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Summary

This thesis comprises the study of two research projects: the hybrid quantum com-

putation model presented in Part I and the test-state approach to the quantum

search presented in Part II.

Part I: The hybrid model, which joins the advantages of the unitary-evolution-

based quantum computation model described in Chapter 2 and the measurement-

based quantum computation model given in Chapter 3, is introduced in Chapter 4.

The hybrid model is a universal model, where part of a quantum circuit (of an

algorithm) is simulated by unitary evolution and the rest by measurements on small

(non-universal) graph states to optimize the resource consumption and to get easier

experimental implementation.

The classical information processing in this model turns out to be rather simple

as compared to the measurement-based model. It only requires the information

flow vector and the propagation matrices. To make the picture complete, the basic

ideas for a fault-tolerant version of the hybrid model are introduced in Chapter 5

in which the classical information processing accommodates nicely.

Part II: Both classical and quantum search problems with their algorithms are

presented in Chapter 6. In the quantum search problem, one has to find one of a

permissible set of unitary mappings, which is implemented by a given black box,

without opening it. Grover’s algorithm accomplished this search with a quadratic

speedup as compared to its classical counterpart. Since the outcome of Grover’s al-

gorithm is probabilistic—it gives the correct answer with a high probability, not with
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SUMMARY

certainty—the answer requires verification. For this purpose, we introduce specific

test states in Chapter 7, one for each unitary mapping. The test-state verification

is a three-step process, named as “single iteration of the test-state approach.”

The test-state approach, in itself, can complete the search deterministically, it

always gives a definite answer after a finite number of such iterations. Furthermore,

it is 3.41 times as fast as the purely classical search.
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Chapter 1

Introduction

By the end of the nineteenth century, physics consisted mainly of Newtonian me-

chanics and Maxwell’s theory of electromagnetism. Newtonian mechanics was used

to study the dynamics of material bodies, while Maxwell’s electromagnetism pro-

vided the proper framework to investigate radiation. Matter and radiation were

described in terms of particles and waves, respectively. The interaction between

matter and radiation were given by the Lorentz force or explained by thermody-

namics. At the turn of the twentieth century, classical physics (classical mechanics,

classical theory of electromagnetism, and thermodynamics) was challenged on two

major fronts.

First, classical mechanics failed to explain the results of the Michelson-Morley

experiment such as the constancy of the speed of light. In 1905, Einstein gave the

special theory of relativity, which favors the Michelson-Morley experiment. Also,

the theory shows that Newton’s laws of motion do not hold good for objects which

are moving with a velocity close to the speed of light.

Second, classical physics failed to explain a number of microscopic phenomena

such as blackbody radiation, the photoelectric effect, atomic stability and discrete-

ness of atomic spectroscopy. In 1900, Max Planck introduced the concept of quan-

tum of energy to explain the phenomenon of blackbody radiation. Later, Einstein
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Chapter 1. Introduction

gave an accurate explanation to the photoelectric effect in 1905 by taking quanta of

light (photons) into consideration. In 1913, Niels Bohr introduced a model of the

hydrogen atom by combining Rutherford’s atomic model, Planck’s quantum con-

cept, and Einstein’s photons. Bohr’s atomic model explained both atomic stability

and discreteness of atomic spectroscopy. These ideas are now collectively known as

the old quantum theory.

In 1923, de Broglie introduced the concept of wave-particle duality, which was

experimentally verified by Davisson and Germer in 1927. In 1926, Schrödinger

established wave mechanics. This is a generalization of the de Broglie hypothesis,

where the dynamics of microscopic matter is given by Schrödinger’s wave equation.

In 1927, Max Born proposed the probabilistic interpretation of Schrödinger’s wave

function.

Inspired by Planck’s quantization of waves and Bohr’s atomic model, Heisen-

berg developed matrix mechanics in 1925. Later, both wave mechanics and matrix

mechanics were shown to be equivalent. In 1939, Dirac suggested a more general for-

mulation of quantum mechanics dealing with abstract objects: kets (state vectors),

bras, and operators. In continuous bases, Dirac’s formalism gives Schrödinger’s

wave mechanics, and in discrete bases, it reduces to Heisenberg’s matrix mechanics.

Ever since, quantum mechanics has been an essential part of science and has been

applied with enormous success in various fields including chemistry, biology, and

computer science.

From the beginning of human socialization, communication and calculation have

been indispensable of daily life. Initially, like any other task, both communication

and calculation were done manually. However, the Second World War (1939–1945)

created not only the need for stronger weapons but also the need for secure com-

munication and faster computation. The aid of machines was therefore required.

These necessities became the reasons for classical information theory and classical

computation. As a result, a series of inventions in the field of telecommunication

2



such as electrical telegraphy, telephone, radio, television and Internet have been

made available for public use. Likewise, personal computers have been made ac-

cessible to perform calculation at high speed. Clearly, information science is made

up of these two fundamental branches, where every information processing task—

communication in the field of classical information theory and calculation in the

field of classical computation—has a set of basic elements such as source, encoding,

processing, decoding, and detection. At first information science was based on clas-

sical physics and was therefore concerned with classical computer (CC). However,

quantum mechanics has brought information science into a new age, and one now

speaks of quantum information science1 (QIS).

After the Second World War, the decisive events, which established the discipline

of classical information theory, were the publications of Claude Shannon’s seminal

papers [4] in 1948. He addressed two fundamental issues of the information theory

by giving two landmark theorems: The first—Shannon’s noiseless channel coding

theorem—quantifies the minimum amount of physical resources required to store

the information being produced by a source, in such a way that at a later time it

can be recovered reliably. The second—Shannon’s noisy channel coding theorem—

quantifies the maximum amount of information that can be reliably transmitted

through a noisy communication channel. The first coding theorem established the

basis for data compression in which the information is encoded using fewer bits than

its original representation in order to reduce the consumption of expensive resources

(e.g., hard disk space, transmission bandwidth). The second coding theorem trig-

gered the development of error-correcting codes (e.g., repetition code, the Hamming

code) since 1950, whereby the transmitted information is protected against noise

by adding redundancy to it.

Information needs to be protected during transmission not just from the errors

1QIS is an extension of the classical information science like complex numbers are an extension
of real numbers and quantum mechanics is an extension of classical mechanics. The quantum
analogs of a bit and a reversible logic gate are a qubit and a unitary operation, respectively.
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Chapter 1. Introduction

caused by noise, but also from the potential eavesdroppers. The task of cryptog-

raphy is to secure the information from eavesdropping. Since 1917, cryptographers

have been using a private key2 with the one-time pad algorithm to secure strings

of bits (classical information). The Morse code, the Enigma machine, and the RSA

algorithm3 are other milestones in the vast history of cryptography. The RSA algo-

rithm was publicly announced in 1978, where the security relies on the assumption

that the eavesdropper has a limited computational power. The first Quantum key

distribution (QKD) protocol was introduced in 1984 by Charles Bennett and Gilles

Brassard, now referred as BB84 [11]. Through a QKD protocol, private key bits

can be generated over a public channel. The key bits can then be used for a clas-

sical private key cryptosystem with the one-time pad algorithm. Here, the laws of

quantum mechanic insure the secure communication.

The superiority of quantum mechanics over classical mechanics is two folded in

cryptography. On one hand, purely classical cryptography (the RSA cryptosystem)

is vulnerable to the quantum attacks (using the Shor’s factoring algorithm [33]).

On the other hand, the BB84 QKD protocol is provably secure. Later, in 1991,

Artur Ekert introduced the entanglement-based protocol for QKD [12]. Both the

QKD protocol are different sides of the same coin (equivalent).

In 1992, Charles Bennett and Stephen Wiesner demonstrated the transfer of two

bits of classical information using only one qubit, with the aid of quantum entangle-

ment in superdense coding [13]. An unknown quantum state can be disassembled

and perfectly reconstructed in another location, with the aid of quantum entan-

glement, by sending two bits of classical information. This, in 1993, is explained

as quantum teleportation [14]. As quantum information has found many powerful

applications, it was necessary to generalize the basic ideas, like Shannon’s theorem,

of classical information theory to the quantum regime.

2The key distribution lies at the heart of cryptography.
3The RSA (Rivest, Shamir and Adleman) algorithm is used for public-key cryptography, which

relies on the difficulty to factorize large numbers.
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In 1995, Benjamin Schumacher developed a quantum version of Shannon’s noise-

less channel coding theorem [5]. However, a quantum version of Shannon’s noisy

channel coding theorem is not yet known. Nevertheless, quantum error-correction

theory—based on classical linear coding theory—has been developed [6, 7, 8, 9, 10],

which allows the protection of information during computation as well as com-

munication in the presence of noise. Thus, clearly, quantum information has the

upper hand over classical information for security, and the entanglement-assisted

communication is impossible in the classical regime [15].

Let us now turn our attention to another strand of the information science,

computation, on which this thesis is focused. A building block for computation

(to perform calculations or to execute algorithms) is the computation model. An

algorithm is a procedure to perform a certain task on a computer. Algorithms are

independent to the computational model, and vice versa.

Before the World War II, researchers like Alan Turing were studying cryptogra-

phy and felt the need for fast computation to decode encrypted messages. In 1937,

Alan Turing introduced the first abstract (mathematical) notion of a programmable

CC—known as Turing machine4 [16]. He and Alonzo Church showed that there is

a universal Turing machine that can be used to simulate any other Turing machine.

The strong form of this statement—called the strong Church-Turing thesis5—can

be rewritten as follows:

Any algorithmic process (or computational model) can be simulated “efficiently6”

by using a Turing machine [1].

Around 1945, John von Neumann established a basic theoretical model of a

computer—known as the von Neumann architecture—in which the necessary com-

4This idea came to Alan Turing from the question “Is there a mechanical process which can
be applied to a mathematical statement?” posed by M. H. A. Newman’s lectures.

5The Church-Turing thesis is a conjecture.
6Basically, an algorithm is called efficient if it takes a time to solve a problem that is polynomial

in the size of problem. However, if the required time is super-polynomial or exponential then the
algorithm is called inefficient.
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Chapter 1. Introduction

ponents of a computer such as input devices (keyboard, mouse, scanner), processor

(CPU), main memory (RAM), auxiliary storages (disk drives), and output devices

(monitor, printer) are assembled in such a practical fashion that it becomes as ca-

pable as a universal Turing machine. Since then, the development of computer

hardware made of electronic components has been following an amazing pace, and

every modern day computer uses the von Neumann architecture.

The strong Church-Turing thesis emphasizes efficiency and thus, the Turing ma-

chine has become a very useful model for investigating computational complexity.

During the 1970s, the discovery of randomized algorithms7 posed a challenge on the

strong Church-Turing thesis. There are problems efficiently solvable by randomized

algorithms, which, nevertheless, cannot be efficiently solved on a deterministic Tur-

ing machine. This challenge led to a small modification in the strong Church-Turing

thesis:

Any algorithmic process can be simulated efficiently using a probabilistic Turing

machine [1].

After this, it was completely natural to ask whether it is possible to find a

computational model that can efficiently solve a computational problem that has

no efficient solution on a CC or even a probabilistic Turing machine. In 1982,

Richard Feynman [17], followed by David Deutsch [19], presented their response

to this question. Feynman conjectured that it is advantageous to use a computer

based on the principles of quantum mechanics, a quantum computer (QC), over

a CC for simulating quantum mechanical systems. In 1982, Paul Benioff gave a

classical model that could be efficiently simulated on a Turing machine, but to

make it reversible he proposed to use a quantum system [18].

In 1985, David Deutsch introduced the first model of QC, universal quantum

Turing machine [19], that can do certain tasks which are impossible for the universal

7In addition to input, a randomized algorithm takes a source of random numbers to make
random choices during execution and gain the performance. For example, search over an unsorted
database can be completed by an efficient randomized algorithm.
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Turing machine. This includes generation of genuine random numbers, parallel cal-

culations with a single register, perfect simulation of quantum systems, etc. David

Deutsch reported the second model for quantum computation in 1989, the so-called

quantum circuits model [20]. Hereafter, the quantum circuits model is referred to

as unitary-evolution-based quantum computation model (UQCM) in this work and

is discussed in Chapter 2.

In the UQCM, quantum unitary gates can be combined to achieve a QC in

the same way as logic gates can be combined to achieve a CC. The UQCM can

compute anything that the quantum Turing machine can do, and vice versa. Both

are universal. In 1995, Adriano Barenco and others proved that any quantum circuit

can be constructed using nothing more than quantum gates on one qubit and the

controlled-not (cnot) gates on two qubits. This limited but sufficient set of gates

is named a universal set of gates [23].

In 2001, Robert Raussendorf and Hans Briegel introduced the measurement-

based quantum computation model (MQCM8) [37], which is explained in Chap-

ter 3. In the MQCM, a sufficiently large highly entangled multiqubit state, the

(two-dimensional square) graph state9 [35, 36], is employed as the central physical

resource for (universal) quantum computation on which any quantum algorithm

can be simulated by single-qubit projective measurements. The details of an algo-

rithm under simulation lie in the spatiotemporal pattern of single-qubit measure-

ment bases. Also, it is necessary to keep the record of every measurement outcome

with a CC for setting the next measurement bases. This is in order to run the

computation deterministically and to interpret the final result—called the classical

information processing10 in the MQCM [39]. To make the discussion complete, let

us now move to quantum algorithms.

8The MQCM is also known as one-way quantum computation model, because its resource state
can be used only once.

9Cluster state is a special case of the graph state.
10It is also called as classical feedforward.
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After the UQCM, in 1992, David Deutsch and Richard Jozsa proposed the first

quantum algorithm11, which runs faster than its classical analog [31]. In 1994,

Daniel Simon introduced a problem12, which a quantum algorithm can solve expo-

nentially faster than any known classical algorithm [32]. Inspired by this research,

Peter Shor invented the polynomial-time algorithms for factorizing large numbers

and the discrete logarithms [33]. These problems are widely believed to require

an exponential amount of time on a CC. Therefore, Shor’s factoring algorithm has

been a legitimate threat to the classical cryptography based on the RSA encryption.

Later, in 1997, another highly influential quantum algorithm, Grover’s algorithm

(GA) [34] for the quantum search [see Sec. 6.2]—quadratically faster than its clas-

sical counterpart—was invented. Hence, a large-scale QC will be able to solve cer-

tain problems with quantum algorithms and to simulate physical systems efficiently

(much faster and with fewer resources than any CC).

Often, each step of a quantum algorithm is represented by a complex unitary

gate. The efficiency of an algorithm is then derived in terms of the number of

such gates. Even though, an algorithm does not rely on computation models, the

realization of each complex unitary gate (step) of a quantum algorithm with one

computation model can be advantageous over others in terms of resources. Op-

timization of resources such as qubits, entanglement, elementary operations and

measurements is necessary for an efficient experimental implementation of an algo-

rithm. Let us now review the UQCM [see Chapter 2] and the MQCM [see Chapter 3]

by considering experimental optimization.

Both the UQCM and the MQCM are universal, can simulate each other and

possess their own advantages. On one hand, no preparation of a resource state

and classical information processing is required in the UQCM. On the other hand,

measurements in the MQCM are simpler to execute than unitary gates to perform

11The Deutsch-Jozsa algorithm determines whether a function f is constant (equals to 1 or 0
over all the inputs) or balanced (equal to 1 for the half of inputs and equal to 0 for the other half).

12Basically, the Simon’s algorithm is for finding a period under bitwise modulo-2 addition.
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the computation. In practice, the difficult part in UQCM is to implement multiqubit

gates, while for the MQCM it is to prepare a universal graph state. The bigger the

graph state, the more difficult it is to control and protect it from noise. Based on

these observations, to fulfill the need for experimental optimization, we introduce

hybrid quantum computation model (HQCM) [41] in Chapter 4.

The HQCM employs the MQCM only to implement certain multiqubit gates,

which are complicated in the UQCM. These multiqubit gates are realized by prepar-

ing small (non-universal) graph states in one go followed by single shot of measure-

ments in the HQCM [see Sec. 3.1.5]. The implementation of an arbitrary single-

qubit operation is rather straightforward in the UQCM, but it requires a chain of

five qubits graph state in the MQCM [see Sec. 3.1.3]. Therefore, the HQCM chooses

unitary evolution from the UQCM to execute single-qubit gates. Furthermore, the

two-qubit controlled-z (cz) operations themselves are part of the experimental setup

for constructing the graph states [see Sec. 3.1.1], and for this, we have to execute

them with unitary evolution.

In conclusion, the set of single-qubit, the cz and certain multiqubit gates is a set

of elementary gates for the HQCM. In the HQCM, every complex unitary gate (of

an algorithm) is written down in a sequence of the elementary gates, and they are

carried out one after the other. The HQCM exploits the MQCM [37, 38, 39, 40] for

executing the multiqubit gates and the UQCM [20, 21, 23] for executing single-qubit

and the cz gates.

Wherever measurements are involved in quantum information processing tasks

(e.g., the quantum teleportation, the MQCM) classical information processing be-

comes crucial. Therefore, the second objective for this investigation is to develop a

better understanding of the classical information processing in the HQCM, where

part of a quantum circuit is simulated by unitary evolution and the rest by measure-

ments on small graph states. The classical information processing in the HQCM

turns out rather simple in comparison with the MQCM. It requires only the infor-

9



Chapter 1. Introduction

mation flow vector and the propagation matrices for the elementary gates. Fur-

thermore, the total number of steps taken by a CC for the classical information

processing is the total number of elementary gates in the decomposition of a com-

plex unitary gate. No preprocessing or additional computational steps are required

here.

We not only need a universal and scalable computation model but also need a

fault-tolerant13 model [25, 26, 27, 28] for building a proper QC. Chapter 5 contains

the basic ideas for a fault-tolerant version of the HQCM. Where, we provide certain

methods to implement encoded elementary gates within the hybrid model by taking

the Steane 7-qubit code [7]. Besides, the classical information-processing parts of

HQCM turns out completely suitable for its fault-tolerant version. These parts

need the same information flow vector and the same propagation matrices, nothing

more. This completes the introduction of Part I of this thesis. Let us now move to

Part II, which is concerned with the quantum search problem.

In the quantum search problem [see Chapter 6], one has to find which one from

a permissible set of unitary operators—the oracles—is employed by a given black

box without actually opening the box. As stated before, the best performance for

this search is provided by GA [34, 64] over its classical analog which is based on

the hit and trial method. GA shows a quadratic speedup, but the answer from GA

is the correct one, only with a high probability, not with certainty. It is, therefore,

necessary to verify the answer.

Our prime motive for this investigation is not to speedup, but to design a test

that confirms the answer produced by GA. This verification can be done with the

aid of the test states. One such test state for each oracle is introduced in Chapter 7

[42]. The verification is a three-step process called a single iteration of the test-state

approach. First, the test state corresponding to the GA-outcome is prepared. Sec-

13A device that works effectively even when its elementary components are imperfect is said to
be fault tolerant.

10



ond, it is passed through the given black box. Finally, a measurement is performed

to get a simple “yes/no” answer. As in the classical case, this measurement says

“yes” or “no” if the test state matches the oracle or not. In conclusion, GA with the

test-state verification [see Sec. 7.3] successfully terminates the search earlier than

the purely GA. Thus, the performance of GA gets improved about 25%.

The test states can also be used for a classical-type search of the quantum data

set (that is, the set of oracles)—called the test-state search [see Sec. 7.2]. In marked

contrast to the purely classical approach, however, there are different “no” answers

depending on the actual oracle and the measurement extracts the available informa-

tion about the most probable oracle. The choice of test state for the next iteration

is then guided by this gained information, and this guidance leads to a substantial

reduction of the average number of trials needed before the successful termination

of the search. The test-state approach to the quantum search is deterministic—it

will give the correct answer after a finite number of oracle queries—and 3.41 times

faster than the purely classical search. Since the test-state approach [of Chapter 7]

and GA look for the same oracle, the average number of the black box queries of

the test-state approach is the classical benchmark for GA. Chapter 8 concludes this

thesis, and three appendixes contain the required additional material.
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Chapter 2

The unitary-evolution-based

quantum computation model

A computer is a machine which stores input data, then processes it according to

a set of instructions, and provides the output in a useful format in the end of

computation [1, 2, 24]. Every computer is a composition of hardware on which in-

formation is processed and software by which information is processed. Hardware is

the physical part of a computer, while software is a collection of computer programs

(algorithms) designed to perform a required task. A QC is a device for computation

that uses the fundamental concepts of quantum mechanics—such as superposition,

the Heisenberg uncertainty principle, entanglement, etc., [see Sec. 2.1.1]—to process

data. In other words, a QC emerges when the computation is executed under the

framework of quantum mechanics [see Sec. 2.1.2].

There are several models for quantum computation. But the most widely used

for practical reasons is the quantum circuit model or UQCM [20, 21, 23]. It is the

quantum edition of the reversible classical circuit model [see Appendix A]. In the

step from classical to quantum, the bits are replaced by qubits [see Secs. 2.2.1, 2.3.1,

2.4.1], and the logic gates are replaced by quantum gates (coherent unitary evolu-

tion) [see Secs. 2.2.2, 2.3.2, 2.4.2]. Unlike bits, qubits can exist in a superposition of

15



Chapter 2. The UQCM

different computational states. Unlike the logic gates, the quantum gates are able

to create and destroy a superposition as well as an entanglement.

Computation in the UQCM is run by a sequence of unitary gates and represented

by its circuit diagram, where the connecting wires stand for the (logical) qubits or

bits which carry the information, and the information is processed by the sequence

of quantum gates. In the end, the result of the computation is read out by the

projective measurements [see Sec. 2.2.3] on the qubits. The problem of designing

quantum algorithms is largely the task of designing the corresponding quantum

circuits.

The task of a QC is to simulate a quantum circuit or realize an arbitrary unitary

operation on an input state. The UQCM is a universal quantum computational

model in the sense that it can simulate any quantum circuit or realize any unitary

operation [see Sec. 2.4.3].

2.1 Overview of quantum mechanics

2.1.1 Properties of quantum systems

• Superposition: A quantum system can exist in all of its possible quantum

states simultaneously. Consequently, one must include every possible state

with the associated probability of finding the system in that state to de-

scribe the complete state of system. Because of the superposition principle,

many quantum algorithms—such as Deutsch’s algorithm [31], GA [34] (also,

see Sec. 6.2), and Shor’s factoring algorithm [33] narrated in terms of the

UQCM in the well-known textbook by Nielsen and Chuang [1]—are much

faster than their classical analogs to solve some computational problems1.

The superposition principle reveals the fact that quantum mechanics is a lin-

1This is also called quantum parallelism, where a QC simultaneously calculate the value of a
given function for every possible input in a single run without any extra hardware.
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2.1. Overview of quantum mechanics

ear theory. In quantum mechanics, evolution of a (isolated) system is given by

the Schrödinger’s equation [see Eq. (2.5)], which is a linear differential equa-

tion. Furthermore, physical quantities (observables) in quantum mechanics

are represented by linear operators on the Hilbert space.

• Indeterminism: Quantum mechanics can only give the probability of finding

a system in a state. In a deterministic theory, like classical mechanics, if a

perfect knowledge of the state of a system is provided, one can (in principle,

even without performing a measurement) determine the measurement results

with certainty. In classical mechanics, probabilities are used only to describe

situations where one’s knowledge is incomplete. On the contrary, in quantum

mechanics, when the same measurement is performed on several identically

prepared systems, then one can not expect the same measurement outcome.

This is not because of the lack of information about the state of system; rather,

the measurement outcomes are intrinsically random and unpredictable. In a

nutshell, quantum mechanics is indeterministic but, nevertheless, a casual

theory2.

• Uncertainty: “Certain pairs of physical quantities in quantum mechanics,

such as the spin of an electron in two orthogonal directions, cannot be simul-

taneously known to arbitrarily high precision” is the principle of uncertainty.

The more precisely one quantity is measured, the less precisely the other can

be measured. This idea is used in the QKD protocol BB84 [11].

• Quantum entanglement: It is possible that the subsystems of a compos-

ite quantum system do not have definite “properties3,” whereas the composite

system does. In this situation, the subsystems are said to be entangled. More-

over, quantum entanglement cannot be created by local operations on the

2In a casual theory, the current state of a system implies the future state. In quantum me-
chanics, causality is given by the unitary evolution of a system [see Eq. (2.4)].

3But, of course, the subsystems do have well-defined mixed states.
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Chapter 2. The UQCM

subsystems. It plays a very crucial role in the field of quantum information

[15]—the Ekert’s protocol of QKD [12], the superdense coding [13], and the

quantum teleportation [14]—as well as in the field of quantum computation—

the MQCM [37, 38] given in Chapter 3.

• Discrete spectra of bound systems: When a quantum system is in a static

potential, only certain discrete energy levels are allowed4. An isolated hydro-

gen atom and an electron in static magnetic field are the examples of a bound

system with discrete spectrum. This discreteness is very useful in quantum

communication and computation. For instance, the simplest quantum system

is the two-level quantum system, which we call qubit [see Sec. 2.2]. It is the

quantum analogous to a classical bit that can take on one of the two possible

values 0, 1.

2.1.2 Postulates of quantum mechanics

The following four postulates of quantum mechanics consider the system in a pure

state. Their generalization to mixed states5 can be found in the well-known text-

book by Nielsen and Chuang [1]. Throughout this thesis, Dirac’s bra-ket notation

is used to describe pure quantum states, and density matrices are used to describe

mixed quantum states.

Postulate 1: State space

Every isolated physical system has an associated Hilbert space HN of some

dimension N , known as the state space of the system. The system is completely

described by its state vector (ket) |ψ〉, which is a normalized vector in HN :

〈ψ|ψ〉 = 1.

4Note that the scattering states exist in the continuum, of course, not in the square-integrable
Hilbert space.

5A mixed quantum state is a statistical ensemble of pure states. A quantum state described by
a density operator ρ is pure if Tr(ρ2) = 1 or mixed if Tr(ρ2) < 1, where Tr is the trace operation.
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2.1. Overview of quantum mechanics

An arbitrary state with ket |ψ〉 of a given system can be written down in a

linear combination of an orthonormal basis

SNQ :=
{
|0〉, . . . , |j〉, . . . , |N − 1〉

}
(2.1)

of the Hilbert space HN in the following form

|ψ〉 =
N−1∑
j=0

aj |j〉 , (2.2)

where aj are complex numbers6 called probability amplitudes. The probability

of finding the system in the state |j〉, if a projective measurement7 in the basis

SNQ is performed, is given by |aj|2. Furthermore, all these probabilities add

up to one,
N−1∑
j=0

|aj|2 = 1 , (2.3)

which is nothing but the normalization condition.

