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Summary 

In this study, powerful multivariate tools such as Principal Component Analysis (PCA), Partial 

Least Squares (PLS) and Correspondence Analysis (CA) are applied to the problem of fault 

detection, diagnosis and identification and their efficacies are compared. Specifically, CA which 

has been recently adapted and studied for FDD applications is tested for its robustness when 

compared to other conventional and familiar methods like PCA and PLS on simulated datasets 

from three industry-based, high-fidelity simulation models. This study demonstrates that CA can 

negotiate time varying dynamics in process systems as compared to the other methods. This 

ability to handle dynamics is also responsible for providing robustness to CA based FDD 

scheme. The results also confirm previous claims that CA is a good tool for early detection and 

concrete diagnosis of process faults. 

In, the second portion of this work, a new integrated CA and Weighted Pairwise Scatter Linear 

Discriminant Analysis method is proposed for fault isolation and identification. This tool tries to 

exploit the discriminative ability of CA to clearly distinguish between faults in the discriminant 

space and also predict if an abnormal event presently occurring in a plant is related to any 

previous faults that were recorded. The proposed method was found to give positive results when 

applied to simulated data containing faults that are either a combination of previously recorded 

failures or at intensities which are different from those previously recorded. 
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1. INTRODUCTION 

1.1  Fault Detection and Diagnosis  

It is well known that the field of process control has achieved considerable success in the past 40 

years. Such a level of advancement can be attributed primarily to the computerized control of 

processes, which has led to the automation of low-level yet important control actions. Regular 

interventions like the opening and closing of valves, performed earlier by plant operators, have 

thus been completely automated. Another important reason for the improvement in control 

technology can be seen in the progress of distributed control and model predictive systems. 

However, there still remains the vital task of managing abnormal events that could possibly 

occur in a process plant. This task which is still undertaken by plant personnel involves the 

following steps 

1) The timely detection of the abnormal event 

2) Diagnosing the origin(s) of the problem  

3) Taking appropriate control steps to bring the process back to normal condition   

These three steps have come to be collectively called Fault Detection, Diagnosis and Isolation. 

Fault Detection and Diagnosis (FDD), being an activity which is dependent on the human 

operator, has always been a cause for concern due to the possibility of erroneous judgment and 

actions during the occurrence of the abnormal event. This is mainly due to the broad spectrum of 

possible abnormal occurrences such as parameter drifts, process failure or degradation, the size 

and complexity of the plant posing a need to monitor a large number of process variables and the 

insufficiency/non-reliability of process measurements due to causes like sensor biases and 

failures (Venkatasubramaniam et al., 2003a).  
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1.2  The desirable characteristics of a FDD system 

It is essential for any FDD system to have a desired set of traits to be acknowledged as an 

efficient methodology. Although there are several characteristics that are expected in a good 

FDD system, only some are extremely necessary for the running of today's industrial plants. 

Such characteristics include the quick detection of an abnormal event. The term „quick‟ does not 

just refer to the earliness of the detection but also the correctness of the same, as FDD systems 

under the influence of process noise are known to lead to false alarms during normal operation. 

Multiple fault identifiability is another trait where the system is able to flag multiple faults 

despite their interacting nature in a process. In a general nonlinear system, the interactions would 

usually be synergistic and hence a diagnostic system may not be able to use the individual fault 

patterns to model the combined effect of the faults (Venkatasubramaniam et al., 2003a). The 

success of multiple fault identifiability can also lead to the achievement of novel identifiability 

by which a fault occurring may be distinguished as being a known (previously occurred) or an 

unknown (new) one. 

1.3  The transformations in a FDD system 

It is essential to identify the various transformations that process measurements go through 

before the final diagnostic decisions could be made.  

1) Measurement space: This is the initial status of information available from the process. 

Usually, there is no prior knowledge about the relationship between the variables in the 

process. It can literally be called as the plant or process data being recorded at regular 

intervals and can be represented as            where „n‟ refers to the number of variables. 
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2) Feature space: This is the space where the features are obtained from the data utilizing some 

form of prior knowledge to understand process behavior. This representation could be 

obtained by two means, namely feature selection and feature extraction. Feature selection 

simply deals with the selection of certain key variables from the measurement space. Feature 

extraction is the process of understanding the relationship between the variables in the 

measurement space using prior knowledge. This relationship between the variables is then 

represented in the form of a fewer parameters thus reducing the size of the information 

obtained. Another main advantage is that the features cluster well to aid in classification and 

discrimination for the remaining stages. The space can be seen as    [          ] where 

iy is the i
th

 feature obtained.  

3) Decision Space: This space is obtained by subjecting the feature space to meet an objective 

function which could be some kind of discriminant or simple threshold function. It is shown 

as    [          ] where „K’ is the number of decision variables obtained.  

4) Class Space: This space is a set of integers which can be presented as    [       ] that 

are a reference to „M‟ number of failure classes and normal class of data to any of which a 

given measurement pattern may  belong. 

1.4  Classification of FDD Algorithms 

The classification of FDD classifier algorithms is usually based on the kind of search strategy 

employed by the method. The kind of search approach used to aid diagnosis is dependent on the 

way in which the process information scheme is presented which in turn is largely influenced by 

the type of prior knowledge provided. Therefore, the type of prior knowledge would provide the 

basis for the broadest classification of FDD algorithms. This a priori knowledge is supposed to 
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give the set of failures and the relationship between the observations and failures in an implicit or 

explicit manner. The two types of FDD methodologies under this basis include model-based 

methods and process history-based methods. The former refers to methods where fundamental 

understanding of the physics and chemistry (first principles) of the process is used to represent 

process knowledge while, in the latter, data based on past operation of the process is used to 

represent the normal/abnormal behavior of the process. Model based methods can, once again, be 

broadly classified into quantitative and qualitative models.  

An important point to be noted here is that while it is indeed true that any type of model would 

require data finally to obtain its parameter values, and that all FDD methods need to create some 

kind of a model to aid their task. Therefore, the actual significance behind the use of the term 

model based methods is that the physical understanding of the process has already provided 

assumptions for the model framework and the form of prior knowledge. Meanwhile, process 

history methods are equipped with only large heaps of data from where the model is itself 

created from the same in such a form so to have extracted features from the data.  

1.4.1 Quantitative and Qualitative models 

Quantitative models portray the relationships between the inputs and outputs in the form of 

mathematical functions whereas qualitative models represent the same association in the form of 

causal models. 

The work with quantitative models began as early as the late 1970‟s with attempts to apply first 

principles model directly (Himmelblau, 1978) but this was often associated with computational 

complexity rendering the models of questionable utility in real time applications. Therefore, the 

main kind of models usually employed were the ones relating the inputs to the outputs (input- 
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output models) or those related with the identification of the input output link via internal system 

states (State Space models).  

Let us consider a system based on ‘m’ inputs to the system and ‘k’ outputs. Let,  ( )  

[  ( )   ( )    ( )]  be the input signals and  ( )  [  ( )   ( )    ( )]
  be the output 

signals, then the basic system model in the state space form is,                                                                                                   

 (   )    ( )     ( )             (1.1) 

  (   )    ( )     ( )                                                                                                      (1.2) 

where A, B, C and D are parameter matrices with appropriate dimensions and  ( ) refers to the 

state vector.  

The input - output form is given by, 

 ( ) ( )   ( ) ( )                                                                                                                           (1.3) 

where  ( ) and  ( ) are polynomial matrices. 

When the fault does occur, the model will generate inconsistencies between the actual and 

expected value of the measurements. This indicates deviation from normal behavior and such 

inconsistencies are called residuals. The check for such inconsistencies requires redundancy. The 

main task, here, consists of the detection of faults in the processes using the dependencies 

between different measurable signals established through algebraic or temporal relationships. 

This form of redundancy is termed analytical redundancy (Chow & Willsky, 1984; Frank, 1990) 

and is more frequently used than hardware redundancy which involves using more sensors.  
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There are two kinds of faults that are modeled. On one hand, we have additive faults which refer 

to the offset of sensors and other disturbances such as actuator malfunctioning or a leakages in 

pipelines. On the other hand, we have multiplicative faults which represent parameter changes in 

the process model. These changes are known to have an important impact on the dynamics of the 

model. Problems caused by fouling, contamination usually come under this category (Huang et 

al., 2007). Incorporation of terms for both these faults in both state space and input–output 

models can be found in control literature (Gertler, 1991, 1992). As mentioned earlier, residuals 

generated are required to perform FDI actions in quantitative models; this is done on the basis of 

analytical redundancy in both static and dynamic systems. For static systems, the residual 

generator will also be static i.e. a rearranged form of the input-output models (Potter & Suman, 

1977) or material balance equations (Romagnoli & Stephanopoulus, 1981). In dynamic systems, 

residual generations is developed using techniques such as diagnostic observers, Kalman filters, 

parity relations, least squares and several others. Since process faults are known to either affect 

the state variables (additive faults) or the process parameters, it is possible to estimate the state of 

the system using Kalman filters (Frank & Wunnenberg, 1989). Dynamic observers are 

algorithms that estimate the states based on the process model‟s observed inputs and outputs. 

Their aim is to develop a set of robust residuals which will help to detect and uniquely identify 

different faults such that their decision making is not affected by unknown inputs or noise. The 

least squares method is more concerned with the estimation of model parameters (Isermann, 

1989). Parity equations, a transformed version of the state space and input output models have 

also been used for generation of residuals to aid in diagnosis (Gertler, 1991, 1998). Li & Shah 

(2000) developed a novel structured residual based technique for the detection and isolation of 

sensor faults in dynamic systems which was more sensitive as compared to the scalar based 
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counterparts developed by Gertler (1991, 1998). The novel technique was able to provide a 

unified approach to the isolation of single and multiple sensor faults together. A novel FDI 

system for non-uniformly sampled multirate system was developed by Li & Shah (2004) by 

extending the Chow-Willsky scheme from single rate systems to multirate systems. This 

generates a primary residual vector (PRV) for fault detection and then by structuring the PRV to 

have different sensitivity/insensitivity to different faults, fault isolation is also performed. 

As mentioned earlier, quantitative models express the relationship between the inputs and 

outputs in the form of mathematical functions. In contrast, qualitative models present these 

relationships in the form of qualitative functions.  Qualitative models are usually classified based 

on the type of qualitative knowledge used to develop these qualitative functions; these include 

diagraphs, fault trees and qualitative physics.  

Cause-effect relations or models can be represented in the form of signed digraphs (SDG). A 

digraph is a graph with directed arcs between the nodes and SDG is a graph in which the directed 

arcs have a positive or negative sign attached to them. The directed arcs lead from the „cause‟ 

nodes to the „effect‟ nodes. SDGs provide a very efficient way of representing qualitative models 

graphically and have been the most widely used form of causal knowledge for process fault 

diagnosis (Iri et al., 1979; Umeda et al., 1980; Shiozaki et al., 1985; Oyeleye and Kramer, 1988; 

Chang and Yu, 1990). Fault trees models are used in analyzing system reliability and safety. 

Fault tree analysis was originally developed at Bell Telephone Laboratories in 1961. Fault tree is 

a logic tree that propagates primary events or faults to the top level event or a hazard. The tree 

usually has layers of nodes. At each node different logic operations like AND and OR are 

performed for propagation. Fault-trees have been used in a variety of risk assessment and 

reliability analysis studies (Fussell, 1974; Lapp and Powers, 1977). Qualitative physics 
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knowledge in fault diagnosis has been represented in mainly two ways. The first approach is to 

derive qualitative equations from the differential equations termed as confluence equations. 

Considerable work has been done in this area of qualitative modeling of systems and 

representation of causal knowledge (Simon, 1977; Iwasaki and Simon, 1986; de Kleer and 

Brown, 1986). The other approach in qualitative physics is the derivation of qualitative behavior 

from the ordinary differential equations (ODEs). These qualitative behaviors for different 

failures can be used as a knowledge source (Kuipers, 1986; Sacks, 1988).  

1.4.2 Process history based models 

Process history based models are concerned with the transformation of large amounts of 

historical data into a particular form of prior knowledge which will enable proper detection and 

diagnosis of abnormalities. This transformation is called feature extraction, which can be 

performed qualitatively or quantitatively. 

Qualitative feature extraction is mostly developed in the form of expert systems or trend 

modeling procedures. Expert Systems may be regarded as a set of if-else rules set on analysis 

and inferential reasoning of details in the data provided. Initial work in this field has been 

attempted by Kumamato et al. (1984), Niida et al. (1986), Rich et al. (1989). Trend modeling 

procedures tend to capture the trends in the data samples at different timescales using slope 

(Cheung & Stephanopoulos, 1990), finite difference (Janusz & Venkatasubramanian, 1991) 

calculations and other methods after initially removing the noise in the data using noise-filters 

(Gertler, 1989). This kind of analysis facilitates better understanding of the process and hence 

diagnosis.   
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Quantitative procedures are more prompted towards the classification of data samples into 

separate classes. Statistical methods like Principal Component Analysis (PCA) or PLS perform 

this classification on the basis of prior knowledge in class distributions, while non-statistical 

methods like Artificial Neural Networks use functions to provide decisions on the classifiers.  

1.5 Motivation 

In present day industries, plant engineers are on the lookout for tools and methods that tend to be 

more robust in nature i.e. those that indicate less number of false alarms even at the compromise 

of mild delays in detection or relatively less detection rates. The reason for this is that, repeated 

occurrences of false alarms events would leave plant personnel in a state of ambiguity and 

lacking faith in the tool. Another major problem in the industry is multiple fault identifiability 

when some of the faults follow a similar trend and cannot be distinguished clearly leading to 

improper diagnosis.  The part that multiple fault identifiability plays in providing a clear picture 

of the nature of faults in a process will eventually lead to the proper identification of future fault 

i.e. novel fault identifiability. The solution and handling of these three problems are important in 

better running of industrial plants and will eventually lead to greater profits. In this regard, 

statistical tools are found to be the most successful in application to industrial plants. This can be 

attributed to their low requirements in modeling efforts and less a priori knowledge of the system 

involved (Venkatasubramaniam et al., 2003c). The main motivation for this work would be to 

identify a statistical tool which would satisfy the above mentioned traits at an optimum level. 

