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ABSTRACT 

Machine learning methods have frequently been used in early stage diagnosis at the 

proteomic level, such as the MHC binding peptides prediction and biomarkers selection 

for metabonomics. Although many computational methods have been designed for such 

studies, it is necessary to develop more stable and smart system to improve predictive 

performance. Support vector machine, an artificial intelligence technique, demonstrates 

remarkable generalization performance. Two groups of MHC binding peptides and two 

bladder cancer metabonomics datasets with different number of metabolites has been 

investigated by support vector machine and other machine learning methods. Recursive 

feature elimination, an effective feature selection algorithm, has also been applied to 

investigate the metabonomics data. The results of MHC binding peptide study showed 

that the prediction system can achieve satisfactory performance by constructing the 

model with sufficient generated non-binding peptides. The second study on 

metabonomics prediction suggested that metabolites biomarkers can be effectively 

selected from the metabonomics dataset by support vector machine-recursive feature 

elimination method.  
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1 INTRODUCTION 

Support vector machines (SVMs) are a group of supervised learning methods that can be 

applied to classification or regression problems. The support vector (SV) algorithm is a 

nonlinear generalization of the Generalized Portrait algorithm developed in the early 

60’s.
1,2

 In the past few decades, SVM showed excellent performance in many real-world 

applications such text categorization, hand-written character recognition, image 

classification and etc. With the advent of the genomic, proteomic and metabonomics era, 

the availability of human genome provides an opportunity to elucidate the genetic basis 

of biological processes and human diseases. However, the huge amount of data requires 

the development of high-throughput analysis tools and powerful computational capacity 

to facilitate the data analysis. Facing these challenges, bioinformatics has created many 

techniques, of which SVM as one of them. In the following sections, the increasing 

applications of SVM in bioinformatics, specifically genomics, proteomics and 

metabonomics, are reviewed. 

1.1 Applications of SVM in bioinformatics 

1.1.1 Applications of SVM in genomics 

The Human Genome Project (HGP) was launched in 1989 with the initial goal of 

producing a draft sequence of the human genome. A working draft of genome was 

announced in 2000 and completed version in 2003. But knowledge of the genomic 

sequence is just the first step towards the understanding of the development and functions 

of organisms. The next key landmark will be an overview of the characteristics and 
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activities of the proteins encoded in the genes. Since not all genes are expressed at the 

same time, a further question is which genes are active under which circumstances. One 

of the immediate goals of comparative genomics is the understanding of the evolutionary 

trajectories of genes and integrating them into plausible evolutionary scenarios for entire 

genomes. A prerequisite for this process is a phylogenetic classification of genes. 

The fast progress in genome sequencing projects calls for rapid, reliable and accurate 

functional assignments of gene products. Genome annotation
3
 enables the structural and 

functional understanding of genome. Computational analysis has been extensively 

explored to perform automatic annotation to co-exist with and complement mutual 

annotation. The basic level of annotation is annotating genomes based on BLAST based 

similarities. Nowadays a lot more additional information is added to the annotation 

platform including genome context information, similarity scores, experimental data and 

integrations of other resources and a variety of software tools have been developed to 

annotate sequences on a large scale. In recent years, the application of SVMs in genome 

annotation was aroused.
4-8

 These automated annotation systems develop binary classifiers 

based on sequence data and assign these sequences to certain Gene Oncology (GO) 

terms.
4-8

 Compared to other existing genome annotation systems, these SVMs based 

annotation tools outperform to some extent with more stable prediction results and better 

generalization capacity.
5
 

With the accomplishment of HGP, genome-wide association studies (GWAS) are largely 

launched to derive gene signatures to determine common and complex diseases such as 

age-related macular degeneration (ARMD)
9
 and diabetes.

10
 In 2005, a GWAS found an 

association between ARMD and a variation in the gene of complement factor H (CFH). 
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Together with four other variants, these genes can predict half the risk of ARMD between 

siblings and make it the earliest and most successful example of GWAS.
9
 In 2007, a 

GWAS found an association between type 2 diabetes (T2B) and a variation in several 

single nucleotide polymorphisms (SNPs) in the genes TCF7L2, SLC30A8 and others.
10

 

In recent years, SVMs have been applied to detect the variations associated with various 

diseases. Listgarten et al. explored combinations of SNPs from 45 genes and detected 

their potential relevance to breast cancer etiology in 174 patients and accuracy of 69% 

was obtained by using SVMs as the learning algorithm.
11

 They concluded that multiple 

SNPs from different genes over distant parts of the genome are better at identifying breast 

cancer patients than any single SNP alone. Waddell et al. have applied SVMs to predict 

the susceptibility to multiple myeloma.
12

 Their work had 71% accuracy on a dataset 

containing 40 cases and 40 controls.
12

 In 2009, by using several machine learning 

techniques including SVM, Uhmn et al. predicted patients' susceptibility to chronic 

hepatitis from SNPs.
13

 More recently, Ban et al. investigated 408 SNPs in 87 genes 

involved in major T2D related pathways in 462 T2D patients and 456 healthy controls 

using SVM and achieved a 65.3% prediction rate with a combination of 14 SNPs in 12 

genes.
14

 As the high-throughput technology for genome-wide SNPs improves, it is likely 

that a much higher prediction rate with biologically more interesting combination of 

SNPs can be acquired and this will further benefit future drug discovery efforts and 

choosing of proper treatment strategies. 

1.1.2 Applications of SVM in proteomics 

After genomics, proteomics is considered the next step in the study of biological systems. 

It is much more complicated than genomics mostly because while an organism's genome 
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is more or less constant, the proteome differs from cell to cell and from time to time. This 

is because distinct genes are expressed in distinct cell types. This means that even the 

basic set of proteins which are produced in a cell needs to be determined. In the past, this 

was done by mRNA analysis but it was found not to correlate with protein content.
15,16

 It 

is now known that mRNA is not always translated into protein, and the amount of protein 

produced for a given amount of mRNA depends on the gene it is transcribed from and on 

the current physiological state of the cell. Besides, not only does the translation from 

mRNA cause differences, many proteins are also subjected to a wide variety of chemical 

modifications after translation. Many of these post-translational modifications, such as 

phosphorylation, ubiquitination, methylation, acetylation, glycosylation, oxidation, 

nitrosylation and etc., are critical to the protein's function.  

Despite the difficulties in proteomic studies, scientists are still interested in proteomics 

because it gives a much better understanding of the functions of an organism than 

genomics. Functional clues contained in the amino acid sequence of proteins and 

peptides
17-20

 have been extensively explored for computer prediction of protein function 

and functional peptides. A particular challenge is to derive functional properties from 

sequences that show low or no homology to proteins of known function. 

Recently, SVMs have been explored for functional study of proteins and peptides by 

determining whether their amino acid sequence derived properties conform to those of 

known proteins of a specific functional class
21-25

. The advantage of this approach is that 

more generalized sequence-independent characteristics can be extracted from the 

sequence derived structural and physicochemical properties of the multiple samples that 

share common functional profiles irrespective of sequence similarity. These properties 
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can be used to derive classifiers
19-30

 for predicting other proteins that have the same 

functional or interaction profiles. 

The task of predicting the functional class of a protein or peptide can be considered as a 

two-class (positive class and negative class) classification problem for separating 

members (positive class) and non-members (negative class) of a functional or interaction 

class. SVM and other well established two-class classification-based machine learning 

methods can then be applied for developing an artificial intelligence system to classify a 

new protein or peptide into the member or non-member class, which is predicted to have 

a functional or interaction profile if it is classified as a member.  

The reported prediction accuracies for class members (P+) and non-members (P–) of 

SVM for predicting protein functional classes are in the range of 25.0%~100.0% and 

69.0%~100.0%, with the majority concentrated in the range of 75%~95% and 

80%~99.9% respectively
21-24,31-45

. Based on these reported results, SVM generally shows 

a certain level of capability for predicting the functional class of proteins and 

protein-protein interactions. In many of these reported studies, the prediction accuracy for 

the non-members appears to be better than that for the members. The higher prediction 

accuracy for non-members likely results from the availability of more diverse set of 

non-members than that of members, which enables SVM to perform a better statistical 

learning for recognition of non-members. 

Prediction of protein-binding peptides have primarily been focused on MHC-binding 

peptides,
27

 the reported P+ and P– values for MHC binding peptides are in the range of 

75.0%~99.2% and 97.5%~99.9%, with the majority concentrated in the range of 
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93.3%~95.0% and 99.7%~99.9% respectively.
46-48

 These studies have demonstrated that, 

apart from the prediction of protein functional classes, SVM is equally useful for 

predicting protein-binding peptides and small molecules. 

From the above reported results, it can be easily concluded that SVM shows promising 

potential for a wide spectrum of protein and peptide classes including some of the low- 

and non-homologous proteins. This method can thus be explored as a potential tool to 

complement alignment-based, clustering-based, and structure-based methods for 

predicting protein function and interactions. 

1.1.3 Applications of SVM in metabonomics 

Metabonomics is the comprehensive and quantitative assessment of low molecular 

weight analytes (<1500Da) that define the metabolic status of an organism under a given 

condition.
49

 In complementation with genomics and proteomics, the direct measurement 

of metabolite expression is essential in the systematic understanding of biological process. 

