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Summary

As drug development is time consuming and costly, compounds that are likely to fail should be

weeded out early through the use of assays and toxicity screens. Computational method is a

favourable complementary technique. Nevertheless, it is not exploited to its full potential due

to: models that were built from small data sets, a lack of applicability domain (AD), not being

readily available for use, or not following the OECD QSAR validation guidelines. This thesis

attempts to address these problems with the following strategies. First, the data augmentation

approach using putative negatives was used to increase the information content of training ex-

amples without generating new experimental data. Second, ensemble methods were investigated

as the approach to improve accuracies of QSAR models. Third, predictive models are to be built

from data sets as large as possible, with the application of AD to define the usability of these

models. Next, the QSAR models were built according to the guidance set out by the OECD.

Last, the models were packaged into a free software to facilitate independent evaluation and

comparison of QSAR models.

The usefulness of these strategies was evaluated using pharmacodynamic data sets such

as lymphocyte-specific protein tyrosine kinase inhibitors (Lck) and phosphoinositide 3-kinase

inhibitors (PI3K). Further investigated were toxicological data sets such as eye and skin irri-

tation, compounds that produce reactive metabolites, and hepatotoxicity. To the best of our

knowledge, the Lck and PI3K studies were the first to produce virtual screening models from

significantly larger training data with the effects of increased AD and reduced false positive

hits. In addition, all models produced for toxicity prediction were better than most models of

previous studies in terms of either prediction accuracy, presence of AD, data diversity, or ad-

herence to OECD principles for the validation of QSAR. The various approaches examined are

useful, to varying extents, for improving the virtual screening of potential drug leads for specific

pharmacodynamic and toxicological properties.
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Chapter 1

Introduction

1.1 Drug Discovery & Development

The drug discovery and development process starts with the identification of disease causing

targets, which are used to screen compound libraries for potential drug candidates [1]. The hit

compounds (later refined into lead compounds) can be obtained through high-throughput screen-

ing (HTS) campaigns, which may take a duration of 1 week to 3 months to screen ten thousands

to one million compounds [2]. Subsequently, the development process proceeds into a myriad

of preclinical research activities. These preclinical research activities may consist of tests for

pharmacodynamics, pharmacokinetics, and toxicological properties. In addition, optimization

of drug delivery system may also be carried out [1]. These tests and studies are conducted to

ensure the quality, safety, and efficacy of marketed drugs as required by the regulators. As a re-

sult, these processes may be repeated many times before a compound is allowed to enter clinical

trials which involve human subjects [1].

Evidently, drug discovery and development are time-consuming and expensive processes.

From the beginning of target discovery, it often takes an average of twelve years to deliver the

final product [3]. The development cost was estimated at USD800 million (SGD1.2 billion) per

new drug [4], and more recently estimated to cost USD868 million. This can vary from USD500

million to USD2000 million depending on the company’s strategic decisions [5].

The companies’ investments pay off when they are able to produce blockbuster drugs that

fetch billions of profit. However, this does not occur regularly as drug companies are faced

with many challenges, e.g., high attrition rate in drug development or clinical trials, and post-

marketing withdrawals. Consequently, investments are wasted when the drug fails. On average,
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only one in a thousand compounds that enter pre-clinical testing are tested in human trials.

Subsequently, only one in five will obtain acceptance for therapeutic use [3]. Therefore, it can

be seen that failures are more common than success cases, which bring about the high cost of

drug development.

A large part of the drug development cost is contributed by attrition. In effect, attrition

reduction at Phase II and III of clinical trials was identified as the key for boosting development

efficiency and reducing the cost per new molecular entity (NME) [6]. In year 2000, it was

estimated that 10% of drug development attrition was contributed by poor pharmacokinetic

and bioavailability of drugs. Additionally, 30% of clinical stage attrition was caused by the

lack of efficacy and another 30% was caused by toxicity or clinical safety issues [7]. This

suggests that the inability to predict these failures, prior to the clinical stage, raises the drug

development cost. It was claimed that a saving of USD100 million in development costs per

drug could be attained with a 10% prediction improvement [8]. This is unsurprising because the

pharmaceutical industry had spent USD20 billion for drug development in year 1998, and 22%

of the expenditure was used on assay screens and toxicity testing [9]. Furthermore, Paul et al.

[6] had estimated that a reduction of the Phase II attrition rate from 66% to 50% can reduce the

cost of a NME by 25%, i.e., from $1.78 billion to $1.33 billion.

1.2 Computational Methods as a Complementary Alternatives

Consequently, the attrition rates at the various stages of drug discovery and development must

be addressed. A ‘quick win, fast fail’ paradigm is needed to reduce attrition rates [6]. The strat-

egy includes refining assays and target validation to improve biological screening. In addition,

integrated approaches like the combination of HTS with computational chemistry may be used

[10, 11]. The application of these methods can improve the identification of candidates that

stand a better chance at succeeding in drug development and clinical trials.

Virtual screening (VS) is one such computational method. VS is utilized to search large

compound libraries in silico to shortlist drug candidates with the biological activity of interest

for further testing [10]. Currently, in vitro techniques and animal models are inherently poor

predictors of the effects in humans [7, 12]. Further, Xu et al. [13] had studied the applications of

cytotoxicity assays and pre-lethal mechanistic assays in assessing human liver toxicity potential.

In the test of 611 drugs, it was found that the specificity of these methods were good at 82% –
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99%. However, the sensitivity, which is the ability to detect toxic compounds, was low at 1%

– 25% for in vitro methods and 52% for an in vivo method. Hence, VS can be used in toxicity

screening to address the limitations of these existing methods.

Although in vitro methods are established techniques that complement or substitute the

use of animal testing, these methods are not truly identical to in vivo systems. There may

be species specific toxicity, e.g., toxicity in rats which may not occur in humans, or differ-

ences in drugs concentration required to elicit a toxic response between in vitro and in vivo.

In other cases, absence of organ-specific heterotypic cell-cell interactions, deterioration of key

metabolism genes expression, or inadequate supply of human tissues may restrict the use of in

vitro methods [14]. Besides, the prediction quality of the assays is dependent on the quality of

the cell culture system [15], and the sensitivity may be inherently low as shown in Xu et al. [13].

Computational methods may play an important role to overcome some of the disadvan-

tages of in vitro methods. Virtual screening is a favourable alternative to other screening meth-

ods because it can identify potential unsafe compounds in a cheap and fast manner. Besides, the

in silico predictions may be used as a filter to sieve out compounds which are likely to fail early.

Similarly, it can prioritize compounds for in vitro testing to reduce the wastage from experi-

ments on less promising compounds [16]. Furthermore, regulators have applied computational

methods in toxicity prediction. Examples are the “FDA QSAR toxicity models” by Leadscope®

[17], and ToxCastTM by the United States Environmental Protection Agency (EPA) Computa-

tional Toxicology Research Program (CompTox) [18]. In addition, there are decision support

tools such as Toxtree, Toxmatch, and the Danish (Q)SAR Database [19] commissioned by the

Joint Research Centre of the European Commission.

To summarize, computational modelling is a favourable method for use in drug develop-

ment. It has been applied in regulatory settings and is useful because it may help to fill in the

gaps of in vivo or in vitro methods.

1.3 Current Challenges of Computational Methods

A variety of methods are used for virtual screening [10]. For example, knowledge-based expert

systems, the quantitative structure-activity relationship (QSAR), or the quantitative structure-

toxicity relationship (QSTR). QSAR relates the molecular structure of a substance to its bio-

logical or toxicological effects. Hence, it can be used to make a prediction when the structure
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of a test compound is known. In addition, a broad range of QSTRs and regulatory tools have

been developed which include: acute and aquatic toxicity, receptor-based toxicities, and human

health effects [20]. There is still room for further exploration in this field as there are over

thirty endpoints for drug toxicity prediction but few pharmaceutical companies are involved in

this aspect [21]. Nevertheless, QSAR models are lacking acceptance and not exploited to their

fullest potential because of the limitations discussed in the following sections. The limitations

are: small data sets, no applicability domain, validation of models which did not follow OECD

QSAR principles, and many models being proprietary or not available for free use.

Brief discussions for the limitations are presented below. Following this is the section on

the objectives of this thesis.

1.3.1 Small Data Set and Lack of Applicability Domain

Small Data Set. QSARs are constructed via a data-driven manner, i.e., the modelling method

will learn from existing samples to build a model. Therefore, the data size may pose a challenge

in QSAR model construction. This is especially true in the modelling of QSAR for toxicolog-

ical predictions. As a majority of the toxicological mechanism of actions remain unclear and

complex [22], it is difficult to construct a predictive model. The problem arises because tox-

icity often involves a wide range of adverse effects, but the data relating to toxicity is scarce

[21]. Hence, there is insufficient examples for effective learning, which will affect prediction

accuracy.

The QSAR models listed in Table 1.1, Table 1.2, and later the Lck and PI3K models

listed in Chapter 4 and Chapter 5, are useful for the prediction of their intended endpoints.

The models are also useful for identification of the molecular features that results in the toxicity

or inhibitory actions. Except for the models made available by the regulators, the number of

compounds used in these studies are frequently less than 300 without a stated applicability

domain. Therefore, the usability of these models may be restricted. This is because small

training data generally give rise to models of small applicability, which may increase the risk

of unfounded extrapolation of the model when used indiscriminately. Besides, virtual screening

models may have increased false positives rates if the negative compounds were insufficient to

identify the inactive class that naturally occurs in larger quantities. Therefore, there is a need to

ensure model construction from large or diverse data sets to avoid the problems mentioned.

Applicability Domain. The applicability domain (AD) of a QSAR is defined as [54, 55]: the
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TABLE 1.1: QSARs related to skin irritation. N is the number of compounds used for modelling.

description N methods explored references
QSAR of diverse chemicals 189 Neural Networks [23]
Toxtree: Skin irritation & corrosion 1358 or 1833 Rules & structural alerts [24, 25]
Danish (Q)SAR Database 800 Probabilistic (MCASE) [26]
MI-QSAR of organic chemicals 22 Linear regression [27]
QSAR of esters 76 Discriminant analysis [28, 29]
QSAR of phenols 24 Linear regression [30]
One variable model for skin irritation 12 Linear regression [31]
QSAR of neutral, electrophillic organic chemicals 52 Discriminant analysis [32]
Severity of irritation from acid/base strength 4 Rule based [33]
QSAR of congeneric chemicals 3–72 Discriminant analysis [34]

TABLE 1.2: QSARs related to eye irritation. N is the number of compounds used for modelling.

description N methods explored references
Ocular irritability 46 Discriminant analysis [35]
Toxtree: Eye irritation & corrosion 1341 or 1525 Rules & structural alerts [36, 37]
MI-QSAR of organic chemicals 18–25 Linear regression [38, 39]
QSAR of cationic surfactants 19 Neural Networks [40]
QSAR of mixtures 37 Linear methods [41]
QSAR of eye irritation 297 Significance of chemical structure [42, 43]
QSAR of Draize’s eye score 38–91 Linear methods [44–46]
QSAR of neutral organic chemicals 34–57 Neural Networks, PCA [47, 48]
QSAR of eye irritation 53 Discriminant analysis, [49, 50]

52 Cluster significance analysis
QSAR of salicylates 131 Linear methods [51, 52]
QSAR of congeneric chemicals 1–274 Discriminant analysis [53]

physicochemical, structural, or biological space, knowledge or information on which the train-

ing set of the model has been developed, and for which it is applicable to make predictions for

new compounds. The AD of a QSAR should be described in terms of the most relevant param-

eters, that is, usually those that are descriptors of the model. Ideally, the QSAR should only be

used to make prediction within that domain by interpolation not extrapolation.

The applicability domain (or the optimum prediction space), is used to assess the relia-

bility of QSAR predictions [56]. In the examples given in the tables, a majority of the models

concur strongly with most of the QSAR guidelines set out by the OECD as discussed in the

next section. However, the unavailability of AD makes these model less useful. It is important

to use the right tools for a job; without the knowledge of AD, it is difficult to judge if a model

is the suitable predictor for the screening task. For example, a model constructed from organic

compounds is an inappropriate predictor of large biomolecule properties. On top of that, stud-

ies have shown that models developed with small data size tend to have a limited applicability

domain [57, 58]. The small AD may result in a large number of false positives when the model

is deployed for the virtual screening of large chemical libraries [59, 60]. Hence, the AD is an
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important piece of information for deciding which model to use and should be defined for all

models whenever possible.

1.3.2 OECD QSAR Guidelines

Registration, Evaluation, Authorisation and Restriction of Chemical substances (REACH), is a

European community regulation on chemicals and their safe use. This regulation aims to im-

prove the protection of environment and human health through early and improved identification

of intrinsic chemical properties. Many of the recent developments in QSAR have been in line

with the direction of REACH. For regulatory purposes, the European Centre for the Validation

of Alternative Methods (ECVAM) is active in assessing and validating QSAR models of poten-

tial use [61]. It was reported that similar development is ongoing in Japan as well as in the US

[61, 62].

With the rising importance of QSAR in regulatory use, guidelines to facilitate the con-

sideration of a QSAR model for regulatory purposes have been set out by the Organisation for

Economic Co-operation and Development (OECD). In the OECD Principles for the Validation,

for Regulatory Purposes of QSAR Models guideline [54], the QSAR under examination should

include the following five points:

1. a defined endpoint,

2. an unambiguous algorithm,

3. a defined domain of applicability,

4. appropriate measures of goodness-of-fit, robustness, prediction quality, and

5. a mechanistic interpretation, if possible

Briefly, a defined endpoint refers to the importance of setting a clear endpoint being

predicted by a given QSAR model. It helps to determine the systems or conditions that the

QSAR model is applicable to. This is because, a given endpoint could be obtained through

different experimental protocols or under different experimental conditions, e.g., data obtained

from human or animal tests.

For point 2, An unambiguous algorithm is important to ensure reproducibility of the pre-

dictive model so as to make independent validation feasible for others or the regulators.

Although a relatively new concept and still under research, a defined domain of appli-

cability is needed to prevent unfounded extrapolation of the model within the chemistry space,
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which can result in unreliable predictions [63]. An example of unjustified application is the use

of a model trained from alcohol-only-compounds to predict the property of an aldehyde.

For point 4, by providing appropriate performance measures, others can be assured of the

performance of a given model. The measure should include internal performance, prediction

quality and external validation.

For point 5, consideration should be given to produce a model with mechanistic interpre-

tation, also known as an “explanatory” QSAR model [63]. Although the absence of it may not

cause a rejection by the regulator, a QSAR with mechanistic interpretation allows easy compre-

hension of the factors that influence the biological outcome. Thus, the interpretation provides a

greater understanding of the underlying reasons which may be useful for chemists.

It is advantageous to follow the guidelines set out by OECD not only for regulatory ac-

ceptance – adhering to the guidelines is an indication that the QSAR models are of good quality

with rigorous validation and are reproducible by other parties for verification. Furthermore,

clearly defined endpoints and applicability domains are important for the proper usage of these

models.

1.3.3 Unavailability of Model for Use

Free software that apply modelling results are scarce. Many publications of different predicted

endpoints report their findings only as a model, or as a component in proprietary software such

as TOPKAT, DEREK, and MultiCASE. For example, none of the publications for eye and skin

SAR or QSAR studies provide a software for free use with the exception of the German Fed-

eral Institute for Risk Assessment-Decision Support System (BfR-DSS) that was incorporated

into Toxtree [64]. Toxtree is a free software made available by the European Commission Joint

Research Centre, for the prediction of various endpoints such as mutagenicity, carcinogenicity,

corrosion, and eye or skin irritation. Limited public access and application of the models may

hamper scientific advances in the field as the findings are not accessible for learning and inde-

pendent validation. Hence, newly developed models should be packaged into free software for

public access as much as possible to facilitate the exchange of knowledge.
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1.4 Objectives

The OECD had developed five principles for QSAR models in 2004 [54]. The adoption of

these principles will help to increase the confidence in QSAR prediction and reduce misuse

[54]. Nonetheless, current QSAR models for predicting pharmacodynamic, pharmacokinetic

and toxicological properties were frequently built without adhering to all the five principles.

In addition, these models were developed using insufficiently sized data sets with no proper

definition of their applicability domains. Many of the models were not easily available for

independent evaluation and comparison by external groups. All these problems limit usefulness

and acceptance of the QSAR models for drug development or regulatory purposes.

The main goal of this thesis is to support drug development programs by developing meth-

ods to reduce the problems of current QSAR models. Good quality models will have to comply

with the OECD guidelines. This will facilitate their adoption by other users. QSAR models can

be broadly classified into predictive or explanatory types. This thesis will specifically examine

and aim to improve predictive QSAR models, which are useful for virtual screening of potential

drug leads. The following lists the specific objectives and strategies to achieve them:

1. Increase training information content without generating new experimental data. This

will be done by generating putative negative compounds from the available positive com-

pounds.

2. Increase the prediction accuracies of QSAR models. Ensemble methods, which had been

found to be useful for improving prediction accuracies in other fields, will be investigated

in this project.

3. Facilitate independent evaluation and comparison of QSAR models. This will be done by

creating a freely available software for evaluation, using the completed QSAR models.

Also, to make known the compounds used for model construction.

4. Ensure the use of applicability domain for QSAR models. This will be done by defining

the applicability domain for all models developed.

5. Construction of diverse QSAR. This can be achieved through the use of large data set

that is likely to have a larger coverage of the chemical space compared to congeneric

compounds.
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1.5 Significance of Projects

This thesis endeavours to investigate the methods that may be helpful to alleviate some of the

current problems of QSAR models. The following table highlights the significance of this

project or benefits that it will bring when each of the objectives has been achieved.

TABLE 1.3: Significance/benefits for each objectives in this project

objective significance/benefits
Increase training information content without
generating new experimental data.

Improve the quality of previous models by increas-
ing prediction accuracy and enlarging applicability
domain.
Reduce reliance on animals for new data.

Increase the prediction accuracies of QSAR
models.

Make the model suitable for screening large libraries
of diverse structures with low false-hits.
Make the model more sensitive to toxic compounds
to minimize escape from detection.

Facilitate independent evaluation and com-
parison of QSAR models.

Increase acceptance and usage of the QSAR models
by users through trial programs.
Curated compounds made available by this project
are valuable and may be useful to other QSAR prac-
titioners to advance the research in this area.

Ensure the use of applicability domain for
QSAR models.

Minimize the risk of extrapolating the prediction of
a model.
Enable user to identify if the model were a suitable
predictor for their testing compounds.

Construction of diverse QSAR. Increases the capability of the model to be applied
to a bigger variety of compounds.
Minimize the risk of extrapolating the prediction of
a model.

9



1.6. THESIS STRUCTURE

1.6 Thesis Structure

The general organization of the remaining dissertation is divided into three parts. Part I ad-

dresses objective 1 on increasing data content stated in Section 1.4 on page 8, while Part II and

Part III address objective 2 on ensemble methods and objective 3 on readily available models

respectively. Objectives 4 and 5 will be addressed across parts whenever applicable.

Prior to Part I, this chapter introduces the rationale of the use of computational methods in

drug development. Research gaps were identified which provide the motivation for this thesis.

Consequently, specific objectives were formulated in the attempt to address them.

Chapter 2 gives an overview of the individual tools or methods. The workflow of devel-

oping a QSAR model was used to organize the placement of the individual methods. With data

as the first topic, calculation of molecular descriptors, and sampling methods were discussed

followed by the brief description of various machine learning methods (algorithms) and perfor-

mance measures used. This chapter is a compilation of the individual methods and materials

used for all the projects in Part I and II to avoid repetition when they were applied more than

once in the various projects.

Part I is dedicated to the strategy of increasing the size of data sets without generating

new experimental data, i.e., by the use of putative negatives. This part consists of three chapters.

Chapter 3 gives an overview of the data augmentation methodology. Chapter 4 and Chapter

5 detail the application of this novel method onto two pharmacodynamic systems (Lck and

PI3k inhibitors), where the write-up follows the format of introduction, methods, results and

discussions for these chapters.

Part II is dedicated to the investigation of ensemble methods. This part consists of five

chapters with application on one pharmacodynamic system and six toxicological systems. The

first chapter in the series, Chapter 6, gives an overview of ensemble methods. An ensemble

can be achieved by combining classifiers of different algorithms, different features, or different

training samples. Hence, for the four chapters that followed, each chapter will be used to investi-

gate the different combination of ensemble strategies, where each factor was varied sequentially.

First, Chapter 7 describes the ensemble of machine learning methods with application on PI3K

inhibitors. Second, Chapter 8 describes the ensemble from varied features (molecular descrip-

tors) applied on compounds that produces reactive metabolites. Third, Chapter 9 is a project

for hepatotoxicity prediction with an ensemble built from base models of varied machine learn-

10



1.6. THESIS STRUCTURE

ing methods and features. Last, Chapter 10 uses ensemble from varied features and training

samples on the data set for eye and skin irritation (or corrosion). The write-up for the last four

chapters follows the format of introduction, methods, results, and discussions.

Part III consists of a short Chapter 11 to facilitate independent evaluation and com-

parison of QSAR models. This chapter describes the availability of the six toxicity models for

public use.

Last, Chapter 12 wraps up the various parts of the dissertation with summaries to the

major findings and contributions of the thesis to the improvement of virtual screening for spe-

cific pharmacodynamic and toxicological properties. Limitations of the completed projects and

potential future studies are discussed.
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Chapter 2

Methods and Materials

General methods or techniques that were used for the projects are outlined in this chapter. The

organization of the sections follows the common workflow for QSAR. The sections cover the

methods used in data collection and processing, computation and selection of features, mod-

elling methods and model validations. Software used for QSARs development will also be

mentioned.

2.1 Introduction to QSAR

Quantitative structure-activity relationships (QSARs), or quantitative structure-property rela-

tionships (QSPRs), are mathematical models that attempt to relate the structure-derived features

of a compound to its biological or physicochemical activity. Similarly, quantitative structure-

toxicity relationship (QSTR) or quantitative structure-pharmacokinetic relationship (QSPkR)

are used when the modelling applies on toxicological or pharmacokinetic systems. QSAR (also

QSPR, QSTR and QSPkR) works on the assumption that structurally similar compounds have

similar activities. Therefore, these methods have predictive and diagnostic abilities that can be

used to predict the biological activity (e.g. IC50) or class (e.g. inhibitor versus non-inhibitors)

of compounds that have not gone through the actual biological testing. These methods may also

be used in the analysis of structural characteristics that can give rise to the properties of interest.

As illustrated in Figure 2.1, developing QSAR models starts with the collection of data

for the property of interest while taking into consideration the quality of the data. It is neces-

sary to exclude low quality data as they will lower the quality of the model. Following that,

representation of the collected molecules is done through the use of features, namely molecular
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data collection

features

learning

training set

validation

testing set

model

FIGURE 2.1: General workflow of developing a QSAR model.

descriptors, which describe important information of the molecules. There are many types of

molecular descriptors and not all will be useful for a particular modelling task. Thus, unin-

formative or redundant molecular descriptors should be removed before the modelling process.

Subsequently, for tuning and validation of the QSAR model, the full data set is divided into a

training set and a testing set prior to learning.

During the learning process, various modelling methods like multiple linear regression,

logistic regression, and other machine learning methods are used to build models that describe

the empirical relationship between the compound structure and property of interest. The optimal

model is obtained by searching for the optimal modelling parameters and feature subset simul-

taneously. This finalized model built from the optimal parameters will then undergo validation

with a validation set to ensure that the model is appropriate and useful.

2.2 Data Set

Two pharmacodynamic and six toxicological systems are the topics of interest for this thesis;

QSAR models were built for each of them. The individual description for the data sets are

available in the respective chapters for: Lck, PI3K, reactive metabolites, hepatotoxicity, and
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eye/skin irritation or corrosion. The general preprocessing steps for the data sets are as follows.

2.2.1 Data curation

Data curation in QSAR modelling is important. Incorrect compound structures characterized by

wrong molecular descriptors could affect the model performance. It was reported that the error

rates in various data sets could range from 0.1 to 3.4% [65] or up to 10% [66]. Although the rate

of error may seem low, it is advantages to clean up the data as it may lead to significant improve-

ments in the model performance [65, 66]. Therefore, some of the data curation recommended

in an article [66] and taken by this study include:

1. Removal of inorganic compounds, e.g., those containing platinum and arsenic element, as

most modelling or molecular descriptor calculation is unable to handle them.

2. Removal of data entries containing mixtures of substances. This is done through manual

examination of the data description.

3. Removal of salt of the compound and to add hydrogen atoms to the structures. This can

be done by software such as PaDEL-Descriptor, OpenBabel or Corina.

4. Removal of duplicates. This was done by using RapidMiner’s remove duplicate function.

Additionally, the similarity scores between compounds were also calculated with Rapid-

Miner and the compounds which were most similar were checked if they were duplicates.

Last, the structures were converted into SMILES strings and a comparison of the string

was carried out to remove the duplicates.

5. Manual inspection i.e. “eye balling”. After the basic processes had been carried out,

the chemical compounds are examined in a visualizer e.g. ChemFileBrowser [67], to

manually check for any errors or perform any cleaning that is required.

6. After the calculation of molecular descriptors, the entries were inspected for any missing

values. For the studies undertaken, the compounds that contained missing descriptors

values were removed; usually a very small number of compounds (less than 5) were

affected.
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2.2.2 Sampling

Sampling is applied when a portion of the original data is required, for example, in selecting a

subset of compounds for validation while the rest are used for training. A common approach

is the use of uniform random sampling where each data point has an equal probability of be-

ing selected. Sometimes, the frequency of different sample types within the data set is very

different, e.g. very few negative compounds versus many positive compounds, where uniform

random sampling may be not be sufficient to produce a representative sample of the preexisting

proportion. Therefore, stratified sampling that preserves the original proportion may be applied.

For example, in a data set with 80 positive compounds and 20 negative compounds, stratified

sampling with a ratio of 0.1 would produce a subset that consists of 8 positives and 2 negatives.

In other cases where the coverage of the subset (in the feature space) is important, the

Kennard-Stone algorithm may be used [68]. The algorithm was initially proposed for experi-

mental design to select parameters/factors to have good coverage of experimental points. The

algorithm states that when no compounds are predefined by the user, two compounds that are

furthest apart will be chosen in the initial step. Then, the compound furthest from the existing

(chosen) points will be selected next. The process repeats until the required amount of com-

pounds have been selected.

2.2.3 Description of Molecules

A molecule can be described by features (or variables) called molecular descriptors; they are

quantitative representations of structural features of molecules. They are derived from the basis

of graph theory, organic chemistry, quantum-chemistry, information theory, physical chemistry,

and etc. [69] to extract pieces of information of a molecule. Software such as Dragon [70],

JOELib [71], MODEL [72], Molconn-Z [73], and PaDEL-Descriptor [74] may be used to cal-

culate a large variety of descriptors; Dragon 6.0, for instance, can calculate up to 4885 molecular

descriptors.

Molecular descriptors can be classified into three general categories according to the di-

mension of the molecules which the descriptors were derived, i.e., 1D, 2D and 3-dimensional

descriptors [75]. A 1D descriptor expresses bulk properties such as molecular weight, molar

refractivity or log of octanol/water partition coefficient. While a 2D descriptor may describe

connectivity indices. Last, 3D descriptors are dependent on three dimensional conformation of
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molecules which can be used for calculation of descriptors such as van der Waals volume, mo-

ment of inertia, and shape indices. Further examples of descriptors used in the projects are listed

in the individual chapters, where they were further grouped into descriptor classes, for example,

constitutional, charge descriptors, molecular connectivity and shape, and electro-topological

indices.

2.2.4 Feature Selection

Each molecular descriptor, which commonly carries parts of molecular information, are pieced

together. This gives rise to a descriptive or predictive function in a modelling procedure. Often,

the abundant descriptors unnecessarily increases the dimensionality (number of attributes) of

a data set, thus, introducing complexity to model building and interpretation [76]. Redundant

features may be present when more than one descriptor capture similar chemical information,

as with irrelevant features. For example, the count of aromatic rings in a data set of aliphatic

compounds.

The relevant descriptors (for a model) could be identified through feature reduction meth-

ods, generally grouped as, filter, wrapper and embedded approaches [77]. Decision tree is a

learning method that incorporates feature selection, thus, can be classified as an embedded ap-

proach. Filter methods are preprocessor that is usually simple and fast for removing useless

features. They may include removing variables that are highly correlated (through statistical

analysis) or without variation within a set of data, e.g., descriptor columns with constant val-

ues. An alternative or combination method is the wrapper approach. Unlike filter methods

which usually consider the characteristics of the data set and class labels only, wrapper methods

take into consideration the learning algorithm (of interest) as well. Wrapper methods evaluate

the relevance of a descriptor based on the performance of the learning algorithm when the de-

scriptor was included. This can be achieved through exploration of the different combinations

of descriptors and their effects on cross-validation performance of the model. Systematic ex-

ploration such as forward selection and backward elimination may be used, also available are

methods such as the genetic algorithm or simulated annealing [78, 79]. In forward selection,

each descriptor is added successively at each round of evaluation until a certain stopping crite-

rion has been achieved. Conversely, backward elimination involves removal of descriptors, but

usually takes a longer processing time and produces a larger set of selected descriptors because

the process initiates with the full set of descriptors.
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2.2.5 Determination of Structural Diversity

Structural diversity of a collection of compounds can be evaluated by using the diversity index

(DI) that is the average value of similarity between pairs of compounds in a data set [80]. Let a

compound be represented as a vector of descriptors, ~x = (x1, x2, ..., xd), where d is the number

of descriptors. For two compounds ~xi and ~xj , the DI is calculated as:

DI =

∑
~xi,~xj∈D∧~xi 6=~xj sim(~xi, ~xj)

|D|(|D| − 1)
(2.1)

where sim(~xi, ~xj) is a measure of similarity between compounds ~xi and ~xj , D is the data set

and |D| is set cardinality. The data set is more diverse when DI approaches 0. Tanimoto

coefficients [81] was used to compute sim(~xi, ~xj) in this project:

sim(~xi, ~xj) =

∑d
m=1 ximxjm∑d

m=1(xim)
2 +

∑d
m=1(xjm)

2 −
∑d

m=1 ximxjm
(2.2)

where k is the number of descriptors calculated for the compounds in the data set. The mea-

surement of dataset diversity feature in the program, PHAKISO [82], was used to calculate the

DI in this project.

2.3 Modelling

Consider a set of all compoundsX made of input dmolecular descriptors such that ~x ∈ X , D is

a sample subset of X , and one output value y ∈ Y corresponding to a biological response. We

can predict the y of an unknown compound using its molecular descriptors, if we have a function

f that can relate the input molecular descriptor with the output biological response, f : X 7→ Y .

One of the commonly known modelling method is linear regression where the relationship can

be described in the form of y = ~β · ~x + C, where ~β = (β1, ..., βd) is the coefficient for the

molecular descriptors of ~x and C a constant. Many other learning algorithms, also referred to as

machine learning methods, can be applied to fit the relationship that may be linear or nonlinear.