This is determined by comparing the FDD application of contemporary popular statistical tools 

alongside recent ones on certain examples. 
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Table 2.1: Comparison of Various Diagnostic methods 

 Observer Diagraphs Abstraction 

hierarchy 

Expert 

Systems 

QTA PCA Neural 

networks 

Quick detection 

and diagnosis 
 ? ?     

Isolability        

Robustness        

Novel 

Identifiability 
?    ?   

Classification  

Error 
       

Adaptability     ?   

Explanation 

Facility 
       

Modeling 

Requirement 
       

Storage and 

Computation 
 ? ?     

Multiple fault 

Identifiability 
       

Source: Venkatasubramaniam et al. (2003c). 

Table 1.1 shows the comparison between several methods on the basis of certain traits that are 

expected in FDD tools. It is quite clear from Table 1.1 that statistical tool PCA is almost on par 

with other methods and also seems to satisfy two of the three essential qualities required in the 

industry. PCA, being a linear technique, is prone to only satisfy these qualities as long as the data 

comes from a linear or mildly non-linear system. 

In this regard, the objective of this thesis is to compare a few statistical methods and determine 

which are most effective in FDD operations. The tools involved would include well known and 
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implemented methods such as PCA and PLS alongside Correspondence Analysis (CA) which is 

a recent addition to the FDD area. CA has been highlighted as having the ability to effectively 

handle time-varying dynamics of the process because it simultaneously analyzes the rows and 

columns of datasets. This work will show results which will compare robustness, extent of early 

detection and diagnosis of all the considered techniques. In addition to that, it will be 

demonstrated that an integrated technique featuring CA and Weighted Pairwise Scatter Linear 

Discriminant Analysis (CA-WPSLDA) will provide better multiple fault identifiability and novel 

identifiability as compared to PCA, FDA and WPSLDA. 

1.6 Organization of the thesis 

This thesis is divided into five chapters. Chapter 2 comprises of the literature survey and 

algorithms of the basic conventional methods such as PCA, PLS and CA. A comparison between 

PCA and CA is also made based on previous literature. Chapter 3 will feature results which will 

prove the robustness of CA as a fault detection tool based on the simulated datasets obtained 

from three systems, a Quadruple tank system, the Tennessee Eastman Challenge Process (TEP) 

and a Depropanizer process. Chapter 4 will provide a brief introduction and literature survey to 

feature extraction by FDA and its current role in FDD. This will be followed by a comparison of 

the FDA and CA techniques and the explanation of the integrated CA-WPSLDA technique for 

fault identification. The chapter will end with the application of these techniques to the 

quadruple tank system and Depropanizer process. The final chapter (Chapter 5) will contain the 

conclusions of the study and the prospects for future works. 
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2. LITERATURE REVIEW 

This chapter will focus on the work that had been done in the field of fault detection, diagnosis 

(FDD) and with regard to the multivariate statistical techniques PCA, PLS and CA. The initial 

stages of this chapter will first explain the origins of PCA and PLS as FDD tools followed by an 

explanation of their algorithms and monitoring strategies based on them. This will be succeeded 

by the advances and modifications that have taken place with respect to these methods. A similar 

explanation of CA will then be provided involving its origin and algorithm followed by its 

comparison to PCA and PLS. The chapter will finally conclude stating the advantages of CA as 

compared to the other two methods.  

2.1 Statistical Process Control 

Statistical Process Control (SPC) may be referred to as one of the earliest versions of FDD based 

on statistics. SPC is a statistical procedure which determines if a process is in a state of control 

by discriminating between what is called common cause variation and assignable cause variation 

(Baldassarre et al., 2007). Common cause variation refers to the variations that are inherent in 

the process and cannot be removed without changing the process. In contrast, assignable cause 

variation refers to the unusual disruptions and abnormalities in the process. In this context, a 

process is said to be “in statistical control” if the probability distribution representing the quality 

characteristic is constant over time (Woodall, 2000). Thus, one could check if the process 

adheres to the distribution by setting the parameter values that include the Central Line (CL) or 

tangent, the Upper Control Limit (UCL) and the Lower Control Limit (LCL) for the process 

based on the properties of the distribution. The CL would be the best representation of quality 

while the UCL and LCL would encompass the region for common cause variation. If the data 
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monitored violates the UCL or LCL, one can come to the conclusion that there is the strong 

possibility of an abnormal event in progress. The first control chart to be developed was the 

Shewhart chart (Shewhart, 1931) Chart. The Shewhart chart is the simplest example of a control 

chart based on the Gaussian distribution. The CL in this chart would be the average of all the 

samples which appear to be in the normal region, the LCL is three times the standard deviation 

of the dataset subtracted from the average while the UCL is three times the standard deviation of 

the dataset added to the average. Thus, in accordance with the properties of normal distribution, 

the limits are set such that only 1% of the data points are expected to fall outside the limits ”by 

chance”. SPC gained more prominence with the use of other univariate control charts such as 

Cumulative Sum (CUSUM) (Woodward and Goldsmith, 1964), Exponentially Weighted Moving 

Average (EWMA) (Roberts, 1959; Hunter, 1986) to monitor important quality measurements of 

the final product. The problem with analyzing one variable at a time is that not all the quality 

variables are independent of each other making detection and diagnosis difficult (MacGregor and 

Kourti, 1995). This led to the need to treat all the variables simultaneously, thus creating the 

need for multivariate methods. This problem was at first solved using multivariate versions of all 

the previously mentioned control charts (Sparks, 1992). These methods were the first to use the 

   statistic (Hotelling, 1931), a multivariate form of the Student's t-statistic which would set the 

control limits for the multivariate control charts.  

The main problem encountered then was the fact that a large number of quality and process 

variables were being monitored in process plants due to being measured in process plants owing 

to improvements in instruments as well as their lowered costs. This rendered the application of 

multivariate control charts to be impractical for such high dimensional systems that exhibited 

significant collinearities between variables (Bersimis et al., 2006). There was, therefore, a need 
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for methods that can reduce the dimensions in the dataset and utilize the high correlations 

existing amongst the process as well as quality variables. Such a need led to the use of PCA and 

PLS for FDD tasks. 

2.2 PCA and PLS 

2.2.1 PCA – the algorithm 

PCA is a multivariate dimensional reduction technique that has been applied in the field of 

process monitoring and FDD for the past two decades. PCA transforms a number of possibly 

correlated variables in a dataset into a smaller number of uncorrelated pseudo or latent variables. 

This is done by a bilinear decomposition of the variance-covariance matrix of the dataset. The 

uncorrelated (orthogonal) variables obtained are called the principal components and they 

represent the axes obtained by rotation of the original co-ordinate system along the direction of 

maximum variance. The main assumptions in this method are that the data follows a Gaussian 

distribution and that all the samples are independent of one another. 

The steps involved in the formulation of the PCA model for FDD operations are as follows: 

Consider a dataset organized in the form of a matrix  , with     rows (samples) and    columns 

(variables). This matrix is initially pre-processed and normalized to give   . Normalization is 

necessary when the variable of the dataset will belong to different units and doing so will bring 

all the variables down to a mean value of zero and unit variance. This will ensure that all the 

variables have an equal opportunity to participate in the development of the model and 

subsequent analysis (Bro and Smilde, 2003).    will then be decomposed to provide scores 

(latent variables) and loadings based on the NIPALS algorithm (Wold et al., 1987) or by 

Singular Value Decomposition (SVD) or Eigenvalue decomposition. The SVD or Eigenvalue 
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decomposition method (EVD) is preferred due to its advantages over NIPALS in PCA. These 

include fewer uncertainties associated with the eigenvalues and less round-off errors in the 

calculation (Seasholtz et al., 1990).  

Step 1:  The sample covariance matrix is given by 

    
 

(    )
   

                (2.1) 

Step 2: This covariance matrix    is then subjected to eigenvalue decomposition. 

                         (2.2) 

where matrix   is the diagonal matrix containing the non-negative eigenvalues arranged in 

decreasing order (             ).  Matrix   contains the eigenvectors corresponding to 

the eigenvalues in  . 

Step 3: Formulation of loadings and scores 

                                             (2.3) 

                                               (2.4) 

The loadings    are the eigenvectors in the matrix    corresponding to the eigenvalues. 

The eigenvectors with the largest eigenvalues correspond to the dimensions that have the 

strongest correlation in the data set. The PCA scores   may be defined as transformed variables 

obtained as a linear combination of the original variables based on the maximum amount of 

variance captured. They are the observed values of the Principal Components for each of the    

original sample vectors. 

http://www.worldlingo.com/ma/enwiki/en/Eigenvalue,_eigenvector_and_eigenspace
http://www.worldlingo.com/ma/enwiki/en/Eigenvalue,_eigenvector_and_eigenspace
http://www.worldlingo.com/ma/enwiki/en/Correlation


16 
 

Step 4: Monitoring and Detection 

 In the first step to monitoring, it is essential to choose the number of PCs required to capture the 

dominant information about the process (i.e. the signal space). The selection of   principal 

components could be done through the cross validation (CV) technique (Jackson, 1991) or the 

Cumulative Percentage Variance (CPV) technique. CV involves the splitting of the dataset into 

two (training and testing sets) or more parts a specified number of times. This is followed by the 

calculation and construction of a Predictive Residual Sum of Squares Plot (PRESS) in 

descending order and looks for the “knee” or “elbow” in the curve. The numbers of selected 

components is the one that is at the “knee” or “elbow” of the process plot.  

The      is given by, 

       
∑   

 
   

∑   
  
   

                                           (2.5) 

When the CPV is found to be greater than a value (usually fixed at 80% or 85%), then A is fixed 

as the required number of components. This is then followed by the use of the    and   statistic 

for monitoring purposes.  

The calculation of the    statistic for the historical dataset is given by  

       
   

                                              (2.6) 

where,    represents the scores calculated for the first   PCs and    represent the diagonal 

matrix containing the first   eigenvalues. The    statistic is a representation of the correlation 

within the dataset over several dimensions. It is the measurement of the statistical distance of the 

score values from the centre of the  -dimensional PC space (Mason and Young, 2002). 
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Monitoring of this statistic for any new   dimensional sample   is done by first normalizing it to 

give   . The new score vector   for the sample is given by, 

                      (2.7) 

where,    represents the first   columns of the loadings matrix 

         
                (2.8) 

Thus, the    statistic value of any new sample can be calculated 

 The limit for this statistic for monitoring purposes can be obtained using the F-distribution as 

follows. 

    
  

 (     )

  (    )
  (      )                                                                              (2.9) 

The above mentioned equation expresses the fact that the limit is the value of the F-distribution 

with A and nr-A degrees of freedom at α level of significance (the level of alpha is mostly 90, 95 

or 99 %). Any deviation from normality is indicated when       
 .  

The limitation of the    statistic is that it will only detect an event if the variation in the latent 

variables is greater than the variation explained by common causes. This led to the development 

of the Q-statistic which is the sum of the squares of the residuals of the model and is a measure 

of the variance not captured by the model. 

    (       
 )             (2.10) 

where r is the residual vector and, 

                                                                                                                   (2.11) 
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The upper limit for the Q-statistic is given by, 

     [
(    √   )

  
   

(    (    ))

  
 ]

 

                                                              (2.12) 

with, 

      ∑   
   

               (2.13) 

       (
     

   
 )          (2.14) 

Abnormalities which affect the correlation between the variables can be detected using the Q 

statistic when      . 

Another use of the residual vector r is in the generation of contribution plots where each of the 

residual values is divided by the sum of all elements in it and presented in the form of bar plots 

to identify the variables that is most likely associated with the fault. Contribution plots are still 

being used as effective diagnostic tools. 

PCA was initially used for SPC alone (application to quality variables) but was later applied to 

process variables as well, thus enabling it to act as a tool for Statistical Process Monitoring 

(SPM). Kresta et al. (1991) were the first to apply PCA to both process as well as quality 

variables. The main advantages of doing so was the  improved diagnosis and understanding of 

faults through the changes in process variables and the identification of drifts in process variables 

which cannot usually be noticed in quality variables for the same operating condition (Qin, 

2003). It also enabled the application of the tool to processes where the quality variables are not 

recorded in the historical datasets (Bersimis et al., 2007). 
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2.2.2 PLS – the algorithm 

Partial Least Squares (PLS) is a dimensional reduction as well as a regression technique that 

finds a new set of latent variables which maximize the covariance between the input data matrix 

     and the output data matrix  . The main objective here is to approximate      and   into 

reduced dimensional forms as well as model a linear relationship between them. The application 

of PLS to systems for FDD is mostly done such that, the process variables are assigned to the 

data matrix      and the quality variables are assigned to the output matrix  . PLS is performed 

mainly using two algorithms, namely the NIPALS algorithm (Geladi and Kowalski, 1986) and 

the SIMPLS algorithm (de Jong, 1993). 

The input and output matrices are first normalized as in PCA. This is done by mean centering 

and dividing the values by the corresponding variance to give       and   .  This brings all the 

variables in both matrices down to having a zero mean and unit variance and can hence be 

treated equally during the analysis. The NIPALS algorithm is applied to the PLS regression in 

order to sequentially extract the latent vectors    and   and the weight vectors   and    from 

the       and    matrices in a decreasing order of their corresponding singular values of the 

cross-covariance matrix       
    . As a result, PLS decomposes      (     ) and   (   

  ) matrices into the form.  

        (  )(  )                                                                                      (2.15) 

       (  )                                                                                               (2.16) 
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where    and    are (      ) matrices of the extracted   score vectors,   (       ) and 

  (       ) are matrices of loadings, and  (     )and  (     ) represent matrices of 

residuals. The      vectors are extracted using cross validation (CV). 