For the case of N = 2n, the pure state |ψ〉 of Eq. (2.2) will be an arbitrary

n-qubit state, and the set SNQ of Eq. (2.1) becomes the computational basis

[see Sec. 2.4.1]. Later on, in Chapters 6 and 7, the elements of SNQ are called

“index kets,” where the subscript Q stands for quantum.

Postulate 2: Evolution

The time-evolution of a closed quantum system is given by a unitary operator

U8. This means that the state |ψin〉 of system at time t1 is related to the state

|ψout〉 at a later time t2 (> t1) by a unitary operator U(t2, t1) which depends

only on the times t2 and t1,

|ψout〉 := U(t2, t1) |ψin〉 . (2.4)

6Multiplication of a global phase to any ket has no observable physical consequences.
7Projective measurement is discussed in Postulate 3.
8U†U = UU† = I, where U† is the adjoint U , and I is the identity operator in HN .
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Chapter 2. The UQCM

The time-evolution of a closed system can also be given by the Schrödinger’s

wave equation

i~
∂ψ

∂t
= Hψ , (2.5)

where ~ is the Planck’s constant, ψ is the wave function corresponding to the

ket |ψ〉, and H is a Hermitian operator (H = H†) known as the Hamiltonian

of system. In the case of time independent Hamiltonian, H is associated with

the unitary operator U(t2, t1) of Eq. (2.4) by

U(t2, t1) := exp

[
−iH (t2 − t1)

~

]
. (2.6)

The UQCM is largely based on Eq. (2.4), where an initialized input state

|ψin〉 is transformed into the output state |ψout〉 by applying a required uni-

tary operation U(t2, t1), which is realized by the corresponding Hamiltonian

H of Eq. (2.6) in a laboratory. Finally, the output is read by measurements

as described below. In quantum mechanics, unitary evolutions are casual

(reversible processes), while measurements are probabilistic (irreversible pro-

cesses).

Postulate 3: Measurement

Quantum measurements are given by a collection of measurement operators{
Mm

}
, which acts on the Hilbert space HN of the system being measured. The

measurement operator Mm corresponds to the measurement outcome m that

may occur in the experiment. If the state of the given system is |ψ〉 immedi-

ately before the measurement then the probability of obtaining the outcome m

is given by

prob(m) = 〈ψ|M †
mMm |ψ〉 , (2.7)
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2.1. Overview of quantum mechanics

and after the measurement the state |ψ〉 gets projected onto the state

|ψm〉 =
Mm |ψ〉√

〈ψ|M †
mMm |ψ〉

(2.8)

in the idealized case of quantum non-demolition measurement9.

Furthermore, all these probabilities add up to one,

∑
m

prob(m) =
∑
m

〈ψ|M †
mMm |ψ〉 = 1 . (2.9)

And, the completeness relation,

∑
m

M †
mMm = I , (2.10)

is the consequence of Eq. (2.9), where I is the identity operation in the N -

dimensional Hilbert space HN .

The general description of measurements given above can be rewritten in

terms of the probability-operator measurement (POM) formalism [58, 59],

where the POM elements Πm associated with the measurement operators Mm

are defined as

Πm := M †
mMm . (2.11)

The set
{

Πm

}
with the completeness relation of Eq. (2.10),

∑
m Πm = I, is

known as the POM, and its elements are non-negative self-adjoint operators

(Π†m = Πm ≥ 0) on the Hilbert space.

Generally, the measurement operators Mm are not orthogonal to each other,

whereas a projective measurement is the special case of the POM in the sense

that the measurement operators Mm are orthogonal to each other. Hence, the

9Quantum non-demolition measurement represents the ideal case of measurement, where the
measured system is not destroyed by the measurement, but, of course, the state vector collapses.
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operators Mm are Hermitian, M †
m = Mm, and satisfy the additional condition

MmMm′ = Mm δm,m′ (2.12)

with the completeness relation given by Eq. (2.10), where δm,m′ is the Kro-

necker delta10. Consequently, all the POM elements are the same as the mea-

surement operators in the case of projective measurement: P †m Pm = Pm, it is

customary to call the measurement operators Pm of a projective measurement

as projectors.

Single-qubit projective measurements are discussed in Sec. 2.2.3, which are

employed in Chapters 3 and 4 to run the computation. In Chapter 7, the

POM and projectors are used to extract information.

Postulate 4: Composite system

The state space of a composite physical system is the tensor product of the state

spaces of the component physical systems. For example, if two subsystems a

and b are in states with the kets |ψ〉 and |φ〉 which lie in the state spaces Ha

and Hb, respectively. Then, their joint system with its associated state space

Hab := Ha ⊗Hb is in a product state with the ket |ψ〉 ⊗ |φ〉. Furthermore, if

both the subsystems evolve under the influence of a joint Hamiltonian, then

in general they will get entangled. The Bell states given by Eqs. (2.42) below

are the examples of maximally entangled two-qubit quantum states, and the

graph states used in Chapters 3 and 4 are multiqubit entangled states.

10δm,m′ = 1 for m = m′, and δm,m′ = 0 for m 6= m′.
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2.2. Two-level quantum system: Qubit

2.2 Two-level quantum system: Qubit

2.2.1 Single-qubit state vector

The bit is the fundamental unit of classical information, it can either be in a state

0 or 1. Similarly, the qubit is the fundamental unit of quantum information. It

is a two-dimensional quantum system, e.g., the two energy levels of the hyperfine

splitting, the electron spin, the polarization of a photon, the presence or absence

of a photon in a cavity, etc. A natural basis of the two-dimensional state space

is
{
|0〉, |1〉

}
, the so-called computational basis. Unlike bit, qubit can exist in a

superposition (linear combination),

|ψ(1)〉 := a0 |0〉+ a1 |1〉 , (2.13)

in the computational basis, where |a0|2 and |a1|2 are the probabilities of finding the

qubit in the kets |0〉 and |1〉, respectively11. For a normalized state, 〈ψ(1)|ψ(1)〉 = 1,

these probabilities add up to one: |a0|2 + |a1|2 = 1.

Bloch sphere representation of a single-qubit state: Having a0 = cos
(

1
2
θ
)

and

a1 = eiϕ sin
(

1
2
θ
)

to attach the following geometrical representation to an arbitrary

single-qubit (pure) state, the ket |ψ(1)〉 of Eq. (2.13) can be rewritten as

| ↑ (θ, ϕ)〉 := cos
(

1
2
θ
)
|0〉+ eiϕ sin

(
1
2
θ
)
|1〉 . (2.14)

The single-qubit (pure) state with ket

| ↓ (θ, ϕ)〉 := − sin
(

1
2
θ
)
|0〉+ eiϕ cos

(
1
2
θ
)
|1〉 (2.15)

is orthogonal to the ket | ↑ (θ, ϕ)〉, and together they provide an alternative choice

11The index 1 of |ψ(1)〉 represents that the ket corresponds to a single-qubits state.
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Figure 2.1: The Bloch vector ~r(θ, ϕ) is depicted by the black arrow in the Bloch sphere.

of an orthonormal basis

Bθ,ϕ :=
{
| ↑ (θ, ϕ)〉, | ↓ (θ, ϕ)〉

}
(2.16)

for a two-dimensional quantum system. These two parameters θ and ϕ which define

the basis Bθ,ϕ, also define a pair of points on the boundary of unit three-dimensional

sphere, known as the Bloch sphere12. The point on the boundary of the Bloch sphere

corresponds to the ket | ↑ (θ, ϕ)〉—is given by the unit vector

~r(θ, ϕ) :=
(
sin θ cosϕ, sin θ sinϕ, cos θ

)
, (2.17)

called as the Bloch vector—is shown in Fig. 2.1, and its antipodal point represents

its orthogonal ket | ↓ (θ, ϕ)〉.

Therefore, the Bloch sphere is a geometrical representation of the state space

of a two-dimensional quantum system. This is because, there exist a one-to-one

correspondence between the special unitary group SU(2) and the rotation group

SO(3). And, that is why any single-qubit unitary operation (up to a global phase)

12The points on the boundary and in the interior of the Bloch sphere represent single-qubit pure
and mixed states, respectively.
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can be thought of a rotation of the Bloch sphere [see Eq. (2.20)]. A discussion of

single-qubit unitary operations is given in the next section.

2.2.2 Single-qubit unitary operations

In the case of a single classical bit, there exist only two reversible logic gates: The

trivial gate, which does not do anything, and the not gate (or, the bit-flip gate),

which changes 0 into 1, and vice versa. In the quantum regime—every gate has to be

a unitary operation13—the single-qubit identity operator I and the Pauli operator

X act as the trivial gate and the bit-flip gate, respectively. In addition to these,

there exist many non-trivial single-qubit gates—such as the Pauli operators Z and

Y , called the phase-flip and bit-phase-flip gates, respectively—which do not have

any classical analog.

Any single-qubit operation [see Eq. (2.20)] can be described as a linear combina-

tion the single-qubit identity operator I and the single-qubit Pauli vector operator

~σ := (σx, σy, σz) := (X, Y, Z) , (2.18)

whose matrix forms in the computational basis representation are

I :=

 1 0

0 1

 , X :=

 0 1

1 0

 ,

Y :=

 0 −i

i 0

 , Z :=

 1 0

0 −1

 . (2.19)

Consequently, every single-qubit operation can be represented by a 2× 2 uni-

tary matrix. Properties of the Pauli operators are listed in Table 2.1, where

j, k, l ∈ {x, y, z}, and εjkl and δjk are the Levi-Civita symbol14 and the Kronecker

13Strictly speaking, only the completely positive and trace preserving maps are allowed in quan-
tum mechanics, which can be thought of unitary operations in a higher dimension Hilbert space.

14εjkl = 0 except for εxyz = εyzx = εzxy = 1, and εzyx = εyxz = εxzy = −1.
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Table 2.1: Properties of the single-qubit Pauli operators

σ†j = σj Hermitian

σ†j σj = σj σ
†
j = I Unitary

σj σk − σk σj = 2i
∑

l εjkl σl Noncommutative
σj σk + σk σj = 2 δjk I Anticommutative

det(σj) = −1 Determinant
Tr(σj) = 0 Traceless

delta, respectively. Furthermore, the identity operator I and the Pauli operators of

Eq. (2.18) with the multiplicative factors ±1,±i form the Pauli group on a single

qubit.

The most general single-qubit unitary operation (up to a global phase) is the

single-qubit rotation around an axis ~r(θ, ϕ) [as defined in Eq. (2.17) and shown in

Fig. 2.1] by an angle υ

R~r(υ) := exp
(
−iυ

2
~r · ~σ

)
= cos

(
1
2
υ
)
I − i sin

(
1
2
υ
)
~r · ~σ . (2.20)

The operation R~r(υ) is called rotation, because its effect on a single-qubit state

represented by the Bloch vector ~n is the rotation of ~n by an angle υ about the axis

~r of the Bloch sphere.

The Euler decomposition: This rotation R can be decomposed further into three

elementary rotations15 as

R(α, β, γ) := Rz(γ)Rx(β)Rz(α) , (2.21)

where the angle parameters θ, ϕ of Eq. (2.17) and υ of Eq. (2.20) are related to the

15Where Rz(α) = exp(−iαZ/2), Rx(β) = exp(−iβX/2), and Rz(γ) = exp(−iγZ/2).
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Figure 2.2: The action of quantum gates X, Z and H on the input state |ψ(1)〉 of Eq. (2.13) is
depicted. The kets |±〉 are given by Eq. (2.28) below [1].

angle parameters α, β, γ of Eq. (2.21) by

ϕ = 1
2
(γ − α) ,

cos
(

1
2
υ
)

= cos
(

1
2
β
)

sin
(

1
2
(γ + α)

)
,

sin
(

1
2
υ
)

sin
(
θ
)

= sin
(

1
2
β
)
. (2.22)

In addition, the Pauli operators X, Y , and Z are the rotations by angle π around

the x, y, and z axis, respectively.

Another very important single-qubit quantum gate—without analog in classical

computation and heavily used in quantum computation—is the Hadamard gate

H :=
X + Z√

2
=

1√
2

 1 1

1 −1

 ; (2.23)

which interchanges the bases16 of X and Z:

HXH = Z , HY H = −Y , HZH = X . (2.24)

The functioning of the X, Z, and H gates on a general single-qubit input state

|ψ(1)〉 of Eq. (2.13) is shown in Fig. 2.2.

16H|0〉 = |+〉, H|1〉 = |−〉, and [H]2 = I, where the ket |±〉 is given by Eq. (2.28) below.
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2.2.3 Single-qubit projective measurements

As stated in Postulate 3 of Sec. 2.1.2 above, the measurement operator for a pro-

jective measurement are projectors. The single-qubit projectors are of the form

Pm :=
I + (−1)m ~r · ~σ

2
, (2.25)

where the measurement outcomes m = 0 and m = 1 mean that the measured qubit

is projected onto the states with the kets | ↑ (θ, ϕ)〉 of Eq. (2.14) and | ↓ (θ, ϕ)〉 of

Eq. (2.15), respectively. As a side remark, the kets | ↑ (θ, ϕ)〉 and | ↓ (θ, ϕ)〉 are the

eigenkets of the observable ~r · ~σ which appears on the right-hand side of Eq. (2.25),

and the corresponding eigenvalues are (−1)m for m = 0 and m = 1. For example,

the eigenvalue equations for the single-qubit Pauli operator Z is

Z |0〉 := +|0〉 , Z |1〉 := −|1〉 , (2.26)

and for the single-qubit Pauli operator X it is

X |+〉 := +|+〉 , X |−〉 := −|−〉 , (2.27)

where

|±〉 :=
|0〉 ± |1〉√

2
. (2.28)

The single-qubit projective measurement associated with Pm is called measure-

ment in the basis Bθ,ϕ of Eq. (2.16), measurement of the ~r · ~σ observable, or mea-

surement along the axis specified by the Bloch vector ~r(θ, ϕ) of Eq. (2.17). In other

words, the choice of measurement basis is characterized by the direction (axis) of

measurement ~r(θ, ϕ), which is completely specified by the two parameters θ and ϕ

in the Bloch sphere [see Fig. 2.1]. Single-qubit projectors will be used in Chapters 3

and 4 to execute the computation.
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2.3 Two-qubit quantum system

2.3.1 Two-qubit state vector

An arbitrary pure state of a two-qubit system ab with a ket |ψ(2)〉ab lies in the

four-dimensional Hilbert space Hab
4 := Ha

2 ⊗Hb
2, which is made of two copies of the

single-qubit Hilbert space H2. The corresponding computational basis is a set of

|0〉 ≡ |00〉ab ,

|1〉 ≡ |01〉ab ,

|2〉 ≡ |10〉ab ,

|3〉 ≡ |11〉ab , (2.29)

where the right-hand sides of Eqs. (2.29) are the binary representation of the

left-hand sides, the ket |00〉ab is the short-hand notation for the tensor product

|0〉a ⊗ |0〉b, and the same notation applies elsewhere. An arbitrary ket |ψ(2)〉ab can

be written down in a linear combination of these computational basis as

|ψ(2)〉ab := a0 |00〉ab + a1 |01〉ab + a2 |10〉ab + a3 |11〉ab

= |0〉a ⊗ |χ0〉b + |1〉a ⊗ |χ1〉b ; (2.30)

where

|χ0〉b = a0 |0〉b + a1 |1〉b ,

|χ1〉b = a2 |0〉b + a3 |1〉b , (2.31)

and |a0|2 + |a1|2 + |a2|2 + |a3|2 = 1.

The Schmidt decomposition of a bipartite pure state [2]: The application of a

singe-qubit unitary operator U (a)—which operates only on qubit a, and whose action
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Chapter 2. The UQCM

on the computational basis is of the form

U (a)|0〉a := µ |0〉a + ν |1〉a ,

U (a)|1〉a := −ν∗ |0〉a + µ∗ |1〉a (2.32)

with |µ|2 + |ν|2 = 1—transforms the ket |ψ(2)〉ab as

U (a)|ψ(2)〉ab = |0〉a ⊗ |χ̃0〉b + |1〉a ⊗ |χ̃1〉b ; (2.33)

where

|χ̃0〉b = µ |χ0〉b − ν∗ |χ1〉b ,

|χ̃1〉b = ν |χ0〉b + µ∗ |χ1〉b . (2.34)

The coefficients µ and ν of U (a) are chosen in such a way that the kets |χ̃0〉b and

|χ̃1〉b becomes orthogonal to each other, b〈χ̃1|χ̃0〉b = 0, which implies

µ2〈χ1|χ0〉 − ν∗2〈χ0|χ1〉+ µν∗
(
〈χ0|χ0〉 − 〈χ1|χ1〉

)
= 0 . (2.35)

If 〈χ1|χ0〉 6= 0, then Eq. (2.35) becomes a quadratic equation for µ
ν∗

, which has

two complex solutions. If µ of Eqs. (2.32) is a nonzero complex number, then either

solution of Eq. (2.35) determines ν with the condition |µ|2 + |ν|2 = 1, and then both

µ and ν defines the single-qubit unitary transformation U (a). If 〈χ1|χ0〉 = 0, then

Eqs. (2.30) and (2.33) have the same form, consequently U (a) = I.

Subsequently, normalization of the kets |χ̃0〉b and |χ̃1〉b gives |χ̄0〉b = |χ̃0〉b/c0

and |χ̄1〉b = |χ̃1〉b/c1, where the normalization constants c0 and c1 are called the

Schmidt coefficients. Hence, the set
{
|χ̄0〉b, |χ̄1〉b

}
form the basis for qubit b. They

are, therefore, related to the computational basis
{
|0〉b, |1〉b

}
by a single-qubit uni-
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2.3. Two-qubit quantum system

tary transformation V (b):

V (b)|0〉b := |χ̄0〉b ,

V (b)|1〉b := |χ̄1〉b . (2.36)

Equation (2.33) then gives

|ψ(2)〉ab = U (a)†V (b)
[
c0|00〉ab + c1|11〉ab

]
, (2.37)

which is the Schmidt decomposition of the pure state |ψ(2)〉ab of Eq. (2.30). The

Schmidt decomposition exists for every bipartite pure state, while the unitary trans-

formations U (a), V (b) and the Schmidt coefficients c0, c1 depend on the given bipar-

tite pure state. Furthermore, the number of terms in the Schmidt decomposition

(or the number of nonzero Schmidt coefficients) is called the Schmidt number. If

the Schmidt number is more than one, the given bipartite pure state is entangled

(or nonseparable); otherwise, it is separable (or unentangled).

2.3.2 Two-qubit unitary operations

In case of two qubits, controlled-unitary operations,

ΛaU (b) := |0〉a〈0| ⊗ I(b) + |1〉a〈1| ⊗ U (b) , (2.38)

are the most useful quantum gates [see Figs. 2.3(i) and 2.4], where the labels a and

b are for the control and target qubits, respectively. ΛaU (b) applies the single-qubit

unitary operation U (b) on the target qubit b if and only if the control qubit a is in

the ket |1〉a. When the control is set to the ket |0〉, then the corresponding gate

will be ∆aU (b) := X(a)
[
ΛaU (b)

]
X(a); throughout the thesis, the symbols ∆ and Λ

are used to represent the control is set to the kets |0〉 and |1〉, respectively. The
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U X Z 

(i) (ii) (iii) 

a 

b 

a 

b 

a 

b 

Figure 2.3: (i), (ii), and (iii) represent the two-qubit quantum gates ΛaU (b), cnot(a, b), and
cz(a, b), respectively. Where the labels a and b are for the control and target qubits, and the
controls are set to |1〉a.

two-qubit gate

cnot(a, b) := ΛaX(b) = |0〉a〈0| ⊗ I(b) + |1〉a〈1| ⊗X(b) (2.39)

displayed in Fig. 2.3(ii)—has its analog in classical computation—is a special case

of ΛaU (b), and [cnot]2 = I ⊗ I.

One can generate any two-qubit state (say, the ket given by Eqs. (2.30) and

(2.37)) with a combination of the cnot gate and some single-qubit gates. Equa-

tion (2.37) can be rewritten as

|ψ(2)〉ab = U (a)†V (b)cnot(a, b)
[
c0|0〉a + c1|1〉a

]
⊗ |0〉b . (2.40)

Since c0|0〉a + c1|1〉a is a normalized ket, it can be obtained by applying a single-

qubit unitary operation W (a) on a standard input ket |0〉a:

|ψ(2)〉ab = U (a)†V (b)cnot(a, b)W (a)|00〉ab . (2.41)

In conclusion, a general two-qubit ket |ψ(2)〉ab is constructed, here, out of the

standard ket |00〉ab with three single-qubit gates and one cnot gate of Eq. (2.39).

As a special case of Eq. (2.41), when the unitary operations W = H, U = I and

V is either the identity or a Pauli operator of Eq. (2.19), then the two-qubit state
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2.3. Two-qubit quantum system

|ψ(2)〉ab becomes one of the Bell states:

|Φ+〉ab :=
1√
2

[
|00〉ab + |11〉ab

]
for V = I ,

|Φ−〉ab :=
1√
2

[
|00〉ab − |11〉ab

]
for V = Z ,

|Ψ+〉ab :=
1√
2

[
|01〉ab + |10〉ab

]
for V = X ,

i|Ψ−〉ab :=
i√
2

[
|01〉ab − |10〉ab

]
for V = Y . (2.42)

The Bell states provide an alternative choice of basis for a two-qubit system.

Decomposition of the two-qubit controlled-unitary operation ΛaU (b) [23, 1]: With

Eq. (2.21), a general single-qubit operation U can be decomposed (up to a global

phase) into three elementary rotations:

U ≡ Rz(γ)Rx(β)Rz(α)

= Rz

(
γ − π

4

)
Ry (β)Rz

(
α +

π

4

)
= Rz

(
γ − π

4

)
Ry

(
β

2

)
Ry

(
β

2

)
Rz

(
α + γ

2

)
Rz

(
α− γ

2
+
π

4

)
= Rz

(
γ − π

4

)
Ry

(
β

2

)
XRy

(
−β

2

)
Rz

(
−α + γ

2

)
XRz

(
α− γ

2
+
π

4

)
= AXBXC , (2.43)

where the unitary operations

A := Rz

(
γ − π

4

)
Ry

(
β

2

)
,

B := Ry

(
−β

2

)
Rz

(
−α + γ

2

)
,

C := Rz

(
α− γ

2
+
π

4

)
(2.44)

are such that ABC = I. From Eqs. (2.43), we have the decomposition of ΛaU (b)—

shown in Fig. 2.4—in terms of two cnot gates and the three single-qubits gates

33



Chapter 2. The UQCM

U X X 

(i) (ii) 
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b 

a 

b B C A 

Figure 2.4: (i) represents the two-qubit quantum gate ΛaU (b), and (ii) represents its decomposi-
tion in terms of two cnot gates and the three single-qubits gates A, B, and C. The labels a and
b are for the control and target qubits, and the controls are set to |1〉a.

A, B, and C. In fact, a general n-qubit quantum gate can be constructed with a

combination of single-qubit and the cnot gates [see Sec. 2.4.3].

Having α = β = 0 for U in Eqs. (2.43), the two-qubit gate ΛaU (b) of Eq. (2.38)

becomes the controlled-phase (cphase) gate,

cphase(a, b) := ΛaR(b)
z (γ) = |0〉a〈0| ⊗ I(b) + |1〉a〈1| ⊗R(b)

z (γ) . (2.45)

The cphase gate has no classical analog. In the special cases, where a nonzero γ

is an odd multiple of π, the cphase gate turns into the two-qubit gate

cz(a, b) := ΛaZ(b) = |0〉a〈0| ⊗ I(b) + |1〉a〈1| ⊗ Z(b) . (2.46)

The cz gate depicted in Fig. 2.3(iii) is the main entangling operation to generate

the graph states [35, 36] used in Chapters 3 and 4. Furthermore, it is equivalent to

the quantum cnot gate sandwiched between two Hadamard gates,

cz(a, b) = H(b) cnot(a, b)H(b) , (2.47)

which is a simple consequence of Eqs. (2.24), and [cz]2 = I ⊗ I.

Another interesting two-qubit gate is the swap gate, which interchanges the

state of two qubits (bits)17 and works in both classical and quantum computation.

17swap |ja jb〉 = |jb ja〉, where ja, jb ∈ {0, 1}.
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2.4. n-qubit quantum system

It can be constructed with a combination of three cnot gates,

swap(a, b) = swap(b, a) := |00〉ab〈00|+ |01〉ab〈10|+ |10〉ab〈01|+ |11〉ab〈11|

= cnot(a, b)cnot(b, a)cnot(a, b) , (2.48)

and [swap]2 = I ⊗ I.

2.4 n-qubit quantum system

2.4.1 n-qubit state vector

A digital CC works with the binary-number system and according to Boolean al-

gebra. Where, an integer j in the range 0 ≤ j < 2n can be expressed in terms of n

bits as

j ≡
n∑

m=1

jm 2m−1 ; (2.49)

where jn · · · j1 is the corresponding binary number, and jm ∈ {0, 1} is the value of

mth bit.

The same idea can be utilized for qubits, where a ket |j〉 for 0 ≤ j < N represents

one of N orthonormal kets. In the case of N = 2n, these orthonormal kets,

|j〉 ≡
n⊗

m=1

|jm〉

≡ |jn jn−1 · · · j2 j1〉 , (2.50)

constitute the computational basis [see Eq. (2.1)] for a n-qubit system. Later, in

Chapters 6 and 7, they will be called “index kets.” A general n-qubit ket can be

expressed in a linear combination of the computational basis as given by Eq. (2.2).
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2.4.2 n-qubit unitary operations

A general n-qubit quantum gate can be represented by a 2n × 2n unitary matrix

in the computational basis. Among them, the most useful unitary operations are

n-qubit controlled unitary operation of the form

Λ1···cU (c+1)···n :=
[
I⊗c − |1 · · · 1〉1···c〈1 · · · 1|

]
⊗ I⊗(n−c)

+ |1 · · · 1〉1···c〈1 · · · 1| ⊗ U (c+1)···n , (2.51)

where the qubits labeled 1 to c are the control qubits and the qubits labeled c + 1 to

n are the target qubits. Only if every control qubit is in the ket |1〉, then the (n− c)-

qubit unitary operation U (c+1)···n applies on the target qubits. When every control is

set to the ket |0〉, then ∆1···cU (c+1)···n := X⊗c
[
Λ1···cU (c+1)···n]X⊗c is the corresponding

gate. In the case of c = n− 1, the n-qubit controlled unitary operation of Eq. (2.51)

becomes Λ1···(n−1)U (n), a so-called two-level unitary operation18. Any 2n × 2n unitary

matrix can be built up as a product of at most 2n−1(2n − 1) number of two-level

unitary matrices [1, 22].