Examples are k-nearest neighbour, logistic regression, naı̈ve Bayes, random forest and support

vector machine which are described in the following sections.

All models presented in the studies were produced with RapidMiner [83]. In addition,

WEKA [84] was used for some model explorations. WEKA and RapidMiner are open-source

system with a large collection of algorithms for data analysis and model development.
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2.3.1 k-Nearest Neighbour

between‐class

within‐class

L

? ? ?

k = 1 k = 2 k = 3

FIGURE 2.2: Classification of the unknown compound changes when k is different.

k-nearest neighbour (kNN) is a type of lazy learner whereby it delays the learning of the

training data until it is needed to classify an unknown sample. It is useful for QSAR studies be-

cause QSAR works on the assumption of compounds with similar structure should have similar

activities [85]. kNN has been applied on QSAR studies of binding affinity and receptor subtype

selectivity of human 5HT1E and 5HT1F receptor-ligands [86], anti-HIV activity of Isatin ana-

logues [87], inhibitors of γ-amino butyric acid transaminase [88], T-helper-type-2 cells receptor

antagonist [89], and geranyl-geranyl-transferase-I inhibitors [90].

kNN works by measuring the distance between the unknown compound and every com-

pound in the training set. Following which, it classifies a test compound by searching for the k

training compounds that are similar in characteristics (neighbours) to the unknown compound.

There are various types of distance measures that may be used, two of the common ones are the

Euclidean distance:

L2(~xi, ~xj) =

(
d∑

m=1

|xid − xjd |
2

)1/2

(2.3)

and the Manhattan distance:

L1(~xi, ~xj) =

d∑
m=1

|xid − xjd | (2.4)

where d is the number of molecular descriptors, and xid and xjd is the dth descriptor for com-

pounds ~xi and ~xj respectively. The class of the unknown compound is then determined by the

majority of the class of its k neighbour(s). The number of neighbours, k, is a user defined integer

that needs to be optimized as it will affect the performance of the model (Figure 2.2). Misclas-

sification can occur if the k is too small or too large. When dealing with binary classification

problems, an odd number k is usually chosen to break ties.
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2.3.2 Logistic Regression

Logistic regression (LR) is similar to linear regression in many ways. LR is used to model

the probability of the occurrence of some event as a linear function of a set of predictors. For

example, the relationship between categorical target property (usually a property with binary

outcomes like inhibitor/non-inhibitor) and a set of molecular descriptors. The following equa-

tion calculates the probability:

y =
1

1 + e−(β0+β1m1+β2m2+...+βdmd)
(2.5)

where β0 is the model’s intercept, m1, . . . ,md are molecular descriptors with their correspond-

ing regression coefficients β1, . . . , βd (for molecular descriptors 1 through d).

Given an unknown compound, LR calculates the probability that the compound belongs

to a certain target property. For example, in predicting whether an unknown compound is toxic

or non-toxic, LR tries to estimate the probability of the compound being a toxic substance. If

the calculated y is >0.5, then it is more probable that the compound is toxic. Conversely if y

<0.5, then the compound is more probable to be non-toxic.

Similar to multiple linear regression, the regression coefficients in LR can describe the

influence of a molecular descriptor on the outcome of the prediction. When the coefficient

has a large value, it shows that the molecular descriptor strongly affect the probability of the

outcome, whereas a zero value coefficient shows that the molecular descriptor has no influence

on the outcome probability. Likewise, the sign of the coefficients affects the probability as well,

i.e., a positive coefficient increases the probability of an outcome, while a negative coefficient

will result in the opposite.

Applications of LR in QSAR studies includes modelling of nucleosides against amastig-

otes of Leishmania donovani [91], skin sensitization prediction [92–94], classification of an-

tibacterial activity [95], and sediment toxicity prediction [96].

2.3.3 Naı̈ve Bayes

Naı̈ve Bayes (NB) is a simple classifier derived from the well known Bayes’ theorem. It as-

sumes independence among the molecular descriptors. In training, the classifier tries to learn

the relationship between the class label and the molecular descriptors probabilistically, after

which the class of an unknown compound is found by maximizing its conditional probability.
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Aggregating One-Dependence Estimators (AODE), which uses a less naive assumption,

was reported to be more efficient computationally and it is as accurate as the previous imple-

mentation of naı̈ve Bayes [97]. The details of the AODE algorithm can be found in the article

by Webb et. al. [97].

2.3.4 Random Forest and Decision Trees
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FIGURE 2.3: Decision tree has three types of nodes.

A decision tree (DT) is a structure with hierarchical arrangement of nodes and branches.

A DT has three types of nodes: a root node, internal nodes, and leaf nodes. A root node does not

have any incoming branches, while an internal node has one incoming branch and two or more

outgoing branches. Lastly, the leaf nodes, also known as terminal nodes, has one incoming

branch and no outgoing branches. Each leaf node is assigned with a target property, while a

non-leaf node (root or internal node) is assigned with a molecular descriptor that becomes a test

condition which branches out into groups of differing characteristics.

The classification of an unknown compound is based on the leaf node that it reaches after

going through a series of questions (nodes) and answers (deciding which branches to take),

starting with the first question from the root node. In the example in Figure 2.3, an unknown

compound will be classified with target property y, if it fulfilled a certain condition for molecular

descriptor A. Otherwise, molecular descriptor B of the unknown compound is checked at the

next step. If the value is less than 1, the unknown compound will be labelled with target property

y. If not, the unknown will be given the label of target property ÿ.

A decision tree is constructed by systematically subdividing the information within a

training set with rules and relationships. With a given set of descriptors, many possible varia-

tions of trees may be constructed and they may have varying accuracies. Nonetheless, there are
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algorithms such as the Hunt’s algorithm that can be used to induce a decision tree [76]. The algo-

rithms frequently use a recursive greedy heuristic to select which descriptors to split the training

data. The threshold of molecular descriptors that specify the best split can be determined using

measures like misclassification error, entropy and Gini index that enables comparison of “im-

purities” in the parent node and child nodes; the child nodes should have less impurity than the

parent node, therefore, the greater is the impurity difference, the better is the selected threshold

for splitting the samples.

Decision trees have the advantage of easy interpretation especially if they are small, and

the performance of the decision tree is not so easily affected by unnecessary descriptors. It has

been applied on QSAR of cytochrome P450 activities [98], peptide-protein binding affinity [99],

catalysts discovery [100], and in a study of substrates, inhibitors, and inducers of P-glycoprotein

[101]. However, a potential drawback of decision tree is its susceptibility to model overfitting

due to lack of data or the presence of mislabelled training instances. To overcome the problem

of overfitting, methods such as pruning, cross validation or random forest may be used.

Pruning works by preventing the construction of an excessively complicated tree that

flawlessly fits the whole data set, of which mislabelled data may be present. On the other hand,

random forest (RF) uses consensus classification to reduce the problem of overfitting while

improving the accuracy [102–104]. The algorithm works by growing many decision trees, thus,

collectively known as a “forest” that makes a final prediction based on the majority prediction

from each of the trees. To construct each tree, a training subset is selected at random with

replacement from an original data. Using the new training sample, a tree is grown with randomly

selected descriptors and it is not pruned. The samples not included in the training sample are

known as the out-of-bag (OOB) observations and they are used as the test set to estimate the

generalization error [104, 105]. The error is estimated by comparing the actual class of the OOB

sample with the predicted class based on the majority classification by the individual trees in

the forest. RF is easy to use as the user only need to fix two parameters: the number of trees in

the forest and the number of descriptors in each trees. It was recommended that a large number

of trees should be grown and the number of descriptors to be taken from the square root of the

total descriptors [106].

RF can handle large number of training data and descriptors. Besides classifying an un-

known compound, it can be extended for unsupervised clustering and outlier detection [104].

RF can also be used to infer the influence of the descriptors in a classification task and also to es-
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timate missing data. It was found that RF is less affected by noisy data or data with many weak

inputs [104]. Although it is claimed that RF does not overfit, it was shown that the performance

of RF can be influenced by imbalanced data set or small sample size and also by the number

of trees and features selected [107, 108]. RF had been applied for QSAR of angiotensin con-

verting enzyme, acetyl-cholinesterase inhibitors, benzodiazepine receptor, thrombin inhibitors,

thermolysin inhibitors and etc [109, 110].

2.3.5 Support Vector Machine

Support vector machine (SVM) is based on the structural risk minimization principle from sta-

tistical learning theory [111] and it is probably one of the most well-known kernel methods

for model development [112]. It is a classifier that is less affected by duplicated data and has

lower risk of model overfitting [76]. SVM has become very popular in recent years with its

applications in various pattern recognition fields like bioinformatics, medical, economics and

cheminformatics [113–118].
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FIGURE 2.4: Margin and decision boundary of SVM in linearly separable case.

In binary classification of linearly separable data, SVM tries to build a maximal margin

hyperplane to separate one class of compounds from the other class as illustrated in Figure 2.4.

The hyperplane, also known as the decision boundary, is built on the basis of the data points

called support vectors and can be represented by the following:

w · x+ b = 0 (2.6)

The parameters w and b are estimated during learning and they must satisfy the following con-
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ditions:

Class 1: w · xi + b ≥ +1, if yi = +1 (2.7)

Class -1: w · xi + b ≤ −1, if yi = −1 (2.8)

and at the same time maximizing the margin by minimizing the following function:

f(w) =
||w||2

2
(2.9)

where yi is the class label and xi is a vector of molecular descriptors for compound i, w is

the normal vector to the hyperplane, and ||w||2 is the Euclidean norm of w. With optimized

parameters w and b, an unknown compound with vector x can be classified by:

ŷ = sign [(w · x) + b] (2.10)

The unknown compound is classified as Class 1 if ŷ >0 and classified as Class -1 when ŷ <0.

For non-linearly separable classification cases, SVM maps the input vectors into a higher

dimensional feature space by using a kernel function. Some common kernel function k(xi, xj),

that may be used are:

Polynomial kernel:

k(xi, xj) = (xi · xj)d (2.11)

Gaussian radial basis function (rbf):

k(xi, xj) = exp
(
−||xi − xj ||

2

2σ2

)
(2.12)

SVM has been shown to perform well on many problems and robust even when there is

redundant and overlapping data [119]. Another advantage of SVM is that it is relatively simple

to use as there are only a few user defined parameters. For example, if the Gaussian rbf kernel is

selected, the user will only need to fine-tune the parameters forC and σ, whereC is a penalty for

training errors. Furthermore, the final results of SVM are reproducible and stable, unlike those

of methods like neural networks, which may change from run to run because of the random

initialization of the weights [112].

SVM has also shown promising classification results in the area of drug design, examples
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of the use of SVM include the prediction of drug metabolism, p-glycoprotein substrates, blood-

brain barrier penetration, pregnane X receptor activators, torsade de pointes causing potential

and various toxicological endpoints [120]. SVM has consistently shown good prediction ability

for compounds of varied structures in these studies. Unlike most of the non-machine learning

methods, SVM classifies compounds based on the discriminative properties between active and

inactive compounds rather than structural similarity to active compounds [59]. Therefore, it is

useful for classification of systems where there is limited knowledge on the mechanism or spe-

cific association between the activities and molecular properties [121]. SVM has also recently

been used to develop ligand-based screening tools to improve the coverage, performance and

speed of virtual screening [60].

2.4 Applicability Domain

FIGURE 2.5: The box that encloses the data points is the applicability domain of a model built from a
data set with three descriptors

The use of AD commonly improves the external validation results, however, it is at the

expense of a reduced applicable chemical space for a model [122]. There are a variety of ways

to define the applicability domain (AD) of a model such as the range, geometric, distance-based

and probability density based methods [55]. The AD of the models in the various chapters

was calculated on the basis of the range of the individual descriptors [55]. The minimum and

maximum values of each molecular descriptor in the model was obtained by considering all

the compounds in the training data set. Figure 2.5 is a visualization of the use of ranges to

define the AD for a model consisting of (hypothetical) three descriptors. The box defined by the

extreme of ranges is the AD. For a model with more than three descriptors, the AD is defined by

a hyper-rectangle. Prediction of compounds that fall outside the hyper-rectangle is considered
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unreliable, i.e., a compound is considered unsuitable for prediction if it violates one or more of

the total molecular descriptor ranges and thus was excluded from the prediction process.

2.5 Model Validation

2.5.1 Internal and External Validation

Validation sets that were used in model selection and final performance evaluation of a model

are termed as internal validation and external validation respectively. In external validation, an

independent set of compounds is set aside right from the beginning and it is not used for model

training. The remaining compounds are used for training and model selection. At this stage, the

data can be further partitioned into another training set and testing set for internal validation.

One of the methods for internal validation is n-fold cross-validation. In 5-fold cross-

validation for example, the training set is divided into five groups of approximately equal size.

The learning algorithm will be trained with four subsets of data, after which the performance

of the model is tested with the fifth subset. This process is repeated five times, resulting in

five combinations, so that every subset is used as the testing set once. The result of the cross-

validation can also be used as a guide to tweak the parameters needed to optimize the learning

algorithm.

The optimal model parameters obtained from internal validation can then be used to build

a final model, usually, with the full data set. Subsequently, this final model is evaluated with

the test compounds set aside for external validation, also known as independent validation. The

prediction performance on this set of compounds further indicates the generalization power of

the model. However, the external validation result is expected to be different from the cross-

validation result. Studies have shown that the results of the two validations may not correlate

well [123]. The external validation results may be weaker than cross-validation results, as the

good performance of the cross-validation is obtained through many repeated runs. Nevertheless,

it is ideal if the external validation performance is not too different from the cross-validation

results. This is to show that the final model has a good generalization power, otherwise, it may

suggest that the model is sub-optimal and overfitted.
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Actual Classification
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FIGURE 2.6: A confusion matrix for binary classification.

2.6 Performance Measures

The performance of machine learning methods in binary classification can be assessed by the

quantity of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)

as shown in Figure 2.6 [124]. Examining the performance on different class labels separately,

the prediction accuracy for positive compounds (e.g. inhibitors or toxicants) and negative com-

pounds (e.g. noninhibitors or non-toxicants) are sensitivity, SEN = TP
TP+FN , and specificity,

SPE = TN
TN+FP , respectively. Sensitivity gives the ratio of correctly predicted positives to the

total number of positives, which can also be called the true positive rate or the recall for positive

class. Similarly, specificity gives the true negative rate which is the ratio of correctly predicted

negatives to the total number of negatives. Conversely, the false positive rate which is the ratio of

wrongly predicted negatives to the total number of negatives is calculated as FPR = FP
FP+TN .

Precision, PRE = TP
TP+FP , also known as the positive predictive value shows how accurate a

model whenever it makes a positive prediction, i.e., how many of its positive predictions were

truly correct.

To check for the overall prediction performance, it can be calculated by the overall pre-

diction accuracy (ACC),:

ACC =
TP + TN

TP + TN + FP + FN
(2.13)

Matthew’s correlation coefficient [125] (MCC):

MCC =
TP × TN − FN × FP√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
(2.14)
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or geometric-mean (GMEAN):

GMEAN =
√
SEN × SPE (2.15)

The area under the receiver operating characteristic (ROC) curve (AUC), which has been

widely used for classification performance in many fields [126, 127], can be used for optimiza-

tion of models. Due to its calculation algorithm, there are three types of ROC curves that may

be reported: optimistic, expected and pessimistic ROC curves [127]. As the names suggest, the

performance in terms of optimistic ROC will appear better than the pessimistic performance for

the same prediction exercise. The AUC value falls between 0 and 1, of which realistic classifiers

should not have an AUC of less than 0.5.
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Part I

Increasing Data Using Putative

Negatives
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Chapter 3

Introduction to Putative Negatives

The use of computational models to perform virtual screening for drug candidates is routinely

conducted during the drug discovery process and has been used for drug discoveries in signal

transduction [128, 129]. It is a favourable alternative to high-throughput screening (HTS) and

combinatorial chemistry because virtual screening can identify drug candidates in a fast and

cheap manner. A limitation of computational virtual screening is that the predictions are predis-

posed to the structure-activity data in the model, i.e., the “knowledge” of a model can be limited

by small data set. Nevertheless, virtual screening is still useful as it can help to overcome the

limitation of HTS which may encounter very low hit rate or lack of discovery of functional hits

[130]. Furthermore, virtual screening is also useful because it helps to prioritize the compounds

that should be biologically tested first [131].

A common problem in ligand-based screening studies is the lack of negative compounds,

resulting in an “unnatural” proportion between positive and negative compounds in the data set

[132–134], which could happen during data collection because inactives are seldom reported in

the literature. In contrast, in a library for screening or HTS campaign, it is generally assumed

that it is more “natural” to have more compounds in the inactive category rather than the active

category. Therefore, the lack of inactives information may lead to a problem of high false

positive rate for the computational model, which may have developed due to the lack of learning

examples during model training. Methods that make a prediction based on similarity matching,

such as kNN, were expected to be affected the most since there is a lack of negative compounds

to make proper distinction from positive compounds. Thus, the novel method developed by

Han et al. [60] for enriching true negative compounds with putative negative compounds was

used to increase the quantity and diversity of negative compounds for the studies in the following
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chapters. This method can generate putative negatives without requiring the knowledge of actual

inactive compounds. Therefore, increases the data size, in terms of negative examples, of a

training set. Studies had shown that SVM classification models derived from these putative

negatives can perform reasonably well in virtual screening [59, 60].

compound 
families

positive compound

negative compound

(A) Original compound families

compound 
families

positive compound

negative compound

(B) Reduced compound families

FIGURE 3.1: Clustering of known compounds give rise to the full set of chemical families (circles in
Figure 3.1a), where positives and negative compounds may be a member (shaded circles).
Removal of families with positive compounds produces a reduced set of compound families
in Figure 3.1b where putative negatives were extracted.

The putative negatives generation process starts by creating compound families where

known compounds are clustered in the chemical space [135, 136]. The chemical space is de-

fined by the compounds’ molecular descriptors. By employing k-means clustering and molec-

ular descriptors calculated from MODEL [72], 8423 compound families were produced from

approximately 13.7 million compounds (from PUBCHEM and MDDR) with computable molec-

ular descriptors. The number of compound families obtained were consistent with the 12800

compound-occupying neurons for 26.4 million compounds of up to 11 atoms of C, N, O, F and

the 2851 clusters for 171045 natural products reported in two studies [137, 138].

Based on the 8423 compound families, the families for the original training set were

analyzed and matched as shown in Figure 3.1a. Families that contain positive compounds are

removed for the next step in Figure 3.1b. From the list of reduced compound families, putative

negatives are generated by selecting a number of compounds within these families. This set of

putative negatives will then be added into the training set for model optimization.

The following Chapter 4 and Chapter 5 tested the application of putative negatives in
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two pharmacodynamic systems. Models to predict the classification of inhibitors were success-

fully produced and validated [139, 140]. The data sets used for Lck and PI3K studies were also

published.

For these two studies, the 2D structures and 3D coordinates of the collected compounds

were drawn and generated by using ChemDraw [141] and Corina [142] respectively. A total

of 100 molecular descriptors, which are listed in Table 3.1 were computed by MODEL [72].

These include 13 simple molecular properties, 10 charge descriptors, 37 molecular connectivity

and shape descriptors, and 40 electrotopological state indices. The descriptors were selected

from more than one thousand descriptors described in literatures by discarding those that are

redundant and non-applicable to pharmaceutical agents [143]. Details of the descriptors can be

found in the reference manual for MODEL [72].

TABLE 3.1: One hundred descriptors used in Lck and PI3K studies.

descriptor class no. of descriptors descriptors
simple molecular proper-
ties

13 molecular weight, Sanderson electronegativity sum, no. of atoms,
bonds, rings, H-bond donor/acceptor, rotatable bonds, N or O hetero-
cyclic rings, no. of C, N, O atoms.

charge descriptors 10 relative positive/negative charge, 0-2nd electronic-topological descrip-
tors, electron charge density connectivity index, total absolute atomic
charge, charge polarization, topological electronic index, local dipole
index.

molecular connectivity
and shape descriptors

37 1-3rd order Kier shape index, Schultz/Gutman molecular topological in-
dex, total path count, 1-6 molecular path count, Kier molecular flexibil-
ity, Balaban/Pogliani/Wiener/Harary index, 0th edge connectivity, edge
connectivity, extended edge connectivity, 0-2nd valence connectivity,
0-2nd order delta-chi index, 0-2nd solvation connectivity, 1-3rd order
kappa alpha shape, topological radius, centralization, graph-theoretical
shape coefficient, eccentricity, gravitational topological index.

electrotopological state in-
dices

40 sum of E-state of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH,
dssC, aasC, aaaC, sssC, sNH3, sNH2, ssNH2, dNH, ssNH,, aaNH,
dsN, aaN, sssN, ddsN, aOH, sOH, ssO, sSH, H-bond acceptors, all
heavy/C/hetero atoms, sum of H E-state of atom type HsOH, HdNH,
HsSH, HsNH2, HssNH, HaaNH, HtCH, HdCH2, HdsCH, HaaCH, HC-
sats, H-bond donors.

The applicability domain of the models in the two studies were calculated based on the

range of the individual molecular descriptors. The minimum and maximum value of each molec-

ular descriptor was obtained by considering all the compounds in the training data set. Classi-

fication of compounds that fall outside the AD are considered as unreliable. Hence for both

studies, compounds in both the external validation set and the MDDR data were checked for

their suitability for classification by the respective models with the AD. A compound was con-

sidered unsuitable if it violates one or more of the 100 molecular descriptor ranges and was

excluded from the prediction process.
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Chapter 4

Lck Inhibitor

4.1 Summary of Study

Lymphocyte-specific protein tyrosine kinase (Lck) inhibitors have treatment potential for au-

toimmune diseases and transplant rejection. A support vector machine (SVM) model trained

with 820 positive compounds (Lck inhibitors) and 70 negative compounds (Lck non-inhibitors)

combined with 65142 generated putative negatives was developed for predicting compounds

with Lck inhibitory activity of IC50 ≤ 10 µM. The SVM model, with an estimated sensitivity

of greater than 83% and specificity of greater than 99%, was used to screen 168014 compounds

in MDDR and was found to have a yield of 45.8% and false positive rate of 0.52%. The model

was also able to identify novel Lck inhibitors and distinguish inhibitors from structurally simi-

lar non-inhibitors at a false positive rate of 0.27%. Although the findings in this study were not

verified experimentally, earlier literature have shown the success of SVM screening in obtaining

biologically active compounds [144–146]. For example, in the study of penetrating peptide pre-

diction, a subset of predicted positives was validated experimentally and the concurrence was

100% [146]. To the best of our knowledge, the SVM model developed in this work is the first

model with broad applicability domain and low false positive rate which makes it very suitable

for virtual screening of chemical libraries for Lck inhibitors.

4.2 Introduction to Lck Inhibitors

T cells mediated immune response has been suggested to be involved in the pathogenesis of

many immunological diseases such as type I diabetes, asthma, rheumatoid arthritis, multiple
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4.2. INTRODUCTION TO LCK INHIBITORS

sclerosis, inflammatory bowel disease, psoriasis, systemic lupus erythematosus and transplant

rejection. Lymphocyte-specific protein tyrosine kinase (Lck), a member of the Src family of

non-receptor tyrosine kinases, is mainly expressed in T cells [147] and natural killer cells [148].

It is implicated in T Cell antigen Receptor (TCR) linked signal transduction pathways that con-

trol the activation and differentiation of T cells [149, 150]. T cell activation precedes with en-

gagement of Major Histocompatibility Complex (MHC) antigen to TCR. Lck is then recruited

to the TCR complex via its association with CD4 and CD8 co-receptors and later phosphorylates

tyrosine residues within Immunoreceptor Tyrosine-based Activation Motifs (ITAM) located in

the ζ-chains of the TCR complex. This allows binding of Zeta-chain-Associated Protein kinase

70 (ZAP-70) to TCR. Downstream event in signal transduction is further triggered when ZAP-

70 is phosphorylated by Lck [151–153]. Consequently, inhibition of T cell activation has been

explored with synthetic Lck inhibitors that have potential as treatment for autoimmune diseases

and transplant rejection [154].

This work will focus on the development of an Lck inhibitor predictive model for iden-

tification of potential Lck inhibitors. Currently, Lck inhibitor identification has been investi-

gated using ligand-based screening [155–161], pharmacophore-based screening [162] and pro-

tein structure-based modelling [163]. These studies have been useful for the prediction of Lck

inhibitory potential of compounds in congeneric series and the identification of common molec-

ular features in Lck inhibitors. Nevertheless, the number of compounds used in these studies

are frequently less than 200 and studies have shown that models developed using a limited num-

ber of compounds tend to have limited applicability domain [57, 58], which may result in a

large number of false positives when deployed for virtual screening of large chemical libraries

[59, 60].

In this study, 66032 compounds from 8423 chemical families were used to develop a

support vector machine (SVM) model for identification of Lck inhibitors, which is significantly

larger than the typical hundreds of compounds used in earlier studies. This will increase the

applicability domain of the current model compared to earlier models.
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4.3. MATERIALS AND METHODS

4.3 Materials and Methods

4.3.1 Training Set

A total of 962 compounds with Lck inhibitory activity were gathered from published studies

within the 1991–2008 period (Supporting Information available at ACS Publications). The com-

pounds were then categorized into positive (Lck inhibitors) and negative (Lck non-inhibitors)

compounds using cutoff values of IC50 ≤ 10 µM and IC50 ≥ 500 µM respectively. Compounds

with IC50 between these two criteria were discarded from the training set as shown in Figure

4.1a. This resulted in the selection of 740 positive and 70 negative compounds for the training

set.

Training Set
962

Validation Set
81

IC5010M?

yespositives
740

IC5010M?

yespositives
80

Training Set
1043

positives
820to generate

to generate
putative negatives

Putative negatives
65318

no

Putative negatives
65142

740

negatives
70

IC50500M?

discarded

yes

no

80

negatives
0

IC50500M?

discarded

yes

820

negatives
70

discarded

to generate
putative 

negatives

152 1 153

independent validation virtual screening

(A) Lck External Validation
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(B) Lck Virtual Screening

FIGURE 4.1: Flowchart for selection of compounds for training and external validation sets. The positive
compounds were used as reference to generate putative negatives.

The diversity index (DI) for the Lck compounds was calculated with the method outlined

in Section 2.2.5.

Putative negative compounds was generated through the process described in Chapter

3. The families for the 740 positive compounds were analyzed and matched. Matching had
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4.3. MATERIALS AND METHODS

produced a data set of 65318 putative negatives that were generated by randomly selecting 8

compounds from each of the families that do not contain any of the 740 positive compounds in

the training set. For families with less than 8 compounds, all their members were selected. The

set of putative negatives was subsequently added to the training set.

4.3.2 Modelling

Support vector machine (please refer to Section 2.3.5) was used to build a model to predict

Lck inhibitory classification. For the SVM model in this study, a margin of C = 10000 was

used. The best performing model, with Gaussian radial basis function (kernel), was found when

σ = 1.1.

4.3.3 Model Validation

In order to fully assess the suitability of the SVM model for virtual screening of chemical li-

braries for Lck inhibitors, the model was validated using a number of methods.

First, the SVM model, SVMTr+PutNeg (subscript indicates the set of compounds that were

used to train the model; Tr: collected training set, PutNeg: putative negative compounds, Val:

external validation set), which was developed using the training set of 810 compounds and

65318 putative negative compounds, was internally validated using 5-fold cross-validation.

SVMTr+PutNeg was also validated using an external validation set. 81 compounds were

obtained from three most recent studies (Supporting Information available at ACS Publications)

and these were subjected to the same preparations and filters as those compounds in the training

set. In the end, all except one compound were selected for the validation set as shown in Figure

4.1a.

The performance results of SVMTr+PutNeg from 5-fold cross-validation and external vali-

dation set was also compared. Concordance between the two sets of results would suggests that

the risk of overfitting was low.

In order to further evaluate the suitability of a SVM model for identifying Lck inhibitors

from large chemical libraries, compounds in MDDR were screened with the SVM model. As

the external validation set was subsequently found to contain a substantial number of compound

families that were not represented in the original training set, the entire validation set was added

to the training set and a set of 65142 putative negative compounds were regenerated to match

the new profile of the training set. A new SVM model (SVMTr+PutNeg+Val) was then developed
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4.3. MATERIALS AND METHODS

from the new training set and used for screening MDDR compounds.

Before screening, the MDDR compounds were characterized in terms of their Lck in-

hibitory activity and structural similarity for ease of measuring performances. It was found that

the MDDR contained 24 compounds with Lck inhibitory activity of IC50 ≤ 10 µM and these

were labelled as “known inhibitors”. It also had another 30 compounds which were labelled as

“suspected inhibitors”, and these include compounds with Lck inhibitory activity which did not

fulfil the IC50 ≤ 10 µM cutoff or without IC50 value. A third set of compounds, “structurally

similar non-inhibitors”, were obtained by including those compounds in MDDR (excluding

compounds in the first two sets) that had Tanimoto coefficient of ≥ 0.9 with at least one of the

24 known inhibitors. Note that compounds in these three sets were not present in the training

set.

The effect of adding putative negative compounds to the training set was determined by

developing a SVM model (SVMTr+Val) using the training set plus external validation set only.

The performance of this model was assessed using the MDDR compounds and the results were

compared to those from SVMTr+PutNeg+Val.

Finally, logistic regression (LR), which is a classical statistical method and is less com-

plex than SVM, was used to develop two models, LRTr+Val and LRTr+PutNeg+Val. The perfor-

mance of LRTr+Val and LRTr+PutNeg+Val were determined using MDDR compounds. The purpose

of using a classical statistical method is to determine whether the use of SVM will result in a

model that is more complex than necessary for virtual screening of chemical libraries for Lck

inhibitors.

4.3.4 Evaluation of Prediction Performance

Some of the performance measures described in Section 2.6 were calculated for this study. They

are TP, TN, FP, FN, SEN, SPE, ACC, MCC, and AUC.

For the performance of the SVM model in virtual screening, the yield (percentage of

predicted compounds in known inhibitors), hit-rate (HR = percentage of known inhibitors in

predicted compounds), false positive rate (FPR = percentage of predicted compounds in non-

inhibitors) and enrichment factor (EF = ratio of hit-rate to the percentage of known inhibitors

in MDDR) which shows the magnitude of hit-rate improvement over random selection were

evaluated.
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4.4 Results

4.4.1 Data Set Diversity and Distribution

Table 4.1 shows that the 740 Lck inhibitors have an intermediate DI of 0.734, which is compa-

rable to that of known dihydrofolate reductase inhibitors. A three dimensional visualization of

the collected compounds using the first three principle components after principle component

analysis (PCA) is shown in Figure 4.2. The results showed that in general, the compounds were

well distributed in the chemical space and there was no clear boundary between the positive and

negative compounds. Although there were a few compounds which were isolated from the ma-

jority of the compounds, there was no evidence to indicate that these compounds were outliers

and thus they were left in the training set.