The PLS regression model can be expressed with regression coefficient    and residual matrix   

as follows: 

                        (2.17) 

      ((  )  )              (2.18) 

Rannar et al. (1994) derived the following equalities: 

          
                                                                                                     (2.19)  

  (  )        
 (  )((  ) (  ))                        (2.20) 

       
  (  )((  ) (  ))          (2.21) 

Substituting the Equations (2.19 – 2.21) into Equation (2.18) using the orthogonality of the 

matrix    columns, the matrix B can be written in the following form: 

          
  ((  )           

  )  (  )                                                  (2.22) 

This will be used to make predictions in PLS regression i.e. compared with principal component 

regression, PLS considers the amount of input information and also accounts for the contribution 

of the input latent variables to the output. 

The monitoring scheme for PLS with a new sample            of the process variables is as 

follows: 
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                              (2.23) 

where       is the new score vector for the X-subspace. 

      ̇  ((  )  )                              (2.24) 

       (  ((  )  ))                           (2.25) 

where     ̇  is the value predicted by the model and      is the residual attached to the         

subspace. The   and Q statistics are given by: 

              
                          (2.26) 

where,       
 

(   )
      

     ‖    ‖                   (2.27)  

The calculation of the statistic limits remains the same for    but varies for the Q statistic which 

is given by      
  . Where, g is the scaling factor for the Chi-squared distribution with h degrees 

of freedom. 

It must be noted that PLS which attempts to understand the covariance between      and Y does 

not provide the components in      in a descending order of its variance as some of them may be 

orthogonal to Y and therefore be useless in its prediction. Thus there is a possibility for large 

variability in the residual space after the selection of      components leaving the Q statistic 

unsuitable for monitoring purposes (Zhou et al., 2010). 
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2.2.3 The evolution of PCA and PLS in FDI  

Some of the earliest works in PCA and PLS for SPC/SPM were done by Denney et al. (1985) 

and Wise et al. (1991). Finally, MacGregor and Kourti (1995) had successfully established that 

both PCA and PLS can be applied to several industrial processes such as sulphur recovery unit, 

low-density polyethylene process or fluidic bed catalytic cracking with the largest system 

containing a total of 300 process variables and 11 quality variables.   

Nomikos and MacGregor (1994) extended PCA to batch processes by employing the Multi-way 

PCA (MPCA) approach where they proposed estimating the missing data on trajectory 

deviations from the current time until the end of the batch. Rannar et al. (1998) proposed the use 

of hierarchical PCA for adaptive batch monitoring to overcome the problem of estimating 

missing data. Since the simple PCA technique is based on the development of linear 

relationships among variables and their subsequent representation of industrial processes which 

are non-linear in nature, there was a need to develop techniques which were more effective in 

representing the non-linearity in the system, this necessity led to the first work on Non-Linear 

PCA (NLPCA) developed by Kramer (1991) who used neural networks to achieve the required 

non-linear dimensional reduction and representation. Dong and McAvoy (1996) improved the 

NLPCA method by employing Principal Component Curves but the methods were still difficult 

to use owing to the need for non-linear optimization and estimation of number of components 

prior to training of the network. The problem of non-linear optimization in NLPCA was handled 

by the use of Kernel PCA (KPCA) where the nonlinear input is transformed to a hidden high 

dimensional space where features are extracted using a Kernel function. The earliest attempts at 

KPCA were by Scholkopf et al. (1998). Some variants of the KPCA include the Dynamic KPCA 

by Choi and Lee (2004) using a time lagged matrix. Application of Multi-way KPCA to batch 
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processes was demonstrated by Lee et al. (2004).  One important problem involved  in KPCA 

were increase the size of the dataset to higher dimensions leading to computational difficulties 

(Jemwa & Aldrich, 2006) but this was taken care of by representing the calculations in the 

feature space in the form of dot products. Another important problem present in PCA is that it is 

time invariant while most of the processes are time varying and dynamic in nature. This led to 

the development of recursive PCA developed by Li et al. (2000). Dynamic PCA (DPCA) was 

seen as another tool to handle this problem; it was developed by incorporating time as an 

additional column in the dataset using time series models such as the ARX model (Russell et al., 

2000).  

The use and development of PLS in the field of process monitoring was also widespread 

especially owing to its ability to identify relationships between the process and quality variables 

in the system. MacGregor and Kourti (1995) were the first to suggest the use of multi-block PLS 

as an efficient tool for diagnosis when there are a large number of process variables to be 

handled. As PLS too being a linear technique like PCA had limitations dealing with non-

linearities, Qin and McAvoy (1992) developed the first neural network PLS method which 

employed feedforward networks to tackle this problem. The problem of time-invariance in PLS 

led to the development of the first dynamic PLS algorithm by Kaspar and Ray (1993) to be used 

in the modeling and control of processes. Lakshminarayanan et al. (1997) later used a dynamic 

PLS algorithm towards the simultaneous identification and control of chemical processes and 

also provided a design for feed forward controllers in multivariate processes using the PLS 

framework. A Recursive PLS algorithm was developed by Qin (1998) to handle the same issue. 

Vijaysai et al. (2003) later extended this algorithm to provide a blockwise recursive PLS 
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technique based on the segregation of old and new data for dynamic model identification under 

closed loop conditions.  

 

2.3 Correspondence Analysis  

2.3.1 The method and algorithm 

Correspondence analysis (CA) is a multivariate exploratory analysis tool that aims to understand 

the relationship between the rows and columns of a dataset. It has come a long way in the 30 

years since the publication of Benzécri‟s seminal work, Analyse des Données (Benzécri et 

al.,1973) and, shortly thereafter, in Hill‟s paper on applied statistics, (Hill, 1974). This work was 

further explained by Greenacre (1987 and 1988) and made popular in various applications 

including social sciences, medical data analysis and several other areas (Greenacre, 1984 and 

1992). CA can be defined as a two way analysis tool which seeks to understand the relationship 

between the rows and columns of a contingency table (cross tabulation calculations which are 

clearly explained by Simpson (1951)).  

In this approach, let us assume that we have a matrix    with   rows and    columns. Initial 

scaling of the data is necessary as, only a single form (common unit/mode of measurement) of 

data could be fit into several categories; it would not make much sense to analyze different scales 

of data in the form of relative frequencies (Greenacre, 1993). The form of scaling adopted is to 

bring all the values in the matrix within the scale of 0 to 1 as CA being a categorical variable 

method cannot handle negative values (Detroja et al., 2006).  

Step 1:  Calculation of the Correspondence Matrix   . 
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     (
 

  
)             (2.28) 

where,     is the correspondence matrix and    is the grand sum (sum of all elements in the 

matrix). The main objective here is to convert all values along rows and columns to the form of 

relative frequencies. 

Step 2: In this step, the row sums and column sums of    are calculated, they are given by, 

      ∑     
 
              (2.29) 

      ∑     
 
             (2.30) 

where,   and   are vectors containing the row (  values) and column sums (  values).  

Step 3: In this step, the null hypothesis of independence is assumed by which no row or column 

is associated to one another. According to this assumption, the actual values of the 

correspondence matrix CM should be such that each element is given by the product of the 

corresponding row and column sum of the matrix. These expected values are stored in what is 

called the Expected Matrix   , where, 

                      (2.31) 

The centering would involve calculating the difference between the observed and expected 

difference between the expected and observed relative frequencies, which is then normalized by 

dividing the difference of each value by the square root of the corresponding expected value, 

       
(         )

√    
            (2.32) 

This equation can also be written as, 



26 
 

        
(         )

√    
            (2.33) 

In matrix form,    can be written as : 

         

 
 

 (      )  

 
 

          (2.34) 

This matrix is similar to the Chi-squared matrix which represents the weighted departure of the 

original dataset from total independence. It may also be treated as the measure of weighted 

distance from the centroid in terms of rows and columns. 

Step 4:  The Chi-squared matrix is then subjected to singular value decomposition.  

         
            (2.35) 

The SVD signifies an optimization problem where the orientations of the axes are obtained at the 

most reduced weighted distance from the cloud of row points and column points simultaneously. 

The sum of the squared values along the diagonal of    represents the inertia of the cloud. The 

inertia is a term derived from the „moment of inertia‟ and may be considered as the total mass of 

the weighted distance for the row or column cloud from the centroid. The calculation of the 

inertia along each principal axis (direction) is given by, 

    (        )   
  
 

∑   
  

   

               (2.36) 

        

 

             (2.37) 

        

 

             (2.38) 

where, Aa and Bb represent the principal axes (loadings) of the columns and rows. 
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Step 5: Choice of number of components: 

The number of components is usually chosen when the cumulative inertia values are found to 

exceed 80% in the same manner as the CPV calculations in equation (2.4) where the eigenvalues 

are replaced by the squares of the singular values from the diagonal of     . Thus, in this manner, 

A components are chosen. 

Step 6: Calculation of row and column scores. 

The coordinates (scores) of the row cloud and column cloud for the new principal axis can be 

computed by projection on the first A columns of Aa and Bb. 

       
  (  )             (2.39) 

       
  (  )             (2.40) 

where,    and    are the scores of the row cloud and the column cloud.  

It must be noted that as both rows and column profiles have been considered in the SVD of the 

problem, the principal axes is used to show both the row cloud and column cloud on the same 

plot, hence these graphs are called bi-plots. These bi-plots are known to reveal useful 

information on the dependencies in the row, column and joint row-column space (Detroja et al., 

2006). 

Step 7: Monitoring scheme for CA. 

The monitoring scheme for Correspondence Analysis in FDD was developed by Detroja et al. 

(2007). In this procedure, a new sample    i.e.    [                 ]
 , can have its score 

calculated as: 
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           ∑    
 
                (2.41) 

     [
 

       
   (  )  

  ]          (2.42) 

where,         is the row sum for the current sample and ff is the score for the current sample. 

The limits for the    and    statistics are calculated in the same was as in equations (2.6) and 

(2.12) except for the replacement of the eigenvalues by the square of the singular values in CA. 

The    and    statistics for CA are calculated as follows: 

     (  )   
  (  )          (2.43) 

      (  )   (
 

       
    )        (2.44) 

                             (2.45) 

where,     is the residual vector for the sample. 

2.3.2 Advances in CA 

CA was applied quite recently in the field of FDD by Detroja et al. (2006). However, much 

before this, the method had been identified as a powerful multivariate tool in the field of 

categorical data analysis due to its abilities such as simultaneous analysis, graphical 

representation and flexibility in requirements. It has therefore been quickly adopted into several 

fields of study such as archeology (Baxter, 1994; Clouse, 1999), marketing research (Carroll et 

al., 1989), ecology (ter Braak, 1987) and the social sciences (Clausen, 1998). An extension of 

simple correspondence analysis is Multiple Correspondence Analysis which refers to more than a 

couple of categorical variables. 
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Over the past few decades, CA has also been deeply analyzed by several researchers - many have 

tried to modify the method so that it can be adapted to interdisciplinary problems that have come 

about.  Hill & Gauch Jr (1980) developed Detrended Correspondence Analysis (DCA). In this 

method, CA is performed as usual to obtain the principal axes but then, the first axis is divided 

into segments, and each segment is rescaled to have mean value of zero on the 2nd axis. This 

was found to be effective in removing a horse shoe curve where the first axes distort the second. 

Another method called Canonical Correspondence Analysis (CCA) was developed by ter Braak 

(1986) which conducts correspondence analysis by inducing the additional step of selecting the 

linear combination of row variables that maximizes the variation of the column scores. 

Greenacre developed what was called Joint Correspondence Analysis (JCA) which is considered 

a multiple correspondence analysis adjustment which can also be used for the analysis of two 

way contingency tables thus simplifying calculations. It was later improved by Boik (1996).  

In the field of FDD, Detroja, et al. (2006 and 2007), had successfully applied CA to the 

quadruple tank system. Pushpa, et al. (2009) developed a polar classification procedure in which 

several faults are clustered after applying CA to a simulated dataset of a non-linear distillation 

column and experimental data from a quadruple tank system setup. Patel and Gudi (2009) have 

recently proposed a scheme to apply CA to penicillin fed batch fermentation process.  

2.4  A Comparison between PCA and CA 

CA has often been regarded as a form of PCA simultaneously performed for rows and columns 

(Jolliffe, 2002). It is known that PCA decomposes the covariance matrix to obtain a new set of 

axes. In geometrical terms, the covariance matrix is the Euclidean distance measure of n samples 

over an m-dimensional space. The same concept can also be noticed in CA where, the chi-
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squared distance may be treated as a form of weighted Euclidean distance measure of the row 

and column cloud from a weighted centroid, where the weights correspond to the inverse of the 

row and column frequency sums for the respective row and column profiles (Detroja et al., 

2006). Therefore, it is indicated that CA attempts to decompose a form of distance measure for 

both rows and columns of a dataset while PCA performs a similar type of decomposition for the 

columns of the dataset alone. 

According to Detroja et al. (2007), CA has the advantage of analyzing dynamic data to a much 

better extent as compared to conventional and dynamic PCA. This can be seen in the fact that 

CA attempts to establish a relationship between rows and columns and in doing so can capture 

serial correlations in the dataset. PCA has the disadvantage of assuming independence of 

samples in its dataset while dynamic PCA has the need to create a data matrix of larger size to 

accommodate the same level of statistical significance. In Detroja et al. (2007), the authors 

applied CA to the Tennessee Eastman Challenge Process (Downs and Vogel, 1993) and 

successfully proved that CA possesses better detection and diagnosis capabilities as compared to 

both PCA and DPCA. This included superior features such as lower dimensional representation, 

higher detection rates and better diagnosis based on contribution plots. In consistency with the 

previous statements, CA can also be considered as a better tool than PLS which is again aimed to 

establishing a linear relationship between the inputs and outputs of the process yet again 

assuming independence of the samples. Thus, it can be concluded that CA is a superior 

multivariate tool which can be used for the fault detection and diagnosis in industrial processes 

where process dynamics is known to play a key role. 
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3. APPLICATION OF MULTIVARIATE TECHNIQUES 

TO SIMULATED CASE STUDIES 

 

The following chapter will compare results regarding the fault detection and diagnosis of three 

systems, namely the quadruple tank system, Tennessee Eastman Challenge Process and the 

Depropanizer process.  The first three sections will each begin with a description of the process 

followed by the tabulation and graphical representation of results. The results will contain the 

outcomes of using PCA, PLS and CA as detection and diagnosis tools. Detection is 

acknowledged by those data samples that exceed the 99% confidence limit of the    or 95% 

confidence limit of   statistics before and after the fault is introduced. The Q statistic is not 

employed while applying PLS as it is considered unsuitable for monitoring purposes as 

mentioned in Chapter 2. Diagnosis is performed with the aid of contribution plots for the various 

faults studied. . The contributions are calculated by first obtaining the aggregate for consecutive 

sets of six abnormal points detected. These aggregates are later used to obtain an overall 

contribution vector for the complete run. The last section will have an overall discussion on all 

the results arrived at earlier.   