Two-level unitary operation: Every single-qubit gate and the two-qubit gates

ΛaU (b), cnot, cz, swap are examples of two-level unitary operations. Some im-

portant examples of three-qubit two-level unitary operations are

ccnot(a, b, c) := ΛabX(c) = |0〉a〈0| ⊗ I⊗2 + |1〉a〈1| ⊗ cnot(b, c) , (2.52)

ccz(a, b, c) := ΛabZ(c) = |0〉a〈0| ⊗ I⊗2 + |1〉a〈1| ⊗ cz(b, c)

= H(c)
[
ΛabX(c)

]
H(c) , (2.53)

cswap(a, b, c) := |0〉a〈0| ⊗ I⊗2 + |1〉a〈1| ⊗ swap(b, c)

=
[
ΛabX(c)

] [
ΛacX(b)

] [
ΛabX(c)

]
. (2.54)

18Two-level unitary matrices are those which act non-trivially only on two-or-fewer vector com-
ponents.

36



2.4. n-qubit quantum system

(i) (ii) 

a 
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H X X D X X D H 
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b 

Figure 2.5: (i) represents the quantum Toffoli (ccnot) gate of Eq. (2.52), and (ii) represents its
decomposition in terms of single-qubit and the cnot gates. In (ii), the single-qubit H, D gates
are the Hadamard gate of Eq. (2.23), Rz(π/4), respectively, and D† = Rz(−π/4), F = D2. The
controls are set to |1〉 for the Toffoli gate in (i) and for every cnot gate in (ii).

The controlled-controlled-not (ccnot) and controlled-swap (cswap) gates are

also called Toffoli and Fredkin gates, respectively. Both of them exist in the clas-

sical case [see Appendix A] as well. The controlled-controlled-z (ccz) gate has no

classical analog and is equivalent to the Toffoli (ccnot) gate [see Eq. (2.53)] sand-

wiched between two Hadamard gates because of Eq. (2.47). The Fredkin (cswap)

gate can be written as a combination of three Toffoli (ccnot) gates [see Eq. (2.54)].

It is a simple consequence of Eqs. (2.48).

The Toffoli gate is universal for reversible classical computation [see Appendix A].

On one hand, in the classical regime, single- and two-bit reversible gates are not suf-

ficient to implement the Toffoli gate. On the other hand, in quantum computation,

the Toffoli gate can be decomposed further in a sequence of single- and two-qubit

gates, such a sequence is given in Fig. 2.5. Every single-qubit gate—the Hadamard

gate H, the π/2-phase gate

F := Rz

(
1
2
π
)

= exp
(
−iπ

4
Z
)
, (2.55)

and the π/4-phase gate

D := Rz

(
1
4
π
)

= exp
(
−iπ

8
Z
)

(2.56)
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Figure 2.6: The quantum circuit for implementing the five-qubit gate Λ1234U (5). From top to
bottom, the four black horizontal lines represent control qubits 1 to 4, and the next two, gray
horizontal lines represent three work qubits prepared in the ket |0〉⊗3. The black horizontal line
at the bottom represents target qubit 5. Here, the two-qubit controlled-U and every three-qubit
Toffoli gates are implemented by the circuits shown on Figs. 2.4(ii) and 2.5(ii), respectively.

—of this sequence has no classical analog19. Note that if one removes the Hadamard

gates from Fig. 2.5(ii), then the circuit executes the ccz gate.

A very important use of the Toffoli gates is in the implementation of n-qubit two-

level unitary operations. For example, the n-qubit gate Λ1···(n−1)U (n) of Eq. (2.51)

(for c = n− 1) can be realized by the kind of circuit shown in Fig. 2.6 (for n = 5),

where 2(n− 2) Toffoli gates with (n− 2) work qubits—which start and end in the

ket |0〉⊗(n−2)—are used. In Sec. 4.3.3, the implementation of the gate Λ1···(n−1)Z(n)

with the HQCM (for n = 4) is given [see Fig. 4.3].

2.4.3 Universal set of quantum gates

A general quantum unitary operation can be built up from a set of standard unitary

operations called universal set of gates. This situation is rather analogous to the

situation in classical logics, where any Boolean function can be built up from a set of

standard logical gates on one and two bits. In classical computation, {and,not},

{or,not}, {nand}, {nor} are examples of universal set of gates [see Appendix A].

But for the “reversible” classical computation, the Toffoli (or Fredkin) gate alone

with ancilla qubits is (universal) sufficient to implement any Boolean function. Since

19Note that, here, the definition of phase gates F and D is different from Ref. [1].

38



2.4. n-qubit quantum system

the Toffoli gate has a direct quantum equivalent, a QC can perform any operation

that a CC can do.

As we learned from Sec. 2.4.2, a general operation on a system of n qubits can

be represented by a 2n × 2n unitary matrix in the computational basis, which can

be decomposed in a sequence of at most 2n−1(2n − 1) number of two-level unitary

matrices [1, 22]. Furthermore, a sequence of the Toffoli, the cnot and single-

qubit gates with n− 2 work qubits is sufficient to implement any two-level unitary

operation [see Fig. 2.5]. The Toffoli gate itself can be written as a product of single-

qubit and the cnot gates [see Fig. 2.6]. In few words, single-qubit [see Eq. (2.20)]

and the cnot [see Eq. (2.39)] gates form a universal set of gates, {R~r(υ),cnot},

for quantum computation [23].

This universal set cannot be reduced further, because the cnot gate cannot

be built up and entanglement cannot be generated with single-qubit operations

only. But, the cnot gate can be transformed into the cz gate by Eq. (2.47),

hence {R~r(υ),cz} is another universal set of gate. In these universal sets of gates,

R~r(υ) represents the whole (continuous20) family of single-qubit gates. The gates

of a universal set form the building blocks for QC. A general unitary operation on

n qubits can always be implemented exactly with a sequence containing O(n24n)

single-qubit and the cnot (or cz) gates [1].

Since any single-qubit operation can be approximated up to an arbitrary accu-

racy using only the Hadamard and π/4-phase (D) gates, there exists a discrete set

of universal gates: {H,F,cnot, D} [28]. A general unitary operation is continuous,

hence, it can not be implemented “exactly” by a combination of the gates of this

discrete set, but can be approximated up to an arbitrary accuracy. This discrete set

is very useful from the point of view of fault-tolerant QC [25, 26, 27, 28]. Another

discrete set of universal gates {H,F,cnot,Toffoli} is also available for fault-tolerant

QC [25, 1].

20Because, the angle parameters υ and (θ, ϕ) of ~r of Eq. (2.17) vary continuously.
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Chapter 3

The measurement-based quantum

computation model

The MQCM is another well-recognized model for QC [37, 38]. Here, a multiqubit

entangled state—known as a cluster state [35] or, more generally, a graph state1

[36]—is the main ingredient. It provides all the entanglement beforehand for the

subsequent computation. Computation in the MQCM is run by a sequence of

single-qubit adaptive2 projective measurements on the graph state. The MQCM

[see Sec. 3.1] enables one to simulate any quantum circuit on a sufficiently large

two-dimensional square graph [see Fig. 3.1] state by arranging the spatial pattern of

measurement bases for the graph qubits according to the temporal order of quantum

gates in the circuit. Both the UQCM of Chapter 2 and the MQCM are universal:

they can simulate any quantum circuit. Where the UQCM uses the unitary gates,

the MQCM uses the measurements for simulating a circuit.

In the MQCM, the measurements on graph qubits are performed in a certain

temporal order for the purpose of running the computation deterministically. Fur-

1There exists a mathematical graph for every graph state, where the vertices of graph stand
for the qubits, and its edges stand for the entangling operations [see Fig. 3.1]. Furthermore, the
graph states of one-, two-, and three-dimensional square lattices are called cluster states, so in
this sense the cluster state is the special case of the graph state.

2Generally, in the MQCM, the measurement bases for the as yet unmeasured qubits are adapted
according to the outcomes from the measured qubits.
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thermore, the measurement outcomes are recorded classically and are used for set-

ting the measurement bases for the subsequent measurements and for the interpre-

tation of the final result [39]. This is called the classical information processing

necessary to the MQCM [see Sec. 3.2]. By contrast, in the UQCM, there is no

such temporal order of measurements, but an order in which the unitary gates are

executed. Basically, the MQCM can be summarized in the following four steps:

1. A sufficiently large two-dimensional square graph state of qubits is prepared

[see Sec. 3.1.1].

2. A spatial pattern of measurement bases is assigned to the graph qubits ac-

cording to the temporal order of gates in a quantum circuit under simulation.

3. A sequence of single-qubit adaptive projective measurements is performed in

a certain temporal order.

4. In parallel, the measurement outcomes—the classical data—are recorded and

processed with a CC.

These steps are comprehensively discussed in this chapter, which is made of three

sections. In Sec. 3.1, we focus on the realization of individual gates in the framework

of the MQCM. The classical information processing is discussed in Sec. 3.2. The

results from Secs. 3.1.1, 3.1.5 and 3.2 will be used in Chapter 4. In Sec. 3.3, an

efficient measurement scheme for simulating a quantum circuit on a graph state is

provided.

3.1 Methodology for computation in the MQCM

In the beginning of this section, a short introduction about the preparation of graph

states [35, 36] is given. The kind of single-qubit measurements which are useful for

the MQCM, and the realization of some important individual gates [37, 38, 40] are

presented in the following parts of this section.
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3.1.1 Preparation of graph states

Graph states can be realized in many physical systems by first preparing all the

qubits of graph G in an eigenstate of their respective Pauli operator X. In other

words, a qubit a of G is initialized in the ket

|(−1)κa〉a :=
|0〉a + (−1)κa|1〉a√

2
, (3.1)

where κa = 0, 1 and the corresponding kets |+〉a, |−〉a are the eigenvalues and the

eigenkets [see Eqs. (2.27) and (2.28)] of the Pauli operator X. Then entanglement

between each pair of nearest-neighbor qubits is established by the cz(a, b) gate of

Eq. (2.46), where the indices a and b stand for the qubits at lattice site a and

its nearest-neighbor lattice site b of graph G, respectively. A unitary gate of this

kind can be generated by turning on the (controlled) Ising-type nearest-neighbor

interaction for an appropriately chosen time period. Experimentally, graph states

have been generated using controlled collisions between cold atoms in optical lattices

[43] or using linear optics [44, 45, 46, 47, 56, 57].

The graph state associated with a two-dimensional square graph (lattice) as

depicted in Fig. 3.1 is sufficient for universal quantum computation. In this figure,

the graph qubits are depicted by circles, and the cz operations are depicted by links

between the circles.

Mathematically, quantum correlations among the qubits of a graph are specified

by correlation operators K(a)’s, which are given below. The resultant graph state

|Φ{κ}〉G is an eigenstate of these operators, and it is completely specified by the set

of eigenvalue equations

K(a)|Φ{κ}〉G := X(a) ⊗

 ⊗
b∈ nbh(a)

Z(b)

 |Φ{κ}〉G
= (−1)κa|Φ{κ}〉G (3.2)
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Figure 3.1: A two-dimensional square graph, where the vertices (circles) represent qubits, and
the edges (bonds) represent the two-qubit cz operations of Eq. (2.46).

with the set of eigenvalues {κ} := {κa ∈ {0, 1}| a ∈ G}. Here, nbh(a) stands for the

set of all nearest-neighbor qubits which are entangled (connected) to qubit a by the

cz operations. For every qubit a of the graph state |Φ{κ}〉G, there exists a correlation

operator K(a) and an eigenvalue κa ∈ {0, 1}. The physical meaning of Eq. (3.2) is

that there exists either a correlation (κa = 0) or an anticorrelation (κa = 1) between

the outcome of the measurement on qubit a in the X eigenbasis and the outcomes of

the measurements on all the qubits of nbh(a) in the Z eigenbasis. These “quantum”

correlations provide the framework for “quantum” computation in the MQCM.

3.1.2 Single-qubit measurements on graph state

Once the resource graph state is ready, then the logical qubits—holding the input

information—are attached to the resource via the same entangling operations given

by Eq. (2.46). Throughout this thesis, excluding Chapter 5, one logical qubit rep-

resents one physical qubit. Now, the computation is carried out by a sequence of

single-qubit adaptive projective measurements in a certain measurement bases and

in a certain temporal order.

As explained in Sec. 2.2.3, the single-qubit projective measurement axis, ex-

pressed by the Bloch vector ~r(θ, ϕ) of Eq. (2.17), is completely characterized by

the two real parameters θ and ϕ. Where, Bθ,ϕ of Eq. (2.16) and Pm of Eq. (2.25)

are the corresponding measurement basis and projector, respectively. The mea-

surement outcomes m = 0 and m = 1 mean that the measured qubit is projected
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3.1. Methodology for computation in the MQCM

onto the states with the kets | ↑ (θ, ϕ)〉 of Eq. (2.14) and | ↓ (θ, ϕ)〉 of Eq. (2.15),

respectively.

Three single-qubit projective measurements—for three different sets of values of

the angle parameters θ and ϕ—are exploited in the MQCM [37, 38, 40]. They are

given in the following.

Z-measurement:

Measurement along the z axis (θ = 0). It effectively detaches the measured

(redundant) qubits from the graph state.

XY -measurement:

Measurement along the Bloch vector ~rxy(ϕ) := ~r
(

1
2
π, ϕ

)
=
(
cosϕ, sinϕ, 0

)
—

it lies in the x-y plane of the Bloch sphere—processes the information as well

as teleporting it from one place to another on the graph. This kind of mea-

surements are employed for implementing the individual gates of Secs. 3.1.3

and 3.1.4.

ZY -measurement:

Measurement along the Bloch vector ~rzy(θ) := ~r
(
θ, 1

2
π
)

=
(
0, sin θ, cos θ

)
—it

lies in the z-y plane of the Bloch sphere—only processes the information.

Their importance is revealed—for the implementation of the n-qubit gate

U12···n
zz···z (θ)—in Sec. 3.1.5.

In the MQCM, the two outcomes m = 0, 1 for every single-qubit measurement

on the graph state are equally probable because the reduced density matrix for

each qubit is the completely mixed state I/2. In the process of getting the desired

operations on the logical qubits, one also gets some additional operations because

of this randomness in measurement outcomes. These additional operations are

called by-product operators, and they belong to the Pauli group. These by-product

operators depend on the measurement outcomes and the eigenvalues of the graph

state |Φ{κ}〉G [see Eq. (3.2)]. The measurement outcome m ∈ {0, 1} for every graph
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qubit and the eigenvalues {κ} are binary numbers, so one can record and process

them with a CC in order to take care of the by-product operators. The classical

information processing of these data makes the computation deterministic and helps

to set the measurement bases for the subsequent measurements. This matter is

discussed comprehensively in Sec. 3.2.

3.1.3 Arbitrary single-qubit rotation

Simulation of the single-qubit rotation around the z axis, the phase gate

Rz(ϕ) := exp
(
−iϕ

2
Z
)
, (3.3)

and of an arbitrary single-qubit rotation R(α, β, γ) of Eq. (2.21) with the MQCM

[37, 38] are presented in sequence.

Simulation of the single-qubit rotation Rz(ϕ): A two-qubit graph state corre-

sponding to the graph depicted in Fig. 3.2(i) is sufficient to accomplish the job. The

state of the logical qubit 1 [represented by the gray circle in Fig. 3.2(i)] is given in

a general input ket |ψin(1)〉 of Eq. (2.13), and we want to apply Rz(ϕ) onto this

single-qubit state. To generate the required graph state, the qubit a [represented by

the dotted circle in Fig. 3.2(i)] is prepared in the ket |(−1)κa〉a of Eq. (3.1). Then

both the qubits are connected by the cz operation, which is represented by the

bond in Fig. 3.2(i) and given by Eq. (2.46). The resulting graph state with the ket

|φ(1 + 1)〉 =
1√
2

[
|0〉a ⊗ |ψin(1)〉+ (−1)κa |1〉a ⊗

(
Z|ψin(1)〉

)]
(3.4)

is ready for the simulation. Here, the label 1 + 1 indicates that this graph state is

made of two qubits, the logical qubit 1 and the ancilla qubit a.

In order to generate the desired effect on the input state, qubit 1 is measured
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1 a 

(i) 

Rz(φ) H ZX )1(inψ )1(outψ

(ii) 

Figure 3.2: (i) Graph associated with the graph state |φ(1 + 1)〉 of Eq. (3.4). The gray circle,
bond, and dotted circle represent the logical qubit, which carries the input ket |ψin(1)〉, the cz
operation of Eq. (2.46), and the ancilla qubit a, respectively. (ii) The quantum circuit illustrates
the effect on the input ket when the qubit 1 is measured in an appropriately chosen basis.

in the basis

Bπ
2
,−ϕ =

{
| ↑, ↓ (1

2
π,−ϕ)〉1

}
=

{
|0〉1 + (−1)m1e−iϕ|1〉1√

2

}
, (3.5)

and the value of m1 is the result of the measurement. After the measurement, the

output state (up to a global phase),

|ψout(1)〉 = (X)m1(Z)κaHRz(ϕ)|ψin(1)〉 (3.6)

is obtained from qubit a, and qubit 1 gets projected either onto the ket | ↑ (1
2
π,−ϕ)〉1

(if m1 = 0) or onto the ket | ↓ (1
2
π,−ϕ)〉1 (if m1 = 1). The net effect on the in-

put state is the required operation Rz(ϕ), followed by the Hadamard gate H of

Eq. (2.23) [represented by the green boxes in Fig. 3.2(ii)], and the by-product op-

erator (X)m1(Z)κa [represented by the red box in Fig. 3.2(ii)]. Here, the axis of the

measurement lies in the x-y plane of the Bloch sphere, and the input information

is not only teleported from one lattice site to the other but also gets processed by

the measurement.

Simulation of an arbitrary single-qubit rotation R(α, β, γ): As we learned in

Sec. 2.2.2, every rotation in the Bloch sphere corresponds to a single-qubit unitary

operation up to a global phase. Owing to the Euler decomposition of an arbitrary

rotation R(α, β, γ) [see Eq. (2.21)], one can simulate an arbitrary single-qubit op-

eration on a chain of five qubits graph state with four single-qubit measurements,
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-α ±β ±γ 0 
1 2 3 4 5 

Figure 3.3: Measurement pattern on a five-qubit one-dimensional graph for realizing an arbitrary
rotation R(α, β, γ), where the 1st qubit shown by gray circle and the 5th qubit shown by dotted
circle are the input and output qubits, respectively. Since the measurement axises for qubits 1st
to 4th lie in the x-y plane of the Bloch sphere, only the azimuthal angles of measurement bases
are shown here.

where the measurement direction for each qubit (angles α, β, γ) lies in the x-y plane

of the Bloch sphere [37, 38]. The associated five-qubit graph and the measurement

pattern for R(α, β, γ) are depicted in Fig. 3.3.

The 1st qubit shown by the gray circle in Fig. 3.3 carries a general input ket

|ψin(1)〉, and the rest of the qubits are initialized in an eigenket of the Pauli operator

X, say, in the ket |+〉 of Eq. (2.27). Then entanglement between each pair of nearest-

neighbor qubits is established by the cz operations [represented by the bonds in

Fig. 3.3 and given by Eq. (2.46)] to realize the required graph state. A general

rotation R(α, β, γ) is executed by measuring the qubits from 1 to 4 in the following

manner3:

1. The 1st qubit is measured in the basis Bπ
2
,−α

2. The 2nd qubit is measured in the basis Bπ
2
,−(−1)m1β

3. The 3rd qubit is measured in the basis Bπ
2
,−(−1)m2γ

4. The 4th qubit is measured in the basis Bπ
2
,0

Let us recall that the definition of single-qubit bases from Eqs. (2.14), (2.15), and

(2.16). Here, m1, m2, m3, and m4 are the outcomes of the measurements on the

1st, 2nd, 3rd, and 4th qubits.

The measurement bases of the 2nd and 3rd qubits are adjusted according to

the outcomes m1 and m2, respectively. Therefore, these measurements have to be

preformed in the required order. Hence, the realization of an arbitrary rotation

3Here, the order of measurements follows the numbering of qubits.

48



3.1. Methodology for computation in the MQCM

R(α, β, γ) by such a sequence of two z rotations sandwiching an x rotation [see

Eq. (2.21)] illustrates the importance of the temporal ordering of the measurements

in the MQCM. After these four measurements, the 5th qubit [shown by the dotted

circle in Fig. 3.3] will be (up to a global phase) in the output state

|ψout(1)〉 = (X)m2+m4(Z)m1+m3R(α, β, γ)|ψin(1)〉 , (3.7)

where (X)m2+m4(Z)m1+m3 is the by-product operator, and R(α, β, γ) is the desired

operation on the input ket |ψin(1)〉.

3.1.4 Gates from the Clifford group

Every quantum gate from the generating set of the Clifford group—the cnot gate

of Eq. (2.39), the Hadamard gate H of Eq. (2.23), and the π/2-phase gate F of

Eq. (2.55)—can be executed in a single time step in the MQCM [39]. This holds

because every measurement in these cases is performed either in the X eigenbasis or

in the Y eigenbasis, and is not influenced by the result of any other measurement.

Therefore, all the measurements can be performed simultaneously. The cnot gate

can be achieved by thirteen single-qubit measurements on a 15-qubit graph state.

Moreover, both the Hadamard and the π/2-phase gates can be implemented by four

single-qubit measurements on a chain of five qubits graph state [38].

The associated graphs and measurement patterns for the cnot, the Hadamard,

and the π/2-phase gates are shown in Fig. 3.4. Single-qubit and cnot gates together

constitute a universal set of gates [see Sec. 2.4.3], and they are realizable in the

MQCM. In this sense, like the UQCM in Chapter 2, the MQCM is also universal

for quantum computation.
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(iii) The π/2-phase gate 

Figure 3.4: The measurement patterns (i), (ii), and (iii) on the 15-qubit, five-qubit, and five-
qubit graphs are for simulating the cnot, the Hadamard, and the π/2-phase gates, respectively.
Qubits shown by gray and dotted circles are the input and the output qubits, respectively. The
label X or Y on a qubit illustrates that the respective qubit will be measured in the X eigenbasis
or in the Y eigenbasis.

3.1.5 n-qubit rotation U 12···n
zz···z (θ)

The unitary operation for the n-qubit rotation around the z axis is

U12···n
zz···z (θ) := exp

(
−iθ

2
Z⊗n

)
, (3.8)

where the superscripts 12 · · · n symbolize the logical qubits on which this operation

will be carried out [40]. One can accomplish this operation by performing a single

measurement on a (1 + n)-qubit star-graph state. The associated star graph is

shown in Fig. 3.5(i), where the input quantum register of n qubits is displayed by

the dotted gray circles, and the ancilla qubit4 a by the black diamond. The input

register is given in a general n-qubit input ket |ψin(n)〉, and the ancilla qubit is

prepared in the ket |(−1)κa〉a of Eq. (3.1). Then n cz operations [represented by

bonds in the figure and given by Eq. (2.46)] between qubit a and every logical qubit

are performed. In principle, all the cz operations can be performed in a “single

shot,” because they commute with each other. This series of steps leads to the

4Note that a is just the label of the ancilla qubit. Like n, it does not represent any number.
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Figure 3.5: (i) is called star graph because of its appearance, and the associated graph state
|φ(1 + n)〉 is given by Eq. (3.9). Here, the logical qubits which carry the input information, the cz
operations of Eq. (2.46), and the ancilla qubit a are represented by the dotted gray circles, bonds,
and black diamond, respectively. (ii) shows the effect on the input register, when the qubit a of
the graph state |φ(1 + n)〉 is measured in an appropriately chosen basis.

resultant star-graph state

|φ(1 + n)〉 =
1√
2

[
|0〉a ⊗ |ψin(n)〉+ (−1)κa|1〉a ⊗

(
Z⊗n|ψin(n)〉

)]
. (3.9)

The label 1 + n reveals that the final graph state is of one ancilla qubit and n logical

qubits.

A measurement on ancilla qubit a in the basis

Bθ,(−1)κa π
2

=
{
| ↑, ↓ (θ, (−1)κa 1

2
π)〉a

}
, (3.10)

transforms the input ket into the output ket

|ψout(n)〉 = (Z⊗n)maU12···n
zz···z (θ)|ψin(n)〉 . (3.11)

In this case, the direction of measurement lies in the z-y plane of the Bloch sphere,

and ma ∈ {0, 1} is the measurement outcome. (Z⊗n)ma is the by-product operator,

which is represented by the red boxes on all the logical qubits in Fig. 3.5(ii). After

the measurement, all bonds [illustrated in Fig. 3.5(i)] gets broken, and qubit a

gets projected either onto the ket | ↑ (θ, (−1)κa 1
2
π)〉a (if ma = 0) or onto the ket
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| ↓ (θ, (−1)κa 1
2
π)〉a (if ma = 1). This kind of multiqubit rotations will be used for

the HQCM in Chapter 4.

In contrast to the rotation Rz(ϕ) of Sec. 3.1.3 where the qubits used for input

and output are different, in the case of U12···n
zz···z (θ) the input and output states reside

in the same n logical qubits. In other words, here the information gets processed but

does not get transferred from one place to another on the graph. As a side remark,

the resultant by-product operator (X)m1(Z)κa in the case of Rz(ϕ) [see Eq. (3.6)]

and the measurement basis Bθ,(−1)κa π
2

[see Eq. (3.10)] in the case of U12···n
zz···z (θ) depend

on the eigenvalue κa.