TABLE 4.1: Diversity index (DI) of several compounds classes (obtained from Yap et. al. [164]) in
descending order of structural diversity.

chemical class no. of compounds DI
satellite structures 9 0.250
National Cancer Institute diversity set 1990 0.452
FDA approved drugs 1183 0.452
estrogen receptor ligands 1009 0.511
benzodiazepine receptor ligands 405 0.686
dihydrofolate reductase inhibitors 756 0.727
Lck inhibitors in training set (this study) 740 0.734
penicillins 59 0.790
fluoroquinolones 39 0.791
cephalosporins 73 0.812
cyclooxygenase 2 inhibitors 467 0.840

FIGURE 4.2: Visualization of the chemical space for the training and external validation sets using the
first three principle components from PCA.

Figure 4.3 shows the distribution of Lck inhibitors in terms of compound families. The
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analysis found that the 740 inhibitors in the training set and 80 inhibitors in validation set be-

longed to 243 and 36 families respectively (total 265 (3.1%) unique families from the total 8423

families). The analysis also showed that the characteristic of the external validation set was

different from the positive training data set as only 38.9% of the families in the validation set

were represented in the training set. This suggests that the external validation set was not only

useful for evaluating the performance of the models on similar compounds but also on novel

compounds. Number of compound families in pos & neg dataset

36 positive families
in validation set

318 families of 
predicted positives

14
{43}

22
{37}

229 147
{563}

171
{318}

118

243 positive families
in training set

represented families

265 positive families
in training set

represented families

10
{29}

19
{25}

256 100
{306}

227
{586}

185

29 positive families
in validation set

327 families of 
predicted positives

266 positive families
in training set

represented families

285 positive families
in training set

represented families

(positive)

(negative)

FIGURE 4.3: Distribution of families for the 80 positive compounds in validation set and 881 virtual
screening predicted positives (the number of compounds is given in curly brackets). Fami-
lies in the shaded region but not in the intersection are those families which are not repre-
sented in the training set.

4.4.2 Applicability Domain

168016 MDDR compounds were checked and all except two MDDR compounds with long

chains, were found to be within the applicability domain for SVMTr+PutNeg+Val and LRTr+PutNeg+Val.

For SVMTr+Val and LRTr+Val, 79793 compounds from MDDR were within the applicability do-

main. Among the 79793 compounds, 19 are known Lck inhibitors.

4.4.3 Model Performances

Table 4.2 gives the performance of SVMTr+PutNeg for predicting Lck inhibitors and non-inhibitors

by means of 5-fold cross-validation and an external validation set. The models for 5-fold cross-

validation had performed consistently well in predicting positive compounds (average SEN =

87.8%) and also in predicting negative compounds (average SPE = 99.9%) with an overall ac-

curacy of 99.7%, MCC of 0.888 and AUC of 0.997. When tested on the external validation set,

SVMTr+PutNeg performed with an overall sensitivity of 83.8% which is comparable to the results
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in 5-fold cross-validation.

TABLE 4.2: Classification performance of SVM in predicting Lck inhibitory activity.

no. of compounds

test total pos neg TP FN SE(%) TN FP SP(%) ACC(%) MCC AUC

5-fold fold 1 13226 148 13078 139 9 93.9 13065 13 99.9 99.8 0.925 0.993
cross-validation fold 2 13226 148 13078 127 21 85.8 13065 13 99.9 99.7 0.881 0.997

fold 3 13226 148 13078 128 20 86.5 13062 16 99.9 99.7 0.875 0.999
fold 4 13225 148 13077 129 19 87.2 13060 17 99.9 99.7 0.876 0.998
fold 5 13225 148 13077 127 21 85.8 13063 14 99.9 99.7 0.878 0.999

average 13226 148 13078 130 18 87.8 13063 15 99.9 99.7 0.888 0.997
external validation 80 80 67 13 83.8

TABLE 4.3: Performance of SVM Model in virtual screening of 168 014 MDDR compounds for Lck
inhibitors.

compound types
no. (%)

in MDDR

total no.
of unique
families

no of families
represented in

training set
predicted
positives hitsa yield (%) hit rate (%)

false positive
rate (%)

enrichment
factor

known inhibitorsb 24 (0.014) 24 14 (58.3%) 881 11 45.8 1.25 0.52 87
suspected inhibitorsc 30 (0.018) 29 10 (34.5%) 881 6 20.0 0.68 0.52 38
overall 54 (0.032) 52 23 (44.2%) 881 17 31.5 1.93 0.51 60

a Hits: Predicted positive compounds that are known/suspected inhibitors in MDDR. b Known inhibitors: compounds in MDDR identified to
have Lck inhibitory activity IC50 e 10 μM. c Suspected inhibitors: compounds in MDDR that were reported to have IC50 between 10 and 500
μM or without IC50 value.

168014 compounds in MDDR were screened with SVMTr+PutNeg+Val. The results are

given in Table 4.3. SVMTr+PutNeg+Val had predicted 881 compounds to have Lck inhibitory ac-

tivity. Analysis of the compound families of these 881 compounds has shown that they belong

to 318 families and only 46.2% of these are represented in the training set. 121936 compounds

in MDDR were also found to be similar in structure to at least one of the known inhibitors i.e.

Tanimoto coefficient ≥ 0.90. 334 of these structurally similar non-inhibitors were predicted as

positives, resulting in a false positive rate of 0.27%. The FPR, also known as the false alarm

rate [124], is calculated as the ratio of false positives (prediction) to the total negatives (which

should be predicted as negatives),

FPR =
FP

FP + TN
(4.1)

For the 79793 MDDR compounds that were screened by SVMTr+Val and LRTr+Val, 48823

and 64727 compounds were predicted to have Lck inhibitory activity respectively, with yields

of 89.5% (17 known inhibitors out of 19) for both models. However, the false positive rate were

high at 61.2% and 81.1% for SVMTr+Val and LRTr+Val respectively. Figure 4.4 shows one of the

2 known inhibitors that were not identified by SVMTr+Val.
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FIGURE 4.4: One of the 2 known inhibitors (MDDR 1793391) in MDDR not predicted to have Lck
inhibitory activity by the SVM model.

4.5 Discussions

4.5.1 Cutoff Value for Lck Inhibitory Activity

It is common in the development of classification models to use a single cutoff value to separate

compounds into positive and negative compounds. However, in this study, it is inaccurate to

use a single cutoff value. This is because a single cutoff value of 10 µM would cause some

compounds which exhibit weak Lck inhibitory activity to be classified into the negative group.

This is undesirable because some novel drug leads may initially exhibit weak activity but can be

further modified into potent drugs. Thus using a single cutoff value of 10 µM may result in po-

tential Lck inhibitors being included into the negative group, which may affect the performance

of the model in identifying potentially useful novel Lck inhibitors. It is also not desirable to

use a single cutoff value of 500 µM as it may result in an unacceptably large number of false

positives when screening a chemical library.

Hence, in this study, two cutoff values were used to separate compounds into positive

(IC50 ≤ 10 µM) and negative (IC50 ≥ 500 µM) compounds. This will minimize the risk of

including potential Lck inhibitors into the negative group and reduce the number of false posi-

tives during virtual screening. The wide margin between the two cutoff values was to account

for variances in biological assays which may arise because of differences in laboratories and

equipment. A possible drawback of this method is that too many compounds may have IC50

values between the two cutoff values and thus excluded from the training and validation sets.

However, this does not pose much problem for the current study as only approximately 16% and

1% of compounds were excluded from the training and validation sets respectively.
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4.5.2 Putative Negative Compounds

In this study, the novel method to generate putative negative compounds by Han et. al. [60] was

used to increase the quantity and diversity of negative compounds for training a SVM model.

The performance of this method was evaluated by validating SVMTr+PutNeg internally and exter-

nally using 5-fold cross-validation and an external validation set respectively. The usefulness of

adding putative negative compounds was also assessed by comparing the prediction results for

SVMTr+PutNeg+Val and SVMTr+Val on MDDR compounds.

The high sensitivity value of SVMTr+PutNeg determined by using 5-fold cross-validation

was consistent with the corresponding value determined by using the external validation set.

Unfortunately, the external validation set, which was compiled from three most recent publica-

tions, did not contain any negative compounds. Thus it was not possible to determine the actual

specificity of the model. However, the actual specificity of SVMTr+PutNeg would be expected

to be close to the specificity value determined by 5-fold cross-validation since the sensitivity

values determined by 5-fold cross-validation and external validation set were similar. The con-

cordance between the results from 5-fold cross-validation and external validation set suggests

that the risk of overfitting was low.

The high false positive rate of 61.2% for SVMTr+Val compared to the low false positive

rate of 0.52% for SVMTr+PutNeg+Val suggests that the addition of putative negative compounds

were useful for reducing the false positive rate of SVM models.

It had also been found that the applicability domain of models developed from training

sets that included putative negative compounds were larger than those developed from training

sets without the putative negative compounds. While this result is not surprising since having

more compounds in the training set would usually translate into greater ranges in descriptor

values and hence larger applicability domain, the enlarged applicability domain would enable

the Lck inhibitory potential of more compounds in chemical libraries to be reliably predicted by

the SVM models. Hence, these results together with the high sensitivity and specificity and low

false positive rate suggests that SVM models are potentially useful for classifying compounds

in large chemical libraries into Lck inhibitors and non-inhibitors.
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4.5.3 Predicting Positive Compounds Unrepresented in Training Set

Figure 4.2 shows that a substantial number of the positive compounds in the validation set

were clustered away from the positive compounds in the training set, and Figure 4.3 shows

that 61.1% of the positive compound families in the validation set were not represented in the

training set. Despite the apparent dissimilarity and lack of representation, the classification

performance of SVMTr+PutNeg for the external validation set has a sensitivity of 83.8%. Further

analysis showed that the sensitivity for compounds whose compound families are represented

and not represented in the training set were 95.3% and 70.3%, respectively.

These results suggest that SVM, like most machine learning methods, require knowledge

of compound families for optimum performance. This might be attributed to the reduction of

false negative families risk by having knowledge of more positive families. However, given

that SVMTr+PutNeg was also able to predict novel compounds unseen in the training set with

reasonably good accuracy, it was likely that the predictions were based on the compounds char-

acteristics and not by its mere membership in the represented family. This suggests that SVM

models may be suitable for screening large chemical libraries where compounds are usually

distributed in many compound families and thus are not well represented in the training set.

4.5.4 Evaluation of SVM Model Using MDDR

The performance of SVMTr+PutNeg+Val on the 24 known and 30 suspected Lck inhibitors present

in MDDR (Table 4.3) was comparable to the yields of 22% – 55% and 44% – 69%, HR of 1.5%

– 4.1% and 14% – 72% and EF of 22 – 55 and 44 – 69 that were obtained in a previous study on

SVM models for virtual screening of 172K and 98.4K compounds libraries respectively [60].

This suggests that the SVM model is potentially useful for screening large chemical libraries

without requiring any pre-screening filtering methods such as Lipinski’s rule of five [165] and

lead-likeness [166].

Results from Table 4.3 also suggested a positive correlation between the family repre-

sentation in training set and the yield of the predictions. This is not surprising and is consistent

with the earlier results obtained from the external validation set. For The MDDR screen with

SVMTr+Val, 2 known inhibitors were not predicted as positives. One of these compounds is

shown in Figure 4.4. This may suggest that compounds with a 4-ring substructure are uncom-

mon for Lck inhibitors, and was not well represented in the model. Thus it is important to
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constantly refine the SVM model by introducing newly discovered positive and negative fam-

ilies from the drug discovery process into the training set so that a more refined hyperplane,

which will improve the screening performance, can be obtained.

A previous study had tested SVM models trained by sparsely distributed actives on struc-

turally similar non-actives in the range of 19.5K–38.5K compounds. The SVM models had

false positives rate of 2.6% – 7.8% (highly diverse data), 3.3% – 6.4% (moderately diverse data)

and 5.8% – 8.3% (sparsely diverse data) [59]. A similar experiment was done in this study and

SVMTr+PutNeg+Val appears to perform fairly well in terms of false hit rate (0.27%). This result is

consistent with the high specificity value for SVMTr+PutNeg obtained from 5-fold cross-validation

and also with the results from the external validation set which suggested that the SVM mod-

els do not base their predictions merely on membership in the represented family but rather on

compounds characteristics.

4.5.5 Comparison of SVM Model with Logistic Regression Model

The prediction performance of SVMTr+Val and LRTr+Val on MDDR compounds were similar.

However, when putative negative compounds were included in the training set, only the SVM

model (SVMTr+PutNeg+Val) had low false positive rate. The LR model (LRTr+PutNeg+Val) performed

worse with the addition of putative negative compounds. This suggests that LR may not be suit-

able for data with large class imbalance and the use of complex methods like SVM are appro-

priate for developing models for predicting Lck inhibitors. Most classifiers, e.g. decision trees,

have some means to prevent overfitting by discounting information believed to be insignificant

[167]. Consequently, the large amount of data introduced may have been treated as noise or

“insignificant” information by LR, hence, it failed to work.

4.5.6 Challenges of Using Putative Negatives

Although training data class imbalance is undesirable in building a “normal” classifier, the fol-

lowing paragraphs discuss that it may be advantageous in building a “screening” model. Some

limitations of the method and suggestions for further investigations were also discussed. Class

imbalance happens when training data of one class outnumbers the data of the other class. The

learner may have difficulty modelling the minority class, as a result, the model may have a bias

for the majority class in its prediction [167, 168]. In this work (and PI3K in Chapter 5), the

collected data consisted of 740 positives to 70 negatives (PI3K: 1159 positives to 9 negatives),
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which exhibited a class imbalance of approximately 10:1 ratio. Therefore, it would be a chal-

lenge to model after the significantly smaller number of negative compounds. These models

are greedy in classifying a compound as positive, which is demonstrated by the high sensitivity

values. However, because of this bias, the false positive rate is also high as shown by the results

of SVMTr+Val and LRTr+Val (FPR=61.2% and 81.1% respectively).

High FPR is undesirable and costly in screening exercises especially when it involves

vetting through millions of compounds. This is because, the effective model should generate a

reasonably sized list with more potential candidates for biological testing. For example, if there

were 100 active and 100000 inactive compounds in a chemical library, at FPR of 60%, 60000 of

the inactive compounds will be shortlisted for biological testing, which will be costly. To over-

come the high FPR, the putative negatives were introduced into the data set. Consequently, the

negative data size is much larger than the positive data size. Therefore, it seems that the prob-

lem of class imbalance was replaced by another class imbalance. However, the following points

supported by results and observations would suggest that the newly created class imbalance is

not entirely unfavourable after all.

First, in data driven learning, a model learns from its training set and it is usually advan-

tageous to have a large example size. For the initial data, it had 740 positives and 70 negatives.

The number of positive data may be seen as sufficient with 740 examples, while the negative

data is lacking with only 70 examples. Therefore, putative negatives were introduced to in-

crease the information on the characteristics of (assumed) negative compounds. Although this

does not abolish the problem of class imbalance, this step is expected to mitigate the class imbal-

ance problem caused by the scarcity of information as it has information augmentation effects.

That is, the learning has access to more negative compounds and it is no longer lacking in in-

formation. At the same time, the positive information remained at (probably) sufficient since

the number had not changed. Therefore, the SVMTr+PutNeg+Val model was able to maintain rea-

sonable performance in the internal and external validation by achieving sensitivities of 87.8%

and 83.8% (Table 4.2). But, the LR model was not so successful in the validations. Hence,

another challenge is that not all learning methods, e.g. LR and decision trees, are suitable for

handling class imbalanced data set. Therefore, other modelling methods were explored in the

next chapter to test for other working methods. Future studies should also look into sampling

for balanced positives to negatives training set, which at the same time, also able to give large

AD as conferred by the many putative negatives. The balanced data set will be useful because
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it might allow the use of many other modelling methods and to mitigate the bias for majority

class. The preparation of the training set may include selecting approximately the same number

of putative negatives that are structurally similar to the positives. It may be more difficult to op-

timize the model with this data set, however, the resolution capability of the model is expected

to improve once trained on the structurally similar compounds. Nevertheless, one should also

be cautioned against over-training the model.

Second, the lack of negatives information would be more harmful to the model than class

imbalance in (particularly) virtual screening because of high FPR. The effect is observed in the

performance of MDDR screening by SVMTr+Val and LRTr+Val compared with SVMTr+PutNeg+Val

(Table 4.3). The SVMTr+Val model had FPR of 61.2%, but improved to ca. 0.52% with the

introduction of putative negatives. Therefore, the class imbalance in this case is advantageous

because the model now recognizes the pattern of “more negative than positive compounds”.

This is because, it is normally expected that positive compounds only exist in small numbers in

a chemical library. Therefore, the model’s bias for negative prediction is beneficial in screening

exercises to a certain extent, that is, the FPR was improved but the sensitivity was affected.

The SVMTr+PutNeg+Val had shown promising performance in the internal and external validation

(87.8% and 83.8%). However, the sensitivity (yield) for the MDDR screening is comparatively

lower, that is, 45.8% compared with 89.5% in SVMTr+Val. Although it is not fair to make a

direct comparison with SVMTr+Val which is indiscriminate in its positive prediction with FPR at

61.2%, an observable limitation of the putative negative method is that potential lead compounds

might be overlooked as discussed in the Subsection 4.5.3. To minimize the risk, one should

always exhaust the search for positive compounds as much as possible. Alternatively, one may

also prepare a larger external validation set that may simulate the magnitude of the screening

problem. With the verification on a larger testing set, one can be more confident of the model’s

ability to work on large chemical libraries. In addition, this large testing set can also be used in

the training such that the parameters can be adjusted to obtain a model that is more sensitive for

positives. Therefore, if it is feasible to prepare a large testing set, this step should be carried out

to affirm the applicability of the screening model.

Further suggestions for future investigations include the use of correct classification rate

[169], CCR = 0.5
(

TP
TP+FN + TN

TN+FP

)
, as the performance measure for unbalance data set

and to test similarity searching for virtual screening. Similarity searching is to screen the chemi-

cal library to look for molecules that are most similar to the positive compounds [170]. Readers

45



4.5. DISCUSSIONS

are to refer to the similarity searching review by Willett for details [170]. It is an “economi-

cal” method because it only require the information of the positive compounds which may be

fingerprint-based, fragment-based or etc. Alternatively, one could also investigate the use of the

PaDEL-Descriptor and MODEL descriptor in similarity searching exercises.

4.5.7 Application of SVM model for Novel Lck Inhibitor Design

Analysis of three most recent publications of Lck inhibitors synthesis and evaluation showed

that the calculated Tanimoto coefficient (T ) of one compound to another within the same pub-

lication can range from fairly dissimilar (T = 0.105, average T = 0.369) to closely resembles

each other (highest T = 0.996, average T = 0.994). In this work, the Tanimoto coefficient

for the 864 predicted positive MDDR compounds (excluding known and suspected inhibitors)

calculated against the 820 positive training compounds ranged from 2.66×10−6 to 0.999. Thus

the SVM model developed in this work, SVMTr+PutNeg+Val, is able to identify novel compounds

that are potential Lck inhibitors. This is useful because compounds with great dissimilarity from

currently known compounds may be explored as new starting points for drug design, which may

have been difficult to discover through the traditional synthesis process.

FIGURE 4.5: Two compounds in MDDR predicted to have Lck inhibitory activity by the SVM model
which have the greatest dissimilarity from the collected compounds.

Figure 4.5 shows two structures (isomers) of potential Lck inhibitors that were identi-

fied by SVMTr+PutNeg+Val. These two are the most dissimilar compounds with the 820 positive

training compounds (min. T = 1.403 × 10−5, max. T = 0.316). These compounds have
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some of the important pharmacophores discussed in other studies. They contain an aliphatic

chain and a potential hydrogen bond formation end [162] (bromophenyl or amide) and also the

quinazoline N which is another potential site for hydrogen bonding with Met319 in the Lck

catalytic domain as reported by Chen et. al. [160]. Hence, the SVM model developed in this

work, SVMTr+PutNeg+Val, is potentially useful as a tool to screen for novel Lck inhibitors early in

the drug discovery stages.

4.6 Conclusion

In this work, an SVM model capable of identifying novel Lck inhibitors from large chemical

libraries, with a low false positive rate of 0.52%, was developed from a large training set of Lck

inhibitors and non-inhibitors. The model was validated in a number of ways: internal validation

over five-fold cross-validation, external validation with compounds from the most recent pub-

lished papers, screening of MDDR, comparison of models developed with and without putative

negative compounds, and checking for overfitting by comparison with a LR model. Challenges

of using the method include modelling class imbalanced data set and weakened sensitivity for

positives. Nevertheless, the use of the putative negative compounds was found to be useful

for increasing the applicability domain and decreasing the false positive rate of the resultant

computational model. Thus the SVM model presented in this work is potentially useful as a

complement to HTS for screening large libraries for novel Lck inhibitors with potent activity.

Supporting Information available at ACS Publications1: Table 1 shows inhibitory activity IC50(nM),

SMILES and references (in PubMed Unique Identifier or Digital Object Identifier) of all col-

lected compounds used for building and validation of the SVM and logistic regression models.

1http://pubs.acs.org/doi/abs/10.1021/ci800387z
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Chapter 5

PI3K Inhibitor

5.1 Summary of Study

Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, car-

diovascular disease, chronic inflammation and asthma. Three classifiers (AODE, kNN, and

SVM) trained with 1283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K

noninhibitors) and 64078 generated putative negatives was developed for predicting compounds

with PI3K inhibitory activity of IC50 ≤ 10 µM. It was found that all three models have ad-

vantages, thus, should be explored in consensus modelling. Consensus modelling, further de-

scription in Chapter 6, combines the predictions from the individual classifiers to give a final

prediction.

5.2 Introduction to PI3Ks

Phosphoinositide 3-kinases (PI3Ks) are a group of enzymes that can phosphorylate the 3-hydroxyl

position of phosphoinositides (PtdIns) at the inositol ring. PI3Ks are classified into three ma-

jor classes on the basis of substrate specificity and sequence homology. They have a vital role

in a variety of physiological processes such as metabolism regulation, cell survival, mitogenic

signalling, cytoskeletal remodelling and vesicular trafficking [171, 172]. Thus, PI3Ks have

been suggested to be implicated in the pathogenesis of cancer, diabetes, cardiovascular disease,

chronic inflammation and asthma [173]. Consequently, the inhibitors of PI3Ks have been ex-

tensively explored as an attractive therapeutic candidates [173]. Wortmannin and LY294002

are two of the most widely used pan-PI3K inhibitors for PI3K signalling studies. Nonetheless,
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recent works are driven in search of isoform specific inhibitors [174, 175]. PI3K-α inhibitors

(Class Ia) are being synthesized for its potential in antitumor and antidiabetic therapies [176–

178]. On the other hand, inhibitors of PI3K-δ and PI3K-γ, isoforms of Class Ia and Class

Ib respectively, are explored as potential anti-inflammatory agents for treatment of rheumatoid

arthritis or autoimmune diseases [179].

This work will focus on the development of a computational model with large applica-

bility domain and low false positive rate for the identification of potential PI3K inhibitors of

all isoforms without the need for knowledge of 3D structural information of the protein target.

Currently, there is a relative lack of structure-based models for PI3K inhibitors, which could be

a result of limited 3D structural information. To date, PI3K-α and PI3K-γ alone or in complex

with other molecules are the only isoforms with 3D-coordinates (X-ray diffraction) available

in the Protein Data Bank [180]. Based on these information, a study of PI3K-α selective inhi-

bition using the approach of 3D-quantitative structure-activity relationship (QSAR) combined

with homology modelling has been published [180]. Recently, the first structure-based virtual

screening for PI3K inhibitors using various filtering methods like Lipinski-style rules and p110γ

cavity docking was reported [181].

Ligand-based modelling is an alternative method to structure-based modelling for de-

velopment of predictive models. It has the advantage of not requiring knowledge of the 3D

structural information of the protein target. Thus this method was explored in this work as there

is currently no 3D structural information for all PI3K isoforms. To the best of our knowledge,

this work is the first ligand-based virtual screening study for PI3K inhibitors. A total of 65377

compounds from 8423 chemical families were used to develop models for the identification of

PI3K inhibitors not specific to any isoforms. The significantly larger number of compounds in

the training set will increase the applicability domain of the model and reduce the rate of false

positives.

5.3 Materials and Methods

5.3.1 Training Set

A total of 1555 compounds and its reported IC50 for PI3Ks inhibition (pan-PI3K, PI3K-α, β,

δ, or γ) were collected from patents and published studies within the 1994–2009 period. In-

formation about the compounds, which includes IC50(nM), structure in SMILES format and
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references (patents or PubMed Unique Identifier) are available in Table 1 of supplementary

materials online1. The compounds were then categorized into positive (PI3K inhibitors) and

negative (PI3K noninhibitors) compounds using cutoff values of IC50 ≤ 10 µM and IC50 ≥

500 µM respectively. Compounds with IC50 between these two criteria were excluded from the

training set. This resulted in the selection of 1283 positive and 16 negative compounds for the

training set as shown in Figure 5.1.

FIGURE 5.1: Flowchart for selection of compounds for 5-fold cross-validation and external validation
sets. The positive compounds were used as reference to generate putative negatives.

As observed in Figure 5.1, there were too few true negative compounds for training.

Thus, this study has adopted the approach to generate putative inactive compounds to augment

the negative training set. The effects of using a large number of putative negatives was exam-

ined to ensure that the change is not unacceptably detrimental to the identification of potential

inhibitors.

Putative negative compounds was generated through the process described in Chapter 3.

As a result, an additional training data of 64078 putative negatives were obtained by randomly

selecting eight compounds from each of the families that do not contain any of the 1283 positive

compounds in the training set as illustrated in Figure 5.1 for MDDR screen. For families with

less than eight compounds, all their members were selected.

Determination of structural diversity was carried out by calculating the diversity index
1http://www.springerlink.com/content/a6718j43n235v1p3/supplementals/
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(DI), please refer to Section 2.2.5 (page 17) for the method description.

5.3.2 Modelling

All models were built and optimized using RapidMiner [83]. LR was shown to be unsuitable

in Chapter 4, thus, other modelling methods were used to check if they can perform well with

data set enriched with putative negatives. The kNN, AODE, and SVM methods were used

(please refer to Section 2.3.1). For this work, the best kNN model was obtained by optimizing

simultaneously: 1) the number of nearest neighbour, k and 2) the distance measures, for example

cosine similarity, Euclidean, or Manhattan distance; the best kNN model has a k of 3 when

Manhattan distance was used.

For the best AODE model, it was obtained by optimizing simultaneously: 1) the number

of bins for discretization and 2) the type of evaluation metrics, i.e., M-estimate or Laplace

correction; the best AODE model was obtained when M-estimate was used with data set in 100

bins.

For the SVM model in this study, C = 105 was used and the best performing model had

a σ of 0.73. The Gaussian radial basis function kernel which has been widely used and had

consistently shown better performance [182, 183] were used in this study.

5.3.3 Model Validation

First, a total of 131 compounds were selected from the 1299 collected compounds and they were

not used in training of the models. The external validation set in this study was selected by the

Kennard-Stone algorithm (please refer to Section 2.2.2, page 15, for method description).

Second, the 5-fold cross-validation process was conducted for all three modelling meth-

ods: kNN, AODE, and SVM. This validation step only involved 65670 training compounds as

the 131 compounds, as shown in Figure 5.1, were set aside for external validation.

The prediction performance was assessed by the quantity of TP, TN, FP, FN, ACC and

MCC; description available in Section 2.6 (page 26).
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TABLE 5.1: Diversity index (DI) of several compounds classes (obtained from Yap et. al. [164]) in
descending order of structural diversity.

chemical class no. of compounds DI
satellite structures 9 0.250
National Cancer Institute diversity set 1990 0.452
FDA approved drugs 1183 0.452
estrogen receptor ligands 1009 0.511
PI3K inhibitors in training set (this study) 1283 0.629
benzodiazepine receptor ligands 405 0.686
dihydrofolate reductase inhibitors 756 0.727
penicillins 59 0.790
fluoroquinolones 39 0.791
cephalosporins 73 0.812
cyclooxygenase 2 inhibitors 467 0.840

5.4 Results

5.4.1 Data Set Diversity and Distribution

Table 5.1 shows that the 1283 PI3K inhibitors have an diverse-to-intermediate DI of 0.629,

which is in between that of known estrogen and benzodiazepine receptor ligands. A three

dimensional visualization of the collected compounds using the first three PCA is shown in

Figure 5.2. The result shows that the negative compounds tend to cluster at the edge in two

groups, however, there was no clear separation between the positive and negative compounds.

There was no evidence to exclude any compounds as outliers, although there were a few remote

compounds. Lastly, the 131 compounds isolated for external validation through Kennard-Stone

sampling were well distributed in the chemical space of the collected compounds.
Fig. 4. Visualization of the chemical space for the collected data using the first three principle 

components from PCA. 

 

 

+  positive training data: IC50  10M 
□  negative training data: IC50  500M 
  discarded training data 
  positive validation data 
  negative validation data 

FIGURE 5.2: Visualization of the chemical space for the training and external validation sets using the
first three principle components from PCA.
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5.4.2 Model Performances

Performance for the models AODE, kNN, and SVM are reported in the following tables.

TABLE 5.2: Classification performance of AODE in predicting PI3K inhibitory activity.

no. of compounds

test total pos neg TP FN SE(%) TN FP SP(%) ACC(%) MCC FPR(%)

5-fold fold 1 13135 232 12903 225 7 97.0 12135 768 94.0 94.1 0.454 5.95
cross-validation fold 2 13134 232 12902 218 14 94.0 12175 727 94.4 94.4 0.450 5.63

fold 3 13134 232 12902 225 7 97.0 12059 843 93.5 93.5 0.436 6.53
fold 4 13134 232 12902 225 7 97.0 12083 819 93.7 93.7 0.441 6.35
fold 5 13129 227 12902 219 8 96.5 12144 758 94.1 94.2 0.453 5.88

average 13133 231 12902 222 9 96.3 12119 783 93.9 94.0 0.447 6.07
external validation 131 124 7 95 29 76.6 7 0 100 77.9 0.386 0

TABLE 5.3: Classification performance of kNN in predicting PI3K inhibitory activity.

no. of compounds

test total pos neg TP FN SE(%) TN FP SP(%) ACC(%) MCC FPR(%)

5-fold fold 1 13135 232 12903 224 8 96.6 12871 32 99.8 99.7 0.918 0.25
cross-validation fold 2 13134 232 12902 214 18 92.2 12872 30 99.8 99.6 0.898 0.23

fold 3 13134 232 12902 224 8 96.6 12860 42 99.7 99.6 0.900 0.33
fold 4 13134 232 12902 218 14 94.0 12863 39 99.7 99.6 0.891 0.30
fold 5 13133 231 12902 216 15 93.5 12867 35 99.7 99.6 0.895 0.27

average 13134 232 12902 219 13 94.6 12867 36 99.7 99.6 0.900 0.28
external validation 131 124 7 92 32 74.2 7 0 100.0 75.6 0.365 0

TABLE 5.4: Classification performance of SVM in predicting PI3K inhibitory activity.

no. of compounds

test total pos neg TP FN SE(%) TN FP SP(%) ACC(%) MCC FPR(%)

5-fold fold 1 13135 232 12903 223 9 96.1 12876 27 99.8 99.7 0.925 0.21
cross-validation fold 2 13134 232 12902 214 18 92.2 12884 18 99.9 99.7 0.921 0.14

fold 3 13134 232 12902 216 16 93.1 12872 30 99.8 99.6 0.902 0.23
fold 4 13134 232 12902 225 7 97.0 12872 30 99.8 99.7 0.924 0.23
fold 5 13133 231 12902 215 16 93.1 12886 16 99.9 99.8 0.929 0.12

average 13134 232 12902 219 13 94.3 12878 24 99.8 99.7 0.920 0.19
external validation 131 124 7 88 36 71.0 7 0 100.0 72.5 0.340 0

5.5 Discussions

This work has used a few strategies for developing models with large applicability domain and

low false positive rate. The models are suitable for virtual screening purposes even without the

knowledge of 3D structural information of the protein target. The strategies include the use of

two cutoff vales to divide the inhibitors from noninhibitors and the putative negatives method.

