �̃�𝑖.

Then it is clear that we can extend the definition of the cone 𝒟8 to

capture the impact of 𝒍 just as �̃�, and finally we can still arrive at a convex

8 More precisely, the new dimension of 𝒟 is (4𝑛+ 1)× (4𝑛+ 1).
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conic optimization formulation for the appointment scheduling problem with

random prior tests. Note that the effect of such tests is exactly the same

as late arrivals, i.e. patients arriving at a random time after the scheduled

appointment. Thus, we can also address the issue of late arrivals with the

same approach described above.

3.5.3 Relationship to Scenario Planning

In our model, we assume that only the moments and covariance parameters

of the service durations are known. Then our model constructs a set of sce-

narios, the associated probability functions, and a solution which attains the

(worst case) performance objective under this set of scenarios. Our approach

can be easily augmented to include specific scenarios when describing the

uncertainty set for the service durations. More specifically, suppose that the

system planner would like to construct the optimal schedule under the addi-

tional restrictions to include 𝑁 scenarios 𝒖𝐿 with probability 𝑝𝐿, such that∑𝑁
𝐿=1 𝑝𝐿 = 𝑝 ≤ 1. Furthermore, the conditional first and second moments

for the remaining scenarios are denoted by (𝝁,Σ)+. Then our model reduces

to

𝑍𝑃 (𝒔) = (1− 𝑝) sup
�̃�∼(𝝁,Σ)+

{E [𝑓 (𝒔, �̃�)]}+
𝑁∑

𝐿=1

𝑝𝐿𝑓𝐿 (𝒔, �̃�)

where 𝑓 (𝒔, �̃�) is defined as before and
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𝑓𝐿 (𝒔, �̃�) = max
𝑛∑

𝑖=1

(𝑢𝐿
𝑖 − 𝑠𝑖) ⋅ 𝑦𝐿𝑖

𝑠.𝑡. 𝑦𝐿1 − 𝑧𝐿1 = −1

𝑦𝐿𝑖 − 𝑦𝐿𝑖−1 − 𝑧𝐿𝑖 = −1, ∀𝑖 = 2, 3, . . . , 𝑛

−𝑦𝐿𝑛 − 𝑧𝐿𝑛+1 = −1

𝑦𝐿𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛

𝑧𝐿𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛+ 1

In this way, we use a small set of scenarios to ensure that the optimal solution

constructed will not perform too badly for these typical scenarios, and hence

will not be overly conservative. Note that the dual to the above second stage

problem can be written using the approach described earlier, together with

standard linear programming duality.

When 𝑝 = 1, 𝑍𝑃 reduces to the conventional stochastic optimization

problem solved via the sampling method. Hence, this framework can be

viewed as a bridge between the traditional stochastic optimization and mod-

ern robust optimization.

3.5.4 Generalized Conic Framework for More Support Information

For the random service time, except the moment conditions, we only require

that they must be nonnegative. In general, there may be other conditions

that the system planner would like to impose on the random service time,

like a boundedness condition, etc. Our model provides a natural way to

incorporate more support information through the construction of the cone
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𝒟. Recall in equation (3.6), we express 𝒟 as

𝒟 = {𝑍 : 𝑍 ∙𝑀𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑛, 𝑍 ∈ 𝒞𝒫3𝑛+1} .

We can view 𝒟 as the intersection of the completely positive cone 𝒞𝒫3𝑛+1

with

ℳ𝑖 := {𝑍 : 𝑍 ∙𝑀𝑖 = 0} , 𝑖 = 1, 2, . . . , 𝑛.

While the network conservation constraints are embedded withinℳ𝑖, 𝒞𝒫3𝑛+1

captures both the non-negativity constraints for the network flow variables

and nonnegative support requirement of the random service time. Thus, it

appears intuitive for us to augment 𝒞𝒫3𝑛+1 if we want to incorporate more

support conditions. In order to develop a more general framework, we need

the following lemma, which can be easily verified by the definition of a dual

cone.

Lemma 1. Suppose 𝒦𝑘 ⊆ ℝ𝑛×𝑛, 𝑘 = 1, 2, . . . ,𝑚, are closed convex cones.

Let the dual cone of 𝒦𝑘 be 𝒦𝑘∗. Then the dual cone of the following cone

𝒦𝑛 :=
𝑚∩
𝑘=1

𝒦𝑘 =
{
𝐴 ∈ ℝ𝑛×𝑛 : 𝐴 ∈ 𝒦𝑘, 𝑘 = 1, 2, . . . ,𝑚

}

is

𝒦∗
𝑛 :=

𝑚∑
𝑘=1

𝒦𝑘∗ =

{
𝐴 ∈ ℝ𝑛×𝑛 : ∃𝐴𝑘 ∈ 𝒦𝑘∗, 𝑘 = 1, 2, . . . ,𝑚, such that 𝐴 =

𝑚∑
𝑘=1

𝐴𝑘

}
.
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With Lemma 1, one can easily derive the expression of the dual cone

of 𝒟 as shown in equation (3.7) by recognizing that the dual cone of ℳ𝑖

is ℳ𝑖∗ := {𝛾𝑖𝑀𝑖 : 𝛾𝑖 ∈ ℝ}. Thus, as long as the extra support conditions

can be characterized with some conic constraints and their dual cones are

compactly representable, we could still obtain a single conic optimization

formulation for the appointment scheduling problem.

For example, if the system planner would like to add some boundedness

conditions for the the random service time, which is characterized by the

following ellipsoid constraint, i.e.,

(�̃�− 𝒖)𝑇 𝑄 (�̃�− 𝒖) ≤ 𝑟 with probability 1, for some 𝑄 ∈ 𝑆𝑛 ⊆ ℝ𝑛×𝑛,𝒖 ∈ ℝ𝑛 and 𝑟 ∈ ℝ.

This constraint restricts the random service time to lie in an ellipsoid of size

𝑟 centered at 𝒖. Using the probabilistic interpretation of 𝑍 ∈ 𝒟, we can

transform this condition into the following conic constraint on 𝑍,

𝑍 ∈ Θ :=

conv

⎧⎨⎩

⎛⎜⎜⎜⎜⎝
𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
𝑇

:

⎛⎜⎜⎜⎜⎝
𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠
𝑇 ⎛⎜⎜⎜⎜⎝

𝑟 − 𝒖𝑇𝒖 𝒖𝑇𝑄 01×2𝑛

𝑄𝒖 −𝑄 0𝑛×2𝑛

02𝑛×1 02𝑛×𝑛 02𝑛×2𝑛

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

𝜋

𝒕

𝒗

⎞⎟⎟⎟⎟⎠ ≥ 0,

𝜋 ∈ ℝ

𝒕 ∈ ℝ𝑛

𝒗 ∈ ℝ2𝑛

⎫⎬⎭ .
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Then the dual cone of Θ can be easily obtained using S-Lemma, i.e.,

Θ∗ :=

⎧⎨⎩𝑉 ∈ ℝ(3𝑛+1)×(3𝑛+1) : ∃𝜏 ≥ 0, such that 𝑉 − 𝜏

⎛⎜⎜⎜⎜⎝
𝑟 − 𝒖𝑇𝒖 𝒖𝑇𝑄 01×2𝑛

𝑄𝒖 −𝑄 0𝑛×2𝑛

02𝑛×1 02𝑛×𝑛 02𝑛×2𝑛

⎞⎟⎟⎟⎟⎠ ર 0

⎫⎬⎭ ,

which will translate into an extra semidefinite constraint in the final formu-

lation of the appointment scheduling problem, since the resulted dual cone

of 𝒟 becomes

𝒟∗ =

{
𝑊 : 𝑊 = 𝑉1 + 𝑉2 +

𝑛∑
𝑖=1

𝛾𝑖𝑀𝑖, 𝑉1 ∈ 𝒞𝒪3𝑛+1, 𝑉2 ∈ Θ∗, 𝛾𝑖 ∈ ℝ, 𝑖 = 1, 2, . . . , 𝑛

}
.

Following the similar argument in the proof of Proposition 4, one can

easily verify that the main result of our model (i.e., Theorem 1) still holds

with the modified 𝒟∗ as shown above.

3.6 Model Analysis

Our model provides a single deterministic convex formulation to solve a two

stage stochastic optimization problem. To the best of our knowledge, this

model is the first of its kind. Furthermore, as shown in the development

of the conic optimization model, the optimal solution to problem (C) has a

natural probabilistic interpretation under the worst case distribution. Note

that we can obtain the values of those (primal) variables in (C) by taking

the dual of (S). Together with the network flow formulation of the waiting
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time experienced, they provide a new way to obtain some insights into the

structure of the optimal appointment schedule. In the rest of this section,

we show that the solution obtained from this deterministic model retains

many of the intuitive properties of the optimal schedule under more realistic

probabilistic consultation service distributions. To maintain the flow of this

topic as well as to keep it succinct, we relegate all of the proofs in this section

to Appendix D. In terms of notation, we use the asterisk sign (∗) to indicate

the respective optimal solution. For example, 𝑠∗𝑖 denotes the optimal solution

of 𝑠𝑖 in problem (S).

We show first that if there is a need to bunch the arrival of patients

together, then it is optimal to bunch the arrivals at the end of the session.

This is intuitive because whenever the consultation time is modeled by a

non-negative distribution, if bunching occurs for the (𝑖−1)𝑠𝑡 and 𝑖𝑡ℎ patient,

but not the (𝑖 + 1)𝑠𝑡 patient, then it is optimal to schedule the arrival of

the 𝑖𝑡ℎ patient slightly later and keep the schedule of the (𝑖 + 1)𝑠𝑡 patient

unchanged. The reason is obvious since the 𝑖𝑡ℎ patient has to wait almost

surely if she comes at the same time as the (𝑖 − 1)𝑠𝑡 patient. The optimal

schedule in our model retains this feature.

Proposition 5. Let the waiting time costs and overtime cost be strictly pos-

itive. In any optimal solution 𝒔∗ to problem (S), let 𝐼 be the set of allo-

cated service times, which are zero, i.e., 𝐼 := {𝑖 : 𝑠∗𝑖 = 0}. Then 𝐼 =

{𝑛− ∣𝐼∣+ 1, . . . , 𝑛− 1, 𝑛}, i.e., 𝐼 is the last ∣𝐼∣ members of {1, 2, . . . , 𝑛}.

Remark 4. Note that in the numerical studies that we will present in Section



3. Topic 2: Appointment System Design using Copositive Cones 74

3.7, there is also a bunching effect appearing at the beginning of the session.

However, those slots at the beginning of the session are not exactly zero, but

very small positive values. Such phenomenon would rise in the optimal policy

for a heavily congested system, where every patient has to wait almost surely

(with probability close to 1), details of which will be analyzed in Section 3.7.

In a practical settings, the nonnegativity constraints on the consultation

slots (i.e., 𝑠𝑖 ≥ 0,∀𝑖 = 1, 2, . . . , 𝑛) enforce that all the appointment times

are within the consultation session (𝑇 ). Intuitively, if the system is heavily

congested, it may be optimal to schedule some patients to arrive after time

𝑇 . To incorporate this into our model, we may remove the nonnegativity

constraints on the consultation slots. The next proposition shows that if

these nonnegativity constraints are removed, only the last slot (𝑠𝑛) can be

negative in the optimal schedule as long as the costs of waiting time and

overtime are strictly positive. Note that the scheduled arrival time of the

𝑛𝑡ℎ patient is
∑𝑛−1

𝑖=1 𝑠𝑖 and is therefore larger than 𝑇 if 𝑠𝑛 < 0, because∑𝑛
𝑖=1 𝑠𝑖 = 𝑇 . Furthermore, the constraint

∑𝑛
𝑖=1 𝑠𝑖 = 𝑇 ensures that the

counting of the doctor’s overtime starts from time 𝑇 , and 𝑠𝑛 < 0 in the

network flow structure indicates that the doctor’s overtime (i.e., the (𝑛+1)𝑡ℎ

patient’s waiting time) is at least −𝑠𝑛 > 0.

Proposition 6. Suppose the nonnegativity constraints on consultation slots

(i.e., the second set of constraints in equation (3.8)) are removed. When

the waiting time costs and overtime cost are strictly positive, in the optimal

solution to problem (S), there is at most one negative slot. Furthermore, if
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this negative slot exists, it must be the last one, i.e., 𝑠∗𝑖 > 0, ∀𝑖 = 1, 2, . . . , 𝑛−

1, and 𝑠∗𝑛 < 0.

We investigate next the probability of a patient arriving at the scheduled

time to find the system busy. From Figure 3.2, the flow 𝑦𝑖 merges with 𝜌𝑖 at

node 𝑖. The probability that this combined flow goes through arc (𝑖, 𝑖− 1) is

exactly the probability that the 𝑖𝑡ℎ patient has to wait. Otherwise, the flow

on arc (𝑖, 𝑖− 1) would be zero, which indicates that the waiting time cost is

zero for the 𝑖𝑡ℎ patient since arc (𝑖, 𝑠) has zero flow cost. More precisely,

E[𝑦𝑖−1(𝒔, �̃�)] = E[E[𝑦𝑖−1(𝒔, �̃�)∣𝑦𝑖(𝒔, �̃�)]]
= E[(𝑦𝑖(𝒔, �̃�) + 𝜌𝑖) ⋅ 𝑃𝑟{𝑖𝑡ℎ patient has to wait}]
= (E[𝑦𝑖(𝒔, �̃�] + 𝜌𝑖) ⋅ 𝑃𝑟{𝑖𝑡ℎ patient has to wait}

=⇒ 𝑃𝑟{𝑖𝑡ℎ patient has to wait} =
E[𝑦𝑖−1(𝒔, �̃�)]

E[𝑦𝑖(𝒔, �̃�)] + 𝜌𝑖
.

Since the optimal 𝒔∗ is selected to minimize

E [𝑓 (𝒔, �̃�)] = E

[
𝑛∑

𝑖=1

𝑐𝑖(𝒔)𝑦𝑖(𝒔, �̃�)

]
= E

[
𝑛∑

𝑖=1

(�̃�𝑖 − 𝑠𝑖)𝑦𝑖(𝒔, �̃�)

]
,

From the first order optimality conditions, we expect that at the optimal 𝒔∗,

if 𝑠∗𝑖−1 > 0 and 𝑠∗𝑖 > 0, then E[𝑦𝑖−1(𝒔
∗, �̃�)] = E[𝑦𝑖(𝒔

∗, �̃�)]. This holds indeed

for the optimal schedule obtained using our model.

Proposition 7. If in the optimal solution to problem (S), the allocated service

time slots are strictly positive, (i.e., 𝑠∗𝑖 > 0, ∀𝑖 ∈ 𝐼 ⊆ 1, 2, . . . , 𝑛), then the
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network flow solution must satisfy E[𝑦𝑖(𝒔
∗, �̃�)] ≡ 𝐾, ∀𝑖 ∈ 𝐼, where 𝐾 is some

nonnegative constant.

Combining the propositions established thus far, we can derive an im-

portant optimality condition for an appointment system:

Theorem 2. Suppose in the optimal solution to problem (S), the allocated

consultation slots are strictly positive for the first 𝑘 patients, (i.e., 𝑠∗𝑖 > 0,

∀𝑖 = 1, 2, . . . , 𝑘, where 0 < 𝑘 ≤ 𝑛). Furthermore, if 𝜌𝑖 ≡ 𝜌, for some constant

𝜌 > 0, for all 𝑖 = 1, 2, . . . , 𝑘, then the probabilities of waiting for the service

are the same for all the patients from 𝑖 = 2, . . . , 𝑘, under the optimal worst

case distribution.

Remark 5. Note that the optimality condition stated in the above theorem

is independent of the sequence of the patients. This property of the optimal

schedule is particularly useful for the patients: there is little incentive to

choose between the slots in the clinical session if the objective is to minimize

the chances of waiting for the service.

3.7 Computational Results

All the computational studies are carried out in MATLAB on a Dell desktop

(Core 1.86 GHz and 3GB of RAM). We solve the simplest form of SDP

relaxation of the COP and CPP as shown in equation (3.3). In MATLAB,
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we use YALMIP as the programming interface with SDPT3 as the underlying

SDP solver (cf. Löfberg (2004), Toh et al. (1999), Tutuncu et al. (2003)).

Note that expressing a problem as a COP or CPP and relaxing it only

partially resolve the difficulty of the problem, because even solving a large-

scale SDP can be computationally inhibitive. Since our model lifts the orig-

inal problem into a cone with higher dimensions, the current computational

power limits the size of the problem instance we can solve to around 36 pa-

tients. While it is an interesting challenge to push the computational limit

of this approach further, we leave this to future research. By “large-scale

problem”, we mean problems that involve hundreds or even thousands of

variables. Fortunately, in practice we usually will not encounter such large

sized problems. In the eye clinic case, we only need to schedule 36 patients

for the whole morning session.

In what follows, we use extensive numerical experiments to provide a

glimpse into the performance of the optimal scheduling solutions obtained

using our model.