Generalization of this procedure is given as follows. If, instead of the cz opera-

tions, one performs the (1 + n)-qubit unitary operation

ΛaA := |0〉a〈0| ⊗ I + |1〉a〈1| ⊗A (3.12)

between the ancilla qubit and the input register of n qubits to prepare a graph

state; where I = I⊗n, and the n-qubit operation5 A is such that A2 = I. Then, the

resultant graph state can be used to implement the n-qubit unitary operation

UA(θ) := exp

(
−iθ

2
A

)
(3.13)

with the procedure given above. In this case, the output ket will be

|ψout(n)〉 = (A)maUA(θ)|ψin(n)〉 , (3.14)

where (A)ma is the by-product operator. An example of this generalization is given

in Appendix C, where A = H⊗n.

To simulate a complex unitary gate in the MQCM, it is customary to first de-

compose it efficiently into a sequence of gates from the universal set [see Sec. 2.4.3].

5Note that A is both unitary and Hamiltonian operator.
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Then the temporal order of gates is transformed into the spatial pattern of mea-

surement bases for the graph qubits. Afterwards, the measurements are performed

in the required order.

Up to now, the simulations of individual gates are studied. Until now, only the

production of the by-product operators appears, and there was no need to worry

about the propagation of the by-product operators. But the next section is focused

on the simulation of a sequence of gates, where the study of classical information

processing and the temporal order of the measurements become necessary. Clas-

sical information processing is needed to record the production and monitor the

propagation of the by-product operators.

3.2 Classical information processing in the

MQCM

This section serves as a summary of the results discussed in Ref. [39]. When a

sequence of gates is simulated in the MQCM, the by-product operator which orig-

inates from the implementation of gates propagates through the sequence. Either

the propagation of the by-product operator transforms the subsequent gates in the

sequence or the by-product operator in itself gets transformed. The first part of this

section is about propagation relations for some elementary gates. The second part

is reserved for defining an information flow vector and the propagation matrices for

some elementary gates based on their propagation relations. This material will be

used in Chapter 4.

3.2.1 Propagation relation

The structure of the by-product operator on the logical qubit j ∈ {1, · · · , n} is

(X(j))xj(Z(j))zj , where xj and zj are non-negative integers. Both xj and zj depend on
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the outcomes of measured qubits and the eigenvalues {κ} of graph state [39]. Their

dependence on {κ} is in our control. For example, the {κ}-dependency disappears

from the calculation if one prepares a graph state with κ = 0 for all the graph

qubits. But we cannot control the dependence of the by-product operators on the

measurement outcomes, which are intrinsically random.

In Ref. [39], the authors took xj, zj ∈ {0, 1}, but here both xj and zj are taken

as non-negative integers. This is permissible because only the modulo-2 values of

xj and zj matter in (X(j))xj and (Z(j))zj . Throughout this thesis, the signs + and ⊕

are reserved for the ordinary and modulo-2 addition, respectively.

In principle, the by-product operators can be corrected—step by step—after

completing each gate of a sequence under simulation. But it is more convenient to

choose not to correct them and let them pass through the gates, then just keep track

of the measurement outcomes in a systematic way using simple classical information

processing. At the end of the computation, either the measurement bases for the

final readout are set according to the history of outcomes or, alternatively, the final

measurements are performed in the computational basis and interpretation of the

result is done with the help of the recorded outcomes.

Propagation of the by-product operator through a gate is given by the prop-

agation relation. The propagation relation for an arbitrary single-qubit rotation

R(α, β, γ) of Eq. (2.21) is

R(α, β, γ)(X)x(Z)z = (X)x(Z)zR̃((−1)xα, (−1)zβ, (−1)xγ) . (3.15)

The rotation R(α, β, γ) gets transformed into R̃((−1)xα, (−1)zβ, (−1)xγ), while the

by-product operator stays as it is. Equation (3.15) can be taken as an illustration of

the importance of “the temporal order of the measurements.” This is because, when

R(α, β, γ) is a part of a circuit, the superscripts x and z are functions of the earlier

measurement outcomes, and to determine the right sign for the measurement angles
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α, β, and γ [see, Sec. 3.1.3], we have to wait until the necessary measurements are

completed [37].

Equation (3.15) also justifies the following points. The measurement directions

for those qubits lie in the x-y plane of the Bloch sphere, ~rxy(ϕ) =
(
cosϕ, sinϕ, 0

)
with ϕ /∈

{
0,±1

2
π
}

, their measurement bases depend on the results of previous

measurements [see Sec. 3.1.3] [37, 38]. When ϕ ∈
{

0,±1
2
π
}

, then the directions

for +ϕ and −ϕ coincide and do not get influenced by the outcome of any other

measurement. Measurements of this kind are either in the X (ϕ = 0) or the Y

(ϕ = ±1
2
π) eigenbasis. The gates from the generating set of the Clifford group are

realized by such measurements [see Sec. 3.1.4], and their propagation relations are

given in the following.

The propagation relation for the cnot(a, b) gate of Eq. (2.39) is

cnot(a, b)U cnot
B = Ũ

cnot

B cnot(a, b) , (3.16)

where

U cnot
B := (X(a))xa(Z(a))za(X(b))xb(Z(b))zb , (3.17)

and

Ũ
cnot

B = (X(a))xa(Z(a))za+zb(X(b))xa+xb(Z(b))zb . (3.18)

In case of the cnot(a, b) gate, Eq. (3.16), the gate stays as it is, but the by-product

operator U cnot
B gets transformed into Ũ

cnot

B . This is also the case for the other

two gates from the generating set of the Clifford group. The propagation relation

for the Hadamard gate H of Eq. (2.23) is

H(X)x(Z)z = (X)z(Z)xH , (3.19)
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and for the π/2-phase gate F of Eq. (2.55) it is (up to a phase factor ±i)6

F (X)x(Z)z = (X)x(Z)z+xF . (3.20)

The propagation relations (3.16), (3.19), and (3.20) can also be understood from

the definition of the Clifford group, which maps the Pauli group into itself under

conjugation.

3.2.2 Information flow vector and propagation matrix

Information flow vector: At every stage of the computation, the by-product opera-

tor U B upon the logical qubits 1, · · · , n is of the form
∏n

j=1(X
(j))xj(Z(j))zj . After the

implementation of a gate, only the values {xj} and {zj} get changed, and the new

values determine the modifications in the measurement bases for the subsequent

gates. These values are processed by a CC. There is a one-to-one correspondence

between the by-product operator U B (ignoring the global phase ±1) and a 2n-

component information flow vector I, which is given as follows:

U B :=
n∏

j=1

(X(j))xj(Z(j))zj ⇐⇒ I :=

 Ix
Iz

 , (3.21)

where

Ix :=


x1
...

xn

 , Iz :=


z1
...

zn

 . (3.22)

Here, the multiplication of by-product operators (up to a phase factor ±1) cor-

responds to the component-wise addition of information flow vectors. The informa-

tion flow vector I represents the flow of classical information {xj} and {zj}. Also,

it keeps track of the sign(s) of the measurement angle(s) for a gate. In accordance

6F (X)x(Z)z = (Y )x(Z)zF .
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with Eq. (3.15), the signs of the measurement angles for the operation R(j)(α, β, γ)

on the qubit j are determined by the current value of xj and zj in I. The propagation

relations (3.16), (3.19), and (3.20) suggest that none of the gates from the generat-

ing set of the Clifford group gets altered under the propagation of the by-product

operator. Therefore, the measurement angles for these gates are independent of the

values stored in I.

Propagation matrix: For every gate g a 2n× 2n propagation matrix C(g) can be

defined [see Eq. (3.27)], which represents the transformation in the information flow

vector when the corresponding by-product operator passes through the gate g. The

propagation matrices given below are derived from the propagation relations (3.15),

(3.16), (3.19), and (3.20) with the help of the one-to-one correspondence given by

Eq. (3.21), and the entries in the information flow vectors and the propagation

matrices are given only for relevant qubits.

The by-product operator passes through a single-qubit rotation R(α, β, γ) with-

out getting transformed. Hence, the information flow vector stays as it is:

 x

z

 =

 1 0

0 1


︸ ︷︷ ︸

C(R)

 x

z

 . (3.23)

The information flow vector gets transformed when the associated by-product op-

erator passes through the cnot(a, b) gate of Eq. (2.39) in the following way:



xa

xa + xb

za + zb

zb


=



1 0 0 0

1 1 0 0

0 0 1 1

0 0 0 1


︸ ︷︷ ︸

C(cnot)



xa

xb

za

zb


. (3.24)

Under the one-to-one correspondence given by Eq. (3.21), the propagation relation
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(3.19) for the Hadamard gate H becomes

 z

x

 =

 0 1

1 0


︸ ︷︷ ︸

C(H)

 x

z

 , (3.25)

and the propagation relation (3.20) for the π/2-phase gate F becomes

 x

z + x

 =

 1 0

1 1


︸ ︷︷ ︸

C(F )

 x

z

 . (3.26)

The propagation matrices for the R, cnot, H, and F gate for the case of n

logical qubits are given in the following. The propagation matrix C is a 2n× 2n

matrix of the form

C :=

 Cxx Czx

Cxz Czz

 , (3.27)

where Cxx,Czx,Cxz and Czz are n× n matrices with binary-valued entries [39].

One can generate the propagation matrices for an arbitrary single-qubit rotation7

R(j) on the logical qubit j with

[
Cxx(R

(j))
]
kl

:=
[
Czz(R

(j))
]
kl

:= δkl ,[
Czx(R

(j))
]
kl

:=
[
Cxz(R

(j))
]
kl

:= 0 . (3.28)

The notation
[
Cxx(R

(j))
]
kl

stands for the entry in kth row and lth column of the

matrix Cxx corresponding to the R(j) gate, and the same nomenclature applies

elsewhere.

The propagation matrix for the cnot(a, b) gate (both the control qubit a and

7C(R) is the 2n× 2n identity matrix.
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the target qubit b belong to the set of n logical qubits; a 6= b) is given by

[Cxx(cnot(a, b))]kl := δkl + δkbδla ,

[Czz(cnot(a, b))]kl := δkl + δkaδlb ,

[Czx(cnot(a, b))]kl := [Cxz(cnot(a, b))]kl := 0 ; (3.29)

the corresponding matrix for the Hadamard gate H(j) on the logical qubit j is given

by

[
Cxx(H

(j))
]
kl

:=
[
Czz(H

(j))
]
kl

:= δkl ⊕ δkjδlj ,[
Czx(H

(j))
]
kl

:=
[
Cxz(H

(j))
]
kl

:= δkjδlj ; (3.30)

and the matrix for the π/2-phase gate F (j) on the logical qubit j is given by

[
Cxx(F

(j))
]
kl

:=
[
Czz(F

(j))
]
kl

:= δkl ,[
Czx(F

(j))
]
kl

:= 0 ,[
Cxz(F

(j))
]
kl

:= δkjδlj . (3.31)

It is advantageous to deal with the information flow vector I together with the

propagation matrices [Eqs. (3.28)–(3.31)] by a CC, rather than dealing directly

with the corresponding by-product operator U B together with the propagation

relations [Eqs. (3.15), (3.16), (3.19), and (3.20)].

As a side remark, the temporal order of the measurements does not typically

follow the temporal order of gates in a circuit which we want to simulate with the

MQCM. Indeed, there exists an efficient measurement scheme where measurements

are performed round by round, and in each round all the measurements are executed

at the same time [39]. The information flow vector is updated after every round.

After the final round, the result of the computation is interpreted from the x part
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of the information flow vector Ix [according to Eq. (4.5)]. An extended discussion

of this efficient measurement scheme is provided in the next section.

3.3 Efficient measurement scheme of the MQCM

This section holds a discussion an efficient measurement scheme of the MQCM

where the temporal order of the measurements plays an important role [39]. On

one hand in the UQCM, any two gates of a sequence that do not commute cannot

be parallelized [see Chapter 2]. On the other hand in the MQCM, all the gates

from the Clifford group can be executed in a single time step, irrespective of their

positions in the circuit [see Sec. 3.1.4]. In other words, the temporal order of the

measurements in the MQCM is not preimposed by the temporal order of the gates.

So, the most efficient scheme for the measurements does not necessarily follow the

temporal order of the gates in a circuit under simulation. Initially, the spatial

pattern of the measurement bases is assigned to the graph qubits according to the

sequence of gates. Then the measurements are performed round by round according

to the scheme which is given as follows.

First, the graph G is divided into disjoint subsets of qubits Qt, where in-

dex t stands for the round of measurements and 0 ≤ t ≤ tmax. Mathematically,

G :=
⋃tmax

t=0 Qt and Qs ∩Qt := ∅ for all s 6= t. The subset Qt is a collection of all

those qubits which will be measured simultaneously in tth round. All the measure-

ments in the X, Y and Z eigenbasis are put together in the very first round (zeroth

round), and there is no need to adjust the measurement bases according to the

previous measurement results for the qubits of Q0. In the first measurement round,

the redundant graph qubits are removed by the Z-measurements [see Sec. 3.1.2], the

readout qubits are measured in the Z eigenbasis, and the part of the circuit belong-

ing to the Clifford group is simulated by measurements in the X, Y eigenbasis [39].

In the MQCM, the readout qubits, which play the role of output register, are not
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3.3. Efficient measurement scheme of the MQCM

the last ones to be measured; they are among the first.

The XY -measurements [see Sec. 3.1.2] are used for all the subsequent measure-

ment rounds, where the measurement observables are of the form cos(ϕ)X ± sin(ϕ)Y

with ϕ /∈
{

0,±1
2
π
}
. The changes in measurement bases for these qubits are decided

by the measurement outcomes from the previous rounds. All those qubits whose

measurement bases depend on the outcomes from the first measurement round be-

long to the subset Q1. Similarly, the measurement outcomes from the subset Q1

together with Q0 decide the alterations in measurement bases for the qubits in Q2,

and so on. These subsets are measured one by one up to the final measurement

round tmax. One can think of the total number of measurement rounds (tmax + 1)

as the logical depth (temporal complexity) in the MQCM.

Parallel to the measurement rounds, the classical data-processing parts are taken

care of by a CC. After preparing the graph state and just before starting the mea-

surements, the information vector is initialized to Imqcminit . Imqcminit depends on the

eigenvalues {κ} of the graph state and some particular gates (like cnot, F ) which

appear in a quantum circuit under simulation [39]. After executing the first mea-

surement round on the setQ0, Imqcminit gets updated to I(0) through the measurement

results. I(0) then determines the adjustments in measurement bases for the qubits

of Q1. Similarly, the measurement outcomes from round t update the information

flow vector from I(t− 1) to I(t). The corresponding by-product operator is given

by

U B(t) =
n∏

j=1

(X(j))xj(t)(Z(j))zj(t) . (3.32)

Then I(t) = I(xj(t), zj(t)) sets the measurement bases for the (t+1)th round. After

the final measurement round tmax, the x part of the information flow vector Ix(tmax)

enables us to interpret the result of the computation [see Eq. (4.5)].

In this measurement scheme, the following technical points are worth emphasiz-

ing; they are discussed in Ref. [39]. (1) In order to construct the subsets of graph
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qubits {Qt}, a CC needs the forward cones for all the graph qubits. The forward

cones decide a strict partial ordering among the qubits, and the sets {Qt} are con-

structed accordingly. (2) To account for the influence of the measurement outcomes

and the set of eigenvalues {κ} on I(t), a CC needs the by-product images for all

the graph qubits. (3) {κ}, the by-product images, and I(t) are required to set the

measurement bases for the as yet unmeasured qubits. A CC uses the symplectic

scalar product for doing this.
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The hybrid quantum computation

model

Both the UQCM [see Chapter 2] and the MQCM [see Chapter 3] are universal

for quantum computation, nevertheless, it is beneficial to employ one rather than

other in certain experimental scenarios. In the case of UQCM, no preparation of

a graph state and classical information processing is needed. However, to perform

the computation, measurements in the MQCM are easier to execute than quantum

gates in the UQCM. The practical difficulties come from the implementation of

multiqubit gates in the UQCM and from the preparation of universal graph state

in the MQCM. The larger the graph state, the more difficult it is to control and

protect it from the noise.

These observation led us to design a hybrid model of the UQCM and the MQCM,

the HQCM [41], with the aim of exploiting the strengths of both models. Since both

the UQCM and the MQCM are universal, the HQCM is universal too. There are

two main tasks to achieve the HQCM.

The first task is to establish a set of elementary gates [see Sec. 4.1.1] for this

hybrid model using an optimal amount of resources1 to get an efficient experimental

1Here, the resources are qubits, entanglement, elementary operations and measurements.
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implementation. Since every member of this elementary gate set can be executed

in a single shot, each one of them is considered as a single unit in the HQCM. The

HQCM employs the MQCM for executing certain multiqubit gates and the UQCM

for others.

The second task in this investigation is to work out the classical information-

processing parts of the HQCM [see Sec. 4.2]. Indeed, where measurements are

involved in quantum information processing (e.g., the quantum teleportation [14],

the MQCM [39]), the classical information processing is required side by side. In

the hybrid model, part of a quantum circuit is simulated by unitary evolution and

the rest by measurements on small (non-universal) graph states.

Simulation of a complicated unitary gate with the HQCM [for examples, see

Sec. 4.3] can be summarized in the following four steps:

1. Like the UQCM, a given unitary gate is efficiently decomposed in terms of

a sequence of—single-qubit gates, the cz gates, and the multiqubit rota-

tions around the z axis U12···n
zz···z (θ)—the elementary gates of the HQCM [see

Sec. 4.1.1].

2. These elementary gates are executed one by one in the sequence. In the

HQCM, single-qubit and the cz gates are realized by their respective unitary

evolution, and every multiqubit rotation is implemented by a single mea-

surement on a required star-graph state according to the procedure given in

Sec. 3.1.5.

3. Like the MQCM, the classical information is processed in parallel. In here,

the classical information processing only needs the information flow vector

and the propagation matrices [see Sec. 3.2.2] for the elementary gates.

4. After the last gate of the sequence, the x part of the information flow vector

enables us to interpret the final result of the computation [see Eq. (4.5)].
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These steps are comprehensively discussed in this chapter. Sections 4.1 and 4.2

present the methodology for computation and classical information processing in

the HQCM, respectively. The results from these sections are used in Sec. 4.3, which

explains the simulation of multi-control gates with the HQCM. These multi-control

gates will be utilized for implementing GA in Sec. 6.2.1.

4.1 Methodology for computation in the HQCM

In this section, the methods for computation are formulated. Before going into

the details, let us first focus on what benefits one can get from the UQCM and the

MQCM in different situations. Here, the preparation of graph states [see Sec. 3.1.1],

the set of elementary gates for the HQCM, and the simulation of a quantum circuit

with the HQCM are considered one by one.

The very first experimental step in the MQCM is the preparation of universal

graph state, whereas in the UQCM no such preparation is needed. While preparing a

graph state, in principle, the initialization of every graph qubit in the X eigenbasis

can be completed in a single shot. To this end, we have to address every graph

qubit simultaneously. Consequently, this requires a lot of experimental resources,

and that many interactions are difficult to control. Likewise, the subsequent two-

qubit entangling operations [cz(a, b) defined by Eq. (2.46)] to create the resource

graph state can be performed in a single step, because they commute with each

other. Thus, it is more difficult to prepare and control a larger graph state and

to protect it against decoherence. So, for the HQCM, we choose not to prepare

the whole two-dimensional universal graph [see Fig. 3.1] state at once but, instead,

prepare small (nonuniversal) graph states step by step as we need them when the

computation progresses. Only the star-graph states, such as |φ(1 + n)〉 given in

Eq. (3.9), are required for the HQCM.
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4.1.1 Set of elementary gates for the HQCM

Single-qubit rotation R~r(υ) of Eq. (2.20), the cz gate of Eq. (2.46) and the multi-

qubit rotation around the z axis U12···n
zz···z (θ) for an arbitrary value of θ of Eq. (3.8) are

chosen as the elementary gates for the HQCM. In analogy to the procedure for the

UQCM, first a complex unitary gate under simulation is efficiently decompose into

a sequence of elementary gates in such a way that the number of elementary gates

grows polynomially with the number of logical qubits. Then every elementary gate is

implemented one after another. Every single-qubit and the cz gates are carried out

by the unitary evolution under the formalism of UQCM. The rotations U12···n
zz···z (θ) are

implemented by the method described in Sec. 3.1.5 under the formalism of MQCM.

The motivation behind these choices is explained in the following.

Simulation of an arbitrary single-qubit rotation in the MQCM [see Sec. 3.1.3]

costs at least a chain of five qubits and four measurements [37, 38]. But it can be

realized quite simply by the unitary evolution of the respective single qubit. Fur-

thermore, the Euler decomposition for an arbitrary single-qubit rotation R(α, β, γ)

[see Eq. (2.21)] is not needed.

The cz operations themselves are part of the experimental setup for construct-

ing the graph states. Therefore, we have to execute unitary evolutions to construct

them. That is why the cz gate is considered as an elementary gate for the HQCM.

Furthermore, it is more economical to implement cnot(a, b) by the unitary evo-

lution H(b) cz(a, b)H(b) [see Eq. (2.47)] instead of first preparing a 15-qubit graph

state and then implement it with the MQCM [see Sec. 3.1.4].

Although the HQCM already has the universal set of gates (single-qubit and

cz gates) [see Sec. 2.4.3], the rotation U12···n
zz···z (θ) is taken as an elementary gate

because of the following two reasons. The first reason is the experimental opti-

mization in terms of resources. The resource (1 + n)-qubit graph state |φ(1 + n)〉

[given by Eq. (3.9)] needed for the implementation of U12···n
zz···z (θ) is relatively easy to
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create experimentally. It has only one ancilla qubit, and the entanglement can be

established in one go. Furthermore, a single measurement on the ancilla qubit is

enough to realize U12···n
zz···z (θ) all together on n logical qubits. While it is also possible

to decompose the rotation U12···n
zz···z (θ) in terms of the gates from the universal gate

set and implement it under the formalism of UQCM, its implementation there will

not be so optimal, and it cannot be regarded as a single unit.

The second reason for including U12···n
zz···z (θ) as an elementary gate in the HQCM is

to investigate the classical information processing. Generally, one uses either unitary

evolution (UQCM) or measurements on the graph state (MQCM) to simulate a

quantum circuit. The classical processing does not come into the picture of UQCM

where measurements are used only for the readout of the final result of computation.

In all those schemes where measurements are needed for the computation (e.g., the

quantum teleportation [14], the MQCM [39]), the classical information processing

in parallel is essential.

In the HQCM also, classical information processing is needed, because the rota-

tions U12···n
zz···z (θ) are executed by the measurements. But here the classical information

processing is simpler than the MQCM. It requires only the information flow vector

and the propagation matrices. A comprehensive discussion of this is given in the

following section.

4.2 Classical information processing in the

HQCM

We now focus on the classical information-processing parts of the HQCM, where

only the information flow vector and the propagation matrices for the elementary

gates are required. First the information flow vector in the context of HQCM

is redefined, and, second, the propagation relations followed by the propagation

matrices for the elementary gates are given.
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4.2.1 Information flow vector in the HQCM

At every computation step τ in the hybrid model, the by-product operator still has

the same form as given in Eqs. (3.21) and (3.22),

U B(τ) =
n∏

j=1

(X(j))xj(τ)(Z(j))zj(τ) . (4.1)

Hence, the structure of the related information flow vector I(τ) = I(xj(τ), zj(τ)) is

unchanged [see Eqs. (3.21) and (3.22)]. However, in the HQCM, there exist a few

differences in comparison to the efficient measurement scheme of MQCM given in

Sec. 3.3.

In that scheme of MQCM, the index t of I(t) stands for the measurement round.

However, in the HQCM, where implementation of every elementary gate takes only

one computational step, the index τ of I(τ) is the label of the elementary gate. In

the MQCM, I(t) gets updated after each round, but in the HQCM it is updated

after each gate.

Furthermore, in the MQCM, the initial value of the information flow vector

Imqcminit is determined by the set of eigenvalues {κ} plus some particular gates.

Whereas in the HQCM, just before starting the computation all the entries of

I(0) := Ihqcminit are zeros, that is, both xj(0) = 0 and zj(0) = 0 for all j = 1, 2, · · · , n.

This means that the by-product operator at τ = 0 is the identity operator I on

every logical qubit. In fact, the first relevant by-product operator appears in the

computation when the first multiqubit rotation is implemented, and then the in-

formation flow vector gets some nonzero entries. In the MQCM, the information

flow vector gets updated from I(t− 1) to I(t) after the tth measurement round. In

the HQCM, the information flow vector gets updated from I(τ − 1) to I(τ) after

the implementation of τth gate. I(τ) then influences the (τ + 1)th gate of a quan-

tum circuit under simulation. Similar to the case of UQCM, the total number of

computation steps, or logical depth, is denoted by τmax. This is the total number
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of elementary gates used for the computation. Furthermore, τmax is also the total

number of steps taken by a CC for the classical information processing in parallel.

Interpretation of the final computational result from Ix(τmax): In the UQCM,

every gate of a circuit is executed by its respective unitary evolution, and the final

readout measurements are performed in the computational basis. In this case, the

output state |out〉 gets projected onto the state |MUQCM〉 := ⊗n
j=1|śj〉 after the final

readout measurements,

|MUQCM〉 =
n∏

j=1

I(j) + (−1)śjZ(j)

2
|out〉 , (4.2)

where śj ∈ {0, 1} are the readout measurement outcomes for the logical qubits

j = 1, 2, · · · , n.

In the hybrid model, however, the final state of the output register will be

U B(τmax)|out〉 after performing the last gate of the same circuit. Without loss

of generality, as above, we consider the computational basis for the final read-

out, where sj ∈ {0, 1} are the readout measurement outcomes for the logical qubits

j = 1, 2, · · · , n. It means that the output state U B(τmax)|out〉 gets projected onto

the state with the ket |MHQCM〉 := ⊗n
j=1|sj〉 after the readout measurements, that

is,

|MHQCM〉 =
n∏

j=1

I(j) + (−1)sjZ(j)

2
U B(τmax)|out〉 . (4.3)

The above Eq. (4.3) can be transformed with the help of Eq. (4.1) into

|MHQCM〉 = U B(τmax)
n∏

j=1

I(j) + (−1)sj+xj(τmax)Z(j)

2
|out〉 . (4.4)

The inference we obtain by comparing Eq. (4.2) and (4.4) is that the readout

measurements on the state |out〉 with the results {śj} give the same circuit output

as the readout measurements on the state U B(τmax)|out〉 with the results {sj}, and
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these sets of results are related by

śj ≡ sj + xj(τmax) for all j ∈ {1, 2, · · · , n} . (4.5)

That is how one can interpret the final result of the computation with the help of

Ix(τmax) in the HQCM.