 

3.1 Quadruple Tank System  

3.1.1  Process description 

The quadruple tank process, as shown in Figure 3.1 is a multivariate process which is extensively 

used in the field of process control and monitoring as a test problem.  It was originally developed 

by Johansson (2000). This system consists of four interconnected water tanks, two pumps and 
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associated valves. The inputs to the system are the voltages supplied to the pumps    and    and 

the outputs are the water levels in the tanks      ,   ,    and   . The flow to each tank is fixed 

using the associated valves    and    (range varies between 0 and 1), before each experiment.  

 

Figure 3.1: Quadruple Tank System 

The equations of the non-linear model based on mass balances and Bernoulli‟s law are given as 

follows: 
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                   (3.4) 

For each tank i, the Area is given by   . The cross section of the outer hole of each tank is    and 

the voltages applied to each pump are given by    and    corresponding to the valves   and   . 

The acceleration due to gravity is denoted by g. The flow rate to tank 1 is given by  

                             (3.5)  

Similarly, flowrate to tank 2 is given by 

                              (3.6) 

Then the flowrates to tanks 3 and 4 are, 

    (    )                      (3.7) 

    (    )                      (3.8) 

The model of the quadruple tank system is simulated using SIMULINK in MATLAB. The level 

of the four tanks is controlled using two PID controllers which regulate the voltage values in the 

system. The set points for the two controllers are with respect to the heights of tank 1 and tank 2. 

The set points are referred to by variables h1_set and h2_set.  A total of eight variables 

comprising the flow rate and heights of the four tanks are collected as data from the system. 

Gaussian white noise having a mean of zero and a standard deviation of 0.05 are added to the 

voltage values of    and    during the simulation thus corrupting the data generated with noise. 

The parameter values for the simulation are listed below in Table 3.1. 
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Table 3.1: Simulation parameters for the quadruple tank system 

Parameter Unit Value 

            28 

            32 

            0.071 

            0.057 

                  3.33 

         981 

 

The two major kinds of faults introduced in the system include sensor biasing and leakage of 

tanks. These faults have been introduced at different intensities and combinations to the system. 

Faults related to the sensor biasing of tanks is created by adding or deducting a fixed value from 

certain variables in the system. The leakage of tanks 1 & 2 is simulated by assuming that there 

are small holes at the bottom of each tank with areas        and       . The equations 3.1 and 

3.2 are replaced by the following equations in order to simulate the leakage. 

   

  
   

  

  
√      

  

  
√      

    

  
     

      

  
√                 (3.9) 

   

  
   

  

  
√      

  

  
√      

    

  
     

      

  
√               (3.10) 

The total number of variables used are 8 which are arranged in such a way that, one sample of 

the simulation would be given by [                       ]. The normal operating condition is 

simulated for 350 samples with a sampling period of 5 seconds. The set points for the controllers 
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during operation are set at h1_set = 12.4 and h2_set = 12.7. The faults are simulated by 

introducing the fault after the 50
th

 sample till a total of 400 data samples. The list of faults 

simulated along with their description is provided in Table 3.2. Fault 3 and fault 8 were 

simulated at slightly different operating conditions where, the set point h1_set was changed from 

12.4 to 12.5. This was done to study the effect that such a change would have on the detection 

ability of the methods as such would be the case in an actual plant. 

Table 3.2: Description of faults simulated for the Quadruple tank system 

Fault no. Description 
Important values 

1 Leakage in tank 1 alone        = 0.005 

2 Leakage in tank 2 alone        = 0.005 

3 Negative sensor bias in height of tank 1       = 12.5,     = 0.4  

4 Negative sensor bias in height of tank 2     = 0.4 

5 Simultaneous leakage in tank 1 & 2        =        = 0.025 

6 Leakage in tank 1 alone at low        value        = 0.002 

7 Positive sensor bias in height of tank 1     = 0.4 

8 Positive sensor bias in height of tank 2       = 12.5,     = 0.4  
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The data generated for the normal operating condition and faults is then subjected to detection 

tests using PCA, CA and PLS. In PLS testing, the four flow rates are treated as the inputs and the 

heights of the respective tanks are taken as the outputs.  

3.1.2  Results 

The models obtained using PCA, PLS and CA are shown in Figures 3.2 to 3.7. The results for 

specific faults are shown from Figures 3.8 onwards. Table 3.3 displays all the values for the 

detection rates (DR) and false alarm rates (FAR) for all the faults based datasets. Detection 

delays involved in using each of the methods are shown in Table 3.4.  

 

Figure 3.2: Cumulative variance explained in the PCA model - Quadruple Tank system  
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Figure 3.3: PCA scores plot for first two PCs - Quadruple Tank system  

 

Figure 3.4: PLS cross validation to choose the number of PCs - Quadruple Tank system  
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Figure 3.5: PLS Cumulative input-output relationships for first two PCs- Quadruple Tank system 

 

Figure 3.6: Cumulative Inertia explained by each PC in the CA model- Quadruple Tank system  
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Figure 3.7: CA row and column scores bi- plot for first two PCs- Quadruple Tank system  

In PCA, it is clear from Figure 3.2 that the first two PCs which explain about 95% of the 

variance are good enough to develop a model of the system. PLS uses the leave one out cross 

validation technique to choose the number of dimensions and according to Figure 3.4, the 

number of PCs required is 2. It is also clear from Figure 3.5 that the first two components alone 

account for 100 % of the variance in the input matrix X explaining about 60% of the variance in 

the output matrix Y. Therefore, it would not be possible for the model to use the Q statistic for 

the inputs in the analysis due to the extremely negligible amount of variance involved in the 

residual space. In Figure 3.6, the first two PCs for the CA model account for 97% of the inertia 

in the system. Although one cannot draw a clear comparison between inertia and variance, it is 

proper to state that both PCA and CA capture most of the information in the system with their 

first two PCs.  Figure 3.7 shows the bi-plot developed by CA, where the blue dots denote the row 

scores and the black squares are the column scores. The bi-plot will be useful in graphically 

understanding the relationship between the rows and columns. But, for the sake of monitoring 

purposes, one can only use the row scores to develop a confidence region. Both Figures 3.3 and 
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3.7 have confidence ellipses to isolate the zone of normal operation where the red ellipse refers 

to the area with a 95% confidence limit and the black ellipse refers to the area with a 99% 

confidence limit. 

Table 3.3: Detection rates and false alarm rates – Quadruple tank system 

 

 Table 3.4: Detection delays (in seconds) – Quadruple tank system 

Faults PCA PLS CA 

1 5 0 10 

2 5 0 10 

3 0 0 5 

4 0 0 5 

5 5 0 10 

6 5 0 10 

7 0 0 5 

8 0 0 5 

Faults 

DR           FAR 

PCA PLS CA PCA PLS CA 

                                

1 0.0033 0.9967 0.98 0.9734 0.0100 0 0.2040  0 0 0 

2 0.0033 0.9967 0.9867 0.9867 0.9867 0 0.2040  0 0 0 

3 0 1 0 0.0598 0.9967 0 0.8775  0 0 0 

4 0 1 0 0.1628 0.9967 0 0.2040  0 0 0 

5 0.9900 0.9967 0.9933 0.9502 0.9934 0 0.2040  0 0 0 

6 0 0.9967 0.3567 0.3389 0.0033 0 0.2040  0 0 0 

7 0 1 0 0 0.9967 0 0.2040  0 0 0 

8 0 1 0 0 0.9967 0 0.8775  0 0 0 
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Figure 3.8: Fault 3 results – Quadruple tank system 

b) CA analysis results 

c) PLS analysis results 

a) PCA analysis results 
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 Figure 3.9: Fault 6 results – Quadruple tank system 

a) PCA analysis results 

b) CA analysis results 

c) PLS analysis results 
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 Figure 3.10: Fault 8 results – Quadruple tank system 

a) PCA analysis results 

b) CA analysis results 

c) PLS analysis results 
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 Table 3.5: Contribution plots with PCA and CA analysis – Quadruple tank system 

Faults PCA CA 

Fault 1 

 

Fault 2 

Fault 3 

Fault 4 

Fault 5 

Fault 6 

Fault 7 

Fault 8 

 

Figures 3.8, 3.9 and 3.10 show the fault detection results for faults 3,6 and 8 while Table 3.5 

contains the contribution plots for all faults where, the variable 1, 2, 3, 4, 5, 6, 7 and 8 

correspond to                          . 

In the results, faults 1, 2 and 5 which were related to the leakage in tanks 1 and 2 or both together 

were mostly detected by the      statistic in the case of CA and PLS while it was more properly 
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detected by the Q statistic in the case of PCA. This shows that the CA model structure was able 

to understand the relationship between the variables to a much better extent due to its 

visualization in a weighted space while the right choice of predictor and response variables in 

PLS helped establish a proper regression model. PCA has to depend on the residual statistic to 

understand the anomaly. Faults 3, 4, 7 and 8 were all related to sensor bias in tanks 1 and 2 and 

were well detected by both CA and PLS with very mild differences in detection rates. But, the 

use of slightly different operating conditions in faults 3 and 8 immediately displayed the fact that 

the PCA model is quite rigid and time-invariant. One can notice that both these faults recorded 

the value of 0.87 as false alarm rates shown clearly in Figures 3.8 and 3.10 and is therefore 

incapable of proper detection, whereas CA is found to not record any such false alarms at all thus 

displaying its ability to understand the dynamics of the process and remain flexible. The only 

negative point in terms of fault detection was fault 6 as shown in Figure 3.9 where the leakage in 

tank 1 was too mild to detect for CA and PLS while PCA was able to do so effortlessly. This can 

be attributed to the fact that the Q statistic in PCA was able to pick up the slight modification to 

the model structure in its residuals while CA‟s Q statistic was influenced and distorted by the 

cross-tabulation interaction between the rows and columns of the model‟s original dataset. In 

regard to PLS, the same could be said where the statistic was not able to identify the mild change 

in the relationships between the input and the output. The only silver lining even in this fault‟s 

analysis is that once again the     statistic of CA and PLS was able to perform much better than 

that of PCA. 

With regard to the fault diagnosis capabilities of PCA and CA in terms of their contribution 

plots, one can see in Table 3.5 that both methods were able to provide accurate information on 

the major variables related to the sensor bias based faults i.e. faults, 3, 4, 7 and 8. When it came 



46 
 

to faults 1, 2, 5 and 6, which were based on leakage of tanks 1 and 2, the results were not 

accurate. According to equations 3.1 – 3.4, 3.9 and 3.10, leakages caused to tanks 1 or 2 would 

tend to change the voltage values of     and    to regulate control. The same voltage values will 

also be used to regulate the flow to tanks 3 and 4 changing their values in the process, hence in 

the case of the contribution plots for 1, 2, 5 and 6, all four values rise to different values and 

would thus exhibit some conflicting values in variables 5, 6, 7 and 8 in the bar plots. In the case 

of PCA, the variables 7 and 8 corresponding to     and    show significant values thus proving 

that these variables carry more weightage in the model as compared to others. In CA, although 

variable 8 corresponding to    is found to have higher contribution as compared to other 

variables in faults 1,2 and 5, the issue of conflicting values can be confirmed by seeing the bar 

plots in Table 3.5. The only difference in diagnosis turned out to be fault 6 which was properly 

diagnosed by CA; this could be due to the fact that the few samples detected by CA (detection 

rate – 0.3389) could have understood the actual dynamics of the abnormality and provided an 

accurate estimate. 

3.2 Tennessee Eastman Process (TEP) 

3.2.1  Process description 

The Tennessee Eastman Process (Downs and Vogel, 1993) is a popular benchmark problem used 

in the field of process control and fault detection. It is based on a real chemical process plant 

where the components, kinetics and operating conditions were modified for proprietary reasons. 

As shown in Figure 3.11, the process consists of five major unit operations: the reactor, a product 

condenser, a vapor-liquid separator, a recycle compressor and a product stripper. The process 

consists of 12 manipulated variables from the controller and 41 process measurements. Gaseous 
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reactants A, C, D, E and an inert B are fed to the reactor. They react to form the liquid products 

G and H and other byproducts while gas phase reactions in the same are catalyzed by a non-

volatile catalyst dissolved in the liquid phase. The products

 

Figure 3.11: Tennessee Eastman Challenge Process 

stream from the reactor then passes through the condenser for condensation of products and then 

flows to the vapor-liquid separator. Here, the non-condensed components recycle back through a 

centrifugal compressor to the reactor feed. Condensed components move to a product stripping 

column to remove remaining reactants by stripping with feed stream number 4. The required 

products G and H exit the stripper base and are collected separately.  
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Table 3.6: Process faults: Tennessee Eastman Process 

Fault  Description Type 

IDV(1) A/C Feed ratio, B composition constant (Stream 4) Step 

IDV(2) B Component, A/C ratio constant (Stream 4) Step 

IDV(3) D Feed temperature (Stream 2) Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water  inlet temperature Step 

IDV(6) A Feed loss (Stream 1) Step 

IDV(7) C Header pressure loss–reduced availability (Stream 4) Step 

IDV(8) A, B, C Feed component (Stream 4) Random 

IDV(9) D Feed temperature (Stream 2) Random 

IDV(10) C Feed temperature (Stream 4) Random 

IDV(11) Reactor Cooling Water Inlet temperature Random 

IDV(12) Condenser Cooling Water Inlet temperature Random 

IDV(13) Reactor kinetics Slow drift 

IDV(14) Reactor Cooling Water valve Sticking 

IDV(15) Condenser Cooling Water valve Sticking 

IDV(16) Unknown - 

IDV(17) Unknown - 

IDV(18) Unknown - 

IDV(19) Unknown - 

IDV(20) Unknown - 

IDV(21) The valve for stream 4 was fixed at the steady state position Constant position 

Source: Detroja et al. (2007). 
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The TEP simulation setup has a total of 21 pre-programmed process faults. From Table 3.6, it 

can be seen that faults IDV(1) – IDV(15) and IDV(21) are of a known nature and the rest are not. 