3.7.1 Comparison with near-optimal solutions

In this section, we test the performance of our model against a set of near

optimal solutions given in Denton & Gupta (2003). Table 3.1 lists the near

optimal schedules given in that paper, for 7 jobs with identically independent

distributed service time (Uniform(0, 2)) under different cost structures and

fixed session length 𝑇 = 7. The waiting time costs are identical among all

the patients. In their numerical results, the optimality gap is less than 1%.
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We compute problem (S) to obtain the optimal schedule that minimizes the

worst-case cost under all distributions with mean 1 and standard deviation

1/
√
3. The results of our model are presented in Table 3.2. Note that in

Denton & Gupta (2003), the objective function is the weighted sum of to-

tal waiting time, idle time and overtime of the doctor, while in our model

the objective function does not include the cost of idle time. According to

Proposition 1 in Denton & Gupta (2003) (similar to our argument in Section

3.4.1), we can transform the optimal scheduling problem in Denton & Gupta

(2003) equivalently into our problem by combining the cost of idle time and

overtime. Since Denton & Gupta (2003) allows negative schedules, we re-

move the non-negativity constraints in equation (3.8) when solving problem

(S) for a fair comparison.

(𝜌1, 𝜌𝑛+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
𝑠1 0.61 0.83 1.06 0.65 0.88 1.14 0.72 1.00 1.25
𝑠2 1.09 1.18 1.27 1.11 1.22 1.34 1.13 1.25 1.38
𝑠3 1.08 1.20 1.26 1.11 1.24 1.31 1.12 1.25 1.38
𝑠4 1.09 1.20 1.27 1.13 1.22 1.32 1.13 1.25 1.38
𝑠5 1.07 1.10 1.21 1.05 1.14 1.25 1.08 1.19 1.35
𝑠6 0.94 1.00 1.16 0.96 1.01 1.20 0.94 1.07 1.24
𝑠7 1.14 0.50 -0.23 1.01 0.31 -0.56 0.89 -0.01 -0.98

Tab. 3.1: Optimal schedules from Denton & Gupta (2003) under different cost
structures

Next, we compare the total waiting time costs under the schedules given

in Tables 3.1 and 3.2 through Monte Carlo simulation. In evaluating our

model, the service duration of each patient is generated under four common

distributions used in practice: uniform, normal, two-point and Gamma dis-

tribution, with mean 1 and standard deviation 1/
√
3. All 9 different cost
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(𝜌1, 𝜌𝑛+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
𝑠1 0.35 0.87 0.94 0.52 0.89 0.99 0.76 0.92 1.05
𝑠2 1.32 1.09 1.16 1.22 1.10 1.20 1.08 1.13 1.26
𝑠3 1.05 1.17 1.25 1.08 1.19 1.30 1.11 1.22 1.38
𝑠4 1.12 1.29 1.38 1.16 1.31 1.44 1.21 1.35 1.53
𝑠5 1.20 1.31 1.36 1.23 1.31 1.42 1.26 1.33 1.50
𝑠6 1.17 1.27 1.20 1.20 1.20 1.25 1.24 1.18 1.33
𝑠7 0.79 0.00 -0.29 0.58 0.00 -0.61 0.33 -0.14 -1.04

Tab. 3.2: Optimal schedules from our model under different cost structures

structures are tested. 50,000 rounds of simulation are executed for each of

the 36 scenarios (4 distributions × 9 costs structures)9. The average total

costs under different scenarios are then compared with the corresponding

benchmark schedules given by Denton & Gupta (2003) under the uniform

distribution. As shown in Table 3.3 the schedules obtained from our model

work phenomenally well when evaluated against the benchmarks. The aver-

age total costs under our model is close to that of Denton & Gupta (2003)

even under different distributions. The gaps are within 2% and most of them

are less than 1%. Moreover, it is worthwhile to point out that the average

total costs of our schedules do not vary much under different distributions.

(𝜌1, 𝜌𝑛+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
Benchmark 23.32 27.03 28.50 21.42 24.51 25.02 19.43 21.69 20.94
Uniform 23.55 27.62 28.89 21.55 24.79 25.48 19.60 21.94 21.48
Normal 23.57 27.77 28.98 21.63 24.92 25.55 19.72 22.03 21.53

Two point 24.00 28.64 30.20 21.95 25.81 26.56 20.23 22.91 21.89
Gamma 22.73 27.53 28.87 20.93 25.08 25.84 19.48 22.10 22.21

Tab. 3.3: Comparison of the average total costs between the schedules obtained
by our model and Denton & Gupta (2003) under different distributions

9 We obtain similar results through the test under a larger set of distributions as well,
but only the four most commonly used distribution are reported in this paper.
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3.7.2 Empirical Study in an Eye Clinic

In this subsection, we examine the performance of the appointment system

in the eye clinic and apply the methodology we develop in section 3.5.4

to improving the performance of the system. We present numerical results

based on data collected from the eye clinic and discuss pertinent managerial

insights from our model.

Tan Tock Sin hospital, built in 1844 by the entrepreneur Tan Tock Sin,

is the second largest hospital in Singapore. The hospital’s specialist clinics

serve around 1,500 patients daily and its Emergency Department attends

around 400 patients daily, making it one of the busiest clinics and emer-

gency departments. Hence, efficient appointment systems are crucial for the

hospital operation, to to regulate the usage of the costly equipment and pre-

cious resources in the system, and to enhance its service level and increase

customer satisfaction.

Our research is motivated by a visit to an eye clinic in Tan Tock Sin hos-

pital. In the clinic, there are two consultation sessions per day, each lasting

four hours from 8am to 12pm and from 1pm to 5pm. The number of doctors

available per session is around two to seven. Each doctor has to handle 20

to 30 patients per session. Patients are classified into “new patients” and

“repeat patients”. New patients refer to those who visit the doctor for the

treatment of a new problem and whose eye conditions are unknown to the

doctors they see; while repeat patients are those who have visited the clinic

before and who go there for follow-up checks. Their appointment strategy is

to 1) assign new patients to come at the beginning of the session; 2) allocate
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5 minutes per patient slot for one hour, followed by a half hour break.

We collect a dataset on the visits of 1021 patients during 7 working days

from 22 May, 2006 to 30 May, 2006. Among them, there are 201 new patients

(around 20%) and 820 repeat patients (around 80%). The data set consists of

the date, patient type, patient’s NRIC, type of services, starting and ending

time of each service, service durations etc. The clinic uses the “Turnaround

Time” (TAT) as one key performance indicator. The number of doctors varies

from session to session. Sometimes there are only 2-3 doctors on duty while

some day there are 6-7 doctors. The number of patients varies accordingly.

Table 3.4 summarizes patients classifications, workload, and median TAT

in each of the 7 days10. From the table we can see that the ratio of new

patients to repeat is roughly around 1:4 and the workload affects the TAT

significantly.

Date 22-05 23-05 24-05 25-05 26-05 29-05 30-05
No. of Doctors 5 4.5 5 5 3 4 5.5
No. of Patients 136 162 155 126 106 146 190
New Patients 25 36 25 28 18 19 50

Repeat Patients 111 126 130 98 88 127 140
Median TAT 1:27 1:39 1:33 1:10 1:06 1:32 1:45

Tab. 3.4: Patients Classifications and Median TAT

A typical visit to the eye clinic usually includes the following several

steps11:

∙ Registration

∙ Vision Test (Visual Acuity, Eye Pressure etc.)

10 Note that the number of doctors per day takes average on the number of patients in
the morning session and afternoon session.

11 Please refer to Liang (2006)for more detailed descriptions.
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∙ Consultation

∙ Specialized Eye Tests (Refraction, Dilation, Visual Field Test etc.)

∙ Payment and scheduling of follow-up appointment

Besides, a patient (especially a new one) may go through several con-

sultation during one visit. There is usually one major consultations and

normally takes the longest time. We record the duration of the longest con-

sultation of each patient and assume it is the length of a major consultation.

Figure 3.3 depicts the variations of consultation durations of new and re-

peat patients. It can be seen that the mean and variance of the consultation

times of the new patients are noticeably higher than those of repeat patients.

Specifically, the mean and standard deviation of the consultation time of the

repeat patients are 6.24 minutes and 6.0 minutes respectively, while those for

the new patients are noticeably higher, with a mean of 9.97 minutes and a

standard deviation of 7.6 minutes.

In the following, I apply the methodology we develop in section 3.5.4

to obtaining optimal schedules for the eye clinic. I discuss the structural

properties of the optimal schedules under different overtime cost and propose

implementable heuristics. Then I run computational studies to compare the

performances of the optimal schedules, heuristic solutions and the current

appointment strategy.

In this experiment, we assume that one session lasts for 150 minutes.

This mimics the current practice with one hour block, followed by a half

hour break and then another one hour block. During one session, 24 patients

are scheduled to arrive in the clinic, with 5 new patients arriving before 19
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Fig. 3.3: Consultation durations of new and repeat patients

repeat patients. The consultation durations follow the distributions with the

mean and standard deviation as estimated by the empirical data. Note that

the sum of mean service durations of all patients is 168.41 minutes, which is

larger than the session length. This indicates that the system may be heavily

congested.

The patient’s waiting time cost (𝜌𝑖) is assumed to be identical among

all the patients and normalized to 1. We test various overtime costs, i.e.,

𝜌𝑛+1 = 1, 20 or 40. Figure 3.4 plots the optimal schedules obtained by our

model under different 𝜌𝑛+1.

It is interesting to note that the optimal schedules exhibit the pattern

of “Bailey’s Rule + Break”. First, the optimal schedule allocates near zero

time slot to the first few patients. Although Proposition 5 indicates that all

the zero time slots should be placed at the end of the session, the time slots
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Fig. 3.4: Optimal schedule when 𝜌𝑛+1 is equal to 1, 20 and 40, given 𝜌1=1

for the first few patients are indeed strictly positive but extremely small, as

the system is heavily congested and the overtime costs are large enough to

induce such scheduling rules. The second outstanding feature is that, after

serving the group of new patients, a break is inserted before switching to the

group of repeat patients with lower variability. To confirm this feature, we

run another group of experiments with 3 classes of patients. Similar patterns

are observed - breaks are inserted after serving the first and the second class

of patients.

One drawback of the optimal schedule is that it is generally not practical

and is non-intuitive. To fix this problem, we try to use the above insights to

develop a simple but effective appointment schedule. In the current practice,

each patient is assigned with an equal interval of 5 minutes and a 30 minutes
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break is inserted after seeing 12 patients. We simply modify the “Current

Practice” by replacing the 30 minutes break after serving all the new patients,

i.e. after the 5𝑡ℎ patient. We call this schedule “Modified Practice”.

In a more advanced system design, we allow the allocated service inter-

vals to vary according to the mean service duration of each patient, denoted

as the “Varying Interval” schedule. To resemble the optimal schedule (un-

der 𝜌𝑛+1 = 1), we assign zero time slots to the first patient and the last six

patients. Other patients are assigned with time slots by rounding up their

mean service durations, i.e., 10 minutes for a new patient and 7 minutes for

a repeat patient. The remaining time is combined and inserted after the 5𝑡ℎ

patient as a break.

Uniform Normal Two-points Gamma
Optimal Schedule 352.58 349.80 355.37 352.78
Current Practice 564.13 560.18 570.31 535.37
Modified Practice 485.36 479.95 491.95 462.44
Varying Interval 358.24 353.61 363.60 354.83

Tab. 3.5: Average total waiting time cost under different scheduling policies when
𝜌1 = 1 and 𝜌𝑛+1 = 1

The simulated performance of various policies under different service

time distributions are shown in Table 4. Implementing a schedule resem-

bling the optimal solution dramatically decreases the total waiting time cost

by about 35% as compared to the current practice. Interestingly, it seems

that one can significantly improve the performance of the system by simply

inserting a break after serving one class of patients in the optimal scheduling.

The easily implemented “Varying Interval” strategy makes it quite attractive

for the practical considerations.



3. Topic 2: Appointment System Design using Copositive Cones 86

Note that the above simulation results are obtained under 𝜌𝑛+1 = 1. In

most environment, the overtime cost 𝜌𝑛+1 is likely to be large and should

be proportional to the number of patients seen in the clinic. The choice of

𝜌𝑛+1 = 1 is thus a conservative estimate and assumes the doctor places small

penalty on the overtime work. In what follows, we summarize the features

of optimal schedules when 𝜌𝑛+1 increases. The pattern of “Bailey’s Rule

+ Break” seems to be quite robust no matter how the the overtime cost

changes. Besides this, Figure 3.4 also illustrates several interesting features:

As 𝜌𝑛+1 increases,

∙ more patients are assigned with near zero consultation time slots at the

beginning of the session;

∙ fewer patients are assigned with zero time slots at the end of the session;

∙ a longer time slot is assigned to the last patient.

Intuitively, all these features benefit a clinic that prefers a shorter over-

time. Consequently, patients may suffer from longer waiting times as a result.

As we can see, the optimal properties persist as the overtime cost 𝜌𝑛+1

increases. One question is that whether we can still design efficient appoint-

ment systems with the help of the optimal properties under different overtime

costs. To answer this question, we first solve the optimal schedules when 𝜌𝑛+1

is 2, 5, 10, 20, 50, and 100, and then create the “Varying Interval” schedules

using the following heuristics: allocate zero time slots to those clustering pa-

tients (with zero or close to zero time slots) at the beginning and the end of

the session, assign the rest of the patients their mean consultation durations,
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and insert the remaining time as a break after the 5th patient.We simulate

the total costs of the “Varying Interval” schedules and compare with current

practice. Table 3.7.2 records the efficiency gains under different overtime

costs 𝜌𝑛+1. The percentage savings decrease as 𝑟ℎ𝑜𝑛+1 is increased. The

efficiency gain drops to around 30% when 𝜌𝑛+1 = 2, to around 13% when

𝜌𝑛+1 = 10, and to around 10% when 𝜌𝑛+1 = 100. Since a higher overtime

cost indicates larger total cost, a 10% efficiency gain when 𝜌𝑛+1 = 100 can

save around 360 minutes in total waiting time. Hence, although efficiency

gain drops as 𝜌𝑛+1 increases, employing the “Varying Interval” schedule can

still ensure significant efficiency improvements in the clinic. We simulate the

performances of the “Varying Interval” schedules and compare them against

those under the current strategy.

Percentage Increase
Overtime Uniform Normal Two-points Gamma

1 36.5% 37.1% 36.3% 33.7%
2 31.7% 32% 31.4% 28.5%
5 24% 24.3% 23.9% 21%
10 13.3% 13.4% 13.3% 10.1%
20 7.1% 7.3% 7.3% 4.2%
50 7.3% 6.8% 7.9% 5.5%
100 11.4% 11.5% 12.2% 9.7%

Tab. 3.6: Efficiency gains under different overtime costs

3.8 Sequencing Problem

We have shown that the scheduling problem can be effectively solved using a

simple convex program. We discuss in the rest of this section some insights

on the optimal sequence of arrival of the patients. We assume 𝑠𝑖 = 𝜇𝑖 to
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remove the needs to address the scheduling decision, and focus solely on the

sequencing problem. We want to determine the sequence to minimize the

total waiting time, with 𝜌𝑖 = 1 for 𝑖 = 1, . . . , 𝑛 + 1, in our appointment

problem. In particular, we address the question: Is it optimal to sequence

the patients with smaller variance to arrive earlier in the session?

Although many current research conjecture that the smaller-variance-

first rule might be optimal, the following example, unfortunately, shows that

this is not true in general.

Assume the service durations {�̃�𝑖} are independent. Let �̃�1 = 0 or 2

with equal probability, �̃�2, �̃�3 = 0 or 4 with equal probability, and �̃�𝑘 = 0

or 6 with equal probability for 𝑘 > 3. In this case, 𝑃 (𝑐1 = ±1) = 1
2
,

𝑃 (𝑐𝑗 = ±2) = 1
2
, for 𝑗 = 2, 3, and 𝑃 (𝑐𝑘 = ±3) = 1

2
, for 𝑘 = 4, . . . , 𝑛.

We compare the performance of the sequence {1, 2, ⋅ ⋅ ⋅ , 𝑛} and another

obtained by switching 1 and 2 in the sequence. Note that patients in

the first sequence are ordered in non-decreasing order of the variances.

We ran simulation and plot the difference in the performance, ( i.e., the

difference in total waiting time), as a function of the number of patients

𝑛, in Figure 3.5.

As the number of patients is small, say 𝑛 below 20, scheduling patients

with smaller variance first is generally better in this example. Surpris-

ingly, this behavior changes as 𝑛 increases, and for a large enough 𝑛,

putting patient 2 in front of patient 1 is now beneficial in reducing total

waiting time! Consequently, sequencing patients in increasing variance is

no longer optimal. The simulation result also suggests that the optimal
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Fig. 3.5: Difference in Performance w.r.t 𝑛
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sequence is affected by the number of patients in each class, and hence

sequencing patients by looking at pair of patients in isolation through

stochastic ordering is probably a futile attempt.

To add to the perplexity of the results, we show next that under the

deterministic model where 𝑠𝑖 is set to a constant (e.g. patients scheduled to

arrive in constant interval), then knowing the service duration �̃�𝑖 in advance

does not make the sequencing problem any easier! In fact, under this deter-

ministic model, Vanden (1997) have shown earlier that when the objective

coefficients 𝜌𝑖 are allowed to take arbitrary values, to determine the optimal

sequence is equivalent to solve a nonlinear knapsack problem and is thus NP-

hard. Surprisingly, we show next that the problem in fact remains NP-hard

even when 𝜌𝑖’s are identical.