4.2.2 Propagation relations and propagation matrices for

the elementary gates

Let us consider an arbitrary single-qubit rotation R~r(υ) [of Eq. (2.20)] around an

axis ~r(θ, ϕ) [of Eq. (2.17)] by an angle υ. The by-product operator passes through

this gate without any change, but the axis of rotation of the gate is changed from

~r to ~r ′. The propagation relation for R~r(υ) is given by

R~r(υ)(X)x(Z)z = (X)x(Z)zR~r ′(υ) , (4.6)

where

~r ′ = ((−1)z sin θ cosϕ, (−1)x+z sin θ sinϕ, (−1)x cos θ) . (4.7)

In other words, the angles θ, ϕ that define the axis of rotation ~r get transformed as

θ → (xπ − θ) ,

ϕ→ (−1)x(zπ + ϕ) . (4.8)

The by-product operator passes through R~r(υ) without getting transformed, which

means that the propagation matrix C(R) is the same 2n× 2n identity matrix as

defined by Eq. (3.28).

Every single-qubit unitary operator in SU(2) follows this propagation relation.

For υ = 1
2
π, it becomes the propagation relation (3.19) for the Hadamard gate when
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θ = ϕ = 1
2
π and the propagation relation (3.20) for the π/2-phase gate when θ = 0.

However, the Hadamard and the π/2-phase gate remain special cases in the sense

that the propagation changes the by-product operator, but these gates stay as they

are. Both of them are executed by the unitary evolution like any other single-qubit

gate, but for the classical information-processing parts their propagation matrices

defined by Eqs. (3.30) and (3.31) have to be used in the HQCM.

The propagation relation for the next elementary gate, cz(a, b) of Eq. (2.46), is

cz(a, b)U cz
B = Ũ

cz

B cz(a, b) , (4.9)

where

U cz
B = (X(a))xa(Z(a))za(X(b))xb(Z(b))zb , (4.10)

and

Ũ
cz

B = (X(a))xa(Z(a))za+xb(X(b))xb(Z(b))zb+xa . (4.11)

Under the one-to-one correspondence given in Eq. (3.21) the propagation relation

(4.9) becomes 

xa

xb

za + xb

zb + xa


=



1 0 0 0

0 1 0 0

0 1 1 0

1 0 0 1


︸ ︷︷ ︸

C(cz)



xa

xb

za

zb


. (4.12)

When the control qubit a and the target qubit b belong to the set of n logical qubits

(a 6= b), then the propagation matrix C(cz(a, b)) can be generated by the following
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relations2:

[Cxx(cz(a, b))]kl := [Czz(cz(a, b))]kl := δkl ,

[Cxz(cz(a, b))]kl := δkaδlb + δkbδla ,

[Czx(cz(a, b))]kl := 0 . (4.13)

Note that Eqs. (4.12) and (4.13) are different from Eqs. (3.24) and (3.29). The cz

and cnot gates are interconvertible by using the Hadamard gate [see Eq. (2.47)],

and the same is true for their propagation matrices, that is,

C(H(b)) C(cz(a, b)) C(H(b)) = C(cnot(a, b)) . (4.14)

The propagation relation for U12···n
zz···z (θ) is

U12···n
zz···z (θ)U B = U B U

12···n
zz···z ((−1)xθ), (4.15)

where U B is the same as given in Eq. (3.21), and

x =
n∑

j=1

xj . (4.16)

In this case, the measurement angle θ gets modified under the propagation, but the

by-product operator stays as it is. Therefore, the propagation matrix C(U12···n
zz···z (θ))

will be the 2n× 2n identity matrix, which can be defined in the same way as the

C(R) is defined in Eq. (3.28):

[
Cxx(U

12···n
zz···z (θ))

]
kl

:=
[
Czz(U

12···n
zz···z (θ))

]
kl

:= δkl ,[
Czx(U

12···n
zz···z (θ))

]
kl

:=
[
Cxz(U

12···n
zz···z (θ))

]
kl

:= 0 . (4.17)

2The same notation, as given in Sec. 3.2.2, for the propagation matrices applies here.
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Now, one can draw the following conclusions. (1) The Hadamard, the π/2-

phase and the cz gates remain unchanged under the propagation, while the by-

product operator gets altered. (2) Single- and multi-qubit rotations (with nontrivial

angles) get transformed, while the by-product operator stays unaltered under the

propagation. This completes the discussion of all the basic tools required for the

HQCM.

Let us now turn into some important examples, which are useful for the imple-

mentation of GA within the framework of HQCM [see Sec. 6.2.1].

4.3 Controlled operations with the HQCM

In this section we are considering n-qubit controlled rotations around the z axis,

which are defined by

Λ1···cU (c+1)···n
z···z (θ) :=

[
I⊗c − |1 · · · 1〉1···c〈1 · · · 1|

]
⊗ I⊗(n−c)

+ |1 · · · 1〉1···c〈1 · · · 1| ⊗ U (c+1)···n
z···z (θ) , (4.18)

where the qubits labeled 1 to c are the control qubits and the qubits labeled c + 1

to n are the target qubits [also see Eq. (2.51)]. Only when every control qubit is

in the ket |1〉, then the (n− c)-qubit rotation U
(c+1)···n
z···z (θ) operates on the target

qubits. The HQCM implementation of these controlled rotations for three values—

c = 1 (single control), c = 2 (double control) and c = 3 (triple control)—is presented

here.

4.3.1 The single-control gate Λ1U 2···n
z···z (−2θ)

First, Λ1U2···n
z···z (−2θ) is decomposed in terms of multiqubit rotations like U12···n

zz···z (θ)

of Eq. (3.8). To have the logical qubit 1 as the control and the rest as the target
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qubits, the n-qubit rotation about the z axis is expressed as

U12···n
zz···z (θ) = |0〉1〈0| ⊗ U2···n

z···z (θ) + |1〉1〈1| ⊗ U2···n
z···z (−θ) .

Consequently, the required decomposition is obtained:

Λ1U2···n
z···z (−2θ) = U2···n

z···z (−θ)U12···n
zz···z (θ) . (4.19)

Since U12···n
zz···z (θ) is symmetric under permutation of the qubits, one can take any qubit

as the control and the remaining qubits as targets. In the HQCM, a “multiqubit

rotation about the z axis” is considered as a single unit, and then Λ1U2···n
z···z (−2θ)

costs only two units of this kind.

The circuit representation of Eq. (4.19) is given in Fig. 4.1. In Fig. 4.1(i), the left

and the right rectangular boxes depict U12···n
zz···z (θ) (the first rotation) and U2···n

z···z (−θ)

(the second rotation), respectively. In practice, both of them are realized—by using

a single ancilla qubit and a single measurement—with the methodology given in

Sec. 3.1.5. Moreover, after executing the first rotation, the ancilla qubit is brought

back into an eigenstate of X [given by Eq. (3.1)] and used for the second rotation.

The implementation of U12···n
zz···z (θ) and U2···n

z···z (−θ) require (1 + n)-qubit and n-qubit

star-graph states, respectively, where the ancilla qubit is connected to the relevant

logical qubits [see Fig. 3.5(i) and Eq. (3.9)]. The eigenvalues of the ancilla qubit cor-

responding to the first and the second rotation are κ1 and κ2, and the measurement

outcomes are m1 and m2, respectively.

The classical information processing for this gate can be decomposed into three

parts. The first part deals with the changes in the measurement angles due to

the by-product operator U B,in. This operator appears just before implementing

the first rotation and is denoted by the dashed vertical line in the input sec-

tion in Fig. 4.1. When the gate Λ1U2···n
z···z (−2θ) itself is a part of a circuit un-
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1 

2 

3 

n 

θ -θ 

UB,in UB,out 
(i) 

-2θ 

UB,in UB,out 
(ii) 

Figure 4.1: Quantum circuit (i) merely represents the temporal order of rotations for
Λ1U2···n

z···z (−2θ). Horizontal lines represent n logical qubits. The left (green) rectangular box sym-
bolizes the n-qubit rotation U12···n

zz···z(θ), and the right box symbolizes the (n− 1)-qubit rotation
U2···n
z···z (−θ). Both of them are executed under the scheme described in Sec. 3.1.5. Circuit (ii)

represents Λ1U2···n
z···z (−2θ), where qubit 1 is the control qubit and the other qubits are targets. The

dashed (red) vertical lines in the input and the output section represent the by-product operators
UB,in and UB,out, respectively. Circuits (i) and (ii) are equivalent.

der simulation, then the by-product U B,in has emerged prior to the execution of

Λ1U2···n
z···z (−2θ) due to the implementation of previous gates. Without loss of general-

ity, U B,in =
∏n

j=1(X
(j))xj(Z(j))zj is taken the same as given in Eq. (3.21). Only the x

part of the corresponding information flow vector Ix,in influences the measurement

bases B±θ,(−1)κ π
2

of Eq. (3.10) for both rotations. According to Eq. (4.15), the angles

θ for the first and −θ for the second rotation get altered as follows

θ → (−1)xθ for U12···n
zz···z (θ) ,

−θ → −(−1)x−x1θ for U2···n
z···z (−θ) ,

(4.20)

where x is given by Eq. (4.16).

The second part of classical information processing deals with the eigenvalues

κ1 and κ2, which influence the azimuthal angle 1
2
π of the measurement bases in the

following way:

1
2
π → (−1)κ1 1

2
π for U12···n

zz···z (θ) ,

1
2
π → (−1)κ2 1

2
π for U2···n

z···z (−θ) .
(4.21)

Finally, the third part manages the contribution of measurement outcomes m1

and m2 to the by-product operator U B,in. The implementation of both the first and
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the second rotations cause the by-product operators (Z⊗n)m1 and (Z⊗(n−1))m2 on

the relevant logical qubits. Furthermore, these by-product operators update U B,in

to U B,out. U B,out is represented by the dashed vertical line in the output section

in Fig. 4.1. Only the z part of the information flow vector Iz,in gets changed, while

the x part remains as it is, that is, Ix,out = Ix,in ,

UB,out = (X(1))x1(Z(1))z1+m1

n∏
j=2

(X(j))xj(Z(j))zj+m1+m2 . (4.22)

4.3.2 The double-control gate Λ12U 3···n
z···z (4θ)

One has to combine two additional units U13···n
zz···z (−θ) (the third rotation) and U3···n

z···z (θ)

(the fourth rotation) with Λ1U2···n
z···z (−2θ) for the purpose of getting the Λ12U3···n

z···z (4θ)

gate. In other words, Λ12U3···n
z···z (4θ) with two control qubits, 1 and 2, is made of four

rotations, and its decomposition is given by

Λ12U3···n
z···z (4θ) = U3···n

z···z (θ)U13···n
zz···z (−θ)U2···n

z···z (−θ)U12···n
zz···z (θ) . (4.23)

Figure 4.2(i) illustrates the temporal ordering of the multiqubit rotations given in

Eq. (4.23) by the rectangular boxes.

The treatment for Λ12U3···n
z···z (4θ) is similar to that of Sec. 4.3.1. All the rotations—

U12···n
zz···z (θ) (first), U2···n

z···z (−θ) (second), U13···n
zz···z (−θ) (third), and U3···n

z···z (θ) (fourth)—

are performed one after another under the scheme presented in Sec. 3.1.5. After

initializing the ancilla qubit in the X eigenbasis [of Eq. (3.1)], a necessary star-graph

state for the first rotation is prepared, and then the ancilla qubit is measured in

the appropriate basis. The measurement outcome is then recorded, and the ancilla

qubit is brought back again into an eigenstate of X (recycled) for executing the

next rotation. In this way, one can use the same ancilla qubit for all the rotations.

κ1, κ2, κ3, and κ4 are the eigenvalues of the ancilla qubit, while m1, m2, m3, and m4

are the measurement outcomes corresponding to the first, second, third, and fourth
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-2θ 

1 

2 

3 

n 

-θ θ θ -θ 

UB,in UB,out 

4θ 

UB,in UB,out 

2θ 

(i) (ii) (iii) 
Figure 4.2: Horizontal lines represent n logical qubits. (i) The four (green) rectangular boxes
(from left to right) represent U12···n

zz···z(θ), U2···n
z···z (−θ), U13···n

zz···z(−θ), and U3···n
z···z (θ), respectively. Each

rotation is realized under the scheme described in Sec. 3.1.5. (ii) The left (green) rectangular box
symbolizes the n-qubit operation Λ1U2···n

z···z (−2θ), and the right box symbolizes the (n− 1)-qubit
operation Λ1U3···n

z···z (2θ). Both of them have qubit 1 as the control. The diagram (iii) represents
Λ12U3···n

z···z (4θ), where qubits 1 and 2 are the control qubits. In (i) and (iii), the dashed (red)
vertical lines in the input and output sections represent the by-product operators UB,in and
UB,out, respectively. Circuit (ii) merely depicts the intermediate stage of circuits (i) and (iii), and
they all are mutually equivalent.

rotations. As a side remark, one can also choose to perform these four rotations at

the same time by using four different ancilla qubits, but this would require more

hardware resources. In the HQCM, Λ12U3···n
z···z (4θ) can be completed in a single time

step, because all the four rotations can be executed at the same time.

The classical information processing for this case can also be decomposed into

three parts. The first part deals with the modification in the measurement an-

gles because of the by-product operator U B,in =
∏n

j=1(X
(j))xj(Z(j))zj [same as of

Eq. (3.21)], which is represented by the dashed vertical line in the input section in

Figs. 4.2(i) and 4.2(iii). Here also, only Ix,in influences the measurement angle ±θ

for every rotation.

θ → (−1)xθ for U12···n
zz···z (θ) ,

−θ → −(−1)x−x1θ for U2···n
z···z (−θ) ,

−θ → −(−1)x−x2θ for U13···n
zz···z (−θ) ,

θ → (−1)x−x1−x2θ for U3···n
z···z (θ),

(4.24)

where x is the same as given by Eq. (4.16).
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The second part manages the influence of the eigenvalues κ1, κ2, κ3, and κ4 on

the azimuthal angle 1
2
π of the measurement bases B±θ,(−1)κ π

2
of Eq. (3.10) in the

following way:

1
2
π → (−1)κ1 1

2
π for U12···n

zz···z (θ) ,

1
2
π → (−1)κ2 1

2
π for U2···n

z···z (−θ) ,
1
2
π → (−1)κ3 1

2
π for U13···n

zz···z (−θ) ,
1
2
π → (−1)κ4 1

2
π for U3···n

z···z (θ) .

(4.25)

The third part handles the random measurement outcomes m1, m2, m3, and

m4, which cause the by-product operators (Z⊗n)m1 , (Z⊗(n−1))m2 , (Z⊗(n−1))m3 , and

(Z⊗(n−2))m4 , respectively, on the relevant logical qubits. Furthermore, they change

U B,in into U B,out by their contribution. U B,out is represented by the dashed vertical

line in the output section in Figs. 4.2(i) and 4.2(iii). Consequently, only the z part

of the corresponding information flow vector Iz,in gets changed into Iz,out, while

Iz,out = Iz,in ,

Iz,out =



z1 +m1 +m3

z2 +m1 +m2

z3 +m

...

zn +m


, (4.26)

where

m = m1 +m2 +m3 +m4 .

Two points are worth emphasizing here. First, Λ12U3···n
z···z (4θ) is symmetric under

permutation of the qubits. Hence, we can take any two qubits as controls and the

rest of qubits as targets by using only four multiqubit rotations. If we use the same

argument further, then the controlled rotation Λ1···cU
(c+1)···n
z···z (θ) of Eq. (4.18), with

c control qubits, requires 2c units of rotation. The number 2c is independent of

the number of target qubits (n− c), but when c becomes of the order of n, then
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2c becomes exponential in n. To fix this exponential growth problem, some extra

work qubits are needed [23]. The next subsection will exemplify this remark.

Second, Λ12U3···n
z···z (4θ) becomes Λ12U

(3)
z (4θ) for n = 3, where U

(3)
z (4θ) on the log-

ical qubit 3 is the phase gate R
(3)
z (4θ) defined by Eq. (3.3). The gate Λ12U

(3)
z (4θ) is

equivalent to Deutsch’s universal3 gate Λ12
[
iR

(3)
x (4θ)

]
[20] up to some single-qubit

unitary operations. In the next section, the three-qubit gates like Λ12U
(3)
z (±π) with

two work qubits are used to implement the four-qubit gate Λ123Z(6).

4.3.3 The triple-control gate Λ123Z(6)

We put every bit and piece of the HQCM together in the implementation of the

gate Λ123Z(6). The complete scheme about its implementation in terms of its circuit

diagram is shown in Fig. 4.3, and the associated classical information-processing

parts are listed in Table 4.1.

First, the gate Λ123Z(6) is efficiently decomposed into a sequence of the elemen-

tary gates—single-qubit, the cz, and U12···n
zz···z (θ) gates—of Sec. 4.1.1. The temporal

order of the elementary gates for Λ123Z(6) is depicted by the circuit diagram in

Fig. 4.3, where qubits 1, 2, and 3 act as the control qubits and qubit 6 acts as

the target qubit. They all are represented by the black horizontal lines. The work

qubits 4 and 5 start and end in the ket |+〉⊗2 [see Eq. (2.28)], and they are repre-

sented by the gray horizontal lines in Fig. 4.3. Like in Sec. 2.4.2, the work qubits

are used here to make the decomposition of Λ123Z(6) economical.

The three-qubit gates Λ12U
(4)
z (π) (first), Λ34U

(5)
z (π) (third), Λ34U

(5)
z (−π) (sev-

enth), and Λ12U
(4)
z (−π) (ninth) are represented by rectangular boxes with double

control. Every three-qubit gate is further decomposed into four rotations around the

z axis according to Eq. (4.23); here n = 3 and θ = ±1
4
π. Furthermore, each rotation

is executed by preparing a required star-graph state, followed by the measurement

in the appropriate basis. The detailed methodology is mentioned in Sec. 4.3.2. The

3Deutsch’s gate is universal, provided the angle 4θ is incommensurate with π.
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6 

0 1 2 3 4 5 6 7 8 9 

2⊗+

2⊗+

τ  = 

Work qubits 
in the ket 

Target qubit 

Control  
qubits 

Figure 4.3: The quantum circuit—similar to the circuit of Fig. 2.6—for implementing the four-
qubit gate Λ123Z(6). From top to bottom, the three black horizontal lines represent control qubits
1, 2, and 3, and the next two, gray horizontal lines represent work qubits 4 and 5, which are
prepared in the ket |+〉⊗2. The black horizontal line at the bottom represents target qubit 6.
Every three-qubit gate is the special case of Λ12U3···n

z···z (4θ) (for n = 3 and θ = ± 1
4π), and they are

realized by the procedure given in Sec. 4.3.2. The Hadamard H and cz(5, 6) gates are executed
by the unitary evolution. The computation steps (τ) are expressed by dashed (red) vertical lines
for the classical information-processing parts listed in Table 4.1.

Hadamard gates H of Eq. (2.23) are displayed by the rounded rectangles, and the

two-qubit gate cz(5, 6) of Eq. (2.46) is shown by the rounded rectangle on qubit 6

with qubit 5 as the control in Fig. 4.3. The Hadamard and the cz(5, 6) gates are

executed by the unitary evolution.

The classical information-processing parts for Λ123Z(6) are handled by a CC

according to Table 4.1. In this table, the first column is for the computational

steps τ , which are represented by the dashed vertical lines in Fig. 4.3. There are 10

vertical lines in the figure and 10 rows in the table for the 10 computational steps

from 0 to 9. At each vertical line the information flow vector I(τ) gets updated.

The second and third columns are reserved for Ix(τ) and Iz(τ), respectively. If

required, the changes in the measurement angles for the next gate based on the

updated value of I(τ) is calculated; they are given in the fourth column. After

performing the measurements in the appropriate bases, the measurement outcomes

are recorded in the fifth column.

Let us go through Table 4.1 row by row. Before starting the computation (in the
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Table 4.1: Classical information-processing parts for Λ123Z(6)

τ Ix(τ) Iz(τ) Angle ±θ (here θ = 1
4
π) Measurement outcomes

0


0
0
0
0
0
0




0
0
0
0
0
0


No change in angle for U124

zzz(θ)
No change in angle for U24

zz(−θ)
No change in angle for U14

zz(−θ)
No change in angle for U4

z(θ)

m11 for U124
zzz(θ)

m12 for U24
zz(−θ)

m13 for U14
zz(−θ)

m14 for U4
z(θ)

m1 = m11 +m12 +m13 +m14

1


0
0
0
0
0
0




m11 +m13

m11 +m12

0
m1

0
0



2


0
0
0
m1

0
0




m11 +m13

m11 +m12

0
0
0
0


θ → (−1)m1θ for U345

zzz(θ)
−θ → −(−1)m1θ for U45

zz(−θ)
No change in angle for U35

zz(−θ)
No change in angle for U5

z(θ)

m31 for U345
zzz(θ)

m32 for U45
zz(−θ)

m33 for U35
zz(−θ)

m34 for U5
z(θ)

m3 = m31 +m32 +m33 +m34

3


0
0
0
m1

0
0




m11 +m13

m11 +m12

m31 +m33

m31 +m32

m3

0



4


0
0
0
m1

m3

0




m11 +m13

m11 +m12

m31 +m33

m31 +m32

0
0



5


0
0
0
m1

m3

0




m11 +m13

m11 +m12

m31 +m33

m31 +m32

0
m3



6


0
0
0
m1

0
0




m11 +m13

m11 +m12

m31 +m33

m31 +m32

m3

m3


−θ → −(−1)m1θ for U345

zzz(−θ)
θ → (−1)m1θ for U45

zz(θ)
No change in angle for U35

zz(θ)
No change in angle for U5

z(−θ)

m71 for U345
zzz(−θ)

m72 for U45
zz(θ)

m73 for U35
zz(θ)

m74 for U5
z(−θ)

m7 = m71 +m72 +m73 +m74

7


0
0
0
m1

0
0




m11 +m13

m11 +m12

m31 +m33 +m71 +m73

m31 +m32 +m71 +m72

m3 +m7

m3



8


0
0
0
m̃
0
0




m11 +m13

m11 +m12

m31 +m33 +m71 +m73

m1

m3 +m7

m3


−θ → −(−1)m̃θ for U124

zzz(−θ)
θ → (−1)m̃θ for U24

zz(θ)
θ → (−1)m̃θ for U14

zz(θ)
−θ → −(−1)m̃θ for U4

z(−θ)

m91 for U124
zzz(−θ)

m92 for U24
zz(θ)

m93 for U14
zz(θ)

m94 for U4
z(−θ)

m̃ = m31 +m32 +m71 +m72 m9 = m91 +m92 +m93 +m94

9


0
0
0
m̃
0
0




m11 +m13 +m91 +m93

m11 +m12 +m91 +m92

m31 +m33 +m71 +m73

m1 +m9

m3 +m7

m3


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first row τ = 0), all the entries of both Ix(0) and Iz(0) are zeros (initialization). So,

there is no change in the measurement angle for each of the four rotations associated

with the gate Λ12U
(4)
z (π) (first gate). The measurement outcomes m11, m12, m13,

and m14 corresponding to the four rotations U124
zzz (θ), U24

zz (−θ), U14
zz (−θ), and U4

z (θ)

are recorded. These outcomes give some nonzero entries to Iz(1) according to

Eq. (4.26). The measurement outcome mjk corresponds to the kth rotation of the

jth three-qubit gate. The next gate in the circuit is the Hadamard gate H(4),

which does not change under the propagation of the by-product operator; therefore

the fourth column of the second row τ = 1 is empty. The H gate is realized by

the unitary evolution; therefore the fifth column of the second row is also empty.

However, the H gate changes the information flow vector I(1) into I(2) under the

propagation relation given by Eq. (3.19), and the propagation matrix for the H

gate is defined by Eq. (3.30) [also see Eq. (3.25)]. The third gate is Λ34U
(5)
z (π). The

measurement angles ±θ only for the rotations U345
zzz (θ) and U45

zz (−θ) get influenced

by Ix(2) according to Eq. (4.24). The measurement outcomes m31, m32, m33, and

m34 only transform Iz(2) into Iz(3). In this way going through Table 4.1 along

with Fig. 4.3 explains the whole scheme, and the final output result is interpreted

according to Eq. (4.5) with the help of Ix(9).

Here, the z part of the information flow vector Iz(τ) gets the new entries from

the implementation of three-qubit gates only according to Eq. (4.26). The entries

of I(τ) get manipulated under the propagation of the by-product operator through

the Hadamard gates and the cz(5, 6) gate according to the propagation relations

(3.19) and (4.9), respectively. However, the propagation of the by-product operator

does not change the H and cz gates. The x part of the information flow vector

Ix(τ) influences the measurement angles ±θ of the rotations for every three-qubit

gate according to Eq. (4.24). As a side remark, the sign of the azimuthal angle 1
2
π

of the measurement bases for the rotations also depends on the eigenvalues of the

ancilla qubit according to Eq. (4.25). This is not mentioned in Table 4.1.
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One can easily generalize this example up to the n-qubit two-level unitary gate

Λ12···(n−1)U (n) [see Sec. 2.4.2], where the n− 1 logical qubits 1, 2, · · · , n− 1 are the

control qubits and the last qubit n is the target qubit on which the single-qubit

gate U is applied. To implement this gate with the HQCM, one needs n− 2 work

qubits, which are initialized in the key |+〉⊗(n−2). We already know from Sec. 2.4.2

that a general 2n × 2n unitary gate can be written down as a product of two-level

unitary gates. Hence, the HQCM can realize any unitary operation. Let us add

here that the gate Λ12···(n−1)Z(n) plays a very important role in GA. Simulation of

GA within the framework of HQCM will be discussed in Sec. 6.2.1.
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Chapter 5

Encoded gates within the hybrid

quantum computation model

One of the biggest challenges in a practical implementation of quantum commu-

nication and computation is to protect the quantum information from the noise.