First, this work chose to use two cutoff values for the reasons described in Section 4.5;

IC50 ≤ 10 µM for positive compounds and IC50 ≥ 500 µM for negative compounds. In this
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families with 
positive compounds
(positive families)

families with no known
positive compounds
(negative families)

false negative families

basis of putative
negatives

FIGURE 5.3: Illustrating the use of negative families to obtain putative negative compounds. False neg-
ative families may arise from inclusion of undiscovered positive families.

work as only 16% of the collected compounds were removed and a majority of the positive

compounds have IC50 of ≤ 1 nM.

Second, compounds with very weak activities are rarely reported in the literature as au-

thors typically present their most potent findings in their publications. Correspondingly, neg-

ative compounds are overwhelmed by the number of positive compounds in training which

subsequently produces a model with high false positive rate. Therefore, putative negatives were

used and their effects was examined to ensure that the model was not overfitted, thus becoming

insensitive to potential inhibitors. Therefore, the performance of this method was evaluated by

validating the models internally and externally using 5-fold cross-validation and external vali-

dation respectively. The 5-fold cross-validation results of this study showed that, although the

false positives rate was low (average 0.19% – 6.07%), all three models trained with putative neg-

ative was still able to generalize well as indicated by the high average sensitivity value of 94.3%

– 96.3% for the 5-fold cross-validation and for 71.0% – 76.6% in external validation (Table

5.2 – 5.4). Hence, the putative negatives were found to be advantageous, without significant

detrimental effects, to overcome the lack of negative compounds for training.

A possible disadvantage of this method is the probable inclusion of undiscovered in-

hibitors into the negative set as illustrated in Figure 5.3, resulting in a model that cannot identify

an active compound that has similar structure to the putative negative compounds. The extent

of this risk is unknown but the results of this work and two other studies [59, 139] had shown

that such unwanted effect was expected to be relatively small and it was still possible for a sub-

stantial proportion of positive compounds to be classified correctly despite their membership in

negative families. Nonetheless, the search for known PI3K inhibitors in this work was carried
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out to be as extensive as possible to minimize this risk.

From Table 5.2 – 5.4, it was observed that different learning methods performed dif-

ferently in 5-fold cross-validation and external validation although their results were similarly

good. SVM and kNN were able to achieve high average specificity at >99% compared to

AODE which achieved an average specificity of 93.9% in 5-fold cross-validation. However.

the AODE method had attained the highest average sensitivity at 96.3% compared to kNN and

SVM (94.6% and 96.1%). But, the AODE method has also resulted in a higher average FPR

at 6.07% (cf. 0.19% and 0.28%). The specificity of kNN and SVM were comparable but the

average FPR for SVM is lower at 0.19% compared with 0.28% for kNN. Therefore, different

modelling methods can achieve different results and the advantage of each method is different.

If the external testing set were larger (than 131 compounds), it can simulate the magnitude of

the screening library better. Nevertheless, the external validation results may still be used as

a rough guidance to select the best model for screening exercises. For example, the AODE

model may be selected since it had the best MCC and sensitivity values. But, depending on

the circumstances and desired outcome of a virtual screening, the other methods may also be

used. For example, if more hits were required for a HTS campaign, the AODE model with

better sensitivity for positives could be used because it is expected to classify more compounds

as potential positives. Conversely, if low FPR were desired to reduce the resources needed for

in vitro verification, kNN or SVM models may be used as they would be more prudent in la-

belling a potential positive. Alternatively, we could also use a consensus of the three models; to

average the overall performance so that a more robust predictor can be obtained. The consensus

method applied on the PI3K data set was examined and discussed in Chapter 7 of Part II. The

consensus model was validated through 5-fold cross-validation and external validation, and also

applied on virtual screening of MDDR.

5.6 Conclusion

Three models suitable for predicting PI3K inhibition even without the knowledge of 3D struc-

tural information of the protein target was developed from a large training set of PI3K inhibitors

and noninhibitors. The models were validated in two ways: internal validation using 5-fold

cross-validation, and external validation with compounds not used during model development.

The models had performed well with sensitivity values of>90% and specificity values of>99%
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in 5-fold cross-validation, and sensitivity of >70% in external validation. Although the perfor-

mances were similar, different modelling methods may be used if different outcome were de-

sired; to use AODE model for more hits, or to use kNN or SVM models for lower false positive

rate. To exploit the strength of each modelling method, we suggest the use of consensus mod-

elling which will be examined in Chapter 7.
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Part II

Increasing Prediction Accuracies Using

Ensemble Methods
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Chapter 6

Introduction to Ensemble Methods

Ensemble method, also referred to as consensus modelling for some studies in this report, is

a technique introduced to modelling studies to improve the accuracies of individual classifiers

by combining their predictions. These individual (constituent) classifiers, which were referred

to as base classifiers or base models, form the “bottom layer” where the ensemble method is

applied on. An example of an ensemble method is to take a vote on the predictions made by

each individual classifier. The ensemble modelling would normally improve the outcome of

the predictions. However, the quality of the base classifiers may affect the performance of the

ensemble, e.g. weak base models might produce a weak ensemble. Nevertheless, ensemble are

still used in the hope to obtain a more robust predictor that can reduce the risk of individual

model overemphasising some features while underestimating others, or ignore pertinent ones

completely [184, 185].

Dietterich [186] had given three reasons why ensemble may work better than single mod-

els, i.e., statistical, computational and representational causes. Consider a modelling method as

searching a space H of hypotheses to discover the best hypothesis in the space, the ensemble

method can be effective because:

1. Statistical problems may happen when the available training data is too small compared to

the size of the hypothesis space. Nevertheless, many different hypotheses in H that give

similar performance on the training data can still be generated by the modelling method.

If ensemble method were applied, the risk of selecting the wrong model can be reduced

by averaging the results of all these accurate classifiers.

2. Computational problems may happen when a modelling method does not produce the best

hypothesis, i.e., trapped in a local optima. For example, the outcome of decision trees and
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neural network changes when some form of perturbation is introduced. Application of

an ensemble on the repeated runs (from different starting points) may result in a better

approximation of the true function than any of the base classifiers.

3. Representational problems may arise when the true unknown function cannot be repre-

sented by any of the hypotheses in H . The space, H , must be considered as the effective

space of hypotheses, for a given set of training data, searched by the modelling method.

Hence, in ensemble, e.g. taking weighted sums of hypotheses drawn from H , it may be

possible to increase the space of representation.

The idea of combining classifiers is not uncommon. In spite of that, the ensemble method

has not been broadly adopted in QSAR studies, probably caused by high computational require-

ment [187]. A search with Scopus for publications up to May 2011 shows that there were 47

articles related to application of ensemble in ligand-based studies (non-exhaustive); ensemble

of structure-based and ligand-based methods were excluded. Compared to predictions from a

single classifier, the ensemble method has shown performances of varying degree (improves

or deteriorates) in quantitative structure-activity relationship (QSAR) studies [188–192] and in

quantitative structure-toxicity relationship (QSTR) studies [184, 193–195].

There is an assortment of approaches to generate multiple models that form the base

classifiers of an ensemble model [76, 186, 187]. One may generate multiple models by varying

the training set, T1, through sampling methods like bagging and boosting (subscript “1” as

switched-on, and “0” as switched-off), such that a different model is built for each of the subset.

One may also generate many models from the same training set but using different subset of

features, F1, or manipulating the response value by adding noise. Ensemble models can be

created by manipulating the algorithm used in the base models. For example, a combination of

models from the same algorithm (e.g. neural network) but using different parameters, p (e.g.

network topology), Alp, or a combination of different modelling methods, m, trained on the

same data set Alm. A combination of these approaches has been used. For example, in the

modelling method Random Forest [104] (Section 2.3.4), which is an aggregation of decision

trees made of different feature sets and generated from different samples of the training set,

hence, T1Al0F1 [76].

Many types of rules can be applied on the base classifiers to combine them. A common

method is the consensus or majority voting method where the final prediction depends on the

majority class label predicted by the constituent models. Another method is stacking or stacked
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generalization [196] where other learning algorithms like MLR, NB, and SVM, may be used to

construct a (meta-)model based on the predictions, or together with features, to make the final

prediction. This is different from voting where each base classifier has equal (weight) influence.

The current part (Part II) of the dissertation aims to produce useful models of toxicity

endpoints while examining the application of various combinations to generate ensemble mod-

els. The following Table 6.1 shows the arrangement of the various projects that was used to

investigate the different combinations of training set, features, or algorithms variation in the

ensemble models; each factor was varied successively. The ensemble methods for Chapter 8

– 10 can be classified under the strategy of “overproduce and select” [197], i.e., to generate a

large pool of base classifiers but only selected ones will be used as constituent models in an

ensemble. Other factors that may affect ensemble performance were investigated. They are,

base classifier quality, performance measure for selection (Chapter 8), cutoff for base classifier

pool, ensemble size (Chapter 9), type of combiner, training set ratio, and sampling methods

(Chapter 10).

TABLE 6.1: Organization of the chapters, starting from simple treatment to generate base classifiers,
followed by increasingly complex treatments.

chapter ensemble
outcome

data set description

Chapter 7 T0AlmF0 PI3K inhibitors Ensemble of models of different
learning algorithms but the same
training set and descriptors.

Chapter 8 T0Al0F1 Reactive metabolites Ensemble of models of different de-
scriptor sets but the same training
set and learning algorithm.

Chapter 9 T0AlmF1 Hepatotoxicity Ensemble of models of different
descriptor sets and learning algo-
rithms but the same training set.

Chapter 10 T1Al0F1 Eye/skin irritation or cor-
rosion

Ensemble of models of different de-
scriptor sets and training sets but the
same algorithm.
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Chapter 7

Ensemble of Algorithms

7.1 Combining Base Classifiers T0AlmF0

The consensus modelling or ensemble method was employed to improve classification accuracy

by combining predictions of several base classifiers of different learning algorithm, T0AlmF0.

Voting was chosen for the consensus method in this part of the study. Three base classifiers, k-

nearest neighbour (kNN), aggregating one-dependence estimators (AODE), and support vector

machine (SVM) which has gained popularity in recent years, were used. It is expected that

a consensus model which considers the prediction results from the three base classifiers that

work differently will be useful for the virtual screening of potential PI3K inhibitors from large

chemical libraries.

7.2 Materials and Methods

7.2.1 Training Set

The same data set reported in Chapter 5 was used for this study; the data set was enriched

with putative negatives. Similarly, the 100 molecular descriptors (Table 3.1) calculated for the

previous study were used.

7.2.2 Modelling

Three models optimized from the previous study were used as the base classifiers for the con-

sensus model, i.e., AODE, kNN and SVM. A compound is classified by the consensus model on

the basis of the majority predictions from the three base classifiers. For example, if a compound
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7.2. MATERIALS AND METHODS

is predicted as a noninhibitor by the AODE and SVM model, but predicted as inhibitor by kNN,

the consensus model would deem the compound as a noninhibitor based on the majority class.

7.2.3 Applicability Domain

The AD of the consensus model was calculated based on the range of the individual descriptors

of the compounds in the training set.

7.2.4 Model Validation and Screening

First, the performance of the consensus model, CMTr+PutNeg (subscript denotes the set of com-

pounds used for training the model: Tr, collected training set; PutNeg, putative negative com-

pounds; Ext, external validation set), was estimated using 5-fold cross-validation.

Second, an external validation was also conducted for the consensus model, CMTr+PutNeg,

using the 131 compounds (Figure 5.1) obtained from Kennard-Stone sampling.

Third, in order to evaluate the suitability of the consensus model for identifying PI3K

inhibitors from large chemical libraries, compounds in MDDR were screened.

The MDDR contained eleven compounds with PI3K inhibitory activity of IC50 ≤ 10 µM

and these were labelled as “known inhibitors”. A group of MDDR compounds were excluded

from the evaluation of prediction performance of the models even though they were reported to

have PI3K inhibitory activity because they did not satisfy the cutoff values or their IC50 values

were not reported. However, this group of compounds were included in the search for novel

potential inhibitors. Note that none of the MDDR compounds were present in the training set or

putative negatives.

7.2.5 Evaluation of Prediction Performance

For the performance of the consensus model in virtual screening, the yield, hit-rate (HR), false

positive rate (FPR) and enrichment factor (EF) were evaluated.

7.2.6 Identification of Novel Potential Inhibitors

The selection of suitable novel candidates for biological testing of PI3K inhibitory activities

was carried out by identifying those compounds that were predicted to be potential inhibitors

by the consensus model (CMTr+PutNeg+Ext) with a prediction confidence of 1 (ranged from 0 to

1). The list of selected compounds were further refined by removing those compounds that
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7.3. RESULTS

do not meet the minimum prediction confidence (value of 1 for AODE and kNN, value of

greater than 0.95 for SVM) in at least two of the three base classifiers. The similarity of the

remaining compounds to the PI3K inhibitors in the training set were calculated and those that

were sufficiently dissimilar were identified as potential candidates. The rationale for selecting

dissimilar compounds is to discover novel scaffolds (structural patterns) for PI3K inhibitors.

This is important as these novel compounds could provide new information on the mechanism

of PI3K inhibition. They may lead to a new chemical class of drugs for treatment of PI3Ks

related diseases.

7.3 Results

7.3.1 Data Set Diversity and Distribution
Number of compound families in positive dataset
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(A) External Validation
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(B) Virtual Screening

FIGURE 7.1: Figure 7.1a compares the distribution of families for the 124 positive compounds in exter-
nal validation set with the training set families for CMTr+PutNeg. Figure 7.1b compares 1262
virtual screening predicted positives with the training set for CMTr+PutNeg+Ext. The number
of compounds is given in curly brackets. Families in the shaded region are not represented
in the training set.

Figure 7.1 shows the distribution of PI3K inhibitors in terms of compound families. The

analysis found that the 1159 inhibitors in the training set and 124 inhibitors in the external

validation set belonged to 345 and 116 families respectively. Together, they occupied 398 unique

families from the total of 8423 families. The characteristic of the external validation set was

different from the positive training data set as only 63 out of 116 (54.3%) of the families in the

validation set were represented in the training set. These two characteristics will be useful to

evaluate the model’s performance on familiar and unfamiliar (novel) compounds.
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7.3.2 Applicability Domain

For the consensus model trained with 65377 compounds, CMTr+PutNeg+Ext, all except two long

chained molecules in the MDDR data set were within the applicability domain. If putative

negatives were not used in model building, i.e., with a training set of 1299 compounds, only

105452 MDDR compounds were within the applicability domain.

7.3.3 Model Performances

Table 7.1 gives the performance of the consensus model (CMTr+PutNeg) for predicting PI3K

inhibitors and noninhibitors by means of 5-fold cross-validation and an external validation set.

The consensus model in 5-fold cross-validation had performed consistently well in predicting

positive compounds (average SEN = 96.1%) and also in predicting negative compounds (average

SPE = 99.7%) with an overall accuracy of 99.7% and MCC of 0.915. When tested on the

external validation set, the consensus model performed with an overall sensitivity of 77.4%,

specificity of 100% and accuracy of 78.6%.

TABLE 7.1: Classification performance of CMTr+PutNeg in predicting PI3K inhibitory activity.

no. of compounds

test total pos neg TP FN SEN (%) TN FP SPE (%) ACC (%) MCC FPR (%)

5-fold fold 1 13135 232 12903 225 7 97.0 12876 27 99.8 99.7 0.929 0.21
cross-validation fold 2 13134 232 12902 219 13 94.4 12875 27 99.8 99.7 0.915 0.21

fold 3 13134 232 12902 226 6 97.4 12855 47 99.6 99.6 0.896 0.36
fold 4 13134 232 12902 225 7 97.0 12866 36 99.7 99.7 0.913 0.28
fold 5 13133 231 12902 219 12 94.8 12877 25 99.8 99.7 0.921 0.19

average 13134 232 12902 223 9 96.1 12870 32 99.7 99.7 0.915 0.25
external validation 131 124 7 96 28 77.4 7 0 100.0 78.6 0.393 0

168014 compounds in MDDR were screened with the consensus model trained with

65377 compounds. The results are given in Table 7.2. The consensus model (CMTr+PutNeg+Ext)

had predicted 1262 compounds to have PI3K inhibitory activity with a low false positive rate

of 0.75%. The consensus model was able to predict 7 out of the 11 known inhibitors correctly,

giving a yield of 63.6%. In Figure 7.1b, analysis of the compound families of these 1262 com-

pounds has shown that they belong to 424 families and 196 (46.2%) of these are represented in

the training set.

Cumulative gains for the discovery of known inhibitors by the consensus model is shown

in Figure 7.2. The rate of known inhibitor discovery of a random model was taken as 11/168016.

A total of 26 compounds in MDDR have met the minimum prediction confidence re-

quirements set out in Section 7.2.6. Seven of these compounds belonged to the group that were

64
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TABLE 7.2: Performance of the consensus model in virtual screening of MDDR Compounds.

results

no. of MDDR compounds passed AD 168014
known inhibitors 11
predicted positives 1262
hits† 7
yield 63.6%
hit-rate 0.55%
false positive rate 0.75%
enrichment factor 85
* Compounds in MDDR identified to have PI3K inhibitory activity IC50 ≤ 10 µM
† Predicted positive compounds that are known inhibitors in MDDR
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FIGURE 7.2: Cumulative gains chart for the discovery of known inhibitors.

reported to have PI3K activity but without sufficient IC50 information. From the remaining 19

compounds, nine compounds were the most dissimilar from the inhibitors in the training set

(average Tanimoto coefficient, T = 0.456 to T = 0.499). These nine compounds, shown in

Figure 7.3 (page 66), should be prioritized as suitable novel candidates for biological testing of

PI3K inhibitory activity.

7.3.4 Inhibitors versus Noninhibitors: Molecular Descriptors

An analysis of the support vectors from the SVM model was carried out to examine the dif-

ferences between the 100 molecular descriptor means of the inhibitors and noninhibitors. The

difference for the means of 7 molecular descriptors were found to be statistically significant.

Among the support vectors, PI3K inhibitors have higher values in terms of the number of

hydrogen-bond acceptor, number of oxygen atoms, 0th valence connectivity index, and sum
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7.3. RESULTS

FIGURE 7.3: A selection of MDDR compounds not reported as PI3K inhibitors that have the highest
prediction confidence for the consensus model and at least two of the three base classifiers.
These nine compounds are also the most dissimilar from the positive training set.
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of electro-topological state of atom type aaN and sSH. On the other hand, PI3K noninhibitors

has higher total path count and sum of E-state of atom type aaNH.

7.4 Discussions

7.4.1 The Model

Strategies to develop a model with large applicability domain and low false positive rate so

that it is suitable for virtual screening purposes even without the knowledge of 3D structural

information of the protein target were discussed in Chapter 5. The strategies include the use

of two cutoff vales to divide the inhibitors from noninhibitors and putative negatives. In this

chapter, the third strategy, consensus modelling was examined.

As a predictor, the consensus method has shown to be effective as it has a higher discovery

rate for known inhibitors compared to a random model as shown in Figure 7.2. Its effective-

ness was also reflected in the performance for the internal and external validations. Moreover,

the consensus model has an large applicability domain exemplified by 168,014 MDDR com-

pounds fulfilling the AD of CMTr+PutNeg+Ext compared with only 105,452 MDDR compounds

for a model train without putative negatives. Therefore, the results suggest that the consensus

model is potentially effective for screening large compound libraries for PI3K inhibitors.

The consensus method was introduced to improve the prediction performance of the base

classifiers and the advantages are discussed below. First, the consensus method may help pre-

vent the selection of a wrong model for (final) use. As discussed in Subsection 4.5.6, the size

of the external data set (e.g. 131 compounds) may be insufficient to mimic the magnitude of

the screening library. Consequently, the true performance of the model may not surface in the

internal and external validation. Although the internal and external validation results may give

some form of indication of goodness-of-fit, one can never be sure unless it is tested on a large

library. Therefore, the consensus method may be used, so not to overlook potentially good

models. In Table 7.1, the consensus model was found to have better prediction accuracies than

the optimized base classifiers (AODE, kNN, and SVM) and its prediction performance in both

5-fold cross-validation and external validation were consistent. The consensus model achieved

a sensitivity of 77.4%, while the individual models achieved 71.0%–76.6%. This suggest that

the consensus model is robust, unlike the base classifiers which had different prediction per-

formance ranking when different validation methods were used (Table 5.2 – Table 5.4). The
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AODE model had the best external validation results, while kNN and SVM performed better in

5-fold cross-validation. This inconsistency (mismatch) between internal and external validation

is common as observed by other studies [198]. Therefore, it is not always ideal to narrow down

to one “best” model on the basis of internal validation results, as the model may not produce

the same “best” result when it is externally validated. Hence, the consensus method can be

used to combine the base classifiers and not overlooking potentially good models. The results

of this work has shown that the consensus method was useful to improve the accuracies of base

classifiers for PI3K inhibition prediction.

Second, the consensus model can strike a balanced between the characteristics of the base

classifiers. In Table 7.1, it seems that the consensus model had gained the good qualities of the

optimized base classifiers (AODE, kNN, and SVM). That is, the SEN and SPE in 5-fold cross-

validation is closer to the best performance of the base classifiers. In the external validation,

the consensus model had the best SEN at 77.4%, while the individual models achieved 71.0%–

76.6%. In MDDR screening, the FPR for the consensus model was low at 0.75%. The low value

of FPR is relevant for virtual screening as one would normally prioritize a smaller number of

compounds for biological screening. However, the consensus model seemed to have taken on

the “generosity” of positive predictions of AODE and kNN models since the FPR is not as low

as the performance (ca. 0.52%) in Lck screening. This can be beneficial as more compounds at

a reasonable number may be tested for biological activity.

7.4.2 Application of Model for Novel PI3K Inhibitor Design

The consensus model presented in this work might be useful for novel PI3K inhibitor discovery

because the model is able to predict inhibitors unrepresented in training and compounds that are

different.

Figure 7.1a shows that 53 of 116 (45.6%) of the positive compound families in the ex-

ternal validation were not represented in the training set and they were grouped under nega-

tive families. The consensus model (CMTr+PutNeg) has a sensitivity of 77.4% despite the lack

of positive families representation. Further analysis showed that represented compounds were

predicted better than the unrepresented ones with sensitivity scores of 95.8% and 52.8% respec-

tively. Although the sensitivity for unrepresented compounds appeared low, this result must be

viewed with the perspective that the consensus model has low false positive rate, which means

that the model has a high precision value. Thus, when the model predicts an unrepresented com-
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pound to be an inhibitor, it is very likely that the compound is a true inhibitor. This is in contrast

to that of a random model which is only 50% certain of finding a true inhibitor. The differ-

ence in sensitivities for represented and unrepresented compounds highlighted the importance

of compound families knowledge for optimum model performance. Knowledge of more posi-

tive families will bring about the reduction of false negative families risk as illustrated in Figure

5.3 (page 54). Nonetheless, given that the consensus model has a reasonably good sensitivity

and high precision for unrepresented compounds, it is likely that a compound classification was

not decided by its membership in represented family only, but also on the basis of the differing

characteristics between inhibitors and noninhibitors. Therefore, the consensus model presented

in this work have the potential to identify potential inhibitors from novel compound families.

Analysis of the three most recent publications on PI3K inhibitors synthesis showed that

the calculated Tanimoto coefficient (T ) of one compound to another within the same publication

can range from Taverage = 0.703 to Taverage = 0.971. In this work, the average Tanimoto

coefficient for the 1255 predicted positive MDDR compounds (known inhibitors excluded) and

the 7 hits (Table 7.2) calculated against the 1283 positive training compounds, ranged from

0.283 to 0.516 and 0.496 to 0.504 respectively. This suggests that the consensus model presented

in this work was able to make a positive prediction even if the compound appears distant from the

positive training compounds in the chemical space defined by the descriptors in this work. This

is important because compounds with greater dissimilarity from currently known inhibitors may

be explored as new starting points for drug design, which may have been difficult to discover

through the traditional synthesis process.

Among the nine compounds in Figure 7.3 (page 66) that should be prioritized as suitable

novel candidates for biological testing of PI3K inhibitory activity, a majority were reported

as antineoplastics by MDDR and one of them is an antiasthmatic which concurred with the

potential uses of PI3K inhibitors. Some of these compounds contain structural features that

were found to be essential for PI3K inhibition [180]. Interaction with Val851 which is conserved

among the isoforms is needed for PI3K inhibition; a central (hetero)aromatic scaffold carrying

an hydrogen-bond acceptor may achieve this [180]. For PI3K-α specific inhibitions, the scaffold

should have a small lipophilic group on one side and two H-bond acceptors on the other side.

That is, the small lipophilic group may interact deeply in the ATP binding and the two H-bond

acceptors are needed for bonding with Ser773 and His855 residues of PI3K-α [180]. These

features are more apparent in MDDR 164487, MDDR 222924, and MDDR 298484. Hence,
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these nine compounds are likely to be novel PI3K inhibitors and could serve as lead compounds

for new inhibitors design.

7.5 Conclusion

Three modelling methods, i.e., AODE, kNN and SVM, performed equally well on data set en-

riched with putative negatives. Subsequently, a consensus model of these base classifiers was

developed from a large training set of PI3K inhibitors and noninhibitors. The model is suitable

for virtual screening even without the knowledge of 3D structural information of the protein

target. The consensus model was validated in a number of ways: internal validation using 5-

fold cross-validation, external validation with compounds not used during model development,

and virtual screening of MDDR. The consensus model is capable of identifying novel PI3K in-

hibitors from large chemical libraries with false positive rate of 0.75%. Further, the consensus

model has a higher discovery rate for known inhibitors when compared with a random model.

Several potential drug leads were presented and they were found to contain structural features

that have been reported to be associated with PI3K inhibitory activities. Hence, the consen-

sus model presented in this work is potentially useful to complement HTS in screening large

chemical libraries for novel PI3K inhibitors.
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Chapter 8

Ensemble of Features

8.1 Summary of Study

Metabolic activation of chemicals into covalently reactive species might lead to toxicological

consequences such as tissue necrosis, carcinogenicity, teratogenicity, or immune-mediated tox-

icities. In the previous chapter, ensemble of mixed algorithms T0AlmF0 was studied. In this

chapter, the ensemble of mixed features, T0Al0F1, is used for the development of a model to

classify the metabolic activation of chemicals into covalently reactive species. The effects of

the quality of base classifiers and performance measure for sorting are examined. An ensemble

model of 13 base classifiers was built from a diverse set of 1479 compounds. The ensemble

model was validated internally with 5-fold cross-validation and it has achieved sensitivity of

67.4% and specificity of 93.4% when tested on the training set.

8.2 Introduction to Reactive Metabolites

A majority of attrition at all stages of the drug development is caused by toxicity. It was esti-

mated that 70% of these safety related attritions take place during the preclinical stages [199].

Therefore, there is a need to improve the design and selection of candidates with techniques to

predict the potential failures early. These techniques include preclinical safety assessments, for

example, low-to-intermediate and high throughput in vitro assays. In addition, in vivo toxicity

for studies such as genetic toxicology, drug-drug interaction, and metabolite mediated toxicity

may also be used [199].

Drug metabolism or metabolite mediated toxicity has a large part in drug safety [200]. It
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was found that toxicity as a consequence of reactive metabolite (RM) formation was implicated

by 62–69% of compounds found to have structural alerts for RM [201]. To alter the biologi-

cal activity of the parent drug, xenobiotics such as drugs are metabolised in the body. These

metabolic events are detoxifying because they usually result in the loss of biological activity.

However, the same metabolism reactions may bioactivate certain compounds to RMs due to

their structural features [202]. RMs are products of metabolism that might form adducts with

nucleophiles like glutathione (GSH) or bind covalently to tissue macromolecules [200]. Drug-

metabolising enzymes in the liver, lung, kidney, and skin are known to bioactivate drugs and

xenobiotics. Insufficient detoxification of RMs may bring about tissue necrosis, carcinogenicity,

teratogenicity, or immune-mediated toxicities [202]. It may also bring about mechanism-based

inactivation of CYP enzymes which might be harmful or exploited for clinical use. Further

examples of consequences of RM formation include mutagenicity through DNA-adduct forma-

tion and the less understood idiosyncratic adverse reaction through possible haptenization that

converts RM to immunogens [202].

Various form of in vitro assays are available for detection of RMs. For example, covalent-

binding studies or trapping studies, which involve glutathione (GSH) with NADPH supple-

mented human liver microsomes. These assays are useful, however, not all RMs can be trapped

with GSH. Further, multiple dosing may be required to elucidate the true effect of a compound in

covalent-binding assays [202]. Therefore, some RMs may still escape detection from the most

sophisticated bioanalytical instruments. Furthermore, it is uncertain that RM detected through

in vitro methods will definitely cause toxicological consequences in vivo [200]. In the period

of 1975–1999, there were a total of 548 new chemical entity approved. However, 56 (10.2%)

of them later acquired a new black box warning or were withdrawn from the market [203] as

a result of adverse drug reactions that were not detected from clinical trials or animal testing.

Therefore, the combination of in vitro and in vivo approach is not perfect [202]. Although it is

unlikely for in silico methods to replace the existing methods, computational tools may provide

a potential solution to fill the gaps of in vitro and in vivo methods[204].

Current in silico methods for drug metabolism predictions are based on expert systems

where structural alerts or rules were defined to recognize potential biotransformations [205].

These tools include META [206], METEOR [207] and MetabolExpert [208] as discussed in a

review by Langowski and Long [205]. Structure-based systems for drug metabolism prediction

were also available. These techniques involve docking of 3D structures, molecular dynamics,
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and quantum chemical calculations, which were reviewed by Sun and Scott [204]. A recent

study had used support vector machine to model reactivity of functional groups to predict eighty

metabolic reactions of compounds [209]. A majority of these tools predict the metabolic fates

of compounds not specific to covalently reactive species which may give rise to toxicological

consequences. Hence, in this study, we aimed to build a predictive model for adduct forming

potential of RMs. To the best of our knowledge, this work is the first to create a ligand-based

QSAR to predict RM forming potential of compounds, with focus on adduct formation. That

is, classification of metabolic activation of chemicals into covalently reactive species that may

(or may not) bring about various toxicological consequences. Compounds which produce RMs

that form GSH-, protein- or DNA-adducts were included in this study. It was found that there

was only a small overlap between the structural alerts for metabolic activation of chemicals into

covalently reactive species when compared with the structural alerts for carcinogenicity [210].