Theorem 3. The appointment scheduling problem is 𝑁𝑃 -hard in the strong

sense, even if the allocated appointment interval 𝑆𝑗 is constant for all 𝑗, and

𝜌𝑖 = 1 for all 𝑖.

We refer the readers to Appendix I for a formal proof of this result.

In the rest of this section, we describe how the proposed approach can

be used to address this class of sequencing problem, even when scheduling

decision has to be made in conjunction with the sequencing decision. Let

(P)’ 𝑍 ′
𝑃 = sup

𝑼∼(𝝁,Σ)+
{E[𝑓(𝒔, 𝜎)]}

where 𝑓(𝒔, 𝜎) is the cost of the second stage network flow model after fixing

schedule 𝒔 and sequence 𝜎.
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To apply our approach on the appointment design problem, we introduce

scheduling and sequencing decision variables 𝒔 and 𝑃 = (𝑝𝑖𝑗) into the model

in the following way:

Theorem 4. (P)’ can be solved as the following completely positive

program, i.e., 𝑍 ′
𝑃 = 𝑍 ′

𝐶 :

(C)’ 𝑍 ′
𝐶 = max 𝑋 ∙ 𝑃 − 𝒔𝑇𝒚

𝑠.𝑡.

⎛⎜⎜⎝ 𝒂𝑗

−𝒆𝑗

⎞⎟⎟⎠
𝑇 ⎛⎜⎜⎝ 𝒚

𝒛

⎞⎟⎟⎠ = −1, ∀𝑗 = 1, 2, . . . 𝑛

⎛⎜⎜⎝ 𝒂𝑗

−𝒆𝑗

⎞⎟⎟⎠
𝑇 ⎛⎜⎜⎝ 𝑌 𝑊 𝑇

𝑊 𝑍

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝒂𝑗

−𝒆𝑗

⎞⎟⎟⎠ = 1, ∀𝑗 = 1, 2, . . . 𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝝁𝑇 𝒚𝑇 𝒛𝑇

𝝁 Σ 𝑋𝑇 𝑉 𝑇

𝒚 𝑋 𝑌 𝑊 𝑇

𝒛 𝑉 𝑊 𝑍

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ર𝑐𝑝 0

where the decision variables are 𝒚, 𝒛 ∈ ℝ𝑛, 𝑌, 𝑊, 𝑍, 𝑋, 𝑉 ∈ ℝ𝑛×𝑛, and

𝑃 = (𝑝𝑖,𝑗) ∈ {0, 1}𝑛×𝑛 is a known permutation matrix given by

𝑝𝑖,𝑗 =

⎧⎨⎩
1 , if 𝜎(𝑗) = 𝑖

0 , otherwise

, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
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This formulation models the expected waiting cost of the appointment

system, when the sequencing decision 𝑃 = (𝑝𝑖,𝑗) and scheduling decision 𝒔 are

fixed. It replaces the objective function 𝑡𝑟(𝑋) by𝑋∙𝑃 , due to the sequencing

consideration. The corresponding copositive cone program is now:

(𝑆2)’ 𝑍 ′
𝑆2 := min Σ ∙ Γ + 𝝁𝑇𝜷 + 𝛼

𝑠.𝑡.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛∑
𝑗=1

(−𝑢𝑗 + 𝑣𝑗) + 𝛼 𝜷𝑇

2

⎛⎜⎜⎜⎜⎝
𝒔

0

⎞⎟⎟⎟⎟⎠
𝑇

−
𝑛∑

𝑗=1
𝑢𝑗

⎛⎜⎜⎜⎜⎝
𝒂𝑗

−𝒆𝑗

⎞⎟⎟⎟⎟⎠
𝑇

2

𝜷
2

Γ

⎛⎜⎝ −𝑃/2

𝑂𝑛

⎞⎟⎠
𝑇

⎛⎜⎜⎜⎜⎝
𝒔

0

⎞⎟⎟⎟⎟⎠−
𝑛∑

𝑗=1
𝑢𝑗

⎛⎜⎜⎜⎜⎝
𝒂𝑗

−𝒆𝑗

⎞⎟⎟⎟⎟⎠
2

⎛⎜⎝ −𝑃/2

𝑂𝑛

⎞⎟⎠ −
𝑛∑

𝑗=1

𝑣𝑗

⎛⎜⎝ 𝒂𝑗

−𝒆𝑗

⎞⎟⎠
⎛⎜⎝ 𝒂𝑗

−𝒆𝑗

⎞⎟⎠
𝑇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ર𝑐𝑜 0

𝑛∑
𝑗=1

𝑝𝑖,𝑗 =
𝑛∑

𝑗=1

𝑝𝑗,𝑖 = 1, ∀𝑖 = 1, 2, . . . , 𝑛

𝑝𝑖,𝑗 ∈ {0, 1} , ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛

𝒔 ∈ Ω𝒔

When the sequencing becomes parts of the decision variables, due to

its discrete nature (𝑛2 binary variables), the time consumed in searching

for optimal sequence (e.g. using a Branch and Bound (B&B) type method)

increases exponentially in the size of the instance. We developed a simple

B&B code to take advantage of the special structure of the problem by adding

some symmetry breaking constraints, and can solve the sequencing problem

for up to 8 customers efficiently.
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3.8.1 Numerical Results

Our earlier numerical examples have debunked the conjecture on the opti-

mality of the smaller-variance-first rule. However, what is the structure of

the optimal sequencing policy? We use a set of numerical experiments to

provide a glimpse to the answer of this question.

The numerical example assumes 6 patients in the system, with identi-

cal mean consultation duration of 5 time units, but with different standard

deviations ([1 1 2 2 3 3]). By fixing the allocated service time to be the mean

(𝜇 = 5), we obtain the optimal sequences by solving the CPCMM model. In

Figure 3.6, we observe that when the ratio between waiting time cost (𝜌𝑖)

and overtime cost (𝜌𝑛+1) is 1 : 1, smaller-variance-first rule is indeed optimal.

However, as the overtime cost is sufficiently high as compared to the waiting

time cost (e.g., 1:100), the optimal sequence appears to be “U-shaped” in

terms of the variability of the service durations. Namely, the patients with

larger variances are either assigned to the beginning or the end of the session.

Monte Carlo simulation results indeed show that under the “U-shape”

sequencing rule, the expected total cost is smaller than that under the

smaller-variance-first rule. The above structure continues to hold for many

different sets of parameters in the experiments. We conjecture that it holds

in general:

[Conjecture]: When the allocated service time for each patient is

set to the mean service time and the overtime cost is sufficiently

high, the optimal sequence exhibits a U-shape pattern.

We leave the resolution to the above conjecture to future research.
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Fig. 3.6: Optimal sequencing under different cost structure and fixed schedule

3.9 Conclusion

We propose a novel approach to deal with the difficult patient scheduling and

sequencing problem. Instead of planning against a fixed service distribution,

we plan against a canonical set of service distributions with the same mean

and covariance parameters. The canonical distribution is “constructed” via

a copositive cone program. In this way, we reduce a difficult two stage

stochastic programming problem into a single stage convex programming

problem. Through extensive simulations we show that the optimal schedules

solved under the “worst case” give near-optimal solutions when the objective

is to minimize expected total cost. This approach allows us to shed some

light on the structure of the optimal schedule and sequence, which we can

readily modify to obtain practical and efficient schedule and sequence.

The approach can be generalized to deal with the situation when the

patients need to undergo a test (random duration) prior to the consultation,
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a pertinent feature in many eye clinic. The network flow approach can also be

conceivably extended to deal with other practical considerations in a clinical

environment. There are however several limitations with this approach -

the computational difficulty associated with solving large scale SDP limits

our ability to solve large scale scheduling problem. Furthermore, we need

to devise a specialized Branch&Bound algorithm to deal with the case when

sequencing decision is involved. However, we hope that larger instances of

the sequencing problem can be solved if we move to a commercial platform

to deal with the 0-1 problem. We leave this for future research.



4. TOPIC 3: PATTERN RECOGNITION AND BIASED

PERCEPTION OF RANDOMNESS

4.1 Abstract

Loss of control generates the drive for human beings to seek patterns in their

daily lives. In this paper, we investigate how our perceptions of randomness

are shaped by this innate desire to find patterns out of chaos. I use both the-

oretical and empirical methods to show that lottery players can be influenced

to believe erroneously that the winning probabilities of past winning numbers

are higher in the current draw, even though the events are independent (i.e.

Hot-Hand Fallacy prevails). This result is surprising as works by Clotfelter

and Cook (1993) and Terrell (1994) have documented the presence of Gam-

bler’s fallacy in the US lottery market instead - the amount of money bet on

a particular number in a pick-3 or pick-4 game falls sharply after the number

is drawn. I use two sets of lottery game data in Asia to show that Hot-Hand

Fallacy can prevail in a pick-3 or pick-4 game, and conclude that the design

of lottery games (e.g. prize structures) can influence the perception of ran-

domness, and hence the two fallacies may dominate under different gaming

environments. These results have important implications as it indicates that
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people’s perception of randomness, and thus behavior, can be manipulated

through appropriate design in the lottery game. Our results also provide an

explanation to a question raised in the “lucky store” effect paper by Guryan

and Kearney (2008) - why lottery players believe that lightning will strike

twice in the case of lottery vendors, but not in the case of numbers.
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4.2 Introduction

Ever since human ancestors looked at the starry sky and wondered how dif-

ferent combinations of stars foretold the future, pattern seeking has been en-

trenched in our daily lives. Our brains are well wired to constantly interpret

meanings out of (random) events happening in our lives and we search for

patterns to reassure us that life is “under control”. Both anecdotal evidence

and research findings show that when facing complex/uncertain situations,

our sense of control is threatened and we are more likely to impose rela-

tionships among unrelated events and perceive (illusory) patterns. Pattern

seeking undoubtedly has its survival value in the evolutional history of hu-

man beings (cf. Whiteson and Galinsky (2008), Proulx and Heine (2009),

and Beitman (2010) etc.) However, pattern seeking inevitably affects human

perceptions of randomness since it imposes connections between otherwise

possibly uncorrelated events. Important decisions under uncertainty heavily

rely on predictions of (random) future events. Therefore, careful investiga-

tion should be made to understand how the perception of randomness is

shaped by this deeply imbedded human nature.

People are known to rely on heuristics or simple mental models, rather

than theoretical models, to interpret random events (cf. Kahneman and

Tversky (1971), Hastie et al (2009) etc.). Among many others, Gambler’s

Fallacy and Hot-Hand Fallacy are the most common biases in the percep-

tion of randomness. Gambler’s Fallacy is an erroneous belief in the negative

correlation of independent outcomes generated by a random process; while

Hot-Hand Fallacy refers to the belief in positive correlations in the inde-
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pendent outcomes of a random process. Although the two fallacies seem

to contradict each other, current literature posits that the two fallacies are

related. They may arise from the same mechanism: belief in “the law of

small numbers” or “local representativeness” where small samples are used

to represent the characteristics of the total population. (cf. Rabin (2002),

Rabin and Vayanos (2010) etc.)

The earlier works focus on understanding the phenomenon that the

Gambler’s and Hot-Hand Fallacy co-exist in the same individual. They iden-

tify the importance of the length of streaks (sequence of repeated events) in

influencing the perception of randomness, i.e., Gambler’s Fallacy prevails in

short streaks, but as the streaks lengthen, beliefs in Hot-Hand dominate (cf.

Asparouhva et al. (2009), Rabin and Vayanos (2010), Jorgensen et al (2011)).

On the other hand, observations that Gambler’s Fallacy is more prevalent

in lottery games, and Hot-hand Fallacy more prevalent in games involving

skills, are often attributed to the “intentions” of the subjects involved. In

the recent work of Caruso et al. (2010), through a set of lab experiments,

they predict continuation of a streak when subjects involved are considered

to be intentional. Hence, when the streak is caused by some kind of me-

chanical device (as in lottery games), people believe the streak will end, i.e.,

Gambler’s Fallacy dominates.

Recent filed observation, however, suggests that Hot-Hand Fallacy can

prevail in a lottery game under appropriate conditions. In a pick-4 numbers

games, where there are multiple winning numbers in each draw, I find that

punters bet more on previous winning numbers instead of avoiding them.

Figure 4.1 shows the 25th percentile, the median, and the 75th percentile
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of betting proportions of 2300 winning numbers on the day they are drawn

and the following 56 draws. Punters participating this game seem to believe

that the winning probabilities of past winning numbers are higher in the

current draw, even though the events are independent (i.e. Hot-Hand Fallacy

prevails). This result is surprising, as works by Clotfelter and Cook (1993)

and Terrell (1994) have documented the presence of Gambler’s Fallacy in the

US lottery market instead - the amount of money bet on a particular number

in a pick-3 or pick-4 game falls sharply after the number is drawn.
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Fig. 4.1: Betting on Previous winning numbers

To reinforce the field observations, I collect data from two different lot-

tery games played in the same region. The two games are of similar designs,

under similar operations and played by two populations that are considered
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to be similar in both race and culture. The only difference between the

two games comes from the size of the prize-winning numbers in each draw.

In one game, single winning number is drawn whereas multiple (23) winning

numbers are drawn in the other. Through careful statistical analysis, the em-

pirical data validate that Gambler’s Fallacy is observed in the lottery game

with a single winner; while Hot-Hand Fallacy arises in the one with more

complex, multiple outcomes.

Motivated by these observations, I propose in this paper a formal theory

to investigate the role of different game designs in “shaping” our perceptions

of randomness in the long run, by incorporating our innate desire to seek

patterns out of chaos.

I develop a Bayesian updating model to investigate conditions under

which pattern seeking leads to Hot-Hand Fallacy. In our setting, I suppose

a theory, such as a (possibly randomized) computer program, produces a

sequence of independent and identical outcomes. The agent has a prior belief

over a finite set of possible data-generating theories. The set in consideration

may or may not contain the true data-generating theory. The agent observes

realizations of random events in each period and relies on limited history to

update his/her beliefs.

One question to ask is whether the observed data provides enough infor-

mation to infer a “relatively small” set of plausible data-generating theories.

Unless one imposes some particular restrictions on conceivable theories, the

answer to this question is no. Recent research in statistics and economic the-

ory shows that there exists a set of theories that can be accepted as the true
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theory with arbitrarily high probability (e.g., Fudenberg and Levine (1999),

Lehrer (2001), Olszewski and Sandroni (2008), Sandroni et al. (2003), San-

droni (2003), Shmaya (2008)). This gives credence to the fact that people

might hold different beliefs to explain a sequence of random outcomes, which

may possibly conflict with each other.

I show that as long as the agent considers the true theory as a possible

explanation, he/she will eventually make correct inferences as evidence accu-

mulates. What of more interests is whether there exist consistent predictions

about the agent’s belief if his/her initial belief is biased, namely, the true

theory is not considered plausible1. In the model, I assume that there are

two distinct sets of theories. One set of theories predict higher chance for

the pattern outcomes (identified from past data) to occur; while the other

predict less. I show that the former theory prevails when the environment

is complex - when the ratio of pattern outcomes is relatively high compared

to the total number of possible outcomes (as in the multiple-number lottery

game).

Our results have important implications in problem gambling, risk man-

agement, and lab experiments where random outcomes are involved. They

indicate that the perception of randomness can be manipulated, and hence

behavior can be nudged with the appropriate design. For instance, several

countries have attempted to tamper with commuter’s behavior by offering

incentive schemes for commuters to earn credit for each journey taken (triple

credit for off-peak journeys) to earn a chance of cash prizes in weekly lot-

1 Some punters in the lottery games subscribe to the conspiracy theory and believe that
winning numbers drawn are tweaked to favor the operators.
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teries. The success of these schemes hinges on the insights of behavioral

economics that the average person is risk seeking when the stake is small. So

a 1 in 1000 chance to win $100 is more attractive than a cash award of $0.10.

Our results say that we can do better, through designing the lottery games to

induce Hot-Hand Fallacy in the commuters, and offering them the chance to

choose their own “lucky” numbers to bet on. The belief (distortion) that the

winning probabilities of certain numbers are higher than theoretical average,

and the ability for the players to bet on these numbers, is enough to make

what is actually a 1 in 1000 chance of winning appears to be a much safer

bet, and thus more attractive to the players.

4.3 Literature Review

4.3.1 Uncertainty and pattern seeking

It has long been observed that in situations lacking control, people may tend

to believe that some mysterious, unseen mechanisms are secretly at work.

Numerous anecdotal evidence and research findings circumstantially support

the assumption that more complex and uncertain situations lead to stronger

pattern seeking.

Fishermen who fish in the deep sea and whose lives are usually threat-

ened by the unpredictable weather and water conditions have much more

complicated superstitious beliefs than those who fish in the shallow water

(Malinowski [1948]). In March 2010, when the red shirt protests propagated

and economy receded, people in Thailand were reported to seek help from
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fortune tellers more frequently, probably to feel assured about the future.