Metabolomics is increasingly enjoying widespread applications in areas such as 

functional genomics, identification of the onset and progression of disease, 

pharmacogenomics, nutrigenomics, and system biology.
50-53

  

Because of its sensitivity and coverage, mass spectrometry (MS) is a favorable 

technology for metabolomics study. One major bottleneck for current MS-based 

metabolomics is the identification of metabolites. To identify the correct metabolite from 

a large volume of MS/MS spectra, a proper comparison or scoring scheme is needed. In 

machine learning, SVMs are widely considered to represent the state of the art in 

classification accuracy. Recently, SVMs have been applied to the supervised 
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classification of cancer versus control sample sets from MS data.
54-63

 Xue et al. 

investigated the serum metabolic difference between hepatocellular carcinoma (HCC) 

male patients and normal male subjects by stepwise discriminant analysis (SDA) and 

SVM based on gas chromatography (GC)/MS data.
61

 The resultant diagnostic model 

could discriminate between HCC patients and normal subjects with 20-fold cross 

validation classifying accuracy of 75% and error count estimate for each group of 0%.
61

 

Henneges et al. constructed breast cancer predictive models by profiling of urinary RNA 

metabolites using SVM-based feature selection from data obtained from liquid 

chromatography ion trap (LC-IT) MS, and had classification sensitivity and specificity of 

83.5% and 90.6% respectively.
63

 The performance of SVM for the classification of liquid 

chromatography/time-of-flight (LC/TOF) MS metabolomics data focusing on 

recognizing combinations of potential metabolic ovarian cancer diagnostic biomarkers 

was evaluated by Guan et al.
54

 The classification of the serum sample test set was 90% 

accurate, which suggests that the developed approach might lead to the development of 

an accurate and reliable metabolomics-based approach for detecting ovarian cancer.
54

 

More recently, Zhou et al. collected MS/MS spectra for 21 metabolites from both 

in-house data and publicly available data from the Human Metabolite Database (HMDB) 

and utilized SVM to incorporate both peak and profile similarity measures for spectral 

matching. The models had accuracies and F-measure ranging from 94.6%~96.3% and 

80.7%~85.1% respectively.
64

 By comparing the identification performance with other 

algorithms (NIST, MassBank and SpectraST) and the correlation method, it was observed 

that SVM can achieve 7% to 10% improvement on identification performance.
64

  

1.2 Underlying difficulties in using SVM 



8 
 

The performance of SVM critically depends on the diversity of samples in a training 

dataset and the appropriate representation of these samples. The datasets used in many of 

the reported studies are not expected to be fully representative of all of the proteins, 

peptides and small molecules with and without a particular functional and interaction 

profile. Various degrees of inadequate sampling representation likely affect, to a certain 

extent, the prediction accuracy of the developed statistical learning models. SVM is not 

applicable for proteins, peptides and small molecules with insufficient knowledge about 

their specific functional and interaction profile. Searching of the information about 

proteins, peptides and small molecules known to possess a particular profile and those 

that do not possess the profile is key to more extensive exploration of statistical learning 

methods for facilitating the study of functional and interaction profiles.  

In the datasets of some of the reported studies, there appears to be an imbalance between 

the number of samples having a profile and those without the profile. SVM method tends 

to produce feature vectors that push the hyper-plane towards the side with smaller 

number of data,
65

 which often lead to a reduced prediction accuracy for the class with a 

smaller number of samples or less diversity (usually members) than those of the other 

class (usually non-members). It is however inappropriate to simply reduce the size of 

non-members to artificially match that of members, since this compromises the diversity 

needed to fully represent all non-members. Computational methods for re-adjusting 

biased shift of hyper-plane are being explored.
66

 Application of these methods may help 

improving the prediction accuracy of SVM in the cases involving imbalanced data. 

While a number of descriptors have been introduced for representing proteins and 

peptides,
19,31,67,68

 most reported studies typically use only a portion of these descriptors. It 
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has been found that, in some cases, selection of a proper subset of descriptors is useful for 

improving the performance of SVM.
69-71

 Therefore, there is a need to explore different 

combination of descriptors and to select an optimum set of descriptors using feature 

selection methods.
69-71

 Efforts have also been directed at the improvement of the 

efficiency and speed of feature selection methods,
72

 which will enable a more extensive 

application of feature selection methods. Moreover, indiscriminate use of the existing 

descriptors, particularly those of overlapping and redundant descriptors, may introduce 

noise as well as extending the coverage of some aspects of these special features. Thus, it 

may be necessary to introduce new descriptors for the systems that have been described 

by overlapping and redundant descriptors. Investigations of cases of incorrectly predicted 

samples have also suggested that the currently-used descriptors may not always be 

sufficient for fully representing the structural and physicochemical properties of proteins, 

peptides and small molecules.
30,55,73

 These have prompted works for developing new 

descriptors.
42

  

1.3 Objectives and organization of this thesis 

1.3.1 Objectives of this thesis 

The main objective of this thesis is to investigate and develop novel systems of support 

vector machine for –omics application. Two types of studies were included in this 

investigation. These are MHC binding prediction for proteomics level, and metabolites 

selection for metabonomics level. 

The first study is to explore an improved flexible prediction system for MHC binding 

prediction. Generally, there are several inevitable limitations of the current prediction 
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systems. First of all, most prediction systems were particularly designed for peptides with 

fixed lengths. Secondly, the dataset size of the existing systems, especially the training 

dataset of non-binders are not adequate for building a reliable prediction model. Thirdly, 

some of the prediction systems represented peptides not by the structural and 

physicochemical properties, but by sequence of peptides directly. Last but not least, most 

MHC binding prediction systems only cover a limited number of MHC alleles, which 

leads to a lack of statistically significant number of known peptides in the commonly 

studied length ranges. 

There are several feasible ways to alleviate the above problems. These include choosing a 

prediction algorithm which works for peptides with flexible lengths; representing the 

peptides with sequence-derived structural and physicochemical properties; and 

conducting the training data with sufficiently diverse set of non-binders. All of these 

improvements can be achieved in the studies by using support vector machine. According 

to previous studies, SVM has shown promising capability for prediction of specific 

functional group of flexible lengths with sequence-derived structural and 

physicochemical properties. Moreover, peptides in same specific functional group are 

generally diverse but share similar structural and physicochemical features. To some 

extents, the MHC binding peptides in specific alleles share similar characteristics, which 

mean they have similar structural and physicochemical features. Therefore, SVM is 

expected to be a potential eligible algorithm to be applied for predicting MHC binding 

and non-binding peptides. 

The second part of this thesis is to investigate a new approach of metabolites selection by 

using support vector machine feature selection system. The development of a new 
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approach of metabolites selection is one of the major topics in the area of data mining in 

metabonomics studies. It is important to find the marker metabolites responsible for 

disease reaction. This may help in early diagnosis and correct prediction of disease. The 

general workflow of data mining in metabonomics analysis can be found in Figure 1. 

There are two major sub-objectives for the second part of study. (1) Discovery of marker 

metabolites responsible for the distinction between groups of samples related to the 

specific interests. (2) Development the better metabolites selection methods by advanced 

machine learning algorithm. Compared with the traditional methods of metabolites 

selection, the new approach will be derived from the strategies of gene selection in 

microarray data. Several feature selection methods and algorithms (e.g.: SVM recursive 

feature elimination, forward/backward weighting methods based on Decision tree, Naïve 

Bayes kernel function and other traditional weighting methods) will be compared to 

determine their performance and usability for metabolite selection. 
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Figure 1 General pipeline of data mining and knowledge discovery in 

metabonomics analysis 
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1.3.2 Organization of this thesis 

Chapter 1 introduces the history of SVMs and reviews their increasing applications in 

bioinformatics especially in genomics, proteomics and metabolomics.  

Chapter 2 describes in detail the mathematical theory of SVM as a combination of two 

main concepts: Maximal Margin Hyperplanes (also called Optimal Separating 

Hyperplanes) and kernel functions. The general criteria for evaluating the classifying 

performance are also introduced.  

Chapter 3 elucidated the real application of SVM in MHC binding prediction. Several 

SVM prediction systems were developed and evaluated for the multiple MHC alleles. 

The accuracies of these prediction systems were validated using fivefold cross validation. 

Chapter 4 elaborated the application of SVM for metabolites selection in metabonomics. 

Urine samples of 75 subjects of bladder cancers were investigated with the methods of 

metabonomics. The advances of SVM system in metabolites selection were demonstrated 

by comparison with several feature selection algorithms.  

Chapter 5 concludes the achievement and limitation of current work. Future works are 

also introduced in this chapter. 
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2 METHODOLOGY 

2.1 Support vector machines (SVMs) method 

The process of training and using a SVM model for screening peptides based on their 

physicochemical property descriptors is schematically illustrated in Figure 2. SVM is 

based on the structural risk minimization principle of statistical learning theory,
74-79

 

which consistently shows outstanding classification performance, is less penalized by 

sample redundancy, and has lower risk for over-fitting.
80-82

  

2.1.1 Linear SVM 

In two-class problems, SVM aims to separate examples of two classes with the maximum 

hyper plane (Figure 3). Mathematically, the data is composed of n examples of two 

classes, denoted as 1 2{( , ), , ( , )}n nx y x y  , where N

ix R  is a vector in feature space 

and { 1, 1}iy     denotes its class. A hyper plane could be drawn to separate examples 

of one class (positive examples) from those of the other one (negative examples). The 

hyper plane is represented by 0w x b   , where w  is slope and b is bias. Thus the 

objective function of SVM changes to minimize Euclidean norm
2

w  with following 

limitations:  

1iw x b     for 1iy         (positive examples)               (1) 

1iw x b     for 1iy         (negative example)               (2) 
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Figure 2 Diagrams of the process for training and predicting targets 
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Figure 3 Architecture of support vector machines 

 

Figure 4 Different hyper planes could be used to separate examples 
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According to which side those new instances locate, we can easily determine which class 

they belong to. So the decision function becomes , ( ) ( , )w bf x sign w x b    . 