Of those faults, IDV(1) – IDV(7) are related to a step change in process variables while IDV(8) – 

IDV(12) are involved in the random variability of certain process variables. IDV(13) is 

influenced by a slow drift in the reaction kinetics and IDV(14), IDV(15) and IDV(21) are 

associated with sticking valves. The datasets for the system was obtained from the website 

http://brahms.scs.uiuc.edu (link is no longer functional). The datasets obtained were generated 

using the control structure recommended by Lyman and Georgakis (1995). The data comprised 

of testing and training datasets for the normal operating condition and the 21 faults. Each training 

dataset had 480 to 500 samples collected at an interval of three minutes each for 52 variables (the 

manipulated variable related to the speed of the stirrer in the reactor was not recorded) with the 

fault being introduced at the 20
th

 sample. The testing sets contained 960 samples with the fault 

being introduced at the 160
th

 sample. Only 34 (23 process and 11 manipulated variables) 

variables out of the total 53 (41 process and 12 manipulated variables) are used in the simulation 

runs. About 22 of the 23 process variables used along with the 11 manipulated variables are 

continuous process measurements such as temperatures, pressures, levels, flow rates, work rates 

and speeds which are usually available in a real plant. The remaining 19 process measurements 

are related to component analysers at various points in the process which are measured at 

discrete intervals of 6 to 15 min. Of these 19 measurements the analyser value related to 

component G in stream 9 alone is chosen to act as the quality variable. The main reason for 

choosing such a combination of variables is to mimic the pragmatic nature of plants where 

continuous measurements would be available easily. Faults IDV(3), IDV(9) and IDV(15) will be 

neglected in the final results as they were found to show very low or negligent detection rates. 

http://brahms.scs.uiuc.edu/
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This was confirmed by Russell et al. (2000) when all 52 variables were used to obtain the results 

for PCA. The authors had stated that no observable change in the mean or the variance could be 

detected by visually comparing the plots of each associated observation variable in these faults. 

3.2.2  Results 

PCA, PLS and CA models obtained using the training datasets are shown in Figures 3.12 - 3.17. 

The detection rates, detection delays and diagnosis results are tabulated in Tables 3.7 to 3.9. In 

the case of this system, main contribution variables alone will be mentioned in Table 3.10 as 

there are a large number of variables and faults to provide a detailed explanation for all of them. 

The main contribution variables are chosen as those that exceed a value of greater than or equal 

to 5%. The contribution variables obtained in PCA and CA will then be compared for analysis. 

 

Figure 3.12: Cumulative variance explained in the PCA model - TEP  
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Figure 3.13: PCA scores plot for first two PCs - TEP 

 

Figure 3.14: PLS cross validation to choose the number of PCs - TEP  
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Figure 3.15: PLS Cumulative input-output relationships for first 12 PCs- TEP 

 

Figure 3.16: Cumulative inertia explained in the CA model - TEP  
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Figure 3.17: CA scores bi-plot for first two PCs - TEP 

From Figure 3.12, it is clear that about 14 components are required to represent a cumulative 

variance in excess of 80 % for the PCA model while in Figure 3.16 only about 6 components 

were required to obtain a cumulative inertia in excess of 80 %. In order to avoid having to 

compare the physical significance of variance with that of inertia, we will be choosing a total of 

15 components for both the PCA and CA models. Fifteen components in the PCA model were 

found to account for 84.53 % of the variance in the system while the same number of 

components was found to represent 98.86% of the inertia in the system. In the case of PLS, 12 

components were chosen for detection purposes based on the cross validation diagram given in 

Figure 3.14. 
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Table 3.7: Detection rates and false alarm rates – Tennessee Eastman Process 

 

Faults 

DR FAR 

PCA 
PLS CA PCA PLS CA 

                                

IDV(1) 
0.9850 1 0.9950 0.9850 0.9513 0 0.3563 0 0 0.0063 

IDV(2) 0.9725 0.9950 0.9787 0.9775 0.9850 0 0.2500 0 0 0 

IDV(4) 0.0013 1 0.4150 0.2900 0.9463 0 0.4125 0 0 0.0063 

IDV(5) 0.1513 0.8363 0.2225 0.2125 0.9988 0 0.4125 0 0 0.0063 

IDV(6) 0.9800 1 0.9900 0.9875 1 0 0.3500 0 0 0.0063 

IDV(7) 0.9800 1 1.000 1 0.5800 0 0.3500 0 0 0.0063 

IDV(8) 0.8488 1 0.9675 0.9538 0.9125 0 0.5563 0 0 0 

IDV(10) 0 0.9388 0.7362 0.1538 0.5133 0 0.4438 0 0 0.0063 

IDV(11) 0.1275 0.9650 0.4050 0.2963 0.5663 0 0.4688 0 0 0.0125 

IDV(12) 0.8050 1 0.9775 0.9638 0.9425 0 0.5438 0 0 0 

IDV(13) 0.8450 0.9938 0.9412 0.9225 0.9525 0 0.2625 0 0 0 

IDV(14) 0.7888 1 0.9987 0.7438 1 0 0.4125 0 0 0.0188 

IDV(16) 0 0.9600 0.5375 0.0525 0.7638 0 0.7250 0 0 0.0125 

IDV(17) 0.5350 0.9825 0.7850 0.4775 0.7650 0 0.6125 0 0 0.0188 

IDV(18) 0.8813 0.9688 0.8912 0.8825 0.9038 0 0.4375 0 0 0.0188 

IDV(19) 0 0.8475 0.0562 0 0.4400 0 0.4000 0 0 0.0063 

IDV(20) 0.0588 0.9325 0.3287 0.2450 0.5188 0 0.3625 0 0 0 

IDV(21) 0.0813 0.8125 0.3400 0.2388 0.5650 0 0.6438 0 0 0.0188 
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Table 3.8: Detection delays (in minutes) – Tennessee Eastman Process 

Faults PCA PLS CA 

IDV(1) 0 12 3 

IDV(2) 12 45 36 

IDV(4) 0 3 0 

IDV(5) 0 6 3 

IDV(6) 0 18 0 

IDV(7) 0 3 0 

IDV(8) 0 63 39 

IDV(10) 0 75 81 

IDV(11) 0 21 15 

IDV(12) 0 9 6 

IDV(13) 0 129 111 

IDV(14) 0 6 0 

IDV(16) 0 39 27 

IDV(17) 6 78 60 

IDV(18) 0 261 45 

IDV(19) 0 33 3 

IDV(20) 0 258 255 

IDV(21) 0 792 276 
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Figure 3.18: IDV(16) results – TEP 

a)   PCA analysis results 

b) CA analysis results 

c) PLS analysis results 
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From the results provided in Tables 3.7 and 3.8, about 11 faults in the TEP were detected with 

detection rate that is greater than 0.9 while the same was achieved by 15 faults in PCA and 9 

faults in PLS. All three methods were able to detect most of the faults created by step input in the 

variables while CA was unable to detect the faults IDV(10) and IDV(11) as compared to PCA 

(which still had a detection rate greater than 0.9 in these cases) and PLS (which fared better than 

CA in the case of IDV(10) alone). The false alarms rates were recorded for the     and   

statistics of all three methods. The PCA method recorded high false alarm rates for all the faults 

and they were found to lie within a range of 0.25 to 0.72 while CA and PLS recorded negligible 

values. The detection delays recorded in terms of minutes indicated that both CA and PLS have 

high values of detection delays as compared to PCA. Only IDV(4), IDV(6), IDV(7) and IDV(14) 

were found to give zero time delays for CA and were comparable to PCA. IDV(10), IDV(13), 

IDV(17) and IDV(21) were found to have an excess time delay greater than 50 minutes as 

compared to PCA while IDV(18) along with the previous mentioned faults was found to have 

similar excessive time delays in PLS as compared to PCA. IDV(13) related to the slow changing 

kinetics of the process, IDV(20) which is of an unknown nature and IDV(21) related to the 

constant position of valves were found to have the highest time delay values going into three 

digit Figures. Comparison between CA and PLS in terms of detection delays indicated that CA 

fared to a slightly better extent than PLS in most of the cases.  
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Table 3.9: Tennessee Eastman Process 

Variable number Variable reference in TEP 

1 XMEAS(1) 

2 XMEAS(2) 

3 XMEAS(3) 

4 XMEAS(4) 

5 XMEAS(5) 

6 XMEAS(6) 

7 XMEAS(7) 

8 XMEAS(8) 

9 XMEAS(9) 

 
10 XMEAS(10) 

10 
11 XMEAS(11) 

 
12 XMEAS(12) 

12 
13 XMEAS(13) 

 
14 XMEAS(14) 

 
15 XMEAS(15) 

 
16 XMEAS(16) 

 
17 XMEAS(17) 

 
18 XMEAS(18) 

 

 

19 XMEAS(19) 

 
20 XMEAS(20) 

 
21 XMEAS(21) 

 
22 XMEAS(22) 

 
23 XMEAS(35) 

 
24 XMV(1) 

25 XMV(2) 

26 XMV(3) 

27 XMV(4) 

28 XMV(5) 

29 XMV(6) 

30 XMV(7) 

31 XMV(8) 

32 XMV(9) 

33 XMV(10) 

34 XMV(11) 
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Table 3.10: High fault contribution variables - Tennessee Eastman Process 

Faults PCA CA 

IDV(1) 1, 3, 4, 18, 21, 26 8, 18, 19, 20, 21, 32 

IDV(2) 10, 11, 16, 19, 29 7, 11, 19, 20, 21, 25 

IDV(4) 9, 33 8, 21, 24, 33 

IDV(5) 7, 13, 16, 20, 34 8, 17, 34 

IDV(6) 7, 16, 20, 28, 33 1, 17, 20, 26 

IDV(7) 4, 27 5, 7, 8, 11, 20, 22, 25 

IDV(8) 7, 11, 13, 16, 20, 28 7, 8, 13, 16, 20 

IDV(10) 7, 13, 16, 18, 19, 20, 32 18, 19, 20 

IDV(11) 8, 9, 33 8, 21, 24, 33 

IDV(12) 7, 11, 13, 16, 18, 20, 21 7, 8, 11, 13, 16, 18, 19, 20 

IDV(13) 7, 13, 16, 18, 19, 20, 32 7, 13, 16, 19, 20, 32 

IDV(14) 8, 9, 21, 33 8, 21, 24, 33 

IDV(16) 7, 13, 16, 18, 19, 20, 32 19, 32 

IDV(17) 9, 21 8, 21 

IDV(18) 7, 13, 16, 24, 25, 28, 33 8, 17, 19, 21, 22, 25, 28, 32 

IDV(19) 3, 16, 21, 28 5, 8, 13, 19, 20, 24, 28 

IDV(20) 7, 13, 16, 20, 28 7, 11, 16, 22, 28 

IDV(21) 7, 8, 11, 13, 16, 19 7, 8, 13, 16, 20 
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Figure 3.19: IDV(16) results – contribution plots - TEP 

In fault diagnosis using contribution plots, there were 11 instances in which CA was found to be 

on par or show less number of main contribution variables as compared to PCA. Of the 11 faults 

where detection was greater than 0.9 in both PCA and CA, two faults (IDV(1) and IDV(14)) 

were found to show the same number of contribution variables which IDV(5), IDV(6), IDV(8) 

and IDV(13) were found to show less number of contribution variables. IDV(16) and IDV(17) 

with average detection rates exceeding 0.7 were also found to show more concrete diagnosis 

with CA. A good example of diagnosis by CA would be IDV(16) where the fault is of an 

unknown nature. CA indicates variables variables 19 and 32 which are XMEAS(19) and 



61 
 

XMV(9) which are both related to the stripper steam flow and indicate the problem to be there as 

compared to 7 main variables indicated in PCA which also show variables 19 and 32. 

3.2 Depropanizer Process 

3.2.1  Process description 

The depropanizer unit consists of a fractionating column which is used to separate a mixture of 

   and    hydrocarbons so that the top product  would yield the lighter     based hydrocarbons 

while the bottom of the unit will give the      and heavier hydrocarbons. The unit described here 

comprises of a 40 tray fractionation tower, a condenser, reflux drum and the reboiler. This 

process has a total of 36 variables that are monitored. The initial stage of the process involves the 

input containing the above mentioned mixture being fed to the middle of the bubble tray 

fractionating tower C11. The flow of this input is directly controlled by a flow controller FC11. 

During fractionation, the extent of separation is controlled by the tower temperature controller 

TC11. The tower bottom level is controlled by the tower bottom level controller LC11. LC11 

controls the level by adjusting the bottom product draw. 

After fractionation, the overhead vapors obtained are condensed in a shell and tube condenser 

E12 with cooling water, a condenser bypass valve is also present for regulating the pressure. The 

condensed liquid is then fed to the bottom of a horizontal vessel called the reflux drum while, 

vapours passing through the condenser bypass valve are directed to the top of the same vessel. 