QSAR studies of genotoxicity (carcinogenicity) or mutagenicity are associated with covalent

DNA binding, hence, this QSAR study is different from the above mentioned.

8.3 Materials and Methods

8.3.1 Training Set

Using “reactive metabolite” as keyword search in PubMed [211], published articles related to

compounds that generate RM were obtained. Compounds (parent compounds) that were iden-

tified to produce RM that form adducts with GSH, DNA or protein were labelled as “positive

compounds” in the data set. Additional positive compounds were found by using the keyword

“reactive” in Micromedex® [212] Healthcare Series searches. These compounds were verified

against published articles in PubMed to confirm that they produce RM.

The U.S. FDA Orange Book [213] was used to obtain a list of available drugs in the mar-

ket. Compounds that were present in the positive data set were removed from this list and the

remainder was used as “negative compounds”. These compounds were assumed to be ”negative”

on the basis that they were not reported to produce RM. Therefore, this list may change in the

future if new cases of toxicity were to be reported. A total of 1594 unprocessed compounds were

collected and their chemical structures were downloaded from PubChem [214]. Subsequently,

the compounds were processed and standardized using the Pipeline Pilot Student Edition [215],

so as to add hydrogen atoms and remove salts from the structural files. Compounds with un-
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FIGURE 8.1: The number of compounds in each data set. The compounds in each part were used as
the external validation set once; they were never used during the modelling process for the
corresponding training set.

clear RM formation reports, duplicates, inorganic compounds, and compounds with molecular

weight of greater than 5000 were removed as they may cause error during the calculation of

molecular descriptors. After the calculation of descriptors, as shown in Figure 8.1, a total of

1479 compounds were available for the subsequent analysis and modelling processes.

External validation is required to examine the generalization ability of the final model.

To encourage a more vigorous validation, the full data set was partitioned into five parts through

stratified sampling. Each of the parts was used as the external validation set once, whereas

the remaining compounds were used in training. This process resulted in approximately 1183

compounds for training and 296 compounds for external validation in the five Collections as il-

lustrated in Table 8.1. The training set was used to optimize the parameters of models, whereas,

the compounds in the external validation set were not used at all during the training process.

TABLE 8.1: Combination of different partitions into training set or external validation set in each collec-
tion.

Collection Training set External validation set
1 part 2 part 3 part 4 part 5 part 1
2 part 3 part 4 part 5 part 1 part 2
3 part 4 part 5 part 1 part 2 part 3
4 part 5 part 1 part 2 part 3 part 4
5 part 1 part 2 part 3 part 4 part 5

8.3.2 Molecular Descriptors

The program, PaDEL-Descriptor, was used in the calculation of molecular descriptors in this

study. A total of 663 1D and 2D molecular descriptors were calculated, the list is available at
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the PaDEL-Descriptor website [216].

8.3.3 Modelling

All models were built and optimized using RapidMiner [83]. The naı̈ve Bayes (NB) (description

in Section 2.3.3) was chosen as the modelling method in this study as it is fast and simple to use.

To build an ensemble of T0Al0F1, the diversity of the base models was introduced by varying

the descriptor sets in each round of model construction. Within each Collection, the full data

set of approximately 1183 compounds was used in every generation and optimization of base

classifier. The main processes are:

1. A random subset of descriptors were obtained from the full set (663) of descriptors.

2. From the new (random) sampled descriptor set, apply feature selection to obtain relevant

descriptors, followed by modelling with naı̈ve Bayes using 5-fold cross-validation.

3. Repeat step 1 and 2 for a number of times, e.g. 100 times in this study, to generate many

base classifiers for each descriptor subsets.

4. From the pool of 100 models, unique models were filtered out on the basis of the attributes

used by the model.

Top 1
Top 2

ensemble
i 3Top 2

Top 3
Top 4
Top 5

size 3 ensemble 
size 5

ensemble size 
(last odd number)

last

training set
~1183

external set
296

to rank and select
best ensemble

296

to compare with
Top 1 modelFIGURE 8.2: Unique models were ranked by their five-fold cross-validation performance. Starting with

ensemble of size 3 with the top 3 models, more ensemble models were built by including
more top models successively.

Subsequently, these models were ranked by their MCC values in 5-fold cross-validation.

Majority voting was used to combine the sorted base models. The first ensemble of size 3 were

built by including the top three base classifiers. More ensemble models were built by including

more top models successively. Due to the lack of an extra testing set, each of these ensemble

models were applied on the training set to obtain a performance value to rank them. The best
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performing ensemble was chosen as the final model for further analysis. One single model

from each Collection was selected for comparison with the ensemble. For this best performing

individual model, it was chosen based on the best performing MCC in five-fold cross-validation.

Two factors that may affect ensemble performance were examined. First, by increasing

the ensemble size successively, more models of lower quality were included into the ensemble

that may affect the ensemble performance. This effect of base model quality on the ensemble

performance was examined. Second, the construction of ensemble models was repeated by

using AUCpes and GMEAN in five-fold cross-validation to rank the constituent models. They

were chosen because, like MCC, these measures may give a better “overview” of the model

performance when compared with measures like SEN or SPE alone. This step was carried

out to examine the effects of the choice of performance measure for base models ranking on

ensemble performance; it is to find out if a different ranking indicator has the advantage over

another to identify better constituent models for combination into an ensemble.

The applicability domain (AD) of the ensemble model was calculated based on the range

of the individual descriptors. The minimum and maximum values of each molecular descriptor

in consideration of all the compounds in the original training set were used. In addition, only

the descriptors that were utilized in the optimized base models in the ensemble were included.

8.4 Results

8.4.1 Effects of Performance Measure for Ranking

After filtering for unique models, the number of base classifiers within each Collection de-

creased from 100 to 55–67 base models. Therefore, ensemble models up to size of 55–67

were obtained for the different collections. Three performance measures: AUCpes, MCC and

GMEAN, were used to sort the five-fold cross-validation results of unique models. The rank of

the models was different when different performance measure was used. For example, a model

may have rank 1 when MCC was used, but rank 12 and 17 when sorted by their AUCpes and

GMEAN values.

The effects of base classifiers’ quality and the choice of performance measure (ranking

measures) to sort the base classifiers are shown in Figure 8.3. Only the MCC values achieved by

the ensemble models in Collection 1 and 2 are shown in the figure. In the figure, “training set”

refers to the prediction results of the ensemble models when tested on the training set, whereas
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(D) External validation set Collection 2

FIGURE 8.3: Performance, MCC values, of ensemble models in Collection 1 and Collection 2 when
AUCpes, MCC or GMEAN were used to rank the base models.

“external validation set” is when prediction was made on the external validation set. There were

no significant difference observed among the performances achieved when different ranking

measures were used. It was also observed that, when the quality of base classifiers decreased,

the performance in the testing set decreased. The trend is more obvious in the external validation

set.

8.4.2 Effects of Consensus Modelling

TABLE 8.2: Performance of the best ensemble model and best single classifier (of the best ensemble) in
external validation set.

best ensemble model best single classifier (top 1)

ensemble size SEN (%) SPE (%) PRE (%) MCC SEN (%) SPE (%) PRE (%) MCC

Collection 1 9 69.0 94.1 74.1 0.648 69.0 92.4 69.0 0.614
Collection 2 5 69.0 92.4 69.0 0.614 70.7 90.8 65.1 0.596
Collection 3 59 71.9 88.2 59.4 0.561 63.2 89.5 59.0 0.513
Collection 4 21 78.0 90.7 67.6 0.652 64.4 91.1 64.4 0.555
Collection 5 15 62.7 91.6 64.9 0.550 57.6 90.3 59.6 0.486

average 70.1±5.5 91.4±2.2 67.0±5.4 0.605±0.048 65.0±5.2 90.8±1.1 63.4±4.1 0.553±0.054

PRE: precision

Table 8.2 shows the external validation results of the best ensemble model and the best
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TABLE 8.3: Performance of the nine constituent models of the best ensemble in Collection 1. The top
models were assigned based on sorted MCC values in five-fold cross-validation. The cor-
responding MCC values achieved by the base models are shown in the external validation
column.

five-fold cross-validation external validation

ranking MCC ranking MCC

top 1 0.579 rank 3 0.614
top 2 0.571 rank 2 0.641
top 3 0.569 rank 9 0.514
top 4 0.568 rank 6 0.582
top 5 0.568 rank 1 0.645
top 6 0.565 rank 4 0.590
top 7 0.563 rank 5 0.590
top 8 0.562 rank 7 0.567
top 9 0.561 rank 8 0.522

variance 0.002
mean±s.d. 0.585±0.046

single classifier (top 1) chosen from the constituent models of the best ensemble model. On

comparing the result of ensemble with best single models, the SEN or SPE may fluctuate. That

is, the greatest increase was 13.6% (Figure 8.4d) and the greatest decrease was 1.7% (Figure

8.4b). On average both SEN and SPE improved by 5.1% and 0.6% respectively. The MCC and

PRE values for ensemble models were better in all five collections with average improvements

of 0.052 and 3.6% respectively.

Table 8.3 shows the MCC values of the constituent models in the best ensemble in Col-

lection 1. The corresponding external validation result for each of the base models are listed

in the table. The results show that the ranking obtained from five-fold cross-validation does

not correlate with the external validation results. That is, the top 1 model did not produce the

best achievable external validation value, instead it was obtained by the base model at rank 5.

The variance for the MCC achieved by the 9 base models was 0.002, with mean and standard

deviation of 0.585±0.046.

Figure 8.4 shows the various external validation results achieved by the best ensemble

model, best single classifier (top 1) and average of the constituent models in the ensemble for

Collection 1 to 5. The plots show that, although the ensemble model performance for SEN and

SPE may fluctuate when compared with the best single model (top 1), the ensemble models

performed consistently better for PRE and MCC in all collections. Ensemble also improved all

performance measures when compared to the averages of its base models. Within Collection

1, the external validation MCC variance for the top 10 ensemble models was calculated. The

variance was 0.001, with mean and standard deviation of 0.603±0.038.
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FIGURE 8.4: Performances of ensemble model, top 1 and average of base models in Collection 1 to
Collection 5.

8.5 Discussions

8.5.1 Quality of Base Classifiers

The quality of the base classifiers influences the performance of the ensemble model built on

top of them. The ranks reflect the quality of the models, i.e., a lower ranked model is likely

to have worse prediction performance than a higher ranked model. As observed in Figure 8.3,

the performance of the ensemble model decreases as the rank deteriorates. However, good

performance was maintained up to approximately ensemble-23 in the external validation of
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Collection 1 and 2, before the start of a significant decrease in the MCC values. In addition, in

most of the collections, the top 1 base models did not achieved the highest MCC values among

the base models of the ensemble as shown in Table 8.2. This suggests that it is not necessary

to limit ensemble modelling to the top ranked models, but a greater number of base classifiers

may be included in an ensemble.

8.5.2 Performance Measure for Ranking

As observed in Figure 8.3, the choice of indicators: AUCpes, MCC or GMEAN, for sorting of

base model performance did not influence the performance of the ensemble models significantly.

All three indicators have shown very similar trends in the prediction of training and external

validation set in all five collections (Collection 3 to 5 not shown). Although the fluctuations in

the performance were not consistent with the expectation that lower ranked base models should

always produce weaker ensemble models, the general decreasing trend indicates that all three

indicators were adequate as they were able to sort out the better quality models first. Since no

performance measure was distinctively better than the others, all three indicators (AUCpes, MCC

or GMEAN) may be used to sort and select the base classifiers for ensemble modelling. For the

section that follows, only the models ranked by MCC will be discussed.

8.5.3 Ensemble Compared with Single Classifier

It was observed that the ensemble method is robust and stable. The effects of using consensus

modelling compared with a single best classifier (top 1) and the average of the constituent classi-

fiers are shown in Figure 8.4 and Table 8.2. It was observed that modelling with majority vote,

as the ensemble method, improved the performances from the averages of the base classifiers.

The sensitivity and specificity outcome may fluctuates, but it was observed that the greatest in-

crease was 13.6% and greatest decrease was only 1.7%. Besides, the ensemble always increase

the precision and MCC in all collections when compared with the best single model (and aver-

ages of the base models). Therefore, the benefits brought about by the ensemble method may

outweigh the slight decrease in specificity and this suggests that the ensemble method is robust.

For classification when ensemble is not used, one model is usually selected for the task.

For the selection of this single model, the performance of an internal validation is commonly

used to rank the models. Nonetheless, the results in Table 8.3 as well as a study [123] have

shown that training results may not correlate well with actual model performance. In addition,
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the “best classifier” can be different when a different performance measure (MCC, AUCpes, or

GMEAN) was used to sort the prediction results. Hence, ensemble modelling was used to reduce

the risk of selecting the wrong single classifier, as the performance of ensemble models were

observed to be stable to a certain extent. Furthermore, in Collection 1, the external validation

MCC achieved by the top 9 base classifiers (of the ensemble) had a variance of 0.002, while

the top 10 ensemble models had a variance of 0.001. This shows that variability of the external

validation results achieved by top individual models was low, but the variability of ensemble

models was even lower. The top 10 base classifiers and ensemble models in the other Collections

were also evaluated; the ensemble models had lower variability than the top base classifiers in

four out of five collections (last one had similar variance). This suggests that the risk of selecting

a wrong ensemble model is probably lower when compared to selecting one base classifier.

8.5.4 Model for Use

A readily available model for public use was trained with the full data set of 1479 compounds

with 5-fold cross-validation. This model was assumed to be as strong as the five ensemble mod-

els produced in the five collections of training and external validation. This is because, all five

ensemble models had consistently achieved acceptable validation results, i.e., with external val-

idation MCC of 0.55–0.652. Therefore, a model that was generated from the same modelling

methodology was assumed to be similarly capable in its prediction. However, the actual perfor-

mance is unknown, unless new compounds are available for validation. The performance of the

final ensemble model with size 13 is shown in the Table 8.4 below. The table shows the model

performance on the full training set and the average 5-fold cross-validation performance of its

constituent classifiers.

Note that the model presented is a “general screening” tool. A recent study reviewed that

about half of the top 200 drugs in the United States for year 2009 were found to have struc-

tural alert for RM formation, but they were rarely associated with idiosyncratic toxicity despite

years of usage [201]. The fate of the compounds in the human body might be influenced by

metabolic polymorphisms, nutritional state, dose of drugs, route of elimination, and presence of

substituents that will be preferentially metabolised [202, 217]. Therefore, a positive prediction

by the model basically implies a strong potential for RM (and adducts) formation but does not

necessarily confirms RM formation.

The AD for this model was made of 26 molecular descriptors. The frequency of the
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TABLE 8.4: Performance of the final ensemble model (ensemble size 13) and the average performances
of its constituent models in five-fold cross-validation.

model SEN (%) SPE (%) ACC (%) PRE (%) MCC
ensemble model 67.4 93.4 88.3 71.5 0.622
average of base classifiers 63.9±7.2 89.7±4.6 84.6±3.1 62.0±8.7 0.532±0.061

molecular descriptors among all base classifiers is listed in Table 8.5. A brief analysis is pre-

sented here.

TABLE 8.5: The number of times a molecular descriptor appears in the collection of the base models in
the final ensemble model.

frequency descriptors

9 BCUTw-1l
5 bpol
4 McGowan Volume
3 VPC-6, maxHCsats, fragC, VPC-4, SP-7, WPATH
2 ATSp1, SPC-6, ATSp3, SHBa, Kier2
1 gmin, nHBAcc, WPOL, SP-4, MW, VP-1, VPC-5, Kier1, SP-1,

MLFER BO, VP-2, apol

The top three most frequent descriptors were BCUTw-1l, bpol, and McGowan volume.

The descriptor, BCUTw-1l, is a type of BCUT-values that encode both connectivity informa-

tion and atomic properties related to intermolecular interaction used for describing structural

diversity [218]. The descriptor, bpol, signifies the sum of the absolute value of the difference

between atomic polarizabilities of all bonded atoms in the molecule (including implicit hydro-

gens); negative compounds had a tendency to have higher bpol values than positive compounds

in the data set. The McGowan volume is the McGowan approximation for the molecular volume

[219]; negative compounds tend to have bigger molecular volume than positive compounds.

In this list, two descriptors related to hydrogen bond acceptor (HBA) were listed and

suggests that HBA might play an important role in RM formation. They are the number of

hydrogen bond acceptors (nHBAcc) and sum of electro-topological state for (strong) hydrogen

bond acceptors (SHBa). Negative compounds had an average of 5.9±5.8 HBA while positive

compounds had an average of 2.5±2.5 HBA. The average value for SHBa in negative com-

pounds doubled that of positive compounds. In a study by Wen et. al., they have reported the

formation of hydrogen bond between m-chlorophenylpiperazine and the CYP2D6 active site

where a metabolite was formed [220]. Therefore, the descriptors related to hydrogen bond may

have surfaced because the interaction is important for binding with the metabolizing sites.

The full set of training compounds was classified by the final model from Section 8.5.4.
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From the list of correct predictions, two antiepileptics which looked similar were selected and

discussed here. Table 8.6 shows the differences in bpol, volume, nHBAcc and SHBa values

between the two antiepileptics. The negative compound, pregabalin, had higher values for bpol,

nHBAcc, SHBa and volume. The differences in the values concur with the trends discussed

above to a certain extent. Nevertheless, these trends are generalizations only. For example, etho-

suximide has smaller bpol and volume (positive characteristics) compared to valproic acid, but

it was still correctly classified as a negative compound. On the other hand, vigabatrin has larger

nHBAcc and SHBa values (negative characteristics) than valproic acid, but it was classified as

a positive. Thus, the features should not be applied candidly for mechanistic interpretation as

other factors might be involved.

TABLE 8.6: Comparison of selected descriptor values for four antiepileptics.

compound actual class prediction bpol nHBAcc SHBa McGowan volume
pregabalin negative negative 18.8 3 24.2 1.4
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8.6 Conclusion

The T0Al0F1 ensemble method has shown to produce stable results as observed in the five col-

lections of training and external validation. It was found that ensemble with majority vote was

robust. Ensemble had improved the average performance of its constituent classifiers. In addi-

tion, it outperforms the best single classifier among its constituent models in precision and MCC

values. Nonetheless, the ensemble method had varying effects on model sensitivity and speci-

ficity with greatest increase at 13.6% and greatest decrease at 1.7%. On average, the ensemble

model gave improvements of SEN=5.1%, SPE=0.6%, PRE=3.6%, and MCC=0.052 when com-

pared with the best single models in the five collections. The variance in the external validation

MCC achieved by the top 10 ensemble models was lower than that of top 10 base classifiers.

Hence, the ensemble is useful to reduce the risk of selecting the wrong single classifier, as dif-

ferent performance measures used for sorting will influence the ranking of the base classifiers.

Although the sorting performance measure (AUCpes, MCC or GMEAN) affects the ranking of

individual classifiers, it was shown that they do not influence the outcome of ensemble mod-

els significantly. Hence, all performance measures were adequate in selecting the better base

classifiers early. A general decreasing trend for ensemble performance was observed when the

effects of the quality of constituent models on ensemble models were examined. Note that the

ensemble model produced from top ranked base classifiers do not always perform the best. In

addition, it was observed that ensemble models made of lower ranked base classifiers were able

to give acceptable performance. Hence, besides top ranked models, a greater number of base

classifiers can be included into an ensemble.
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Chapter 9

Ensemble of Algorithms and Features

9.1 Summary of Study

Drug-induced liver injury (DILI), although infrequent, is an important safety concern that can

lead to fatality in patients and failure in drug developments. In this study, we have used an

ensemble of mixed learning algorithms and mixed features, T0AlmF1, for the development of

a model to predict hepatic effects. This robust method is based on the premise that no single

learning algorithm is optimum for all modelling problems. An ensemble model of 617 base

classifiers was built from a diverse set of 1087 compounds. The ensemble model was validated

internally with 5-fold cross-validation and 25 rounds of y-randomization. In the external vali-

dation of 120 compounds, the ensemble model had achieved an accuracy of 75.0%, sensitivity

of 81.9% and specificity of 64.6%. The model was also able to identify 22 of 23 withdrawn

drugs or drugs with black box warning against hepatotoxicity. Dronedarone which is associated

with severe liver injuries announced in a recent FDA drug safety communication, was predicted

as hepatotoxic by the ensemble model. It was found that the ensemble model was capable of

classifying positive compounds (with hepatic effects) well, but less so on negatives compounds

when they were structurally similar. The ensemble model built in this study is made available

for public use.

9.2 Introduction to DILI

The liver is highly susceptible to the insults of drugs and chemicals as it has an important

role in metabolizing xenobiotics. It was estimated that around 5% to 10% of adverse drug
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reactions resulted in liver injuries [221]. The degree of drug-induced liver injuries (DILI) can

vary from damage that is mild (transient elevation of liver enzymes), to severe injuries such as

liver cirrhosis and fulminant hepatic failure. Approximately 50% of fulminant hepatic failure

was caused by adverse reaction of ingested medicaments, and the rate of mortality or liver

transplantation for these patients was estimated at 9.2%. Considering the morbid consequences

of DILI, it is unsurprising that liver injury is one of the drug safety aspects that can prevent

the registration of drugs, or results in the withdrawal of marketed drugs such as Troglitazone,

Bromfenac and Ticrynafen.

The occurrence of hepatotoxicity is a result of multiple factors. The drug might be inher-

ently hepatotoxic or its metabolite is reactive causing undesirable consequences in the human

body [222]. Moreover the level of exposure, environmental factors, and genetic factors may

play a role in hepatotoxicity [223]. The multitude of factors may confound human judgement

and require expert interpretation in hepatotoxicity prediction. Consequently, the prediction of

hepatotoxicity in the preclinical stages is often difficult [224]. Although automated prediction

tools are very much needed in drug development, the accuracy of many currently available in

silico methods, for example global models for prediction of diverse compounds, are relatively

poor [21, 225]. This is possibly caused by the lack of toxicity data and the difficulty in building

a predictive model for an effect which has many underlying mechanisms and factors [20, 226].

Preclinical tools such as, DEREK, METEOR [207], and MetabolExpert [208], can pre-

dict metabolism or reactive metabolite formation. These tools can be used to sieve out potential

toxicant early, however, they may sometimes give high false positive or false negative rates in

their predictions [227]. Efforts to improve the prediction performance have been attempted.

Currently, hepatotoxicity can be predicted by a variety of cell-based (in vitro) systems [13], bio-

chemical pathway kinetics [228], or through the use of in silico models of in vitro measurements

such as gene profiling [229, 230] and metabonomics [231]. These methods were made possi-

ble by the many causative aspects in hepatotoxicity, such as the molecular structure, genetics,

metabonomics, and environmental factors which may be explored for their predictive value.

A number of pure in silico hepatotoxicity prediction methods had been reported. These

predictive models were generated from a variety of data sets, targeting different endpoints re-

lated to hepatotoxicity and modelled with different algorithms and methodologies [35, 169, 224,

232–235]. Two of these hepatotoxicity-related studies [169, 235], reported the use of consensus

of optimized support vector machine (SVM) or k-nearest neighbour (kNN) models trained from
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mixed instances and mixed features, T1Al0F1. Here, we report an alternative ensemble method

which involves the ensemble of models of mixed molecular descriptors and mixed learning al-

gorithms, T0AlmF1.

In this study, we have used a few learning algorithms on the basis that no sole learning al-

gorithm can best model a variety of problems [63]. The method uses a fixed number of training

data on the basis that a model should learn from as many sample as possible to exploit all avail-

able information. There were 8 other QSAR studies on ensemble of mixed features and mixed

algorithms that used training sets of size 42–816 compounds [192, 236–242]. The application of

ensemble method had improved the final performances in a majority of these studies, however,

not always when compared to the best performing individual model [238, 241]. Nevertheless,

the ensemble of a few base classifiers was preferred as it is probably more robust than using a

single classifier. The single classifier may have been selected by chance and not representative

of the complete solution space. To the best of our knowledge, this study is the first hepato-

toxicological study that applied the proposed ensemble method, known as T0AlmF1 ensemble

from hereafter, to a medium-large data size (1087 training compounds) validated with at least

120 compounds. We had used a range-based applicability domain on the ensemble method in

this study. The model built from diverse compounds was validated through internal validation,

y-randomization, and a few external validation sets.

9.3 Materials and Methods

9.3.1 Training Set

The U.S. FDA Orange Book [213] was used to obtain a list of available drugs in the market.

These drugs were checked for adverse hepatic effects using the Micromedex® Healthcare Series

[212] which has reports on adverse reactions in each drug’s monograph. In this study, adverse

hepatic effects were grouped into different levels according to the severity:

1. level 0 without hepatic effects,

2. level 1 transient and asymptomatic liver function abnormalities,

3. level 2 liver function abnormalities, hyperbilirubinaemia,

4. level 3 hepatitis, jaundice, cholestasis,

5. level 4 fulminant hepatitis, liver failure, and

6. level 5 fatality
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When any of these effects was associated with a drug, even with one case report of transient liver

function abnormalities, the drug was labelled as “positive”, i.e., with adverse hepatic effects in

our data set. It is to note that we had taken an extremely reserved approach in the labelling, so

that any drug with the potential to cause any adverse liver effects was flagged as “positive”. If a

drug was not associated with any adverse hepatic effects, it was labelled as “negative”. Besides

the list of drugs from the FDA Orange book, other pharmaceutical and non-pharmaceutical com-

pounds were added into the data set by searches using keywords like hepatic effect, hepatitis,

jaundice in Micromedex. The Merck Index [243] and the book, Drug-Induced Liver Disease

[244], were used as sources for more compounds.

In total, 1685 (unprocessed) compounds were collected. Compounds with unclear hep-

atic effects reports, duplicates, combination products, inorganic compounds, compounds with

molecular weight of greater than 5000 were removed because molecular descriptor calculation

does not handle them well. A total of 1274 descriptor-calculable compounds were available for

the subsequent analysis and modelling processes (compound information submitted for publi-

cation). Three independent external validation sets, with a total of 187 compounds, were drawn

out from the 1274 collected compounds as shown in Figure 9.1. The remaining 1087 com-

pounds (654 positives and 433 negatives) were used for model building. The 2D structures

of all collected compounds were downloaded from PubChem [214] or drawn using ChemDraw

[141]. Pipeline Pilot Student Edition [215] was then used to standardize the structures by adding

hydrogens and removing salts, while the 3D coordinates were generated by using Corina [142].

9.3.2 Validation Sets

The first validation set, valBLACK, contained 47 compounds. The positive compounds consisted

of 23 drugs withdrawn from the market or those with black box warning for hepatotoxicity [245].

This is to validate the model’s ability to predict “severely” toxic compounds. A comparable

number of negative compounds were added to this data set to enable the calculation of precision

for the positive (toxic) class, i.e., the correctness of classifications predicted as positives. These

24 nontoxic compounds were obtained through the process as shown in Figure 9.1. [224]

have reported 152 validation compounds that have no evidence for hepatotoxicity in humans

and animals. This list was further reduced by checking for compounds that were duplicated in

our collected data which were also not associated with hepatotoxicity. From this refined set,

Kennard-Stone sampling was applied to select training compounds that gave the balance of 24
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FIGURE 9.1: The number of compounds in each data set. The compounds set aside for external valida-
tion were never used during the modelling process.

nontoxic compounds which were added to valBLACK for validation.

In a recent FDA drug safety communication [246], the heart medication dronedarone

was associated with rare cases of severe liver injuries including two cases of acute liver failure.

Dronedarone was approved in July 2009 in the United States by the FDA. The announcement

came at the end of the experiments; hence, this compound was not present in our training set

and was tested by the ensemble model.

The second validation set, valPAIR, consisted of 20 compounds from 10 pairs of struc-

turally similar compounds but of opposing toxicity status. For example, doxorubicin and epiru-

bicin which are hepatotoxic and not hepatotoxic respectively. The 20 compounds in Table 9.5

are the top ten most similar compound pairs measured by 3-nearest neighbour in terms of Man-

hattan distance.

The third validation set, valRANDOM, consisted of 120 compounds obtained through

stratified sampling of the data set. Stratified sampling was used to keep the original ratio of

positive to negative compounds in the training set; the resultant valRANDOM has 48 negative
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compounds and 72 positive compounds.

9.3.3 Molecular Descriptors

The program, PaDEL-Descriptor version 2.0, was used in the calculation of molecular descrip-

tors and Klekota-Roth substructures in this study. The list of molecular descriptors is available

in the PaDEL-Descriptor website [216], a total of 776 descriptors were calculated.

9.3.4 Performance Measures

Some of the performance measures described in Section 2.6 were calculated for this study. They

are TP, TN, FP, FN, SEN, SPE, ACC, MCC, and GMEAN. The precision for positive prediction,

PRE, is the ratio of actual hepatotoxic compounds to all compounds predicted as toxic. For this

study, the pessimistic AUC (AUCpes) were used during the model optimization process.

9.3.5 Modelling

All models were built and optimized using RapidMiner [83]. The model building process is

illustrated in Figure 9.2. The gist of the process is to generate many base classifiers to form an

ensemble model when they satisfy a cutoff criterion. The full data set of 1087 compounds was

used for every step and the main steps are:

1. Generate different training data sets which had different subsets of molecular descriptors,

i.e., vary(MDes) as shown in Figure 9.2.

2. Produce different kNN models for each of the training data sets generated in step 1 with

different combination of k, distance measures and normalization method.

3. Repeat step 2 with SVM models of different gamma optimized by the Brent’s minimiza-

tion algorithm.

4. Repeat step 2 with naı̈ve Bayes models.

5. Select models produced from step 2, 3, and 4 which fulfil the criteria of AUC≥0.6,

SEN≥0.6, and SPE≥0.6.

6. From the pool of models produced from step 5, eliminate models with duplicated molec-

ular descriptors set or those with only one molecular descriptor. Subsequently, apply the

ensemble method, stacking with naı̈ve Bayes, on the selected base classifiers to give an

ensemble model.

90



9.3. MATERIALS AND METHODS
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performance

ensemble model
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Table 9.2

FIGURE 9.2: General flow of the modelling process. Many SVM, kNN or naı̈ve Bayes models were
generated from the same number of compounds but with differing molecular descriptor
set.

To obtain a large number of training sets with vary(MDes) for step 1, two methods were

used in this study. The first method to generate vary(MDes) was to take the full set of molecular

descriptors and weigh each molecular descriptor with respect to the class label. Molecular

descriptors that have no influence on the class label will receive a weight of 0, while the most

influential descriptor will receive a weight of 1. The remaining descriptors will receive weights

between 0 and 1 depending on their influence on the class label. In this study, the symmetrical

uncertainty method [247] was used to weigh the descriptors. Subsequently, six training sets

with vary(MDes) were obtained by varying the cutoff weights from ≥0 to ≥0.5 at an increment
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of 0.1. Each of these six sets of 1087 compounds with vary(MDes) underwent the modelling

process in step 2, 3, and 4, where SVM, kNN and NB models were built. This process is similar

to the base classifier generation method in the previous chapter, Chapter 8.