Facing complex situation, it is a human instinct to look for patterns, as

illustrated by Proulx and Heine (2009). They made a group of subjects read

an absurd story by Kafka. To make it more complicated to comprehend,

they added to the story more inconsistent and bizarre illustrations, which

was meant to throw the subject in the world of complexity and chaos. While

another set of subjects read a more consistent version of the story. In the end,

when students played the game to find patterns in strings of letters, students

who read the absurdist story were reported to find much more patterns in

strings that those who read the consistent version. Those students tried to

combat the chaos presented by the absurd story, to find the patterns in it,

and to make sense of it. This primed their brains to look harder for patterns

elsewhere, such as in strings of letters.

Whiteson and Galinsky (2008) study the relationship between lack of

control and illusory pattern seeking, rituals, and superstitions. They create

situations under which a group of subjects experience lack of control. They

find that compared to the rest, those subjects see more false patterns in all

type of data, like imagining trends in stock markets, seeing faces in static

and develop superstitions etc.

In this paper, I make a natural assumption that people identify more

patterns from more complex historical results.
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4.3.2 Gambler’s Fallacy and Hot-Hand Fallacy

Both Gambler’s Fallacy and Hot-Hand Fallacy have long been observed in the

field. Among many others, Clotfelter and Cook (1993) observe that lottery

players in 3D game in United States are subject to Gambler’s Fallacy. Figure

4.2 shows the percentiles of betting ratios (betting volume index on particular

day over average index) on different days after the numbers are selected as

winners. Once a 3D number is drawn as the winner, the subsequent betting

volumes drop immediately and then gradually pick up. The immediate drop

after the winning number is drawn provides a strong evidence of Gambler’s

Fallacy in the game. Meanwhile, Camerer (1989) show that betting markets

for basketball games exhibit a small Hot-Hand bias. Guryan and Kearney

(2008) examine the sales of lottery outlets selling winning jackpot tickets and

show that those stores experience significant increase in game-specific ticket

sales, exhibiting the “lucky store” effect. Jorgensen et al (2011) examine a

set of panel data on lotto games and found that people usually avoid numbers

that have recently been drawn (exhibiting Gambler’s Fallacy”); while they

tend to bet more on those winning numbers in streaks (that have been drawn

several time in a row), suggesting the existence of Hot-Hand Fallacy.

Gambler’s Fallacy and Hot-Hand Fallacy may co-exist in the same agent

and appear within the same setting. One line of research posits that they

both arise from representativeness bias or belief in “the law of small num-

bers”. Tversky and Kahneman (1971) coine this term and examine its con-

nection with Gambler’s Fallacy. Rabin (2002) and Rabin and Vayanos (2010)

build theoretical models to model “the law of small numbers” which directly
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Fig. 4.2: Betting Ratios on Previous Winning Numbers in 3-Digit Numbers Game
(Clotfelter and Cook (1993)

leads to Gambler’s Fallacy. These works identify the importance of the length

of streaks (sequence of repeated events) in influencing the perception of ran-

domness, i.e., Gambler’s Fallacy prevails in short streaks, but as the streaks

lengthen, beliefs in Hot-Hand dominate. Asparouhva et al. (2009) run a set

of lab experiments on binary choice game and the results support the work of

Rabin (2002). In recent work of Kendall (2010), the author uses a discount

factor to refine the model presented in Rabin (2002) and propose a simple

but effective model to explain the two fallacies.

Different from this line of research, our paper examine the role of game

designs in “shaping” the perception of randomness in a long run. I show

that due to pattern seeking, either Gambler’s Fallacy or Hot-Hand Fallacy

can arise under appropriate conditions. I can actually manipulate the behav-

iors through careful system design. Besides, our paper generalizes the cur-
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rent conclusions on the streaks of binary outcomes. In our paper, “streaks”

becomes one particular pattern agents might recognize from previous out-

comes. When the streak short (i.e., the “streak” pattern has not been recog-

nized yet), people tend to believe in Gambler’s Fallacy; while as the streak

lengthens and become an obvious pattern, Hot-Hand fallacy occurs. In the

single-winner lottery games, however, streaks are extremely unlikely, thus

Gambler’s Fallacy is observed.

In spite of the excellent work on the “the law of small numbers” to

examine the two fallacies, another stream of research provides different ex-

planations. They argue that the nature of a random event generator, i.e.,

whether it is an inanimate device or a human being, determines the occur-

rence of Gambler’s Fallacy or Hot-Hand Fallacy. (c.f. Ayton and Fisher

(2004), Burns and Corpus (2004)). If the random process is believed to be

generated by a machine, people will expect negative recency; while a positive

recency is expected if human beings generate the sequences. These results are

reinforced by field observations made in casinos and lottery store(cf. Sundali

and Croson (2006) and Guryan and Kearney (2008)). In the recent work of

Caruso et al. (2010), through a set of lab experiments, they predict contin-

uation of a streak when subjects involved are considered to be intentional.

This work shares similar flavor to our work in the way that an intentional

mind shows some mechanism is at work and patterns related to the intension

can be perceived.

According to their theory, Gambler’s Fallacy would occur in lottery

games as the outcomes are generally believed to be generated without human

involvements. It, unfortunately, contradicts the field observation I made. Our
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model explore this issue from the innate human nature of pattern seeking in

complex settings and establish conditions under which Gambler’s Fallacy and

Hot-Hand Fallacy occur.

4.4 Field Evidence

In this section, I first exhibit the empirical evidence to show that different

fallacy and decision biases may prevail under different gaming environments,

even if the games may appear to be similar in design. I collect first-hand

data from two fixed-odds lottery games to demonstrate this phenomenon.

The first is a 3-Digit (3D) lottery game played in China, the scheme of which

resembles “pick 3” lottery game reported in Clotfelter and Cook (1993).

It draws a single prize-winning number each day, 7 times per week. The

other game, a 4-Digit (4D) lottery game played in South East Asia, draws 23

winning numbers instead, with 3 draws organized per week. The two number

games are of similar design, and played by two populations that are similar in

both race and culture. They differ mainly in the number of winning numbers

drawn. This provides a perfect test bed for the theory and predictions that

I will develop in section 4.5.

4.4.1 Gambler’s Fallacy in 3D numbers game

In the 3D numbers game, a single winning number is randomly drawn from

000 to 999 with equal probability at 8:30pm each day. Lottery tickets on the

current draw are sold until 8:00pm. Every wager costs 2 local currency. The

payout structure and winning odds are shown in Table 4.1.
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Tab. 4.1: Prize Structure and Winning Odds in 3D Numbers Game
Bet Type Match to Win Payout per Wager Odd
Straight Match the exact order 1000 1 in 1000
Box 3 Match any order (2 identical digits) 320 1 in 333
Box 6 Match any order (3 unique digits) 160 1 in 167

A direct test of Gambler’s Fallacy requires a full data set consisting of

the sales of each number in each draw. These data, however, are rarely made

available to the public. I collect regularly released data on the official web

site of the game operator2. The lottery company posts regularly on its web

site (i) the winning number drawn, (ii) number of winning wagers (of three

play types), and (iii) total sales in each draw. I collect the online data of

2272 draws over a 76-month period, from May 8, 2005 to September 15,

2011. From the data set, I construct a sub-sample of 95 draws that contains

winning numbers repeating within 7 weeks. In analyzing the data, I adopt a

similar methodology used in Terrell (1994).

With the information of winning wagers and payout structure, I can

easily calculate the payout of each winning numbers. To adjust for the day

of the week effect, I define the payout rate 𝑅 as the ratio of the payout

to total sales volume in a draw. 𝑅 indicates the popularity of a winning

number. I want to find out the impact on sales in subsequent draws after a 3D

number has been drawn as a winning number. Since I only have information

on winning numbers, I check the payout rates of those winning numbers

repeating within 7 weeks.

Table 4.2 shows the payout statistics (mean, standard deviation and

median) of winning numbers repeating within certain period. The overall

2 See http://www.zhcw.com/3d/kaijiangshuju/index.shtml?type=0.
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Tab. 4.2: Payout Statistic of Repeating Winning Numbers
Number Mean STD Median

winning numbers repeating within 1 week 12 0.436 0.52 0.259
winning numbers repeating between 1 and 2 weeks 12 0.358 0.15 0.346
winning numbers repeating between 2 and 4 weeks 25 0.384 0.22 0.303
winning numbers repeating between 4 and 7 weeks 46 0.475 0.23 0.418

Winner not repeating within 7 weeks 2177 0.503 0.31 0.430
Total 2272 0.500 0.31 0.427

mean payout rate is 0.5 and the median is 0.427. Table 4.2 indicates that

both the mean and the median of repeating winning numbers within 7 weeks

are lower than those statistics of all winning numbers. The median payout

of winning numbers that repeat within one week drops to around 40% and

then gradually picks up3. Two sample t-test shows that the mean of those

numbers repeating within 1 to 5 weeks is significantly smaller than 0.5.

Let 𝐿𝑜𝑔𝑅𝑖 denote the logarithmic value of the payout rate of winning

number 𝑖. To analyze the effects of the winning number on sales, I build a

linear regression model using 𝐿𝑜𝑔𝑅𝑖 as the dependent variable. Let𝐷𝑖 denote

the inverse of the number of draws it takes for a winning number 𝑖 to show

up again as a winning number. A positive coefficient of 𝐷 indicates that

a winning draw promotes the popularity of a winning number (Hot-Hand

Fallacy) while a negative one undermines the popularity of a number (Gam-

bler’s Fallacy). Besides, I define the other independent variable 𝐿𝑜𝑔𝐿𝑎𝑠𝑡𝑅𝑖.

It is the logarithmic value of the payout rate when the number 𝑖 last won.

3 Note that such a tendency does not stand out in the mean statistic since the mean
of numbers repeating within one week is really high due to an outlier. 3D number 149
was drawn as the winner on Feb 13, 2008. One week later, when the same number 149
came out again as the winner, the payout ratio shoot 200.25%, the highest level recorded
in history. This noise explains the high mean and standard deviations among winner
repeating within one week
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Tab. 4.3: Results of Linear Regression on 3D Numbers Game
3D

Number of Observations 95
Constant 𝛼 −0.296∗∗∗

Delay 𝛽 -.762∗∗∗

Previous Payout 𝛾 .228∗∗

Adjusted 𝑅2 0.156
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

A positive coefficient of 𝐿𝑜𝑔𝐿𝑎𝑠𝑡𝑅𝑖 shows that the popularity of a number

persists. I specify the following estimation for a repeating winner i:

𝐿𝑜𝑔𝑅𝑖 = 𝛼+ 𝛽𝐷𝑖 + 𝛾𝐿𝑜𝑔𝐿𝑎𝑠𝑡𝑅𝑖 + 𝜖𝑖. (4.1)

Among the parameters, 𝛼 is a constant, 𝛽 captures the effect of a winning

draw, 𝛾 indicates the popularity of a number. Consistent with Table 4.2, I

only select winning numbers that repeat within 7 weeks. The regression

results are shown in Table 4.3. The coefficient 𝛽 is estimated to be −.762

and is significantly negative at the 1% level. It indicates that the expected

payout value of a number drops by 17.3%(= 10−.762) one draw after it wins

the prize, keeping other variables constant. In all, if the payout rate of

a number is 0.5, the regression model predicts a mean payout of the same

number is 0.07 one draw after it wins, 0.362 ten draws after it wins and 0.395

twenty draws after it wins. Both the statistical data and regression results

suggest that Gambler’s Fallacy exists among the players in the 3D lottery

game.
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Tab. 4.4: Prize Table and Winning Odds in 4D Numbers Game
Prize Category Payout per Wager Odds

1st Prize 2000 1 in 10000
2nd Prize 1000 1 in 10000
3rd Prize 500 1 in 10000
10 Starter 250 1 in 1000

10 Consolation 60 1 in 1000

4.4.2 Hot-Hand Fallacy in 4D numbers game

In the 4D lottery game, players bet on numbers selected from 0000 to 9999.

Sales for each draw start a week before and close at 6pm on the draw day.

Minimum cost of a bet is 1 local currency. 23 4D numbers are drawn as

winning numbers 3 times a week. The 23 winning numbers are generated

with replacement by rolling 4 boxes that contain 10 balls in each 4. There

are 5 prize categories. See in Table 4.4 the payout to each prize category and

winning odds.

I obtained data from a game operator in the South East Asia region, with

information on 156 draws that covers a one-year period. The dataset consists

of 23 winning numbers and sales volumes of each 4D number in each draw.

I want to investigate how a winning draw affects the sales of the winning

numbers in subsequent draws. To account for daily effects, I use betting

proportion as an indicator and it is defined as the ratio of the sales volume

of a 4D number to the total sales volume. I examine all winning numbers

from draw 1 to draw 100 and calculate their betting proportion respectively

on the day they are drawn, and subsequent 56 draws. About 40% increase

in sales immediately follows a winning draw, suggesting Hot-Hand Fallacy

4 This means that with slight chance there might be repetitions among the 23 winning
numbers.
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Tab. 4.5: Results of Linear Regression on 4D Numbers Game
Number of Observations 157

Constant 𝛼 −.452∗∗∗

Delay 𝛽 0.114∗∗∗

Previous Payout 𝛾 0.886∗∗∗

Adjusted 𝑅2 0.738
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

prevail in the aggregate level.

Next, I run a regression model with the data in 4D numbers game. The

model is similar to the one defined in equation (4.1). Due to the presence

of different prize categories, I use the betting proportion instead of payout

ratio to indicate the popularity of a number 5. Again, let 𝐿𝑜𝑔𝑅𝑖 denote

the log value of betting proportion and 𝐿𝑜𝑔𝐿𝑎𝑠𝑡𝑅𝑖 the log value of betting

proportion when winner 𝑖 last won. Similar to the analysis in the 3D game,

I use data that repeats within 7 weeks (21 draws). The regression results

are shown in Table 4.5 - contrary to the 3D game, the parameter in our

regression model is significantly positive, which shows that winning in the

current draw has a positive impact on subsequent sales. These compelling

evidence suggests that players in 4D numbers game are subject to Hot-Hand

Fallacy.

I use the 4D sales data to validate further the basic assumption of this

paper: that the players recognize basic patterns from the winning numbers

appearing in the past draws. I say that a 4D number 𝑖 is a “near miss” in

the current draw, if it is “similar” to a winning number, but not identical. I

specify two patterns of “near miss”: Permutation, and Digit Replacement. If

5 Note that in the 3-D numbers game, the payout ratio is simply the betting proportion
times the prize.
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a player bets on a number that gets all the 4 digits right but in a wrong order,

a Permutation near miss occurs. On the other hand, if a number matches 3

digits of a winning number in the right position correctly, the bet is considered

a Digit-Replacement near miss. Both field and lab research evidence indicate

that near miss can encourage more participation in lottery games (cf. Reid

(1986), Kassinove and Schare (2001)). These results are supported by Clark

et al. (2009) in their recent research in neuroscience. They also report that

game operators manipulate the frequency of near misses to generate more

sales. The near miss effect is a prime suspect to a fundamental psychological

factor leading to problem gambling.

In the following, I test whether there exists “near miss” effect in the

4D sales data. I draw insights using data from the 8th draw to the 146th

draw. I calculate the betting proportions of the near-miss numbers on the

day the corresponding winning numbers are drawn, 7 draws before these

numbers are drawn, and 1st, 2nd, 3rd, 7th and 14th draw after these number

are drawn. Table 4.6 lists the median value of the betting proportions of

the first-prize winning numbers, 23 prize winning numbers, and near miss

numbers in specific draws. As illustrated in Table 4.6, both patterns of near

miss gain popularity after it hits a draw. This effect is more evident for first

prize winning numbers, with surge of relative sales to about 102%. Hence

the hot hand fallacy on winning numbers spill over even to numbers that are

a ”near miss”, although the effect on sales is less significant.
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Tab. 4.6: Lagged Average Betting Proportion of All Winning Numbers
Lag 23 winning numbers 1st Prize Winner Permutation Digit Replacement
-7 0.0838 0.0842 0.0991 0.099
0 0.0846 0.0848 0.0992 0.0992
1 0.1185 0.1712 0.1175 0.1068
2 0.1025 0.1434 0.1116 0.1049
3 0.0959 0.1272 0.1093 0.1041
7 0.0884 0.1135 0.1052 0.1021
14 0.0868 0.1075 0.1032 0.101
20 0.0852 0.096 0.1021 0.1004

4.5 The Model

In this section, I create a simple model in which a sequence of random out-

comes are generated and build a Bayesian updating model to investigate

under what conditions different game designs might lead to different biases

in the perception of randomness.

In each period 𝑡, suppose that a set of random outcomes 𝑊𝑡 is produced

according to a stochastic data-generating process 𝜌, under which the out-

comes are independently and identically distributed (i.i.d.). Denote Ω as the

set that consists of all possible outcomes. 𝑊𝑡 is a subset of Ω. For example,

Ω contains all the possible values of returns of a mutual fund and 𝑊𝑡 is the

realized return in period 𝑡. Alternatively, in a 4D lottery game, Ω consists of

all integers ranging from 0 to 9999 and 𝑊𝑡 is a set that contains 23 integers

from 0 to 9999 - the 23 winning numbers drawn in period 𝑡.