This challenge can be overcome by encoding a logical qubit into a number of phys-

ical qubits with the aid of quantum error-correcting codes [6, 7, 8, 9, 10]. These

error-correcting codes facilitate reliable storage, communication and computation

of the information.

Another challenge is due to imperfect unitary gates and measurements. As

unitary operations [see Eq. (2.4)] and measurement bases [see Eq. (2.16)] depend

on continuous parameters, they cannot be executed with perfect accuracy. Small

imperfections in the gates and measurements cause errors in the computation. These

errors can propagate and accumulate over the course of a computation, become no

longer correctable and eventually causing a failure. To overcome this issue, one must

perform the elementary components—gates and measurements—in such a way that

brings the accumulated errors below a certain threshold [29, 30]. A computer that

works effectively even when its elementary components are imperfect is said to be

fault tolerant [25, 26, 27, 28].
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Primary steps in the development of fault-tolerant quantum computation1 are

to choose an appropriate quantum error-correcting code and to design a procedure

to get the corresponding encoded gates. Encoded gates are those which can operate

directly (without decode, perform a gate, and then re-encode) on logical qubits2.

In this chapter, we only discuss these primary steps for the HQCM. To achieve a

proper fault-tolerant HQCM, encoding, processing with encoded gates and decoding

of the information have to be performed in a fault-tolerant manner. This will be

the subject of further studies.

Due to its interesting properties, researcher have exploited the Steane 7-qubit

code [7] in fault-tolerant quantum computation [25, 26, 27, 28]. We also choose

to use this code [see Sec. 5.1] in the following discussion. In Secs. 5.2 and 5.3, we

present certain methods to obtain encoded elementary gates [of Sec. 4.1.1] within

the HQCM.

5.1 Steane 7-qubit code

The Steane 7-qubit code3 enables us to encode a single-qubit state using altogether

7 physical qubits. Here, an arbitrary single-qubit ket |ψ(1)〉 of Eq. (2.13) is encoded

in a two-dimensional subspace C spanned by the two logical kets

|0〉L :=
1

2

[
|000〉|η1〉+ |011〉|η2〉+ |101〉|η3〉+ |110〉|η4〉

]
,

|1〉L :=
1

2

[
|111〉|η1〉+ |100〉|η2〉+ |010〉|η3〉+ |001〉|η4〉

]
, (5.1)

1In contrast to a QC, a modern digital CC is so much reliable that its fault-tolerant version is
not required for operating it reliably.

2A valid encoded gate on logical qubits produces the same effect as the corresponding unencoded
gate on unencoded qubits [for examples, see Secs. 5.2 and 5.3].

3It is the quantum version of the Hamming 7-bit code which is used to encode 4 bits of classical
information [1, 7, 26].
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Figure 5.1: An encoding circuit for the Steane 7-qubit code, where the data qubit 1 is given in
the ket |ψ(1)〉 of Eq. (2.13), and the rest of 6 qubits are initialized in the ket |0〉⊗6. Only the
Hadamard H of Eq. (2.23) and cnot of Eq. (2.39) gates are employed here for encoding a single
qubit, and every control is set to |1〉. One can use the same circuit for decoding by running it in
the reverse order.

where

|η1〉 :=
1√
2

[
|0000〉+ |1111〉

]
,

|η2〉 :=
1√
2

[
|0011〉+ |1100〉

]
,

|η3〉 :=
1√
2

[
|0101〉+ |1010〉

]
,

|η4〉 :=
1√
2

[
|0110〉+ |1001〉

]
. (5.2)

These logical kets are called codewords, and the space C := {|0〉L, |1〉L} that they

span is called code space. The encoding can be accomplished by using a quantum

circuit shown in Fig. 5.1. Note that this circuit is not fault tolerant.

This code enable us to recover from a single error occurring in any of the 7 qubits.

If an error occurs, the measurement of specific operators, the stabilizer 4 [10, 27],

will reveal it. The error, once identified by the measurement outcome, or syndrome,

can then be corrected. A detailed description of error-correcting procedure for the

7-qubit code is given in Ref. [26].

Let us now turn to design encoded operations for this code. A valid encoded

4The logical kets |0〉L and |1〉L are eigenkets of a set of operators with the eigenvalue +1. This
set is called stabilizer.
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operation transforms the logical kets in such a way that the resultant kets stay in

the code space. We want the encoded Pauli operators transform the logical kets

in the same way as the Pauli operators X, Y and Z transform the computational

basis {|0〉, |1〉}. Therefore, the encoded Pauli operators XL, YL and ZL for this code

simply are

XL := X⊗7, YL := −Y ⊗7, ZL := Z⊗7 (5.3)

whose actions on the logical kets are by construction

XL |0〉L = |1〉L , YL |0〉L = +i|1〉L , ZL |0〉L = +|0〉L ,

XL |1〉L = |0〉L , YL |1〉L = −i|0〉L , ZL |1〉L = −|0〉L . (5.4)

The action of XL on the logical kets is almost self-evident, and the actions of YL

and ZL can be easily understood by noticing that every ket in the superposition of

|0〉L and |1〉L has 0(mod 4) and 3(mod 4) number of ones, respectively.

One can note that the application of the Pauli gates X, Y and Z to each of

the 7 qubits according to Fig. 5.2(i) implement the encoded gates XL, −YL and

ZL, respectively. This method of implementation is called transversal or bitwise

implementation, which fulfills the two basic criteria of fault tolerance [25, 26, 27, 28].

First, the transversal implementation, in which an operation acts independently

on each qubit in a block, minimizes the spread of existing errors5 within the encoded

block. It is necessary because the chosen 7-qubit code enables us to correct only one

error per block. The spread of more than one error during the computation rapidly

reduces the code’s tolerance for errors and causes failure of the computation.

Second, the bitwise application of certain gates implements their respective en-

coded operations directly (without decoding and encoding afterwards) on the en-

5In Sec. 5.2, the spread of errors is explained by taking the cnot gate as an example.
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coded data. Of course, one can decode, perform a gate, and then re-encode, but

that procedure will temporarily expose the quantum information to the noise. Con-

sequently, it can cause errors in the information processing.

Unfortunately, it is not possible to realize every encoded gate transversally for a

fix (or chosen) code, because the transversal implementation relays on the properties

of the code. In the next section, we present the gates which can be implemented

transversally in the case of the 7-qubit code [26, 27].

5.2 Encoded gates on one and two logical qubits

In this section, we present the transversal implementation of the gates from the

Clifford group. As mentioned in Sec. 3.1.4, the Hadamard H, π/2-phase F and

cnot gates from the generating set of the Clifford group. In the case of 7-qubit

code, the bitwise application of these gates executes the corresponding encoded

operations. Furthermore, we can obtain other encoded gates of the Clifford group

with this generating set.

Similar to the case of encoded Pauli gates, the encoded Hadamard HL := H⊗7

gate can be achieved by applying H [of Eq. (2.23)] transversally according to

Fig. 5.2(i). The encoded gate HL transforms the logical kets as

HL |0〉L = |+〉L :=
|0〉L + |1〉L√

2
,

HL |1〉L = |−〉L :=
|0〉L − |1〉L√

2
, (5.5)

and it transforms the encodes Pauli gates as

HL XL = ZL HL , HL YL = −YL HL , HL ZL = XL HL . (5.6)

One can verify that HL is a legitimate encoded operation by comparing Eqs. (5.6)
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Figure 5.2: Transversal implementation of the Clifford gates on qubits encoded in the Steane
code. In (i), when a single-qubit gate A belongs to the set {X,Y, Z,H, F} of gates then this
circuit realizes the corresponding set {XL,−YL,ZL,HL,−FL} of encoded operations. In (ii), when
a single-qubit gate B belongs to the set {X,Z,H} of gates then the circuit implements the corre-
sponding set {CNOTL,CZL,CHL} of encoded gates. Here, every control is set to |1〉.

and Eq. (3.19) (or Eqs. (5.6)).

Likewise, the bitwise application of the gate F † = Rz(−1
2
π) [see Eq. (2.55)] to

each one of the physical qubit [see Fig. 5.2(i)] realizes the encoded π/2-phase gate

FL :=
[
F †
]⊗7

. This encoded gate brings the following transformations to the logical

kets

FL |0〉L = |0〉L ,

FL |1〉L = i|1〉L . (5.7)

Since we know that every ket in the superposition of |0〉L and |1〉L has 0(mod 4) and

3(mod 4) number of ones, respectively, it is not difficult to understand Eqs. (5.7).

Furthermore, the encoded π/2-phase gate transforms the encoded Pauli gates in
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5.2. Encoded gates on one and two logical qubits

the same was as given in Eq. (3.20):

FL XL = YL FL , FL YL = −XL FL , FL ZL = ZL FL . (5.8)

We can attain other single-qubit gates of the Clifford group by combining the HL

and FL gates6.

Let us now come to design encoded two-qubit gates. Here, we have to be careful

about the spread of existing errors. If an error occurs in one qubit which afterwards

interacts with another qubit through a two-qubit gate, then the error is likely to

spread to the second qubit. For example, in the case of two-qubit cnot gate [of

Eq. (2.39)], if a bit-flip error (X) occurs in the control qubit, before the operation,

then the error propagates to both the control and target qubits. Similarly, if a

phase-flip error (Z) occurs in the target qubit then the error propagates to the two

qubits. This fact can be verified by Eq. (3.16). The spread of existing errors also

occurs in the case of other two-qubit gates such as the cz and controlled-Hadamard7

(ch) gates.

In the case of the Steane code, the encoded two-qubit CNOTL gate can be

archived by applying bitwise seven cnot gates between each qubit of the control

block and the corresponding qubit of the target block according to Fig. 5.2(ii).

This transversal implementation does not introduce more than one error per block,

and the Steane code can handle one error per block. Similarly, we can realize the

encoded two-qubit gates CZL and CHL.

6In the case of the 7-qubit code, the transversal implementation of HL and FL is possible
because this quantum code is derived from a punctured doubly-even self-dual classical code (the
Hamming 7-bit code). In the case of a binary doubly-even self-dual code, the number of ones in
all codewords is divisible by 4. Reader can find details about these properties—doubly-even and
self-dual—in Refs. [25, 27].

7ch(a, b) := |0〉a〈0| ⊗ I(b) + |1〉a〈1| ⊗H(b).
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Thus these encoded gates can be written as

CNOTL(a, b) := ⊗7
k=1

[
cnot(ka, kb)

]
, (5.9)

CZL(a, b) := ⊗7
k=1

[
cz(ka, kb)

]
, (5.10)

CHL(a, b) := ⊗7
k=1

[
ch(ka, kb)

]
, (5.11)

where label a (b) stands for the control (target) block, and label k stands for the

physical qubit of a block. The CNOTL(a, b) gate transforms the encoded Pauli

operators in the following way

CNOTL(a, b)X
(a)
L = X

(a)
L X

(b)
L CNOTL(a, b) ,

CNOTL(a, b)X
(b)
L = X

(b)
L CNOTL(a, b) ,

CNOTL(a, b)Z
(a)
L = Z

(a)
L CNOTL(a, b) ,

CNOTL(a, b)Z
(b)
L = Z

(a)
L Z

(b)
L CNOTL(a, b) , (5.12)

and the CZL(a, b) gate brings the following transformations

CZL(a, b)X
(a)
L = X

(a)
L Z

(b)
L CZL(a, b) ,

CZL(a, b)X
(b)
L = Z

(a)
L X

(b)
L CZL(a, b) ,

CZL(a, b)Z
(a)
L = Z

(a)
L CZL(a, b) ,

CZL(a, b)Z
(b)
L = Z

(b)
L CZL(a, b) . (5.13)

Validity of the CNOTL and CZL gates can be proved by comparing Eq. (5.12) with

Eq. (3.16) and Eq. (5.13) with Eq. (4.9), respectively. Similarly, one can also prove

that the CHL gate is a consistent encoded operation.

So far each one of the encoded gates (the Pauli and Clifford gates) we presented

is fault tolerant [25, 26, 27, 28], but they are not sufficient for universal quantum

computation. To obtain a universal set of fault-tolerant gates, we present the en-
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coded rotation U12···n
zz···z(θ)L in the next section.

5.3 Encoded gates on n logical qubits

In this section, we describe a procedure to achieve within the HQCM the encoded

n-qubit rotation around the z axis,

U12···n
zz···z(θ)L := cos

(
1
2
θ
)
I⊗nL − i sin

(
1
2
θ
)
Z⊗nL , (5.14)

where IL is the encoded identity operation I⊗7. Note that the superscripts 12 · · · n,

here, symbolize the logical qubits. Implementation of the n-qubit rotation is ac-

complished by the same procedure as given in Sec. 3.1.5.

First, the ancilla block (of seven physical qubits) a is initialized in the logical

ket |0〉L with the aid of the encoding circuit shown in Fig. 5.1. Then, we perform

HL on |0〉L to get the ket |+〉L [see Eq. (5.5)]. In Fig. 5.3, the encoding circuit is

displayed by the large rounded rectangle, and the HL gate is represented by the H

gates on the physical qubits of the ancilla.

To execute the encoded gate U12···n
zz···z(θ)L on a general n-qubit encoded state

|ψin(n)〉L, we have to entangle the input quantum register of the n logical qubits

to the ancilla a. To do so we perform n CZL operations between the ancilla

qubit a and every logical qubit. In the quantum circuit of Fig. 5.3, only the gate

CZL(a, 1) = ⊗7
k=1

[
cz(ka, k1)

]
is shown. Furthermore, all the CZL gates can be per-

formed in a single shot, because they all commute with each other.

Consequently, we get the required star-graph state,

|φ(1 + n)〉L =
1√
2

[
|0〉L ⊗ |ψin(n)〉L + |1〉L ⊗

(
Z⊗nL |ψin(n)〉L

)]
, (5.15)

of 1 + n qubits. The associated star graph is shown in Fig. 5.3, where the input

quantum register of the n logical qubits is displayed with circles, the ancilla a with
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Figure 5.3: The star graph at the bottom left corner of this figure corresponds to the encoded
state |φ(1 + n)〉L. In the graph, the circles represent the n logical qubits, the bonds represent the
CZL gates, and the diamond represents the ancilla qubit a. The circuit enclosed in dotted red lines
represents the initialization of the ancilla qubit in the ket |+〉L followed be the encoded CZL(a, 1)
gate. This encoded gate is performed by the seven cz gates [see Eq. (5.10)].

a diamond, and the CZL gates with green bonds.

First, let us note that the procedure to perform measurement given below is not

fault tolerant and would therefore require further investigation. After preparing

the graph state, we only decode the ancilla block. The decoding can be perform by

running the circuit of Fig. 5.1 in the reverse order. As a result, the ket |φ(1 + n)〉L

is transformed into the ket

|φ̃(1 + n)〉L =
1√
2

[
|0000000〉 ⊗ |ψin(n)〉L + |1000000〉 ⊗

(
Z⊗nL |ψin(n)〉L

)]
, (5.16)

Like in Sec. 3.1.5, a projective measurement on the first physical qubit of the

ancilla block in the basis Bθ,π
2

[see Eq. (2.16)] transforms the input ket into the

output ket

|ψout(n)〉L = (Z⊗nL )ma U12···n
zz···z(θ)L|ψin(n)〉L . (5.17)
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5.3. Encoded gates on n logical qubits

Here, ma ∈ {0, 1} is the measurement outcome, and (Z⊗nL )ma is the by-product op-

erator. After the measurement, the bonds [illustrated in Fig. 5.3] are broken, and

the first qubit of the ancilla block is projected either onto the ket | ↑ (θ, 1
2
π)〉a (if

ma = 0) or onto the ket | ↓ (θ, 1
2
π)〉a (if ma = 1). Every other physical qubit of the

ancilla is already in the ket |0〉. Thus the implementation of the encoded n-qubit

rotation is achieved within the HQCM.

With the same procedure, we can also get the encoded operations

U12···n
xx···x(θ)L := cos

(
1
2
θ
)
I⊗nL − i sin

(
1
2
θ
)
X⊗nL (5.18)

and

U12···n
HH···H(θ)L := cos

(
1
2
θ
)
I⊗nL − i sin

(
1
2
θ
)
H⊗nL (5.19)

just by replacing CZL with CNOTL and CHL, respectively. The encoded operation

U12···n
HH···H(θ)L is useful to construct the test states [see Appendix C] employed in

Chapter 7 for a quantum search. In the case of n = 1 and θ = 1
4
π, the encoded

rotation U12···n
zz···z(θ)L becomes the encoded single-qubit π/4-phase gate

DL := exp
(
−iπ

8
ZL
)

(5.20)

This gate together with certain Clifford gates constitutes a discrete set of universal

gates {DL,FL,HL,CZL} [28].

Let us now briefly comment on the classical information processing of HQCM,

which fits perfectly in the picture of quantum error-correcting code. Indeed, the

structure of by-product operator

U B(τ) =
n∏

j=1

(X
(j)
L )xj(τ)(Z

(j)
L )zj(τ) (5.21)

will stay the same as given by Eq. (4.1). Here, only the single-qubit Pauli operators
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X and Z are replaced by their respective encoded operators XL and ZL. While,

the classical entries xj and zj for jth logical qubit remain unchanged. Consequently,

one can still work with the same 2n-component information flow vector given by

Eq. (3.21). Furthermore, the propagation relations for the HL, FL, and CZL are

given by Eqs. (5.6), (5.8), and (5.13), respectively. They are of the same form as

given by Eqs. (3.19), (3.20), and (4.9). Also, one can obtain the same propagation

relation for U12···n
zz···z(θ)L as given by Eq. (4.15). Hence, we can use the same 2n× 2n

propagation matrices [defined by Eqs. (3.30), (3.31), (4.13), and (4.17)] for the

classical information processing in a fault-tolerant HQCM.

This completes the first step towards the establishment of a fault-tolerant HQCM.

To make the picture of fault tolerance complete, we would have to implement the

U12···n
zz···z(θ)L gate in a fault-tolerant manner. In other words, we would have to per-

form the encoding, decoding8 and measurement in a fault-tolerant manner. This

will be the subject of further studies.

8We know that the quantum circuit for encoding/decoding given in Fig. 5.1 is not fault tolerant.
In the implementation of U12···n

zz···z(θ)L given above, the same circuit is used to prepare the ancilla
qubit in the logical ket |0〉L and, before the measurement, to decode the ancilla qubit.
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Quantum Search
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Chapter 6

Search problem

Suppose someone gives us a list of one hundred names of different animals on a

piece of paper, and ask where “Lion” appears on this list. If “Lion” appears exactly

once on the list, and the list is not ordered in any obvious way, then we have to go

through about fifty names on average before we find “Lion.” For a search of this

kind, neither a CC nor a QC can directly helps us, because the data (names) are

given on a piece of paper.

In order to make use of a CC or a QC for this kind of database search, first we

have to convert the data into an accessible format. For example, in case of a CC

for such a search, first we have to load the data (the given list) into the memory

of a CC. However, we can find the name Lion in the process of converting the list

of names into an electronic format (in terms of strings of bits) and storing them in

the memory. So, neither a CC nor a QC is very helpful for a search of this kind. In

other words, a CC (QC) is helpful for a database search only when the database is

given in an electronic format (quantum format).

Similarly, a QC cannot search a classical database without a “quantum address-

ing scheme” [1] where the classical database is converted into a quantum format (in

terms of quantum kets). So, the process of searching a marked string of bits with

a CC in a classical database which is stored in the memory of a given computer is
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called as classical search [see Sec. 6.1]. Likewise, quantum search [see Sec. 6.2] is

a process where a QC searches a marked quantum state (or, rather, a particular

unitary operation) out of a given set of quantum states (or, rather, a given set

of unitary operations). Classical and quantum searches are analogous but not the

same, their detailed description is given in the following sections.

6.1 Classical search and classical algorithm

Suppose we have an unsorted database as a set

SNC := {0, · · · , j, · · · , N − 1} (6.1)

of a total of N items stored electronically in the memory of a given CC. Each item

is labeled by an index from 0 to N − 1 and further represented by a n-bit string in

binary representation [see Eq. (2.49)]. Only one particular item matches with our

query, and the task of the search problem is to recover the corresponding index (n-

bit string) to the marked item at the end of computation. For convenience, the case

of N = 2n (0 ≡ 00 · · · 0, N − 1 ≡ 11 · · · 1) is taken here, but the following algorithms

and the test-state approach given in Chapter 7 can be applied for an arbitrary value

of N .

The method employed by a CC to solve the search problem is to check every

element of SNC one by one in a sequence till a match is found [3]. A single iteration

of this classical search algorithm is a three-step process given as follows:

Step 1: The CC picks a n-bit string at random from the set SNC as an input.

Step 2: The CC checks, whether or not this string matches with our query.

Step 3: It returns a “yes” or “no” answer to the question.

If the answer is “yes,” then the CC stops the computation and produces the string
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6.2. Quantum search and Grover’s algorithm

as the result, and the corresponding item will be the marked item. If the answer

turns out to be “no,” then the CC picks another string at random from the set

SNC as an input, with items tested earlier excluded, and asks the same question

given above in Step 2. If the answer is again “no,” then the CC repeats the above

iteration until it hits the marked item.

One of the main points in this classical algorithm is, “Every time the CC picks

at random only one n-bit string, and its current guess does not depend on previous

guesses” other than excluding them. In this way, a CC needs, on average, as many

as

GC(N) =
N + 1

2
− 1

N
(6.2)

queries of the database before it finds the matching item. This is an immediate

consequence of the recurrence relation

GC(N + 1) = 1 +
N

N + 1
GC(N) for N > 1 (6.3)

that commences with GC(1) = 0.

Since GC(N) ∝ N for N � 1, this classical search algorithm is linear in the

number of candidate items. If, rather than being unstructured, the data were

sorted beforehand, then the problem could be completed by a binary search1 in

approximately log2(N) iterations [3].

6.2 Quantum search and Grover’s algorithm

In this section, a quantum search problem analogous to the classical one and a brief

description of GA [34] is provided. In the transition from classical to quantum,

bits are replaced by qubits. So, for each index (n-bit string) j [see Eq. (2.49)] of

SNC defined by Eq. (6.1) there exist a n-qubit quantum ket |j〉 [see Eq. (2.50)], the

1Binary search algorithm is a divide and conquer search algorithm, where the size of search
space reduces into it half after each iteration.
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so-called index ket. There is then a unitary operation Oj—the jth oracle—which

gives a conditional phase shift of π to the index ket |j〉 only,

Oj := (−I)|j〉〈j| = I− 2|j〉〈j| , (6.4)

where I = I⊗n is the identity operator in the N -dimensional Hilbert space.

One can define a quantum search problem analogous to the classical search

problem of Sec. 6.1 in the following way: Suppose someone gives us a quantum

black box, which implements one of these N different oracles, and asks us to find

out which of the oracles is the case without actually opening the box and looking

inside. Clearly, we are not using QC to search a marked item in a classical database,

but we are searching the index ket corresponding to the given oracle. The question

of how many queries of the database are now needed, reads “How many times must

one use the quantum black box to find out the correct result?”

The most efficient way of finding out which oracle is the actual one is GA [64].

GA begins by applying the Hadamard gate H of Eq. (2.23) to each qubit, after

initially preparing the state with index ket |0〉 ≡ |0〉⊗n. The operation H⊗n creates

the input state

|ψ0〉 =
1√
N

N−1∑
j=0

|j〉

= A0 |j〉+
B0√
N − 1

∑
l( 6=j)

|l〉 (6.5)

with

A0 =
1√
N

:= sin
(
θN
)

(6.6)

and

B0 =

√
N − 1√
N

:= cos
(
θN
)
. (6.7)

The ket |ψ0〉 is a superposition of all the index kets of the set SNQ of Eq. (2.1) with
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6.2. Quantum search and Grover’s algorithm

equal amplitude 1/
√
N . The next step is an application of the Grover iteration

operation G. Geometrically it is a rotation composed of two reflection operations

as G = DO. The operator O is the same quantum oracle (black box) defined by

Eq. (6.4), whose unknown index we have to find. The diffusion operator D gives an

inversion about the average [34],

D = 2|ψ0〉〈ψ0| − I

= −H⊗n
(
I− 2|0〉〈0|

)
H⊗n , (6.8)

its central piece is the 0th oracle O0.

If the black box implements the jth oracle, then after k applications of G the

resultant state will be

|ψk〉 = Ak |j〉+
Bk√
N − 1

∑
l(6=j)

|l〉 (6.9)

with

Ak =

(
1− 2

N

)
Ak−1 + 2

√
N − 1

N
Bk−1 = sin

(
(2k + 1)θN

)
(6.10)

and

Bk = −2

√
N − 1

N
Ak−1 +

(
1− 2

N

)
Bk−1 = cos

(
(2k + 1)θN

)
. (6.11)

GA is probabilistic in nature in the sense that, after applying G k times, the prob-

ability of the privileged index ket

p
(N)
k = sin

(
(2k + 1)θN

)2
(6.12)

becomes significantly larger than the probability of other index kets. Upon opti-
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mizing k, GA solves the quantum search problem by using the black box only

GQ(N) = 0.69
√
N (6.13)

times when N � 1 [see Sec. 7.3]. As a side remark, after GQ(N) number of Grover

iterations the success probability p
(N)
k goes down again. Finally, the output is read

by performing projective measurements on each qubit, and so one of the index kets

is obtained. Most likely the oracle associated with the final output index ket is the

one which the black box is executing.

The quadratic speedup of GQ(N) ∝
√
N versus GC(N) ∝ N is owed to the

computational power of quantum physics; specifically, the superposition principle

is at work. But, it is worth emphasizing that the outcome of GA is not guaranteed

to be the correct answer; it can be incorrect with a probability of the order of 1/N

for N � 1, that is very small but definitely nonzero.

In passing, one can make a note of the following. A general treatment of GA for

multiple targets and for an arbitrary value of N is given in Ref. [65]. Moreover, GA

is a special case of the quantum amplitude amplification [66] and can be used in

the quantum counting problem [67] with the help of the discrete quantum Fourier

transformation [33, 1]. In addition, one can get rid of the probabilistic nature of

GA if one has the option of changing the structure of the diffusion operator D and

the oracle O [68]. When one is only allowed to use the given black box, namely the

oracles of Eq. (6.4), but not to open it up and change its setting, then GA remains

probabilistic in nature.