To make each training set of vary(MDes) more distinct, the second method is to catego-

rize the full set of molecular descriptors into 13 groups according to their descriptor types. A

random number of descriptors within each group was selected and subsequently passed on to the

weighting procedure (as in the first method) before further refinement through forward selection

with NB. Therefore, the number of training sets with vary(MDes) was the product of the number

of descriptor groups used, the number of times of random sampling of descriptors and the num-

ber of cutoff in the weighting procedure. Although many combinations were possible, we had

restricted the combination to 8 descriptor groups, 10 rounds of random sampling and 6 cutoff

weights for this study. Each of these 480 sets of 1087 compounds with vary(MDes) underwent

step 2, 3, and 4 where a pool of models were built. The 8 descriptor groups were 2D miscel-

laneous descriptors (2DMisc), Chi descriptors, counts descriptors, charged partial surface area

descriptors (CPSA), count of atom-type electrotopological state descriptors (EStateCount), sum

of atom-type electrotopological state descriptors (EStateSum), molecular distance edge descrip-

tors (MDE) and molecular linear free energy relation descriptors (MLFER) descriptors (please

refer to Table 9.1 for the list of descriptors).

k-Nearest Neighbour. For this work, the kNN models were obtained by optimizing simulta-

neously: the data normalization method, the number of nearest neighbour, k, and the distance

measures, for example cosine similarity, Euclidean, or Manhattan distance.

Support Vector Machine For the SVM model in this study, a margin of C = 105 was used

and Brent’s minimization algorithm [248] was used to find the optimal gamma of RBF kernel

in RapidMiner.

The applicability domain (AD) of the ensemble model was calculated based on the range

of the individual features. The minimum and maximum values of each molecular descriptor in

consideration of all the compounds in the original training set were used.

9.3.6 Base Classifiers Selection

From the pool of individual models selected at step 5, the number of these models was further

reduced at step 6 to retain unique models. Subsequently, these shortlisted models were sam-

pled at an increasing number to be compiled as constituent models for the ensemble model.
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TABLE 9.1: List of molecular descriptors used in this study.

descriptor group N descriptors
2DMisc 38 ALogP, ALogp2, AMR, apol, BCUTw-1l, BCUTw-1h, BCUTc-1l, BCUTc-1h, BCUTp-1l,

BCUTp-1h, bpol, C1SP1, C2SP1, C1SP2, C2SP2, C3SP2, C1SP3, C2SP3, C3SP3, C4SP3,
ECCEN, fragC, MLogP, McGowan Volume, PetitjeanNumber, LipinskiFailures, TopoPSA,
VAdjMat, MW, WTPT-1, WTPT-2, WTPT-3, WTPT-4, WTPT-5, WPATH, WPOL, XLogP,
Zagreb

Chi 43 SCH-3, SCH-4, SCH-5, SCH-6, SCH-7, VCH-3, VCH-4, VCH-5, VCH-6, VCH-7, SC-3,
SC-4, SC-5, SC-6, VC-3, VC-4, VC-5, VC-6, SPC-4, SPC-5, SPC-6, VPC-4, VPC-5, VPC-
6, SP-0, SP-1, SP-2, SP-3, SP-4, SP-5, SP-6, SP-7, VP-0, VP-1, VP-2, VP-3, VP-4, VP-5,
VP-6, VP-7, Kier1, Kier2, Kier3

Counts 60 naAromAtom, nAromBond, nAtom, nHeavyAtom, nH, nB, nC, nN, nO, nS, nP, nF, nCl,
nBr, nI, nBonds, nBondsS, nBondsD, nBondsT, nBondsQ, nHBAcc, nHBDon, nAtomLC,
nAtomP, nAtomLAC, nRing, n3Ring, n4Ring, n5Ring, n6Ring, n7Ring, n8Ring, n9Ring,
n10Ring, n11Ring, n12Ring, nG12Ring, nFRing, nF4Ring, nF5Ring, nF6Ring, nF7Ring,
nF8Ring, nF9Ring, nF10Ring, nF11Ring, nF12Ring, nFG12Ring, nTRing, nT4Ring,
nT5Ring, nT6Ring, nT7Ring, nT8Ring, nT9Ring, nT10Ring, nT11Ring, nT12Ring,
nTG12Ring, nRotB

CPSA 29 PPSA-1, PPSA-2, PPSA-3, PNSA-1, PNSA-2, PNSA-3, DPSA-1, DPSA-2, DPSA-3,
FPSA-1, FPSA-2, FPSA-3, FNSA-1, FNSA-2, FNSA-3, WPSA-1, WPSA-2, WPSA-3,
WNSA-1, WNSA-2, WNSA-3, RPCG, RNCG, RPCS, RNCS, THSA, TPSA, RHSA, RPSA

EStateCount 125 nHBd, nwHBd, nHBa, nwHBa, nHBint2, nHBint3, nHBint4, nHBint5, nHBint6, nHBint7,
nHBint8, nHBint9, nHBint10, nHsOH, nHdNH, nHsSH, nHsNH2, nHssNH, nHaaNH,
nHsNH3p, nHssNH2p, nHsssNHp, nHtCH, nHdCH2, nHdsCH, nHaaCH, nHCHnX, nHC-
sats, nHCsatu, nHAvin, nHother, nHmisc, nsLi, nssBe, nssssBem, nsBH2, nssBH, nsssB,
nssssBm, nsCH3, ndCH2, nssCH2, ntCH, ndsCH, naaCH, nsssCH, nddC, ntsC, ndssC,
naasC, naaaC, nssssC, nsNH3p, nsNH2, nssNH2p, ndNH, nssNH, naaNH, ntN, nsssNHp,
ndsN, naaN, nsssN, nddsN, naasN, nssssNp, nsOH, ndO, nssO, naaO, naOm, nsOm, nsF,
nsSiH3, nssSiH2, nsssSiH, nssssSi, nsPH2, nssPH, nsssP, ndsssP, nddsP, nsssssP, nsSH,
ndS, nssS, naaS, ndssS, nddssS, nssssssS, nSm, nsCl, nsGeH3, nssGeH2, nsssGeH, nssssGe,
nsAsH2, nssAsH, nsssAs, ndsssAs, nddsAs, nsssssAs, nsSeH, ndSe, nssSe, naaSe, ndssSe,
nssssssSe, nddssSe, nsBr, nsSnH3, nssSnH2, nsssSnH, nssssSn, nsI, nsPbH3, nssPbH2,
nsssPbH, nssssPb, sumI, hmax, gmax, hmin, gmin, LipoaffinityIndex

EStateSum 125 SHBd, SwHBd, SHBa, SwHBa, SHBint2, SHBint3, SHBint4, SHBint5, SHBint6, SHBint7,
SHBint8, SHBint9, SHBint10, SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHaaNH,
SHsNH3p, SHssNH2p, SHsssNHp, SHtCH, SHdCH2, SHdsCH, SHaaCH, SHCHnX, SHC-
sats, SHCsatu, SHAvin, SHother, SHmisc, SsLi, SssBe, SssssBem, SsBH2, SssBH, SsssB,
SssssBm, SsCH3, SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC, StsC, SdssC,
SaasC, SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp,
SdsN, SaaN, SsssN, SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SaOm, SsOm,
SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, SsPH2, SssPH, SsssP, SdsssP, SddsP, SsssssP,
SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SSm, SsCl, SsGeH3, SssGeH2, Ssss-
GeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SddsAs, SsssssAs, SsSeH, SdSe, SssSe,
SaaSe, SdssSe, SssssssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, SsI,
SsPbH3, SssPbH2, SsssPbH, SssssPb, sumI, hmax, gmax, hmin, gmin, LipoaffinityIndex

MDE 19 MDEC-11, MDEC-12, MDEC-13, MDEC-14, MDEC-22, MDEC-23, MDEC-24, MDEC-
33, MDEC-34, MDEC-44, MDEO-11, MDEO-12, MDEO-22, MDEN-11, MDEN-12,
MDEN-13, MDEN-22, MDEN-23, MDEN-33

MLFER 6 MLFER A, MLFER BH, MLFER BO, MLFER S, MLFER E, MLFER L

*N : no. of descriptors

These constituent models are also known as the base classifiers set (nBase = number of base

classifiers). For example, starting with a random sample of 5 base models, an ensemble was

built.

The ensemble size was increased by 4 at each step until all available base classifiers

(largest odd number) were included into an ensemble. Random sampling of models was used

because of its efficiency and ease of use. In addition, the random method had shown to be effec-

tive in Random Forest and Random Decision Trees [104, 249]. This process was repeated for

50 times, i.e., there were 50 ensemble models built from each combination of 5 base classifiers,

9 base classifiers, etc. Due to the lack of an extra testing set, the averages of the 50 training set

performance values were obtained for comparison. The number of base classifiers where the
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TABLE 9.2: Performance of the selected ensemble model (made of 617 base classifiers) in training and
various external validation sets.

validation N ACC (%) SEN (%) SPE (%) MCC GMEAN (%)

without applicability domain
training 1087 87.6 91.9 81.1 0.739 86.3
valRANDOM 120 75 81.9 64.6 0.473 72.7
valBLACK 47 80.9 95.7 66.7 0.648 79.9
valPAIR 20 55 80 30 0.115 49

within applicability domain
training 1087 87.6 91.9 81.1 0.739 86.3
valRANDOM 101 76.2 84.5 65.1 0.509 74.2
valBLACK 44 79.5 95 66.7 0.631 79.6
valPAIR 17 52.9 75 33.3 0.091 50

*N : no. of compounds

average AUCpes starts to plateau, i.e., no increase in average AUCpes for five consecutive com-

binations, was taken as the minimum number. Subsequently, only one ensemble model (highest

AUCpes) among the 50 replicates was selected as the final model. In this study, stacking with

NB was used because it is fast and minimal optimization is required.

9.3.7 Y-randomization

Y-randomization was carried out to establish the statistical significance and robustness of the

ensemble model [250]. The performance of the y-scrambled models should be significantly

lower than the models generated from unaltered data. Therefore, it was expected that the number

of base classifiers fulfilling the cutoff criteria to form an ensemble model will be significantly

reduced. In this study, we have adopted the procedure where the y (with or without adverse

hepatic effects) of the data is randomly permutated, while the molecular descriptors were kept

unaltered. The y-scrambled data set underwent the same model building process, i.e., generation

of a pool of models and selection of models with AUC≥0.6, SEN≥0.6, and SPE≥0.6 for the

final ensemble model to be validated with the 120 compounds in external validation. The y-

randomization was repeated for 25 times as per recommended by Rücker et al. [250] in a y-

randomization study.
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FIGURE 9.3: Graph of training set performances against the number of base classifiers (nBase) in en-
semble models. SEN, SPE or GMEAN of 0.8 is equivalent to 80%.

9.4 Results

9.4.1 Hepatic Effects Prediction

With 1087 compounds, 17012 models (14580 kNN, 1946 SVM and 486 NB) were generated and

examined. Only 794 unique models achieved the cutoff of AUC≥0.6, SEN≥0.6, and SPE≥0.6

in 5-fold cross-validation. These models were included in the pool of base classifiers for the

building of ensemble models. A total of 198 ensemble models were produced. The AUCpes,

MCC, and GMEAN calculated using the training set, were determined for these ensemble mod-

els. This process was repeated for 50 times, hence, the average performance for each combina-

tion of base classifiers was obtained and shown in Figure 9.3. The minimum number of base

classifiers needed before the average AUCpes starts to plateau was 617. Among the ensemble

with 617 base classifiers, the ensemble in replicate 28 had achieved the best AUCpes value, and

its performance is shown in Table 9.2. In set valBLACK, the ensemble model achieved an ACC

of 80.9%, MCC of 0.648 and precision for positive classification of 73.3%. Dronedarone was

predicted as hepatotoxic. For valPAIR, the ensemble model achieved an ACC of 55% and MCC

of 0.115. The detailed performance of the ensemble model on valPAIR is shown in Table 9.5.

The average performance of the 617 base classifiers shortlisted for the ensemble model

were examined and reported in Table 9.3. The 617 models were made out of 408 kNN (2.8%

of 14580 models), 195 SVM (10% of 1946 models), and 14 NB (2.9% of 486 models) base

classifiers. The detailed average performance for the three validation sets were included.
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TABLE 9.3: 5-fold cross-validation and external validation performance (average ± standard deviation)
of all 617 base classifiers used in the final ensemble model.

validation Na ACC (%) SEN (%) SPE (%) MCC GMEAN (%)

5-fold cross-validation 1087 63.8±0.1 64.1±0.1 63.3±0.1 0.269±0.001 63.7±0.1
valRANDOM 120 62.2±0.2 62.4±0.3 61.8±0.3 0.240±0.004 61.8±0.2
valBLACK 47 69.6±0.3 67.9±0.3 71.1±0.5 0.396±0.006 68.9±0.3
valPAIR 20 50.8±0.2 64.5±0.6 37.2±0.5 0.021±0.004b 47.2±0.3

aN : no. of compounds
b the MCC averages were calculated from 615 base classifiers; 2 cases where TN+FN=0 were excluded.

The best performing model among the 617 base classifiers in the ensemble was a 9-NN

model in replicate number 28. It had achieved an accuracy of 68.1%, sensitivity of 66.8%,

specificity of 70.0%, MCC of 0.361 and GMEAN of 68.4% in 5-fold cross-validation. The

detailed performance for the three validation sets, valRANDOM, valBLACK, and valPAIR, are

included in Table 9.4. From the 617 base models, we had examined the top 10 models based on

their AUCpes during 5-fold cross-validation and valRANDOM. This is to check if the top scorers

in training also scores well in valRANDOM. It was found that only 3 of the top ten models

based on cross-validation performance appeared in the top 10 of valRANDOM performance.

The best valRANDOM performance was not achieved by any of the top 10 scorers in cross-

validation. Furthermore, the best model, 9-NN in Table 9.4, produced an AUCpes value at rank

8 of valRANDOM performances.

TABLE 9.4: 5-fold cross-validation and external validation results of the top base classifier (kNN, k=9)
among the 617 models selected for the ensemble.

validation N ACC (%) SEN (%) SPE (%) MCC GMEAN (%)

5-fold cross-validation 1087 68.1 66.8 70.0 0.361 68.4
valRANDOM 120 70.8 68.1 75.0 0.422 71.4
valBLACK 47 83.0 82.6 83.3 0.659 83.0
valPAIR 20 50.0 70.0 30.0 0 45.8

*N : no. of compounds
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9.4.2 Applicability Domain

The number of compounds that exceeded the range of one or more descriptors in the ex-

ternal validation sets were 19 (14 positives and 5 negatives), 3 (3 positives), and 3 (2 posi-

tives and 1 negative), in valRANDOM, valBLACK and valPAIR respectively. The application

of AD on the validation sets did not change the overall prediction significantly. Small im-

provement on the sensitivity or specificity value was observed for valRANDOM in Table 9.2.

The prediction accuracy for the compounds that fall outside of the domain were ACC=68.4%

(SEN=71.4%, SPE=60%) for valRANDOM, ACC=100% (SEN=100%, SPE=N.A.) for val-

BLACK, and ACC=66.7% (SEN=100%, SPE=0%) for valPAIR.

9.4.3 Y-randomization

Twenty-five rounds of y-randomization were conducted on the training set with 1087 com-

pounds. On average, approximately 16650 base classifiers were built for each round of y-

randomization. The mean±standard deviation of the average AUC from 5-fold cross-validation

of the 25 rounds of y-randomization was 0.374±0.009, 51.7%±0.8% for sensitivity and

48.9%±0.8% for specificity. None of the base models generated in the 25 rounds of y-

randomization satisfy the cutoff criteria of AUC≥0.6, SEN≥0.6, and SPE≥0.6 to form an en-

semble model. Hence, there were no prediction results for all external validation sets.

9.4.4 Substructures with Hepatic Effects Potential

The Klekota-Roth substructures were calculated using the PaDEL-Descriptor program for the

1274 compounds in this study. Substructures that were unique to the positive compounds and

have occurred in more than 5 compounds are reported in Figure 9.4. A few of the substructure

in Figure 9.4 coincide with the drug design guideline on structural alerts for bioactivation which

might lead to toxicity, i.e., halogenated aromatics and arylacetic fragments [217]. Note that the

presence of one or more of these substructures may predispose a compound to cause hepatotox-

icity. But, the presence of these substructures do not confirm the hepatic effects of compounds,

since multiple factors are involved in a toxic event.
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31 

Chart 2. SMARTS substructures (captioned with PaDEL-Descriptor identification) absent in 

negative set but present in more than 5 instances of positive compounds. 

    

KR21 KR662 KR1124 KR1165 

    

KR1575 KR3084 KR3540 KR4003 

    

KR4018 KR4192 KR4232 KR4491 

  

KR4556 KR4689 

*[!#1] is any atom not with atomic number of 1 

 

FIGURE 9.4: SMARTS substructures (captioned with PaDEL-Descriptor identification) absent in nega-
tive set but present in more than 5 instances of positive compounds.

9.4.5 Hepatotoxicity Prediction Program

A program that uses the ensemble model (nBase=617) trained from 1087 compounds for pre-

diction of hepatotoxicity is available for download. The total set of compounds was not used

for training as testing sets are needed to validate the best performing ensemble model, hence

ensuring its usability.

9.5 Discussions

9.5.1 Level 1 Compounds

Compounds that cause transient and asymptomatic liver function abnormalities, labelled level

1, were included into the training set as toxic compounds (positive class). There were 56 of

these compounds in the training set. This was carried out to minimize the risk of false nega-

tives. Hence, producing a “pessimistic” model which learned that level 1 compounds are toxic.
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This is so that an unknown similar compound will have a higher chance of being predicted as

positive rather than negative. These predictions will then alert the user of the toxic potential as

it is probably more detrimental to overlook a potential toxic compound and allowed it to be fur-

ther developed into medicament. Nevertheless, we have applied the same modelling processes

onto a training set without these 56 compounds to check the effects of their removal. Only 48

base classifiers fulfilled the cutoff criteria of AUC≥0.6, SEN≥0.6, and SPE≥0.6. Hence, an

ensemble (named minus-1) was built on all 48 base models and applied on the validation sets.

From the results (not shown) of the base classifiers and three validation set, the removal of these

level 1 compounds was detrimental.

9.5.2 Applicability Domain

For this study where a potentially large amount of base classifiers were used in the final ensemble

model, it is not trivial to defined the AD from the training set of each base classifiers that

contain a different set of descriptors. Therefore, we have adopted to calculate the ranges from

all available descriptors, prior to feature selection, to define the AD in this study.

One would normally expect the prediction of compounds to improve with the application

of AD, however, from Table 9.2, the overall accuracy and sensitivity did not change significantly

after the application of AD. In some cases, the performance decreased although a small improve-

ment can be seen in valRANDOM for the compounds within AD. Moreover, the accuracies of

the prediction of compounds out of AD were 68.4%, 100%, and 66.7% for valRANDOM, val-

BLACK, and valPAIR respectively. This shows that the prediction performance was still good

even for compounds outside of AD. Consequently, the result suggests that the ensemble model

in this study is robust. Hence, for compounds that fall outside of AD, their predictions should

not be discarded entirely. But it is prudent to keep in mind that not all predictions for compounds

within the domain are 100% reliable; it is very difficult to separate highly similar compounds

although they have differing activities as encountered in valPAIR of this study and the study by

Rodgers et al. [169].

9.5.3 Model Validation

There were three validation sets prepared for this study. The first validation set, valRANDOM,

was randomly selected from the training set by keeping the ratio of positive compounds to

negative compounds constant. This set was probably the most reliable validation because it
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is expected to be the most representative of the training set since the samples were randomly

selected. For valBLACK, this validation task was expected to be easier than valRANDOM be-

cause the compounds were probably well separated by the nature that one class consisted of

withdrawn drugs, while the other was non-toxic. For valPAIR, the validation task was expected

to be much tougher than valRANDOM because they were made of highly similar pairs. More-

over, the majority of the base classifiers in the ensemble were made of kNN models which are

dependent on similarity of compounds in their predictions; therefore, the performance of the

ensemble was expected to be less than that of valRANDOM and valBLACK. In summary, the

performance of valRANDOM should be the most reflective of the ability of the ensemble model,

whereas valBLACK and valPAIR are discussed below.

For the external validation valBLACK on withdrawn drugs or those with black box warn-

ing, the T0AlmF1 ensemble successfully identified 22 out of the 23 toxic drugs (95.7%) and

16 out of 24 nontoxic drugs (66.7%), with a precision for positive predictions of 73.3%. This

shows that approximately three-quarters of positive predictions made by the ensemble model

were truly toxic compounds. It is desirable to have a model with good precision in predict-

ing toxic compounds so that compounds with toxic potential can be identified without having

too many false alarms (false positives). In valBLACK, the only toxic compound that was not

identified is naltrexone. It is interesting to note that the black box warning on naltrexone was

recommended to be removed. This is because the benefit of the drug outweighs the risk in the

treatment of opiate dependence and alcoholism, moreover, it was reported that incidences of

hepatotoxicity caused by this drug at the clinical dose was low [251, 252]. Nevertheless, we

would again stress that it is important not to overlook toxic compound, although it was not ideal

to have high false positive rate as in the case of valPAIR, of which potentially useful compounds

might be excluded from further development.

In the external validation valPAIR, of similar pairs but of opposing activity, 80% of the

toxic compounds and 30% of the nontoxic compounds were identified correctly. For the 8 pairs

that were within AD, only 1 pair was separated correctly. The inability of the model to separate

the nontoxic compounds was probably due to the similarity of the actual negative compounds to

positive training compounds, and the inherent difficulty to separate highly similar compounds.

It was found that 6 of the negatives in the validation set were most similar to positive train-

ing compounds and all 6 of them were predicted as positives; 4 were most similar to negative

training compounds and 3 were predicted as negatives. The outcome was expected because the

103



9.5. DISCUSSIONS

dogma of QSAR expects structurally similar compounds to have similar activities. In addition,

very similar compounds like stereoisomers might overshadow each other and introduce noise

into the training data. If molecular descriptors that can distinguish these compounds were lack-

ing, it would be more difficult for the model to separate them. In addition, forceful separation

of these compounds may produce an overfitted model because of high misclassification penalty

to develop the model. Therefore, a model is expected to be able to identify negatives better only

when there is large enough samples of negative compounds to learn from.

The challenge of distinguishing structurally similar compounds was also encountered in

the study by Rodgers et al. [169]. They have postulated that chemical mechanism alone could

be insufficient to account for the toxic potential which has resulted in the lack of performance

of their models in classifying structurally similar compounds. They have proposed the use of

toxicity pathway-based biological data with chemical descriptors to improve prediction perfor-

mance and coverage of model. An example is to combine in vitro or in vivo information with

the structural features to generate quantitative structure-activity-activity relationship (QSAAR)

models. This approach had shown improvements in toxicity predictions with the addition of tox-

icogenomics and other biological or toxicity information [253–255]. It may require extra cost

and experimental effort to obtain these data. However, if the information is readily available, it

should be added in the modelling process to check if the information improves the accuracy of

prediction. Nevertheless, the contribution of these information to distinguish structurally similar

pairs may be limited. This is because, it might be difficult to obtain the relevant data. This is tak-

ing into consideration the features that have contributed to the similarity, e.g., enantiomers; most

of the products are probably available as racemic mixtures (mixture of enantiomers). Therefore,

it may be difficult to isolate the specific isomers for biological testing. Hence, a potential lim-

itation of this method is that the experimental result is not easily attainable. Since additional

information would be required to distinguish the similar pair better. This can (also) be achieved

by exploring other classes of chemical descriptors e.g. sub-structures (fingerprints), confor-

mation and alignment freedom type descriptors (4D-QSAR) [256], and etc. Therefore, future

exploration could examine the other chemical descriptor types first, before venturing into bio-

logical data due to better accessibility.
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9.5.4 Ensemble Compared with Single Classifier

The T0AlmF1 ensemble method improves the outcome of prediction compared to the prediction

from base classifiers. The performance of the ensemble model (nBase=617) in this study was

unlikely to have occurred by chance as 25 rounds of y-randomization did not manage to produce

any ensemble model. In external validation of 120 compounds, valRANDOM, the T0AlmF1

ensemble had improved the average of the 617 base classifiers with accuracy of 75.0% from

62.2%, geometric-mean of 72.7% from 61.8%, MCC of 0.473 from 0.240, sensitivity of 81.9%

from 62.4% and specificity of 64.6% from 61.8% (Table 9.2 and Table 9.3). It was observed

that the T0AlmF1 method has a bias for positive predictions because the sensitivity was greatly

improved (from 62.4% to 81.9%).

When the external validation performance of the best (one) base classifier was examined,

the T0AlmF1 ensemble’s preference for positive prediction was more obvious; the best base

classifier achieved a sensitivity of 68.1%, specificity of 75.0%. Comparing validation results in

Table 9.2 with Table 9.4, the ensemble method had improved the sensitivity greatly (increased

10%-14%), but the specificity (decreased 0%-17%) for the three validation sets. Nevertheless,

there were no significant changes for the other performance measures where accuracy, MCC,

and geometric-mean increased on the average. In spite of the small improvements, the ensemble

model was expected to be more robust than using one single classifier. This was because, the

“best” single model may have been chosen by chance. This ”best” model did not achieved

the best performance in valRANDOM (among 617 base classifiers) although it was the top

performer from cross-validation results (page 95).

In summary, although the specificity had deteriorated with the introduction of ensemble

method, the overall value in 2 out of 3 validations (except valPAIR) were still above 50%,

which is better than random guesses (Table 9.2, page 94). The improvement of one indicator

(sensitivity) which causes the deterioration of another indicator (specificity) is not uncommon

as it is adjustable by the parameters of a model, depending on the intended use of the model.

Furthermore in this study, the preference for positive prediction is a desirable effect as it is more

detrimental to overlook a toxic compound which can cause harm when ingested and failure

of drug development. More importantly, although T0AlmF1 ensemble has a bias for positive

prediction and small improvements compared with the “best” single model, it still managed

to improve all indicators except specificity of the averages of the 617 base classifiers; greatest
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improvement at 27.8% and greatest decrease at 7.2%. This outcome agrees with the aim of

this study to explore ensemble method to produce a more robust solution for hepatotoxicity

prediction compared to a single model which may not cover the entire solution space.

9.5.5 The T0AlmF1 Ensemble Method

More than one type of learning algorithms were used in the process because no single learning

algorithm is optimum for all modelling problems as it may not represent the complete solution

space. The ensemble method is robust and semi-automated because the user do not need to

decide on the learning algorithm prior to training. Driven by the results and the training data, the

ensemble will select the required base classifiers. Users may then select the desired model from

the many ensemble models generated by the process by ranking. Referring to the breakdown

of base classifiers (nBase=617) in the result section (66.1% kNN, 31.6% SVM, 2.3% NB) and

those selected for the ensemble of training set without level one compounds, minus-1, (93.8%

kNN, 4.2% SVM, and 2.1% NB), it clearly shows that different algorithms in the base classifiers

performed differently on the different training data sets. Furthermore, only models of a certain

quality were selected to form an ensemble. Hence, the minimum performance of the ensemble

was expected to be at least as good as the base classifiers although the base classifiers were

selected by the process without direct human intervention.

9.5.6 Cutoff for Base Classifiers Selection

Various cutoffs, the stacking method, and ensemble trimming were introduced to reduce the

risk of prediction biasness. For this study, the cutoff for short-listing base classifiers was set at

AUC≥0.6, SEN≥0.6, and SPE≥0.6.

From observation, the AUC cutoff should not be too far off from the maximum achievable

AUC, although it should be low enough to include sufficient base classifiers for the ensemble

model. If not, no model will be generated like the case of 25 rounds of y-randomization. Theo-

retically, it is sufficient to use AUC as the sole determinant for the selection of base classifiers.

However, there was a large of pool of models to select from. Furthermore, it was observed that

a model may have high AUC but unbalanced sensitivity and specificity score, for example 90%

versus 10%. Besides, by random chance a large amount of unbalanced models might be selected

and the ensemble may run the risk of high false positive or high false negative. Therefore, the

cutoff for sensitivity and specificity was added to control the quality of the selected models and
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the stacking method was used for the ensemble step.

On the hypothesis that better base models could produce better ensemble model, other

cutoffs such as 0.5(AUCpes)-0.5(SEN,SPE), 0.55-0.55, or 0.61-0.61 to 0.65-0.65 were tested.

An ensemble of all base classifiers fulfilling each cutoff were generated and compared. From the

results in Table 9.6, the higher is the cutoff, the lesser is the number of base classifiers available

for ensemble. It was observed that lower cutoff gave worse performances, probably caused by

the inclusion of low quality base models in the ensemble. Furthermore, the higher number of

base models made it computationally intensive to build and to apply the ensemble method in

this study. Conversely for higher cutoff values, the performance during training is better and

the model construction was computationally more manageable. However, the corresponding

performance for external validation decreased as the cutoff values increased. This suggests that

the ensemble models with higher cutoff levels may be overfitted, or the lesser number of base

models have reduced its generalization power. A reasonable model should have AUC of at least

0.5, and since the cutoff of 0.6-0.6 and 0.61-0.61 gave similar AUCpes and GMEAN results, we

have chosen 0.6-0.6 as the cutoff for further study.
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9.5.7 Stacking and Ensemble Trimming

In the experiments comparing average consensus and stacking for this study (results not shown),

the stacked model with naı̈ve Bayes had achieved better accuracies compared to the average con-

sensus model. Unlike prediction by majority vote (average consensus), stacking was expected to

be affected less when there are many similar models. In average consensus, each base classifier

will contribute equally and the prediction is made based on the class with the most votes. In

contrast, the stacking method makes a prediction based on a (meta-)model; the predictions from

the base classifiers together with the molecular descriptors were taken as features in stacking to

build a (meta-)model for the final prediction. Hence, ensemble by stacking was expected to be

affected less by similar base classifiers, as the decision mechanism is assumed to be less naive.

In ensemble trimming, we have attempted to reduce the number of base classifiers (nBase)

in the final ensemble. First, by removing models built from duplicated descriptor set or those

built with one descriptor only. Second, by selecting the best performing ensemble built from a

random combination of base classifiers. Figure 9.3 shows that when nBase increases, all indi-

cators except sensitivity increased. The increase starts to plateau off around nBase of 500 (more

obvious in MCC), but slight improvements in specificity were still observed. This indicates

that this hepatotoxicity data set required a high nBase for its ensemble to perform acceptably.

Nonetheless, by applying the ranking of AUCpes to the training (not validation) performance,

the ensemble with 617 base classifiers were chosen as the best.