Both current literature and anecdotal evidence demonstrate that agents

exhibit different kind of beliefs even when facing purely random outcomes. To

account for these differences, I assume that an agent possesses beliefs taking

form of a finite collection of theories 𝒯 . Each theory offers an explanation
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of the outcomes observed. Theories that attempt to explain the data can be

interpreted as probability distributions (Olszewski and Sandroni (2008)).

Denote by Δ𝑊 the set of probability distributions over 𝑊 and ℋ𝑡 =

{𝑊1,𝑊2, ⋅ ⋅ ⋅ ,𝑊𝑡} the set of possible histories. A theory is formally defined as

a function 𝜏 : ∪𝑡≥0ℋ𝑡 7→ Δ𝑊 . 𝜏 defines a probability distribution of possible

outcomes in next period given the set of possible history ℋ𝑡. I assume that

𝜏 satisfies the following conditions:

1. 𝜏 is a stationary process,

2. 𝜏 is a Markov processes of order 𝑟,

3. 𝜏 gives positive probability to all finite-length histories of outcomes.

Condition 1 and 2 imply that theories are time-invariant and the agent

has such a limited memory that he only recalls the outcomes in the previous

𝑟 periods. Note that the third condition involves no loss of generality. Any

theory that assigns zero probability to certain possible outcomes would be

eventually discarded with probability one after sufficient many periods.

The agent has a prior belief 𝑞0 over theories: 𝑞0 ∈ Δ𝒯 . 𝑞0(𝜏) gives a pri-

ori likelihood that 𝜏 explains the output sequence. For the ease of exposition,

I assume that the agent starts to update his/her belief after observing the first

𝑟 outcomes. For a given output sequence, let 𝑞𝑡 be the agent’s posterior belief

after observing the first 𝑡 (𝑡 ≥ 𝑟) outcomes. 𝑞𝑡(𝜏) = 𝑃𝑟(𝜏 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡).

I denote by 𝜏(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) the likelihood of getting an outcome

𝑊𝑡+1 given the previous sets of outcomes 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡 under theory 𝜏 :

𝜏(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) = 𝑃𝑟(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡; 𝜏).
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Assume the agent is perfectly Bayesian. Then the posteriors are computed

according to Bayes’ rule:

𝑞𝑡+1(𝜏) = 𝑞𝑡(𝜏) ⋅ 𝜏(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)∑
𝜏∈𝒯 𝑞𝑡(𝜏) ⋅ 𝜏(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

. (4.2)

𝑞𝑡(𝜏) can be interpreted as the weight assigned to theory 𝜏 after observing

the first 𝑡 outcomes.

One question to ask is to which extent different theories explain a se-

quence of outcomes. By condition (3), I know that no theory refutes a finite

sequence of outcomes. Two probability distributions 𝑃 and 𝑄 are said to

be orthogonal whenever there exists an event ℰ such that ℰ occurs almost

surely under 𝑃 and almost never under 𝑄. The following lemma demon-

strates that two distinct (orthogonal) theories satisfying conditions (1)–(3)

provide explanations for disjoint collections of output sequences.

Lemma 2. Any two distinct processes 𝜏1 and 𝜏2 that satisfy conditions (1)–(3)

are such that, for all periods 𝑡 and finite histories 𝑊1, . . . ,𝑊𝑡, the conditional

distributions 𝜏1(⋅ ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) and 𝜏2(⋅ ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) are orthogonal.

Proof.

See Appendix II.

Exploiting the result in Lemma 1, I show in the following proposition

that the outcomes will eventually be interpreted by the truth data-generating

process 𝜌 , as long as the agent considers 𝜌 as a possible theory, i.e., 𝜌 ∈ 𝒯 .
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Proposition 8. For every sequence of outcomes 𝑊1,𝑊2, . . . generated by 𝜌,

as long as 𝜌 ∈ 𝒯 , the posterior weight that the agent assigns to the true

data-generating process converges towards one, i.e., lim𝑡→+∞ 𝑞𝑡(𝜌) = 1.

Proof. See Appendix II.

Proposition 1 states that when the agent is perfectly Bayesian and the

true theory is considered possible, he/she will eventually learn the truth

for almost all sequences. I stress that this fact is true regardless of the

prior belief of the agent, as long as the agent assigns a positive weight, even

light, to the true data generating process. Concretely, the result means

that, even if an agent starts with a strong bias towards alternative theories,

the bias eventually self-corrects through Bayesian revision as observations

accumulate.

What will happen if the agent’s prior belief does not assign any weight

to the truth, i.e., 𝜌 /∈ 𝒯 ? Will the agent’s belief converge, and if so, which

biased belief will it converge to? In what follows, I incorporate “pattern

seeking” in our model and explore the conditions under which Gambler’s

Fallacy or Hot-Hand Fallacy prevails.

Human subjects tend to seek certain types of patterns among elements

in and between the (possibly random) outcomes. These patterns capture the

idea that one element is intuitively related to another. In basketball game,

agents readily believe that a series of shots taken by the same player are re-

lated, even though complex analysis show they are statistically independent

of each other. To capture this notion of relationship, I use a relationship func-



4. Topic 3: Pattern Recognition and Biased Perception of Randomness 119

tion 𝜋 to model such patterns. In particular, 𝜋 ≡ 𝜋(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) records

a set of possible outcomes that manifest the patterns an agent might rec-

ognize from the previous outcomes 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡. These outcomes will be

accorded special attention and treated differently from the outcomes outside

of the set.

Let Π be the set of all relationship functions assumed plausible. I call

Π(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) the “pattern set”. It should be noted that the patterns

recognized from a set of outcomes are generally subjective, and I do not

attempt to explicitly describe the elements in Π. Intuitively, the larger the

set of outcomes, the more likely a recognized pattern is reinforced by new

“evidence”. Due to limited attention of the agents, Π is kept reasonably

small. As I show below, it is precisely the quantity of available patterns–or

to be exact, their probability mass–that eventually determines whether an

agent becomes subject to the Hot-Hand or Gambler’s Fallacy in the long run.

Define an indicator

ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1) ≡ 𝜒{𝑊𝑡+1

∩
Π(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) ∕= ∅}.

ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1) = 1 if the outcome in period 𝑡 + 1 and the previous 𝑟

outcomes are related. Since the outcomes 𝑊𝑖’s in each period are indepen-

dently and identically generated by 𝜌, the indicator ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1) is

independent of 𝑡.

To illustrate how the size of the outcomes affects the pattern set and

𝐸(ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1)), suppose I randomly generate 𝑛 3-digit integers

ranging from 0 and 999 in each period. In each round, the agent observes
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𝑛 outcomes and forms a pattern set. For sake of simplicity, assume the

agent has a memory of only one period, i.e., 𝑟 = 1. Suppose the relation-

ship function contains “identity”, “permutation”, and “one-digit replace-

ment” functions. The “identity” function assigns the same 𝑛 outcomes to

the pattern set Π. The “one-digit replacement” function keeps two digits

of each of the 3-Digit outcomes and replaces the last with a different digit

chosen from 0 to 9. For example, this function assign an outcome 123 to

{023, 223, 323, 423, 523, 623, 723, 823, 923, 103, 113, 133, 143, 153, 163, 173, 183, 193, 120, 121,
122, 124, 125, 126, 127, 128, 129}. The “permutation” function assigns the

outcome 123 to {132, 213, 231, 312, 321}. As 𝑛 increase, the size of the pat-

tern set constructed using the above relationship functions will also increase,

and hence the probability of observing an outcome intersecting the pattern

set in the next period will increase. Figure 4.3 demonstrates the numerical

results on the size of the pattern sets and the value 𝐸(ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1))

under different 𝑛. Obviously, as the size of the outcomes 𝑛 increase, the size

of the pattern set increase, so does the probability that two sets are related.

In the following, I assume that the agents do not assign any weight to

the true theory 𝜌. Without loss of generality, I divide the theories into two

classes. The first class of theories 𝒯1 “promote” related outcomes. A theory

𝜏1 in the first class predicts a relatively high probability for outcomes in the

next period that is deemed to be related to those in the previous periods.

Theory 𝜏1 is specified by a parameter 𝛼1, 𝛼1 > 1. The value 𝛼1 indicates the

probability ratio of the related outcome to the unrelated one. With a slight

abuse of notation, I define 𝑅(𝑡+1, 𝑟) ≡ {𝑊𝑡+1 : 𝑊𝑡+1

∩
Π(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) ∕=

∅ ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡}. 𝑅(𝑡+ 1, 𝑟) happens with 𝜌−probability 𝑥(𝑡+ 1, 𝑟). For
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Fig. 4.3: Expected size of the pattern sets and estimated 𝐸(ℛ(𝑊𝑡−𝑟+1, . . . ,𝑊𝑡+1))
(denoted by 𝑥) under different 𝑛

𝑡 = 𝑟 + 1, 𝑟 + 2, . . . ,

𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) =

⎧⎨⎩
𝛼1𝜌(𝑊𝑡+1)

1+(𝛼1−1)𝑥(𝑡+1,𝑟)
if 𝑅(𝑡+ 1, 𝑟)occurs,

𝜌(𝑊𝑡+1)
1+(𝛼1−1)𝑥(𝑡+1,𝑟)

otherwise.

(4.3)

In contrast, the second class of theories 𝒯2 “undermine” related out-

comes. A theory 𝜏2 in this class predicts that patterns are less likely than

under the true data generating process. This class contains theories that

lead to Gambler’s Fallacy. Similarly, 𝜏2 is characterized by a parameter 𝛼2,

0 < 𝛼2 < 1. For 𝑡 = 𝑟, 𝑟 + 1, . . . ,

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡) =

⎧⎨⎩
𝛼2𝜌(𝑊𝑡+1)

1+(𝛼2−1)𝑥(𝑡+1,𝑟)
if 𝑅(𝑡+ 1, 𝑟)occurs,

𝜌(𝑊𝑡+1)
1+(𝛼2−1)𝑥(𝑡+1,𝑟)

otherwise.

(4.4)
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The set of plausible theories is then defined as 𝒯 = 𝒯1 ∪ 𝒯2.

Further, two regularity assumptions on parameters 𝛼1, 𝛼2 are made.

Assumption 1. 0 < 𝛼1 + 𝛼2 − 2 < 2(𝛼1 − 1)(1− 𝛼2).

Assumption 2. log 𝛼1

𝛼2
< 𝛼1 − 𝛼2 and log 𝛼1

𝛼2
< 𝛼1−𝛼2

𝛼1𝛼2
.

The implications of Assumption 1 are two folds. The left-hand sided

inequality guarantees that the sum of 𝛼1 and 𝛼2 is not too small. A smaller

𝛼1 indicates that theory 𝜏1 is closer to the true theory; while a smaller 𝛼2

implies that theory 𝜏2 is more distinct from the true theory. If this constraint

is violated, theory 𝜏1 dominates in the long run. On the other hand, the sec-

ond constraint regulate the two parameters to ensure 𝜏2 does not dominate.

Assumption 2 requires that 𝛼1 is big enough while 𝛼2 is small enough. This

assumption makes sure that both theories are sufficiently different from the

true theory to make the results more meaningful.

Define a function 𝑓(𝑥) = 𝑥 log 𝛼1

𝛼2
+ log 1+(𝛼2−1)𝑥

1+(𝛼1−1)𝑥
. Assumption 1 and 2

lead to the following lemma.

Lemma 3. When Assumption 1 and 2 hold, a unique solution 𝑥∗(0 < 𝑥∗ < 1)

exists that solves 𝑓(𝑥∗) = 0. Besides, 𝑓(𝑥) < 0 when 𝑥 ∈ (0, 𝑥∗) and 𝑓(𝑥) > 0

when 𝑥 ∈ (𝑥∗, 1).

Proof. See Appendix II.
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Figure 4.4 depicts function 𝑓(𝑥) given that 𝛼1 = 5, 𝛼2 = 0.2. The cut-off

probability is around 0.5. As we can see, 𝑓(𝑥) > 0 when 𝑥 > 0.5 while 𝑓(𝑥)

is below zero when 𝑥 < 0.5.
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Fig. 4.4: One illustration of Proposition 2

For simplicity, I assume that the agent considers only 𝜏1 and 𝜏2 plausi-

ble. His prior belief assigns positive weights to both theories, i.e., 𝑞0(𝜏1) >

0, 𝑞0(𝜏2) > 0, 𝑞0(𝜏1) + 𝑞0(𝜏2) = 1. The agent starts updating his/her be-

liefs after observing 𝑟 outcomes according to the Bayes’ Rule and 𝑞𝑟(𝜏1) =

𝑞0(𝜏1), 𝑞𝑟(𝜏2) = 𝑞0(𝜏2). The posterior belief period 𝑡+ 1 is:

𝑞𝑡+1(𝜏1) =
𝑞𝑡(𝜏1) ⋅ 𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)∑
𝑖=1,2 𝑞𝑡(𝜏𝑖) ⋅ 𝜏𝑖(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . .𝑊𝑡)

(4.5)

Which biased belief would the Bayesian updating process converge to?

The following proposition states sufficient conditions under which the Bayesian

updating converges to the theory corresponding to Hot-Hand Fallacy or Gam-
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bler’s Fallacy. Recall that 𝑥(𝑡+ 1, 𝑟) is the probability that the outcomes in

period 𝑡+ 1 and the previous outcomes are related. Define a critical value

𝛽 =
−𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗]

𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗]− 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗]

Proposition 9. Suppose that the theory set 𝒯 contain 𝜏1 and 𝜏2. For every se-

quence of 𝜌−almost outcomes 𝑊1,𝑊2, . . . , the following convergence results

hold:

1) The agent’s belief converges to 𝜏1, i.e., lim𝑡→+∞ 𝑞𝑡(𝜏1) = 1 a.e. as long

as 𝜌(𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗) > 𝛽, ∀ 𝑡 ≥ 𝑟;

2) The agent’s belief converges to 𝜏2 when 𝜌(𝑥(𝑡+1, 𝑟) ≥ 𝑥∗) < 𝛽, ∀ 𝑡 ≥ 𝑟.

Proof. See Appendix II.

Which belief will the updating process converge to if 𝛼1 and 𝛼2 change?

Figure 4.5 plots the relationships between the cut-off probability 𝑥∗ and

𝛼1×𝛼2. I can see that as 𝛼1×𝛼2 increases, the cut-off probability 𝑥∗ becomes

larger. Larger 𝑥∗ suggests that the conditions in result 2) of Proposition 2 is

easier to achieve, i.e., agent’ belief will more likely to converge to Gambler’s

Fallacy. This is because a bigger 𝛼1 × 𝛼2 indicates that 𝜏1 promotes related

outcomes with a higher ratio than 𝜏2 promotes unrelated ones, which means

𝜏2 is closer to the true theory. Therefore, the agent’s belief is more likely to

converge to 𝜏2, which corresponds Gambler’s Fallacy.
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In conclusion, bigger 𝛼1×𝛼2 results in larger 𝑥∗, and Gambler’s Fallacy

is more likely to occur in the long run. On the other hand, Hot-Hand Fallacy

dominates when 𝛼1 × 𝛼2 is small.
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Fig. 4.5: The Cut-off Proportions as a function of 𝛼1 × 𝛼2

I simulate the following scenarios and test the implications of the theory

developed. In the simulation,

1. 𝑁 balls are in a urn and are numbered from 0 to 𝑁 − 1;

2. In each period, 𝑛 balls are drawn independently from the urn. The

drawing process is with replacement, i.e., after a ball is drawn and its

number taken down, it is put back to the urn and then another ball is

drawn;

3. 𝑛 ≪ 𝑁 ;

4. Agents have a limited memory of only one period;
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5. “Equality”, “Permutation” and “One-digit Replacement” are the pos-

sible relationships an agent identifies among the numbers in two sets

of outcomes.

Note that I assume that the winning numbers in the same period are drawn

with replacement, which means the same number may be drawn as a win-

ning number more than once. This case rarely happens though, under the

assumption that 𝑛 << 𝑁 .

I define the set of outcomes in period 𝑡 as 𝑊𝑡 = {𝜔1𝑡, 𝜔2𝑡, . . . , 𝜔𝑛𝑡}, where
𝜔𝑗𝑡, 𝑗 = 1, . . . , 𝑛 denotes a winning number drawn in period 𝑡. Since each

number is randomly and independently drawn with replacement, 𝑃𝑟(𝜔𝑗,𝑡) =

1/𝑁 for 𝑗 = 1, 2, . . . , 𝑛 and 𝑃 (𝑊𝑡) = ( 1
𝑁
)𝑛.