Geometrically, all the points are divided into two regions by a hyper plane H. As shown 

in Figure 4, there are numerous ways through which a hyper plane can separate these 

examples. The objective of SVM is to choose the “optimal” hyper plane. As all new 

examples are supposed to be located under similar distribution as training examples, the 

hyper plane should be chosen such that small shifts of data do not result in fluctuations in 

prediction result. Therefore, the hyper plane that separates examples of two classes 

should have the largest margin, which is expected to possess the best generalization 

performance. Such hyper plane is called the Optimal Separating Hyper plane (OSH).
83

 

Examples locating on the margins are called support vectors, whose presentation 

determines the location of the hyper plane. OSH could be thus represented by a linear 

combination of support vectors. The margin ( , )i w b of a training point ix is defined as 

the distance between H and ix : 

( , ) ( )i iw b y w x b                             (3) 

and the margin of a set of vectors 1{ , , }nS x x is defined as the minimum distance 

between the hyper plane H to all the vectors in S : 

{ | 1} { | 1}
( , ) ( , )min min max

i
S i

x S x y x y

w x w x
w b w b

w w
 

  

 
                (4) 

So the OSH is the solution to the optimization problem:
84,85
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Maximize: ( , )w b                             (5) 

Subject to: 

( , ) 0w b                                 (6) 

2
1w                                  (7) 

which is an equivalent statement of the problem 

 Minimize: 
21

2
w                            (8) 

Subject to: 

1iw x b     for 1iy                          (9) 

1iw x b     for 1iy                         (10) 

This optimization problem could be efficiently solved by the Lagrange method. With the 

introduction of Lagrangian multipliers 0( 1,2,..., )i i n   , one for each of the inequality 

constraints, we obtain the Lagrangian: 

1

1
( , , ) [ ( ) 1]

2

n
T

P i i i

i

L w b w w y w x b 


                    (11) 

This is a Quadratic Programming (QP) problem. We would have to minimize ( , , )PL w b   

with respect to w , b and simultaneously require that the derivatives of ( , , )PL w b   with 
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respect to the multipliers i vanish, ( , , ) 0PL w b
w







 and ( , , ) 0PL w b
b







 

This leads to: 

1

n

i i i

i

w y x


  and 
1

0
n

i i

i

y


                        (12) 

By substituting these two equations into equation (11), the QP problem becomes the 

Wolfe dual of the optimization problem: 

1 , 1

1
( , , ) ( )

2

n n

D i i j i j i j

i i j

L w b y y x x  
 

                   (13) 

subject to constraints 
1

0
n

i i

i

y


  and 0i  , 1,2, ,i n . 

The corresponding bias 0b  can be calculated as: 

 0 0 0
{ | 1} { | 1}

1
( ) ( )

2
min max
x y x y

b w x w x
 

                      (14) 

This QP problem could be efficiently solved through several standard algorithms like 

Sequential Minimization Optimization
86

 or decomposition algorithms.
87

 

Once 0w and 0b  are determined, the hyper plane is readily drawn. The points for which 

0i   are called support vectors, which lie on the margin
88

. 
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2.1.2 Nonlinear SVM 

Many real-world problems are usually too complicated to be solved with linear classifiers. 

With the introduction of kernel techniques, input data could be mapped to a 

higher-dimension space, where a new linear classifier can be used to classify these 

examples (Figure 5). 

Figure 5 Mapping input space to feature space 

 

 

Let   denotes an implicit mapping function from input space to feature space F . Then 

all the previous equations are transformed by substituting input vector ix  and inner 

product ( , )ix x  with ( )ix  and kernel ( , )iK x x  respectively, where 

( , ) ( ) ( )i iK x x x x                           (15) 

Equation (13) is then replaced by 
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1 1 1

1
( , , ) ( )

2

n n n

D i i j i j i j

i i j

L w b y y K x x  
  

                   (16) 

subject to constraints
1

0
n

i i

i

y


  and 0i  , for 1,2, ,i n . The bias 
0b  becomes  

0
{ | 1} { | 1}

1
[ ( , )] [ ( , )]

2
min maxi i i i i i

SV SV
x y x y

b y K x x y K x x 
 

 
   

 
             (17) 

and the decision function becomes 

0 0

1

( ) [ ( , ) ] [ ( , ) ]
n n

i i i i i i

i SV

f x sign y K x x b sign y K x x b 


               (18) 

Note that the mapping function   is never explicitly computed, which would 

significantly reduce the computation load. Another advantage is that the feature space 

may be infinitely dimensional, such as in the case of Gaussian kernel,
89

 where mapping 

function cannot be explicitly represented. A function could be used as a kernel function if 

and only if it satisfies Merce’s condition.
90

 Followings are well-known kernel functions: 

Polynomial ( , ) ( , 1) pk x z x z     

Sigmoid ( , ) tanh( , )k x z x z      

Radial basis function (RBF) 
2 2( , ) exp( / 2 )k x z x z     

In this work, RBF kernel is used due to its many advantages demonstrated in previous 

studies. Different SVM models could be developed by using different   values. It is 

thus necessary to scan a number of   values to find the best model, which is evaluated 
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by their performance on classification tasks. Figure 1 illustrates the schematic diagrams 

of the process of training and prediction of drug targets by SVM. Sequence-derived 

feature hi, pi, vi… represents such structural and physicochemical properties as 

hydrophobicity, polarizability, and volume. The calculation of the structural and 

physicochemical properties used for representing MHC binding peptides is described in 

Chapter 3 and the Recursive Feature Elimination (RFE) method used for metabolites 

prediction is introduced in Chapter 4. 

2.2 Performance evaluation 

The performance evaluation aims to find out whether an algorithm is able to be applied to 

novel data that have not been used to develop the prediction model, or measure the 

generalization capacity to recognize new examples from the same data domain.
91

 

In this study, several statistical measurements were explored, including sensitivity (SE), 

specificity (SP), positive prediction value (PPV), and overall prediction accuracy (Q). 

The formulas to calculate these measurements are listed as follows: 

)/( FNTPTPSE   

)/( FPTNTNSP   

)/( FPTPTPPPV   

)/()( FNFPTNTPTNTPQ   

where TP, FN, TN, and FP represent correctly predicted positive data, positive data 

incorrectly predicted as negative, correctly predicted negative data, and negative data 
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incorrectly predicted as positive respectively. Another measurement, Matthews 

correlation coefficient (MCC), was also used to evaluate the randomness of the 

prediction. 

))()()((/)( FNTNFPTNFPTPFNTPFNFPTNTPMCC   

where MCC ranges from -1 to 1. Negative values of MCC indicate disagreement between 

prediction and measurement, while positive values of MCC indicates agreement between 

prediction and measurement. A zero value means the prediction is no better than random 

guess. 
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3 MHC BINDING PREDCITION 

This work developed several prediction systems for 22 MHC Class I and 17 MHC Class 

II alleles by SVM. An original dataset without the pseudo non-binding peptides has been 

tested. All peptide of this dataset were collected from the database. The 29520 binder 

peptides and 24848 non-binder peptides were collected from IEDB have been tested with 

the five-fold cross validation. As a comparison, serial tests were conducted based on each 

allele. The pseudo non-binding peptides generated from the splitting proteins have been 

included in these tests. Fivefold cross validation has been applied to evaluate the 

performance of these prediction systems. 

3.1. Data Preparation 

Data collection from databases 

Binding peptides and non-binding peptides of 22 MHC class I and 17 MHC class II 

alleles were collected from 2 databases: IEDB (Immune Epitope Database 

www.immuneepitope.org/) and SYFPEITHI (www.syfpeithi.de). A total of 70692 MHC 

binding peptides were collected from these two databases. After removing the duplicated 

binders, there were 29520 peptides left. 93734 MHC non-binding peptides were collected 

from these two databases. After removing the duplicated non-binders, there were 24848 

peptides left. 

It had been discovered that the number of tested peptides can severely affected the 

model’s prediction performance, especially when the number is less than 150 
92

. Thus, 

http://www.immuneepitope.org/
http://www.syfpeithi.de/


25 
 

only alleles with more than 150 binding peptides had been chosen to be studied in this 

project, to ensure a good performance of the prediction model. 

There are 452, 5015, 856, 882, 796, 1176, 1134, 65, 308, 324, 226, 547, 209, 609, 517, 

488, 335, 526, 454, 252, 209, 1274, 339, 288, 254, 1993, 370, 874, 270, 238, 373, 240, 

221, 498, 236, 379, 150,254, 374 binders for class I and class II allele HLA-A*0101, 

HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, 

HLA-A*1101, HLA-A*2601, HLA-A*2902, HLA-A*3001, HLA-A*3002, 

HLA-A*3101, HLA-A*330, HLA-A*6801, HLA-A*6802, HLA-B*0702, HLA-B*0801, 

HLA-B*1501, HLA-B*3501, HLA-B*4402, HLA-A*11, HLA-A*2, HLA-DR*1, 

HLA-DR*4, HLA-DR*7, HLA-DRB1*0101, HLA-DRB1*0301, HLA-DRB1*0401, 

HLA-DRB1*0404, HLA-DRB1*0405, HLA-DRB1*0701, HLA-DRB1*0802, 

HLA-DRB1*0901, HLA-DRB1*1101, HLA-DRB1*1302, HLA-DRB1*1501, 

HLA-DRB3*0301, HLA-DRB4*0101, HLA-DRB5*0101 respectively. The detail 

information of datasets can be found in Table 3. 