Drawbacks of the T0AlmF1 ensemble method include long computational hours and large

disk space requirement especially when kNN was used. Depending on the type of learning

algorithms employed, a huge number of models may be generated from various combinations

in the modelling parameters. For example, one may permutate the k and distance measures in

kNN or the complexity, C, and gamma (or sigma) in the kernel of SVM to generate a plethora

of base classifiers. To generate the 14580 kNN, 1946 SVM, and 486 NB base classifiers, it

took approximately 1 week, 1–2 weeks and half a week for the respective learning methods.

The total number of SVM models was significantly lower than that of kNN by reducing the

number of parameters tested. This was done to reduce the exploration as SVM takes a longer

time to build a model. Even so, SVM has the advantage of producing models of smaller file-size

than kNN; the large model size could increase time for loading and prediction by the ensemble

model. However, a possible bias for kNN models could have been introduced inadvertently
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by its overproduction and restriction on SVM. As the number of available models increases,

there is a greater chance for more kNN models to be selected into the ensemble model. This

will increase the ensemble model size and may hamper its application. Higher number of kNN

models may have also caused the average consensus method to perform poorer than stacking.

Although the detrimental effects were mitigated with the use of stacking and a cutoff to shortlist

base models, future studies should aim to produce similar number of models for each learning

method.

Another possible way to improve prediction accuracy without using ensemble method is

to build “local” models. Local models can be built by subdividing the classification of liver

injuries into, e.g., hepatocellular injury versus hepatobiliary injury. Sub-classification by cell

type injury could potentially increase the accuracy of predictions. This is because, the set of

features relevant to each mechanism can be better refined and modelled to concentrate on each

sub-classification. In turn, a more focused (“local”) model will be produced. The local model

is expected to be more competent in its prediction limited to the sub-classes in comparison to

a generalized model (in this study). However, challenges of building local model may include

lack of training data and no clear-cut distinction in the sub-classifications. That is, first, the full

data set will be divided into smaller groups potentially leading to less information content in

training. Second, some compounds may fall under multiple categories, thus, they would require

special handling. Last, usage of local models is limited to their domain of application.

In summary, although one of the major limitations was computational resources, the re-

sults driven ensemble method required minimal human intervention in its construction. Various

performance cutoffs, stacking and ensemble trimming were introduced to the ensemble to re-

duce the risk of prediction biasness. The cutoff for sensitivity and specificity was needed to

ensure the quality of the base models. The AUC cutoff should not be too far off from the max-

imum achievable AUC. NB was found to be useful as a meta-model, however, it was observed

that it still required several hundreds of base classifiers to perform optimally.

9.5.8 Other Hepatotoxicity Prediction Methods

In silico as well as in vitro methods are useful complementary testing methods to animal model

for toxicity predictions [227, 257]. The non-exhaustive list of studies on hepatotoxicity is avail-

able in Table 9.7. Note that all studies mentioned are not directly comparable due to the nature

of the modelling methods, data and validation sets, and the endpoints examined. Some of the
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9.5. DISCUSSIONS

studies did not focus on hepatotoxicity; hence, some performance indicators were not avail-

able for compilation into Table 9.7. Nevertheless, these previous studies can give an insight to

the difficulties and challenges faced for liver toxicity predictions. For clarity, the discussions

will be grouped according to the five points of the Organisation for Economic Co-operation

and Development (OECD) principles for the validation of QSAR for regulatory purposes: 1)

defined endpoints, 2) unambiguous algorithm, 3) defined domain of applicability, 4) appropri-

ate measures of goodness-of-fit, robustness and predictivity and 5) mechanistic interpretation if

possible. Note that the first three entries in Table 9.7 belonged to in vitro methods of which the

OECD principles are not applicable. The information for some in vitro methods was added for

a quick overview of their predictivities.
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9.5. DISCUSSIONS

All QSAR models in the list have fulfilled the principles of a defined endpoint and the

report of its prediction quality. From Table 9.7, studies with smaller data set (74 compounds

in Cruz-Monteagudo et al. [260] and 158 compounds in Rodgers et al. [169]) tend to have

better validation sensitivity at 75%–87.9% and 60%–87.5%. In comparison, studies with larger

data set (approximately 877 training compounds in Huang et al. [232] and approximately 425

training compounds in Fourches et al. [235]) have sensitivity of 63% and accuracies of 55.7%–

72.6% respectively. This study which used a training size of 1087 compounds has sensitivity of

80%–95.7% for three of the validation sets.

In general, it can be observed that a majority of in silico hepatotoxicity models have ac-

ceptable performances and a few have exceptional results. This suggests that the liver toxicity

data set in most studies were “noisy”, hence, a clean and exceptional prediction results were hard

to achieve. This was expected as complex mechanisms are involved in liver toxicity. Neverthe-

less, good results can still be achieved with models made of small data sets, however, smaller

data size may limit the representation of compounds. Therefore, the applicability domain of

these models might be limited, whereas models developed using larger data size are expected

to have greater applicability. On the other hand, even models developed using larger data sets

may not be able to solve inherently tough problems such as the resolution of structurally similar

pairs. In the study by Rodgers et al. [169], the model developed using a relatively small data

set of 158 compounds, was not able to resolve any similar pairs. Although this study had the

largest data set, it was able to resolve only one similar pair. This highlights the challenges in

resolution of structurally similar but toxicity dissimilar pairs. In this study, kNN was one of the

three algorithms that were used to develop the base models. kNN works on the basis of struc-

tural similarity, therefore, the model is likely to fail on a compounds purposefully selected to

be highly similar. Hence, the poor results of our ensemble model on valPAIR are not surprising

and suggest further studies using other algorithms are needed.

All QSAR models, except two, were shown with their applicability domains (AD). AD

is needed to prevent extrapolation of the model which can result in unreliable predictions. Al-

though it is desirable for models to have mechanistic interpretation (but not compulsory), only

a few models (linear discriminant analysis and weighted feature significance) passed this crite-

rion. This is because the ensemble method, which is usually a conglomeration of many models,

was applied in most studies. Thus, it makes mechanistic interpretation complex, although not

impossible. For example, one may examine the constituent models for frequent recurring de-
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9.6. CONCLUSION

scriptors. These descriptors may give hint to important interactions. Nevertheless, the difficulty

of the task is expected to increase with the size of the ensemble. Furthermore, the choice of

the algorithm for base classifiers modelling may complicate the task further as some black box

methods, as opposed to linear regression, decision trees and rule-based models, are inherently

more difficult to interpret.

One general problem with existing QSAR hepatotoxicity models is the lack of a readily

available and working model. For example, three studies [224, 233, 234] which were proprietary

in nature had used large data sets (e.g. 1266–1608 compounds), but the compounds were not

disclosed and their models are unavailable or under licensing restrictions. Hence, validation of

these models will be inconvenient for other parties. The other parties will need to redevelop the

models using the same modelling methods and the same compounds (if available). Nonetheless,

it may be impossible to reproduce the models exactly as most methods have a degree of inherent

random variations. In order to prevent such problems and to aid in independent validation and

use, we have made available the data set and a software based on our ensemble model for public

use.

9.6 Conclusion

Hepatotoxicity prediction is not an easy problem as most in vitro and in silico studies gave

average prediction performances and few exceptional performances. Although this study had

achieved similar or slightly better results, it is advantageous compared with the other studies

because the model was built from the largest data set and it was made available for public use.

We have reported a list of substructures that may predispose compounds to cause hepatotoxicity.

The T0AlmF1 ensemble method was shown to be robust and produces stable results. But, it has

high computational and disk space requirement. The model was not suitable to distinguish

structurally similar pairs of opposing hepatotoxicity as kNN was a major contributor to the

ensemble model.
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Chapter 10

Ensemble of Samples and Features

10.1 Summary of Study

This chapter aims to produce four separate models to classify the labels for eye/skin corrosion

(H314), skin irritation (H315), serious eye damage (H318), and eye irritation (H319) in the

Globally Harmonized System of Classification and Labelling of Chemicals. In this study, the

ensemble of features and samples (T1Al0F1) was examined; the random forest (RF) is one such

type. RF which is made of a collection of decision trees (DT) has shown comparable prediction

performance to SVM [261, 262]. However, SVM generally has superior performance compared

to DT [121, 263]. Therefore, in this study, we have investigated the ensemble method of varied

training set with a collection of SVM. The effects of data sampling methods, ratio of positive

to negative compounds, and types of base models combiner to produce ensemble models were

studied. It was found that the T1Al0F1 with SVM outperformed RF and the best single classifier

in a majority of the endpoints.

10.2 Introduction to Eye/Skin Irritation and Corrosion

Eye and skin irritation can cause considerable discomfort to an individual. It is commonly as-

sociated with some form of inflammation, but it might also present as a range of responses such

as acute or near corrosive threats which can bring about irreversible damages like blindness or

tissue necrosis [264, 265]. There are numerous substances that can cause irritation, for example

chemicals used in agriculture, manufacturing, and warfare. Other than that, there are also phar-

maceuticals, cosmetics and toiletries that are commonly used in the household that might cause
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10.2. INTRODUCTION TO EYE/SKIN IRRITATION AND CORROSION

harm [265]. To safeguard public health, toxicological assessment must be conducted prior to

the production, transport, and sales of chemicals and finished products [264].

Existing human and/or animal data 
showing effectsshowing effects

Perform SAR evaluation

Measure pH (consider buffer 
capacity if relevant)

Evaluate systemic toxicity data viaEvaluate systemic toxicity data via 
dermal route

Perform validated  and accepted in 
vitro or ex vivo test for corrosion

For eye: Experimentally assess in vivo 
skin irritation/corrosion potential

Perform validated and accepted in 
vivo or ex vivo test for irritation

Perform initial in vivo rabbit test 
using one animalg

Perform confirmatory test using one 
or two animals

FIGURE 10.1: Process flow of chemical testing
for eye or skin irritation/corrosion,
guidelines adapted from OECD
Guidelines 404 & 405.

Traditionally, the Draize rabbit skin or

eye irritation tests were used to assess ef-

fects of chemicals and biological responses

of the eye and skin; the tests were intro-

duced in 1944 and has been widely used and

modified by many laboratories for their as-

sessment needs [265]. Although the Draize

test has drawn vehement protests from ani-

mal activists and questions about its valid-

ity as a human surrogate, it remained as the

irreplaceable test to assess occular and skin

toxicity [265]. Nonetheless, concerted ef-

fort from various agencies and organisations

such as the European Centre for the Valida-

tion of Alternative Methods (ECVAM) and

the Inter-agency Coordinating Committee on

the Validation of Alternative Methods (ICC-

VAM) in the United States are pushing for al-

ternative testing methods that are more effi-

cient and cost effective [266]. Subsequently,

in the OECD guidelines for testing of chemi-

cals for acute eye or skin irritation/corrosion,

structure-activity relationships (SARs) and in

vitro methods are incorporated into a tiered system to reduce the use of animals for chemical

assessments.

Figure 10.1 shows the flow of the tiered process; a chemical is screened with harmless

methods such as SARs and in vitro methods first. When it is deemed safe, it is then intro-

duced into an animal to confirm the non-toxicity. In line with the needs and direction of the

global effort to curb animal use, this project hopes to produce an in silico model for eye/skin

irritation and corrosion prediction. In an extensive review by Saliner et al. [267], many mod-
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els for eye and skin irritation (or corrosion) prediction have been presented in the past, which

also include software such as DEREK, TOPKAT, and MultiCASE. The review concludes that

further development, validation and documentation of the many QSAR models were required.

The models should also be assessed whether they fulfilled the validation of QSAR principles

set out by OECD. It was noted that there were few models available for the prediction of skin

corrosion, whereas eye and skin irritation models should be extended to cover a diversity of

chemical classes [267].

The Toxtree and Danish QSAR database had used 800–1833 publicly available or con-

fidential compounds in their models [26, 64]. Hence, this work should also explore a large

data set to produce a model which is as useful as those that have been reported. The Toxtree

prediction for skin/eye irritation and corrosion classification were based on structural alerts and

rules from in vitro test results, whereas the software DEREK, MultiCASE and TOPKAT have

used structural alerts, principle component-like analysis, deterministic or probabilistic QSARs

[267]. Therefore, the models produced in this project will be different because only theoretical

molecular descriptors and different modelling methods were used.

TABLE 10.1: List of hazard statements and definitions modelled in this study.

hazard statement definitions
H314: Causes severe skin burns and eye
damage (corrosion)

the production of irreversible damage to the skin; namely, visi-
ble necrosis through the epidermis and into the dermis, follow-
ing the application of a test substance for up to 4 hours. Cor-
rosive reactions are typified by ulcers, bleeding, bloody scabs,
and, by the end of observation at 14 days, by discolouration
due to blanching of the skin, complete areas of alopecia, and
scars.

H315: Causes skin irritation the production of reversible damage to the skin following the
application of a test substance for up to 4 hours.

H318: Causes serious eye damage the production of tissue damage in the eye, or serious physical
decay of vision, following application of a test substance to the
anterior surface of the eye, which is not fully reversible within
21 days of application.

H319: Causes serious eye irritation the production of changes in the eye following the application
of test substance to the anterior surface of the eye, which are
fully reversible within 21 days of application.

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS),

which began development at the United Nations Rio Conference 1992, provides a foundation for

harmonization of regulations and rules on chemicals internationally. Four separate models were

built in this study to classify the labels H314, H315, H318 and H319 (Table 10.1) in the GHS,

which loosely referred to as eye/skin corrosion, skin irritation, eye damage and eye irritation in
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10.3. MATERIALS AND METHODS

this study.

10.3 Materials and Methods

10.3.1 Training Set

Table 3.1 of Part 3 of Annex VI to Regulation (EC) No 1272/2008, lists the harmonized classifi-

cation and labelling of hazardous substances set out in the regulation [268]. This table is publicly

accessible and downloaded for the database in this work. The working table has 4136 entries of

various substances such as of mixtures, inorganic compounds, reaction masses, extracts, poly-

mers, and petroleum distillates. These substances were removed manually prior to additional

processing. Further removal of duplicates and molecules with descriptor errors resulted in 2108

usable compounds. The molecular structures of these compounds were downloaded from Pub-

Chem [214] or ChemSpider [269].

A substance might have more than one of the four labels in Table 10.1. Commonly,

a substance labelled as a skin irritant (H315) might also carry the labels H318 and H319 for

serious eye damage and eye irritation, but rarely H314 for corrosive effects. For this work, the

labelling task was separated into the skin group and eye group. For the skin group, any of the

2108 compounds may be classified as caustic, skin irritant, or no skin effects. For the eye group,

any of the 2108 compounds may be labelled as caustic, causes eye damage, eye irritant or no eye

effects. In the event of multi-labels, the more severe consequence will supersede the labelling

for that compound. For example, a compound that causes eye damage and corrosion will carry

the label H314 for caustic substance.

10.3.2 Validation Sets

Stratified sampling was applied on the full data set to obtain approximately 400 compounds to

be set aside for external validation; these compounds were never used in model optimization.

The remaining compounds will be used for training and was also named testfull.

Training of base models was conducted with five-fold cross-validation. The five-fold

cross-validation performance gives a better indication of generalizing power of models, hence,

it was used to rank base models performance for selection into the ensemble step. In the fol-

lowing section on modelling, it will be made known that the training set for each base classifier

was actually a subset of the testfull. Hence, the five-fold cross-validation is reflective of the
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performance on the subsets, and it may not perform as well on larger testing sets. Therefore,

besides ensuring that the base models should still achieve the basic performance of AUC≥0.6,

SEN≥0.6 and SPE≥0.6 in five-fold cross-validation, the full training set of 1707 compounds,

testfull, was used as the second testing set to further distinguish the models. This testfull was also

used to select the best ensemble models as it contained a portion of negative compounds that

were not seen in training.

TABLE 10.2: Breakdown of GHS labelling in the eye and skin groups.

eye group skin group
labels N labels N
H314 220 H314 220
H318 239 H315 350
H319 291
no label 1358 no label 1538
total 2108 total 2108

N: the number of compounds.

TABLE 10.3: Data for eye/skin corrosion (H314)
modelling.

set positive negative subtotal
train 178 1529 1707
valext 42 359 401
subtotal 220 1888 2108

TABLE 10.4: Data for skin irritation (H315) mod-
elling.

set positive negative subtotal
train 283 1424 1707
valext 67 334 401
subtotal 350 1758 2108

TABLE 10.5: Data for serious eye damage (H318)
modelling.

set positive negative subtotal
train 193 1514 1707
valext 46 355 401
subtotal 239 1869 2108

TABLE 10.6: Data for eye irritation (H319) mod-
elling.

set positive negative subtotal
train 236 1471 1707
valext 55 346 401
subtotal 291 1817 2108

Table 10.2 shows the breakdown of the compound classes in terms of GHS labels. Table

10.3 to Table 10.6 show the reorganization of compounds into positive (hazardous effects) and

negative (no hazardous effects) for the construction and validation of the four models.

10.3.3 Molecular Descriptors

The program, PaDEL-Descriptor, was used in the calculation of molecular descriptors in this

study. A total of 663 1D and 2D molecular descriptors were calculated, the list is available at

the PaDEL-Descriptor website [216].
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10.3.4 Modelling for Base Classifiers

All models were built and optimized using RapidMiner [83]. For comparison, “basic” models

of SVM and kNN were built for each of the endpoints with the full training set and all available

descriptors as outlined for the RM project (Section 8.3.3, page 75). Briefly, a random subset of

the descriptors were selected before further reduction by forward selection. Subsequently, the

full data set with the selected descriptors was used to train SVM and kNN models.

A random forest (RF) model was also optimized for all endpoints with the full data set.

The maximum depth of trees was set at 20. The number of trees to build was varied between 3

to 31, and to consider 4 to 6 features; the process was repeated 12 times. The performance of

RF models on the testfull and valext were obtained. The best RF model was chosen on the basis

of highest MCC value for testfull followed by the out-of-bag (OOB) error estimate when MCC

alone was insufficient to distinguish the models (Section 2.3.4).

To generate ensemble models of T1Al0F1, the process (with descriptor grouping) outlined

in Subsection 9.3.5 (page 90) was adapted with an additional step to sample training data at the

start. Seven descriptor groups were used: 2DMisc, Chi, Counts, EStateCount, EStateSum,

MDE, and MLFER (Table 9.1, page 93). This resulted in base classifiers which were built

from different sample size and different molecular descriptor groups. Besides five-fold cross-

validation, the performance on the full training set (testfull) was also obtained for these base

classifiers.

The effects of positive to negative data ratio were examined. For the sampling of training

set, all positive compounds (smaller class size) were kept. For the negative compounds, the

data size were sampled at multiples of the positive class size, i.e., if there were 50 positive com-

pounds, 50, 100, 150, and up to 5 times of negative compounds were sampled, and subsequently

combined into different training sets for base classifier generation. The class ratios tested were

1:1 to 1:5 for positive to negative compounds.

The effects of the types of sampling methods on the model performance were also ex-

amined. Two sampling methods were tested, and they were uniform random sampling (Rsample)

and Kennard-Stone sampling (KSsample).
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10.3.5 Ensemble Method

The ensemble model building process was carried out on all four data sets of H314, H315,

H318 and H319 endpoints. The cutoff criterion to select a pool of unique base classifiers for

each endpoint in this study was set at AUC≥0.6, SEN≥0.6, and SPE≥0.6 in five-fold cross-

validation and testfull. Similar to the ensemble method in Chapter 8, the base classifiers were

sorted by their five-fold cross-validation MCC values, and the top models were combined into

ensemble models at increasing ensemble size, starting with size 3 (for illustration, please refer

to Figure 8.2, page 75). Up to 50 ensemble models were built for each endpoints. The MCC

values for the testfull was ranked and the best ensemble model was chosen based on this MCC

value. To combine the base classifiers, two types of rules were used and they were the majority

voting method and stacking with NB method. Stacking with SVM and MLR were also tested,

however, they gave weaker results hence not presented in this report.

In total, two sampling methods and two combiners were used for all four endpoints.

This resulted in four combinations of ensemble model types, i.e., KSsample-vote, KSsample-stack,

Rsample-vote and Rsample-stack.

10.4 Results

An average of 2231 base models was constructed for each of the endpoint. The five-fold cross-

validation and testfull filters were applied. Subsequently, the filtered models were ranked by

their five-fold cross-validation results to obtain up to 101 top base models for the ensemble step

where their individual prediction were combined. Fifty ensemble models that ranged from size

3 to 101 were generated. However, only one was selected as the best model to be reported. For

each combination of sampling methods and combiners, the performance of the best ensemble

model for each endpoint is summarized in Table 10.7. The best ensemble was chosen on the

basis of highest MCC value for the testfull. For example, in the combination of KSsample and

majority voting for corrosion prediction, the ensemble with size 9 was selected from the total of

50 ensemble models evaluated.

With the full set of training data and descriptors, 540 RF models, 100 kNN and about

130-150 SVM models were built for every endpoint. The best single RF, kNN and SVM models

presented in Table 10.7 were selected on the basis of best result for MCC values in testfull. If the

performances were tied, the OOB error estimate was used to select RF models whereas for the
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SVM model, one was randomly chosen. The same testfull results were achieved by RF because

the learning will always maximize the performance during training, hence, the perfect score of

1 for sensitivity, specificity, MCC or GMEAN in some endpoints.

Among the best single models (BSM), kNN models performed the worst while SVM and

RF models had comparable external validation results. In all endpoints, the highest GMEAN

value and a majority of MCC for valext were achieved by ensemble models and frequently by the

Rsample-vote combination. The BSM (RF, kNN and SVM) had a tendency to produce models

with low sensitivity values but high specificity in valext. The ensemble models produced by

the stacking method (ensstack) were more similar to these BSM and were generally weaker than

ensemble models of majority voting (ensvote) which can be observed in the valext GMEAN

values.

TABLE 10.7: Best performances of various ensemble models, RF, kNN and SVM in the four endpoints.

training (testfull) external validation (valext)

combinations nBase† SEN(%) SPE(%) MCC GMEAN(%) SEN(%) SPE(%) MCC GMEAN(%)

H314: Causes severe skin burns and eye damage (corrosion)
KSsample-vote 9 79.8 66.8 0.293 73.0 71.4 65.2 0.230 68.2
*Rsample-vote 99 100.0 90.4 0.704 95.1 81.0 88.3 0.541 84.5
KSsample-stack 5 77.0 71.7 0.315 74.3 71.4 71.6 0.280 71.5
Rsample-stack 99 100.0 99.0 0.953 99.5 42.9 96.7 0.460 64.4
RF single 99.5 100.0 0.979 99.8 61.9 85.0 0.359 72.5
kNN single 43.3 98.5 0.543 65.3 33.3 96.1 0.354 56.6
SVM single 100.0 100.0 1.000 100.0 61.9 92.5 0.492 75.7

H315: Causes skin irritation
KSsample-vote 3 66.1 69.3 0.273 67.7 50.7 74.3 0.204 61.4
*Rsample-vote 83 94.3 84.7 0.652 89.4 55.2 82.9 0.336 67.7
KSsample-stack 23 63.3 69.6 0.255 66.3 49.3 74.3 0.192 60.5
Rsample-stack 93 96.8 95.9 0.871 96.4 35.8 94.3 0.363 58.1
RF single 100.0 100.0 1.000 100.0 49.3 89.2 0.380 66.3
kNN single 41.7 97.8 0.518 63.8 28.4 94.9 0.304 51.9
SVM single 99.6 99.9 0.996 99.8 44.8 83.8 0.262 61.3

H318: Causes serious eye damage
KSsample-vote 101 91.2 66.7 0.375 78.0 56.5 64.5 0.138 60.4
*Rsample-vote 101 96.9 83.9 0.589 90.2 60.9 79.2 0.293 69.4
KSsample-stack 101 97.9 89.0 0.677 93.3 30.4 88.2 0.171 51.8
Rsample-stack 101 99.5 98.9 0.950 99.2 19.6 97.2 0.251 43.6
RF single 100.0 99.8 0.991 99.9 37.0 89.6 0.248 57.5
kNN single 13.0 99.3 0.269 35.9 4.3 98.6 0.072 20.7
SVM single 80.8 99.7 0.875 89.8 28.3 90.4 0.185 50.6

H314: Causes serious eye irritation
KSsample-vote 9 100.0 61.7 0.427 78.6 63.6 54.9 0.128 59.1
*Rsample-vote 99 100.0 90.6 0.755 95.2 56.4 82.4 0.317 68.1
KSsample-stack 101 80.1 79.6 0.456 79.8 45.5 80.3 0.210 60.4
Rsample-stack 101 100.0 99.5 0.983 99.8 20.0 98.0 0.299 44.3
RF single 100.0 100.0 1.000 100.0 27.3 95.4 0.292 51.0
kNN single 28.4 98.1 0.399 52.8 12.7 97.1 0.168 35.2
SVM single 100.0 100.0 1.000 100.0 45.5 82.9 0.240 61.4

*final models available for download.
†nBase=number of base models.
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10.4.1 Effects of Training Set Sampling Methods and Training Set Class Ratio

The random sampling method with low class ratios has produced the best ensemble models.

Table 10.8 shows the number of constituent models for the ensemble of type ensvote for all end-

points. The results were grouped into the two sampling methods, uniform random sampling

(Rsample) and Kennard-Stone sampling (KSsample), and the ratio of positive to negative com-

pounds. The corresponding average five-fold cross-validation MCC for these base classifiers

were also included.

There were more unique models satisfying the cutoff of AUC≥0.6, SEN≥0.6, and

SPE≥0.6 when KSsample was used. For example, for the eye irritation endpoint, there were

413 unique models by KSsample compared with 278 unique models by Rsample (Table 10.9).

However, the best ensemble models of type KSsample commonly have small ensemble size as

shown in Table 10.8. The Table 10.8 looked at the base models in the best performing en-

semble models (majority voting method) chosen on the basis of best MCC value in testfull. It

was observed that ensemble of type KSsample-vote included base models from training sets with

2–4 folds of negative compounds whereas Rsample-vote included base models from all folds but

predominantly from lower class ratio, i.e., 1:1 and 1:2.

TABLE 10.8: The number of unique base classifiers within each best ensemble model by majority voting
method (ensvote), grouped according to sampling methods and class ratio.

corrosion skin irritation eye damage eye irritation
class ratio count mean±s.d.* count mean±s.d. count mean±s.d. count mean±s.d.

KSsample-vote
1:1 0 - 0 - 0 - 0 -
1:2 0 - 3 0.607±0.003 1 0.544 9 0.584±0.019
1:3 9 0.756±0.003 0 - 89 0.435±0.032 0 -
1:4 0 - 0 - 11 0.387±0.012 0 -
1:5 0 - 0 - 0 - 0 -

total 9 3 101 9

Rsample-vote
1:1 40 0.465±0.020 41 0.333±0.016 62 0.280±0.030 17 0.237±0.016
1:2 19 0.483±0.024 40 0.332±0.016 22 0.244±0.016 63 0.230±0.028
1:3 24 0.468±0.020 1 0.319 9 0.228±0.015 3 0.204±0.010
1:4 7 0.459±0.020 1 0.323 6 0.234±0.007 11 0.207±0.008
1:5 9 0.451±0.019 0 - 2 0.230±0.011 5 0.206±0.015

total 99 83 101 99

*mean MCC and standard deviation achieved by the base classifiers in five-fold cross-validation.
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TABLE 10.9: The number of unique base classifiers satisfying the cutoff of AUC≥0.6, SEN≥0.6, and
SPE≥0.6 for each sampling methods.

corrosion skin irritation eye damage eye irritation
class ratio KSsample Rsample KSsample Rsample KSsample Rsample KSsample Rsample

1:1 0 188 0 210 0 63 0 17
1:2 11 298 203 154 4 48 51 115
1:3 414 156 111 92 140 27 179 45
1:4 369 88 104 74 119 33 110 45
1:5 220 97 52 55 57 31 73 56
total 1014 827 470 585 320 202 413 278

10.5 Discussions

10.5.1 Effects of Training Set Sampling Methods

The number of base classifiers qualifying a certain cutoff can be used to infer how well a method

in generating quality base models. From Table 10.9, it was observed that the base classifiers

produced by the Kennard-Stone (KSsample) method were commonly greater in number compared

to uniform random sampling (Rsample) for the cutoff of AUC≥0.6, SEN≥0.6, and SPE≥0.6.

The ability of KSsample to produce higher quality models was also observed in Table 10.8 with

average five-fold cross-validation MCC of >0.387 compared to Rsample with MCC of >0.204.

Thus, the KSsample method is generally beneficial for individual models because it can give a

wide coverage of sample space and increases the possibility of better performance for individual

SVM classifiers. Conversely, for the Rsample method that samples uniformly at random, similar

compounds may have been selected, hence reduces the coverage of the training set. Therefore,

performance of SVM in five-fold cross-validation was significantly reduced for the individual

classifiers in all four endpoints comparing KSsample and Rsample in Table 10.8.

Nevertheless, it is important to keep in mind that the method (in this case: KSsample) that

was able to produce a greater number of qualified base classifiers may not necessarily give rise

to better ensemble models. This is because the combiner may introduce a change to the overall

performance. The effects will be discussed in the following sections.

10.5.2 Effects of Training Set Class Ratio

It was observed that lower training set class ratio benefits Rsample more than KSsample and

KSsample can handle larger training set better. With reference to Table 10.8, a general decreas-

ing trend in average MCC was observed in the individual models when more negatives were
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included in training. This trend was more obvious in Rsample. Similarly, there were less quali-

fied base models when the class ratio increased, especially in the skin irritation and eye damage

training sets in Table 10.9. For unbalanced data sets, it is known that it will bias the model

towards predicting compounds to belong to the majority class. Hence, increasing the specificity

and decreasing the sensitivity in this case, and as seen in BSM. This risk probably increases

with bigger class imbalance, therefore, less unique models and weaker MCC performance were

observed for training sets with higher proportion of negative compounds. Furthermore, a major-

ity of the constituent models in the best ensemble for KSsample came from training sets with 1:2

or 1:3 ratios. For Rsample, a majority came from training sets of 1:1 or 1:2 ratios but few from

the ratios of 1:4 and 1:5. For KSsample, this bias effect is not as pronounced as random selection

because it selects more diverse negative compounds, which will help to improve the accuracy of

the models. In comparison, the random selection method may select many similar compounds

that do not add much information but just contribute to this bias.

However, it is not always better with lower proportion of negative compounds. In Table

10.9, when the ratio of positive to negative was 1:1, it was observed that no SVM base classifiers

qualified for the 0.6-0.6 cutoff for KSsample. Similarly, there were less qualified base models for

1:1 compared with 1:2 in Rsample for eye irritation and corrosion. As there were more negative

compounds in the original distribution of the data set, more negative compounds were probably

needed to distinguish the classes better. From the results in Table 10.8, the greater number of

negative compounds had given an advantage to the KSsample method. Consequently, base mod-

els from KSsample have achieved higher average MCC compared with Rsample (>0.387 versus

>0.204). However, the proportion should not be too high as the the performance of the models

at 1:4 or 1:5 class ratios deteriorated. Likewise, when the “basic” kNN and SVM had the full set

of compounds for training, their performance were not as good as the performance of ensemble

models.