The pressure in the tower is regulated by a pressure controller PC11. PC11 regulates the pressure 

of the tower by controlling the condenser bypass valve and an off-line gas valve. The off-line gas 

valve is part of the off-gas line connected to the top of the reflux drum. The condenser bypass 

valve is opened when the pressure is too low and closed when it‟s too high. If a situation arises 
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where the pressure cannot be maintained by closing the condenser bypass valve, the off-gas line 

valve is opened to let out vapors. The reflux and pumped by pumps P11A and P11B. Only one of 

the pumps is used during operation while the other is on stand-by, the discharge from this pump 

is then separated into two streams, the reflux stream and the top product stream. The flow of the 

reflux stream is controlled using a reflux flow controller FC12. The purpose of this controller is 

to maintain an optimum value of reflux flow to sustain the desired extent of separation and hence 

preserve product quality. The top product‟s flow is regulated by reflux drum level controller 

LC12. The top product is now collected separately or sent to the next stage in a wider process. 

The product from the bottom of the tower is vaporized using hot oil that is fed to the shell side of 

reboiler E11; the flow of this oil is regulated by the tower temperature controller TC11.  This 

control of flow helps in maintaining the bottom temperature of the tower. The bottom product is 

pumped out with one of two pumps P12A or P12B and collected separately. 

The simulation data is collected over a period of three hours for each of the normal and fault 

conditions and the samples are recorded at a regular interval of 12 seconds.  A total of 15 faults 

were generated as shown in Table 3.11 with 901 samples were collected for the normal operating 

region as well as the faults. In the fault induced datasets, the fault has been introduced at the 51
st
 

sample. The normal operating region was divided into testing and training datasets such that first 

60% of the samples formed the training dataset and the remaining 40% formed the testing 

dataset.  
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Figure 3.20: Depropanizer Process  
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Table 3.11: Process faults: Depropanizer Process 

Fault Description Additional details 

F1 Complete leakage in tower C11 bottom - 

F 2 Tower Feed Flow Control Valve, FV11 Fails Closed - 

F 3 Tower Bottom Level Control Valve, LV11 Fails Closed - 

F 4 Reflux Pump – P11A Degradation - 

F 5 Loss of Feed - 

F 6 Reflux Drum Level Control Valve, LV12 Fails Closed - 

F 7 Tower Pressure Control Valve, PV11A Fails Closed - 

F 8 Tower Reboiler -  E11 Fouling – variable intensity severity  - 25% at 10 min and 

50% after 60 min 

F 9 Tower Bottom Level Transmitter, LT11 Drifts severity – 50% at 10 min and 

75% after 60 min  

F10 Fault 1 and fault 2 occur simultaneously - 

F 11 Fault 4 and fault 5 occur simultaneously - 

F12 Fault 2 and fault 6 occur in staggered manner Fault 2 at 10 min, fault 2 and 

fault 6 occur at 60 min, both 

deactivated at 120 min 

F13 Fault 1 and fault 2 occur in staggered manner Fault 1 at 10 min, fault 2 and 

fault 6 occur at 60 min, both 

deactivated at 120 min 

F14 Fault 8 occurs  Deactivated after 120 min 

F15 Fault 9 – full intensity severity – 100% at 10 min, 

deactivated at 120 min 
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3.2.2  Results 

 

Figure 3.21: Cumulative variance explained in the PCA model - DPP 

 

Figure 3.22: PCA scores plot for first two PCs - DPP 
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Figure 3.23: PLS cross validation to choose the number of PCs - TEP 

 

Figure 3.24: PLS input-output relationships for 3 PCs - DPP 
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Figure 3.25: Cumulative inertia explained in the CA model - DPP 

 

Figure 3.26: CA scores bi- plot for first two PCs - DPP 
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Table 3.12: Detection rates – Depropanizer Process 

 

 

Faults 

DR           FAR 

PCA PLS CA PCA PLS CA 

                                

F1 0.9918 0.9953 0.9882 0.9894 0.9800 0 0.2041 0 0 0 

F2 0.9977 0.9977 1 0.9988 0.9988 0 0.2653 0 0 0 

F3 0.9977 0.9977 1 0.9988 0.9988 0 0.1020 0 0 0 

F4 0.9965 0.9977 0.9941 0.8931 0.3314 0 0.1633 0 0 0 

F5 0.9965 0.9977 0.9952 0.9871 0.9847 0 0.0408 0 0 0 

F6 0.9977 0.9988 0.9917 0.9988 0.9988 0 0.2041 0 0 0 

F7 0.9918 0.9930 0.9729 0.9671 0.5781 0 0.2041 0 0 0 

F8 0.9883 0.9918 0.9823 0.9871 0.9730 0 0.1224 0 0 0 

F9 0.9977 0.9977 1 0.9988 0.9295 0 0.2041 0 0 0 

F10 0.9977 0.9988 1 0.9988 0.9988 0 0.1429 0 0 0 

F11 0.9977 0.9977 0.9976 0.9882 0.9847 0 0.1633 0 0 0 

F12 0.9977 0.9977 0.9788 0.9401 0.7779 0 0.1020 0 0 0 

F13 0.9918 0.9941 0.9894 0.9802 0.9812 0 0.1837 0 0 0 

F14 0.9883 0.9918 0.9658 0.9530 0.7814 0 0.1633 0 0 0 

F15 0.9977 0.9977 0.9835 0.9530 0.7485 0 0.2653 0 0 0 
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Table 3.13: Detection delays (in seconds) – Depropanizer Process 

Faults PCA PLS CA 

F1 12 132 108 

F2 24 12 12 

F3 24 12 12 

F4 24 72 180 

F5 24 60 132 

F6 12 12 12 

F7 72 168 240 

F8 0 192 132 

F9 24 12 12 

F10 0 12 12 

F11 24 36 120 

F12 24 12 12 

F13 12 120 120 

F14 12 168 156 

F15 24 12 12 
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Table 3.14: High contribution variables - Depropanizer Process 

Faults PCA CA 

F1 10, 19, 28, 31, 35 16, 27, 28 

F2 9, 13, 23, 28, 29, 31 2, 7, 14, 16, 26, 28 

F3 1, 14, 20, 21, 22, 23, 26, 28 16, 19, 21, 24, 27, 28 

F4 3, 8, 10, 13, 20, 27, 30 3, 16, 19, 21, 27, 28 

F5 9, 13, 23, 28, 29, 31 2, 7, 14, 16, 26, 28 

F6 1, 13, 22, 23, 28, 29, 31 3, 15, 17, 18, 25 

F7 6, 8, 13, 23, 28, 31, 35 16, 26, 27, 28 

F8 13, 20, 28 16, 27, 28 

F9 14, 20, 22, 26, 28, 31 16, 19, 27, 28 

F10 7, 10, 14, 19, 31 1, 19, 24, 27, 28 

F11 2, 13, 23, 28, 29, 31 2, 7, 14, 16, 26, 28 

F12 2, 3, 28, 29, 31, 32 3, 16, 26, 28 

F13 10, 14, 19, 31 19, 24, 27, 28 

F14 13, 28 3, 16, 27, 28 

F15 1, 14, 20, 22, 26, 28, 31 3, 16, 19, 27, 28 
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In the case of the Depropanizer process, all results were found to be quite consistent with all 15 

faults showing a detection rate greater than 0.9. PCA was still found to exhibit false alarms but 

the only fell within the range of 0.10 to 0.26. In the case of diagnosis with contribution plots,  

CA was found to be on par or better than PCA in 14 of the 15 cases, the exception being fault 14 

where PCA showed only two main contribution variables as compared to four shown by CA. In 

the 14 cases where CA indicated better diagnosis faults 2, 5, 8, 10, 11 and 13 were found to show 

the same number of contribution variables while faults 1, 3, 4, 6, 7, 9, 12 and 15 were found to 

show less number of main contribution variables in the case of CA diagnosis. 

3.4 Discussion 

From the results obtained for the three systems, it is clear that PCA is the most powerful of the 

three tools when it comes to detection, but it also has the biggest disadvantage of false alarm 

rates caused by its inability to understand non linearity and serial correlation dynamics. CA is 

noted to overcome these problems but its detection delays are found to be higher and hence its 

detection rates are found to be comparatively lower except in a few cases. The main problem was 

found to be with the Q statistic which was found to not be effective; this may be because the 

residual space is affected by the cross tabulation dual analysis which distorts the analysis. 

Therefore, there is need to find an improved or modified statistics which can help monitor the 

residual space to a better extent. PLS which performs its analysis between two sets of variables 

was also found to be quite effective but could not gain the edge over CA since it was still a linear 

technique. As far as diagnosis was concerned CA was found to be a more concrete tool in 

diagnosis in all three systems and could be relied upon under any circumstances.  
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4. FAULT ISOLATION AND IDENTIFICATION 

METHODOLOGY 

The main aim of this chapter is to highlight the importance of Linear Discriminant Analysis 

(LDA) in the field of diagnosis. The chapter will explain the basis of LDA along with a literature 

survey on its application in fault detection and diagnosis. This will be followed by a comparison 

of diagnosis performance with CA and the formulation of the integrated CA-WPSLDA technique 

for fault isolation and identification. The formulation of this technique will also include an 

explanation on the superior discriminative abilities of CA as compared to PCA. 

In the field of fault diagnosis, fault isolation involves isolating the specific fault that occurred. It 

also includes determining the kind of fault, the location of the fault, and the time of detection 

while fault identification deals with determining the size and time-variant behaviour of a fault. In 

this regard, the newly integrated algorithm will use all the information available from historical 

datasets to create a model which will try to isolate a new fault during the monitoring phase by 

identifying whether it is related to ones that have previously occurred and would then identify 

the intensity of the fault with respect to the ones in the model. 

 

4.1 Linear Discriminant Analysis 

4.1.1 LDA - Introduction 

LDA or Fisher‟s Linear Discriminant (FLD) is an optimal dimensionality reduction technique in 

terms of maximizing the separability of these classes. It determines a set of projection vectors 

that maximize the inter-class scatter while minimize the intra-class scatter.  
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In fault diagnosis, data collected from the plant during specific faults is categorized into classes, 

where each class contains data representing a particular fault. Let    R        be a set of   -

dimensional samples containing all the data related to the various faults (classes) where the total 

number of classes is  . Then,      R    and the matrix    is the subset which contains     

rows corresponding to the samples from class   . 

Then, 

  ̅   
 

   
 ∑                                      (4.1) 

  ̅   
 

   
 ∑      

                        (4.2) 

Where   ̅ is the overall mean for all samples in   and   ̅ is the   –dimensional mean for the 

samples belonging to each class i. The within-class scatter matrix    is calculated as a measure 

of the spread within a class of data. 

    ∑ (     ̅)(     ̅)
 

    
                                                                           (4.3) 

    ∑   
 
                                  (4.4) 

The inter-class matrix, which is a measure of the overall spread between the class is given by, 

   ∑    
 
   (   ̅   ̅)(     ̅)

                                (4.5) 

                                   (4.6) 

   ∑ (     ̅)(     ̅)
    

                                     (4.7) 

Where,    is called the total scatter matrix. The optimal Fisher direction is found by maximizing 

the following Fisher criterion  ( ): 
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 ( )   
     

     
                                   (4.8) 

The maximizer   is the Fisher optimal discriminant direction that maximizes the ratio of the 

inter-class scatter to the intra-class scatter. The maximizer contains the discriminant vectors 

equal to the generalized eigenvectors of the eigenvalue problem. 

         
                                                                       (4.9) 

If,    is non singular, the eigenvector could be further modified to give, 

  
           

                                          (4.10) 

where the eigenvalues     
  indicates the degree of overall separability among the classes. The 

score matrix      is obtained by projecting the observations X onto the Fisher directions  .  

                                 (4.11) 

 

4.1.2 Literature Survey 

The first attempt to use LDA for fault diagnosis was done by Raich and Çinar (1994) who 

developed a methodology to integrate PCA and LDA in order to determine out-of-control status 

of a continuous process and to diagnose the source causes for abnormal behaviour. Chiang et al. 

(2000) later applied LDA to most of the faults in the Tennessee Eastman process simulation to 

obtain one lower dimensional model which could be used for diagnosis as well as detection by 

including another class containing data from the normal operating condition. He et al. (2005) 

developed a fault diagnosis method based on fault direction using PCA and LDA, which they 

successfully applied to the quadruple tank system for sensor and leakage faults as well as to an 

industrial film polyester manufacturing process. Both Jiang et al. (2008) and He et al. (2009) 
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later used partial F-values and the Cumulative Percentage Variance (CPV) values along with 

FDA for the identification of key variables responsible for abnormalities and the development of 

a Variable weighted FDA (VW-FDA) technique for better discrimination.  

 

4.2 The integrated CA-WPSLDA methodology 

The integrated CA-WPSLDA methodology is a technique developed for the isolation and 

identification of faults detected during the monitoring stages of a system. It attempts to use the 

FDA space as a monitoring space instead of just diagnosis, and tries to provide a simple 

graphical plot which may be used by operators to understand the nature of a fault that they 

encounter in a plant  

4.2.1 Motivation 

The motivation for the WPSLDA algorithm was based on the fault diagnosis methodology by He 

et al. (2005). In this paper, the authors first developed an algorithm based on PCA and LDA 

which is used to detect and isolate fault related data in historical data sets for monitoring 

purposes. A PCA model of the normal operating data was first used to detect other faults in the 

historical dataset. These datasets would be combined and later subjected to PCA where certain 

clusters would be visible and K-means clustering could be used to roughly isolate normal and 

abnormal clusters. The final dataset after removing samples based on K-means clustering is then 

subjected to LDA for better visualization in much lower dimensions. Then, pairwise LDA was 

applied to the normal operating dataset and each class of fault alone to obtain a LDA vector 

which is treated as a contribution plot to understand the nature of the fault involved. This work 

provides the basis for a similar yet modified algorithm which could also be used for monitoring 
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as well as isolation and identification purposes. The several modifications and the reasons for 

doing so will be explained in the subsequent sections. 