Denote Π(𝑊𝑡) as the set of numbers that are related to 𝑊𝑡 and 𝑚𝑡 =∣
Π(𝑊𝑡) ∣ the size of the set. An agent believes in two possible theories 𝜏1 and

𝜏2. In particular, 𝜏1 and 𝜏2 are defined by:

𝜏1(𝜔𝑗,𝑡+1 ∣ 𝑊𝑡) =

{ 𝛼1

𝑁+(𝛼1−1)𝑚𝑡
if 𝜔𝑗,𝑡+1 ∈ Π(𝑊𝑡)

1
𝑁+(𝛼1−1)𝑚𝑡

if 𝜔𝑗,𝑡+1 /∈ Π(𝑊𝑡)
. (4.6)

𝜏2(𝜔𝑗,𝑡+1 ∣ 𝑊𝑡) =

{ 𝛼2

𝑁+(𝛼2−1)𝑚𝑡
if 𝜔𝑗,𝑡+1 ∈ Π(𝑊𝑡)

1
𝑁+(𝛼2−1)𝑚𝑡

if 𝜔𝑗,𝑡+1 /∈ Π(𝑊𝑡)
, (4.7)

Assume that in the first period when no history is observed, 𝜏1(𝜔𝑗, 1) =

𝜏2(𝜔𝑗, 1) = 1/𝑁 .

In the following, I run a set of matlab experiments under a set of parame-

ters (𝑁, 𝑛, 𝛼1, 𝛼2) to gain a glimpse of the relationships between the direction
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of convergence and the value of the parameters. I first fix 𝑁 = 1000, 𝛼1 = 5

and 𝛼2 = 0.2, and change 𝑛 from 1 to 100. Consistent with the prediction of

the model, the experimental results show that as 𝑛 increases, the process is

more likely to converge to the theory that corresponds to Hot-Hand Fallacy.

Figure 4.6 demonstrates two typical updating processes for 𝑞𝑡(𝜏1) under dif-

ferent size of winning numbers. In this case, note that 𝑥∗ = 𝛽 = 0.5. When

𝑛 = 1, the number of outcomes in the pattern set, at time 𝑡, is at most 336.

Hence 𝑥(𝑡 + 1, 𝑟) < 33/1000 irrespective of the outcome drawn in period 𝑡.

Thus 𝜌(𝑥(𝑡+ 1, 𝑟) > 0.5) = 0 and hence our result indicates that Gambler’s

Fallacy will dominate. On the other hand, when 𝑛 increases to 23, the num-

ber of outcomes in the pattern set increases drastically, and could be as high

as 33 × 23 = 759. It is easy to check that 𝜌(𝑥(𝑡 + 1, 𝑟) > 0.5) > 0.5 in this

case and hence Hot-Hand Fallacy dominates.
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Fig. 4.6: The updating process of 𝑞1(𝜏1) Given 𝑁 = 1000 and 𝑛 = 3, 23.

6 1 from the identity relation, at most 5 more from the permutation relation, and at
most 27 more from the single digit replacement function.
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4.6 Conclusion and Discussions

This paper studies how the innate human nature to seek pattern out of chaos

leads to biased perceptions of randomness. I develop a Bayesian updating

model to examine how beliefs evolve through time. Our model predicts that

when the set of outcomes are relatively large for agents to infer sufficient

patterns, the Hot-Hand beliefs may dominate. The theoretical results are re-

inforced by two datasets collected from two different lottery games played in

the region. One lottery game with single winning number per draw exhibits

Gambler’s Fallacy among players, while the other with multiple winning num-

bers shows Hot-Hand Fallacy. Field data show that once people recognize

enough patterns among the outcomes, they tend to believe that the same

outcome or related outcomes will repeat in the future. This confirms the

prediction from the Bayesian updating model.

The notion that human can be manipulated to believe in the hot hand

fallacy, through appropriate game design, has important ramifications in var-

ious fields. First, it provides a behavioral explanation to the “medium prizes

puzzle” (cf. Haruvy et al (2001)) - why did lottery game operators typically

offer prize distribution of a few large prizes and a large number of medium

one? This is puzzling especially if we assume gamblers are typically risk

seeking. There are two common explanations for this puzzling observation.

One is through the lens of prospect theory - a large number of medium prizes

reduces the probability of losing from near certainty to some smaller proba-

bility. Another explanation follows the line of adaptive learning - that human

behavior is best captured by simple adaptive learning models, and actions
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that did better in the past will tend to be adopted more frequently compared

to actions that did worse. Thus the presence of medium prizes slows down

the punter’s inclination to gamble less. Both explanations, however, failed to

account for the decision biases in the Gambler’s and Hot-Hand fallacies. It

could not explain, for instance, why players in these games normally prefer to

choose their own numbers to bet on. Our theory of pattern seeking provides

another explanation - that a large number of medium prizes can induce more

players to believe in Hot-Hand Fallacy (that a selected set of numbers have

a larger than the true probability of winning the lottery). This reduces the

inclination of the players to quit the game and also to bet on those numbers

they believe to have a larger probability of winning.

Second, it provides guidelines in designing lottery games to induce de-

sirable behavior. There is a recent trend for governments to encourage good

civic behavior through the use of lottery games. Richard Thaler expounds

recently on the merits of this approach 7. New Taipei City in Taiwan re-

cently initiats a lottery as an inducement for dog owners (and other citizens)

to clean up after their pets, in order to win gold ingots worth as much as

$2000. The Singapore government is also experimenting with a new incentive

scheme for commuters to earn credit for each journey taken (triple credit for

off-peak journeys) for a chance to win cash prizes in weekly lotteries. Our

study highlights several features for these lottery games to be more effective

in influencing behavior - that there should be a sufficiently large number of

medium prizes (to induce more hot hand believers), and also to find a mech-

7 See the article “Making Good Citizenship Fun” on New York Times, February 13th,
2012
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anism to allow the players to bet on numbers they believe to have a higher

probability of winning (thus increasing their incentive to participate in the

lottery games through good civic behavior). One way to do this is to use

personalized numbers (instead of random numbers) that the players can eas-

ily relate to draw for the winners. The Dutch government uses this principle

very effectively - one of its state lotteries is based on postal codes. The idea

is to play on people’s feelings of regret, and also to exploit the “lucky store”

effect that has been shown to exist in various lottery games - your chances

of winning will be higher if your postal code has been drawn before (or near

miss) in the previous draws!

Our results also shed light on a question raised in Guryan and Kear-

ney (2008): why lottery players believe that lightning will strike twice in

the case of lottery vendors, but not in the case of numbers? Guryan and

Kearney (2008) have documented a sharp increase in sales for stores that

have sold a winning lottery ticket in the Lotto Texas game, whereas Clot-

felter and Cook (1993) have documented that sales in a pick-3 game falls

sharply after the number is drawn. One speculative explanation offered by

Guryan and Kearney (2008) is along the line of animate/inanimate versus

intended/non-intended distinction - the winning number is drawn from a me-

chanical device, but the location of the winning outlet is chosen deliberately

by the person buying the winning ticket. Another possible explanation can

be offered along the line of pattern set introduced in this paper - there were

669 retail outlets in Texas, and 68 winning jackpots over 2.5 year period of

the study. Furthermore, the data indicates that lucky store effect can linger

for as long as 40 over weeks after a store sold the winning ticket. This means
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that the impression of a store selling a winning ticket has a long memory,

and thus a richer pattern set. This is enough to induce some players in the

game to believe in the hot-hand phenomenon, leading to an increase in sales

for the lucky store. This theory also partially explains why the lucky store

effect is less pronounced in other lottery games played in Texas, such as the

Cash 5 and Texas Two-Step games. The jackpot sizes of these games are

much smaller, and winning the jackpot is less sensational. The memory of

the winners is shorter, and thus the pattern set is more sparse.



5. CONCLUSION AND DISCUSSIONS

The objective of this dissertation has been to investigate three phases in a

typical fact-based decision making process. The three phases include data

collecting, pattern seeking, and performance improvement. The dissertation

is motivated by several industrial data sets. It explores (behavioral) pat-

terns in the pertinent system, then incorporates these patterns into service

system design. As a close loop, this dissertation have gone one step further

to investigate how system design affects behavioral patterns, in particular,

customers’ biased perceptions of randomness. This dissertation focuses on

two areas: health-care management and behavioral economics.

The dissertation consists of three topics, which examine the following

three research questions: 1) Are there simple and universal patterns when

people make choices? 2) How to utilize limited (insufficient) data to de-

sign a robust service system to ensure good performance under all possible

situations? 3) How system design affects behavioral patterns?

The first topic titled “Benford’s Law and Number Selection in Fixed-

Odds Numbers Game” investigates a universal pattern revealed when people

make random choices: the small number phenomenon. There are ample

empirical evidence suggesting that players do not choose all numbers with

equal probability, but have a tendency to bet on (small) numbers that are
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closely related to events around them (e.g., birth dates, addresses, etc.). To

the best of my knowledge, this topic is the first to quantify this phenomenon

and examine its relation to the classical Benford’s law. I use this connection

to develop a choice model that incorporates this universal phenomenon. In

fixed-odds numbers games, the prizes and the odds of winning are known at

the time of placement of the wager. Both players and operators are subject to

the vagaries of luck in such games. Most game operators limit their liability

exposure by imposing a sales limit on the bets received for each bet type,

at the risk of losing the rejected bets to the underground operators. I argue

that the choice of the sales limit is intimately related to the ways players

select numbers to bet on in the games. I exploit the choice model we built

to optimally decide appropriate sales limit to control the risk for the game

operator.

The second topic entitled “Appointment System Design using Copositive

Cones” concerns the design of appointment systems to regulate the usage of

precious resources in a service system. In particular, I investigate a stochas-

tic appointment scheduling and sequencing problem in an outpatient clinic

with a single doctor. The number of patients is fixed, and the problem is

to determine the arrival time and order for each customer. I have collected

data on the service durations of 1021 patients in an local eye clinic. In the

model, I assume that the service durations of the patients are stochastic,

and only the mean and covariance estimates are known. I do not assume

any exact distributional form of the service durations, and solve for distri-

butionally robust schedules that minimize the expectation of the weighted

sum of patients’ waiting time and doctor’s overtime. The scheduling prob-
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lem is formulated as a convex conic optimization problem with a tractable

semi-definite (SDP) relaxation. Using the primal-dual optimality conditions,

I prove several interesting structural properties of optimal schedules. Despite

the required relaxation in computation, I can still obtain near optimal solu-

tions compared to the existing literature. I apply this method in a realistic

setting at an eye clinic and suggest new schedules that can improve the effi-

ciency of the clinic by around 35%. Further, this approach can be extended

to solve the appointment and sequencing problem can be simultaneously,

which can be approximated by a 0-1 SDP problem.

In the third topic I focus on a close-loop of the fact-based decision making

process and investigate how system design in turn affects people’s behaviorial

patterns. Facing a sequence of random outcomes, people may erroneously

impose positive or negative correlations on independent outcomes. The Hot-

Hand Fallacy (belief in positive recency) and the Gambler’s Fallacy (belief in

negative recency) are two most common biases in the perceptions of random-

ness. I shows that game designs might shape biased perception of randomness

due to one embedded human nature, pattern seeking. I develop an economic

setting in which a sequence of random outcomes are generated and build a

Bayesian Updating model to explore conditions under which the Hot-hand

Fallacy or Gambler’s Fallacy appears. Our model implies that the more com-

plex the information set (historical outcomes), where pattern-seeking has its

stronger appeal, the more likely that an agent converges to beliefs giving rise

to the Hot-Hand Fallacy. I collect two sets of field data from gaming industry

to provide a solid foundation and verification of the insights gained from the

model. These results have important implications in problem gambling, risk
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management, and lab experiments where random outcomes are involved.

In summary, the three topics, viewing the issues in fact-based decision

making through multiple methodologies, have contributed to the discipline of

Business Analytics. In addition to the contributions that have already been

highlighted in each topic, this dissertation brings out important perspec-

tives for future BA research. First, the dissertation exhibits the effectiveness

of combining multiple research methodologies in investigating an integrated

fact-based decision making process. These methodologies include empirical

study, experimental research, optimization, and simulation. A planned future

research approached in different ways will certainly bring out fresh insights

in both theory and practice. Second, this dissertation highlights an impera-

tive role of incorporating human behaviors into system design. Continuous

improvement in BA requires investigating the interface between behavioral

economics and service science. It is crucial to examines human behavioral

patterns before trying to improve the service system. Besides, while human

behaviors may affect the system performance, the system may cultivate cer-

tain behavioral patterns in the system. Only taking this recursive effect into

consideration could continuous improvement be made possible.

Future research can continue exploiting the framework built in this dis-

sertation. For example, with individual-level data on price-plan choice and

consumption, I can study patterns in customer choice when a bundle of

products are offered using empirical and experimental approach. Next, per-

formance improvement can be reached through exploring the corresponding

pricing strategy of a company utilizing the optimization and simulation tools.

This dissertation, although a preliminary exploration in BA research, is a sig-
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nificant step in laying the foundations of the framework and providing a road

map for future research in this area.
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6. APPENDICES

6.1 Appendix I: Proofs in Topic 2

Appendix A. Proof of Proposition 3

Proof. Recall equation (3), the waiting time of the 𝑖𝑡ℎ patient in the

appointment system is given by

𝑤𝑖 = max

{
0, 𝑐𝑖−1, 𝑐𝑖−1 + 𝑐𝑖−2, ⋅ ⋅ ⋅ ,

𝑖−1∑
𝑘=1

𝑐𝑘

}
.

In the optimal network flow solution, the unit supply from node 𝑖 will find a

path to destination 𝑠, by maximizing the flow cost among the paths:

(𝑖 → 𝑠), (𝑖 → 𝑖− 1 → 𝑠), . . . , (𝑖 → 𝑖− 1 → . . . 1 → 𝑠).

Hence the flow cost attained by the supply from node 𝑖 is just 𝑤𝑖.
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Appendix B. Proof of Proposition 4

Proof. The proof consists of two parts. In the first part, I show that

problem (C) provides an upper bound to problem (P), i.e. 𝑍 ′
𝑃 (𝒔) ≥ 𝑍𝑃 (𝒔),

∀𝒔. Next, through a constructive approach, I find a sequence of random

variables, �̃�∗
𝜖 that satisfies the moment conditions in the limiting sense and

E [𝑓 (𝒔, �̃�∗
𝜖)] converges to 𝑍 ′

𝑃 (𝒔) when 𝜖 converges to zero, i.e., the bound

provided by (C) is tight.

Step 1. 𝑍 ′
𝑃 (𝒔) ≤ 𝑍𝑃 (𝒔), ∀𝒔.

For any random variable �̃� in ℝ+, it is well-known that there exists a

sequence of simple random variables that increasingly converges to �̃� in every

sample point. Hence, for any valid distribution of the service durations, �̃�, I

can find a sequence of discrete random vectors that increasingly converge to

�̃� in every sample point. Denoted the sequence of discrete random vectors

as
{
�̃�𝑘
}∞
𝑘=1

. Obviously, 𝑓 (𝒔, �̃�) is continuous and increasing in �̃�, so for any

schedule 𝒔,

�̃�𝑘 (𝜔) ↑ �̃� (𝜔) , ∀𝜔 ∈ Ω =⇒ 𝑓
(
𝒔, �̃�𝑘

)
(𝜔) ↑ 𝑓 (𝒔, �̃�) (𝜔) , ∀𝜔 ∈ Ω,

where Ω denotes the sample space. Then from the Monotone Convergence

Theorem,

lim
𝑘→∞

E
[
𝑓
(
𝒔, �̃�𝑘

)]
= E [𝑓 (𝒔, �̃�)] .

Since the feasible space of problem (C) is closed and E
[
𝑓
(
𝒔, �̃�𝑘

)]
is

attainable by (C) for every 𝑘, E [𝑓 (𝒔, �̃�)] is attainable by (C), too. Hence

for any appointment schedule and any service time distribution, 𝑍 ′
𝑃 (𝒔) ≥
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E [𝑓 (𝒔, �̃�)]. Therefore, 𝑍 ′
𝑃 (𝒔) ≥ 𝑍𝑃 (𝒔), ∀𝒔.

Step 2. 𝑍 ′
𝑃 (𝒔) ≤ 𝑍𝑃 (𝒔), ∀𝒔.