So, one needs a confirmation step to be sure of the result obtained by GA. A

single iteration of the test-state search introduced in the next chapter acts as a

confirmation step for GA, where the verification matter is discussed after Eqs. (7.6)

in Sec. 7.1. In the next section, the implementation of GA with the HQCM is given.
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6.2. Quantum search and Grover’s algorithm

6.2.1 Grover’s search algorithm within the HQCM

There have been many successful attempts to implement of GA [34], for N = 4 or

N = 8, in different physical setups such as the NMR systems [48, 49, 50], cavity

quantum electrodynamics [51, 52, 53], optics [54, 55]. Furthermore, the implemen-

tation of GA within the MQCM of Chapter 3 is demonstrated in Refs. [56, 57]. In

this section, the implementation of GA—where the n-qubit Λ12···(n−1)Z(n) and some

single-qubit gates are sufficient—with the HQCM of Chapter 4 is illustrated.

Let us take a look at the structures of the two reflection operators—Oj of

Eq. (6.4) and D of Eqs. (6.8)—of Grover iteration operator G. If the given black

box is executing only one out of N = 2n different oracles, then the oracle for the

case of j = N − 1 will be

ON−1 = I− 2|N − 1〉〈N − 1| = Λ12···(n−1)Z(n) . (6.14)

Its simulation with the HQCM for the case of n = 4 is already discussed in Sec. 4.3.3.

Furthermore, any other oracle can be derived by performing the single-qubit X

gate(s) on the relevant qubit(s) before and after performing the gate Λ12···(n−1)Z(n),

as exemplified by

O0 = X⊗n
[
Λ12···(n−1)Z(n)

]
X⊗n . (6.15)

Hence, the gate Λ12···(n−1)Z(n) is a necessary part of the circuitry of the black box

and is employed in every case of oracle. However, the answer to “Which of the

oracle is executed by the black box?” is hidden from us. In other words, we do

not know on which qubit(s) the black box implements the X gate(s) along with

Λ12···(n−1)Z(n).

Similarly, one can realize the diffusion operator D of Eqs. (6.8),

D = −H⊗nX⊗n
[
Λ12···(n−1)Z(n)

]
X⊗nH⊗n , (6.16)
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by performing the Hadamard H and the Pauli X gates on every logical qubit before

and after performing the gate Λ12···(n−1)Z(n). In conclusion, the gate Λ12···(n−1)Z(n)

together with the Hadamard H and the Pauli X gates is sufficient to run GA in

the HQCM.
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Test-state approach to the

quantum search

The search for a quantum needle in a quantum haystack—quantum search [see

Sec. 6.2]—is a metaphor for the problem of finding out which one of the permis-

sible set of oracles [of Eq. (6.4)] is implemented by a given black box. GA [34]

solves this problem with quadratic speedup [see Eq. (6.13)] as compared with the

analogous search for a classical needle in a classical haystack—classical search [see

Sec. 6.1]. Since the outcome of GA is probabilistic—it gives the correct answer

with a high probability, not with certainty—the answer requires verification. For

this purpose, specific test states [42] are introduced, one test state for each oracle.

These test states can also be used to realize a classical search for the quantum needle

which is deterministic—it always gives the correct answer after a finite number of

iterations—and 3.41 times faster than the purely classical search of Sec. 6.1. Since

the test-state search [42] and GA look for the same quantum needle, the average

number of oracle queries of the test-state search is the classical benchmark for GA.

Features of both the classical and quantum approaches are embodied in this

approach. A single iteration in the test-state approach [see Sec. 7.1] can be sum-

marized in the following three steps.
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Step 1: An index ket |j〉 from the set SNQ [see Eq. (2.1)] is picked, and the corre-

sponding test state is prepared.

Step 2: The test state is then passed through the given quantum black box which

is executing one of the oracles of Eq. (6.4).

Step 3: The available information is extracted from the processed test state with

the help of a POM1 [58, 59].

Here, a single iteration comprises of these three steps, which are similar to the

classical search algorithm of Sec. 6.1. As is the case in the classical search, the

result of the POM gives an answer to the same question—whether or not the black

box is executing the oracle Oj—in terms of “yes” or “no.” The answer “yes” tells

us that the black box is executing the corresponding oracle to the index ket we have

picked and terminates the search.

Even if the answer is “no,” the result of the POM gives us some information

about the actual oracle. This information facilitates an educated guess and a judi-

cious choice of the test state for the next iteration.

The correct result is obtained after a finite number of iterations. In other words,

the test-state search is deterministic, rather than probabilistic. And, the systematic

educated guessing makes the test-state search more efficient than a truly classical

search, in which all the test states would be chosen at random: For N � 1, the

test-state search needs fewer guesses by a factor of 1/3.41 = 0.293.

The structure of this chapter is as follows. A comprehensive description of

the test-state approach to the quantum search problem is provided in Sec. 7.1

and Sec. 7.2. GA with test-state verification is then discussed in Sec. 7.3, and

Sec. 7.4 deals with alternative test-state search strategies. In Sec. 7.5, the quantum

circuits for the construction of the test states and for realizing the measurements

are described.

1A discussion on POM is given in Postulate 3 of Sec. 2.1.2.
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7.1 A single iteration in the test-state approach

In this section, the construction of the test states for the verification of the outcome

of GA and the three steps of one iteration round in the test-state approach for

determining the oracle of the quantum search problem are discussed. The narrative

follows the steps in sequence.

Step 1—Preparing the test state: An index ket |j〉 from the set SNQ given

by Eq. (2.1) is picked. For the very first round of iteration, the choice of |j〉 is

random, but for all subsequent rounds the choice is dictated by the result of the

measurement in Step 3, as discussed in Sec. 7.2.

Then the corresponding test state |tj〉 of the form

|tj〉 := a|j〉+ b
∑
l(6=j)

|l〉 (7.1)

is prepared, where a is the amplitude of the privileged index ket |j〉 and b is the

common amplitude of all other index kets. Both a and b are functions of N ; it

suffices to consider only real positive values for a and b, but this is a restriction of

convenience, not of necessity.

In Sec. 7.5.1, a method for constructing the test state |t0〉 for the case of N = 2n

is presented. The n-qubit test state |t0〉 can be transformed into any other test state

|tj〉 by applying the X operations on the relevant qubits. In other words, each |tj〉

is equivalent to |t0〉 up to some single-qubit operations.

Step 2—Processing the test state: The test state |tj〉 is passed through the

given quantum black box. As recalled in Sec. 6.2, the black box implements one

out of N different oracles of Eq. (6.4); but we do not know which one oracle is the

case. Hence, there is a priori probability 1/N for every oracle. If the black box
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implements the jth oracle, then the resultant state is

Oj|tj〉 = |tjj〉 = −a|j〉+ b|k〉+ b
∑
l(6=j,k)

|l〉 . (7.2)

If the black box is not implementing the jth oracle, but some other one, the kth

oracle, say, then the resultant state is

k 6= j : Ok|tj〉 = |tkj 〉 = a|j〉 − b|k〉+ b
∑
l(6=j,k)

|l〉 . (7.3)

Result |tjj〉 says “yes, it is the jth oracle” whereas each |tkj 〉 with k 6= j says “no, it

is not the jth oracle.” Note that there is one “yes” but N − 1 different “no”s.

The “no” set CNj to the index ket |j〉 as the collection of all N − 1 “no” states

of Eq. (7.3) is defined as

CNj :=
{
|t0j〉, · · · , |t

j−1
j 〉, |t

j+1
j 〉, · · · , |tN−1

j 〉
}
. (7.4)

In order to be able to completely discriminate the “yes” ket |tjj〉 from the “no” kets

in CNj , we demand that

〈tkj |t
j
j〉 = 0 for k 6= j , (7.5)

so that the “yes” ket is orthogonal to all the “no” kets. Together with the normal-

ization of the test-state ket |tj〉, this gives

a =

√
N − 3

2N − 4
,

b =
1√

2N − 4
, (7.6)

for the amplitudes in Eq. (7.1).

The use of the test states for the verification of the outcome of GA, is quite

obvious: After GA identifies the jth oracle, we prepare the jth test state |tj〉 and
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let the oracle act on it. Then we perform a measurement that determines whether

the resulting ket is proportional to the “yes” ket |tjj〉 or resides in the orthogonal

subspace spanned by the N − 1 “no” kets. If we find the “yes” ket, the search is

over; otherwise, we have to execute GA another time. An alternative confirmation

step for GA, where one has to use the black box at most two times, is described in

Appendix B.

As Eqs. (7.6) show, there are test states for N > 2, but none for N = 2. It is as

it should be. Indeed, the two oracles O0 = |1〉〈1| − |0〉〈0| and O1 = |0〉〈0| − |1〉〈1|

for N = 2 are simply indistinguishable; they do not tell the index kets |0〉 and |1〉

apart.

Turning our attention to the “no” kets, one can observe that they are the edges

of a (N − 1)-dimensional pyramid,

k 6= j, l 6= j : 〈tkj |tlj〉 = λ+ (1− λ)δkl (7.7)

with the common overlap

λ =
N − 4

N − 2
(7.8)

shared by each pair of “no” kets. In the terminology of Ref. [61], the pyramid

is acute (λ > 0) for N > 4, orthogonal (λ = 0) for N = 4, and flat (λ = −1) for

N = 3.

The case N = 4 is particular: we have a = b = 1/2 and all four test states are

identical. The “no” states for one index ket are pairwise orthogonal; they are “yes”

states for the other index kets. As a consequence, testing the oracle once with the

one common test state will reveal its identity. This observation is sometimes stated

as “GA needs to query the oracle only once for N = 4.” Indeed, we have p
(4)
1 = 1

in Eq. (6.12). This peculiarity of GA comes about because the common N = 4 test

state is also the N = 4 initial state of GA, and the N = 4 version of the diffusion

operator D of Eq. (6.8) maps the square-root measurement (SRM) kets of Eq. (7.18)
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below onto the computational basis, in which the outcome of GA is obtained.

For the case of N > 4, the “no” kets are not orthogonal to each other (λ > 0), so

the POM is a more efficient mean to obtain the information from the non-orthogonal

quantum states [58, 59]. In addition, these “no” kets possess a symmetry in the

sense that described in Ref. [60]. To understand this property, one can take the test

state |t0〉 and the corresponding set of “no” kets CN0 as an example. There is then

a corresponding unitary operation

P0 := |0〉〈0|+
N−2∑
l=1

|l + 1〉〈l|+ |1〉〈N − 1| (7.9)

which performs a cyclic permutation over a subset of the computational basis, and

its periodicity is N − 1: (P0)N−1 = I. The symmetry possessed by the “no” kets of

CN0 can be stated as:

P0 |tl0〉 =


|t00〉 for l = 0

|tl+1
0 〉 for 0 < l < N − 1

|t10〉 for l = N − 1

(7.10)

As we know that any test state |tj〉 of Eq. (7.1) is locally equivalent to |t0〉, so

one can easily generalize this property for any other “no” set CNj . In the case of

symmetric non-orthogonal quantum state discrimination, the SRM is the optimum

measurement in the sense of minimization of the average probability of error [60].

In the next step, therefore, the SRM are used to get the available information.

Step 3—Measuring the result: When measuring the state that results from

applying the black-box oracle to the jth test state |tj〉, we not only need to distin-

guish between “yes” and “no” but also want to acquire information about which of

the “no”s is the case, so that we can make a judicious choice for the next test state.

Thanks to the pyramidal structure of the “no” kets [61], the POM that maximizes

our odds of guessing right is the SRM [60].
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For N = 3, there is no useful POM of this kind because the two “no” states are

the same, as is exemplified by |t10〉 = −|t20〉. For N > 3, the SRM

N−1∑
l=0

Πl
j = I (7.11)

has the elements of POM Πl
j := |T lj〉〈T lj | with

|T lj〉 = ρ
−1/2
j |tlj〉 , (7.12)

where ρj :=
∑N−1

k=0 |tkj 〉〈tkj |. In order to narrate the kets |T lj〉 in terms of the compu-

tational basis, one has to look into the structure of ρ
−1/2
j .

Diagonalization of the N ×N density matrix2,

ρj = |tjj〉〈t
j
j|+ (1 + (N − 2)λ)|T 〉〈T |+ (1− λ)|T⊥〉〈T⊥| , (7.13)

divides the N -dimensional space into three mutually orthogonal subspaces, which

are defined by the eigenkets
{
|tjj〉, |T 〉, |T⊥〉

}
and the corresponding eigenvalues{

1, (1 + (N − 2)λ), (1− λ)
}

of ρj. Where, the eigenket

|T 〉 :=
1√

(N − 1)(1 + (N − 2)λ)

∑
k(6=j)

|tkj 〉 (7.14)

is an equal superposition of all the “no” kets of CNj , the projector onto its orthog-

onal subspace is |T⊥〉〈T⊥|+ |tjj〉〈t
j
j| = I− |T 〉〈T |, and λ is of Eq. (7.8). Hence, the

required representation of ρ
−1/2
j ,

ρ
−1/2
j = 1√

1−λ

[
I +

(√
1− λ− 1

)
|tjj〉〈t

j
j|+

(
√

1−λ√
1+(N−2)λ

− 1

)
|T 〉〈T |

]
, (7.15)

2Note that the density matrix ρj is not normalized: Tr(ρj) = N .
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is obtained from Eq. (7.13). And, from Eqs. (7.5) and (7.7), we have:

〈T |tlj〉 =

 0 for l = j√
1+(N−2)λ

N−1
for l 6= j

(7.16)

Considering Eqs. (7.15) and (7.16), the ket |T lj〉 of Eq. (7.12) is reviewed:

|T lj〉 =


|tjj〉 for l = j

1√
1−λ

[
|tlj〉+

√
1−λ−
√

1+(N−2)λ
√
N−1

|T 〉
]

for l 6= j
(7.17)

The Final form of |T lj〉 in the computational basis follows form Eqs. (7.3) and (7.14):

|T lj〉 =

 −a|j〉+ b|l〉+ b
∑

k(6=j,l) |k〉 for l = j

b|j〉 − x|l〉+ y
∑

k( 6=j,l) |k〉 for l 6= j
(7.18)

where

y =
1 + a

N − 1
, x = 1− y (7.19)

and a, b are the coefficients of Eqs. (7.1)-(7.3) and (7.6).

The set of kets
{
|T l 6=jj 〉

}
constitutes another acute pyramid of N − 1 legs asso-

ciated with the SRM [61] and, together with the ket |T jj 〉, they form a complete

basis for the SRM. Since

〈T kj |T lj〉 = δkl , (7.20)

the SRM is an orthogonal measurement, a standard von Neumann measurement,

not a POM proper. Therefore, the SRM can be implemented by a unitary trans-

formation followed by measuring the computational basis. One quantum circuit for

such a unitary transformation is given in Sec. 7.5.2.
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7.2 Conditional probabilities in the test-state

approach

The probability of getting the lth outcome if the processed jth test state is |tkj 〉 is

given by

prob(tkj → Πl
j) = 〈tkj |Πl

j|tkj 〉 =
∣∣〈T lj |tkj 〉∣∣2 . (7.21)

It follows from Eqs. (7.2), (7.3), and (7.18) that there are three cases,

prob(tkj → Πl
j) =


1 for k = j, l = k

αN−1 for k 6= j, l = k

βN−1 for k 6= j, l 6= k

(7.22)

where

βN−1 =
1

(N − 1)2

(
√
N − 3−

√
2√

N − 2

)2

,

αN−1 = 1− (N − 2)βN−1

=
1

(N − 1)2

(√
N − 3 +

√
2N − 4

)2

, (7.23)

with the subscript N − 1 stating the number of different “no” outcomes. The first

case (k = j) in Eq. (7.22) is the affirmative “yes, it is the jth oracle” answer that

terminates the search. The second and third cases (k 6= j) both say “no, it is not

the jth oracle.”

“Yes” answer: After the SRM, if the outcome is |T jj 〉 = |tjj〉, then our choice,

the index ket |j〉, was right. Consequently, we can say for sure that the black

box executes the oracle Oj. Afterwards, the search is over, and we can stop the

computation. This fact is stated in the first condition (k = j, l = k) of Eq. (7.22).

“No” answer: If the measurement result turns out to be the ket |T l 6=jj 〉, then

certainly the black box does not execute the oracle Oj. And, we will therefore
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guess that the black box contains the lth oracle and choose |tl〉 as the next test

state; where αN−1 of Eqs. (7.23)—present in the second condition (k 6= j, l = k) of

Eq. (7.22)—is the probability of guessing right. But it is possible that the test state

|tl〉 also turns out to be a wrong choice. In other words, the black box could execute

one of the other N − 2 oracles corresponding to the other N − 2 “no” outcomes.

So, βN−1 of Eqs. (7.23) is the probability of guessing wrong, which appears in the

third condition (k 6= j, l 6= k) of Eq. (7.22).

The SRM maximizes the probability of guessing right. Thereby, the probability

αN−1 of getting the lth outcome when the black box implements the lth oracle

(l = k) is larger than the probability βN−1 for all otherN − 2 “no” outcomes (l 6= k).

After the first wrong guess |j〉, we exclude the index ket |j〉 from the list of

candidates, and have the set

SN−1
Q =

{
|0〉, · · · , |j − 1〉, |j + 1〉, · · · , |N − 1〉

}
(7.24)

of the remaining N − 1 index kets for the next round. Having found the SRM

outcome Πl
j, we repeat the iteration described in Sec. 7.1 on the set SN−1

Q by taking

the index ket |l〉 as the next educated guess, for which the “no” probabilities are

αN−2 and βN−2. If this guess is also wrong, then the lth index ket can be excluded

as well, and we are left with N−2 candidates and a new educated guess for the next

test state with “no” probabilities αN−3 and βN−3, and so forth, until we either get

the “yes” answer, or we are left with four candidates only, having excluded N − 4

index kets successively. The common test state for N = 4 will then surely give us

the “yes” answer; in the present context, this is confirmed by α3 = 1 and β3 = 0 in

Eqs. (7.22) and (7.23).

In each round of iteration in the test-state search, we are using the given black

box once. Accordingly, the average number of oracle queries before a “yes” answer
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is obtained, is given by

GT (N) = p
(N)
1 + 2 p

(N)
2 + 3 p

(N)
3 + · · ·+ (N − 3) p

(N)
N−3 (7.25)

where p
(N)
m is the probability that the search terminates after the mth round with

the test-state approach3. For N > 4, these probabilities are

p
(N)
1 =

1

N
,

p
(N)
2 =

(
1− p(N)

1

)
αN−1

=
N − 1

N
αN−1 ,

p
(N)
3 =

(
1− p(N)

1 − p(N)
2

)
αN−2

=
N − 1

N
(1− αN−1)αN−2 ,

...

p
(N)
N−4 =

(
1− p(N)

1 − p(N)
2 − · · · − p(N)

N−5

)
α5

=
N − 1

N
(1− αN−1) · · · (1− α6)α5 ,

p
(N)
N−3 = 1− p(N)

1 − p(N)
2 − · · · − p(N)

N−4

=
N − 1

N
(1− αN−1) · · · (1− α6)(1− α5) . (7.26)

Without the educated guesses provided by the SRM, one would have to resort to

choosing the test state for the next iteration at random, just as one does in a

purely classical search, which amounts to the replacement αL → 1/L and yields

p
(N)
1 = p

(N)
2 = · · · = p

(N)
N−4 = 1/N , p

(N)
N−3 = 4/N . But with the systematic educated

guesses, we have

αL ≈
3 +
√

8

L
for L� 1 , (7.27)

and the probabilities for early termination are substantially larger than 1/N .

3Note that this probability p
(N)
m is different from the probability p

(N)
k given for GA in Eq. (6.12).
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Figure 7.1: Average number G(N) of oracle queries as a function of the total number N of
index kets. Curve “a” shows GC(N) of Eq. (6.2) for the classical search strategy. Curve “b” shows
GQ(N) of Eq. (7.34) for Grover’s search algorithm, supplemented by test-state verification and
optimized for least number of queries per search cycle. Curve “c” shows GT (N) of Eq. (7.28) for
the test-state search.

Equations (7.25) and (7.26) yield the recurrence relation

GT (N + 1) = 1 +
N

N + 1
(αN − βN) +

N2βN
N + 1

GT (N) , (7.28)

which commences with GT (4) = 1 and reduces, as it should, to its GC(N) analog in

Eq. (6.3) for αN = βN = 1/N . With the aid of the large-L form of αL in Eq. (7.27)

and the corresponding statement for βL, we then find that the average number of

queries in the test-state search is given by

GT (N) ≈ N

4 +
√

8
=

N

6.83
for N � 1 . (7.29)

The comparison with the classical search,

GT (N)

GC(N)
≈ 1

2 +
√

2
=

1

3.41
= 0.293 for N � 1, (7.30)

shows that the judicious choice of the next test state has a substantial pay-off: We

need much fewer queries.
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Since the test-state search and GA both determines the actual oracle inside

the given quantum black box, the classical-type “yes/no” approach of the test-

state search sets the benchmark for the quantum search with GA. It is true, that

both GC(N) and GT (N) grow linearly with the number N of candidate items,

whereas GQ(N) grows proportional to
√
N—and this quadratic speed-up is, of

course, the striking advantage of the quantum search algorithm—but the reduction

of the average number of queries by the factor of 0.293 is truly remarkable by itself.

It, too, is a benefit of the superposition principle. Furthermore, if we apply the

test-state approach to the quantum search problem of Sec. 6.2, although it takes

more steps than GA, it definitely provides us the correct result. So, there is no need

to run it again. The three search strategies are compared in Fig. 7.1, which shows

GC(N), GT (N), and GQ(N) as functions of N .

7.3 Grover’s search algorithm with test-state

verification

As recalled in Sec. 6.2 above, a single GA cycle consists of the preparation of the

initial state, k applications of G = DO, followed by a measurement in the com-

putational basis that is composed of the index kets. If the measurement outcome

corresponds to the index ket |j〉, then we apply the oracle to test state |tj〉, measure

the resulting state with the SRM, and so decide whether the actual oracle is Oj or

not. The search terminates when this test says “yes.” But if the reply is “no,” we

execute another GA cycle.

The probability that a GA cycle finds the correct index state is p
(N)
k of Eq. (6.12).

It follows that the probability that the search terminates after the mth cycle is

(
1− p(N)

k

)m−1
p

(N)
k = cos

(
(2k + 1)θN

)2(m−1)
sin
(
(2k + 1)θN

)2
(7.31)
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for m = 1, 2, 3, . . . .

Each cycle queries the oracle k times, once for each application of G, plus one

more time during the test-state verification. The verification is only done, however,

if the result of the GA cycle is not an index state to an oracle that is already known

to be wrong from the verification step of an earlier cycle. If the search terminates

after the mth cycle, the oracle has been queried as many as

mk + 1 + (N − 1)

[
1−

(
N − 2

N − 1

)m−1
]

(7.32)

times on average, where the last summand is the average number of wrong test

states that are tried out during the unsuccessful m− 1 preceding cycles.

Accordingly, the average number that we need to query the oracle before we

know which oracle is the actual one, is given by

GQ(N ; k) =
k

p
(N)
k

+
N − p(N)

k

1 + (N − 2) p
(N)
k

. (7.33)

This expression ignores the very small correction of no consequence that results

from the possibility that the search can terminate after trying out N − 1 test states

for wrong oracles and so learning that the one remaining oracle must be the actual

one.

In GQ(N ; k), k is the number of oracle queries per cycle, so that we can optimize

GA by minimizing GQ(N ; k) with respect to k,

GQ(N) = min
k
GQ(N ; k) . (7.34)

The asymptotic form of Eq. (6.13) is obtained from

lim
N→∞

GQ(N)√
N

=
φ/2

(sinφ)2
= 0.6900 , (7.35)

120



7.4. Alternative test-state search strategies

where φ = 1.1656 is the smallest positive solution of 2φ = tanφ. For N � 1, one

needs (sinφ)−2 = 1.18 cycles on average before GA concludes successfully, and

the optimal k value is k = 1
2
φ
√
N = 0.58

√
N , which is slightly less than 75% of

k = 1
4
π
√
N , the value that maximizes the single-cycle success probability p

(N)
k .

7.4 Alternative test-state search strategies

The GA search of Sec. 7.3 is consistently carried out in the full space spanned by all

index kets, as requested by the standard form of GA that we accept as its definition.

By contrast, the successive iteration rounds of the test-state search [see Secs. 7.1

and 7.2] are conducted in the relevant subspace spanned by the remaining candidate

index kets. As a consequence of this systematic shrinking of the searched space, the

successive educated guesses get better from one iteration round to the next.

In actual implementations, however, it may not be practical to limit the search

to the relevant subspace because it is usually much easier to realize the necessary

operations in the full N = 2n dimensional space [Sec. 7.5]. If all iteration rounds of

the test-state search are indeed performed in the full space, we have

G′T (N) =
2− d
1− d

− 1

N

1− dN

(1− d)2
− 1

N
dN−2 with d = (N − 1)βN−1 (7.36)

instead of GT (N) of Eq. (7.28). The large-N form thereof is

G′T (N) ≈ e−γ − 1 + γ

γ2
N =

N

6.08
with γ = 2 +

√
8 . (7.37)

Compared with the classical search, the reduction is still by more than a factor

of 3, but the full-space test-state search needs about 12% more queries than the

relevant-space search.

One could wonder if there is a benefit in using the measurement for unambiguous

discrimination (MUD) [62, 63] rather than the SRM, because the MUD gives a small
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chance of identifying the actual oracle with a wrong test state. The probability of

finding the right one of N oracles with a randomly chosen test state is then

1

N
+
N − 1

N

2

N − 2
=

3N − 4

N(N − 2)
(7.38)

where 2/(N − 2) is the success probability for the MUD to the (N − 1)-edged

pyramid of the |tkj 〉 kets with j 6= k [61].

The price for this increase of the bare 1/N probability is paid by getting an

inconclusive result from the MUD if it fails to identify the right state, so that we

have no information that would facilitate an educated guess for the next test state.