MHC Non-binders generation 

Theoretically, an n-mer peptides can lead to 20n possible combinations. Compared to 

these enormous combinations, the limited number of known non-binding peptides is 

much smaller than the total number of the possible combinations, which cannot 

sufficiently represent the entire sequence space. A similar situation happened in proteins 

functional families
24,92

. According to other researchers’ works
24,92,93

, additional numbers 

of proteins without the specific functions can be created by grouping these pseudo 

proteins into specific domain families and populating the whole protein space by 
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selecting representative proteins from each group of these un-functional families. Such 

kinds of efforts are expected to be applicable for MHC non-binders generation.  

In this work, the additional non-binder peptides were generated from splitting the 

representative protein from each protein family. The steps are outlined as below: 

1) 10082 representative proteins were selected from the 10000+ protein families 

respectively. 

2) Each selected protein has been split into small peptides with different lengths from 8 

amino acids to 25 amino acids. The splitting procedure is shown as below.  

 

3) The peptides were removed from the generated peptides if they were identical to the 

binder peptides from the database. The purpose of this step is to ensure the binding 

peptides were not included in the generated dataset. 472,118 peptides were removed 

from the generated peptides. 78,000,000 peptides were left and can been treated as 

the negative dataset. 

4) Because the generated non-binder dataset is too large to be used in further modeling 

steps, an eligible selection procedure is necessary to be applied to select the 

representative negative dataset from the entire negative dataset. Peptides should be 
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clustered into groups based on their structural and physicochemical feature space. 

Then the representative peptides were randomly selected from each group to form a 

training set that is sufficiently diverse and broadly distributed in the feature space. 

However, due to the large number of generated non-binding peptides in this work, a very 

long time would be needed to cluster 78,000,000 peptides into specific groups, especially 

when each peptide is described using hundreds of descriptors. A classical K-means 

clustering method would take several months to complete the entire clustering process. 

Therefore, as a more simplified clustering method, randomly selection algorithm has 

been applied to select specific number of peptides from each group. Representative 

peptide is randomly selected from each group to form the dataset which is sufficiently 

diverse and equally distributed in the feature space. The representative non-binders have 

been equally selected from different lengths of peptides, from 8-mer to 25-mer, and 

distributed into each allele group, according to a certain ratio of binders to non-binders.  

3.2. Descriptor Generation 

Several descriptors development methods have been designed to construct the feature 

space for peptides 
94,95

. For instance, the peptide sequence can be straightforwardly 

represented by direct sequence of amino acids.  

In this study, as the binders and non-binders datasets were combined by flexible lengths 

of peptides, the straightforward vector representation method would create different 

number of descriptors for each peptide, which is not suitable for following modeling 

procedures. Therefore, a feature representation method with the structural and 

physicochemical properties of a peptide has been developed with a well-formulated 
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procedure. The same number of descriptors can be developed for different lengths of 

peptides by this method. Given the sequence of a peptide, the physical and chemical 

properties, as well as the composition of every constituent amino acid can be computed 

with certain formulas and then generated to be vectors. These computed amino acid 

properties include hydrophobicity, normalized van der Waals volume, polarity, 

polarizability, charge, surface tension, secondary structure, solvent accessibility 
92

 and 

three global composition descriptors: composition, transition and distribution. 

For each of the properties, amino acids can be divided into three or six groups such that 

those in a particular group are regarded to have approximately the same property. For 

instance, charge of amino acid can be divided into three groups: positive (KR), Neutral 

(ANCQGHILMFPSTWYV), and Negative (DE). Secondary structure of amino acid can 

be divided into three groups: Helix (EALMQKRH), Strand (VIYCWFT), and Coil 

(GNPSD). The detailed division of amino acids can be found in Table 1.  

The global composition of amino acids includes three descriptors: composition (C), 

transition (T), and distribution (D), C represents the number of amino acids of a specific 

property divided by the number of total number of amino acids in an entire peptide. T is 

the percent frequency of amino acids with a particular property followed by amino acid 

with different properties. D characters the distribution of the properties along the 

sequence within which the first, 25%, 50%, 75% and 100% of the amino acids of a 

particular property are located respectively. 
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Table 1 Division of amino acids for different physicochemical properties. 

6 Dimensions 

Property 

Divisions 

Group 

1 
Group 2 Group 3 Group 4 Group 5 Group 6 

Hydrophobicity 

0~0.04

3 

0.165~0.35

9 

0.45~0.5
01 

0.616~0.7
38 

0.825~0.
88 

0.943~1 

RDE HNQKS TG ACPM VWY ILF 

Van der Waals 

volume 

0~1.6 2.43~2.78 2.95~3 3.78~4.0 
4.43~4.7

7 
5.89~8.08 

GAS CTPD NV EQIL MHK FRYW 

Polarity 
0 

0.352~0.45

6 

0.6~0.60

8 

0.648~0.6

96 

0.792~0.

8 
0.864~1.0 

VI LFWCMY PA TGS HQR KNED 

Polarizability 

0~0.06

2 

0.105~0.10

8 

0.128~0.

15 

0.18~0.18

6 

0.219~0.

23 
0.29~0.409 

GAS DT CPNVE QIL KMH FRYW 

3 Dimensions 

Property 
Group 1 Group 2 Group 3 

Charge 

Positive Neutral Negative 

KR 
ANCQGHILMFPSTW

YV 
DE 

Surface tension 
-0.20~0.16 -0.3~ -0.52 -0.98~ -2.46 

GQDNAHR KTSEC ILMFPWYV 

Secondary 

structure 

Helix Strand Coil 

EALMQKRH VIYCWFT GNPSD 

Solvent 

accessibility 

Buried Exposed Intermediate 

ALFCGIVW RKQEND MPSTHY 
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For instance, consider a sequence KRACQTDKDLERWTS. According to the charge 

division in Table 1, the charge descriptor of this peptide is encoded as 

112222313231222.  

Its composition descriptor can be calculated as  

1 2
*100*100 *100

( , ,..., )mnn n
C

N N N


   (19) 

mn  is the number of m in the encoded sequence and N is the length of this sequence. 

According to the example, the number of encoded class “1” is 4, “2” is 8, “3” is 3. The 

composition are 4/15=26.7%, 8/15=53.4% and 3/15=20% respectively. 

Its transition descriptor can be calculated as 

1 3 2 31 2
100 100100

( , , )
1 1 1

G G G GG G
T TT

T
N N N

 


  
,   (20) 

where 21GG , 31GG , and 32GG  are 12, 13, 23 respectively. 1 2G GT
, 1 3G GT

, 2 3G GT
 are the 

numbers of dipeptide encoded as 12, 13, 23 respectively in the sequence, T is the length 

of the sequence. 

Its distribution descriptors can be calculated as  

0 25 50 75 100100 100 100 100 100
( , , , , )i i i i iP P P P P

D
N N N N N

    


   (21) 
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There are five distribution descriptors for each encoded number and they describe the 

position percents in the whole sequence for the 0%, 25%, 50%, 75% and 100% residues 

respectively. 

To sum up, there are 20 dimensions of composition descriptors, 51 dimensions of 

hydrophobicity, Van der Waals volume, Polarity, and Polarizability, 21 dimensions of 

Charge, Surface tension, Secondary structure and Solvent accessibility respectively. The 

total number of descriptors is 308. 

 

3.3. Overview of SVM modeling procedure. 

(1) Import the original pre-processed dataset into a matrix. 

(2) Derive physical and chemical features from sequence for each peptide. i.e. 

Hydrophobicity, Volume, and Polarizability etc. 308 descriptors were generated 

for each peptide. 

(3) Normalized descriptors to the same scale using the formula 
min

max min

X 


, the range 

of descriptors is from 0 to 1. 

(4) Randomized the dataset into five subgroups. Held one as the testing set, and rest 

are training sets. Created five training sets and 5 testing sets by this step, as the 

fivefold cross validation. 
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(5) Chosen the appropriate SVM parameters to identify the most suitable model for 

each dataset. 

3.4. Results and Performance evaluation  

 

3.4.1. Self consistency testing accuracy of dataset without generated non-binders 

The 29520 binder peptides and 24848 non-binder peptides downloaded from IEDB have 

been used to run the whole procedure as the sample tests. The average accuracy of the 

test was around 40%, which is shown in Table 2. 

The main reason for this poor result is due to the lack of the clustering. The negative data 

cannot be selected from the entire feature space without the effective clustering. Without 

these negative datasets, the prediction algorithm cannot create an effective model to 

properly distinguish the positive data and negative data.  

3.4.2. Self consistency testing accuracy of dataset with generated non-binders 

Table 3 gives the results of the SVM prediction systems based on the fivefold cross 

validation sets. As shown in the table, the overall accuracies were in the range of 90% to 

99% for all alleles, except the HLA-A*0201 and HLA-DRB1*0101, which were 86.97% 

and 89.24% respectively. The overall accuracies of 30 alleles were above 96%, 7 alleles 

were above 90% and the other 2 alleles were above 85%. These results demonstrated the 

manifest improvement of the prediction accuracies due to the application of generated 

negative datasets. 