4.2.2 A combined CA plus LDA model 

In the work by He et al. (2005), the authors had used the PCA for two reasons, primarily for fault 

detection. We wish to replace this method with CA as it had been proved earlier that CA is a 

more robust detection tool. This was verified in chapter 3 during the application of CA to the 

quadruple tank system where all the faults were detected at much lower false alarm rates and 

almost acceptable detection rates. It was also noticed in Table 3.2 that fault 3 and 8 which were 

simulated at slightly different operating conditions were detected properly by CA, while high 

false alarm rates were recorded in PCA due to its inability to account for dynamics of the system. 

This would be very useful, especially in historical datasets that are recorded for longer lengths of 

time and could therefore have been recorded under different operating conditions. 

The other use of PCA in the original algorithm was for pre-analysis with K-means clustering to 

roughly identify the clusters. Later on, PCA did not play a role in pairwise LDA calculations as 

the direction vectors obtained are treated as contribution plots and require all the original 

variables from the system to understand the cause of the abnormality. In our case, we wish to use 

the tool for isolation purposes, but, not by means of any contribution plots; hence the need to 

retain the original variables for the final calculations. Therefore, CA was used to develop the 

final combined model for pre-analysis but its row scores would later be used for LDA and not 

the original dataset. This was done for two reasons, the first being that applying a technique like 

PCA or CA will lead to dimensional reduction and will not lead to much loss of information; this 

was proved by Yang et al. (2003) in the case of PCA. Since CA can store much more improved 
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information as compared to PCA, it is a better choice to be used. The other reason for using CA 

is that it has better discriminative properties than PCA (both PCA and K-means clustering tend 

to fail as the extent of non-linearity is found to increase). This property of CA is called the 

process of self-aggregation, where CA can provide better discriminative clusters and is attributed 

to the fact that generalized SVD is performed in CA. The process of self-aggregation was first 

explained by Ding et al. (2002) who explained that self-aggregation is governed by connectivity 

and occurs in a space obtained by a nonlinear scaling of PCA called Scaled Principal Component 

Analysis (SPCA). They had stated that nonlinear scaling in PCA can be performed by obtaining 

scaling factors in the form of a diagonal matrix, where each value along the diagonal is the sum 

of the corresponding row of the covariance/correlation matrix represented by   . 

Let, 

                                                       (4.12) 

Then, et the scaling factor be 

                                                    (4.13) 

and, 

    ∑                                                     (4.14) 

Thus, the new scaled matrix is, 

  ̂     
 

     
 

                                               (4.15) 

which leads to, 

    ∑ (      
 )                                                  (4.16) 

where, 

      
 

                                                  (4.17) 
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And, the final eigenvalue problem is defined as, 

  ̂                                                   (4.18) 

or, 

                                                           (4.19) 

In the above formulation, Ding et al. (2002) explained that when there are K clusters and there 

are no overlaps between them in the regular Euclidian space, then the scaled K principal 

components (          )     get the same maximum eigenvalue equal to 1. In the SPCA 

space spanned by   , all the objects within same cluster self-aggregate into a single point. 

However, when overlaps between different clusters are present, samples within same cluster tend 

closer to each other in Scaled SPCA space than in Euclidean space. Khare et al. (2008) compared 

the SPCA algorithm to normal PCA and FDA where he stated that SPCA could be comparable to 

FDA as it is an unsupervised tool which also has the ability to greatly reduce intra-clustering 

distances enhancing segregation. Now, taking the case of SPCA and comparing it to CA, non-

linear scaling is applied by the use of generalized SVD. Generalized SVD is usually applied 

when there is a need to impose constraints on the rows and columns of a matrix by using two 

positive definite matrices. In the formulation of CA in chapter 2, the term (      ) can be 

subjected to generalized SVD where, 

(      )                            (4.20) 

subject to the constraints, 

    
                                                     (4.21) 

and 

    
                           (4.22) 
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The above three expressions are the same as the SVD equation given in 2.32 where, 

         
             

Equations 2.34 and 2.35 show that, 

        

 

              

        

 

              

 

One can notice that 2.34 and 2.35 are similar to equation 4.17. Thus, one may conclude that CA 

is slightly different from non-linear SPCA applied to the rows and columns of the dataset. This 

was in agreement with the statements provided by Detroja et al. (2006). From the above points, it 

can be concluded that a CA plus LDA formulation is preferred over the methodology used by He 

et al. (2005). 

An example over the discriminative property of CA was applied by following the first two steps 

in the algorithm alone where data from the TEP process was taken from the website 

http://brahms.scs.uiuc.edu (link is no longer functional) as in chapter 3 but for a total of 52 

variables for the normal operating condition, fault 4 and fault 11. Both fault 4 and 11 are 

associated with the same fault variables. But fault 4 is related to a step change in the reactor 

cooling water temperature while fault 11 is more related to the reactor cooling water inlet 

temperature and is subjected to random variation as compared to the step change in fault 4. The 

faults were first monitored using both PCA and CA separately and then subjected to a combined 

model using the respective algorithm in each case.  

 

http://brahms.scs.uiuc.edu/
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Table 4.1: Detection rates and false alarm rates – TEP with fault 4 and fault 11 

Datasets Symbol 

Detection Rates 

PCA CA 

Normal Condition Green circle - - 

IDV(4) Red Circle 1 1 

IDV(11) Blue Circle 0.2991 0.5663 

 

The number of PCs obtained for the PCA combined model was found to be 25 while for CA the 

number of PCs were found to be 2 for a Cumulative percentage in variance and inertia of 80%. 

The scores of PCA and the row scores of CA were projected onto the first two dimensions in fig 

4.2 and 4.4. 

 

Figure 4.1: Cumulative variance shown in the combined PCA model for TEP example 
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Figure 4.2: Scores plot for first two components of the combined PCA model – TEP  

 

 

Figure 4.3: Cumulative inertial change shown in combined CA model for TEP example 
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Figure 4.4: Row scores plot for first two components of combined CA model – TEP  

Thus, it can be clearly seen from Figures 4.1, 4.2, 4.3, and 4.4 that CA can distinctly present the 

clusters for a normal operating condition and two other faults even when both the faults share a 

certain amount of similarity to one another. It was also proved that CA can provide this 

visualization at much lower representation. 

4.2.3 A weighted LDA algorithm 

Following the development of the combined CA model, the scores are subjected to LDA at two 

levels. The first application of LDA will be to the complete set of row scores corresponding to 

the selected number of components in CA. The main aim here is the visualization of the 

transformed dataset in the Fisher space. Visualization is usually preferred corresponding to the 

two largest eigenvalues (2-D space). The second analysis involves the use of pairwise LDA to a 

combination of the normal operating condition and each fault. Since there are only two classes 

used in pairwise LDA there will be only one significant non-zero eigenvector which will be used 

for projection purposes and to later on develop the monitoring scheme based on control charts.  
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The need for a weighted LDA algorithm arouse from the fact that the presence of overlapping 

cluster despite applying CA would tend to disrupt the algorithm. Variable weighted techniques 

had been applied earlier using partial F-values along with CPV in LDA (He et al., 2009 ) but the 

procedure was found to be quite tedious and complex and did not provide any weights to the 

class of normal operating data. Therefore there was a need to identify a weighting technique 

which was simple and treated all the classes of data equally while providing improved 

discriminative visualization. The solution to this problem was seen in the form of a weighted 

pairwise scatter linear discriminant analysis (WPSLDA) algorithm which was suggested by Li et 

al. (2000). According to these authors, an implicit assumption in LDA is that each class may be 

equally confused with other classes. This can be explained by deriving the following equations. 

We know that the within-class scatter matrix is given by, 

    ∑   
 
                                   (4.23) 

This can be rewritten using equation 4.3: 

    ∑ (     ̅)(     ̅)
  

                                 (4.24) 

Then, 

    ∑    
 
   ∑                                           (4.25) 

where, ∑   is the covariance matrix for each class of data. The covariance matrix for the different 

classes of data as well as the whole dataset   can be given by, 

∑     
 

   
∑ (     ̅)(     ̅)

  
    

                                            (4.26) 

This can again be written as, 
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∑     
 

   
∑ (        

  ) 
    

                                                    (4.27) 

Let, the covariance matrix for the whole dataset be given by, 

∑     
 

   
∑ (     ̅)(     ̅)

    
                                                                     (4.28) 

This can again be written as, 

∑     
 

   
∑ (    

    ̅  ̅ )   
                                                                                     (4.29) 

We know that, the total scatter matrix,    which is the sum of the within-class scatter matrix and 

the between class scatter matrix can be written as: 

   ∑ (     ̅)(     ̅)
    

                                               (4.30) 

Then 

   ∑ (      ̅     ̅    ̅)(      ̅     ̅    ̅)
    

                                            (4.31) 

where,   ̅ is the class mean corresponding to the class of data that each sample    belongs to, 

equation 4.31 can now be written as: 

   ∑ ((      ̅)(      ̅)
 )   ((   ̅    ̅) (   ̅    ̅) )    

                (4.32) 

The transformation from equation 4.31 to 4.32 is similar to the ones that take place between 

equations 4.26 and 4.27 as well as between 4.28 and 4.29. Equation 4.32 finally becomes: 

    ∑    
 
   ∑     ∑    

 
   (   ̅   ̅)(     ̅)

                                           (4.33) 

Then from equations 4.5, 4.25, and 4.33, we again arrive at the fact that, 
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                                                                   (4.34) 

The focus of the previous formulations is inter-class scatter matrix    .According to Li et al. 

(2000), the inter-class scatter matrix in its regular form neglects any discriminatory information 

if the distance between certain classes are much closer to each other as compared to others. This 

was demonstrated with the following case where we have four clusters spanning over a two 

dimensional space each having the same number of samples and equal variance as shown in 

Figure 4.5 where the mean of each class is given as    (   ),    (    ),    (     ), 

and    (    ). 

 

Figure 4.5: WPSLDA case study 

 

The inter-class scatter matrix is given by, 

 

 
   (

  
   )                                             (4.35) 

Now as     , the matrix is of the form (
  
  

)  where it is only possible to discriminate 

between the of class pairs of (1,4) and (2,3) whose covariance dominates the model. Although it 

is true that both these pairs are important in the model, it still does prove the fact that the 
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between class scatter matrix does not accurately represent the discriminatory information in the 

model. Therefore, the between class scatter matrix was redefined to be the sum of pairwise 

scatter matrices. This new version of the within-class scatter matrix      is given by: 

      
 

   
∑        

 
        (   ̅   ̅ )(  ̅   ̅ )

                                                     (4.36) 

This new form of between class scatter matrix is developed such that a certain set of weights in a 

matrix given by    where,       is the value provided for a pair of classes referenced by ‘i’ 

and ‘z’ to improve the information via scatter so that the pair could be treated with a certain 

required amount of importance in the LDA model. The weightage value for a certain class is 

calculated as follows based on their mean values. 

      
 

(  ̅   ̅ ) (  ̅   ̅ )
                   (4.37) 

Equation 4.36 can be simplified to equation 4.5 when the weightage value is assumed to be 1 in 

all cases. This will mean that each pairwise scatter will contribute equally to the between class 

scatter matrix. Then, the equation is found to be: 

      
 

   
∑    

 
        (   ̅   ̅ )(  ̅   ̅ )

                                                (4.38) 

      
 

   
∑    

 
        (   ̅    ̅    ̅   ̅ )(  ̅    ̅    ̅   ̅ )

                                        (4.39) 

      ∑    
 
   (   ̅    ̅)(  ̅    ̅)                                                (4.40) 

Equation 4.39 is the same as that of 4.5 for regular     and thus one can say that     is a special 

case of      when the weights are uniform.  
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4.2.4 Fault intensity calculations 

After applying the WPSLDA algorithm for better visualization, pairwise FDA is performed 

between each of the fault classes to the normal data. Since there are only two classes involved in 

these pairwise calculations, the number of significant discriminant vectors is 1. 

 

 

 

 

Figure 4.6: Control chart like monitoring scheme from pairwise LDA-1 

Since the number of significant discriminant vectors is 1, the two-dimensional plot as shown in 

Figure 4.5 for pairwise FDA of two classes can be converted to another having just one 

dimension, i.e. the most significant discriminant direction. The bounds for the two regions can be 

chosen by selecting the maximum and minimum value along the same to provide bounds for the 

two regions, if the monitored data (after undergoing a series of transformations) is found to 

exceed the bound of the normal region and approach the fault region. This can be indicated by 

certain bar plots which conduct fault intensity calculations. The main aim of calculating this 

intensity value is to understand how strongly the samples are related to a certain fault in the 

simplest way possible as visualization of the sample in a multi-class LDA visualization may not 

provide a clear picture of the outcome.  The fault intensity values are expressed in percentage 

between 0 -100 %. Calculations are carried out as follows according to the following set of rules: 

 

DC2 (1%)

DC1 (99%) 

NOC 

F1 

DC1 

Normal region 

Fault region – F1 
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Figure 4.7: Control chart like monitoring scheme from pairwise LDA-2 

When a sample samp is being monitored, it has to move from the normal region to the fault 

region, this transitional region is called the buffer region and its distance is termed BR. The two 

limits that are necessary for the calculation of intensity would first include the limit that the 

sample has to cross to leave the normal region and the limit it has to cross to enter the fault 

region. Each of these limits would be referred to as Bound1 and Bound2. Thus, the intensity of 

the sample would be calculated as: 

           
           

  
                                                        (4.41) 

The bound values would be interchanged if the fault region were to lie above the normal region. 

In this case, the equation would change to, 

           
           

  
                                                        (4.42) 

Normal region 

Fault region 

BR 

Bound1 

Bound2 

samp 

Bound3 

Bound4 



89 
 

Other rules which are followed in these calculations include: 

1) The intensity values remain at 0 as long as samp is between Bound1 and Bound2. 

2)  The intensity value is directly assigned as 1 if it is between Bound3 and Bound4.  