The resulting average number of oracle queries is

G
(MUD)
T (N) =

(N − 1)(3N + 4)

12N
(7.39)

if we successively search in the relevant subspace only, and

G
(MUD)
T

′
(N) =

1

1− d
− 1

N

d− dN+1

(1− d)2
− 1

N
dN−1 with d =

N − 4

N − 2
(7.40)

if the search is consistently carried out in the full space. The large-N forms

G
(MUD)
T (N) ≈ N

4
,

G
(MUD)
T

′
(N) ≈ N

4/(1 + e−2)
=

N

3.52
(7.41)

show clearly that this price is high: The test-state search with MUD needs sub-

stantially more oracle queries than the search with SRM. In addition, the MUD is

a proper POM and more difficult to implement than the SRM.

One could also rely on the MUD rather than the SRM in the verification step

of GA. There are then modifications in Eqs. (7.32) and (7.33), but the large-N

statement of Eq. (7.35) remains the same.
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7.5 Unitary operations for realizing the test-state

approach

While the test state |t0〉 could be realized for any value of N , we only discuss here

the important case of N = 2n—when the oracles are unitary operators acting on n

qubits. There, the test states |tj〉 of Eq. (7.1) are locally equivalent to |t0〉, in the

sense that we can transform the test state |t0〉 into any other test state by applying

the X operations on the relevant qubits. In the following, a construction of |t0〉 and

a realization of the SRM of Eqs.‘(7.11) and (7.18) are presented in sequence.

7.5.1 Construction of the test state

Let us first take the case of three qubits (N = 8) as an example; then a =
√

5/12,

b =
√

1/12 in Eq. (7.6) with a2 + 7b2 = 1. For preparing the three-qubit test state

|t0(8)〉, the input register is initialized in the state |0〉⊗3, and then the single-qubit

gate

V (1) := e−iθ1Y with tan(θ1) :=
2b√

a2 + 3b2
=

1√
2

(7.42)

is performed on the first qubit. Thereafter, the controlled gate4 ∆1V (2) with

V (2) := e−iθ2Y and tan(θ2) :=

√
a2 + b2 −

√
2 b√

a2 + b2 +
√

2 b
= 2−

√
3 (7.43)

is performed on the second qubit by taking the first qubit as control (with the

control set to |0〉) followed by the Hadamard gate H(2) of Eq. (2.23). Subsequently,

the doubly-controlled gate ∆12V (3) with

V (3) := e−iθ3Y and tan(θ3) :=
a− b
a+ b

=
3−
√

5

2
(7.44)

4In the case of controlled-unitary operation, the symbols ∆ and Λ represent that (every) control
is set to the kets |0〉 and |1〉, respectively.
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V (1) 

V (3) 

V (2) H 

H 

30 ⊗ )8(0t

(i) 

W (1) 

W (3) 

W (2) H 

H 

40 ⊗ )16(0t

W (4) H 
(ii) 

Figure 7.2: Quantum circuit (i) is for preparing the three-qubit test state |t0(8)〉 and (ii) is for
preparing the four-qubit test state |t0(16)〉, respectively. Here, the input state is |0〉⊗n (n = 3, 4),
the Hadamard operations are depicted by H, and the explicit forms of the various controlled gates
(the V s and W s) are given in the text, where all single-qubit operations are Y rotations.

is executed on the third qubit by taking the first and second qubits as controls (with

both controls set to |0〉) followed by the Hadamard gate H(3). The over-all unitary

operation u for the case of three qubits can be narrated as

u := H(3) ×
[
∆12V (3)

]
×H(2) ×

[
∆1V (2)

]
× V (1) , (7.45)

and the corresponding quantum circuit is depicted in Fig. 7.2(i).

The quantum circuit displayed in Fig. 7.2(ii) is for the construction of the four-

qubit test state |t0(16)〉; where a =
√

13/28, b =
√

1/28, and a2 + 15b2 = 1. In this

case,

W (1) := e−iϑ1Y with tan(ϑ1) :=

√
8 b√

a2 + 7b2
=

√
2

5
(7.46)

and

W (2) := e−iϑ2Y with tan(ϑ2) :=

√
a2 + 3b2 − 2b√
a2 + 3b2 + 2b

=
1

3
(7.47)

as well as W (3) = V (2) and W (4) = V (3).
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The generalization to the n-qubit case is immediate. The method to efficiently

implement a multiqubit controlled unitary operation ∆1···(n−1)V (n) (single-qubit gate

V with n− 1 control qubits) in terms of universal gates [see Sec. 2.4.3] with n− 2

work qubits is given in Secs. 2.4.2, 4.3.3 and also in Refs. [23, 1]. Let us note that

its circuit complexity is of the order of n. Consequently, the circuit complexity

for constructing the n-qubit test state with quantum circuits of the kind shown in

Fig. 7.2 is O(n2). In Appendix C, an alternative method for constructing the test

state |t0〉 is given, where the amplitudes a and b are complex numbers.

7.5.2 Realization of the SRM

In order to perform the SRM of Sec. 7.1 after passing the test state |t0〉 through

the black box, one needs the corresponding unitary transformation

M0 :=
N−1∑
l=0

|l〉〈T l0| (7.48)

that turns each basis ket |T l0〉 into the corresponding ket |l〉 of the computational

basis. Since every test state |tj〉 is locally equivalent to |t0〉, one can easily get Mj

from M0 with some local operations. With Eq. (7.18) we have

M0 = −a|0〉〈0| − x
N−1∑
l=1

|l〉〈l|+ b
N−1∑
l=1

(
|0〉〈l|+ |l〉〈0|

)
+ y

N−1∑
k,l=1
k>l

(
|k〉〈l|+ |l〉〈k|

)
= −I + (1− a)|0〉〈0|+ b

(
|0〉〈v|+ |v〉〈0|

)
+ y|v〉〈v| (7.49)

with

|v〉 :=
N−1∑
k=1

|k〉 , (7.50)

which has one eigenvalue +1 and N − 1 eigenvalues −1, so that the unitary oper-

ators −M0 and the n-qubit unitary operation Λ12···(n−1)Z(n) of Eq. (6.14) have the

same set of eigenvalues, that is: they are unitarily equivalent. The eigenkets of M0
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X 

X 

X Z 

X 

X 

X 

U† U  lT0 l−

Figure 7.3: The quantum circuit for the implementation of −M0 in the case of three qubits.
The operation U is implemented by the circuit shown in Fig. 7.2(i) after changing the parameters
in accordance with Eq. (7.53). And, if we run the same circuit in the reverse order we can also
implement U†. The quantum gate shown in the center of circuit is the Λ12Z(3) given by Eqs. (2.53)
and (6.14).

are

|e0〉 :=

√
1− a

2
|0〉+

b√
2(1− a)

|v〉 ,

|e1〉 := −
√

1 + a

2
|0〉+

b√
2(1 + a)

|v〉 ,

|ej〉 :=
1√
2

[
−|1〉+ |j〉

]
for j = 2, 3, . . . , N − 1 , (7.51)

with M0|e0〉 = |e0〉 and M0|ej 6=0〉 = −|ej 6=0〉. In view of the degeneracy of M0, the

set of orthonormal eigenkets for eigenvalue −1 is not unique, but the choice of

Eqs. (7.51) is particularly useful in the present context. For, the eigenket |e0〉 has

the same structure as the test state |t0〉 of Eq. (7.1), and we know from Sec. 7.5.1

how to construct |t0〉.

We relate M0 to Λ12···(n−1)Z(n) through the unitary operator UX⊗n that diago-

nalizes M0 in the computational basis,

M0 = −UX⊗n
[
Λ12···(n−1)Z(n)

]
X⊗n U† . (7.52)

The operator U itself is such that U|0〉⊗n := |e0〉 or UX⊗n|1〉⊗n := |e0〉, and we
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realize it by the circuit for u [see Fig. 7.2 and Eq. (7.45)] with the replacements

a→
√

1− a
2

,

b→ b√
2(1− a)

, (7.53)

while U† is implemented by the circuit of Fig. 7.2 with its gates in reverse order and

all respective θ angle parameters replaced by −θ. Accordingly, all unitary factors on

the right-hand side of Eq. (7.52) have known realizations, as illustrated for N = 23

in Fig. 7.3.

With the SRM thus implemented and the corresponding test states of Sec. 7.5.1,

we can verify the GA outcome and complete the quantum search as discussed in

Sec. 7.3. Also, we can perform the full-space test-state search of Sec. 7.4, for which

Eqs. (7.36) and (7.37) apply. Of course, there are implementations as well of the

test states in successively smaller spaces and of the corresponding SRMs, but their

economic implementations are not yet known. The restriction to the subspaces of

yet-to-probe index states is rather awkward in practice.
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Chapter 8

Conclusion and outlook

The two main results of this thesis are the introduction of the hybrid quantum

computation model, as an improvement over the unitary-evolution-based model and

the measurement-based model in terms of resources, and the test-state approach to

the quantum search, as a procedure to verify and terminate faster the search.

In Part I, we have established the hybrid quantum computation model, which is

a combined model of the measurement-based quantum computation model and the

unitary-evolution-based quantum computation model. The hybrid model chooses

different methods of implementation (either unitary evolution or measurements)

for different elementary gates to optimize the consumption of resources such as

qubits, entanglement, elementary operations and measurements. It is a universal

computation model, which can simulate any quantum algorithm.

Similar to the case of unitary-evolution-based model, first, a big unitary gate (of

an algorithm) under simulation is decomposed into a sequence of elementary gates.

In the hybrid model, the set of elementary gates consists of single-qubit rotations,

the cz gate, and the multiqubit rotations around the z axis U12···n
zz···z (θ). Every single-

qubit rotation and the cz gate are executed by unitary evolution. However, every

multiqubit rotation is performed by preparing a respective star-graph state followed

by a single measurement.
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In addition, we have not only achieved the optimization, but also obtained

a straightforward structure for the classical information processing in the hybrid

model. It only requires a 2n-component information flow vector and the propa-

gation matrices for the elementary gates. Also, we have shown that the classical

information processing only takes as many steps as the number of elementary gates

in a quantum circuit under simulation. No preprocessing or additional computa-

tional step is required for the classical information processing in the hybrid model.

Furthermore, to justify the practical significance of our model, we have presented

a number of examples such as the multiqubit controlled-unitary gate Λ12···(n−1)Z(n)

This gate together with the single-qubit Hadamard H and the Pauli X gates is

sufficient to realize Grover’s algorithm in the framework of the hybrid model.

A real quantum computer needs to be universal, scalable and fault-tolerant.

The hybrid model is completed by presenting the basic ideas for its fault-tolerant

version. We have considered the Steane 7-qubit code and provided the correspond-

ing encoded elementary gates and classical information processing. It turns out

that the classical information-processing parts of hybrid model fit perfectly in its

fault-tolerant version. Indeed, the classical information processing only requires the

same 2n-component information flow vector and 2n× 2n propagation matrices.

One can carry on this investigation in the following directions. In addition to

the multiqubit rotations, one could include a few other important gates—which can

be executed in a single shot without adding further complications to the model—in

the set of elementary gates. Furthermore, one could pursue the investigation of a

fault-tolerant version of the hybrid model by considering a noise model.

In Part II, we have introduced the test states that enable one to verify whether

the outcome of a quantum search with Grover’s algorithm is the actual oracle or not.

Grover’s algorithm together with the test-state verification successfully terminates

the search earlier than the algorithm itself. Indeed, the performance of the algorithm

is improved about 25% in terms of speed.
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We thereby regard the search problem as defined by the set of possible oracles,

which are those considered by Grover. Automatically, other search problems, such

as the one studied by Høyer [68], are not covered. The corresponding test states—if

they exist—have to be found separately for each search problem. This is also the

case for Grover-type searches with more than one matching item, that is, when the

oracle is a product of two or more different unitary operators of the kind defined in

Eq. (6.4).

It is possible that there are no test states for some of these other search problems.

In such a scenario, one may not be able to verify the success of the search by test

states of some sort, by a method like the one described in Appendix B or by any

other procedure. Also, if it is not possible to verify the outcome then one may need

to revise the problem itself. We leave this as a moot point.

With the test states at hand, we have the option of solving the quantum search

problem with a classical search strategy. But there is a twist: while there is one

“yes” answer, each “no” answer is slightly different. With the help of the square-root

measurement, this difference can be exploited systematically for a judicious choice

of the test state for the next round. This educated guessing is rewarded by much

fewer queries of the oracle on average than that is needed for the simple “yes/no”

search. A speed-up by a factor of 3.41 is achievable in principle, and a practical

scheme still gains a factor of more than three. In our view, the classical-search

benchmark is set by the search that exploits the differences between the “no”s fully.

The test-state approach is completed by giving explicit circuits for the prepara-

tion of the n-qubit test states. The circuit complexity is of order n2, and a variant

of the same circuit is the main ingredient in the realization of the square-root mea-

surement. Also, one can employ the hybrid model to construct the n-qubit test

states in a single shot.

The hybrid model and the test-state approach are two relatively simple solutions

to a more efficient use of resources in quantum computation. We hope this work
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will trigger further developments for resource-efficient quantum computation.
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Appendix A

The reversible classical circuit

model

A computer is a machine to perform the desirable computational tasks, such as

adding two numbers, with the help of algorithms. An algorithm is an effective

method, expressed in terms of a finite set of well-defined instructions, for calculating

a required function. Basically, a computer takes an input, calculates the necessary

function and produces the output. In classical computation, the input is given and

the output is read in terms of bits, and a logic gate is the function

f : {0, 1}n → {0, 1}m (A.1)

which provides a m-bit output for a given n-bit input.

In the m = 1 case of Eq. (A.1), the functions—with n input bits and a single

output bit—are called Boolean functions, and a general function with m output bits

is equivalent to m Boolean functions. In the case of 2n possible n-bit inputs and

one-bit output, there are altogether (2)2n Boolean functions. A Boolean function

can be decomposed further into a sequence of elementary functions (gates). A list

of elementary gates for classical computation is presented in the following [1].
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Table A.1: Truth tables of the and, or, xor, nand, and nor gates

Inputs Outputs of gates
a b aand b aor b axor b anand b anor b
0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 1 0
1 1 1 1 0 0 0

• The not gate: It interchanges the bit value 0 to 1 and 1 to 0. In other words,

it takes a one-bit input a, computes the function f(a) = 1⊕ a, and provides

the one-bit output 1⊕ a, where ⊕ represents the modulo-2 addition. It is the

only nontrivial reversible one-bit gate.

• The and gate: It—takes a two-bit input to a one-bit output—returns the

single-bit output 1, if and only if both of its input bits are 1. Interestingly,

the function associated to the and gate effectively finds the minimum between

the values of the two input bits.

• The or gate: It—has two-bit input and one-bit output—provides the single-

bit output 1, if and only if at least one of its input bits is 1. In other words,

it gives the output 0, if and only if both of its input bits are 0; otherwise

it returns 1. The function associated to the or gate effectively finds the

maximum between the values of the two input bits.

• The xor gate: It provides the modulo-2 addition of both the input bits as an

output. In this case, the output 1 results, if one and only one of its input bit

is 1. If both the input bits are 0 or 1, the output results in 0.

• The nand gate: It is the opposite to the and gate and is achieved by applying

the not gate on the output of the and gate.

• The nor gate: It is the result of the negation of the or gate. It gives the

output 1 if and only if both of its input bits are 0.
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One could also consider two additional operations—the fanout and crossover.

In classical computation, it is allowed to replace a bit with two copies of itself. This

operation is called the fanout1. Also, the operation which interchanges the values

of two bits is known as the crossover (or swap).

In quantum computation, the action of a quantum gate can be represented by a

unitary matrix in the computational basis. Similarly, in classical computation, the

action of a logic gate can be understood by its Truth table. Each one of the and,

or, xor, nand, and nor gates has two-bit input and one-bit output, and their

truth tables are combined in Table A.1. The nand gate is universal for the classical

computation—provided that the ancilla bits and the fanout gate are available—in

a sense that any boolean function can be implemented by using a combination of

nand gates. There are other universal sets of gates such as {and,not}, {or,not},

and {nor}.

The reversibility of a gate is a very important issue because it is deeply linked

to energy consumption in computation2. A logic gate is reversible if it takes each

input (n-bit string) to a unique output (n-bit string). Consequently, each one of

the and, or, xor, nand, and nor gates are irreversible. The Toffoli gate takes

a three-bit input to a unique three-bit output according to its truth table given in

Table A.2. Together with ancilla bits, it gives a universal set for reversible classical

computation.

If one chooses the same input and output registers, then only (2n)! gates turns

out reversible in the case of n bits. According to the classical theory of reversible

computation, one can make any gate reversible by choosing separate input and

output registers. For example, one can convert the xor gate into the cnot gate,

(a, b)→ (a, a⊕ b).
1The fanout operation cannot be performed in a straightforward way in quantum computa-

tion, due to the no-cloning theorem.
2Irreversibility can be thought in terms of information erasure which cost a certain amount of

energy.
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Appendix A. The reversible classical circuit model

Table A.2: Truth tables of the Toffoli and Fredkin gates

Inputs Outputs
Toffoli Fredkin

a b c a′ b′ c′ a′′ b′′ c′′

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
0 1 1 0 1 1 0 1 1
1 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 1 0
1 1 0 1 1 1 1 0 1
1 1 1 1 1 0 1 1 1

Let us now see the connection between reversible classical computation and

quantum computation. As every gate in the quantum regime is a unitary operator

so, every quantum gate is reversible. Hence, there exist legitimate unitary operators

X of Eqs. (2.19), ΛaX(b) of Eq. (2.39), and Λ12X(3) of Eq. (2.52) for the not, cnot,

and Toffoli gates, respectively. However, the and, or, xor, nand, and nor gates

have no straightforward quantum analog. Since the classical Toffoli gate is universal

and has a quantum analog, any CC can be simulated with a QC.

A combination of reversible gates is also reversible, e.g., the swap gate can be

made of three cnot gates [see Eq. (2.48)], and the Fredkin gate can be composed

of three Toffoli gates [see Eq. (2.54)]. Working of the Fredkin gate3 is explained in

Table A.2. Like the Toffoli gate, the Fredkin gate is also universal for reversible

classical computation.

Let us add here the following. Although, the classical cnot and not gates are

reversible, they cannot implement the Toffoli (or Fredkin) gate. Therefore, they

do not constitute a universal set of gates for classical computation. While, in the

quantum regime, it is possible to decompose the Toffoli gate into a sequence of

single-qubit and the cnot gates [see Fig. 2.4]. Thus, they form a universal set

of gates for quantum computation [see Sec. 2.4.3]. As an additional remark, one

3Application of the Fredkin gate conserves the number of 1s (or 0s) between the input and
output.
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can use the above mentioned classical theory of reversible computation to perform

indirect quantum measurements and to bring all those measurements which appear

in the intermediate steps of the quantum computation to the end.

In summary, the task of a CC is to compute a required function similar to

Eq. (A.1) which can be further decomposed in terms of Boolean functions. Each

Boolean function is further decomposed into a sequence of universal logic gates.

A sequence of gates is represented by a circuit diagram, where connecting wires

depict bits, and the ancilla bits are provided in a standard state. After initializing

the input register in a n-bit state, the logic gates of the circuit are performed in the

required order, and, in the end, the output is readout.
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Appendix B

An alternative confirmation step

for Grover’s search algorithm

Here we describe an alternative procedure for verifying the result obtained by GA.

This method does not rely on the construction of test states of Chapter 7. Rather it

employs a simple circuit that distinguishes between two selected target oracles and

the other N − 2 oracles. The verification is achieved by having the GA-outcome

oracle in two different target pairs, and thus requires two queries of the oracle.

Suppose GA has had oracleOj [see Eq. (6.4)] as the outcome. The corresponding

index ket |j〉 := |x1χ〉 has value x1 for the first qubit and the values of qubits

2, 3, · · · , n are summarized by the string χ. We pair |j〉 with |̂j〉 := |x̂1χ〉 where

x̂1 := x1 + 1 (mod 2) =


1 if x1 = 0 ,

0 if x1 = 1 ,

(B.1)

so that j and ĵ differ in the first bit value only.

As indicated in Fig. B.1, qubit 1 is prepared in the state with ket |0〉, and the χ

part of the index state is encoded in qubits 2 through n. So, the ket of the n-qubit
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Appendix B. An alternative confirmation step for GA

H 1
0 H 

Quantum 
Black 
Box χ

Figure B.1: A single iteration of the alternative confirmation is exhibited in terms of quantum
circuit diagram. The input state with ket |φin〉 = |0χ〉 of Eq. (B.2) is passed through the sequence
of the Hadamard gate H of Eq. (2.23), the quantum black box, and another Hadamard gate.
Finally, the 1st qubit of the output state |φout〉 is measured in the computational basis.

input state is

|φin〉 := |0χ〉 =


|j〉 if x1 = 0 ,

|̂j〉 if x1 = 1 .

(B.2)

We pass it through the quantum circuit of Fig. B.1, where the given black box is

used only once. If the black box is implementing either oracle Oj or oracle Oĵ, then

the output state will have ket

|φ(yes)
out 〉 = |1χ〉 . (B.3)

If, however, the black box is implementing one of the other N − 2 oracles, the

output state will have ket

|φ(no)
out 〉 = |0χ〉 . (B.4)

Finally, qubit 1 is measured in the computational basis. If we find 0, the “no”

output is the case, and we can be sure that the actual oracle is neither Oj nor Oĵ.

But when we find 1, we know that one of these oracles is inside the black box. We

determine which one by pairing |j〉 with a third index ket that also differs only

by the value of one qubit, which then plays the role of the privileged qubit in the

corresponding circuit of the kind depicted in Fig. B.1, where qubit 1 is singled out.

So, we either get a definite “no” answer to the question “Is the jth or the ĵth

oracle the case?” or we are told “yes, it is one of these two.” In the latter situation,
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we know for sure which one it is after a second round.
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Appendix C

An alternative construction of the

test states

In Sec. 7.5.1, a construction of the test states of Eq. (7.1) is given for the case

of N = 2n with the real coefficients a and b of Eq. (7.6). Here, we provide an

alternative method by which one produces the alternative test states with complex

a and b amplitudes, as exemplified by

|t0〉 = a |0〉+ b
N−1∑
l=1

|l〉

= (a− b)|0〉⊗n + b
√
N |+〉⊗n , (C.1)

where |+〉 is given by Eq. (2.28), and the absolute values |a| and |b| are, of course,

still those of Eq. (7.6). As before, it is enough to show how |t0〉 is made, the other

test states are then available by applying some single-qubit X gates.

One can obtain a ket of this kind by applying the multi-Hadamard unitary

operator

U12···n
HH···H(θ) := exp

(
−iθ

2
H⊗n

)
, (C.2)
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1 

2 

3 

4 

n 

(n-1) 

(n-2) 

r 

(i) 

H 
H 
H 
H 

H 

1 

2 

3 

4 

n 

n0 ⊗ out

(ii) 

Figure C.1: This figure is similar to Fig. 3.5. In here, the star graph (i) correspond to the graph
state with the ket |Φ(1 + n)〉 of Eq. (C.7). In the star graph, the dotted gray circles represent the
input register of n qubits, the bonds represent the controlled-Hadamard gates ch(n) of Eq. (C.6),
and the black diamond represents the ancilla qubit r. Circuit (ii) represents the net effect on the
input ket |0〉⊗n, when the ancilla qubit is measured in an appropriately chosen basis.

to |j = 0〉 = |0〉⊗n,

U12···n
HH···H(θ)|0〉⊗n = cos

(
1
2
θ
)
|0〉⊗n − i sin

(
1
2
θ
)
|+〉⊗n . (C.3)

Now, for b
√
N = −i sin

(
1
2
θ
)

= −i
√
N/(2N − 4) we need to set the angle parameter

θ to the value determined by

tan
(

1
2
θ
)

=

√
N

N − 4
, (C.4)

and one verifies that

a = cos
(

1
2
θ
)
− i√

N
sin
(

1
2
θ
)

=

√
N − 4− i√
2N − 4

(C.5)

also has the absolute value required by Eq. (7.6). So, if we set θ in accordance with

Eq. (C.4), then the output state of Eq. (C.3) is the test state |t0〉 of Eq. (C.1). We

note that θ = π for N = 4, and θ = π/2 + 2/N for N � 1.

One can execute the unitary operation U12···n
HH···H(θ) on the n-qubit input state

|0〉⊗n by a similar method as the one given for the unitary operation U12···n
zz···z (θ) in

Sec. 3.1.5. Here, the input quantum register of n qubits [circles in Fig. C.1(i)] and
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the ancilla qubit1 r [diamond in Fig. C.1(i)] are initialized in the n-qubit input state

with ket |0〉⊗n and the state with ket |+〉r, respectively. Then, similar to the n cz

operations in Sec. 3.1.5, here the n controlled-Hadamard operations

ch(n) :=
(
|0〉〈0|

)
r
⊗ I⊗n +

(
|1〉〈1|

)
r
⊗H⊗n (C.6)

are performed between the ancilla qubit and each one of the n qubits. All the

controlled-Hadamard operations represented by the bonds in Fig. C.1(i) can be

carried out at the same time, because they all commute with each other. This leads

to the resultant star-graph state with the ket

|Φ(1 + n)〉 =
1√
2

[
|0〉r ⊗ |0〉⊗n + |1〉r ⊗ |+〉⊗n

]
. (C.7)

The label 1 + n reveals the number of qubits of the final graph state.

A single-qubit projective measurement on the ancilla qubit r in the basis

Bθ,π
2

=
{
| ↑, ↓ (θ, 1

2
π)〉r

}
, (C.8)

[same as Eq. (3.10)] transforms the input ket of the n qubits into the ket

|out〉 =
(
H⊗n

)mr
U12···n
HH···H(θ)|0〉⊗n . (C.9)

Here, mr ∈ {0, 1} is the measurement result, and
(
H⊗n

)mr
is the by-product opera-

tor [37, 38], which is represented by the red boxes on all the n qubits in Fig. C.1(ii).

After undoing the effect of the by-product operator in Eq. (C.9), one has the

test state of Eq. (C.1), and can then apply the necessary single-qubit X gates to get

the test state that one needs. Alternatively and more efficiently, one can combine

these X gates with the by-product operator and execute the resulting single-qubit

1Note that r is just the label of the ancilla qubit. Like n, it does not represent any number.
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gates in one go.
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