33 
 

Table 2 Prediction performance of MHC binding peptides without generated 

non-binders. 

SVM parameters Fivefold cross validation performance 

C gamma Sensitivity Specificity Testing Accuracy 

1000 0.1 68.1% 0.4% 37.3% 

1000 0.6 66.3% 4.1% 38.4% 

10000 1.1 52.7% 32.8% 42.8% 

10000 1.6 49.4% 37.9% 44.3% 

100000 2.1 47.8% 37.0% 42.9% 
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Table 3 Datasets and the binder and non-binder prediction accuracies for HLA 

alleles I. 

HLA Allele 

Training set 
Accuracies of 5-fold cross 

validation 
Binders Non-Binders 

HLA-A*0101 452 14225 96.9% 

HLA-A*0201 5015 15091 87.0% 

HLA-A*0202 856 14731 94.5% 

HLA-A*0203 882 14736 94.4% 

HLA-A*0206 796 14919 94.9% 

HLA-A*0301 1176 16300 93.3% 

HLA-A*11 209 6625 96.9% 

HLA-A*1101 1134 15560 91.7% 

HLA-A*2 1274 16993 93.0% 

HLA-A*2601 65 2069 97.0% 

HLA-A*2902 308 9721 96.9% 

HLA-A*3001 324 10241 97.9% 

HLA-A*3002 226 7148 96.9% 

HLA-A*3101 547 17168 96.9% 

HLA-A*3301 209 6624 96.9% 

HLA-A*6801 609 19072 95.7% 

HLA-A*6802 517 16224 93.3% 

HLA-B*0702 488 15350 96.3% 

HLA-B*0801 335 10580 94.3% 

HLA-B*1501 526 16530 96.9% 

HLA-B*3501 454 14307 92.4% 

HLA-B*4402 252 7983 96.3% 
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Continued Table 3: Datasets and the binder and non-binder prediction accuracies for HLA 

alleles II. 

HLA Allele 

Training set 
Accuracies of 5-fold cross 

validation 
Binders Non-Binders 

HLA-DR*1 339 10693 96.7% 

HLA-DR*4 288 9115 96.3% 

HLA-DR*7 254 8047 96.4% 

HLA-DRB1*0101 1993 16527 89.2% 

HLA-DRB1*0301 370 11683 96.9% 

HLA-DRB1*0401 874 16975 95.1% 

HLA-DRB1*0404 270 8542 93.9% 

HLA-DRB1*0405 238 7545 96.9% 

HLA-DRB1*0701 373 11781 96.3% 

HLA-DRB1*0802 240 7604 96.0% 

HLA-DRB1*0901 221 7013 94.5% 

HLA-DRB1*1101 498 15650 96.1% 

HLA-DRB1*1302 236 7479 94.1% 

HLA-DRB1*1501 379 11962 92.9% 

HLA-DRB3*0301 150 4771 95.2% 

HLA-DRB4*0101 254 8052 94.6% 

HLA-DRB5*0101 374 11800 96.9% 
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3.5. Summary and Discussion 

The prediction accuracies of binding peptides by the SVM systems were 90%-96% for 37 

alleles and 86%-89% for 2 alleles, which were much better than the previous model 

which was built using the original datasets. Thus, we can conclude the false binder 

prediction rate is significantly reduced by adding the generated negative datasets. 

It should be noted that the performance of MHC binding prediction might be affected by 

several factors. The first one is the diversity of binding peptide samples. A good 

prediction system cannot be established without adequate samples. Thus higher 

accuracies will be achieved with more MHC binder information. Secondly, the 

imbalanced dataset should be created to represent the entire feature space. A smaller 

number of negative data can lead to reduced accuracy or less diversity.  
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4 METABOLITES SELECTION IN METABONOMICS 

4.1. Data collection and normalization 

The aim of this study was to investigate the role of urinary metabonomics in the 

diagnosis of human bladder cancer and determine the stage of tumor growth. There were 

75 subjects, which included 24 bladder cancer (BC) patients and 51 non-bladder cancer 

(non-BC) subjects in the study. All the urine samples were collected from the 75 subjects 

and stored at -80 °C for further processing. Gas chromatography (GC)/time-of-flight 

(TOF) mass spectrometry has been applied for these urine samples after the serial 

processing of urine preparation. Data acquisition was performed in the full scan mode 

from m/z 40 to 600 with an acquisition rate of 20 spectra/sec. Baseline correction, noise 

reduction, smoothing, library matching and area calculation had been applied for data 

pre-processing of each chromatogram obtained from GC/TOF analysis. Two sets of data 

were produced after data pre-processing: (1) 75 urines samples (24 BC and 51 non-BC) 

with 189 metabolites for each sample. (2) 75 urines samples (24 BC and 51 non-BC) with 

398 metabolites for each sample.  

Normalization is a systematic way of ensuring that a dataset structure is suitable for 

general-purpose querying and free of certain undesirable characteristics. After 

redundancy elimination, data organization and potential data anomalies reduction, the 

biological difference among different samples can be determined and compared using 

machine learning methods. In this study, all the values were derived from the GC/TOF 

chromatogram and processed using the same data pre-processing procedure. Thus 

normalization can be performed for all the samples. 
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Similar to microarray experiments, the major normalization methods for metabonomic 

studies include global normalization performed for all metabolites on the array, and 

housekeeping metabolites normalization using constantly expressed housekeeping/ 

invariant metabolites. The housekeeping normalization method might introduce extra 

potential errors since the metabolites were found to be not expressed constantly. Thus, we 

used global normalization in this study with following procedure. (1) Transforming the 

raw dataset into a two-dimensional matrix. The rows represent different patient samples 

and columns indicate different metabolites detected in patients’ samples. (2) Summing up 

all values for each column. The sum of peak value of each metabolite can be expressed 

by M(i), i represents the number of column. (3) Dividing every row’s value of each 

column by the absolute value of M(i). Then the values of each metabolite can be ranged 

from -1 to +1. Normalization is a key step in the pre-processing of metabonomics data 

and can have a large impact in identifying differential metabolites marks and 

classification for diagnosis. By taking normalization, random or systemic variations, such 

as the influence of detecting efficiencies for each patient’s sample can be well identified 

and removed. Thus the data to be analysed are independent of particular experiment and 

technology used. This can help to avoid the bias caused by variations in sample 

preparation and GC/TOF analysis. The above metabonomics dataset were kindly 

provided by Metabolic Profiling Research Group at NUS Pharmacy. 

 

4.2. Overview of SVM-RFE selection procedure 

We developed a metabolites selection procedure based on algorithm of support vector 

machines (SVM) and the procedure of recursive feature elimination (RFE). An overview 
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of the procedure is shown in Figure 6 and the steps are outlined as below: 
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 Figure 6 Workflow of SVM-RFE metabolites selection procedure 
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(1) Import the original pre-processed dataset into a matrix where each row represents 

a sample and each column represents a metabolite. 

(2) Use the random re-sampling method on the dataset matrix for 20 times to generate 

20 groups of training-testing datasets for further analysis. 

(3) Divide each of the 20 groups of training-testing dataset into 500 subgroups, which 

means 500 different sample combinations. 

(4) Use SVM classifier on each training-testing sample combination to determine the 

class of samples (BC or non-BC). 

(5) Use RFE ranking criteria to sequentially rank the importance of each metabolite 

for the SVM classifier. For each group, 500 lists of ranked metabolites will be 

generated. 

(6) Perform the consistency evaluation based on the sequence of metabolites to 

determine the value of contribution. Remove the metabolite with the least 

contribution.  

(7) Iteratively repeat steps (5) and (6) until the SVM classifier achieves highest 

accuracy and no more metabolites can be removed.  

(8) Generate a metabolites list with highest accuracy from the 500 lists of metabolites. 

These metabolites are the biomarkers for the original dataset. 
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(9) Repeat steps (3) to (8) for the rest of 19 groups for the stability evaluation. The 

final selected metabolites will be determined after comparing the results from all 

the 20 groups. 

4.3. Results and Discussion 

4.3.1. Comparison of prediction performance of multiple machine learning 

methods. 

Five machine learning methods, decision tree, Naïve Bayes with kernel function, 

k-nearest neighbor algorithm, neural network and SVM, were used to develop models 

using the dataset with 189 metabolites. The results, given in Table 4, showed that the 

overall accuracies of all the classifiers were in the range of 66.68%-72.76%. According to 

Table 4, the accuracies of KNN and Neural Network are over 75%, which are higher than 

other 3 methods; but the specificity of Neural Network is much lower than KNN’s, which 

only reached 48%. On the other hand, both sensitivity and specificity of KNN are higher 

than 60%, and its AUC is the highest among the five methods. Therefore, KNN can be 

recommended as the best algorithm to build the predict model. However, such 

performance was also much weaker than the model developed by using the metabolites 

selection procedure, which will be further introduced in following sections. The 

differences in performance between the five models are slight and may be due to the fact 

that the choice of metabolites in a model has a stronger influence on the performance 

than the modeling algorithm. 
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Table 4 Prediction performance with metabolites selection for 75 BC samples with 

189 metabolites by multiple machine learning methods. 