In summary, it was probably more instinctive to assume that more negatives exist com-

pared to positives naturally. Higher class ratio was more beneficial for KSsample as it can sample

a diverse set of compounds. Thus, KSsample was less affected by the class imbalance which

may bring about prediction bias for the majority class. Nevertheless, the ratio should not be too

high, as in Rsample which performed better at low ratios. High ratios may increase the risk of

prediction bias which may reduce the performance of the models.
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10.5.3 Effects of Ensemble Size and Combiner
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FIGURE 10.2: Plot of performance against number of base classifiers. Performance, MCC values, of
ensemble models in corrosion data set when different sampling (KSsample or Rsample) or
ensemble methods (majority vote or stacking) were used.

In general, ensemble models of voting group (ensvote) performed better than ensemble of

stacking group (ensstack) in Table 10.7, page 122. Within model types, i.e., within ensvote or

ensstack or BSM (RF, basic SVM and kNN), it was observed that the ensemble performance in

the training set (testfull) corresponds with the performance for valext. In Table 10.7, ensemble

models of ensvote with the higher MCC in testfull (Rsample:0.589 – 0.755 versus KSsample:0.273 –

0.427), gave better performance in valext (Rsample:0.293 – 0.541 versus KSsample:0.128 – 0.230)

in all endpoints.

Comparing ensRsample and ensKSsample . Figure 10.2 shows the effects of the four combination

types on corrosion prediction. For the ensemble made of Rsample training sets (ensRsample), it was

observed that the ensemble performance was affected by the size of ensemble but not for the

ensemble from the KSsample method (ensKSsample). This suggests that KSsample was more robust

since they were less affected by the ensemble size. This might be attributed to KSsample pro-

ducing models from a larger pool of training data, i.e., a majority from training sets with 2–3
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folds negatives compared to Rsample which built most models from 1 fold of negatives (Table

10.8). Hence, KSsample base classifiers had a greater amount of information from the start. Con-

sequently, the ensemble models from these base classifiers were able to reach the full potential

early, unlike ensRsample which improved significantly with the increase in ensemble size in Figure

10.2c and Figure 10.2d. This is because, as more base models were combined, more informa-

tion were made available to the overall ensemble model to improve its predictions. Acceptable

performance was only achieved when the ensemble size was large enough at approximately

>15. However, as the ensemble size increased, the performance quickly reaches a plateau

which implies the saturation of information.

Comparing ensstack and ensvote. The stacking method was expected to be less naive in combin-

ing the classifiers, thus, it could have performed better. However, it was not capable of exploiting

and enhancing the base classifiers compared with the voting method in this study. This result

suggests that the ensemble method of combining sorted base models is not suitable for use with

the stacking method. This was further exemplified by the overfitting that was observed for the

combination of Rsample-stack in Figure 10.2c. Higher ensemble size brought about weaker ex-

ternal validation performance although the MCC in testfull was increased. Hence, the MCC

value for this type of ensemble was not a reliable indicator for the generalization power of the

models. This may have occurred owing to the combination of very similar models when sorting

was use to rank the base models. These similar base classifiers do not add value to the ensemble

model when a greater number of them were combined. Conversely, the addition of lower ranked

models affected the ensstack as seen in the decrease of performance when the ensemble size was

>9 in Figure 10.2a of KSsample-stack. The decrease was also seen in Figure 10.2b of KSsample-

vote, but the effect was milder. These weak models may have appeared to perform very well

in five-fold cross-validation, but in fact they may not correspond to good generalization power.

Hence, the NB in stacking may have given more weights to these models of which their weaker

generalization power surfaced when the ensemble size was larger. It turns out that ensvote which

does not consider the strength of each base classifiers were more robust in handling these weaker

models. Nevertheless, we have tried to reduce these models by also considering the testfull re-

sults in the cutoff of AUC≥0.6, SEN≥0.6, and SPE≥0.6. Although the performance of ensstack

was affected when ensemble size increased, the drop was not drastic.

In summary, for ensemble by combining sorted base models, the base classifiers by
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KSsample were stable but do not add as much value as Rsample when combined. Also, the voting

method which is less sensitive to weak models performed better than stacking. Together, the

Rsample method and majority voting combination achieved better results when compared with

the combination of KSsample and stacking, as well as BSM. KSsample was better at producing

models at the individual level because the algorithm has a better chance of choosing a good

coverage of example compounds. Therefore it was less sensitive to class imbalance which may

cause prediction bias towards the majority class. However, due to the way the KSsample method

works (Section 2.2.2), the selected compounds will likely be identical for two sample sets of the

same size. Although many base classifiers by KSsample have satisfied the cutoff of AUC≥0.6,

SEN≥0.6, and SPE≥0.6, they were probably made of the same compounds. Thus, the diversity

of the models was likely lower than the ones generated from Rsample. This explains why there

were a higher proportion of base models selected for the best ensemble model in the Rsample

method compared with the KSsample method. The Rsample method has a higher chance of intro-

ducing a diverse training set. Subsequently, the Rsample method has produced a better ensemble

when the base classifiers were combined. The stacking method did not performed as well as

the voting method in this study. Nevertheless, the maximum ensemble size tested in this study

was limited to only 101 which could be insufficient for stacking to work properly. As observed

in Figure 9.3 for hepatotoxicity, the stacking method requires at least 400 base models to give

acceptable performance.

10.5.4 Random Forest, SVM, and kNN

The general performance of the “basic” kNN, SVM and RF models (BSM) implies that pre-

dicting eye/skin effects was not an easy task. Due to the class imbalance of 200–300 positive

compounds to 1700–1800 negative compounds, these BSM had the tendency to produce mod-

els with low sensitivity and high specificity, especially for kNN models. However, acceptable

results may still be obtained from basic SVM and RF models as seen in the corrosion endpoint.

RF is an ensemble of type T1Al0F1, because it is an aggregation of decision trees. RF is

most similar in characteristic to the ensemble models of “Rsample-vote”, because the sampling

for training subset was done randomly (RF uses bootstrapping, sampling with replacement)

and similarly the final prediction was made through majority vote. On comparing the results

from Rsample-vote and RF in Table 10.7, although the RF had better performance in testfull,

the Rsample-vote method gave better valext MCC performances in all endpoints except for skin
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irritation. The Rsample-vote method also achieved better GMEAN values for all endpoints. It is

to note that, even though the valext MCC for RF in skin irritation was higher, but the sensitivity

dropped to below 50% whereas the ensemble model achieved a sensitivity value of 55.2%. In

addition, KSsample-vote for eye damage and eye irritation did better than RF in terms of GMEAN

in valext. This suggests that the introduction of under-sampling or the use of SVM as base models

in the ensemble method for this study were beneficial for these toxicity predictions.

The RF algorithm will always try to achieve the perfect score of 1 for MCC as observed

in Table 10.7, hence, more indicators (e.g. OOB) were needed to help with the selection of the

best model. In spite of this, the training results were probably still insufficient to distinguish

the performance among the RF models. Even with the use of OOB, the RF (and basic SVM)

models may have the risk of overfitting as observed in the valext performance for eye damage

and eye irritation; they had prediction tendency for the majority class as sensitivity was <50%,

but specificity was >80%. Thus, RF probably requires an extra set of testing compounds to

help with the selection of best model. On the other hand, for the ensemble of Rsample-vote, the

testfull result was sufficient for selecting the final ensemble model for use, as the performance

in testfull generally corresponds to the performance in valtrue for the different ensemble model

types. Therefore, the ensemble method in this study had the advantage of not requiring an

extra set of compounds for optimization or selection of final models unlike RF. Hence, more

compounds can be made available for training.

A disadvantage of the ensemble of T1Al0F1 examined in this chapter when compared

with RF or basic SVM is that the method was more demanding computationally and consider-

able effort was needed to fine-tune the parameters to optimize the overproduction of the base

models. ven though there were a large number of base models, each base models generated from

randomly sampled training subset had to fulfil a criterion before being considered for ensemble.

This could help to reduce the inclusion of weak models because they were likely discarded. The

extent of weak model reduction is unknown. However, the final outcome of the ensemble mod-

els were as good as or better than the BSMs in Table 10.7. This suggests that the base models

which qualified for application of ensemble were made of reasonable quality.

10.5.5 Selection of Final Models

Among the ensemble models, majority voting has produced ensemble models of balanced sensi-

tivity and specificity prediction in valext. For example, in eye damage prediction, voting models
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gave a sensitivity of 60.9% and specificity of 79.2% with Rsample (or 56.5% and 64.5% with

KSsample). Conversely, the stacking method has given a sensitivity of 19.6% and specificity of

97.2% with Rsample (or 30.4% and 88.2% with KSsample). This suggests that the method to select

“best” ensemble model, i.e., chosen on the basis of best MCC, was more suitable for application

on the combination of ensvote method. Therefore, the ensvote method was more robust in terms of

final model selection with MCC scores. Nevertheless, both voting and stacking were shown to

give comparable testfull and valext results in KSsample of corrosion and skin irritation prediction.

Hence, both ensemble combiners were capable of generating good ensemble models, except

that a better indicator should be examined for ensstack, so that a truly good ensemble model can

be identified.

Nevertheless, an objective of this study was to produce four models for the prediction of

H314, H315, H318 and H319 labels. For each endpoints, there were seven types of model to

choose from (Table 10.7), i.e., the models of ensvote group, ensstack group, RF, basic SVM and

kNN. However, BSM and ensstack models had prediction tendency for the majority class as seen

in most of the validation results, hence, they were not used in the selection process. For the

remaining models in ensvote, the MCC in the testfull was considered. This has resulted in the

selection of Rsample-vote models over the other models for all four endpoints.

The final models (marked with asterisk) will be made available for download and they

have the characteristics as seen in Table 10.7. In the external validation, valext, these ensemble

models have achieved sensitivity of 55.2%–81.0% and specificity of 79.2%–88.3%. The AD

for these models was descriptor ranges of the training data. To the best of our knowledge, there

were two studies with large data sets that would have been suitable for comparison of results.

They are the Danish Database of severe skin irritation prediction and Toxtree, however, it will

be pointed out why they were not directly comparable. Also, it would be unfair to compare this

study with models of smaller applicability domain (on the virtue of data size), hence, the studies

with small data sizes were excluded in the discussion.

The Rsample-vote models had achieved valext prediction sensitivity of 81.0% in corrosion,

55.2% in skin irritation, 60.8% in serious eye damage, and 56.4% in eye irritation. They have

acceptable sensitivity of >55% and specificity of >75%. In the evaluation by Tsakovska et al.

[37], the predictors in Toxtree [64] had achieved prediction sensitivity of 23.4% for corrosion,

26.8% for serious eye damage and 14.0% for eye irritation. In the evaluation by Saliner et al.

[25] for skin effects, the prediction sensitivity was 15.8% for skin irritation and 23.4% for corro-
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sion. The models for this study achieved better results in a majority of the endpoints. However,

the results were not suitable for comparison as the Toxtree method uses in vitro information for

prediction.

For the Danish Database of severe skin irritation prediction, the sensitivity was 59.7% and

specificity was 90.5% [26]; in this study, SEN=55.2% and SPE=82.9%. However, these results

were also not suitable for comparison because the endpoints of the studies were different. This

study predicts if a compound causes skin irritation or not, but the Danish Database predicts the

severity (mild or severe insults) of an irritant.

10.6 Conclusion

Ensemble methods were found to perform better than best single models overall, especially

those of majority voting method (ensvote). When voting was used as the ensemble combiner,

the combination of base classifiers from uniform random sampling (Rsample) performed better

than the base classifiers from Kennard-Stone sampling (KSsample). Nevertheless, KSsample is

beneficial at the base classifier level because the method had given rise to better performing

individual models. The ensemble from KSsample had the tendency to perform better when the

training set was larger, i.e., positive to negative compound ratios of 1:2 and 1:3, whereas, the

ensemble from Rsample performed better when the ratios were 1:1 and 1:2. As observed in

corrosion prediction results, the KSsample was more robust than Rsample, because the performance

of the resultant ensemble models was less affected by the ensemble size.

Random forest and the “basic” SVM were found to give acceptable prediction perfor-

mance and their modelling were less computationally intensive. However, similar to the ensem-

ble from ensstack, the selected final RF and SVM model might have the risk of overfitting and

probably requires an additional data set for final model selection. Overall, the ensemble method

that uses random sampling and majority voting (Rsample-vote) gave the best performances in a

majority of the endpoints when compared with RF, basic SVM, kNN or the ensstack method.

This combination was able to take advantage of the diversity from Rsample and robustness of

ensvote. The use of best MCC was appropriate to select a final ensemble of Rsample-vote, but

not for BSM and ensstack because these methods had the tendency to overfit. Hence, good train-

ing performance of BSM and ensstack models does not correspond to good external validation

results.
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Chapter 11

Toxicity Predictor

All toxicity prediction models produced and discussed in the various chapters are available for

download from http://padel.nus.edu.sg/software/padelddpredictor. The software is intended for

the calculation of the absorption, distribution, metabolism, excretion and toxicological (AD-

MET) properties of chemical compounds. Currently, it has models for toxicity prediction only.

Compounds in the form of molecule structural files e.g. MDL SDF, MOL or SMILES

format, can be used as inputs into the program. The molecular descriptors will be automatically

calculated by the program which then makes a prediction.

11.1 Methods

The PaDEL-DDPredictor program integrates some operations of PaDEL-Descriptor and Rapid-

Miner libraries.

RapidMiner is an open-source system with a large collection of algorithms for data anal-

ysis and model development. There are more than 500 “operators” for data processing, model

development, evaluation, and visualization, and it also integrates another modelling library,

WEKA [83]. The software is able to run on major platforms like Windows, Linux and Mac

OS X. Users are able to visualize the modelling workflow (Figure 11.1) in the form of an intu-

itive process interface and users also have the option of adding their own algorithms in the form

of extensions, written in Java, into RapidMiner easily.

PaDEL-Descriptor by Yap [74] is an open source Java-based software developed using

the Chemistry Development Kit for the calculation of molecular descriptors and fingerprints.

The PaDEL-Descriptor can work as a standalone program and also available as a Java Web Start
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11.2. USAGE

FIGURE 11.1: A simplified visualization of the RapidMiner process used in PaDEL-DDPredictor.

version. Version 2.0 of the program can calculate 797 descriptors and 10 types of fingerprints

which includes 1D, 2D and 3D descriptors e.g. atom type electrotopological state descriptors,

McGowan volume, molecular linear free energy relation descriptors, ring counts, WHIM, Petit-

jean shape index, count of chemical substructures identified by Laggner, and binary fingerprints

and count of chemical substructures identified by Klekota and Roth. The program also has some

compound pre-processing capabilities like “remove salt”, “add hydrogen” and “convert to 3D”.

The PaDEL-Descriptor program consists of two components: the library and the interface com-

ponent. The library component allows the calculation of descriptors to be integrated into other

programs. Hence, it can be used as an extension to RapidMiner.

The PaDEL-DDPredictor provides an interface that combines the calculation of descrip-

tors from PaDEL-Descriptor and data mining capabilities from RapidMiner. A RapidMiner

process in the form of an XML configuration file, dictates the flow of processes in PaDEL-

DDPredictor. A simplified illustration of the RapidMiner process is shown in Figure 11.1.

The process begins with the “Calculate Descriptor” operator which calls on PaDEL-

Descriptor to compute the molecular descriptors of input compounds. The toxicity model will

then be loaded in “Read Model” and applied on the preprocessed data to generate a prediction.

11.2 Usage

The PaDEL-DDPredictor program, shown in Figure 11.2, can be downloaded from

the PaDEL website. The model and other required files for toxicity prediction
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FIGURE 11.2: Interface of PaDEL-DDPredictor.

were packaged separately. To download the models, append the package name to

http://padel.nus.edu.sg/software/padelddpredictor/. The package per-

taining to the toxicity of interest must be downloaded and placed into the same directory as

PaDEL-DDPredictor to work. Table 11.1 gives a summary of the toxicity models available in

the website.

TABLE 11.1: Available models to be used with the PaDEL-DDPredictor Program.

endpoint training size model type applicability domain package name
Metabolic activation of chemicals
into covalently reactive species

1479 T0Al0F1 descriptor ranges ReactiveMetabolites.zip

Hepatic effects 1087 T0AlmF1 descriptor ranges Hepatotoxicity.zip
H319 (eye irritation) up to 2108 T1Al0F1 descriptor ranges EyeIrritation.zip
H318 (serious eye damage) up to 2108 T1Al0F1 descriptor ranges EyeDamage.zip
H315 (skin irritation) up to 2108 T1Al0F1 descriptor ranges SkinIrritation.zip
H314 (eye/skin corrosion) up to 2108 T1Al0F1 descriptor ranges Corrosion.zip

To make a prediction in Windows:

1. Launch the software using “java -jar PaDEL-DDPredictor.jar” without the

double quotes.

2. Enter the directory (e.g. D:\EXPERIMENTS\moleculesFolder) containing the molecules’

structural files in the form of most common file formats (e.g. MDL sdf, SMILES, recom-

mended MDL mol).

3. Input a name for the prediction results (e.g. D:\EXPERIMENTS\predictionResults.csv)
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which will be saved in comma separated value (CSV) file format, and

4. click on “Start”.

An example output of hepatotoxicity prediction is shown in Table 11.2.

TABLE 11.2: Heptotoxicity prediction from the PaDEL-DDPredictor program.

Compound Hepatotoxic Applicability domain
test 1 positive In
test 2 negative In
test 3 positive Out
test 4 positive In
test 5 positive In
test 6 negative In
test 7 positive In
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Chapter 12

Conclusion

In this thesis, various strategies to improve virtual screening for specific pharmacodynamic and

toxicological properties were investigated. This last chapter summarizes the major findings and

contributions of the various projects. Limitations of the completed projects and potential future

studies are discussed.

12.1 Major Findings

In Chapter 4 and Chapter 5, data augmentation using putative negatives was applied to increase

the data size of negative compounds for virtual screening models. This technique has increased

the applicability domain of models. Consequently, these models have achieved low false posi-

tive rate (<1%) when MDDR compounds were screened. Furthermore, the models were capable

of predicting positive compounds unrepresented in the training set with reasonable accuracies.

Experiments with logistic regression (LR) showed that the learning algorithm performed worse

with the addition of putative negatives. Therefore, LR is unsuitable for modelling of training

set with large class imbalance. It was found that the putative negative method works well with

learning algorithms such as SVM, kNN, and AODE. Although the performances of these mod-

els were similar, different modelling methods can be used if different screening outcome were

desired. That is, the AODE model for more hits, and kNN or SVM models for lower false

positive rate. Alternatively, a consensus of the methods may be used.

For the subsequent chapters, ensemble models with different types of base classifier gen-

eration were examined. First, unanimous consensus was applied in Chapter 7. It was not

always ideal to narrow down to “one” best model on the basis of internal validation results.
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Hence, three optimized models constructed with three learning algorithms (SVM, kNN, and

AODE) were combined into an ensemble model of T0AlmF0. The ensemble model is robust;

The ensemble model was capable of making a positive prediction even if the compound appears

distant from the positive training compounds. In addition, the model has a higher discovery rate

for known inhibitors when compared with a random model.

For the second type of ensemble method, the ensemble of mixed features (T0Al0F1) was

developed to classify the metabolic activation of chemicals into covalently reactive species. This

work was presented in Chapter 8. The ensemble model is an amalgamation of top naı̈ve Bayes

models, which were combined through majority voting. On average, the ensemble models gave

improvements of SEN=5.1%, SPE=0.6%, PRE=3.6% and MCC=0.052 for external validation

when compared with the best single model. In addition, the ensemble method was consistently

better in terms of precision and MCC values in all external validations. The variance of the top

ten models, in terms of external validation MCC, was lower in the ensemble method compared

with the single classifier method. Three performance measures to sort the base classifiers (to be

combined into an ensemble) were compared. It was found that AUCpes, MCC and GMEAN gave

similar effects and they were adequate in identifying the better base models early. The quality

of the base classifiers influenced the performance of the ensemble model. Nonetheless, it was

observed that top ranked models do not always perform the best in external validations. This

is because, acceptable performance can be achieved by lower ranked models as well. Hence, a

greater number of base classifiers can be considered for ensemble modelling apart from the top

ones.

Next, ensemble of T0AlmF1 was examined and applied on the prediction of drug-induced

liver injury in Chapter 9. A combination of AUCpes, sensitivity and specificity was used as the

cutoff to control the quality of base classifiers. A higher cutoff value reduces the number of

available base classifiers for ensemble modelling. Although the training performances of these

ensemble models were good, the external validation performance were weak probably caused by

overfitting. In comparison, lower cutoff gave more base classifiers but the ensemble performed

poorly. Therefore, the number of base classifiers for ensemble consideration should not be too

many or too few, and preferably not too far from the maximum achievable AUCpes. The per-

formance of the ensemble model, combined with the stacking method, generally improves with

larger ensemble size. Improvements in ACC, MCC and GMEAN were observed when com-

pared with the best single classifier. Although the specificity decreased, the ensemble method
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in this study have greatly enhanced the desired outcome of hepatotoxicity prediction models,

i.e., the sensitivity for identifying toxic compounds. In spite of the small improvements, the

ensemble model is expected to be more robust than one single classifier.

Last, ensemble of T1Al0F1 was investigated on four GHS labels related to eye and skin

outcomes in Chapter 10. The ensemble method of combining sorted base models was applied

in this chapter. Two sampling methods were used to obtain training subsets. When compared

with the uniform random sampling method (Rsample), the Kennard-Stone method (KSsample) was

better at extracting information from larger data sets and it was less affected by training set

class imbalance. Furthermore, KSsample was less affected by the ensemble size and it was the

better sampling method to be paired with stacking. However, the best ensemble outcome was

achieved by the combination of Rsample and the voting method. Rsample may have produced a

more diverse collection of base models, hence, provided more information than KSsample when

combined. Random Forest (RF) was applied on the four endpoints. Although the RF models

gave acceptable performance, it had a higher chance of overfitting like the ensemble models

from stacking (ensstack). Therefore, these methods probably require an extra set of testing data

for model selection. Overall, it was found that the ensemble models performed better than best

single classifiers (BSM) of kNN, basic SVM and RF models. The selection of best model by

MCC was probably more applicable to ensvote than ensstack, and also BSM because these models

had prediction tendencies for the majority class. Hence, the MCC values in training for ensstack

and BSM were not indicative of their generalization power.

12.2 Contributions

This thesis endeavours to support drug development programs through the development of us-

able models and investigation of methods for addressing some problems in predictive QSAR

models.

The work have achieved objective 1 of increasing the size of data sets without generating

new experimental data, as well as objective 2 which is to increase the prediction accuracies of

QSAR models. The novel method of putative negative generation by Han et al. [60] was applied

in two of the studies. To the best of our knowledge, the Lck and PI3K studies are the first

to produce virtual screening models from significantly larger training data with the effects of

increased applicability domain and reduced false positive hits (FPR achieved were 0.52% and
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0.75%). The effects have made the models more suitable for screening large libraries of diverse

structures. Therefore, these two studies have contributed to improve the quality of previous

models and have shown the potential to reduce reliance on animals for fresh data. Besides,

the two projects have contributed in terms of data collection, curation, and sharing of training

compounds. The publication of these data sets may reduce the need to scan through literature or

patents to reconstruct the data from scratch by other researchers. In addition, the discovery of

potential inhibitors from MDDR screen may provide new ideas for novel Lck or PI3K inhibitor

design, as the compounds presented in the studies were chosen for their dissimilarity from the

existing compounds.

The studies detailed in Chapter 8 to Chapter 10 (Part II of the thesis) have contributed

by producing readily available models for toxicity predictions. This has fulfilled objective 3,

which is to facilitate independent evaluation and comparison of QSAR models. The six predic-

tion endpoints are: metabolic activation of chemicals into covalently reactive species, hepatic

effects, GHS labels for eye/skin corrosion (H314), skin irritation (H315), serious eye damage

(H318), and eye irritation (H319). Note that, the models are not directly comparable with pre-

vious studies as the prediction endpoints were frequently different. Nonetheless, all the models

in this study were found to be better than most models of previous works in terms of either

prediction accuracy, applicability domain, data diversity, or adherence to the OECD principles

for the validation of QSAR models.

In addition, the different ways to generate base models for ensemble methods were varied

successively for investigation in this part of the thesis. The variation was found to have different

effects on the prediction accuracies of ensemble models. Ensemble methods frequently showed

small improvements when compared with the best single model. The factors affecting the en-

semble outcome were discussed in the various chapters and these include base classifier quality,

performance measure for model selection (Chapter 8), cutoff for base classifier pool, ensemble

size (Chapter 9), type of combiner, training set ratio, and sampling methods (Chapter 10).

These findings may help in the better understanding of the application of ensemble methods.

All models in the thesis were developed with the use of large training set and applicability

domain (AD). Hence, achieving objectives 4 and 5, i.e., to produce diverse QSARs with AD.

With the use of a larger training set, the newly built models are potentially more capable than

models of previous studies. Thus, the models from this work may be applied to a greater variety

of test compounds. With the AD information, users will be able to identify if a model were

140



12.3. LIMITATIONS

suitable for use; hence, minimizing inappropriate extrapolation of models.

12.3 Limitations

A possible limitation of the putative negative method is the inclusion of undiscovered positives

(e.g. inhibitors or toxicants) into the negative set. Consequently, the virtual screening models

trained with putative negatives might miss out potentially useful compounds or harmful com-

pounds. If an unidentified toxicant is ingested, although the individual may or may not be

affected, the degree of severity can be different and may be life threatening. Therefore, the

consequences of misclassifying a positive compound in pharmacological modelling is probably

not as hazardous as toxicological studies; the effect that is most apparent is the loss of a po-

tential lead compound which may be further developed into a medication. The extent of this

misclassification (false negative) risk is unknown. Nevertheless, previous studies [59, 60] and

this project have shown that a significant proportion of positive compounds were still classified

correctly in spite of their memberships in negative families. Furthermore, extensive search for

positive compounds was carried out to minimize this risk. Moreover, virtual screening is usu-

ally applied complementary to other biological testing and HTS campaign which could further

minimize the risk. Hence, the various factors may help mitigate the potential risk. In addition,

if more data were available, the size of external validation set should be increased to simulate

the magnitude of the screening library better. The performance on a larger external validation

will help in the selection of an appropriate model with better sensitivity for positives.

The toxicity models in this study are models that generalize a toxicity outcome although

there are many underlying factors that can bring about one observed toxicity state. Each of these

underlying mechanisms has the potential to be modelled. However, the scarcity of data prevents

the construction of these models. In addition, it is well known that individuals may respond

differently to the same substance. Hence, the models presented in the various chapters are

probably more suitable for “general screening” as they encompass a diverse compound set that

represents a broad range of mechanisms. Therefore, the models are less suitable for elucidating

the underlying mechanisms that have contributed to the endpoints. Furthermore, the training

compounds were taken as positives on the basis of their highest reported level of toxicity, thus,

producing a “pessimistic” predictor. Besides, the dose of the medication maybe play a part

in the toxicity i.e. lower chance of toxicity from smaller dose regimens [201]. Hence, the
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models should be used complementary to other screening methods. If not, potentially useful

compounds may be excluded from further development. Nonetheless, the “pessimistic” nature

of the models was advocated in the study to maximize the identification of potential toxicants

which is detrimental to health if missed.

The ensemble method improves prediction outcomes, to different extents, in all studies.

Common disadvantages for the various ensemble methods examined were the high demand for

computational resource, disk space, and long computational hours. In addition, it was found that

when kNN was a major contributor to ensemble models, it was very difficult to distinguish sim-

ilar (compound) pairs of opposing toxicity. Furthermore, there are many parameters that can be

explored for the different learning algorithms used. Hence, an enormous pool of base classifiers

with similar performance were produced. Although the choice of performance indicators for

base classifiers selection are so far effective, it will be desirable to have more means to validate

the selection of base classifiers. One way is to have more compounds as testing sets. These

testing sets can help in the selection of best models, model validation, and training of models.

However, data was hard to come by, hence, the studies missed out on further confirmation of

performance.

12.4 Future Studies Suggestions

In the studies of Lck (Chapter 4, page 32) and PI3K (Chapter 7, page 61), some novel scaf-

folds and new compounds were identified. It will be advantageous to set-up collaborations with

laboratories to experiment with these structures and compounds. The collaborations are needed

to translate these findings into physical application that will be beneficial to the improvement

of disease management. Besides, in vitro or in vivo information may be made available for

exploration into quantitative structure-activity-activity relationship (QSAAR) that uses in vivo

or in vitro information to improve prediction accuracies [253, 254]. Also, in the generation

of putative negatives, k-means clustering was used to discover the compound families and up

to 8 compounds were selected for the training data set. For future studies, we could investi-

gate the effects of other clustering methods such as hierarchical clustering, fuzzy clustering, or

density-base clustering [76, 270] and the number of compounds selected for training.

The range-based applicability domain (AD) was applied in all models of this work al-

though the models were of a different nature and used different algorithms. In some instances,
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the application of AD did not show the expected significant improvement to prediction perfor-

mance. This may indicate that the models developed were robust. However, it also hints at

the incapability of the chosen AD to effectively distinguish the reliability of the predictions.

Therefore, there is a need to explore and identify suitable types of AD. One may also consider

biological type of definitions for AD, e.g. applicable on hepatobiliary injury or hepatocellular

injury in the context of the model for hepatotoxicity prediction.

There are many more endpoints for toxicity prediction that can be examined. But the

availability of new information may be infrequent. Hence, new projects to create freely available

toxicity models can be looked into. Furthermore, the models presented in this work should be

updated with new training data when new information becomes available. A possible update to

the models made available to the public is to include a function to enable recording of prediction

outcomes so that the information may be used for future developments. There is a possibility

for common misclassified compounds between the various methods tested e.g. in the study of

eye / skin toxicity endpoints. Future studies may consider using these common compounds to

build a model (as a filter) in a multi-tiered classification approach.

In the ensemble strategy of overproduce and select, the current methods explored in

Chapter 9 and Chapter 10 were computationally intensive and it was slow to examine the

different types of combinations. Therefore, a possible exploration area is to redefine a selection

policy that can sieve out the relevant base classifiers quickly and effectively, without probing a

huge solution space. Furthermore, there are many more characteristics and behaviours of en-

semble methods yet to be investigated by this work and older literature. Therefore, future studies

may probe into the various aspects of ensemble modelling to understand the method better. For

example, the use of performance measure for shortlisting base classifiers and the use of other

algorithms as the combiner.
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D. Leroy, D. Gretener, A. Nichols, P. A. Vitte, S. Carboni, C. Rommel, M. K.
Schwarz, and T. Rückle, “Furan-2-ylmethylene thiazolidinediones as novel, potent,
and selective inhibitors of phosphoinositide 3-kinase gamma.” Journal of Medicinal
Chemistry, vol. 49, no. 13, pp. 3857–3871, Jun. 2006.
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