Let 𝑍∗ be an optimal solution to problem (C). As shown before, I can

decompose 𝑍∗ into

𝑍∗ =
∑
𝑘∈𝐾+

𝜋(𝑘)∗2

⎛⎜⎜⎜⎜⎝
1

𝒕(𝑘)∗
𝜋(𝑘)∗

𝒗(𝑘)∗
𝜋(𝑘)∗

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1

𝒕(𝑘)∗
𝜋(𝑘)∗

𝒗(𝑘)∗
𝜋(𝑘)∗

⎞⎟⎟⎟⎟⎠
𝑇

+
∑
𝑘∈𝐾0

⎛⎜⎜⎜⎜⎝
0

𝒕(𝑘)∗

02𝑛×1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0

𝒕(𝑘)∗

02𝑛×1

⎞⎟⎟⎟⎟⎠
𝑇

,

where 𝐾+ and 𝐾0 are finite. For 𝜖 ∈ (0, 1), I define a sequence of random

vectors �̃�∗
𝜖 as follows:

⎧⎨⎩
P
(
�̃�∗

𝜖 =
𝒕(𝑘)∗
𝜋(𝑘)∗

)
= (1− 𝜖2)𝜋(𝑘)∗2, ∀𝑘 ∈ 𝐾+

P

(
�̃�∗

𝜖 =

√
∣𝒦0∣𝒕(𝑘)∗

𝜖

)
= 𝜖2 1

∣𝒦0∣ , ∀𝑘 ∈ 𝐾0

where ∣𝐾0∣ denotes the cardinality of the set 𝐾0. �̃�∗
𝜖 is a valid probability

distribution because

∑
𝑘∈𝒦+

(1− 𝜖2)𝜋(𝑘)∗2 +
∑

𝑘∈𝒦0

𝜖2 1
∣𝒦0∣ = (1− 𝜖2)

∑
𝑘∈𝒦+

𝜋(𝑘)∗2 + 𝜖2
∑

𝑘∈𝒦0

1
∣𝒦0∣

= (1− 𝜖2) + 𝜖2

= 1

Moreover, �̃�∗
𝜖 is a valid service time distribution in the limiting sense, i.e.,

the moment conditions for the service time distribution are satisfied by �̃�∗
𝜖
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when 𝜖 ↓ 0,

E[�̃�∗
𝜖 ] =

∑
𝑘∈𝒦+

𝒕(𝑘)∗
𝜋(𝑘)∗ (1− 𝜖2)𝜋(𝑘)∗2 +

∑
𝑘∈𝒦0

√
∣𝒦0∣𝒕(𝑘)∗

𝜖
𝜖2 1

∣𝒦0∣

= (1− 𝜖2)
∑

𝑘∈𝒦+

𝒕(𝑘)∗𝜋(𝑘)∗ + 𝜖
∑

𝑘∈𝒦0

𝒕(𝑘)∗√
∣𝒦0∣

→
𝜖↓0

∑
𝑘∈𝒦+

𝒕(𝑘)∗𝜋(𝑘)∗

= 𝝁

E[�̃�∗
𝜖 �̃�

∗𝑇
𝜖 ] =

∑
𝑘∈𝒦+

(
𝒕(𝑘)∗
𝜋(𝑘)∗

)(
𝒕(𝑘)∗
𝜋(𝑘)∗

)𝑇
(1− 𝜖2) 𝜋(𝑘)∗2 +

∑
𝑘∈𝒦0

(√
∣𝒦0∣𝒕(𝑘)∗

𝜖

)(√
∣𝒦0∣𝒕(𝑘)∗

𝜖

)𝑇

𝜖2 1
∣𝒦0∣

= (1− 𝜖2)
∑

𝑘∈𝒦+

𝒕(𝑘)∗𝒕(𝑘)∗𝑇 +
∑

𝑘∈𝒦0

𝒕(𝑘)∗𝒕(𝑘)∗𝑇

→
𝜖↓0

∑
𝑘∈𝒦

𝒕(𝑘)∗𝒕(𝑘)∗𝑇

= Σ

As 𝜖 ↓ 0, the random vectors �̃�∗
𝜖 converge almost surely (a.s.)1 to �̃�∗

defined as

P

(
�̃�∗ =

𝒕(𝑘)∗

𝜋(𝑘)∗

)
= 𝜋(𝑘)∗2, ∀𝑘 ∈ 𝐾+.

From the Continuous Mapping Theorem,

�̃�∗
𝜖 → �̃�∗ 𝑎. 𝑠. =⇒ 𝑓(𝒔, �̃�∗

𝜖) → 𝑓(𝒔, �̃�∗) 𝑎. 𝑠.

Furthermore, since the feasible space for 𝑓(𝒔, �̃�∗
𝜖) is bounded, i.e., every fea-

sible solution 𝒚(�̃�) ≤ 𝐾𝒆, for some 0 < 𝐾 < ∞, where 𝒆 is a vector of ones.

1 Rigorously speaking, the convergenc of �̃�∗
𝜖 to �̃�∗ is a weak convergence, i.e., conver-

gence in distribution. However, since it is up to our construction on �̃�∗
𝜖 and �̃�∗, from

Skorohod’s Theorem, I can construct them in the same probability space with the same
probability measure and �̃�∗

𝜖 converges to �̃�∗ almost surely.
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Hence, the second moment of 𝑓(𝒔, �̃�∗
𝜖) is bounded for all 𝜖 ∈ (0, 1), i.e.,

E [𝑓(𝒔, �̃�∗
𝜖)

2] ≤ ∑
𝑘∈𝒦+

𝐾2

[(
𝒕(𝑘)∗
𝜋(𝑘)∗ − 𝒔

)𝑇
𝒆

]2
(1− 𝜖2)𝜋(𝑘)∗2

+
∑

𝑘∈𝒦0

𝐾2

[(√
∣𝒦0∣𝒕(𝑘)∗

𝜖
− 𝒔

)𝑇

𝒆

]2
𝜖2 1

∣𝒦0∣

≤ ∑
𝑘∈𝒦+

𝐾2
[
𝒕(𝑘)∗𝑇𝒆

]2
+
∑

𝑘∈𝒦0

𝐾2
[
𝒕(𝑘)∗𝑇𝒆

]2
< ∞

The finiteness of the second moment implies that the sequence 𝑓(𝒔, �̃�∗
𝜖) is

uniformly integrable. Therefore, I have

lim
𝜖↓0

E [𝑓(𝒔, �̃�∗
𝜖)] = E [𝑓(𝒔, �̃�∗)] .

For any schedule 𝒔, define the space of all feasible first and second mo-

ments supported on ℝ𝑛
+ and the corresponding expected objective value as

𝒦(𝒔) =

{
𝜆
(
1, �̂�, Σ̂, 𝑓

)
: 𝜆 ≥ 0, 𝑓 = E [𝑓 (𝒔, �̃�)] , for some �̃� ∼

(
�̂�, Σ̂

)+}
.

It can be easily verified that 𝒦(𝒔) is a convex cone. Then the closure of 𝒦(𝒔)

(denoted as 𝒦(𝒔)) would be a closed convex cone. For every 𝜖 ∈ (0, 1), I have

(
1,E[�̃�∗

𝜖 ],E[�̃�
∗
𝜖 �̃�

∗𝑇
𝜖 ],E[𝑓(𝒔, �̃�∗

𝜖)]
) ∈ 𝒦(𝒔).
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Hence, the limit of this sequence of points also lies in the closure, i.e.,

lim
𝜖↓0
(
1,E[�̃�∗

𝜖 ],E[�̃�
∗
𝜖 �̃�

∗𝑇
𝜖 ],E[𝑓(𝒔, �̃�∗

𝜖)]
) ∈ 𝒦(𝒔),

or equivalently,

(1,𝝁,Σ,E [𝑓(𝒔, �̃�∗)]) ∈ 𝒦(𝒔).

Since the point (1,𝝁,Σ, 𝑍𝑃 (𝒔)) lies on the boundary of this closed convex

cone, I have 𝑍𝑃 (𝒔) ≥ E [𝑓(𝒔, �̃�∗)]. Thus,

𝑍𝑃 (𝒔) ≥ E [𝑓(𝒔, �̃�∗)]

≥ ∑
𝑘∈𝒦+

⎡⎢⎣
⎛⎜⎝ 𝒕(𝑘)∗

𝜋(𝑘)∗ − 𝒔

0𝑛×1

⎞⎟⎠
𝑇

𝒗(𝑘)∗
𝜋(𝑘)∗𝜋(𝑘)

∗2

⎤⎥⎦
= 𝑌 (𝒔) ∙ 𝑍∗

= 𝑍 ′
𝑃 (𝒔)

Therefore, I have completed the proof.

Remark 6. It is clear from the above proof that decomposition (3.5) does

not give the exact worst case distribution, but merely provides us a way to

construct a sequence of distributions that satisfies the moment conditions

and approximates the objective value 𝑍𝑃 (𝒔) in the limiting sense. In fact, I

do not have an explicit characterization of the worst case distribution.
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Appendix C. An Example on Strong Conic Duality

Consider a simple two dimensional problem as follows for any 𝑌 ∈ ℝ2×2 and

𝑏 ∈ ℝ:
𝑍𝑃 := max 𝑌 ∙ 𝑍

𝑠.𝑡. 𝑍1,1 = 1

𝑍 ∈ 𝒟

where

𝒟 := conv

⎧⎨⎩
⎛⎜⎝ 𝜋

𝑣

⎞⎟⎠
⎛⎜⎝ 𝜋

𝑣

⎞⎟⎠
𝑇

: 𝜋 ≥ 0, 𝑣 ≥ 0, 𝑣 = 𝑏𝜋

⎫⎬⎭ .

Clearly, 𝒟 is not fully dimensional, since dim(𝒟) = 1. In this case,

{𝑍 : 𝑍11 = 1, 𝑍 ∈ 𝒟} =

⎧⎨⎩
⎛⎜⎝ 1 𝑏

𝑏 𝑏2

⎞⎟⎠
⎫⎬⎭ ,

so

𝑍𝑃 = 𝑌 ∙

⎛⎜⎝ 1 𝑏

𝑏 𝑏2

⎞⎟⎠ .

On the other hand, the dual cone of 𝒟 is

𝒟∗ =

⎧⎨⎩𝑊 : 𝑊 ∙

⎛⎜⎝ 1 𝑏

𝑏 𝑏2

⎞⎟⎠ ≥ 0

⎫⎬⎭ ,
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and the dual optimum

𝑍𝐷 := min

⎧⎨⎩𝛼 : 𝑊 =

⎛⎜⎝ 𝛼 0

0 0

⎞⎟⎠− 𝑌 ∈ 𝒟∗

⎫⎬⎭ = 𝑌 ∙

⎛⎜⎝ 1 𝑏

𝑏 𝑏2

⎞⎟⎠ = 𝑍𝑃 .

Appendix D. Proofs of the Propositions in Section 3.6

Before presenting the proofs, I first define the necessary dual variables of (S).

Let 𝑍 be the dual variables of the copositivity constraint. Note that 𝑍 is

exactly the conic variable in (C), i.e., 𝑍 ∈ 𝒟. Denote

⎧⎨⎩ 𝑍1,𝑛+1+𝑖 = 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛

𝑍1,2𝑛+1+𝑖 = 𝑧𝑖+1, 𝑖 = 1, 2, . . . , 𝑛

Then from the probabilistic interpretation on the decomposition of 𝑍 shown

in (3.5), I have

⎧⎨⎩ 𝑦𝑖 = E [𝑦𝑖 (𝒔, �̃�)] , 𝑖 = 1, 2, . . . , 𝑛

𝑧𝑖+1 = E [𝑧𝑖+1 (𝒔, �̃�)] , 𝑖 = 1, 2, . . . , 𝑛

where (𝒚(𝒔, �̃�), 𝒛(𝒔, �̃�)) is the optimal solution to 𝑓 (𝒔, �̃�) under the worst

case distribution of �̃�. Define the dual variables of the constraints in (3.8)

by 𝜃 and 𝜆𝑖, where 𝜃 corresponds to the total session time limit constraint,

whereas 𝜆𝑖 corresponds to the non-negativity constraint for 𝑠𝑖.

The proofs are based on the KKT conditions and the network structure

shown in Figure 3.2. I have shown that the Slater’s constraints qualifica-
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tion is satisfied, so the KKT conditions are both necessary and sufficient in

characterizing the optimal solutions.

Proof of Proposition 5

Proof. Assume in the optimal solution, 𝑠∗𝑖 = 0 and 𝑠∗𝑖+1 > 0 for some

𝑖 ∈ {1, 2, . . . , 𝑛 − 1}. Then the cost on arc (𝑖 + 1, 𝑖) in the network is 𝑐𝑖 =

�̃�𝑖 − 𝑠∗𝑖 = �̃�𝑖 ≥ 0. Due to the nature of maximal cost flow problem, any flow

entering node 𝑖 + 1 will choose arc (𝑖 + 1, 𝑖) instead of arc (𝑖, 𝑠) whose cost

is zero in any situations. Then I have 𝑧𝑖+1(�̃�) = 0 for any realization of �̃�,

and consequently E[𝑧𝑖+1] = 0, i.e., in the optimal solution to problem (𝑆),

𝑧∗𝑖+1 = 0.

Recall that 𝜌𝑖 is the cost of the waiting time of the 𝑖𝑡ℎ patient in the

sequence. From the following KKT conditions:

⎧⎨⎩

𝜆∗
𝑖 𝑠

∗
𝑖 = 0

𝜆∗
𝑖+1𝑠

∗
𝑖+1 = 0

𝜆∗
𝑖+1 ≥ 0

𝑦∗𝑖 = 𝜃∗ − 𝜆∗
𝑖

𝑦∗𝑖+1 = 𝜃∗ − 𝜆∗
𝑖+1

𝜌𝑖+1 + 𝑦∗𝑖+1 = 𝑦∗𝑖 + 𝑧∗𝑖+1

I get

𝑠∗𝑖+1 > 0

=⇒ 𝜆∗
𝑖+1 = 0

=⇒ 𝑦∗𝑖+1 = 𝜃∗ − 𝜆∗
𝑖+1 = 𝜃∗

=⇒ 𝑦∗𝑖 = 𝜌𝑖+1 + 𝑦∗𝑖+1 − 𝑧∗𝑖+1 = 𝜌𝑖+1 + 𝜃∗.
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Since 𝑦∗𝑖 = 𝜃∗ − 𝜆∗
𝑖 , I have

𝜌𝑖+1 + 𝜃∗ = 𝜃∗ − 𝜆∗
𝑖

=⇒ 𝜆∗
𝑖 = −𝜌𝑖+1 < 0,

which contradicts 𝜆∗
𝑖 ≥ 0. Hence, the result follows.

Proof of Proposition 6

Proof. By a similar proof as in Proposition 3, all the negative time slots

should be scheduled at the end of the session. Hence, I only need to prove

that there is only one such slot, which is 𝑠∗𝑛+1.

Assume in an optimal schedule, denoted by 𝒔(1), there are at least two

nonpositive time slots, i.e., 𝑠
(1)
𝑛−1 < 0 and 𝑠

(1)
𝑛 < 0. Consider a new schedule,

𝑠(2) defined as ⎧⎨⎩
𝑠
(2)
𝑖 = 𝑠

(1)
𝑖 , ∀𝑖 = 1, 2, . . . , 𝑛− 2

𝑠
(2)
𝑛−1 = 0

𝑠
(2)
𝑛 = 𝑠

(1)
𝑛−1 + 𝑠

(1)
𝑛

Let 𝑇𝐶(1)(�̃�) and 𝑇𝐶(2)(�̃�) be the total waiting time cost for the sched-

ule 𝒔(1) and 𝒔(2), respectively. Note for any service time distribution, �̃�
(𝑘)
𝑛−1 −

𝑠
(𝑘)
𝑛−1 ≥ 0, and �̃�

(𝑘)
𝑛 − 𝑠

(𝑘)
𝑛 ≥ 0, 𝑘 = 1, 2. Then considering the input of the
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last two nodes, i.e., 𝜌𝑛 entering node 𝑛 and 𝜌𝑛+1 entering node 𝑛+ 1, I get

𝑇𝐶(1)(�̃�)− 𝑇𝐶(2)(�̃�) = 𝜌𝑛(�̃�𝑛−1 − 𝑠
(1)
𝑛−1) + 𝜌𝑛+1(�̃�𝑛 − 𝑠

(1)
𝑛 + �̃�𝑛−1 − 𝑠

(1)
𝑛−1)

−[𝜌𝑛(�̃�𝑛−1 − 𝑠
(2)
𝑛−1) + 𝜌𝑛+1(�̃�𝑛 − 𝑠

(2)
𝑛 + �̃�𝑛−1 − 𝑠

(2)
𝑛−1)]

= −𝜌𝑛𝑠
(1)
𝑛−1

> 0

with probability 1.

Thus, 𝒔(1) should never be optimal, and I reach a contradiction.

Proof of Proposition 7

Proof. The proof only makes use of part of the KKT conditions, i.e.,

⎧⎨⎩
−𝑦∗𝑖 + 𝜃∗ − 𝜆∗

𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑛

𝜆∗
𝑖 𝑠

∗
𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑛

𝜃∗ ≥ 0

(6.1)

When 𝑠∗𝑖 > 0, ∀𝑖 ∈ 𝐼 ⊆ {1, 2, . . . , 𝑛}, from the second set of constraints

in equation (6.1), I get

𝜆∗
𝑖 = 0, ∀𝑖 ∈ 𝐼 ⊆ {1, 2, . . . , 𝑛}.

Hence,

𝑦∗𝑖 = 𝜃∗ ≥ 0, ∀𝑖 ∈ 𝐼 ⊆ {1, 2, . . . , 𝑛},
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i.e.,

E [𝑦𝑖(𝒔
∗, �̃�)] = 𝜃∗ ≥ 0, ∀𝑖 ∈ 𝐼 ⊆ {1, 2, . . . , 𝑛}.

Defining the constant 𝐾 := 𝜃 ≥ 0, I get the desired result.

Appendix E: Proof to Theorem 3

Assume that there are 𝑛 patients to be scheduled. For each patient 𝐽𝑗, 𝑗 =

1, 2, ⋅ ⋅ ⋅ , 𝑛, let 𝑝𝑗 denote the allocated appointment interval and 𝑞𝑗 the cor-

responding actual consultation time.