Classifier Analysis platform Sensitivity Specificity Accuracy 

AUC (area 

under 

curve) 

Decision 

tree 

Rapid miner  

version 5.0 

80.00% +/- 

10.95% 

40.00% +/- 

17.89% 

72.76% +/- 

7.87% 

0.848 +/- 

0.099 

Naïve 

Bayes 

(kernel) 

Rapid miner  

version 5.0 

84.00% +/- 

10.20% 

28.00% +/- 

16.00% 

70.04% +/- 

5.97% 

0.736 +/- 

0.221 

KNN 
Rapid miner  

version 5.0 

68.00% +/- 

17.20% 

60.00% +/- 

12.65% 

76.94% +/- 

6.70% 

0.880 +/- 

0.067 

Neural 

Network 

Rapid miner  

version 5.0 

86.00% +/- 

13.56% 

48.00% +/- 

24.00% 

77.11% +/- 

9.24% 

0.688 +/- 

0.181 

SVM 
LibSVM  

Version 3.0 

15.32% +/- 

1.59% 

92.49% +/- 

5.83% 

66.68% +/- 

2.43% 
N.A. 
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4.3.2 The predictive performance of identified metabolites biomarkers. 

The predictive performance of models developed using the identified biomarkers are 

given in Tables 5 and 7. For the bladder cancer dataset with 189 metabolites, the 

performance accuracies (Q) were in range of 81.98% - 83.92% and the numbers of 

selected metabolites were in the range of 27 - 35. For the dataset with 398 metabolites, 

the corresponding values are 97.12% - 99.20% and 31 - 55 respectively. The prediction 

performance of the dataset with 398 metabolites outperformed the dataset with 189 

metabolites. Furthermore, analysis of sensitivity (how well cancer patients can be 

detected) and specificity (how well controls can be detected) suggested the dataset with 

398 metabolites had a better balance between sensitivity and specificity. 

The results also show a good stability in the overall accuracy. For example, in Table 7, 

the difference between the different trials is less than 2.1%. This is mainly due to two 

reasons. Firstly, the globally optimized parameters were determined using grid search and 

thus the best classification accuracy over multi-time modeling and testing steps can be 

found. Secondly, the additional metabolites ranking evaluation on top of the normal RFE 

procedure prevents the selection of less important metabolites. 
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Table 5 Overall prediction accuracies of 20 times SVM-RFE selection for 75 BC 

samples with 189 metabolites. 

Sampling 

set 

Selected 

metabolite 

number 

Overall performance in 500 testing datasets 

Sensitivity Specificity Q 

1 32 58.61% 95.43% 83.11% 

2 35 57.94% 96.13% 83.32% 

3 34 59.21% 95.68% 83.41% 

4 28 58.01% 96.34% 83.50% 

5 33 56.92% 95.67% 82.45% 

6 27 57.39% 96.07% 83.12% 

7 27 58.97% 96.12% 83.68% 

8 29 57.08% 95.43% 82.50% 

9 27 56.97% 96.39% 83.16% 

10 30 56.23% 95.71% 82.37% 

11 33 57.55% 95.42% 82.70% 

12 28 58.25% 96.07% 83.40% 

13 32 58.50% 95.85% 83.24% 

14 34 56.59% 94.81% 81.98% 

15 28 57.58% 96.42% 83.42% 

16 33 60.17% 95.52% 83.67% 

17 29 60.67% 95.69% 83.92% 

18 31 57.73% 95.95% 83.11% 

19 28 57.65% 96.02% 83.15% 

20 27 57.12% 96.47% 83.17% 
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Table 6 Selected metabolites list for 75 BC samples with 189 metabolites. 

Sampling 

set 

Selected 

metabolite 

number 

Metabolite ID lists 

1 32 3, 13, 15, 17, 23, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 90, 94, 102, 108, 120, 125, 144, 156, 165, 166, 172, 175, 176, 181, 182, 183, 186 

2 35 3, 13, 14, 15, 17, 23, 25, 26, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 90, 94, 102, 120, 125, 126, 144, 156, 165, 166, 172, 175, 176, 181, 182, 183, 186 

3 34 3, 13, 14, 15, 17, 23, 25, 26, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 90, 94, 102, 120, 125, 126, 144, 156, 165, 166, 175, 176, 181, 182, 183, 186 

4 28 15, 17, 23, 26, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 94, 102, 120, 125, 144, 165, 166, 172, 175, 176, 181, 182, 183, 186 

5 33 3, 15, 17, 23, 25, 26, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 90, 94, 102, 108, 120, 125, 144, 156, 165, 166, 172, 175, 176, 181, 182, 183, 186 

6 27 3, 14, 17, 23, 26, 38, 41, 47, 53, 54, 66, 81, 85, 86, 94, 102, 108, 120, 125, 144, 165, 166, 175, 176, 181, 182, 183 

7 27 13, 15, 17, 23, 38, 41, 47, 54, 57, 66, 81, 85, 86, 90, 94, 102, 120, 125, 126, 144, 166, 175, 176, 181, 182, 183, 186 

8 29 13, 17, 23, 36, 38, 47, 53, 54, 57, 66, 81, 85, 86, 90, 94, 102, 119, 120, 125, 126, 144, 166, 172, 175, 176, 181, 182, 183, 186 

9 27 10, 13, 17, 23, 38, 41, 47, 53, 54, 66, 81, 85, 86, 90, 94, 102, 120, 125, 126, 144, 165, 166, 175, 176, 181, 182, 186 

10 30 13, 17, 23, 36, 38, 41, 47, 53, 54, 57, 66, 81, 85, 86, 90, 94, 102, 120, 125, 126, 144, 165, 166, 172, 175, 176, 181, 182, 183, 186 

11 33 3, 15, 17, 23, 25, 26, 38, 41, 47, 53, 54, 66, 81, 84, 85, 86, 90, 94, 102, 108, 120, 125, 144, 156, 165, 166, 172, 175, 176, 181, 182, 183, 186 

12 28 13, 15, 17, 23, 26, 38, 41, 47, 53, 54, 66, 81, 85, 86, 90, 94, 102, 120, 125, 126, 144, 166, 175, 176, 181, 182, 183, 186 

13 32 3, 14, 15, 17, 23, 25, 26, 38, 41, 47, 66, 76, 81, 84, 85, 86, 90, 94, 102, 120, 125, 126, 144, 156, 165, 166, 175, 176, 181, 182, 183, 186 

14 34 3, 13, 15, 17, 23, 25, 38, 41, 47, 53, 54, 66, 71, 81, 84, 85, 86, 90, 94, 102, 108, 119, 120, 125, 144, 156, 166, 172, 175, 176, 181, 182, 183, 186 

15 28 3, 13, 17, 23, 38, 41, 47, 53, 54, 66, 81, 85, 86, 94, 102, 120, 125, 126, 144, 165, 166, 172, 175, 176, 181, 182, 183, 186 

16 33 3, 13, 15, 17, 23, 25, 26, 38, 41, 47, 54, 66, 81, 84, 85, 86, 90, 94, 102, 120, 125, 126, 144, 156, 165, 166, 172, 175, 176, 181, 182, 183, 186 

17 29 3, 4, 17, 23, 26, 36, 38, 47, 54, 66, 81, 84, 85, 86, 90, 94, 102, 120, 125, 126, 144, 165, 166, 175, 176, 181, 182, 183, 186 

18 31 3, 13, 14, 17, 23, 25, 26, 38, 41, 47, 53, 54, 66, 81, 85, 86, 94, 102, 120, 125, 126, 144, 165, 166, 172, 175, 176, 181, 182, 183, 186 

19 28 10, 13, 15, 17, 23, 25, 38, 47, 54, 66, 81, 84, 85, 86, 90, 102, 119, 120, 125, 126, 144, 165, 166, 175, 176, 181, 182, 186 

20 27 3, 17, 23, 26, 38, 41, 47, 53, 54, 66, 81, 85, 86, 94, 102, 120, 125, 126, 144, 165, 166, 175, 176, 181, 182, 183, 186 
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Table 7 Overall prediction accuracies of 20 times SVM-RFE selection for 75 BC 

samples with 398 metabolites. 

Sampling 

set 

Selected 

metabolite 

number 

Overall performance in 500 testing datasets 

Sensitivity Specificity Q 

1 36 98.61% 99.42% 98.88% 

2 34 98.88% 99.86% 99.20% 

3 35 97.60% 99.60% 98.26% 

4 55 98.26% 99.76% 98.76% 

5 34 98.33% 99.75% 98.80% 

6 37 98.03% 99.83% 98.62% 

7 33 97.53% 99.30% 98.11% 

8 47 96.67% 99.53% 97.62% 

9 38 97.08% 99.88% 97.99% 

10 36 95.85% 99.68% 97.12% 

11 54 98.14% 99.83% 98.70% 

12 36 97.87% 99.75% 98.48% 

13 39 96.30% 99.56% 97.37% 

14 43 98.48% 99.63% 98.86% 

15 31 97.87% 99.71% 98.47% 

16 46 97.23% 99.36% 97.92% 

17 52 97.01% 99.86% 97.94% 

18 55 98.34% 99.97% 98.87% 

19 32 98.74% 99.90% 99.12% 

20 37 97.46% 98.87% 97.92% 
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Table 8 Selected metabolites list for 75 BC samples with 398 metabolites. 