3) If the samples do enter the fault region but are found to move beyond this region too, then 

their intensity values are reduced by a factor of 
          

  
. 

4) If the samples are found to cross the bounds of normal operation but move in the direction 

opposite to that of the fault region, then they are assigned a value of 0.1 to indicate that a fault 

has occurred, but is not related to the fault in the chart. 

 In industrial settings, it is not advisable to arrive at a conclusion based on a single sample, 

therefore, one would take the average of ‘num’ number of samples before the current one to 

provide the final intensity value on a bar plot. The value of ‘num’ is chosen based on the 

convenience of the user.  A sample plot on how the bar plot presentation would appear is given 

in Figure 4.8. 
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Figure 4.8: Control chart like monitoring scheme with fault intensity bar plots 

In, this plot, one can clearly see that the monitored samples are found to have a strong affinity to 

fault 1 shown in red. This can also be noticed in the first control chart at the top of the Figure 

where the samples have crossed over from the lower zone, which is the normal zone to the upper 

zone. 

Thus, with these intensity calculations, a complete explanation of the CA-WPSLDA 

methodology has been concluded and a complete summary of the procedure is provided below: 

1) A CA model of the normal operating condition is first developed; it is then used on historical 

datasets to detect faults using     and   statistics. 

2)  The data related to the faults detected are then combined with the normal operating data used 

to create the initial CA model at a very high cumulative inertia (say 95%).  

3) The combined dataset is then subjected to CA for two main purposes; firstly dimension 

reduction and secondly preliminary discrimination. 
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4) The row scores of this new combined model are then subjected to Weighted Pairwise Scatter 

Linear Discriminant Analysis (WPSLDA) to push any clusters that may have been too close 

or may have overlapped with one another. If the clusters are already further apart, then there 

will be no need to apply WPSLDA to the combined model. 

5) WPSLDA is then applied in a pairwise fashion for the row scores each of the fault related 

datasets along with the normal operating data. The LDA vectors obtained for each pairwise 

calculation represent the fault directions for each fault. 

6) These pairwise LDA vectors are used to develop a control chart where the boundaries are 

marked for the operating condition as well as the fault. 

7) Intensity calculations are performed based on the position of the monitoring sample in the 

chart to predict its chances of being part of a certain fault. This intensity value is shown in 

the form of a bar plot for each sample. 

 

Figure 4.9: CA-WPSLDA methodology 
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4.3 Comparison of integrated methodology to LDA 

In order to compare the integrated methodology, we compare initially the results of the combined 

CA model developed in section 4.2.1 to LDA. The samples selected by CA monitoring will then 

be subjected to LDA under supervised conditions. 

 

Figure 4.10: Comparison between CA and LDA 

It is very clear from Figure 4.10 that in this case, CA is much more superior to LDA. There may 

be certain cases where the number of CA dimensions would be greater than 2 for the combined 

model and in this case it is better to apply WPS-LDA to these scores to reduce the dimensions 

further and improve separation if possible. Thus the integrated CA-WPSLDA methodology is 

found to be far more efficient as compared to PCA (from section 4.2.2) and LDA in terms of 

discrimination due to the application of the WPSLDA methodology over the CA space. 
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4.4 Application to simulated case studies 

The integrated methodology has been applied to simulated case studies of the Quadruple tank 

system and the Depropanizer process. The faults are the same as the ones described in Table 3.2 

and Table 3.5. The intensity values will be shown in the form of curves for convenience in both 

the cases. 

4.4.1 Quadruple tank system 

The five classes involved in the development of the model will include the normal operating 

condition, faults 1, 2, 3, and 4. The faults 5, 6, 7, and 8 are then tested using the algorithm to see 

if the nature of the faults can be predicted. 

 Table 4.2: Quadruple tank system – model faults and symbols 

Datasets Symbol 

Normal Condition Green circle 

Fault 1 Red Circle 

Fault 2 Blue Circle 

Fault 3 Black circle 

Fault 4 Cyan circle 
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4.4.2 Depropanizer Process 

In this system, the first 9 faults are used to develop the integrated model while faults 10, 11, 12, 

13, 14, and 15 are monitored by the CA-WPSLDA methodology and the results are obtained. 

The description of the faults can be obtained from Table 3.5. 

 

Table 4.3: DPP – model faults and symbols 

Datasets Symbol 

Normal Condition Green circle 

Fault 1 Red Circle 

Fault 2 Blue Circle 

Fault 3 Black circle 

Fault 4 Cyan circle 

Fault 5 Red Cross 

Fault 6 Yellow Circle 

Fault 7 Magenta Circle 

Fault 8 Black cross 

Fault 9 Magenta Cross 
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4.5 Results and Discussion 

4.5.1 Quadruple tank system 

The final CA and WPSLDA models for the quadruple tank system are developed and the results 

are as shown in the Figures below. 

 

Figure 4.11: Number of PCs for combined CA model – Quadruple tank system 

 

Figure 4.12: First 2 PCs of final combined CA model – Quadruple tank system 
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Figure 4.13: Final WPSLDA model – Quadruple tank system 

In this case one will find that all the four clusters do separate very well. The number of PCs for 

the combined CA model is chosen at a cumulative inertia level of 95%. This is because the data 

contained in these classes could be spaced far apart, and information might be lost by treating 

some of the samples as noise. We use the WPSLDA model to reduce the number of dimensions 

and fit all our information into just two dimensions. The four control charts are then developed 

and then applied for monitoring purposes. 

 

Figure 4.14: CA-WPSLDA methodology – monitoring – fault 5  
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Figure 4.15: CA-WPSLDA methodology – control charts – fault 5 

 

Figure 4.16: CA-WPSLDA methodology – intensity values – fault 5 (x-axis: sample number; y-

axis: fault intensity) 
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Table 4.4: Quadruple tank system – CA-WPSLDA methodology results 

Fault Results – fault intensity values 

(x-axis: sample number; y-axis: fault intensity) 

Description of results 

5 

 

Clear fault affinity is shown around 

the 150
th

 sample towards fault 2 at 

a value between 14 – 20 %. Fault 1 

could be related or is just 

displaying the presence of a fault. 

6 

 

Highest fault intensity is associated 

with fault 1 at a value of 40% at the 

90
th

 sample while other faults show 

only a maximum intensity of 15 % 

7 

 

Highest fault affinity is related to 

fault 3 at a value of 45 % starting 

from the 90
th

 sample while others 

are 10% or less. 

8 

 

Highest fault affinity is related to 

fault 3 at a value of 40 % starting 

from the 90
th

 sample while others 

are 10% or less. 
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In Figure 4.14, the fault regions seem to be represented by straight lines as their fault regions are 

very narrow as compared to the normal region. From the Figure, it is also clear that only fault 2 

(represented by blue circles) has some approach towards its region while the other drift away 

from the region of normal operation, but in the direction opposite to that of the fault region; 

hence their intensity calculations would be negligible. The intensity values shown in Figure 4.15 

support the control charts where only the intensity values of fault 2 show a variation between 15 

and 20%, while fault1 shows a variation of 10% which could be an approach towards the fault or 

just an indicator that the fault has left the normal region and may be proceeding in the opposite 

direction. Intensity values of faults 3 and 4 also convey the same information but at much lower 

intensities. Thus the only conclusion for fault 5 is that out of the two contributing faults of 1 and 

2, only fault 2 is identified by the CA-WPSLDA method as being associated with fault 5. Fault 6 

clearly shows that it is associated with fault 1 which is true, as both fault 1 and 6 are related to a 

leakage in tank 1 and the leakage co-efficient in fault 6 is 40% of the value in fault 1, which is 

also the fault intensity value shown in Table 4.2. Fault 7 which is related to a positive bias in 

height h1 with bias value of 0.4 is shown to be clearly related to fault 3 which has a negative bias 

in the sensor related to height h1 with the same bias value of 0.4. Fault 8 related to a positive bias 

in height h2 was clearly found to be related to fault 4, which was also related to a bias in h2 but in 

the negative direction. The absolute value of bias taken in this case was also 0.4. 
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4.5.2 Depropanizer Process 

 

Figure 4.17: Number of PCs combined CA model – Depropanizer process 

  

Figure 4.18: First 2 PCs of final combined CA model - Depropanizer process 
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Figure 4.19: Final WPSLDA model – Depropanizer process 

The combined CA model was developed with 5 PCs as shown in Figure 4.16 and from Figures 

4.17 and 4.18. We can understand that WPSLDA has been effective in moving clusters related to 

faults 4, 6, and 8 further away from the NOC as compared to the usual CA model.  
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Figure 4.20: Depropanizer process Fault 10 fault intensity  

 

Figure 4.21: Depropanizer process Fault 10 – Individual significant fault intensity values  
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Figure 4.22: Depropanizer process Fault 11 - Fault intensity values  

 

Figure 4.23: Depropanizer process Fault 11 – Individual significant fault intensity values  
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Figure 4.24: Depropanizer process Fault 12 – Fault intensity values  

 

Figure 4.25: Depropanizer process Fault 12 – Individual significant fault intensity values 
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Figure 4.26: Depropanizer process Fault 13 – Fault intensity values  

 

Figure 4.27: Depropanizer process Fault 13 – Individual significant fault intensity values 
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Figure 4.28: Depropanizer process Fault 14 – Fault intensity values  

 

Figure 4.29: Depropanizer process Fault 14 – Individual significant fault intensity values 
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Figure 4.30: Depropanizer process Fault 15 – Fault intensity values  

 

Figure 4.31: Depropanizer process Fault 15 – Individual significant fault intensity values 
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Table 4.5: Depropanizer Process – CA-WPSLDA methodology results 

Fault Results – fault intensity values Description of results 

10 

 

High affinity shown by fault 5 (0.7) followed 

by secondary contributions from 3 and 6 (0.6). 

Main affinity is towards fault 5. 

11 

 

High affinity shown towards faults 5 and fault 

2. Secondary presence is noticed from fault 4 

but it has low values (0.2 - 0.4). 

12 

 

High affinity is shown towards faults 5 and 2 

followed by drops in intensity indicating 

possible deactivation of fault. 

13 

 

High affinity towards fault 5 followed by 6,3,1, 

and 2. Main variable responsible seems to be 

fault 5. 

14 

 

High affinity towards fault 8 which falls after 

600
th

 sample indicating deactivation of fault. 

Fault 7 has a short term contribution after that. 

15 

 

Main variable responsible seems to be fault 8, 

followed closely by fault 9, and then there is 

drop in intensity values indicating deactivation 

of fault 
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According to the results provided fault 10 seems to have maximum relation to fault 5. Fault 10 is 

actually a simultaneous occurrence of fault1 and fault2. The results revealed in the CA-

WPSLDA methodology are partially correct as fault 2 and fault 5 seem to be very close to each 

other, this was confirmed by the contribution plot values from Table 3, where both PCA and CA 

methods showed the same main contribution variables and almost same plots as shown in Figure 

4. Fault 2 is the failure of the feed control valve to the tower while fault 5 is related to the loss of 

feed to the tower. 

 

Figure 4.32: Contribution plots of fault 2 and 5 as calculated in chapter 3 

Fault 11 which is actually the simultaneous occurrence of fault 4 and 5 was also better indicated 

by the methodology as compared to fault 10, where the method shows that there is clearly a 

strong affinity to fault 5 or 2, and fault 4 shows minor but consistent presence throughout the 

analysis. Fault 12, a staggered occurrence of fault 2 and 6 only indicates the strong presence of 

fault 2 or 5 while fault 13 which is a staggered occurrence of fault 1 and 2 only indicates the 

strong affinity of fault5 but is closely followed by 4 other variables leading to ambiguity in the 
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results. Fault 14 is the occurrence of fault 8 with variable intensity and is rightly indicated as 

shown in fig 4. Fault 15 which is the occurrence of fault 9 is not shown as the main reason for 

the occurrence but is only shown as a secondary reason. Therefore, an overall conclusion would 

be that only one of the faults was most properly indicated while three others which involved two 

original model faults were partially indicated and one fault (fault 15) was unable to be identified. 

The main reason attributed to these results could be possible overcrowding of the space and the 

close relationship between two faults. Another reason could be attributed to the weighted scaling 

technique employed bringing in the need for a better scaling technique.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

From the methods and results described and provided in chapters 2, 3 and 4, it is clear that 

multivariate statistical techniques such as PCA, PLS and CA are efficient in detection and 

diagnosis. PCA was found to have both advantages as well as disadvantages in its detection and 

diagnosis – it offered high detection rates while also resulting in high false alarm rates and more 

number of contribution variables to consider. Thus, arriving at a correct diagnosis may prove 

difficult with PCA.  CA, on the other hand, was found to be more reliable based on application to 

several case studies; its only drawback was high detection delays. CA displayed superior 

discriminative ability which makes it a prime candidate for the development of a comprehensive 

fault identification methodology that includes multiple fault identifiability. The CA-WPSLDA 

methodology proposed here showed positive results and promises to work well for novel fault 

identifiability. Thus it can be said that CA exhibited a strong ability to provide robustness, 

multiple fault identifiability and novel identifiability in fault monitoring and diagnosis. 

Therefore, it can be concluded that CA is a powerful potential tool which should be investigated 

more closely to construct superior process monitoring techniques for the process industry. 

 5.2 Recommendations for Future Work  

  Based on the results obtained, there are two major areas which could be worthwhile future 

projects. The first is to develop an improved statistic for CA so as to reduce detection delays 

associated with it. The currently used Q statistic is found to be a major reason for the high 

detection delays noticed. The PVR (Principal Component Variable Residual) and CVR 

(Common Variable Residual) statistics developed by splitting the Q statistic into two parts based 
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on multiple correlation (Wang et al., 2002) is found to be promising in this regard. This lead 

could be developed further. The second possible area for future work would be to investigate 

replacing the WPSLDA technique with a more powerful discriminative tool such as Pareto 

discriminant analysis (Abou-Moustafa et al., 2010) to separate the fault and normal clusters. 
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