Let 𝒫 = {𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑛} and 𝒬 = {𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑛}. For any given se-

quence 𝜎 and 𝒫 , let 𝐶𝑗(𝒫 , 𝜎) denote the scheduled completion time for patient

𝐽𝑗. Therefore, the appointment time given to patient 𝐽𝑗 under 𝜎 is:

𝑎𝑗(𝒫 , 𝜎) = 𝐶𝑗(𝒫 , 𝜎)− 𝑝𝑗. (6.2)

Let 𝐶𝑗(𝒫 ,𝒬, 𝜎) denote the actual completion time for patient 𝐽𝑗. The

waiting time for this patient is

𝑤𝑗 = 𝐶𝑗(𝒫 ,𝒬, 𝜎)−𝑞𝑗−𝑎𝑗(𝒫 , 𝜎) = (𝐶𝑗(𝒫 ,𝒬, 𝜎)−𝑞𝑗)−(𝐶𝑗(𝒫 , 𝜎)−𝑝𝑗). (6.3)

The objective of the appointment sequencing problem now is to find a se-

quence 𝜎 such that the total patient’s waiting time
∑𝑛

𝑗=1 𝑊𝑗 is minimized. In-

terestingly, this problem is related to the following well-known NP-complete

problem (cf. Gary & Johnson (1979)).
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Numerical 3-Dimensional Matching (N3DM)

Instance: Given three disjoint sets 𝑊,𝑋, 𝑌 , each containing 𝑚 elements, a

size 𝑠(𝑎) ∈ 𝑍+ for each element 𝑎 ∈ 𝑊 ∪𝑋 ∪ 𝑌 , and a bound 𝐵 ∈ 𝑍+.

Question: Can𝑊∪𝑋∪𝑌 be partitioned into𝑚 disjoint sets 𝐴1, 𝐴2, ⋅ ⋅ ⋅ , 𝐴𝑚

such that each 𝐴𝑖 contains exactly one element from each of 𝑊,𝑋 and 𝑌 and

such that, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚,
∑

𝑎∈𝐴𝑖
𝑠(𝑎) = 𝐵?

Proof. I show that given an instance of N3DM, I can construct an instance

of the appointment scheduling problem as follows. Suppose there are 3𝑚+1

jobs such that 𝑝𝑗 = 5𝑀 for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 3𝑚+ 1; and

⎧⎨⎩

𝑞𝑖 = 6𝑀 + 𝑠(𝑖) if 𝑖 ∈ 𝑊

𝑞𝑗 = 4𝑀 + 𝑠(𝑗) if 𝑗 ∈ 𝑋

𝑞𝑘 = 5𝑀 −𝐵 + 𝑠(𝑘) if 𝑘 ∈ 𝑌

𝑞3𝑚+1 = (𝑚2 + 5)𝑀

,

where 𝑀 is a number much larger than 𝐵,e,g., 𝑀 > 𝑚2𝐵. The question is:

can I find a sequence 𝜎 to the appointment scheduling problem such that,

3𝑚+1∑
𝑗=1

𝑤𝑗 ≤ 𝑍 = 𝑚𝑀 + 2
∑
𝑖∈𝑊

𝑠(𝑖) +
∑
𝑗∈𝑋

𝑠(𝑗)?

For notational convenience, I call jobs corresponding to set 𝑊,𝑋, 𝑌 , 𝑊 -type,

𝑋-type and 𝑌 -type respectively. To start with, suppose that the N3DM prob-

lem has a feasible solution. I then can obtain a sequence containing the fol-

lowing𝑚+1 consecutive blocks, where the jobs in Block 𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚,𝑚+1
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correspond to 𝑎 ∈ 𝐴𝑖, and within each 𝐴𝑖 jobs are sequenced in 𝑊,𝑋, 𝑌 or-

der. The 𝑚 + 1th block contains only 𝐽3𝑚+1. By definition, in the above

sequence, 𝐶𝑗(𝒫 , 𝜎) = 5𝑗𝑀 for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 3𝑚 + 1. Also, in the actual

processing, there is no idle time for the machine. In each block, the waiting

time is zero for the 𝑊 -type job, 𝑀 + 𝑠(𝑖) for 𝑋-type job and 𝑠(𝑖) + 𝑠(𝑗)

for 𝑌 -type job, where 𝑠(𝑖) corresponds to the 𝑊 -type job processed in the

first position and 𝑠(𝑗) corresponds to the 𝑋-type job processed in the second

position. Also, the waiting time is zero for 𝐽3𝑚+1. Hence, the total waiting

time equals to

𝑚𝑀 + 2
∑
𝑖∈𝑊

𝑠(𝑖) +
∑
𝑗∈𝑋

𝑠(𝑗) = 𝑍.

Then, suppose that there exists a sequence 𝜎 to the appointment schedul-

ing problem such that
∑3𝑚+1

𝑗=1 𝑤𝑗 ≤ 𝑍 = 𝑚𝑀 + 2
∑

𝑖∈𝑊 𝑠(𝑖) +
∑

𝑗∈𝑋 𝑠(𝑗).

I first claim that in such a sequence, 𝐽3𝑚+1 must be processed in the last

position. Otherwise, after 𝐽3𝑚+1 there are still other patients left and the

waiting time is at least 𝑚2𝑀 , which is larger than 𝑍. This is a contradiction

to our assumption. Note that the waiting time of any patient that is sched-

uled immediately after a 𝑊 -type patient is at least 𝑀 + 𝑠(𝑖). Therefore,

the total waiting time for those patient is at least 𝑚𝑀 +
∑

𝑖∈𝑋 𝑠(𝑖). Now

I show that 𝑋-type patient must be scheduled immediately after a 𝑊 -type

patient. If not, what follows 𝑊 -type patient must be 𝑊 -type or 𝑌 -type

patient. Firstly, if it is 𝑊 -type patient who is scheduled immediately after,

then the total waiting time should be at least (𝑚+ 1)𝑀 +
∑

𝑖∈𝑋 𝑠(𝑖), which

is bigger than 𝑍. Otherwise, if 𝑌 -type patient would be put immediately

after 𝑊 -type patient, then total waiting time for all patients should be at
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least (𝑚+1)𝑀−𝐵, which is also bigger than 𝑍 and a contradiction. In such

a case, in each block, the sequence is 𝑊 -type, 𝑋-type, 𝑌 -type and the total

waiting time of all the patients is 𝑚𝑀 + 2
∑

𝑖∈𝑊 𝑠(𝑖) +
∑

𝑗∈𝑋 𝑠(𝑗) = 𝑍. In

the actual processing, there will not be any idle time for the machine. These

three consecutive jobs 𝑊,𝑋, 𝑌 form a block with total processing time 15𝑀 ,

to ensure that a 𝑊 -type job in the next block can start without waiting.

Namely. in each block I have three jobs and 𝑠(𝑖) + 𝑠(𝑗) + 𝑠(𝑘) = 𝐵.
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Appendix II: Proofs in Section 4.5

Proof of Lemma 2

Consider any two processes 𝜏1, 𝜏2 that satisfy conditions (1)–(3). Take

an arbitrary 𝑡0 with 0 ≤ 𝑡𝑜 ≤ 𝑡. For any given �̂�𝑡−𝑟+1, . . . , �̂�𝑡0 , define

𝜉𝑡(𝑊1,𝑊2, . . . ) =

⎧⎨⎩
1 if 𝑊𝑡 = �̂�𝑡0 , . . . ,𝑊𝑡−𝑡0+1 = �̂�1 ,

0 otherwise .

If 𝑡0 = 0, let 𝜉𝑡 = 1 for all 𝑡. The process 𝜉𝑡 is ℱ 𝑡-measurable. Let 𝜈𝑛 =∑
𝑡≤𝑛 𝜉𝑡. Dawid’s calibration theorem states that a coherent Bayesian is

a well-calibrated one, i.e., the long-run average proportion that an event

happens converges to the estimated probability (Dawid (1982)). According to

this theorem, for 𝜏1− almost every sequence (generated by 𝜏1 almost surely),

if 𝜈𝑛 diverges to infinity, then

lim
𝑛→+∞

1

𝜈𝑛

∑
𝑡≤𝑛

𝜉𝑡

[
𝐼{𝑊𝑡+1 = �̂�𝑡0+1} − 𝜏1(𝑊𝑡+1 = �̂�𝑡0+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

]
= 0 .

Similarly, for 𝜏2-almost every sequence, if 𝜈𝑛 diverges to infinity, then

lim
𝑛→+∞

1

𝜈𝑛

∑
𝑡≤𝑛

𝜉𝑡

[
𝐼{𝑊𝑡+1 = �̂�𝑡0+1} − 𝜏2(𝑊𝑡+1 = �̂�𝑡0+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

]
= 0 .

The conditions I impose make 𝜏1 a recurrent process. 𝜏1 gives positive

probability to any finite history, and for 𝜏1-almost every sequence, 𝜈𝑛 diverges

to infinity. The same is true for 𝜏2. Therefore, if there exists a measurable set
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𝑊 of output sequences that have positive probability under both probability

measures, then there must exist output sequences such that

lim
𝑛→+∞

1

𝜈𝑛

∑
𝑡≤𝑛

𝜉𝑡

[
𝜏1(𝑊𝑡+1 = �̂�𝑡0+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)− 𝜏2(𝑊𝑡+1 = �̂�𝑡0+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

]
= 0 ,

or, after simplification according to conditions (1)–(3),

𝜏1(�̂�𝑡0+1 ∣ �̂�𝑡−𝑟+1, . . . , �̂�𝑡0) = 𝜏2(�̂�𝑡0+1 ∣ �̂�𝑡−𝑟+1, . . . , �̂�𝑡0) .

As the equality must be true for arbitrary 𝑡0 and arbitrary sequences �̂�1, . . . , �̂�𝑡0+1,

it must be the case that 𝜏1 = 𝜏2. The argument carries over directly to the

conditional distributions.

Proof of Proposition 8

I want to show that with 𝜌-probability one on the output sequence,

𝑞𝑡(𝜌) → 1. By Bayes rule,

𝑞𝑡(𝜌) = 𝑞𝑡−1(𝜌) ⋅ 𝜌(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1)∑
𝜏∈𝒯 𝑞𝑡(𝜏) ⋅ 𝜏(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1)

.

Therefore, it suffices to show that, with 𝜌-probability one on the output

sequences 𝑊1,𝑊2, . . . , for all 𝜏 ∈ 𝒯 , 𝜏 ∕= 𝜌,

lim
𝑡→∞

𝜏(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1)

𝜌(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1)
= 0. (6.4)
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Let 𝜌𝑡 = 𝜌(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1) and 𝜏𝑡 = 𝜏(𝑊𝑡 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡−1) be

the respective conditonal distributions of 𝜌 and 𝜏 for the histories of length

𝑡. Consider the stochastic process 𝑧𝑡 = 2𝜏𝑡/(𝜌𝑡 + 𝜏𝑡).

Note that 𝑧𝑡 = 𝐸[𝜏 ∣ ℱ𝑡] where the expectation is taken under the

probability measure 1
2
(𝜏 + 𝜌). By Lévy’s martingale convergence theorem

(See Shiryaev (1995), Chapter 7, Section 4, Theorem 3), 𝑧𝑡 converges
1
2
(𝜏+𝜌)-

almost everywhere to 𝑧, a Radon-Nikodym derivative of 𝜏 with respect to

1
2
(𝜏 + 𝜌). As 𝜌 is absolutely continuous with respect to 1

2
(𝜏 + 𝜌), 𝑧𝑡 also

converges 𝜌-almost everywhere to 𝑧. By lemma 2, as 𝜏 and 𝜌 are orthogonal,

𝜏 is zero for every 𝜌-almost output sequence. Therefore, for every 𝜌-almost

output sequences,

lim
𝑡→+∞

𝑧𝑡 = lim
𝑡→+∞

2
𝜏𝑡

𝜏𝑡 + 𝜌𝑡
= 0,

implying

lim
𝑡→+∞

𝜏𝑡
𝜌𝑡

= 0.

Proof of Lemma 3

Taking the first order derivative of 𝑓(𝑥) yields

𝑓 ′(𝑥) = log
𝛼1

𝛼2

+
𝛼2 − 1

1 + (𝛼2 − 1)𝑥
− 𝛼1 − 1

1 + (𝛼1 − 1)𝑥
.

Thus, I can compute 𝑓 ′(0) = log 𝛼1

𝛼2
+𝛼2−𝛼1 and 𝑓 ′(1) = log 𝛼1

𝛼2
+ 𝛼2−𝛼1

𝛼1𝛼2
.

Assumption 2 implies that 𝑓 ′(0+) < 0 and 𝑓 ′(1−) < 0.

Since 𝑓(0) = 𝑓(1) = 0, I can easily derive that 𝑓(0+) < 0 and 𝑓(1−) > 0.
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The continuity of 𝑓(𝑥) on [0, 1] implies that there exists at least one 𝑥∗ such

that 𝑓(𝑥∗) = 0.

Rewrite 𝑓 ′(𝑥) as follows:

𝑓 ′(𝑥) = log
𝛼1

𝛼2

+
𝛼1 − 𝛼2

(𝛼1 − 1)(1− 𝛼2)

[
𝑥2− 𝛼1 + 𝛼2 − 2

(𝛼1 − 1)(1− 𝛼2)
𝑥− 1

(𝛼1 − 1)(1− 𝛼2)

]−1

.

When Assumption 1 holds, 𝑓 ′(𝑥) increases in [0, 𝛼1+𝛼2−2
2(𝛼1−1)(1−𝛼2)

] and de-

creases in [ 𝛼1+𝛼2−2
2(𝛼1−1)(1−𝛼2)

, 1]. This property ensure that 𝑥∗ is unique and also

𝑓(𝑥) is negative when 𝑥 is below 𝑥∗ and 𝑓(𝑥) is positive when 𝑥 is above 𝑥∗.

Proof of Proposition 9

Firstly, define a critical value

𝛽 =
−𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗]

𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗]− 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗]

Rewriting the Bayes’ Rule as follows:

𝑞𝑡+1(𝜏1) =

(
1 +

𝑞𝑡(𝜏2)

𝑞𝑡(𝜏1)

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

)−1

Since 𝑞𝑡(𝜏2)
𝑞𝑡(𝜏1)

= 𝑞𝑡−1(𝜏2)
𝑞𝑡−1(𝜏1)

⋅ 𝜏2(𝑊𝑡∣𝑊𝑡−𝑟+1,...,𝑊𝑡−1)
𝜏1(𝑊𝑡∣𝑊𝑡−𝑟+1,...,𝑊𝑡−1)

, taking the recursive form into

the formula yields

𝑞𝑡+1(𝜏1) =

(
1 +

𝑞0(𝜏2)

𝑞0(𝜏1)

𝑡∏
𝑗=𝑟

𝜏2(𝑊𝑗+1 ∣ 𝑊𝑗−𝑟+1, . . . ,𝑊𝑗)

𝜏1(𝑊𝑗+1 ∣ 𝑊𝑗−𝑟+1, . . . ,𝑊𝑗)

)−1

.
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To prove that lim𝑡→+∞ 𝑞𝑡+1(𝜏1) = 1 a.e., it is equivalent to show

+∞∏
𝑡=𝑟

𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)
= +∞ a.e..

Take log on both sides,

+∞∑
𝑡=𝑟

log
𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)
= +∞ a.e..

Referring to the definition of 𝜏1 and 𝜏2, I know that 𝜏𝑖(⋅ ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡),

𝑖 = 1, 2 is bounded. Taking expectations on both side of the above equation,

+∞∑
𝑡=𝑟

𝐸

[
log

𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

]
= +∞, a.e.. (6.5)

Recall that 𝑥(𝑡+1, 𝑟) is the conational probability that the current and

previous outcomes is related. Then, it is easy to show that

𝐸

[
log

𝜏1(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

𝜏2(𝑊𝑡+1 ∣ 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡)

]
= log

1 + (𝛼2 − 1)𝑥(𝑡+ 1, 𝑟)

1 + (𝛼1 − 1)𝑥(𝑡+ 1, 𝑟)
+ 𝑥(𝑡+ 1, 𝑟) log

𝛼1

𝛼2

= 𝑓(𝑥(𝑡+ 1, 𝑟))

Take expectations with respect to 𝑊𝑡−𝑟+1, . . . ,𝑊𝑡 on both sides of Equa-

tion 6.5,
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+∞∑
𝑡=𝑟

𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟))] = +∞, (6.6)

It is easy to compute the following:

𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟))]

= 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗] 𝜌(𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗)

+ 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗] 𝜌(𝑥(𝑡+ 1, 𝑟) < 𝑥∗)

Lemma 2 suggests that 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) ≥ 𝑥∗] ≥ 0 and

[𝑓(𝑥(𝑡+ 1, 𝑟)) ∣ 𝑥(𝑡+ 1, 𝑟) < 𝑥∗] < 0. Thus, 𝛽 ∈ (0, 1]. 𝐸 [𝑓(𝑥(𝑡+ 1, 𝑟))] > 0

is equivalent to 𝜌(𝑥(𝑡 + 1, 𝑟) ≥ 𝑥∗) > 𝛽. Therefore, I can show that when

𝜌(𝑥(𝑡 + 1, 𝑟) ≥ 𝑥∗) > 𝛽, ∀𝑡 ≥ 𝑟, Equation 6.6 holds and I prove result 1) in

this proposition.

Similar arguments can be extend to prove result 2).