Sampling 

set 

Selected 

metabolite 

number 

Metabolite ID lists 

1 36 68, 72, 104, 105, 106, 107, 108, 116, 127, 149, 150, 152, 163, 180, 188, 193, 217, 230, 249, 250, 256, 262, 266, 284, 287, 288, 299, 302, 304, 316, 350, 352, 354, 365, 371, 382 

2 34 61, 68, 72, 104, 105, 106, 107, 108, 115, 116, 127, 149, 150, 152, 163, 180, 188, 217, 230, 249, 250, 256, 266, 284, 287, 288, 302, 304, 316, 350, 352, 365, 371, 382 

3 35 46, 61, 68, 72, 104, 105, 106, 107, 108, 116, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 266, 284, 287, 288, 302, 304, 316, 350, 352, 365, 371, 382, 388 

4 55 
46, 61, 68, 72, 75, 97, 104, 105, 106, 107, 108, 116, 124, 127, 132, 133, 135, 149, 150, 152, 163, 179, 180, 184, 188, 210, 217, 218, 230, 234, 249, 250, 252, 256, 262, 266, 284, 

287, 288, 289, 291, 299, 302, 304, 316, 350, 352, 354, 360, 363, 365, 368, 371, 382, 388 

5 34 24, 61, 72, 104, 105, 106, 107, 108, 116, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 266, 287, 288, 291, 302, 304, 316, 350, 352, 354, 365, 371, 382 

6 37 46, 61, 68, 72, 97, 104, 105, 106, 107, 108, 115, 116, 127, 149, 150, 152, 163, 180, 188, 217, 230, 249, 250, 256, 266, 284, 287, 288, 299, 302, 304, 316, 350, 352, 365, 371, 382 

7 33 46, 61, 68, 72, 105, 106, 107, 108, 116, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 266, 284, 287, 288, 302, 304, 316, 350, 352, 365, 371, 382 

8 47 
3, 46, 61, 68, 72, 75, 97, 104, 105, 106, 107, 108, 116, 124, 127, 133, 149, 150, 152, 163, 179, 188, 217, 230, 249, 250, 252, 256, 262, 266, 284, 287, 288, 291, 299, 302, 304, 316, 

350, 352, 354, 360, 363, 365, 371, 382, 388 

9 38 
24, 46, 61, 68, 72, 97, 104, 105, 106, 107, 108, 116, 127, 149, 150, 152, 163, 180, 188, 217, 230, 249, 250, 256, 262, 266, 284, 287, 288, 299, 302, 304, 316, 350, 352, 365, 371, 

382 

10 36 46, 61, 68, 72, 97, 104, 105, 106, 107, 108, 116, 127, 149, 152, 180, 188, 210, 217, 230, 249, 250, 256, 266, 284, 287, 288, 291, 299, 302, 304, 316, 350, 352, 365, 371, 382 

11 54 
46, 61, 68, 72, 75, 89, 97, 104, 105, 106, 107, 108, 115, 116, 124, 127, 132, 133, 149, 150, 152, 179, 180, 184, 188, 202, 217, 218, 230, 234, 249, 250, 252, 256, 262, 266, 284, 287, 

288, 292, 294, 299, 302, 304, 316, 350, 352, 360, 363, 365, 368, 371, 382, 388 

12 36 61, 72, 75, 104, 105, 106, 107, 108, 115, 116, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 266, 287, 288, 291, 302, 316, 350, 352, 360, 363, 365, 371, 382, 388 

13 39 
46, 61, 68, 72, 75, 97, 104, 105, 106, 107, 108, 116, 124, 127, 149, 152, 179, 180, 188, 217, 230, 249, 250, 256, 262, 266, 287, 288, 302, 316, 350, 352, 360, 363, 365, 368, 371, 

382, 388 

14 43 
46, 61, 68, 72, 75, 97, 104, 105, 106, 107, 108, 116, 124, 127, 149, 150, 152, 163, 179, 180, 188, 217, 230, 249, 250, 256, 262, 266, 287, 288, 291, 299, 302, 304, 316, 350, 352, 

354, 360, 363, 365, 371, 382 

15 31 24, 61, 72, 104, 105, 106, 107, 116, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 266, 287, 288, 302, 316, 350, 352, 354, 363, 371, 382 

16 46 
46, 61, 68, 72, 75, 89, 97, 104, 105, 106, 107, 108, 115, 116, 127, 133, 149, 150, 152, 179, 184, 188, 217, 230, 234, 249, 250, 256, 262, 266, 284, 287, 288, 294, 299, 302, 304, 316, 

350, 352, 360, 363, 365, 368, 371, 382 

17 52 
46, 61, 68, 72, 84, 89, 97, 104, 105, 106, 107, 108, 115, 116, 124, 127, 133, 148, 149, 150, 152, 163, 179, 180, 188, 202, 217, 230, 249, 250, 252, 256, 262, 266, 284, 287, 288, 291, 

292, 299, 302, 304, 316, 350, 352, 354, 360, 363, 365, 371, 382, 388 

18 55 
3, 46, 61, 68, 72, 75, 84, 89, 97, 104, 105, 106, 107, 108, 115, 116, 127, 132, 133, 149, 150, 152, 163, 179, 180, 188, 193, 202, 217, 218, 230, 234, 249, 250, 256, 262, 266, 284, 

287, 288, 291, 294, 299, 302, 304, 316, 350, 352, 360, 363, 365, 371, 378, 382, 388 

19 32 61, 72, 104, 105, 106, 107, 108, 115, 116, 127, 149, 150, 152, 180, 188, 217, 228, 230, 249, 250, 256, 266, 284, 287, 288, 302, 304, 316, 350, 352, 371, 382 

20 37 46, 61, 68, 72, 104, 105, 106, 107, 108, 116, 124, 127, 149, 150, 152, 179, 180, 188, 217, 230, 249, 250, 256, 262, 266, 284, 287, 288, 302, 304, 316, 350, 352, 365, 371, 382, 388 
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4.3.3. The list of selected metabolite biomarkers 

Tables 6 and 8 show the ID list of the selected metabolite biomarkers for two datasets. 

For the dataset with 189 metabolites, 27-35 metabolites were identified as the biomarkers 

for the bladder cancer. The median number of chosen biomarkers was 29 and the stability 

was also adequate enough. For the dataset with 398 metabolites, 31-55 biomarkers were 

chosen. Furthermore, the IDs of metabolites chosen by each time are similar. 31 

metabolites were identified in at least 16 out of the 20 experiments. The ID and name of 

these metabolites are listed in Table 9.  

To further analyze the biological meaning of these selected biomarkers, it is necessary to 

understand their functions in metabolic pathway network and the relationship between 

these metabolites and the mechanism of bladder cancer. Several steps need to be 

performed for such purpose. Firstly, the structures of the selected metabolites should be 

derived from their chemical compound names, which are illustrated in Table 10. Secondly, 

determine the chemical and biological information about this compound. It can be 

achieved by querying online chemical compounds resources such as PubChem and 

ChEMBL, as well as analyzing designed experiments. Once the chemical and biological 

properties of these compounds are clear, the next steps is to identify the roles of these 

marker metabolites in related metabolic pathways by building the model of pathway 

networks for them. These steps will be gradually accomplished in further studies. 
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Table 9 List of 31 Selected metabolites (repeated rate > 80%) for 75 BC samples 

with 398 metabolites 

ID of selected metabolite 

biomarker 
Name of selected metabolite biomarker 

61 Silane, trimethyl(phenylmethoxy) 

68 Butanoic acid, 4-[bis(trimethylsilyl)amino]-, trimethylsilyl ester 

72 Silane, tetramethyl- 

104 Silanamine, 

1,1,1-trimethyl-N-(trimethylsilyl)-N-[2-[(trimethylsilyl)oxy]ethyl]- 

105 Trimethylsilyl ether of glycerol 

106 Tetradecane 

107 Ethyl aminomalonate bis-(trimethylsilyl)- deriv. 

116 Acetic acid, bis[(trimethylsilyl)oxyl]-, trimethylsilyl ester 

127 Propanoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester 

149 1,3-Cyclopentadiene, 5,5-dimethyl-1-(trimethylsilylmethyl)- 

150 Butane, 2,3-bis(trimethylsiloxy)- 

152 N,O,O-Tris(trimethylsilyl)-L-threonine 

179 Glycine, N-formyl-N-(trimethylsilyl)-, trimethylsilyl ester 

180 Propanoic acid, 3-[bis(trimethylsilyl)amino]-2-methyl-, 

trimethylsilyl ester 

188 cis-4-Trimethylsilyloxy-cyclohexyl(trimethylsilyl)carboxylate 

217 Pentanedioic acid, 3-methyl-3-[(trimethylsilyl)oxy]-, 

bis(trimethylsilyl) ester 

230 3-Ketovaleric acid, bis(trimethylsilyl)- 

249 Analyte 473 (1) 

250 Analyte 473 (2) 

256 Mannose, 6-deoxy-2,3,4,5-tetrakis-O-(trimethylsilyl)-, L- 
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Continued Table 9 

 

ID of selected metabolite 

biomarker 
Name of selected metabolite biomarker 

266 Ribitol, 1,2,3,4,5-pentakis-O-(trimethylsilyl)- 

284 Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- 

287 Tyrosine, O-trimethylsilyl-, trimethylsilyl ester 

288 Glycine, N-benzoyl-, trimethylsilyl ester 

302 D-Galactose-MOX-TMS-peak2 

304 Acrylic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester 

316 

D-Gluconic acid, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, 

trimethylsilyl ester 

350 Mercaptoacetic acid, bis(trimethylsilyl)- 

352 Analyte 1023 

371 Analyte 799 

382 

2-Furanacetaldehyde, 

tetrahydro-à,3,4,5-tetrakis[(trimethylsilyl)oxy]- 
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Table 10 List of structures of the 31 Selected metabolites (repeated rate > 80%) 

ID of 

selected 

metabolite 

biomarker 

Name of selected 

metabolite biomarker 
Structure of selected metabolites biomarker 

61 Silane, 

trimethyl(phenylmethoxy) 

 

68 
Butanoic acid, 

4-[bis(trimethylsilyl)amino

]-, trimethylsilyl ester 

 

72 Silane, tetramethyl- 

 

104 

Silanamine, 

1,1,1-trimethyl-N-(trimethy

lsilyl)-N-[2-[(trimethylsilyl

)oxy]ethyl]- 

 

105 Trimethylsilyl ether of 

glycerol 

 

106 Tetradecane  
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107 Ethyl aminomalonate 

bis-(trimethylsilyl)- deriv. 
N.A. 

116 
Acetic acid, 

bis[(trimethylsilyl)oxyl]-, 

trimethylsilyl ester 

 

127 
Propanoic acid, 

2,3-bis[(trimethylsilyl)oxy]

-, trimethylsilyl ester 

 

149 
1,3-Cyclopentadiene, 

5,5-dimethyl-1-(trimethylsi

lylmethyl)- 

 

150 Butane, 

2,3-bis(trimethylsiloxy)- 
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152 N,O,O-Tris(trimethylsilyl)-

L-threonine 

 

179 
Glycine, 

N-formyl-N-(trimethylsilyl

)-, trimethylsilyl ester 

 

180 

Propanoic acid, 

3-[bis(trimethylsilyl)amino

]-2-methyl-, trimethylsilyl 

ester 

 

188 
cis-4-Trimethylsilyloxy-cyc

lohexyl(trimethylsilyl)carb

oxylate 
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217 

Pentanedioic acid, 

3-methyl-3-[(trimethylsilyl)

oxy]-, bis(trimethylsilyl) 

ester 

 

230 3-Ketovaleric acid, 

bis(trimethylsilyl)- 

 

249 Analyte 473 N.A. 

250 Analyte 473 N.A. 

256 
Mannose, 

6-deoxy-2,3,4,5-tetrakis-O-

(trimethylsilyl)-, L- 
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266 
Ribitol, 

1,2,3,4,5-pentakis-O-(trime

thylsilyl)- 

 

284 
Heptasiloxane, 

1,1,3,3,5,5,7,7,9,9,11,11,13,

13-tetradecamethyl- 

 

287 Tyrosine, O-trimethylsilyl-, 

trimethylsilyl ester 

 

288 Glycine, N-benzoyl-, 

trimethylsilyl ester 

 

302 D-Galactose-MOX-TMS-p

eak2 
N.A. 
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304 
Acrylic acid, 

2,3-bis[(trimethylsilyl)oxy]

-, trimethylsilyl ester 

 

316 

D-Gluconic acid, 

2,3,4,5,6-pentakis-O-(trime

thylsilyl)-, trimethylsilyl 

ester 

 

350 Mercaptoacetic acid, 

bis(trimethylsilyl)- 

 

352 Analyte 1023 N.A. 

371 Analyte 799 N.A. 

382 
2-Furanacetaldehyde, 

tetrahydro-à,3,4,5-tetrakis[(

trimethylsilyl)oxy]- 

N.A. 
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4.3.4. Performance evaluation with multiple classifiers 

In order to evaluate the performance of the selected biomarkers, multiple classification 

models had been built to re-train the datasets with the selected metabolites. The 

performance of these models can be found from the Table 11. As shown in Table 11, 

overall accuracies of all classifiers were above 79%, in particular, the accuracy of Naïve 

Bayes (kernel) and the accuracy of SVM were above 90%. Sensitivity values of all 

classifiers were above 92%, except for decision tree classifier. Specificity values of these 

classifiers were not as high as the sensitivity values. However, all of them were above 

75%, except for KNN classifier. The performance of these classifiers suggests that the 

selected metabolites were representative of the original data. Moreover, these selected 

metabolites can be used as the biomarkers of the original dataset for further analysis.  
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Table 11 List of evaluation performance of the 31 Selected metabolites (repeated 

rate > 80%) 

Classifier 

Analysis 

Platform 

Sensitivity Specificity Accuracy 

AUC (area 

under curve) 

Decision 

Tree 

Rapid miner 

version 5.0 

75.00% +/- 

19.49% 

81.47% +/- 

4.52% 

79.33% 

+/-8.02% 

0.952 +/-0.046 

Naïve Bayes 

(kernel) 

Rapid miner 

version 5.0 

96.00% +/- 

8.00% 

87.96% +/- 

9.81% 

90.57% 

+/-6.76% 

0.964 +/-0.037 

KNN 

Rapid miner 

version 5.0 

100.00% +/- 

0.00% 

71.47% +/- 

11.40% 

80.95% 

+/-7.52% 

0.983 +/-0.012 

Neural 

Network 

Rapid miner 

version 5.0 

92.00% +/- 

9.080% 

75.07% +/- 

8.72% 

80.76% 

+/-6.68% 

0.912 +/-0.055 

SVM LibSVM 

100.00% +/- 

0.00% 

98.00% +/- 

4.00% 

98.67% 

+/-2.67% 

0.996 +/-0.008 
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5. CONCLUSION AND FUTURE WORK 

Accurate identification of peptides binding to specific MHC molecules is fundamental for 

understanding the mechanisms of both humoral and adaptive immunity, and important for 

developing effective epitope-based vaccines for immunotherapy of infectious, 

autoimmune, and cancer diseases. Experimental methods for identifying MHC binding 

peptides are costly and time-consuming. In-silico methods have thus been explored for 

facilitating epitope screening to complement laboratory experiments in reducing the cost 

and time for vaccine design. In this study, we showed that MHC binding prediction 

methods were able to predict MHC binding peptides with high accuracy. The method 

developed here can be used to identify promising candidate epitopes for further 

experimental verification. 

In the MHC binding peptide prediction study, the performances of prediction systems 

were compared between the original datasets and datasets with the generated non-binding 

peptides. It was found that the separated datasets by alleles with the generated 

non-binding peptides works much more effectively than the original dataset. The positive 

accuracies showing the percentage of the correctly predicted known binding peptides 

have a high level of precision. Based on the principle of the SVM algorithm, SVM shows 

good performance when the samples could sufficiently represent the whole space. 

Therefore, the diversity and representative ability of datasets are the major concerns of 

SVM prediction system. Although certain extent of evaluation have been made for the 

SVM prediction system, further validation is still necessary. Independent evaluations by 

new experimental samples and screening with specific genome could be appropriate ways 
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to validate this MHC-binding prediction system.  

Metabonomics investigation on urine samples of bladder cancer patients could lead to an 

overview of the metabolic disturbances taking place in the patients, which is essential for 

the understanding of physiological progress of bladder cancer. This study demonstrates a 

feasible way of metabonomics research by selecting metabolites markers for specific 

disease. GC/TOF mass spectrometry is the major analytical techniques, which played 

important role in deriving data from biological sample, the feature selection algorithm; 

SVM-RFE has been applied to select the discriminative and meaningful metabolites from 

the metabolic profiling data. The result of feature selection achieved an average 

classification accuracy rate of 98.35%, which indicated the metabolites selection by 

SVM-RFE could discriminate well among and are biologically meaningful for 

metabonomics studies. 

To further evaluate the identified metabolite biomarkers of bladder cancer diagnosis, 

several steps should be performed. Firstly, because the significant improvement of 

performance accuracy was achieved when SVM-RFE metabolites selection procedure 

was applied, and when comparing with other machine learning algorithms without 

metabolites selection, SVM did not show obvious advantage, we believe that as an 

effective way to select the appropriated feature, recursive feature elimination can be 

combined with the other machine learning methods, such as neural network, genetic 

algorithm and k nearest neighbor, to develop several new RFE procedures. 

Secondly, we can further analysis the selected 31 metabolite biomarkers for bladder 

cancer by unsupervised algorithms, such as PCA. Since these biomarkers showed high 
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accuracies when tested by SVM classifier, they should show good distinction abilities 

when analyzed using PCA. The PCA score plot and loading plot can be drawn to 

determine how well these biomarkers can separate the bladder cancer samples and 

non-bladder cancer controls. 

Thirdly, we can further interpret the biological relations of identified biomarkers with 

bladder cancer. The metabolite pathway of bladder cancer could be complicated and 

related to the physiological and biochemical properties of certain cells, organs and entire 

human system. Thus, it is necessary to investigate roles of biomarkers and highlighted 

metabolites in whole metabolic pathway networks, for better understanding of the 

pathway network profile and even improving the network modeling. Currently, there are 

several metabolic pathway resources for further investigation of metabonomics studies 

and reconstructing metabolic models, such as Kyoto Encyclopedia of Genes and 

Genomes (KEGG), BioCyc, EcoCyc, and MetaCyc  

Fourthly, since our SVM-RFE method exhibited good performances for metabolites 

selection of bladder cancer, we can investigate the metabonomics dataset of other types 

of cancers, such as the breast cancer, colon cancer and lung cancer, with our metabolites 

selection methods. 
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